
LispWorks® User Guide and
Reference Manual
Version 8.1

1

Copyright and Trademarks
LispWorks® User Guide and Reference Manual

Version 8.1

February 2025

Copyright © 2025 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in all copies and supporting documentation, and that the
name of M.I.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "as is"
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including all implied
warranties of merchantability and fitness. In no event shall M.I.T. be liable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright
and permission notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

2

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and
registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt III, as applicable. Rights reserved under the copyright laws of
the United States.

Address Telephone Fax

LispWorks Ltd
St. John's Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

From North America:
877 759 8839 (toll-free)

From elsewhere:
+44 1223 421860

From North America:
617 812 8283

From elsewhere:
+44 870 2206189

 www.lispworks.com

Copyright and Trademarks

3

http://www.lispworks.com

Contents

Preface 49

1 Starting LispWorks 54

1.1 The usual way to start LispWorks 54

1.2 Passing arguments to LispWorks 54

1.3 Starting the LispWorks Graphical IDE 55

1.4 Using LispWorks with SLIME 55

1.5 Quitting LispWorks 56

2 The Listener 57

2.1 First use of the listener 57

2.2 Standard listener commands 57

2.3 The listener prompt 59

3 The Debugger 60

3.1 Entering the REPL debugger 60

3.2 Simple use of the REPL debugger 61

3.3 The stack in the debugger 61

3.4 REPL debugger commands 62

3.5 Debugger troubleshooting 68

3.6 Debugger control variables 68

3.7 Remote debugging 69

4 The REPL Inspector 77

4.1 Describe 77

4.2 Inspect 78

4.3 Inspection modes 79

5 The Trace Facility 83

5.1 Simple tracing 83

5.2 Tracing options 84

5.3 Example 89

5.4 Tracing methods 90

5.5 Tracing subfunctions 90

5.6 Trace variables 91

5.7 Troubleshooting tracing 92

4

6 The Advice Facility 94

6.1 Defining advice 94

6.2 Combining the advice 95

6.3 Removing advice 95

6.4 Advice for macros and methods 96

6.5 Advising subfunctions 97

6.6 Examples 98

6.7 Advice functions and macros 100

7 Dspecs: Tools for Handling Definitions 101

7.1 Dspecs 101

7.2 Forms of dspecs 101

7.3 Dspec namespaces 102

7.4 Types of relations between definitions 105

7.5 Details of built-in dspec classes and aliases 106

7.6 Subfunction dspecs 108

7.7 Tracking definitions 109

7.8 Finding locations 110

7.9 Users of location information 110

8 Action Lists 115

8.1 Defining action lists and actions 115

8.2 Exception handling variables 115

8.3 Other variables 116

8.4 Diagnostic utilities 116

8.5 Examples 116

8.6 Standard Action Lists 117

9 The Compiler 119

9.1 Compiling a function 119

9.2 Compiling a source file 120

9.3 Compiling a form 120

9.4 How the compiler works 120

9.5 Compiler control 121

9.6 Declare, proclaim, and declaim 124

9.7 Optimizing your code 125

9.8 Compiler parameters affecting LispWorks 129

10 Code Coverage 130

10.1 Using Code Coverage 130

10.2 Manipulating code coverage data 131

10.3 Preventing code generation for some forms 132

10.4 Code coverage and multithreading 132

Contents

5

10.5 Counting overflow 132

10.6 Memory usage and code speed 132

10.7 Understanding the code coverage output 132

10.8 Coloring code that has changed 134

11 Memory Management 135

11.1 Introduction 135

11.2 Guidance for control of the memory management system 135

11.3 Memory Management in 32-bit LispWorks 138

11.4 Memory Management in 64-bit LispWorks 144

11.5 The Mobile GC 147

11.6 Common Memory Management Features 153

12 The Profiler 156

12.1 What the profiler does 156

12.2 Setting up the profiler 156

12.3 Running the profiler 157

12.4 Profiler output 158

12.5 Profiling pitfalls 159

12.6 Profiling and garbage collection 160

12.7 Profiler tree file format 160

13 Customization of LispWorks 162

13.1 Introduction 162

13.2 Configuration and initialization files 162

13.3 Saving a LispWorks image 163

13.4 Saved sessions 166

13.5 Load and open your files on startup 167

13.6 Customizing the editor 168

13.7 Finding source code 169

13.8 Controlling redefinition warnings 169

13.9 Specifying the initial working directory 169

13.10 Customizing LispWorks for use with your own code 169

13.11 Structure printing 170

13.12 Configuring the printer 170

14 LispWorks as a dynamic library 171

14.1 Introduction 171

14.2 Creating a dynamic library 171

14.3 Initialization of the dynamic library 172

14.4 Relocation 173

14.5 Multiprocessing in a dynamic library 173

14.6 Unloading a dynamic library 173

Contents

6

15 Java interface 174

15.1 Initialization of the Java interface 174

15.2 Types and conversion between Lisp and Java 175

15.3 Calling from Lisp to Java 176

15.4 Calling from Java to Lisp 179

15.5 Working with Java arrays 182

15.6 Utilities and administration 184

15.7 Loading a LispWorks dynamic library into Java 186

15.8 CLOS partial integration 187

15.9 Java interface performance issues 187

16 Android interface 189

16.1 Delivering for Android 189

16.2 Directories on Android 194

16.3 Writing debugging messages 194

16.4 The Othello demo for Android 194

17 iOS interface 204

17.1 Delivering for iOS 204

17.2 Initializing LispWorks 205

17.3 Using Objective-C from Lisp 205

17.4 Limitations of the iOS Runtime 205

17.5 The Othello demo for iOS 205

17.6 The Mobile GC 207

18 The Metaobject Protocol 209

18.1 Metaobject features incompatible with AMOP 209

18.2 Metaobject features additional to AMOP 211

18.3 Common problems when using the MOP 211

18.4 Implementation of virtual slots 212

19 Multiprocessing 216

19.1 Introduction to processes 216

19.2 Processes basics 217

19.3 Atomicity and thread-safety of the LispWorks implementation 218

19.4 Locks 225

19.5 Modifying a hash table with multiprocessing 227

19.6 Process Waiting and communication between processes 227

19.7 Synchronization between threads 230

19.8 Killing a process, interrupts and blocking interrupts 232

19.9 Timers 235

19.10 Process properties 236

19.11 Other processes functions 236

Contents

7

19.12 Native threads and foreign code 237

19.13 Low level operations 238

19.14 Some mistakes to avoid with multithreading 242

20 Common Defsystem and ASDF 243

20.1 Introduction 243

20.2 Defining a system 243

20.3 Using ASDF 246

21 The Parser Generator 248

21.1 Introduction 248

21.2 Grammar rules 248

21.3 Functions defined by defparser 249

21.4 Error handling 250

21.5 Interface to the lexical analyzer 251

21.6 Example 251

22 Dynamic Data Exchange 253

22.1 Introduction 253

22.2 Client interface 254

22.3 Server interface 256

23 Common SQL 259

23.1 Introduction 259

23.2 Initialization 261

23.3 Functional interface 269

23.4 Object oriented interface 274

23.5 Symbolic SQL syntax 277

23.6 Working with date fields 285

23.7 SQL I/O recording 286

23.8 Error handling in Common SQL 286

23.9 Using MySQL 287

23.10 Using Oracle 290

23.11 Oracle LOB interface 291

23.12 Using ODBC 297

23.13 Using SQLite 299

24 User Defined Streams 302

24.1 Introduction 302

24.2 An illustrative example of user defined streams 302

25 TCP and UDP socket communication and SSL 306

25.1 Running a server that accepts connections 306

Contents

8

25.2 Connecting to a server 306

25.3 Examples of running and connecting to a server 306

25.4 Specifying the target for connecting and binding a socket 307

25.5 Information about IP addresses 307

25.6 Waiting on a socket stream 308

25.7 Special considerations 308

25.8 Asynchronous I/O 308

25.9 Using SSL 313

25.10 Socket streams with Java sockets and SSL on Android 319

25.11 Advanced OpenSSL-specific issues 320

26 Internationalization: characters, strings and encodings 325

26.1 Introduction 325

26.2 Unicode support 325

26.3 Character and String types 325

26.4 Characters with case 328

26.5 String accessors 329

26.6 String Construction 329

26.7 External Formats to translate Lisp characters from/to external encodings 331

27 LispWorks' Operating Environment 337

27.1 The Operating System 337

27.2 Site Name 337

27.3 The Lisp Image 337

27.4 The Command Line 337

27.5 Address Space and Image Size 340

27.6 Startup relocation 340

27.7 Calling external programs 342

27.8 Snapshot debugging of startup errors 343

27.9 System message log 343

27.10 Exit status 343

27.11 Creating a new executable with code preloaded 343

27.12 Universal binaries on macOS 343

27.13 User Preferences 344

27.14 File system interface 345

27.15 Special locations in the file system 345

27.16 The console external format 347

27.17 Accessing the Windows registry 347

27.18 Physical pathnames in LispWorks 348

28 Miscellaneous Utilities 353

28.1 Object addresses and memory 353

28.2 Optimized integer arithmetic and integer vector access 353

28.3 Transferring large amounts of data 356

Contents

9

28.4 Rings 356

28.5 Conditional throw and checking for catch in the dynamic environment 356

28.6 Checking for a dynamic binding 356

28.7 Regular expression syntax 356

29 64-bit LispWorks 358

29.1 Introduction 358

29.2 Heap size 358

29.3 Architectural constants 359

29.4 Speed 359

29.5 Memory Management and cl:room 359

29.6 Greater allocation expected in 64-bit LispWorks 359

29.7 Float types 359

29.8 External libraries 360

30 Self-contained examples 361

30.1 COMM examples 361

30.2 Streams examples 362

30.3 DDE examples 362

30.4 Parser generator examples 362

30.5 Examples for save-image in a macOS application bundle 362

30.6 Miscellaneous examples 362

31 The CLOS Package 363

break-new-instances-on-access 363

break-on-access 364

class-extra-initargs 365

compute-class-potential-initargs 366

compute-discriminating-function 367

compute-effective-method-function-from-classes 368

copy-standard-object 369

funcallable-standard-object 370

process-a-class-option 371

process-a-slot-option 373

replace-standard-object 374

set-clos-initarg-checking 375

set-make-instance-argument-checking 377

slot-boundp-using-class 377

slot-makunbound-using-class 378

slot-value-using-class 379

trace-new-instances-on-access 380

trace-on-access 381

unbreak-new-instances-on-access 383

unbreak-on-access 384

Contents

10

untrace-new-instances-on-access 384

untrace-on-access 385

32 The COMM Package 386

accepting-handle 386

accepting-handle-collection 387

accepting-handle-local-port 387

accepting-handle-name 388

accepting-handle-socket 389

accepting-handle-user-info 389

accept-tcp-connections-creating-async-io-states 390

apple-err-ssl-bad-cert 393

apple-err-ssl-bad-cipher-suite 393

apple-err-ssl-bad-configuration 394

apple-err-ssl-bad-record-mac 394

apple-err-ssl-buffer-overflow 393

apple-err-ssl-cert-expired 393

apple-err-ssl-cert-not-yet-valid 393

apple-err-ssl-client-cert-requested 394

apple-err-ssl-client-hello-received 394

apple-err-ssl-closed-abort 393

apple-err-ssl-closed-graceful 393

apple-err-ssl-closed-no-notify 393

apple-err-ssl-connection-refused 394

apple-err-ssl-crypto 393

apple-err-ssl-decryption-fail 394

apple-err-ssl-fatal-alert 393

apple-err-ssl-host-name-mismatch 394

apple-err-ssl-illegal-param 393

apple-err-ssl-internal 393

apple-err-ssl-module-attach 393

apple-err-ssl-negotiation 393

apple-err-ssl-no-root-cert 393

apple-err-ssl-peer-access-denied 393

apple-err-ssl-peer-auth-completed 394

apple-err-ssl-peer-bad-cert 393

apple-err-ssl-peer-bad-record-mac 393

apple-err-ssl-peer-cert-expired 393

apple-err-ssl-peer-cert-revoked 393

apple-err-ssl-peer-cert-unknown 393

apple-err-ssl-peer-decode-error 393

apple-err-ssl-peer-decompress-fail 393

apple-err-ssl-peer-decrypt-error 393

apple-err-ssl-peer-decryption-fail 393

Contents

11

apple-err-ssl-peer-export-restriction 394

apple-err-ssl-peer-handshake-fail 393

apple-err-ssl-peer-insufficient-security 394

apple-err-ssl-peer-internal-error 394

apple-err-ssl-peer-no-renegotiation 394

apple-err-ssl-peer-protocol-version 394

apple-err-ssl-peer-record-overflow 393

apple-err-ssl-peer-unexpected-msg 393

apple-err-ssl-peer-unknown-ca 393

apple-err-ssl-peer-unsupported-cert 393

apple-err-ssl-peer-user-cancelled 394

apple-err-ssl-protocol 393

apple-err-ssl-record-overflow 394

apple-err-ssl-session-not-found 393

apple-err-ssl-unexpected-record 394

apple-err-ssl-unknown-root-cert 393

apple-err-ssl-weak-peer-ephemeral-dh-key 394

apple-err-ssl-would-block 393

apple-err-ssl-x-cert-chain-invalid 393

apply-in-wait-state-collection-process 397

async-io-ssl-failure-indicator-from-failure-args 398

async-io-state 399

async-io-state-abort 400

async-io-state-abort-and-close 401

async-io-state-address 402

async-io-state-attach-ssl 402

async-io-state-buffered-data-length 404

async-io-state-ctx 404

async-io-state-detach-ssl 405

async-io-state-discard 406

async-io-state-finish 407

async-io-state-get-buffered-data 407

async-io-state-handshake 408

async-io-state-max-read 409

async-io-state-old-length 410

async-io-state-peer-address 411

async-io-state-read-buffer 411

async-io-state-read-status 413

async-io-state-read-with-checking 413

async-io-state-receive-message 416

async-io-state-send-message 417

async-io-state-send-message-to-address 418

async-io-state-shutdown 420

async-io-state-ssl 421

Contents

12

async-io-state-ssl-side 422

async-io-state-wait-for-input 422

async-io-state-write-buffer 423

async-io-state-write-status 413

attach-ssl 424

call-wait-state-collection 426

close-accepting-handle 426

close-async-io-state 427

close-socket-handle 428

close-wait-state-collection 429

connect-to-tcp-server 430

create-and-run-wait-state-collection 431

create-async-io-state 433

create-async-io-state-and-connected-tcp-socket 434

create-async-io-state-and-connected-udp-socket 437

create-async-io-state-and-udp-socket 438

create-ssl-client-context 440

create-ssl-server-context 440

create-ssl-socket-stream 445

destroy-ssl 447

destroy-ssl-ctx 447

detach-ssl 448

do-rand-seed 449

ensure-ssl 449

find-ssl-connection-from-ssl-ref 450

generalized-time 451

generalized-time-p 451

generalized-time-pprint 451

generalized-time-string 451

get-certificate-common-name 453

get-certificate-data 453

get-certificate-serial-number 453

get-default-local-ipv6-address 455

get-host-entry 456

get-ip-default-zone-id 458

get-service-entry 459

get-socket-address 460

get-socket-peer-address 461

get-verification-mode 461

ip-address-string 462

ipv6-address 463

ipv6-address-p 464

ipv6-address-scope-id 464

ipv6-address-string 465

Contents

13

loop-processing-wait-state-collection 466

make-generalized-time 451

make-ssl-ctx 467

make-wait-state-collection 467

openssl-version 468

open-tcp-stream 469

open-tcp-stream-using-java 472

parse-ipv6-address 474

parse-printed-generalized-time 451

pem-read 475

read-dhparams 476

release-certificate 502

release-certificates-vector 502

replace-socket-stream-socket 477

reset-ssl-abstract-context 478

sec-certificate-ref 479

server-terminate 480

set-ssl-ctx-dh 481

set-ssl-ctx-options 482

set-ssl-ctx-password-callback 484

set-ssl-library-path 484

set-verification-mode 485

socket-connect-error 486

socket-connection-peer-address 487

socket-connection-socket 488

socket-create-error 488

socket-error 489

socket-error 490

socket-io-error 491

socket-stream 491

socket-stream-address 494

socket-stream-ctx 495

socket-stream-handshake 495

socket-stream-peer-address 496

socket-stream-shutdown 497

socket-stream-ssl 498

socket-stream-ssl-side 498

ssl-abstract-context 499

ssl-cipher-pointer 500

ssl-cipher-pointer-stack 500

ssl-closed 501

ssl-condition 501

ssl-connection-copy-peer-certificates 502

ssl-connection-get-peer-certificates-data 504

Contents

14

ssl-connection-implementation 505

ssl-connection-protocol-version 506

ssl-connection-read-certificates 506

ssl-connection-read-dh-params-file 507

ssl-connection-ssl-ref 508

ssl-connection-verify 509

ssl-context-ref 510

ssl-ctx-pointer 511

ssl-default-implementation 512

ssl-error 513

ssl-failure 513

ssl-handshake-timeout 514

ssl-implementation-available-p 514

ssl-new 515

ssl-pointer 515

ssl-verification-failure 516

ssl-version-or-cipher-mismatch 516

ssl-x509-lookup 517

start-up-server 518

start-up-server-and-mp 522

string-ip-address 523

switch-open-tcp-stream-with-ssl-to-java 524

wait-for-wait-state-collection 525

wait-state-collection 525

wait-state-collection-alive-p 526

wait-state-collection-stop-loop 527

with-noticed-socket-stream 527

x509-pointer 528

33 The COMMON-LISP Package 530

apropos 530

apropos-list 531

base-string 531

close 532

coerce 533

compile 534

compile-file 535

concatenate 538

debug-io 585

declaim 539

declare 540

defclass 543

defpackage 545

describe 547

Contents

15

directory 548

disassemble 551

documentation 552

double-float 553

error-output 585

features 553

in-package 557

input-stream-p 558

interactive-stream-p 558

load-logical-pathname-translations 559

long-float 560

long-site-name 560

loop 561

make-array 562

make-hash-table 564

make-instance 565

make-pathname 566

make-sequence 567

make-string 568

make-string-output-stream 569

map 569

merge 570

merge-pathnames 571

open 572

open-stream-p 573

output-stream-p 574

parse-namestring 575

proclaim 575

query-io 585

read-sequence 577

restart-case 578

room 579

short-float 581

short-site-name 582

simple-base-string 531

single-float 583

software-type 583

software-version 584

standard-input 585

standard-output 585

step 586

stream-element-type 588

time 589

trace 590

Contents

16

trace-output 585

truename 595

untrace 595

update-instance-for-different-class 597

update-instance-for-redefined-class 597

with-output-to-string 598

write-sequence 577

34 The DBG Package 600

client-remote-debugging 628

close-remote-debugging-connection 600

configure-remote-debugging-spec 601

create-client-remote-debugging-connection 603

create-ide-remote-debugging-connection 603

debug-print-length 605

debug-print-level 606

default-client-remote-debugging-server-port 607

default-ide-remote-debugging-server-port 607

ensure-remote-debugging-connection 608

executable-log-file 609

hidden-packages 609

ide-attach-remote-output-stream 611

ide-connect-remote-debugging 612

ide-eval-form-in-remote 613

ide-find-remote-debugging-connection 615

ide-funcall-in-remote 613

ide-list-remote-debugging-connections 615

ide-open-a-listener 617

ide-remote-debugging 628

ide-set-default-remote-debugging-connection 615

ide-set-remote-symbol-value 613

log-bug-form 618

logs-directory 619

output-backtrace 620

print-binding-frames 621

print-catch-frames 622

print-handler-frames 624

print-invisible-frames 625

print-open-frames 626

print-restart-frames 626

remote-debugging-connection 628

remote-debugging-connection-add-close-cleanup 628

remote-debugging-connection-name 629

remote-debugging-connection-peer-address 630

Contents

17

remote-debugging-connection-remove-close-cleanup 628

remote-debugging-stream-peer-address 631

remote-inspect 632

remote-object-connection 633

remote-object-p 633

set-debugger-options 634

set-default-remote-debugging-connection 635

set-remote-debugging-connection 636

start-client-remote-debugging-server 637

start-ide-remote-debugging-server 639

start-remote-listener 640

terminal-debugger-block-multiprocessing 642

with-debugger-wrapper 643

with-remote-debugging-connection 645

with-remote-debugging-spec 646

35 The DSPEC Package 648

active-finders 648

at-location 649

canonicalize-dspec 649

def 650

define-dspec-alias 651

define-dspec-class 652

define-form-parser 654

discard-source-info 656

dspec-class 657

dspec-classes 658

dspec-defined-p 658

dspec-definition-locations 659

dspec-equal 660

dspec-name 660

dspec-primary-name 661

dspec-progenitor 662

dspec-subclass-p 662

dspec-undefiner 663

find-dspec-locations 664

find-name-locations 665

get-form-parser 665

local-dspec-p 666

location 667

name-defined-dspecs 668

name-definition-locations 668

name-only-form-parser 669

object-dspec 670

Contents

18

parse-form-dspec 671

record-definition 672

record-source-files 673

redefinition-action 673

replacement-source-form 674

save-tags-database 675

single-form-form-parser 676

single-form-with-options-form-parser 676

traceable-dspec-p 677

tracing-enabled-p 678

tracing-state 679

36 The EXTERNAL-FORMAT Package 680

:bmp 680

:bmp-native 680

:bmp-reversed 680

char-external-code 681

decode-external-string 682

encode-lisp-string 683

external-format-error 684

external-format-foreign-type 684

external-format-type 685

find-external-char 686

:unicode 687

:utf-16 688

:utf-16be 688

:utf-16le 688

:utf-16-native 688

:utf-16-reversed 688

:utf-32 689

:utf-32be 689

:utf-32le 689

:utf-32-native 689

:utf-32-reversed 689

valid-external-format-p 690

37 The HCL Package 692

add-code-coverage-data 692

add-package-local-nickname 693

add-special-free-action 695

add-symbol-profiler 696

allocation-in-gen-num 696

analyzing-special-variables-usage 697

android-build-value 699

Contents

19

android-funcall-in-main-thread 701

android-funcall-in-main-thread-list 701

android-get-current-activity 702

android-main-process-for-testing 703

android-main-thread-p 703

any-capi-window-displayed-p 704

array-single-thread-p 704

array-weak-p 705

augment-environment 706

avoid-gc 707

background-input 708

background-output 708

background-query-io 708

binds-who 709

block-promotion 710

building-main-architecture-p 711

building-universal-intermediate-p 712

calls-who 712

cd 713

change-directory 714

check-fragmentation 715

clean-down 716

clean-generation-0 717

clear-code-coverage 718

code-coverage-data 719

code-coverage-data-generate-coloring-html 720

code-coverage-data-generate-statistics 723

code-coverage-file-stats 724

code-coverage-file-stats-called 724

code-coverage-file-stats-counters-count 724

code-coverage-file-stats-counters-executed 725

code-coverage-file-stats-counters-hidden 725

code-coverage-file-stats-fully-covered 724

code-coverage-file-stats-hidden-covered 724

code-coverage-file-stats-lambdas-count 724

code-coverage-file-stats-not-called 724

code-coverage-file-stats-partially-covered 724

code-coverage-set-editor-colors 727

code-coverage-set-editor-default-data 728

code-coverage-set-html-background-colors 729

collect-generation-2 730

collect-highest-generation 731

compile-file-if-needed 731

compiler-break-on-error 733

Contents

20

concatenate* 733

copy-code-coverage-data 734

copy-current-code-coverage 734

copy-to-weak-simple-vector 736

create-macos-application-bundle 736

create-temp-file 738

create-universal-binary 740

current-function-name 741

current-stack-length 742

date-string 743

declaration-information 743

default-package-use-list 744

default-profiler-collapse 745

default-profiler-cutoff 745

default-profiler-limit 746

default-profiler-sort 746

defglobal-parameter 747

defglobal-variable 747

define-declaration 748

delete-advice 750

delivered-image-p 751

deliver-to-android-project 751

destructive-add-code-coverage-data 692

destructive-merge-code-coverage-data 802

destructive-reverse-subtract-code-coverage-data 692

destructive-subtract-code-coverage-data 692

disable-trace 754

do-profiling 755

dump-form 756

dump-forms-to-file 757

editor-color-code-coverage 759

enlarge-generation 761

enlarge-static 762

ensure-hash-entry 763

error-situation-forms 764

expand-generation-1 765

extend-current-stack 766

extended-time 766

fasl-error 768

fast-directory-files 769

fdf-handle-directory-p 769

fdf-handle-directory-string 769

fdf-handle-last-access 769

fdf-handle-last-modify 769

Contents

21

fdf-handle-link-p 769

fdf-handle-size 769

fdf-handle-writable-p 769

file-binary-bytes 771

file-link-p 771

file-string 772

file-writable-p 773

filter-code-coverage-data 773

find-object-size 774

find-throw-tag 775

finish-heavy-allocation 776

flag-not-special-free-action 777

flag-special-free-action 777

format-to-system-log 893

function-information 778

gc-generation 779

gc-if-needed 782

generate-code-coverage 782

get-code-coverage-delta 784

get-default-generation 785

get-gc-parameters 786

get-gc-timing 856

gethash-ensuring 787

get-temp-directory 788

get-working-directory 789

handle-existing-defpackage 789

handle-old-in-package 790

handle-old-in-package-used-as-make-package 791

hash-table-weak-kind 791

load-code-coverage-data 734

load-data-file 792

load-fasl-or-lisp-file 794

make-ring 795

make-unlocked-queue 796

map-code-coverage-data 798

map-ring 799

mark-and-sweep 799

max-trace-indent 801

merge-code-coverage-data 802

modify-hash 803

normal-gc 804

open-temp-file 738

package-locally-nicknamed-by-list 805

package-local-nicknames 805

Contents

22

packages-for-warn-on-redefinition 806

parse-float 807

position-in-ring 808

position-in-ring-forward 808

print-escape-potential-numbers 809

print-profile-list 810

print-string 813

profile 813

profiler-threshold 814

profiler-tree-from-function 815

profiler-tree-to-allocation-functions 815

profiler-tree-to-function 816

profile-symbol-list 817

reduce-memory 817

references-who 819

remove-package-local-nickname 819

remove-special-free-action 820

remove-symbol-profiler 821

reset-code-coverage 718

reset-code-coverage-snapshot 784

reset-profiler 821

reset-ring 822

restore-code-coverage-data 718

reverse-subtract-code-coverage-data 692

ring-length 823

ring-name 823

ringp 824

ring-pop 825

ring-push 826

ring-ref 826

rotate-ring 827

safe-format-to-limited-string 828

safe-format-to-string 828

safe-prin1-to-string 828

safe-princ-to-string 828

save-argument-real-p 829

save-code-coverage-data 734

save-current-code-coverage 734

save-current-profiler-tree 830

save-current-session 831

save-image 832

save-image-with-bundle 837

save-universal-from-script 838

set-array-single-thread-p 840

Contents

23

set-array-weak 840

set-code-coverage-snapshot 784

set-console-external-format 841

set-default-generation 842

set-gc-parameters 843

set-hash-table-weak 845

set-minimum-free-space 846

set-process-profiling 847

set-profiler-threshold 849

set-promotion-count 849

sets-who 851

set-system-message-log 851

set-up-profiler 853

source-debugging-on-p 855

start-gc-timing 856

start-profiling 857

stop-gc-timing 856

stop-profiling 859

string=-limited 860

string-equal-limited 860

string-trim-whitespace 861

subtract-code-coverage-data 692

sweep-all-objects 861

switch-static-allocation 862

symbol-alloc-gen-num 863

symbol-dynamically-bound-p 863

throw-if-tag-found 864

toggle-source-debugging 865

total-allocation 866

traced-arglist 866

traced-results 867

trace-indent-width 868

trace-level 869

trace-print-circle 870

trace-print-length 871

trace-print-level 872

trace-print-pretty 873

trace-verbose 874

try-compact-in-generation 874

try-move-in-generation 875

undefine-declaration 877

unlocked-queue 877

unlocked-queue-count 796

unlocked-queue-peek 796

Contents

24

unlocked-queue-read 796

unlocked-queue-ready 796

unlocked-queue-send 796

unlocked-queue-size 796

unwind-protect-blocking-interrupts 878

unwind-protect-blocking-interrupts-in-cleanups 879

variable-information 880

who-binds 881

who-calls 882

who-references 883

who-sets 883

with-code-coverage-generation 884

with-ensuring-gethash 885

with-hash-table-locked 886

with-heavy-allocation 887

without-code-coverage 888

with-output-to-fasl-file 889

with-pinned-objects 890

with-ring-locked 891

write-string-with-properties 891

write-to-system-log 893

38 The LISPWORKS Package 896

16-bit-string 896

8-bit-string 896

appendf 897

append-file 897

autoload-asdf-integration 898

base-character 899

base-character-p 899

base-char-code-limit 900

base-char-p 900

base-string-p 901

bmp-char 901

bmp-char-p 902

bmp-string 903

bmp-string-p 904

browser-location 904

call-next-advice 905

choose-unicode-string-hash-function 906

compile-system 907

concatenate-system 908

copy-file 909

count-regexp-occurrences 910

Contents

25

current-pathname 912

defadvice 913

default-action-list-sort-time 915

default-character-element-type 915

define-action 916

define-action-list 917

defsystem 919

defsystem-verbose 922

delete-directory 923

deliver 924

describe-length 924

describe-level 925

describe-print-length 926

describe-print-level 927

dll-quit 927

do-nothing 929

dotted-list-length 929

dotted-list-p 930

enter-debugger-directly 931

environment-variable 931

errno-value 932

example-compile-file 933

example-edit-file 934

example-file 935

example-load-binary-file 935

execute-actions 936

extended-character 937

extended-character-p 938

extended-char-p 938

external-formats 939

false 940

file-directory-p 940

find-regexp-in-string 941

function-lambda-list 943

get-inspector-values 944

get-unix-error 945

grep-command 946

grep-command-format 947

grep-fixed-args 947

handle-existing-action-in-action-list 948

handle-existing-action-list 948

handle-missing-action-in-action-list 949

handle-missing-action-list 949

handle-warn-on-redefinition 950

Contents

26

hardcopy-system 951

if-let 1002

init-file-name 952

inspect-through-gui 952

lisp-image-name 953

lispworks-directory 953

load-all-patches 954

load-system 955

make-mt-random-state 956

make-unregistered-action-list 957

mt-random 958

mt-random-state 959

mt-random-state 959

mt-random-state-p 960

pathname-location 961

precompiled-regexp 961

precompiled-regexp-p 962

precompile-regexp 963

print-action-lists 964

print-actions 964

print-command 965

print-nickname 965

prompt 966

push-end 967

push-end-new 967

quit 968

rebinding 969

regexp-find-symbols 970

remove-advice 971

removef 972

remove-user-preference 973

require-verbose 973

rotate-byte 974

round-to-single-precision 975

sbchar 976

sequencep 976

set-compile-file-proclaim-handling 977

set-default-character-element-type 979

set-quit-when-no-windows 980

simple-base-string-p 901

simple-bmp-string 903

simple-bmp-string-p 904

simple-char 980

simple-char-p 981

Contents

27

simple-text-string 988

simple-text-string-p 989

split-sequence 981

split-sequence-if 983

split-sequence-if-not 983

start-tty-listener 984

stchar 985

string-append 985

string-append* 986

structurep 987

text-string 988

text-string-p 989

true 990

undefine-action 990

undefine-action-list 991

unicode-alpha-char-p 992

unicode-alphanumericp 992

unicode-both-case-p 993

unicode-char-equal 994

unicode-char-greaterp 995

unicode-char-lessp 995

unicode-char-not-equal 994

unicode-char-not-greaterp 996

unicode-char-not-lessp 996

unicode-lower-case-p 996

unicode-string-equal 997

unicode-string-greaterp 998

unicode-string-lessp 998

unicode-string-not-equal 997

unicode-string-not-greaterp 999

unicode-string-not-lessp 999

unicode-upper-case-p 1000

user-preference 1001

when-let 1002

when-let* 1002

whitespace-char-p 1004

with-action-item-error-handling 1005

with-action-list-mapping 1006

with-unique-names 1007

39 The LW-JI Package 1008

call-java-method 1008

call-java-method-error 1009

call-java-non-virtual-method 1009

Contents

28

call-java-static-method 1010

catching-exceptions-bind 1011

catching-java-exceptions 1011

checked-read-java-field 1087

check-java-field 1087

check-lisp-calls-initialized 1012

create-instance-from-jobject 1013

create-instance-jobject 1014

create-instance-jobject-list 1014

create-java-object 1015

create-java-object-error 1016

default-constructor-arguments 1016

default-name-constructor 1017

define-field-accessor 1018

define-java-caller 1019

define-java-callers 1021

define-java-constructor 1019

define-lisp-proxy 1022

ensure-is-jobject 1036

ensure-lisp-classes-from-tree 1026

ensure-supers-contain-java.lang.object 1028

field-access-exception 1029

field-exception 1029

find-java-class 1030

format-to-java-host 1031

generate-java-class-definitions 1032

get-host-java-virtual-machine 1035

get-java-virtual-machine 1036

get-jobject 1036

get-primitive-array-region 1037

get-superclass-and-interfaces-tree 1038

get-throwable-backtrace-strings 1039

import-java-class-definitions 1040

init-java-interface 1042

intern-and-export-list 1045

jaref 1046

java-array-element-type 1047

java-array-error 1048

java-array-indices-error 1048

java-array-length 1049

java-array-simple-error 1050

java-bad-jobject 1050

java-class-error 1051

java-definition-error 1051

Contents

29

java-exception 1052

java-field-class-name-for-setting 1087

java-field-error 1051

java-field-setting-error 1053

java-id-exception 1053

java-instance-without-jobject-error 1054

java-interface-error 1054

java-low-level-exception 1055

java-method-error 1051

java-method-exception 1055

java-normal-exception 1056

java-not-a-java-object-error 1057

java-not-an-array-error 1057

java-null 1058

java-object-array-element-type 1058

java-objects-eq 1059

java-out-of-bounds-error 1060

java-primitive-array-element-type 1060

java-program-error 1061

java-serious-exception 1061

java-storing-wrong-type-error 1060

java-type-to-lisp-array-type 1062

java-vm-poi 1063

jboolean 1063

jbyte 1063

jchar 1063

jdouble 1063

jfloat 1063

jint 1063

jlong 1063

jni-env-poi 1064

jobject 1065

jobject-call-method 1065

jobject-call-method-error 1066

jobject-class-name 1067

jobject-ensure-global 1068

jobject-field-value 1069

jobject-of-class-p 1070

jobject-p 1070

jobject-pretty-class-name 1071

jobject-string 1072

jobject-to-lisp 1072

jshort 1064

jvalue 1073

Contents

30

jvalue-store-jboolean 1074

jvalue-store-jbyte 1074

jvalue-store-jchar 1074

jvalue-store-jdouble 1075

jvalue-store-jfloat 1075

jvalue-store-jint 1074

jvalue-store-jlong 1074

jvalue-store-jobject 1076

jvalue-store-jshort 1074

jvref 1077

lisp-array-to-primitive-array 1085

lisp-array-type-to-java-type 1062

lisp-java-instance-p 1078

lisp-to-jobject 1079

make-java-array 1080

make-java-instance 1080

make-lisp-proxy 1081

make-lisp-proxy-with-overrides 1081

map-java-object-array 1083

primitive-array-to-lisp-array 1085

read-java-field 1087

record-java-class-lisp-symbol 1089

report-error-to-java-host 1089

reset-java-interface-for-new-jvm 1090

send-message-to-java-host 1091

set-java-field 1087

set-primitive-array-region 1037

setup-deliver-dynamic-library-for-java 1092

setup-field-accessor 1094

setup-java-caller 1095

setup-java-constructor 1095

setup-java-interface-callbacks 1042

setup-lisp-proxy 1096

standard-java-object 1097

throw-an-exception 1098

to-java-host-stream 1099

to-java-host-stream-no-scroll 1100

verify-java-caller 1100

verify-java-callers 1101

verify-lisp-proxies 1103

verify-lisp-proxy 1103

write-java-class-definitions-to-file 1104

write-java-class-definitions-to-stream 1104

Contents

31

40 Java classes and methods 1107

com.lispworks.LispCalls 1107

com.lispworks.LispCalls.callDoubleA 1107

com.lispworks.LispCalls.callDoubleV 1107

com.lispworks.LispCalls.callIntA 1107

com.lispworks.LispCalls.callIntV 1107

com.lispworks.LispCalls.callObjectA 1107

com.lispworks.LispCalls.callObjectV 1107

com.lispworks.LispCalls.callVoidA 1107

com.lispworks.LispCalls.callVoidV 1107

com.lispworks.LispCalls.checkLispSymbol 1108

com.lispworks.LispCalls.createLispProxy 1109

com.lispworks.LispCalls.waitForInitialization 1110

41 Android Java classes and methods 1111

com.lispworks.BugFormLogsList 1111

com.lispworks.BugFormViewer 1111

com.lispworks.Manager 1111

com.lispworks.Manager.LispErrorReporter 1116

com.lispworks.Manager.LispGuiErrorReporter 1116

com.lispworks.Manager.MessageHandler 1120

com.lispworks.Manager.addMessage 1119

com.lispworks.Manager.clearBugFormLogs 1118

com.lispworks.Manager.getApplicationContext 1121

com.lispworks.Manager.getClassLoader 1121

com.lispworks.Manager.init 1113

com.lispworks.Manager.init_result_code 1114

com.lispworks.Manager.loadLibrary 1116

com.lispworks.Manager.mInitErrorString 1115

com.lispworks.Manager.mMaxErrorLogsNumber 1118

com.lispworks.Manager.mMessagesMaxLength 1119

com.lispworks.Manager.setClassLoader 1123

com.lispworks.Manager.setCurrentActivity 1122

com.lispworks.Manager.setErrorReporter 1116

com.lispworks.Manager.setGuiErrorReporter 1116

com.lispworks.Manager.setLispTempDir 1123

com.lispworks.Manager.setMessageHandler 1120

com.lispworks.Manager.setRuntimeLispHeapDir 1122

com.lispworks.Manager.setTextView 1121

com.lispworks.Manager.showBugFormLogs 1118

com.lispworks.Manager.status 1114

Contents

32

42 The MP Package 1125

allowing-block-interrupts 1125

any-other-process-non-internal-server-p 1126

barrier 1127

barrier-arriver-count 1127

barrier-block-and-wait 1128

barrier-change-count 1130

barrier-count 1131

barrier-disable 1131

barrier-enable 1132

barrier-name 1133

barrier-pass-through 1133

barrier-unblock 1134

barrier-wait 1135

change-process-priority 1137

condition-variable 1138

condition-variable-broadcast 1138

condition-variable-signal 1139

condition-variable-wait 1140

condition-variable-wait-count 1141

current-process 1141

current-process-block-interrupts 1142

current-process-in-cleanup-p 1143

current-process-kill 1143

current-process-pause 1144

current-process-send 1146

current-process-set-terminate-method 1146

current-process-unblock-interrupts 1147

debug-other-process 1148

default-process-priority 1149

ensure-process-cleanup 1149

find-process-from-name 1151

funcall-async 1151

funcall-async-list 1151

general-handle-event 1153

get-current-process 1153

get-process 1154

get-process-private-property 1155

initialize-multiprocessing 1156

initial-processes 1157

last-callback-on-thread 1157

list-all-processes 1158

lock 1159

Contents

33

lock-and-condition-variable-broadcast 1159

lock-and-condition-variable-signal 1160

lock-and-condition-variable-wait 1162

lock-locked-p 1163

lock-name 1164

lock-owned-by-current-process-p 1165

lock-owner 1165

lock-recursively-locked-p 1166

lock-recursive-p 1167

mailbox 1168

mailbox-count 1168

mailbox-empty-p 1169

mailbox-full-p 1170

mailbox-not-empty-p 1171

mailbox-peek 1171

mailbox-read 1172

mailbox-reader-process 1173

mailbox-send 1174

mailbox-send-limited 1175

mailbox-size 1176

mailbox-wait 1177

mailbox-wait-for-event 1178

main-process 1179

make-barrier 1180

make-condition-variable 1181

make-lock 1182

make-mailbox 1183

make-named-timer 1184

make-semaphore 1185

make-timer 1186

map-all-processes 1187

map-all-processes-backtrace 1188

map-process-backtrace 1188

map-processes 1189

notice-fd 1190

process-alive-p 1190

process-all-events 1191

process-allow-scheduling 1192

process-arrest-reasons 1192

process-break 1193

process-continue 1193

processes-count 1194

process-exclusive-lock 1194

process-exclusive-unlock 1195

Contents

34

process-idle-time 1196

process-initial-bindings 1197

process-internal-server-p 1198

process-interrupt 1199

process-interrupt-list 1200

process-join 1200

process-kill 1201

process-lock 1202

process-mailbox 1203

process-name 1204

process-p 1204

process-plist 1205

process-poke 1205

process-priority 1207

process-private-property 1208

process-property 1209

process-reset 1210

process-run-function 1211

process-run-reasons 1213

process-run-time 1213

process-send 1214

process-sharing-lock 1216

process-sharing-unlock 1217

process-stop 1217

process-stopped-p 1218

process-terminate 1219

process-unlock 1220

process-unstop 1221

process-wait 1222

process-wait-for-event 1222

process-wait-function 1223

process-wait-local 1224

process-wait-local-with-periodic-checks 1225

process-wait-local-with-timeout 1227

process-wait-local-with-timeout-and-periodic-checks 1228

process-wait-with-timeout 1228

process-whostate 1229

ps 1230

pushnew-to-process-private-property 1231

pushnew-to-process-property 1232

remove-from-process-private-property 1233

remove-from-process-property 1233

remove-process-private-property 1234

remove-process-property 1235

Contents

35

schedule-timer 1236

schedule-timer-milliseconds 1237

schedule-timer-relative 1239

schedule-timer-relative-milliseconds 1240

semaphore 1241

semaphore-acquire 1242

semaphore-count 1243

semaphore-name 1244

semaphore-release 1244

semaphore-wait-count 1245

set-funcall-async-limit 1246

simple-lock-and-condition-variable-wait 1247

symeval-in-process 1248

timer-expired-p 1249

timer-name 1250

unnotice-fd 1251

unschedule-timer 1252

wait-processing-events 1253

with-exclusive-lock 1254

with-interrupts-blocked 1255

with-lock 1255

without-interrupts 1256

without-preemption 1257

with-sharing-lock 1258

yield 1259

43 The PARSERGEN Package 1260

defparser 1260

44 The SERIAL-PORT Package 1262

close-serial-port 1262

get-serial-port-state 1262

open-serial-port 1263

read-serial-port-char 1265

read-serial-port-string 1265

serial-port 1266

serial-port-input-available-p 1267

set-serial-port-state 1267

wait-serial-port-state 1268

write-serial-port-char 1269

write-serial-port-string 1269

Contents

36

45 The SQL Package 1271

accepts-n-syntax 1271

add-sql-stream 1272

attribute-type 1273

cache-table-queries 1274

cache-table-queries-default 1275

commit 1275

connect 1276

connected-databases 1281

connect-if-exists 1282

copy-from-sqlite-raw-blob 1379

create-index 1282

create-table 1283

create-view 1284

create-view-from-class 1285

database-name 1286

decode-to-db-standard-date 1287

decode-to-db-standard-timestamp 1287

default-database 1288

default-database-type 1288

default-update-objects-max-len 1289

def-view-class 1289

delete-instance-records 1294

delete-records 1294

delete-sql-stream 1295

destroy-prepared-statement 1296

disable-sql-reader-syntax 1296

disconnect 1297

do-query 1298

drop-index 1299

drop-table 1299

drop-view 1300

drop-view-from-class 1301

enable-sql-reader-syntax 1301

encode-db-standard-date 1302

encode-db-standard-timestamp 1302

execute-command 1303

find-database 1303

initialize-database-type 1304

initialized-database-types 1305

insert-records 1305

instance-refreshed 1307

list-attributes 1307

Contents

37

list-attribute-types 1308

list-classes 1309

list-sql-streams 1310

list-tables 1311

lob-stream 1312

locally-disable-sql-reader-syntax 1313

locally-enable-sql-reader-syntax 1313

map-query 1314

mysql-library-directories 1315

mysql-library-path 1316

mysql-library-sub-directories 1317

ora-lob-append 1317

ora-lob-assign 1318

ora-lob-char-set-form 1319

ora-lob-char-set-id 1320

ora-lob-close 1320

ora-lob-copy 1321

ora-lob-create-empty 1322

ora-lob-create-temporary 1323

ora-lob-disable-buffering 1324

ora-lob-element-type 1325

ora-lob-enable-buffering 1325

ora-lob-env-handle 1326

ora-lob-erase 1327

ora-lob-file-close 1328

ora-lob-file-close-all 1329

ora-lob-file-exists 1329

ora-lob-file-get-name 1330

ora-lob-file-is-open 1331

ora-lob-file-open 1332

ora-lob-file-set-name 1332

ora-lob-flush-buffer 1333

ora-lob-free 1334

ora-lob-free-temporary 1335

ora-lob-get-buffer 1335

ora-lob-get-chunk-size 1337

ora-lob-get-length 1338

ora-lob-internal-lob-p 1339

ora-lob-is-equal 1339

ora-lob-is-open 1340

ora-lob-is-temporary 1341

ora-lob-load-from-file 1342

ora-lob-lob-locator 1343

ora-lob-locator-is-init 1343

Contents

38

ora-lob-open 1344

ora-lob-read-buffer 1345

ora-lob-read-foreign-buffer 1346

ora-lob-read-into-plain-file 1347

ora-lob-svc-ctx-handle 1348

ora-lob-trim 1349

ora-lob-write-buffer 1350

ora-lob-write-foreign-buffer 1351

ora-lob-write-from-plain-file 1352

p-oci-env 1353

p-oci-file 1353

p-oci-lob-locator 1354

p-oci-lob-or-file 1354

p-oci-svc-ctx 1355

prepared-statement 1355

prepared-statement-set-and-execute 1355

prepared-statement-set-and-execute* 1355

prepared-statement-set-and-query 1355

prepared-statement-set-and-query* 1355

prepare-statement 1357

print-query 1358

query 1360

reconnect 1361

replace-from-sqlite-blob 1376

replace-from-sqlite-raw-blob 1379

replace-into-sqlite-blob 1376

restore-sql-reader-syntax-state 1362

rollback 1362

select 1363

set-prepared-statement-variables 1366

simple-do-query 1367

sql 1368

sql-connection-error 1369

sql-database-data-error 1369

sql-database-error 1370

sql-enlarge-static 1371

sql-expression 1371

sql-expression-object 1373

sql-failed-to-connect-error 1373

sql-fatal-error 1374

sqlite-blob 1374

sqlite-blob-length 1376

sqlite-blob-p 1376

sqlite-close-blob 1376

Contents

39

sqlite-last-insert-rowid 1375

sqlite-open-blob 1376

sqlite-raw-blob 1378

sqlite-raw-blob-length 1379

sqlite-raw-blob-p 1379

sqlite-raw-blob-ref 1379

sqlite-raw-blob-valid-p 1379

sqlite-reopen-blob 1376

sql-libraries 1381

sql-loading-verbose 1382

sql-operation 1382

sql-operator 1384

sql-recording-p 1385

sql-stream 1385

sql-temporary-error 1386

sql-timeout-error 1387

sql-user-error 1387

standard-db-object 1388

start-sql-recording 1388

status 1389

stop-sql-recording 1389

string-needs-n-prefix 1390

string-prefix-with-n-if-needed 1391

table-exists-p 1392

update-instance-from-records 1393

update-objects-joins 1393

update-record-from-slot 1394

update-records 1395

update-records-from-instance 1396

update-slot-from-record 1397

use-n-syntax-for-non-ascii-strings 1397

with-prepared-statement 1398

with-sqlite-blob 1399

with-transaction 1400

46 The STREAM Package 1402

buffered-stream 1402

fundamental-binary-input-stream 1403

fundamental-binary-output-stream 1404

fundamental-binary-stream 1404

fundamental-character-input-stream 1405

fundamental-character-output-stream 1406

fundamental-character-stream 1406

fundamental-input-stream 1407

Contents

40

fundamental-output-stream 1408

fundamental-stream 1408

stream-advance-to-column 1409

stream-check-eof-no-hang 1410

stream-clear-input 1410

stream-clear-output 1411

stream-file-position 1411

stream-fill-buffer 1412

stream-finish-output 1413

stream-flush-buffer 1414

stream-force-output 1414

stream-fresh-line 1415

stream-line-column 1416

stream-listen 1416

stream-output-width 1417

stream-peek-char 1418

stream-read-buffer 1418

stream-read-byte 1419

stream-read-char 1420

stream-read-char-no-hang 1421

stream-read-line 1421

stream-read-sequence 1422

stream-start-line-p 1423

stream-terpri 1424

stream-unread-char 1425

stream-write-buffer 1425

stream-write-byte 1426

stream-write-char 1427

stream-write-sequence 1427

stream-write-string 1429

with-stream-input-buffer 1430

with-stream-output-buffer 1431

47 The SYSTEM Package 1433

allocated-in-its-own-segment-p 1433

apply-with-allocation-in-gen-num 1434

approaching-memory-limit 1435

atomic-decf 1435

atomic-exchange 1436

atomic-fixnum-decf 1437

atomic-fixnum-incf 1437

atomic-incf 1435

atomic-pop 1438

atomic-push 1438

Contents

41

augmented-string 1439

augmented-string-p 1440

base-char-ref 1524

binary-file-type 1440

binary-file-types 1441

call-system 1441

call-system-showing-output 1443

cdr-assoc 1446

check-network-server 1447

coerce-to-gesture-spec 1447

compare-and-swap 1449

copy-preferences-from-older-version 1449

count-gen-num-allocation 1450

debug-initialization-errors-in-snap-shot 1451

default-eol-style 1452

default-stack-group-list-length 1452

define-atomic-modify-macro 1453

define-top-loop-command 1454

detect-eol-style 1456

detect-japanese-encoding-in-file 1457

detect-unicode-bom 1458

detect-utf32-bom 1458

detect-utf8-bom 1458

directory-link-transparency 1459

ensure-loads-after-loads 1459

ensure-memory-after-store 1460

ensure-stores-after-memory 1460

ensure-stores-after-stores 1461

extended-spaces 1462

file-encoding-detection-algorithm 1462

file-encoding-resolution-error 1463

file-eol-style-detection-algorithm 1464

filename-pattern-encoding-matches 1465

find-encoding-option 1465

find-filename-pattern-encoding-match 1466

force-using-select-for-io 1467

generation-number 1467

gen-num-segments-fragmentation-state 1468

gesture-spec 1469

gesture-spec-accelerator-bit 1470

gesture-spec-caps-lock-bit 1470

gesture-spec-control-bit 1470

gesture-spec-hyper-bit 1470

gesture-spec-meta-bit 1470

Contents

42

gesture-spec-p 1472

gesture-spec-shift-bit 1470

gesture-spec-super-bit 1470

gesture-spec-to-character 1472

get-file-stat 1473

get-folder-path 1475

get-maximum-allocated-in-generation-2-after-gc 1477

get-user-profile-directory 1478

globally-accessible 1479

guess-external-format 1480

immediatep 1481

in-static-area 1481

int32 1482

int32* 1483

int32+ 1483

int32- 1483

int32/ 1483

int32/= 1484

+int32-0+ 1485

+int32-1+ 1485

int32-1+ 1486

int32-1- 1486

int32< 1484

int32<< 1486

int32<= 1484

int32= 1484

int32> 1484

int32>= 1484

int32>> 1486

int32-aref 1487

int32-logand 1488

int32-logandc1 1488

int32-logandc2 1488

int32-logbitp 1488

int32-logeqv 1488

int32-logior 1488

int32-lognand 1488

int32-lognor 1488

int32-lognot 1488

int32-logorc1 1488

int32-logorc2 1488

int32-logtest 1488

int32-logxor 1488

int32-minusp 1490

Contents

43

int32-plusp 1490

int32-to-int64 1491

int32-to-integer 1491

int32-zerop 1490

int64 1492

int64* 1493

int64+ 1493

int64- 1493

int64/ 1493

int64/= 1494

+int64-0+ 1495

+int64-1+ 1495

int64-1+ 1496

int64-1- 1496

int64< 1494

int64<< 1496

int64<= 1494

int64= 1494

int64> 1494

int64>= 1494

int64>> 1496

int64-aref 1497

int64-logand 1498

int64-logandc1 1498

int64-logandc2 1498

int64-logbitp 1498

int64-logeqv 1498

int64-logior 1498

int64-lognand 1498

int64-lognor 1498

int64-lognot 1498

int64-logorc1 1498

int64-logorc2 1498

int64-logtest 1498

int64-logxor 1498

int64-minusp 1500

int64-plusp 1500

int64-to-int32 1501

int64-to-integer 1501

int64-zerop 1500

integer-to-int32 1502

integer-to-int64 1503

line-arguments-list 1503

locale-file-encoding 1504

Contents

44

low-level-atomic-place-p 1505

make-current-allocation-permanent 1505

make-gesture-spec 1507

make-object-permanent 1511

make-permanent-simple-vector 1512

make-simple-int32-vector 1513

make-simple-int64-vector 1514

make-stderr-stream 1515

make-typed-aref-vector 1515

map-environment 1516

marking-gc 1518

memory-growth-margin 1519

merge-ef-specs 1520

mobile-gc-p 1520

mobile-gc-sweep-objects 1521

object-address 1522

object-pointer 1523

octet-ref 1524

open-pipe 1525

open-url 1528

package-flagged-p 1529

pipe-close-connection 1530

pipe-exit-status 1530

pipe-kill-process 1531

pointer-from-address 1533

print-pretty-gesture-spec 1534

print-symbols-using-bars 1535

product-registry-path 1535

release-object-and-nullify 1537

right-paren-whitespace 1538

room-values 1538

run-shell-command 1539

safe-locale-file-encoding 1543

set-approaching-memory-limit-callback 1544

set-automatic-gc-callback 1544

set-blocking-gen-num 1545

set-default-segment-size 1547

set-delay-promotion 1548

set-expected-allocation-in-generation-2-after-gc 1549

set-file-dates 1551

set-generation-2-gc-options 1552

set-gen-num-gc-threshold 1554

set-maximum-memory 1555

set-maximum-segment-size 1556

Contents

45

set-memory-check 1557

set-memory-exhausted-callback 1558

set-promote-generation-1 1559

set-reserved-memory-policy 1560

set-signal-handler 1561

set-spare-keeping-policy 1562

set-split-promotion 1563

set-static-segment-size 1564

set-temp-directory 1565

setup-atomic-funcall 1565

sg-default-size 1566

simple-augmented-string 1439

simple-augmented-string-p 1440

simple-int32-vector 1567

simple-int32-vector-length 1568

simple-int32-vector-p 1568

simple-int64-vector 1569

simple-int64-vector-length 1570

simple-int64-vector-p 1570

sort-inspector-p 1571

specific-valid-file-encoding 1572

specific-valid-file-encodings 1573

stack-overflow-behaviour 1573

staticp 1574

storage-exhausted 1575

sweep-gen-num-objects 1575

typed-aref 1576

wait-for-input-streams 1578

wait-for-input-streams-returning-first 1579

with-modification-change 1579

with-modification-check-macro 1580

with-other-threads-disabled 1581

48 Miscellaneous WIN32 symbols 1583

canonicalize-sid-string 1583

connect-to-named-pipe 1584

dismiss-splash-screen 1585

impersonating-named-pipe-client 1585

impersonating-user 1586

known-sid-integer-to-sid-string 1588

latin-1-code-pages 1588

long-namestring 1589

lpcstr 1601

lpctstr 1602

Contents

46

lpcwstr 1605

lpstr 1601

lptstr 1602

lpwstr 1605

monitor-directory-changes 1590

multibyte-code-page-ef 1591

named-pipe-stream-name 1591

open-named-pipe-stream 1592

record-message-in-windows-event-log 1594

security-description-string-for-open-named-pipe 1595

set-application-themed 1598

set-dpi-awareness 1598

short-namestring 1600

sid-string-to-user-name 1601

str 1601

tstr 1602

user-name-to-sid-string 1603

wait-for-connection 1604

with-windows-event-log-event-source 1605

wstr 1605

49 The Windows registry API 1607

close-registry-key 1607

collect-registry-subkeys 1608

collect-registry-values 1609

create-registry-key 1610

delete-registry-key 1611

enum-registry-value 1612

open-registry-key 1614

query-registry-key-info 1615

query-registry-value 1616

registry-key-exists-p 1617

registry-value 1617

set-registry-value 1618

with-registry-key 1620

50 The DDE client interface 1621

dde-advise-start 1621

dde-advise-start* 1623

dde-advise-stop 1624

dde-advise-stop* 1625

dde-client-advise-data 1626

dde-connect 1627

dde-disconnect 1628

Contents

47

dde-execute 1628

dde-execute* 1629

dde-execute-command 1630

dde-execute-command* 1631

dde-execute-string 1632

dde-execute-string* 1633

dde-item 1634

dde-item* 1635

dde-poke 1637

dde-poke* 1638

dde-request 1639

dde-request* 1641

define-dde-client 1642

with-dde-conversation 1643

51 The DDE server interface 1645

dde-server-poke 1645

dde-server-request 1646

dde-server-topic 1647

dde-server-topics 1647

dde-system-topic 1648

dde-topic 1649

dde-topic-items 1649

define-dde-dispatch-topic 1650

define-dde-server 1651

define-dde-server-function 1652

start-dde-server 1655

52 Dynamic library C functions 1656

InitLispWorks 1656

LispWorksDlsym 1658

LispWorksState 1658

QuitLispWorks 1659

SimpleInitLispWorks 1660

Index

Contents

48

Preface

About this manual

This manual contains a user guide section (previously published separately as the LispWorks User Guide) and a reference
section (previously the LispWorks Reference Manual).

User Guide section

The user guide section of this manual describes the main language-level features and tools available in LispWorks, and how
to use them.

These chapters describe the central programming tools and features in LispWorks:

• 1 Starting LispWorks describes how to start LispWorks and supply command line arguments.

• 2 The Listener describes the read-eval-print loop (REPL) listener.

• 3 The Debugger describes the REPL debugger.

• 4 The REPL Inspector describes the REPL inspector.

• 5 The Trace Facility describes the tracer.

• 6 The Advice Facility.

• 7 Dspecs: Tools for Handling Definitions describes the naming system for Lisp definitions, and in particular how to
locate these.

• 8 Action Lists describes how you can run code at various hook points.

• 9 The Compiler describes the compiler optimization qualities and some ways to optimize your code.

• 10 Code Coverage shows you how to determine and visualize which parts of your program have actually run.

• 11 Memory Management covers the behavior (and for wizard level users, configuration) of the garbage collector.

• 12 The Profiler describes a tool for identifying bottlenecks impeding performance of your program.

The next chapter, 13 Customization of LispWorks, explains how to perform some commonly required customizations, such
as controlling start-up appearance of LispWorks.

The remaining user guide chapters describe features of specialist interest:

• 14 LispWorks as a dynamic library describes how LispWorks operates as a DLL, .dylib or .so.

• 15 Java interface describes the LispWorks Java interface.

• 16 Android interface describes the LispWorks Android interface, which allows you to include a LispWorks runtime in
an Android app.

• 17 iOS interface describes the LispWorks iOS interface, which allows you to include a LispWorks runtime in an iOS
app.

49

• 18 The Metaobject Protocol describes how the LispWorks MOP implementation differs from AMOP.

• 19 Multiprocessing, including locks.

• 20 Common Defsystem and ASDF describes how to use defsystem to combine a series of source files into a
manageable project.

• 21 The Parser Generator.

• 22 Dynamic Data Exchange describes how to implement DDE functionality in your Microsoft Windows applications.

• 23 Common SQL explains how to use LispWorks to communicate with databases using SQL.

• 24 User Defined Streams provides an illustrative example showing how to define and implement your own streams.

• 25 TCP and UDP socket communication and SSL describes the use of socket streams, including the Secure Sockets
Layer (SSL).

• 26 Internationalization: characters, strings and encodings provides an overview of using international characters.

• 27 LispWorks' Operating Environment explains how to find information about the Operating System and how
LispWorks was started.

• 28 Miscellaneous Utilities describes miscellaneous functionality which does not belong in other chapters.

• 29 64-bit LispWorks outlines differences between 64-bit LispWorks and 32-bit LispWorks.

• 30 Self-contained examples enumerates the example files which are relevant to the content of this manual and are
available in the LispWorks library.

Please note that documentation for Graphics Ports is in the CAPI User Guide and Reference Manual.

Reference section

Most of the reference section is organized by package: each chapter contains reference material for the exported symbols in a
given package. The chapters are organized alphabetically by package name.

Generally one chapter covers each package, but the WIN32 package symbols are split into four chapters, and the last chapter
contains reference material for C functions. Within each chapter, the symbols are organized alphabetically (ignoring non-
alphanumeric characters that are common in Lisp symbols, such as *). The chapters are:

• 31 The CLOS Package, describes the LispWorks extensions to CLOS, the Common Lisp Object System.

• 32 The COMM Package, describes the functions providing the TCP/IP interface.

• 33 The COMMON-LISP Package, describes the LispWorks extensions to symbols in the COMMON-LISP package. You
should refer to the Common Lisp HyperSpec, supplied in HTML format with LispWorks, for full documentation about
standard Common Lisp symbols.

• 34 The DBG Package, describes symbols available in the DBG package, used to configure the debugging information
produced by LispWorks.

• 35 The DSPEC Package, describes the symbols available in the DSPEC package, which are used for naming and
locating definitions.

• 36 The EXTERNAL-FORMAT Package, describes symbols available in the EXTERNAL-FORMAT package.

• 37 The HCL Package, describes symbols available in the HCL package.

• 38 The LISPWORKS Package, describes symbols available in the LISPWORKS package.

Preface

50

• 39 The LW-JI Package, describes symbols available in the LW-JI package, which allows you to call to and from Java.
This chapter describes the Java classes and methods available in LispWorks.

• 40 Java classes and methods describes the Java classes and methods available in LispWorks.

• 41 Android Java classes and methods describes the additional Java classes and methods available in LispWorks for
Android Runtime.

• 42 The MP Package, describes symbols available in the MP package, giving you access to the multiprocessing
capabilities of LispWorks.

• 43 The PARSERGEN Package, describes symbols available in the PARSERGEN package, the LispWorks parser
generator.

• 44 The SERIAL-PORT Package documents the Serial Port API. This is implemented only in LispWorks for Windows.

• 45 The SQL Package documents symbols used in accessing LispWorks ODBC and SQL functionality.

• 46 The STREAM Package documents the symbols available in the STREAM package that provide users with the
functionality to define their own streams for use by the standard I/O functions.

• 47 The SYSTEM Package, describes symbols available in the SYSTEM package.

• 48 Miscellaneous WIN32 symbols, describes miscellaneous symbols available in the WIN32 package. It applies only to
LispWorks for Windows.

• 49 The Windows registry API, describes the Windows registry API. It applies only to LispWorks for Windows.

• 50 The DDE client interface, describes the Dynamic Data Exchange (DDE) client API. It applies only to LispWorks for
Windows.

• 51 The DDE server interface, describes the Dynamic Data Exchange (DDE) server API. It applies only to LispWorks
for Windows.

• 52 Dynamic library C functions, describes C functions available in LispWorks dynamic libraries.

Many of these reference chapters should be used in conjunction with corresponding chapters in the user guide section.
Reference material for some aspects of LispWorks can be found in other manuals.

Conventions used for reference entries

Each entry is headed by the symbol name and type, followed by a number of fields providing further details. These fields
consist of a subset of the following: "Summary", "Package", "Signature", "Method signatures", "Arguments", "Values",
"Initial value", "Superclasses", "Subclasses", "Initargs", "Accessors", "Readers", "Description", "Notes", "Compatibility
notes", "Examples" and "See also".

Some symbols with closely-related functionality are coalesced into a single reference entry.

Throughout, variable arguments, slots and return values are italicised. They look like-this.

Throughout, exported symbols and example code are printed like-this. The package qualifier is usually omitted, unless
the symbol is not documented in this manual.

Entries with a long "Description" section usually have as their first field a short "Summary" providing a quick overview of the
symbol's purpose.

The "Package" section shows the package from which the symbol is exported.

The "Signature" section shows the arguments and return values of functions and macros, and the parameters of types.

Preface

51

In a Generic Function entry there may be a "Method signatures" section showing system-defined method signatures.

The "Arguments" and "Values" sections show types of the arguments and return values.

In a Variable entry, the "Initial value" section shows the initial value.

In a Class entry the "Subclasses" section of lists the external subclasses, though not subclasses of those, and the
"Superclasses" section lists the external superclasses, though not superclasses of those. The "Initargs" section describes the
initialization arguments of the class, though note that initargs of superclasses are also valid. There may be an "Accessors"
section listing accessor functions which are both readers and writers, and/or a "Readers" section listing accessor functions
which are only readers. Accessor functions access the slot with matching name.

The "Description" section contains the detail of what the symbol does, how each argument is interpreted (and its default value
if applicable), and how each return value is derived. More incidental information may be shown in a "Notes" section.

A few entries have a "Compatibility notes" section describing changes in the symbol's functionality relative to other
LispWorks versions.

Examples are given under the "Examples" heading. Short examples are shown directly. Longer examples are supplied as
source files in your LispWorks installation directory under examples/. The convenience function example-edit-file

allows you to open these files in the LispWorks editor. The examples files are in a read-only directory and therefore you
should compile them inside the IDE (by the Editor command Compile Buffer or the toolbar button or by choosing Buffer >
Compile from the context menu), so it does not try to write a fasl file. If you want to manipulate an example file or compile it
on the disk rather than in the IDE, then you need first to copy the file elsewhere (most easily by using the Editor command
Write File or by choosing File > Save As from the context menu).

Finally, the "See also" section provides links to other related symbols and user guide sections.

The LispWorks manuals

The LispWorks manual set comprises the following books:

• The Common Lisp HyperSpec contains the specification for Common Lisp itself.

• The LispWorks® User Guide and Reference Manual—this book—describes the main language-level features and tools
available in LispWorks, along with an extensive reference of the functions, macros, variables and classes organized by
package. Where LispWorks extends the functionality of a Common Lisp symbol, this is mentioned in 33 The
COMMON-LISP Package.

• The LispWorks IDE User Guide describes the LispWorks IDE, the user interface for LispWorks. This is a set of
windowing tools that let you develop and test Common Lisp code more easily and quickly.

• The Editor User Guide describes the keyboard commands and programming interface to the LispWorks IDE editor tool.

• The CAPI User Guide and Reference Manual describes the CAPI. This is a library of classes, functions, and macros for
developing graphical user interfaces for your applications. It comprises a tutorial guide to the CAPI and an in-depth
reference text.

• The Foreign Language Interface User Guide and Reference Manual explains how you can use C source code in
applications developed using LispWorks.

• The Delivery User Guide describes how you can deliver working, standalone versions of your LispWorks applications
for distribution to your customers.

• Developing Component Software with CORBA® describes how LispWorks can interoperate with other CORBA-
compliant systems.

• The COM/Automation User Guide and Reference Manual describes a toolkit for using Microsoft COM and Automation
in LispWorks for Windows.

Preface

52

• The LispWorks Objective-C and Cocoa Interface User Guide and Reference Manual describes APIs for interfacing to
Objective-C and Cocoa in LispWorks for Macintosh.

• The KnowledgeWorks and Prolog User Guide describes the LispWorks toolkit for building knowledge-based systems.
Common Prolog is a logic programming system written in Common Lisp.

• The Release Notes and Installation Guide explains how to install LispWorks and start it running. It also contains Release
Notes describing the new features in this release and any issues that could not be included in the other manuals.

The LispWorks manuals are all available in Portable Documentation Format (PDF). You can use Adobe Reader to browse the
PDF documentation online or to print it. Adobe Reader is available for free download from Adobe's web site at
www.adobe.com.

The LispWorks manuals are also available in HTML format. Commands in the Help menu of any of the LispWorks IDE tools
give you direct access to the HTML documentation, using your web browser. Details of how to use these commands can be
found in the LispWorks IDE User Guide.

Please let us know if you find any mistakes in the LispWorks documentation, or if you have any suggestions for
improvements.

Other documentation

The LispWorks manuals do not attempt to describe Lisp itself. For definitive information on Common Lisp, including CLOS,
consult the American National Standard X3.226 for Common Lisp. An HTML version of this document is supplied with
LispWorks and can be accessed from the Help menu.

For information on CLOS, Sonya E. Keene's book Object-Oriented Programming in Common Lisp: A Programmers' Guide
is very helpful. This book is published by Addison-Wesley.

For an account of Metaobject protocols as well as a detailed study of an implementation of CLOS see Kiczales, des Rivières
and Bobrow, The Art of the Meta-Object Protocol, published by MIT Press, often referred to as AMOP. The LispWorks MOP
mostly conforms to chapters 5 & 6 of AMOP; the differences are mentioned here in 18 The Metaobject Protocol.

Notation and conventions

The LispWorks manuals follow the notation used in Common Lisp: the Language (2nd Edition).

This manual often refers to example files in the LispWorks library, like this:

(example-edit-file "ssl/ssl-client")

These examples are Lisp source files in your LispWorks installation under lib/8-1-0-0/examples/. You can simply
evaluate the given form to view the example source file.

Other references such as "... the LispWorks file foo/bar.lisp" mean a file bar.lisp in a subdirectory foo of the
LispWorks library directory. Evaluate this form in your LispWorks image to obtain the full path of such a file:

(sys:lispworks-file "foo/bar.lisp")

Preface

53

http://www.adobe.com

1 Starting LispWorks

Firstly you need LispWorks installed as described in the Release Notes and Installation Guide.

1.1 The usual way to start LispWorks

On Microsoft Windows and macOS the simplest way to run LispWorks is that provided in the desktop environment. On
Windows you can run LispWorks from the desktop Start menu, or the Start screen on Windows 8. On macOS you can run
LispWorks by clicking on the "LW" icon in the Dock or from the Launchpad. On both these platforms you can create a
shortcut to LispWorks and place it somewhere that is convenient for you, such as the Windows 8 taskbar.

On non-Windows and non-macOS systems you start LispWorks by entering the name of the LispWorks executable at a shell
prompt.

If you have installed any LispWorks patches, then they will be loaded automatically when you start LispWorks.

1.2 Passing arguments to LispWorks

Occasionally you may need to start LispWorks with certain arguments. This section describes the most frequent of these
occasions.

1.2.1 Saving a new image

Note: If you use the LispWorks IDE, you may find a saved session more convenient than saving an image as described in this
section. See 13.4 Saved sessions for more information.

To save a new image "by hand", create a suitable file save-config.lisp as described in the section "Saving and testing the
configured image" in the Release Notes and Installation Guide. Such a file should load any desired configuration, modules
and application code, and lastly call save-image.

Then you run LispWorks with a command line which passes your file as a build script.

On macOS, run Terminal.app to get a shell, and enter a line like this at the prompt:

% lispworks-8-1-0-macos64-universal -build /tmp/save-config.lisp

On Microsoft Windows, run Command Prompt to get a DOS shell, and enter a line like this:

C:\Program Files\LispWorks>lispworks-8-1-0-x86-win32.exe -build C:\temp\save-config.lisp

On Linux, get a shell and enter a line like this:

% lispworks-8-1-0-x86-linux -build /tmp/save-config.lisp

When the command exits, a new image has been saved. You can run this new image directly from the command line, or
create a shortcut or symbolic link to make it convenient to run.

With all the command lines above, if you perform the task frequently, make a script or a shortcut containing the command
line, and run that.

54

Note that save-config.lisp no longer needs to do (load-all-patches) because -build calls load-all-patches
automatically in LispWorks 6.1 and later versions. However, if save-config.lisp does call load-all-patches, this is
harmless.

1.2.2 Saving a console mode image

To save a LispWorks image which does not start the LispWorks IDE by default, make a script similar to
save-config.lisp above, but where you call:

(save-image "my-console-lispworks" :environment nil)

The resulting new image, my-console-lispworks, can be made to start the LispWorks IDE either by calling
env:start-environment or by passing -env or -environment on the command line.

1.2.3 Bypassing initialization files

If you do not want to load your personal initialization file, for example to discover if the behavior of LispWorks is due to
some setting of yours, pass -init - on the command line.

To start LispWorks without loading either the personal or site initialization files, start it like this:

lispworks -init - -siteinit -

1.2.4 Other command line options

Other less commonly-used LispWorks command line arguments are described in 27.4 The Command Line.

1.3 Starting the LispWorks Graphical IDE

In LispWorks images shipped on the Windows, macOS, Linux, x86/x64 Solaris, and FreeBSD platforms, the IDE starts
automatically by default.

If you have an image saved such that the IDE does not start by default, you can start the IDE by calling the function
env:start-environment.

1.4 Using LispWorks with SLIME

Download SLIME from http://common-lisp.net/project/slime/.

1.4.1 Using the Professional/Enterprise Editions with SLIME

To use LispWorks with SLIME it is best to use an image which does not start the LispWorks IDE automatically. You can
create such an image with LispWorks Professional or Enterprise Edition. Save it as ~/lw-console as described in 13.3.5
Saving a non-GUI image with multiprocessing enabled.

Configure Emacs to use "~/lw-console" as the value of inferior-lisp-program as shown in the SLIME README.

1 Starting LispWorks

55

http://common-lisp.net/project/slime/

1.4.2 Using the Personal Edition with SLIME

Start LispWorks Personal Edition, which starts the LispWorks IDE automatically.

Execute these forms in the LispWorks IDE:

(load "/path/to/slime/swank-loader")
(swank-loader:init)
(swank:create-server :port 4005)

Inside Emacs, Meta+X slime-connect. Use the same port given above.

1.5 Quitting LispWorks

To quit LispWorks from the LispWorks IDE, use one of the following:

• The menu command File > Exit all platforms except macOS.

• The menu command LispWorks > Quit LispWorks on macOS.

• The key Command+Q on macOS.

• The key sequence Ctrl+X Ctrl+C in an editor-based tool such as the Editor or Listener.

• A platform/window-manager-specific exit gesture such as clicking a close button on the Podium window.

• Call the function quit.

To quit LispWorks when running in console mode or via SLIME, simply call quit.

1 Starting LispWorks

56

2 The Listener

The listener is another name for the read-eval-print loop (REPL) which allows you to interactively evaluate Lisp forms and
see their output and return values. Lisp programmers typically do incremental development and testing in a listener before
saving the working code to disk.

This chapter describes the basic use of a LispWorks listener. You might access this in a terminal (Unix shell) or MS-DOS
command window. Alternatively the LispWorks IDE contains a graphical Listener tool which runs a REPL and supports all
the functionality described in this chapter, as well as its own graphical features. Please refer to the LispWorks IDE User
Guide for details specific to the graphical Listener tool.

2.1 First use of the listener

LispWorks runs a top-level REPL on startup. The listener by default appears with a prompt. The name of the current package
(that is, the value of cl:*package*) is printed followed by a positive integer, like this:

CL-USER 1 >

Enter a Lisp form after the prompt and press Return:

CL-USER 1 > (print 42)

42
42

CL-USER 2 >

The first `42' printed is the output of the call to print. You see it here because output sent to *standard-output* is
written to the listener.

The second `42' printed is the return value of the call to print.

After the return value a new prompt appears. Notice that it contains `2' after the package name: your successive inputs are
numbered. You can now proceed to develop and test pieces of your application code:

CL-USER 2 > (defstruct animal species name weight)
ANIMAL

CL-USER 3 > (make-animal :species "Hippopotamus" :name "Hilda" :weight 42)
#S(ANIMAL :SPECIES "Hippopotamus" :NAME "Hilda" :WEIGHT 42)

2.2 Standard listener commands

Generally the listener simply evaluates Lisp forms that you enter. However a few keywords, described in the this section, are
specially recognized as shortcut for common listener operations.

57

http://www.lispworks.com/documentation/HyperSpec/Body/v_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_pr.htm

2.2.1 Standard top-level loop commands

:redo Listener command

:redo &optional command-identifier

This option repeats a previous input. The command-identifier is either a number in the listener's history list or a symbol
or subform in the input to repeat. If command-identifier is not supplied, the last input is repeated.

:get Listener command

:get name command-identifier

:get retrieves a previously-entered input from the listener's history and places it in the variable name. The command-
identifier is the history list number of the input to be retrieved.

:use Listener command

:use new old &optional command-identifier

:use does a variant of a previous input. old matches a symbol or subform in the previous input, and is replaced with new
to construct the new input. If supplied, command-identifier is the history list number of the input you want to modify.

:his Listener command

:his &optional n m

:his produces a list of the input history. If n is supplied it should be a positive integer: the last n inputs are shown. If m
is also supplied it should be a positive integer greater than n, when inputs numbered n through m in the history are
shown.

:bug-form Listener command

:bug-form subject &key filename

:bug-form prints a template bug report suitable for sending to Lisp Support. Supply a string subject. If you also supply
filename, the report is printed to the file.

:help Listener command

:help

:help prints a brief listing of the available listener commands.

:? Listener command

:?

:? is a synonym for :help.

2 The Listener

58

2.2.2 Examples

CL-USER 4 > :redo
(MAKE-ANIMAL :SPECIES "Hippopotamus" :NAME ...)
#S(ANIMAL :SPECIES "Hippopotamus" :NAME "Hilda" :WEIGHT 42)

CL-USER 5 > :his

1: (PRINT 42)
2: (DEFSTRUCT ANIMAL SPECIES NAME ...)
3: (MAKE-ANIMAL :SPECIES "Hippopotamus" :NAME ...)
4: (MAKE-ANIMAL :SPECIES "Hippopotamus" :NAME ...)

CL-USER 5 > :get make-hilda 3

CL-USER 5 > make-hilda
(MAKE-ANIMAL :SPECIES "Hippopotamus" :NAME "Hilda" :WEIGHT 42)

CL-USER 6 > :use "Henry" "Hilda"
(MAKE-ANIMAL :SPECIES "Hippopotamus" :NAME ...)
#S(ANIMAL :SPECIES "Hippopotamus" :NAME "Henry" :WEIGHT 42)

CL-USER 7 > :bug-form "Too many hippos..." :filename "bug-report.txt"

2.3 The listener prompt

The variable *prompt* controls the appearance of the listener prompt. See *prompt* if you want to alter this.

If the default prompt contains a colon followed by a second positive integer then you are no longer in the top-level loop, but
have entered the REPL debugger, as described in 3 The Debugger.

2 The Listener

59

3 The Debugger

The debugger is an interactive tool for examining and manipulating the Lisp environment. Within the debugger you have
access to not only the interpreter, but also to a variety of debugging tools. The default behavior when any error occurs is to
enter the debugger. Users can then trace backwards through the history of function calls to determine how the error arose.
They may inspect and alter local variables of the functions on the execution stack, and possibly continue execution by
invoking a pre-defined restart (if available) or by forcing any function invocation on the stack to return user-specified values.

When writing an application it is possible to prevent entry to the debugger when an error occurs, by creating condition
handlers to take some appropriate action to recover without user intervention. It is also possible to use restarts to specify
some default methods of error recovery. The debugger is entered whenever an error is signaled (via a call to error or
cerror) and not handled by an error handler, or it can be explicitly invoked via a call to break.

You can use the debugger in REPL mode (that is, in the listener read-eval-print loop) or using the graphical Debugger tool in
the LispWorks IDE. This chapter describes the REPL debugger; please refer to the LispWorks IDE User Guide for details
about the graphical Debugger tool.

The compiler generates information necessary for the use of the debugger during compilation. You can opt for faster
compilation, at the expense of reducing the information available to the debugger, using toggle-source-debugging.

3.1 Entering the REPL debugger

The following is a simple example.

CL-USER 2 > (defun make-a-hippo (name weight)
 (if (numberp weight)
 (make-animal 'hippo name weight)
 (error "Argument to make-a-hippo not a number")))
MAKE-A-HIPPO

CL-USER 3 > (make-a-hippo "Hilda" nil)

Error: Argument to make-a-hippo not a number
 1 (abort) Return to level 0.
 2 Return to top loop level 0.

Type :b for backtrace or :c <option number> to proceed.
Type :bug-form "<subject>" for a bug report template or :? for other options.

CL-USER 4 : 1 >

The call to error causes entry into the debugger. The final prompt in the example contains a 1 to indicate that the top level
of the debugger has been entered. The debugger can be entered recursively, and the prompt shows the current level. Once
inside the debugger, you may use all the facilities available at the top-level in addition to the debugger commands.

The debugger may also be invoked by using the trace facility to force a break at entry to or exit from a particular function.

The debugger can also be entered by a keyboard interrupt. Keyboard interrupts are generated by the break gesture, which
varies between the supported systems as follows:

Microsoft Windows Ctrl+Break.

60

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cerror.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_break.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

GTK and Motif Meta+Ctrl+C.

Break if keyboard has that key. Note that PC keyboards do not have Break, only Ctrl+Break,
which is different. See also capi:set-interactive-break-gestures.

Cocoa Command+Control+, (comma).

When the break gesture is used, LispWorks attempts to find a busy process to break. If there is no obvious candidate and the
LispWorks IDE is running, then it displays the Process Browser tool.

3.2 Simple use of the REPL debugger

Upon entering the debugger as a result of an error, a message describing the error is printed and a number of options to
continue (called restarts) are presented. Thus:

CL-USER 6 > (/ 3 0)

Error: Division-by-zero caused by / of (3 0)
 1 (continue) Return a value to use
 2 Supply new arguments to use
 3 (abort) return to level 0.
 4 return to top loop level 0.
 5 Destroy process.

Type :c followed by a number to proceed

CL-USER 7 : 1 >

To select one of these restarts, enter :c (continue) followed by the number of the restart. So in the above example you could
continue as follows:

CL-USER 7 : 1 > :c 2

Supply first number: 33

Supply second number: 11
3

CL-USER 8 >

There are two special restarts, a continue restart and an abort restart. These are indicated by the bracketed word continue or
abort at their start. The continue restart can be invoked by typing :c alone. Similarly, the abort restart can be invoked by
entering :a. So an alternative continuation of the division example would be:

CL-USER 7 : 1 > :c

Supply a form to be evaluated and used: (+ 4 5)
9

3.3 The stack in the debugger

The debugger allows you to examine the state of the execution stack. This consists of a sequence of frames representing
active function invocations, special variable bindings, restarts, active catchers, active handlers and system-related code. In
particular the execution stack has a call frame for each active function call (that is for each function that has been entered but
from which control has not yet returned). The top of the stack contains the most recently created frames (and so the
innermost calls), and the bottom of the stack contains the oldest frames (and so the outermost calls). You can examine a call

3 The Debugger

61

frame to find the function's name, and the names and values of its arguments.

The function call frames displayed are affected by any hcl:alias and hcl:invisible-frame declarations. See declare
for the details.

Catch frames are established by using the special form catch, and exist to receive throws to the matching tag. Restart frames
correspond to restarts that have been set up, and handler frames correspond to the error handlers currently active. Binding
frames are formed when special variables are bound. Open frames are established by the system. By default only the catch
frames and the call frames are displayed. However the remaining types of frame are displayed if you set the appropriate
variables (see 3.6 Debugger control variables).

Within the debugger there are commands to examine a stack frame, and to move around the stack. These are explained in the
following section. Typing :help in the debugger also produces a command listing.

One of the most useful features is that you can access a local variable in the current frame simply by entering its name as
shown in the backtrace. See step 7 in 3.4.5 Example debugging session.

3.4 REPL debugger commands

This section describes commands specific to the debugger. In the debugger, you can also do anything that you can do in the
top-level loop including evaluation of forms and the standard listener commands.

Upon entry to the debugger the implicit current stack frame is set to the top of the execution stack. The debugger commands
allow you to move around the stack, to examine the current frame, and to leave the debugger. The commands are all
keywords, and as such case-insensitive, but are shown here in lower case for clarity.

You can get brief help listing these commands by entering :? at the debugger prompt.

3.4.1 Backtracing

A backtrace is a list of the stack frames starting at the current frame and continuing down the stack. The backtrace thus
displays the sequence by which the functions were invoked, starting with the most recent. For instance:

CL-USER 10 > (defun function-1 (a b c)
 (function-2 (+ a b) c))
FUNCTION-1

CL-USER 11 > (defun function-2 (a b)
 (function-3 (+ a b)))
FUNCTION-2

CL-USER 12 > (defun function-3 (a) (/ 3 (- 111 a)))
FUNCTION-3

CL-USER 13 > (function-1 1 10 100)

Error: Division-by-zero caused by / of (3 0)
 1 (continue) Return a value to use
 2 Supply new arguments to use
 3 (abort) return to level 0.
 4 return to top loop level 0.
 5 Destroy process.

Type :c followed by a number to proceed

CL-USER 14 : 1 > :bq 10

SYSTEM::DIVISION-BY-ZERO-ERROR <- / <- FUNCTION-3
<- SYSTEM::*%APPLY-INTERPRETED-FUNCTION <- FUNCTION-2
<- SYSTEM::*%APPLY-INTERPRETED-FUNCTION <- FUNCTION-1

3 The Debugger

62

<- SYSTEM::*%APPLY-INTERPRETED-FUNCTION <- SYSTEM::%INVOKE <- SYSTEM::%EVAL

CL-USER 15 : 1 >

In the above example the command to show a quick backtrace was used (:bq). Instead of showing each stack frame fully,
this only shows the function name associated with each of the call frames. The number 10 following :bq specifies that only
the next ten frames should be displayed rather than continuing to the bottom of the stack.

:b Debugger command

:b &optional verbose m

This is the command to obtain a backtrace from the current frame. It may optionally be followed by :verbose, in which
case a fuller description of each frame is given that includes the values of the arguments to the function calls. It may
also be followed by a number (m), specifying that only that number of frames should be displayed.

:bq Debugger command

:bq m

This produces a quick backtrace from the current position. Only the call frames are included, and only the names of the
associated functions are shown. If the command is followed by a number then only that many frames are displayed.

3.4.2 Moving around the stack

On entry to the debugger the current frame is the one at the top of the execution stack. There are commands to move to the
top and bottom of the stack, to move up or down the stack by a certain number of frames, and to move to the frame
representing an invocation of a particular function.

:> Debugger command

This sets the current frame to the one at the bottom of the stack.

:< Debugger command

This sets the current frame to the one at the top of the stack.

:p Debugger command

:p [m | fn-name | fn-name-substring]

By default this takes you to the previous frame on the stack. If it is followed by a number then it moves that number of
frames up the stack. If it is followed by a function name then it moves to the previous call frame for that function. If it is
followed by a string then it moves to the previous call frame whose function name contains that string.

:n Debugger command

:n [m | fn-name | fn-name-substring]

Similar to the above, this goes to the next frame down the stack, or m frames down the stack, or to the next call frame for
the function fn-name, or to the next call frame whose function name contains fn-name-substring.

3 The Debugger

63

3.4.3 Miscellaneous commands

:v Debugger command

This displays information about the current stack frame. In the case of a call frame corresponding to a compiled function
the names and values of the function's arguments are shown. Closure variables (either from an outer scope or used by an
inner scope) and special variables are indicated by {Closing} or {Special} as in this session:

CL-USER 32 > (compile (defun foo (*zero* one two)
 (declare (special *zero*))
 (list (/ one *zero*) #'(lambda () one) two)))
FOO
NIL
NIL

CL-USER 33 > (foo 0 1 2)

Error: Division-by-zero caused by / of (1 0).
 1 (continue) Return a value to use.
 2 Supply new arguments to use.
 3 (abort) Return to level 0.
 4 Return to top loop level 0.

Type :b for backtrace or :c <option number> to proceed.
Type :bug-form "<subject>" for a bug report template or :? for other options.

CL-USER 34 : 1 > :n foo
Call to FOO

CL-USER 35 : 1 > :v
Call to FOO {offset 114}
 ZERO {Special} : 0
 ONE {Closing} : 1
 TWO : 2

CL-USER 36 : 1 >

For an interpreted function the names and values of local variables are also shown.

If the value of an argument is not known (perhaps because the code has been compiled for speed rather than other
considerations), then it is printed as the keyword :dont-know.

:l Debugger command

:l [m | var-name | var-name-substring]

By default this prints a list of the values of all the local variables in the current frame. If the command is followed by a
number then it prints the value of the m'th local variables (counting from 0, in the order shown by the :v command). If it
is followed by a variable name var-name then it prints the value of that variable (note that the same effect can be
achieved by just entering the name of the variable into the Listener). If it is followed by a string var-name-substring then
it prints the value of the first variable whose name contains var-name-substring.

In all cases, * is set to the printed value.

:error Debugger command

This reprints the message which was displayed upon entry to the current level of the debugger. This is typically an error
message and includes several continuation options.

3 The Debugger

64

:cc Debugger command

:cc &optional var

This returns the current condition object which caused entry to this level of the debugger. If an optional var is supplied
then this must be a symbol, whose symbol-value is set to the value of the condition object.

:ed Debugger command

This allows you to edit the function associated with the current frame. If you are using TAGS, you are prompted for a
TAGS file.

:all Debugger command

:all &optional flag

This option enables you to set the debugger option to show all frames (if flag is non-nil), or back to the default (if flag is
nil). By default, flag is t.

See also set-debugger-options.

:lambda Debugger command

This returns the lambda expression for an anonymous interpreted frame. If the expression is not known, then it is printed
as the keyword :dont-know.

:func Debugger command

:func &optional disassemble-p

This returns (and sets * to) the function object of the current frame. This is especially useful for the call frame of
functions that are not the symbol function of some symbols, for example closures and method functions.

If disassemble-p is true, :func first disassembles the function, and then returns it and sets *. The default value of
disassemble-p is nil.

:func is applicable only in call frames.

:lf Debugger command

This command prints symbols from other packages corresponding to the symbol that was called, but could not be found
in the current package. If there is only one such symbol then it is also offered as restarts when you first enter the
debugger.

NEW 21 > (display-message)

Error: Undefined operator DISPLAY-MESSAGE in form (DISPLAY-MESSAGE).
 1 (continue) Try invoking DISPLAY-MESSAGE again.
 2 Return some values from the form (DISPLAY-MESSAGE).
 3 Try invoking CAPI:DISPLAY-MESSAGE with the same arguments.
 4 Set the symbol-function of DISPLAY-MESSAGE to the symbol-function of CAPI:DISPLAY-MESSAGE.
 5 Try invoking something other than DISPLAY-MESSAGE with the same arguments.
 6 Set the symbol-function of DISPLAY-MESSAGE to another function.
 7 Set the macro-function of DISPLAY-MESSAGE to another function.
 8 (abort) Return to top loop level 0.

Type :b for backtrace or :c <option number> to proceed.
Type :bug-form "<subject>" for a bug report template or :? for other options.

3 The Debugger

65

NEW 22 : 1 > :lf
Possible candidates are (CAPI:DISPLAY-MESSAGE)
CAPI:DISPLAY-MESSAGE

NEW 23 : 1 >

3.4.4 Leaving the debugger

You may leave the debugger either by taking one of the continuation options initially presented, or by explicitly specifying
values to return from one of the frames on the stack.

:a Debugger command

This selects the :abort option from the various continuation options that are displayed when you enter the current level
of the debugger.

:c Debugger command

:c &optional m

If this is followed by a number then it selects the option with that number, otherwise it selects the :continue option.

:ret Debugger command

:ret value

This causes value to be returned from the current frame. It is only possible to use this command when the current frame
is a call frame. Multiple values may be returned by using the values function. So to return the values 1 and 2 from the
current call frame, you could type:

:ret (values 1 2)

:res Debugger command

:res m

Restarts the current frame. If m is nil, you are prompted for new arguments which should be entered on one line,
separated by whitespace. If m is true or is not supplied, the original arguments to the frame are used.

:top Debugger command

Aborts to the top level of the debugger. A synonym is :a :t.

3.4.5 Example debugging session

This section presents a short interactive debugging session. It starts by defining a routine to calculate Fibonacci Numbers,
and then erroneously calls it with a string.

1. First, define the fibonacci function shown below in a listener.

(defun fibonacci (m)
 (let ((fib-n-1 1)
 (fib-n-2 1)
 (index 2))
 (loop
 (if (= index m) (return fib-n-1))

3 The Debugger

66

http://www.lispworks.com/documentation/HyperSpec/Body/a_values.htm

 (incf index)
 (psetq fib-n-1 (+ fib-n-1 fib-n-2)
 fib-n-2 fib-n-1))))

2. Next, call the function as follows.

(fibonacci "turtle")

The system generates an error, since cl:= expects its arguments to be numbers, and displays several continuation
options, so that you can try to find out how the problem arose.

3. Enter :bb at the debugger prompt to obtain a full backtrace.

Notice that the problem is in the call to fibonacci.

You should have passed the length of the string as an argument to fibonacci, rather than the string itself.

4. Attempt to calculate this value now, by typing the following form at the debugger prompt.

(legnth "turtle")

You intended to call fibonacci with the length of the string, but entered length incorrectly. This takes you into the
second level of the debugger. Note that the continuation options from your entry into the top level of the debugger are
still displayed, and are listed after the new options. You can select any of these options.

5. Enter :a to abort one level of the debugger.

6. Enter :error to remind yourself of the original error that you need to handle. You need to fix the value passed as the
second argument to fibonacci.

7. Enter :n fibonacci to move to the stack frame for the call to fibonacci.

8. Enter :v to display variable information about this stack frame:

Interpreted call to FIBONACCI:
 M : "turtle"
 INDEX : 3
 FIB-N-2 : 1
 FIB-N-1 : 2

You need to set the value of the variable m to be the length of the string "turtle", rather than the string itself.

9. Enter this form:

(setq m (length "turtle"))

In order to get the original computation to resume using the new value of m, you still need to handle the original error.

10
.

Enter :error to remind yourself of the original error condition.

You can handle this error by returning nil from the call to cl:=, which is the result that would have been obtained if m
had been correctly set initially.

11
.

Enter :c to invoke the continue restart, which in this case requires you to return a value to use.

12
.

When prompted for a form to be evaluated, enter nil.

This causes execution to continue as desired. Notice that the correct result 8 is returned.

3 The Debugger

67

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq_sle.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_length.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq_sle.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_contin.htm

3.5 Debugger troubleshooting

Code which modifies the readtable case of the readtable can hinder debugger interaction. This is because standard commands
entered as lowercase :a for example will not be recognized if the readtable case is :preserve or :downcase.

You can use with-debugger-wrapper together with with-standard-io-syntax to enable the debugger to recognize
such input if the code in body should enter the debugger, like this:

(defun my-debugger-wrapper (func condition)
 (with-standard-io-syntax
 (funcall func condition)))

(dbg:with-debugger-wrapper
 'my-debugger-wrapper
 (let ((*readtable* (some-modified-readtable)))
 body))

3.6 Debugger control variables

cl:*debug-io* The value of this variable is the stream which the debugger uses for its input and output.

dbg:*debug-print-length*

The value to which cl:*print-length* is bound during output from the debugger.

dbg:*debug-print-level*

The value to which cl:*print-level* is bound during output from the debugger.

dbg:*hidden-packages*

This variable should be bound to a list of packages. The debugger suppresses symbols from these
packages (so, for example, it does not display call frames for functions in these packages).

dbg:*print-binding-frames*

This variable controls whether binding frames are displayed by the debugger. The initial value is
nil. The value can be set directly or by calling set-debugger-options which may be more
convenient.

dbg:*print-catch-frames*

This variable controls whether catch frames are displayed by the debugger. The initial value is
nil. The value can be set directly or by calling set-debugger-options which may be more
convenient.

dbg:*print-handler-frames*

This variable controls whether handler frames are displayed by the debugger. The initial value is
nil. The value can be set directly or by calling set-debugger-options which may be more
convenient.

dbg:*print-invisible-frames*

This variable controls whether invisible frames are displayed by the debugger. The initial value is
nil. The value can be set directly or by calling set-debugger-options which may be more
convenient.

3 The Debugger

68

http://www.lispworks.com/documentation/HyperSpec/Body/m_w_std_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_lev.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_lev.htm

dbg:*print-restart-frames*

This variable controls whether restart frames are displayed by the debugger. The initial value is
nil. The value can be set directly or by calling set-debugger-options which may be more
convenient.

3.7 Remote debugging

Remote debugging allows you to debug a LispWorks process that is running on one machine using a LispWorks IDE that is
running on another machine. It is intended to make it easier to debug applications running on machines that do not have the
LispWorks IDE, mainly mobile device applications on iOS and Android, but also applications running on servers where you
cannot run the LispWorks IDE.

In the discussion below, the process being debugged is referred to as the "client", and the process running the LispWorks IDE
is referred to the "IDE".

With remote debugging you can:

• Make the client, when it enters the debugger, open a GUI debugger in the IDE. The GUI debugger behaves like an
ordinary GUI debugger, but the data it displays is from the client, and input into its Listener pane is read and evaluated
by the client.

• Open a Listener in the IDE, where reading and evaluating input is done by the client. This can be done either by calling
start-remote-listener on the client side, or ide-open-a-listener on the IDE side.

• Inspect remote objects, by using the Inspector as usual on the IDE side, or remote-inspect on the client side.

• Evaluate forms on the client side from the Editor on the IDE side.

When you look at the source code from an IDE tool that is displaying client side data (for example by using the Find Source
menu item) or look at the class of a remote object, the IDE finds the matching source or class on its side. You need to ensure
that the IDE and the client sides have the same sources and class definitions for that to work.

Remote debugging is based on "connections", which are implemented on top of streams connecting the two sides. In normal
usage, LispWorks will open a TCP socket stream for a connection, but you can also create connections with your own
streams or sockets.

A LispWorks process that has loaded the remote debugging module can be connected to several IDE processes
simultaneously, and any IDE process can be connected to several clients. The same IDE process can act as the client side and
the IDE side at the same time. However, the most common usage is expected to be one client and one IDE, and the interface
is designed towards this simple usage.

Communication across the connection is architecture-independent, and either side can be any architecture. It relies on there
being a working Common Lisp reader.

The client side should load the client code by calling:

(require "remote-debugger-client")

Note that if the client is a delivered application, the call to require needs to happen at load time, before calling deliver.
On the IDE side, the module "remote-debugger-full" (which includes "remote-debugger-client") is loaded automatically when
needed.

3 The Debugger

69

http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm

3.7.1 Simple usage

In the simple usage scenario, you have one IDE and one client. To create the connection between them, you need to tell
LispWorks how to create the TCP socket stream, which requires one side to be a TCP server, and the other side to have the
address (or name) of the server-side machine to connect to. Therefore, in the simple case you will need to make a function
call on both sides. Once you perform the two function calls, you can use most of the power of remote debugging.

There are two ways to specify the connection: one with the IDE acting as the TCP server, and one with the client acting as
the TCP server.

3.7.1.1 Using the IDE as the TCP server

On the IDE side, you should call:

(dbg:start-ide-remote-debugging-server)

On the client side, you should call:

(dbg:configure-remote-debugging-spec "ide-hostname")

After making these calls, whenever the debugger is entered on the client side, it will automatically display a GUI debugger on
the IDE side. In addition, calls to start-remote-listener and remote-inspect from the client side will automatically
display tools on the IDE side.

These functions use TCP port 21101 by default (the initial value of
default-ide-remote-debugging-server-port).

By default, configure-remote-debugging-spec delays opening the connection until it is actually needed (by entering
the debugger, or a call to start-remote-listener or remote-inspect).

Note that within the LispWorks IDE, you can make the call to start-ide-remote-debugging-server using the Start
IDE Remote Debugging Server button in the Preferences dialog Debugger options Remote tab.

3.7.1.2 Using the client as the TCP server

On the client side you should call:

(dbg:start-client-remote-debugging-server)

On the IDE side you should call:

(dbg:ide-connect-remote-debugging "client-hostname")

The call on the IDE side opens a connection, which the client will use when entering the debugger and in calls to
start-remote-listener and remote-inspect.

These functions use TCP port 21102 by default (the initial value of
default-client-remote-debugging-server-port).

Note that within the LispWorks IDE, you can make the call to ide-connect-remote-debugging using the Connect To
Debugging Client button in the Preferences dialog Debugger options Remote tab.

3 The Debugger

70

3.7.2 The client side of remote debugging

The client side remote debugging API is intended to minimize the amount of work you need to do for simple configurations.

Once you have either specified the connection by calling configure-remote-debugging-spec on the client side and
called start-ide-remote-debugging-server on the IDE side, or called
start-client-remote-debugging-server on the client side and the IDE has connected to it using
ide-connect-remote-debugging, entering the debugger automatically opens a Debugger window on the IDE side
(unless you are already inside a Remote Listener or Remote Debugger).

If you want to open a Remote Listener on the IDE side from the client side, you can call start-remote-listener. Also,
you can call remote-inspect on the client side to inspect an object on the IDE side.

The interface allows you to have more complex configurations, as detailed by configure-remote-debugging-spec,
create-client-remote-debugging-connection and start-client-remote-debugging-server.

3.7.3 The IDE side of remote debugging

The behavior of the Debugger, Listener and Inspector tools is described in the LispWorks IDE User Guide.

Remote Debugger windows are opened automatically when the client side enters the debugger.

Remote Listener windows are opened on request, either by using the IDE's menus, by calling ide-open-a-listener, or
by calling ide-connect-remote-debugging with :open-a-listener t (or from the client side by
start-remote-listener).

The Inspector inspects a remote object when you tell it to inspect in the same way as you would tell it to inspect an ordinary
object (typically from the Debugger or Listener), or by calling remote-inspect on the client side.

3.7.3.1 Accessing client side objects on the IDE side

Remote (client side) values can be used on the IDE side and the type of object affects how it is represented.

Remote numbers and characters are represented on the IDE side as their actual IDE side values.

Remote strings are represented on the IDE side as IDE side strings, which are copies of the string of the same element type.
Note that, as a result, two separate occurrences in the IDE of the same client side string are not necessarily the same object,
and that modifying the characters in these strings does not affect the string on the client side.

Most other remote objects are represented in the IDE by remote handles (see below for exceptions). Handles are specific to a
connection, so accessing the same remote object in the IDE multiple times over the same connection will always use the same
(by eq) handle. However, accessing the same client object through different connections will use different handles, which
are not equal at all, and there is no way to find if two handles from different connections refer to the same remote object.

Remote handles are printed like this:

#<Remote ... >

where the ... is the printing of the remote object by the client side.

Handles are opaque objects. The predicate remote-object-p can be used to check if an object is a remote object, and
remote-object-connection returns the connection that the handle is associated with. If two handles are associated with
the same connection, then they are eq if and only if they refer to the same object on the client side.

The generic function get-inspector-values has a method that specializes on handles to invoke
get-inspector-values on the client side and return the results. Note that get-inspector-values also returns a setter,
which allows you to set values inside the client's object. This method makes the IDE Inspector and the CL functions

3 The Debugger

71

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm

inspect and describe work on remote handles.

Apart from the interface in the previous paragraphs, there is no useful way to access handles on the IDE side. However, you
can access the underlying remote object by using ide-eval-form-in-remote or ide-funcall-in-remote, by sending
a form containing the handle. For example, assuming the value of my-remote-simple-vector is a remote handle for a
simple-vector, you can read its first element by:

(dbg:ide-eval-form-in-remote `(svref ,my-remote-simple-vector 0))

This will call svref on the client's object that my-remote-simple-vector is a handle for, because the client side call
receives the underlying object rather than the handle.

Each call to ide-eval-form-in-remote and ide-funcall-in-remote is associated with a specific connection, and
only remote objects that are associated with the connection can be used in form arguments. Trying to use remote objects that
are associated with another connection signals an error.

LispWorks represents certain client side conses/symbols as conses/symbols on the IDE side in cases where there is no need to
access the remote object. For example, the lists that get-inspector-values returns are IDE side conses, and the symbols
in the slot-names list are IDE side symbols (for symbols in packages that exist on the IDE side). By default,
ide-eval-form-in-remote and ide-funcall-in-remote return handles to the values returned by the form, except for
numbers, characters, strings and the top-level of lists. They have a keyword :encoded-result which gives you some
control over whether the values are returned as handles or not.

When displaying the source code of a function, LispWorks uses source location information on the IDE side to find the
source file. That means that the IDE side needs to have the same source files loaded as the client side. To find a subform
inside the definition of a function, the debugger uses the information from the client side, which must be compiled with
source-level-debugging (and kept if it is delivered) for this to work.

Invoking the Class Browser in the IDE for a remote object handle shows the class on the IDE side that has the same
class-name as the class of the object on the client side. Calling class-of (and type-of) on the IDE side on a remove
object handle return the internal class (and class name) of remote handles, which you should not be accessing.

3.7.3.2 Controlling the client side from the IDE side

The functions ide-eval-form-in-remote and ide-funcall-in-remote can be used to call functions on the client side
(ide-eval-form-in-remote is used by the editor commands).

The function ide-set-remote-symbol-value can be used to set the global value of a symbol on the client side, which is
a common operation. It is equivalent to calling ide-funcall-in-remote with set.

The function ide-attach-remote-output-stream can be used to create an output stream on the client side, such that
any output into it will go to a stream on the IDE side. It returns a remote object handle for the client side stream, which can
then be used it calls to ide-eval-form-in-remote etc.

3.7.4 Troubleshooting

The sections below describe some unexpected problems that you might encounter when using remote debugging and suggest
ways to solve them.

3.7.4.1 Failing to open connections

There are some basic things to check first.

1. Make sure that you use the right pair of functions. Either:

start-client-remote-debugging-server on the client side and ide-connect-remote-debugging on the IDE

3 The Debugger

72

http://www.lispworks.com/documentation/HyperSpec/Body/f_inspec.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_svref.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_class_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_clas_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_tp_of.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_set.htm

side.

Or:

configure-remote-debugging-spec on the client side and start-ide-remote-debugging-server on the IDE
side.

When using start-client-remote-debugging-server and ide-connect-remote-debugging,
start-client-remote-debugging-server must be called first.

When using configure-remote-debugging-spec and start-ide-remote-debugging-server,
start-ide-remote-debugging-server must be called before the connection is opened by the client. However, by
default, configure-remote-debugging-spec delays opening the connection until it is needed so can be called first.

2. Check that you are either using the default port numbers, or you have changed them to the same number on both sides.

3. Check that you have the correct hostname in configure-remote-debugging-spec or
ide-connect-remote-debugging.

4. On Android, you need to add the INTERNET permission to the application. The Android example has the line
commented out in its Manifest file
(example-file "android/OthelloDemo/app/src/main/AndroidManifest.xml").

5. Check that the two machines can connect by TCP (for example, there is no firewall blocking connections).

6. Check that the functions you use return the expected values.

7. Specify the :log-stream argument for both sides, and check if anything is written to it.

If you cannot find the problem, then check that the connection works at the TCP level.

• If you run the client as the TCP server, evaluate the following on the client side:

(setq *log-stream* <somewhere-that-you-can-see-it>)

(comm:start-up-server
 :function #'(lambda (socket)
 (format *log-stream* "Connected from ~a~%"
 (comm:get-socket-peer-address socket))
 (finish-output *log-stream*))
 :service dbg:*default-client-remote-debugging-server-port*)

and then on the IDE side evaluate:

(comm:open-tcp-stream "<client-hostname>"
 dbg:*default-client-remote-debugging-server-port*)

The call to open-tcp-stream should return a stream, and the "Connected from" message should be printed to *log-
stream* on the client side.

• If you run the IDE as the TCP server, evaluate the following on the IDE side:

(comm:start-up-server
 :function #'(lambda (socket)
 (format mp:*background-standard-output*
 "Connected from ~a~%"
 (comm:get-socket-peer-address socket))
 (finish-output mp:*background-standard-output*))
 :service dbg:*default-ide-remote-debugging-server-port*)

and then on the client side evaluate:

3 The Debugger

73

(comm:open-tcp-stream "<ide-hostname>"
 dbg:*default-ide-remote-debugging-server-port*)

The call to open-tcp-stream should return a stream, and the "Connected from" message should be printed to Output
tab of the Listener or Editor in the IDE.

If you cannot connect as above then you need to fix the configuration of your machines to make it work. If you can connect
as above, but the remote debugging does not connect after you did all the checks then contact LispWorks support for help.

3.7.4.2 The Inspector does not show slots in a remote object

The most likely explanation for this is that the underlying connection was closed. Check if the remote object prints with
"{closed connection}".

3.7.5 Advanced usage - multiple connections

3.7.5.1 Client side connection management

By default, the connection opened by the client side functions is reused whenever a connection is needed. This is normally all
that is required, but sometimes it is useful to have a better control.

The client has a default connection (a global value), and a switch that enables using the default connection (the enabling
switch). Both configure-remote-debugging-spec and start-client-remote-debugging-server have keyword
arguments :setup-default and :enable, which control setting the default connection, and whether to enable using it.
The default for both is true. The default connection and switch are used by the APIs that need a connection (mainly when the
debugger is entered, but also remote-inspect and start-remote-listener), so by default the connection that was
opened last is used.

The value of the enabling switch can be set globally by set-remote-debugging-connection or in a dynamic extent by
with-remote-debugging-connection. These functions also allow you to specify a specific connection to use, rather
than the default. Note that with-remote-debugging-connection and set-remote-debugging-connection do not
affect the default connection, only the enabling switch.

The function set-default-remote-debugging-connection can be used to set the default connection.

start-client-remote-debugging-server and configure-remote-debugging-spec take also a keyword
:open-callback, which specifies a callback that is called whenever a connection is created. You can use this callback to
store the connection somewhere for later use, for example in a call to set-default-remote-debugging-connection,
set-remote-debugging-connection or with-remote-debugging-connection.

The value of the :setup-default keyword to configure-remote-debugging-spec can also be :delayed, which
means that the connection is not opened immediately, but when it is opened, it is set as the default.

When the debugger is entered, it first checks the value of the enabling switch. If it is set to a connection then that connection
is used. If it is set to t, then the default connection is used. Otherwise, it checks if a host was configured (globally by
configure-remote-debugging-spec or in a dynamic extent by with-remote-debugging-spec) and tries to open a
connection to it. If that succeeds, it decides according to the :setup-default and :enable arguments whether to set the
default connection and the enabling switch, and then use this connection. If :setup-default is nil, then the connection is
closed when the Remote Debugger is closed.

When a connection is closed, all remote object handles in the IDE that were created using it become invalid. For example, if
you use configure-remote-debugging-spec with :setup-default nil, and later the Remote Debugger was raised
and you inspected an argument of a function and then closed the Remote Debugger, then the Inspector will fail to access slots
in this object. For this reason, it is usually better to have a permanently open default connection, so the Inspector can be still
be used after the Remote Debugger has been closed. A single connection is also more efficient, but the effect of this is small.

3 The Debugger

74

start-remote-listener behaves the same as the debugger when it tries to find a connection.

remote-inspect first checks if it can use an existing connection the same way as the debugger. However, if it cannot, it
tries to use a connection used previously by an Inspector. If this does not work, it tries the default connection (if any) even if
the enabling switch is nil, and if all these fail, it opens a connection using the configured host if any, and remembers it for
the next time (unless configured to set this connection as the default). The Inspector behaves differently to the
Debugger/Listener is because there is no obvious place where a temporary connection should be closed in the case of the
Inspector, compared to the Debugger and Listener where closing the GUI tool is the natural place to close the connection if it
is temporary.

In the simplest usage, you will have one connection that is used for everything. The next level of complexity is to have one
connection, but control dynamically whether to use it or not, either globally by calls to
set-remote-debugging-connection, or in a dynamic extent using with-remote-debugging-connection.

For more complex usage, you can use the :open-callback to record the connections that you have opened, and then use
them in set-default-remote-debugging-connection or set-remote-debugging-connection or
with-remote-debugging-connection to tell the debugger/listener/inspector which connection to use.

The functions described in 3.7.5.3 Common (both IDE and client) connection functions can also be used on the client side.

3.7.5.2 IDE side connection management

Normally you do not need to manage remote debugging connections on the IDE side, but sometimes it may be useful.

ide-list-remote-debugging-connections returns a list of connections.

ide-find-remote-debugging-connection can be used to find a connection. This is used by default by the IDE side
functions that need a connection (ide-eval-form-in-remote, ide-funcall-in-remote,
ide-set-remote-symbol-value and ide-attach-remote-output-stream), and the Editor commands.

ide-set-default-remote-debugging-connection can be used to set the default connection, which is what the Editor
commands use, and affects what ide-find-remote-debugging-connection returns.

You can get the connection from a remote object handle by using remote-object-connection.

The functions described in 3.7.5.3 Common (both IDE and client) connection functions can also be used on the IDE side.

3.7.5.3 Common (both IDE and client) connection functions

You can close a connection by using close-remote-debugging-connection. Closing a connection causes the other side
to be closed too. Closing the default connection causes the default to be set to nil.

You can use ensure-remote-debugging-connection to check if a connection is alive.
ensure-remote-debugging-connection can be called with any object and returns nil for any non-connection object or
a connection object that is closed.

You can use remote-debugging-connection-add-close-cleanup to add a "cleanup", which is a callback function
that is called when the connection is closed, and remote-debugging-connection-remove-close-cleanup to remove
a previously added cleanup.

The function remote-debugging-connection-peer-address can be used to check what machine is on the other side.

The function remote-debugging-connection-name can be used to find the name of a connection.

Each opened connection has a dedicated Lisp process that handles communications through it, which you can see by listing
processes using (mp:ps) or in the Process Browser tool. The name of the connection appears in the name of the process.
You can forcibly close a connection by using process-terminate on the process or from the Process Browser.

3 The Debugger

75

3.7.6 TCP port usage in remote debugging

The variables *default-client-remote-debugging-server-port* (when the client is the TCP server) and
default-ide-remote-debugging-server-port (when the IDE is the TCP server) specify the default port to use.
You can overwrite the default port by supplying the port argument to the functions that establish the connection, or change it
in the IDE when using the GUI.

You can also override the values in *default-client-remote-debugging-server-port* and
default-ide-remote-debugging-server-port by configuring the machine to map a network service name to port
number (for example /etc/services on Linux or %WINDIR%\system32\etc\services on Windows).

Before LispWorks uses the value of *default-client-remote-debugging-server-port*, it looks up the network
service name lw-remote-debug-client. If this service is registered, then LispWorks uses the registered port number
instead of *default-client-remote-debugging-server-port*. Note that this applies both when starting the TCP
server on the remote debugging client and when connecting to such a server from the IDE side.

Similarly, before LW LispWorks the value of *default-ide-remote-debugging-server-port*, it looks up the
network service name lw-remote-debug-ide. If this service is registered, then LispWorks uses the registered port number
instead of *default-ide-remote-debugging-server-port*. This applies both when starting the TCP server on the
remote debugging IDE and when connecting to such server from the client side.

In all situations, the IDE and client must end up using the same port number.

3.7.7 Using SSL for remote debugging

You can use SSL for the remote debugging connections by supplying the :ssl keyword to the functions
ide-connect-remote-debugging, start-ide-remote-debugging-server,
configure-remote-debugging-spec and start-client-remote-debugging-server and the macro
with-remote-debugging-spec.

3 The Debugger

76

4 The REPL Inspector

LispWorks provides two inspectors. One is for use with the LispWorks IDE, and is described in the LispWorks IDE User
Guide. The other is the REPL inspector, which uses a stream interface, and can be used on any terminal (in particular within
the LispWorks IDE Listener tool). Both inspectors allow you to traverse complex data structures interactively and to
destructively modify components of these structures. However, the two inspectors are quite different. No attempt has been
made to make their usage compatible and instead each inspector is designed to exploit to the full the particular environment
facilities available.

The REPL inspector provides a simple inspector facility which can be used on a stream providing line breaks as the only type
of formatting. It is built on top of the describe function which is briefly described below and modifies the top level loop in
a similar way to the debugger (see 3 The Debugger).

4.1 Describe

The function describe displays the slots of composite data structures in a manner dependent on the type of the object. The
slots are labeled with a name where appropriate, or otherwise with a number.

The example below shows the result of calling describe on a simple list.

USER 7 > (setq countries '("Chile" "Peru" "Paraguay"
 "Brazil"))
("Chile" "Peru" "Paraguay" "Brazil")

USER 8 > (describe countries)
("Chile" "Peru" "Paraguay" "Brazil") is a CONS
[0] : "Chile"

[1] : "Peru"

[2] : "Paraguay"

[3] : "Brazil"

describe describes slots recursively up to a limit set by the special variable *describe-level*. Note that only arrays,
structures and conses are printed recursively. The slots of all other object types are only printed when at the top level of
describe.

describe-level has an initial value of 1.

The symbols *DESCRIBE-PRINT-LEVEL* and *describe-print-length* are similar in effect to
trace-print-level and *trace-print-length*. They control, respectively, the depth to which nested objects are
printed (initial value 10), and the number of components of an object which are printed (initial value 10).

To customize describe, define new methods on the generic function describe-object.

77

http://www.lispworks.com/documentation/HyperSpec/Body/f_desc_1.htm

4.2 Inspect

The function inspect is an interactive version of describe. It displays objects in a similar way to describe. Entering the
inspector causes a new level of the top loop to be entered with a special prompt indicating that the inspector has been entered
and showing the current inspector level.

In the modified top loop, if you enter a slot name, that slot is inspected and the current object is pushed onto an internal stack
of previously inspected objects. The special variables $, $$ and $$$ are bound to the top three objects on the inspector stack.

The following keywords are treated specially as commands by the inspector.

Inspector commands

Command Meaning

:cv Display current values of control variables.

:d Display current object.

:dm Display more of current object.

:dr Display rest of current object.

:h Display help on inspector commands.

:i m Recursively invoke a new inspector. m is an object to
inspect.

:m Change the inspection mode — see 4.3 Inspection
modes.

:q Quit current inspector.

:s n v Sets slot n to value v.

:sh Show inspector stack.

:u int Undo last inspection. If you supply an optional integer
argument, int, then the last int inspections are undone.

:ud Undo last inspection and redisplay current object.

You can get brief help listing these commands by entering :? at the inspector prompt.

The control variables *inspect-print-level* and *inspect-print-length* are similar to
describe-print-level and *describe-print-length* (see above).

:dm displays more slots of the current object. If the object has more than *describe-length* slots, then the first
describe-length will be printed, followed by an ellipsis and then:

(:dm or :dr for more)

If you enter the command :dm at the prompt it displays the next *describe-length* slots, and if you enter :dr it displays
all the remaining slots. This only works on the last inspected object, so if you recursively inspect a slot and come back, :dm
does not do anything useful. Typing :d lets you view the object again.

:ud is equivalent to typing :u followed by :d.

4 The REPL Inspector

78

http://www.lispworks.com/documentation/HyperSpec/Body/f_inspec.htm

4.3 Inspection modes

The :m command displays and changes the current inspection mode for an inspected value. The session below demonstrates
how it works:

CL-USER 128 > (inspect "a
string with
newlines in it")

"a
string with
newlines in it" is a SIMPLE-BASE-STRING
0 #\a
1 #\Newline
2 #\s
3 #\t
4 #\r
5 #\i
6 #\n
7 #\g
8 #\Space
9 #\w
10 #\i
11 #\t
12 #\h
13 #\Newline
14 #\n
15 #\e
16 #\w
17 #\l
18 #\i
19 #\n (:dm or :dr for more)

CL-USER 129 : Inspect 1 > :m
* 1. SIMPLE-STRING
 2. LINES

The :m produces an enumerated list of inspection modes for this value.

The asterisk next to:

* 1. SIMPLE-STRING

means that SIMPLE-STRING is the current inspection mode.

You can change mode by typing :m followed by the name or number of another mode. To change to LINES mode:

CL-USER 130 : Inspect 1 > :m 2

"a
string with
newlines in it" is a SIMPLE-BASE-STRING
0 a
1 string with
2 newlines in it

4 The REPL Inspector

79

4.3.1 Hash table inspection modes

There are five hash table inspection modes. They can be accessed in either the LispWorks IDE Inspector tool or the REPL
inspector.

A brief introduction to the representation of hash tables is necessary so that you can fully understand what you gain from the
new modes.

Internally, a hash table is a structure containing, among other things:

• A big vector.

• Size and growth information.

• Accessing functions.

When keys and values are added to the table, sufficiently similar keys are converted into the same index in the vector. When
this happens, the similar keys and values are kept together in a chain that hangs off this place in the vector.

The different inspection modes provide views of different pieces of this structure:

hash-table This mode is the "normal" view of a hash table; as a table of keys and values. When you inspect
an item you inspect the value of the item.

structure This mode provides a raw view of the whole hash table structure. When you inspect an item you
are inspecting the value of that slot in the hash table structure.

enumerated-hash-table

This mode is a variation of the normal view, where a hash table is viewed simply as a list of lists.
When you inspect an item you are inspecting a list containing a key and a value.

hash-table-statistics

This mode shows how long the chains in the hash table are, so that you can tell how efficiently it
is being used. For example, if all chains contained fewer than two items the hash table would be
being used well.

hash-table-histogram

This mode shows the statistical information from hash-table-statistics as a histogram.

Here is an example of hash table inspection.

CL-USER 1 > (defvar *hash* (make-hash-table))
HASH

CL-USER 2 > (setf (gethash 'lisp *hash*) 'programming
 (gethash 'java *hash*) 'programming
 (gethash 'c *hash*) 'programming
 (gethash 'c++ *hash*) 'programming
 (gethash 'english *hash*) 'natural
 (gethash 'german *hash*) 'natural)
NATURAL

CL-USER 3 > (inspect *hash*)

#<EQL Hash Table{6} 21C15D97> is a HASH-TABLE
C++ PROGRAMMING
JAVA PROGRAMMING
ENGLISH NATURAL
C PROGRAMMING

4 The REPL Inspector

80

GERMAN NATURAL
LISP PROGRAMMING

CL-USER 4 : Inspect 1 > :m
* 1. HASH-TABLE
 2. STRUCTURE
 3. ENUMERATED-HASH-TABLE
 4. HASH-TABLE-STATISTICS
 5. HASH-TABLE-HISTOGRAM

STRUCTURE mode displays the raw representation of the hash table:

CL-USER 5 : Inspect 1 > :m 2

#<EQL Hash Table{6} 21C15D97> is a HASH-TABLE
KIND EQL
SIZE 37
REHASH-SIZE 2.0
REHASH-THRESHOLD 1.0
THRESHOLD 37
COUNTER 525
NUMBER-ENTRIES 6
TABLE #(#%((LISP . PROGRAMMING) NIL) NIL NIL NIL NIL ...)
NO-DESTRUCT-REHASH NIL
POWER2 NIL
HASH-REM SYSTEM::DIVIDE-GENERAL
HASH-FN SYSTEM::EQL-HASHFN
GETHASH-FN SYSTEM::GETHASH-EQL
PUTHASH-FN SYSTEM::PUTHASH-EQL
REMHASH-FN SYSTEM::REMHASH-EQL
GET-TLATTER-FN SYSTEM::GET-TLATTER-EQL
WEAK-KIND NIL
USER-STUFF NIL
MODIFICATION-COUNTER 0
FAST-LOCK-SLOT 0

In enumerated-hash-table mode you can recursively inspect keys and values by entering the index. This is especially
useful in cases where the key or value is unreadable and so cannot be entered into the REPL:

CL-USER 6 : Inspect 1 > :m 3

#<EQL Hash Table{6} 21C15D97> is an Enumerated HASH TABLE
0 (C++ PROGRAMMING)
1 (JAVA PROGRAMMING)
2 (ENGLISH NATURAL)
3 (C PROGRAMMING)
4 (GERMAN NATURAL)
5 (LISP PROGRAMMING)

CL-USER 7 : Inspect 1 > 5

(LISP PROGRAMMING) is a LIST
0 LISP
1 PROGRAMMING

CL-USER 8 : Inspect 2 > :u

The hash-table-statistics mode shows that *hash* has 31 chains, of which 25 are empty and 6 have one entry:

CL-USER 9 : Inspect 1 > :m 4

#<EQL Hash Table{6} 21C15D97> is a HASH-TABLE (statistical view)
chain of length 0 : 31

4 The REPL Inspector

81

chain of length 1 : 6

In hash-table-histogram mode the same information is represented as a histogram:

CL-USER 10 : Inspect 1 > :m 5

#<EQL Hash Table{6} 21C15D97> is a HASH-TABLE (histogram view)
chain of length 0 : "*******************************"
chain of length 1 : "******"

CL-USER 11 : Inspect 1 > :q
#<EQL Hash Table{6} 21C15D97>

4 The REPL Inspector

82

5 The Trace Facility

The trace facility is a debugging aid enabling you to follow the execution of particular functions. At any time there are a set
of functions (and macros and methods) which are being monitored in this way. The normal behavior when a call is made to
one of these functions is for the function's name, arguments and results to be printed out by the system. More generally you
can specify that particular forms should be executed before or after entering a function, or that certain calls to the function
should cause it to enter the main debugger. Tracing of a function continues even if the function is redefined.

The standard way of arranging for functions to be traced is to call the macro trace with the symbols of the functions (or
macros or generic functions) concerned. In addition it is possible to restrict tracing to a particular method (rather than a
generic function) as described in 5.4 Tracing methods. The trace facility also handles recursive and nested calls to the
functions concerned.

5.1 Simple tracing

This section shows you how to perform simple traces.

1. Enter this definition of the factorial function fac into the listener:

(defun fac (n)
 (if (= n 1) 1
 (* n (fac (- n 1)))))

2. Now trace the function by entering the following into the listener.

(trace fac)

3. Call the function fac as follows:

(fac 3)

The following trace output appears in the listener.

0 FAC > ...
 >> N : 3
 1 FAC > ...
 >> N : 2
 2 FAC > ...
 >> N : 1
 2 FAC < ...
 << VALUE-0 : 1
 1 FAC < ...
 << VALUE-0 : 2
0 FAC < ...
 << VALUE-0 : 6

Upon entry to each traced function call, trace prints the following information:

• The level of tracing, that is, the number of recursive entries to trace.

• The traced function name.

83

• The arguments and their values for the current call.

Each line is indented according to the level of tracing for the call.

> denotes entry to a function, and >> denotes an argument.

Upon exit from each traced function call, trace prints the following information:

• The level of tracing.

• The traced function name.

• The returned values for the current call.

< denotes exit from a function, and << denotes a returned value.

Output produced in this way is always sent to a special stream, *trace-output*, which is either associated with the
listener, or with background output.

Calling trace with no arguments produces a list of all the functions currently being traced. In order to cease tracing a
function the macro untrace should be called with the function name. All tracing can be removed by calling untrace with
no arguments.

CL-USER 5 > (untrace fac)
(FAC)

CL-USER 6 > (fac 4)
24

CL-USER 7 >

5.2 Tracing options

There are a number of options available when using the trace facilities, which allow you both to restrict or expand upon the
information printed during a trace. For instance, you can restrict tracing of a function to a particular process, or specify
additional actions to be taken on function call entry and exit.

Note that the options and values available only apply to a particular traced function. Each traced function has its own,
independent, set of options.

This section describes the options that are available. Each option can be set as described in the next subsection.

5.2.1 Evaluating forms on entry to and exit from a traced function

:before Trace keyword

:before list-of-forms

If non-nil, the list of forms is evaluated on entry to the function being traced. The forms are evaluated and the results
printed after the arguments to the function.

Here is an example of its use. *traced-arglist* is bound to the list of arguments given to the function being traced.
In this example, it is used to accumulate a list of all the arguments to fac across all iterations.

1. In the listener, initialize the variable args-in-reverse as follows:

(setq args-in-reverse ())

5 The Trace Facility

84

2. For the fac function used earlier, set the value of :before as follows:

(trace (fac :before ((push (car *traced-arglist*) args-in-reverse))))

3. In the listener, evaluate the following form:

(fac 3)

After evaluating this form, args-in-reverse has the value (1 2 3), that is, it lists the arguments which fac was
called with, in reverse order.

:after Trace keyword

:after list-of-forms

If non-nil, this option evaluates a list of forms upon return from the function to be traced. The forms are evaluated and
the results printed after the results of a call to the function.

This option is used in exactly the same way as :before. For instance, using the example for :before as a basis, create
a list called results-in-reverse, and set the value of :after so that (car *traced-results*) is pushed onto
this list. After calling fac, results-in-reverse contains the results returned from fac, in reverse order.

Note also that *traced-arglist* is still bound.

5.2.2 Evaluating forms without printing results

:eval-before Trace keyword

:eval-before list-of-forms

This option allows you to supply a list of forms for evaluation upon entering the traced function. The forms are evaluated
after printing out the arguments to the function, but unlike :before their results are not printed.

:eval-after Trace keyword

:eval-after list-of-forms

This option allows you to supply a list of forms for evaluation upon leaving the traced function. The forms are evaluated
after printing out the results of the function call, but unlike :after their results are not printed.

5.2.3 Using the debugger when tracing

:break Trace keyword

:break form

If form evaluates to non-nil, the debugger is entered directly from trace. If it returns nil, tracing continues as normal.
This option lets you force entry to the debugger by supplying a form as simple as t.

Upon entry to the traced function, the standard trace information is printed, any supplied :before forms are executed,
and then form is evaluated.

5 The Trace Facility

85

:break-on-exit Trace keyword

:break-on-exit form

Like :break, this option allows you to enter the debugger from trace. It differs in that the debugger is entered after the
function call is complete.

Upon exit from the traced function, the standard trace information is printed, and then form is evaluated. Finally, any
supplied :after forms are executed.

:backtrace Trace keyword

:backtrace backtrace

Generates a backtrace on each call to the traced function. backtrace can be any of the following values:

:quick Like the :bq debugger command.

t Like the :b debugger command.

:verbose Like the :b :verbose debugger command.

:bug-form Like the :bug-form debugger command.

5.2.4 Entering stepping mode

:step Trace keyword

:step form

When non-nil, this option puts the trace facility into stepper mode, where interpreted code is printed one step of
execution at a time.

5.2.5 Configuring function entry and exit information

:entrycond Trace keyword

:entrycond form

This option controls the printing of information on entry to a traced function. form is evaluated upon entry to the
function, and information is printed if and only if form evaluates to t. This allows you to turn off printing of function
entry information by supplying a form of nil, as in the example below.

:exitcond Trace keyword

:exitcond form

This option controls the printing of information on exit from a traced function. form is evaluated upon exit from the
function, and, like :entrycond, information is printed if and only if form evaluates to a non-nil value. This allows you
to turn off printing of function exit information by supplying a form of nil.

An example of using :exitcond and :entrycond is shown below:

1. For the fac function, set the values of :entrycond and :exitcond as follows.

5 The Trace Facility

86

(trace (fac :entrycond (evenp (car *traced-arglist*))
 :exitcond (oddp (car *traced-arglist*))))

Information is only printed on entry to fac if the argument passed to fac is even. Conversely, information is only
printed on exit from fac if the argument passed to fac is odd.

2. Enter the following call to <Code>fac</Code> in a listener:

CL-USER 24 > (fac 10)

The tracing information printed is as follows:

0 FAC > ...
 >> N : 10
 2 FAC > ...
 >> N : 8
 4 FAC > ...
 >> N : 6
 6 FAC > ...
 >> N : 4
 8 FAC > ...
 >> N : 2
 9 FAC < ...
 << VALUE-0 : 1
 7 FAC < ...
 << VALUE-0 : 6
 5 FAC < ...
 << VALUE-0 : 120
 3 FAC < ...
 << VALUE-0 : 5040
 1 FAC < ...
 << VALUE-0 : 362880

5.2.6 Directing trace output

:trace-output Trace keyword

:trace-output stream

This option allows you to direct trace output to a stream other than the listener in which the original function call was
made. By using this you can arrange to dispatch traced output from different functions to different places.

Consider the following example:

1. In the listener, create a file stream as follows:

CL-USER 1 > (setq str (open "trace.txt" :direction :output))
Warning: Setting unbound variable STR
#<STREAM::LATIN-1-FILE-STREAM C:\temp\trace.txt>

2. Set the value of the :trace-output option for the function fac to str.

3. Call the fac function, and then close the file stream as follows:

CL-USER 138 > (fac 8)
40320

CL-USER 139 > (close str)
T

5 The Trace Facility

87

Inspect the file trace.txt in order to see the trace output for the call of (fac 8).

5.2.7 Restricting tracing

:process Trace keyword

:process process

This lets you restrict tracing of a function to a particular process. If process evaluates to t, then the function is traced
from within all processes (this is the default). Otherwise, the function is only traced from within the process that process
evaluates to.

:when Trace keyword

:when form

This lets you invoke the tracing facilities on a traced function selectively. Before each call to the function, form is
evaluated. If form evaluates to nil, no tracing is done. The contents of *traced-arglist* can be examined by form
to find the arguments given to trace.

5.2.8 Storing the memory allocation made during a function call

:allocation Trace keyword

:allocation form

If form is non-nil, this prints the memory allocation, in bytes, made during a function call. The symbol that form
evaluates to is used to accumulate the amount of memory allocated between entering and exiting the traced function.

Note that this symbol continues to be used as an accumulator on subsequent calls to the traced function; the value is
compounded, rather than over-written.

Consider the example below:

1. For the fac function, set the value of :allocation to $$fac-alloc.

2. In the listener, call fac, and then evaluate $$fac-alloc.

CL-USER 152 > $$fac-alloc
744

5.2.9 Tracing functions from inside other functions

:inside Trace keyword

:inside list-of-functions

The functions given in the argument to :inside should reference the traced function in their implementation. The
traced function is then only traced in calls to any function in the list of functions, rather than in direct calls to itself.

For example:

1. Define the function fac2, which calls fac, as follows:

5 The Trace Facility

88

(defun fac2 (x)
 (fac x))

2. For the fac function, set the value of :inside to fac2:

(trace (fac :inside fac2))

3. Call fac, and notice that no tracing information is produced.

CL-USER 2 > (fac 3)
6

4. Call fac2, and notice the tracing information.

Evaluate (fac2 3), and notice the tracing information.

0 FAC > ...
 >> N : 3
 1 FAC > ...
 >> N : 2
 2 FAC > ...
 >> N : 1
 2 FAC < ...
 << VALUE-0 : 1
 1 FAC < ...
 << VALUE-0 : 2
0 FAC < ...
 << VALUE-0 : 6

5.3 Example

The following example illustrates how trace may be used as a debugging tool. Suppose that you have defined a function f,

and intend its first argument to be a non-negative number. You can trap calls to f where this is not true, providing an entry
into the main debugger in these cases. It is then possible for you to investigate how the problem arose.

To do this, you specify a :break option for f using trace. If the form following this option evaluates to a non-nil value
upon calling the function, then the debugger is entered. In order to inspect the first argument to the function f, you have
access to the variable *traced-arglist*. This variable is bound to a list of the arguments with which the function was
called, so the first member of the list corresponds to the first argument of f when tracing f.

CL-USER 1 > (defun f (a1 a2) (+ (sqrt a1) a2))
F

CL-USER 2 > (trace (f :break (< (car *traced-arglist*) 0)))
(F)

CL-USER 3 > (f 9.0 3)
0 F > ...
 >> A1 : 9.0
 >> A2 : 3
0 F < ...
 << VALUE-0 : 6.0
6.0

CL-USER 4 > (f -16.0 3)
0 F > ...
 >> A1 : -16.0
 >> A2 : 3

Break on entry to F with *TRACED-ARGLIST* (-16.0 3).

5 The Trace Facility

89

 1 (continue) Return from break.
 2 Continue with trace removed.
 3 Continue traced with break removed.
 4 Continue and break when this function returns.
 5 (abort) Return to level 0.
 6 Return to top loop level 0.

Type :b for backtrace or :c <option number> to proceed.
Type :bug-form "<subject>" for a bug report template or :? for other options.

CL-USER 5 : 1 >

5.4 Tracing methods

You can also trace methods (primary and auxiliary) within a generic function. The following example shows how to specify
any qualifiers and specializers.

1. Type the following methods into the listener:

(defmethod foo (x)
 (print 'there))

(defmethod foo :before ((x integer))
 (print 'hello))

2. Next, trace only the second of these methods by typing the following definition spec.

(trace (method foo :before (integer)))

3. Test that the trace has worked by calling the methods in the listener:

CL-USER 226 > (foo 'x)

THERE
THERE

CL-USER 227 > (foo 4)
0 (METHOD FOO :BEFORE (INTEGER)) > (4)

HELLO
0 (METHOD FOO :BEFORE (INTEGER)) < (HELLO)

THERE
THERE

CL-USER 228 >

5.5 Tracing subfunctions

Subfunctions are functions that are defined inside the body of other functions rather than by top level definers like defun,
defmethod, etc. To trace such a subfunction, call trace with a "subfunction dspec" in one of these forms:

• (subfunction sub-name parent-dspec)

• (flet sub-name parent-dspec)

• (labels sub-name parent-dspec)

5 The Trace Facility

90

http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm

See 7.6 Subfunction dspecs for details. All of the keywords that trace takes have the same effect for subfunction tracing.

The behavior when tracing a subfunction is somewhat different from tracing other function.

• trace modifies the parent of the subfunction such that future execution of the code that creates the subfunction will
create it traced.

• A subsequent call to trace with the same dspec re-modifies the parent, and also causes any of the subfunctions that
were already created traced to change their tracing behavior (as defined by the keywords to trace) to the behavior
specified by the latest call to trace.

• untrace with the same dspec returns the parent function to its original state and switches off tracing for the
subfunctions that were created traced.

• A call to trace with the same dspec after untrace modifies the parent as in the first point above, but has no effect on
any subfunction that was created by the parent before the call to untrace.

Tracing of subfunction works only for compiled functions.

5.5.1 Notes on subfunction names

Anonymous lambdas are named by the compiler using integers.

You can find the dspec of a given subfunction by calling object-dspec on the subfunction. You can also construct it from
the printed representation of the subfunction, which contains the sub-name and the parent-dspec.

A subfunction can be given an name using a hcl:lambda-name declaration (see declare). If this is of the form
(subfunction sub-name), then the dspec of the subfunction will contain both sub-name and the correct parent-dspec.
However, if it has any other form, then dspec will be that name and you will need to know the parent-dspec in order to
construct the subfunction dspec.

5.6 Trace variables

max-trace-indent The maximum indentation used during output from trace.

trace-indent-width

The additional amount by which tracing output is indented upon entering a deeper level of
nesting.

trace-level The current depth of tracing.

cl:*trace-output* The stream to which tracing sends its output by default.

traced-arglist The variable that holds the arguments given to the traced function.

traced-results The variable that holds the results from the traced function.

The following four variables allow you to control the style of tracing output separately from normal printing:

trace-print-circle

The value to which *print-circle* is bound during output from trace.

trace-print-length

The value to which *print-length* is bound during output from trace.

5 The Trace Facility

91

http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_cir.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_lev.htm

trace-print-level

The value to which *print-level* is bound during output from trace.

trace-print-pretty

The value to which *print-pretty* is bound during output from trace.

5.7 Troubleshooting tracing

This section describes some of the common problems seen when tracing, with suggestions to overcome these.

5.7.1 Excessive output

In general it is not useful to trace cl:length and other base-level functions unconditionally because they are called too
frequently by LispWorks itself.

It may be useful to trace these functions in a limited fashion, using the trace options :inside or :when.

5.7.2 Missing output

There are two common reasons for not seeing calls you expect in trace output.

5.7.2.1 Compiled code may not call the functions you expect

There are many other optimizations built-in to the LispWorks compiler, which affect code generated according to the
compiler qualities in effect at compile-time. For example if the compiler was set to inline structure accessors, then tracing
structure accessors in code compiled with that setting will produce no output.

While debugging, you could re-compile the code at higher safety or run it interpreted, to obtain the trace output.

5.7.2.2 trace works on function names, not function objects

trace works by tracing function names, not function objects.

Therefore tracing function objects, for example by:

(trace #'foo)

will not yield any trace output. Instead you need to do:

(trace foo)

Also, if the symbol foo is traced, then code which invokes foo by:

(funcall (symbol-function 'foo) ...)

or equivalently:

(funcall #'foo ...)

will not produce any trace output.

5 The Trace Facility

92

http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_lev.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_pre.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_length.htm

The correct approach is to use (funcall 'foo ...) instead of (funcall #'foo ...).

5 The Trace Facility

93

6 The Advice Facility

The advice facility provides a mechanism for altering the behavior of existing functions. As a simple application of this, you
may supplement the original function definition by supplying additional actions to be performed before or after the function
is called. Alternatively, you may replace the function with a new piece of code that has access to the original definition, but
which is free to ignore it altogether and to process the arguments to the function and return the results from the function in
any way you decide. The advice facility allows you to alter the behavior of functions in a very flexible manner, and may be
used to engineer anything from a minor addition of a message, to a major modification of the interface to a function, to a
complete change in the behavior of a function. This facility can be helpful when debugging, or when experimenting with new
versions of functions, or when you wish to locally change some functionality without affecting the original definition.

Note: It can be dangerous to put advice on system functions or functions used at low-level by the system In general, advising
a basic Common Lisp function (that is, a simple function for manipulating simple objects such as reverse) is dangerous,
because the implementation may use it.

6.1 Defining advice

Each change that is required should be specified using the defadvice macro. This defines a new body of code to be used
when the function is called; this piece of code is called a piece of advice. Consider the following example:

(defadvice
 (capi:prompt-for-file pff-1 :before)
 (message &key &allow-other-keys)
 (format t "~&Prompting for file with message ~S~%" message))

Here defadvice is given the name of the function you want to alter, a name for the piece of advice, and the keyword
:before to indicate that you want the code carried out before capi:prompt-for-file is called. The rest of the call to
defadvice specifies the additional behavior required, and consists of the lambda list for the new piece of advice and its
body (the lambda list may specify keyword parameters and so forth). The advice facility arranges that pff-1 is invoked
whenever capi:prompt-for-file is called, and that it receives the arguments to capi:prompt-for-file, and that
directly after this the original definition of capi:prompt-for-file is called.

After executing this advice definition, demonstrate it by selecting the menu command File > Open in the LispWorks IDE.
The message appears in the Output tab.

Pieces of advice may be given to be executed after the call by specifying :after instead of :before in the call to
defadvice. So if you wished to add further code to be performed after capi:prompt-for-file you could also define:

(defadvice
 (capi:prompt-for-file pff-2 :after)
 (message &rest args)
 (format t
 "~&The other arguments to prompt-for-file were: ~S~%"
 args))

Note that pff-2 also receives the arguments to capi:prompt-for-file, which are reported by the body.

Note also that defadvice works on function names, not function objects, like trace. See 5.7.2.2 trace works on function
names, not function objects for details.

94

http://www.lispworks.com/documentation/HyperSpec/Body/f_revers.htm

6.2 Combining the advice

We have already seen how a before and an after piece of advice may be combined, and this section describes the general
algorithm. There are three types of advice: before, after and around. These resemble before, after and around methods in
CLOS. There may be several pieces of each type of advice present for a particular function.

The first step in working out how the combination is done is to order the pieces of advice. All the around advice comes first,
then all the before advice, then the original definition, and lastly the after advice. The order within each of the around, before
and after sections defaults to the order in which the pieces of advice were defined (that is most recent first). See defadvice
for details of how to control the ordering of advice within each section.

The remainder of this section discusses what happens when a function that has advice is called.

6.2.1 :before and :after advice

First we deal with the case when there is no around advice present. Here each of the pieces of before advice are called in turn,
with the same arguments that were given to the function, next the original definition is called with these arguments, and
finally each of the pieces of after advice is called in reverse order with the same arguments (so that by default the most
recently added piece of after advice is invoked last). The results returned by the function call are the values produced by the
last piece of after advice to be called (if there is one), or by the original definition (if there is no after advice).

Note that none of these bits of code should destructively modify the arguments that they receive. Adding a piece of before
advice thus provides a simple way of specifying some additional action to be performed before the original definition, and
before any older bits of before advice. Adding a piece of after advice allows you to specify extra actions to be performed
after the original definition, and after any older bits of after advice. The advice facility automatically links together these bits
of advice with the original function definition.

6.2.2 :around advice

Next we shall discuss the use of around advice, which provides you with greater control than do before and after advice. Let
us suppose that a function that has some around advice is called. The arguments to the function are passed to the code
associated with the first piece of around advice in the ordering, and the values returned by that piece of advice are the results
of the function. There is no requirement for the advice to invoke any other pieces of advice, nor to call the original definition
of the function.

However the code for any piece of around advice has access to the next member of the ordering, which it may invoke any
number of times by calling call-next-advice. So it is possible for each piece of around advice to call its successor in the
ordering if this is desired, and then the bits of around advice are called in turn in a similar fashion to our earlier description
for before and after advice. However in the case of around advice the decision whether or not to call the next piece of advice
is directly under your control, and you are free to modify the arguments received by the piece of advice, and to choose the
arguments to be given to the next piece of advice if it is called.

If the last piece of around advice in the ordering calls call-next-advice, then it invokes the combination of before and
after advice and the original definition that was discussed earlier. That is, the arguments to the call are given in the sequence
described above to each of the before pieces of advice, then to the original definition and then to the after pieces of advice.
The call to call-next-advice returns with the values produced by the last of these subsidiary calls, and the around advice
may use these values in any way.

6.3 Removing advice

The macro delete-advice (or the function remove-advice) may be used to remove a named piece of advice. Since
several pieces of advice may be attached to a single functional definition, the name must be supplied to indicate which one is
to be removed.

6 The Advice Facility

95

CL-USER 40 > (delete-advice capi:prompt-for-file pff-1)
NIL

CL-USER 41 > (delete-advice capi:prompt-for-file pff-2)
NIL

6.4 Advice for macros and methods

As well as attaching advice to ordinary functions, it may also be attached to macros and methods.

In the case of a macro, advice is linked to the macro's expansion function, and so any before or after advice receives a copy of
the arguments given to this expansion function (normally the macro call form and an environment). A simple example:

CL-USER 45 > (defmacro twice (b) `(+ ,b ,b))
TWICE

CL-USER 46 > (defadvice
 (twice before-twice :before)
 (call-form env)
 (format t
 "~%Twice with environment ~A and call-form ~A"
 env call-form))
NIL

CL-USER 47 > (twice 3)
Twice with environment NIL and call-form (TWICE 3)
6

Note that the advice is invoked when the macro's expansion function is used. So if the macro is present within a function that
is being compiled, then the advice is invoked during compilation of that function (and not when that function is finally used).

In the case of a method, the call to defadvice must also specify precisely to which method the advice belongs. A generic
function may have several methods, so the call to defadvice includes a list of classes. This must correspond exactly to the
parameter specializers of one of the methods for that generic function, and it is to that method that the advice is attached. For
example:

CL-USER 45 > (progn
 (defclass animal ()
 (genus habitat description
 (food-type :accessor eats)
 (happiness :accessor how-happy)
 (eaten :accessor eaten :initform nil)))
 (defclass cat (animal)
 ((food-type :initform 'fish)))
 (defclass elephant (animal)
 (memory (food-type :initform 'hay)))
 (defmethod feed ((animal animal))
 (let ((food (eats animal)))
 (push food (eaten animal))
 (format t "~%Feeding ~A with ~A" animal
 food)))
 (defmethod feed ((animal cat))
 (let ((food (eats animal)))
 (push food (eaten animal))
 (push 'milk (eaten animal))
 (format t "~%Feeding cat ~A with ~A and ~A"
 animal food 'milk)))
 (defvar *cat* (make-instance 'cat))
 (defvar *nellie* (make-instance 'elephant)))
NELLIE

6 The Advice Facility

96

CL-USER 46 > (feed *cat*)
Feeding cat #<CAT 6f35d4> with FISH and MILK
NIL

CL-USER 47 > (feed *nellie*)
Feeding #<ELEPHANT 71e7bc> with HAY
NIL

CL-USER 48 > (defadvice
 ((method feed (animal))
 after-feed :after)
 (animal)
 (format t "~%~A has eaten ~A"
 animal (eaten animal)))
NIL
CL-USER 49 > (defadvice
 ((method feed (cat))
 before-feed :before)
 (animal)
 (format t "~%Stroking ~A" animal)
 (setf (how-happy animal) 'high))
NIL

CL-USER 50 > (feed *cat*)
Stroking #<CAT 6f35d4>
Feeding cat #<CAT 6f35d4> with FISH and MILK
NIL

CL-USER 51 > (feed *nellie*)
Feeding #<ELEPHANT 71eb7c> with HAY
#<ELEPHANT 71eb7c> has eaten (HAY HAY)

6.5 Advising subfunctions

Subfunctions are functions that are defined inside the body of other functions rather than by top level defining forms like
defun, defmethod, etc. To advise such a subfunction, call defadvice with a "subfunction dspec" of the form:

• (subfunction sub-name parent-dspec)

• (flet sub-name parent-dspec)

• (labels sub-name parent-dspec)

See 7.6 Subfunction dspecs for details. The rest of the defadvice form has the same effect as when advising ordinary
functions.

The behavior when advising a subfunction is somewhat different from advising other functions.

• defadvice modifies the parent of the subfunction such that future execution of the code that creates the subfunction
will create it advised.

• A subsequent call to defadvice with the same dspec and name re-modifies the parent, and also causes any of the
subfunctions that were already created advised to change their "advice" behavior (as defined by the defadvice form) to
the behavior specified by the latest call to defadvice.

• remove-advice with the same dspec and name returns the parent function to its original state, and switches off the
"advice" for the subfunctions that were created "advised".

• Using defadvice again with the same dspec and name after remove-advice modifies the parent as in the first point
above, but has no affect on any subfunction that was created by the parent before the call to remove-advice.

Advising of subfunction works only for compiled code.

6 The Advice Facility

97

http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm

6.5.1 Notes on subfunction names

Anonymous lambdas are named by the compiler using integers.

You can find the dspec of a given subfunction by calling object-dspec on the subfunction. You can also construct it from
the printed representation of the subfunction, which contains the sub-name and the parent-dspec.

A subfunction can be given an name using a hcl:lambda-name declaration (see declare). If this is of the form
(subfunction sub-name), then the dspec of the subfunction will be contain both sub-name and the correct parent-dspec.
However, if it has any other form, then dspec will be that name and you will need to know the parent-dspec in order to
construct the subfunction dspec.

6.6 Examples

So far you have only seen examples of before and after pieces of advice. This section contains some further examples.
Suppose that you define a function alpha that squares a number, and then decide that you intended to return the reciprocal of
the square instead. You might proceed as follows.

CL-USER 30 > (defun alpha (x) (* x x))
ALPHA

CL-USER 31 > (defadvice
 (alpha reciprocal :around)
 (num)
 (/ (call-next-advice num)))
NIL

CL-USER 32 > (alpha -5)
1/25

First you change alpha to return the reciprocal of the square. Do this by defining an around method to take the reciprocal of
the result produced by the next piece of advice (which initially is the original definition). Now suppose that you later decide
that you would like alpha to return the sum of the squares of the reciprocals in a certain range. You can achieve this by
adding an extra layer of around advice. This must iterate over the range required, summing the results obtained by the calls to
the next piece of advice (which currently yields the reciprocal of the square of its argument).

CL-USER 36 > (defadvice
 (alpha sum-over-range :around)
 (start end)
 (loop for i from start upto end
 summing (call-next-advice i)))
NIL

CL-USER 37 > (alpha 2 5)
1669/3600

Note that alpha now behaves as a function requiring two arguments; the outer piece of around advice determines the
external interface to the function, and uses the inner pieces of advice as it needs - in this case invoking the inner advice a
variable number of times depending on the range specified. The use of the words "outer" and "inner" corresponds to earlier
and later pieces of around advice in the ordering discussed above, but is more descriptive of their behavior.

You now realize that taking the reciprocal of zero gives an error. You decide that you wish to generate an error if alpha is
called in such a way as to cause this, but that you want to generate the error yourself. You also decide to add a warning
message for negative arguments. As you want these actions to be performed as the last (that is innermost) in the chain of
around advice, you specify this in the call to defadvice by giving it a :where keyword with value :end.

CL-USER 41 > (defadvice
 (alpha zero-or-negative

6 The Advice Facility

98

 :around :where :end)
 (x)
 (unless (plusp x)
 (format t
 "~%**Warning: alpha is being called with ~A"
 x))
 (if (zerop x)
 (error "Alpha cannot be called with zero")
 (call-next-advice x)))
NIL

CL-USER 42 > (alpha -5 -2)

**Warning: alpha is being called with -5
**Warning: alpha is being called with -4
**Warning: alpha is being called with -3
**Warning: alpha is being called with -2
1669/3600

CL-USER 43 > (alpha 0 3)

**Warning: alpha is being called with 0
Error: alpha cannot be called with zero
 1 (abort) return to level 0.
 2 return to top loop level 0

Type :c followed by a number to proceed

CL-USER 44 : 1 > :a

Finally you decide to alter alpha yet again, this time to produce approximations to π. π2/ 6 is the sum of the reciprocals of

the squares of all the positive integers. So you can generate an approximation to π using the sum of the reciprocals of the

squares of the integers from one to some limit. (In fact this is not an efficient way of calculating π, but it could be of interest.)

CL-USER 51 > (defadvice
 (alpha pi-approximation :around)
 (limit)
 (sqrt
 (* 6
 (call-next-advice 1.0 limit))))
NIL

Next, try calling the following in turn:

(alpha 10.0)
(alpha 100.0)
(alpha 1000.0)
pi

Lastly, here is a simple example showing a use of advice with an &rest lambda list:

(defun foo (a b c)
 (print (list a b c)))

(defadvice (foo and-rest-advice :around) (&rest args)
 (format t "advice called with args ~S" args)
 (apply #'call-next-advice args))

6 The Advice Facility

99

http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm

6.7 Advice functions and macros

The main functions used for advice are introduced below. See the reference pages for full details.

The main macro used to define new pieces of advice is defadvice

Pieces of around advice should use call-next-advice to invoke the next piece of advice. As explained earlier this either
calls the next piece of around advice (if one exists), or calls the combination of before advice, the original definition, and
after advice. It may only be called from within the body of the around advice.

To remove a piece of advice, use the macro delete-advice or the function remove-advice.

6 The Advice Facility

100

7 Dspecs: Tools for Handling Definitions

The dspec system is the machinery underlying the way definitions are named in LispWorks. It supports program development
by tracking the locations of definitions, and is also used in tracing and advising functions.

Dspecs are not expected to work in runtimes delivered at a delivery level greater than 0.

This chapter explains the concepts underlying dspecs and their use in tracking locations of definitions. For full details of the
programming interface, see 35 The DSPEC Package.

7.1 Dspecs

Definition specifications, or dspecs, are a systematic way of naming definitions. The dspec system includes all kinds of
definitions provided in LispWorks, and can be extended to include definers that you add.

Most named definitions are global, but local functions can have names, and some of the operations described here can be
applied to them as well.

Here are three examples of dspecs:

car

(setf car)

(defclass standard-object)

A dspec is simply a name: you can operate on it even if the thing named does not currently exist.

7.2 Forms of dspecs

A dspec is one of:

• A symbol.

• A setf function name.

• A list starting with a symbol naming the class of definition (method or defstruct for example).

A symbol which is used as a dspec always names a function or a macro.

(setf foo) is a name for a setf function.

Note: nil is not a legal dspec, because it cannot have a function definition. Therefore when a dspec API returns nil, this
should be interpreted in the usual way as "not found" or "not applicable".

7.2.1 Canonical dspecs

Internally, dspecs are handled in the canonical form:

(dspec-class primary-name . qualifiers)

101

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

where dspec-class in the canonical name of the class, and qualifiers is a proper list. primary-name is typically a symbol, but
can be a list (in the case of a setf function) or a string (in the case of a package). The equality for canonical dspecs is
equal.

As an example the general form of a defmethod dspec is:

(defmethod name qualifiers (specializer*))

name ::= symbol | (setf symbol)
qualifiers ::= qualifier | (qualifier qualifier*)
qualifier ::= symbol
specializer ::= symbol | (eql object)

Functions in the dspec API accept non-canonical dspecs. All dspec functions, except dspec:prettify-dspec,
find-dspec-locations, name-definition-locations, dspec-definition-locations and
find-name-locations return canonical dspecs.

7.3 Dspec namespaces

Dspec classes are the namespaces for dspecs. Class names are often the same as the name of the defining form, though
documentation types as defined for documentation are also used. See 7.5 Details of built-in dspec classes and aliases for
a list of the classes.

7.3.1 Dspec classes

Dspec classes provide a set of handlers, to allow uniform handling of different types of definitions by other parts of the
system, such as the editor and various browsers.

The most important handlers are dspec-defined-p and dspec-undefiner for testing if a dspec is currently defined and
for undefining a dspec.

New dspec classes are defined using define-dspec-class.

Dspec classes can be subclassed. The top-level classes correspond to distinct global namespaces (such as variable for
variables and constants and function for functions and macros), and at each level, all the subclasses are distinct from each
other (but they do not have to form a complete partition of the superclass). See 7.5 Details of built-in dspec classes and
aliases for the full hierarchy of system-provided classes.

You are allowed to define new top-level classes and subclass them, but you cannot add new subclasses to a system-provided
class. However, see 7.3.2 Dspec aliases for how to add new ways of making existing definitions.

7.3.1.1 Complete example of a top-level dspec class

Define a saved-value object which has a name and a value:

(defstruct saved-value
 name
 value)

The objects are defined using def-saved-value and stored on the plist of their name:

(defmacro def-saved-value (name value)
 `(dspec:def (def-saved-value ,name)
 (when (record-definition `(def-saved-value ,',name)
 (dspec:location))
 (setf (get ',name 'saved-value)

7 Dspecs: Tools for Handling Definitions

102

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm

 (make-saved-value :name ',name
 :value ,value))
 ',name)))

Define a function to retrieve the saved-value object:

(defun find-saved-value (name)
 (get name 'saved-value))

Define a macro to access a saved-value object:

(defmacro saved-value (name)
 `(saved-value-value (find-saved-value ',name)))

Define a dspec class for def-saved-value dspecs:

(dspec:define-dspec-class def-saved-value nil
 "Defined saved values"
 :definedp
 #'(lambda (name)
 ;; Find any object that def-saved-value recorded
 (not (null (find-saved-value name))))
 :undefiner
 #'(lambda (dspec)
 ;; Remove what def-saved-value recorded
 `(remprop ,(dspec:dspec-name dspec) 'saved-value))
 :object-dspec
 #'(lambda (obj)
 ;; Given a saved-value object, we can reconstruct its dspec
 (and (saved-value-p obj)
 `(def-saved-value ,(saved-value-name obj)))))

For completeness, define a form parser that generates dspecs from forms:

(dspec:define-form-parser
 (def-saved-value
 (:parser dspec:single-form-form-parser)))

Note: this form parser for def-saved-value is not strictly necessary, because the system provides an implicit form parser
which recognizes definitions beginning with "def".

7.3.1.2 Example of subclassing

This example is based on that in 7.3.1.1 Complete example of a top-level dspec class.

Define a computed-saved-value object has a function to compute the value the first time:

(defstruct (computed-saved-value (:include saved-value))
 function)

saved-value objects are defined using def-computed-saved-value and stored on the plist of their name:

(defmacro def-computed-saved-value (name function)
 `(dspec:def (def-computed-saved-value ,name)
 (when (record-definition `(def-computed-saved-value ,',name)
 (dspec:location))
 (setf (get ',name 'saved-value)
 (make-computed-saved-value :name ',name
 :function ,function))

7 Dspecs: Tools for Handling Definitions

103

 ',name)))

Define a function to compute a computed-saved-value:

(defun ensure-saved-value-computed (name)
 (let ((saved-value (find-saved-value name)))
 (or (saved-value-value saved-value)
 (setf (saved-value-value saved-value)
 (funcall
 (computed-saved-value-function saved-value))))))

Define a macro to access a computed-saved-value:

(defmacro computed-saved-value (name)
 `(ensure-saved-value-computed ',name))

Define a dspec class for def-computed-saved-value dspecs:

(dspec:define-dspec-class def-computed-saved-value def-saved-value
 "Defined computed saved values"
 :definedp
 #'(lambda (name)
 ;; Find any object that def-computed-saved-value recorded
 (computed-saved-value-p (find-saved-value name)))
 ;; The :undefiner is inherited from the superspace.
 :object-dspec
 #'(lambda (obj)
 ;; Given a computed-saved-value object, we can reconstruct its dspec
 (and (computed-saved-value-p obj)
 `(def-computed-saved-value ,(saved-value-name obj)))))

For completeness, define a form parser that generates dspecs from forms:

(dspec:define-form-parser
 (def-computed-saved-value
 (:parser dspec:single-form-form-parser)))

Note: this form parser for def-computed-saved-value is not strictly necessary, because the implicit form parser will
recognize definitions beginning with "def".

7.3.2 Dspec aliases

You can add new ways of making existing definitions and use the dspec system to track these definitions. This is what
happens when your defining form expands into a system-provided form. The macro define-dspec-alias is used to
inform the dspec system of this.

For example if your definer is:

(defmacro my-defun ((name &rest args) &body body)
 `(defun ,name ,args ,@body))

then you would define the form of dspecs for my-defun definitions like this:

(dspec:define-dspec-alias my-defun (name)
 `(defun ,name))

Note: in general you should not include the lambda list in the dspec, because it is not needed to locate the definition later.

7 Dspecs: Tools for Handling Definitions

104

Note: to make source location work you will also need a define-form-parser definition for my-defun. This is illustrated
in 7.9.2 Using pre-defined form parsers.

7.4 Types of relations between definitions

7.4.1 Functionally equivalent definers

When one definition form simply macroexpands into another, or otherwise has an identical effect as far as the dspec system is
concerned, the dspec system should consider them variant forms of the same class.

Use define-dspec-alias to convert one definer to the other during canonicalization. A pre-defined example of this in
LispWorks is defparameter and defvar. These cannot be distinguished (other than in the source code), so
defparameter has been defined as a dspec alias for defvar. However, defvar and defconstant define distinct kinds of
variable, since we can easily tell which type of definition is in effect by calling the function constantp. To define their
dspecs, LispWorks creates a dspec class called variable and uses it as the superspace argument when defining the defvar
and defconstant dspec classes.

As an explicit example, suppose you have a defining macro:

(defmacro parameterdef (value name)
 `(defparameter ,name ,value))

then the following:

(dspec:define-dspec-alias parameterdef (value name)
 `(defparameter ,name))

would be a suitable appropriate alias definition. This define-dspec-alias form defines the dspec.

define-dspec-alias is like deftype for dspecs, so it could be used to describe complicated conversions, as long as it
can be done purely statically and totally in terms of existing dspecs. However, nothing more complicated than
defparameter has been found necessary.

7.4.2 Grouping subdefinitions together

Some definition forms are macros that expand into a group of other definitions, for example defstruct. When the form is
associated with a dspec class, the subdefinitions can be automatically recorded as being subforms of the new definition, by
use of the def macro.

This means that the dspec system knows that the subdefinitions were inside the main definition (indeed, inside this particular
form). Therefore:

• Location queries can retrieve this information.

• The source location commands in the LispWorks IDE, when passed a subdefinition, know to search for the main
definition given in the def.

Note: to make source location work you will also need a define-form-parser definition for the macro that expands into
the def.

Note: def defines a relation between two particular definitions, for example (defstruct foo) and (defun make-foo),
not between the two dspec classes.

7 Dspecs: Tools for Handling Definitions

105

http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcon.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_consta.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_deftp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm

7.4.3 Distributed definitions

Some definitions are additions to another class of definition, for example methods are additions to generic functions. We call
these distributed definitions, consisting of "parts" and "the aggregate".

The primary name of a part gives the primary name of the aggregate it is a part of, and the qualifiers distinguish it from the
other parts of the same aggregate. Only a part dspec may have qualifiers.

7.5 Details of built-in dspec classes and aliases

This section shows the dspec classes, subclasses and aliases provided by LispWorks. Subclasses are indented. Following the
list of dspec classes are notes about some of these classes.

The system-defined dspec classes are:

COMPILER-MACRO (alias DEFINE-COMPILER-MACRO)
EDITOR:DEFCOMMAND (alias EDITOR:DEFINE-COMMAND-SYNONYM)
DEFINE-ACTION
DEFINE-ACTION-LIST
WIN32:DEFINE-DDE-CLIENT
WIN32:DEFINE-DDE-DISPATCH-TOPIC
DSPEC:DEFINE-DSPEC-CLASS (aliases DSPEC:DEFINE-SUBCLASS-DSPEC-CLASS, DSPEC:DEFINE-FUNCTION-DSPEC-CL
ASS)
 DSPEC:DEFINE-DSPEC-ALIAS
EDITOR:DEFINE-EDITOR-VARIABLE (alias EDITOR:DEFINE-EDITOR-MODE-VARIABLE)
FLI:DEFINE-FOREIGN-CALLABLE
FLI:DEFINE-FOREIGN-TYPE (alias FLI:DEFINE-FOREIGN-CONVERTER)
DSPEC:DEFINE-FORM-PARSER
CAPI:DEFINE-MENU
DEFSETF (aliases DEFINE-SETF-EXPANDER, DEFINE-SETF-METHOD)
DEFSYSTEM
FUNCTION
 DEFGENERIC
 DEFMACRO (alias DEFINE-MODIFY-MACRO)
 DEFUN (alias SYSTEM:DEFUN-AND-INLINE)
 FLI:DEFINE-FOREIGN-VARIABLE
 FLI:DEFINE-FOREIGN-FUNCTION (alias FLI:DEFINE-FOREIGN-FUNCALLABLE)
METHOD (alias DEFMETHOD)
METHOD-COMBINATION (alias DEFINE-METHOD-COMBINATION)
PACKAGE (alias DEFPACKAGE)
STRUCTURE (alias DEFSTRUCT)
TYPE
 DEFCLASS
 CAPI:DEFINE-INTERFACE
 CAPI:DEFINE-LAYOUT
 DEFINE-CONDITION
 STRUCTURE-CLASS
 DEFTYPE
VARIABLE
 DEFINE-SYMBOL-MACRO
 DEFCONSTANT
 DEFVAR (aliases DEFGLOBAL-PARAMETER, DEFGLOBAL-VARIABLE, DEFPARAMETER)

Further dspec classes are defined by modules such as com (on Microsoft Windows), kw and sql.

The canonical form of a symbol dspec is (function symbol) and the canonical form of a setf function name dspec is
(function (setf symbol)).

7 Dspecs: Tools for Handling Definitions

106

7.5.1 Function dspecs

A function-dspec is a dspec that names a specific function. You can use a function-dspec when you need to specify a function
by name, for example in trace, defadvice, and set-up-profiler.

A function-dspec can be either a symbol, a list of the form (setf symbol), or any dspec with a class that is a "function"
class, that is function or any of the classes listed above under function. It can also be a method dspec as described in
7.5.2 CLOS dspec classes or a subfunction dspec as described in 7.6 Subfunction dspecs.

7.5.2 CLOS dspec classes

The defgeneric and method dspec classes can handle standard-generic-function and standard-method.

The canonical form of a defgeneric dspec is:

(defgeneric generic-function-name)

The canonical dspec of a method dspec is:

(method function-name [method-qualifier] (parameter-specializer-name*))

Where function-name, method-qualifier and parameter-specializer-name match the ones in the defmethod form.

Each parameter-specializer-name must match the corresponding specializer for all the required parameters of the method. If
a parameter is not specialized in the defmethod form then its parameter-specializer-name needs to be given as t.

For example, a method that is defined by:

(defmethod a-method ((arg1 cons) arg2 &optional arg3) ...)

has a dspec:

(method a-method (cons t))

and a method defined like this:

(defmethod initialize-instance :after ((a my-class)
 &key key1 key2)
 ...)

has a dspec:

(method initialize-instance :after (my-class))

7.5.3 Part Classes

method is a part class for defgeneric.

compiler-macro is a part class for function.

7 Dspecs: Tools for Handling Definitions

107

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ge.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_me.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm

7.5.4 Foreign callable dspecs

For fli:define-foreign-callable, the canonical name is the foreign name, with any machine-specific prefixes
omitted.

7.6 Subfunction dspecs

For some purposes, most usefully trace and defadvice, LispWorks allows dspecs that do not name a global definition, but
a local function. These are of the form:

(subfunction sub-name parent-dspec)

where parent-dspec is another dspec (possibly a subfunction dspec itself). For flet and labels, it is also possible to use the
form:

(flet sub-name parent-dspec)

An alias for (subfunction (flet sub-name) parent-dspec).

or:

(labels sub-name parent-dspec)

An alias for (subfunction (labels sub-name) parent-dspec).

sub-name is the name of the subfunction inside the parent, which by default is determined as follows:

• For subfunctions defined by flet and labels, the name is a two element list of the form (flet function-name) or
(labels function-name), where function-name is the function name in the flet or labels definition.

• For anonymous lambdas, the compiler names the subfunctions within each parent function by small, increasing integers
starting from 1.

You can override the default name by using the LispWorks-specific hcl:lambda-name declaration (see declare). Note
that you should use the form:

(declare (lambda-name (subfunction sub-name))

to get a name that is useful for debugging. If you do not use subfunction, then the debugger cannot find the source for
function.

Notes:

• The sub-name of the subfunction is not used by the dspec system to search its databases, so can be anything.

• Source level debugging does not use the sub-name of the subfunction, but does need to be able to find the definition of
parent-dspec.

• trace and defadvice search for the function by comparing (using equal) the subfunction name in the dspec to the
name of each subfunction in the parent function.

• A subfunction dspec can be canonicalized and prettified or passed as an argument to dspec-definition-locations

(which will find where parent is defined).

• Additionally, pseudo-dspecs like this are allowed for top-level forms:

(top-level-form (location tlf))

7 Dspecs: Tools for Handling Definitions

108

http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm

location is an atomic location (not containing :inside, see 7.7.1 Locations) and tlf identifies the top-level form within
that location. These are used as parent dspecs in subfunction dspecs and :inside locations. These dspecs can be
canonicalized and prettified, and can be returned as dspecs from the location finders.

7.7 Tracking definitions

The dspec system is used to keep track of global definitions in many ways, and global definition macros usually tell the dspec
system when the definition changes.

The main purpose of the system is to keep track of where the definition was located, but it also allows fine-tuned control of
redefinitions.

7.7.1 Locations

Locations are mainly something the dspec system just stores and retrieves. :inside locations are used to describe
definitions located as subforms of other definitions.

:inside locations are usually not explicitly specified, but arise as a result of having two nested definitions, both of which
use the def and location macros to handle the name and location info.

The types of locations and their meanings are:

A pathname A definition existed in the file named or an editor buffer with that name.

The keyword :listener

A definition was executed interactively in the listener or an editor buffer not associated with a
file.

The keyword :unknown A definition was found in the image (these are entered when a location query does not find any
information already in the database).

The keyword :implicit

A definition for a part was recorded, but no information exists for the aggregate.

7.7.2 Recording definitions and redefinition checking

The location information is entered into the database when the definition is executed, by the defining function calling
record-definition.

record-definition performs various checks, and returns true or false depending on whether the definition was allowed or
not. In particular, it checks whether the same name has already been defined in a different location (or more than once in the
same file) and if so a warning or error can be signaled depending on the value of *redefinition-action*. See
record-definition for details.

7.7.2.1 Use of record-definition

You should not usually call record-definition, since all the system-provided definers call it.

However, for new classes of definition which you add with define-dspec-class, you should call record-definition
for dspecs in their new classes, as shown in 7.3.1.1 Complete example of a top-level dspec class.

7 Dspecs: Tools for Handling Definitions

109

7.7.2.2 Protecting packages

LispWorks has a mechanism for protecting packages against defining any of their external symbols. By default, all the
LispWorks implementation packages are protected. For example, an error is signaled if you attempt to put a function
definition on the symbol cl:*read-base*. This is configurable by the variables
packages-for-warn-on-redefinition and *handle-warn-on-redefinition*.

The protection is useful because it is relatively easy to redefine an external symbol by mistake, and it leads to undefined
behavior which is difficult to debug. However, in some circumstances you may want to force such definition. In this case,
you can rebind either of *packages-for-warn-on-redefinition* or *handle-warn-on-redefinition* around
the definition to avoid the error. Bear in mind that the default configuration protects the stability of the system, so if you need
to prevent such errors it is better to bind one or both of these variables around specific defining forms, rather than setting
their global values.

You can also protect your packages by adding their names to the global value of
packages-for-warn-on-redefinition.

7.7.3 Source level debugging and stepping

With suitable compilation options (see toggle-source-debugging), the LispWorks debugger will automatically identify
the exact subform in the source code for each stack frame. In addition, the Stepper tool in the LispWorks IDE can step
subforms in the source code.

This also works for a subform that occurs within a macro expansion, provided that the subform is eq to the original subform
in the call to the macro. In the rare case where a macro copied a subform, making it non-eq, you can use the
replacement-source-form macro to indicate which original subform should be identified as the source code for the new
form.

7.8 Finding locations

There are two ways of retrieving location information for definitions in the running LispWorks image:

• query for a dspec using dspec-definition-locations, or:

• query for a name in a given set of namespaces using name-definition-locations.

The difference is that name queries will find the locations of all the part definitions as well as the definition named, whereas
dspec queries will only find the locations for the definition named (there might be many if it has been redefined).

To provide for sub-definitions hidden in another definition, such as defstruct accessors, all location queries produce a list
of pairs of dspecs and locations, each pair naming a definition within the corresponding location that contains the definition
looked for. So a query for an accessor called foo-bar might produce the pair:

((defstruct foo) #P"/usr/users/hacker/hacks/hack.lisp")

7.9 Users of location information

To find location information for definitions made in the running image or recorded in a tags database or a tags file:

• query for a dspec using find-dspec-locations, or:

• query for a name in a given set of namespaces using find-name-locations.

The extent of the search is controlled by the value of the variable *active-finders*.

7 Dspecs: Tools for Handling Definitions

110

http://www.lispworks.com/documentation/HyperSpec/Body/v_rd_bas.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm

For example, to obtain the locations of the definitions of foo across all dspec namespaces, call:

(dspec:find-name-locations dspec:*dspec-classes* 'foo)

Another example of the use of find-name-locations is the LispWorks Editor tool's Find Definitions tab.

7.9.1 Finding definitions in the LispWorks editor

Returning to our example parameterdef definer:

(defmacro parameterdef (value name)
 `(defparameter ,name ,value))

1. Load a file foo.lisp containing:

(parameterdef 42 *foo*)

2. Now use Expression > Find Source on the symbol *foo*. Notice that LispWorks knows which file the definition is in,
but cannot find the defining top level form.

3. Also notice that the Definitions tab of the Editor tool does not display the definition of *foo*. This is because the Editor
does not recognize parameterdef as a definer. When the LispWorks editor looks at the definitions in a buffer, it needs
to know the dspecs that each defining form will generate when evaluated. You can tell the editor how to parse a defining
form to generate the dspec by using define-form-parser.

4. Now evaluate these forms to associate a parser with parameterdef and inform the dspec system that parameterdef is
another way of naming a defparameter dspec:

(dspec:define-form-parser parameterdef (value name)
 `(parameterdef ,name))

(dspec:define-dspec-alias parameterdef (name)
 `(defparameter ,name))

5. Now use Expression > Find Source on the symbol *foo* again. Notice that the source of the definition of *foo* is
displayed correctly in the text tab of the Editor tool, and that the Definitions tab displays the definition as:

(parameterdef *foo*)

7.9.2 Using pre-defined form parsers

LispWorks provides form parsers name-only-form-parser, single-form-form-parser and
single-form-with-options-form-parser. You can use single-form-with-options-form-parser as the parser
for my-defun definitions (see 7.3.2 Dspec aliases), like this:

(dspec:define-form-parser (my-defun
 (:parser dspec:single-form-with-options-form-parser)))

This allows the Editor to locate definitions like:

(my-defun (foo x y)
 (+ x y))

You can identify the form parser defined for a dspec class using get-form-parser.

7 Dspecs: Tools for Handling Definitions

111

7.9.3 The editor's implicit form parser

When testing your form parsers bear in mind that the LispWorks editor has an implicit form parser, independent of explicit
parsers defined in the dspec system. It tries to parse a dspec from a top level form which is of length 2 or more and whose car
has symbol name beginning with "DEF". That is:

(defxyz name forms)

gets parsed as:

(defxyz name)

which may be a dspec (and thus provides a match for the source location commands). This mechanism operates only when
there's no explicit parser defined for defxyz.

The editor's implicit form parser is useful because it matches a common simple case. However it does not work for the
parameterdef example, because that definer's symbol name does not begin with "DEF".

7.9.4 Reusing form parsers

The form parser established above was specifically for parameterdef forms. However if you have other definers of similar
syntax - in this example, definers for which the name is the second subform - then you can define a form parser which can be
associated with each of them, as follows:

(dspec:define-form-parser (name-second (:anonymous t))
 (value name)
 `(,name-second ,name))

This defines the function named name-second-form-parser as a form parser. Note that the name-second variable is
evaluated in the body of the parser. Supposing you have another defining macro constantdef:

(defmacro constantdef (value name)
 `(defconstant ,name ,value))

then you can associate the same parser with both this and parameterdef:

(dspec:define-form-parser (parameterdef
 (:parser name-second-form-parser)))

(dspec:define-form-parser (constantdef
 (:parser name-second-form-parser)))

7.9.5 Example: defcondition

Suppose you have a macro based on define-condition:

(defmacro defcondition (&rest args)
 `(define-condition ,@args))

When the following form is evaluated, the system records the dspec (define-condition foo):

(defcondition foo () ())

Two setups are needed to allow the editor to locate such a defining form.

7 Dspecs: Tools for Handling Definitions

112

http://www.lispworks.com/documentation/HyperSpec/Body/m_defi_5.htm

Firstly, this tells LispWorks to parse (defcondition ...) top level forms in the same way as it parses define-condition
forms:

(dspec:define-form-parser
 (defcondition
 (:alias define-condition)))

So now:

(dspec:parse-form-dspec '(defcondition foo () ()))
=>
(defcondition foo)

Secondly, this tells the system that (defcondition foo) is an alias for (define-condition foo).

With this, the editor would report "Cannot find (DEFINE-CONDITION FOO) in ...".

(dspec:define-dspec-alias defcondition (name)
 `(define-condition ,name))

So now this definition can be located:

(defcondition foo () ())

just as if it were:

(define-condition foo () ())

7.9.6 Example: my-defmethod

Suppose you have a method definer my-defmethod:

(defmacro my-defmethod ((name &key doc)
 lambda-list
 &body body)
 `(defmethod ,name ,lambda-list ,@body))

Unlike function dspecs, method dspecs need to include the specialized argument types as well as the function name, so the
alias and the parser both need to be more complex.

This causes the dspec to include the argument types:

(dspec:define-dspec-alias my-defmethod (name &rest options)
 `(defmethod ,name ,@options))

The dspec parser for method lambda lists is complicated, but you can invoke the defmethod parser in your my-defmethod
parser, like this:

(dspec:define-form-parser my-defmethod (name-stuff lambda-list)
 `(,my-defmethod ,@(cdr (dspec:parse-form-dspec
 `(defmethod ,(car name-stuff)
 ,lambda-list)))))

Now this definition can be located:

(my-defmethod (bar :doc "bar documentation") (x y)

7 Dspecs: Tools for Handling Definitions

113

http://www.lispworks.com/documentation/HyperSpec/Body/m_defi_5.htm

 (foo x y))

just as if it were:

(defmethod bar (x y)
 (foo x y))

7 Dspecs: Tools for Handling Definitions

114

8 Action Lists

Action-lists are a unified approach to various different mechanisms for running initializations, or "hook" functions at various
points during the life of the system. They provide central gathering points for applications to trigger on system-wide events
such as start-up, disk-save, and so on.

An action-list is a tagged list of data, to be executed (in some sense) in sequence whenever the circumstance identified by its
tag occurs. It is expected that whatever code detects or causes the circumstance will take care of running the action-list.

An execution-function can be specified for the action-list when it is created. Otherwise, the default behavior is to treat the
data of each action as a callable and apply it to any additional arguments specified at execution time. At its simplest, an
action-list emulates (map nil 'funcall).

Names of action-lists and action-items are general lisp objects, compared with equalp. This allows strings and other objects
to be used as unique identifiers.

Actions can be specified to depend on other actions; when defining an action-item, you can say that it must be before or after
other action-items using the :before and :after keywords. Aside from that, actions are assumed to have no dependencies,
and no order of execution should be counted on for the actions in a list.

You can (and are encouraged to) specify a documentation string for action-lists or action-items.

In addition you can create action-lists that are not registered globally. This allows applications to have disembodied action
lists for their own internal purposes. The other action-list functions allow an action-list to be passed in instead of a name, to
accommodate this.

8.1 Defining action lists and actions

Action lists are defined using the define-action-list macro, and are undefined using the undefine-action-list. It
is also possible to make unnamed, unregistered lists using make-unregistered-action-list.

When defining an action-list, the user may provide an associated execution-function. When executing the action-list, this user
-defined execution-function is used instead of the default execution-function, to map over and "execute" the action-list's
action-items. The macro with-action-list-mapping provides facilities to map over action-items (that is, their
corresponding "data"). In addition, the macro with-action-list-mapping provides a simple mechanism to trap errors
and print warnings while executing each action-item.

Actions are added to an action list using define-action, and are removed using undefine-action.

8.2 Exception handling variables

Three global variables control the handling of exceptions in action list and action item operations.

The variable *handle-existing-action-list* controls the behavior of define-action-list when the action list
already exists. It allows you to control independently both whether you are notified and whether the action list gets redefined.

The variable *handle-existing-action-in-action-list* controls the behavior of define-action when the action
already exists in the given action-list. It allows you to control independently both whether you are notified and whether the
action item gets redefined.

The variable *handle-missing-action-list* specifies behavior when one of undefine-action-list,

115

http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm

print-actions, execute-actions, define-action and undefine-action is called on a missing action-list. By
default, an error is signaled, but you can make it warn or ignore instead.

The variable *handle-missing-action-in-action-list* specifies behavior when you attempt to undefine a missing
action. By default, a warning is signaled, but you can make it signal error, or ignore, instead.

8.3 Other variables

The variable *default-action-list-sort-time* specifies when actions in action-lists are sorted. By default actions
are sorted at the time of execution of the action list, but you can cause them to be sorted at action definition time instead.

See define-action-list for an explanation of ordering specifiers.

8.4 Diagnostic utilities

Two diagnostic functions are provided:

• print-actions prints out the actions on a specified action list.

• print-action-lists prints a list of all the defined action lists.

8.5 Examples

This example illustrates "typical" use of action lists. The define-action forms might be scattered across several files
(mail-utilities.lisp, caffeine.lisp, and so on). Each of the functions, such as read-mail, dont-panic, and so
on, take one argument: hassled-p.

(in-package "CL-USER")

(define-action-list "On arrival at office"
 :documentation "Things to do in the morning"
 :dummy-actions '("Look busy")
 :default-order '(:before "Look busy"))

(define-action "On arrival at office" "Read mail" 'read-mail)

(define-action "On arrival at office" "Greet co-workers"
 'say-hello)

(define-action "On arrival at office" "Drink much coffee"
 'wake-up:after "Locate coffee machine")

(define-action "On arrival at office" "Locate coffee machine"
 'dont-panic)

(defun my-morning (hassled-p Monday-p)
 (execute-actions ("On arrival at office"
 :ignore-errors-p Monday-p)
 hassled-p)
 ...rest of my-morning code goes here...)

The next example illustrates use of execution-functions and post-processing.

8 Action Lists

116

Here are the implementation details, which are hidden from the "user":

(in-package "CL-USER")

(defstruct (thing (:constructor make-thing (name number)))
 name
 number)

(defvar *things*
 (make-unregistered-action-list :sort-time :define-action
 :execution-function 'act-on-things))

(defun do-things (function &optional post-process)
 (execute-actions (*things* :post-process post-process)
 function))

(defun act-on-things (things other-args-list &key post-process)
 (with-action-list-mapping
 (things ignore thing post-process)
 (destructuring-bind
 (function) other-args-list
 (funcall function thing))))

The interface is given below. The internals of the mapping mechanism are hidden.

(in-package "CL-USER")

(defmacro define-thing (name number)
 (with-unique-names (thing)
 `(let ((,thing (make-thing ,name ,number)))
 (define-action *things* ',name ,thing))))

(defmacro undefine-thing (name)
 `(undefine-action *things* ,name))

(defun find-thing (name)
 (do-things #'(lambda (thing)
 (and (equal name (thing-name thing))
 thing))
 :or))

(defun add-things ()
 (reduce '+ (do-things 'thing-number :collect)))

8.6 Standard Action Lists

The following action lists are defined in LispWorks as shipped:

"When starting image" - Actions to be executed upon image startup.

"Confirm when quitting image" - Actions to be executed before the image quits. Every action must return non-nil as
its first value, otherwise the quit will be aborted once the actions are complete.

"When quitting image" - Actions to be executed when the image quits, after success of the "Confirm when quitting
image" actions.

"Initialize LispWorks Tools" - Things to do when the LispWorks IDE starts on a screen. You may customize your

8 Action Lists

117

environment startup by defining actions on it.

"Delivery Actions" - Actions to be executed when doing delivery. Actions on this list are executed in a 'normal'
environment. See the Delivery User Guide for an example action item.

"Save Session Before" - Actions executed before saving a session. See save-current-session for details.

"Save Session After" - Actions executed after saving a session and redisplaying all the windows. These actions are
executed both in the saving image and in the saved image when restarted. See save-current-session for details.

8 Action Lists

118

9 The Compiler

The compiler translates Lisp forms and source files into binary code for the host machine. A compiled Lisp function, for
instance, is a sequence of machine instructions that directly execute the actions the evaluator would perform in interpreting an
application of the original source lambda expression. Where possible the behaviors of compiled and interpreted versions of
the same Lisp function are identical. Unfortunately the definition of the Common Lisp language results in certain
unavoidable exceptions to this rule. The compiler, for instance, must macroexpand the source before translating it; any side
effects of macro-expansion happen only once, at compile time.

By using declarations, you can advise the compiler of the types of variables local to a function or shared across an
application. For example, numeric operations on a variable declared as a single-float can be compiled as direct floating-
point operations, without the need to check the type at execution time. You can also control the relative emphasis the
compiler places on efficiency (speed and space), safety (type checking) and support for debugging. By default the compiler
produces code that performs all the necessary type checking and includes code to recover from errors. It is especially
important that the type declarations be correct when compiling with a safety level less than 3 (see later in this chapter for
more details).

When compiling a Lisp source file, the compiler produces its output in a format that is much faster to load than textual Lisp
source — the "fasl" or "fast-load" form. Fasl files contain arbitrary Common Lisp objects in a pre-digested form. They are
loaded without needing to use the expensive read function. A series of "fasl-loader" routines built into LispWorks interpret
the contents of fasl files, building the appropriate objects and structures in such a way that objects that were eq before fasl-
dumping are created eq when fasl-loaded.

Fasl files are given pathname extensions that reflect the target processor they were compiled for; as the fasl files contain
processor specific instruction sequences it is essential that the loader be able to distinguish between files compiled for
different targets. These pathname extensions always end in "fasl". See compile-file for details of all the possible fasl file
extensions.

9.1 Compiling a function

The function compile takes a symbol as its first argument, and an interpreted function definition (a lambda expression) as its
second, optional, argument. It compiles the definition and installs the resultant code as the symbol-function of the symbol
(unless the symbol was nil). If the definition is omitted then the current symbol-function of the symbol is used. Below are
some examples:

CL-USER 3 > (compile (defun fred (a b)

 (dotimes (n a) (funcall b))))
; FRED
FRED
NIL
NIL

CL-USER 4 > (funcall (compile nil '(lambda (n)
 (* n n))) 7)
; NIL
49

CL-USER 5 > (compile 'ident-fun '(lambda (x) x))
;IDENT-FUN
IDENT-FUN
NIL
NIL

119

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_rd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm

9.2 Compiling a source file

The function compile-file takes a pathname as its argument and compiles all the forms in the file, producing a
corresponding fasl file (with pathname derived from the source pathname). Any side effects in the source file are only felt
once the compiled file is subsequently loaded. Many proclamations, for example, are not visible at compile time. The special
form eval-when can be used to force such side effects to take effect at the time of compilation, rather than loading.

9.2.1 Debugging errors from source file compilation

By default, a form is skipped if an error occurs during compilation. If you need to debug an error during compilation by
compile-file, set *compiler-break-on-error* to t and compile the file again.

9.3 Compiling a form

To compile an arbitrary form form (as opposed to a function), call:

(compile form)

This compiles form as if by compile-file but without any file related processing and does it in-memory, so it has also the
same effect as loading. This has a similar effect to compiling a definition in the LispWorks Editor tool, except that there is no
source recording.

Using compile this way is especially useful if you need to dynamically define something that is normally defined by a top
level or, for example kw:defrule.

9.4 How the compiler works

Conceptually the compiler can be viewed as performing a series of separate passes.

• In the first pass the source code is macro expanded in the appropriate macro environment.

• A series of source to source optimizing transformations are performed to simplify the source tree. Type declarations are
used to select specialized, efficient versions of low level functions.

• A graph is generated from the source tree. The structure of the graph reflects the flow of control in the tree. The nodes of
the graph contain blocks of intermediate code for an abstract machine with byte addressing and an infinite set of
registers. Register allocation is performed based on data flow analysis and machine specific rules concerning live ranges
across code fragments.

• The blocks of intermediate code are translated into a single linear sequence of target machine code through a process of
template matching.

• Finally the relative branch instructions are "fixed up" to point to the correct locations in the code sequence.

The compiler is in fact much more complex than this model might suggest. Machine specific optimizations, for example, can
be included in any of the passes. The distinction between passes is also not as simple as that listed above. However, this
description is sufficient to allow the programmer to make optimal use of the compiler.

9 The Compiler

120

http://www.lispworks.com/documentation/HyperSpec/Body/s_eval_w.htm

9.5 Compiler control

There are ways to control the nature of compiled code via the declare special form and declaim macro. See 9.6 Declare,
proclaim, and declaim for fuller discussion of these two forms.

In particular there are a set of optimize qualities which take integral values from 0 to 3. These control the trade-offs between
size, speed, retention of debug information, optimizations and safety (that is, type checks) in the resulting code, and also
compilation time. For example:

(declaim (optimize (speed 3) (safety 0) (debug 0)))

tells the compiler to concentrate on code speed rather than anything else, and:

(declaim (optimize (safety 3)))

ensures that the compiler never takes liberties with Lisp semantics and produces code that checks for every kind of error that
can be signaled.

The important declarations to the compiler are type declarations and optimize declarations. To declare that the type of the
value of a variable can be relied upon to be unchanging (and hence allow the compiler to omit various checks in the code),
say:

(declare (type the-type variable *)

Optimize declarations have various qualities, and these take values from 0 to 3. The names are safety, fixnum-safety,
float, sys:interruptable, debug, speed, compilation-speed, and space.

Most of the qualities default to 1 (but safety and fixnum-safety default to 3 and interruptable defaults to 0). You
can either associate an optimize quality with a new value (with local lexical scope if in declare, and global scope if
declaim), or just give it by itself, which implies the value 3 (taken to mean "maximum" in some loose sense).

Thus you ensure code is at maximum safety by:

(declaim (optimize (safety 3)))

or:

(declaim (optimize safety))

and reduce debugging information to a minimum by:

(declaim (optimize (debug 0)))

Normally code is interruptible, but when aiming for maximum speed and minimum safety and debug information code is not
interruptible unless you ensure it thus:

(declaim (optimize (debug 0) (safety 0) (speed 3) interruptable))

The levels of safety have the following implications:

• 0 implies no type checking upon reading or writing from defstructs, arrays and objects in general, nor any checking of
array index bounds.

• 1 implies no type checking upon reading from defstructs, arrays and objects in general, nor any checking of array index
bounds when reading. However, array index bounds are checked when writing.

9 The Compiler

121

http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm

• 2 implies type checking when writing, but not when reading. Other than this the compiler generates generally safe code,
but allows type and fixnum-safety declarations to take effect. Array index bounds are checked for both reading and
writing.

• 3 (default) implies complete type and bounds checking, and disallows fixnum-safety and type declarations from
taking any effect.

The levels of fixnum-safety have the following implications:

• 0 implies no type checking of arguments to numeric operations, which are assumed to be fixnums. Also the result is
assumed, without checking, to not overflow - this level means single machine instructions can be generated for most
common integer operations, but risks generating values that may confuse the garbage collector.

• 1 implies that numeric operations do not check their argument types (assumed fixnum), but do signal an error if the result
would have been out of range.

• 2 implies that numeric operations signal an error if their arguments are non-fixnum, and also check for overflow.

• 3 (default) implies complete conformance to the semantics of Common Lisp numbers, so that types other than integers
are handled in compiled code.

Additionally if the level of float (really this should be called "float-safety") is 0 then the compiler reduces allocation during
float calculations.

The effects of combining these qualities is summarized below:

Combining debug and safety levels in the compiler

Keyword settings Operations

safety=0 Array access optimizations

debug>0 Dumps symbol names for arglist

debug>=2 Ensure debugger knows values of args (and variables
when source level debugging is on) and can find the
exact subform in the Editor.

debug<1 Does not generate any debug info at all

debug=3 Avoids make-instance and
find-class optimizations

debug=3 Avoids gethash and puthash optimizations

debug=3 Avoids ldb and dpb optimizations

debug=3 Avoids an optimization to last

safety>1 Be careful when multiple value counts are wrong

safety<1 Do not check array indices during write

safety<2 Do not check array indices during read

speed>space Inline map functions (unless debug>2)

debug<=2 Optimize (merge) tail calls

debug<2 and safety<2 Self calls

safety>=2 Check get special

safety<2 Do not check types during write

safety<3 Do not check types during read

9 The Compiler

122

http://www.lispworks.com/documentation/HyperSpec/Body/a_type.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_type.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_find_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_gethas.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ldb.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_dpb.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_last.htm

safety>=1 Check structure access

safety<=1 Inline structure readers, with no type check

safety=0 Inline structure writers, with no type check

safety>1 Check number of args

safety>=1 or
interruptible>0

Check stack overflow

safety>1 Ensures the thing being funcalled is a function

safety<3 and
fixnum-safety=2

Fixnum-only arithmetic with errors for
non fixnum arguments.

safety<3 and
fixnum-safety=1

No fixnum overflow checks

safety<3 and
fixnum-safety=0

No fixnum arithmetic checks at all

safety>2 char= checks for arguments of type character

safety>=2 Ensures symbols in progv

debug=3 Avoids "ad hoc" predicate type transforms

compilation-speed=3 Reuse virtual registers in very large functions

debug=3 and safety=3 (declare (type foo x)) and
(the foo x) ensure a type check

float=0 Optimize floating point calculations

The other optimize qualities are: speed — the attention to fast code, space — the degree of compactness,
compilation-speed — speed of compilation, interruptable — whether code must be interruptible when unsafe.

Note that if you compile code with a low level of safety, you may get segmentation violations if the code is incorrect (for
example, if type checking is turned off and you supply incorrect types). You can check this by interpreting the code rather
than compiling it.

9.5.1 Examples of compiler control

The following function, compiled with safety = 2, does not check the type of its argument because it merely reads:

(defun foo (x)
 (declare (optimize (safety 2)))
 (car x))

However the following function, also compiled with safety = 2, does check the type of its argument because it writes:

(defun set-foo (x y)
 (declare (optimize (safety 2)))
 (setf (car x) y))

As another example, interpreted code and code compiled at at low safety does not check type declarations. To make
LispWorks check declarations, you need to compile your code after doing:

(declaim (optimize (safety 3) (debug 3)))

This last example shows how to copy efficiently bytes from a typed-aref vector (see make-typed-aref-vector) to an

9 The Compiler

123

http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_progv.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm

(unsigned-byte 8) array. type and safety declarations cause the compiler to inline the code that deals specifically with
(unsigned-byte 8). This code was developed after an application was found to have a bottleneck in the original version
of this function:

(defun copy-typed-aref-vector-to-byte-vector
 (byte-vector typed-vector length)
 (declare (optimize (safety 0))
 (type (simple-array (unsigned-byte 8) 1) byte-vector)
 (fixnum length))
 (dotimes (index length)
 (declare (type fixnum index))
 (setf (aref byte-vector index)
 (sys:typed-aref '(unsigned-byte 8)
 typed-vector index))))

9.6 Declare, proclaim, and declaim

The special form declare is used for the following independent purposes:

• declare Lisp variables as "special", which affects the semantics of the appropriate bindings of the variables, or:

• help the system (in reality the compiler) run your Lisp code faster, or:

• make the code run with more sophisticated debugging options, or:

• help you optimize your code.

declare behaves computationally as if it is not present (other than to affect the semantics), and is only allowed in certain
contexts, such as after the variable list in a let, do, defun and so on. Consult the syntax definition of each special form to
see if it accepts declare forms.

For the details, including some LispWorks extensions to Common Lisp, see the reference entry for declare.

The function proclaim parses declarations in a specified list and then puts their semantics and advice into global effect.
This can be useful when compiling a file for speedy execution, since a proclamation such as:

(proclaim '(optimize (speed 3) (space 0) (debug 0)))

before compiling a file causes the file to be compiled with these optimization levels in effect. (A lengthier way to do this is to
make appropriate declarations in every function in the file.) Below are some more examples:

(proclaim '(special *fred*))
(proclaim '(type single-float x y z))
(proclaim '(optimize (safety 0) (speed 3)))

Do not forget to quote the argument list if it is a constant list. This form:

(proclaim (special x))

attempts to call function special.

Note that using proclaim as a top level form in a file has no effect at compile time. Prior to LispWorks 8.1, it also had
compile time effect (see set-compile-file-proclaim-handling for how to change this).

declaim is a macro equivalent to proclaim, except that it also has effect at compile time and it has no effect at load time
for proclaim optimize.

9 The Compiler

124

http://www.lispworks.com/documentation/HyperSpec/Body/a_type.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_let_l.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_do_do.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_specia.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm

9.6.1 Naming conventions

Exercise caution if you declare or proclaim variables to be special without regard to the naming convention that
surrounds their names with asterisks.

9.7 Optimizing your code

Careful use of the compiler optimize qualities described above or special declarations may significantly improve the
performance of your code. However it is not recommended that you simply experiment with the effect of adding declarations.
It is more productive to work systematically:

1. Use the Profiler, described in 12 The Profiler, to analyze your application's performance and identify bottlenecks, then:

2. Consider whether re-writing of parts of your source code would improve efficiency at the bottlenecks, and:

3. Use :explain declarations to make the compiler generate optimization hints, and:

4. (In SMP LispWorks) use analyzing-special-variables-usage to report on symbols proclaimed special, and:

5. Consider adding suitable declarations as described in this chapter to improve efficiency at the bottlenecks.

The most important tool for speeding up programs is the Profiler. You use the profiler to find the bottlenecks in the program,
and then optimize these bottlenecks by helping the compiler to produce better code.

The remainder of this section describes some specific ways to produce efficient compiled code with LispWorks.

9.7.1 Compiler optimization hints

You can make the compiler print messages which will help you to optimize your code. You add suitable :explain
declarations, recompile the code, and check the output.

The full syntax of the :explain declaration is documented in the reference entry for declare.

Various keywords allows you to see information about compiler transformations depending on type information, allocation of
floats and bignums, floating point variables, function calls, argument types and so on. Here is a simple example:

(defun foo (arg)
 (declare (:explain :variables) (optimize (float 0)))
 (let* ((double-arg (coerce arg 'double-float))
 (next (+ double-arg 1d0))
 (other (* double-arg 1/2)))
 (values next other)))
;;- Variables with non-floating point types:
;;- ARG OTHER
;;- Variables with floating point types:
;;- DOUBLE-ARG NEXT

Note: the LispWorks IDE allows you to distinguish compiler optimization hints from the other output of compilation, and
also helps you to locate quickly the source of each hint. For more information see the chapter "The Output Browser" in the
LispWorks IDE User Guide.

9.7.2 Fast integer arithmetic

You can arrange for compiled code to perform optimal raw 32-bit arithmetic, and additionally in 64-bit LispWorks, optimal
raw 64-bit arithmetic.

For all the details, see 28.2.2 Fast 32-bit arithmetic and 28.2.3 Fast 64-bit arithmetic.

9 The Compiler

125

9.7.3 Floating point optimization

The declaration float allows generation of more efficient code using float numbers. It reduces allocation during float
calculations. It is best used with safety 0. That is, you declare (optimize (float 0) (safety 0)) as in this example:

(progn
 (setf a
 (make-array 1000
 :initial-element 1D0
 :element-type 'double-float))
 nil ; to avoid printing the large array
)

(compile
 (defun test (a)
 (declare (optimize (speed 3) (safety 0) (float 0)))
 (declare (type (simple-array double-float (1000))
 a))
 (let ((sum 0D0))
 (declare (type double-float sum))
 (dotimes (i 1000)
 (incf sum (the double-float (aref a i))))
 sum)))

(time (test a))
=>
Timing the evaluation of (TEST A)

User time = 0.000
System time = 0.000
Elapsed time = 0.000
Allocation = 16 bytes
0 Page faults
GC time = 0.000
1000.0D0

Note: In some cases, the operations cannot be fully optimized with float 0, which can cause the compiled code to be larger
because the unboxing and boxing of floats will be inline.

9.7.4 Double-float complex number optimization

LispWorks will optimize operations on the type (complex double-float) when the declaration float is 0. For example:

(progn
 (setf a-complex
 (make-array 1000
 :initial-element #c(1D0 2D0)
 :element-type '(complex double-float)))
 nil ; to avoid printing the large array
)

(compile
 (defun test-complex (a)
 (declare (optimize (speed 3) (safety 0) (float 0)))
 (declare (type (simple-array (complex double-float) (1000))
 a))
 (let ((sum #C(0D0 0D0)))
 (declare (type (complex double-float) sum))
 (dotimes (i 1000)
 (incf sum (the (complex double-float) (aref a i))))
 sum)))

(time (test-complex a-complex))

9 The Compiler

126

http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm

=>
Timing the evaluation of (TEST-COMPLEX A-COMPLEX)

User time = 0.000
System time = 0.000
Elapsed time = 0.000
Allocation = 56 bytes
0 Page faults
GC time = 0.000
#C(1000.0D0 2000.0D0)

9.7.5 Tail call optimization

The compiler optimizes tail calls, except in the following situations:

1. The compiler optimize quality debug is 3.

2. There is something with dynamic scope on the stack, such as a special binding, a catch or cl:dynamic-extent
allocation (so it is not really a tail call).

3. On 64-bit platforms, non-x86 platforms and non-ARM platforms, the call has more than 4 arguments and this is more
than the number of fixed (not &optional/&rest/&key) parameters in the calling function.

4. On 64-bit platforms, non-x86 platforms and non-ARM platforms, the call has more than 4 arguments and the calling
function has &rest/&key parameters.

9.7.6 Usage of special variables

The declaration cl:special specifies that a variable is special, that is it does not have lexical scope. This covers two cases:
if the variable is bound in the dynamic environment (for example by let or let*), then the value of that binding is used;
otherwise the value in the global environment is used, if any. An error is signaled in safe code if there is no value in either
environment. When setq is used with a variable, the value in the dynamic environment is modified if the variable is bound
in the dynamic environment, otherwise the value in the global environment is modified. Dynamic variables can have a
different value in each thread because each thread has is own dynamic environment. The global environment is shared
between all threads.

In SMP LispWorks access to special variables (excluding constants) is a little slower than in non-SMP LispWorks. It can be
made to run faster by declarations of the symbol, normally by using by proclaim or declaim, but also by declare.

The speedup will be pretty small overall in most cases, because access to specials is usually a small part of a program.
However, if the Profiler identifies some piece of code as a bottleneck, you will want to optimize it, and your optimizations
may include proclamation of some variable as global or dynamic.

The three declarations described in this section are extensions to Common Lisp. All declare the symbol to be cl:special,
along with other information. These three declarations are mutually exclusive between themselves and cl:special. That is,
declaring a symbol with any of these declarations eliminates the other declaration:

• hcl:special-global declares that the symbol is never bound in the dynamic environment.

In SMP LispWorks the compiler signals an error if it detects that a symbol declared as hcl:special-global will be
bound in the dynamic environment, and at run time it also signals an error.

In non-SMP LispWorks the compiler gives an error, but there is no run time check. The run time behavior is the same as
cl:special, with all accesses to the symbol in low safety.

hcl:special-global is very useful, and because of the checks it is reasonably safe. It is useful not only for speed,
but also to guard against unintentionally binding variables that should not be bound.

See also defglobal-parameter.

9 The Compiler

127

http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_dynami.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_specia.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_let_l.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_let_l.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_setq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_specia.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_specia.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_specia.htm

• hcl:special-dynamic declares that the symbol is always bound in the dynamic environment when it is accessed.

In high safety code, accessing the symbol when it is not bound in the dynamic environment signals an error. In low
safety code it may result in unpredictable behavior.

In non-SMP LispWorks the only effect of this declaration is to make all access to the variable low safety.

hcl:special-dynamic is useful, but because it can lead to unpredictable behavior you need to ensure that you test
your program in high safety when you use it.

• hcl:special-fast-access declares that a symbol should be "fast access".

The semantics of the declaration is the same as cl:special, except that access to the variable is low safety. In addition,
the compiler compiles access to the symbol in a way that speeds up the access, but also introduces a tiny reduction in the
speed of the whole system. The balance between these effects is not obvious.

It is not obvious where hcl:special-fast-access is useful. If you can ensure that the symbol is always bound or
never bound then hcl:special-dynamic or hcl:special-global are certainly better.

9.7.6.1 Finding symbols to declare

The macro analyzing-special-variables-usage can be used to find symbols that may be proclaimed global, which
can improve performance. analyzing-special-variables-usage also helps to identify inconsistencies in the code.

9.7.6.2 Coalesce multiple special bindings

If a set of specials are always bound at the same time, it is better to store the values in a single structure object and bind one
special variable to that object, to reduce the overall number of special bindings.

9.7.7 Stack allocation of objects with dynamic extent

(declare dynamic-extent) will optimize these calls so that they allocate in the stack, in all cases:

• lists made using &rest

• functions defined using flet and labels

• (cons x y)

• (list ...)

• (list* ...)

• (copy-list x)

• (make-list x)

• (vector ...)

(declare dynamic-extent) will also optimize these specific calls:

• (make-array n)

• (make-array n :initial-element x) without any other arguments.

• (make-foo ...) where make-foo is an inline structure constructor. The default constructor is declared inline
automatically when none of the defstruct slot initforms are calls to functions.

• (make-string n :element-type 'base-char)

9 The Compiler

128

http://www.lispworks.com/documentation/HyperSpec/Body/d_specia.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm

• (system:make-typed-aref-vector n)

9.7.8 Inlining foreign slot access

Given a structure definition:

(fli:define-c-struct foo-struct
 (a :int)
 (b :int))

you can inline access to a slot by declaring fli:foreign-slot-value inline and supplying the object-type:

(defun foo-a (struct)
 (declare (inline fli:foreign-slot-value))
 (fli:foreign-slot-value struct 'a :object-type 'foo-struct))

9.7.9 Built-in optimization of remove-duplicates and delete-duplicates

LispWorks optimizes cl:remove-duplicates and cl:delete-duplicates for lists when the test or test-not is one of a
small set of known functions. These functions are currently cl:eq, cl:eql, cl:equal, cl:equalp, cl:=, cl:string=,
cl:string-equal, cl:char= and cl:char-equal.

9.8 Compiler parameters affecting LispWorks

There are six compiler parameters that control the generation of information used by various LispWorks utilities, such as the
debugger, and also by various editor commands, such as Show Paths From. By default, these parameters are all t, which
allows you to use all the features of these utilities, at the expense of increasing compilation times.

These variables are initially set to t (in the LispWorks file config/a-dot-lispworks.lisp). To speed up compilation
times, you should set these variables to nil. The variables can be controlled as a group by using the function
toggle-source-debugging.

It is also possible to compile your code with counters or flags such that you can see which parts of your program have
actually executed at run time, as described in 10 Code Coverage.

9 The Compiler

129

http://www.lispworks.com/documentation/HyperSpec/Body/f_rm_dup.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rm_dup.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq_sle.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm

10 Code Coverage

Code Coverage in LispWorks allows you to compile your code with code execution counters, which then record when each
piece of code is executed, and then display which parts of the program were executed and how frequently. Alternatively you
can compile your code with a binary flag to record simply whether each piece was executed or not.

10.1 Using Code Coverage

Using Code Coverage involves four steps, described in this section:

1. Compiling the code to record code coverage information.

2. Loading the code.

3. Exercising the code.

4. Displaying the results.

Optionally, you can get a copy of the results and manipulate these before displaying them, as described in 10.2
Manipulating code coverage data.

10.1.1 Compiling the code to record code coverage information

Switch on generation of Code Coverage by either calling generate-code-coverage (which switches it globally), or using
the macro with-code-coverage-generation (which switches it on only within the dynamic scope of the macro). Then
compile your file(s) by calling compile-file. Alternatively you can use something that calls compile-file such as
compile-system, menu command File > Compile... or the editor command Compile File.

Code Coverage works only when compiling into binary files, rather than into memory (which is what some editor commands
such as Compile Buffer do).

When compile-file is called with code coverage generation, it generates code that keeps track of execution and contains
some extra data. This results in slightly slower code and larger binary files that use more memory when loaded.

10.1.2 Loading the code

Load your compiled files as usual by calling cl:load. Alternatively you can use something that calls cl:load such as
load-system, menu command File > Load... or the editor command Load File.

When a file that was compiled with code coverage generation is loaded, it automatically adds itself to the internal
code-coverage-data structure (overwriting existing data), and from that point any access to this structure (see below) will
include information about the code in this file. Executing code that was compiled with code coverage generation always
updates the internal code-coverage-data structure (it is not switchable).

10.1.3 Exercising the code

Decide what you want to check, and run the entry points.

Code Coverage measures which parts of the program were executed, so you need to decide what you want to check and call
the entry points. In a graphical application, you need to display the main window and interact with it.

130

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

10.1.4 Displaying the results

There are two ways to view the results:

• as HTML files in a web browser, or:

• with the Editor and Code Coverage Browser tools in the LispWorks IDE.

HTML display is done by calling code-coverage-data-generate-coloring-html, which in general generates one
HTML file per source file in the code-coverage-data, and also an index HTML file with hyperlinks to all of them. Editor
display is done by the function editor-color-code-coverage, which takes the name of a source file and creates a new
editor buffer with the source colored according to the code coverage. Both functions take various keywords to control what
they actually do. By default, both of them use the internal code-coverage-data structure, but can also use a manipulated
code-coverage-data. See code-coverage-data-generate-coloring-html and
editor-color-code-coverage for full details.

10.2 Manipulating code coverage data

Optionally you can manipulate code-coverage-data before displaying it, using the functions described in this section.

The code-coverage-data structure contains information about some set of files. Except for the internal
code-coverage-data, this information does not change. The internal code-coverage-data object is updated whenever
code that was compiled with code coverage runs. Also, when a binary file that was compiled with code coverage is loaded it
adds itself to the internal code-coverage-data (overwriting any existing data associated with that file). Most of the
functions for manipulating code-coverage-data can operate on the internal code-coverage-data structure by passing
t as the data argument. See the specific functions for details.

The interface to code coverage data allows you to:

• Copy code-coverage-data, save it into a file, and load a code-coverage-data from a file.

These functions are copy-code-coverage-data, copy-current-code-coverage,
merge-code-coverage-data, filter-code-coverage-data, save-code-coverage-data,
save-current-code-coverage and load-code-coverage-data.

• Add or subtract two code-coverage-data structures. This means add or subtract all the corresponding counters from
the two structures. This is allowed only if all the files that are in both structures are from the same compilation.

For example, you may subtract the data of one test from another to see how they differ in the way they use their code.

These functions are add-code-coverage-data, destructive-add-code-coverage-data,
subtract-code-coverage-data, destructive-subtract-code-coverage-data,
reverse-subtract-code-coverage-data and destructive-reverse-subtract-code-coverage-data.

• Clear the internal code-coverage-data (this means eliminating the files from it) or reset it (this means setting the
counters to 0), or setting to another code-coverage-data.

These functions are clear-code-coverage, reset-code-coverage and restore-code-coverage-data.

• Set an internal snapshot, and later compare with it.

These functions are set-code-coverage-snapshot, get-code-coverage-delta and
reset-code-coverage-snapshot.

• Generate statistics about the contents of the code coverage, by code-coverage-data-generate-statistics.

10 Code Coverage

131

10.3 Preventing code generation for some forms

You can use the macros error-situation-forms and without-code-coverage to prevent generation of code coverage
inside their body. For example, explicit calls to cl:error that are not expected to happen can be marked not to be counted.
The system uses these in macros that call cl:error such as cl:etypecase and cl:assert.

10.4 Code coverage and multithreading

By default, code compiled with code coverage uses non-atomic counters, which means that if the code runs in multiple
threads it will occasionally drop a count. As the count is mostly used as heuristics this is usually not a problem (it will never
drop all the counts, so you will not get 0 counts when there should be more than 0).

To record an exact count you can compile with atomic-p t (see generate-code-coverage and
with-code-coverage-generation). Atomic incrementing may make the program run much more slowly, which is the
reason that it is not the default behavior.

The code-coverage-data manipulation functions are thread-safe, and will not corrupt data or cause errors when running
in parallel. However they are not atomic, so modifying the same structure in parallel will create inconsistent data. Reading
the internal data while code with counters is executing may also generate an inconsistent data.

10.5 Counting overflow

The code coverage counters are 32-bit signed values (signed to allow negative values, which you can get when subtracting).
Long tests can overflow in their frequently-called functions. That means that for these functions the counter is not that useful
anymore. Also, you can end up on exactly 0, which looks as if the code was not executed. For heuristics that seems not to be
a problem.

To avoid these problems with counter overflow, you can compile with a binary flag (initial value 0) instead of the counter.
The flag switches to 1 when the code is called (see generate-code-coverage and
with-code-coverage-generation). This loses the counting, but also generates smaller and faster code and uses less
memory.

10.6 Memory usage and code speed

Collecting code coverage information makes the code larger and slower, but still workable. Compiling with binary flags
results in code that is faster and smaller than code compiled with counters (see generate-code-coverage and
with-code-coverage-generation) and it also reduces the size of the data that code-coverage-data needs to keep.
On the other hand you lose the counters, but if you do not need the counters it may be useful.

10.7 Understanding the code coverage output

In general there are five colors that are used to color the source code. Below these are named by the keyword argument to
code-coverage-set-html-background-colors that changes them for the HTML coloring, and the default color is
shown in parentheses:

fully-covered (Green) Forms where every part was covered, that is all of the source subforms were executed.

partially-covered (GreenYellow)

Forms that are partially covered in a visible way, that is some of the source subforms were not
executed.

hidden-partial (Orange)

10 Code Coverage

132

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tpcase.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_assert.htm

Forms that are partially covered in a non-visible way, that is all the source subforms were
executed, but some of them were expanded to forms that were not completely executed.

uncovered (Pink) Uncovered forms, that is forms that were never executed.

eliminated (DeepPink) Forms that were completely eliminated by the compiler.

Note that by default only hidden-partial, uncovered and eliminated are shown, so all colored forms indicate something that
was not covered. However, inside a hidden-partial form the fully-covered subforms are always colored, regardless of the
setting of fully-covered.

When counters are displayed, they have their own background color counters (MediumAquamarine), except for negative
counters that use color counters-negative (Gold). In addition the colors error (Red) and warn (Yellow) are used when adding
error or warning messages.

10.7.1 Eliminated forms

The compiler eliminates forms that it determines are not needed. These include:

• Forms that have no side effects and whose result is not used.

• Forms that will never be reached.

To deduce that code does not have side effects, the compiler needs to know that the function calls in it have no side effects.
The only function calls that the compiler knows to be free of side effects are either system functions or automatically defined
functions such as structure accessors.

Unreachable code can happen explicitly but it can also happen implicitly, when the compiler eliminates it. The commonest
case is when the compiler uses type inference to infer what a predicate will return. For example, suppose you have this
definition:

(defun my-func (arg)
 (let ((sum (+ arg 10)))
 (if (consp sum)
 (car sum)
 (* sum 7))))

Since sum is a result of the call to + it must be a number and therefore cannot be a cons. Hence the compiler can infer that the
consp call will always return nil, replace the call to consp by nil, eliminate the call to car, and go straight to the * call.
In the coloring, the call to car will be shown as eliminated, while the if form will be shown as fully-covered. That is a little
counter-intuitive, because the if and the consp are not actually in the compiled code, but they were effectively evaluated by
the compiler at compile time.

10.7.2 Displaying counters

By default, code coloring adds counters, indicating how many times a point in the code has been executed. Note that counts
may also be negative, when the code coverage data that is displayed is the difference between datas (as generated by
functions like subtract-code-coverage-data). When a count is 0 the counter is not displayed.

By default, if the counter for a subform is the same as the counter of the parent form, the counter for that subform is not
displayed. Thus when you see a subform without a counter, it means it was executed the same number of times as its parent.
The counter is displayed even if it is the same in situations when the code coverage status of the forms is different, for
example if the parent is partially-covered but the subform is fully-covered.

It is possible to force all counters to be displayed, by passing :show-counters :all to
code-coverage-data-generate-coloring-html and the other displaying functions. Note that the compiler does not

10 Code Coverage

133

http://www.lispworks.com/documentation/HyperSpec/Body/f_consp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_consp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_if.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_if.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_consp.htm

generate counters for forms that it can deduce will be always executed the same number of times as the parent, so for these it
will never display counters.

10.7.3 Function forms where the function is not actually called

Entering a function form does not necessarily call the function, because during evaluation of the arguments there may be an
exit out of the form. This exit can be local or non-local, and in general the compiler cannot tell whether it will happen or not,
though it can be sure that it will not happen for specific cases like local variable references and self-evaluating forms.
Therefore the compiler adds a counter just before the function is called. It is not obvious how to display this counter, and
when it is 0 what part of the form has not been executed.

The current coloring regards the function name as the part of the form that is "being evaluated" when the function is actually
called. Therefore it inserts the counter before the function name, and if it is 0 it colors the function name in the uncovered
color. That means that in some cases you have a counter before the opening parenthesis that counts the times that the form
was entered, and a counter after the opening parenthesis that counts the times that the function was called. Since the coloring
normally skips counters that are inside a form where they have the same count as the counter of the form, you will see both
numbers only when they are different.

10.7.4 Partially hidden

Partially hidden forms are forms where all the source code as shown was executed, but some macro expansion of it contains a
conditional where one of the branches was not executed. Thus there is not any specific form to color as uncovered, but some
part of the actual code was not executed. These forms are colored by a special color hidden-partial, which is Orange by
default.

For example, if you have this code:

(defmacro did-it-p ()
 '(if *done* nil t))

(defun go-next-p ()
 (did-it-p))

and whenever go-next-p is called *done* is true, then the false branch of the if form was not executed, but inside the
definition of go-next-p there is no source that was not executed. Thus the form (did-it-p) is partially hidden.

Partially hidden forms can have subforms that are fully covered. These forms are colored by the color fully-covered even if
fully covered forms are not colored otherwise (the default behavior), to clarify that they were fully covered.

10.8 Coloring code that has changed

The code coverage data does not keep the source code. Instead, it keeps a reference to the code that the reader saw (when
called from compile-file). When it adds colors, it re-reads the source file. That means it needs the original source file for
coloring. If the source file was modified, it adds a warning in the beginning of the file, but tries to color it anyway.

If what the reader sees has not changed (that is the only changes involve only comments and whitespace) the coloring will
work properly. Changes to what the reader sees, however, will confuse the coloring. In general, subforms that are modified
are miscolored, but code outside the modified subform colors properly. For a top level form, if you modify it, this form will
not color properly, but all the other forms will color properly. If you remove or add a top level form, all the following forms
will not color properly. Note that this applies even if you do something like adding (or removing) a progn around some
forms, which although it does not affect the compiler does cause the reader to see different forms.

Thus if you modify your code, the coloring becomes less reliable. In most cases this is not a big problem, but in many cases
it is probably better to copy your source tree and compile the copy with code coverage, so you can continue to modify the
source while reviewing the code coverage output.

10 Code Coverage

134

http://www.lispworks.com/documentation/HyperSpec/Body/s_if.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

11 Memory Management

This chapter introduces some basic ideas of memory management, and then discusses the LispWorks memory management
system in more detail. The chapter also introduces the functions and macros needed to control memory management. Full
details of all the symbols mentioned here are given in 37 The HCL Package and 47 The SYSTEM Package.

11.1 Introduction

Automatic memory management is one of the most significant features of a Lisp system. Whenever an object, such as a cons
cell, is required to hold an aggregate of values, the system calls the appropriate function to create a new object and fill it with
the intended values. The programmer need not be concerned with the low level allocation and management of memory as the
Lisp system provides this functionality automatically.

When an object is no longer required (that is, it has become "garbage"), the system must automatically reclaim ("collect") the
space it occupies and reallocate the space to a new object. Whenever the space for new objects is exhausted, a "garbage
collector" (GC) is run to determine (by a process of elimination) all the existing objects that are still required by the running
program. Any other objects still in the image are necessarily garbage, and the space they occupy can be reclaimed.

For a description of how LispWorks uses the address space of different Operating Systems, and factors affecting the
maximum image size, see 27.5 Address Space and Image Size.

Garbage collection with a naive algorithm is extremely inefficient.

The LispWorks GC works in unison with the memory allocator to arrange allocated objects in a series of "generations". Each
generation contains objects of a particular age. In practice most Lisp data objects are only required for a very short period of
time. That is, they are ephemeral. The LispWorks GC concentrates its efforts on repeatedly scanning the most recent
generation. Such a scan requires only a fraction of a second and reclaims most of the space allocated since the last collection.
Any object in the most recent generation that survives a number of such collections is promoted to the next youngest
generation. Eventually this older generation becomes full, and only then is it collected. The generations are numbered from 0
upwards, so that generation 0 is the youngest.

The remainder of this chapter describes the LispWorks GC in more detail. The implementation and the programmatic
interface differ between 32-bit and 64-bit LispWorks.

11.2 Guidance for control of the memory management system

11.2.1 General guidance

The memory management is designed with the intention that the programmer will have to do very little or nothing about it. In
general, we believe that the design is quite successful, and in most cases you do not have to do anything. The main exception
to this is dealing with long-lived data in long-lived processes in 32-bit LispWorks.

Before doing anything about memory management, you should be familiar with the function room, and use it frequently.
There is no point at all in trying to tune the memory management without knowing the sizes of your application, as output by
room.

The data and code in the LispWorks image can be categorized according to how long they live, as follows:

1. Short-lived data

135

2. Long-lived data

3. Permanent data

Note that the distinction is not in the data itself, but in the existence of pointers to it.

In general, you rarely need to worry about short-lived data, and have to worry about permanent data only if you have a large
amount of it. In short-lived applications you do not need to worry about long-lived data either, so there is a good chance that
you do not have to worry about memory management at all.

In long-lived applications, you certainly need to consider long-lived data in 32-bit LispWorks, and maybe in 64-bit
LispWorks.

11.2.2 Short-lived data

Normally you should not do anything about handling of short-lived data, because the default settings are good enough for
almost all situations. Sometimes you may hit a situation where the settings are not good ("pathological case"). However, it
would normally require a deep understanding of the memory management system to deal with such a situation, and we will in
general consider this as a bug and try to fix it. Therefore if you find such situation you should report it to Lisp Support,
following the guidelines at www.lispworks.com/support/bug-report.html.

Problems with short-lived data normally just reduce the performance of some part of your application. Normally the best
solution is to optimize the code to do less work, including allocating less.

To do that, first find the bottlenecks in your application by using profile (and start-profiling and stop-profiling).
time and extended-time can then be used to determine how long specific operations take, how much they allocate and,
for long operations, how long they spend in garbage collection. Use this information to decide what to try to optimize.

11.2.3 Long-lived data

Long-lived data is data that lives long enough to be promoted to the highest generation to which promotion occurs
automatically (the "blocking generation"), but later becomes garbage. The blocking generation is 2 in 32-bit LispWorks and
(by default) 3 in 64-bit LispWorks.

You can check which generation individual objects are in (by generation-number), but normally you want to know the
total amount of data in various generations. The function room is used for that. In general, it is useful to call:

(room)

and sometimes also:

(room t)

periodically (every 5 minutes) and log the output. In servers, such logs are essential. From this output you can see how the
sizes of the various generations change over time.

If the output shows that the blocking generation grows too much, even though permanent data is not added, you will need to
do something about it. In 64-bit LispWorks there is a good chance that you do not have to do anything. In 32-bit LispWorks
long-lived processes (for example servers) probably need to do something.

The main thing you will do is calling (gc-generation t). This garbage collects the blocking generation. You should
check the state of the memory after calling it by calling room again. If the amount of allocated data (as opposed to total size)
did not reduce, you may have a memory leak that causes accumulation of permanent data that does not die.

If gc-generation does free data (that is, the allocation reduces significantly), you probably need to add calls to it to your
application.

11 Memory Management

136

http://www.lispworks.com/support/bug-report.html

Compatibility note: In 32-bit LispWorks version 5.1 and earlier, the documented way to collect generation 2 is to call
(mark-and-sweep 2). (gc-generation t) does what (mark-and-sweep 2) does, plus some additional operations
that improve the performance of allocation. It also has the advantage that it is the same call that is used in 64-bit LispWorks.
We recommend always using gc-generation.

To decide when to call gc-generation, you need to consider the following:

1. You need to prevent excessive growth of the process.

2. You want to avoid calling gc-generation when the application needs to respond quickly.

3. The call will be more effective if it is done between chunks of work than in the middle of a chunk of work.

We now discuss these considerations in detail:

1. You can follow the overall size of the process by looking at the output of (room nil), or programmatically by using
the result of room-values. The definition of "excessive growth" depends on the machine that you are running on and
what the server actually does. Normally you want to avoid the need for paging, so you should try to keep the size of the
image below the size of real memory that it can use. For 32-bit LispWorks on modern machines that have a lot of
memory, the limit will be the amount of address space the machine has. In addition, garbage collecting a larger image
takes more time. In a typical 32-bit application, 100-200 MB would be the target, though it can be larger. In a 64-bit
application the limit is the size of the real memory.

2. (gc-generation t) can take a significant amount of time. 32-bit LispWorks on a modern machine can collect 100-
200 MB in less than a second if it does not page. If it pages, or has a slower CPU, it takes more time. The 64-bit GC is
generally faster and better, as long as it does not page, but since you normally deal with much more data in 64-bit
images, there may be significant delays in 64-bit LispWorks. If such delays are a problem for your application, you
should try to call gc-generation at times when it is less of a problem. Use time to find out how long
gc-generation takes in various situations.

3. If you can identify places where there are no active chunks of work, you can try to place calls to gc-generation in
these places. For servers, this is likely to be much less important than the two considerations above, but for an
application that computes results using large amounts of data, this may be a significant consideration.

In 32-bit LispWorks, by default, generation 2 (which is the "blocking generation") is not collected automatically, because
such collection may take a significant amount of time, so most programmers need to control when it actually happens. You
can change this by using collect-generation-2, but usually you need better control, and do a collection of generation 2
when it is appropriate. Therefore if your application generates long-lived data, you need to add calls to gc-generation.

Even if you find that your application does not generate long-lived data (that is, generation 2 does not grow), it is probably a
good idea to keep checking, in case some circumstances do cause it to generate long-lived data.

In 64-bit LispWorks by default generation 3 (the "blocking generation") is collected automatically, so there is a good chance
that you do not have to do anything. However, you may want to call gc-generation explicitly when you know it is a good
time to do it. You may also want to block automatic calls if they they take too long: use set-blocking-gen-num to do
that. If generation 3 becomes very big (Gigabytes), you may also consider using marking-gc instead of gc-generation.

Once you set up gc-generation calls, you may still see the image growing even though the allocation does not grow that
much. That is normally the result of fragmentation. In 32-bit LispWorks you can use check-fragmentation to check for
fragmentation, and try-move-in-generation to prevent it if needed. See 11.3.11 Controlling Fragmentation for a
discussion.

In 64-bit LispWorks you have a problem with fragmentation only if you use marking-gc. marking-gc has keyword
arguments that can be used to reduce fragmentation, and there is a good chance that using these will be enough to avoid
serious fragmentation. gc-generation can be used occasionally to eliminate all fragmentation. Check for fragmentation by
using gen-num-segments-fragmentation-state.

11 Memory Management

137

11.2.4 Permanent data

Permanently-living data will typically be the actual code of the application, and maybe also data that never goes away.

Because the data never goes away, it is best to put it outside normal garbage collection, which means promoting it to the
highest generation. This is done by clean-down, which is called automatically (by default) when saving an image (whether
by save-image or deliver). In most cases that is the right time to do it, so normally you do not need to call clean-down
explicitly. In some situations you may want to call it yourself, and sometimes you want to avoid the call when saving an
image with a lot of non-permanent data. To control the automatic call, see save-image and deliver.

There are several things that need to be considered when using clean-down:

1. If the permanent data is only a small amount compared to the long-lived data, it is not obvious that clean-down is
needed, specially if you use a saved (or delivered) image where the code and maybe some data was already promoted.

2. clean-down promotes all the data that is live (that is, pointed to from some other live object) in the image when it is
called. If the image contains data that is live, but later becomes garbage, it will be promoted and hence not collected
until another call to clean-down, which will make the image unnecessarily larger. Since this data is not being accessed,
the effect on performance is small, but if there is a lot of it the effect may be significant.

3. clean-down needs extra memory to operate, especially in 64-bit LispWorks. For very large 64-bit LispWorks images
clean-down may fail due to running out of swap memory.

4. clean-down takes a significant amount of time. If it does not cause paging, it should take seconds, but if it needs to
page it may take much longer. You therefore should avoid calling it when you need the application to respond reasonably
quickly.

11.3 Memory Management in 32-bit LispWorks

This section describes the garbage collector (GC) in 32-bit LispWorks 8.1.

In LispWorks for Macintosh, the implementation is not significantly different to that in LispWorks 4.x, LispWorks 5.x or
LispWorks 6.x.

In LispWorks for Windows and LispWorks for Linux, the implementation has changed since LispWorks 4.x and you may
notice performance improvements relative to those versions.

11.3.1 Generations

In memory, a generation consists of a chain of segments. Each segment is a contiguous block of memory, beginning with a
header and followed by the allocation area.

The first generation normally consists of two segments: the first segment is relatively small, and is where most of the
allocation takes place. The second segment is called the big-chunk area, and is used for allocating large objects and when
overflow occurs (see below for a discussion of overflow).

The second generation (generation 1) is an intermediate generation, for objects that have been promoted from generation 0
(typically for objects that live for some minutes).

Long-lived objects are eventually promoted to generation 2. Note that generation 2 is not scanned automatically. Therefore
these objects will not be reclaimed (even if they are not referenced) until an explicit call to a GC function (for example
gc-generation on t, or clean-down) or when the image is saved. Normally, objects are not promoted from generation 2
to generation 3, except when the image is saved.

Generation 3 normally contains only objects that existed at startup time, that is those were saved in the image. Normally it is
not scanned at all, except when an image is saved.

11 Memory Management

138

Note that the division between the generations is a result of the promotion mechanism, and is not a property of a piece of
code itself. A piece of system software code that is loaded in the system (for example, a patch) is treated the same as any
other code. The garbage collection code is explicitly loaded in the static area using the function
switch-static-allocation.

11.3.2 Allocation of objects

Normal allocation is done from a buffer, called the small objects buffer. The GC maintains a pointer to the beginning and end
of the buffer, and allocates from it by moving one of the boundaries. When the buffer becomes too small the GC finds
another free block and makes that the buffer.

In non-SMP LispWorks there is only one global small objects buffer. In SMP LispWorks, each process may have its own
"local" small objects buffer (in addition to the global one). The system decides dynamically which process should have a
local buffer and which not. In general processes that do any significant amount of work have a local buffer, and most of their
allocation would be from local buffers.

When there is an overflow the small object buffer is allocated in the big-chunk area, and then a bigger buffer is allocated (see
below).

11.3.2.1 Allocation of static objects

Objects that cannot be moved are allocated in special segments, called static segments. These can be in any generation, but
are in generation 2 by default.

Such objects include:

• Code that must not move during garbage collection, in particular the code and data of the GC itself.

• Arrays created by make-array with allocation :static. This is the preferred way to allocate a static array.

• Objects allocated explicitly in the static area, by in-static-area or by use of switch-static-allocation.

Because static objects are not allowed to move, the static segments are not allowed to move. This implies that if there is a
static segment in a high address the image size cannot be reduced below this size. Applications that use a lot of static area
normally allocate additional static segments, and thus grow without being able to shrink again. This can be prevented by
enlarging the initial static segment, which is in a low address. Use the function enlarge-static to increase the size of the
initial static segment. (Use (room t) to find its current size.)

11.3.2.2 Allocation in different generations

Objects that are known to have long life can be allocated directly in a higher generation, by using
allocation-in-gen-num and set-default-generation. Note that both these functions have a global effect, that is
any object allocated after a call to set-default-generation or within the body of allocation-in-gen-num is
allocated in the specified generation, unless it is explicitly allocated in a different generation. Therefore careless use of these
functions may lead to allocation of ephemeral garbage in high generations, which is very inefficient. Conversely, if a long-
lasting object is allocated to a low generation, it has to survive several garbage collections before being automatically
promoted to the next generation.

The best way to control the allocation generation for an array is to call make-array with allocation :long-lived or a
number.

See also 11.6.3 Allocation of interned symbols and packages and 11.6.4 Allocation of stacks.

11 Memory Management

139

11.3.3 GC operations

Mark and sweep is the basic operation of reclaiming memory, and it is done in two stages:

Mark All objects that are alive in the generation being garbage collected and in younger generations are
marked as alive. (Alive means pointed to by some other live object.)

Sweep All unmarked objects in the generations being garbage collected are added to the free blocks, and
all marked objects are unmarked.

A mark and sweep operation is always on all the generations from 0 to a specific number.

A mark and sweep operation can be caused explicitly by calling gc-generation.

Promotion is the process of moving objects from one generation to the next generation. An object is marked for promotion
after surviving a specific number of mark and sweep operations, but may be promoted before that. The number of survivals is
specific to each segment.

Promotion does not free objects.

11.3.4 Garbage collection strategy

When the GC runs out of memory, it has to find more memory. Normally (that is, when allocating in generation 0) the first
operation is a mark and sweep. Before performing the mark and sweep, the GC compares the amount of memory allocated
since the previous mark and sweep with the minimum-free-space value, which is set by set-gc-parameters. If the amount
allocated is less than minimum-for-sweep the GC does not do a mark and sweep, but causes an overflow (described below).
This prevents an excessive number of mark and sweep operations in periods when the program allocates a large amount of
data which stays alive.

If more than minimum-for-sweep has been allocated, a mark and sweep operation takes place. After this operation the GC
checks that the segment it was trying to allocate to has more free space than the minimum free space for this segment. If the
remaining free space is less than minimum-free-space, the GC tries to create more free space by promoting objects from the
segment.

Before promoting, the GC performs two checks. First, it checks that there are enough objects marked for promotion to justify
a promotion operation. The minimum-free-space for a segment is set by set-minimum-free-space, and can be shown by
(room t).

Second, the GC checks that there is enough free space in the next generation to accommodate the promoted objects. If there
is insufficient space, the GC tries to free some, either by a mark and sweep on the next generation, promoting the next
generation, or by enlarging the generation.

The minimum amount of space for promotion is the value minimum-for-promote, which is set by set-gc-parameters.

If there is insufficient space, and there are not enough objects marked for promotion, the GC increases the size of the image,
by overflow, as described below.

On Motif only, note that the GC monitor window does not indicate a mark and sweep of generation 0, as this operation takes
a small amount of time (it would take longer to change the display of the window). The GC monitor window appears only in
the Motif IDE.

11.3.5 Memory layout

11 Memory Management

140

11.3.5.1 Linux

On Linux, the default initial heap is mapped at address #x20000000 (0.5 GB). LispWorks then tries to locate the location of
dynamic libraries, and marks a region around these libraries that should not be used (by default 64 MB from the bottom). In
most cases this suffices to avoid clashes.

Problems can arise if the memory at #x20000000 or above is already used by another part of the software. If that memory
gets used before LispWorks is mapped, LispWorks must be relocated elsewhere, typically to a higher address, as described in
27.6.2 Startup relocation of 32-bit LispWorks.

If the memory above LispWorks gets used by other parts of the software after LispWorks was mapped, it may be possible to
avoid the problem by reserving some memory above LispWorks by supplying ReserveSize.

The location of dynamic libraries differs between Linux configurations, and that needs to be taken into account. For most
cases, including the cases where the libraries are mapped at #x40000000 or somewhere above #x28000000, the mechanism
for detecting libraries works and no action is required.

In principle LispWorks (32-bit) for Linux can grow up to some distance below #xF7F00000 (almost 3.4 GB), though this
depends on the OS kernel allowing this size.

Note: In LispWorks 5.0 and previous, we told some customers to relocate above the libraries, for example at #x50000000 or
#x48000000, but this should not be needed in LispWorks 8.1.

11.3.5.2 FreeBSD

By default, LispWorks is mapped at #x30000000.

Problems may arise if something uses memory above #x30000000. If this memory is used before LispWorks is mapped,
LispWorks must be relocated elsewhere, typically to a higher address, as described in 27.6.2 Startup relocation of 32-bit
LispWorks.

If the memory above LispWorks gets used by other parts of the software after LispWorks was mapped, it may be possible to
avoid the problem by reserving some memory above LispWorks by using ReserveSize.

Normally the dynamic libraries are mapped at #x28000000, and therefore LispWorks can grow without a problem.

In principle LispWorks can grow up to some distance below #xC0000000 (almost 2.25 GB), though this depends on the OS
kernel allowing this size and how many threads you have running.

11.3.5.3 x86/x64 Solaris

The default initial heap is mapped at address #x10000000 (0.25 GB). LispWorks then tries to locate the location of dynamic
libraries, and marks a region around these libraries that should not be used (by default 64 MB from the bottom). In most
cases this suffices to avoid clashes.

Problems can arise if the memory at #x10000000 or above is already used by another part of the software. If that memory
gets used before LispWorks is mapped, LispWorks must be relocated elsewhere, typically to a higher address, as described in
27.6.2 Startup relocation of 32-bit LispWorks.

If the memory above LispWorks gets used by other parts of the software after LispWorks was mapped, it may be possible to
avoid the problem by reserving some memory above LispWorks by supplying ReserveSize.

11 Memory Management

141

11.3.5.4 Windows

LispWorks (32-bit) for Windows can map by default at #x20000000. Since this platform supports reservation, normally you
will not need to do anything special about this.

Problems may however arise if LispWorks operates in conjunction with non-relocatable software which insists on using
addresses at #x20000000 or some distance above, in which case you will need to relocate LispWorks, as described in 27.6.2
Startup relocation of 32-bit LispWorks.

LispWorks (32-bit) for Windows can in principle grow up to some distance below #x80000000 (almost 1.5 GB) but there is
always the possibility that some DLL will be mapped in this region. On startup, it reserves 0.5 GB above its location, so that
much is guaranteed.

11.3.6 Approaching the memory limit

If your program allocates a lot you may reach the limit of memory that LispWorks can use. The limit depends on the
architecture as described in 11.3.5 Memory layout.

When LispWorks actually reaches the limit it will fail to communicate with the user due to allocation errors. To avoid this
situation, LispWorks informs the user earlier that it is approaching the limit of memory. It first checks whether you set the
approaching memory callback (by set-approaching-memory-limit-callback), and if there is a callback calls it. If
there is no callback or the callback returns, LispWorks signals an error of type approaching-memory-limit (which is a
subclass of cl:storage-condition).

The function memory-growth-margin can be used to see how much LispWorks "believes" that it can grow.

The callback can be used to effectively ignore the condition, but this is a bad idea in general, because it will probably lead to
an error later when LispWorks actually reaches the limit, and then it may crash in a bad way. To be safe, the callback should
either cleanup and exit, or free a substantial amount of memory. You can reasonably continue only if a crash is not going to
cause a serious damage.

11.3.7 Overflow

If the amount allocated from the previous mark and sweep operation is less than :minimum-for-sweep, the GC does not
perform a mark and sweep. Instead it allocates a small-objects buffer in the big-chunk area (the second segment in the first
generation). The minimum and maximum sizes of this buffer are specified by :minimum-overflow and
:maximum-overflow, which can be set by set-gc-parameters. If the GC fails to find a buffer of this size, it looks for a
smaller buffer, and if that fails it enlarges the big-chunk area (and the process size) by the amount needed to allocate a buffer
of the size of the currently allocated area in generation 0, up to a maximum amount specified by :maximum-overflow.

11.3.8 Behavior of generation 1

When objects are promoted from generation 0 to 1, and there is not enough space in generation 1, the GC tries to free space
in generation 1. The first step is to check whether sufficient space can be freed by promoting the objects marked for
promotion. If this is the case the GC promotes these objects from generation 1 to generation 2. (In practice, this rarely
happens.) If this check fails the GC marks and sweeps generation 1. If not enough space is freed by this mark and sweep,
than either all the objects in generation 1 are promoted, or generation 1 is expanded. This is controlled by
expand-generation-1, which specifies whether expansion or promotion takes place.

If generation 1 is expanded, the amount it tries to expand by is the value :new-generation-size (set by
set-gc-parameters) in words (that is, multiples of 4 bytes), or the amount of free space needed, whichever is bigger. If
:new-generation-size is 0, it is not expanded. In this case part of the objects marked for promotion are not promoted.

11 Memory Management

142

http://www.lispworks.com/documentation/HyperSpec/Body/e_storag.htm

11.3.9 Behavior of generation 2

Normally generation 2 is not garbage collected. If the system runs out of space in this generation, it expands it, using the
value of :new-generation-size multiplied by two. Garbage collection of generation 2 can be caused by calling the
function collect-generation-2 with appropriate argument.

11.3.10 Forcing expansion

If you know that a given generation will need to grow, you can save the GC the work by calling enlarge-generation to
expand the generation in advance.

11.3.11 Controlling Fragmentation

Some applications periodically free (that is, stop using) a substantial amount of data that lived for long enough to reach
generation 2 (use room or room-values and generation-number to follow the behavior of objects). In this case,
gc-generation should be called on generation 2, to collect these data and re-use the memory. Repeated cycles like this
may cause fragmentation, which will slow down promotion into generation 2. This manifests itself in significant pauses,
typically of a few seconds. try-move-in-generation or try-compact-in-generation can be used to reduce the
fragmentation, and hence to reduce the pauses. Because these functions themselves take some time, they should be called
when such a pause is acceptable.

'Moving' a segment means moving objects out of the segment to another segment, leaving the segment empty. This reduces
the fragmentation in the generation, and it is normally much faster than compact. Therefore in almost all cases,
try-move-in-generation is better than try-compact-in-generation.

The actual decision to use these functions will be typically based on the results of check-fragmentation. For example,
the following function checks whether there is more than 10 MB free area in generation 2 in blocks of 4096 bytes or larger
(tlb, third return value of check-fragmentation). If there is not, and the free area in generation 2 (tf) is more than four
times the free area in large blocks, it calls try-move-in-generation. Because try-move-in-generation gets a time-
threshold of 0, it returns after moving at most one segment. (It will not move any segments if none of them looks
fragmented.)

(defun call-memory-functions()
 (gc-generation t) ; first collect all dead objects
 (multiple-value-bind (tf tsb tlb)
 (check-fragmentation 2) ; check the fragmentation
 (when (and (> 10000000 tlb)
 (> (ash tf -2) tlb))
 (try-move-in-generation 2 0))))

A function such as this can be called at times when a pause of a few seconds is acceptable, and it will keep the memory of
generation 2 less fragmented.

It is not possible to give definitive guidance here on how to use try-move-in-generation or
try-compact-in-generation, because it depends on the way the application uses memory. In general, these functions
will always improve the behavior of the application. Therefore the main problem is to identify points in the execution of the
application where they can be called without causing unacceptably long pauses.

11.3.12 Summary of garbage collection symbols

The remainder of this chapter summarizes which functions are useful in which circumstances. See also 11.6 Common
Memory Management Features. For full details of these functions, see their reference entries.

11 Memory Management

143

11.3.12.1 Determining memory usage

To determine memory usage (useful when benchmarking), use the functions room, total-allocation and
find-object-size. The function room-values is suitable for programmatic use: it returns the values that room prints.

In 32-bit LispWorks, memory-growth-margin returns the amount by which the Lisp heap can grow, if
set-maximum-memory has been called.

11.3.12.2 Allocating in specific generations

Arrays can be allocated static or in a higher generation using the allocation argument in make-array.

To control the allocation of other objects to generations, use allocation-in-gen-num, get-default-generation,
set-default-generation and *symbol-alloc-gen-num*.

11.3.12.3 Controlling a specific generation

To control the behavior of a specific generation, use clean-generation-0, collect-generation-2,
collect-highest-generation, expand-generation-1 and set-minimum-free-space.

11.3.12.4 Controlling the garbage collector

The functions that are most likely to be useful for controlling the GC are room, check-fragmentation, gc-generation
and try-move-in-generation.

Other potentially useful functions and macros are avoid-gc, get-gc-parameters, gc-if-needed,
enlarge-generation, normal-gc, set-gc-parameters, with-heavy-allocation and
try-compact-in-generation.

11.4 Memory Management in 64-bit LispWorks

This section describes the garbage collector (GC) in 64-bit LispWorks.

11.4.1 General organization of memory

The memory in 64-bit LispWorks is arranged in segments, which belong to generations. Unlike 32-bit LispWorks, segments
are sparsely allocated in memory, that is they are not contiguous.

Each segment has an allocation type, which defines the type of objects that the segment contains. The system creates and
destroys segments as needed. A generation may or may not contain a segment for a specific allocation type, and a generation
may contain more than one segment for any particular allocation type. Segments may change in size.

You can see the allocation for each allocation type in the output of:

(room)

Additionally you can see the segments of each generation in the output of:

(room t)

After the total allocation in each generation, this prints the allocation type for each segment followed by the hexadecimal
address range for allocating objects.

11 Memory Management

144

You can also use:

(room :full)

which does not produce segments information, but prints allocated amounts by allocation types.

11.4.2 Segments and Allocation Types

Some GC interface functions take an allocation type as an argument, which is one of the keywords below. There are two
categories of allocation type.

The main allocation types, which can be used as the what argument to the function
apply-with-allocation-in-gen-num, are:

:cons The segment contains only conses.

:symbol The segment contains only symbols (and does not include symbol names or any of the other
properties of symbols).

:function The segment contains only function objects.

:non-pointer The segment contains only objects that do not contain pointers (strings, specialized numeric
arrays, double-floats).

:other The segment contain other objects, that is any object that contain pointers, and is not a symbol,
cons or a function.

The derived allocation types are:

:mixed The segment contains a mixture of :other, :function and :symbol, but not :cons or
:non-pointer.

:cons-static The segment contains cons objects that are static.

:non-pointer-static

The segment contains objects that do not contain pointers and are static (currently stacks are also
allocated in these segments).

:mixed-static The segment contains a mixture like :mixed, but static.

:weak The segment contains weak objects (arrays, and internals of weak hash tables).

:other-big The segment contains a single very large simple vector. The vector is static.

:non-pointer-big The segment contains a single very large non-pointer object (a string or a specialized numeric
array). The vector is static.

Segments of allocation type :other-big or :non-pointer-big can be as large as required to hold their object.

For all other allocation types, the size of each single segment is restricted. The implementation limit is currently 256 MB,
and you can specify a smaller limit using set-maximum-segment-size.

11.4.3 Garbage Collection Operations

In 64-bit LispWorks there are two methods of garbage collection: copy (the default for all non-static objects) and mark and
sweep (also referred to simply as mark) for static objects and under user control.

11 Memory Management

145

The two methods can be mixed within the same garbage collection operation and generation, but a segment is collected using
only one of mark or copy in a given operation.

When a segment is collected using the copying method, the objects within it can either be copied to another segment in the
same generation or can be copied to a segment in a higher generation. The latter case is called promotion. The automatic
garbage collection copies with promotion until the objects reach the blocking generation, which is collected in a specific way
as described in 11.4.4 Generation Management.

11.4.4 Generation Management

In general, higher generations contain objects that live longer and are therefore much less likely to die. Each garbage
collection only collects the generations up to some number, and never reclaims the objects in higher generations.

Objects move between generations by being promoted. For most allocation types, this means that the GC copies the objects
from a segment in one generation to a segment in a higher generation. For allocation types :other-big and
:non-pointer-big, the objects are not actually copied when they are promoted; but instead the whole segment is re-
attached to the higher generation. The automatic garbage collection promotes objects until they reach the blocking
generation.

In the default configuration, there are 8 generations, numbered from 0 to 7. Generation 7 is used to keep objects that survived
saving the image. Generations 4, 5 and 6 are not used. Generation 3 is the blocking generation, where long-lived objects
accumulate. Generations 0,1, and 2 are ephemeral, and objects that survive a garbage collection in each of these generations
are promoted to the next generation.

11.4.5 Tuning the garbage collector

The GC settings are tuned for typical cases, so in general you do not need to change them. If you are considering tuning the
GC, contact Lisp Support.

The main tools for seeing how the GC behaves are the macro extended-time and periodical calls to room.

In the output of (room) (or the more verbose (room t)), the allocation in each generation is presented according to the
allocation type, which may be useful to decide on possible tuning.

(extended-time forms) outputs the time spent in garbage collection, whether automatic or called explicitly. The time is
shown according to the maximum generation number that was collected and to whether it was a standard garbage collection
(automatic and calls to gc-generation) or a marking garbage collection (calls to marking-gc).

In addition to room and extended-time, there are also the functions count-gen-num-allocation,
gen-num-segments-fragmentation-state, and set-automatic-gc-callback. These function can be used to
collect information about automatic garbage collection operations.

The profiler can also help determine whether the settings can be improved for your application. See 12 The Profiler for
details of that.

11.4.5.1 Interface for tuning the GC

The main interfaces are those which control the blocking generation.

For generations lower than the blocking generation, objects that survive are promoted, and the system does not automatically
promote objects to higher generations. Thus if the application generates long-lived objects, they will accumulate in the
blocking generation.

The behavior when the blocking generation grows is controlled by set-blocking-gen-num and
set-gen-num-gc-threshold. It may also be useful to set the maximum segment size with
set-maximum-segment-size.

11 Memory Management

146

Explicit garbage collection can be done by calling gc-generation and marking-gc. Since repeated use of marking-gc
will cause a lot of fragmentation, the arguments what-to-copy and max-size-to-copy can be used to specify that part of the
data should be collected by copying.

gc-generation can also be used to promote objects to a higher generation than the blocking generation.

It is normally less important to tune the ephemeral segments, that is the segments below the blocking generation. Functions
that may be useful include set-default-segment-size, set-spare-keeping-policy and set-delay-promotion.

11.5 The Mobile GC

The Mobile GC is a 64-bit GC that is written to run on 64-bit iOS (in the future it may be used on other platforms, for
example 64-bit Android). When LispWorks is delivered for 64-bit iOS, the "saved image" (the code in the object file that
delivery creates) switches automatically to use the Mobile GC. Thus you are always using the Mobile GC when running on
64-bit iOS, and you are not required to do anything about it.

The default parameters of the Mobile GC are intended to be useful for most applications and in many cases you do not need
to do anything to tune the Mobile GC.

11.5.1 Mobile GC changes to common functions and macros

This section describes changes to the behavior of GC-related functions and macros when using the Mobile GC compared to
the ordinary 64-bit GC. For most applications, room, and maybe gc-generation, are the only interesting functions.
Specific functions for the Mobile GC are not discussed in this section.

mobile-gc-p

Returns true when running the Mobile GC.

room

The output of room is different for the Mobile GC. The last line (and the entire output of (room nil)) is the same, but
the more detailed output is different. Without any argument, or if the argument is :default, LispWorks outputs the
allocated and free sizes according to these types:

Cons cons object only.

Other All other objects, except static objects and large objects (> 1 MB).

Static Static objects.

Large Large objects (> 1 MB). Note: this threshold may change in the future, but it is fixed in the
current version.

The Cons and Other segments are divided according to their generation and there may also some permanent segments (as
a result of a call to make-current-allocation-permanent, make-object-permanent or
make-permanent-simple-vector).

In addition, LispWorks also holds some reserved segments that are used during GC, and room prints the size of these
too.

The output of (room t) also includes the segments for each type. For each segment, it prints the start and end addresses
(in hex), the allocated area, and whether there is a free "hole" in the middle of it. For the Large and Static segments, it
also prints the generation number of each segment. Permanent Static and Large segments have generation number 3.

See 11.5.2 Mobile GC technical details for more technical details.

11 Memory Management

147

http://www.lispworks.com/documentation/HyperSpec/Body/a_cons.htm

gc-generation

When the gen-num argument is a number, it must be 0, 1 or 2. The value t (and :blocking-gen-num) is interpreted as
2.

Generation 0 is always promoted, but the :promote keyword affects generation 1 and, if non-nil, promotes even if
promotion was blocked by set-promote-generation-1.

The keyword :coalesce is interpreted as in the ordinary 64-bit GC. The keyword :block is ignored.

marking-gc

Calls gc-generation with the gen-num argument. It is not useful in the Mobile GC.

clean-down

Performs the same GC as (gc-generation t).

reduce-memory

The full argument can be also be :aggressive, 0 1 or 2.

count-gen-num-allocation

The gen-num argument can be 0, 1, 2 or 3 (3 means permanent).

in-static-area

This does not affect allocation of conses (which are never static in the Mobile GC).

apply-with-allocation-in-gen-num

The gen-num argument must be 0, 1 or 2.

sweep-all-objects

Does not sweep cons objects in the Mobile GC.

sweep-gen-num-objects

Does not sweep cons objects in the Mobile GC.

The following functions do nothing in the Mobile GC, and the values that they return are not meaningful:

set-delay-promotion

set-maximum-segment-size

set-default-segment-size

set-gen-num-gc-threshold

set-blocking-gen-num

gen-num-segments-fragmentation-state

set-spare-keeping-policy

11 Memory Management

148

http://www.lispworks.com/documentation/HyperSpec/Body/a_cons.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_cons.htm

11.5.2 Mobile GC technical details

This section describes the Mobile GC in more detail. For most purposes, you do not need to understand the technical details
of the Mobile GC, because it is used automatically and it should just work. You may want to know more if you want to fully
understand the output of room (especially when called with t), and if you want to optimize memory usage (and maybe
performance) of the application. In general, you should first use time or extended-time and room or room-values to
understand the behavior of your application before trying to optimize it.

The ordinary 64-bit GC is "sparse", which means it leaves unused addresses between memory that it has allocated, and it also
relies on being able to map memory at specific addresses. The result is a very efficient GC. However, on 64-bit iOS the
range of addresses that is available (the address space) is very small compared to other 64-bit architectures (as determined
experimentally because Apple do not documented it), and also there is no documented interface for mapping at specific
addresses. Therefore the ordinary 64-bit GC cannot work on 64-bit iOS, which is the reason for introducing the Mobile GC.
The Mobile GC is less efficient than the ordinary 64-bit GC, but the only interface that it requires from the underlying OS for
memory handling is malloc and free.

An additional issue specific to iOS is that iOS does not allow execution of machine code that is created dynamically, and the
memory region where the code resides is read-only. Therefore the Mobile GC does not support compilation of code in
memory at run time. Moreover, functions can contain data that can be modified so this needs to be separated from the code,
which is not the case in the ordinary 64-bit memory model. To support this, the images that are used to deliver on iOS are
different from the desktop images, though the difference is only in the memory layout of function objects, and from the
programmer's point of view they behave the same. These images differ from the ordinary 64-bit images in that function
objects and code are separated, and that function objects are allocated in the same segments as symbols (that is the allocation
type :symbol). The code is allocated in objects with allocation type :function. See 11.4.2 Segments and Allocation
Types for more details about allocation types. The names of these images and how to use them are described in 17.1
Delivering for iOS.

The separation of code and use of the Mobile GC solves two different problems, which in principle could be solved
separately. On 64-bit iOS, we have to solve both problems, and therefore the separation of code and the switch to the Mobile
GC are done together.

11.5.2.1 Objects alive at delivery time

During delivery for 64-bit iOS, the code is separated out into its own block of memory (the "code block"). Then all of the
other objects are put together in a block of memory, which is called the "data block". The data block is divided between non-
pointer objects, weak objects and all other objects. The objects in the data block are never GCed, but the GC follows pointers
from them to objects allocated at run time. Delivery creates an object file containing the code block and the data block,
which is then linked with the rest of the app.

You cannot obtain a pointer to any object in the code block.

generation-number returns 3 for objects in the data block.

11.5.2.2 Objects allocated at run time

The Mobile GC has 4 different allocation types (note that these do not match the allocation types of the ordinary 64-bit GC
described in 11.4.2 Segments and Allocation Types):

Cons cons objects

Static Static objects

Large Very large objects

Other All other objects.

11 Memory Management

149

http://www.lispworks.com/documentation/HyperSpec/Body/a_cons.htm

The Mobile GC does not allow allocation of static conses. Weak objects are allocated as Other or Large.

The different allocation types are allocated in separate segments, where a segment is a contiguous block of memory. Each
allocation type has a variable number of segments, which are printed by (room t). Each non-permanent segment belongs to
a specific generation, which can be 0, 1 or 2. The permanent segments, which are created by
make-current-allocation-permanent, have generation number 3, even though there is not really a generation 3 (the
GC does not collect them).

Like in the ordinary GC, allocation of static objects makes life more difficult for the GC (so it reduces the efficiency of
LispWorks), and should be avoided.

Objects that are larger than a threshold (currently 1 MB, but this may change) are allocated in segments with the Large
allocation type and are also static.

The vast majority of allocation happens in segments with the Cons and Other allocation types, which are together called
"ordinary allocation". The segments for ordinary allocation are all of size 8 MB, including any overhead. For Cons segments,
the overhead is larger because conses do not have headers.

The Mobile GC mixes marking and copying techniques. Copying has the advantage of eliminating fragmentation and is also
more efficient for typical applications where most allocation is very short lived. On the other hand, it requires spare memory
to be available during the GC. Marking creates fragmentation and is slower when most of the objects are freed immediately,
but it does not require extra memory. Thus the Mobile GC tries to use copying when possible (that is when it can get enough
memory from the operating system), and otherwise uses marking GC. The two methods may be mixed in the same GC
operation.

For copying, LispWorks uses reserved segments, which it obtains from the operating system as needed. At the end of the GC,
it returns any segments that are no longer needed to the operating system, except for some segments that it keeps in reserve.
The amount of reserved memory that it keeps is dynamic, and by default grows as the amount of allocation grows. By
default, as long as the amount of memory in ordinary segments is less than 48 MB, LispWorks tries to keep enough reserved
segments to copy everything in generation 0 and 1 without asking the operating system for more memory. see
set-reserved-memory-policy for details.

The copying GC might promote objects, which means copying them to the next generation. Generation 0 objects that are
copied are always promoted (that is copied to generation 1). For Generation 1 objects, it is more complex:

For automatic GC: set-promote-generation-1 can be used to block any promotion from generation 1.

If promotion is not blocked (the default), then objects that have already survived a GC of
generation 1 are promoted (copied to generation 2) and objects that are new to generation 1
remain in generation 1 (default setting) or are promoted depending on the setting by
set-split-promotion.

For explicitly invoked GC by a call to gc-generation

The keywords :promote and :coalesce control whether objects from generation 1 are
promoted or not.

Generation 2 objects are always copied into generation 2.

Blocking promotion from generation 1 can be used to prevent GCs of generation 2, as discussed
in 11.5.3.2 Preventing/reducing GC of generation 2.

11.5.2.3 Special considerations for the Mobile GC

Because memory is more limited on mobile platforms, the Mobile GC is tuned to collect its highest generation (2) more often
compared to the corresponding operation in the ordinary GC (which is a GC of generation 3). Such a GC may take enough
time (in the order of a second) and be frequent enough to annoy users. If that happens then you need to try to tune your

11 Memory Management

150

application, as described in 11.5.3.2 Preventing/reducing GC of generation 2, and you can also try to reduce the amount
that your application allocates.

Very large objects (> 1 MB) that do not contain pointers are handled especially efficiently by the Mobile GC. For example, if
your program handles a million small strings of 10-15 characters, then you can save memory and maybe even speed up your
program by storing them all in a very large string, and use fixnums to specify the bounds of the small strings within the large
string instead of using pointers to the small strings. This saves memory and makes the reduces the work that the GC needs to
even if only half of the large string is actually used. Note also that when you finish with it, you can free a very large object
and return its memory to the operating system without doing a GC by calling release-object-and-nullify.

When a very large object that may contain pointers (for example a large simple-vector) is examined by the GC, it needs to
go through all of those pointers. This is wasted work unless either it is long-lived and is rarely seen by the GC, or it is almost
full of useful pointers, or if you make it permanent. Objects in general can be made permanent by
make-current-allocation-permanent, which is discussed in 11.5.3.2 Preventing/reducing GC of generation 2, but
very large objects, which are allocated in their own segment, can also be made permanent individually by
make-object-permanent or make-permanent-simple-vector. If most of the elements in a simple-vector are not
pointers to objects that can be GCed, this substantially improves the performance of LispWorks.

Large objects which are allocated in their own segments can be explicitly freed (releasing the memory they use) by calling
release-object-and-nullify. That releases the memory without a GC (so it is fast), and works on such objects even if
they are permanent.

11.5.3 Tuning memory management in the Mobile GC

11.5.3.1 Response to low memory

Mobile platforms typically inform applications when memory availability becomes low. On Android this is done by the
onTrimMemory or onLowMemory methods and on iOS by the didReceiveMemoryWarning method. It is probably a good
idea to respond to these methods, but it is not essential.

In your implementation of these methods, you should release any system resources that can be released without loss and also
try to reduce the memory used by Lisp data. Since the GC sometimes temporarily requires more memory during an
operation, it may be a bad idea to do a GC once you get the warning. The function reduce-memory is provided to reduce
memory usage without requiring more memory temporarily. Note that gc-generation can do a much better job than
reduce-memory in general, but it may require more memory temporarily.

Calling reduce-memory with argument nil (the default) just releases any reserved memory that LispWorks has kept. It is
fast and probably always a good idea. However, with argument nil, reduce-memory does not perform any GC operation,
which in principle could release more memory. Because a GC takes time, it is not obvious whether it worth the trouble.

Calling reduce-memory with 0 or 1 causes a GC of generation 0 or 1, which is probably fast enough (unless promotion of
generation 1 is blocked and generation 1 grows), but will not typically release much memory.

Calling reduce-memory with 2 (or, equivalently, t), or even :aggressive, can release much more memory, but takes
more time, depending on the size of generation 2. Unless it is likely to release a large amount, it is probably not worth it.
Thus, unless you know that generation 2 contains a lot of dead objects, you should only call reduce-memory with nil, or
maybe 0 or 1.

If you call reduce-memory with a non-nil argument, you should first clear any caches that you have kept, so their contents
can be GCed.

To be able to reduce memory usage, reduce-memory needs reserved memory to perform a copying GC. Since
reduce-memory never obtains more memory from the operating system, its effectiveness depends on the amount of reserved
memory that it has when it is called. Moreover, any call to reduce-memory frees all of the reserved memory (once the GC
has occurred if the argument is non-nil), so calling reduce-memory with non-nil shortly after a previous call with nil is not
going to be effective.

11 Memory Management

151

http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ve.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ve.htm

To see how much effect reduce-memory had on the memory, you can look at the output of room (last line with any
argument you give it), or the result of room-values. To see how much time it takes, use the time macro or
get-internal-real-time.

11.5.3.2 Preventing/reducing GC of generation 2

GC of generations 0 and 1 should normally be fast enough that you do not need to worry about them. GC of generation 2,
however, typically takes enough time to be noticeable, and if generation 2 is large (> 100 MB) can take more than a second.
Thus you normally want to avoid GC of generation 2.

In a "nicely behaved" application, which we believe is true for most applications, generation 2 never needs to be collected.
This is based on the assumption that a nicely behaved application starts with some initialization that allocates long-lived
objects, but then enters a "work" phase, where it allocates only short lived objects, which die before they reach generation 2.

Even if there is some "generation leak", that is objects being promoted from generation 1 to 2 that die not long afterwards, the
leak may be slow enough that it is not a problem. For example, if your application "leaks" on average 1 kB each second, it
would take close to 3 hours of operation to leak 10 MB, which is still too small to worry about (the default minimum size of
generation 2 before a GC is 64 MB). So you can usually ignore this kind of leakage and hope that any occasional delay of a
second or two after running the application for many hours is not too annoying for the user (though if it only a "generation
leak" , you can do better by blocking promotion). If you have a leakage of 100 kB per second, the delay would happen every
few minutes, which may be too annoying.

To find if your applications leaks to generation 2, you should periodically log the size of either the whole application or of
generation 2. The output of room is the most useful thing to log, but you can also use room-values or
count-gen-num-allocation. If the application does leak to generation 2, you should determine if it is a real memory
leak, which means that the application accumulates live objects, or just a generation leak, which means that objects live long
enough to reach generation 2 and then die. To determine that, call (gc-generation T) (or, equivalently, (clean-down)),
continue using the application for a while and then call it again. If the leak is just a "generation leak", then the size of
generation 2 after (gc-generation t) should stay (more or less) the same. If it grows, then you have a real memory leak.

If your application is "nicely behaved", generation 2, and hence the whole application, will initially grow, typically by few
10's of megabytes, and then will stay more or less fixed. The size of the whole application will always fluctuate, because
generation 0 and 1 fluctuate, but generation 2 should be stable or grow slowly. If this is the case, you probably do not need to
do anything further to control memory usage.

If generation 2 does grow, LispWorks will occasionally do a GC of generation 2, which takes a noticeable time (maybe a few
seconds if generation 2 is few 100's of megabytes). If the leak is a real memory leak, it will also cause the application to grow
indefinitely.

If the leak is a real memory leak, then the GC cannot do anything about it. One possibility is to make the application run for a
limited time, for example by monitoring the size and quitting when it reaches some threshold. If quitting and restarting is
possible without much loss, that may be a good solution. Most of applications probably want to avoid that though, in which
case you will need to figure out what keeps objects alive and fix it. The functions sweep-all-objects,
sweep-gen-num-objects and mobile-gc-sweep-objects can be used to check what kind of objects have
accumulated. However, whatever keeps the objects is something in your application, and you will have to find it.

If the leak is only a "generation leak", then there are several ways to deal with it:

• Block promotion from generation 1 to 2 by calling set-promote-generation-1 with nil.

Once you have made this call, the automatic GC will never promote to generation 2 (explicit invocation of the GC
ignores this setting). This is useful in situations where the "leaking" objects are live long enough to be promoted to
generation 2, or the memory they use is small, so generation 1 does not grow too much. If there are many objects that
live longer, then generation 1 will grow, and hence the GC of generation 1 will become slow. You should check if
generation 1 grows, but it is probably OK if it remains at 20-30 megabytes allocated after a GC. You can try timing a GC
of generation 1 by (time (gc-generation 1)).

11 Memory Management

152

http://www.lispworks.com/documentation/HyperSpec/Body/f_get_in.htm

Note that you can switch promotion on and off as needed, so if you can identify phases in your application when
allocation is not long-lived and phases when some is long-lived, then you can switch promotion on and off as
appropriate.

• Prevent GC in generation 2 by calling set-generation-2-gc-options.

Once you have called set-generation-2-gc-options with :minimal-size-for-gc t, LispWorks will not
automatically GC generation 2. It is then your responsibility to GC generation 2 at the appropriate time by calling
(gc-generation 2).

As above, one of the options is to never GC generation 2, and just quit when the application reaches some size.
Otherwise, you will need to identify appropriate points in time to perform the GC.

In an interactive application, you can have a "cleanup" option somewhere that invokes the GC, so the user can invoke it.
You probably also want some indicator when the application has grown and needs a "cleanup".

For an interactive application, it may be a useful to do a GC when the application becomes backgrounded, but it is not
obviously so. The method that is called by the operating system to indicate that the application has been backgrounded
must return in a short time, so you probably need to invoke the GC from another thread. Also the operating system may
not give much CPU to the application while it is in the background, and may even terminate background applications that
take CPU. For example, the "App Programming Guide for iOS" says: "Apps that spend too much time executing in the
background can be throttled back by the system or terminated." A GC of a 100-200 megabyte application should not take
enough time to cause termination, but it depends both on the underlying system (hardware and OS) and the current state
of it, so it is not that predictable. You certainly need to store anything that needs to be stored before doing a GC while in
the background.

As long as memory is not constrained, the time it takes to GC generation 2 correlates to the amount alive after the GC
rather than before the GC (because it uses copying, so does not touch dead objects). Therefore, if you have points in time
in the execution when you know your application uses less memory then these are good points for doing a GC. That
would be the case if your application builds a large data structure for a task (allocation of > 10 megabytes), and all this
data becomes free when the task finishes. In this situation, it may be useful to perform a GC in the end of the task.

• Tuning the GC of generation 2 by set-generation-2-gc-options.

By calling set-generation-2-gc-options you can tune the frequency of GC of generation 2. You can either aim
for infrequent GCs, which may be long but hopefully rare enough not to be too annoying, or aim for frequent GCs which
are fast enough that they do not bother the user.

When the amount that is alive after a GC is almost always much less than the amount alive before, which is quite
common, you can tell that to the GC by set-expected-allocation-in-generation-2-after-gc. This can
significantly improve how well the GC copes when it fails to get as much memory as it asks for from the operating
system. See set-expected-allocation-in-generation-2-after-gc for details.

• Making the long-lived objects permanent by using make-current-allocation-permanent.

The function make-current-allocation-permanent causes all the currently allocated objects to be made
permanent, which means that the GC will not scan or free them in future (but it will still follow pointers from them).
That is useful in the typical situation where the application starts with some initialization that creates long-lived objects.
Using make-current-allocation-permanent at the end of the initialization makes all these objects permanent, and
therefore reduces the time for GC of generation 2. If new objects in generation 2 after initialization are only the result of
"generation leak" then the effect on time can be quite large.

11.6 Common Memory Management Features

This section summarizes Memory Management functionality common to all LispWorks 8.1 implementations.

11 Memory Management

153

11.6.1 Timing the garbage collector

The macro extended-time is useful when timing the Garbage Collector (GC).

Use start-gc-timing, stop-gc-timing and get-gc-timing to time GC operations.

11.6.2 Reducing image size

To reduce the size of the whole image, use clean-down.

In 32-bit LispWorks, you can use (clean-down) or the less aggressive (clean-down nil) to reduce the image size when
the image is much larger than the amount that is allocated. In 64-bit LispWorks there is no need to do that.

(clean-down t) promotes to generation 3 and tries to reduce the image size, while (clean-down nil) promotes only to
generation 2 and does not reduce the image size. Experience suggests that the latter is actually more useful in most
circumstances.

In some circumstances it is important to avoid enlarging the size of the image even temporarily. The common situation is
when the operating system signals low memory. In this situation you should use reduce-memory instead of clean-down.

11.6.3 Allocation of interned symbols and packages

Interned symbols (and their symbol names), and packages, are treated in a special way, because they are assumed to have a
long life. They are allocated in the generation specified by the variable *symbol-alloc-gen-num*, which has the initial
value 2 in 32-bit LispWorks and 3 in 64-bit LispWorks.

Symbols created with make-symbol or gensym start out in generation 0.

Symbols will be garbage collected if they are no longer accessible (regardless of property lists) but note that in 32-bit
LispWorks, if the symbols are in generation 2 then you might need to invoke gc-generation explicitly to collect them in a
timely manner.

11.6.4 Allocation of stacks

Stacks are allocated directly in generation 2 because they are relatively expensive to promote. Therefore creating many
processes will cause generation 2 to grow, even if these processes are short-lived.

The variable *default-stack-group-list-length* controls the number of stacks that are cached for reuse. Increase its
value if your application repeatedly makes and discards more than 10 processes.

11.6.5 Mapping across all objects

To call a function on all objects in the image, use sweep-all-objects.

11.6.6 Special actions

You may want to perform special actions when certain types of object are garbage collected, using the functions
add-special-free-action, flag-special-free-action, flag-not-special-free-action and
remove-special-free-action.

For example, when an open file stream is garbage collected, the file descriptor must be closed. This operation is performed as
a special action.

Note: You should not rely on special free actions for objects with a high turn-over rate (that is, where many such objects are
allocated and they become garbage fairly quickly), because some may not get collected early enough. Either ensure that the

11 Memory Management

154

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_sym.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_gensym.htm

cleanup is called elsewhere, or arrange for a GC to happen.

11.6.7 Garbage collection of foreign objects

Users of the Foreign Language Interface may want to specify the allocation of static arrays. The recommended way to do this
is to call make-array with :allocation :static. See for example :lisp-array in the Foreign Language Interface
User Guide and Reference Manual.

11.6.8 Freeing of objects by the GC

Weak arrays and weak hash tables can be used to allow the GC to free objects.

Relevant functions are make-hash-table, set-hash-table-weak, set-array-weak, make-array and
copy-to-weak-simple-vector.

For a description of weak vectors see set-array-weak.

11.6.9 Assisting the garbage collector

This section describes techniques that may improve the performance of your application by reducing the GC's workload.

11.6.9.1 Breaking pointers from older objects

This is a technique that can be useful when older objects regularly point to newer objects in a lower generation. In such a
case, when the lower generation (only) is collected these newer objects will be promoted even if the older objects are not live.
All of these objects will not get collected until the higher generation is collected.

This is a general issue with generational garbage collection and, if it causes poor performance in your application, can be
addressed along these lines. It is not necessarily a problem in every case where older objects point to newer objects.

For example, suppose you are popping items from a queue represented as a list of conses (or other structures), then you can
set the "next" slot of each popped item to nil.

In the code below, if the queue-head cons is promoted to generation n, then all the other conses will also be promoted to
generation n eventually, until generation n is collected. This happens even after calls to pop-queue have removed these
conses from the queue.

(defstruct queue head tail)

(defun push-queue (item queue)
 (let ((new (cons item nil)))
 (if (queue-head queue)
 (setf (cdr (queue-tail queue)) new)
 (setf (queue-head queue) new))
 (setf (queue-tail queue) new)))

(defun pop-queue (queue)
 (pop (queue-head queue)))

The fix is to make pop-queue set the "next" slot (in this case the cdr) of the discarded queue-head cons to nil, so that it
no longer points from an older object to a newer object. For example:

(defun pop-queue (queue)
 (when-let (head (queue-head queue))
 (setf (queue-head queue) (shiftf (cdr head) nil))
 (car head)))

11 Memory Management

155

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

12 The Profiler

The LispWorks profiler provides a way of empirically monitoring execution characteristics of Lisp programs. The data
obtained can help to improve the efficiency of a Lisp program by highlighting those procedures which are commonly used or
particularly slow, and which would therefore benefit from optimization effort.

12.1 What the profiler does

With the profiler running, the Lisp process is interrupted regularly at a specified time interval until the profiler is turned off.
Having halted the execution of the process the profiler scans the execution stack and records information about it, including
the names of all functions found. A special note is made of which function is at the top of the stack. After profiling stops the
profiler can present a report containing a call tree and/or a cumulative columnar report.

The columnar report shows aggregated information about each function as follows:

• The number of times the function was called.

• The number of times the function was found on the stack by the profiler, both in absolute terms and as a percentage of
the total number of scans of the stack.

• The number of times the function was found on the top of the stack, both in absolute terms and as a percentage of the
total number of scans of the stack.

The call tree shows name of a root function and a "tree" of callee functions below it. To the right of each function's name the
number of times it was seen on the stack under a particular caller is shown, along with the percentage this represents of the
total number of times the function was seen.

The call tree is more computationally expensive to record than the cumulative data. You can choose whether to record and
output the call tree, as described in the next section.

12.2 Setting up the profiler

Before a profiling session can start, several parameters must be set, using the function set-up-profiler. If the profiler is
invoked before any call to set-up-profiler, it calls set-up-profiler implicitly without any arguments. In many cases
that is what you want anyway, and in these cases you do not need to call set-up-profiler, but in some cases you will
want to change something.

There are four main areas to consider: the symbols to be profiled, the time interval between samples, the kind of profiling
required, and the format of the output.

• By default, all fbound symbols in the image are monitored (and, if KnowledgeWorks is loaded, also all the forward
chaining rules). This setting is useful in many cases, but in some cases you will want to see information only about some
subset of the symbols, which will make it easier to read the output. Use the keywords :packages and :symbols (and
:kw-contexts for KnowledgeWorks) to restrict the set of symbols that will be profiled.

• You might want to specify the time interval between interrupts. The resolution of this value is clearly dependent on the
operating system. In most cases the default value, 10ms, is adequate. This number is important, because with these
statistical methods of program profiling the accuracy of the results increases with the number of samples taken.

• On non-Windows systems the kind of profiling required may be set. This refers to what kind of time is monitored in
order to determine when to interrupt the Lisp process. There are three possibilities for how the time interval is measured:

156

The time the Lisp process is actually executing plus the time that the system is executing on behalf of the process. This is
called profile time.

Just the time that the process is actually executing. This is called virtual time.

The actual elapsed time, called real time.

• The output can be presented as a tree of calls seen and a columnar report (style :tree), or just the columnar report (style
:list). You can restrict the data shown in several ways, helping you to focus on the slowest parts of your program.

12.3 Running the profiler

The profiler has two distinct modes. You can use both in the same session, but not at the same time.

The macro profile simply profiles all processes while a body of code is run, as described in 12.3.1 Using the macro
profile. Start profiling this way if you don't see a need to use the alternate mode.

Alternatively the functions start-profiling, stop-profiling and set-process-profiling offer programmatic
control over when profiling occurs and which processes are profiled. This is described in 12.3.2 Programmatic control of
profiling.

The function do-profiling is a convenience function which allows you to profile multiple threads using
start-profiling and stop-profiling.

12.3.1 Using the macro profile

To profile your Lisp forms enter:

(profile <forms>)

This evaluates the forms as an implicit progn and prints the results, according to the parameters established by
set-up-profiler.

Note: you cannot use profile (or the graphical Profiler tool) after a call to start-profiling and before a call to
stop-profiling with print t, because the two profiling modes are incompatible.

12.3.2 Programmatic control of profiling

Your program can control profiling. This is useful when you want to profile only a part of the program.

In your program, call start-profiling start collecting profiling information. Call stop-profiling with print nil to
temporarily stop collecting, or call stop-profiling with print t to stop collecting and print the results. At any point you
can call set-process-profiling to modify the set of processes for which profiling information is being (or will be)
collected.

For example:

;; start profiling, current process only
(start-profiling :processes :current)
(do-interesting-work)
;; temporarily suspend profiling
(stop-profiling :print nil)
(do-uninteresting-work)
;; resume profiling
(start-profiling :initialize nil)
(do-more-interesting-work)
;; now, all processes are interesting

12 The Profiler

157

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

(set-process-profiling :set :all)
(do-some-more-interesting-work)
;; stop profiling and print the results
(stop-profiling)

Note: you cannot call start-profiling inside the scope of the macro profile or while the graphical Profiler is profiling,
because the two profiling modes are incompatible.

12.4 Profiler output

A typical report would be:

Profiler sampled 564 times

Call tree
Symbol seen (%)
 1: MOD 17 (3)
 2: FLOOR 5 (1)
 1: EQL 8 (1)
 1: >= 7 (1)
 2: REALP 2 (0)
 1: + 6 (1)
 1: LENGTH 4 (1)

Cumulative profile summary
Symbol called profile (%) top (%)
MOD 1000000 17 (3) 8 (1)
EQL 2000117 8 (1) 8 (1)
>= 1000001 7 (1) 5 (1)
+ 1000000 6 (1) 6 (1)
FLOOR 1000000 5 (1) 5 (1)
LENGTH 2000086 4 (1) 4 (1)
REALP 1000001 2 (0) 2 (0)

On average 1.0 stacks profiled each profiler sampling
Top of stack not monitored 93% of the time
Sampled while in GC 0 times (0% of 564 samplings)

The first line means that Lisp was interrupted 564 times by the profiler.

The call tree shows that in 17 of these interrupts (3% of them) the profiler found the function mod on the stack, in 5 of these
interrupts it found the function floor on the stack, and so on. Moreover, floor only appears under the mod branch of the
tree, which means that each of these times floor was called by mod.

The cumulative profile summary also shows how many times each symbol was found on the stack. Moreover it shows that
the function mod was called 1000000 times, the function eql was called 2000117 times, and so on. (Note: this information is
not collected by default.) In 17 of these interrupts it found the function mod on the stack, and on 8 of these occasions mod
was on the top of the stack. You can deduce that 526 times the function on the top of the stack was none of those reported.

You can control sort order of the cumulative profile summary with print-profile-list.

12.4.1 Interpretation of profiling results

One important figure is the amount of time it was found on top of the stack in the cumulative profile summary. Just because a
function is found on the stack does not mean that it uses up much processing time, but if it is found consistently on the top of
the stack then it is likely that this function has a significant execution time. Another thing to check is that you expect the
functions near to top of the call tree to take significant time.

12 The Profiler

158

http://www.lispworks.com/documentation/HyperSpec/Body/a_mod.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_floorc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_floorc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_mod.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_floorc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_mod.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_mod.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_mod.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_mod.htm

It must be remembered that the numbers produced are from random samples and thus it is important to be careful in
interpreting their meaning. The rate of sampling is always coarse in comparison to the function call rate and so it is possible
for strange effects to occur and significant events to be missed. For example, "resonance" may occur when an event always
occurs between regular sampling times, though in practice this does not appear to be a problem.

12.4.2 Displaying parts of the tree

Once profiling information has been recorded, either by stop-profiling or a normal exit from profile, it is possible to
print specific parts of the information. The function profiler-tree-from-function prints a tree showing a specific
function and the functions called inside it. The function profiler-tree-to-function prints a tree showing a specific
function and its callers. This tree is inverted, which means that the children of a node are its callers, rather than callees as in
the full tree and the tree printed by profiler-tree-from-function.

The function profiler-tree-to-allocation-functions prints an inverted tree, where the roots are allocation
functions and the children are their callers.

12.5 Profiling pitfalls

Profiling should only be attempted on compiled code. If it is done on interpreted code, the interpreter itself is profiled, and
this distorts the results for the actual Lisp program.

Macros cannot be profiled as they are expanded during the compilation process. Similarly some Common Lisp functions may
be present in the source code but not in the compiled code as they are transformed by the compiler. For example:

(member 'x '(x y z) :test #'eq)

is transformed to:

(memq 'x '(x y z))

by the compiler and therefore the function member is never called.

Recursive functions need special attention. A recursive function may well be found on the stack in more than one place
during one interrupt. The profiler counts each occurrence of the function. Hence the total number of times a function is found
on the stack may be much greater than the number of times the stack is examined.

Tail call optimization will prevent the calling function from being found on the stack after the call. You can disable tail call
optimization by compiling code with optimize quality debug 3, but note that this might also affect the performance.

Care must be taken when profiling structure accessors. Structure accessors compile down into a call to a closure of which
there is one for all structure setters and one for all structure getters. Therefore it is not possible to profile individual structure
setters or getters by name.

It must be remembered that even though a function is found on the stack this does not mean that it is active or that it is
contributing significantly to the execution time. However the function found on the top of the stack is by definition active,
and thus this is the more important value.

It is quite possible that the amount of time the top symbol is monitored is significantly less than 100% despite the profiler
being set to profile all the known functions of the application. This is because at the time of the interrupt an internal system
function may well be on the top of the stack.

12 The Profiler

159

http://www.lispworks.com/documentation/HyperSpec/Body/a_member.htm

12.6 Profiling and garbage collection

The macro extended-time provides useful information on garbage collection activities.

The gc argument of set-up-profiler controls whether or not the system's memory management functions are profiled.

12.7 Profiler tree file format

The profiler tree file is produced by calling save-current-profiler-tree, or by using the Save Profiler tree... item
from the Profiler menu on the LispWorks IDE.

The file contains lines of text encoded UTF-8, to allow it to contain any symbol name.

The first line is handled specially: it must contain the string "LispWorks Profiler Tree" (without the quotes), which confirms
that the file is a profiler tree file. In addition, the text following the first colon in the first line, with leading and trailing spaces
removed, is the name of the tree.

The remaining lines in the file are the data lines, except those starting with a semicolon which are ignored.

Each data line is divided to 6 fields by a | character. The first 5 fields are integers and the last field is an arbitrary sequence of
characters (any character except newline). There must be no spaces between the fields.

Each line specifies a node in the tree, in this format:

Depth|Count|Call-Count|Seen-Count|Top-Count|Name

Depth specifies the depth of the node, from which its location in the tree is deduced. The node with depth 0 is the root. For
other nodes, the parent of the node is the previous node in the file which has depth smaller by 1. The children of the node, are
all following nodes with depth larger by 1, until the next node with a depth less than or equal to Depth. In other words, each
node is followed by its children in depth-first order.

Count is the number of times that the function associated with the node was seen on the call stack within the same branch of
the tree, that is with the same chain of callers and on the same process.

Call-Count, Seen-Count, Top-Count and Name are the function-info of the function associated with the node. Hence they are
not specific to the node itself and if the function occurs more than once in the tree (which is common), then copies of the
function-info will be present in each occurrence.

The fields of the function-info are:

Call-Count The number of times that the function was called, if this is recorded. Note that the count is not
recorded by default in SMP LispWorks, so it is 0.

Seen-Count The number of times that the function was seen in all the branches of the tree.

Top-Count The number of times that the function was seen at the top of the stack, that is it was actually
executing.

Name The name of the function. Note that some nodes do not correspond to actual functions, in which
case the name will be a string (including the double quotes).

12.7.1 Parsing the file

Because the function-info fields of each node are repeated for each occurrence of the same function, it is useful to record
function-info keyed on the Name. This allows you to associate nodes that are in different branches of the tree but represent
the same function.

12 The Profiler

160

The name can be read using the Common Lisp reader, provided the currently interned symbols are the same as the interned
symbols when the file was produced. Otherwise you may get an error if the package of a symbol does not exist, or if it was
external but it is not external when reading. In many cases, just using the name as a string is probably good enough.

12.7.2 Viewing the file as text

While it is not possible to see the tree in the file, you can perform simple "queries" just by viewing it in a text editor, for
example checking if a function appears anywhere in the tree, finding how often it was visible or getting an idea which
function(s) mostly call it.

12 The Profiler

161

13 Customization of LispWorks

This chapter gives examples of how to make changes to LispWorks to make it more suitable for use by you and your
colleagues.

13.1 Introduction

13.1.1 Pre-loading code

You can save an image with changes pre-loaded. This is suitable for changes you want to share with other users of that
image, and for code which takes some time to load. It cannot be used to alter settings which the system makes automatically
on startup.

13.3 Saving a LispWorks image describes how to do this.

13.1.2 Loading code at start up

You can also load changes each time you start LispWorks. This is suitable for code which loads quickly. For changes only
you want to see, put the code in your personal initialization file. For changes to share with other users at your site, put the
code in your site initialization file.

13.2.2 Initialization files describes these initialization files.

13.1.3 Specific customizations

The remainder of this chapter describes some customizations, all of which can can be saved in an image or placed in an
initialization file, as needed. You can use both techniques: stable code including patches is saved in the image, while
experimental or fast-loading code is loaded via the initialization file.

13.2 Configuration and initialization files

There are a number of files that contain configuration and initialization information:

13.2.1 Configuration files

• The LispWorks file config/configure.lisp contains many default configuration settings. You can create a
customized copy of this file when you install LispWorks, as described in the Release Notes and Installation Guide.

• The LispWorks file config/key-binds.lisp gives the default editor key bindings for Emacs emulation.

• The LispWorks file config/mac-key-binds.lisp gives the editor key bindings for macOS editor emulation, if
supported on your platform.

• The LispWorks file config/msw-key-binds.lisp gives the editor key bindings for Microsoft Windows editor
emulation, if supported on your platform.

162

13.2.2 Initialization files

• The LispWorks file config/siteinit.lisp is the default site initialization file. The distributed file loads any
supplied patches.

• You may also have a personal initialization file which is loaded on startup. By default LispWorks looks for a file called
.lispworks in your home directory, although you can change its name and location (see "Setting Preferences" in the
LispWorks IDE User Guide).

The default location of your home directory varies on Unix systems, but it is typically something like /home. On
Windows, the directory is constructed from the environment variables HOMEDRIVE and HOMEPATH The directory
itself has the same name as your user name, so if you log on as john, your home directory might be /home/john on
Unix systems or something like C:\Users\john on Windows 8.

A sample personal initialization file, the LispWorks file config/a-dot-lispworks.lisp, is supplied. You should
created a customized copy of this file when you install LispWorks, as described in the Release Notes and Installation
Guide.

13.3 Saving a LispWorks image

There are two ways to save an image with changes pre-loaded.

• This section describes the traditional method, using a configuration file and save-image script.

• 13.4 Saved sessions describes how to save a session, which allows restoring your windowing environment as well as
your Lisp objects.

13.3.1 The configuration file

First create a file my-configuration.lisp containing the settings you want in your saved image. You may want to change
some of the pre-configured settings shown in config/configure.lisp, add customizations from the rest of this chapter,
or load your application code.

13.3.2 The save-image script

Now create a save-image script which is a file save-image.lisp containing something like:

(in-package "CL-USER")
(load-all-patches)
(load #-mswindows "/tmp/my-configuration.lisp"
 #+mswindows "C:/temp/my-configuration.lisp")
(save-image
 #+:cocoa
 (create-macos-application-bundle
 "/Applications/LispWorks 8.1 (64-bit)/My LispWorks.app")
 #-:cocoa "my-lispworks")

The script shown loads my-configuration.lisp from a temporary directory. You may need to modify this.

13.3.3 Save your new image

The simplest way to save your new image is to use the Application Builder tool in the LispWorks IDE. Start the Application
Builder as described in the LispWorks IDE User Guide, enter the path of your save-image script in the Build script: pane,
and press the Build the application using the script button.

Alternatively you can run LispWorks in a command interpreter and pass your save-image script in the command line as

13 Customization of LispWorks

163

shown below.

• On Macintosh, run in Terminal.app:

mymac$ "/Applications/LispWorks 8.1 (64-bit)/LispWorks (64-bit).app/Contents/MacOS/lispworks-8-1-0-
macos64-universal" -build save-image.lisp

Your new application bundle is saved in /Applications/LispWorks 8.1 (64-bit)/My LispWorks.app.

• On Microsoft Windows, run in a MS-DOS window:

C:\temp\>"C:\Program Files\LispWorks\lispworks-8-1-0-x86-win32.exe" -build save-image.lisp

Your new LispWorks image is saved in C:\temp\my-lispworks.exe.

• On Linux, run in a shell:

linux:/tmp$ lispworks-8-1-0-x86-linux -build save-image.lisp

Your new LispWorks image is saved in /tmp/my-lispworks.

For other platforms and for 64-bit LispWorks the image name varies from that shown, but the principle is the same.

13.3.4 Use your new image

Your new LispWorks image contains the settings you specified in my-configuration.lisp pre-loaded.

You can add further customizations on start up via the initialization files mentioned in 13.2.2 Initialization files.

Note that your newly saved image runs itself, not a saved session.

13.3.5 Saving a non-GUI image with multiprocessing enabled

To create an image which does not start the LispWorks IDE automatically, make a save-image script, for example in
/tmp/resave.lisp, containing:

(in-package "CL-USER")
(load-all-patches)
(save-image "~/lw-console"
 :console t
 :multiprocessing t
 :environment nil)

Run LispWorks like this to create the new image ~/lw-console:

lispworks-8-1-0-x86-linux -build /tmp/resave.lisp

13.3.6 Code signing in saved images

This section briefly describe when and how LispWorks images are code signed.

13 Customization of LispWorks

164

13.3.6.1 Signing in the distributed LispWorks executable

The LispWorks Hobbyist, Hobbyist DV, Professional and Enterprise Edition images distributed are signed in the name of
LispWorks Ltd on macOS but not on any other platforms.

The LispWorks for Macintosh Personal Edition application bundle and the LispWorks for Windows Personal Edition
executable are both signed in the name of LispWorks Ltd.

13.3.6.2 Saving images and delivering on Microsoft Windows

On Microsoft Windows, you can sign a runtime executable or dynamic library which was saved using save-image or
deliver with the :split argument.

13.3.6.3 Saving images and delivering on Apple silicon Macs

On Apple silicon Macs (based on the arm64 architecture), creating code dynamically like Lisp does using compile or when
loading fasl files is not allowed by default. To be able to create code dynamically, LispWorks uses the macOS JIT
mechanism, which involves mapping the code segments with MAP_JIT in the call to mmap, and using
pthread_jit_write_protect_np to switch the status of the memory from executable to writable and back (MAP_JIT
and pthread_jit_write_protect_np are macOS-specific features).

To be able to use the JIT mechanism, LispWorks executables must be signed with the
com.apple.security.cs.allow-jit entitltment set to true ("have the com.apple.security.cs.allow-jit
entitlement"). To be signed, the executable and Lisp heap must be split into separate files, which is controlled by the split
argument in save-image and deliver. The released images on macOS are split, and the value of split in save-image and
deliver defaults to t when they save executables. The executable they create inherits the signing and entitlements.

When LispWorks is saved or delivered as a dynamic library and loaded by another process, then the entitlements that
LispWorks has are the entitlements that the loading process has, so that process needs
com.apple.security.cs.allow-jit. Since the entitlements of the dynamic library are not used, a LispWorks dynamic
library itself does not need the entitlements above.

On iOS you cannot generate new code at all, and on Android the restrictions above do not apply, so when delivering to iOS or
Android the discussion above does not apply.

Notes:

You may already have code that passes :split nil to save-image or deliver, which will override the default and will
produce an unspitted and unsigned image.

If you sign the executable yourself (recommended), you will have to ensure that it has one of the
com.apple.security.cs.allow-jit entitlement.

You will also need to have the com.apple.security.cs.disable-library-validation entitlement if your
application loads any shared libraries that are not signed by Apple or by your developer team ID. The released images on
macOS have both com.apple.security.cs.allow-jit and
com.apple.security.cs.disable-library-validation entitlements.

Prior to macOS 14 (Sonoma), LispWorks can also run without the com.apple.security.cs.allow-jit entitlement, and
hence without the JIT mechanism, if it has the com.apple.security.cs.disable-library-validation entitlement.
But in this case it cannot create code dynamically, and will signal an error when an operation (loading a fasl or compile)
tries to create code dynamically. This is not recommended.

See also 13.3.6.5 Saving images and delivering a macOS universal binary.

13 Customization of LispWorks

165

13.3.6.4 Saving images and delivering on Intel Macs

If you sign the executable yourself (recommended) and you enable the hardened runtime (--options runtme when
running codesign), then you will have to ensure that it has the
com.apple.security.cs.disable-library-validation entitlement to that it can load the code in the Lisp heap.

See also 13.3.6.5 Saving images and delivering a macOS universal binary.

13.3.6.5 Saving images and delivering a macOS universal binary

If you sign a universal binary yourself and you enable the hardened runtime (--options runtme when running codesign)
then a combination of the requirements described in 13.3.6.3 Saving images and delivering on Apple silicon Macs and
13.3.6.4 Saving images and delivering on Intel Macs will apply. That means you will have to ensure that the universal
binary has both the com.apple.security.cs.allow-jit and
com.apple.security.cs.disable-library-validation entitlements so that it can run on both Apple silicon and
Intel Macs.

13.4 Saved sessions

You can save a LispWorks session, which can be restarted at a later date. This allows you to resume work after restarting
your computer.

Saving sessions is intended for users of the LispWorks IDE. The graphical tools described in LispWorks IDE User Guide
provide the best way to use and configure session saving. However it is also possible to save a session programmatically,
which is described in this section.

When you save a session, LispWorks performs the following three steps:

1. Closing all windows and stopping multiprocessing.

2. Saving an image. On macOS this creates an application bundle.

3. Restarting the LispWorks IDE and all of its windows.

If a saved session is run later, then it will redo the last step above, but see 13.4.2 What is saved and what is not saved for
restrictions.

Sessions are stored on disk as LispWorks images, by default within your personal application support folder (the exact
directory varies between operating systems).

13.4.1 The default session

There is always a default session, which is used when you run the supplied LispWorks image.

When you run any other image directly, including a saved session or an image you created with save-image, it runs itself
(not the default session).

Saved sessions are platform and version specific. In particular, a 32-bit LispWorks saved session cannot be the default session
for 64-bit LispWorks, or vice-versa.

13.4.2 What is saved and what is not saved

All Lisp code and data that was loaded into the image or was created in it is saved. This includes all editor buffers, the
Listener history and the value of *, ** and ***.

All threads are killed before saving, so any data that is accessible only through a mp:process, or by a dynamically bound

13 Customization of LispWorks

166

http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm

variable, is not accessible.

All windows are closed, so any data that is accessible only within the windowing system is not accessible after saving a
session.

The windows are automatically re-opened after saving the session and all Lisp data within the CAPI panes is retained.

External connections (including open files, sockets, database connections and COM interfaces) become invalid when the
saved session is restarted. In the image from which the session was saved, the connections are not explicitly affected but if
these connections are thread-specific, they will be affected because the thread is killed. In recreated Shell tools the command
history is recovered but the side effects of those commands are not. Debugger and Stepper windows are not re-opened
because they contain the state of threads that have been killed.

13.4.3 Saving a session programmatically

You can save a session by calling save-current-session.

13.4.3.1 Save Session actions

The first thing that save-current-session does is to execute the action-list "Save Session Before".

After redisplaying all the interfaces, the action-list "Save Session After" is executed. That happens both in the saving
invocation and the restarting saved image.

13.4.3.2 Non-IDE interfaces

If there are non-IDE interfaces on the screen when save-current-session is invoked, there interfaces are destroyed in
the first step, and displayed again in the third step. Note that the display will occur in a different thread than the one running
the interface before the saving (which was killed in the first step).

If the interface (or any of its children) contains information that is normally destroyed (in some sense) in the destroy-callback,
this information can be preserved over a call to save-current-session by defining methods on the generic functions
capi:interface-preserving-state-p or capi:interface-preserve-state.

13.4.4 Saving a session using the IDE

You can save a session or set up periodic automatic session saving using the configuration tools in the LispWorks IDE. See
"Session Saving" in the LispWorks IDE User Guide for details.

13.5 Load and open your files on startup

Suppose you always compile and load several files after LispWorks starts. You can arrange for this to happen automatically
by adding forms like these in your initialization file:

(defvar *my-files*
 '("/path/to/foo1"
 "/path/to/foo2"
 "/path/to/foo3"))

(dolist (file *my-files*)
 (compile-file file :load t))

If you also want to open these files in the Editor tool, then you can add this form in your initialization file, after those above:

13 Customization of LispWorks

167

(define-action "Initialize LispWorks Tools"
 "Open My Files"
 #'(lambda (screen)
 (declare (ignore screen))
 (dolist (file *my-files*)
 (ed file))))

13.6 Customizing the editor

This section explains some of the customizations you can make to the Editor tool in the LispWorks IDE.

13.6.1 Controlling appearance of found definitions

The commands Find Source, Find Source for Dspec and Find Tag retrieve the file containing a definition and place it in a
buffer with the relevant definition visible. By default, the start of the definition is in the middle of the Editor window and is
highlighted.

The variable editor:*source-found-action* controls the position and highlighting of the found definition. The value
should be a list of length 2.

The first element controls the positioning of the definition, as follows:

t Show it at the top of the editor window.

A non-negative fixnum Position it that many lines from the top.

nil Position it at the center of the window.

The second element can be :highlight, meaning highlight the definition, or nil, meaning don't.

For example, to configure the editor so that found definitions are positioned at the top of the window and are not highlighted,
do:

(setq editor:*source-found-action* '(t nil))

This variable is set in the file a-dot-lispworks.lisp.

13.6.2 Specifying the number of editor windows

You can specify the maximum number of editor windows that are present at any one time. For example, to set the maximum
to 1:

(setq editor:*maximum-ordinary-windows* 1)

This variable is set in the file a-dot-lispworks.lisp.

13.6.3 Binding commands to keystrokes

You can bind existing editor commands to different keystrokes, using editor:bind-key.

The LispWorks file config/key-binds.lisp is supplied. It shows the standard Emacs key bindings for LispWorks.

The following example shows how to rebind ? so that it behaves as an ordinary character in the echo area of tools in the
LispWorks IDE — this can be useful if your symbol names include question marks.

13 Customization of LispWorks

168

(editor:bind-key "Self Insert" #\? :mode "Echo Area")

Since ? is then no longer available for help, you may wish to rebind help to Ctrl+?.

(editor:bind-key "Help on Parse" "Control-?" :mode "Echo Area")

If you use another editor emulation, then see the LispWorks file config/msw-key-binds.lisp or
config/mac-key-binds.lisp for the corresponding editor:bind-key forms.

13.7 Finding source code

Note: This section does not apply to LispWorks Personal Edition.

To configure LispWorks so that editor commands such as Find Source, the menu command Find Source, and the dspec
system are able to locate definitions in the supplied editor source code:

1. Load the logical host for the editor source code:

(load-logical-pathname-translations "EDITOR-SRC")

2. Configure source finding to know about editor source code:

(setf dspec:*active-finders*
 (append dspec:*active-finders*
 (list "EDITOR-SRC:editor-tags-db")))

3. Now do (for example) Meta+X Find Command Definition and enter Wfind File.

The definition of the command Wfind File is displayed in an Editor tool.

See 13.6.1 Controlling appearance of found definitions for information on controlling how the source code is displayed.

13.8 Controlling redefinition warnings

By default most system-provided definers such as cl:defun, cl:defmacro, cl:defmethod and so on signal a warning
when they redefine an existing definition. You can bind or set *redefinition-action* to eliminate such warnings or
make it signal error instead.

Also, the system is configured to protect symbols in implementation packages against definition and redefinition as described
in 7.7.2.2 Protecting packages.

13.9 Specifying the initial working directory

The working directory is set on startup and provides the default location for the File > Open... dialog. Call
change-directory in your initialization file (see 13.2.2 Initialization files) to control the initial working directory.

13.10 Customizing LispWorks for use with your own code

This section contains some information on customizations you can make in order to make developing your own code a little
easier.

13 Customization of LispWorks

169

http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmac.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm

13.10.1 Preloading selected modules

If you frequently use some code that is normally supplied as separate modules, you can load them at start-up time from your
initialization file. This file is called .lispworks by default, but can be changed to be any other filename. See "Setting
Preferences" in the LispWorks IDE User Guide for details.

For example, to load the dynamic-completion code every time you start LispWorks, include the following in your
initialization file.

(require "dynamic-complete")

13.10.2 Creating packages

When writing your own code that uses, for instance, the capi package, create a package of your own that uses capi — do
not work directly in the capi package. By doing this you can avoid unexpected name clashes.

13.11 Structure printing

By default defstruct generates a method on print-object. You can avoid this by binding at macroexpansion time the
variable structure:*defstruct-generates-print-object-method*.

13.12 Configuring the printer

This section applies only on non-Windows platforms when running the Motif IDE.

You can configure your LispWorks image for your printer, by selecting File > Printer Setup from any tool with printing
capacities, for example the editor, and choosing Add Printer.

When configuring a printer, the CAPI printing library prompts for a PostScript Printer Description file (PPD), which defines
such things as the paper size and the printable area of the page, in the form of a standard PostScript language header. The
printing code splices this file into the PostScript produced from submitting a CAPI printing request.

The library on the LispWorks CD contains a generic PPD file, called generic.ppd, that defines these values conservatively
to ensure that it should work with most printers. For accurate results, you should use the PPD supplied with your printer.

The PPD files are placed in the ppd subdirectory of the postscript directory in the lispworks library directory. Files
added to the ppd directory are expected to have the extension ".ppd".

13.12.1 PPD file details

A PPD file contains a description of the attributes and capabilities of a given printer, such as paper sizes supported, the
printable area of the page, the number and names of input paper trays, optional features such as additional paper trays or
duplex units, and so on, together with the printer-specific PostScript language commands necessary to use the features.

The file generic.ppd defines a simple generic printer supporting A4, A3, US letter, and US legal paper sizes, and
supporting manual feed. It defines conservative margins (1 inch all round), and the documents generated should be
compatible with most PostScript printers. It is suitable for producing PostScript files when the destination printer is unknown,
and may also be used if the appropriate PPD for the printer is not available.

However, for the best results, we recommend the use of the appropriate PPD for the printer. This allows you to specify which
optional features (if any) have been installed on the printer, and ensures that the Print dialog provides access to appropriate
printer capabilities such as multiple input trays and duplex printing. This also ensures that the CAPI uses the correct values
for the printable areas of the page.

13 Customization of LispWorks

170

http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pr_obj.htm

14 LispWorks as a dynamic library

This chapter describes how to create a dynamic library or DLL from LispWorks and discusses use of the library.

14.1 Introduction

You can use LispWorks to build a dynamic library on Microsoft Windows, Macintosh, Linux, x86/x64 Solaris and FreeBSD.

To do this, use save-image or deliver and supply a list value for dll-exports. On platforms other than Windows passing
dll-added-files also creates a dynamic library.

The result is a library that cannot be executed on its own, but can be dynamically loaded by another process. On Windows
this is done with the Windows APIs LoadLibrary and then GetProcAddress. On other platforms the dynamic library can
be loaded by dlopen and then dlsym.

The dynamic library is usually of file type dll on Windows, dylib on Macintosh and so on Linux, x86/x64 Solaris or
FreeBSD. The first implementation of this functionality in LispWorks was on Microsoft Windows only, therefore the
terminology that is used is sometimes Windows-like. In particular "DLL" refers to any dynamic library.

A program that loads a LispWorks dynamic library must be compiled and linked as follows:

Linux Link with libpthread.so.

FreeBSD Link with libpthread.so.

macOS No special requirements.

Solaris Compile and link multithreaded (for example, using the -mt option to Oracle's cc).

14.2 Creating a dynamic library

To deliver a LispWorks runtime as a dynamic library supply a list value for dll-exports when calling deliver.

To save a LispWorks image as a dynamic library supply a list value for dll-exports when calling save-image.

Additionally on Linux, x86/x64 Solaris, Macintosh and FreeBSD platforms, you can supply a list value for dll-added-files to
deliver or save a dynamic library.

Note: a LispWorks dynamic library is licensed in the same way as a LispWorks executable.

14.2.1 C functions provided by the system

When LispWorks is a dynamic library the functions described in 52 Dynamic library C functions are automatically
available. They allow the loading process control over relocation and unloading of the library.

14.2.2 C functions provided by the application

dll-exports specifies application-defined exported functions in a LispWorks dynamic library.

Exports can also be provided in the files named in dll-added-files, on Linux, x86/x64 Solaris, Macintosh and FreeBSD
platforms.

171

14.2.3 Example

This script saves an image hello.dll which is a Windows DLL:

-------------------- hello.lisp -------------------------
(in-package "CL-USER")
(load-all-patches)
;; The signature of this function is suitable for use with
;; rundll32.exe.
(fli:define-foreign-callable ("Hello"
 :calling-convention :stdcall)
 ((hwnd w:hwnd)
 (hinst w:hinstance)
 (string :pointer)
 (cmd-show :int))
 (capi:display-message "Hello world"))

(save-image "hello"
 :dll-exports '("Hello")
 :environment nil)

Run the script by:

lispworks-8-1-0-x86-win32.exe -build hello.lisp

on the command line, or use the Application Builder tool.

(See 13.3 Saving a LispWorks image for more information about how to save an image.)

You can test the DLL by running:

rundll32 hello.dll,Hello

on the command line.

To see the dialog, you may need to dismiss the LispWorks splashscreen first.

14.3 Initialization of the dynamic library

Each of the exports specified via dll-exports ensure first that LispWorks has finished initializing. If initialization has not yet
started, they start the initialization process themselves. This is true regardless of the value of automatic-init (see below).

A LispWorks dynamic library is initialized automatically on loading, or not, according to the value of automatic-init in the
call to deliver or save-image.

14.3.1 Automatic initialization

On Microsoft Windows when automatic-init was true the initialization finishes before the Windows function LoadLibrary

returns, and if LispWorks fails for some reason then the call to LoadLibrary fails too.

On other platforms when automatic-init was true, during the automatic initialization dlopen just causes the initialization to
start and returns immediately. The initialization will finish sometime later. The LispWorks function LispWorksState can
be used to check whether it finished initializing.

Automatic initialization is useful when the dynamic library is something like a server that does not communicate by function
calls. On Windows it also allows LoadLibrary to succeed or fail according to whether the LispWorks dynamic library
initialized successfully or not.

14 LispWorks as a dynamic library

172

14.3.2 Initialization via InitLispWorks

Not using automatic initialization (that is, creating the dynamic library with automatic-init nil) allows using
InitLispWorks to relocate the image if necessary, and do any other initialization that may be required.

14.4 Relocation

LispWorks normally maps its heap on startup in the same place that it was when it was saved, and when it needs more
memory it maps this nearby. This applies when LispWorks is a dynamic library as well as for LispWorks executables.

This mapping can cause memory clashes with other software, which may be avoided by relocating LispWorks. Most of the
LispWorks implementations are relocatable though the details vary between platforms and between 32-bit LispWorks and 64-
bit LispWorks.

On Microsoft Windows and Macintosh, LispWorks detects and avoids memory clashes automatically. On other platforms,
you can relocate a LispWorks dynamic library (for all the relocatable implementations) if necessary by a suitable call to
InitLispWorks as described in 27.6 Startup relocation.

14.5 Multiprocessing in a dynamic library

Multiprocessing is started automatically in a LispWorks dynamic library. Therefore you can arrange for Lisp initialization
operations by adding process specifications to *initial-processes*.

For example, if you have a function like this:

(defun my-server ()
 (let ((s (establish-a-socket)))
 (loop (accept-connection s))))

you need to do something like:

(pushnew '("My server" () my-server) mp:*initial-processes*
 :test 'equalp)

before saving or delivering your library.

14.6 Unloading a dynamic library

Before a LispWorks dynamic library is unloaded, LispWorks should be made to `quit' cleanly, allowing it to clean up
resources that it uses.

When the LispWorks dynamic library is loaded by a main process which you (the LispWorks programmer) do not control,
then use dll-quit. If you control the main process, then use QuitLispWorks instead. For the details, see the respective
manual entries for dll-quit and QuitLispWorks.

14 LispWorks as a dynamic library

173

15 Java interface

The LispWorks Java interface allows you to:

• Define "Java Callers" which are Lisp functions that call Java methods or constructors, or access Java fields. You can
either define specific callers, or "import a Java class", which means automatically generating callers for all the class
public methods, constructors and fields.

• Make and access Java arrays.

• Make calls from Java into Lisp, either by calling Lisp directly or making proxies that implement some Java interface
("Lisp proxy"), and using a Lisp proxy where Java requires an object that implements an interface.

• Access Java objects.

• Integrate Java in a limited way with CLOS.

• Make socket streams using Java sockets. See 25.10 Socket streams with Java sockets and SSL on Android.

Calling into Java using the callers and accessing arrays does not require any specific Java code. Calling from Java into Lisp
requires having the com.lispworks.LispCalls class (supplied as a JAR file), and using methods from it.

The Java interface is a module which needs to be loaded by calling:

(require "java-interface")

and initialized as in documented in 15.1 Initialization of the Java interface.

The Java interface symbols are exported from the package LW-JI, documented in 39 The LW-JI Package.

The Java interface requires Java edition 6 or later.

15.1 Initialization of the Java interface

The Java interface is a module which needs to be loaded by calling:

(require "java-interface")

Before doing any calls from Lisp to Java or from Java to Lisp or creating any Java object from Lisp, the Java interface must
be initialized by a call to init-java-interface. init-java-interface can either connect to an already running Java
virtual machine, or load the JVM library and start it. It has various keyword arguments to set global values.

On Android and in dynamic libraries that were delivered with setup-deliver-dynamic-library-for-java with true
for init-java (the default), the system automatically calls init-java-interface on startup.

Merely defining callers to Java and proxies does not use Java. Importing classes needs Java to do the expansion, so will
require initializing the Java interface. See discussion in 15.3.2 Importing classes.

174

15.2 Types and conversion between Lisp and Java

15.2.1 Mapping of Java primitive types to and from Lisp types

The 8 primitive Java types map naturally to Lisp types:

Mapping from primitive Java types to Lisp types

Java Lisp

long, int, short, byte integer

double double-float

float single-float

char integer

boolean (member t nil)

The mapping from Lisp to Java is not always obvious, for example because a Lisp integer can map to long, int, short,
char or byte. In most cases, like method calls, the target Java type is known. In these cases, LispWorks allows integer in
the acceptable range for byte, short, int, long amd char, any Lisp float for float and double, t and nil for
boolean.

When the target is not known, like storing a value in a Java array object (that is type java.lang.Object[]) or using
lisp-to-jobject, LispWorks uses this mapping:

Mapping from Lisp when target Java type is unknown

Lisp Java

Integers that fit in 32 bits int

Integers that do not fit into 32 bits but fit into 64 bits long

Double floats double

Other floats float

t or nil boolean

Other Lisp values Cannot be converted.

LispWorks has a set of keywords and FLI types to match the primitive types, which can be used to specify these types, for
example as the type of an array. The keyword names are the Java name (uppercased), and the FLI type names are the Java
name preceded by J (and uppercased), exported from LW-JI. These are shown in the table below.

15 Java interface

175

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm

Keywords and FLI types matching primitive types

Java type Keyword FLI type Underlying FLI type

short :short jshort :short

long :long jlong :int64

byte :byte jbyte :byte

char :char jchar (:unsigned :short)

double :double jdouble :double

float :float jfloat :float

boolean :boolean jboolean Boolean, see below

int :int jint :int

Note: The Java type char (and hence the class Character) corresponds to UTF-16 code units. which is equivalent to
unsigned short. It does not correspond to Unicode characters, and therefore cannot be mapped to LispWorks characters.

Note: The Lisp values for the FLI type jboolean are nil and t, rather than integers. The conversion to/from the underlying
value of FLI type (:unsigned :char) is done implicitly when storing/loading the value.

15.2.2 java.lang.String

LispWorks deals specially with java.lang.String objects, converting them automatically to Lisp strings when receiving
them (return value of methods or arguments to calls into Lisp), and converting Lisp strings to java.lang.String when
passing them (argument to method calls, return values from calls into Lisp). It is therefore possible to think of strings as
another primitive type. The overhead associated with this conversion for short strings (tens of characters) is smaller than the
overhead associated with passing a Java non-primitive object. Even for larger strings, the fact that all the data in the string is
passed in one call without further Java/Lisp interaction make it an effective way of passing data.

15.2.3 Java non-primitive objects

All Java non-primitive objects are represented in LispWorks as foreign pointers of type jobject. jobject is a proper Lisp
type, that is you can use cl:typep and specialize methods on it. The actual Java class of the object is not consistently
represented, unless you explicitly ask for it using jobject-class-name. You can get a string describing the Java object in
the way that Java "thinks" (that is the result of toString) using jobject-string. If you need a Java null value, then you
can use the constant *java-null*.

Instances of standard-java-object are also considered to represent Java objects. standard-java-object instances
have a slot that contains the actual jobject, which is used when an instance of standard-java-object is passed to the
interface functions. In the text below, when argument is specified as "java-object" or "Java object", it can be either a
jobject or an instance of standard-java-object.

15.3 Calling from Lisp to Java

The simplest way to call Java methods and constructors and access Java fields is described in 15.3.1 Calling methods by
name.

Alternatively, you can define Java callers, which are named Lisp functions that call a specific method. There are two possible
approaches for defining the callers, described in 15.3.2 Importing classes and 15.3.3 Defining specific callers.

15 Java interface

176

http://www.lispworks.com/documentation/HyperSpec/Body/f_typep.htm

15.3.1 Calling methods by name

You can call Java methods by passing the full method-name as a string "package.class.method" to call-java-method

or call-java-static-method. You can also call a non-static Java method by passing its name as a string method to
jobject-call-method. The actual run time behavior is as described in 15.3.5 Actual Java call.

You can construct an object of a class by calling create-java-object, supplying the full class name followed by the
arguments to the constructor. The actual run time behavior is as described in 15.3.5 Actual Java call.

You can access fields without defining accessors using read-java-field and set-java-field. There is also
checked-read-java-field, which is like read-java-field but does not error on failure, check-java-field to
check whether a field exists, and java-field-class-name-for-setting to find the class of the value. You can also
access non-static Java fields by passing its name as a string field-name to jobject-field-value or its setter.

Note: Errors for missing methods or fields are signaled at run time, so you will not find a mistake in the method or class
name until you try to call it.

15.3.2 Importing classes

Importing a Java class means that the system generates definitions for all the public methods, constructors and fields for this
class. For example, to generate and evaluate the definition, execute:

(import-java-class-definitions "java.io.File")

And to write the definitions to a file:

(write-java-class-definitions-to-file "java.io.File" "filename.lisp")

The import macros and functions all take various keyword arguments to control exactly what they generate.

import-java-class-definitions would normally appear as a top level form in your source file, and when the file is
loaded it generates all the definitions. write-java-class-definitions-to-file can be used to generate all the
definitions and write them to a file, which is an ordinary Lisp source file that can be compiled and loaded as usual. There is
also write-java-class-definitions-to-stream, which writes the definitions to a stream, and
generate-java-class-definitions, which returns a list of the definitions, which may be useful sometimes (they are
actually used by import-java-class-definitions and write-java-class-definitions-to-file).

The actual definitions that the importing interface generates are the same as you would write yourself, using the appropriate
defining forms: define-java-caller, define-java-constructor, define-field-accessor. These are discussed
further in 15.3.3 Defining specific callers.

Importing has the obvious advantage that you do not need to type all the method names. It has two disadvantages:

• Generation of the definitions relies on having access to the class definition and running Java virtual machine (JVM),
which may or may not be a hassle. For example, if your code contains an import-java-class-definitions form,
it will need the JVM running and the class definition accessible when it is loaded as source or when it is compiled
(loading the binary file does not require the JVM).

If the requirement for the JVM is an issue, you can work around it using
write-java-class-definitions-to-file (or use write-java-class-definitions-to-stream), and use
the resulting file as your source code. The call to write-java-class-definitions-to-file requires Java, but you
need to do it only once, and it can be on a different computer to the one you develop on. For a public class (standard
Java, standard Android) you can even ask Lisp Support to create the file for you. This approach also allows you to edit
the definitions if you have any reason to. The definitions also contain the signatures of all the methods and constructors.

15 Java interface

177

• The other disadvantage of importing is that it "pollutes" your namespace with many definitions, of which you may be
needing only a few. To reduce the chances of clashes, the default setting creates a Lisp package for each Java package,
and uses a unique name for the package. This makes the code less Lisp-like. Using the keywords to import interface
allows you some control on the naming that it uses.

If you deliver your application without shaking (the default for levels 0 and 1), using import will also cause your
application to be larger that it needs to be. If you import many classes this difference may be significant. If you deliver
with shaking (default for level 2 or higher), the callers that are not used will get shaken out and so will not affect the size
of your application.

15.3.3 Defining specific callers

You define specific callers by using the various definers, which are typical defining macros, but the body is automatically
generated:

define-java-caller Defines a caller that calls a Java method.

define-java-callers Defines several method callers for the same class.

define-java-constructor

Defines a caller that calls a Java constructor method.

define-field-accesso
r

Defines callers to access (read and write) a field.

In addition, you can define callers dynamically at run time using the setup-* functions setup-java-caller,
setup-java-constructor and setup-field-accessor, which are functions that match the define-* macros above.

The setup-* functions effectively do exactly what the define-* macros do, but the code looks nicer with the macros, and
the LispWorks Editor can find your definitions.

Methods and constructors are similar enough that they are described here together. Constructors are by definition always
"static" in the Java terminology.

Defining a caller for a method or constructor defines a Lisp function that when called invokes the Java method. The Java
method is supplied by its class name and name (except constructors, which implicitly map to the constructor methods of the
class), which means that there may be more than one Java methods or constructor that are applicable.

For example:

Define a Lisp function my-probe-file which invokes the Java method java.io.File.exists:

(define-java-caller my-probe-file "java.io.File" "exists")

Define a Lisp function that calls one of the constructors of java.io.File:

(define-java-constructor my-make-file "java.io.File")

At run time, my-make-file will check which of the constructors of java.io.File matches the arguments, and then call
it.

See 15.3.5 Actual Java call for a description of how the callers actually work.

Defining a field accessor defines a Lisp function that reads the field value, potentially another Lisp function to set the value
(if it is not final), and a symbol macro that expands to calls to the getter or setter. For ordinary (non-static) fields, the getter
needs to be called with the object from which to read the value, and the setter must be called with the object and the value.
For static fields, the getter takes no arguments, and the setter takes the new value.

15 Java interface

178

15.3.4 Verifying callers

Compared to importing classes, explicit definitions have the advantages that they do not need Java running until run time, you
define only the callers you need, and you select the names of the Lisp functions. The main disadvantage is that you have to
type much more, and that you may have typing errors in the method names which are not reported during compilation.

The functions verify-java-caller and verify-java-callers are provided as a way to guard against such typing
errors. These functions need Java running, and they check whether the callers have matching Java methods, and return
information about missing methods. The intention is that at least during development, you will call verify-java-callers
at the beginning of the application and log the result, which will allow you to check whether any method is missing. It may
also be useful if you use classes whose definitions may change, for example when the Java code and Lisp code are developed
in parallel, or when you use non-standardized Java code.

verify-java-caller and verify-java-callers force the caching of run time information that the callers normally do
in their first call.

15.3.5 Actual Java call

When a Java caller is called the first time or a call without definition is done and not cached yet, the function finds the
relevant method(s), their arguments and return value types, and caches it (see verify-java-caller or
verify-java-callers for pre-caching). That includes finding the class, and then finding the relevant methods or
constructors. It then uses this information to decide which method is applicable, how to convert the argument to Java where
needed, and how to convert the return value back to Lisp. It also decides which JNI function to use to perform the actual call.

Before doing the call LispWorks checks whether the arguments are of the correct type, and in most of the cases can catch and
give Lisp errors as appropriate before calling into Java.

For an ordinary (non-static) Java method, the arguments to the Lisp function must start with the actual Java object for which
the method needs to be applied. The rest of the arguments to the Lisp function are passed to the method. Thus the number of
the arguments to the Lisp function needs to be one more than the number of (explicit) arguments to the Java method. The
invocation is virtual (normal Java invocation), which may mean that the actual Java method that is ultimately executed may
be defined in a subclass of the class that passed to the definer, if the object belongs to this subclass.

For static Java methods (including constructors) the given argument list is passed to the method.

The call to Java from Lisp catches all Java exceptions. When the Java code throws an exception, the Java caller catches it and
signals an error of type java-exception.

15.4 Calling from Java to Lisp

Calling from Java to Lisp requires the Java class com.lispworks.LispCalls, and Java code that uses methods from this
class. Currently all methods are static. com.lispworks.LispCalls is supplied by LispWorks in the file
8-1-0-0/etc/lispcalls.jar, except on Android where it is part of the 8-1-0-0/etc/lispworks.aar file. After
Java is initialized (see 15.1 Initialization of the Java interface), you can check whether the Java to Lisp calls are possible
(the class LispCalls is available) by using check-lisp-calls-initialized.

There are two mechanisms for calling from Java to Lisp: direct calls and using proxies. Direct calls means calling directly a
Lisp function from Java, passing the name of the symbol to funcall and the arguments. Using proxies meaning creating
proxies from Lisp, and then passing such Lisp proxies to places where the interface(s) that it implements are required.
Invoking a method on such proxy ultimately calls a Lisp function.

Direct calls are simple to use, and if you have a simple Java/Lisp interface can be all that you need. The proxies are needed
when you use somebody else's interface, for example implement callbacks to user interaction in Android. They are also
useful even if you write the Java side too to make a cleaner interface on the Java side, which is easier to switch between
different implementations.

15 Java interface

179

15.4.1 Direct calls

You can make direct calls from Java to Lisp using one of the call<type>[VA] static methods from LispCalls, which
have these signatures:

public static int callIntV(String name, Object... args)
public static int callIntA(String name, Object[] args)
public static double callDoubleV(String name, Object... args)
public static double callDoubleA(String name, Object[] args)
public static Object callObjectV(String name, Object... args)
public static Object callObjectA(String name, Object[] args)
public static void callVoidV(String name, Object... args)
public static void callVoidA(String name, Object[] args)

The <type> in call<type>[VA] specifies the return type, and V or A specify whether the arguments are supplied as
Variable arguments or Array. Otherwise the pairs of V and A methods behave the same.

All these methods apply the Lisp symbol which is named by the name argument to the arguments supplied by the Array or
the Variable arguments, and return the result.

Note that on the Lisp side you will need to keep the Lisp symbol when delivering, most conveniently by
hcl:deliver-keep-symbols (see the Delivery User Guide), and the name of the symbol is not interpreted using
cl:read.

See com.lispworks.LispCalls for full details.

15.4.2 Using proxies

Using proxies allows you to create from inside Lisp a Java proxy which implements one or more Java interfaces. The proxy
can then be used whenever an object that implements any of the interfaces is required. When a method is applied to a proxy,
it ultimately calls a Lisp function.

Creating a proxy in Lisp is done in two steps:

1. Defining a proxy, specifying:

(i) A name (a symbol).

(ii) The interfaces that it implements.

(iii) The Lisp functions that get called for each method.

(iv) A default function.

(v) Several other options.

Above, (i) and (ii) are obligatory, the other steps are optional.

Defining a proxy is done normally at load time by define-lisp-proxy. It is possible to define a proxy at run time
using setup-lisp-proxy. For example, defining a proxy that implements the onTouchListener interface,
specifying that when the method "onTouch" is invoked it causes the function text-view-on-touch-callback to be
called:

(define-lisp-proxy my-text-view-on-touch-proxy
 ("android.view.View.OnTouchListener"
 ("onTouch" text-view-on-touch-callback)))

15 Java interface

180

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_rd.htm

2. Making a proxy object using the name of a proxy definition by make-lisp-proxy or
make-lisp-proxy-with-overrides, or by calling inside Java the method
com.lispworks.LispCalls.createLispProxy. The result of making a proxy is a Java proxy object, which can be
used in Java. For example, assuming the definition above and that you have a View in mTextView:

Object listener = LispCalls.createLispProxy("MY-TEXT-VIEW-ON-TOUCH-PROXY");
// Check the type of listener to allow for errors in Lisp
if (listener instanceof View.OnTouchListener)
 mTextView.setOnTouchListener((View.OnTouchListener)listener);

This will cause the Lisp function text-view-on-touch-callback to be called whenever the View in mtextView is
touched.

Note: the result of make-lisp-proxy or make-lisp-proxy-with-overrides is "local", which means that it cannot be
used outside the dynamic scope of the call to Lisp from Java in which it was created. If it is created outside the scope of a call
from Java to Lisp, it must be used only in the thread that it was created.

When defining a proxy, you do not need to specify all the methods. You can specify a default function, which is called for
any method for which you did not specify a function. See for example the proxy lisp-othello-server-lazy in this
example, which does not specify any method, and instead specifies a default function that handles all of them:

(example-edit-file "android/android-othello-user")

When defining a proxy, it is also possible to specify that the Lisp functions should be called with an extra argument user-
data, which is associated with each specific proxy by passing :user-data to make-lisp-proxy or
make-lisp-proxy-with-overrides. This allows you to link each proxy with some of your data. If you do not specify
this option, the functions in the proxy need to use the arguments and global data to decide what to do.

It is also possible to "override" the Lisp function at run time, which means specifying that when a Lisp function for a method
should be invoked, another function is invoked instead. Overriding is specified by passing either of :overrides or
:overrides-plist to make-lisp-proxy, or by using make-lisp-proxy-with-overrides. The main advantage of
overriding is that it allows you to use run time closures, while the proxy definition itself allows only symbols. Overrides are
efficient and are simple to use. For example, with the definition above, you can override the callback by:

(let ((closed-something (creating-something)))
 (make-lisp-proxy 'my-text-view-on-touch-proxy
 :overrides-plist
 (list 'text-view-on-touch-callback
 #'(lambda(&rest args)
 (apply 'callback-with-something
 closed-something args)))))

which will cause a touch to invoke callback-with-something on closed-something and args.

Note that this example could easily be done using :user-data instead, but that will have to be specified "statically" in the
proxy definition, while overriding can all done dynamically when creating individual proxies.

The Java method com.lispworks.LispCalls.createLispProxy cannot do overriding, it must be done inside Lisp by
make-lisp-proxy or make-lisp-proxy-with-overrides.

To make it easier to detect typing errors in specifying the interface names and method names or specifying a Lisp function,
the functions verify-lisp-proxies and verify-lisp-proxy are provided to verify all proxies or only one,
respectively. Verification checks that all the specified functions are actually defined, and optionally also that all the methods
that are declared in the interfaces are defined. The latter check must be done with Java running. You will typically use it
when starting the application to check that all the proxies are OK, at least during the development phase.

The Lisp functions of the proxy are ordinary Lisp, but they need to return the correct value, unless the method has Void as its
return type. Returning the wrong value will call the java-to-lisp-debugger-hook (see init-java-interface) with an

15 Java interface

181

appropriate condition, and then return zero of the correct type (that is 0, 0d0, 0f0, Java false, or Java null) from the
method call.

The call to the Lisp function is wrapped such that trying to throw out of it does not actually finish the throw, and instead
returns zero of the correct type from the method call.

In some cases the method needs to throw some exception. The function throw-an-exception can be used to throw an
exception from inside a call to a proxy function.

15.5 Working with Java arrays

Java arrays are represented inside Lisp by a jobject or an instance of standard-java-object, like any other Java object.
The function java-array-element-type returns the element type of a Java array or nil if it is not an array, and it is fast
enough that it can be used as a predicate to determine whether a jobject represents an array.

java-array-length returns the length of a Java array.

java-primitive-array-element-type and java-object-array-element-type return the same values as
java-array-element-type for an array of primitive type or an array of non-primitive type respectively, otherwise they
return nil. They are fast and can be used as predicates to decide whether an array is of primitive type or not.

Java arrays of higher dimensions are represented recursively as vectors of vectors, which affects the way you use the
accessors.

15.5.1 Accessing a single element

The accessor jvref can be used to get and set (with cl:setf) the value in a Java "Vector" (that is, a one-dimensional array).
For a multi-dimensional array, jvref gets and sets the first level "Vector", in other words it returns another array of one less
dimension.

jaref can be used to get and set elements of arrays with any number of dimensions. If the number of dimensions given is
less than the rank of the array, it gets or sets the corresponding sub-array.

Both jvref and jaref can be used to access arrays of any type. jvref is slightly faster, and does not allow passing wrong
number of arguments.

Note: when accessing an element of a multi-dimensional array, jaref needs to get the sub-arrays for the sub-dimensions.
This means it is relatively inefficient when used to access elements in the same sub-array. It is more efficient to get the sub-
array and access it. For example, instead of:

(dotimes (z 10)
 (do-something (jaref java-array 3 4 z)))

you should use:

(let ((sub-array (jaref java-array 3 4)))
 (dotimes (z 10)
 (do-something (jvref sub-array z))))

Assuming java-array is not a primitive array, it is even better to use the multiple access functions:

(let ((sub-array (jaref java-array 3 4)))
 (map-java-object-array 'do-something sub-array :end 10))

15 Java interface

182

http://www.lispworks.com/documentation/HyperSpec/Body/a_null.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

15.5.2 Making Java arrays

The function make-java-array is used to make Java arrays of any rank and type. It takes as first argument a class specifier,
followed by the dimension(s). The class specifier specifies the type of the elements in the array, which may be any type
(both primitives and proper classes).

It is also possible to create primitive arrays with data copied from Lisp arrays using lisp-array-to-primitive-array.

15.5.3 Multiple access functions

The multiple access functions are used to access elements in one-dimensional arrays ("Vectors"). They are much more
efficient than accessing each element separately.

Multiple access of primitive and non-primitives is done in a different way: non-primitive arrays are accessed by
map-java-object-array, which maps a function on the objects in the array. Primitive arrays are accessed by
primitive-array-to-lisp-array and lisp-array-to-primitive-array (copy to or from a Lisp array) or
get-primitive-array-region and set-primitive-array-region (copy to or from a foreign array). String arrays
are regarded as Object arrays for this distinction.

map-java-object-array maps a function across an array. It has keyword arguments to control the actual operation,
including specifying the range and direction, writing back the result of the call, and collecting the values. When called on
multi-dimensional arrays, map-java-object-array accesses the top level elements, that is sub-arrays of one less
dimension.

primitive-array-to-lisp-array and lisp-array-to-primitive-array take a Java primitive array or a Lisp array
respectively, and copy the elements to a Lisp array or Java primitive array. Both functions can copy into an existing array or
create the array themselves. Keyword arguments allow you to specify the range to copy.

Both primitive-array-to-lisp-array and lisp-array-to-primitive-array require the Lisp array element type
to match exactly the Java array element type. The corresponding types are:

Java array element type Lisp array element type

:int (signed-byte 32)

:long (signed-byte 64)

:short (signed-byte 16)

:byte (signed-byte 8)

:double double-float

:single single-float

:char (unsigned-byte 16)

:boolean (unsigned-byte 8)

get-primitive-array-region and set-primitive-array-region take a primitive array and copy part of it to or
from a foreign array ("buffer"), which is passed as an FLI pointer.

15 Java interface

183

15.6 Utilities and administration

Use jobject-p to test whether a Lisp object is a jobject or not.

Use lisp-java-instance-p to test whether the argument is an instance of standard-java-object.

get-jobject returns the jobject for a Java object, nil otherwise, and can be used as predicate to determine whether the
argument is a valid Java object. Note that if you have an instance of standard-java-object, get-jobject may return
nil if the slot is not set. ensure-is-jobject is like get-jobject, but signals an error if its argument is not a jobject.

jobject-class-name can be use to find the Java class raw name of a Java object. jobject-pretty-class-name makes
it "pretty", which matches how it appears in the Java code.

jobject-string returns a string representing the object the way Java wants to represent it (the result of
Object.toString).

jobject-to-lisp and lisp-to-jobject can be used to convert between Lisp and Java objects of primitive types, which
may sometimes be useful.

jvalue is an FLI type descriptor corresponding to the JNI C type jvalue. The functions jvalue-store-jboolean,
jvalue-store-jbyte, jvalue-store-jchar, jvalue-store-jshort, jvalue-store-jint,
jvalue-store-jlong, jvalue-store-jfloat, jvalue-store-jdouble and jvalue-store-jobject can be used
to set values in a jvalue. In typical usage of the Java interface, you will not need to use jvalue at all.

find-java-class can used to find the Java class object for class specification, which normally is the string representing
the full class name, but can be also be a keyword for specific primitive types.

jobject-of-class-p can be used to verify whether a Java object is an instance of a class or any of its subclasses.

reset-java-interface-for-new-jvm eliminates cached Java objects from internal Lisp structures. It is intended to be
used if you need to start a JVM, stop it and start again. Currently there is no interface to stop the JVM.

intern-and-export-list, default-name-constructor, record-java-class-lisp-symbol,
ensure-lisp-classes-from-tree and ensure-supers-contain-java.lang.object are utility functions that are
used by the definition generation code, and appear in the output of the importing interface
(write-java-class-definitions-to-file, write-java-class-definitions-to-stream and
generate-java-class-definitions). Their purpose is to be used by the importing interface, but if you find them
useful you can call them directly.

get-superclass-and-interfaces-tree returns a tree of the superclasses and interfaces of a Java class. It is also used
internally by the importing interface.

send-message-to-java-host can be used to send a message (a string) to the Java host. This is especially useful when the
Lisp is used inside Java, for example on Android, so Java needs to do the displaying of messages to the user.

The variables *to-java-host-stream* and *to-java-host-stream-no-scroll* are output streams that send
anything that is written to them to Java (by calling send-message-to-java-host). They can be used anywhere an output
stream is needed to make the output go to the Java host.

The Java interface currently may generate at run time specific Java interface conditions of the types below.

Conditions with names ending *-exception are all subclasses of java-exception, and correspond to an exception raised
while calling Java. java-exception has two subclasses: java-normal-exception for exceptions that you may get
during normal execution, and java-serious-exception, for exceptions that indicate the system is broken in some way.
java-serious-exception should never happen, while java-normal-exception may happen in normal code.

The other conditions correspond to errors which are detected inside Lisp.

The java-exception class has three readers, java-exception-string, java-exception-java-backtrace and

15 Java interface

184

java-exception-exception-name, which you can use when handling the condition. The macros
catching-java-exceptions and catching-exceptions-bind can be used to catch Java exceptions instead of
signaling an error. Your code can then access the Java exception directly.

java-interface-errorSuperclass of the *-error conditions.

java-definition-erro
r

Superclass of java-class-error and java-method-error.

java-class-error Class not found.

java-method-error Method not found.

java-field-error Field not found, or was defined with the wrong static-p value.

java-field-setting-error

Setting a field failed, either because it is final or an unacceptable value was supplied.

call-java-method-error

call-java-method or call-java-static-method failed to find the method.

jobject-call-method-error

jobject-call-method failed to find the method.

create-java-object-error

create-java-object failed to find constructors.

java-program-error The Java interface detected an error at runtime.

java-array-error Superclass of all array errors.

java-out-of-bounds-error

Bad index passed to jvref or jaref, or bad start and end passed to other functions accessing
arrays.

java-storing-wrong-type-error

Trying to store value of wrong type into a Java array.

java-exception Superclass of the *-exception conditions.

java-normal-exceptio
n

Superclass of normal exceptions.

java-serious-exception

Superclass of serious exceptions.

Normal exceptions:

field-exception Superclass of field exceptions.

field-access-exception

Exception accessing a field (maybe wrong type of value).

15 Java interface

185

java-method-exceptio
n

Exception inside a call to a Java method.

Serious exceptions:

java-id-exception Failed to find JNI ID for a method.

java-low-level-exception

Failure in some JNI function.

15.7 Loading a LispWorks dynamic library into Java

When a LispWorks application is delivered as a dynamic library and is loaded by Java, the Java interface must be initialized
at some point to make it possible to use it for interfacing with Java. Lisp code which does not interact with Java will work
without initializing Java. This includes the initialization function (the first argument to deliver), which can do any required
Lisp initialization. However, calls to Java and accepting calls from Java require initialization of the Java interface.

The function setup-deliver-dynamic-library-for-java is used to set this up. In the simple case, you just call
setup-deliver-dynamic-library-for-java without any arguments, and then call deliver. When the resulting
delivered Lisp image is loaded into Java, Lisp is initialized as usual, and then init-java-interface is automatically
called with the host's Java virtual machine.

setup-deliver-dynamic-library-for-java forces the delivered image to be saved as a dynamic library, which you
can load from Java by calling System.loadLibrary or System.load. The dynamic library receives the caller's Java
virtual machine, initializes the Java interface (unless init-java is passed as nil) and then calls its function argument if it is
non-nil.

The deliver startup function (the first argument to deliver) is called before Java is initialized, so any code that needs to run
before initializing the Java interface should be in this function.

By default the initialization is done synchronously, that is by the time that the Java method that loads the LispWorks delivered
library returns, LispWorks has finished initializing and is ready to receive calls from Java and other foreign calls. As a result,
the loading code on the Java side will hang until the initialization finishes.
setup-deliver-dynamic-library-for-java can be told to make initialization asynchronous, that is the loading
method just starts the initialization and returns immediately. Calls from Java into Lisp that occur before Lisp is ready will
wait until Lisp is ready, and you can check if Lisp is ready by using the Java method
com.lispworks.LispCalls.waitForInitialization.

setup-deliver-dynamic-library-for-java works by internally defining a foreign-callable for JNI_OnLoad and
exporting it. You must not define this yourself when using setup-deliver-dynamic-library-for-java.

If you have your own C code that uses the JNI, you can pass the JVM to Lisp yourself via a foreign-callable (or return it from
a lisp-to-foreign call), and call init-java-interface with it. In this case, you must not use
setup-deliver-dynamic-library-for-java.

The function get-host-java-virtual-machine can be used to get the Java virtual machine that was passed from Java to
the internally defined JNI_OnLoad, and can be used as a predicate to test if JNI_OnLoad was called. Thus you can create a
dynamic library that may be loaded by Java or by a conventional mechanism, and use get-host-java-virtual-machine
to distinguish between these two situations.

There is a minimal example of delivering LispWorks for Java in:

(example-edit-file "java/lisp-as-dll/README.txt")

15 Java interface

186

15.8 CLOS partial integration

The integration of CLOS is mainly the fact that the functions that take a jobject also accept a CLOS instances of the class
standard-java-object, which has a slot containing the jobject to use. That includes arguments to Java callers, Java
arrays in the array interface, and return values from Lisp to Java. However, values that come from Java to Lisp (return values
of caller, arguments in Java to Lisp calls), are always a jobject or primitives.

You can create a subclass of standard-java-object either by the usual way of including it (or a subclass of it) in the
superclasses of your class, or by using the keywords arguments to importing functions and macro. To be able to construct a
jobject for a class without the constructor, the class-name must be passed to define-java-constructor. This is done
automatically by the importing functions.

When defining the class using the importing function, you can force it to create the complete hierarchy of superclasses to
match all Java superclasses and implemented interfaces. This creates overhead and is not necessarily useful, but in some
circumstances it may be what you need. You can also force the hierarchy explicitly by using
ensure-lisp-classes-from-tree.

The jobject in an instance of standard-java-object can be read and written by the accessor
java-instance-jobject. Alternatively you can call create-instance-jobject or
create-instance-jobject-list to create the jobject for a given instance.

A simple interface for making an instance and its jobject together is make-java-instance, but this does not provide a
way to pass arguments to make-instance. The initarg :construct to make-instance on a subclass of
standard-java-object can be used to make the instance and the jobject. Note, however, that the jobject is created
in the cl:initialize-instance method of standard-java-object, which may or may not be called before your
cl:initialize-instance methods (depending on the order of the superclasses). To ensure that the jobject is created
after the CLOS instance initialization is complete, do not pass the :construct initarg, and instead call
create-instance-jobject or create-instance-jobject-list afterwards.

The argument to create-instance-jobject-list and to the :construct initarg is either a list of arguments to the
constructor, or t, which means use the default arguments list. The default arguments list is created by calling
default-constructor-arguments on the instance. The default method returns nil, which is good enough for some
Java classes, but not all. Note that if you pass :construct to make-instance, default-constructor-arguments
will be called on the instance before all the cl:initialize-instance methods have been called, which may be a problem
if it depends on some values that may be put in by other cl:initialize-instance methods. To avoid this issue use
create-instance-jobject-list with t on the result of make-instance.

If you have a jobject, and there is a CLOS class defined for its Java class, you can create a CLOS instance for it using
create-instance-from-jobject. create-instance-from-jobject finds the class using the record that is created
by record-java-class-lisp-symbol. The call to record-java-class-lisp-symbol is done automatically by the
importing interface, but you can also call it directly.

15.9 Java interface performance issues

Both Java and Lisp do memory management on their objects, which causes the interface between them to be problematic.
The result is that calls between Java and Lisp are more expensive than calls from and to C, and that keeping a pointer to a
Java object (jobjects) in Lisp adds overhead for both sides.

In general, code that needs to be efficient should not make calls between Lisp and Java. For interactive response on a mobile
device, as a rough guide, if you have more than 100 calls between Lisp and Java per user gesture, you should reduce the
number of such calls, or move the processing to another thread, so that the GUI is still responsive.

Keeping pointers to a Java object in Lisp (jobjects) creates an overhead both for Lisp (which needs to maintain a record so
it can tell Java when it is free), and for Java. It is therefore a bad idea to keep large number of pointers to jobject in Lisp.
As a rough guide, when you reach 100 objects you should consider changing the interface.

15 Java interface

187

http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm

Accessing the first dimension of an array can be done much more efficiently by the multiple access functions than the single
element accessors. When accessing a multi-dimensional array, accessing more than one element in a sub-array can be done
much more efficiently by getting the sub-array and accessing it instead of accessing via the top array.

If you pass to Lisp an array of Objects where Lisp goes through many of them and just reads one or two values, it is probably
faster to put these values into a primitive array or string and pass this to Lisp instead. This avoids the creation of a jobject
and call(s) into Java for each object, which would be much more expensive than the allocation of a primitive array and filling
it in Java. The same is true in the other way.

If you need to pass a very large (megabytes) Array or String between Java and Lisp, it may be better to write it to a file and
pass the filename.

15 Java interface

188

16 Android interface

To use LispWorks for Android Runtime, you need to have at least a minimal Android project written in Java, to load and
initialize LispWorks. CAPI is not supported on Android, so any GUI part will need to be written in Java too.

To use the Android interface you need to deliver your application by the special image
lispworks-8-1-0-arm-linux-android. This image does not contain the GUI part of LispWorks, but contains all the
non-GUI parts.

This special image is an ARM image, and must be run on ARM architecture. That can be either an ARM machine, or an
ARM emulator. To deliver a LispWorks for Android Runtime image using the QEMU emulator, you run the special image
using the via the shell script examples/android/run-lw-android.sh.

The Android interface relies on the Java interface, which is already loaded into the special image. You will typically also use
the Java interface in your own code to make calls to Java methods, and define Lisp proxies that can be used inside Java,
though in principle the whole interface may be done via direct calls from Java into Lisp, without using the Java interface
explicitly.

The interface for Android includes the following:

• The function deliver-to-android-project, which is the function that you use to deliver LispWorks code for
Android. The files delivered are a dynamic library and a Lisp heap, which can then be loaded by and initialized by the
Java com.lispworks.Manager.init method. By default it delivers the library and heap directly into the directory
structure of an Android project.

• An AAR file containing a few classes in the com.lispworks package to support the Java/Lisp interface. This includes
these classes:

com.lispworks.Manager, which defines the method com.lispworks.Manager.init to load and initialize
LispWorks, error reporting interface and some basic utilities.

com.lispworks.LispCalls, which defines direct callers into Lisp, and support for Lisp proxies (which are Java
proxies that call Lisp functions). LispCalls is really part of the general LispWorks Java Interface.

com.lispworks.BugFormLogsList and com.lispworks.BugFormViewer, which are two activities to help
display errors during development.

• A few Android-specific interface functions: android-funcall-in-main-thread,
android-funcall-in-main-thread-list, android-get-current-activity and android-main-thread-p.

16.1 Delivering for Android

To use LispWorks in an Android project, the Android project needs the following:

1. The LispWorks Android archive file lispwors.aar. This defines the support classes in the Java package
com.lispworks. This file is part of the LispWorks distribution, and can be found in the etc directory in the LispWorks
distribution:

(lispworks-file "etc/lispworks.aar")

You need to add this file to your project. In Android Studio, you should follow the instructions in the Android Studio
guide, section "Add your library as a dependency" in Create an Android library. In the first step, use the "Add the
compiled AAR" branch, that is use New Module.

189

https://developer.android.com/studio/projects/android-library#AddDependency

2. The two files generated by deliver-to-android-project (the Lisp heap and the dynamic library).

The Lisp heap needs to be in the assets directory of the APK, so in Android Studio with typical settings it needs to be
in the assets directory of one of the source sets.

The dynamic library needs to be in the appropriate architecture sub-directory (armeabi-v7a for ARM 32-bit,
arm64-v8a for ARM 64-bit, x86 for x86 32-bit, x86_64 for x86 64-bit) under the libs directory in the APK, so in
typical Android Studio settings it needs to be in the correspondingly named sub-directory under the jniLibs directory
of one of the source sets.

deliver-to-android-project is intended to simplify the process of delivering into an Android Studio project, and if
you pass the project directory or a module directory, it puts the Lisp heap and dynamic library in the correct place for
Android Studio to find them. If you pass the project directory, it creates these files:

ARM 32-bit <project-directory>/app/src/main/assets/li
bLispWorks.so.armeabiv7a.lwheap
<project-directory>/app/src/main/jniLibs/a
rmeabi-v7a/libLispWorks.so

ARM 64-Bit <project-directory>/app/src/main/assets/li
bLispWorks.so.arm64v8a.lwheap
<project-directory>/app/src/main/jniLibs/a
rm64-v8a/libLispWorks.so

x86 32-bit <project-directory>/app/src/main/assets/li
bLispWorks.so.x86.lwheap
<project-directory>/app/src/main/jniLibs/x
86/libLispWorks.so

x86 64-Bit <project-directory>/app/src/main/assets/li
bLispWorks.so.x86_64.lwheap
<project-directory>/app/src/main/jniLibs/x
86_64/libLispWorks.so

Note: You can develop your application using only one architecture of LispWorks (32-bit or 64-bit, ARM or x86), but before
uploading to Google Play, you probably want to support both ARM architectures. Simply including the files for both ARM
architectures in single APK (by running deliver-to-android-project on each architecture) will work, but you may
want to reduce the size of the APK. See 16.1.1 Configuration for Separate APKs for different architectures for ways to
deal with that.

The lispworks.aar file is required to tell Android Studio (or another Java IDE) about classes in the com.lispworks Java
package, so you need it while working on the Java code that interfaces with Lisp.

The heap and dynamic library are needed only when you actually build the project. At run time, they are accessed only by
com.lispworks.Manager.init, which loads the library, retrieves the heap from the assets and then calls into the library
to initialize LispWorks.

Once these three files are in place, the Android project can be built and installed like any Android project. To use LispWorks,
the method com.lispworks.Manager.init must be called to initialize LispWorks. If library-name was passed to
deliver-to-android-project, then com.lispworks.Manager.init must be called with a matching name,
otherwise the default "LispWorks" is used. com.lispworks.Manager.init can be called at any point during the lifetime
of the Android app.

com.lispworks.Manager.init is asynchronous, in other words by the time it returns Lisp is not ready yet.
com.lispworks.Manager.init optionally takes a Runnable argument, which is called when LispWorks is ready.
Alternatively the method com.lispworks.Manager.status can be used to determine when LispWorks is ready. See the
entry for com.lispworks.Manager.init for more details.

16 Android interface

190

com.lispworks.Manager.init loads LispWorks and initializes it. Apart from standard initialization and starting
multiprocessing, the startup function also initializes the Java interface using init-java-interface, passing it the
appropriate arguments. That includes passing the keyword :report-error-to-java-host, which makes the function
report-error-to-java-host invoke the user Java error reporters, and the keyword :send-message-to-java-host

which makes the function send-message-to-java-host call the Java method addMessage. See 41 Android Java
classes and methods for the details.

The startup functions also set up a global "last chance" internal debugger hook, which is invoked once the debugger actually
gets called (after any hooks you set up like error handlers, debugger wrappers and cl:*debugger-hook*). The hook
reports the error to the Java host (that is, invokes the user error reporters) and calls cl:abort. If you did not define a
cl:abort restart, that will cause the current process to die, unless it is inside a call from Java, where it will cause this call to
return. The return value is a zero of the correct type (see in 15.4.1 Direct calls and 15.4.2 Using proxies).

Once initialization finished, if a function was passed to deliver-to-android-project as its function argument, it is
invoked asynchronously, and then the Runnable which you passed to com.lispworks.Manager.init (if any) is invoked.
From this point onwards, Lisp is ready to receive calls from Java, and can make calls into Java.

On Android when doing GUI operations it is essential to do them from the GUI thread, which is the main thread on Android.
The functions android-funcall-in-main-thread and android-funcall-in-main-thread-list can be used to
invoke a Lisp function on the main thread. To facilitate testing, these functions are also available on non-Android ports.

There is no proper debugger on Android itself, so it is important to ensure your code is working before delivering.

16.1.1 Configuration for Separate APKs for different architectures

The dynamic library and Lisp heap files that deliver-to-android-project generates are architecture specific, that is
they are either 32-bit or 64-bit and either ARM or x86, depending on the image in which deliver-to-android-project

was invoked. The architecture can be 32-bit or 64-bit ARM, which correspond to the armeabi-v7a or arm64-v8a Android
ABIs respectively, or 32-bit or 64-bit x86, which correspond to x86 and x86_64 respectively.

In most of cases, you will want your application to be compatible with both ARM ABIs, because Google Play requires
compatibility with arm64-v8a (from September 2019), but at the moment many devices are still armeabi-v7a (see
Android Developers Blog(19 December 2017): Improving app security and performance on Google Play for years to
come). Therefore you will need to deliver on both architectures.

Incorporating all architectures into the same APK works (creating a "universal APK"), and this is the simplest solution. For
this, you just need to deliver all architectures to the project directory, and both will be incorporated into the APK and work as
expected.

The problem with incorporating both ARM architectures is that the delivered Lisp heap files are large (depending on what
your application does and how it is delivered, but typically 5 - 10 MB and can be larger), so the APK that the end user will
download is large too. It is possible to reduce the size of the APK that the end user downloads by creating several APKs, one
for each ABI and containing only the corresponding Lisp heap, so each APK will be much smaller than the universal APK.
In this case, Google Play will check the device before downloading, and download only the appropriate APK that matches the
ABI of the device.

Android Studio has a mechanism to create such separate APKs, which is the splits.abi block (see Build multiple APKs).
However, we did not find a simple way to specify which Lisp heap file to include from the assets directory for the
different ABIs. Thus another mechanism is needed, and you can choose one of the following:

1. Probably the best approach is the flavors mechanism that is used in the OthelloDemo example, and is discussed in 16.1.2
ABI splitting using flavors in the OthelloDemo. This has the advantage that it involves a simple change to the
build.gradle file using well documented features of Android Studio, and it is easy to see which files go into which
APK. Unless you have a reason not to use this mechanism, we recommend that you use it. This will also allow x86
builds to be incorporated as well.

16 Android interface

191

http://www.lispworks.com/documentation/HyperSpec/Body/v_debugg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_abort.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_abort.htm
https://android-developers.googleblog.com/2017/12/improving-app-security-and-performance.html
https://android-developers.googleblog.com/2017/12/improving-app-security-and-performance.html
https://developer.android.com/studio/build/configure-apk-splits

2. You can build the APKs in separate projects for each architecture that have the same applicationId, with a
sourceSets block in build.gradle to share all the sub-directories of a common source set. The projects will also
have their own assets and jniLibs in their main source sets and you can then deliver LispWorks to the separate
projects' main source sets. In this case you will not need the splits.abi block, but the project-path argument of
deliver-to-android-project will need to be different between the different architectures. This option is useful if
there are substantial differences between the application versions for each architecture.

3. If you are proficient with Gradle, you can write Gradle code that deals with the ABIs. Your code will need to check
which ABI is built (armeabi-v7a or arm64-v8a), and ensure that only one of the Lisp heaps is packaged in the APK:
the one ending with .armeabiv7a.lwheap for the armeabi-v7a ABI, and the one ending with .arm64v8a.lwheap

for arm64-v8a. Once you have this Gradle code, you just need to add the splits.abi block with the two ABIs to
create the two separate APKs. This code will also need to set the versionCode appropriately, because the APKs must
have a different value for this to be considered as different by Google Play.

4. If you build APKs using scripts, you can add some commands at the beginning of the scripts to ensure that only the
appropriate Lisp heap is in the assets directory, maybe copying it from some other directory. This will also allow you
to just use the splits.abi block. Again, you will also need to do something about making a different versionCode
for each APK.

5. You can manage the Lisp heap files and versionCode by hand. This the simplest but most laborious and most error-
prone approach. You still need the splits.abi block.

6. As long as the vast majority of Android devices still support armeabi-v7a (32-bit), you can try to "cheat". Build only
the armeabi-v7a version of your application with a versionCode greater than 1, and also create a dummy APK with
the same applicationId as your application with versionCode 1 but without any libraries (this dummy needs to be
created only once). Then upload your application's APK and the dummy APK. Since the dummy APK does not have
libraries, it will be regarded as supporting all architectures, so will satisfy the Google Play requirement of supporting
arm64-v8a. However, Google Play will use the armeabi-v7a APK for all devices that support that ABI because its
versionCode is greater than 1, and the dummy APK will be used only in devices that do not support armeabi-v7a.
We have not tested this.

16.1.2 ABI splitting using flavors in the OthelloDemo

See 16.4 The Othello demo for Android for details about running the OthelloDemo example.

The example uses flavors to create a separate APKs for each ABI (armeabi-v7a, arm64-v8a, x86 and x86_64), most
importantly to avoid packaging unneeded heaps (for the other ABIs). This is implemented by the following lines in the
build.gradle file of the app module (android/OthelloDemo/app/build.gradle):

flavorDimensions "abi"
productFlavors {
 arm64v8a {
 dimension "abi"
 versionCode 50004
 }
 armeabiv7a {
 dimension "abi"
 versionCode 10004
 }

 // These are for the emulator (or x86/x86_64 device
 // if you can find one)
 x86_64 {
 dimension "abi"
 versionCode 30004
 }

 x86 {
 dimension "abi"

16 Android interface

192

 versionCode 20004
 }

The lines above define a "dimension" called abi, and adds four flavors for it: arm64v8a, armeabiv7a, x86 and x86_64.
When Android Studio builds with one of the flavors, it will also look for files in an additional flavor-specific "source set"
directory app/src/arm64v8a, app/src/armeabiv7a, app/src/x86 or app/src/x86_64, which are initially empty.
The flavors also define the different versionCode for each flavor, which is sufficient as long as there are no other
dimensions that need multiple APKs for the same application.

Note: These flavor names arm64v8a, armeabiv7a, x86 and x86_64 are not prescribed by Android Studio, but they are
what deliver-to-android-project looks for when deciding where to write the Lisp heap and dynamic library files.
Using them allows the call to deliver-to-android-project in LispWorks to be simpler and to be the same on all
architectures. You could use different flavor names, but then the arguments to deliver-to-android-project would
need to be different between the architectures to ensure that it writes the files in the correct directory. The names of the
"source set" directories would also need to match the names used for the flavors.

The demo calls deliver-to-android-project with its project-path argument being the root project path. By design,
when it runs on ARM 64-bit it looks for app/src/arm64v8a/ in the project directory and puts the files in it if it exists.
Similarly, it looks for app/src/armeabiv7a/ on ARM 32-bit, app/src/x86 on 32-bit x86 and app/src/x86_64 on 64-
bit x86. Therefore, the APK for the arm64v8a flavor will contain only the 64-bit heap and library, and similarly for the
APKs for the other flavors will contain only the corresponding heap and library.

The APKs are recognized by Android and Google Play as ABI-specific because of the location of the dynamic libraries.
deliver-to-android-project puts the ARM 64-bit library in the jniLibs/arm64-v8a/ sub-directory under the
arm64v8a "source set" directory, so Android Studio packages it in libs/arm64-v8a/ inside the arm64v8a APK, which
marks this APK for Google Play as an APK for the arm64-v8a ABI that can be used only on 64-bit ARM devices. Similarly,
deliver-to-android-project puts the ARM 32-bit library in jniLibs/armeabi-v7a/, it is packaged in
libs/armeabi-v7a which marks the APK for the armeabi-v7a ABI that can be used on any ARM device that supports
32-bit. The thing same happens for the x86 and x86_64 ABIs.

If you have other features that need to be different between the ABIs, they can be added in these flavors too, either as files in
the "source set" directories or as properties inside the flavor block in build.gradle.

With this flavors mechanism, you do not need the splits.abi block, which would just increase the number of build
variants, some of which will be non-functional (for example when armeabiv7a is paired with arm64-v8a). If you have
your own foreign libraries, you have two options:

• Put your libraries together with the Lisp generated library under app/src/arm64v8a/jniLibs/arm64-v8a/,
app/src/armeabiv7a/jniLibs/armeabi-v7a/, app/src/x86/jniLibs/x86/ or
app/src/x86_64/jniLibs/x86_64/ as appropriate.

• Put the libraries in the usual place under app/src/main/jniLibs/, add the splits.abi block to the
build.gradle file, and just ignore the non-functional build variants. You can also filter out the non-functional build
variants using the variantFilter block.

In addition, the flavors make it easy to to place the files generated by deliver-to-android-project in directories
outside the directory tree of the project, without interfering with other features of the project. You can do this by using the
sourceSets block to point Android Studio to some other directories. The example build.gradle file contains a
commented out sourceSets block, which you can include if you want to use this mechanism. You will have to edit the
actual setRoot paths to match the setup of the your machine.

Note: if you remove the flavors from the example or rename them, you have to also ensure that the directories named
arm64v8a, armeabiv7a, x86 and x86_64 do not exist, because deliver-to-android-project uses the existence of
these directories as a flag that it should use it. It does not check the build.gradle file.

16 Android interface

193

16.2 Directories on Android

On Android the temp directory that is used by default by open-temp-file and similar functions is the cacheDir of the
application context. In principle the system can remove files from this directory when it needs disk space. The
documentation for Android says that you should not rely too much on that, and avoid accumulating files in this directory.

LispWorks puts files with names starting with "lw" in this directory, so your code should avoid creating filenames starting
with "lw".

get-folder-path can be used to find useful directories. :appdata for private directory, :documents for "user homedir"
and :common-appdata for the external directory are the most useful keywords to pass. On Android get-folder-path

can also be used to access the standard Android directories like the music and movies directories.

The function cl:user-homedir-pathname on Android returns the result of:

(sys:get-folder-path :documents)

16.3 Writing debugging messages

For debugging purposes, the functions write-to-system-log and format-to-system-log are especially useful on
Android, because you can see their output in the Logcat in Android Studio. The functions send-message-to-java-host
and format-to-java-host and the variable *to-java-host-stream* may also be useful, because they allow you to
either invoke a Java handler or write into an android TextView.

16.4 The Othello demo for Android

The Othello demo is a simple Android app showing the basics of using the LispWorks for Android Runtime. It is a full
Android project that can be imported into Android Studio.

The application plays the Othello game as an example of an application. When delivering "with Lisp" (see 16.4.2 Delivering
LispWorks to the project below), it also allows the user to type and evaluate Lisp forms. This is useful during development.

The example also demonstrates how to create two separate APK files, one for ARM 64-bit machines and one for ARM 32-
bit. This is useful to reduce the size of the APK that users need to load. For playing with the demonstration, you need only
one of the architectures, so can skip steps that are specific to one of the architectures. See 16.1.2 ABI splitting using flavors
in the OthelloDemo for a discussion of this mechanism in the demonstration.

There following file contains information about the example:

(example-edit-file "android/README.txt")

To try the demo, you need to do these steps:

1. Create an Android Studio project containing the demo Android code.

2. Deliver the LispWorks application to it.

3. Build and install the application and run it.

These steps are described in detail in the following sections.

16 Android interface

194

http://www.lispworks.com/documentation/HyperSpec/Body/f_user_h.htm

16.4.1 Creating an Android Studio project

The Android project code is in the OthelloDemo directory, which is the directory examples/android/OthelloDemo

inside the LispWorks distribution. You need to make a project with this code.

First, copy the contents of OthelloDemo directory recursively to some other directory where Android Studio can write (this
is needed because the examples directory is supposed to be read-only). The new copy is referred to below as the "project
directory".

In Android Studio, select File -> New -> Import Project..., or the "Import project" item in the "Welcome to Android Studio"
dialog, (in Android Studio 3.3.1, the exact text of the item is "Import project (Gradle, Eclipse ADT, etc.)"). This raises a
dialog asking for the project to import. Enter the full path of the project directory that you copied above. Once you have
imported the project, it can be built and run, but it does not have the Lisp parts yet, so the application just gives an error on
start up that it fails to find the library. You will need to deliver the Lisp part as described in 16.4.2 Delivering LispWorks to
the project below before the application will work.

16.4.2 Delivering LispWorks to the project

To deliver LispWorks, copy one of the build script files deliver-android-othello.lisp or
deliver-android-othello-with-lisp.lisp from the examples/android directory in the LispWorks distribution.
In the copied file, change the value of the variable *project-path* to point to your project directory, that is the copy of
OthelloDemo from the previous section. For example:

(defvar *project-path* "~/my-workspace/LispWorksRuntimeDemo/")

You will then use your edited copy of the build script as the -build command line argument to LispWorks.

The Android delivery images are called lispworks-8-1-0-arm-linux-android,
lispworks-8-1-0-arm64-linux-android, lispworks-8-1-0-x86-linux-android and
lispworks-8-1-0-amd64-linux-android, which must be run on an appropriate architecture on Linux or macOS. The
images can be run using an emulator such as QEMU if necessary using the script
examples/android/run-lw-android.sh as follows:

run-lw-android.sh -build <path-to-a-modified-copy-of>/deliver-android-othello.lisp

If you run this on an x86 Linux machine it will also build images for the 32-bit and 64-bit x86 architectures. To run these
with the x86 Android Emulator, you will also need to uncomment the x86 flavors in the Gradle file app/build.gradle
inside the Android project.

See deliver-to-android-project for details of the delivery process. Note that the script run-lw-android.sh tries to
deliver all four combinations of 64-bit/32-bit and x86/ARM . This creates two files for each architecture (relative to the
project directory):

16 Android interface

195

ARM 32-bit app/src/armeabiv7a/assets/libLispWorks.so.
armeabiv7a.lwheap
app/src/armeabiv7a/jniLibs/armeabi-v7a/li
bLispWorks.so

ARM 64-Bit app/src/arm64v8a/assets/libLispWorks.so.ar
m64v8a.lwheap
app/src/arm64v8a/jniLibs/arm64-v8a/libLis
pWorks.so

x86 32-bit app/src/x86/assets/libLispWorks.so.x86.lwh
eap
app/src/x86/jniLibs/x86/libLispWorks.so

x86 64-Bit app/src/x86_64/assets/libLispWorks.so.x86_
64.lwheap
app/src/x86_64/jniLibs/x86_64/libLispWork
s.so

If you cannot access the project directory from the Linux or macOS machine:

1. In a suitable directory that is accessible on the Linux or macOS machine (the "deliv directory"), create four sub-
directories called armeabiv7a, arm64v8a, x86 and x86_64. These specific names are recognized by
deliver-to-android-project.

2. Change *project-path* in the build script to the "deliv directory" and deliver using run-lw-android.sh as above.
deliver-to-android-project will recognize the sub-directories and write the files into them.

3. If you can access the "deliv directory" from the the machine on which you run Android Studio, then use a sourceSets
block in the app/build.gradle file in the Android Studio project directory to map the source sets names arm64v8a,
armeabiv7a, x86 and x86_64 to the sub-directories in the "deliv directory". The example already contains such a
block which is commented out. Uncomment it and edit it as needed.

If you cannot access the "deliv directory" from the the machine on which you run Android Studio, then recursively copy
the contents of the sub-directory arm64v8a from the "deliv directory" to the app/src/arm64v8a sub-directory inside
the Android Studio project directory, and similarly for the sub-directories armeabiv7a, x86 and x86_64, so you will
end up with the same files that are listed above for the four architectures.

16.4.3 Running the application

Once you have the project with the LispWorks files, you can build, install it on the device and run it as any other Android
project. When it runs, It first shows a splash screen (the LispWorks splash screen image) and then the first screen displays an
Othello board, where you can play against the computer (you play black), by touching the square where you want to add your
piece.

The display has two elements in addition to the board:

• A small text view which displays the status of the game.

• A checkbox Computer Plays, which controls whether the computer plays. When the computer does not play, the board
is set for two players.

It also has a menu (which maybe partly displayed on the action bar), with these items:

Restart Restart the game.

16 Android interface

196

Undo Undo the last move. You can undo repeatedly to the beginning of the game.

When the computer plays, each undo undoes to the state before your last move.

When the computer does not play, it undoes one move.

When delivering "with Lisp" the menu also has these items:

Lisp Panel Takes you to the Lisp Panel screen, which allows you to evaluate Lisp forms. See below in the
description of the Lisp Panel.

Command history Takes you a list of the forms that that you evaluated. It is initialized by a few demo forms. See
below about the History list.

Othello Server Raises a submenu with three items: Java server, full proxy and lazy proxy. Switching between
these changes the mechanism by which Java calls into Lisp. The behavior of the game is exactly
the same, only the output to the Lisp Panel or Output is different. This feature is for
demonstrating different techniques of calling from Java to Lisp. See discussion of the code for
details.

When delivering "without Lisp" the menu also has these items:

Output Takes you to the "output" screen.

16.4.3.1 The Lisp Panel screen

The Lisp Panel contains a row of buttons, a text view for input, and the bottom is a text view for output. This screen is
available only when delivering "with Lisp". When delivering "without Lisp", there is the Output screen instead.

The buttons are:

Clear Clears all the output from the output pane.

Evaluate the string Send the current text in the input pane to Lisp by a direct call to eval-for-android.

eval-for-android is defined in
(example-edit-file "android/android-othello-user"). It reads the string and
evaluates it. If it is successful, it prints to the output pane the form, anything the form printed,
and the result(s). If there is an error, it logs the error and prints the error message to the output
pane.

History Takes you to another screen which displays a list of the forms that were evaluated. The list is
initialized by some forms which demonstrate some features of the multiprocessing on Android.
See below in the section 16.4.3.2 Prepared forms. Whenever you evaluate a form by pressing
Evaluate the string, it adds the form to the history in the beginning of it. If the form matches
exactly a form which is already in the list, the old item is removed.

In the history list, when you touch an item it is inserted into the input pane, and the application
switches to the Lisp Panel. It does not evaluate the form at that point.

You can also reach the history list from the menu in the Othello screen.

Bug form logs Invokes com.lispworks.Manager.showBugFormLogs. This shows another screen with a list
of the logged errors displaying the error string for each item. Touching an item opens another
screen with bug form log of this error.

Clear logs Clears all the bug form logs, including removing the files.

16 Android interface

197

The input pane below the buttons is just a passive text view, in which you can type Lisp forms, and evaluate by touching the
Evaluate the string button.

The bottom part of the Lisp Panel, in the Output screen when delivering "without Lisp", is the output pane. It prints the
output of evaluation as above. It also prints whenever you touch a square in the Othello board. When the Full or Lazy proxy
is used for communication, it also prints this fact.

16.4.3.2 Prepared forms

Initially, the History list contains the forms described below. When using forms, note that evaluating a form moves it to the
top of the list. When you should evaluate more than one of these forms in order, you will need to look down the list for each
one in turn.

The idea is that you can try these forms, and then modify them to check and perform things that you need to do when
debugging your application.

Forms:

1.

(mp:ps)

Shows the Lisp processes. Initially there are at least the idle process and the GUI process which displays as "created by
foreign code".

2.

(setq *computer-plays-waste-time-in-seconds* 2)

That causes the computer to pretend that it takes it time to compute a move. When playing against the computer after
setting this, you will see that after your move, the display says "Computer to play" for two seconds before it actually
plays. Set *computer-plays-waste-time-in-seconds* back to nil to make it behave normally.

3.

(defun eval-and-print (form)
 (let ((res (eval form)))
 (lw-ji:send-message-to-java-host
 (princ-to-string res) :reset)))

Defines a function to be used by the next two forms. Note that it uses send-message-to-java-host to print, which
comes in the output and works on any thread. When it is on the current thread it will end up printing before the printing
of the evaluation, but on another thread it is random which output comes first.

4.

(eval-and-print '(mp:get-current-process))

Use the function defined above to print the process in the current thread. That is the GUI process.

5.

(mp:funcall-async 'eval-and-print '(mp:get-current-process))

Use the function eval-and-print defined above to print the process on which funcall-async executes the function.
This will be one of the Background Execute processes.

6.

16 Android interface

198

(progn
 (defun loop-executing-events ()
 (loop
 (let ((event (mp:process-wait-for-event)))
 (lw-ji:format-to-java-host "~%got event ~s" event)
 (let ((res (mp:general-handle-event event)))
 (lw-ji:format-to-java-host
 "~%Handling got ~s" res)))))
 (setq loop-executing-events-process
 (mp:process-run-function "Loop Execute Events" ()
 'loop-executing-events)))

Create a process called "Loop Execute Events" and set loop-executing-events-process to it. The process has a
process function loop-executing-events which read events and handles them using process-wait-for-event

and format-to-java-host. It prints "got event <event>" and then "handling got <result of handling>". Note the
usage of format-to-java-host, which prints to the output pane too (it actually calls
send-message-to-java-host).

7.

(mp:process-send loop-executing-events-process '(mp:get-current-process))

Sends to the "Loop Execute Events" process (that started in the previous step) an event, which cause
get-current-process to be called, and hence return the process. You should see "got event (MP:GET-CURRENT-
PROCESS)" and "Handling got <process name>".

8.

(othello-user-change-a-square 5 2)

Changes square 5 (sixth from the left in the top row) to color 2 (black). This function is defined in
(example-edit-file "android/android-othello-user") and is part of the "interface" that the Lisp Othello
code uses to tell Java to change the board.

9.

(mp:process-run-function
 "multiplier" ()
 #'(lambda()
 (setq *finish-multiply* nil)
 (dotimes (x 100)
 (sleep 1)
 (when *finish-multiply* (return))
 (lw-ji:format-to-java-host
 \"~%~d * ~d = ~d\"
 x x (* x x)))))

Starts a process that performs "a lengthy computation" (simulated by using (sleep 1)) and prints results while doing it.
In each "step in the computation" (the cl:dotimes iteration) it prints the square of the iteration number. To stop it,
evaluate the next form.

10
.

(setq *finish-multiply* t)

Tell the "multiplier" process (see above) to stop.

11
.

16 Android interface

199

http://www.lispworks.com/documentation/HyperSpec/Body/m_dotime.htm

(mp:process-run-function
 "Error"
 () #'(lambda () (open "junk;;file::name")))

Starts another process that gets an error (because the argument to cl:open is an illegal pathname). It prints that it got
the error, and you can use the Bug form logs button to look at the bug form log.

12
.

(raise-alert-dialog
 "What do you want to eat?" +
 :ok-title "Chicken "
 :ok-callback '(raise-alert-dialog "Here is some chicken") +
 :cancel-title "Salad "
 :cancel-callback '(raise-alert-dialog "We do not have salad"))

Raises an alert dialog using raise-alert-dialog which is defined in dialog.lisp. Note that this works because
the LispPanel class uses com.lispworks.Manager.setCurrentActivity to set the current activity.

13
.

(raise-a-toast "Bla Bla Bla" :gravity :left)

Raises an Android "toast" at the middle of the left side, using raise-a-toast which is defined in toast.lisp.

16.4.4 Lisp interface usage in the Java code

The Othello Demo Java code is in the package com.lispworks.example.othellodemo. LispWorks interfaces in Java are
all in the package com.lispworks. The methods appear in full, to make it is easy to see where there is a call to the
LispWorks interface.

16.4.4.1 Class Othello

Othello is a subclass of Activity that displays the screen with the Othello board. The display is all in standard Java. The
board is made of a grid of 64 ImageView panes, each one displaying one of three images (blank, white, black). Each view
has an OnClickListener(SquareListener) that remembers its index and passes it when clicked.

The Java code does not know anything about the game that is being played, and does not keep a record of the state of the
game. That is all done in Lisp.

The Java code processes user gestures concerning the game (touching the board, and touching any of the buttons and items
Computer plays, undo move, restart) by calling methods on an object that implements the nested interface
OthelloServer, which is kept in mOthelloServer. The object can be either a Lisp proxy, or of the nested class
JavaOthelloServer. All of these objects do exactly the same thing (calling the Lisp functions defined in
(example-edit-file "misc/othello")), and the purpose of having all these options is to demonstrate different
techniques to call into Lisp. There is also a nested class ErrorOthelloServer in case LispWorks does not work, which
displays the error. mOthelloServer is set by the method setupServer.

The nested class JavaOthelloServer is plain Java with methods that call into Lisp using the 15.4.1 Direct calls interface
(com.lispworks.LispCalls.callIntV and com.lispworks.LispCalls.callVoidV). This has the advantage that
on the Lisp side all you have to do is to ensure that the functions are not shaken, which you can do with
hcl:deliver-keep-symbols (see the Delivery User Guide). It has the disadvantage that you hardwire Lisp function
names in Java (though the names can be variables too).

The other two possible implementations of the OthelloServer are Lisp proxies which are defined in Lisp (in

16 Android interface

200

http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm

examples/android/android-othello-user.lisp). See the discussion of the Lisp code for more details. The code in
setupServer demonstrates two techniques of using the proxy definitions: either calling a Lisp function that makes a proxy
(using com.lispworks.LispCalls.callObjectV to call create-lisp-othello-server), or using
com.lispworks.LispCalls.createLispProxy with the name of the proxy definition (lisp-othello-server-lazy)
to create a proxy.

To actually respond to moves, the Othello class exports 3 methods ("updateState", "signalBadMove" and "change")
which are called directly from Lisp to change the board and the status text.

When an Othello instance is created, it calls setupAndInit to do anything with Lisp (mainly call
mOthelloServer.init). Before doing anything that may interact with Lisp, it checks the status of Lisp using
com.lispworks.Manager.status. If Lisp is not ready and there was no error, it calls com.lispworks.Manager.init
to initialize LispWorks, passing it a Runnable that with call setupAndInit again to actually do the initialization. In the
Demo the Lisp side will already be initialized, because it is done by the LispWorksRuntimeDemo activity, but the Othello
class avoids relying on it.

When LispWorks is ready, setupAndInit sets up the server by calling setupServer and initializes the game by calling
mOthelloServer.init.

If there is an error, setupAndInit gets the error details using com.lispworks.Manager.mInitErrorString, and
com.lispworks.Manager.init_result_code and adds a message, set mOthelloServer to ErrorOthelloServer,
and then shows the Lisp Panel which will be displaying the error.

There is also an onCreateOptionsMenu method which checks whether Lisp is working and can evaluate forms (using
LispPanel.canEvaluate), and accordingly decides which menu to use.

16.4.4.2 Class LispPanel

LispPanel is a subclass of Activity that displays the Lisp panel, or just the output when delivering "without Lisp" (see
16.4.2 Delivering LispWorks to the project).

The main purpose of the Lisp Panel is to evaluate Lisp forms, which it does by calling the Lisp function
eval-for-android using com.lispworks.LispCalls.callIntV. That can work only if eval-for-android is
defined, so LispPanel has a method canEvaluate that works by checking if eval-for-android is defined using
com.lispworks.LispCalls.checkLispSymbol. If eval-for-android is fbound, LispPanel displays in full,
otherwise it shows only output TextView.

LispPanel is also responsible for displaying messages in its output TextView. To achieve that, it uses
com.lispworks.Manager.setTextView. Once it sets the TextView, all calls to
com.lispworks.Manager.addMessage and calls to the Lisp functions send-message-to-java-host and
format-to-java-host put their output in this TextView.

Other usage of the com.lispworks package in LispPanel are:

• com.lispworks.Manager.setErrorReporter to set an error reporter. Since the Lisp application does not set
cl:*debugger-hook*, uncaught errors will end up calling this reporter.

• Calls to com.lispworks.Manager.showBugFormLogs to show bug form logs, and
com.lispworks.Manager.clearBugFormLogs to clear them.

• Calls to com.lispworks.Manager.setCurrentActivity in onResume and onPause to allow Lisp code to raise
dialogs when LispPanel is visible. This is needed to allow the raise-alert-dialog form to work.

16 Android interface

201

http://www.lispworks.com/documentation/HyperSpec/Body/v_debugg.htm

16.4.4.3 Class MyApplication

MyApplication is not actually used in the demo. It is a demonstration of how to initialize LispWorks when the application
starts, by calling com.lispworks.Manager.init in the onCreate of the application. The demo itself does not use this
mechanism. Instead the SplashScreen activity does it, and the Othello activity also checks using
com.lispworks.Manager.status, and if LispWorks needs initializing does it.

16.4.4.4 Class LispWorksRuntimeDemo

Display a splash screen and initialize the Lisp side, by checking com.lispworks.Manager.status and using
com.lispworks.Manager.init if needed. The purpose of this class is just to give an example of displaying a splash
screen while initializing Lisp. It is not really needed, because the Othello class checks too (in setupAndInit). On Eclipse
the name of this class is the default project name.

16.4.4.5 Class History

A simple class to display Lisp forms. Does not do anything related to Lisp.

16.4.4.6 Class SquareLayout

A simple class to make a square layout for displaying the Othello board. Does not do anything related to Lisp.

16.4.5 Java and Android interface in the Lisp code

The file:

(example-edit-file "misc/othello")

is a generic implementation of the playing Othello part, and has nothing to do with Java or Android.

The Lisp code that interacts with Java and Android to play Othello and evaluate the forms is in:

(example-edit-file "android/android-othello-user")

The Java callers to update the game are defined by a define-java-caller form. All these methods need to be called on
the GUI thread (because they interact with GUI elements), so the actual functions that are called from the Othello code are
defined to call the Java callers using android-funcall-in-main-thread.

The function eval-for-android is what the Java code uses to evaluate Lisp forms. The function has no Java-specific
features, but it has error handling and binding of some of the top-level variables like cl:* to make it more usable in repeated
calls from "outside".

The code also defines two proxy definitions that implement the Othello.OthelloServer interface which responds to user
gestures. To demonstrate the various features of proxies, there are two definitions which achieve exactly the same thing. The
full proxy definition (lisp-othello-server-full) specifies functions for all the methods that the interface defines. The
lazy (programmer) proxy definition does not define any method. Instead it has a default function that decides what to do
based on the method name.

Note that the Othello logic can also be run via a desktop application using:

(example-edit-file "capi/applications/simple-othello")

The two files:

16 Android interface

202

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

(example-edit-file "android/dialog")

and:

(example-edit-file "android/toast")

define the functions raise-alert-dialog and raise-a-toast respectively, to demonstrate using Android code directly
from Lisp. See the comments in these files.

16 Android interface

203

17 iOS interface

To build an application using LispWorks for iOS Runtime, you need an Xcode project to implement the main function of the
application. CAPI is not currently supported on iOS, so any GUI part will need to be written in Objective-C using Xcode too.

17.1 Delivering for iOS

The Lisp part of the application needs to be delivered using one of three special images:

• lispworks-8-1-0-arm64-darwin-ios which build runtimes for both the iOS Simulator and for a real iOS device
when creating them on Apple silicon Macs. Or:

• lispworks-8-1-0-amd64-darwin-ios which builds runtimes for the iOS Simulator, running on macOS on Intel
based Macs. Or:

• lispworks-8-1-0-arm64-linux-ios which builds runtimes for a real iOS device when creating them on Intel based
Macs. To do this, you run the QEMU emulator on macOS and tell it to run the
lispworks-8-1-0-arm64-linux-ios image.

There is an example script examples/ios/run-lw-ios.sh which can be used to invoke the correct images depending on
the type of Mac you are using.

These images do not contain the GUI part of LispWorks, but do contain all the non-GUI parts.

There are no iOS-specific Lisp functions required to build the Lisp part of an application: you use deliver in the normal
way. There are three differences compared to a desktop application:

• The file passed to deliver should have a ".o" extension.

• deliver will append the architecture and platform name at the end of the name component of file.

• When running on an Apple silicon Mac, deliver will create two files, one for the iOS Simulator and one for real iOS
devices.

• The generated files will be iOS object files that must be linked with the other parts of the application using Xcode.
Generation of shared libraries is not supported (this is a limitation of iOS).

To include the delivered object file in an Xcode project, you should add the following to the Xcode project's "Other
Linker Flags":

filename-${CURRENT_ARCH}-${PLATFORM_NAME}.o

where filename is the &FILE argument to deliver without the .o extension.

Compatibility note: In previous versions of LispWorks, you needed to conditionalize the filename passed to deliver based
on the platform. This is now done automatically and conditionalization should be removed.

204

17.2 Initializing LispWorks

In order to use Lisp code within an application built using Xcode, the main function of the application must call
LispWorksInitialize. For example, main might be implemented like this:

#import "LispWorks.h"

int main(int argc, char *argv[])
{
 if (!LispWorksInitialize(argc, argv)) abort();

 @autoreleasepool {
 return UIApplicationMain(argc, argv, nil, NSStringFromClass([OthelloAppDelegate class]));
 }
}

LispWorksInitialize is automatically included in the object file generated by deliver. The file LispWorks.h can be
found in the examples/ios/OthelloDemo/OthelloDemo/ directory of the LispWorks installation and should be copied
into the Xcode project.

17.3 Using Objective-C from Lisp

LispWorks calls the function objc:ensure-objc-initialized when it starts the iOS runtime, so there is no need for you
to call it.

For other details, see the LispWorks Objective-C and Cocoa Interface User Guide and Reference Manual.

17.4 Limitations of the iOS Runtime

The are some limitations that iOS imposes that affect the LispWorks for iOS Runtime.

• Compiled code cann be generated, so cl:compile cannot be called at run time.

• Shared libraries cannot be loaded dynamically, so fli:register-module cannot be used. Instead, add references to
any required frameworks in the Xcode project.

17.5 The Othello demo for iOS

The Othello demo is a simple iOS app showing the basics of using LispWorks for iOS Runtime. It contains an Xcode project
to run the GUI and some Lisp source code to play the game.

To try the demonstration, see the file:

(example-edit-file "ios/README.txt")

17.5.1 Notes about the Xcode project

The Xcode project in examples/ios/OthelloDemo/ has a standard layout, with the class OthelloAppDelegate defined
in:

(example-edit-file "ios/OthelloDemo/OthelloDemo/OthelloAppDelegate.m")

implementing the UIApplicationDelegate protocol.

17 iOS interface

205

http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp.htm

The file:

(example-edit-file "ios/OthelloDemo/OthelloDemo/main.m")

initializes LispWorks by calling LispWorksInitialize and then runs the application main loop using the
OthelloAppDelegate.

The application has two storyboards (MainStoryBoard_iPhone and MainStoryBoard_iPad) which display a Tab Bar
allowing you to switch between an Othello game and a Lisp evaluation pane.

17.5.2 The Othello game

The Othello game is displayed by the Othello scene and contains an Othello board (the boardView outlet), a few buttons
on a toolbar and a label showing the state of the game (the stateView outlet).

The scene is controlled by the class OthelloViewController, defined in:

(example-edit-file "ios/OthelloDemo/OthelloDemo/OthelloViewController.m")

The 64 tiles on the board are represented by UIImageView objects, created dynamically in the viewDidLoad method. The
contents of the tiles are the images "empty", "white" and "black" which are loaded from the Images.xcassets asset
catalog. The viewDidLoad method also creates an instance of the class OthelloServer, which is implemented in Lisp
(see 17.5.4 Notes about the Lisp code).

The tiles in the board are dynamically positioned by the viewDidLayoutSubviews method.

The action methods restartOthello: and undoMove: are connected to the toolbar buttons in the storyboards and call into
the Lisp code to update the game.

The action method playUISquare: is triggered when the user touches a square on the board (see viewDidLoad) and calls
into the Lisp code to play that square.

The methods changeOthelloSquare:, updateStateString: and signalBadMove are called by the Lisp code to
modify the GUI.

17.5.3 The Lisp evaluation pane

The Lisp evaluation pane is displayed by the Lisp Panel scene and contains a text field for entering a Lisp form (the
formInputView outlet), a text field to display the evaluation results (the textOutputView outlet) and toolbar.

The scene is controlled by the class LispPanelViewController, defined in:

(example-edit-file "ios/OthelloDemo/OthelloDemo/LispPanelViewController.m")

The action methods evaluate:, clearTextOutput: and showHistory: are connected to the toolbar buttons in the
storyboards.

The History button pops up a history of the forms entered so far. This is displayed by the History Table scene controlled
by HistoryTableViewController, defined in:

(example-edit-file "ios/OthelloDemo/OthelloDemo/HistoryTableViewController.m")

and communicates back to the LispPanelViewController using the HistoryTableViewControllerDelegate
protocol.

The keyboardWasShown: and keyboardWillBeHidden: notification methods resize the textOutputView to avoid the

17 iOS interface

206

on-screen keyboard.

The method appendTextOutputString: is called by Lisp code to update the textOutputView.

17.5.4 Notes about the Lisp code

The Lisp code triggered by the GUI is in the file:

(example-edit-file "ios/ios-othello-user")

and uses the shared Othello logic in:

(example-edit-file "misc/othello")

The function init-othello-server is the main entry point of the Lisp code and is called when LispWorksInitialize

is called from main.m. It initializes the LispWorks Objective-C interface and creates a helper object
(lispworks-main-threads-funcalls-object) used by invoke-in-main-thread for making Lisp calls in the main
thread of the application.

The Lisp code implements an Objective-C class OthelloServer using the Lisp class othello-server. This class
implements the methods initWithViewController for initialization and initOthello, playSquare: and undoMove

for the Othello game GUI code to call into Lisp in response to user gestures.

The Lisp code also implements the functions othello-user-change-a-square,
othello-user-update-state-string, othello-user-signal-bad-move and
othello-user-print-diagnostics-message which the shared Othello logic calls to update the GUI. Most of these
functions call methods on the OthelloViewController object, taking care to invoke them in the main (GUI) thread of the
application. This thread switching is needed because the Othello logic plays the game in a background thread to avoid
hanging the GUI while considering its move (see perform-computer-play in examples/misc/othello.lisp).

Finally, the Lisp code implements an Objective-C class LispPanelServer using the Lisp class lisp-panel-server,
with a method evaluate: to evaluate a Lisp form. This evaluate: method is called by the evaluate: action method in
LispPanelViewController.

Note that the Othello logic can also be run via a desktop application using:

(example-edit-file "capi/applications/simple-othello")

17.6 The Mobile GC

The Mobile GC is a 64-bit GC that is written to run on 64-bit iOS (we are also considering using it for 64-bit Android).
When LispWorks is delivered for 64-bit iOS, the "saved image" (the code in the object file that delivery creates) switches
automatically to use the Mobile GC. Thus normally you do not need to know anything about the Mobile GC, and if your
application has moderate memory requirements (a few tens of megabytes of live allocation at run time), then there is a good
chance that you do not need to do anything about memory management.

However, it is useful in general to create a log file of the activity of the application (at least during development), and to
include the output of periodic calls to (room) or (room nil) in this log, which will give you some idea of the memory
behavior of your application. In particular, if the "Total allocated" that is reported in the last line of (room) (which is the
only line in (room nil)) approaches 100 MB then you may want to look at memory management. Note that is only for a
mobile device: Desktop applications can grow much larger without a problem.

The main problem that you may encounter in the Mobile GC are GCs of generation 2 causing noticeable delays (on the order
of 1 second, depending on the size of the application and the hardware). Depending on the application, such delays may or
may not be an issue, but for most GUI applications you should ensure they do not happen too frequently. In this situation you

17 iOS interface

207

should consult 11.5.3.2 Preventing/reducing GC of generation 2.

You may also consider implementing a response to low memory warning from the OS. All applications can benefit a little by
calling reduce-memory with nil or 0 or 1 at that point, but for most applications the benefit is minimal. If most of the live
memory in your application contains caches that can be freed and recreated again without much loss in performance, you
may be able to get significant improvement by implementing a low memory warning response that clears the caches. Consult
11.5.3.1 Response to low memory for details.

The output of room and the results of related functions are different when the Mobile GC is used. If you want to understand
this output better, consult 11.5.2 Mobile GC technical details.

17 iOS interface

208

18 The Metaobject Protocol

LispWorks CLOS essentially supports the metaobject protocol described in chapters 5 & 6 of The Art of the Metaobject
Protocol (Kiczales, des Rivières & Bobrow, The MIT Press, 1991). Throughout the LispWorks documentation, "AMOP"
refers to this book. The relevant chapters are available in the LispWorks IDE via the menu command Help > Manuals >
CLOS Metaobject Protocol.

All the LispWorks MOP symbols are in the clos package.

There are some discrepancies between LispWorks and AMOP, which are described in this chapter, which also describes some
common problems encountered by programmers using the MOP.

18.1 Metaobject features incompatible with AMOP

18.1.1 Instance Structure Protocol

The generic functions implementing slot access are like those described in AMOP, except that each takes a slot-name
argument rather than a slot definition object, and the primary methods are therefore specialized differently.

For details, see slot-boundp-using-class, slot-value-using-class and slot-makunbound-using-class.

Note: by default, standard slot accessors, and access by slot-value to an argument of a method where the specializer is a
class defined by defclass, are optimized to not call slot-value-using-class. This can be overridden with the
:optimize-slot-access class option. See the second definition of virtual-metaclass below for an example of the
use of this.

standard-instance-access is not supported as defined in AMOP. Note that there is an internal function of the same
name, but this is not optimal. Also, funcallable-standard-instance-access is not supported. An alternative for fast
instance access is to use the :optimize-slot-access class option.

18.1.2 Method Metaobjects

standard-reader-method, standard-accessor-method and standard-writer-method all have a required
:slot-name initarg, rather than a :slot-definition initarg as specified in AMOP.

Compatibility note: in LispWorks 4.3 and previous versions, accessor-method-slot-definition was not
implemented. This is implemented in the current version.

18.1.3 Method Lambdas

LispWorks make-method-lambda is not AMOP-compatible. It takes separate lambda-list and body arguments, and the
returned lambda form is different to that specified in AMOP (see 18.1.4 Method Functions below).

LispWorks does not support user defined methods for the generic function make-method-lambda.

209

http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_lambda.htm

18.1.4 Method Functions

LispWorks method functions take the same arguments as the method itself, whereas in AMOP they take a list of arguments
and a list of next methods.

18.1.5 EQL specializers

eql-specializer, eql-specializer-object and intern-eql-specializer are not implemented.

eql specializers in LispWorks are lists.

18.1.6 Generic Function Invocation Protocol

compute-applicable-methods-using-classes is not implemented.

compute-discriminating-function is implemented and returns the discriminator but:

• It does not use compute-applicable-methods-using-classes since LispWorks does not have that function.

• It does not call compute-applicable-methods.

Moreover add-method does not call compute-discriminating-function because this would be inefficient when doing
multiple calls to add-method. Instead, compute-discriminating-function is called when the generic function is
called.

18.1.7 Method combinations

method-combination objects do not contain the arguments, merely the type. There is a single method-combination
object per type.

Therefore the value returned by generic-function-method-combination, and the default value of the
:method-combination initarg, and the :method-combination argument processed by
ensure-generic-function-using-class are specific only to the type of the method combination.

Also, find-method-combination is not implemented.

18.1.8 Compatible metaclasses

The AMOP defines that the standard primary method for validate-superclass should return true if the class of one of
the arguments is standard-class and the class of the other is funcallable-standard-class.

In LispWorks, objects of these metaclasses are not completely compatible, so validate-superclass will return false in
these cases.

Beware that defining a class that mixes standard-class and funcallable-standard-class can lead to
inconsistencies with the predicate functionp, the type function and the class function.

18.1.9 Inheritance Structure of Metaobject Classes

funcallable-standard-object is implemented as defined in AMOP, except that its class precedence list has direct
superclasses:

(function standard-object)

rather than:

18 The Metaobject Protocol

210

http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_comput.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_add_me.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_add_me.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_method.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_method.htm
http://www.lispworks.com/documentation/lw70/MOP/mop/dictionary.html#generic-function-
http://www.lispworks.com/documentation/lw70/MOP/mop/dictionary.html#validate-superclass
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/lw70/MOP/mop/dictionary.html#validate-superclass
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_fnp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm

(standard-object function)

so that LispWorks is compliant with the ANSI Common Lisp rules.

For details, see funcallable-standard-object.

18.2 Metaobject features additional to AMOP

18.2.1 Computing the effective method function

The generic function compute-effective-method-function-from-classes is called by LispWorks to compute the
effective method function. You can add methods to implement non-standard behavior for your own classes of generic
functions.

18.3 Common problems when using the MOP

18.3.1 Inheritance across metaclasses

Usually an inherited class is of the same metaclass as the parent class.

For other kinds of inheritance, you need to define a method on validate-superclass which returns true when called with
the respective metaclasses. For example:

(defclass mclass-1 (standard-class)
 ())

(defclass mclass-2 (standard-class)
 ())

(defclass a ()
 ()
 (:metaclass mclass-1))

(defmethod validate-superclass
 ((class mclass-2)
 (superclass mclass-1))
 t)

(defclass b (a)
 ()
 (:metaclass mclass-2))

Without the validate-superclass method, the last form signals an error because mclass-1 is an invalid superclass of
mclass-2.

18.3.2 Accessors not using structure instance protocol

By default, defclass creates optimized standard accessors which do not call slot-value-using-class. In addition,
access by slot-value to an argument of a method where the specializer is a class defined by defclass may be optimized
too.

This optimization is controlled by the defclass option :optimize-slot-access, which defaults to t.

There is an illustration of this effect of :optimize-slot-access in the example below.

18 The Metaobject Protocol

211

http://www.lispworks.com/documentation/lw70/MOP/mop/dictionary.html#validate-superclass
http://www.lispworks.com/documentation/lw70/MOP/mop/dictionary.html#validate-superclass
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm

18.3.3 The MOP in delivered images

Issues with MOP code that occur only in delivered LispWorks images are documented in the section "Delivery and the MOP"
in the Delivery User Guide.

18.4 Implementation of virtual slots

This is an implementation of virtual slots with readers, writers and which also allow access by slot-value.

;; ----------------------- Virtual Slots --------------------
(in-package "CL-USER")

;; Metaclass of objects that might contain virtual slots.

(defclass virtual-metaclass (standard-class)
 ()
)

;; Mixin metaclass for virtual slots and methods to make them
;; appear virtual.

(defclass virtual-slot-definition
 (standard-slot-definition)
 ((function :initarg :function
 :accessor virtual-slot-definition-function))
)

(defmethod slot-definition-allocation
 ((slotd virtual-slot-definition))
 :virtual)

(defmethod (setf slot-definition-allocation)
 (allocation (slotd virtual-slot-definition))
 (unless (eq allocation :virtual)
 (error "Cannot change the allocation of a ~S"
 'virtual-direct-slot-definition))
 allocation)

;; Class of direct virtual slots and methods to construct them
;; when appropriate.

(defclass virtual-direct-slot-definition
 (standard-direct-slot-definition
 virtual-slot-definition)
 ()
)

;; Called when the class is being made, to choose the metaclass of
;; a given direct slot. It should return the class of slot
;; definition required.

(defmethod clos:direct-slot-definition-class
 ((class virtual-metaclass) &rest initargs)
 ;; Use virtual-direct-slot-definition if appropriate.
 (if (eq (getf initargs :allocation) :virtual)
 (find-class 'virtual-direct-slot-definition)
 (call-next-method)))

;; Called when the defclass is expanded, to process a slot option.
;; It should return the new list of slot options, based on
;; already-processed-options.

(defmethod clos:process-a-slot-option

18 The Metaobject Protocol

212

http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm

 ((class virtual-metaclass) option value
 already-processed-options slot)
 ;; Handle the :function option by adding it to the
 ;; list of processed options.
 (if (eq option :function)
 (list* :function value already-processed-options)
 (call-next-method)))

;; Class of effective virtual slots and methods to construct
;; them when appropriate.

(defclass virtual-effective-slot-definition
 (standard-effective-slot-definition
 virtual-slot-definition)
 ()
)

;; Called when the class is being finalized, to choose the
;; metaclass of a given effective slot. It should return the
;; class of slot definition required.

(defmethod clos:effective-slot-definition-class
 ((class virtual-metaclass) &rest initargs)
 ;; Use virtual-effective-slot-definition if appropriate.
 (let ((slot-initargs (getf initargs :initargs)))
 (if (member :virtual-slot slot-initargs)
 (find-class 'virtual-effective-slot-definition)
 (call-next-method))))

(defmethod clos:compute-effective-slot-definition
 ((class virtual-metaclass)
 name
 direct-slot-definitions)
 ;; Copy the function into the effective slot definition
 ;; if appropriate.
 (let ((effective-slotd (call-next-method)))
 (dolist (slotd direct-slot-definitions)
 (when (typep slotd 'virtual-slot-definition)
 (setf (virtual-slot-definition-function effective-slotd)
 (virtual-slot-definition-function slotd))
 (return)))
 effective-slotd))

;; Underlying access methods for invoking
;; virtual-slot-definition-function.

(defmethod clos:slot-value-using-class
 ((class virtual-metaclass) object slot-name)
 (let ((slotd (find slot-name (class-slots class)
 :key 'slot-definition-name)))
 (if (typep slotd 'virtual-slot-definition)
 (funcall (virtual-slot-definition-function slotd)
 :get
 object)
 (call-next-method))))

(defmethod (setf clos:slot-value-using-class)
 (value (class virtual-metaclass) object slot-name)
 (format t "~% setf slot : ~A" slot-name)
 (let ((slotd (find slot-name (class-slots class)
 :key 'slot-definition-name)))
 (if (typep slotd 'virtual-slot-definition)
 (funcall (virtual-slot-definition-function slotd)
 :set

18 The Metaobject Protocol

213

 object
 value)
 (call-next-method))))

(defmethod clos:slot-boundp-using-class
 ((class virtual-metaclass) object slot-name)
 (let ((slotd (find slot-name (class-slots class)
 :key 'slot-definition-name)))
 (if (typep slotd 'virtual-slot-definition)
 (funcall (virtual-slot-definition-function slotd)
 :is-set
 object)
 (call-next-method))))

(defmethod clos:slot-makunbound-using-class
 ((class virtual-metaclass) object slot-name)
 (let ((slotd (find slot-name (class-slots class)
 :key 'slot-definition-name)))
 (if (typep slotd 'virtual-slot-definition)
 (funcall (virtual-slot-definition-function slotd)
 :unset
 object)
 (call-next-method))))

(defmethod clos:slot-exists-p-using-class
 ((class virtual-metaclass) object slot-name)
 (or (call-next-method)
 (and (find slot-name (class-slots class)
 :key 'slot-definition-name)
 t)))

;; Example virtual slot which depends on a real slot.
;; Compile this separately after the virtual-metaclass etc.

(defclass a-virtual-class ()
 ((real-slot :initarg :real-slot :accessor real-slot
 :initform -1)
 (virtual-slot :accessor virtual-slot
 :initarg :virtual-slot
 :allocation :virtual
 :function
 'a-virtual-class-virtual-slot-function))
 (:metaclass virtual-metaclass))

(defun a-virtual-class-virtual-slot-function
 (key object &optional value)
 (ecase key
 (:get (let ((real-slot (real-slot object)))
 (if (<= 0 real-slot 100)
 (/ real-slot 100.0)
 (slot-unbound (class-of object)
 object
 'virtual-slot))))
 (:set (setf (real-slot object) (* value 100))
 value)
 (:is-set (let ((real-slot (real-slot object)))
 (<= real-slot 100)))
 (:unset (setf (real-slot object) -1))))
;; ----------------------- Virtual Slots --------------------

Compile the code above. Then make an object and access the virtual slot:

CL-USER 1 > (setf object (make-instance 'a-virtual-class))
#<A-VIRTUAL-CLASS 2067B064>

18 The Metaobject Protocol

214

CL-USER 2 > (setf (virtual-slot object) 0.75)

 setf slot : VIRTUAL-SLOT
0.75

CL-USER 3 > (virtual-slot object)
0.75

CL-USER 4 > (real-slot object)
75.0

Note that when you call (setf real-slot) there is no output since (setf clos:slot-value-using-class) is not
called. Compare with (setf virtual-slot).

CL-USER 5 > (setf (real-slot object) 42)
42

Redefine a-virtual-class with :optimize-slot-access nil:

CL-USER 6 > (defclass a-virtual-class ()
 ((real-slot :initarg :real-slot
 :accessor real-slot
 :initform -1)
 (virtual-slot :accessor virtual-slot
 :initarg :virtual-slot
 :allocation :virtual
 :function
 'a-virtual-class-virtual-slot-function))
 (:metaclass virtual-metaclass)
 (:optimize-slot-access nil))
Warning: (DEFCLASS A-VIRTUAL-CLASS) being redefined in LISTENER (previously in H:\tmp\vs.lisp).
Warning: (METHOD REAL-SLOT (A-VIRTUAL-CLASS)) being redefined in LISTENER (previously in H:\tmp\vs.
lisp).
Warning: (METHOD (SETF REAL-SLOT) (T A-VIRTUAL-CLASS)) being redefined in LISTENER (previously in H
:\tmp\vs.lisp).
Warning: (METHOD VIRTUAL-SLOT (A-VIRTUAL-CLASS)) being redefined in LISTENER (previously in H:\tmp\
vs.lisp).
Warning: (METHOD (SETF VIRTUAL-SLOT) (T A-VIRTUAL-CLASS)) being redefined in LISTENER (previously i
n H:\tmp\vs.lisp).
#<VIRTUAL-METACLASS A-VIRTUAL-CLASS 21AD908C>

Now the standard accessors call slot-value-using-class, so we see output when calling (setf real-slot):

CL-USER 7 > (setf (real-slot object) 42)

 setf slot : REAL-SLOT
42

18 The Metaobject Protocol

215

19 Multiprocessing

LispWorks supports threads for running computations in parallel. The programming environment, for example, makes
extensive use of this mechanism to create separate threads for the various tools.

LispWorks multiprocessing uses native threads and supports Symmetric Multiprocessing (SMP). The implementation is
referred to as "SMP LispWorks" where relevant.

Prior to LispWorks 8.0, some platforms uses a single native thread and implement user level threads. The implementation is
referred to as "non-SMP LispWorks" where relevant.

In SMP LispWorks, Lisp processes (as reported by the Lisp function ps) are Operating System threads. These do not
necessarily correspond to what system tools show you, for example in Microsoft Windows the Activity monitor shows OS
processes, including exactly one for each running LispWorks image.

19.1 Introduction to processes

A process (sometimes called a thread) is a separate execution context. It has its own call stack and its own dynamic
environment.

A process can be in one of three different states: running, waiting, and inactive. When a process is waiting, it is still active,
but is waiting for the system to wake it up and allow its computation to restart. A process that is inactive has stopped,
because it has an arrest "reason".

For a process to be active (that is, running or waiting), it must have at least one run reason and no arrest reasons. If, for
example, it was necessary to temporarily stop a process, it could temporarily be given an arrest reason. However the arrest
reason mechanism is not commonly used in this manner.

The process that is currently executing is termed "the current process". The function get-current-process gets the
current process, and is the preferred way of doing so. The variable *current-process* is normally bound to the same
process, except inside a wait function when it is called by the scheduler.

The current process continues to be executed until either it becomes a waiting process by calling a Process Wait function as
described in 19.6 Process Waiting and communication between processes, or it allows itself to be interrupted by calling
process-allow-scheduling (or its current timeslice expires and it involuntarily relinquishes control).

In SMP LispWorks all processes that are not waiting are running as far as LispWorks is concerned, and are scheduled by the
operating system to the available CPUs.

In non-SMP LispWorks, the system runs the waiting process with the highest priority. If processes have the same priority
then the system treats them equally and fairly. This is called round robin scheduling.

The simplest way to create a process is to use process-run-function. This creates a process with the specified name
which commences by applying the specified function to arguments. process-run-function returns immediately and the
newly created process runs concurrently.

216

19.2 Processes basics

19.2.1 Creating a process

To create a new process, use process-run-function.

A process can exit either by returning from the process function or by calling current-process-kill.

19.2.2 Finding out about processes

The system initializes a number of processes on startup. These processes are specified by *initial-processes*.

The current process is obtained by get-current-process. A list of all the current processes is returned by
list-all-processes and the number of them is returned by processes-count. The function ps is analogous to the
POSIX command ps, and returns a list of the processes in the system, ordered by priority.

To find a process when you know its name, use get-process. To find the name, when you have the process, use
process-name. The variable *process-initial-bindings* specifies the variables that are initially bound in a process.

19.2.3 Multiprocessing

To start multiprocessing, use initialize-multiprocessing. This function does not return until multiprocessing has
terminated.

It is not necessary to use initialize-multiprocessing when the LispWorks IDE is already running. Note that, on
Windows, macOS, Linux, x86/x64 Solaris and FreeBSD, the LispWorks images shipped do start the IDE. If you create an
image which does not start the IDE, by using the :environment nil argument to save-image, then multiprocessing can
be started in this new image as described below.

19.2.3.1 Starting multiprocessing interactively

You can call initialize-multiprocessing from the REPL interface, which generates a default Listener process if no
other processes are specified by *initial-processes*.

19.2.3.2 Multiprocessing on startup

There are three ways to make a LispWorks executable start multiprocessing on startup.

1. Use the -multiprocessing command line argument.

2. Save an image which starts multiprocessing by doing:

(save-image "mp-lispworks" :multiprocessing t)

3. Use delivery to create the executable and pass the argument :multiprocessing t to deliver. The delivery function
will be called automatically in a new process. See the Delivery User Guide for more details.

LispWorks dynamic libraries always start multiprocessing on startup. See 14.5 Multiprocessing in a dynamic library for
more information.

In all cases, *initial-processes* can be used to control which processes are created on startup, as described in 19.2.3.3
Running your own processes on startup.

Note: You cannot save a LispWorks image with multiprocessing running.

19 Multiprocessing

217

19.2.3.3 Running your own processes on startup

initial-processes is a list of lists. Each list is used by the system as a set of arguments to process-run-function.
During initializing multiprocessing, the system does this:

(dolist (x mp:*initial-processes*)
 (apply 'mp:process-run-function x))

This script saves a LispWorks image which starts multiprocessing on restart and runs a user-defined process.

(in-package "CL-USER")
(load-all-patches)
(load "my-server-code")
(push '("Start Server" () start-my-server)
 mp:*initial-processes*)
(save-image "my-server"
 :remarks "My Server"
 :multiprocessing t
 :environment nil)

See save-image for a description of how to save an image.

19.3 Atomicity and thread-safety of the LispWorks implementation

Access to all Common Lisp objects is thread-safe in the sense that it does not cause an error because of threading issues.

19.3.1 Immutable objects

Immutable (or read-only) objects such as numbers, characters, functions, pathnames and restarts can be freely shared
between threads, but special precautions must be taken when all of the following conditions are true:

• A new object is made accessible to other threads ("globally accessible") by storing it in an object that is globally
accessible.

• The store that makes it globally accessible is not by (setf gethash), vector-push or vector-push-extend into
a "multithreaded" hash-table or vector (see 19.3.7 Single-thread context arrays and hash-tables).

• Other threads read from the globally accessible object without synchronizing with the thread that created it.
Synchronizing is typically done by lock, but can also be done by using barrier, condition-variable or
semaphore, and by using hash-table locks.

In this situation, it is your responsibility to ensure that all of the stores that occurred when creating the new object are visible
to the other threads, as described by 19.3.4 Making an object's contents accessible to other threads.

19.3.2 Mutable objects supporting atomic access

This section outlines for which types of mutable Common Lisp object access is atomic. That is, each value read from the
object will correspond to the state at some point in time. Note however, that if several values are read, there is no guarantee
about how these values will relate to each other if they are being modified by another thread (see 19.3.6 Issues with order of
memory accesses).

When one of these mutable atomic objects is modified, readers see either the old or new value (not something else), and it is
guaranteed that the Lisp image is not corrupted by the modification even if multiple threads read or write the object
simultaneously.

Access to conses, simple arrays except arrays with element type of integer with less than 8 bits, symbols, packages and

19 Multiprocessing

218

http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_ps.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_ps.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_hash_t.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_hash_t.htm

structures is atomic. Note that this does not apply to non-simple arrays.

Slot access in objects of type standard-object is atomic with respect to modification of the slots and with respect to class
redefinition.

vector-pop, vector-push, vector-push-extend, (setf fill-pointer) and adjust-array are all atomic with
respect to each other, and with respect to other access to the array elements.

set-array-weak is atomic with respect to vector-push-extend etc.

The Common Lisp functions that access hash tables are atomic with respect to each other. See also modify-hash for atomic
reading and writing an entry and with-hash-table-locked. See also 19.5 Modifying a hash table with
multiprocessing for thread-safe ways to ensure a table entry.

Access to packages is atomic.

Note that pathnames cannot be modified, and therefore access to them is always atomic.

Access to synchronization objects (of type mailbox, barrier, semaphore and condition-variable) is atomic. More
information about these objects is in 19.7 Synchronization between threads.

Operations on editor buffers (including points) are atomic and thread-safe as long as their arguments are valid. This includes
modification to the text. However, buffers and points may become invalid because of execution on another thread. The
macros editor:with-buffer-locked and editor:with-point-locked should be used around editor operations on
buffers and points that may be affected by other processes. Note that this is applicable also to operations that do not actually
modify the text, because they can behave inconsistently if the buffer they are looking at changes during the operation. See the
Editor User Guide for details of these macros.

19.3.3 Mutable objects not supporting atomic access

This section outlines for which types of mutable Common Lisp object access is not atomic.

Access to arrays with element type of integer of less than 8 bits is not guaranteed to be atomic.

Access to non-simple arrays is not guaranteed to be atomic.

Access to lists (including alists and plists) is not atomic. Lists are made of multiple cons objects, so although access to the
individual conses is atomic, the same does not hold for the list as a whole.

Sequence operations which modify multiple elements are not atomic.

Macros that expand to multiple accesses are in general not atomic. In particular, modifying macros like push and incf are
not atomic (but see the atomic versions of some of them in 19.13.1 Low level atomic operations).

Making several calls to Common Lisp functions that access hash tables will not be atomic overall. However LispWorks
provides thread-safe ways to ensure a hash table entry - see 19.5 Modifying a hash table with multiprocessing. See also
modify-hash for atomic reading and writing an entry and with-hash-table-locked.

Stream operations are in general not atomic. There is an undocumented interface for locking of streams when this is required
- contact Lisp Support if you need this.

Operations on CAPI objects are not atomic in general. The same is true for anything in the LispWorks IDE. These operations
need to be invoked from the thread that owns the object, for example by capi:execute-with-interface or
capi:apply-in-pane-process.

19 Multiprocessing

219

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_po.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_ps.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_ps.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_adjust.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_ps.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_push.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm

19.3.4 Making an object's contents accessible to other threads

An object's contents become accessible to other threads when it is stored into a cell that may be accessed by those threads (a
"globally accessible cell"). In most cases, you should either use a synchronization mechanism (typically a lock) to control
access to the cell because it is the most reliable approach or use a mailbox to make the object accessible to other threads (the
mailbox acts as the globally accessible cell).

If you do not use a synchronization mechanism or mailbox, then all stores into the object must be forced to be visible to other
threads ("ensured") before the object is stored in the globally accessible cell. This also applies to any stores that LispWorks
did during construction of the object. Normally, LispWorks does not do that for every store, because it would slow the
program too much. Note that numbers, except fixnum and short-float (in 32-bit LispWorks) or fixnum and
single-float (in 64-bit LispWorks), are also objects that are constructed using stores that need to be ensured.

Storing objects into globally accessible cells would typically be done by setf or a related macro such as push or incf, but
can also be done by Common Lisp functions such as rplaca, fill, nsublis, nsubst or replace (when the target is
globally accessible). If stores into the objects that these functions store have not been ensured and may be read by another
thread without synchronization, then one of the mechanisms in 19.3.4.1 Ways to guarantee the visibility of stores must be
used. Note that when a sequence itself, rather than the elements, is modified, for example by delete, nreverse, nconc,
nunion, then all access to the sequence needs to controlled by a synchronization mechanisms, which will also guarantee the
visibility of stores.

19.3.4.1 Ways to guarantee the visibility of stores

The visibility (in other threads) of stores in an object referenced by a globally accessible cell can only be guaranteed in these
situations:

1. You use a lock or any other synchronization mechanism (barrier, condition-variable, semaphore, mailbox,
or the lock of a hash-table) to serialize all access to the globally accessible cell. Any use of a synchronization
mechanism that may affect the behavior of another thread will implicitly ensure all preceding stores on the current
thread.

2. The store is done by (setf symbol-function) or (setf macro-function) into a symbol, or by one of
(setf gethash), vector-push, vector-push-extend into a "multithreaded" hash-table or vector (see 19.3.7
Single-thread context arrays and hash-tables).

3. You store a newly interned symbol (all stores that occur during interning are ensured). However, if the store is done
using an operator that allocates (see 19.3.4.2 Special care for macros and accessors that may themselves allocate)
then you will still need to ensure.

4. You use one of the low level atomic operations, all of which ensure all stores on the current thread before they modify
the cell. This includes stores from any allocation they may do and applies also to user defined atomic modify macros that
are defined by define-atomic-modify-macro. Currently these atomic operations are: compare-and-swap,
atomic-exchange, atomic-push, atomic-pop, atomic-fixnum-incf, atomic-fixnum-decf, atomic-incf,
atomic-decf. Any atomic operations added in the future will do the same.

5. You start a new thread and access the object from that thread. LispWorks ensures all preceding stores on the current
thread before the new thread runs, so if all accesses to an object occur in threads that start after the object was last
modified then you do not need to ensure the stores into it.

6. You are storing an immediate object (fixnum, character or short-float in 32-bit LispWorks; fixnum,
character or single-float in 64-bit LispWorks) in the globally accessible cell. There are no stores that need to be
ensured during the creation of these objects. However, if the store is done using an operator that allocates (see 19.3.4.2
Special care for macros and accessors that may themselves allocate) then you will still need to ensure.

7. The store is by setf or a related macro (for example push or incf), and the place argument is wrapped by the macro
globally-accessible.

19 Multiprocessing

220

http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_push.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rplaca.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_fill.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sublis.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_substc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_replac.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rm_rm.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_revers.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_nconc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_unionc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_hash_t.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_ps.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_ps.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_push.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm

8. You call ensure-stores-after-stores between the time the object was made (and any stores of interest were done
into it) and the time it is stored into a globally accessible cell. ensure-stores-after-stores ensures all preceding
stores in the current thread.

Note: ensure-memory-after-store and ensure-stores-after-memory do what
ensure-stores-after-stores does and more, but may be more expensive and are not required in this context.

Stores into objects must be "ensured" once by one of the above mechanisms, before the object becomes globally accessible.
Stores that occur after this are not guaranteed to be visible to other threads until another ensuring operation.

In some circumstances you can make the program more efficient by explicitly ensuring stores using globally-accessible

(7) or ensure-stores-after-memory (8) before or when the object is first made visible. See 19.3.5 Ensuring stores are
visible to other threads for more details.

A synchronizing operation (1), atomic operation (4) or a call to ensure-stores-after-stores (8) ensures all stores into
objects that were created by the current thread. The other situations ensure the stores that they perform and anything pointed
to by those stores, but are not guaranteed to ensure other stores (because they may be able to skip ensuring in some
circumstances).

19.3.4.2 Special care for macros and accessors that may themselves allocate

A situation that always requires special care is storing into a globally accessible cell using macros and accessors that may
themselves allocate. If the store is not done using (1), (4) or (5) in 19.3.4.1 Ways to guarantee the visibility of stores, then
you need to use globally-accessible to ensure the stores in new objects that may be allocated are visible, even if the
object that is stored does not need it (because it is an immediate, an interned symbol or was ensured earlier). These macros
and accessors include:

Macros: push, pushnew, push-end, push-end-new, incf (when not a fixnum), decf (when not a
fixnum).

Accessors: getf, cdr-assoc, mask-field (when not a fixnum), ldb (when not a fixnum).

User defined accessors that allocate:

Any user defined accessor (that is an operator with a setf expander defined by
define-setf-expander or defsetf) that allocates during the setting operation. Note that
allocation during the macro expansion is not an issue.

See 19.3.5.5 Destructive macros and accessors that allocate internally for more details.

19.3.5 Ensuring stores are visible to other threads

A store to a cell from one thread is said to be "visible" from another thread when a load from that cell from the other thread
obtains the value that was stored. Within a single thread, all stores are visible immediately to loads from the same thread, but
that is not always the case in a multithreaded situation. Store operations that occur in one thread are not necessarily visible
from other threads until something ensures that they are. In other words, another thread loading from the cell where the store
was done may still obtain the cell's previous value, even if "logically" it seems that the load happened after the store. For a
new object, the previous value may be anything that was in memory, including an invalid value that may cause crashes.

19.3.5.1 An example to consider the issues

For example, assume that the symbol *a-global-symbol* is not dynamically bound anywhere and its value is nil, and we
have two threads, A and B, executing without synchronization.

Thread A executes this code:

19 Multiprocessing

221

http://www.lispworks.com/documentation/HyperSpec/Body/m_push.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_pshnew.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_getf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mask_f.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ldb.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defi_3.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defset.htm

(setq *a-global-symbol* (cons 1 2))

and thread B executes this code:

(let ((maybe-cons *a-global-symbol*))
 (if (consp maybe-cons)
 (car maybe-cons)
 -1))

It looks like the form that thread B executes will always return either 1 (if it happens after thread A has set
a-global-symbol) or -1 (otherwise), because in the case that maybe-cons is a cons it must already have 1 in the car.
However, that is not necessarily true because the store of the cons into *a-global-symbol* may be visible to thread B
before the store of 1 into the cons (which happens inside the call to cons) is visible. This applies to explicit stores in the
program as well, for example if thread A executes:

(setq *a-global-symbol* (rplaca (list nil) 1))

then the same problem arises. In this case, the call to car in thread B may return 1, nil (the value that list stored in the
car), or whatever was in that memory before that.

Note: the second load in thread B (inside car) is dependent on the first load (reading the value cell from
a-global-symbol). Such dependent loads are guaranteed to occur in the program order in all current LispWorks
releases. In situations when the two loads are independent, but you still need them to occur in the program order, you will
need to use ensure-loads-after-loads.

19.3.5.2 The general solution using a lock or another synchronization object

In most circumstances, all access to globally accessible cells should be controlled by a lock, which eliminates all of these
problems because releasing a lock implicitly ensures that all stores in that thread are visible to all other threads, so by the
time another thread gets ownership of the lock, all the stores are already visible. Sending an object via a mailbox, using
(setf gethash), vector-push or vector-push-extend or synchronizing using any of the other synchronization
mechanisms (barrier, condition-variable, semaphore or the lock of a hash-table) also ensures the stores are
already visible (for a full list, see 19.3.4 Making an object's contents accessible to other threads). If you make an object
globally accessible without any of these mechanisms, then you need to ensure explicitly that the stores are all visible. Note
that even if the store occurs inside a lock, if reading from the object may happen outside this lock, then you still need to
ensure the stores, because the reading may happen before unlocking has ensured the stores are visible. Note also that, for
some macros and accessors (listed below), you need to ensure the stores even if the value that you store does not need
ensuring.

19.3.5.3 An alternative solution using globally-accessible

If you need to explicitly ensure that all stores are visible, then the best approach is to use globally-accessible, which
takes a single argument, place, which can be any generalized reference form as described in section 5.1.1 Overview of
Places and Generalized Reference of the Common Lisp HyperSpec. In most cases, (globally-accessible place) is
the same as place. However, when globally-accessible is used inside setf or a related macro such as push or incf
then it also ensures all stores are visible to other threads before modifying place. For example, if we change the code that
thread A in 19.3.5.1 An example to consider the issues executes to:

(setf (sys:globally-accessible *a-global-symbol*)
 (cons 1 2))

then the value returned by the form in thread B is guaranteed to be 1 or -1 as expected.

19 Multiprocessing

222

http://www.lispworks.com/documentation/HyperSpec/Body/a_cons.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_list.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_ps.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_ps.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_hash_t.htm
http://www.lispworks.com/documentation/HyperSpec/Body/05_aa.htm
http://www.lispworks.com/documentation/HyperSpec/Body/05_aa.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_push.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm

19.3.5.4 An alternative solution using ensure-stores-after-stores

The other approach is to use ensure-stores-after-stores just before storing into the globally accessible cell, but after
any allocation or other operations that modify the object being stored in the cell. In the example in 19.3.5.1 An example to
consider the issues, thread A would do:

(let ((cons (cons 1 2)))
 (sys:ensure-stores-after-stores)
 (setq *a-global-symbol* cons))

ensure-stores-after-stores cannot be used when the form that stores the object is a destructive macro such as push
(for a full list, see 19.3.5.5 Destructive macros and accessors that allocate internally below), because push itself allocates
a cons using stores that need to be ensured. globally-accessible takes care of that, by ensure the stores after any
allocation that the macro may do (except when it is a macro with a non-standard setf expansion that allocates or stores in the
setter). Thus globally-accessible is preferable when you can use it. You need to use
ensure-stores-after-stores when the store is encapsulated in some other operation. For example, if you use fill to
store a new object in a globally accessible sequence (some-vector below) then you will need to do something like this:

(let ((new-object (cons x y)))
 (sys:ensure-stores-after-stores)
 (fill some-vector new-object))

ensure-stores-after-stores always ensures all the stores that have happened in the current thread.
globally-accessible is not guaranteed to ensure all preceding stores accept into the value that it stores, because it may
be able to skip ensuring in some circumstances.

19.3.5.5 Destructive macros and accessors that allocate internally

The macros push, pushnew, push-end, push-end-new, incf (when not a fixnum) and decf (when not a fixnum) may
generate new objects internally, so if they are used to destructively modify a globally accessible cell without synchronization
then you will need to use globally-accessible.

For example:

(pushnew some-object (sys:globally-accessible *a-global-symbol*))

Note that globally-accessible is needed with push, pushnew, push-end, and push-end-new even if there are no
stores into the object being pushed that need ensuring. For incf and decf, if you can guarantee that the new value is
fixnum, then you do not need globally-accessible.

The accessors getf, cdr-assoc, mask-field and ldb take a place argument that may generate new objects when
modified, so if place is globally accessible and it is modified without synchronization then you will need to wrap
globally-accessible around such modifications of place.

For example:

(setf (getf (sys:globally-accessible *a-global-symbol*)
 :key)
 value)

For getf and cdr-assoc, globally-accessible is needed even if there are no stores into the new object and key that
need ensuring because new conses might be added to the place. For mask-field and ldb, if you are absolutely sure that the
new value is fixnum then you do not need globally-accessible.

In addition, setf expanders defined by define-setf-expander or defsetf cannot be used on globally accessible cells
without synchronization (by a lock or other synchronization mechanism) if they do any of the following:

19 Multiprocessing

223

http://www.lispworks.com/documentation/HyperSpec/Body/m_push.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_push.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_fill.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_push.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_pshnew.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_push.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_pshnew.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_getf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mask_f.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ldb.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_getf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mask_f.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ldb.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defi_3.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defset.htm

• Allocate inside the value forms (the second value returned by get-setf-expansion).

• Allocate inside the storing form (the fourth value returned by get-setf-expansion).

• Store to anywhere except the place.

See section 5.1.1.2 Setf Expansions of the Common Lisp HyperSpec for the definition of "value forms" and "storing form".

19.3.5.6 Miscellaneous notes

For an object that is not modified later, ensuring all stores when the object is created is sufficient, and after that the object can
be used freely from any thread.

ensure-stores-after-stores can be used to ensure stores for objects that are modified after becoming globally
accessible. However, if you need to ensure that the new values are seen by other threads that may be already accessing the
modified objects then you need to use some synchronization mechanism anyway. Thus in most cases you should use a lock,
which will deal with the synchronization.

ensure-stores-after-stores does slow the program a little on architectures that need it (Currently ARM, ARM64 and
PowerPC), so you can consider the following optimizations:

• If you construct several objects that all need to be stored into globally accessible cells, then you can reduce the overhead
by making them all, calling ensure-stores-after-stores once and then storing them all.

• If the store is done while holding a lock but the load is done without the lock, and loading happens less frequently than
storing, then you may consider loading while holding the lock as well to avoid needing to explicitly ensure the stores.

As noted in 19.3.5 Ensuring stores are visible to other threads, loads from an object that was obtained from a globally
accessible cell are currently guaranteed to occur after the load the cell itself, because all the architectures that LispWorks runs
on guarantee that. In principle, sometime in the future there may be a new architecture that does not provide that guarantee.
You can guard against this by using globally-accessible when reading from the globally accessible cell as well.
Currently that just macroexpands into its argument, so does not affect the performance, but for an architecture that requires
anything it will do the right thing.

19.3.6 Issues with order of memory accesses

When multiple threads access the same memory location, the order of those accesses is not generally guaranteed. You should
therefore not attempt to implement "lockless algorithms" which depend on the order of memory accesses unless you have a
good understanding of multiprocessing issues at the CPU level (see 19.13.3 Ensuring order of memory between operations
in different threads).

However, all of the 19.13.1 Low level atomic operations and locking operations (see 19.4 Locks) do ensure that all memory
accesses that happen before them have finished and that all memory accesses that happen after them start after them.
Therefore, normally there is nothing special to consider when using those operations. The modification check macros
described in 19.13.2 Aids for implementing modification checks also take care of this.

19.3.7 Single-thread context arrays and hash-tables

Access to hash tables and non-simple arrays can be improved where they are known to be accessed in a single thread context.
That is, only one thread at the same time accesses them.

The make-hash-table argument single-thread tells make-hash-table that the table is going to be used only in single
thread context, and therefore does not need to be thread-safe. Such a table allows faster access.

Similarly the make-array argument single-thread creates an array that is single threaded. Currently, the main effect of
single-thread is on the speed of vector-pop, vector-push. and vector-push-extend on non-simple vectors. These

19 Multiprocessing

224

http://www.lispworks.com/documentation/HyperSpec/Body/f_get_se.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_get_se.htm
http://www.lispworks.com/documentation/HyperSpec/Body/05_aab.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_po.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_ps.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_ps.htm

operations are much faster on "single threaded" vectors, typically more than twice as fast as "multithreaded" vectors.

You can also make an array be "single-threaded" with set-array-single-thread-p.

The result of parallel access to a "single-threaded" vector is unpredictable.

19.3.8 Implicit locks in the LispWorks implementation

The LispWorks implementation uses locks to ensure correct functionality in some cases. In general, you do not need to worry
about these locks, but in a few cases they can lead to deadlocks if one of the implementation's locks conflicts with another
lock or with something else that causes a process to be blocked.

19.3.8.1 hash tables locked while iterating

While iterating over the elements of a hash-table (for example by maphash, with-hash-table-iterator or loop),
the hash table is locked against access by other threads.

19.3.8.2 Subclasses of standard-object locked while their class is being redefined

When a class is being redefined, instances of the class and its subclasses are locked against access by other threads. This is to
ensure that any changes to the instance are made atomically and should only causes problems if you define your own
methods on update-instance-for-redefined-class.

19.3.8.3 Subclasses of standard-object locked while their class is being changed

An instance whose class is being changed by change-class is locked against access by other threads. This is to ensure that
any changes to the instance are made atomically and should only causes problems if you define your own methods on
update-instance-for-different-class.

19.4 Locks

Locks can be used to control access to shared data by several processes.

The two main operators used in locking are the function make-lock, to create a lock, and the macro with-lock, to
execute a body of code while holding the specified lock.

A lock has a name (a string) and several other components. The printed representation of a lock shows the name of the
lock and whether it is currently locked. Additionally if the lock is locked it shows the name of the process holding the
lock, and how many times that process has locked it. For example:

#<MP:LOCK "my-lock" Locked 2 times by "My Process" 2008CAD8>

The function lock-owner returns the process that locked a given lock.

The function lock-name returns the name of a lock.

The function process-lock blocks the current process until a given lock is claimed or a timeout passes, and
process-unlock releases the lock.

The macro with-lock executes code with a lock held, and releases the lock on exit, as if by process-lock and
process-unlock.

If you need to avoid blocking on a lock that is held by some other thread, then use with-lock with timeout 0, like this:

19 Multiprocessing

225

http://www.lispworks.com/documentation/HyperSpec/Body/t_hash_t.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_maphas.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_hash.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chg_cl.htm

(unless (mp:with-lock (lock nil 0)
 (code-to-run-if-locked)
 t)
 (code-to-run-if-not-locked))

The macros with-sharing-lock and with-exclusive-lock can be used with sharing locks.

19.4.1 Recursive and sharing locks

The keyword argument recursivep to make-lock, when true, allows the lock to be locked recursively. recursivep is true by
default. If recursivep is false then trying to lock again causes an error. This is useful for debugging code where the lock is
not expected to be claimed recursively.

The keyword argument sharing to make-lock, when true, creates an "sharing" lock object, which supports sharing and
exclusive locking. A sharing lock is handled by different functions and methods. See with-exclusive-lock,
with-sharing-lock, process-exclusive-lock, process-exclusive-unlock, process-sharing-lock and
process-sharing-unlock.

19.4.2 Querying locks

See lock-recursive-p, lock-owned-by-current-process-p, lock-owner, lock-locked-p and
lock-recursively-locked-p.

19.4.3 Guarantees and limitations when locking and unlocking

In compiled code process-lock, process-exclusive-lock and process-sharing-lock are guaranteed to return if
they locked their argument. In other words there will not be any throw between the time they locked the lock and the time
they return. That means that in compiled code the next form will at least start executing, and if it is an unwind-protect the
cleanup forms will at least start executing. (If the code is evaluated, this is not guaranteed.) "Locking" here also means
incrementing the count of a lock that is already held by the current thread.

However these functions may throw before locking. For example, in the following code process-lock may throw without
locking, for example because something interrupts the process by process-interrupt:

(unwind-protect
 (progn (mp:process-lock lock)
 (whatever))
 (mp:process-unlock lock))

If this call to process-lock does throw without locking, then process-unlock will be called on a lock that is not
locked.

The correct code that guarantees (when compiled) that process-unlock is called on exit only when process-lock did
lock is:

(mp:process-lock lock)

(unwind-protect
 (whatever)
 (mp:process-unlock lock))

Conversely, process-unlock, process-exclusive-unlock and process-sharing-unlock guarantee to
successfully unlock the lock, but are not guaranteed to return.

For example, the following code may fail to call another-cleanup:

19 Multiprocessing

226

http://www.lispworks.com/documentation/HyperSpec/Body/s_unwind.htm

(mp:process-lock lock)

(unwind-protect
 (whatever)
 (mp:process-unlock lock)
 (another-cleanup))

If another-cleanup is essential to execute in all throws, it needs its own unwind-protect:

(mp:process-lock lock)

(unwind-protect
 (whatever)
 (unwind-protect
 (mp:process-unlock lock)
 (another-cleanup)))

Note: the guarantees described in this section are relevant only in compiled code.

19.5 Modifying a hash table with multiprocessing

Each hash-table access operation is thread-safe and atomic, but there is no guarantee of atomicity between access
operations.

The modify macros (for example incf) all expand to two access operations, reading the value and writing the modified
value, and are therefore not atomic. They need to be either done while holding a lock, or using modify-hash.

Another common operation is "ensuring an entry", that is reading and, if reading fails, adding a value to the table. For
example:

(or (gethash key hash-table)
 (setf (gethash key hash-table) (construct-new-value)))

If two threads do that in parallel, one of them may end up with a value that is not in the table. One solution is to lock that
table:

(with-hash-table-locked hash-table
 (or (gethash key hash-table)
 (setf (gethash key hash-table) (construct-new-value))))

However that always locks the table, which is inefficient. The correct way to do it is either to do:

(or (gethash key hash-table) ; first try without the lock
 (with-hash-table-locked hash-table
 (or (gethash key hash-table) ; check again inside the lock
 (setf (gethash key hash-table) (construct-new-value)))))

or use gethash-ensuring or with-ensuring-gethash.

19.6 Process Waiting and communication between processes

Process Waiting means that a process suspends its own execution until some condition is true. The generic Process Wait
functions take a wait-function argument, which is arbitrary though somewhat restricted Lisp code. A process resumes running
when the wait-function returns true. The specific Process Wait functions wait for a specific condition.

19 Multiprocessing

227

http://www.lispworks.com/documentation/HyperSpec/Body/s_unwind.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_hash_t.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm

19.6.1 Specific Process Wait functions

For communication between processes, these are:

mailbox-read, process-wait-for-event, mailbox-wait and mailbox-wait-for-event.

For synchronization, these are:

condition-variable-wait and barrier-wait, also semaphore-acquire and semaphore-release.

For locking these are:

process-lock, process-exclusive-lock and process-sharing-lock.

For sleeping, these are:

cl:sleep and current-process-pause.

The specific Process Wait functions are designed to reduce latencies and to increase efficiency. In particular, in SMP
LispWorks they should be used in preference to the generic Process Wait functions.

19.6.2 Generic Process Wait functions

The generic Process Wait functions are:

• process-wait and process-wait-with-timeout.

• process-wait-local and process-wait-local-with-timeout.

• process-wait-local-with-periodic-checks and
process-wait-local-with-timeout-and-periodic-checks.

Note: For brevity we sometimes refer to "the *-periodic-checks functions" or "the *-with-timeout functions".

All the generic Process Wait functions take wait-reason and wait-function arguments and potentially also arguments to pass to
the wait-function. The *-with-timeout functions mentioned above also take a timeout argument. The
*-periodic-checks functions also take a period argument.

The wait-reason is used only to mark the process as waiting for something for debugging purposes. It does not affect the
behavior of the functions.

The generic Process Wait functions "wake up" (that is, they simply return to the caller) either when the timeout passed (if
they take a timeout argument), or when the wait function returns true. The three pairs of functions mentioned above differ in
the mechanism that calls the wait function.

process-wait and process-wait-with-timeout arrange that the "scheduler" will call the wait function when it runs.
The "scheduler" is invoked at various points, in an indeterminate process. The advantage of this is that the programmer does
not need to worry too much about when the wait function is going to be called. In non-SMP LispWorks (that is, LispWorks
5.1 and earlier) the programmer does not need to worry at all: when some process sets up something that would make the
wait function return true, the waiter process could not run anyway until the setting-up process stopped for some reason
(including preemption), by which time the scheduler would have called the wait function if it had not done it before. In SMP
LispWorks (that is, LispWorks 6.0 and later), these two processes can run simultaneously, so the delay between the setting up
and the scheduling is not necessary. It can be avoided by "poking" the waiting process with process-poke, if the waiting
process is known, or by invoking the scheduler by process-allow-scheduling.

Note: All the specific Process Wait functions, described in 19.6.1 Specific Process Wait functions, record that they wait,
and the operations that allow them to continue implicitly "poke" the waiting process. Therefore the specific functions avoid
the problem of latency or needing process-poke, and should be be used in preference where possible.

19 Multiprocessing

228

http://www.lispworks.com/documentation/HyperSpec/Body/f_sleep.htm

A large disadvantage of process-wait and process-wait-with-timeout is that their wait-function is called by the
"scheduler" in an indeterminate process. That means that the wait function does not see the dynamic environment of the
calling process (including error handlers), and cannot be debugged properly. It is also called often, and so it needs to be
reasonably fast and not allocate much. In addition, having to call the wait function adds overhead to the system. Therefore in
general, if you can achieve the required effect by using either any of the specific wait functions or a process-wait-local*
function, you should do that and avoid process-wait and process-wait-with-timeout.

process-wait-local and process-wait-local-with-timeout do not have all the disadvantages listed above, but
their wait-function is called only when the process is poked (or at the end of the timeout). That means that the programmer
does need to worry about when they are called. Typically some other process will set up something, and then poke the
waiting process to check that it can run.

Note: if the setting up process always knows for sure whether the waiting process can run, then it is normally simpler to use
one of the specific Process Wait functions, or maybe even process-stop and process-unstop.

The *-periodic-checks functions give a partial solution to the question of calling the wait function, by ensuring there is a
maximum period of time between calls. If having a bounded delay where a bound of more than 0.1 second is not a problem,
then the *-periodic-checks functions are a simple and efficient way to achieve it.

When the delays need to be bounded by a shorter period, either one of the specific Process Wait functions or explicit calls to
process-poke need to be used. The latter combined with process-wait-local is the most efficient mechanism, but it
does require the programmer to ensure that process-poke is called in all the right places.

19.6.3 Communication between processes and synchronization

The simplest way to pass a specific event between two processes it to use process-wait-for-event on the receiving
process, and process-send on the sender side. The "event" that is passed is can be any Lisp object.

process-send and process-wait-for-event use a mailbox to pass the object (the process-mailbox of the
receiver). It is possible to use a mailbox object directly, and to communicate between multiple senders and receivers. Use
make-mailbox to make a mailbox, and mailbox-send to put a message in it. In some situations there may be an
imbalance between sending and receiving messages in a mailbox, which may cause the mailbox to become very big. When
this is a problem, you can use mailbox-send-limited to make the sending process wait (or do something else) once the
mailbox grows to some limit. There are also functions mailbox-count, mailbox-size and mailbox-full-p to help
with these situations.

The receiver(s) use mailbox-wait-for-event, mailbox-wait or mailbox-read. mailbox-wait-for-event should
be used on processes that may make windows (including any process associated with a CAPI interface), but can be used
elsewhere. mailbox-read is faster, but if it used on a process with a window it may cause hanging.

In general, the receiving process decides hows to interpret an event. However, the system has a "standard" generic function,
general-handle-event, to interpret events. general-handle-event has methods that process lists by applying the
car to the cdr, and processes function objects or symbols by calling them. There is a method on t that does nothing. You
can add your own method on your defined classes (which can be structures).

general-handle-event is used when system code needs to interpret events, most importantly processes that CAPI uses to
display windows use it. Hence for processes that use the "standard" event handling, you can send an object using
process-send and expect it to be processed by general-handle-event. general-handle-event is also used by
process-all-events, which processes all the events for the current process, and wait-processing-events, which
waits until some predicate returns true while processing events.

In some situations it is useful to execute some code next time the current process processes events, rather than immediately.
That can be achieved by process-send with the current process, or more conveniently by current-process-send.

process-wait-for-event and process-send and mailbox are the primary interface for communication between
processes, and should be used unless there is a very good reason to use a different mechanism.

19 Multiprocessing

229

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

19.6.4 Synchronization

Synchronization can be achieved by the various process-wait* functions with the appropriate wait-function argument, but
for simple cases of synchronization it is better to use the synchronization objects: condition-variable or barrier.
These synchronization objects are simple, efficient, deal with all thread-safety issues, and ensure that the processes that are
ready to run will run immediately, rather than the next time that the wait function is called.

Condition variables (or type condition-variable) are used when one or more processes have the knowledge to control
when another process(es) runs. The "ignorant" process(es) use condition-variable-wait to wait until they can continue.
The "knowledgeable" process(es) use condition-variable-signal and condition-variable-broadcast to tell
the "ignorant" processes when they can run. Because the communication is via the condition variable, the processes do not
need to know explicitly about each other. For more details, see 19.7.1 Condition variables.

Barriers (of type barrier) are used (mainly) for symmetric synchronization, when a group of processes needs to ensure that
none of them goes too far ahead of the rest. The processes call barrier-wait when they want to synchronize, and
barrier-wait waits until the other process arrive too (that is, they call barrier-wait). Barriers have additional features
that allow more complex synchronization. For more details, see 19.7.2 Synchronization barriers.

19.7 Synchronization between threads

In LispWorks 5.1 and previous versions, the main way to synchronize between threads is to use mp:process-wait or
mp:process-wait-with-timeout to supply a predicate to the scheduler. The predicate runs periodically in the
background to identify threads that are no longer blocked.

These functions are still available, but there are some alternatives that can be more efficient in many cases by removing the
need for the scheduler. The alternatives are:

• Mailboxes (FIFO queues). See make-mailbox and mailbox-send.

• Condition Variables (used with a lock). See 19.7.1 Condition variables.

• Barriers (counting arrivals at a certain point in the code). See 19.7.2 Synchronization barriers.

• Counting Semaphores (limiting the number of users of a shared resource). See 19.7.3 Counting semaphores.

Access to all of these objects is atomic and does not require additional locks (except for the lock that is already used with a
condition-variable).

19.7.1 Condition variables

A condition-variable allows you to wait for some condition to be satisfied, based on the values stored in shared data
that is protected by a lock. The condition is typically something like data becoming available in a queue.

The function condition-variable-wait is used to wait for a condition-variable to be signaled. It is always called
with the lock held, which is automatically released while waiting and reclaimed before continuing. More than one thread
can wait for a particular condition-variable, so after being notified about the condition changing, you should check the
shared data to see if it represents a useful state and call condition-variable-wait again if not.

The function condition-variable-signal is used to wake exactly one thread that is waiting for the
condition-variable. If no threads are waiting, then nothing happens.

Alternatively, the function condition-variable-broadcast can be used to wake all of the threads that are waiting at the
time it is called.

Any threads that wait after the call to condition-variable-signal or condition-variable-broadcast will not be
woken until the next call.

19 Multiprocessing

230

In most uses of condition variables, the call to condition-variable-signal or condition-variable-broadcast
should be made while holding the lock that waiter used when calling condition-variable-wait for this
condition-variable. This ensures that the signal is not lost if another thread is just about to call
condition-variable-wait.

The function condition-variable-wait-count can be used to determine the current number of threads waiting for a
condition-variable.

The condition-variable implementation in LispWorks aims to comply with the POSIX standard where possible.

condition-variable-wait, condition-variable-signal and condition-variable-broadcast have
corresponding functions lock-and-condition-variable-wait, lock-and-condition-variable-signal and
lock-and-condition-variable-broadcast. For condition-variable-wait there is also
simple-lock-and-condition-variable-wait, which is simpler to use. The lock-and-condition-… functions
perform the equivalent of locking and in the scope of the lock doing something and calling the corresponding condition-…

function.

The lock-and-condition-… functions not only make it simpler to code, they also make it easier to avoid mistakes, and
can optimize some cases (in particular, the quite common case when there is no need to lock on exit from
condition-variable-wait). They are the recommended interface.

The lock-and-condition-… functions can be used together with condition-… functions on the same locks and
condition-variables.

Note: In cases when only one process waits for the condition, using process-wait-local for waiting and process-poke

for signaling is easier, and involves less overhead.

19.7.2 Synchronization barriers

Barriers are objects of type barrier that are used to synchronize multiple threads. A barrier has a count that determines
how many "arrivals" (calls to barrier-wait) have to occur before these calls return.

The main usage of barriers is to ensure that a group of threads have all finished some stage of an algorithm before any of
them proceeds.

The typical way of using a barrier is to make one with a count that is the same as the number of threads that are going to
work in parallel and then create the threads to do the work. When each thread has done its work, it synchronizes with the
others by calling barrier-wait. In most cases barrier-wait is the only barrier API that is used.

For example, assume you have a task that be broken into two stages, where each stage can be done in parallel by several
threads, but the first stage must be completely finished before any processing of the second stage can start. Then the code will
do:

(let ((barrier (mp:make-barrier num-of-processes)))
 (dotimes (p num-of-processes)
 (mp:process-run-function (format nil "Task worker ~d" p)
 ()
 #'(lambda (process-number barrier)
 (do-first-stage process-number)
 (mp:barrier-wait barrier)
 (do-second-stage process-number))
 p
 barrier)))

It is also possible to use a barrier to block an indefinite number (up to most-positive-fixnum) of processes, until
another process decides that they can go. For this the barrier is made with count t (or most-positive-fixnum). The
other process then uses barrier-disable to "open" the barrier. If required, the barrier can be enabled again by
barrier-enable.

19 Multiprocessing

231

http://www.lispworks.com/documentation/HyperSpec/Body/v_most_p.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_most_p.htm

See also barrier-block-and-wait.

19.7.3 Counting semaphores

A counting semaphore is a synchronization object that allows different threads to coordinate their use of a shared resource
that contains some number of available units. The meaning of each unit depends on what the semaphore is being used to
synchronize.

The three main functions associated with semaphores are: make-semaphore, which makes a new semaphore object;
semaphore-acquire, which acquires units from a semaphore and semaphore-release, which releases units back to a
semaphore. The current thread will block if it attempts to acquire more units than are current available.

The functions semaphore-name, semaphore-count and semaphore-wait-count can be used to query the name,
available unit count and count of waiting units from a semaphore.

19.8 Killing a process, interrupts and blocking interrupts

19.8.1 Killing a process

When the function of the process (third argument to process-run-function) returns the process exits, but in many cases
it is more convenient to terminate the process without returning all the way to the process function.

The function current-process-kill can be used to kill the current process. It executes all the unwind forms on the stack
first. Checking in appropriate places and calling current-process-kill is a convenient and safe way (as long as there are
unwind-protect forms where needed) of causing processes to exit when they should.

process-terminate can be used to kill any process. If there is no Terminate Method (see
current-process-set-terminate-method) it uses the process interrupting mechanism, so if the other process blocks
interrupts it will continue to run until it stops blocking. Because the killing interrupt can happen inside unwind forms of
unwind-protect (unless they are executed with interrupts blocked) process-terminate is not safe unless all essential
unwinding forms are executed with interrupts blocked. In most cases it is probably easier to not use process-terminate in
actual applications.

19.8.2 Interrupting a process

process-interrupt and process-interrupt-list can be used to interrupt a process and execute arbitrary code. Since
the interrupt happens at a "random" time, it should have minimal interaction with any data structures that are being modified.
For robust applications it is probably better never to use it except during development.

19.8.3 Blocking interrupts

The purpose of blocking interrupts is to prevent a process aborting in the middle of an operation that needs to be completed.
A typical example is the cleanup forms of an unwind-protect.

Blocking interrupts does not provide atomicity. Other processes may continue to execute.

Blocking interrupts limits the control that LispWorks has over the processes, so interrupts should not be blocked except when
necessary. However, apart from blocking interrupts in a process it does not affect the behavior of the system.

The following macros and functions allow control over blocking interrupts: allowing-block-interrupts,
with-interrupts-blocked, current-process-unblock-interrupts and
current-process-block-interrupts.

Additionally the macros unwind-protect-blocking-interrupts and

19 Multiprocessing

232

http://www.lispworks.com/documentation/HyperSpec/Body/s_unwind.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_unwind.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_unwind.htm

unwind-protect-blocking-interrupts-in-cleanups allow your program to prevent interrupts from stopping
cleanup forms from completing.

Compatibility note: In LispWorks 5.1 and previous versions, mp:without-preemption and mp:without-interrupts

are sometimes used to block interrupts, but they also provide atomicity. In many cases (probably most), they are used to
provide atomicity, and in these cases they cannot be replaced by blocking interrupts. To get atomicity in LispWorks 6.0 and
later you need to use locks or atomic operations. To get atomicity while debugging, you can also use
with-other-threads-disabled.

19.8.4 Old interrupt blocking APIs removed

The macros mp:without-interrupts and mp:without-preemption, which were available in LispWorks 5.1 and
earlier, are no longer supported. The semantics of these macros allowed them to be used for several different purposes, which
now require specific solutions.

• Atomic operations. This use was designed to make operations atomic with respect to other uses of the same macro or
with respect to some other unquantified operations that were expected to be atomic, such as reading or writing a single
slot in an object. Code of this kind should be converted to use locks (see 19.4 Locks) or low level atomic operations (see
19.13.1 Low level atomic operations).

• Complete operations. This use was designed to ensure that a set of operations completed without being interrupted by
mp:process-interrupt, keyboard breaks and so on. See 19.8.3 Blocking interrupts for the new approach.

The following subsections show examples of typical uses of the old interrupt blocking APIs together with their replacements.
The examples use mp:without-interrupts but the ideas also apply to uses of mp:without-preemption.

19.8.4.1 Atomic increment

Old:

(without-interrupts
 (incf *global-counter*))

New: use low level atomic operations.

(sys:atomic-incf *global-counter*)

19.8.4.2 Atomic push/pop

Old:

(without-interrupts
 (push value *global-list*))
 (without-interrupts
 (pop *global-list*))

New: use low level atomic operations.

(sys:atomic-push value *global-list*)

(sys:atomic-pop *global-list*)

19 Multiprocessing

233

19.8.4.3 Atomic push/delete

Old:

(without-interrupts
 (push value *global-list*))
 (without-interrupts
 (setq *global-list* (delete value *global-list*)))

New: use a lock, because delete cannot be done atomically since it reads more than one object before modifying one of
them.

(defvar *global-list-lock* (mp:make-lock :name "Global List"))

(mp:with-lock (*global-list-lock*)
 (push value *global-list*))

(mp:with-lock (*global-list-lock*)
 (setq *global-list* (delete value *global-list*)))

19.8.4.4 Atomic plist update

Old:

(without-interrupts
 (setf (getf *global-plist* key) value))
 (without-interrupts
 (getf *global-plist* key))

New: use a lock, because a plist consists of more than one object so cannot be updated with low level atomic operations.

(defvar *global-plist-lock* (mp:make-lock :name "Global Plist"))

(mp:with-lock (*global-plist-lock*)
 (setf (getf *global-plist* key) value))

(mp:with-lock (*global-plist-lock*)
 (getf *global-plist* key))

19.8.4.5 Atomic update of a data structure

The example below is a resource object, which maintains a count of free items and also list of them. These two slots must
stay synchronized.

Old:

(without-interrupts
 (when (plusp (resource-free-item-count resource))
 (decf (resource-free-item-count resource))
 (pop (resource-free-items resource))))

New: use a lock, because more than one slot has to be updated, so cannot be updated with low level atomic operations.

(mp:with-lock ((resource-lock resource))
 (when (plusp (resource-free-item-count resource))
 (decf (resource-free-item-count resource))
 (pop (resource-free-items resource))))

19 Multiprocessing

234

19.8.4.6 Atomic access to a cache in a hash table

Old:

(without-interrupts
 (or (gethash value *global-hashtable*)
 (setf (gethash value *global-hashtable*)
 (make-cached-value))))

New: use the hash table lock.

(hcl:with-hash-table-locked
 global-hashtable
 (or (gethash value *global-hashtable*)
 (setf (gethash value *global-hashtable*)
 (make-cached-value))))

Alternative new: use the hash table lock only if the value is not already cached. This can be faster than the code above,
because it avoids locking the hash table for concurrent reads.

(or (gethash value *global-hashtable*) ; probe without the lock
 (hcl:with-hash-table-locked
 global-hashtable
 (or (gethash value *global-hashtable*) ; reread with the lock
 (setf (gethash value *global-hashtable*)
 (make-cached-value)))))

19.9 Timers

Use timers to run code after a specified time has passed. You can schedule a timer to run once or repeat at regular intervals,
and you can unschedule it before it expires.

The timers are measured in elapsed time and the accuracy depends on various factors, including the operating system and the
load on the computer.

For the details, see the reference entries for make-timer and schedule-timer.

19.9.1 Timers and multiprocessing

Timers run in unpredictable threads, therefore it is not safe to run code that interacts with the user directly. The recommended
solution is something like:

(mp:schedule-timer-relative
 (mp:make-timer 'capi:execute-with-interface
 interface
 'capi:display-message "Time's up")
 5)

or:

(mp:schedule-timer
 (mp:make-timer 'capi:execute-with-interface
 interface
 'capi:display-message "Lunchtime")
 (* 4 60 60))

where interface is an existing CAPI interface on the screen.

19 Multiprocessing

235

Timers actually run in the process that is current when the scheduled time is reached. This is likely to be The Idle Process in
cases where LispWorks is sleeping, but it is inherently unpredictable.

19.9.2 Input and output for timer functions

I/O streams default to the standard input and output of the process, which is initially *terminal-io* in the case of The Idle
Process.

19.10 Process properties

A "process property" is a pair of an indicator and a value that is associated with it for a process.

LispWorks has two kinds of process properties: general and private. These two kinds of properties are stored separately, and
the association of indicator/value in each property kind is independent of any in the other property kind.

General properties are stored in the process plist, and can be modified from other processes.

Private properties can only be modified by the current process and are discarded when the process dies. Private properties are
faster to modify, because the modification does not need to be thread-safe.

Otherwise there is little difference between general and private properties.

process-plist and (setf process-plist) are not thread-safe. In LispWorks 5.1 and earlier the only interface to
process properties is process-plist, but this does not work well in SMP LispWorks, and so it is deprecated.

There is no parallel to process-plist for the private properties.

The general properties are accessed by: process-property, (setf process-property),
remove-process-property, pushnew-to-process-property and remove-from-process-property.

The private properties are accessed by: get-process-private-property (access from other processes),
process-private-property, (setf process-private-property), remove-process-private-property,
pushnew-to-process-private-property and remove-from-process-private-property.

19.11 Other processes functions

19.11.1 Process Priorities

Each process has a priority and can either be runnable, blocked or suspended.

The effect of process priorities is significantly different between SMP LispWorks and non-SMP LispWorks.

19.11.1.1 Process priorities in SMP LispWorks

Process priorities are almost completely ignored in SMP LispWorks.

The main exception is that for processes that wait with process-wait for something to happen, a process with higher
priority is likely to wake up earlier, but even then it is not guaranteed.

19.11.1.2 Process priorities in non-SMP LispWorks

If there is a runnable process with priority P, then no processes with priority less than P will run. When there are runnable
processes with equal priority, they will be scheduled in a round-robin manner.

19 Multiprocessing

236

http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

If a process with priority P is running and a blocked process with priority greater than P becomes runnable, the second
process will run when the scheduler is next invoked (either explicitly or at the next preemption tick).

To find the priority of a process, use process-priority. This can be changed using change-process-priority.

(mp:change-process-priority proc-1 10)

Another way to specify the priority is to create the process with process-run-function, passing the keyword
:priority:

(list
 (mp:process-run-function
 "SORTER-DOT" '(:priority 10) #'sorter #\.)
 (mp:process-run-function
 "SORTER-DASH" () #'sorter #\-))

19.11.2 Accessing symbol values across processes

Use symeval-in-process to read the value of a dynamically bound symbol in a given process.

(setf mp:symeval-in-process) can set the value of such a symbol.

symeval-in-process is mostly intended for debugging. Do not call it while the thread is actually running.

19.11.3 Stopping and unstopping processes

This section describes a typical way of using process-stop and process-unstop.

Suppose a pool of "worker" processes is managed by a "manager" process. A process in the worker pool marks itself as
available for work, and then calls process-stop. The manager process later finds a worker process that is marked as
available for work, puts the work in a place known to the worker process, and then calls process-unstop on the worker
process.

For this scheme to work properly, the check of whether the worker is available needs to include a call to
process-stopped-p. Otherwise, it is possible for the following sequence of events to occur:

1. A worker marks itself as available.

2. The manager process finds the worker and gives it the work.

3. The manager process calls process-unstop on the worker.

4. The worker process proceeds and calls process-stop, and never wakes up.

To guard against this possibility, then the manager should call process-stopped-p when finding the worker in the second
step above. Alternatively, it could check the result of process-unstop.

19.12 Native threads and foreign code

Each Lisp mp:process has a separate native thread and in LispWorks 6.0 and later versions these threads can run
simultaneously.

Note: In LispWorks 5.1 and earlier versions, you can have many runnable mp:process objects/native threads, but Lisp code
can only run in one thread at a time and a lock is used to enforce this. This can limit performance on a computer with
multiple CPU cores. When a foreign function is called using the FLI, the lock is released until the function returns. This
allows other Lisp threads to run, for instance while waiting for a database query to execute.

19 Multiprocessing

237

You can call back into Lisp using fli:define-foreign-callable in any thread, without any other setup.

Threads running Lisp code can be rescheduled preemptively, so if you call into Lisp from more than one thread
simultaneously and one request takes a long time then it will not delay the requests in other threads.

19.12.1 Foreign callbacks on threads not created by Lisp

When foreign code creates a native thread (a "foreign thread") and code running on this thread calls into Lisp, then Lisp
needs to associate a Lisp process object with this thread to be able to work properly.

When there is a call on a foreign thread into Lisp which is not a recursive call (an "outer call"), Lisp first checks if there is a
process associated with this thread, and if there is it uses it. Otherwise, it creates a new process and associates it with the
foreign thread. Recursive calls into Lisp (when Lisp calls foreign code which calls back into Lisp) are processed in the same
way as recursive calls in Lisp threads.

When the outer call returns, Lisp by default keeps the process associated with the thread, but this is not guaranteed. Keeping
the process means that next call into Lisp requires less work, but comes at the cost of using more memory. Lisp eliminates
the process if it detects that the thread has died, if there is call to last-callback-on-thread inside the outer call or if the
process is killed by process-terminate.

Once Lisp has a process associated with the thread, it establishes it as the current process, as returned by calling
get-current-process, and then calls the foreign callable Lisp code.

Part of establishing the process involves binding the variables in *process-initial-bindings*. Note that this binding
happen repeatedly for each outer call. The computation of the bound value is done when the process is created, so if the
process is not eliminated between outer calls (the default behavior), this happens only once. The computation of the value
occurs in the dynamic environment of the new process.

Compatibility note: Before LispWorks 7.1, the computation occurred in a "no-process" scope, and an error would have
entered the debugger in the console without an option to abort.

19.12.1.1 Performance considerations for foreign threads

Keeping the process between outer calls (the default behavior), makes each call faster, but uses memory. For few processes,
this is probably the best approach. With many processes, the memory usage may become an issue.

There is an overhead for an outer call, which is larger than a recursive call. A few outer calls per second should not be a
problem, but it should be avoided inside a heavy computation.

19.13 Low level operations

19.13.1 Low level atomic operations

Low level atomic operations are defined in all cases for a specific set of places. These places are listed in Places for low-level
atomic operations:

19 Multiprocessing

238

Places for low-level atomic operations

Place Notes

(symbol-value symbol) When symbol is dynamically bound, this means the
dynamically bound value.

A dynamically bound symbol The dynamically bound value.

A lexically bound symbol It is an error to use a low level atomic operation on a
lexically bound symbol.

(car cons)

(cdr cons)

(the type place) For another place listed in this table.

(svref sv index) Only simple-vector.

Structure accessors The structure must be defined at compile time.

(slot-value object slot-name) See below.

Notes about atomic slot-value operations:

1. They ignore the MOP slot-value-using-class protocol and can only be used for :instance and :class

allocated slots.

2. They are slower than the atomic operations on other types of object because they have to lock the instance. Normally it
would be better to have a slot pointing to some other object (for example a structure) and do the atomic operations on
that object.

The low level atomic operations implicitly ensure order of memory between operations in different threads.

The low level atomic operations are: atomic-push, atomic-pop, atomic-fixnum-incf, atomic-fixnum-decf,
atomic-incf, atomic-decf, atomic-exchange and compare-and-swap.

Application of macros that are defined by define-atomic-modify-macro is also restricted to the places in Places for low
-level atomic operations above, because they implicitly use low level atomic operations.

You can test whether a place is suitable for use with these operations by the predicate low-level-atomic-place-p.

19.13.2 Aids for implementing modification checks

The macros with-modification-check-macro and with-modification-change provide a way for a body of code to
execute and check whether there was any "modification" during this execution, where modification is execution of some
other piece of code. This is useful in situations when reading some data out of some data structure is more common than
modification, and reading the data involves getting some values that need to be consistent. It makes it possible to ensure
consistency of the values without a lock.

The checking code should be wrapped by the macro with-modification-check-macro, and the modifying code should
be wrapped by the macro with-modification-change. They are associated by the fact that their modification-place
argument is the same.

modification-place is a place as defined in Common Lisp (it does not need to be one of the places for atomic locking) which
can receive a fixnum. It must be initialized to the fixnum 0. Note that the macros do not check this initialization, so if it is not
initialized correctly then you will get an unpredictable behaviour. It must not be modified by any code except
with-modification-change.

with-modification-check-macro defines a lexical macro (by macrolet) with the name macro-name which takes no

19 Multiprocessing

239

http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_5.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_the.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_svref.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ve.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm

arguments, and is used to check whether there was any change since the entering the body.

Note that these macros do not guard against errors that may occur because of changes to the data structures that are accessed,
and do not create any locking between users of these macro. In particular, the modifying code will typically need to lock
something too, and the checking code must do only operations that cannot fail because of modification in another thread.

19.13.2.1 Example modification check

(defstruct my-cache
 (modification-count 0)
 a
 b)

;; modifier code
(sys:with-modification-change
 (my-cache-modification-count cache)
 (setf (my-cache-a cache) (calculate-a-value)
 (my-cache-b cache) (calculate-b-value)))

;; reading code
(loop
 (sys:with-modification-check-macro
 my-cache-did-not-change-p (my-cache-modification-count cache)
 (let ((a (my-cache-a cache))
 (b (my-cache-b cache)))
 (when (my-cache-did-not-change-p)
 (return (values a b)))

Provided that all modification to the a and b slots of a my-cache object are done by the modifier code above, the return
values of a and b in the reading code are guaranteed to have been set by the same setf invocation in the modifier code.

19.13.3 Ensuring order of memory between operations in different threads

A set of synchronization functions is provided which ensure order of memory between operations in different threads. These
are ensure-loads-after-loads, ensure-memory-after-store, ensure-stores-after-memory and
ensure-stores-after-stores.

Note: You should have a good understanding of multiprocessing issues at the CPU level to write code that actually needs
these functions.

The effect of each of these functions is to ensure that all the operations of the first type (the word following the ensure-)
that are in the program after the call to the function are executed after all the operations of the second type (last word in the
function name) that are in the program before the call to the function.

Before or after "in the program" means the order that a programmer interpreting (correctly) the program would expect the
operations to be executed. On a modern CPU this is not necessarily the same as the actual execution order. On a single CPU
the end result is guaranteed to be the same, but on a computer with multiple CPU cores it is not.

An operation of type load is an operation that reads data from an object into a local variable. Typical load operations are car,
cdr, svref, structure accessors, slot-value and getting the value of a symbol. A store operation is an operation that
modifies data in an object. A memory operation is either a load or a store.

You need these functions when you need to synchronize between threads and you do not want to use the system supplied
synchronization objects (19.4 Locks, mailboxes, 19.7.1 Condition variables, 19.7.3 Counting semaphores, 19.7.2
Synchronization barriers). In most cases you should try first to use a synchronization object. Using the synchronization
functions described in this section is useful if you can identify a serious bottleneck in your code that can be optimized using
them.

19 Multiprocessing

240

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_svref.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm

For simple cases you should consider whether with-modification-check-macro and with-modification-change

gives you the functionality you need.

19.13.3.1 Example of ensuring order of memory

Suppose you have two code fragments, which may end up executed in parallel, and both of which access a global structure
gs. The first fragment is a setter, and you can be sure that it is not executed in parallel to itself (normally because it
actually runs while holding a lock):

(setf
 (my-structure-value-slot *gs*) ; store1
 some-value)
(setf
 (my-structure-counter-slot *gs*) ; store2
 counter)

The second fragment is the reader. You want to guarantee that it gets a value that was stored after the counter reached some
value (the counter value always increases). You may think that this will suffice:

(if (>=
 (my-structure-counter-slot *gs*) ; load1
 counter)
 (my-structure-value-slot *gs*) ; load2
 (.. something else ...))

Programmatically, if the >= is true then store2 already occurred before load1, therefore store1 also occurred before load1,
and load2 which happens after load1 must happen after store1.

On a single CPU that is true. On a computer with multiple CPU cores it can go wrong (that is, load2 can happen before
store1) because of two possible reasons:

1. load2 may happen before load1.

2. store2 may happen before store1.

To guarantee that load2 happens after store1, both of these possibilities need to be dealt with. Thus the setter has to be:

(setf (my-structure-value-slot *gs*) ; store1
 some-value)
(sys:ensure-stores-after-stores) ; ensure store order
(setf (my-structure-counter-slot *gs*) ; store2
 (incf-counter))

and the reader has to be:

(if (> (my-structure-counter-slot *gs*) ; load1
 my-counter)
 (progn
 (sys:ensure-loads-after-loads) ; ensure load order
 (my-structure-value-slot *gs*)) ; load2
 (.. something else ...))

Note that somehow both threads know about counter, and normally will have to synchronize the getting of its value too.

19 Multiprocessing

241

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq_sle.htm

19.14 Some mistakes to avoid with multithreading

This section describes some mistakes to avoid when using multithreading.

19.14.1 Closures

A closure is created when a function uses lexical variables from an outer function. The variables are said to be closed over by
the closure.

If a closure is passed to another thread (for example in a mailbox or by funcall-async), then these variables should be
treated in the same way that you would treat other globally accessible data. In general, that means using a lock to control
access to them.

19.14.2 Use of with-slots

When you use the with-slots macro, code that appears to be accessing a variable is actually making a call to
slot-value. You need to be aware that this might contain globally accessible data or might change unexpectedly.

For example, this code checks the value of a slot and then uses it:

(with-slots (things-vec) something
 (when things-vec
 (svref things-vec 0)))

If another thread can set the things-vec slot to nil, then the test above may fail, because things-vec actually refers to
the slot in the object bound to something. If the setting happens between the test and the evaluation of the svref form,
then svref will be called with nil and will signal an error.

The safe way to guard against this is to bind a local variable that cannot be changed by another thread:

(with-slots (things-vec) something
 (when-let (tv things-vec)
 (svref tv 0)))

This is also more efficient, because it removes a slot access.

19 Multiprocessing

242

http://www.lispworks.com/documentation/HyperSpec/Body/m_w_slts.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_svref.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_svref.htm

20 Common Defsystem and ASDF

This chapter describes tools for managing programs comprising many source files. Most of the material concerns LispWorks'
native defsystem ("Common Defsystem"), but the last section describes how to use the popular open source alternative
ASDF with LispWorks.

20.1 Introduction

When an application becomes large, it is usually prudent to divide its source into separate files. This makes the individual
parts of the program easier to find and speeds up editing and compiling. When you make a small change to one file, just
recompiling that file may be all that is necessary to bring the whole program up to date.

The drawback of this approach is that it is difficult to keep track of many separate files of source code. If you want to load the
whole program from scratch, you need to load several files, which is tedious to do manually, as well as prone to error.
Similarly, if you wish to recompile the whole program, you must check every file in the program to see if the source file is
out of date with respect to the object file, and if so re-compile it.

To make matters more complicated, files often have interdependencies; files containing macros must be loaded before files
that use them are compiled. Similarly, compilation of one file may necessitate the compilation of another file even if its
object file is not out of date. Furthermore, one application may consist of files of more than one source code language, for
example Lisp files and C files. This means that different compilation and loading mechanisms are required.

The LispWorks system tools, and the System Browser in the LispWorks IDE, are designed to take care of these problems,
allowing consistent development and maintenance of large programs spread over many files. A system is basically a
collection of files that together constitute a program (or a part of a program), plus rules expressing any interdependencies
which exist between these files.

You can define a system in your source code using the defsystem macro. Once defined, operations such as loading,
compiling and printing can be performed on the system as a whole. The system tools ensure that these operations are carried
out completely and consistently, without doing unnecessary work. A system may itself have other systems as members,
allowing a program to consist of a hierarchy of systems. Each system is treated independently of the others, and can be used
to collect related pieces of code within the overall program. Operations on higher-level systems are invoked recursively on
member systems.

It is also possible to define a system in your code using asdf:defsystem, an open source system definition utility with
similar functionality to LispWorks defsystem. See 20.3 Using ASDF for a description of how to use ASDF with
LispWorks.

20.2 Defining a system

A system is defined with a defsystem form in an ordinary Lisp source file. This form must be loaded into the Lisp image in
order to define the system in the environment. Once loaded, operations can be carried out on the system by invoking Lisp
functions, or, more conveniently, by using the system browser.

For example, the expression:

CL-USER 5 > (compile-system 'debug-app :force t)

would compile every file in a system called debug-app.

243

Note: When defining a hierarchy of systems, the leaf systems must be defined first — that is, a system must be declared
before any systems that include it.

By convention, system definitions are placed in a file called defsys.lisp which usually resides in the same directory as the
members of the system.

The full syntax is given in defsystem. Below is a brief introduction.

20.2.1 DEFSYSTEM syntax

defsystem takes four arguments: name, options, members and rules.

name should be a string that names the system.

options is a list of keyword-value pairs specifying attributes of the system such as the default location of its member files or
the default compiler optimize qualities in effect when compile-system is called.

members lists the members of the system which can be source files (of Common Lisp or foreign code) or other systems (that
is, subsystems).

rules is a set of rules describing the requirements for compilation and loading of the system members and the order in which
this should take place.

See the following sections for more information about these parameters.

20.2.2 DEFSYSTEM options

Options may be specified to defsystem which affect the behavior of the system as a whole. For example, :package
specifies a default package into which files in the system are compiled and loaded if the file itself does not contain its own
package declaration. The :default-pathname option tells the system tools where to find files which are not expressed as a
full pathname.

20.2.3 DEFSYSTEM members

The :members keyword to defsystem is used to specify the members of a system. The argument given to :members is a
list of strings. A system member is either a file or another system, identified by a name. If a full pathname is given then the
function pathname-name is used to identify the name of the member. Thus, for example, the name of a member expressed
as /u/dubya/foo.lisp is foo.

System members must have unique names, by a case-insensitive string comparison, so if a system has a member called
"foo" then it cannot have another member (a file or a system) named "foo", "FOO" or foo.

The behavior of any member within a system can be constrained by supplying keyword arguments to the member itself. So,
for example, specifying the :source-only keyword ensures that only the source file for that member is ever loaded.

20.2.4 DEFSYSTEM rules

Rules may be defined in a system which modify the default behavior of that system, ensuring, for instance, that certain files
are always loaded or compiled before others.

Rules apply to files and subsystems alike as members of their parent system, but are not inherited by subsystems.

When you invoke an action such as compiling a system, the following happens by default:

• Each member of the system is considered in turn, in the order they are given in the system definition.

20 Common Defsystem and ASDF

244

http://www.lispworks.com/documentation/HyperSpec/Body/f_pn_hos.htm

• If the member is itself a system then the action is performed on that system too, and so on recursively.

• If the member is a file and action-specific constraints are satisfied, the file action is inserted into a plan.

For example, in the case of compiling, a "compile this file" event is put into the plan if the source file is newer than the
object file.

• After the plan has been assembled, it can be viewed or executed.

This behavior can be modified by describing dependencies between the members using rules. These are specified using the
:rules keyword to defsystem.

A rule has three components:

The target(s). The action that is performed if the rule executes successfully.

This is an action-member description like :compile "foo". The member can be an actual
member of the system or :all (meaning the rule should apply to each member of the system).

The actions that the target(s) are :caused-by.

The actions that cause the rule to execute successfully.

This is a list of action-member descriptions. The member of each of these descriptions should be
either a real system member, or :previous, which means all members listed before the member
of the target in the system description.

If any of these descriptions are already in the current plan (as a result of other rules executing
successfully, or as a result of default system behavior), they trigger successful execution of this
rule.

The actions that the target(s) :requires.

The actions that need to be performed before the rule can execute successfully.

This is a list of action-member descriptions that should be planned for before the action on the
target(s). Again, each member should either be a real member of the system, or :previous.

The use of the keyword :previous means, for example, that you can specify that in order to compile a file in the system, all
the members that come before it must be loaded.

When the action and member of a target are matched during the traversal of the list of members, the target is inserted into the
plan if either of the following are true:

• any of the action-member descriptions in the :caused-by clause is already in the plan, or:

• any implicit conditions (such as the source file being newer than the object file) are satisfied.

If the target is put into the plan then other targets are inserted beforehand if the action-member description of any :requires

clause is not already in the plan.

20.2.5 Examples

Consider an example system, demo, defined as follows:

(defsystem demo (:package "CL-USER")
 :members ("parent"
 "child1"
 "child2")
 :rules ((:in-order-to :compile ("child1" "child2")

20 Common Defsystem and ASDF

245

 (:caused-by (:compile "parent"))
 (:requires (:load "parent")))))

This system compiles and loads members into the CL-USER package if the members themselves do not specify packages. The
system contains three members — parent, child1, and child2 — which may themselves be either files or other systems.
There is only one explicit rule in the example. If parent needs to be compiled (for instance, if it has been changed), then
this causes child1 and child2 to be compiled as well, irrespective of whether they have themselves changed. In order for
them to be compiled, parent must first be loaded.

Implicitly, it is always the case that if any member changes, it needs to be compiled when you compile the system. The
explicit rule above means that if the changed member happens to be parent, then every member gets compiled. If the
changed member is not parent, then parent must at least be loaded before compiling takes place.

The next example shows a system consisting of three files:

(defsystem my-system
 (:default-pathname "~/junk/")
 :members ("a" "b" "c")
 :rules ((:in-order-to :compile ("c")
 (:requires (:load "a"))
 (:caused-by (:compile "b")))))

What plan is produced when all three files have already been compiled, but the file b.lisp has since been changed?

First, file a.lisp is considered. This file has already been compiled, so no instructions are added to the plan.

Second, file b.lisp is considered. Since this file has changed, the instruction compile b is added to the plan.

Finally file c.lisp is considered. Although this has already been compiled, the clause:

(:caused-by (:compile "b"))

causes the instruction compile c to be added to the plan. The compilation of c.lisp also requires that a.lisp is loaded, so
the instruction load a is added to the plan first. This gives us the following plan:

1. Compile b.lisp.

2. Load a.lisp.

3. Compile c.lisp.

This last example shows how to make each fasl get loaded immediately after compiling it:

(defsystem my-system ()
 :members ("foo" "bar" "baz" "quux")
 :rules ((:in-order-to :compile :all
 (:requires (:load :previous)))))

(compile-system my-system :load t)

20.3 Using ASDF

You can load the supplied version of ASDF by:

(require "asdf")

Optionally, if you actually want your later version of ASDF, do:

20 Common Defsystem and ASDF

246

(asdf:load-system :asdf)

You may need to configure ASDF. For the language-level interface you should follow the ASDF documentation at
http://common-lisp.net/project/asdf/.

Then load your ASDF system definitions and you are ready to work with ASDF systems in LispWorks.

It is possible to work with both Common Defsystem and ASDF in the same LispWorks image, as long as you use the
appropriate APIs to operate on each type of system.

20.3.1 Bypassing the supplied version of ASDF

To use a specific version of ASDF without loading the version supplied with LispWorks, you should load it directly and then
call:

(provide "asdf")

to prevent the distributed version from being loaded later.

20.3.2 Using ASDF in the LispWorks IDE

You can work with your ASDF systems using the LispWorks IDE tools.

This needs some integration code which makes the System Browser, Editor and Search Files tools work with ASDF systems
as well as 'native' LispWorks systems. The ASDF integration code is in:

(example-edit-file "misc/asdf-integration")

in the LispWorks library and if necessary you can load it directly. However, it is more convenient to rely on this code being
loaded automatically.

The variable *autoload-asdf-integration* is consulted when the LispWorks IDE starts. If its value is true (this is the
default) then the ASDF integration code is loaded automatically when ASDF is loaded.

See the comments in asdf-integration.lisp for more information about using ASDF with LispWorks.

20 Common Defsystem and ASDF

247

http://common-lisp.net/project/asdf/#documentation

21 The Parser Generator

21.1 Introduction

The parser generator generates an LALR parser from a specification of a grammar. The parser generator has a simple facility
for the static resolution of ambiguity in the grammar and supports an automatic run time error correction mechanism as well
as user-defined error correction. Semantic actions can be included in the rules for the grammar by specifying Lisp forms to
be evaluated when reductions are performed. When using a generated parser, you need to specify a lexer that generates
(grammar) tokens (see 21.5 Interface to the lexical analyzer).

For further details on LALR parsing, see Compilers, Principles Techniques and Tools, by Aho, Sethi and Ullman, publishers
Addison Wesley, 1986.

Load the parser generator by (require "parsergen").

21.2 Grammar rules

The parser generator is accessed by the macro defparser. After the name, of the parser, the macro form specifies the
reduction rules and semantic actions for the grammar.

The rules specified in a defparser form are of three types, normal rules, error rules and combined-rules, described below.

Each normal rule corresponds to one production of the grammar to be parsed:

((non-terminal {grammar-symbol}*) {form}*)

The non-terminal is the left-hand side of the grammar production and the list of grammar-symbols defines the right-hand side
of the production. (The right-hand side may be empty.) These grammar symbols must be either (grammar) tokens as returned
by the lexer or non-terminals. The list of forms specifies the semantic action to be taken when the reduction is made by the
parser. These forms may contain references to the variables $1 … $n, where n is the length of the right hand side of the
production. When the reduction is done, these variables are bound to the semantic values corresponding to the grammar
symbols of the rule.

21.2.1 Example

If a grammar contains the production:

expression -> expression operator expression

with a semantic representation of a list of the individual semantic values, the Lisp grammar would contain the rule:

((expression expression operator expression) (list $1 $2 $3))

Error productions of the form:

((nt :error) ...some error behavior...)

are explained in the section below.

248

The first rule of the grammar should be of the form:

((nt nt1) $1)

where the non-terminal nt has no other productions and nt1 serves as the main "top-level" non-terminal.

21.2.2 Combined rules

The combined-rule clause is a way to group multiple normal-rule or error-rule clauses for the same non-terminal. For
example, this single combined-rule clause:

(constant
 ((:FLOAT-CONSTANT) $1)
 ((:INTEGER-CONSTANT) $1))

is equivalent to these two normal-rule clauses:

((constant :FLOAT-CONSTANT) $1)
((constant :INTEGER-CONSTANT) $1)

21.2.3 Resolving ambiguities

If the grammar is ambiguous, there is conflict between rules of the grammar: either between reducing with two different rules
or between reducing by a rule and shifting an input symbol. Such a conflict is resolved at parser generation time by selecting
the highest priority action, where the priority of a reduce action is determined by the closeness of the rule to the beginning of
the grammar. A priority is assigned to a shift by associating it with the rule that results in the shift being performed.

For example, if the grammar contains the two rules:

• Rule a: statement -> :if expression :then statement :else statement.

• Rule b: statement -> :if expression :then statement.

this results in a conflict in the parser between a shift of :else, for rule a, and a reduce by rule b. This conflict may be
resolved by listing rule a earlier in the grammar than rule b. This ensures that the shift is always done.

Note that ambiguities cannot always be resolved successfully in this way. In this example, if the ambiguity is resolved the
other way around, by listing rule b first, this results in the if … then … part of an if … then … else … statement being
reduced, and a syntax error is produced for the else part.

During parser generation, any conflicts between rules are reported, together with information about how the conflict was
resolved.

21.3 Functions defined by defparser

The form (defparser name grammar) defines a number of functions. The main function name is defined as the parsing
function. For example:

(defparser my-parser .. grammar ..)

defines the function:

my-parser lexer &optional symbol-to-string &key message-stream return-match-tree-p => form, error-found-p, match-
tree

21 The Parser Generator

249

lexer specifies the lexical analyzer function to be used. This is a function of no arguments that returns two values: the next
grammar token on the input and the associated semantic value.

The optional argument symbol-to-string should be a function mapping grammar symbols to strings for printing purposes. The
default value of symbol-to-string is the function cl:identity.

message-stream specifies a stream for outputting messages that are produced during the parsing. It must be a value suitable
for use as the first argument (destination) of format. message-stream defaults to t.

return-match-tree-p is a boolean controlling whether the parsing produces a match tree or not. It defaults to nil, which
causes the result match-tree to always be nil. When return-match-tree-p is non-nil, match-tree is a match tree describing the
matches during the parsing (see below).

The returned form is the result of the parsing.

error-found-p is nil for successful parsing, otherwise it is t.

match-tree, when return-match-tree-p is non-nil, is a match tree describing the matches found during the parsing. It is a tree
of conses, where the car of each cons is the non-terminal of the matching rule, and the cdr is a list of the matches to the
grammar symbols of the matching rule. When the grammar symbol is a non-terminal itself, the matching value is a subtree.
Otherwise, when the grammar symbol is a lexer token, the matching value is the semantic value that lexer returned for that
token.

Compatibility note: return-match-tree-p and match-tree were added in LispWorks 8.0.

defparser also defines functions corresponding to the individual actions of the parser.

Normal actions are named:

name-actionindex

and error actions are named:

name-error-actionindex

where name here is the name as given to defparser and index is the number of the rule or error rule in the grammar.

All function names are interned in the current package when defparser is called.

21.4 Error handling

The parser supports automatic error correction of its input. The strategy used involves attempting to either push a new token
onto the input, replacing an erroneous symbol, or discarding an erroneous symbol. Such action is only taken if it is
guaranteed that the parser can continue parsing and read at least one more symbol from its input.

If the correction strategy fails, then error recovery is invoked.

The parser allows the inclusion of grammar productions of the form:

non-terminal -> :error

This means that the parser accepts an erroneous string of tokens as constituting an occurrence of the non-terminal. Such
productions may be used to skip over portions of input when attempting to recover from an error. The action associated with
such an error is specified by a form in the same way as for ordinary actions. The action may perform manipulation of the
parser state and input.

21 The Parser Generator

250

http://www.lispworks.com/documentation/HyperSpec/Body/f_identi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm

21.5 Interface to the lexical analyzer

The lexical analyzer function that is passed to the parser is expected to be a function of zero arguments that returns two values
each time it is called. The first value is the next token on the input and the second value is the semantic value corresponding
to that token. If there is no more input, then the lexical analyzer may return either the token :eoi or nil.

For example:

(defparser my-parser
 ...)

(defun my-lexer (stream)
 .. read next token from stream ..
 (values token value))
(defun my-symbol-to-string (symbol)
 .. returns a string ..)
(defun my-parse-stream (stream)
 (let ((lexer #'(lambda () (my-lexer stream))))
 (my-parser lexer #'my-symbol-to-string)))

Note that during error correction, the parser may push extra tokens onto the input, in which case they are given the semantic
value nil. The semantic actions should therefore be capable of dealing with this situation. Manipulation of the input (for
example pushing extra tokens) is done within the parser generator and the lexical analyzer need not concern itself with this.

21.6 Example

The following example shows a simple grammar for a very small subset of English.

(defpackage "ENGLISH-PARSER"
 (:use "PARSERGEN")
 (:add-use-defaults t))
(in-package "ENGLISH-PARSER")

;;; Define the parser itself.

(defparser english-parser
 ((<input> <sentence>) $1)
 ((<sentence> <noun-phrase> <verb-phrase>) `(,$1 ,$2))
 ((<basic-noun-phrase> :adj <basic-noun-phrase>) `(,$1 ,$2))
 ((<basic-noun-phrase> <basic-noun-phrase> <relational>) `(,$1 ,$2))
 ((<basic-noun-phrase> :noun) $1)
 ((<relational> :rel <verb-phrase>) `(,$1 ,$2))
 ((<verb-phrase> :verb <noun-phrase> <locative>) `(,$1 ,$2 ,$3))
 ((<verb-phrase> :verb <locative>) `(,$1 ,$2))
 ((<verb-phrase> :verb <noun-phrase>) `(,$1 ,$2))
 ((<verb-phrase> :verb) $1)
 ((<noun-phrase> :art <basic-noun-phrase> <locative>) `(,$1 ,$2 ,$3))
 ((<noun-phrase> :art <basic-noun-phrase>) `(,$1 ,$2))
 ((<noun-phrase> <basic-noun-phrase>) $1)
 ((<locative> :loc <noun-phrase>) `(,$1 ,$2)))

;;; The lexer function.

;;; The basic lexing function

(defvar *input*)
(defun lex-english ()
 (let ((symbol (pop *input*)))
 (if symbol (get-lex-class symbol)
 nil)))

21 The Parser Generator

251

;;; Getting syntactic categories.

(defparameter *words*
 '((the :art)(a :art)(some :art)(ate :verb)(hit :verb)
 (cat :noun)(rat :noun)(mat :noun)(which :rel)(that :rel)
 (who :rel)(man :noun)(big :adj)(small :adj)(brown :adj)
 (dog :noun)(on :loc)(with :loc)(behind :loc)(door :noun)
 (sat :verb)(floor :noun)))

(defun get-lex-class (word)
 (values (or (cadr (assoc word *words*))
 :unknown)
 word))

;;; The main function -- note bindings of globals (these
;;; are exported from the parsergen package).

(defun parse-english (input)
 (let ((*input* input))
 (english-parser #'lex-english)))

The following example session shows the parsing of some sentences.

ENGLISH-PARSER 34 > (parse-english '(the cat sat on the
 mat))
((THE CAT) (SAT (ON (THE MAT))))

ENGLISH-PARSER 35 > (parse-english '(the big brown dog
 behind the door ate the cat
 which sat on the floor))
((THE (BIG (BROWN DOG)) (BEHIND (THE DOOR)))
 (ATE (THE (CAT (WHICH (SAT (ON (THE FLOOR))))))))

21 The Parser Generator

252

22 Dynamic Data Exchange

22.1 Introduction

Dynamic data exchange (DDE) involves passing data and instructions between applications running under the Microsoft
Windows operating system. Typically the data is passed in the form of a string, which is interpreted when it is received. One
application acts as a server and the other as a client.

22.1.1 Types of transaction

The server is normally a passive object, which waits for a client object to tell it what to do. The client can communicate with
the server in four ways:

• The client can issue a request transaction to the server. This means the client is asking for some information about the
server application.

• The client can issue a poke transaction. This means the client is passing data to be stored by the server application.

• The client can issue an execute transaction. This means the client is asking the server to get the server application to run
a command.

• The client can ask the service to set up an advise loop, or to close an existing advise loop. An advise loop causes the
server to communicate with the client whenever a specified change occurs in the server application.

22.1.2 Conversations, servers, topics, and items

For a transaction to take place between a client and a server, a conversation must be established. A conversation is established
when a client makes a request by broadcasting a service name and topic name, and a server responds. Transactions can then
take place across the conversation. When no more transactions are to be made, the conversation is terminated.

The following list identifies the elements involved with client/server activity:

conversation A conversation is established when a server responds to a client.

service name A service name is a string broadcast by a client hoping to establish a conversation with a server
that recognizes the service name. The service name is usually clearly related to the server
application name.

topic name The topic name identifies what the conversation between client and server is to be about. For
example, it could be the name of a file that is open in the server application. Each topic is
attached to one particular server. A server can have many topics.

item name The item usually identifies an element of the file identified by the topic which should be read (in
the case of a request) or written to (in the case of a poke). For example, it might refer to a cell in
a spreadsheet document.

253

22.1.3 Advise loops

A DDE advise loop describes a connection back to the application that is used to track changes to a DDE topic. It instructs
the server to inform the client when data in the server's application changes. Advise loops are set up across a conversation,
and closing the conversation closes the advise loop.

An advise loop is identified by an item and a key. The key is included to allow any number of uniquely identifiable advise
loops to be set up on the same server/topic/item combination.

A successfully established advise loop is also known as a link. When a change occurs to item, the link informs the client by
causing it to execute a function.

There are two types of link: the warm link which only informs the client that a change to item has occurred, and the hot link
which also sends the new data across.

Note: a DDE advise loop is not a loop in the program source code. In particular it should not be confused with the "event
loop" which is a loop in source code that processes low level events.

22.1.4 Execute transactions

When a client issues an execute transaction to a server, the command to be executed is transferred as a string. This involves
the marshalling of the command and its arguments into a suitable string format. The standard format of such a string is:

[command(arg1,arg2,...)]

22.2 Client interface

To use the DDE client interface, you need to require the module by:

(require "dde")

22.2.1 Opening and closing conversations

A LispWorks client can open a conversation by using dde-connect, which takes a service designator and a topic designator
as its arguments. If successful, a conversation object is returned which can be used to refer to the conversation. Conversations
are closed by the LispWorks client at the end of a transaction by using dde-disconnect.

Another method for managing conversations uses with-dde-conversation to bind a conversation with a server across a
body of code. If no conversation is available for with-dde-conversation, then one is automatically opened. The code is
executed and the conversation is closed after the body of code exits.

22.2.2 Automatically managed conversations

There is an alternative to manually establishing a conversation and then disconnecting it once all transactions between server
and client are concluded: the automatically managed conversation. Client functions that end with a * conduct automatically
managed conversations.

A function handling an automatically managed conversation takes a service designator and topic designator as two of its
arguments, and either automatically establishes a conversation with a server responding to the service designator/topic
designator pair, or uses an existing equivalent conversation. For the purpose of brevity, functions conducting automatically
managed conversations are only briefly mentioned in this chapter. For the details see dde-advise-start*,
dde-advise-stop*, dde-execute*, dde-execute-command*, dde-execute-string*, dde-item*, dde-poke*
and dde-request*.

22 Dynamic Data Exchange

254

22.2.3 Advise loops

A LispWorks client can set up an advise loop across a conversation using dde-advise-start, which takes a conversation
(or a service designator/topic designator pair in the case of an automatically managed conversation using
dde-advise-start*), an item, and a key as its main arguments. The key argument defaults to the conversation name, and
can be used to distinguish between multiple advise loops established on the same service/topic/item group.

Whenever the data monitored by the advise loop changes, a function is called to inform the client. By default this function is
the generic function dde-client-advise-data. You can add methods to dde-client-advise-data specialized on the
key or the client conversation class. Alternatively, you can supply a different function in the call to dde-advise-start.

Note: a DDE advise loop is not a loop in the program source code. In particular it should not be confused with the "event
loop" which is a loop in source code that processes low level events.

22.2.3.1 Example advise loop

The example shows you how to set up an advise loop. The code assumes that WIN32 package symbols are visible.

The first step defines a client conversation class, called my-conv.

(defclass my-conv (dde-client-conversation)
 ())

The macro define-dde-client can now be used to define a specific instance of the my-conv class for referring to a server
application that responds to the service name "FOO".

(define-dde-client :foo :service "FOO" :class my-conv)

The next step defines a method on dde-client-advise-data which returns a string stating that the item has changed.

(defmethod dde-client-advise-data ((self my-conv) item data &key
&allow-other-keys)
 (format t "~&Item ~s changed to ~s~%" item data))

Finally, the next command starts the advise loop on the server foo, with the topic name "file1", to monitor the item
"slot1".

(dde-advise-start* :foo "file1" "slot1")

When the value of the item specified by "slot1"" changes, the server calls dde-client-advise-data which returns a
string, as described above.

The function argument of dde-advise-start and dde-advise-start* specifies the function called by the advise loop
when it notices a change to the item it is monitoring. The function is dde-client-advise-data by default. A different
function can be provided, and should have a lambda list similar to the following:

key item data &key conversation &allow-other-keys

The arguments key and item identify the advise loop, or link. The argument data contains the new data for hot links; for
warm links it is nil.

Advise loops are closed using dde-advise-stop or dde-advise-stop*.

22 Dynamic Data Exchange

255

22.2.4 Request and poke transactions

LispWorks clients can issue request and poke transactions across a conversation using dde-request and dde-poke, which
take a conversation (or a service designator/topic designator pair in the case of an automatically managed conversation), and
an item as their main arguments. In the case of a poke transaction, data to be poked into item must also be provided.

In the case of a successful request transaction with dde-request or dde-request*, the data contained in item is returned
to the LispWorks client by the server.

In the case of a successful poke transaction with dde-poke or dde-poke*, the data provided is poked into item by the
server.

The accessor dde-item (or dde-item* for automatically managed conversations) can perform request and poke
transactions. It performs a request transaction when read, and a poke transaction when set.

22.2.5 Execute transactions

A client can issue an execute transaction across a conversation, or in the case of an automatically established conversation, to
a recognized server. There is no need to specify a topic, as an execute transaction instructs the server application to execute a
command.

The command and its arguments are issued to the server in the form of a string in a standard format (see 22.1.4 Execute
transactions). LispWorks provides two ways of issuing an execute transaction, namely dde-execute-string and
dde-execute-command (and the corresponding * functions that automatically manage conversations).

The following example shows how dde-execute-string* can issue a command to a server designated by :excel on the
topic :system, in order to open a file called foo.xls:

(dde-execute-string* :excel :system "[open(\"foo.xls\")]")

The function dde-execute-command takes the command to issue, and its arguments, and marshals these into an
appropriate string for you. The following example shows how dde-execute-command* can issue the same command as in
the previous example:

(dde-execute-command* :excel :system `open `("foo.xls"))

22.3 Server interface

To use the DDE server interface, you need to require the module by:

(require "dde")

22.3.1 Starting a DDE server

To provide a LispWorks application with a DDE server, follow the following three steps. The code assumes that WIN32
package symbols are visible.

1. Define a specialized Lisp DDE server class using define-dde-server. Here the server class is called foo-server

and it has the service name "FOO":

(define-dde-server foo-server "FOO")

22 Dynamic Data Exchange

256

2. Provide the server class with the functionality it requires by specializing methods on it and/or using
define-dde-server-function. Here the server function is bar, which takes a string as an argument, and prints this
to the standard output. For convenience, the system topic is used, though usually it is better to define your own topic.

(define-dde-server-function (bar :topic :system)
 :execute
 ((x string))
 (format t "~&~s~%" x)
 t)

3. Start an instance of the server foo-server using start-dde-server.

(start-dde-server `foo-server)

This function returns the server object, which responds to requests for conversations with the service name "FOO", and
accepts execute transactions for the function bar in the "System" topic.

22.3.2 Handling poke and request transactions

Poke and request transactions issued to a server object are handled by defining a method on each of the generic functions
dde-server-poke and dde-server-request.

22.3.3 Topics

DDE servers respond to connection requests containing a service name and a topic name. The service name of a server is the
same for any conversation whereas the topic name may vary from conversation to conversation, and identifies the context of
the conversation. Typically, valid topics correspond to open documents within the application, so the set of valid topics varies
from time to time. In addition, all servers implement a topic called "System", which contains a standard set of items that
can be read.

The LispWorks DDE interface supports three types of topics:

1. General topics.

A general topic is an instance of a user-defined topic class. The actual set of topics available may vary from time to time
as the application is running.

2. Dispatching topics.

A dispatching topic has a fixed name, and is available at all times that the server is running. It supports a fixed set of
items, and each of these items has Lisp code associated with it to implement these items.

3. The system topic.

The system topic is provided automatically by the LispWorks DDE interface. However, a mechanism is provided to
extend the functionality of the system topic by handling additional items.

22.3.3.1 General topics

To use general topics, the LispWorks application must define one or more subclasses of dde-topic. If an application
supports only a single type of document, it will typically require only one topic class. If several different types of document
are supported, it may be convenient to define a different topic class for each type of document.

If the application uses general topics, it should define a method on the dde-server-topics generic function, specializing
on the application's server class.

22 Dynamic Data Exchange

257

22.3.3.2 Dispatching topics

A dispatching topic is a topic which has a fixed name and always exists. Dispatching topics provide dispatching capabilities,
whereby appropriate application-supplied code is executed for each supported transaction. Dispatch topics are defined using
define-dde-dispatch-topic.

22.3.3.3 The system topic

The system topic is implemented as a predefined dispatching topic called :system. It is automatically available to all
defined DDE servers. Its class is dde-system-topic, which is a subclass of dde-topic.

The following items are implemented by the system topic:

SZDDESYS_ITEM_TOPICS Constant

The constant SZDDESYS_ITEM_TOPICS has the value "Topics". Referring to this item in the system topic calls
dde-server-topics to obtain a list of topics implemented by the server. The server should define a method on this
generic function to return a list of strings naming the topics supported by the server. If this item is not to be
implemented, do not define a method on the function, or define a method that returns :unknown.

SZDDESYS_ITEM_SYSITEMS Constant

The constant SZDDESYS_ITEM_SYSITEMS has the value "SysItems". Referring to this item in the system topic calls
dde-topic-items to obtain a list of items implemented by the system topic. If a server implements additional system
topic items it should define a method on the generic function specialized on its server class and dde-system-topic

returning the complete list of supported topics. The server can return :unknown if this item is not to be implemented.

SZDDESYS_ITEM_FORMATS Constant

The constant SZDDESYS_ITEM_FORMATS has the value "Formats", and returns unicodetext and text. Currently
only text formats are supported.

The system topic is a single object which is used by all DDE servers running in the Lisp image. You should therefore not
under normal circumstances modify it with define-dde-server-function by specifying a value of :system for the
topic argument, as this would make the changes to the system topic visible to all users of DDE within the Lisp image.

Instead, specify :server my-server :topic :system, where my-server is the name of your DDE server. This makes the
additional items available only on the system topic of the specified server.

22 Dynamic Data Exchange

258

23 Common SQL

This chapter is applicable to the Enterprise Edition of LispWorks. It describes Common SQL — the LispWorks interface to
SQL. It should be used in conjunction with 45 The SQL Package, which contains full reference entries for all the symbols in
the SQL package.

For a longer introduction to Common SQL, please see the SQL Tutorial available at www.lispworks.com.

23.1 Introduction

This chapter covers the following areas:

• Initialization and Connection.

• The Functional SQL Interface.

• The Object-Oriented (CLOS) SQL Interface.

• The Symbolic SQL Syntax.

• SQL I/O Recording.

• SQL Interface Errors.

The LispWorks SQL interface uses the following database terminology:

Data Definition Language (DDL)

The language used to specify and interrogate the structure of the database schema.

Data Manipulation Language (DML)

The language used for retrieving and modifying data. Also known as query language.

table A set of records. Also known as relation.

attribute A field of information in the table. Also known as column.

record A complete set of attribute values in the table. Also known as tuple, or row.

view A display of a table configured to your own needs. Also known as virtual table.

23.1.1 Overview

Common SQL is designed to provide both embedded and transparent access to relational databases from the LispWorks
environment. That is, SQL/relational data can be directly manipulated from within Lisp, and also used as necessary when
instantiating or accessing particular Lisp objects.

The SQL interface allows the following:

• Direct use of standard SQL statements as strings.

• Mixed symbolic SQL and Common Lisp expressions.

259

http://www.lispworks.com/documentation/sql-tutorial/

• Implicit SQL invocation when instantiating or accessing CLOS objects.

The SQL interface provides these features through two complementary layers:

• A functional SQL interface.

• An object-oriented SQL interface.

The functional interface provides users with Lisp functions which map onto standard SQL DML and DDL commands.
Special iteration constructs which utilize these functions are also provided. The object-oriented interface allows users to
manipulate database views as CLOS classes via def-view-class. The two interfaces may be flexibly combined in
accordance with system requirements and user preference. For example, a select query can be used to initialize slots in a
CLOS instance; conversely, accessing a CLOS slot may trigger an implicit functional query.

23.1.2 Supported databases

Common SQL supports connections to various databases using the driver/client libraries for each interface-platform
combination as indicated below in Supported driver/client libraries for each interface-platform combination.

Common SQL may work, but is currently untested, with driver/interface/platform combinations shown as "None tested". We
would be pleased to hear of your experience with these other driver/interface/platform combinations, at lisp-
support@lispworks.com.

Supported driver/client libraries for each interface-platform combination

interface
(module name)

"odbc" "oracle" "postgresql" "mysql" "sqlite"

Default database
type

:odbc-driver :oracle :postgresql :mysql :sqlite

Other database
type

:odbc :oracle8 None None None

Windows Microsoft SQL
Server
Oracle
Postgres

Oracle 9i(r2) and
later

Postgres MySQL SQLite 3.6.12 or
later

macOS MySQL
Postgres

Oracle 10g and
later

Postgres MySQL SQLite 3.6.12 or
later

Linux MySQL
Postgres

Oracle 9i(r2) and
later

Postgres MySQL SQLite 3.6.12 or
later

FreeBSD None tested Not supported Postgres MySQL SQLite 3.6.12 or
later

Solaris/Intel None tested Oracle 10g and
later

Postgres MySQL None tested

The keyword shown in the second and third rows is the corresponding value of the database-type argument to connect.
When a client library version is shown, it is the earliest version that was tested successfully: later versions should work too,
and in many cases earlier versions may work too.

Note: MySQL versions prior to 4.1.1 should be run in ANSI mode to work with Common SQL. That is, mysqld must be
started with --ansi or the ansi option must appear in the [mysqld] section of its configuration file.

Note: To use PostgreSQL on any non-Microsoft Windows platform, LispWorks/Common SQL requires PostgreSQL version

23 Common SQL

260

>= 8.x built with --enable-thread-safety.

23.2 Initialization

The initialization of Common SQL involves three stages. Firstly the SQL interface is loaded. Next, the database type
(actually class) to be used is initialized. Finally, Common SQL is used to connect to a database. These stages are explained in
more detail in this section.

The Lisp symbols introduced in this chapter are exported from the sql package. Application packages requiring convenient
access to these facilities should therefore use the sql package.

The examples in this chapter assume that the sql package is visible.

23.2.1 Initialization steps

Three steps are required to initialize the SQL interface:

1. At load time, the SQL interface is loaded.

2. At run time, database type(s) are initialized. This step can be merged into step 3.

3. A connection is made to a database server. All further operations use the connection.

The remainder of this section describes how you perform these steps.

1. Load the SQL interface by calling require with the name of a database interface.

Currently implemented interfaces are "oracle", "mysql", "odbc", "postgresql" and "sqlite". However, not all platforms
support all interfaces, see Supported driver/client libraries for each interface-platform combination for details.

The same application can use more than one interface, and needs to call require to load each interface that it uses.

Loading is done at load time. In particular, if you are building an application, loading needs to be done before calling
deliver.

2. Initialize the database type, either when connecting or by an explicit call.

Every connection has a database type, which defines the functionality to use when performing operations on it. Each
interface defines one or more database types that can used as the database type. The database type must be initialized,
which can be done either when connecting, or by explicitly calling initialize-database-type. Initializing a
database type must be done at run time, in other words you should not save an image (by save-image or deliver)
with an initialized database type.

Initializing a database type typically means that the system finds the library that implements the client, loads and
initializes it. (Actually, there may be several libraries.) It is possible to delay the initialization until making the
connection, but it is useful to do the initialization explicitly first as this allows you to catch errors in the initialization and
report them.

The variable *default-database-type* holds the value of the default type, which is used when a database type is
not supplied. The first database interface that is loaded sets *default-database-type* to its default database type.
Therefore in a typical setup using one interface you do not need to specify the database type.

The database types currently supported are shown in Supported database types:

23 Common SQL

261

http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm

Supported database types

Interface database-type Comments

"oracle" :oracle default

"oracle" :oracle8 for backwards compatibility

"mysql" :mysql default

"postgresql" :postgresql default

"odbc" :odbc-driver default

"odbc" :odbc uses SQLConnect rather than
SQLDriverConnect

"sqlite" :sqlite default

3. Connect to a database by calling connect.

The main argument to connect is a connection-spec, which is interpreted in a database type specific way. See the entry
for connect for details. By default, connect uses the database type in *default-database-type*, but it can be
specified explicitly by the keyword argument :database-type. If the database type was not initialized yet, connect
initializes it.

The result of connect is an object which is referred to as "database object", but it is really a connection object
representing a connection to the server. It is possible to have multiple database objects connected independently to the
same database server.

The database object is used by all the other Common SQL interface functions. connect sets the value of
default-database to the result each time it is called, so a call to a SQL interface function without specifying the
database always acts on the last connected database. That allows simpler code when there is only one connection. When
there is more than one connection, you need to pass the database object to the interface function via the keyword
argument :database.

When a connection is no longer required, it should be closed by calling disconnect.

The minimal code to initialize a connection is loading the code and connecting. For example, using only Oracle:

(require "oracle")
(sql:connect "scott/tiger")

However, if you deliver an application then the require call needs to happen at load time (before calling deliver), while
the connect call must happen at run time after the delivered application started. So your code should have two parts:

• In the script that loads the application code:

(require "oracle")

• In the code itself, at various places:

(sql:connect "scott/tiger")

To get better error handling, you may want to add a call to initialize-database-type, in the startup function:

(handler-case
 (sql:initialize-database-type)
 (error (cc)
 ;; tell the user of failure to initialize Oracle
))

23 Common SQL

262

http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm

23.2.2 Database libraries

Note: This section applies only to Unix-like operating systems.

To use a database, LispWorks needs to load foreign libraries, which is done when initializing the database type. To find the
right libraries and initialize them, there may be vendor-specific environment variable(s) that need to be set, for example
ORACLE_HOME for Oracle. Typically one of these will point to a directory where the database code is installed. You may need
to ensure that these variables are set properly when your application is used.

In order to override the default loading of database library code, you may set *sql-libraries*. To control messages while
loading the libraries, set *sql-loading-verbose*.

23.2.3 General database connection and disconnection

Database connections can be named by passing the :name argument to connect, allowing you to have more than one
connection to a given database. If this is omitted, then a unique database name is constructed from connection-spec and a
counter. Connection names are compared with equalp.

To find all the database connection instances, call the function connected-databases. To retrieve the name for a
connection instance, call database-name, and to find a connection instance with a given name use find-database. To
print status information about the existing connections, call status.

To close a connection to a database, use disconnect.

To reestablish a connection to a database, use reconnect.

23.2.3.1 Connection example

The following example assumes that the :odbc database type has been initialized as described in 23.2.1 Initialization steps.
It connects to two databases, scott and personnel, and then prints out the connected databases.

(setf *default-database-type* :odbc)
(connect "scott")
(connect "personnel" :database-type :odbc)
(print *connected-databases*)

23.2.4 Connecting to Oracle

For database-type :oracle, connection-spec conforms to the canonical form described for connect. The connection part is
the string used to establish the connection. When connecting to a local server, it may be the SID, otherwise it is an alias
recognized by the names server, or in the tnsnames.ora file.

To connect to Oracle via SQL*Net, connection-spec is of the form username/password@host where host is an Oracle
hostname.

Common SQL uses the Oracle Call Interface internally where this is available. For Oracle version 8, Common SQL
automatically uses the same API as in LispWorks 4.4. On some platforms, this can also be obtained by using database-type
:oracle8. Note that the :oracle8 database type is restricted because it cannot access or manipulate LOBs and all
connections must use the same character set.

23.2.5 Connecting to ODBC

For database-type :odbc or :odbc-driver, connection-spec may take the canonical form described for connect, but an
additional syntax is also allowed.

23 Common SQL

263

http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm

connect keyword arguments :encoding, :signal-rollback-errors and :date-string-format are all ignored.

23.2.5.1 Connecting to ODBC using a string

connection-spec should have one of the forms:

username/password@dsn The general form.

dsn/username/password For backward compatibility.

The two forms of strings are distinguished by the presence (or absence) of the '@' character. In both forms, password can be
omitted along with the preceding '/'. Also, username can simply be omitted.

Note that this means that "xyz" and "@xyz" are both interpreted to give the same values (username is null, password is null,
dsn is "xyz").

23.2.5.2 Connecting to ODBC using a plist

In the plist, the acceptable keywords are :username, :password, :dsn and :connection.

:connection is a synonym of :dsn.

23.2.5.3 ODBC keywords

The odbc-keywords argument to connect allows you to specify parameters controlling the behavior of the ODBC
connection. odbc-keywords is a property list and in LispWorks 8.1 the only keyword available is :numeric-as-double,
which controls how queries handle the values of numeric fields with non-zero scale, that is fields that have the type numeric
and non-zero scale. The value can be one of:

nil The default. The values of numeric fields are returned as numeric, which are translated to Lisp
rationals.

t The values of numeric fields are returned as double-float.

A real number. If the precision of the field is larger than the real number, then the value is returned as numeric,
otherwise it is returned as double-float.

Notes:

• odbc-keywords was added in LispWorks 8.1.

• :numeric-as-double is mainly intended to be used with old drivers on Unix that don't work properly with numeric
fields with non-zero scale.

• Use of :numeric-as-double can be overridden in a query by explicitly specifying the type of the column.

23.2.6 Connecting to MySQL

For database-type :mysql, connection-spec may be in the canonical form described for connect, but it may also have the
extensions described in this section.

In both the string and plist forms of connection-spec described below, any part that is omitted defaults to the MySQL default:

username anonymous user

password No password

23 Common SQL

264

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

dbname No default database

hostname localhost

port 3306 (unless using unix-socket).

23.2.6.1 Connecting to MySQL using a string

connection-spec can be a string of the form:

username/password/dbname@hostname:port

where port is a decimal number specifying the port number to use. port can be omitted along with the preceding ':'.

hostname can be omitted. If port is omitted too, the '@' can be omitted as well. If port is supplied and hostname is not
supplied, then both the '@' and the ':' are required, for example:

me/my-password/my-db@:3307

hostname may also specify a POSIX socket name, which must start with the character '/'.

dbname may be omitted along with the preceding '/'.

password may be omitted. If dbname is also omitted, the preceding '/' can be omitted too.

username may be omitted.

23.2.6.2 Connecting to MySQL using a plist

connection-spec can be a plist containing (some of) the keywords :username, :password, :dbname, :hostname, :port,
:connection, :unix-socket.

Each of these keywords may be omitted.

If :unix-socket is specified, then none of :hostname, :port and :connection can be specified. If :hostname is
specified then :connection must not be specified. The value supplied for :hostname can be a raw hostname, or a string of
the form hostname:port. If :connection is specified then it can be a string conforming to one of these patterns:

• hostname

• hostname:port

• port

• unix-socket (must start with '/').

That is, the value connection supplied in a plist connection-spec is interpreted just like the part of a string connection-spec
following the '@' character.

23.2.6.3 Locating the MySQL client library

The MySQL interface to initialize, it must find the appropriate MySQL client library. The special variables
mysql-library-path, *mysql-library-directories* and *mysql-library-sub-directories* give you
control over this.

23 Common SQL

265

23.2.6.4 Special instructions for MySQL on macOS

Download the 32-bit or 64-bit MySQL package to match your LispWorks image.

The downloadable packages from the MySQL web site contain only static client libraries, but LispWorks needs a dynamic
library. You need to create the dynamic library, for example by using the following shell command.

To build the 32-bit dynamic library:

gcc -dynamiclib -fno-common \
 -o /usr/local/mysql/lib/libmysqlclient_r.dylib \
 -all_load /usr/local/mysql/lib/libmysqlclient_r.a -lz

To build the 64-bit dynamic library:

gcc -m64 -dynamiclib -fno-common \
 -o /usr/local/mysql/lib/libmysqlclient_r.dylib \
 -all_load /usr/local/mysql/lib/libmysqlclient_r.a -lz

This command should be executed as the root user, or some other user with write permission to the
/usr/local/mysql/lib directory and assumes that MySQL was installed in /usr/local/mysql, which is the location
used by the prepackaged downloads.

An alternate way to create a dynamic library is to build MySQL from its source code with the --enable-shared flag.

By default, LispWorks expects to find the library either in /usr/local/mysql/lib or on the shared library path. This can
be overridden by setting the special variable *mysql-library-directories*.

By default, LispWorks expects the library to be called libmysqlclient.*.dylib and it searches for a library that matches
that pattern, where * is any version number. This search can be avoided by setting *mysql-library-path* to something
other than the default ("-lmysqlclient"), for example, it is possible to force LispWorks to look for version 12 by
evaluating:

(setq *mysql-library-path* "libmysqlclient.12")

You can also set *mysql-library-path* to a full path, which avoids the need to set *mysql-library-directories*.

If the environment variable LW_MYSQL_LIBRARY. is set, then its value is used instead of the value of
mysql-library-path.

23.2.7 Connecting to PostgreSQL

For database-type :postgresql, connection-spec must be either a string in the format specified by the PostgreSQL libraries
or a plist.

23.2.7.1 Connecting to PostgreSQL using a string

If connection-spec is a string then it should be in the format specified by:

http://www.postgresql.org/docs/9.3/static/libpq-connect.html#LIBPQ-CONNSTRING.

For example:

dbname=test user=scott password=tiger host=scandium

23 Common SQL

266

http://www.postgresql.org/docs/9.3/static/libpq-connect.html#LIBPQ-CONNSTRING

23.2.7.2 Connecting to PostgreSQL using a plist

connection-spec can be a plist containing (some of) the keywords :username (or :user), :password, :dbname,
:hostname (or :host), :port, :connection. Each of these keywords may be omitted, but if :connection is specified,
then :hostname and :port must not be specified.

The value supplied for :hostname can be a raw hostname or a string of the form hostname:port. The value supplied for
:post can be an integer or a string naming a service.

If :connection is specified then it can be a string conforming to one of these patterns:

• hostname

• hostname:port

The values should not be escaped or quoted: LispWorks will escape and quote it as needed before passing it to the
PostgreSQL library.

23.2.7.3 Escaping and standard_conforming_strings

LispWorks sets the PostgreSQL session variable standard_conforming_strings to on to match the escaping that
Common SQL uses. Note that this variable is only available in PostgreSQL 8.2 and later, so escaping will not work correctly
in older versions of PostgreSQL.

23.2.7.4 Special instructions for PostgreSQL on macOS

To allow LispWorks to locate the PostgreSQL LispWorks (libpq.dylib), set the environment variable
DYLD_LIBRARY_PATH from within Lisp before connecting to the database. For example, to use the library from postgresql14
in the MacPorts project in /opt/local/lib/postgresql14:

(setf (environment-variable "DYLD_LIBRARY_PATH")
 "/opt/local/lib/postgresql14")

23.2.8 Connecting to SQLite.

For database-type :sqlite, connection-spec is used to specify the filename of the SQLite database. connection-spec must
be one of the following:

A string. Specifies the filename as is.

A plist containing :dbname filename.

If filename is a string, it specifies the filename as is. Otherwise, the value of
(namestring filename) is used as the filename.

:memory This is equivalent to ":memory:" and specifies a private, temporary in-memory database.

:temp This is equivalent to "" and specifies a private, temporary on-disk database.

23.2.8.1 Locating the SQLite client library

The special variable sql:*sqlite-library-path* contains the FLI shared library name for SQLite. It defaults to
"-lsqlite3" on non-Windows platforms, which should work if SQLite is installed. On Windows, it defaults to
"sqlite3.dll", which requires that DLL to be on the path. Note that 64-bit and 32-bit LispWorks require different DLL
files.

23 Common SQL

267

The Common SQL SQLite interface assumes that the library is compiled with standard options and that SQLite is not
configured in an unusual way. Most importantly, if the threading mode is single-thread (either because the library is compiled
as single-thread, or because sqlite3_config set it to single-thread), then the Common SQL SQLite interface is not thread
-safe anymore. This situation is quite unlikely to happen.

23.2.8.2 SQLite string encoding

By default, the connection is opened as a UTF-8 connection (using the C function sqlite3_open_v2). The :encoding
argument to connect can have the value :default, :unicode or :utf-8 which all use the default (that is, have no effect),
and :utf-16 or :utf-16-native, which opens the connection using UTF-16 in the native byte order (using the C
function sqlite3_open16). It is not obvious in what circumstances UTF-16 is better and it is made available only because
the underlying library supports it. When opening as UTF-16, the keywords :open-mode, :threading-mode, :uri and
:vfs are ignored.

23.2.8.3 SQLite connection keywords

The sqlite-keywords keyword argument to connect allows you to specify several parameters controlling the behavior of the
connection. sqlite-keywords is a property list, providing values for the SQLite-specific keywords :open-mode,
:threading-mode, :uri, :cache-mode, :vfs or :uniform-type-per-column. These keywords affect the connection
as follows.

By default, the connection is opened with opening modes create and readwrite, which means that the file is created if it does
not exist, and the database can be modified. The SQLite-specific keyword :open-mode in sqlite-keywords can be used to
change this. The value :readonly specifies that the file must exist (so connect fails if it does not exist) and is opened for
reading only (so it is not possible to modify it). The value :readwrite means that the file must exist and the database can be
modified.

By default, the threading mode of the connection is "serialized" (so it is thread-safe). You can change this by the SQLite-
specific keyword :threading-mode in sqlite-keywords, which can take the values :multi-thread or :serialized.
When the threading mode is :multi-thread (rather than :serialized), it is not actually thread-safe, and you can access
it only on one thread at a time (but it can be accessed from different threads over time). The term "multi-thread" means that
you can access different connections at the same time on different threads. :multi-thread is probably more efficient, but
we do not know by how much.

By default, connection-spec can be a URI filename, which is a string starting with "file:" (see https://www.sqlite.org/uri.html
"URI Filenames In SQLIte" for details). Whether this is allowed is controlled by the SQLite-specific keyword :uri in sqlite-
keywords, which defaults to t, and can be switched off by passing :uri nil.

By default, the connection cache mode is the system default. The SQLite-specific keyword :cache-mode in sqlite-keywords
can be used to change this to either :private or :shared. See https://www.sqlite.org/sharedcache.html "SQLite Shared-
cache mode" for details. :Shared mode probably improves performance if you connect multiple times to the same file.

The SQLite-specific keyword :vfs in sqlite-keywords can be used to specify the name of the VFS (Virtual File System) that
is used. You need to be an expert on SQLite to know when this is useful.

The SQLite-specific keyword :uniform-type-per-column in sqlite-keywords affects the default type for fields in the
results of queries. See 23.13.3 Tables containing a uniform type per column.

See 23.13 Using SQLite for other SQLite-specific features.

23 Common SQL

268

23.3 Functional interface

The functional interface provides a full set of Data Manipulation and Data Definition functions. The interface provides a SQL
-compatible means of querying and updating the database from Lisp. In particular, the values returned from the database are
Lisp values — thus smoothly integrating user applications with database transactions. An embedded syntax is provided for
dynamically constructing sophisticated queries through select. Iteration is also provided via a mapping function and an
extension to the loop macro. If necessary, the basic functions query and execute-command can be called with SQL
statements expressed as strings. It is also possible to update or query the data dictionary.

23.3.1 Functional Data Manipulation Language (FDML)

The functions available for Data Manipulation and Data Definition are described below.

23.3.1.1 Querying

The function select returns data from a database matching the constraints specified. The data is returned, by default, as a
list of records in which each record is represented as a list of attribute values.

Database identifiers used in select are conveniently specified using the symbolic SQL [] syntax. This syntax is enabled by
calling enable-sql-reader-syntax.

The square bracket syntax assumes that sql symbols are visible. Therefore when using the [] syntax, ensure that the current
package either is sql, or is a package which has the sql package on its package-use-list.

For a description of the symbolic SQL syntax see 23.5 Symbolic SQL syntax. For example, the following is a potential
query and its result:

(select [person_id] [person surname] :from [person])
=>
((111 "Brown") (222 "Jones") (333 "Smith"))
("PERSON_ID" "SURNAME")

In this example, [person_id], [person surname] and [person] are database-identifiers and evaluate to literal SQL.
The result is a list of lists of attribute values. Conversely, consider:

(select [surname] :from [person] :flatp t)
=>
("Brown" "Jones" "Smith")
("SURNAME")

In this case the result is a simple list of surname values because of the use of the flatp keyword. The flatp keyword only
works when there is one column of data to return.

In this example we use * to match all fields in the table, and then we use the result-types keyword to specify the types to
return:

(select [*] :from [person])
=>
((2 111 "Brown") (3 222 "Jones") (4 333 "Smith"))
("ID" "Person_ID" "Surname")

(select [*] :from [person] :result-types '(:integer :string :string))
=>
((2 "111" "Brown") (3 "222" "Jones") (4 "333" "Smith"))
("ID" "Person_ID" "Surname")

If you want to affect the result type for a specified field, use a type-modified database identifier. As an example:

23 Common SQL

269

(sql:select [Person_ID :string][Surname] :from [person])
=>
(("111" "Brown") ("222" "Jones") ("333" "Smith"))
("PERSON_ID" "SURNAME")

With database-type :mysql, further control over the values returned from queries is possible as described in 23.9.9 Types of
values returned from queries.

In this final example the :where keyword is used to specify a condition for returning selected values from the database.

(select [surname] :from [person] :where [= [person_id] 222])
=>
(("Jones"))
("SURNAME")

To output the results of a query in a more easily readable tabulated way, use the function print-query. For example the
following call prints two even columns of names and salaries:

(print-query [select [surname] [income] :from [employee]]
 :titles '("NAME" "SALARY"))

NAME SALARY
Brown 22000
Jones 45000
Smith 35000

23.3.1.2 Modification

Modifications to the database can be done using the following functions; insert-records, delete-records and
update-records. The functions commit, rollback and the macro with-transaction are used to control transactions.
Although commit or rollback may be used in isolation it is advisable to do any updates inside a with-transaction
form instead. This provides consistency across different database transaction models. For example, some database systems
do not provide an explicit "start-transaction" command while others do. with-transaction allows user code to ignore
database-specific transaction models.

The function insert-records creates records in a specified table. The values can be either specified directly with the
argument values or in the argument av-pairs, or they can be the result of a query specified in the query argument. The
attributes can be specified with the argument attributes or in the argument av-pairs.

If attributes is supplied then values must be a corresponding list of values for each of the listed attribute names. For example,
both:

(insert-records :into [person]
 :attributes '(person_id income surname occupation)
 :values '(115 11000 "Johnson" "plumber"))

and:

(insert-records :into [person]
 :av-pairs `((person_id 115)
 (income 11000)
 (surname "Johnson")
 (occupation "plumber")))

are equivalent to the following SQL:

INSERT INTO PERSON

23 Common SQL

270

 (PERSON_ID,INCOME,SURNAME,OCCUPATION)
 VALUES (115,11000,'Johnson','plumber')

If query is provided, then neither values nor av-pairs should be. In this case the attribute names in the query expression must
also exist in the insertion table. For example:

(insert-records :into [person]
 :query [select [id] [firstname] [surname]
 :from [manager]]
 :attributes '(person_id firstname surname))

To delete or alter those records in a table which match some condition, use delete-records or update-records.

23.3.1.3 Caching of table queries

Operations which add or modify records sometimes need to perform an internal query to obtain type information for the
relevant attributes. In principle it is possible for the database schema to change between update operations, and hence this
query is run for each update operation. This can be a significant overhead.

For tables which are guaranteed to have a constant schema, you can optimize performance by adding a cache of these internal
query results, using the function cache-table-queries. This can also be used to reset the cache if the table schema is
actually altered. To control the default caching behavior throughout every database connection, you can set the variable
cache-table-queries-default.

23.3.1.4 Transaction handling

A transaction in SQL is defined as starting from the connect, or from a commit, rollback or data-dictionary update and
lasting until a commit, rollback, data-dictionary update or a disconnect command.

The macro with-transaction executes a body of code and then does a commit, unless the body failed in which case it
does a rollback. Using this macro allows your code to cope with the fact that transactions may be handled differently in the
different vendor implementations. Any differences are transparent if the update is done within a with-transaction form.

Note: Common SQL opens an ODBC database in manual commit mode, so that with-transaction and rollback take
effect.

Applications should perform all database update operations in a with-transaction form (or follow them with commit or
rollback) in order to safely commit or discard their changes. This applies to operations that modify either the data or the
schema.

The following example shows a series of updates to an employee table within a transaction. This example would commit the
changes to the database on exit from with-transaction. This example inserts a new record into the emp table, then
changes those employees whose department number is 40 to 50 and finally removes those employees whose salary is more
than 300,000.

(connect "personnel")

(with-transaction
 (insert-records :into [emp]
 :attributes '(empno ename job deptno)
 :values '(7100 "ANDERSON" "SALESMAN" 30))
 (update-records [emp]
 :attributes [deptno]
 :values 50
 :where [= [deptno] 40])
 (delete-records :from [emp]
 :where [> [sal] 300000]))

23 Common SQL

271

To commit or roll back all changes made since the last commit, use the functions commit or rollback.

23.3.1.5 Iteration

Common SQL has three iteration constructs: a do loop, a mapping function, and an extension to the Common Lisp loop

macro.

The macros do-query and simple-do-query repeatedly execute a piece of code within the scope of variables bound to the
attributes of each record resulting from a query.

The function map-query maps a function across the results of a query and returns its result in a sequence of a specified type,
like the Common Lisp map function.

Common SQL provides an extension to the ANSI Common Lisp macro loop which is a clause for iterating over query
results. The syntax of the clause is:

{for|as} var [type-spec] being
 {the|each}{tuples|tuple|records|record}
 {in|of} query-expression
 [not-inside-transaction not-inside-transaction]
 [get-all get-all]

query-expression can be a string, a sql-expression-object (a result of the "[...]" syntax) or a prepared-statement.

The more general word tuple is used so that it can also be applied to the object-oriented case. In the functional case, tuple
is synonymous with record.

Each iteration of the loop assigns the next record of the table to the variable var. The record is represented in Lisp as a list.
Destructuring can be used in var to bind variables to specific attributes of the records resulting from query-expression. In
conjunction with the panoply of existing clauses available from the loop macro, the new iteration clause provides an
integrated report generation facility.

If type-spec is present, then var is declared to be of type type-spec.

The additional the clauses not-inside-transaction not-inside-transaction and get-all get-all may be useful when
fetching many records through a connection with database-type :mysql. See the section 23.9.6 Special considerations for
iteration functions and macros for details.

Suppose the name of everyone in an employee table is required. This simple query is shown below using the different
iteration method. The function map-query requires flatp to be specified; otherwise each name would be wrapped in a list.

(do-query ((name)[select [ename] :from [emp]])
 (print name))

(map-query
 nil
 #'(lambda (name) (print name))
 [select [ename] :from [emp] :flatp t])

(loop for (name)
 being each tuple in
 [select [ename] :from [emp]]
 do
(print name))

The following extended loop example binds, on each record returned as a result of the query, name and salary,
accumulates the salary, and for salaries greater than 2750 increments a count, and prints the details. Finally, the average

23 Common SQL

272

http://www.lispworks.com/documentation/HyperSpec/Body/m_do_do.htm

salary is printed.

(loop for (name salary) being each record in
 [select [ename] [sal] :from [emp]]
 initially (format t "~&~20A~10D" 'name 'salary)
 when (and salary (> salary 2750))
 count salary into salaries
 and sum salary into total
 and do (format t "~&~20A~10D" name salary)
 else
 do (format t "~&~20A~10D" name "N/A")
 finally
 (format t "~2&Av Salary: ~10D" (/ total salaries)))

23.3.1.6 Specifying SQL directly

Sometimes it is necessary to execute vendor-specific SQL statements and queries. For these occasions Common SQL
provides the functions query and execute-command. They can also be used when the exact SQL is known in advance and
thus the square bracket syntax is not needed. The query expression can be a string, a sql-expression-object (a result of
the "[...]" syntax) or a prepared-statement.

The function query runs a SQL query on a database and returns a list of values like select (see 23.3.1.1 Querying). It also
returns a list of the field names selected.

execute-command is the basic function which executes any SQL statement other than a query. It can run a stored
procedure, as described in execute-command.

23.3.1.7 Building vendor-specific SQL

Common SQL does not provide a general interface to vendor-specific syntax.

There are two approaches you can take with SQL such as this:

SELECT B.PARTY_CODE_ALIAS, A.VALUE FROM CODES A, CODE_ALIASES B
 WHERE A.DOMAIN=B.CODE_DOMAIN(+) AND A.VALUE=B.CODE_VALUE(+)
 AND B.PARTY_ID(+)=<party_id>

1. Construct the string as above and then call query as described in 23.3.1.6 Specifying SQL directly.

2. Use sql-expression to construct the vendor-specific pieces of the SQL. The above expression can be written like
this:

(sql:select [b party_code_alias] [a value]
 :from '([codes "A"] [codes_aliases "B"])
 :where [and [= [a domain]
 (sql:sql-expression
 :string "B.CODE_DOMAIN(+)")]
 [= (sql:sql-expression
 :string "B.PARTY_ID(+)") PARTY-ID]])

23.3.1.8 Prepared statements

Prepared statements are SQL statements (queries or other statements) that are prepared once and can then be used repeatedly.
Prepared statements use the prepare API of the underlying DBMS. Using a prepared statement can be simpler in many cases.
Also, because the preparation of a statement can be a significant overhead, it can improve performance for repeated query or
execution with the same statement with optionally different values.

23 Common SQL

273

A prepared statement is an object of type prepared-statement. You create one by calling the function
prepare-statement with a SQL statement. Optionally, if the SQL statement contains variables, then you set these
variables by calling the function set-prepared-statement-variables. Then you can use the prepared-statement
in any of the query or execution functions that take a SQL statement: query, do-query, simple-do-query, map-query,
select, Loop Extensions in Common SQL and execute-command. Finally, once you have finished with the
prepared-statement, it should be destroyed by calling the function destroy-prepared-statement to avoid memory
leaks in the database server. The call to destroy-prepared-statement must be before the database is disconnected.

The same prepared-statement can be used repeatedly for querying or executing. Setting the variables can happen
repeatedly, but it is not required for each query or execution.

For the common case when you want to set the variables and immediately query or execute the statement, the convenience
functions prepared-statement-set-and-execute, prepared-statement-set-and-execute*,
prepared-statement-set-and-query and prepared-statement-set-and-query* can be used to perform both
operations in one call.

A prepared statement can be very long-lived, but can be also useful in a limited scope, in which case the macro
with-prepared-statement is useful, mainly by ensuring destruction of the prepared statement on exit.

23.3.2 Functional Data Definition Language (FDDL)

Functions in the FDDL may be used to change or query the structure of the database.

23.3.2.1 Querying the schema

The functions list-tables, list-attributes, attribute-type and list-attribute-types return information
about the structure of a database.

23.3.2.2 FDDL Querying example

This example shows you how to query the type of the ename attribute of the emp table.

(attribute-type [ename] [emp]) -> :char

23.3.2.3 Modification

You may create or drop (delete) tables using the functions create-table and drop-table.

Create or drop indexes using the functions create-index and drop-index.

To create or drop a view (that is, a derived table based on a query) use the functions create-view and drop-view.

23.4 Object oriented interface

This section describes the object-oriented interface to SQL databases using specialized CLOS classes. These classes have
standard-db-object as one of their superclasses and have a common metaclass which provides the specialized behavior
for mapping subclasses of standard-db-object onto records in the database. A class of this kind is created using
def-view-class.

23 Common SQL

274

23.4.1 Object oriented/relational model

In the simple case, a class maps onto a database table, an instance of the class maps onto a record in the table, and a slot in
the class maps onto an attribute in the table.

In general, however, a class maps onto a database view, an instance of the class maps onto a collection of records in the view,
and a slot in the class is either:

• A base slot that maps onto an attribute in the view.

• A join slot that points to a list of other view-class instances.

If an instance maps onto more than one record in the view then for each record, all the key attributes from each table in the
view are the same.

23.4.1.1 Inheritance for View Classes

It is not possible to inherit from a class that was defined by def-view-class. All of the slots need to be in the same class
(and hence also in the same SQL table).

23.4.2 Object-Oriented Data Definition Language (OODDL)

The OODDL lets you define a mapping between the relational and object-oriented worlds to be defined. Through the
mapping a CLOS object can effectively denote a collection of records in a database view, and can contain pointers to other
view-based CLOS objects. The CLOS object makes explicit an object implicitly described by the flat relational values.

The mapping is defined using the macro def-view-class. This extends the syntax of defclass to allow special base slots
to be mapped onto the attributes of database views (presently single tables). When you submit a select query that names a
View Class (that is, a class defined by def-view-class), then the corresponding database view is queried, and the slots in
the resulting instances are filled with attribute values from the database.

It is also possible to create join slots and virtual (ordinary) slots.

All the special slots are distinguished by a modified set of class and slot options. The special slots and their options are
described in more detail under def-view-class in the LispWorks Reference Manual.

Note: def-view-class defines a Lisp view of an underlying database table. It is a similar concept to that of SQL VIEWs,
but does not interact with them.

You can create a table based on a View Class using the function create-view-from-class and delete it using the function
drop-view-from-class.

23.4.2.1 Example View Class definition

The following example shows a View Class corresponding to the traditional employees table, with the employee's department
given by a join with the departments table. See def-view-class for a description of the slot options.

(def-view-class employee (standard-db-object)
 ((employee-number :db-kind :key
 :column empno
 :type integer)
 (employee-name :db-kind :base
 :column ename
 :type (string 20)
 :accessor employee-name)
 (employee-department :db-kind :base
 :column deptno
 :type integer

23 Common SQL

275

 :accessor employee-department)
 (employee-job :db-kind :base
 :column job
 :type (string 9))
 (employee-manager :db-kind :base
 :column mgr
 :type integer)
 (employee-location :db-kind :join
 :db-info (:join-class department
 :retrieval :deferred
 :set nil
 :home-key employee-department
 :foreign-key department-number
 :target-slot department-loc)
 :accessor employee-location))
 (:base-table emp))

The def-view-class macro allows elements or lists of elements to follow :home-key and :foreign-key. The elements
can be symbols, nil, strings, integers or floats.

This syntax means that an object from the join class is only included in the join slot if the values from home-key are equal to
the values in foreign-key, in order. These values are calculated as follows:

• If the element in the list is a symbol it is taken to be a slot name and the value of the slot is used.

• Otherwise the element is taken to be the value.

Note that some database vendors may have short maximum identifier lengths. The CLOS interface uses constructed alias
names for tables in its SQL queries, and long table names or long class names may cause the constructed aliases to exceed the
maximum identifier length for a particular vendor.

23.4.3 Object-Oriented Data Manipulation Language (OODML)

The OODML is designed to be powerful and expressive, while remaining familiar to users of the FDML. To achieve this aim,
some of the functions and macros in the SQL interface have been overloaded — particularly the select function and the
iteration constructs.

The function select is common across the both the functional and object-oriented SQL interfaces. If its first argument,
selections, refers to a View Class by supplying its symbolic name then the select operation becomes object-oriented and it
returns a list of instances instead of a list of attributes.

A subsequent equivalent select call will return the same (eql) instances. The :refresh argument can be used to ensure
that existing instances get updated with any changed data. If such an update requires action by your application, then add
methods on the generic function instance-refreshed.

In a View Class select call, the symbol slot-value is a valid SQL operator for use within the :where argument.

To find the View Classes for a particular database, use the function list-classes.

To manipulate data via a View Class, that is to modify the records corresponding to instances of the View Class, using the
generic functions update-records-from-instance, and update-record-from-slot.

To delete records corresponding to instances of the View Class, use the generic function delete-instance-records.

To update existing instances of a View Class when data is known to have changed, use the generic functions
update-slot-from-record and update-instance-from-records.

23 Common SQL

276

http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm

23.4.3.1 Examples

[select 'employee]
-> #<SQL-OBJECT-QUERY (EMPLOYEE)>

(select 'employee
 :where [= [slot-value 'employee 'employee-job]
 "SALESMAN"])
((#<db-instance EMPLOYEE 8067092>)
 (#<db-instance EMPLOYEE 8069536>)
 (#<db-instance EMPLOYEE 8069176>))

(list-classes)
(#<db-class EMPLOYEE> #<db-class DEPARTMENT>)

23.4.3.2 Iteration

The object-oriented SQL interface has the same three iteration constructs as the functional interface (see 23.3.1.5 Iteration):
a do-loop, a mapping function, and an extension to the Common Lisp loop macro. However, in this case, the iteration focus
is not a tuple of attributes (that is, a record), but a tuple of instances. For example:

(loop for (jones company) being the tuples in
 [select 'person 'organization
 :where [= [slot-value 'person 'surname] "Jones"]]
 do (format t "~A ~A ~%"
 (slot-value jones 'forename)
 (slot-value company 'short-name)))

Note: Instances may denote many database records, and hence the effective iteration focus in this case is a tuple of sets of
tuples of attributes.

23.4.3.3 Garbage collection of view instances

View instance objects are not released for garbage collection (GC) until the connection is closed. This is because they are
referenced by the CLOS object representing the database connection. This is to ensure that they can reliably be compared by
eq.

23.5 Symbolic SQL syntax

Common SQL supports a symbolic query syntax across both the functional and object-oriented interface layers. It allows
SQL and Common Lisp expressions to be mixed together — with as much processing as possible done at compile-time.
Symbolic SQL expressions are read as square-bracketed lists to distinguish them from Lisp expressions. However, each can
be nested within the other to achieve the desired result.

By default, this reader syntax is turned off. To turn it on see 23.5.3 Utilities.

23.5.1 The "[...]" Syntax

The square bracket syntax for the SQL interface is heavily overloaded to provide the most intuitive behavior in all situations.
There are three uses of square brackets:

1. To enclose a database identifier.

2. To construct a SQL string representing a symbolic expression.

23 Common SQL

277

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm

3. To enclose an SQL expression directly.

Each of these uses is demonstrated below.

23.5.1.1 Enclosing database identifiers

Database identifiers are specified in the "[...]" syntax using the following rules:

There must be one, two or three Lisp forms inside the square brackets. The first form must be a symbol, string or a recursive
database identifier (that is, another square brackets expression). The second form, if present, must be a symbol or a string.
The third form, if present, must be a keyword.

The case with a single form that is a string is special, and is interpreted as a direct SQL expression rather than an identifier
(see 23.5.1.5 Enclosing a SQL expression directly below).

When a string or a symbol is used to specify all or part of the identifier and the string (or name of the symbol) cannot be used
as an identifier (because it contains special characters or matches a SQL reserved word), then it is wrapped with double
quotes in the resulting SQL.

If there is more than one form inside the square brackets, and the first form is a symbol that is recognized as a SQL operator
or a pseudo-operator, then the expression is interpreted as an operation rather than as an identifier (see the following
sections).

The first form is always interpreted as specifying a string that is part or all of the identifier. For a symbol, it is the symbol
name and for a recursive identifier it is the string that would be generated for this identifier. In the examples below, the text
following the => (and optionally up to the semicolon) shows what is generated for the resulting SQL.

If there is only one form, it specifies the full name of the identifier. For example:

[foo] => FOO

["foo"] => foo

[[foo]] => FOO

["W%()jj"] => W%()jj ; single form string not quoted.

If the second form is a string and the first form is not a string, then the first form specifies the name of the identifier and the
second form specifies an alias. In this case there must not be a third form. The alias identifier is useful for giving tables
aliases in the from part of the SQL select statement:

[foo "AA"] => FOO AA

[[foo aa] "bb"] => FOO.AA bb ; first form is recursive.

If there is a third form, or the second form is not keyword, or the first form is a string, then the second form specifies an
identifier qualified by the first form, that is they are combined with a period in the middle:

[foo aa] => FOO.AA

[foo aa :integer] => FOO.AA ; with type :integer (below).

["foo" "AA"] => foo.AA ; compare to [foo "AA"] above.

If there are only two forms and the second form is a keyword, or there are three forms, then the second form (in the two form
case) or the third form (in the three form case) specifies a type associated with the identifier. The type does not affect the
SQL statement that the database sees. It is used when the identifier is part of the selection list, to tell Common SQL what
type the value should be. Such identifiers should appear only in the selection list of queries.

23 Common SQL

278

[ColumnName :integer]

=> COLUMNNAME ; type :integer.

[[TableName ColumnName] :string]

=> TABLENAME.COLUMNNAME ; type :string.

[TableName ColumnName :string]

=> TABLENAME.COLUMNNAME ; type :string (same as previous).

Inside select (which is recognized as a SQL operator):

[select [id :integer] [name :string] :from [TableName]]

=> SELECT ID, NAME FROM TABLENAME ; interpret ID as an integer and NAME as a
string.

Notes:

• You can specify both an alias and a type by specifying the identifier recursively in the first form:

[[TableName ColumnName] "MyAlias" :string]

=> TABLENAME.COLUMNNAME MyAlias ; type :string.

• Recursion through the first form also allows you to add qualifiers as needed:

[[[[CatalogName SchemaName] TableName] ColumnName] "MyAlias" :string]

=> CATALOGNAME.SCHEMANAME.TABLENAME.COLUMNNAME MyAlias ; type
:string.

• Because a string as single form is not quoted, it allows you to insert any SQL directly. For example, in the first
expression below the string which contains illegal characters is quoted, but in the second example the string appears as a
single form in the recursive identifier, so is not quoted:

["W%()jj" aa] => "W%()jj".AA ; string is quoted.

[["W%()jj"] . aa] => W%()jj.AA ; string not quoted because it is a single form.

• Evaluating an expression in "[...]" syntax returns an object of type sql-expression-object.

23.5.1.2 Specifying the type of retrieved values.

When you use a keyword to specify the type of an expression as described in 23.5.1.1 Enclosing database identifiers, you
are telling common SQL that the values retrieved for this expression should be of a specific type. For example, if you call:

(sql:select [name :string] :from [TableName])

then the :string keyword tells common SQL that the values for name should be strings.

There are four keywords that are supported by all common SQL backends: :string, integer, :double-float and
:single-float. For each of these keywords, the values are mapped to the matching Common Lisp type. If this is not
possible, the value is returned as nil.

Note that if you specify a keyword that is incompatible with the type in the database column then either an error is signaled or
all returned values will be nil.

23 Common SQL

279

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm

The keyword :int is accepted as an alias for :integer.

The keyword :binary is supported by most of backends (except Microsoft Access and PostgreSQL). The value that is
returned for :binary is an array with element type (unsigned-byte 8). On Oracle, :binary can be used only for
columns of binary type, so it is only useful when you want to retrieve the contents of a BLOB directly, because for plain
RAW columns it is the default anyway. Other backends allow you to retrieve at least strings as binary values.

Other keywords are supported by some of the backends, and are documented in the backend specific sections.

23.5.1.3 Symbolic expression of SQL operators

When the first form in the square brackets is a symbol that is one of the SQL operators listed below, the expression is
interpreted as an operation. For example:

[any '(3 4)] -> #<SQL-VALUE-EXP "(ANY (3,4))">

Similarly with two argument operators:

[> [baz] [beep]]
 -> #<SQL-RELATIONAL-EXP "(BAZ > BEEP)">

The select statement itself may be prepared for later query execution using the [] syntax. For example:

[select [person_id] [surname] :from [person]]

This form results in a SQL expression, which could be bound to a Lisp variable and later given to query to execute. For
example:

[select [foo] [bar *]
 :from '([baz] [bar])
 :where [or [= [foo] 3]
 [> [baz.quux] 10]]]
->
#<SQL-QUERY
 "(SELECT FOO,BAR.* FROM BAZ,BAR
 WHERE ((FOO = 3)
 OR (BAZ.QUUX > 10)))">

Strings can be inserted in place of database identifiers within a select:

[select [foo bar] [baz]
 :from '([foo] [quux])
 :where [or [> [baz] 3]
 [like [foo bar] "SU%"]]]
->
#<SQL-QUERY:
 "(SELECT FOO.BAR,BAZ
 FROM FOO,QUUX
 WHERE ((BAZ > 3)
 OR (FOO.BAR LIKE 'SU%')))">

Any non-constant included gets filled in at run time, for example:

[> [foo] x]

when macroexpanded reads as:

(SQL-> #<SQL-IDENT "FOO"> X)

23 Common SQL

280

which constructs the actual SQL string at run time.

Any arguments to a SQL operator that are Lisp constants are translated to the matching SQL construct at compile-time, for
example:

"foo" -> "'foo'"
3 -> "3"
'("this" 5 "that") -> "('this', 5, 'that')"
'xyz -> "XYZ"

SQL operators which are supported are null, exists, *, +, /, -, like, substr, and, or, not, in, all, any, some,||,
=, <, > ,>=, <=, <>, count, max, min, avg, sum, minus, nvl, distinct, except, intersect, union, slot-value,
between and userenv. There are also pseudo operators for calling database functions (see 23.5.1.4 Calling database
functions).

The general syntax is: [<operator> <operand> ...], for instance:

(sql:select [count [*]] :from [emp])

The operand can itself be a SQL expression, as in the following example:

(sql:create-table [company]
 '(([name] (varchar 20) not-null)))

(loop for company in '("LispWorks Ltd"
 "Harlequin"
 "Oracle"
 "Rover"
 "Microsoft")
 do
 (sql:insert-records :into [company]
 :av-pairs `(([name] ,company))))

(sql:create-table [person]
 '(([surname] (varchar 20) not-null)
 ([firstname] (varchar 20) not-null)))

(loop for person in '(("Joe" "Bloggs")
 ("Fred" "Smith")
 ("Rover" "the Dog")
 ("Fido" "the Dog"))
 do (sql:insert-records :into [person]
 :av-pairs
 `(([firstname] ,(car person))
 ([surname] ,(second person)))))

(sql:select [name]
 :from [company]
 :where [= [name]
 [any [select [surname]
 :from [person]]]])

(sql:select [surname]
 :from [person]
 :set-operation [union [select [firstname]
 :from [person]]])

23 Common SQL

281

23.5.1.4 Calling database functions

An arbitrary function can be included in the SQL using the pseudo operator sql-function. The first argument is the
function name and the rest are its arguments, for example:

(select [sql-function "COS" [age]] :from [EMPLOYEES])

(insert-records
 :into [atable]
 :attributes '(a b)
 :values
 (list 1 [sql-function "TO_DATE" "02/06/99" "mm/DD/RR"]))

Also you can call SQL infix operators using the pseudo operators sql-boolean-operator and sql-operator.

23.5.1.5 Enclosing a SQL expression directly

An SQL expression can simply be enclosed directly in the square bracket syntax, as shown below.

Creating a full query (which can be used as argument to query):

["SELECT FOO, BAR FROM BAZ"]
-> #<SQL "SELECT FOO, BAR FROM BAZ">

Using an non-portable function condition in :where:

(sql:select [*] :from ["aTable"]
 :where ["non_portable_function() > 89"])

23.5.1.6 SQL string literals

SQL string literals can be used as arguments to operators, for example with a constant Lisp string:

[= [name] "John"]

or with a Lisp expression that evaluates to string:

(defun find-person-age (name)
 (car (select [age] from [table]
 :where [= [name] name])))

where the argument name is a string.

However, Microsoft SQL Server (which can be used via ODBC) requires the N syntax for string literal that are not entirely
ASCII, or contain characters that are not recognized by the server code page. (The N syntax prefixes the string literal by the
character N, for example N'Greek', rather than 'Greek'.) Although this syntax is part of the SQL standard, not all SQL
backends accept it (in particular, SQLite and Microsoft Access, via ODBC, do not). Thus the decision whether to use the N
syntax needs to be made at run time and requires the SQL backend (which is represented by the database object that connect
returns). By default, the symbolic SQL syntax does not use the N syntax, but the special pseudo-operator string can be
used to override this. string takes a required argument, which must be a string, and an optional argument, a database
(which defaults to *default-database*), and produces the appropriate syntax for that database. The example above can
be written using string like this:

(defun find-person-age (name)
 (car (select [age] from [table]

23 Common SQL

282

http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm

 :where [= [name] [string name]])))

The same database must be used for the string pseudo-operator and the function/macro that uses the resulting expression.
In the example above, the function is select and the database not specified at all, so both string and select will use
default-database. This restriction means that the string pseudo-operator cannot be used to generate a pre-existing
expression, which is otherwise possible with the symbolic SQL syntax. For example, your code might contain:

(defvar *match-name-starting-with-cf* [like [name] "CF%"])

which defines *match-name-starting-with-cf* at load time, and then use it elsewhere:

(defun some-function (arg1 ..)
 ..
 (select [*] :from [table]
 :where *match-name-starting-with-cf*)
 ..
)

But if you use [string "CF%"] in the defvar, it will try to use the database at load time, which is normally before the
database is connected.

You can perform approximately what the string pseudo-operator does by using string-prefix-with-n-if-needed:

(let ((maybe-qualified
 (string-prefix-with-n-if-needed name))
 (car (select [age] from [table]
 :where [= [name] maybe-qualified])))

Another option is to set the variable *use-n-syntax-for-non-ascii-strings* to t at compile time, which causes all
string literals that are not entirely ASCII to be produced with N syntax. That would generate code that will work with almost
all SQL backends, but not with SQLite or Microsoft Access (which do not support the N syntax). The advantage is that, if
you have a large number of string literals, then you do not have to change them all: you just need to recompile your code
with *use-n-syntax-for-non-ascii-strings* set to t.

23.5.2 Programmatic interface

In some cases it is necessary to build SQL-expressions dynamically under program control.

The function sql-operation returns the SQL expression for an operator applied to its arguments. It also supports building
SQL expressions which contain arbitrary SQL functions using the pseudo operators sql-function, sql-operator and
sql-boolean-operator. For examples see sql-operation.

The function sql-expression makes a SQL expression from the given keywords. This is equivalent to the first and third
uses of the [] syntax as discussed in 23.5.1 The "[...]" Syntax.

The function sql-operator returns the Lisp symbol for a SQL operator.

The function sql makes SQL out of the arguments supplied. Each argument to sql is turned into SQL and then the args are
concatenated with a single space between each pair. A Lisp string maps to the same characters enclosed between single
quotes (this corresponds to a SQL string constant). nil maps to "NULL", that is, a SQL null value. Symbols and numbers
map to strings. A list maps to a parenthesised, comma-separated expression. A vector maps to a comma-separated
expression, which allows the easy generation of SQL lists that require no parentheses such as table lists in select statements.

The rules for the conversion are fully specified in sql.

23 Common SQL

283

http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm

23.5.2.1 Examples

The following example function, taken from the object-oriented SQL interface layer, makes a SQL query fragment that finds
the records corresponding a CLOS object (using the slots as attributes), when built into the where-clause of an updating form.

(let* ((class (class-of object))
 (key-slots (db-class-keyfields class)))
 (loop
 for key in key-slots
 for slot-name = (slot-definition-name key)
 for slot-type = (db-slot-definition-type key)
 collect
 [= (make-field-name class key)
 (lisp-to-sql-format
 (slot-value object slot-name)
 (if (listp slot-type)
 (car slot-type)
 slot-type))]
 into cols
 finally (apply (sql-operator 'and) cols)))
->
#<SQL-RELATIONAL-EXP "(EMP.EMPNO = 7369">

Here is another example that produces a SQL select statement:

(sql-operation 'select
 (sql-expression :table 'foo
 :attribute 'bar)
 (sql-expression :attribute 'baz)
 :from (list
 (sql-expression :table 'foo)
 (sql-expression :table 'quux))
 :where (sql-operation 'or
 (sql-operation '>
 (sql-expression :attribute 'baz)
 3)
 (sql-operation 'like
 (sql-expression :table 'foo
 :attribute 'bar)
 "SU%")))
->
#<SQL-QUERY "SELECT FOO.BAR,BAZ FROM FOO,QUUX
 WHERE ((BAZ > 3) OR (FOO.BAR LIKE 'SU%'))">

23.5.3 Utilities

The function enable-sql-reader-syntax switches square bracket syntax on and sets the state so that
restore-sql-reader-syntax-state restores the syntax again if it is subsequently disabled. The function
disable-sql-reader-syntax switches square bracket syntax off and sets the state so that
restore-sql-reader-syntax-state disables the syntax again if it is subsequently enabled.

The functions locally-enable-sql-reader-syntax and locally-disable-sql-reader-syntax switch square
bracket syntax on and off, but do not change the state restored by restore-sql-reader-syntax-state. The intended
use of these is in a file:

#.(locally-enable-sql-reader-syntax)
 <code using [...]>
#.(restore-sql-reader-syntax-state)

23 Common SQL

284

23.6 Working with date fields

This section describes particular issues around using datetime database fields via Common SQL. Note: SQLite does not
support date fields at all.

See also 23.9.9 Types of values returned from queries for information specifically about returning datetime values from
MySQL.

23.6.1 Testing date values

Compare DATE values by formatting the date as a string in a date format that the database can parse. For example:

(sql:select * :from [Table] :where [= [Date] "2005-12-25"])

Note that it is not possible to lookup date values in the database using numeric values. This is because:

1. Common SQL cannot know that the field will be a date field until the results are returned, and:

2. the database probably does not know about Common Lisp universal time.

To convert between universal time and standard SQL DATE or TIMESTAMP string, you can use the functions
encode-db-standard-date, encode-db-standard-timestamp, decode-to-db-standard-date and
decode-to-db-standard-timestamp. Note that the database may have non-standard date format, in which case you will
need to either format the string yourself, or on Oracle tell the database to use the standard format by passing date-string-
format to connect.

23.6.2 DATE returned as universal time

By default Common SQL converts DATE values to Common Lisp universal times. Therefore code like this returns Common
Lisp universal times (that is, integers) where MyDate is a DATE field type:

(sql:select [MyDate] :from [MyTable] :where [= [id] 1])

23.6.2.1 Timezone of returned DATEs

Common SQL creates universal time values from DATE fields assuming that the database contains times in Coordinated
Universal Time (UTC). That is, as if by passing time-zone 0 to encode-universal-time. To decode the values
consistently with this encoding, pass time-zone 0 to decode-universal-time.

If the database contains times in a different timezone, then the integer time-zone needs to be adjusted by adding an
appropriate multiple of 3600 before calling decode-universal-time.

23.6.3 DATE returned as string

Instead of universal time integers, you can obtain strings formatted by the database by modifying the MyDate database
identifier, adding :string like this:

(sql:select [MyDate :string] :from [MyTable] :where [= [id] 1])

This avoids the overhead of converting DATEs to universal times and so may improve performance of your application.

See select for details.

23 Common SQL

285

http://www.lispworks.com/documentation/HyperSpec/Body/f_encode.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_dec_un.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_dec_un.htm

23.6.4 Using universal time format

If the database is only accessed via Common SQL and you want to use the universal time date format, then you might
consider using an INTEGER column containing universal time values instead of a DATE column.

23.7 SQL I/O recording

It is sometimes convenient to simply monitor the flow of commands to, and results from, a database. A number of functions
are provided for this purpose.

The functions operate on two stream collections (broadcast streams) — one each for commands and results. They allow the
recording to be started and stopped, checked, or recorded on further individual streams. By default, both commands and
results recording is printed only to *standard-output*.

For details, see the reference pages for start-sql-recording, stop-sql-recording, sql-recording-p,
list-sql-streams, sql-stream, add-sql-stream and delete-sql-stream.

23.8 Error handling in Common SQL

All errors generated by Common SQL are of type sql-user-error or sql-database-error. You can test for these
conditions and their subtypes in your error handlers.

23.8.1 SQL condition classes

An sql-user-error is an error inside Lisp.

An sql-database-error is an error inside the database interface that Lisp uses.

The following are subclasses of sql-database-error:

sql-database-data-error

An error with the data given. It signifies an error that must be fixed for the code to work.

sql-timeout-error Signifies an error that is a result of other users using the same database. It means the code can
work without change, once the other users stop using the database.

sql-connection-errorAn error with the connection to the RDBMS.

The following are subclasses of sql-connection-error:

sql-timeout-error A timeout with some operation.

sql-fatal-error An error which means that the connection is no longer usable.

Note: In general, the documentation for the various supported databases make it difficult to decide which error code should
be made into which of the above condition class, and we probably get many of these wrong. If you find errors that seem to be
signaled with the wrong condition class, please report them to Lisp Support, including the full printout of the condition, and
we will fix it.

23.8.2 Database error accessors

Three functions are provided which access slots of sql-database-error, allowing you to discover more about the actual
error that occurred.

23 Common SQL

286

sql-error-error-id and sql-error-secondary-error-id return primary and secondary error identifiers. If you use
these, please read the detailed description in sql-database-error.

sql-error-database-message is a string (maybe nil) returned by the foreign code.

23.9 Using MySQL

This section describes particular issues in Common SQL with MySQL databases.

23.9.1 Connection specification

See 23.2.6 Connecting to MySQL for information about MySQL specific extensions for the connection-spec passed to
connect.

23.9.2 Case of table names and database names

MySQL is case sensitive on table names and database names when the server is on a Unix machine. MySQL does not
automatically change raw names to uppercase as specified by the SQL standard. However, Common SQL is geared towards
uppercasing all names, so this may cause some mismatches. In general, Common SQL uppercases strings, and uses symbol
names, which are normally uppercase, as-is.

One solution, possible only if you control the naming of tables and databases, is to make them all have the same case. If this
is uppercase, that suffices. If it is lowercase, you need to set the variable lower_case_table_names in the configuration
of the server.

If you cannot make all the names the same case, you have to get the case right. This can be achieved in several ways:

1. Specify tables names using strings, for example:

(sql:select [*] :from ["TableNAMEwithVARIABLEcase"])

Note that this does not work in LispWorks 4.4 and previous versions.

2. Pass the Lisp string directly:

(sql:select [*] :from "TableNAMEwithVARIABLEcase")

Note that in this case the table name is passed to the database inside double quotes. That works only when the mode of
the Common SQL connection contains ANSI_QUOTES (which is the default, see 23.9.4 SQL mode for details).

3. Specify table names as escaped symbols:

(sql:select [*] :from [|TableNAMEwithVARIABLEcase|])

4. Construct the whole query string and pass it to query rather than using select:

(sql:query "select * from TableNAMEwithVARIABLEcase")

23.9.3 Encoding (character sets in MySQL).

You can specify the encoding to be used by passing the :encoding argument to connect. Common SQL supports various
encodings for MySQL as documented in connect.

The default is to use the default for the particular MySQL installation.

23 Common SQL

287

23.9.4 SQL mode

Because Common SQL is geared towards ANSI SQL, by default it connects in ANSI mode. If another mode is required, it
can be set at connection time.

For example, to make MySQL treat quotes as in ANSI without setting other ANSI features, do:

(sql:connect "me/mypassword/mydb"
 :sql-mode "ANSI_QUOTES")

See the description of the :sql-mode argument to connect for details.

23.9.5 Meaning of the :owner argument to select

In the Common SQL MySQL interface, the value of the select keyword argument :owner is interpreted to select a
database name.

23.9.6 Special considerations for iteration functions and macros

This section describes particular issues when fetching multiple records using Common SQL with MySQL databases.

23.9.6.1 Fetching multiple records

The function map-query and the macros do-query, simple-do-query and loop with each record use internally
mysql-use-query, which means that the underlying MySQL code brings the data from the server one record at a time.
With a small number of records, it may be preferable to bring all the data immediately instead. This can be done by passing
the argument get-all, as follows:

(sql:map-query nil 'print
 "select forname,surname from people"
 :get-all t)

(sql:do-query
 ((forname surname) "select forname,surname from people"
 :get-all t)
 body)

(sql:simple-do-query
 (list "select forname,surname from people"
 :get-all t)
 body)

(loop for (forname surname) being each record
 "select forname,surname from people"
 get-all t
 body)

23.9.6.2 Aborting queries which fetch many records

In the MySQL interface there is no way to abort a query when part way through it. When any of the iterations above stops
before reaching its end, the underlying code retrieves all the records to the end of the query (though without converting them
to Lisp objects). If the query found many records, that may be an expensive (that is, time consuming) operation.

It is possible to avoid this inefficiency by passing the argument not-inside-transaction. If not-inside-transaction is true then
when a query is aborted, then LispWorks closes the database connection and reopens it, rather than retrieving all the
remaining records.

23 Common SQL

288

(sql:map-query nil 'print
 "select forname,surname from people"
 :get-all t
 :not-inside-transaction t)

Note that this will lose any state associated with the connection, and so not-inside-transaction should only be used with care.

23.9.7 Table types

By default, create-table creates tables of the default type. This behavior can be overridden by the connect keyword
arguments :default-table-type and :default-table-extra-options, and the :type and :extra-options

keyword arguments to create-table.

If type is passed to create-table or default-table-type was passed to connect, it is used as the argument to the "keyword"
TYPE in the SQL statement:

create table MyTable (column-specs) TYPE = type-value

If extra-options is passed to create-table or default-table-extra-options was passed to connect, it is appended in the end
of the SQL statement above.

connect with default-table-type and create-table with type also accept the keyword argument
:support-transactions. When support-transactions is true, these functions will attempt to make tables that support
transactions. It does this by using the type innodb.

23.9.8 Rollback errors

The default value of the connect keyword argument :signal-rollback-errors is determined by the value of the
:default-table-type argument. If default-table-type is :support-transactions or "innodb" or "bdb", then the
default value for :signal-rollback-errors is t, otherwise the default value is nil.

23.9.9 Types of values returned from queries

Common SQL uses the MySQL mechanism that returns values as strings.

By default, Common SQL converts these strings to the appropriate Lisp type corresponding to the column type (or more
accurately, the type of the field in the query) according to MySQL type mapping.

MySQL type mapping

MySQL column type Lisp Type Meaning

All integer types integer

Double double-float

Single single-float

Decimal rational

All String types string

All Binary types (array (unsigned-byte 8) (*)
)

Date integer Universal time

Datetime integer Universal time

23 Common SQL

289

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ration.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm

Timestamp integer Universal time

Time integer Number of seconds

Year integer Number of years

However, if you specify the result type as :string, this eliminates the conversion and the return value is simply the string
retrieved by MySQL. For information about specifying the result type for a column (or multiple columns) in a query, see
23.3.1.1 Querying.

Each of the five date-like types (that is, Date, Datetime, Timestamp, Time and Year) can have result type :date,
:date-string or :datetime-string with the following effects:

:date This result type means a Universal time. This is the default except for Year.

:date-string A string with the format that MySQL uses for Date columns.

:datetime-string A string with the format that MySQL uses for Datetime columns.

All the numeric types can have result type :int, :single-float or :double-float, causing the appropriate conversion.
No check is made on whether the result is actually useful.

String types can have result type :binary, which returns an array.

23.9.10 Autocommit

Common SQL sets autocommit to 0 when it opens a MySQL connection.

23.10 Using Oracle

This section describes particular issues in Common SQL with Oracle databases, apart from the LOB interface, which is
described in 23.11 Oracle LOB interface.

23.10.1 Connection specification

See 23.2.4 Connecting to Oracle for information about Oracle-specific interpretation of the connection-spec passed to
connect.

23.10.2 Setting connection parameters

Oracle database connections have prefetch values which you can control via Common SQL. Alternatively you can allow the
database default prefetch values to take effect.

You can set the default prefetch values for a connection by passing :prefetch-rows-number and :prefetch-memory

keyword arguments to connect. The default value of prefetch-rows-number is 100 and the default value of prefetch-memory
is #x100000 (meaning 1 MB of data).

You can also pass the value :default for either of these arguments. This means that Common SQL does not set the default.
This is useful if Oracle itself provides a suitable default.

23 Common SQL

290

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm

23.11 Oracle LOB interface

23.11.1 Introduction

The Common SQL Oracle LOB interface allows you to retrieve LOB locators and then perform operations on them. It is also
possible to insert new empty LOBs.

23.11.1.1 Retrieving LOB locators

This is done by normal select or query calls where the selections list names one or more columns that are of a LOB type.
The LOB types are BLOB, CLOB, NCLOB, BFILE and CFILE.

The returned value is a LOB locator: an opaque Lisp object on which the ora-lob-* APIs (that is, those functions with
names beginning with "ora-lob-") can be used. This LOB locator contains a pointer to an Oracle descriptor of type
OCILobLocator*. Note that there can be multiple LOB locator objects associated with the same LOB in the server, but a
LOB locator uniquely identifies a LOB object.

It is possible to specify that the result object should be a stream either for input or output. Then the resulting stream (which
will be of type lob-stream) can be used as a normal Lisp stream.

23.11.1.2 Operating on LOB locators

This is done using the ora-lob-* functions. Most of these functions map directly to the underlying OCILob* functions.

Note that when modifying a LOB locator, the corresponding record must be locked. See 23.11.2 Retrieving Lob Locators
for details.

23.11.1.3 Inserting empty LOBs

To add a new LOB object to the database, you must insert an empty LOB. The preferred way of doing this is to use the
Oracle SQL functions EMPTY_BLOB and EMPTY_CLOB, which can called by using the pseudo operator sql-function,
like this:

(sql:insert-records :into [mytable]
 :values
 (list "name" [sql-function 'empty_blob]))

This code inserts a record with "name" and an empty BLOB. It is also possible to make an empty LOB by calling
ora-lob-create-empty, and passing the empty LOB as a value to insert-records or update-records.

23.11.2 Retrieving Lob Locators

When the selections list of a query that is used in select, query, do-query, map-query, simple-do-query or
loop for x being each record contains a column of a LOB type, the results are LOB locator objects. For
example, if the table definition is:

create table mytable {
 name varchar(200),
 image blob
 }

Then doing:

23 Common SQL

291

(sql:select [image] :from [mytable] :flatp t)

returns a list of LOB locators.

This example lists the size of the images in the table mytable:

(dolist (pair (sql:select [name][image] :from [mytable]))
 (format t "~a has an image of size ~a~%"
 (first pair) (sql:ora-lob-get-length (second pair)))
 (sql:ora-lob-free (second pair)))

or more efficiently:

(sql:do-query ((name lob-locator)
 [sql:select [name][image] :from [mytable]])
 (format t "~a has an image of size ~a~%"
 name (sql:ora-lob-get-length lob-locator)))

Note: The lifetime of the LOB locator objects differs between the functions that return a list of objects (select and query)
and the iterative functions and macros (do-query, simple-do-query, loop and map-query). The iteration functions and
macros free the LOB locators that they retrieve before proceeding to the next iteration. select and query do not free the
LOB locators. Each LOB locator stays alive until the application makes an explicit call to ora-lob-free, or until the
database is closed by a call to disconnect.

23.11.3 Locking

When the LOB or its contents need to modified, the corresponding record must be locked (Oracle enforces this). The best
way to lock a record is to pass :for-update when calling select. See select for details. For example, writing a line in
the end of the log file of station number 573:

create table logfiles (stationid integer, logfiles clob)
 .. insert records ..

(sql:do-query ((log-stream)
 [select [log :output-stream] :from [logfiles]
 :where [= [stationid] 573] :for-update t])
 (file-position log-stream :end)
 (write-line "Add this line to the log" log-stream)
 (close log-stream) ; forces the output
)
(sql:commit)

Note that any call to commit or rollback on the same connection removes the lock. If you want to modify the LOB later,
you must lock it again. An efficient way to achieve this is to use the special token ROWID, which returns the ROWID in the
database, because this does not involve searching on the server side. For example:

(let ((lobs-list
 (sql:select [lob-field][rowid] ; get pairs of LOB
 :from [mytable] ; locators and ROWIDs
 :where [some-condition])))
 ... do something ...
 ... reach a point when we want to modify one
 ... of the LOBS above and have bound one of the
 ... pairs in the variable pair.
 (sql:select ["1"]
 :from [mytable] ; retrieve a constant
 :where
 [= [rowid] (second pair)] ; get the right record

23 Common SQL

292

 :for-update t) ; lock it
 (sql:ora-lob-write-buffer (car pair) ; modify the lob
 offset
 amount
 buffer)
 (sql:commit) ; also unlock everything
)

23.11.4 Retrieving LOB Locators as streams

To retrieve LOB locators as streams, specify the type of retrieved object as :input-stream or :output-stream in the
query. For example:

(sql:select [image :input-stream] :from [mytable] :flatp t)

returns a list of streams.

For example, to print the name of all images that start with some "magic number", that is a sequence of 4 specific bytes (#xf5
#x12 #x4e #x23):

(let ((array (make-array 4 :element-type '(unsigned-byte 8))))
 (sql:do-query ((name lob-stream)
 [sql:select [name][image :input-stream]
 :from [mytable]])
 (when (and (eq (read-sequence array lob-stream) 4)
 (eq (aref array 0) #xf5)
 (eq (aref array 0) #x12)
 (eq (aref array 0) #x4e)
 (eq (aref array 0) #x23))
 (print name))))

Closing the stream also frees the LOB object.

When using :output-stream, it is important to call force-output before trying to commit the changes, because the
stream is buffered.

23.11.5 Attaching a stream to a LOB locator

It is possible to attach a stream to a LOB locator, passing the LOB locator as a :lob-locator argument to
(make-instance 'lob-stream ...). The value of the :direction argument must be :input or :output. By
default, if the stream is closed the LOB locator is freed, unless the value of the initarg :free-lob-locator-on-close is
passed as nil.

Operations via the stream can be mixed with direct operations on the LOB. However, because of the buffering, accessing the
LOB contents will give non-obvious results, as other operations may not see something that was written to the stream because
it is still in the stream buffer, or the stream may have already read some contents before they were overwritten. Use
force-output or clear-input before accessing the LOB in other ways to avoid these problems.

It is possible to attach more than one stream to the same LOB locator, in both directions. Apart from the issue of the
buffering described above, the streams can be used independently of each other. Note that if you want to close one of the
streams and to continue to use the others or the LOB locator itself, you must pass :free-lob-locator-on-close nil
when you make the stream.

The LOB locator to which a stream is attached can be found by using the reader lob-stream-lob-locator (see
lob-stream).

23 Common SQL

293

http://www.lispworks.com/documentation/HyperSpec/Body/f_finish.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_finish.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_clear_.htm

23.11.6 Interactions with foreign calls

You can define your own foreign calls and use them on the underlying OCI descriptors. For this, you need to access the OCI
handles using ora-lob-lob-locator, and maybe ora-lob-env-handle and ora-lob-svc-ctx-handle. These
accessors return foreign pointers that can be passed to foreign functions in the usual way.

When the foreign functions deal only with the data, rather than with LOB objects, use the functions
ora-lob-read-foreign-buffer, ora-lob-write-foreign-buffer and ora-lob-get-buffer.

For example:

;;; You have a C function my_lob_processor
;;; int my_lob_processor(OCILobLocator *lob,
;;; OCISvcCtx *Context,
;;; int other_arg)

(fli:define-foreign-function my-lob-processor
 ((lob sql:p-oci-lob-locator)
 (env sql:p-oci-svc-ctx)
 (other-arg :int))
 :result-type :int)

Assuming you have the LOB locator in the variable lob, call the foreign function on it:

(my-lob-processor (sql:ora-lob-lob lob)
 (sql:ora-lob-svc-ctx-handle lob)
 36)

There are three handles in the LOB: the LOB descriptor itself, the environment and the context. The pointer types, the reader
and the corresponding C type for each handle are shown in Handles in the LOB locator below.

Handles in the LOB locator

OCI handle Reader Pointer type C type

LOB
descriptor

ora-lob-lob-locator p-oci-lob-locator
or p-oci-file

OCILobLocator*

context ora-lob-svc-ctx-handl
e

p-oci-svc-ctx OCISvcCtx*

environment ora-lob-env-handle p-oci-env OCIEnv*

The pointer type p-oci-lob-locator is used for internal LOBs (that is, BLOB, CLOB and NCLOB). The pointer type
p-oci-file is used for file LOBs (CFILE and BFILE). For functions that take both, the type p-oci-lob-or-file is
defined as the union of these two types.

23.11.7 Determining the type of a LOB

The function ora-lob-internal-lob-p returns whether it is internal (that is BLOB, CLOB or NCLOB) or not (that is
BFILE or CFILE). The function ora-lob-element-type returns the LISP element type that best corresponds to the LOB
locator. This will be one of (unsigned-byte 8) for BLOB and BFILE, or base-char or bmp-char for CLOB, NCLOB
and CFILE, depending on the charset of the LOB object.

It is possible to distinguish between CLOB and NCLOB by looking at the result of ora-lob-char-set-form. It returns 2
for NCLOB and 1 for CLOB.

23 Common SQL

294

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

23.11.8 Reading and writing from and to LOBs

One way of reading and writing is to use streams as described in the section 23.11.4 Retrieving LOB Locators as streams.
When large amounts of data are written (read) to (from) the LOB the direct interface may be useful. The direct interface is
implemented by ora-lob-read-foreign-buffer, ora-lob-read-buffer, ora-lob-write-foreign-buffer, and
ora-lob-write-buffer.

All the direct interfaces are more efficient if the buffer that is passed is static. That is always true for the
*-foreign-buffer functions, but normally not true for Lisp objects. See the documentation for make-array. See also
ora-lob-get-buffer.

The direct reading and writing methods can be used for "random" access, but they can also be used conveniently for efficient
linear access, simply by passing nil as the offset parameter.

23.11.9 The LOB functions

Most of the LOB functions take an errorp argument, which is a boolean controlling what happens if an error occurs inside an
OCI function. If errorp is true, an error is signaled. If errorp is false, the function returns an error object (of type
sql-database-error).

All the LOB functions signal an error if the lob-locator argument given is not a LOB locator object as returned by select or
query.

Many of the functions basically perform a call to the underlying OCI function. When the match is direct, this is mentioned in
the function's manual page.

23.11.9.1 Querying functions

You can test whether a LOB locator is initialized, open or temporary with ora-lob-locator-is-init,
ora-lob-is-open or ora-lob-is-temporary.

The predicate for internal LOBs is ora-lob-internal-lob-p.

ora-lob-element-type returns a Lisp element type corresponding to the LOB locator as described 23.11.7 Determining
the type of a LOB.

ora-lob-lob-locator, ora-lob-env-handle and ora-lob-svc-ctx-handle return foreign pointers to the various
handles in the LOB mentioned in 23.11.6 Interactions with foreign calls. To determine the best value for the size of a buffer
use ora-lob-get-chunk-size.

ora-lob-char-set-form and ora-lob-char-set-id query the charset of a lob-locator.

The querying functions specifically for file LOBs are ora-lob-file-exists, ora-lob-file-is-open and
ora-lob-file-get-name.

You can obtain the current length of the LOB with ora-lob-get-length.

You can test two LOB locators for whether they point to the same LOB object with ora-lob-is-equal.

23.11.9.2 LOB management functions

You can create a LOB object with ora-lob-create-empty.

You can assign a LOB to another LOB locator with ora-lob-assign.

You can free a LOB locator with ora-lob-free.

23 Common SQL

295

23.11.9.3 Modifying LOBs

All the functions mentioned in this section are applicable to internal LOBs only, except ora-lob-load-from-file.

Before modifying a LOB, the corresponding record must be locked. See the discussion in 23.11.3 Locking.

If you make several modifications to a LOB which has functional or domain indexes, it is useful to wrap several calls of
modifying functions in a pair of ora-lob-open and ora-lob-close. That means that the indexes will be updated once
(when ora-lob-close is called), which saves work. Note that after a call to ora-lob-open, ora-lob-close must be
called before any call to commit.

To append the contents of one LOB to another, use ora-lob-append.

You can copy all or part of a LOB into another LOB using ora-lob-copy.

ora-lob-load-from-file loads the data from a file LOB into an (internal) LOB.

You can erase (that is, fill with the 0 byte or with Space character) all or part of a LOB using ora-lob-erase.

You can reduce the size of a LOB using ora-lob-trim.

If you need to make multiple updates to a LOB you can optionally create a transaction using ora-lob-open and
ora-lob-close call. This may save work on the server side.

23.11.9.4 File operations

These functions are used to modify the properties of file LOBs.

Open and close the file associated with a file LOB using ora-lob-file-open and ora-lob-file-close.

You can close all the files associated with a file LOB locator that have been opened through the database connection with
ora-lob-file-close-all.

You can alter the directory and/or the file name for a file LOB locator by calling ora-lob-file-set-name.

23.11.9.5 Direct I/O

The direct I/O functions perform input or output directly on the OCI handle, without the intervening layer of a stream. If you
move large amounts of data to or from the LOB, and in particular if you pass the data to or from foreign functions, the direct
calls can be more efficient, and in some cases also more convenient to use. Note, however, that if you make many small
modifications to the data, the lob-stream interface may be more efficient.

Note also that the difference in efficiency between the direct calls and the lob-stream interface is likely to be quite small
compared to the time spent on network traffic.

If you make many modifications to a LOB, you should also consider wrapping the operations in a transaction created by a
pair of calls to ora-lob-open and ora-lob-close.

You can read data from the LOB locator into a Lisp buffer or foreign buffer using ora-lob-read-buffer and
ora-lob-read-foreign-buffer respectively.

Similarly ora-lob-write-buffer and ora-lob-write-foreign-buffer can be used to write buffer to a LOB.

You can obtain a buffer suitable for efficient I/O with foreign functions via ora-lob-get-buffer.

ora-lob-read-into-plain-file writes the contents of a LOB into a file.

ora-lob-write-from-plain-file writes the contents of a file into a LOB.

23 Common SQL

296

23.11.9.6 Temporary LOBs

You can create a temporary LOB with ora-lob-create-temporary.

You can test whether a LOB is temporary with ora-lob-is-temporary.

You can free a temporary LOB locator if necessary with ora-lob-free-temporary, though temporary LOB locators are
freed automatically when the database connection is closed by disconnect.

23.11.9.7 Control of buffering

These functions control the internal buffering by the Oracle client: ora-lob-enable-buffering,
ora-lob-disable-buffering, and ora-lob-flush-buffer. They have no interaction with any of the other functions
above.

23.11.10 Fetching the contents of the LOBs directly

Sometimes it useful to fetch the contents of a LOB directly. You can do that by specifying the type of the requested value as
:binary for binary LOBs (BLOB and BFILE) or :string for character LOBs (CLOB, NCLOB, and CFILE). When you
specify the type in this way, the fetched values are arrays of type (unsigned-byte 8) for :binary and strings for
:string. For example:

(sql:select [blob_column] :from [a_table])
=>
a list of LOB locators

(sql:select [blob_column :binary] :from [a_table])
=>
a list of arrays

23.12 Using ODBC

23.12.1 Configuring unixODBC

On Unix, configure unixODBC in these files.

For the driver:

/etc/odbcinst.ini

For the datasource:

~/.odbc.ini

/etc/odbc.ini

23.12.2 Loading unixODBC

At load time do:

(require "odbc")

23 Common SQL

297

At run time on Unix-like systems, Common SQL automatically loads the unixODBC module from the location in the variable
sql::*odbc-foreign-modules*. In LispWorks for Linux this variable initially has the value
("/usr/lib/libodbc.so"). Therefore if, for example, the run time machine unixODBC installed in /usr/local/, at
run time do:

(setq sql::*odbc-foreign-modules* '("/usr/local/lib/libodbc.so"))
(sql:connect "mydatabase" :database-type :odbc)

23.12.3 External format for ODBC strings

On non-Windows systems, the default external format for ODBC strings is :latin-1. On Microsoft Windows it is
win32:*multibyte-code-page-ef*.

23.12.4 Using non-ASCII strings on Microsoft SQL Server

When passing a SQL expression containing string literals to Microsoft SQL Server (which you can do via ODBC), if a string
literal contains characters that the server's code page cannot represent, then the string literal needs to be marked as "Native"
by prefixing it with the character 'N' before the opening quote. For example:

N'Greek'

Code pages always can always represent ASCII characters, but differ in what other characters can represent. The functions
string-needs-n-prefix and string-prefix-with-n-if-needed are provided to check if a string needs prefixing.

Other SQL backends work with all strings regardless of the N syntax, but the syntax is allowed by most of them as well (and
is standard SQL). However, SQLite and Microsoft Access (via ODBC) do not recognize the N syntax, and give an error. This
means that static SQL expressions, which are generated before knowing which SQL backend is going to be used, cannot
reliably use the N syntax. In addition, knowing exactly which strings need the N syntax requires knowledge of the code page
in the server, and hence requires the database to be opened already when string-needs-n-prefix or
string-prefix-with-n-if-needed are called.

The syntax described in 23.5 Symbolic SQL syntax generates static expressions when possible, and Lisp string values within
them are processed independently of any database to produce string literals without the N syntax. This can be overridden by
using the string pseudo-operator, which is described in 23.5.1.6 SQL string literals, and can decide dynamically whether
to use the N syntax or not. Thus you should use the string pseudo-operator in any symbolic SQL syntax that may be used
with Microsoft SQL Server and contains SQL string literals (including Lisp expressions that evaluate to strings) to ensure that
it works on Microsoft SQL Server for all strings and but is also portable.

If you want to work with Microsoft SQL Server and do not require portability to SQLite or Microsoft Access, then you can
set *use-n-syntax-for-non-ascii-strings* to t to always use the N syntax. However, the N prefix changes the type
of the string inside Microsoft SQL Server to "Unicode", which has a different collation to non-Unicode strings, so if you
need the non-Unicode collation for strings that have codes in the server's code page then this may not be the right approach.

Another approach is to use prepare-statement with a bind-variable for the string, which works on all SQL backends
without any additional code (because the string is not used as a literal in the SQL expression):

(setq *a-prepared-statement*
 (sql:prepare-statement [sql:select [name]
 :from [sometable]
 :where [= [nchar_column] [1]]]))

...
(sql:set-prepared-statement-variables *a-prepared-statement*
 (list a-non-ascii-string))
(sql:query *a-prepared-statement*)

23 Common SQL

298

http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm

The functions update-records and insert-records also do not use the values that they get as literals in SQL
expressions when modifying a Microsoft SQL Server database, and therefore do not require additional code for the values.
However, the where expression in update-records and the query expression in insert-records are used directly, so if
they contain non-ASCII strings as literals then they will need to be modified for Microsoft SQL Server.

23.13 Using SQLite

This section describes particular issues in Common SQL with SQLite databases.

23.13.1 Connecting to SQLite

See 23.2.8 Connecting to SQLite. for information about SQLite-specific connection-spec and sqlite-keywords arguments to
connect.

23.13.2 Types of retrieved fields in queries

By default, when doing queries (select, query, map-query, do-query, simple-do-query, loop with each record

and print-query) the LispWorks checks the data type of each field it reads in each row, and fetches the data accordingly
(using the C functions sqlite3_column_* like sqlite3_column_int in the SQLite3 library). Values of SQLite data
types NULL, INTEGER, REAL and TEXT are mapped to Lisp objects of type null, integer, double-float and string

respectively ("mapped" means returned from select or query, printed in print-query, or passed to your code in the
other APIs). A value of data type BLOB is mapped to an array with element type (unsigned-byte 8) containing all of the
bytes of the BLOB.

You can force the value to a specific type by specifying the type explicitly. This is done by specifying the type with the
identifier, either using the symbolic SQL syntax (see 23.5.1.1 Enclosing database identifiers) or using sql-expression.
For select and query you can also use the keyword argument :result-types.

The types that LispWorks recognizes for SQLite are the common types: :integer (alias :int), :string,
:double-float and :binary. These match the SQLite data types INTEGER, TEXT, REAL and BLOB respectively.
When these keywords are used, LispWorks asks SQLite for a value of the corresponding data type, and converts it to the
matching Lisp object type as above. Note that the value can also be nil, if the the value is null or cannot be converted to
the requested Lisp object type.

Other possible values for the type are:

:single-float LispWorks asks SQLite for a REAL, and coerces it to a single-float.

nil Use the default behavior. Useful if you use :result-types and want to force the type of some
of the fields but not all of them.

:blob Returns a handle to the raw data of a BLOB, from which you can read the data using the APIs
described in 23.13.4 Reading from blobs using a handle (sqlite-raw-blob) and modifying
blobs (sqlite-blob). This allows more flexible access to BLOB values.

:blob cannot be used with select or query.

Note that SQLite does not support any kind of date data type.

When the value that is stored in the database does not match the value that it is asked for, the SQLite library converts the
value to the required type, so you always get a value of the correct type, but not necessarily a useful value. See the
documentation for SQLite for details: https://www.sqlite.org/c3ref/column_blob.html "Result Values From a Query".

23 Common SQL

299

http://www.lispworks.com/documentation/HyperSpec/Body/a_null.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_null.htm

23.13.3 Tables containing a uniform type per column

SQLite allows the fields in each row to contain any supported type, rather than being constrained to the type specified for the
column in the table definition.

When you connect to a database, you can use the SQLite-specific keyword :uniform-type-per-column in sqlite-
keywords with value t to tell LispWorks that all of the values of a column returned by a query have the same data type.

When you do that, for fields where you do not specify the type explicitly, the LispWorks checks the type of the field in the
first result row, and then uses it for the rest of the rows.

23.13.4 Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-
blob)

When the type of a field in a query is specified as :blob, the SQLite BLOB is mapped to an object of type
sqlite-raw-blob. You can then read data from the SQLite BLOB using any the functions
copy-from-sqlite-raw-blob, replace-from-sqlite-raw-blob or sqlite-raw-blob-ref. The function
sqlite-raw-blob-length can be used to find the size of the BLOB (in bytes).

The sqlite-raw-blob is valid only within the dynamic extent of the function that is called from the Common SQL
interface. If you try to read from a sqlite-raw-blob outside this dynamic context, an error of type sql-user-error will
be signaled. You can use sqlite-raw-blob-valid-p to check if a blob is valid.

Using sqlite-raw-blob makes it more convenient to read the data when a BLOB contains elements larger than bytes, and
makes it more efficient when you retrieve large BLOBs (a few kilobytes or more) but need only a small part of the data.

SQLite allows reading and writing of BLOBs (fields with type BLOB or TEXT) directly, which you can do using the
sqlite-blob interface. The functions sqlite-open-blob and sqlite-close-blob are used to open and close a
BLOB field, or the macro with-sqlite-blob can be used to do both. Once you have opened a BLOB, you call
replace-from-sqlite-blob or replace-into-sqlite-blob to copy data to or from it. Note that the sqlite-blob
is not thread-safe, so you must do all of the operations in a "single thread" context (either all in one thread, or serialized by a
lock).

sqlite-raw-blob corresponds to the result of the C function sqlite3_column_blob (and sqlie3_column_bytes to
obtain the size). sqlite-blob corresponds to the C structure sqlite3_blob.

23.13.5 Values in Insert and Update.

When modifying a table in SQLite, either directly by using insert-records or update-records, or by executing a
prepared-statement statement with bind-variables, the values that are passed are treated as follows:

In a prepared-statement, if the variable-type is :string, then the value is converted to a string.

The value is passed to the SQLite library as a SQLite data type based on the type of the value as follows:

(signed-byte 64) INTEGER

float REAL

string TEXT

null NULL

Binary array BLOB

list See below

A binary array is an array with an integer or float element type. bmp-string and base-string are also binary arrays in

23 Common SQL

300

http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_null.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_list.htm

some contexts, but they are treated as strings in this case (text-string is not a binary array).

In addition, the value can be a list, which in treated as follows:

• If the first element of the list is a binary array, including bmp-string or base-string, then the list must be of form
(array), (array start) or (array start end) and the bytes between start and end in array are inserted as a BLOB. If
start is omitted, it defaults to 0. If end is omitted, it defaults to the length of array.

Note that start and end are denoted in elements rather than bytes, so the number of the bytes in the BLOB is
(* (- end start) bytes-per-element). Note also that, for arrays of more than one byte per element, the contents of the
BLOB will depend on the byte order of the host machine.

Apart from allowing insertion of parts of arrays, this syntax also allows you to insert the character codes in a
bmp-string and base-string as a BLOB, by passing the string as a list of one element.

• If the first element of the list is the keyword :zeroblob, then the second element is treated as a size, which must be a
positive integer smaller than 231, that is of type (integer 0 #x7fffffff). LispWorks inserts a zero blob of this size
(using the C function sqlite3_bind_zeroblob).

Any value that does not match the description above, including integers out of range and lists that do not match the patterns
described, cause an error (of type sql-user-error) to be signaled.

23.13.6 Accessing ATTACHed databases

ATTACHed databases in SQLite, that is databases that were attached using the SQLite ATTACH statement, are identified by
their schema names. You can specify the schema name in the "[...]" syntax, for example, if you attach a file called "another-
database" as follows:

(execute-command "ATTACH another-database as AttachedDB")

then you can read the contents of a table SomeTable inside "another-database" using AttachedDB as the "schema" name:

(select [*] :from [AttachedDB SomeTable])

The keyword :owner in Common SQL function specifies the schema to which the table(s) belong, for example, after the
ATTACH above, you can obtain the list of tables inside another-database by using:

(sql:list-tables :owner "AttachedDB")

and use AttachedDB as the "owner" in sql-expression:

(select [*] :from (sql-expression :owner "AttachedDB"
 :table "SomeTable"))

See https://www.sqlite.org/lang_attach.html "ATTACH DATABASE" for details about attaching in SQLite.

23 Common SQL

301

24 User Defined Streams

24.1 Introduction

A number of classes and functions are provided in the stream package that allow you to define your own input and output
streams. You can use the standard Common Lisp I/O functions on these streams, and you can add methods specialized on
your stream classes to provide specific implementations of other I/O functions. Note that some changes have been made to
the standard I/O functions to allow for this. For example, stream-element-type is now a generic function. See 33 The
COMMON-LISP Package for alterations to Common Lisp functions, and 46 The STREAM Package for more details on
the API for user defined streams.

24.2 An illustrative example of user defined streams

In this chapter an example is provided to illustrate the main features of the stream package. In this example a stream class is
defined to provide a wrapper for file-stream which uses the Unicode Line Separator instead of the usual ASCII CR/LF
combination to mark the end of lines in the file. Methods are then defined, specializing on the user defined stream class to
ensure that it handles reading from and writing to a file correctly.

24.2.1 Defining a new stream class

Streams can be capable of input or output (or both), and may deal with characters or with binary elements. The stream
package provides a number of stream classes with different capabilities from which user defined streams can inherit. In our
example the stream must be capable of input and output, and must read characters. The following code defines our stream
class appropriately:

(defclass unicode-ls-stream
 (stream:fundamental-character-input-stream
 stream:fundamental-character-output-stream)
 ((file-stream :initform nil
 :initarg :file-stream
 :accessor ls-stream-file-stream)))

The new class, unicode-ls-stream, has fundamental-character-input-stream and
fundamental-character-output-stream as its superclasses, which means it inherits the relevant default character I/O
methods. We shall be overriding some of these with more relevant and efficient implementations later.

Note that we have also provided a file-stream slot. When making an instance of unicode-ls-stream we can create an
instance of a Common Lisp file stream in this slot. This allows us to use the Common Lisp file stream functionality for
reading from and writing to a file.

24.2.2 Recognizing the stream element type

We know that the stream will read from a file using file-stream functionality and that the stream element type will be
character. The following defines a method on stream-element-type to return the correct element type.

(defmethod stream-element-type ((stream unicode-ls-stream))
 'character)

302

http://www.lispworks.com/documentation/HyperSpec/Body/t_file_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_file_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

24.2.3 Stream directionality

Streams can be defined for input only, output only, or both. In our example, the unicode-ls-stream class needs to be able
to read from a file and write to a file, and we therefore defined it to inherit from an input and an output stream class. We
could have defined disjoint classes instead, one inheriting from fundamental-character-input-stream and the other
from fundamental-character-output-stream. This would have allowed us to rely on the default methods for the
direction predicates.

However, given that we have defined one bi-directional stream class, we must define our own methods for the direction
predicates. To allow this, the Common Lisp predicates input-stream-p and output-stream-p are implemented as
generic functions.

(defmethod input-stream-p ((stream unicode-ls-stream))
 (input-stream-p (ls-stream-file-stream stream)))

(defmethod output-stream-p ((stream unicode-ls-stream))
 (output-stream-p (ls-stream-file-stream stream)))

The above code allows us to "trampoline" the correct direction predicate functionality from file-stream, using the
ls-stream-file-stream accessor we defined previously.

24.2.4 Stream input

The following method for stream-read-char reads a character from the stream. If the character read is a
#\Line-Separator, then the method returns #\Newline, otherwise the character read is returned. stream-read-char
returns :eof at the end of the file.

(defmethod stream:stream-read-char ((stream unicode-ls-stream))
 (let ((char (read-char (ls-stream-file-stream stream)
 nil :eof)))
 (if (eql char #\Line-Separator)
 #\Newline
 char)))

There is no need to define a new method for stream-read-line as the default method uses stream-read-char
repeatedly to read a line, and our implementation of stream-read-char ensures that this will work.

We also need to make sure that if a #\Newline is unread, it is unread as a #\Line-Separator. The following method for
stream-unread-char uses the Common Lisp file stream function unread-char to achieve this.

(defmethod stream:stream-unread-char ((stream unicode-ls-stream)
 char)
 (unread-char (if (eql char #\Newline) #\Line-Separator char)
 (ls-stream-file-stream stream)))

Finally, although the default methods for stream-listen and stream-clear-input would work for our stream, it is
faster to use the functions provided by file-stream, again using our accessor ls-stream-file-stream.

(defmethod stream:stream-listen ((stream unicode-ls-stream))
 (listen (ls-stream-file-stream stream)))

(defmethod stream:stream-clear-input ((stream unicode-ls-stream))
 (clear-input (ls-stream-file-stream stream)))

24 User Defined Streams

303

http://www.lispworks.com/documentation/HyperSpec/Body/t_file_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_unrd_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_file_s.htm

24.2.5 Stream output

The following method for stream-write-char uses write-char to write a character to the stream. If the character
written to unicode-ls-stream is a #\Newline, then the method writes a #\Line-Separator to the file stream.

(defmethod stream:stream-write-char ((stream unicode-ls-stream)
 char)
 (write-char (if (eql char #\Newline)
 #\Line-Separator
 char)
 (ls-stream-file-stream stream)))

The default method for stream-write-string calls stream-write-char repeatedly to write a string to the stream.
However, the following is a more efficient implementation for our stream.

(defmethod stream:stream-write-string ((stream unicode-ls-stream)
 string &optional (start 0)
 (end (length string)))
 (loop with i = start
 until (>= i end)
 do (let* ((newline (position #\Newline
 string :start i :end end))
 (this-end (or newline end)))
 (write-string string (ls-stream-file-stream stream)
 :start i :end this-end)
 (incf i this-end)
 (when newline
 (stream:stream-terpri stream)
 (incf i)))
 finally (return string)))

We do not need to define our own method for stream-terpri, as the default uses stream-write-char, and therefore
works appropriately.

To be useful, the stream-line-column and stream-start-line-p generic functions need to know the number of
characters preceding a #\Line-Separator. However, since the LispWorks file stream records line position only by
#\Newline characters, this information is not available. Hence we define the two generic functions to return nil:

(defmethod stream:stream-line-column
 ((stream unicode-ls-stream))
 nil)

(defmethod stream:stream-start-line-p
 ((stream unicode-ls-stream))
 nil)

Finally, the methods for stream-force-output, stream-finish-output and stream-clear-output are
"trampolined" from the standard force-output, finish-output and clear-output functions.

(defmethod stream:stream-force-output ((stream
 unicode-ls-stream))
 (force-output (ls-stream-file-stream stream)))

(defmethod stream:stream-finish-output ((stream
 unicode-ls-stream))
 (finish-output (ls-stream-file-stream stream)))

(defmethod stream:stream-clear-output ((stream
 unicode-ls-stream))

24 User Defined Streams

304

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_cha.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_finish.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_finish.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_finish.htm

 (clear-output (ls-stream-file-stream stream)))

24.2.6 Instantiating the stream

Now that the stream class has been defined, and all the methods relevant to it have been set up, we can create an instance of
our user defined stream to test it. The following function takes a filename and optionally a stream direction as its arguments
and makes an instance of unicode-ls-stream. It ensures that the file-stream slot of the stream contains a Common
Lisp file-stream capable of reading from or writing to a file given by the filename argument.

(defun open-unicode-ls-file (filename &key (direction :input))
 (make-instance 'unicode-ls-stream :file-stream
 (open filename
 :direction direction
 :external-format :unicode
 :element-type 'character)))

The following macro uses open-unicode-ls-stream in a similar manner to the Common Lisp macro with-open-file:

(defmacro with-open-unicode-ls-file ((var filename
 &key (direction :input))
 &body body)
 `(let ((,var (open-unicode-ls-file ,filename
 :direction ,direction)))
 (unwind-protect
 (progn ,@body)
 (close ,var))))

We now have the required functions and macros to test our user defined stream. The following code uses config.sys as a
source of input to an instance of our stream, and outputs it to the file unicode-ls.out, changing all occurrences of
#\Newline to #\Line-Separator in the process.

(with-open-unicode-ls-file (ss "C:\\unicode-ls.out"
 :direction :output)
 (write-line "-*- Encoding: Unicode; -*-" ss)
 (with-open-file (ii "C:\\config.sys") ; Don't edit this file!
 (loop with line = nil
 while (setf line (read-line ii nil nil))
 do (write-line line ss))))

After running the above code, if your load the file C:\unicode-ls.out into an editor (for example, a LispWorks editor),
you can see the line separator used instead of CR/LF. Most editors do not yet recognize the Unicode Line Separator character
yet. In some editors it appears as a blank glyph, whereas in the LispWorks editor it appears as <2028>. In LispWorks you
can use Alt+X What Cursor Position or Ctrl+X = to identify the unprintable characters.

You can also use the follow code to print out the contents of the new file line by line.

(with-open-unicode-ls-file (ss "C:\\unicode-ls.out")
 (loop while (when-let (line (read-line ss nil nil))
 (write-line line))))

24 User Defined Streams

305

http://www.lispworks.com/documentation/HyperSpec/Body/t_file_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_file_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_open.htm

25 TCP and UDP socket communication and
SSL

The interface for using sockets in LispWorks is in the "comm" module, and all the symbols are in the comm package, and
documented in the 32 The COMM Package.

To use it you need to require the module by:

(require "comm")

25.1 Running a server that accepts connections

The function start-up-server starts a new thread which:

1. Creates a socket, then:

2. Prepares it (that is, binds it to the address and port and does various other settings) and then:

3. Waits for connections to it ("accepting connections").

When a connection is made, a programmer-supplied function is called with the new socket. Typically this function create a
stream of type socket-stream with this socket, and then uses the stream for communication through the socket using
standard Common Lisp I/O functions.

You can also use the Asynchronous I/O API function accept-tcp-connections-creating-async-io-states to
accept connections (see 25.8 Asynchronous I/O).

25.2 Connecting to a server

The function open-tcp-stream connects to a server and returns a stream (of type socket-stream). The stream is then
used for communication through the socket using the standard Lisp I/O functions.

connect-to-tcp-server can also be used, especially if you want to subclass socket-stream.

The function create-async-io-state-and-connected-tcp-socket connects to a server and returns a
async-io-state object for communication through the socket (see 25.8 Asynchronous I/O).

25.3 Examples of running and connecting to a server

For examples illustrating simple write and read on a socket, see:

(example-edit-file "capi/applications/chat.lisp")
(example-edit-file "capi/applications/chat-client.lisp")

306

25.4 Specifying the target for connecting and binding a socket

In general, each socket is bound to a local socket address, and is communicating with some other socket which has its own
socket address. The local binding may be done implicitly by the system, but in many cases (in general, when it is a service) it
needs to be bound to specific socket address. When connecting to another socket, or sending using UDP socket, the socket
address of the other side is needed.

The socket address is always specified by a hostspec and service. hostspec is also referred to as "address" or "hostname" or
"host", and the service is sometimes referred to as "port". In particular, the local hostspec and local service are called local-
address and local-port.

hostspec specifies an IP address. It can be one of:

A string naming the host, for example "www.google.com".

Such a string is looked up by the system to find the actual IP address.

A string providing the IP address in standard format.

Example: "204.71.177.5" (IPv4).

Example: "2001:500:2f::f" (IPv6).

An integer specifying IPv4 address in network order.

Example: #XCC47B14B.

An ipv6-address object.

Example: The result of calling (comm:string-ip-address "2001:500:2f::f").

The functions string-ip-address and ip-address-string convert between strings that specify addresses and integers
or ipv6-address objects. If you need to find the actual address from a string giving the host name, you need to look it up
using get-host-entry. Normally you do not need to, because all the interface functions do it implicitly.

service specifies the port number to use. It can be either an integer, which explicitly specifies the port number, or a string,
which is either a sequence of decimal digits specifying the port number or a port name that is looked up to find the port
number. For example, for http connections the port number is 80. The function get-service-entry can be used to convert
between port numbers and names.

When connecting a socket (for example by open-tcp-stream), hostspec and service are required arguments. When binding
(for example start-up-server), hostspec (which is normally passed by the keyword argument local-address) can be nil,
which means use the local host and allow any connections. service (which is normally passed by the keyword argument local
-port) can be specified as 0 or nil, both values meaning that the operating system will select some appropriate port number.
You can use the announce keyword to discover which port number was used (see an example of using announce in
start-up-server).

If you have a socket-stream or a socket, you can find what socket address it is bound to by socket-stream-address or
get-socket-address, and if it is connected, you can find what address it is connected to by
socket-stream-peer-address or get-socket-peer-address.

25.5 Information about IP addresses

You can use the function get-host-entry to find the address of a domain name or the domain name of an address. It can
also used to find multiple addresses and aliases.

You can use get-socket-address, get-socket-peer-address and socket-stream-address and

25 TCP and UDP socket communication and SSL

307

socket-stream-peer-address to find the IP address of opened sockets.

You can use get-default-local-ipv6-address to find the local default IPv6 address.

You can use get-ip-default-zone-id to find the local default zone ID.

25.6 Waiting on a socket stream

The function wait-for-input-streams and wait-for-input-streams-returning-first are a convenient
interface for waiting for input from socket streams. The standard I/O functions (cl:read, cl:read-char and so on) can
also wait properly. You can also use process-wait and similar functions with cl:listen in the wait-function, but you
will need to use with-noticed-socket-stream.

25.7 Special considerations

The host machine must be configured properly to handle IPv6 for the LispWorks interface to work with IPv6.

It is likely that all new machines can use IPv6.

25.7.1 IPv6 on Windows XP

By default IPv6 addresses do not work on Microsoft Windows XP. To make it work on Windows XP, install the interface by
executing this command in a console, as an administrator user:

netsh interface ipv6 install

This should not be needed on later versions of Microsoft Windows. Search for netsh on technet.microsoft.com for more
information.

Note: LispWorks 7.0 and later versions do not support Windows XP.

25.8 Asynchronous I/O

The Asynchronous I/O API allows you to perform I/O operations that invoke a callback when they are complete, rather than
synchronously calling a function that returns a value (like cl:read-line). This allows many operations to run in a single
thread. When using this API, you have to hold all of the application's state in data structures so that the callback can
determine how to proceed.

There are two parts to the API:

• the Wait-State-Collection API controls the overall progress of I/O.

• the Async-I/O-State API deals with individual I/O channels.

25.8.1 The wait-state-collection API

A wait-state-collection is an object that controls asynchronous I/O via an event loop. Each I/O channel is associated
with a wait-state in the collection (see the 25.8.2 The Async-I/O-State API for how to add channels to a collection).

Make a wait-state-collection using make-wait-state-collection, wait for I/O to occur using
wait-for-wait-state-collection, process the I/O using call-wait-state-collection and close the collection
using close-wait-state-collection.

The function loop-processing-wait-state-collection simplifies processing I/O by repeatedly calling

25 TCP and UDP socket communication and SSL

308

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_rd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_cha.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_listen.htm
http://technet.microsoft.com
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_lin.htm

wait-for-wait-state-collection and call-wait-state-collection. It can be stopped by
wait-state-collection-stop-loop. The function create-and-run-wait-state-collection makes a
wait-state-collection and a process that runs it (using loop-processing-wait-state-collection). In many
cases, create-and-run-wait-state-collection is the only function that you need to use.

To call a function in the process associated with a wait-state-collection you can use
apply-in-wait-state-collection-process (but see also 25.8.3 Writing callbacks in Asynchronous I/O
operations).

For the wait-state-collection to actually do anything, it must have some "wait-states" associated with it. The primary
way of associating "wait-states" with a wait-state-collection is to create an async-io-state associated with it, see
25.8.2 The Async-I/O-State API below. The function accept-tcp-connections-creating-async-io-states also
creates an associated "wait-state", which itself creates an async-io-state associated with the wait-state-collection.
Note that new async-io-states can be added (and removed) dynamically to the wait-state-collection from any
process while it is working.

See:

(example-edit-file "async-io/driver")

25.8.2 The Async-I/O-State API

The Async-I/O-State API contains functions to create and close various kinds of asynchronous I/O channels and perform
input and output operations on them. Currently "I/O channel" means a socket or a socket-stream.

Each channel has an associated async-io-state object, which is used to retain information about the channel between
calls to the input and output functions. You can store your own information using the async-io-state-user-info
accessor and give the object a name for debugging purposes using the async-io-state-name accessor.

An async-io-state is created by any of these functions:

create-async-io-state

Takes a socket (an integer) or a socket-stream and allows I/O on the socket.

create-async-io-state-and-connected-tcp-socket

Takes a socket address to connect to, creates a TCP socket and connects it, and allows I/O on it.
You must not start any I/O operations on the async-io-state returned by
create-async-io-state-and-connected-tcp-socket until its callback argument has
been called.

create-async-io-state-and-connected-tcp-socket takes a callback argument that is
called when the connection has been made. You must not start any I/O operations on the
async-io-state before this callback has been called.

accept-tcp-connections-creating-async-io-states

Takes a service and creates a listening socket that accepts connection and create states which
allow I/O on the accepted connections.

create-async-io-state-and-udp-socket

Creates a UDP socket and allows I/O on it.

create-async-io-state-and-connected-udp-socket

Takes a socket address, creates a UDP socket and connect it, and allows I/O on it.

25 TCP and UDP socket communication and SSL

309

Once an async-io-state is created for an object, the object itself should not be used directly for I/O in the same direction
(read or write). The async-io-state can then be made active by one of async-io-state-read-buffer,
async-io-state-write-buffer, async-io-state-read-with-checking, async-io-state-receive-message,
async-io-state-send-message and async-io-state-send-message-to-address.

Each async-io-state is associated with a wait-state-collection when it is created. For the async-io-state to be
active, the wait-state-collection must be active, which means there must be a process calling
wait-for-wait-state-collection and call-wait-state-collection, possibly via
loop-processing-wait-state-collection.

The functions async-io-state-read-buffer and async-io-state-write-buffer create an I/O operation that reads
or writes a fixed amount of data in a buffer. The operation finishes when the callback is called, or when when an abort-
callback is called (after being set up by async-io-state-abort).

The function async-io-state-read-with-checking creates an input operation that periodically invokes a callback to
determine whether enough data has been received, by examining the internal buffer. You can call
async-io-state-discard to indicate that part of the internal buffer has been processed (for example parsed and
converted to some data structure). The operation finishes when async-io-state-finish is called inside the callback, or
when an abort-callback is called (after being set up by async-io-state-abort).

The function async-io-state-receive-message creates an input operation that receives a message (using recv or
recvfrom). The functions async-io-state-send-message and async-io-state-send-message-to-address

create an I/O operation that sends a message (using send or sendto). These three functions are intended to be used with
states created with UDP sockets.

While an input operation is ongoing, you cannot start another input operation with the same direction. While a write
operation is ongoing, whether you can start another write operation depends on the keyword argument :queue-output
which is used when the async-io-state is created. If queue-input was nil (the default for TCP), then you cannot start
another write operation while one is ongoing. If queue-output was supplied as non-nil (the default for UDP), you can start
another write operation, and the operation gets queued and actually starts after all previously queued operations have finished.

You can perform shutdown on the async-io-state by calling the function async-io-state-shutdown.

When you no longer need the async-io-state you must close it by close-async-io-state. Normally, that would
close the object of the async-io-state too. close-async-io-state can be told to leave the object alive, so you can do
further I/O with it. However, if you have read using async-io-state, it may have buffered data which you will need to
deal with by async-io-state-buffered-data-length and async-io-state-get-buffered-data (unless you can
just ignore it).

An async-io-state can have a name, to help identifying it, mainly for debugging. The default names that different
functions give help to identify the kind of object that the state has.

See:

(example-edit-file "async-io/multiplication-table")

(example-edit-file "async-io/print-connection-delay")

(example-edit-file "async-io/udp")

25.8.3 Writing callbacks in Asynchronous I/O operations

All of the Asynchronous I/O operations take a callback, which is called when the operation finished. The callbacks are called
inside the same process that processes the wait-state-collection (specifically, the process that called
call-wait-state-collection, potentially via loop-processing-wait-state-collection). That means that until

25 TCP and UDP socket communication and SSL

310

the callback returns, no further processing happens on the wait-state-collection, and hence on any of the other
async-io-states that are associated with it. Therefore callbacks need to be reasonably fast and not hang.

In general, the callbacks should be creating the next I/O operations, to ensure that that operations on each state are sequential
(see 25.8.4 Asynchronous I/O and multiprocessing). If this is a reasonably simple operation you just do it, but if the data
for the next operation make take a long time to prepare you probably want to avoid doing it in the context of the callback.
Things that may cause it to take a long time include heavy computation or access to external resources that may cause delays.

A general solution is to send the work to another process, which will do the work and on completion will do the next I/O
operation by calling the read/write async-io-state function.

Another possible solution is to perform operations that can be fast using one wait-state-collection, and perform slow
operations on (an)other wait-state-collection(s). This way a slow callback will only impede other slow callbacks. For
example you may be accepting connections on the "fast" wait-state-collection, but communicate with the accepted
connection on a slow wait-state-collection (pass :create-state nil to
accept-tcp-connections-creating-async-io-states, and in the callback use create-async-io-state with
another wait-state-collection). You may also decide to do the communication using streams and synchronous I/O
(pass :create-state nil and in the callback use (make-instance 'socket-stream ...) and send the result to
another process).

25.8.4 Asynchronous I/O and multiprocessing

Processing of the wait-state-collection is not thread-safe, and for each collection there must be only one process at
any one time calling any of these functions:

• loop-processing-wait-state-collection

• call-wait-state-collection

• wait-for-wait-state-collection

• close-wait-state-collection

wait-state-collection-stop-loop is thread-safe, and can be called on any thread at any time.

Adding and removing states to/from the collection is thread-safe with respect to the collection, which means that the creation
functions like create-async-io-state can be called in parallel with any function that access the same collection,
including themselves and the processing functions above. The same applies to functions that remove the state from the
collection (close-async-io-state), though these are not thread-safe with respect to the state (see below).

Note that the functions that create states use other resources which may have their own limitations. Most notably, local ports
can be used only once at any time with the same protocol and family, so if you try to bind to a specific local port (by passing
local-port to any of the functions or non-zero service in accept-tcp-connections-creating-async-io-states),
you have to make sure that you do not do it with a port that is currently in use. (Note that
accept-tcp-connections-creating-async-io-states may try several times).

The functions that actually do the I/O are not thread-safe with respect to the state argument, but are thread-safe with respect
to the collection that the state is associated with. That means that they can be called in parallel to any function that accesses
the collection that the state is associated with, but cannot be called in parallel to another function that tries to do I/O on the
same state and direction. Moreover, the read functions cannot be called while there is an ongoing read operation, and the
write function can be called while another write operation is ongoing only if queue-output is non-nil when creating the state.
The function close-async-io-state also cannot be called in parallel to any of the I/O functions.

Explicitly:

The reading functions async-io-state-read-buffer, async-io-state-read-with-checking and
async-io-state-receive-message must not be called on the same state in parallel to any of themselves, or in the
period between any call to any of themselves and the call to the callback in the case of

25 TCP and UDP socket communication and SSL

311

async-io-state-read-with-checking or async-io-state-receive-message, or the call to
async-io-state-finish in the case of async-io-state-read-with-checking, or abort-callback.

If queue-output was nil when the state was created (TCP default), the writing functions
async-io-state-write-buffer, async-io-state-send-message, and
async-io-state-send-message-to-address must not be called on the same state in parallel to any of themselves, or
in the period between any call to any of themselves and the call to the callback, or abort-callback. If queue-output was non-
nil when the state was created (UDP default), the writing functions can be called in parallel.

close-async-io-state must not be called on the same state in parallel to any of the reading or writing functions, or
between a call to any of them at the end of their operation (the callback, async-io-state-finish, or the abort-callback).

The reading and writing functions are mutually thread-safe, that is any of the reading functions can be called in parallel to any
of the writing functions.

The functions async-io-state-abort and async-io-state-abort-and-close are thread-safe, and be called at any
time in parallel to any function.

async-io-state-get-buffered-data is not thread-safe, and must not be called in parallel to any other function that
may modify the state.

async-io-state-finish and async-io-state-discard are not thread-safe, but can only be called inside the callback
of async-io-state-read-with-checking, which will be always in the same process. The accessors of
async-io-state are thread-safe.

In general, it is intended that you will cope with these thread-safe restrictions of I/O functions by calling them from the
callbacks of the previous I/O operation, thus guaranteeing that the previous I/O operation finished. For example, if you need
to write several buffers to a socket, you can call async-io-state-write-buffer with the first buffer, and with a callback
that calls async-io-state-write-buffer with the next buffer. A natural place to put the information where to get the
next buffer is the user-info of the async-io-state, which can be accessed using async-io-state-user-info. For
example, assume you have an async-io-state, a list of buffers to send, and also on completion you want to call a function
finished on some object:

(defun my-send-buffers (state buffers object)
 (setf (async-io-state-user-info state)
 (cons buffers object))
 (my-state-send-next-buffer state))

(defun my-state-send-next-buffer (state)
 (let ((info (async-io-state-user-info state)))
 (if-let (buffer (pop (car info)))
 (async-io-state-write-buffer
 state buffer
 #'(lambda (state buffer length)
 (declare (ignore buffer length))
 (my-state-send-next-buffer state)))
 (finished (cdr info)))))

In a real application the user-info is likely to be a more complex object.

If you make the state with queue-output t, you can simply write all the buffers in one go:

(defun my-send-buffers (state buffers object)
 (setf (async-io-state-user-info state) object)
 (loop for cons on buffers
 do
 (async-io-state-write-buffer
 state (car cons)
 :callback
 (if (cdr cons) ; if there are more buffers
 #'true ; do nothing

25 TCP and UDP socket communication and SSL

312

 #'(lambda (state buffer length)
 (declare (ignore buffer length))
 (finished
 (async-io-state-user-info state)))))))

25.9 Using SSL

The SSL interface allows you to use Secure Socket Layer (SSL) with Lisp objects of type socket-stream and
async-io-state.

The SSL interface is part of the "comm" module, so to load it you evaluate:

(require "comm")

Note: In this section we assume that the current package uses the comm package. That is, comm package symbols may not be
qualified explicitly.

25.9.1 SSL implementations

The LispWorks SSL interface is implemented using an underlying SSL implementation, which may be either OpenSSL or the
Apple Security Framework (sometimes shortened to just "Apple"). The Apple Security Framework implementation is new in
LispWorks 8.0, and is available only on macOS 10.8 or later or iOS. It is the default implementation on these platforms. All
other platforms and previous versions of LispWorks support only the OpenSSL implementation, so if you are not going to use
SSL on Apple products all you need to know is to ignore any Apple specific features.

Implementation are named :openssl for OpenSSL and :apple for the Apple Security Framework.

In general, you will usually use only one of the implementations on a particular operating system, even on the operating
systems that support both, but it is possible to use both of them at the same time (for different SSL connections). At any time,
one of the implementations is the default implementation, and any SSL connections that are created without specifying the
implementation explicitly will use this default implementation. To query and set the default implementation, you can use the
accessor ssl-default-implementation. To check if an implementation is available, you can call the function
ssl-implementation-available-p.

To make it easier to write code that can work with both implementations, as well as adding new features and simplifying
using SSL, in LispWorks 8.0 and newer you can configure SSL connections using an abstract context. See 25.9.3 SSL
abstract contexts for details.

For details of the underlying OpenSSL implementations, see the the OpenSSL documentation (often also available as man
pages on Unix). For details of the Apple Security Framework, see the Security Framework documentation on the Apple
developer site, and in particular the the Secure Transport section.

Detailed configuration of the SSL parameters can be done using the FLI, with OpenSSL or Apple Security Framework
functions.

25.9.2 Obtaining and installing the OpenSSL library

At the time of writing, OpenSSL is available as shown in OpenSSL availability:

25 TCP and UDP socket communication and SSL

313

https://www.openssl.org/docs/manmaster/
https://developer.apple.com/documentation/security?language=objc
https://developer.apple.com/documentation/security/secure_transport?language=objc

OpenSSL availability

Operating System Availability of OpenSSL

Linux Installed by default on most 32-bit and 64-bit
distributions

Windows 32-bit and 64-bit libraries are available at
www.slproweb.com/products/Win32OpenSSL.html

macOS 32-bit and 64-bit libraries are installed by default.

FreeBSD Installed by default and available via ports or pkg.

x86/x64 Solaris Installed by default

25.9.2.1 Installing the OpenSSL library on Solaris

After installing (with pkgadd) you need to put the shared libraries libcrypto.so and libssl.o on the loader path. By
default these are installed in /usr/local/ssl/lib.

To add the libraries to the loader path, either:

• add /usr/local/ssl/lib to the environment variable LD_LIBRARY_PATH, or:

• create links from /usr/lib.

25.9.2.2 How LispWorks locates the OpenSSL libraries

Since OpenSSL is not a standard on all machines yet, the location of the library or libraries varies. By default, ensure-ssl
loads libraries as shown in How LispWorks locates the OpenSSL libraries.

How LispWorks locates the OpenSSL libraries

Operating System Libraries

Linux -lssl

32-bit Windows libssl-1_1.dll
libcrypto-1_1.dll

64-bit Windows libssl-1_1-x64.dll
libcrypto-1_1-x64.dll

FreeBSD -lcrypto -lssl

Solaris -lssl

macOS -lssl

Others nil

On machines where the path is unknown or is incorrect, you must set the path by calling set-ssl-library-path, or by
passing the path as the library-path argument to ensure-ssl. The default setting for Windows matches the libraries from
the page that is mentioned in the table OpenSSL availability.

25 TCP and UDP socket communication and SSL

314

http://www.slproweb.com/products/Win32OpenSSL.html

25.9.3 SSL abstract contexts

SSL abstract contexts are objects that represent the configuration of SSL connections. They are created by using either
create-ssl-server-context or create-ssl-client-context for creating server or client SSL connections
respectively. They are then passed repeatedly to functions that create socket connections (instances of socket-stream or
async-io-state) or to functions that attach SSL to socket connections to configure the SSL, using the keyword
:ssl-ctx.

See create-ssl-server-context and create-ssl-client-context for details about configuration options and their
effects, and sections 25.9.4 Creating a stream with SSL and 25.9.5 Using Asynchronous I/O with SSL for the functions
that take the :ssl-ctx argument.

Abstract contexts where introduced in LispWorks 8.0. They are intended to simplify code that needs to run on both SSL
implementation (see 25.9.1 SSL implementations), and simplify performing commonly executed tasks.

25.9.4 Creating a stream with SSL

There are four ways to make a socket-stream with SSL processing:

• Call create-ssl-socket-stream.

• Call (make-instance 'socket-stream :ssl-ctx ...).

• Call open-tcp-stream with the :ssl-ctx keyword.

• Call attach-ssl on a socket-stream.

When using the OpenSSL implementation, these calls implicitly load the OpenSSL library and seed the Pseudo Random
Number Generator (PRNG). When using the Apple Security Framework implementation, they implictly load the Security
Framework.

For example:

(open-tcp-stream some-url 443 :ssl-ctx t)

25.9.5 Using Asynchronous I/O with SSL

There are three ways to make an async-io-state with SSL processing:

• Call create-async-io-state-and-connected-tcp-socket with the :ssl-ctx keyword.

• Call accept-tcp-connections-creating-async-io-states with the :ssl-ctx keyword.

• Call async-io-state-attach-ssl on an async-io-state.

When using the OpenSSL implementation, these calls implicitly load the OpenSSL library and seed the Pseudo Random
Number Generator (PRNG).

25.9.6 Keyword arguments for use with SSL

The keyword arguments :ssl-ctx, :ssl-side, :ctx-configure-callback, :ssl-configure-callback and
:handshake-timeout can be be passed to create and configure socket streams and async-io-states with SSL processing.
However, in LispWorks 8.0 and newer, the preferred method of configuring SSL connections is to use 25.9.3 SSL abstract
contexts with :ssl-ctx, in which case :ctx-configure-callback and :ssl-configure-callback are ignored, and
:ssl-side is redundant. The various interface calls for creating and configuring SSL streams and async-io-states accept
these keyword arguments as shown in SSL configuration keywords.

25 TCP and UDP socket communication and SSL

315

SSL configuration keywords

Keyword and
Interface call

:ssl-ctx :ssl-side :ctx-configure
-callback

:ssl-configure
-callback

:handshake-tim
eout

create-ssl-soc
ket-stream

Required Yes Yes Yes Yes

socket-stream
make-instance

Yes Yes Yes Yes Yes

open-tcp-strea
m

Yes No Yes Yes Yes

attach-ssl Yes Yes Yes Yes Yes

accept-tcp-con
nections-creat
ing-async-io-s
tates

Yes Yes Yes Yes Yes

create-async-i
o-state-and-co
nnected-tcp-so
cket

Yes No Yes Yes Yes

async-io-state
-attach-ssl

Yes Yes Yes Yes Yes

(make-instance 'socket-stream ...) and open-tcp-stream, when ssl-ctx is non-nil, call attach-ssl and pass it
all the arguments. accept-tcp-connections-creating-async-io-states and
create-async-io-state-and-connected-tcp-socket when ssl-ctx is non-nil attach the ssl similar to the way
async-io-state-attach-ssl does.

:ssl-ctx specifies that SSL should be used, and also specifies its configuration. The value of ssl-ctx can be:

A symbol Together with ssl-side, this symbol specifies which protocol to use. ssl-ctx can be one of:

• t or :default, meaning use the default. In LispWorks 8.0, that makes LispWorks select the latest version that is
supported by the library. For OpenSSL 1.1, it will always be TLS (rather than SSL), up to :tls-v1-3. In earlier
versions of OpenSSL, it will also accept :v32 if no TLS version is supported. For the Apple implementation, it specifies
using :tls-v1-2 or later. Prior to LispWorks 8.0, t or :default meant the same as :v23.

• One of :tls-v1-3, :tls-v1-2, :tls-v1-1, :tls-v1, :v23, :v3 or :v2. In the OpenSSL implementation, the
:v… keywords are mapped to the SSLv23_…, SSLv3_… and SSLv2_… methods, and the :tls-… keywords are
mapped to TLS_… methods and also specify the minimum version of TLS to use. The underlying implementation
(OpenSSL or Apple Security Framework) selects which version to use, which will be the highest that it can.

• An implementation name, which is one of :openssl or (in macOS or iOS) :apple. This forces use of the OpenSSL or
Apple Security Framework SSL implementations respectively, but otherwise is like t described above.

In OpenSSL implementation, LispWorks makes a new SSL_CTX object and uses it and frees it
when the stream or state is closed. The interface calls also make an SSL object, uses it and frees
it when the stream or state is closed. In the Apple implementation, LispWorks makes a new
ssl-context-ref object, uses it and frees it when the stream or state is closed.

A ssl-abstract-context

25 TCP and UDP socket communication and SSL

316

LispWorks creates implementation objects and configures them according to the specification in
the ssl-abstract-context. See create-ssl-server-context and
create-ssl-client-context for details.

ssl-abstract-context was introduced in LispWorks 8.0, and we recommend that you use
abstract contexts in all new code. Note that, even for the simplest case, when you can just pass t,
reusing an abstract context is more efficient in OpenSSL (because it caches the SSL_CTX). You
can use reset-ssl-abstract-context to clear the cache in a ssl-abstract-context to
free the memory used by the SSL_CTX.

Note that when a ssl-abstract-context is used, the keywords
:ctx-configure-callback and :ssl-configure-callback are ignored, and :ssl-side

is redundant.

A cons Specifies a range of acceptable versions. The car of the cons must be a symbol as described in
the symbol item above, and specifies the minimum acceptable version. The cdr must be one of
of the :tls-v1-* symbols, and specifies the maximum acceptable protocol version. For
example, to force use of TLS 1.2 use (:tls-v1-2 . :tls-v1-2).

A foreign pointer of type ssl-ctx-pointer (OpenSSL-specific)

This corresponds to the C type SSL_CTX* in the OpenSSL implementation. This is used and is
not freed when the stream is closed. The interface calls also make an SSL object, use it and free
it when the stream is closed. The foreign pointer maybe a result of a call to make-ssl-ctx, but
it can also be a result of your code, provided that it points to a valid SSL_CTX and has the type
ssl-ctx-pointer.

A foreign pointer of type ssl-pointer (OpenSSL-specific)

The referenced SSL is used and is not freed when the stream is closed. See the documentation
for ssl-pointer for details.

A foreign pointer of type ssl-context-ref (Apple-specific)

LispWorks takes ownership of the referenced SSL context and will release it when the stream is
closed. See the documentation for ssl-context-ref for details.

When you pass a ssl-ctx-pointer or a ssl-pointer foreign pointer, these must have already been set up correctly and
you are responsible for freeing them when they are no longer required.

:ssl-side specifies which side the stream is. When ssl-ctx is a ssl-abstract-context, :ssl-side is redundant, and
if used must match the side of ssl-ctx. The value ssl-side can be one of :client, :server or :both (OpenSSL only).
open-tcp-stream and create-async-io-state-and-connected-tcp-socket do not take this keyword and always
use :client. For the other calls this argument defaults to :server.

In the OpenSSL implementation, the value of ssl-side is used in three cases:

• When a new SSL_CTX object is created, it is used to select the method:

:client => …_client_method

:server => …_server_method

:both => …_method

• When ssl-ctx is of type ssl-ctx-pointer, it checks that the side of ssl-ctx and ssl-side are not conflicting. If one is
:client and the other is :server, they conflict and an error is signaled.

25 TCP and UDP socket communication and SSL

317

• When a new SSL object is created, when ssl-side is either :client or :server, LispWorks calls
ssl-set-connect-state or ssl-set-accept-state respectively.

In the Apple implementation, ssl-side is used to select the protocol side in the call to SSLCreateContext when creating a
new ssl-context-ref.

In the OpenSSL implementation, when a new SSL object is created, ssl-side is :client and handshake-timeout is greater
than 0, a handshake is performed immediately.

In the Apple implementation, a handshake is always performed immediately after attaching SSL to a socket.

If ssl-ctx is of type ssl-pointer or ssl-context-ref then ssl-side is ignored.

:ctx-configure-callback specifies an OpenSSL-specific callback, a function which takes a foreign pointer of type
ssl-ctx-pointer. This is called immediately after a new SSL_CTX is created. If the value of ssl-ctx is not a symbol, ctx-
configure-callback is ignored.

:ssl-configure-callback specifies a callback, a function which takes a foreign pointer of type ssl-pointer or
ssl-context-ref. This is called immediately after a new ssl-pointer or ssl-context-ref is created. If the value of
ssl-ctx is a ssl-pointer, ssl-context-ref or ssl-abstract-context ssl-configure-callback is ignored. ote that
abstract contexts have separate callbacks for the different implementations, and therefore it is much more convenient to use
abstract contexts in code that needs this callback and is intended to be used on more than one implementation.

When a handshake is performed immediately (in the Apple implementation or in the OpenSSL implementation when ssl-side
is :client and ssl-ctx is not a ssl-pointer), handshake-timeout specifies the time in seconds to wait for the handshake to
complete. If handshake-timeout is nil (the default) then it waits indefinitely, but the underlying implementation may have its
own timeout which will cause a failure after a while. If the handshake fails or times out, it is an error situation, and an error
is signaled as described in 25.9.8 Errors in SSL.

In typical usage, you will create few ssl-abstract-context objects (maybe only one), configure them as appropriate for
your application and the machine that it runs on, and then use one of these as ssl-ctx in all of your calls. If some connections
need special configuration, you will use ssl-configure-callback in the ssl-abstract-context to configure the SSL of this
connection. Sometimes when you open a connection as a client it may be sufficient to pass a symbol for ssl-ctx. Passing an
ssl-pointer or ssl-context-ref as ssl-ctx is for special cases.

25.9.7 Attaching SSL to an existing socket

You can attach SSL to an existing socket-stream by calling attach-ssl on the stream. The socket-stream SSL
keyword arguments are processed by attach-ssl as described in 25.9.6 Keyword arguments for use with SSL.

Detach SSL from a socket-stream and shut down the SSL with detach-ssl.

For full descriptions see attach-ssl and detach-ssl.

You can attach SSL to an existing async-io-state by calling async-io-state-attach-ssl on the state, and detach it
using async-io-state-detach-ssl.

Notes:

After an object (stream or state) has been detached, you can attach SSL to it again.

Detaching frees any automatically generated SSL objects in the same way that closing a stream or state does.

The SSL objects are attached to the socket-stream or async-io-state, rather that to the socket. Therefore if you want
to move a socket to another object then you need to attach it again.

For example, if you have attached SSL to an async-io-state and then want to change to synchronous communication,
you need to close the async-io-state by close-async-io-state with keep-alive true (effectively detach the SSL), and
then call make-instance with socket-stream with the socket plus SSL-CTX and any other necessary arguments.

25 TCP and UDP socket communication and SSL

318

To move the other way, from synchronous to asynchronous, use replace-socket-stream-socket with socket nil to
disconnect the socket from the stream (which effectively calls detach-ssl), call create-async-io-state with the
socket, and then call async-io-state-attach-ssl on the new async-io-state.

25.9.8 Errors in SSL

If there are errors inside SSL, LispWorks will signal an error of type ssl-condition, which is a subclass of
socket-error.

The condition can be one of the types ssl-closed, ssl-error, ssl-failure, ssl-handshake-timeout,
ssl-verification-failure and ssl-x509-lookup See the manual pages for details of these condition classes.

The exact meaning of signaling a SSL error depends on the context. For synchronous socket I/O (using socket-stream), it
means calling error, except when it happens inside a function that takes errorp argument (open-tcp-stream and
create-ssl-socket-stream) and errorp is nil. In the latter case, these functions return the condition object as a second
value.

For asynchronous socket I/O (using async-io-state), the condition will be part of the format arguments list that is passed
to callback in create-async-io-state-and-connected-tcp-socket or async-io-state-attach-ssl. You can
get the condition from this list by using async-io-ssl-failure-indicator-from-failure-args. In
accept-tcp-connections-creating-async-io-states, the condition will be the argument of ssl-error-callback.

25.9.9 Examples of using the socket stream SSL interface

See the example files in:

(example-edit-file "ssl/")

25.10 Socket streams with Java sockets and SSL on Android

Socket streams can now be implemented on top of Java Objects, instead of native sockets. The main purpose of this is to
allow using SSL in LispWorks for Android Runtime, because OpenSSL is not available on Android. It may also be useful
where you have a Java socket from some source and want to communicate through it using a Lisp stream.

The function switch-open-tcp-stream-with-ssl-to-java is called automatically before delivery for Android by
deliver-to-android-project. That causes open-tcp-stream, when it is called with ssl-ctx non-nil, to use Java
sockets instead of operating system sockets.

The function open-tcp-stream-using-java can be used to force using a Java socket.

You can also explicitly create a stream using Java sockets by passing a Java socket to
(make-instance 'comm:socket-stream ...) or by setting the socket in an existing stream using
(setf comm:socket-stream-socket) or replace-socket-stream-socket.

Socket streams with Java sockets are limited, mainly because cl:listen cannot be used reliably with them. Specifically,
when cl:listen returns t it is guaranteed that reading will not hang, but when cl:listen returns nil it does not mean
that there is nothing to read. They also do not have a zero timeout: the shortest timeout is 1 millisecond. That means that it is
impossible to check whether reading from the stream will hang. The best that you can do is to set the read-timeout to a short
time, and then try to read.

There is also no write timeout.

The Asynchronous I/O interface and the server side (start-up-server) do not work at the moment with Java sockets. If
you want to create a service with Java sockets, you will need to implement the listening part using Java methods. Once a
socket is accepted, you can pass it to (make-instance 'comm:socket-stream ...) to do the actual communication.

25 TCP and UDP socket communication and SSL

319

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_listen.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_listen.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_listen.htm

When using Java sockets, the SSL configuration arguments ctx-configure-callback and ssl-configure-callback, as well as the
write-timeout and ipv6, are ignored. The ssl-ctx is ignored when passed to cl:make-instance, and when passed to
open-tcp-stream or open-tcp-stream-using-java it is interpreted as a boolean, specifying whether to use SSL or
not. The only way to configure the socket, and more importantly the SSL settings, is by passing a socket factory (a Java
object of class javax.net.SocketFactory) to open-tcp-stream-using-java. The application needs to set up and
configure this factory using Java methods. By default, open-tcp-stream and open-tcp-stream-using-java use the
default factory (which they get by the method "getDefault" on javax.net.SocketFactory or
javax.net.ssl.SSLSocketFactory). Thus configuring the default factories affects what they do.

cl:listen is unreliable because the only way to check whether there is input on a Java socket is to use the Java method
"available" on the input stream of the Java socket (that is, the result of the method "getInputStream"). The
"available" method is documented as unreliable, and experimentally it is indeed unreliable on SSL sockets (on plain
sockets it seems to work properly). If you know that in the implementation that you use the method "available" on an
input stream of a socket is reliable, then you can trust cl:listen on socket streams with Java sockets.

Using Java sockets requires the LispWorks Java interface running Java Virtual Machine (JVM). On Android there is always a
running JVM. On other architectures the JVM must be initialized by init-java-interface. To load the LispWorks Java
interface, do:

(require "java-interface")

When using Java sockets and SSL, the default behavior is to verify the hostname (not done on the ordinary sockets). To do
that it relies on classes from httpclient from apache.org, so httpclient must be in the class path for using Java
sockets with SSL. httpclient is always available on Android. See open-tcp-stream-using-java for details of the
verification process.

25.10.1 Android-specific points

On Android, the OpenSSL library is not available, so if the module "comm" was loaded, deliver-to-android-project
switches to using Java sockets for SSL streams. These streams have problems with cl:listen, discussed above. In
principle, if you can find OpenSSL library for Android you can switch it back by calling
switch-open-tcp-stream-with-ssl-to-java with nil, and use SSL in the usual way. You need to use
set-ssl-library-path to tell the system where to find the library.

Android does not allow doing socket operations on the GUI threads (since Honeycomb SDK), and doing such operations
would give a java-exception error with exception NetworkOnMainThreadException. That applies to
socket-stream where the socket is a Java socket. However, it is always a bad idea to do socket operations on the GUI
thread, so you should not do socket operations in the GUI thread with ordinary sockets either.

25.11 Advanced OpenSSL-specific issues

This section describes advanced issue that related to using OpenSSL. Read the previous sections before using anything
descibed here.

25.11.1 OpenSSL interface

The configuration interface contains mostly FLI function definitions that map directly to OpenSSL calls. See below for a list
of those provided.

There are also some functions to make common cases simpler. These are read-dhparams, pem-read,
set-ssl-ctx-options, set-ssl-ctx-password-callback, and set-ssl-ctx-dh.

25 TCP and UDP socket communication and SSL

320

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_listen.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_listen.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_listen.htm

25.11.1.1 OpenSSL constants

The Lisp constants SSL_FILETYPE_ASN1 and SSL_FILETYPE_PEM representing file types are provided.

25.11.1.2 Naming conventions for direct OpenSSL calls

This section describes the mapping between OpenSSL function names and the corresponding Lisp names.

25.11.1.3 Mapping C names to Lisp names

For functions that map directly to OpenSSL calls, the convention is to create the LISP name from the C name by replacing
underscores by hyphens.

25.11.1.4 Mapping Lisp names to C names

To find the C name from the LISP function name:

1. the hyphens need to be replaced by underscores, and:

2. the initial SSL or SSL_CTX has to be in uppercase, and:

3. the rest has to be lowercase, except that:

4. the following phrases are cased specially, like this: "RSAPrivateKey", "DSH ", "ASN1", "CA", "PrivateKey".

25.11.2 Direct calls to OpenSSL

The following functions map directly to the OpenSSL functions. Check the OpenSSL documentation for details.

Where an OpenSSL function takes an SSL* or SSL_CTX*, the Lisp function's argument must be a foreign pointer of type
ssl-pointer, ssl-ctx-pointer or ssl-cipher-pointer. Where an OpenSSL function takes a char* or int, the
Lisp function's argument must be a string or integer. Where an OpenSSL function takes other kinds of pointers, the Lisp
function's argument must be a foreign pointer. The return values are integers or foreign pointers unless stated otherwise.

If an error occurs in one of these functions, an error code is returned. They do not signal any Common Lisp conditions and so
you should check the return value carefully.

Direct calls to OpenSSL

Lisp function Return values

ssl-add-client-ca

ssl-cipher-get-bits First value is number of bits the cipher actually uses.
Second value is number of bits the algorithm of the
cipher can use (which may be higher).

ssl-cipher-get-name string.
e.g. "DHE-RSA-AES256-SHA"

ssl-cipher-get-version string.
e.g. "TLSv1/SSLv3"

ssl-clear-num-renegotiations

ssl-ctrl

25 TCP and UDP socket communication and SSL

321

ssl-ctx-add-client-ca

ssl-ctx-add-extra-chain-cert

ssl-ctx-ctrl

ssl-ctx-get-max-cert-list

ssl-ctx-get-mode

ssl-ctx-get-options

ssl-ctx-get-read-ahead

ssl-ctx-get-verify-mode integer

ssl-ctx-load-verify-locations

ssl-ctx-need-tmp-rsa

ssl-ctx-sess-set-cache-size

ssl-ctx-sess-get-cache-size

ssl-ctx-sess-set-cache-mode

ssl-ctx-sess-get-cache-mode

ssl-ctx-set-client-ca-list

ssl-ctx-set-max-cert-list

ssl-ctx-set-mode

ssl-ctx-set-options

ssl-ctx-set-read-ahead

ssl-ctx-set-tmp-rsa

ssl-ctx-set-tmp-dh

ssl-ctx-use-certificate-chain-file

ssl-ctx-use-certificate-file

ssl-ctx-use-privatekey-file

ssl-ctx-use-rsaprivatekey-file

ssl-get-current-cipher ssl-cipher-pointer
Can be a null pointer.

ssl-get-max-cert-list

ssl-get-mode

ssl-get-options

ssl-get-verify-mode integer

ssl-get-version string
"TLSv1", "SSLv2" or "SSLv3"

ssl-load-client-ca-file

ssl-need-tmp-rsa

ssl-num-renegotiations

ssl-session-reused

ssl-set-accept-state None

ssl-set-client-ca-list

ssl-set-connect-state None

ssl-set-max-cert-list

25 TCP and UDP socket communication and SSL

322

ssl-set-mode

ssl-set-options

ssl-set-tmp-rsa

ssl-set-tmp-dh

ssl-total-renegotiations

ssl-use-certificate-file

ssl-use-rsaprivatekey-file

ssl-use-privatekey-file

If you need OpenSSL functionality that is not provided here, you can define your own foreign functions via the LispWorks
Foreign Language Interface.

If you do this, an important point to note is that on Microsoft Windows, the :calling-convention must be :cdecl (it
defaults to :stdcall). If using OpenSSL suddenly causes mysterious crashes, the calling-convention in your foreign
function definitions is the first thing to check.

25.11.3 Using SSL objects directly

The C objects SSL and SSL_CTX are represented in LispWorks by foreign pointers with type ssl-pointer and
ssl-ctx-pointer, which correspond to the C types SSL* and SSL_CTX*. These foreign types should be used for any
foreign function that takes or returns these C types, and must be used when passing a foreign pointer as the value of the
:ssl-ctx argument.

Making SSL objects is a way of getting access to them to perform configuration, but, especially in the case of the SSL_CTX,
it is a useful way to avoid repeated calls to the configuration routines which may be time consuming. For example, if we have
defined a function configure-a-ctx, and we want to read once every 60 seconds from some URL, we can write:

(loop (with-open-stream
 (str (comm:open-tcp-stream some-url 443 :ssl-ctx t
 :ctx-configure-callback 'configure-a-ctx))
 (read-something str))
 (sleep 60))

This will cause configure-a-ctx to be called each time. If it is expensive, we can call it only once by changing the code
to:

(let ((ctx (comm:make-ssl-ctx :ssl-side :client)))
 (configure-a-ctx ctx)
 (loop (with-open-stream
 (str (comm:open-tcp-stream some-url 443 :ssl-ctx ctx))
 (read-something str))
 (sleep 60))
 (comm:destroy-ssl-ctx ctx))

The SSL objects could be made either by make-ssl-ctx or ssl-new or by user code that calls the C functions
SSL_CTX_new and SSL_new. destroy-ssl-ctx frees the SSL_CTX object. To free an SSL object you would call
destroy-ssl. See the manual entries for full descriptions of these functions.

Alternatively, the SSL objects can be obtained from a socket-stream by calling socket-stream-ssl or
socket-stream-ctx and from an async-io-state by calling async-io-state-ssl or async-io-state-ctx. You
can also find the ssl-side value that was passed to the interface call that created the SSL objects by calling
socket-stream-ssl-side or async-io-state-ssl-side.

25 TCP and UDP socket communication and SSL

323

25.11.4 Initialization

All the functions that make a SSL_CTX first call ensure-ssl, so normally you do not need to initialize the library. If your
code makes a SSL_CTX itself (that is, not by calling any of the LispWorks interface functions), it needs to initialize the
library first. Normally that should be done by an explicit call to ensure-ssl, which loads the SSL library and calls
SSL_library_init and SSL_load_error_strings, and also does some LispWorks specific initializations. If your code must do
the initialization, ensure-ssl should still be called with the argument :already-done t, which tells it that the library is
already loaded and initialized.

25 TCP and UDP socket communication and SSL

324

26 Internationalization: characters, strings
and encodings

26.1 Introduction

LispWorks uses Unicode internally in its representation of character objects. All Unicode characters can be represented in
strings, though 8-bit and 16-bit strings are also provided for efficiency when characters beyond the Latin-1 range (up to code
#xff) or the BMP (Basic Multilingual Plane, up to code #xffff) respectively are not needed.

Character and string data can be input and output in various encodings (external formats).

26.2 Unicode support

Character implementation in LispWorks covers the full range of the Unicode standard.

cl:char-code-limit is #x110000, which covers exactly the Unicode range. The surrogate code points (codes #xd800 to
#xdfff) are illegal as character codes.

cl:code-char accepts integers from 0 below cl:char-code-limit. Other values cause an error. For codes in the
surrogate range it returns nil. Reading characters from streams and converting characters from foreign strings or vectors of
integers can generate characters in all the range (depending on the external-format used), and can never generate character
objects corresponding to surrogate code points.

text-string and simple-text-string take 32 bits per character and can store the full range of Unicode characters.

simple-char is now a synonym for cl:character, and is deprecated.

16-bit characters and 16-bit strings are implemented by types bmp-char and bmp-string and simple-bmp-string (BMP
is Basic Multilingual Plane, the first plane of Unicode, 0 - #xffff). You may want to use bmp-string to minimize memory
usage if you have an application with many 16-bit strings. That will work provided all the characters you ever use have codes
less than #x10000. If all of the codes are below 256, you can use base-string instead.

Note: Character bits and font attributes are not supported. To deal with bits, use gesture-spec objects (see
make-gesture-spec and coerce-to-gesture-spec).

26.3 Character and String types

26.3.1 Character types

LispWorks supports all the characters in the Unicode range [0, #x10ffff], excluding the surrogate range
[#xd800, #xdfff]. Note that character objects corresponding to surrogate code points may be produced by some APIs in
LispWorks, but not by the interfaces that you should normally use to generate characters and strings in Common Lisp (that is
cl:code-char, reading from a stream, converting from a foreign string or vector of integers, loading and storing from or to
strings).

The following subtypes of character are defined:

325

http://www.lispworks.com/documentation/HyperSpec/Body/v_char_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_code_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_char_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_code_c.htm

base-char Characters with cl:char-code less than base-char-code-limit (256).

bmp-char Characters with cl:char-code less than #x10000 (BMP stands for Basic Multilingual Plane in
Unicode).

character All characters.

26.3.2 Compatibility notes

In LispWorks 6.1 and earlier versions, characters with codes up to #x10000 are supported, and surrogate code points are
allowed.

bmp-char was new in LispWorks 7.0, and matches the range of characters in LispWorks 6.1 and earlier versions, except that
surrogate code points are no longer valid.

In LispWorks 6.1 and earlier versions there is simple-char which is now a synonym for cl:character. Using
cl:character is preferable and portable.

In LispWorks 6.1 and earlier versions character bits attributes are supported, and also some characters represent keyboard
gestures. These are no longer supported.

26.3.3 Character Syntax

All simple characters have names that consist of U+ followed by the code of the character in hexadecimal, for example
#\U+764F is (code-char #x764F).

The hexadecimal number must be 4-6 characters, for example #\U+a0 is illegal. Use #\U+00a0 instead.

Additionally, Latin-1 characters have names derived from the ISO10646 name, for example:

(char-name (code-char 190))
=>
"Vulgar-Fraction-Three-Quarters"

Names are also provided for space characters:

(name-char "Ideographic-Space")
=>
#\Ideographic-Space

Note that surrogate characters, that is the inclusive range [#xd800, #xdfff] are not acceptable, and trying to read such a
character, for example #\U+d835, produces an error.

26.3.4 Compatibility notes

In LispWorks 6.1 and earlier versions you can specify bits in character names. This is illegal in LispWorks 7.0 and later.

In LispWorks 6.1 and earlier versions character codes are limited to less than #x10000, and surrogate code points are
allowed.

26.3.5 String types

String types are supplied which are capable of holding each of the character types mentioned above. The following string
types are defined:

base-string holds any base-char.

26 Internationalization: characters, strings and encodings

326

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_char_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_char_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

bmp-string holds any bmp-char.

text-string holds any cl:character (see 26.3.1 Character types).

Compatibility note: bmp-string was new in 7.0. In LispWorks 6.1 and earlier versions there is augmented-string, this
is now a synonym for text-string and is deprecated.

In LispWorks 6.1 and earlier versions, text-string could hold characters with codes less than #x10000.

The types above include non-simple strings - those which are displaced, adjustable or with a fill-pointer.

The Common Lisp type string itself is dependent on the value of *default-character-element-type* according to
the rules for string construction described in 26.6 String Construction. For example:

CL-USER 1 > (set-default-character-element-type 'base-char)
BASE-CHAR

CL-USER 2 > (coerce (list #\Ideographic-Space) 'string)

Error: #\Ideographic-Space is not of type BASE-CHAR.
 1 (abort) Return to level 0.
 2 Return to top loop level 0.

Type :b for backtrace or :c <option number> to proceed.
Type :bug-form "<subject>" for a bug report template or :? for other options.

CL-USER 3 : 1 > :a

CL-USER 4 > (set-default-character-element-type 'character)
CHARACTER

CL-USER 5 > (coerce (list #\Ideographic-Space) 'string)
" "

The following types are subtypes of cl:simple-string. Note that in the names of the string types, 'simple' refers to the
string object and does not mean that the string's elements are of type simple-char.

simple-base-string holds any base-char.

simple-bmp-string holds any bmp-char.

simple-text-string holds any cl:character.

The Common Lisp type simple-string itself is dependent on the value of *default-character-element-type*
according to the rules for string construction described in 26.6 String Construction.

26.3.5.1 String types at run time

The type string (and hence simple-string) is defined by ANSI Common Lisp to be a union of all the character array
types. This makes a call like:

(coerce s 'simple-string)

ambiguous because it needs to select a concrete type (such as simple-base-string or simple-text-string).

When LispWorks is running with *default-character-element-type* set to base-char, it expects that you will want
strings with element type base-char, so functions like coerce treat references to simple-string as if they were
(simple-array base-char (*)).

26 Internationalization: characters, strings and encodings

327

http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_st.htm

If you call set-default-character-element-type with a larger character type, then simple-string is treated as an
array of that character type.

In other functions such as typep and subtypep, the types string and simple-string always represent a union of all the
character array types as specified by ANSI Common Lisp.

26.3.5.2 String types at compile time

The compiler always does type inferencing for simple-string as if *default-character-element-type* was set to
character.

For example, when you declare something to be of type simple-string, the compiler will never treat it as
simple-base-string. Therefore calls like:

(schar (the simple-string x) 0)

will work whether x is a simple-base-string, simple-bmp-string or simple-text-string.

26.4 Characters with case

Some characters can be described as being uppercase or lowercase and there are functions that operate on strings and
characters to detect the case, convert between the cases and compare while igoring the case.

26.4.1 How Common Lisp functions handle characters with case

The Common Lisp functions in LispWorks handle case in characters based on the foldings as defined in Unicode 15.0.0 (the
simple folding), provided they can be made to obey the ANSI Common Lisp standard's requirement that cased characters are
always in one-to-one pairs of uppercase and lowercase characters. The Unicode simple folding largely matches this
requirement, except for 30 characters. For these 30 characters, the specified folding target is a lowercase character that is
paired with a more useful uppercase character. For example, the Kelvin symbol (code #x212a) is supposed to fold to
lowercase 'k', which is obviously paired with uppercase 'K' in Common Lisp. LispWorks ignores these foldings in the
Common Lisp functions.

For case-insensitive comparison functions, characters are folded according to the Unicode specification, which means that
most characters are downcased, but some are upcased. Note that, prior to LispWorks 8.1, characters were always upcased for
case-insensitive comparison functions. That does not change the resuls of equality functions, but it does change the results of
ordering functions (such as string-lessp and char-greaterp).

There are two lowercase characters of type base-char (code 223 "small sharp s" and code 255 "small y with diaeresis") that
have corresponding uppercase characters that are not of type base-char (codes #x1e9e and #x178). This means that
upcasing may introduce non base-char characters even if coming from only base-char characters. Most significantly, if
the functions nstring-upcase and nstring-capitalize are given a base-string and need to upcase either of these
characters, they cannot do it and will signal an error. The non-destructive functions string-upcase and
string-capitalize create a text-string in this case. This may cause unexpected errors if the result is assumed to be a
base-string, for example is written to a stream with element type base-char.

LispWorks also has functions that follow the full Unicode simple folding specification for string or character comparison and
predicates (but not case modifiying). See 26.4.2 Functions to handle characters with case using Unicode rules for more
details.

26 Internationalization: characters, strings and encodings

328

http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_typep.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_subtpp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stg_up.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stg_up.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stg_up.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stg_up.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

26.4.2 Functions to handle characters with case using Unicode rules

This section lists functions which compare characters and strings similarly to cl:char-equal, cl:string-greaterp and
so on, but which use Unicode's simple case folding rules.

There are also predicates for properties of characters in Unicode's "general category", corresponding to cl:alpha-char-p,
cl:both-case-p and so on.

26.4.2.1 Unicode case insensitive character comparison

The functions unicode-char-equal, unicode-char-not-equal, unicode-char-lessp,
unicode-char-not-lessp, unicode-char-greaterp and unicode-char-not-greaterp compare characters
similarly to cl:char-equal etc, but using Unicode's simple case folding rules.

26.4.2.2 Unicode case insensitive string comparison

The functions unicode-string-equal, unicode-string-not-equal, unicode-string-lessp,
unicode-string-not-lessp, unicode-string-greaterp and unicode-string-not-greaterp compare strings
similarly to cl:string-equal etc, but using Unicode's simple case folding rules.

26.4.2.3 Unicode character predicates

The predicates unicode-alphanumericp, unicode-alpha-char-p, unicode-lower-case-p,
unicode-upper-case-p and unicode-both-case-p test for properties of a character in Unicode's "general category".
Note that unicode-lower-case-p, unicode-upper-case-p and unicode-both-case-p differ from the
corresponding Common Lisp functions, which only return true for characters with one-to-one pairs of uppercase and
lowercase.

26.5 String accessors

schar works on any simple string object. However, for efficient string access when a simple string type is known, the
following specialized accessors are provided:

sbchar for simple-base-string.

stchar for simple-text-string.

For simple-bmp-string there is no explicit accessor, but you can get the optimized access by declaring it as
simple-bmp-string, and do the access using cl:schar.

You can also use declarations to optimize the access to simple-base-string and simple-text-string. In the case of
simple-base-string, that means using only Common Lisp symbols, so it is fully portable.

26.6 String Construction

LispWorks constructs strings of a suitable type where sufficient information is available. Failing that, strings are constructed
of type according to the value of *default-character-element-type*.

26.6.1 Default string construction

If the value of *default-character-element-type* is base-char then:

(make-string 3)

26 Internationalization: characters, strings and encodings

329

http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_alpha_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_upper_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_char_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_char_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

returns a simple-base-string and:

(coerce sequence 'simple-string)

attempts to construct a simple-base-string. This will signal an error if any element of sequence is not a base-char.

If the value of *default-character-element-type* is cl:character then:

(make-string 3)

returns a simple-text-string and:

(coerce sequence 'simple-string)

attempts to construct a simple-text-string. This will signal an error if any element of sequence is not a
cl:character.

Other string constructors also take their default from *default-character-element-type*. For instance,
with-output-to-string and make-string-output-stream will construct a stream with element type determined by
this variable and generate a string of the same element type.

Also, the string reader will always construct a string of type determined by *default-character-element-type*,
unless it sees a character of a larger type, in which case a suitable string is constructed. For example:

CL-USER 1 > (set-default-character-element-type 'character)
CHARACTER

CL-USER 2 > (type-of "ABC")
SIMPLE-TEXT-STRING

Compatibility note: In LispWorks 6.0 and earlier versions, the string reader would not always obey
default-character-element-type, due to a bug.

26.6.2 String construction with known type

The parameter *default-character-element-type* merely provides the default behavior. If enough information is
supplied, then a string of suitable type is constructed. For instance, the form:

(make-string 3 :initial-element #\Ideographic-Space)

constructs a string of a type that can hold its elements, regardless of the value of *default-character-element-type*.

Likewise, format nil, princ-to-string, prin1-to-string and write-to-string will return a string whose
element type can hold all characters that are written.

Functions that have a sequence type specifier as an argument, such as concatenate, use it as described in 26.3.5 String
types.

26.6.3 Controlling string construction

The initial value of *default-character-element-type* is base-char, to avoid programs that only require 8-bit
strings needlessly creating larger string objects. If your application uses Unicode characters beyond the Latin-1 range
(characters of type extended-char) then you should consider which of the following two approaches to use:

26 Internationalization: characters, strings and encodings

330

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_extend.htm

• Ensure that all strings which may hold characters of type extended-char are constructed explicitly with the
appropriate type. This is the conservative approach, allowing you to avoid allocation of 16-bit strings where these are not
required. Note that you can use the specialized accessors such as stchar for strings of type simple-text-string.

• Change the default so that by default 16-bit strings are allocated. Do this by:

(set-default-character-element-type 'cl:character)

Bear in mind that this is a global setting which affects default string construction for the entire system. It could be called
from a user interface, depending on whether the user needs to handle characters of type extended-char.

Note: Do not attempt to bind or set directly the variable *default-character-element-type*. Instead, call
set-default-character-element-type.

26.6.4 String construction on Windows systems

When LispWorks for Windows starts up on a OS with a non-Latin-1 code page, it calls:

(set-default-character-element-type 'cl:character)

so that by default, newly constructed strings can contain the data likely to be returned from the OS or user input.

If you know your string only needs to contain 8-bit data, then you can create it explicitly with element type base-char.

Conversely if you know that a string may need to contain 16-bit data even on a Latin-1 code page system, then you should
create it explicitly with element type bmp-char (or cl:character if 32-bit data is needed).

26.7 External Formats to translate Lisp characters from/to external
encodings

External formats are two-way translations from Lisp's internal encoding to an external encoding. They can be used in file I/O,
and in passing and receiving string data in foreign function calls.

An external format is named in LispWorks by an external format specification (ef-spec). An ef-spec is a symbol naming the
external format, or a list with such a name as its first element followed by parameter/value pairs.

26.7.1 External format names

LispWorks has a number of predefined external formats:

win32:code-page The Windows code page with identifier given by the :id parameter. Implemented only on
Windows.

:latin-1 ISO8859-1.

:latin-1-terminal As Latin-1, except that if a non-Latin-1 character is output, it is written as <xxxx> where xxxx
is the hexadecimal character code and does not signal error.

:latin-1-safe As Latin-1, except that if a non-Latin-1 character is output, it is written as ? and does not signal
error.

:macos-roman The Mac OS Roman encoding.

:ascii ASCII.

26 Internationalization: characters, strings and encodings

331

http://www.lispworks.com/documentation/HyperSpec/Body/t_extend.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_extend.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

:us-ascii A synonym for :ascii.

:ascii-terminal As ASCII, except that if a non-ASCII character is output, it is written as <xxxx> where xxxx is
the hexadecimal character code and does not signal error.

:unicode :utf-16 with default native byte order. See 26.7.2 16-bit External formats guide for details
and variants.

Compatibility note: In LispWorks 6.1 and earlier versions, :unicode encodes 16-bit characters
reading.

:utf-8 The UTF-8 encoding of Unicode.

:utf-16 The UTF-16 encoding of Unicode with big-endian byte order. See 26.7.2 16-bit External
formats guide for details and variants.

:utf-32 The UTF-32 encoding of Unicode with big-endian byte order.

Note: There is a :utf-32 external format corresponding to each of the :utf-16 variants.

:bmp Reads and writes 16-bit characters with native byte order. See 26.7.2 16-bit External formats
guide for details and variants.

:jis JIS. The encoding data is read from a file Uni2JIS and is pre-built into LispWorks.

Note: Uni2JIS is provided by way of documentation in the directory lib/8-1-0-0/etc/. It is
also used at run time by the function cl:char-name.

:euc-jp EUC-JP. The encoding data is read from a file Uni2JIS and is pre-built into LispWorks.

:sjis Shift JIS.

:windows-cp936 Windows code page 936. The encoding data is read from a file windows-936-2000.ucm and is
pre-built into LispWorks.

Note: windows-936-2000.ucm is provided by way of documentation in the directory
lib/8-1-0-0/etc/. It is not read at run time.

:gbk A synonym for :windows-cp936.

:gb18030 GB18030-2022 character encoding.

:koi8-r The KOI8-R (RFC 1489) encoding.

26.7.2 16-bit External formats guide

LispWorks has several external formats that generate 16-bit encodings as documented below.

26.7.2.1 Unicode

The :unicode format maps to :utf-16 with the native endianness (by default). Note that :unicode differs from :utf-16

by the default byte order that it uses: :utf-16 defaults to big-endian (matching the Unicode standard), while :unicode
defaults to the native byte order.

Compatibility note: In LispWorks 6.1 and earlier versions the external format :unicode is actually "raw UCS-2", that is
reading and writing only 16-bit characters. That would interpret surrogate code points (#xd800 to #xdfff) differently if they
are actual characters, but in LispWorks 7.0 and later :utf-16 (and hence the :unicode) interprets them as encoding the

26 Internationalization: characters, strings and encodings

332

http://www.lispworks.com/documentation/HyperSpec/Body/f_char_n.htm

supplementary characters (codes #x10000 to #x10ffff). The latter behavior is probably what you need, so in most cases
there is no need to replace usage of :unicode. There is no external format that interprets surrogate code points as characters
in LispWorks 7.0 and later, but you can use any of the :bmp formats with :use-replacement t to read 16-bit characters
without giving an error, although this does not exactly match the input, because surrogate code points are translated by the
replacement character. The only format that can read anything without any loss is :latin-1.

26.7.2.2 UTF-16

There are several UTF-16 external formats. There are more than one because UTF-16 is actually two different encodings:
UTF-16 big-endian and UTF-16 little-endian.

:utf-16-native and :utf-16-reversed are the actual implementation formats. They implement UTF-16 with the
native byte order (:utf-16-native) or the reversed byte order (:utf-16-reversed).

:utf-16be and :utf-16le implement the big-endian (:utf-16be) and little-endian (:utf-16le) UTF-16. The system
maps these formats to :utf-16-native or :utf-16-reversed as appropriate, depending on the byte order of the
computer.

:utf-16 implements the UTF-16 standard, defaulting to UTF-16BE unless there is a BOM (Byte Order Mark).

In general, you will need to decide which of these to use depending on the circumstances.

26.7.2.3 BMP

BMP stands for Basic Multilingual Plane in Unicode and there are a few BMP external formats, which read and write only 16
-bit characters (characters in the range 0 to #xffff, excluding the surrogate range #xd800 to #xdfff).

:bmp-native and :bmp-reversed are the actual implementation formats. They implement reading 16-bit characters with
the native byte order (:bmp-native) or the reversed byte order (:bmp-reversed). These formats never read
supplementary characters. When they encounter a surrogate code point, they either signal an error or replace it by the
replacement character, depending on the parameter :use-replacement.

:bmp implements 16-bit character reading and writing, defaulting to the native one.

Notes: In LispWorks 6.1 and earlier versions, the :unicode external format is similar to :bmp now, but handles surrogate
code points as if they represent characters. In LispWorks 7.0 and later, :unicode maps to :utf-16, and there is no external
format that reads surrogate code points as characters.

26.7.3 External Formats and File Streams

The :external-format argument of open and related functions should be an ef-spec, where the name can be :default.
The symbol :default is the default value.

If you know the format of the data when doing file I/O, you should definitely specify external-format explicitly, in the ef-spec
syntax described in this section.

26.7.3.1 Complete external format ef-specs

An ef-spec is "complete" if and only if the name is not :default and the parameters include :eol-style.

All external formats have an :eol-style parameter. If eol-style is not explicit in an ef-spec a default is used. The allowed
values are:

:lf This is the default on non-Windows systems, meaning that lines are terminated by Linefeed.

26 Internationalization: characters, strings and encodings

333

:crlf This is the default on Windows, meaning that lines are terminated by Carriage-Return followed
by Linefeed.

:cr Lines are terminated by Carriage-Return.

26.7.3.2 Using complete external formats

If open or with-open-file gets a complete :external-format argument then, it is used as is. For example, this form
opens an ASCII linefeed-terminated stream:

(with-open-file (ss "C:/temp/ascii-lf"
 :direction :output
 :external-format
 '(:ascii :eol-style :lf))
 (stream-external-format ss))
=>
(:ASCII :EOL-STYLE :LF)

If you know the encoding of a file you are opening, then you should pass the appropriate :external-format argument.

26.7.3.3 Guessing the external format

If open or with-open-file gets a non-complete :external-format argument ef-spec then the system decides which
external format to use by calling the function guess-external-format.

The default behavior of guess-external-format is as follows:

1. When ef-spec's name is :default, this finds a match based on the filename; or (if that fails), looks in the Emacs-style (-
*-) attribute line for an option called ENCODING or EXTERNAL-FORMAT or CODING; or (if that fails), chooses
from amongst likely encodings by analysing the bytes near the start of the file, or (if that fails) uses a default encoding.
Otherwise ef-spec's name is assumed to name an encoding and this encoding is used.

2. When ef-spec does not include the :eol-style parameter, it then also analyzes the start of the file for byte patterns
indicating the end-of-line style, and uses a default end-of-line style if no such pattern is found.

The file in this example was written by a Windows program which writes the Byte Order Mark at the start of the file,
indicating that it is Unicode encoded. The routine in step 1 above detects this:

(set-default-character-element-type 'character)
=>
CHARACTER

(with-open-file (ss "C:/temp/unicode-notepad.txt")
 (stream-external-format ss))
=>
(:UNICODE :LITTLE-ENDIAN T :EOL-STYLE :CRLF)

The behavior of guess-external-format is configurable via the variables *file-encoding-detection-algorithm*
and *file-eol-style-detection-algorithm*. See the manual pages for details.

26.7.3.4 Example of using UTF-8 by default

To change the default for all file access via open, compile-file and so on, you can modify the value of
file-encoding-detection-algorithm.

For example given the following definition:

26 Internationalization: characters, strings and encodings

334

http://www.lispworks.com/documentation/HyperSpec/Body/m_w_open.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_open.htm

(defun utf-8-file-encoding (pathname ef-spec buffer length)
 (declare (ignore pathname buffer length))
 (system:merge-ef-specs ef-spec :utf-8))

then this makes it use UTF-8 as a fallback:

(setq system:*file-encoding-detection-algorithm*
 (substitute 'utf-8-file-encoding
 'system:locale-file-encoding
 system:*file-encoding-detection-algorithm*))

and this forces it to always use UTF-8:

(setq system:*file-encoding-detection-algorithm*
 '(utf-8-file-encoding))

26.7.3.5 Example of using UTF-8 if possible

The example in 26.7.3.4 Example of using UTF-8 by default will use UTF-8 even if the file contains bytes that cannot be in
this encoding. As an alternative way to use UTF-8 when possible, you can modify the value of
specific-valid-file-encodings.

For example, the following will cause LispWorks to use UTF-8 if the file begins with valid UTF-8 bytes:

(pushnew :utf-8 system:*specific-valid-file-encodings*)

26.7.3.6 External formats and stream-element-type

The :element-type argument in open and with-open-file defaults to the value of
default-character-element-type.

If element-type is not :default, checks are made to ensure that the resulting stream's stream-element-type is
compatible with its external format:

1. If direction is :input or :io, the element-type argument must be a supertype of the type of characters produced by the
external format.

2. If direction is :output or :io, the element-type argument must be a subtype of the type of characters accepted by the
external format.

If the element-type argument does not satisfy these requirements, an error is signaled.

If element-type is :default the system chooses the stream-element-type on the basis of the external format.

26.7.3.7 External formats and the LispWorks Editor

The LispWorks Editor uses open with :element-type :default to read and write files, unless it is configured to use a
specific external format. On reading a file, the external format is remembered and used when saving the file. On writing a
Unicode (UTF-16) file, the Byte Order Mark is written.

It is possible to insert characters in the Editor (for example by pasting clipboard text) which are not supported by the chosen
external format. This will lead to errors on attempt to save the buffer. You can handle this by setting the external format
appropriately.

See 3.5.3 Unicode and other file encodings in the Editor User Guide for more details.

26 Internationalization: characters, strings and encodings

335

http://www.lispworks.com/documentation/HyperSpec/Body/m_w_open.htm

26.7.3.8 Byte Order Mark

The Unicode Byte Order Mark (BOM) is treated as whitespace in the default readtable. This allows the Lisp reader to read a
16-bit (UTF-16 or BMP encoded) file regardless of whether the BOM is present. See 26.7.2 16-bit External formats guide
for more information.

Some editors including Microsoft Notepad and the LispWorks editor write the BOM when writing a file with 16-bit (UTF-16
or BMP) encoding.

26.7.4 External Formats and the Foreign Language Interface

External formats can be used to pass and receive string data via the FLI. See 2.2.2 Strings in the Foreign Language Interface
User Guide and Reference Manual.

26.7.5 External Formats and vectors of integers

External formats can be used to convert between strings and vectors of integers that represent an external encoding using the
functions decode-external-string and encode-lisp-string.

26 Internationalization: characters, strings and encodings

336

27 LispWorks' Operating Environment

This chapter describes the interfaces which provide information about the environment in which LispWorks is running. This
includes the operating system, the file system, the physical location of the LispWorks executable, and the arguments it was
passed on startup.

27.1 The Operating System

The Common Lisp function software-type returns a generic name for the Operating System. The Common Lisp function
software-version returns information about the version of the Operating System.

In particular software-type cannot be used to distinguish between different versions of Windows, whereas
software-version allows you to identify variants such as Windows Vista, Windows 7, Windows 8, Windows 10 and so
on. See the manual pages for details.

27.2 Site Name

The Common Lisp functions short-site-name and long-site-name can be configured using setf:

(setf (long-site-name) "LispWorks Ltd"
 (short-site-name) "LW")

27.3 The Lisp Image

The function lisp-image-name returns the namestring of the full path of the LispWorks executable or dynamic library
(DLL). For example, the directory of the image can be found using:

(pathname-location (lisp-image-name))

To create a new executable or DLL, typically after loading patches, modules and application code, use save-image or
deliver.

Note: Microsoft Windows supports Long and Short forms of paths. You may need to convert a namestring using
long-namestring or short-namestring.

27.4 The Command Line

The command line used to run LispWorks can be found using the variable *line-arguments-list*. The value is a list of
strings containing the executable name followed by any other command line arguments, in the order they were passed.

The strings of the command line arguments are decoded using the same external format which is used for encoding file
names, as described in 27.14.1 Encoding of file names and strings in OS interface functions.

For example, if your application needs to behave differently when passed an argument -foo, use the following test:

(member "-foo" sys:*line-arguments-list* :test 'string=)

337

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

27.4.1 Command Line Arguments

The following command line options are supported by the system.

-build build-script Typically this is used for the purpose of building another image.

build-script can name a file to be loaded on startup. This file will be the build script which loads
your code and calls save-image or deliver. LispWorks quits after loading the file. If the
debugger is entered while loading the file, for example due to an unhandled error, then a
backtrace is displayed and LispWorks quits.

build-script can also be -, a single minus sign. Passing -build - causes LispWorks to read and
execute a build script from stdin. This is useful if you want to embed a build script within a shell
script that runs LispWorks, for example:

lispworks-8-1-0-x86-linux -build - <<END
(write-line "This is the build script.")
END

Note that this technique using <<END does not work on Microsoft Windows.

An image run with -build runs itself, and not the default saved session if you created one. See
13.4 Saved sessions for information on saved sessions.

-build calls load-all-patches automatically. There is no harm if your build script also calls
load-all-patches.

-environment Start the LispWorks IDE development environment automatically, even in an image saved with:

(save-image ... :environment nil)

-eval form Evaluates the Lisp form form before loading initialization files.

If form requires multiprocessing, then change it to push a process specification onto
initial-processes. This will delay evaluation until multiprocessing has started, either by
the -multiprocessing command line options or because LispWorks was saved to start
multiprocessing.

-env A synonym for -environment.

-display display Sets the X display to use when starting a LispWorks GUI on X Windows.

-IIOPhost host Controls the host name in placed in IORs. See Developing Component Software with CORBA®
for details.

-IIOPnumeric IORs contain a host name which is the numeric IP address obtained by reverse lookup of the
machine name. See Developing Component Software with CORBA® for details.

27 LispWorks' Operating Environment

338

-init init-file init-file names a file to be loaded on startup after siteinit-file. The file is user's own LispWorks
initialization file, containing code that by default is loaded when LispWorks is started. It is useful
for loading initializations that should not be done for all users.

Initially the default is to load the file "~/.lispworks" where ~ expands to the user's home
directory as described in 13.2 Configuration and initialization files.

Your default initialization file can be set in the LispWorks IDE. See "Setting Preferences" in the
LispWorks IDE User Guide for details.

If init-file is not found, an error is signaled. To suppress loading of a user initialization file, pass
-init -.

-load file Loads the file file before loading initialization files.

-lw-no-redirection Makes the supplied image run itself, and not the default saved session if you created one. See
13.4 Saved sessions for information on saved sessions.

-multiprocessing Initializes multiprocessing on startup. See 19 Multiprocessing.

-no-restart-function

Suppresses the execution of a restart function on startup. Restart functions can be supplied when
saving an image to automatically invoke application code. This argument suppresses that
behavior. See save-image.

-ORBport orbport orbport specifies a port number for the LispWorks ORB. The special value 0 allows the system
to pick a port.

--relocate-image BaseAddress

Causes the image to relocate at BaseAddress on supported platforms, as described in 27.6
Startup relocation. This can be useful on a system where libraries are mapped in address space
that LispWorks would otherwise use as it grows. If the image is saved, then on restart without
--relocate-image, it will locate itself automatically at BaseAddress.

Compatibility note: In LispWorks 5.0 and earlier versions, to be effective,
--relocate-image must be the first argument on the LispWorks command line. This
restriction does not apply in LispWorks 8.1.

--reserve-size ReserveSize

Specifies the reserve size on supported platforms, as described in 27.6 Startup relocation.

-siteinit siteinit-file

siteinit-file names a file to be loaded on startup. The file is the LispWorks site initialization file,
containing code that by default is loaded when LispWorks is started by any user in that
installation. The default is to load the file that is the result of evaluating:

(sys:lispworks-file "config/siteinit.lisp")

If siteinit-file is not found, an error is signaled. To suppress loading of a site initialization file,
pass -siteinit -.

27 LispWorks' Operating Environment

339

27.4.2 Accessing environment variables

Use environment-variable get and set the value of an environment variable in the environment table of the OS process
that called LispWorks.

To remove FOO from the environment table do:

(setf (lw:environment-variable "FOO") nil)

On non-Windows platforms, the environment variables are encoded as specfied in 27.14.1 Encoding of file names and
strings in OS interface functions.

27.5 Address Space and Image Size

There are two factors that affect the maximum size of the Lisp image: the size of real memory, and the layout of memory. On
most platforms you can relocate LispWorks to avoid clashes with other software as described in 27.6 Startup relocation.

27.5.1 Size of real memory

If LispWorks becomes significantly larger than the size of the real memory, then paging will be the main activity and
LispWorks will not function effectively.

27.5.2 Layout of memory

This is Operating System-dependent:

On Solaris, 32-bit LispWorks is mapped at #x10000000. In principle it can grow to almost #x80000000 (the libraries are at
higher addresses).

For the other platforms and for 64-bit LispWorks, see the discussion in 27.6 Startup relocation.

27.5.3 Reporting current allocation

The simplest way to see the current Lisp allocation is to call (room t).

To obtain values representing the current total allocation, call room-values.

27.6 Startup relocation

On startup, LispWorks normally maps its heap at the address where it was mapped when the image was saved. It maps more
memory close to this when needed. This may cause memory clashes with other software, but such clashes may be avoided by
relocating LispWorks.

32-bit LispWorks is relocatable on Microsoft Windows, Linux, x86/x64 Solaris and FreeBSD. 64-bit LispWorks is
relocatable on all supported platforms. The discussion in this section is applicable to all relocatable implementations.

On Microsoft Windows and Macintosh, LispWorks detects memory clashes and avoids them automatically. On these
platforms there is no need to explicitly relocate LispWorks. The other relocatable implementations - LispWorks (32-bit) for
Linux, LispWorks (64-bit) for Linux, LispWorks (32-bit) for FreeBSD, LispWorks (64-bit) for FreeBSD, LispWorks (32-bit)
for x86/x64 Solaris, LispWorks (64-bit) for x86/x64 Solaris - cannot safely detect memory clashes. Relocation may therefore
be useful in these implementations.

27 LispWorks' Operating Environment

340

27.6.1 How to relocate LispWorks

Relocate LispWorks by passing two parameters: the base address and the reserve amount. Both are optional. The
interpretation of these parameters is very different between 64-bit LispWorks and 32-bit LispWorks.

To relocate a LispWorks executable, pass one or both of these command line arguments:

--relocate-image BaseAddress

The base address, interpreted as a hexadecimal number by calling:

strtol(BaseAddress,NULL,16)

--reserve-size ReserveSize

The reserve size, interpreted as a hexadecimal number by calling:

strtol(ReserveSize,NULL,16)

On all relocatable platforms, a LispWorks dynamic library or Windows DLL can be relocated by calling InitLispWorks

with second and/or third argument non-zero.

On non-Windows platforms, you can add the appropriate call to InitLispWorks in wrappers written in C and added to the
dynamic library by passing dll-added-files to save-image or deliver. There is no such option in LispWorks for Windows.

The startup relocation takes some time, normally less than 0.1 seconds on a modern machine. If the relocation address is
fixed and known, this startup overhead can be eliminated by relocating the image before calling save-image or deliver.

27.6.2 Startup relocation of 32-bit LispWorks

32-bit LispWorks on x86 platforms maps its heap in one continuous block, and then grows upwards from the top. When it
reaches a region that it cannot use, it can skip it. On Windows and Macintosh this skipping is safe, because LispWorks can
safely detect regions of memory that it cannot use. On other x86 platforms, both the initial mapping and the further growth
cannot safely detect when they overwrite some other code.

BaseAddress (passed on command line with --relocate-image or as the second argument to InitLispWorks) tells
LispWorks where to map the heap. On Windows and Macintosh, if the address is already used the heap will be mapped
elsewhere. On other platforms, the mapping always works, and may destroy what is already mapped at that address.

ReserveSize (passed on command line with --reserve-size or as the third argument to InitLispWorks) tells LispWorks
how much additional memory to reserve. Reservation is properly supported on Windows and Macintosh, though the actual
reserved size can be smaller if it fails to reserve as much as was requested. On platforms that do not support reservation (that
is, not Windows or Macintosh), the reservation is done by using mmap with protection PROT_NONE.

For a description of the memory layout on each platform, see 11.3.5 Memory layout.

27.6.3 Startup relocation of 64-bit LispWorks

The size of address space that 64-bit LispWorks can use is limited by the size of internal tables to a "span" of 2^44 (16TB).
The span always starts at 0.

Inside this span LispWorks can use any address. However, to avoid clashes with other software, it uses memory only in some
defined range.

Startup relocation means changing this range. BaseAddress (passed on command line with --relocate-image or as the
second argument to InitLispWorks, rounded up to 2^28) is the start of the range. ReserveSize (passed on command line

27 LispWorks' Operating Environment

341

with --reserve-size or as the third argument to InitLispWorks) is the size of the range. The default of the size of the
range is 2^40.

If the entire heap is within the new range, nothing else is done. If some part of the heap is outside the new range, the heap is
relocated.

The range in each 64-bit LispWorks implementation starts at #x4000000000 (256 GB).

27.6.3.1 Linux

On old Linux systems LispWorks (64-bit) for Linux has range 192 GB, ending at #x7000000000, because old Linux
systems cannot map above #x8000000000 and put the dynamic libraries just below that limit (at least in some
configurations). Since LispWorks uses the address space sparsely, it will run out of memory with less virtual memory,
probably around 150 GB to 160 GB. If more memory is required, the range can be extended downwards, and possibly some
distance upwards too. If other software uses memory in the range from #x4000000000 to #x7000000000, LispWorks
should be relocated (potentially just by decreasing the range) to avoid memory clashes.

Modern Linux systems have a much larger address space and the default size of the LispWorks range is #x4000000000
(4TB).

27.6.3.2 Windows and Macintosh

In LispWorks (64-bit) for Windows and LispWorks (64-bit) for Macintosh the size of the range is #x3c000000000 (3.75TB).
Since these platforms properly support reservation, there should not be any reason to change the range. The only time when
this is needed is when other software insists on using some address in this range and does not relocate automatically.

27.7 Calling external programs

You can call an external program using call-system, call-system-showing-output, open-pipe and
run-shell-command.

You can call C programs using the FLI. See the Foreign Language Interface User Guide and Reference Manual.

On Microsoft Windows a COM/Automation interface is provided. See the COM/Automation User Guide and Reference
Manual. There is also a DDE interface - see 22 Dynamic Data Exchange.

On macOS an Objective-C API is provided. See the LispWorks Objective-C and Cocoa Interface User Guide and Reference
Manual.

27.7.1 Interpreting the exit status

call-system returns the exit status of the process it created, and potentially a signal number. Similarly
pipe-exit-status can query the exit status and signal number associated with a process that was created by open-pipe

with save-exit-status non-nil or run-shell-command with wait nil and save-exit-status non-nil.

On Unix-like systems when using a string as the command with a typical shell, the exit status is the exit status of the
command that is executed. If it is an actual executable (rather than a built-in command) it is the exit status of the process that
invoked by this executable. That is not always reliable. In a typical shell you can precede the last command by the word
exec to cause the shell to replace itself by the executable, and then the return value is guaranteed to be from the executable.
On Microsoft Windows and when not using string as a command, there is only one process and the exit status is the exit
status of this process.

On Unix-like systems, on normal exit the exit status is the argument that was passed to the C function exit (or _exit) or the
value returned from the main function, and the signal number is nil. To interpret the normal exit status you need to know

27 LispWorks' Operating Environment

342

what the process does. Normally 0 means success. If the process exited as a result of a signal then the second return value
gives the number of the signal.

On Windows, the exit status is either the argument to ExitProcess or TerminateProcess, the return value of main or
WinMain, or an exception value.

27.8 Snapshot debugging of startup errors

When an error occurs during initialization (for example, because of code in an initialization file) and the image is configured
to start the LispWorks IDE, by default it catches the error, starts the IDE and displays the error in a snapshot debugger.

You should note that because this is a snapshot, you cannot actually continue or abort or return from a frame. The snapshot
debugger is simply a tool to help debugging the error.

The behavior is controlled by the variable *debug-initialization-errors-in-snap-shot*.

27.9 System message log

The system message log is used by the system to produce messages that indicate that something is not as expected, where this
is not an error. You can manipulate the log with set-system-message-log.

27.10 Exit status

You can return a process exit status to the Operating System when LispWorks or a delivered LispWorks application quits.

Do this by passing a status value to the function quit. For example:

(quit :status 42)

27.11 Creating a new executable with code preloaded

There are two ways to create a new executable with your code preloaded.

• To write a copy of the currently running image to disk, use save-image. The saved image requires a development
license key to run.

• To create a runtime image, removing unused code to make the image smaller, call deliver. For more details see the
Delivery User Guide.

For example of how to use save-image, see the section "Saving and testing the configured image" in the Release Notes and
Installation Guide.

See 13.3.6 Code signing in saved images for information about code signing your new executable.

See 27.12 Universal binaries on macOS for information about universal binaries on macOS.

27.12 Universal binaries on macOS

The supplied LispWorks (64-bit) for Macintosh images are universal binaries, which run the correct native architecture on
arm64 (Apple silicon) and x86_64 (Intel) Macintosh computers by default.

A running Lisp image only supports one architecture, chosen when the image was started. On a x86_64 based Macintosh,
this is always the x86_64 architecture. On an arm64 Macintosh, a running LispWorks image can be either the native arm64

27 LispWorks' Operating Environment

343

architecture or the x86_64 architecture (using Rosetta 2).

Functions such as save-image and deliver mentioned in 27.11 Creating a new executable with code preloaded create
an image containing only the running architecture and functions that operate on fasl files such as compile-file and load

only support the running architecture.

To create a universal binary, you can use one of these methods:

• Build a universal binary in the Application Builder in the LispWorks IDE.

• Use save-universal-from-script.

• Create the x86_64 and arm64 images separately, and then combine them use create-universal-binary.

Normally the Application Builder and save-universal-from-script are much more convenient, and
create-universal-binary should be used only very special cases.

See 13.3.6.5 Saving images and delivering a macOS universal binary for information about code signing a universal
binary on macOS.

27.13 User Preferences

LispWorks provides an API for setting and querying persistent per-user settings in a platform-dependent registry.

27.13.1 Location of persistent settings

On Microsoft Windows the preferences are stored in the HKEY_CURRENT_USER branch of the Windows registry.
(LispWorks also offers a general Windows registry API, described in 27.17 Accessing the Windows registry.)

On non-Windows the preferences are stored in subdirectories of the user's home directory.

To implement preferences for your LispWorks application, you will need to define a registry path using
(setf product-registry-path) and read it using product-registry-path.

27.13.2 Accessing persistent settings

Get and set preferences under the product path at run time with user-preference and (setf user-preference).
Remove stored preferences with remove-user-preference.

27.13.3 Example using user preferences

Define a registry path:

(setf (sys:product-registry-path :deep-thought)
 '("Software" "My Company" "Deep Thought"))

Store a preference for the current user:

(setf (user-preference "Answers"
 "Ultimate Question"
 :product :deep-thought)
 42)

Retrieve a preference for the current user, potentially in a subsequent session:

27 LispWorks' Operating Environment

344

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

(user-preference "Answers" "Ultimate Question"
 :product :deep-thought)

27.14 File system interface

27.14.1 Encoding of file names and strings in OS interface functions

On non-Windows platforms, LispWorks tries to determine the appropriate external format to use for encoding file names, as
well as other strings that are passed to the OS. On startup, a "locale name" is determined from the value of the first of the
standard POSIX environment variables LC_ALL, LC_CTYPE and LANG (in that order) that is set. If the locale name specifies a
"codeset" (which means it contains a dot and the "codeset" is the bit after the dot) that matches a LispWorks external format,
then LispWorks uses this external format. If the locale name matches one of languages covered by the ISO-8859-1 character
set, then LispWorks uses :latin-1-terminal. If the locale name is C or POSIX, then LispWorks uses
:ascii-terminal. Otherwise, LispWorks uses :utf-8, which is what was used before LispWorks 8.0.

The same external format is also used use to encode the values in environment-variable, as well as the command line
arguments and environment variables in the functions call-system, call-system-showing-output, open-pipe and
run-shell-command. It is also used to decode the command line arguments passed to LispWorks and stored in
line-arguments-list.

27.14.2 Fast access to files in a directory

fast-directory-files gives a faster way to access files than directory, especially in situations when you need to filter
based on simple features such as size and access time, or filter based on the name in a more complex way than directory

can.

Instead of creating a list of pathnames and returning it, fast-directory-files traverses the files and calls a callback
function on each file with its name and an opaque handle, which is referred to as fdf-handle. From this handle, you can
retrieve the size, last-access time and last-modify time, and query whether the file is a directory, whether it is a link (for
platforms other than Windows), and whether it is writable. The implementation makes the access to the fdf-handle much
faster than doing the same by calling directory and then calling cl:file-write-date and similar functions on the
result.

When the callback returns non-nil, fast-directory-files collects the filename, otherwise it ignores it. Hence the
callback can be used both as a filter and to actually do some work. In many cases, the callback will always return nil, and
the call will be used just to map the callback on the file for the "side-effects" of the callback.

fast-directory-files is restricted to one directory level, that is it cannot deal with wild directories.

27.15 Special locations in the file system

This section describes interfaces allowing you to identify and access various special locations in the file system.

27.15.1 The home directory

This section describes the implementation of the Common Lisp function cl:user-homedir-pathname.

On Unix-based systems, the home directory is looked up using the C function getpwuid.

On Microsoft Windows systems, cl:user-homedir-pathname uses the environment to construct its result. It uses the
values of the environment variables HOMEDRIVE and HOMEPATH, if both are defined. If at least one of environment
variables HOMEDRIVE and HOMEPATH is not defined, then a pathname #P"C:/users/login-name" is returned. These
environment variables should be correctly set before LispWorks starts. However it is possible to change the values in Lisp

27 LispWorks' Operating Environment

345

https://en.wikipedia.org/wiki/ISO/IEC_8859-1
http://www.lispworks.com/documentation/HyperSpec/Body/f_file_w.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_user_h.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_user_h.htm

using setf with environment-variable.

On Android cl:user-homedir-pathname returns the result of calling
"android.os.Environment.getExternalStoragePublicDirectory" with the value of
android.os.Environment.DIRECTORY_DOCUMENTS.

27.15.2 Special Folders

On Microsoft Windows, macOS and Android there are various special folders used for application data and user data. Here
are some examples of the folder for application data which is shared between all users.

Windows 10, Windows 8, Windows 7 and Windows Vista

C:\ProgramData

Windows XP (now unsupported)

C:\Documents and Settings\All Users.WINDOWS\Application Data

macOS /Library/Application Support

Android The result of calling getExternalFilesDir on the application context with null.

The locations and folder names can differ between versions of the operating system, therefore it is useful to have a system-
independent way to get the path at run time. The function get-folder-path can be used to retrieve the path to special
folders. Directory pathnames corresponding to each of the examples above can be obtained by calling:

(sys:get-folder-path :common-appdata)

Here is another example of differences between operating systems. On Windows 7 and Windows Vista:

(sys:get-folder-path :my-documents)
=>
#P"C:/Users/dubya/Documents/"

On macOS:

(sys:get-folder-path :my-documents)
=>
#P"/u/ldisk/dubya/Documents/"

See get-folder-path for more details.

On Microsoft Windows there is a profile folder for each user. You can find the profile path for the current user with the
function get-user-profile-directory.

27.15.3 Temporary files

A "temp file" is a file in the "temp directory" which is guaranteed to be new. Its name contains a random element.

Create a temp file by calling either of the functions open-temp-file and create-temp-file. For example:

On Microsoft Windows:

(create-temp-file :prefix "LW")
=>
#P"C:/DOCUME~1/dubya/LOCALS~1/Temp/LW383vwVfZN.tmp"

27 LispWorks' Operating Environment

346

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_user_h.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_null.htm

On Linux:

(create-temp-file :prefix "LW")
=>
#P"/tmp/LW1adokNa.tmp"

The function set-temp-directory allows you to set the "temp directory", that is the default directory used for temp files.

27.16 The console external format

Characters read and written via the console (*terminal-io*) are encoded in an external format that is determined by the
operating environment.

On Windows, the console uses the default system console code page.

On non-Windows platforms, LispWorks tries to determine the appropriate external format to use for the console. On startup,
a "locale name" is determined from the value of the first of the standard POSIX environment variables LC_ALL, LC_CTYPE
and LANG (in that order) that is set. If the locale name specifies a "codeset" (which means it contains a dot and the "codeset"
is the bit after the dot) that matches a LispWorks external format, then LispWorks uses this external format. If the locale
name matches one of languages covered by the ISO-8859-1 character set, then LispWorks uses :latin-1-terminal. If the
locale name is C or POSIX, then LispWorks uses :ascii-terminal. Otherwise, LispWorks uses :latin-1-terminal,
which outputs non-latin-1 characters (those with code larger than 255) by printing the hex representation of the code in angle
brackets.

The function set-console-external-format can be used to override the external format on non-Windows platforms. In
most of the cases it is better to rely on what LispWorks has chosen, because it matches what other software does.

27.17 Accessing the Windows registry

There is an API for accessing the registry on Microsoft Windows. It is available only in LispWorks for Windows. All of its
symbols are in the win32 package.

Create and delete keys with the functions create-registry-key and delete-registry-key. Open a key for reading
and/or writing with open-registry-key and close it with close-registry-key, or wrap your registry operation inside
the macro with-registry-key.

Query the registry with registry-key-exists-p, enum-registry-value, collect-registry-values,
collect-registry-subkeys, query-registry-key-info, query-registry-value, and registry-value. Write
to the registry with set-registry-value or (setf registry-value).

For example, this function returns the name, progid and filename for each of the installed ActiveX controls:

(defun collect-control-names (&key insertable
 (max-name-size 256)
 (max-names most-positive-fixnum))
 (win32:collect-registry-subkeys
 "CLSID"
 :root :root
 :max-name-size max-name-size
 :max-names max-names
 :value-function
 #'(lambda (hKeyClsid ClassidName)
 (win32:with-registry-key
 (hkeyX ClassidName :root hKeyClsid :errorp nil)
 (when (and
 (win32:registry-key-exists-p "Control"
 :root hkeyX)
 (if insertable

27 LispWorks' Operating Environment

347

http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm
https://en.wikipedia.org/wiki/ISO/IEC_8859-1

 (win32:registry-key-exists-p "Insertable"
 :root hkeyX)
 t))
 (when-let
 (progid (win32:query-registry-value "ProgID" nil
 :root hkeyX
 :errorp nil))
 (values
 (list
 (win32:query-registry-value nil nil
 :root hkeyX)
 progid
 (win32:query-registry-value "InprocServer32" nil
 :root hkeyX
 :errorp nil))
 t)))))))

27.18 Physical pathnames in LispWorks

This section describes the implementation-dependent details of physical (non-logical) pathnames in LispWorks.

27.18.1 Parsing physical namestrings in LispWorks

In LispWorks, namestrings of non-logical pathnames have the following parts:

<host>:<device>:<directory><name>.<type>

All the components are optional.

<directory> is made of directory elements separated by directory separators. On non-Windows platforms, the directory
separator is forward slash (#\/). On Windows, it can be either forward slash or backslash (#\\).

On Windows, a pathname may also be an UNC pathname, representing a Windows UNC (Universal Name Convention) path.
See 27.18.5 Windows UNC pathnames (Windows only) below. Namestrings representing UNC pathnames have the
following parts:

\\<host>\<directory><name>.<type>

When reading a namestring on Windows, forward slashes can be used instead of backslashes. Note that, when such a
namestring is printed as a Lisp value, Common Lisp will escape each backslash so they will appear to be doubled.

In general, the namestring syntax matches the syntax used by the utilities of the operating system, at least for pathnames that
do not contain wild components.

LispWorks does not parse the pathname version component from a namestring. The <device> part of a namestring is not
normally useful. The <host> part of a namestring is useful for Windows drive letters and is not valid otherwise.

On non-Windows platforms, a backslash (#\\) can be used as an escape character, which means that it and the next character
(which is "escaped") are read as part of the current component, even if the character would normally be interpreted in a
special way. When the pathname is used in an operating system interface function such as open, the escape characters are
removed. The backslash can be used to escape itself, but it cannot be used to escape the directory separator (forward slash).

On Windows, there is no way to escape special characters.

27 LispWorks' Operating Environment

348

27.18.1.1 Detailed description of the parsing of namestrings

The parsing of a physical pathname namestring starts with a new empty pathname, where all components are nil, and
proceeds as follows:

Initial state Initially the parse point is at the first charactrer of the string. "The string" refers to the string that
is being parsed, which, when parse-namestring is used with :start or :end, is the part
between the start and the end.

UNC pathnames (Windows only)

On Windows only, when the first and second character at the parse-point are directory separators
and are the same character (that is both forward slashes or both backslashes), and that character
also appears a third time later in the string, then the namestring is parsed as an UNC pathname.
The resulting pathname is made an UNC pathname, the characters following the pair of
separators up to the third separator are read into the pathname host component, and the parse
point is moved to the third separator. There must be at least one character between the pair of
separators and the third separator, otherwise an error is signaled.

Note that, as a result, the third separator is parsed as the first character of the <directory> part of
the namestring by the following steps.

When LispWorks uses an UNC pathname, the pathname host component specifies the server of
the path and the first string in the pathname directory component is the name of the shared
directory. The rest of the pathname directory component and the pathname name and type
components specify the path relative to the shared directory.

Host If there is an unescaped colon (#\:) after the parse point before any directory separator, and the
colon is not the first character in the string, then the characters until this colon are read into the
pathname host component of the pathname and the parse point is moved to the character
following the colon.

Device If there is an unescaped colon after the parse point and before any directory separator, then the
string between the parse point and this colon is read into the pathname device component of the
pathname and the parse point is moved after the colon.

Note that because both the <host> and the <device> parts of the namestring are marked by a
colon, you cannot have a device without a host. That means that normally the drive letter of a
pathname on Windows will be in the pathname host component of the pathname.

27 LispWorks' Operating Environment

349

Directory If the string contains a directory separator, then the <directory> part of the namestring starts at
the parse point and ends at last directory separator, and the parse point is moved to the first
character after the last directory separator. Otherwise, the pathname directory component is nil.

If the <directory> part starts with a directory separator, then the directory is absolute. otherwise
it is relative, and the string from the directory part start up to the first directory separator is the
first element of the <directory> part. Each string between two directory separators is another
element of the <directory> part.

If any of the elements of the <directory> part is "*" (a 1 character string containing #*), it is
replaced by :wild. If any of the elements is "**", it replaced by :wild-inferiors. If any of
the elements is ".", it is discarded. If any of the elements is "..", it is replaced by :up.

The elements of the <directory> part are not allowed to be empty, that is if a directory separator
is followed immediately by another directory separator then an error is signaled.

The pathane directory component of the pathname is set to a list where the first element is either
:absolute for an absolute pathname or :relative for a relative pathname followed by the
elements of the <directory> part of the namestring.

Name and type If there is a any unescaped dot character (#\.) at or after the parse point, and the last unescaped
dot is followed by some characters, then the pathname name component is read from the parse
point until the last unescaped dot and the pathname type component is read from the first
character after the last unescaped dot until the end of the string.

Otherwise, if the parse point is not at the end of the string, then the pathname name component is
read from the parse point to the end of the string and the pathname type component is nil.

Otherwise, both the pathname name and type components are nil.

If either <name> or the <type> parts is "*", then it is parsed as :wild.

27.18.2 Namestrings of pathnames

The namestring for a pathame (the result of calling namestring) is created in a way that reverses the parsing of a namestring
that is described above. On Windows, the backslash is used as the directory separator. The steps in creating the namestring
are:

1. For an UNC pathname, two directory separators are output followed by the pathname host component.

2. For a non-UNC pathname, if the pathname host component is a string then it is output followed by a colon.

If the pathname host component is not a string, but the pathname device component is a string, then a colon is output.
Note that such a pathname cannot be created by parsing a namestring, and parsing the resulting namestring will produce
a different pathname.

3. For a non-UNC pathname, if the pathname device components is a string, then it is output followed by a colon.

4. If the pathname directory component is non-nil, then it must be a list starting with either :relative or :absolute. If
it starts with :absolute then a directory separator is output. The remaining elements in the list are then output, each
one followed by a directory separator. If any of the elements is one of the symbols :wild, :wild-inferiors, :back
or :up, then a corresponding string is output: "*" for :wild, "**" for :wild-inferiors, and ".." for :back and
:up". Otherwise, the element must be a string which is output as it is.

5. If the pathname name component is a string then it is output, otherwise if it is the symbol :wild then the string "*" is
output.

27 LispWorks' Operating Environment

350

http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm

6. If the pathname type component is a string or :wild, a dot is output followed by the pathname type component, where
:wild is output as "*".

7. The pathname version component is ignored.

27.18.3 Creating pathnames with make-pathname

On Windows only, if the <host> argument to make-pathname is a string with more than one character, or <defaults> is an
UNC pathname, then make-pathname returns an UNC pathname.

make-pathname can return pathnames that cannot be created by parsing a namestring, for example a pathname where the
pathname name component is nil and pathname type component is a string. The namestring for these pathnames is output in
the same way, so if you parse it back you will get a different pathname. These pathnames should be avoided, because it is
easy to get confused when using them.

27.18.4 Backslashes in pathnames on non-Windows platforms

As described above, when parsing on non-Windows platforms, the backslash character is used as an escape character, causing
the following character to be interpreted as a plain character. The backslash character itself is included in the component
string, which means that making a namestring from the pathname will include the backslash too. When the pathname is
passed to an operating system interface function (such as open), the backslashes are removed before using it.

For pathnames made by make-pathname, you don't need the escape characters, unless you want to parse namestrings that
are produced from the pathname. The backslash characters itself is an exception: if the name of the file, any element of the
directory component or the type in contain a backslash in the filesystem, then you have the escape it to make 2 consecutive
backslashes.

27.18.5 Windows UNC pathnames (Windows only)

On Windows, a pathname may be an UNC pathname, representing a Windows UNC (Universal Name Convention) path.
UNC pathnames allow you to access directories that are shared by other machines on the local network. An UNC pathname
is an instance of a subclass of pathname, which is used somewhat differently when passed to the OS and when producing a
namestring, but otherwise behaves the same as ordinary pathnames.

A Windows UNC pathname has this form:

\\<server>\<shared-directory-name>\<relative-path>

When LispWorks uses an UNC pathname, the pathname host component specifies the <server> of the path and the first
string component (the second element) of the pathname directory component is the <shared-directory-name>. The rest of the
pathname directory component and the pathname name and type components specify the <relative-path>.

An UNC pathname can be made by parsing a namestring starting with two directory separators, as described in 27.18.1
Parsing physical namestrings in LispWorks above.

When merge-pathnames is given an UNC pathname as its first argument, or the pathname host component of the first
argument is nil and the second argument is an UNC pathname, then it returns an UNC pathname.

When make-pathname is given a host that is a string with more than one character (so cannot be a drive letter), or defaults is
an UNC pathname, then it returns an UNC pathname.

27 LispWorks' Operating Environment

351

http://www.lispworks.com/documentation/HyperSpec/Body/a_pn.htm

27.18.6 Wildcards in pathname components

If the pathname directory, name or type components are strings containing any unescaped asterisk (#*) characters then the
pathname is considered to be a wildcard pathname (see Restrictions on Wildcard Pathnames). An asterisk can be escaped
by preceding it with a backslash, making it a normal character.

When used for matching, the asterisk matches any number of characters in the corresponding component of a pathname. For
example, #P"/dir/a*b.txt" matches any pathname whose directory component is (:absolute "dir") and whose
name component start with #\a and ends with #\b and whose type component is "txt". Multiple asterisks are allowed. If
the pathname directory component contains :wild-inferiors (represented as two asterisks in the pathname namestring)
then it matches any number of directories.

27.18.7 Pathname comparison

Comparing pathnames using equal and equalp is case-sensitive on non-Windows platforms and case-insensitive on
Windows. This matches the usual case conventions for filesystems.

27.18.7.1 Pathname comparison on macOS

Because equal and equalp use case-sensitive comparison on the Macintosh, this can lead to occasional unexpected
mismatch of pathnames, because the HFS+ filesystem is usually case-insensitive (some Macintosh file systems are case-
sensitive).

27 LispWorks' Operating Environment

352

http://www.lispworks.com/documentation/HyperSpec/Body/19_bbc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm

28 Miscellaneous Utilities

This chapter describes miscellaneous functionality which does not belong in other chapters.

28.1 Object addresses and memory

In general, you cannot rely on the addresses of Lisp objects, because the Garbage Collector moves objects. The functions
described in this section are intended for debugging only.

You can find the current address of a Lisp object as an integer by object-address. You can get the pointer of an object
(current address plus any tagging) by object-pointer. This is what is normally used when printing objects unreadably.
You can find which object is currently at some address by using pointer-from-address.

You can find the size of a heap object by using find-object-size. However, many Lisp objects are made of multiple heap
objects, and typically the "root" heap object (the one that the Lisp pointer points to) is relatively small, so for these objects
find-object-size returns a meaningless value. It is actually useful only for vectors that are simple (not with fill pointer or
adjustable or displaced) and structures. It also gives meaningful values for integers, floats and conses.

28.2 Optimized integer arithmetic and integer vector access

This section describes ways to perform certain operations as efficiently as possible, including vector access and raw 32-bit
arithmetic. Additionally in 64-bit LispWorks, raw 64-bit arithmetic is possible.

28.2.1 Typed aref vectors

You can make vectors of certain element types which allow the most efficient access possible when compiled with suitable
optimize qualities.

To do this:

1. Make a vector with make-typed-aref-vector.

2. Access the vector using typed-aref and (setf typed-aref) with a type argument of double-float, float,
single-float, int32, (unsigned-byte n) or (signed-byte n) where n = 8, 16 or 32.

Additionally, in 64-bit LispWorks the types (unsigned-byte 64) and (signed-byte 64) are supported.

3. Compile the access with safety 0 (and for float types, float 0) and a constant type.

See typed-aref for more details and examples.

Efficient access to foreign arrays is also available. See fli:foreign-typed-aref in the Foreign Language Interface User
Guide and Reference Manual.

28.2.2 Fast 32-bit arithmetic

The INT32 API provides a way to perform optimal raw 32-bit arithmetic. Note that, unlike Lisp integer types, this is modulo
2^32 like the C int type.

The INT32 symbols are all in the system package.

353

http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm

The Lisp type int32 reads 32 bits of memory, like (signed-byte 32), but the data is in int32 format for use with the
INT32 API.

28.2.2.1 Optimized and unoptimized INT32 code

When optimized correctly, the intermediate int32 objects are not constructed.

In unoptimized code, sequences of operations like:

(sys:int32+ (sys:int32- a b) (sys:int32- c d))

will generate intermediate int32 objects for the results of the subtraction, but the compiler can optimize these away because
it knows that the function int32+ consumes int32 objects.

Note: the INT32 API is not designed to optimize sys:int32 objects passed as arguments.

28.2.2.2 The INT32 API

The INT32 API contains the type int32, a vector type simple-int32-vector and accessor, functions to convert int32 to
and from integer, some constant int32 values, and a full range of operators for mod 2^32 arithmetic.

You can find all these by evaluating:

(apropos "INT32" "SYSTEM" t)

For details for each, see the entries starting with int32 in 47 The SYSTEM Package.

28.2.2.3 INT32 Optimization

The optimization works safely but without boxing when possible. You need:

(optimize (float 0))

to get the optimization. This float level affects whether INT32 operations are optimized. This declaration must be placed at
the start of a function (not on an inner let or locally form).

In this example the safety level assures a second optimization in fli:foreign-typed-aref:

(defun incf-signed-byte-32 (ptr index)
 (declare (optimize (safety 0) (float 0))
 (type fixnum index))
 (setf (fli:foreign-typed-aref 'sys:int32 ptr index)
 (sys:int32-1+ (fli:foreign-typed-aref 'sys:int32
 ptr index)))
 ;; return ptr, since otherwise the int32 would
 ;; need to be boxed to return it
 ptr)

28.2.3 Fast 64-bit arithmetic

The INT64 API provides a way to perform optimal raw 64-bit arithmetic. Note that, unlike Lisp integer types, this is modulo
2^64 like the C long long or int64 types.

The INT64 symbols are all in the system package.

28 Miscellaneous Utilities

354

http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_let_l.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_locall.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm

The Lisp type int64 reads 64 bits of memory, like (signed-byte 64), but the data is in int64 format for use with the
INT64 API.

28.2.3.1 Optimized and unoptimized INT64 code

When optimized correctly, the intermediate int64 objects are not constructed.

In unoptimized code, sequences of operations like:

(sys:int64+ (sys:int64- a b) (sys:int64- c d))

will generate intermediate int64 objects for the results of the subtraction, but the compiler can optimize these away because
it knows that the function int64+ consumes int64 objects.

Note: the INT64 API is not designed to optimize sys:int64 objects passed as arguments.

28.2.3.2 The INT64 API

The INT64 API contains the type int64, a vector type simple-int64-vector and accessor, functions to convert int64 to
and from integer, some constant int64 values, and a full range of operators for mod 2^64 arithmetic.

You can find all these by evaluating:

(apropos "INT64" "SYSTEM" t)

For details for each, see the entries starting with int64 in 47 The SYSTEM Package.

28.2.3.3 INT64 Optimization

INT64 optimization occurs only in 64-bit LispWorks. The INT64 API is not optimized in 32-bit LispWorks.

The optimization works safely but without boxing when possible. You need:

(optimize (float 0))

to get the optimization. This float level affects whether INT64 operations are optimized. This declaration must be placed at
the start of a function (not on an inner let or locally form).

In this example the safety level assures a second optimization in fli:foreign-typed-aref:

(defun incf-signed-byte-64 (ptr index)
 (declare (optimize (safety 0) (float 0))
 (type fixnum index))
 (setf (fli:foreign-typed-aref 'sys:int64 ptr index)
 (sys:int64-1+ (fli:foreign-typed-aref 'sys:int64
 ptr index)))
 ;; return ptr, since otherwise the int64 would
 ;; need to be boxed to return it
 ptr)

28 Miscellaneous Utilities

355

http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_let_l.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_locall.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm

28.2.4 Integer vector access

octet-ref and base-char-ref (and their setters) are provided to allow efficient access to simple vectors of element type
(unsigned-byte 8) or base-char (that is, simple-base-strings) in the same code.

Other vector types are accepted, but for these specific string and binary vector types octet-ref and base-char-ref

match what aref and (setf aref) do except that they always take and return the same value/result type, and they are also
more efficient than aref.

Use octet-ref and base-char-ref according to whether you work with elements of type integer or base-char.

28.3 Transferring large amounts of data

You can write Lisp data in a binary format to a file using dump-forms-to-file or with-output-to-fasl-file with
dump-form. The file can then be loaded by load-data-file.

This allows you to transfer large amounts of data without using the Lisp printer and reader, which is much more efficient and
robust.

28.4 Rings

Ring objects can be used to hold Lisp objects (elements) and provide stack-like behavior. Each ring is limited to a maximum
number of elements and can be rotated. You can control the insertion point where elements get added and removed, and
iterate across the elements.

For more information about rings, start at make-ring.

28.5 Conditional throw and checking for catch in the dynamic
environment

In some situations it may be useful to check whether there is a specific catch in the dynamic scope, and throw if there is such
a catch. The function find-throw-tag and the macro throw-if-tag-found can be used in these circumstances.

28.6 Checking for a dynamic binding

Use symbol-dynamically-bound-p to test whether a symbol is dynamically bound in the current environment.

28.7 Regular expression syntax

Regular expressions can be used with functions such as find-regexp-in-string, regexp-find-symbols,
count-regexp-occurrences and editor:regular-expression-search and also in the LispWorks IDE.

A regular expression (regexp) allows the specification of the search string to include wild characters, repeated characters,
ranges of characters, and alternatives. Strings which follow a specific pattern can be located, which makes regular expression
searches very powerful.

The regular expression syntax used is similar to that of GNU Emacs. Most characters match themselves, but a regular
expression can contain the following special characters to produce the search pattern:

. Matches any single character except a newline. For example, c.r matches any three character
string starting with c and ending with r.

28 Miscellaneous Utilities

356

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_aref.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_aref.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

* Matches the previous regexp any number of times (including zero times). For example, ca*r
matches strings beginning with c and ending with r, with any number of as in-between.

An empty regexp followed by * matches an empty part of the input. By extension, ^* will match
exactly what ^ matches.

+ Matches the previous regexp any number of times, but at least once. For example, ca+r matches
strings beginning with c and ending with r, with at least one a in-between. An empty regexp
followed by + matches an empty part of the input.

? Matches the previous regexp either 0 or 1 times. For example, ca?r matches either the string cr

or car, and nothing else. An empty regexp followed by ? matches an empty part of the input.

^ Matches the next regexp as long as it is at the beginning of a line. For example, ^foo matches
the string foo as long as it is at the beginning of a line.

$ Matches the previous regexp as long as it is at the end of a line. For example, foo$ matches the
string foo as long as it is at the end of a line.

[] Contains a character set to be used for matching, where the other special characters mentioned do
not apply. The empty string is automatically part of the character set. For example, [a.b]
matches either a or . or b or the empty string. The regexp c[ad]*r matches strings beginning
with c and ending with r , with any number of as and ds in-between.

The characters - and ^ have special meanings inside character sets. - defines a range and ^

defines a complement character set. For example, [a-d] matches any character in the range a to
d inclusive, and [^ab] matches any character except a or b.

\ Quotes the special characters. For example, * matches the character * (that is, * has lost its
special meaning).

\| Specifies an alternative. For example, ab\|cd matches either ab or cd.

\(, \) Provides a grouping construct. For example, ab\(cd\|ef\) matches either abcd or abef.

28 Miscellaneous Utilities

357

29 64-bit LispWorks

This chapter summarizes the technical differences between 64-bit LispWorks and 32-bit LispWorks. Both are ANSI Common
Lisp implementations and support the same language extensions and libraries, so in many ways they behave the same.
However the programmer should be aware of the differences mentioned here.

29.1 Introduction

64-bit LispWorks has a larger address space, subject to physical memory. The maximum heap sizes are shown in Default
range for 64-bit LispWorks heap.

You can make larger arrays and the fixnum type is much larger than in 32-bit LispWorks. The values of various Common
Lisp architectural constants reflect this, as shown in Architectural constants.

Other differences in 64-bit LispWorks are noted in the remaining sections of this chapter.

29.2 Heap size

In principle 64-bit LispWorks can grow to almost 16 TB but it is intentionally limited to a defined range in order to avoid
clashes with other software as shown in Default range for 64-bit LispWorks heap.

Default range for 64-bit LispWorks heap

Platform Default range Notes

Intel-based Macintosh #x8000000000 to #x40000000000

(3.75 TB)

Apple silicon (arm64) Macintosh #x8000000000 to #x40000000000

(3.75 TB)

old x86_64 Linux #x4000000000 to #x7000000000

(192 GB)
Effective limit around 160 GB.

modern x86_64 Linux #x4000000000 to #x44000000000

(4 TB)

arm64 Linux #x5000000000 to #x7000000000

(128 GB)

Windows #x4000000000 to #x40000000000

(3.75 TB)

Solaris #x4000000000 to
#x10000000000 (768 GB)

In contrast, 32-bit LispWorks has a maximum heap size of 1.5-3.0 GB depending on platform.

Normally 64-bit LispWorks for Linux automatically adjusts its default heap size on startup according to whether it runs on
"old Linux" or "new Linux". On old systems, LispWorks sets the end of its range to x7000000000. On new systems, it sets
the end to #x44000000000, thus giving a range of 4 TB. However, if the size is given explicitly by command line argument

358

http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm

--reserve-size or InitLispWorks in a dynamic library, then this overrides the automatic adjustment.

LispWorks is relocatable on all supported platforms as described in 27.6.2 Startup relocation of 32-bit LispWorks and
27.6.3 Startup relocation of 64-bit LispWorks.

29.3 Architectural constants

Common Lisp constants have the values shown in Architectural constants.

Architectural constants

Constant 32-bit LispWorks 64-bit LispWorks

most-positive-fixnum 2^29 - 1 2^60 - 1

array-dimension-limit 67108337 (almost 2^26) 2^29 - 1

array-total-size-limit 2^26 2^29 - 1

Note: In 32-bit LispWorks 5.0, array-total-size-limit is 2^29 - 1, which is wrong.

29.4 Speed

64-bit LispWorks is generally faster than 32-bit LispWorks.

We would be interested to see comparative performance data from your application if it runs on both 32-bit and 64-bit
LispWorks.

29.5 Memory Management and cl:room

Memory layout and the garbage collector (GC) differ significantly between the two implementations.

For the details see 11.3 Memory Management in 32-bit LispWorks and 11.4 Memory Management in 64-bit LispWorks.

The output of room differs between 64-bit and 32-bit LispWorks.

29.6 Greater allocation expected in 64-bit LispWorks

In 64-bit LispWorks pointers are 8 bytes, whereas in 32-bit LispWorks pointers are 4 bytes. Since many objects contain
pointers, most programs will allocate more in 64-bit LispWorks, typically at least 50% or more.

A program containing mostly strings would not show this difference, since strings are more comparable in size between the
two implementations.

You can use find-object-size to find the size of an object.

29.7 Float types

In 64-bit LispWorks single-floats are immediate objects, and short-float is the same type as single-float.

In 32-bit LispWorks single-floats are boxed objects, and short-float is disjoint from other float types.

29 64-bit LispWorks

359

http://www.lispworks.com/documentation/HyperSpec/Body/v_most_p.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_ar_dim.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_ar_tot.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_ar_tot.htm

29.8 External libraries

Third party libraries loaded into 64-bit LispWorks must be 64-bit. Availability of a suitable library is therefore a possible
issue when porting your LispWorks application to 64-bit.

Third party libraries loaded into 32-bit LispWorks must be 32-bit.

29 64-bit LispWorks

360

30 Self-contained examples

This chapter enumerates the set of examples in the LispWorks library relevant to the content of this manual. Each example
file contains complete, self-contained code and detailed comments, which include one or more entry points near the start of
the file which you can run to start the program.

To run the example code:

1. Open the file in the Editor tool in the LispWorks IDE. Evaluating the call to example-edit-file shown below will
achieve this.

2. Compile the example code, by Ctrl+Shift+B.

3. Place the cursor at the end of the entry point form and press Ctrl+X Ctrl+E to run it.

4. Read the comment at the top of the file, which may contain further instructions on how to interact with the example.

30.1 COMM examples

30.1.1 SSL examples

This section lists the example files illustrating the use of SSL in socket streams, described in detail in 25.9 Using SSL:

(example-edit-file "ssl/ssl-server")

(example-edit-file "ssl/ssl-client")

(example-edit-file "ssl/ssl-certificates")

30.1.2 Asynchronous I/O examples

This section lists the example files illustrating the Asynchronous I/O API, described in detail in 25.8 Asynchronous I/O:

(example-edit-file "async-io/driver")

(example-edit-file "async-io/multiplication-table")

(example-edit-file "async-io/print-connection-delay")

(example-edit-file "ssl/async-io-client")

(example-edit-file "async-io/udp")

361

30.2 Streams examples

(example-edit-file "streams/buffered-stream")

30.3 DDE examples

This section lists the example files illustrating Dynamic Data Exchange (DDE) on Microsoft Windows, described in detail in
22 Dynamic Data Exchange:

(example-edit-file "dde/lispworks-ide")

(example-edit-file "dde/server-dispatching")

(example-edit-file "dde/server-dispatching-client")

30.4 Parser generator examples

(example-edit-file "parser-generator/expression-parser")

30.5 Examples for save-image in a macOS application bundle

This section lists the example files illustrating how you can create an application bundle while saving an image on macOS.
See 13.3 Saving a LispWorks image for details of the process:

(example-edit-file "configuration/macos-application-bundle")

(example-edit-file "configuration/save-macos-application")

Note: These examples are provided as a starting point for programmers who need to modify their own bundle-creation code.
LispWorks for Macintosh has documented functions create-macos-application-bundle and
save-image-with-bundle which you should use unless you need need different functionality.

30.6 Miscellaneous examples

A minimal example of parsing XML:

(example-edit-file "misc/xml-parser")

Code for using ASDF in the LispWorks IDE, described in more detail in 20.3 Using ASDF:

(example-edit-file "misc/asdf-integration")

30 Self-contained examples

362

31 The CLOS Package

This chapter describes the LispWorks extensions to CLOS, the Common Lisp Object System.

The LispWorks Meta Object Protocol mostly conforms to chapters 5 & 6 of AMOP. Manual pages for symbols with different
functionality from AMOP are in this chapter, and the differences are discussed in 18 The Metaobject Protocol.

break-new-instances-on-access Function

Summary

Breaks to the debugger when a new instance of a class is accessed. Note that this function is deprecated.

Package

clos

Signature

break-new-instances-on-access class-designator &key read write slot-names when process trace-output entrycond
eval-before before backtrace => t

Arguments

class-designator⇓ The class to trap.

read⇓ A generalized boolean.

write⇓ A generalized boolean.

slot-names⇓ A list of symbols, or t.

when⇓ A form.

process⇓ A form.

trace-output⇓ A form.

entrycond⇓ A form.

eval-before⇓ A list of forms.

before⇓ A list of forms.

backtrace⇓ A keyword, t or nil.

Description

The function break-new-instances-on-access causes a break when new instances of the class given by class-
designator are accessed, according to the keyword arguments.

The keyword arguments read, write, slot-names, when, process, trace-output, entrycond, eval-before, before and backtrace
control which type of access cause a break and are interpreted as described for trace-on-access.

363

Note: this function is deprecated. You should now call trace-new-instances-on-access with :break t instead.

See also

trace-new-instances-on-access

break-on-access Function

Summary

Breaks to the debugger when an instance of a class is accessed. Note that this function is deprecated.

Package

clos

Signature

break-on-access instance &key read write slot-names when process trace-output entrycond eval-before before backtrace
=> instance

Arguments

instance⇓ A CLOS instance.

read⇓ A generalized boolean.

write⇓ A generalized boolean.

slot-names⇓ A list of symbols, or t.

when⇓ A form.

process⇓ A form.

trace-output⇓ A form.

entrycond⇓ A form.

eval-before⇓ A list of forms.

before⇓ A list of forms.

backtrace⇓ A keyword, t or nil.

Values

instance A CLOS instance.

Description

The function break-on-access is a useful debugging function which causes access to instance to break to the debugger.
Accesses include calls to slot-value and also accessor functions defined by the class of instance. Other instances of the
same class are unaffected.

The keyword arguments read, write, slot-names, when, process, trace-output, entrycond, eval-before, before and backtrace
control which type of access cause a break and are interpreted as described for trace-on-access.

31 The CLOS Package

364

http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm

You can remove the break by calling unbreak-on-access.

A common use of this function is to find where a slot is being changed in a complex program.

Note: this function is deprecated. You should now call trace-on-access with :break t instead.

See also

trace-on-access

class-extra-initargs Generic Function

Summary

Extends the valid initialization arguments of a class.

Package

clos

Signature

class-extra-initargs prototype => initargs

Arguments

prototype⇓ A prototype instance.

Values

initargs⇓ A list of additional initialization arguments.

Description

The generic function class-extra-initargs lets you extend the set of valid initialization arguments for a class and its
subclasses. You can implement methods that specialize on prototype, which is a prototype instance.

initargs should be a list of symbols. Each symbol becomes a valid initarg for the class. By default in a non-delivered
LispWorks image, make-instance and other CLOS initializations (see set-clos-initarg-checking) check that
initargs passed to them are valid.

The extra initargs are used for make-instance, reinitialize-instance,
update-instance-for-redefined-class and update-instance-for-different-class.

Notes

class-extra-initargs is useful only in complex cases. In most cases other ways of extending the set of valid initargs are
simpler and clearer, such as the :extra-initargs class option, described in defclass.

Examples

In this session an illegal initarg :my-keyword is passed, causing make-instance to signal an error.

Then :my-keyword is added as an extra initarg, after which make-instance accepts it.

31 The CLOS Package

365

http://www.lispworks.com/documentation/HyperSpec/Body/f_reinit.htm

CL-USER 38 > (defclass my-class () ((a :initform nil)))
#<STANDARD-CLASS MY-CLASS 113AAA2F>

CL-USER 39 > (make-instance 'my-class :my-keyword 8)

Error: MAKE-INSTANCE is called with unknown keyword :MY-KEYWORD among the arguments (MY-CLASS :MY-
KEYWORD 8) {no keywords allowed}
 1 (continue) Ignore the keyword :MY-KEYWORD
 2 (abort) Return to level 0.
 3 Return to top loop level 0.

Type :b for backtrace, :c <option number> to proceed, or :? for other options

CL-USER 40 : 1 > :a

CL-USER 41 > (defmethod clos:class-extra-initargs
 ((x my-class))
 '(:my-keyword))
#<STANDARD-METHOD CLOS:CLASS-EXTRA-INITARGS (MY-CLASS) 1137C763>

CL-USER 42 > (make-instance 'my-class :my-keyword 8)
#<MY-CLASS 11368963>

See also

compute-class-potential-initargs
defclass
make-instance
set-clos-initarg-checking

compute-class-potential-initargs Generic Function

Summary

Computes the valid initargs of a class.

Package

clos

Signature

compute-class-potential-initargs class => initargs

Arguments

class⇓ A class.

Values

initargs⇓ A list of symbols, or t.

Description

The generic function compute-class-potential-initargs is called to compute the initialization arguments of a class.
This set of valid initargs is used by make-instance when its arguments are checked.

31 The CLOS Package

366

class is the class passed to make-instance. That is, compute-class-potential-initargs specializes on the
metaclass.

initargs is either a list of valid initargs, or t meaning that any initialization argument is allowed.

There is a supplied method on t, which returns nil.

The other supplied method is on standard-class. This consults the Relevant Methods, which are the applicable methods
of make-instance, allocate-instance, initialize-instance and shared-initialize. If any of the Relevant
Methods have a lambda list containing &allow-other-keys then initargs is t. Otherwise initargs is a list containing:

• all the &key arguments from Relevant Method lambda lists, and:

• the initargs of the slots of class and its superclasses, and:

• any extra initargs specified via the class option :extra-initargs (see defclass for details of this), and:

• any extra initargs returned by class-extra-initargs.

The list initargs contains no duplicates, and the result of compute-class-potential-initargs is cached so that it is not
recomputed unless one of the Relevant Methods, the class or its class precedence list is altered.

See also

class-extra-initargs
make-instance
set-clos-initarg-checking

compute-discriminating-function Generic Function

Summary

Returns the discriminating function.

Package

clos

Signature

compute-discriminating-function gf => result

Arguments

gf⇓ A generic function.

Values

result A function.

Description

The generic function compute-discriminating-function returns the discriminator of gf as specified in AMOP.

However, there are two discrepancies with the AMOP behavior:

31 The CLOS Package

367

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_alloca.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_shared.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm

• The discriminating function does not compute-applicable-methods-using-classes, since this is not
implemented.

• add-method does not call compute-discriminating-function. Instead, it is called when the generic function is
called. This is more efficient than calling compute-discriminating-function each time add-method is called.

compute-effective-method-function-from-classes Generic Function

Summary

Returns the effective method function.

Package

clos

Signature

compute-effective-method-function-from-classes gf classes => em-function

Arguments

gf⇓ A generic function.

classes⇓ A list of class metaobjects.

Values

em-function⇓ A function or nil.

Description

The generic function compute-effective-method-function-from-classes is called by LispWorks to compute the
effective method function when gf is called with required argument types specified by classes. If em-function is nil, then
no-applicable-method is called. Otherwise, em-function may be cached by the generic function and is called with the
arguments supplied to the generic function.

The default method for compute-effective-method-function-from-classes implements the standard generic
function behavior of finding the applicable methods and using the method combination to construct a function that calls them.

In order for compute-effective-method-function-from-classes to be called and the result cached, there must be
methods specializing on the "interesting" arguments. For the standard behavior, this is trivially true, but if you want to
implement other behavior then you need to define dummy methods even if they are never called.

Examples

A "computed" generic function that returns a value based on a form chosen from the classes of the arguments rather than the
methods. Note the dummy method which is specialized on null.

(defclass computed-generic-function (standard-generic-function)
 ((computer :initarg :computer
 :accessor computed-generic-function-computer))
 (:metaclass funcallable-standard-class))

(defmethod clos:compute-effective-method-function-from-classes

31 The CLOS Package

368

http://www.lispworks.com/documentation/HyperSpec/Body/f_add_me.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_add_me.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_no_app.htm

 ((gf computed-generic-function)
 classes)
 (apply (computed-generic-function-computer gf) gf classes))

(defmacro define-computed-generic-function (name lambda-list
 specializers
 &body body)
 `(dspec:def (define-computed-generic-function ,name)
 (defgeneric ,name ,lambda-list
 (:generic-function-class computed-generic-function)
 (:method ,(loop for arg in lambda-list
 collect
 (if (member arg specializers)
 `(,arg null)
 arg))))
 (setf (computed-generic-function-computer #',name)
 #'(lambda (,name ,@(loop for arg in lambda-list
 collect
 (if (member arg specializers)
 arg
 (gensym))))
 ,@body))
 ',name))

(define-computed-generic-function aaaa (x y) (x)
 (let ((something (compute-something aaaa x)))
 #'(lambda (x y)
 (declare (ignore y))
 (format nil "Something for ~a is ~a" x something))))

(defun compute-something (gf class)
 (format nil "~a-~a"
 (generic-function-name gf)
 (class-name class)))

copy-standard-object Function

Summary

Creates a new copy of a CLOS object.

Package

clos

Signature

copy-standard-object source => target

Arguments

source⇓ A standard-object, but not a funcallable-standard-object.

Values

target⇓ A standard-object, but not a funcallable-standard-object.

31 The CLOS Package

369

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm

Description

The function copy-standard-object creates a new copy of the CLOS object source.

source must be of type standard-object, excluding funcallable-standard-object and its subclasses, in particular
it cannot be of type generic-function.

The copying is shallow, that is only the actual values are copied, as if by:

(dolist (slot instance-slots)
 (setf (slot-value target slot)
 (slot-value source slot)))

assuming no definition that affects what slot-value and (setf slot-value) do. However, copy-standard-object
bypasses the slot-value mechanism and is much faster.

copy-standard-object should be used on instances of user-defined classes which do not inherit from system-defined
classes (other than standard-object). If source is an instance of a system-defined class (or a subclass of a system-defined
class) then target cannot be used as a functional object, but its slot values can be read safely. That may be useful for
debugging.

See also

replace-standard-object

funcallable-standard-object Class

Summary

The superclass for all instances of funcallable-standard-class and its subclasses.

Package

clos

Superclasses

function
standard-object

Subclasses

generic-function

Description

The class funcallable-standard-object is a metaclass that provides the default :direct-superclasses for
instances of funcallable-standard-class and its subclasses.

funcallable-standard-object is implemented as described in AMOP except for a different order in the class
precedence list.

In AMOP the class precedence list is:

(funcallable-standard-object standard-object function t)

31 The CLOS Package

370

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_generi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_generi.htm

whereas in LispWorks the class precedence list is:

(funcallable-standard-object function standard-object t)

LispWorks is like this to be compliant with the rules in the ANSI Common Lisp Standard.

The AMOP class precedence list implies a class precedence for generic-function which violates the last sentence in
ANSI Common Lisp 4.2.2 Type Relationships. See www.lispworks.com/documentation/HyperSpec/Body/04_bb.htm.

process-a-class-option Generic Function

Summary

Describes how the value of a class option is parsed.

Package

clos

Signature

process-a-class-option metaclass option value => initargs

Arguments

metaclass⇓ The metaclass of the class being parsed.

option⇓ The defclass option name.

value⇓ The tail of the defclass option form.

Values

initargs⇓ A plist of initargs describing the option.

Description

The generic function process-a-class-option describes how the value of a class option is parsed. It is called at
defclass macroexpansion time. By default LispWorks parses class options as defined in AMOP, but you need to supply a
method if you need class options with different behavior.

metaclass is the metaclass of the class being parsed.

option is the option being parsed.

value is the value associated with option.

initargs should be a plist of class initargs and values. These are added to any other initargs for the class.

Examples

(defclass m1 (standard-class)
 ((title :initarg :title)))

For single-valued, evaluated title option, add a method like this:

31 The CLOS Package

371

http://www.lispworks.com/documentation/HyperSpec/Body/t_generi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/04_bb.htm

(defmethod clos:process-a-class-option
 ((class m1)
 (name (eql :title))
 value)
 (unless (and value (null (cdr value)))
 (error "m1 :title must have a single value."))
 (list name (car value)))

(defclass my-titled-class ()
 ()
 (:metaclass m1)
 (:title "Initial Title"))

If the value is not to be evaluated, the method would look like this:

(defmethod clos:process-a-class-option
 ((class m1)
 (name (eql :title))
 value)
 (unless (and value (null (cdr value)))
 (error "m1 :title must have a single value."))
 `(,name ',value))

Now suppose we want an option whose value is a list of titles:

(defclass m2 (standard-class)
 ((titles-list :initarg :list-of-possible-titles)))

If the titles are to be evaluated, add a method like this:

(defmethod clos:process-a-class-option
 ((class m2)
 (name (eql :list-of-possible-titles))
 value)
 (list name `(list ,@value)))

Or, if the titles should not be evaluated, add a method like this:

(defmethod clos:process-a-class-option
 ((class m2)
 (name (eql :list-of-possible-titles))
 value)
 (list name `',value))

(defclass my-multi-titled-class ()
 ()
 (:metaclass m2)
 (:list-of-possible-titles
 "Initial Title 1"
 "Initial Title 2"))

See also

defclass
process-a-slot-option

31 The CLOS Package

372

process-a-slot-option Generic Function

Summary

Describes how a defclass slot option is parsed.

Package

clos

Signature

process-a-slot-option metaclass option value already-processed-other-options slot => processed-options

Arguments

metaclass⇓ The metaclass of the class being parsed.

option⇓ The slot option name.

value⇓ The value of the slot option.

already-processed-other-options⇓
A plist of initargs for non-standard options that have been processed already.

slot⇓ The whole slot description.

Values

processed-options⇓ A plist of initargs.

Description

The generic function process-a-slot-option describes how the value of a slot option is parsed. It is called at defclass
macroexpansion time. By default LispWorks parses slot options as defined in AMOP, but you need to supply a method if you
need slot options with different behavior.

metaclass is the metaclass of the class being parsed.

option is the slot option name being parsed.

value is the value associated with option.

slot is the whole defclass slot description being parsed.

processed-options should be a plist of slot initargs and values containing those from already-processed-other-options together
with initargs for option as required. These are added to any other initargs for the slot.

Examples

(defclass extended-class (standard-class)())

(defmethod clos:process-a-slot-option
 ((class extended-class) option value
 already-processed-options slot)
 (if (eq option :extended-slot)

31 The CLOS Package

373

 (list* :extended-slot
 value
 already-processed-options)
 (call-next-method)))

(defclass extended-direct-slot-definition
 (clos:standard-direct-slot-definition)
 ((extended-slot :initarg :extended-slot :initform nil)))

(defmethod clos:direct-slot-definition-class
 ((x extended-class) &rest initargs)
 'extended-direct-slot-definition)

(defclass test ()
 ((regular :initform 3)
 (extended :extended-slot t :initform 4))
 (:metaclass extended-class))

To add a slot option :special-reader whose value is a non-evaluated symbol naming a reader:

(defmethod clos:process-a-slot-option
 ((class my-metaclass) option value
 already-processed-options slot)
 (if (and (eq option :special-reader)
 (symbolp value))
 (list* :special-reader
 `',value already-processed-options)
 (call-next-method)))

To allow repeated :special-reader options which are combined into a list:

(defmethod clos:process-a-slot-option
 ((class my-metaclass) option value
 already-processed-options slot)
 (if (and (eq option :special-reader) (symbolp value))
 (let ((existing (getf
 already-processed-options
 :special-reader)))
 (if existing ; this is a quoted list of symbols
 (progn
 (setf (cdr (last (cadr existing))) (list value))
 already-processed-options)
 (list* :special-reader
 `'(,value)
 already-processed-options)))
 (call-next-method)))

See also

defclass
process-a-class-option

replace-standard-object Function

Summary

Replaces the values in a CLOS object's slots by the values of slots from another object.

31 The CLOS Package

374

Package

clos

Signature

replace-standard-object target source => target

Arguments

target⇓, source⇓ A standard-object, but not a funcallable-standard-object.

Values

target A standard-object, but not a funcallable-standard-object.

Description

The function replace-standard-object replaces the values in the slots of the CLOS object target by the values of slots
from the CLOS object source.

Only slots with allocation type :instance are copied from source to target.

source and target must be of type standard-object, excluding funcallable-standard-object and its subclasses, in
particular they cannot be of type generic-function. Moreover both must be of the same class, that is:

(eq (class-of target) (class-of source)) => t

The replacement is shallow, that is only the actual values are copied, as if by:

(dolist (slot instance-slots)
 (setf (slot-value target slot)
 (slot-value source slot)))

assuming no definition that affects what slot-value and (setf slot-value) do. However,
replace-standard-object bypasses the slot-value mechanism and is much faster.

replace-standard-object should be used on instances of user-defined classes which do not inherit from system-defined
classes (other than standard-object). It should never be used on instances of system-defined classes and their subclasses.

The return value is eq to the argument target.

See also

copy-standard-object

set-clos-initarg-checking Function

Summary

Switches initarg checking on or off in make-instance, reinitialize-instance, change-class and so on.

31 The CLOS Package

375

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_generi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_reinit.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chg_cl.htm

Package

clos

Signature

set-clos-initarg-checking on => on

Arguments

on⇓ A generalized boolean.

Values

on A generalized boolean.

Description

The function set-clos-initarg-checking provides control over whether CLOS checks initialization arguments.
Initializations affected include:

• Calls to make-instance

• Calls to reinitialize-instance

• Calls to change-class

• call-next-method to update-instance-for-redefined-class with extra keywords.

Calling set-clos-initarg-checking with a true value of on causes the above initializations to check their initargs. This
is the initial state of LispWorks.

Initarg checking is switched off globally and dynamically by:

(set-clos-initarg-checking nil)

Notes

1. The effect of calling set-clos-initarg-checking can be overridden in a runtime by the deliver keyword
argument :clos-initarg-checking. See the Delivery User Guide for details.

2. set-clos-initarg-checking supersedes set-make-instance-argument-checking.

See also

class-extra-initargs
compute-class-potential-initargs
deliver
make-instance

31 The CLOS Package

376

http://www.lispworks.com/documentation/HyperSpec/Body/f_reinit.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chg_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_call_n.htm

set-make-instance-argument-checking Function

Summary

Switches CLOS initarg checking on or off. This function is deprecated.

Package

clos

Signature

set-make-instance-argument-checking on => on

Arguments

on⇓ A boolean.

Values

on A boolean.

Description

The function set-make-instance-argument-checking switches CLOS initarg checking on or off according to the
value of on.

Notes

set-make-instance-argument-checking is deprecated. It is an alias for set-clos-initarg-checking.

Compatibility notes

1. In LispWorks 6.1 and later versions set-make-instance-argument-checking affects CLOS initializations other
than make-instance. For clarity, you should now use set-clos-initarg-checking instead.

2. In LispWorks 6.0 set-make-instance-argument-checking affects only make-instance.

See also

set-clos-initarg-checking

slot-boundp-using-class Generic Function

Summary

Implements slot-boundp.

31 The CLOS Package

377

http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_bo.htm

Package

clos

Signature

slot-boundp-using-class class object slot-name => result

Arguments

class⇓ A class metaobject, the class of object.

object⇓ An object.

slot-name⇓ A slot name.

Values

result A boolean.

Description

The generic function slot-boundp-using-class implements the behavior of the slot-boundp function.

The implementation and information about class and object is as described in AMOP, except that the third argument slot-
name is the slot name, and not a slot definition metaobject. The primary methods specialize on t for this argument.

See also

slot-makunbound-using-class
slot-value-using-class

slot-makunbound-using-class Generic Function

Summary

Implements slot-makunbound.

Package

clos

Signature

slot-makunbound-using-class class object slot-name => object

Arguments

class⇓ A class metaobject, the class of object.

object⇓ An object.

slot-name⇓ A slot name.

31 The CLOS Package

378

http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_bo.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_ma.htm

Values

object An object.

Description

The generic function slot-makunbound-using-class implements the behavior of the slot-makunbound function. It
returns its object argument.

The implementation and information about class and object is as described in AMOP, except that the third argument slot-
name is the slot name, and not a slot definition metaobject. The primary methods specialize on t for this argument.

See also

slot-boundp-using-class
slot-value-using-class

slot-value-using-class Accessor Generic Function

Summary

Accessor generic functions that implements slot-value and (setf slot-value).

Package

clos

Signature

slot-value-using-class class object slot-name => value

(setf slot-value-using-class) value class object slot-name => value

Arguments

class⇓ A class metaobject, the class of object.

object⇓ An object.

slot-name⇓ A slot name.

value⇓ The value of the slot named by slot-name.

Values

value⇓ The value of the slot named by slot-name.

Description

The accessor generic function slot-value-using-class implements the slot-value and (setf slot-value)

functions.

The implementation and information about class, object and value is as described in AMOP, except that the third argument
slot-name is the slot name, and not a slot definition metaobject. The primary methods specialize on t for this argument.

31 The CLOS Package

379

http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_ma.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm

Note: by default, standard slot accessors, and access by slot-value to an argument of a method where the specializer is a
class defined by defclass, are optimized to not call slot-value-using-class. This can be overridden with the
:optimize-slot-access class option. See defclass for details.

See also

defclass
slot-boundp-using-class
slot-makunbound-using-class

trace-new-instances-on-access Function

Summary

Traces new instances of a given class, based on access modes.

Package

clos

Signature

trace-new-instances-on-access class-designator &key read write slot-names break when process trace-output
entrycond eval-before before backtrace => t

Arguments

class-designator⇓ The class to trace.

read⇓ A generalized boolean.

write⇓ A generalized boolean.

slot-names⇓ A list of symbols, or t.

break⇓ A generalized boolean.

when⇓ A form.

process⇓ A form.

trace-output⇓ A form.

entrycond⇓ A form.

eval-before⇓ A list of forms.

before⇓ A list of forms.

backtrace⇓ A keyword, t or nil.

Description

The function trace-new-instances-on-access causes new instances of the class given by class-designator to be traced
for the access modes given by read, write and slot-names.

The keyword arguments read, write, slot-names, break, when, process, trace-output, entrycond, eval-before, before and
backtrace control which type of access are traced, and provide preconditions for tracing, code to run before access, and how
to print any trace output. They are interpreted as described for trace-on-access.

31 The CLOS Package

380

http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm

Note: since trace-new-instances-on-access is a function, all its arguments are evaluated before it is called. Therefore
any constant forms that are passed to trace-new-instances-on-access must be quoted, unlike when using the trace
macro.

This function, when used with the :break keyword, replaces the deprecated function
break-new-instances-on-access.

Examples

(trace-new-instances-on-access 'capi:display-pane
 :slot-names nil)

Suppose you have a bug whereby the slot bar of an instance of your class foo is incorrectly being set to a negative integer
value. You could cause entry into the debugger at the point where the slot is set incorrectly by evaluating this form:

(clos:trace-new-instances-on-access
 'foo
 :slot-names '(bar)
 :read nil
 :when '(and (integerp (car *traced-arglist*))
 (< (car *traced-arglist*) 0))
 :break t)

and running your program.

See also

break-new-instances-on-access
untrace-new-instances-on-access
trace-on-access

trace-on-access Function

Summary

Invokes the trace facilities when an instance of a class is accessed.

Package

clos

Signature

trace-on-access instance &key read write slot-names break when process trace-output entrycond eval-before before
backtrace => instance

Arguments

instance⇓ A CLOS instance.

read⇓ A generalized boolean.

write⇓ A generalized boolean.

slot-names⇓ A list of symbols, or t.

31 The CLOS Package

381

break⇓ A generalized boolean.

when⇓ A form.

process⇓ A form.

trace-output⇓ A form.

entrycond⇓ A form.

eval-before⇓ A list of forms.

before⇓ A list of forms.

backtrace⇓ A keyword, t or nil.

Values

instance A CLOS instance.

Description

The function trace-on-access is a useful debugging function which causes access to instance to invoke the trace facilities.
Accesses include calls to slot-value and accessor functions defined by the class of instance.

The keyword arguments control which type of access are traced, and provide preconditions for tracing, code to run before
access, and how to print any trace output. They are similar to those supported by the trace macro.

Note: since trace-on-access is a function, all its arguments are evaluated before it is called. Therefore any constant
forms that are passed to trace-on-access must be quoted, unlike when using the trace macro.

read controls whether reading slots is traced. The default is t.

write controls whether writing slots is traced. The default is t.

slot-names controls which slots to trace access for. It can be a list of symbols which are the slot-names. The default value, t,
means trace access to all slots.

break controls whether the debugger is entered when a traced slot in instance is accessed. When nil, the debugger is not
invoked and messages are printed to *trace-output*. The default value is nil.

when is evaluated during slot access to determine whether any tracing should occur. The default value is t.

process is evaluated during slot access to determine whether any tracing should occur in the current process. The form should
evaluate to either nil (meaning trace in all processes), a string naming the process in which tracing should occur (see
process-name, find-process-from-name), or a list of strings naming the processes in which tracing should occur. The
default value is nil.

trace-output is evaluated during slot access to determine the stream on which to print tracing messages. If this is nil then the
value of *trace-output* is used. The default value is nil.

entrycond is evaluated during slot access to determine whether the default tracing messages should be printed.

eval-before is a list of forms which are evaluated during slot access.

before is a list of forms which are evaluated during slot access. The first value returned by each form is printed.

backtrace controls what kind of backtrace to print. If this is nil then no backtrace is printed, and this is the default value.
Otherwise it can be any of the following values:

:quick Like the :bq debugger command.

31 The CLOS Package

382

http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm

t Like the :b debugger command.

:verbose Like the :b :verbose debugger command.

:bug-form Like the :bug-form debugger command.

Other instances of the same class are unaffected and you can remove the trace by calling untrace-on-access.

The variable *traced-arglist* is bound to a list of arguments for the slot access during evaluation of the options above,
that is (instance slot-name) when reading a slot and (new-value instance slot-name) when writing a slot.

A common use of this function is to find where a slot is being changed in a complex program.

This function, when called with :break t, replaces the deprecated function break-on-access.

See also

untrace-on-access
trace-new-instances-on-access
break-on-access

unbreak-new-instances-on-access Function

Summary

Removes the trapping installed by break-new-instances-on-access. Note that this function is deprecated.

Package

clos

Signature

unbreak-new-instances-on-access class-designator => t

Arguments

class-designator⇓ The class whose trap you want to remove.

Description

The function unbreak-new-instances-on-access removes the trapping installed by
break-new-instances-on-access for the class given by class-designator. Note that this function is deprecated. You
should now use untrace-new-instances-on-access instead.

See also

untrace-new-instances-on-access

31 The CLOS Package

383

unbreak-on-access Function

Summary

Removes the trapping installed by break-on-access. Note that this function is deprecated.

Package

clos

Signature

unbreak-on-access instance

Arguments

instance⇓ A class instance.

Description

The function unbreak-on-access removes any break installed on instance by break-on-access. See
untrace-on-access for details.

Note: this function is deprecated. You should now use untrace-on-access instead.

See also

untrace-on-access

untrace-new-instances-on-access Function

Summary

Removes the tracing installed by trace-new-instances-on-access.

Package

clos

Signature

untrace-new-instances-on-access class-designator => t

Arguments

class-designator⇓ The class whose trap you want to remove.

Description

The function untrace-new-instances-on-access removes the tracing installed by

31 The CLOS Package

384

trace-new-instances-on-access for the class given by class-designator.

See also

trace-new-instances-on-access
untrace-on-access

untrace-on-access Function

Summary

Removes the tracing installed by trace-on-access.

Package

clos

Signature

untrace-on-access instance => instance

Arguments

instance⇓ A CLOS instance.

Values

instance A CLOS instance.

Description

The function untrace-on-access removes any trace installed on instance by trace-on-access.

See also

trace-on-access
untrace-new-instances-on-access

31 The CLOS Package

385

32 The COMM Package

This chapter provides reference entries for the functions in the COMM package.

The COMM package provides the TCP/IP interface. TCP/IP sockets can be used to communicate between processes and
machines and the mechanism allows LispWorks to connect to or implement a server. It also allows using Secure Sockets
Layer (SSL) processing in the socket.

The COMM package also provides the Asynchronous I/O API including UDP sockets as described in 25.8 Asynchronous I/O.

An overview of this functionality is in 25 TCP and UDP socket communication and SSL.

Before the interface can be used the module "comm" must be loaded using:

(require "comm")

accepting-handle Type

Summary

The type of object returned by accept-tcp-connections-creating-async-io-states.

Package

comm

Signature

accepting-handle

Description

Instances of the type accepting-handle are returned by accept-tcp-connections-creating-async-io-states

and are passed as the first argument to the connection-function of
accept-tcp-connections-creating-async-io-states.

The handle contains the collection with which it is associated, the underlying socket, and the user-info and handle-name that
were passed to accept-tcp-connections-creating-async-io-states.

See also

accept-tcp-connections-creating-async-io-states
close-accepting-handle
accepting-handle-socket
accepting-handle-collection
accepting-handle-local-port
accepting-handle-user-info
accepting-handle-name
25 TCP and UDP socket communication and SSL

386

accepting-handle-collection Function

Summary

Returns the collection associated with an accepting handle.

Package

comm

Signature

accepting-handle-collection accepting-handle => result

Arguments

accepting-handle⇓ An accepting-handle.

Values

result⇓ A collection or nil.

Description

The function accepting-handle-collection returns the collection associated with accepting-handle.

accepting-handle has to be an accepting handle, currently that means the result of
accept-tcp-connections-creating-async-io-states.

result is the collection that was supplied to accept-tcp-connections-creating-async-io-states, but for a closed
handle result is nil.

See also

accepting-handle
accept-tcp-connections-creating-async-io-states
25 TCP and UDP socket communication and SSL

accepting-handle-local-port Function

Summary

Returns the local port number to which the socket in an accepting-handle was bound.

Package

comm

Signature

accepting-handle-local-port accepting-handle => port-number

32 The COMM Package

387

Arguments

accepting-handle⇓ An object of type accepting-handle.

Values

port-number An integer.

Description

The function accepting-handle-local-port returns the local port number to which the socket in the
accepting-handle accepting-handle was bound.

See also

accepting-handle
accept-tcp-connections-creating-async-io-states
25 TCP and UDP socket communication and SSL

accepting-handle-name Function

Summary

Returns the name associated with an accepting handle.

Package

comm

Signature

accepting-handle-name accepting-handle => name

Arguments

accepting-handle⇓ An accepting-handle.

Values

name A Lisp object.

Description

The function accepting-handle-name returns the name associated with the accepting handle accepting-handle, which is
the handle-name argument to accept-tcp-connections-creating-async-io-states.

This name is used when printing the handle, so its printed representation should be reasonably short. Otherwise it is not
restricted.

See also

accepting-handle
accept-tcp-connections-creating-async-io-states

32 The COMM Package

388

25 TCP and UDP socket communication and SSL

accepting-handle-socket Function

Summary

Returns the socket associated with an accepting handle.

Package

comm

Signature

accepting-handle-socket accepting-handle => result

Arguments

accepting-handle⇓ An accepting-handle.

Values

result⇓ A socket or nil.

Description

The function accepting-handle-socket returns the socket associated with accepting-handle.

accepting-handle has to be an accepting handle, currently that means the result of
accept-tcp-connections-creating-async-io-states.

result is the socket that was created by accept-tcp-connections-creating-async-io-states, but for a closed
handle result is nil.

Notes

The socket "belongs" to the handle, and cannot be used for communication by other code. You can use accessors like
get-socket-address on it.

See also

accepting-handle
accept-tcp-connections-creating-async-io-states
25 TCP and UDP socket communication and SSL

accepting-handle-user-info Function

Summary

Returns the user-info associated with an accepting handle.

32 The COMM Package

389

Package

comm

Signature

accepting-handle-user-info accepting-handle => result

Arguments

accepting-handle⇓ An accepting-handle.

Values

result A Lisp object.

Description

The function accepting-handle-user-info returns the user-info associated with the handle accepting-handle, which is
the user-info argument to accept-tcp-connections-creating-async-io-states.

The system does nothing with the user-info, and its purpose is to allow you to pass information to the connection-function of
accept-tcp-connections-creating-async-io-states.

See also

accepting-handle
accept-tcp-connections-creating-async-io-states
25 TCP and UDP socket communication and SSL

accept-tcp-connections-creating-async-io-states Function

Summary

Starts accepting TCP connections to a port within a wait-state-collection.

Package

comm

Signature

accept-tcp-connections-creating-async-io-states collection service connection-function &key init-function init
-timeout backlog address nodelay keepalive ipv6 reuseport create-state name queue-output handle-name user-info ssl-ctx ssl-
side ctx-configure-callback ssl-configure-callback handshake-timeout ssl-error-callback => accepting-handle

Arguments

collection⇓ A wait-state-collection.

service⇓ An integer, a string or nil.

connection-function⇓ A function designator.

init-function⇓ nil or a function designator.

32 The COMM Package

390

init-timeout⇓ nil or a non-negative real number.

backlog⇓ nil or a positive integer.

address⇓ An integer, an ipv6-address object, a string or nil.

nodelay⇓ A generalized boolean.

keepalive⇓ A generalized boolean.

ipv6⇓ The keyword :any, nil, t or the keyword :both.

reuseport⇓ A boolean. Note: not supported on all platforms.

create-state⇓ A boolean.

name⇓ A Lisp object.

queue-output⇓ A boolean.

handle-name⇓ A Lisp object.

user-info⇓ A Lisp object.

ssl-ctx⇓ A symbol, a foreign pointer or a server ssl-abstract-context.

ssl-side⇓ One of the keywords :client, :server or :both.

ctx-configure-callback⇓
A function designator or nil. The default value is nil.

ssl-configure-callback⇓
A function designator or nil. The default value is nil.

handshake-timeout⇓ A real or nil (the default).

ssl-error-callback⇓ A function designator.

Values

accepting-handle⇓ An accepting-handle object.

Description

The function accept-tcp-connections-creating-async-io-states starts accepting TCP connections to the port
service within the wait-state-collection collection.

service is interpreted as described in 25.4 Specifying the target for connecting and binding a socket.

Each time a connection is made, connection-function is called with two arguments: accepting-handle and (by default) a new
async-io-state for the connected socket. The function typically calls async-io-state-read-buffer,
async-io-state-write-buffer or async-io-state-read-with-checking to start performing I/O. The keyword
:create-state can be used to tell accept-tcp-connections-creating-async-io-states not to create the state
and instead pass the socket itself. This is useful when you want to do the I/O "somewhere else", either by creating a
socket-stream and using ordinary read/write functions on it, or using a different wait-state-collection. The default
value of create-state is t.

If init-function is non-nil, it is called after the listening socket has been bound to the service. init-function should take one
argument: socket. socket is the socket used by the server, which can be used to determine the bound port number by calling
get-socket-address.

If the port number specified by service is already in use, then accept-tcp-connections-creating-async-io-states

periodically tries to bind to the port number for up to 1 minute (or init-timeout seconds if this is non-nil).

32 The COMM Package

391

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

queue-output controls what happens if you try to perform a write operation on any of the states that
accept-tcp-connections-creating-async-io-states creates while another write operation is in progress on the
same state. When queue-output is nil, such an operation will cause an error. When queue-output is non-nil, the second write
operation is queued and actually executed later. The default value of queue-output is nil.

The result accepting-handle is an object of type accepting-handle, which is the same object that will be passed to
connection-function. It can be used to stop accepting and closing the socket by close-accepting-handle, and also
retrieving the socket.

handle-name and user-info are stored in the accepting-handle object. user-info is not touched in any way by the system,
and it is intended for you to pass information to connection-function. handle-name is used when printing the handle, but is
not accessed otherwise.

When ssl-ctx is non-nil, accept-tcp-connections-creating-async-io-states always creates an
async-io-state (ignoring create-state), and attaches SSL to it. ssl-side, ssl-ctx, ctx-configure-callback, ssl-configure-
callback and handshake-timeout are interpreted as described in 25.9.6 Keyword arguments for use with SSL.

ssl-error-callback defaults to error. It is called when there is any error while attaching SSL to the new socket. Such errors
can be either the result of an error in the configuration functions, or (more commonly) an error during the SSL handshake. ssl
-error-callback is called from the thread of the wait-state-collection that was passed to
accept-tcp-connections-creating-async-io-states. The socket is discarded before Sssl-error-callback is called.

For details of backlog, address, nodelay, keepalive, ipv6 and reuseport, see start-up-server.

The default value of nodelay is t.

The default value of ipv6 is :any.

The default value of name is a string "Listening".

Notes

accept-tcp-connections-creating-async-io-states binds the socket synchronously, that is when it returns
successfully the socket is already bound. However, it already started accepting connections. If you need to access the socket
after binding and before starting to accept connections, then do this in init-function.

When create-state is nil, the socket handle that connection-function receives can be use in a socket-stream,
async-io-state or in FLI functions using the native TCP socket interface. If the socket handle is stored in a
socket-stream or an async-io-state, it is closed automatically when the object is closed (by close or
close-async-io-state), otherwise you need to close it by calling close-socket-handle when you have finished with
it.

connection-function, ctx-configure-callback, ssl-configure-callback and ssl-error-callback are called in the same process that
processes collection (see 25.8.3 Writing callbacks in Asynchronous I/O operations).

See also

create-async-io-state
create-async-io-state-and-connected-tcp-socket
25.8.2 The Async-I/O-State API
accepting-handle
accepting-handle-local-port
close-accepting-handle
create-ssl-server-context
close-socket-handle
25 TCP and UDP socket communication and SSL

32 The COMM Package

392

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

apple-err-ssl-protocol
apple-err-ssl-negotiation
apple-err-ssl-fatal-alert
apple-err-ssl-would-block
apple-err-ssl-session-not-found
apple-err-ssl-closed-graceful
apple-err-ssl-closed-abort
apple-err-ssl-x-cert-chain-invalid
apple-err-ssl-bad-cert
apple-err-ssl-crypto
apple-err-ssl-internal
apple-err-ssl-module-attach
apple-err-ssl-unknown-root-cert
apple-err-ssl-no-root-cert
apple-err-ssl-cert-expired
apple-err-ssl-cert-not-yet-valid
apple-err-ssl-closed-no-notify
apple-err-ssl-buffer-overflow
apple-err-ssl-bad-cipher-suite
apple-err-ssl-peer-unexpected-msg
apple-err-ssl-peer-bad-record-mac
apple-err-ssl-peer-decryption-fail
apple-err-ssl-peer-record-overflow
apple-err-ssl-peer-decompress-fail
apple-err-ssl-peer-handshake-fail
apple-err-ssl-peer-bad-cert
apple-err-ssl-peer-unsupported-cert
apple-err-ssl-peer-cert-revoked
apple-err-ssl-peer-cert-expired
apple-err-ssl-peer-cert-unknown
apple-err-ssl-illegal-param
apple-err-ssl-peer-unknown-ca
apple-err-ssl-peer-access-denied
apple-err-ssl-peer-decode-error

32 The COMM Package

393

apple-err-ssl-peer-decrypt-error
apple-err-ssl-peer-export-restriction
apple-err-ssl-peer-protocol-version
apple-err-ssl-peer-insufficient-security
apple-err-ssl-peer-internal-error
apple-err-ssl-peer-user-cancelled
apple-err-ssl-peer-no-renegotiation
apple-err-ssl-peer-auth-completed
apple-err-ssl-client-cert-requested
apple-err-ssl-host-name-mismatch
apple-err-ssl-connection-refused
apple-err-ssl-decryption-fail
apple-err-ssl-bad-record-mac
apple-err-ssl-record-overflow
apple-err-ssl-bad-configuration
apple-err-ssl-unexpected-record
apple-err-ssl-weak-peer-ephemeral-dh-key
apple-err-ssl-client-hello-received Constants

Summary

Typical error codes when using the Apple SSL implementation.

Package

comm

Description

The apple-err-ssl-… constants are the typical error codes that you may get when using the Apple SSL implmentation.
The error codes come from the underlying macOS implementation of SSL. The error code can be found using the reader
ssl-condition-ssl-code on a ssl-condition that is signaled when an error is detected.

The following table lists the constant, the matching variable in C, the actual value, and the message associated with each
variable:

APPLE SSL error codes

Lisp constant C name Value Associated message

32 The COMM Package

394

apple-err-ssl-protoco
l

errSSLProtocol -9800 SSL protocol error

apple-err-ssl-negotia
tion

errSSLNegotiation -9801 Cipher Suite negotiation
failure

apple-err-ssl-fatal-a
lert

errSSLFatalAlert -9802 Fatal alert

apple-err-ssl-would-b
lock

errSSLWouldBlock -9803 I/O would block (not fatal)

apple-err-ssl-session
-not-found

errSSLSessionNotFound -9804 attempt to restore an
unknown session

apple-err-ssl-closed-
graceful

errSSLClosedGraceful -9805 connection closed
gracefully

apple-err-ssl-closed-
abort

errSSLClosedAbort -9806 connection closed via error

apple-err-ssl-x-cert-
chain-invalid

errSSLXCertChainInval
id

-9807 invalid certificate chain

apple-err-ssl-bad-cer
t

errSSLBadCert -9808 bad certificate format

apple-err-ssl-crypto errSSLCrypto -9809 underlying cryptographic
error

apple-err-ssl-interna
l

errSSLInternal -9810 Internal error

apple-err-ssl-module-
attach

errSSLModuleAttach -9811 module attach failure

apple-err-ssl-unknown
-root-cert

errSSLUnknownRootCert -9812 valid cert chain, untrusted
root

apple-err-ssl-no-root
-cert

errSSLNoRootCert -9813 cert chain not verified by
root

apple-err-ssl-cert-ex
pired

errSSLCertExpired -9814 chain had an expired cert

apple-err-ssl-cert-no
t-yet-valid

errSSLCertNotYetValid -9815 chain had a cert not yet
valid

apple-err-ssl-closed-
no-notify

errSSLClosedNoNotify -9816 server closed session with
no notification

apple-err-ssl-buffer-
overflow

errSSLBufferOverflow -9817 insufficient buffer provided

apple-err-ssl-bad-cip
her-suite

errSSLBadCipherSuite -9818 bad SSLCipherSuite

apple-err-ssl-peer-un
expected-msg

errSSLPeerUnexpectedM
sg

-9819 unexpected message
received

apple-err-ssl-peer-ba
d-record-mac

errSSLPeerBadRecordMa
c

-9820 bad MAC

apple-err-ssl-peer-de
cryption-fail

errSSLPeerDecryptionF
ail

-9821 decryption failed

apple-err-ssl-peer-re
cord-overflow

errSSLPeerRecordOverf
low

-9822 record overflow

32 The COMM Package

395

apple-err-ssl-peer-de
compress-fail

errSSLPeerDecompressF
ail

-9823 decompression failure

apple-err-ssl-peer-ha
ndshake-fail

errSSLPeerHandshakeFa
il

-9824 handshake failure

apple-err-ssl-peer-ba
d-cert

errSSLPeerBadCert -9825 misc. bad certificate

apple-err-ssl-peer-un
supported-cert

errSSLPeerUnsupported
Cert

-9826 bad unsupported cert format

apple-err-ssl-peer-ce
rt-revoked

errSSLPeerCertRevoked -9827 certificate revoked

apple-err-ssl-peer-ce
rt-expired

errSSLPeerCertExpired -9828 certificate expired

apple-err-ssl-peer-ce
rt-unknown

errSSLPeerCertUnknown -9829 unknown certificate

apple-err-ssl-illegal
-param

errSSLIllegalParam -9830 illegal parameter

apple-err-ssl-peer-un
known-ca

errSSLPeerUnknownCa -9831 unknown Cert Authority

apple-err-ssl-peer-ac
cess-denied

errSSLPeerAccessDenie
d

-9832 access denied

apple-err-ssl-peer-de
code-error

errSSLPeerDecodeError -9833 decoding error

apple-err-ssl-peer-de
crypt-error

errSSLPeerDecryptErro
r

-9834 decryption error

apple-err-ssl-peer-ex
port-restriction

errSSLPeerExportRestr
iction

-9835 export restriction

apple-err-ssl-peer-pr
otocol-version

errSSLPeerProtocolVer
sion

-9836 bad protocol version

apple-err-ssl-peer-in
sufficient-security

errSSLPeerInsufficien
tSecurity

-9837 insufficient security

apple-err-ssl-peer-in
ternal-error

errSSLPeerInternalErr
or

-9838 internal error

apple-err-ssl-peer-us
er-cancelled

errSSLPeerUserCancell
ed

-9839 user canceled

apple-err-ssl-peer-no
-renegotiation

errSSLPeerNoRenegotia
tion

-9840 no renegotiation allowed

apple-err-ssl-peer-au
th-completed

errSSLPeerAuthComplet
ed

-9841 peer cert is valid, or was
ignored if verification
disabled

apple-err-ssl-client-
cert-requested

errSSLClientCertReque
sted

-9842 server has requested a client
cert

apple-err-ssl-host-na
me-mismatch

errSSLHostNameMismatc
h

-9843 peer host name mismatch

apple-err-ssl-connect
ion-refused

errSSLConnectionRefus
ed

-9844 peer dropped connection
before responding

apple-err-ssl-decrypt
ion-fail

errSSLDecryptionFail -9845 decryption failure

32 The COMM Package

396

apple-err-ssl-bad-rec
ord-mac

errSSLBadRecordMac -9846 bad MAC

apple-err-ssl-record-
overflow

errSSLRecordOverflow -9847 record overflow

apple-err-ssl-bad-con
figuration

errSSLBadConfiguratio
n

-9848 configuration error

apple-err-ssl-unexpec
ted-record

errSSLUnexpectedRecor
d

-9849 unexpected (skipped) record
in DTLS

apple-err-ssl-weak-pe
er-ephemeral-dh-key

errSSLWeakPeerEphemer
alDhKey

-9850 weak ephemeral dh key

apple-err-ssl-client-
hello-received

errSSLClientHelloRece
ived

-9851 SNI

Notes

apple-err-ssl-record-overflow is what you typicaly get when the peer does not use SSL.

See also

ssl-condition

apply-in-wait-state-collection-process Function

Summary

Applies a function in the process that is associated with a wait-state-collection.

Package

comm

Signature

apply-in-wait-state-collection-process collection function &rest args

Arguments

collection⇓ A wait-state-collection.

function⇓ A function designator.

args⇓ Lisp objects.

Description

The function apply-in-wait-state-collection-process applies function to the arguments args in the process that is
associated with collection.

A process is associated with collection when it calls wait-for-wait-state-collection, typically from
loop-processing-wait-state-collection. Normally only one process will do this for each individual
wait-state-collection.

32 The COMM Package

397

apply-in-wait-state-collection-process is asynchronous. It sends an appropriate message to the process or
collection, and returns immediately, even if it is called from that process. The application happens at an undefined time inside
the scope of call to call-wait-state-collection for collection.

There is no documented return value.

See also

call-wait-state-collection
loop-processing-wait-state-collection
wait-state-collection
25 TCP and UDP socket communication and SSL

async-io-ssl-failure-indicator-from-failure-args Function

Summary

Extract the SSL failure from the failure argument list of an asynchronous I/O callback.

Package

comm

Signature

async-io-ssl-failure-indicator-from-failure-args failure-args => ssl-failure-indicator

Arguments

failure-args⇓ Any Lisp object.

Values

ssl-failure-indicator⇓
A ssl-condition, :timeout, :closed or nil.

Description

The function async-io-ssl-failure-indicator-from-failure-args is intended to be called with the failure
arguments list that callback in create-async-io-state-and-connected-tcp-socket and
async-io-state-attach-ssl receives as its second argument when a failure occurs.
async-io-ssl-failure-indicator-from-failure-args checks if failure-args was generated as such an argument,
and if it was, extracts the error indicator from it. ssl-failure-indicator is :timeout if the handshake timed out, :closed if
the socket was closed (with a proper shutdown) during the handshake, or a ssl-condition for other SSL failures. ssl-
failure-indicator is nil if some other error occured, for example failure to connect.

Notes

async-io-ssl-failure-indicator-from-failure-args is needed because the argument to callback in
create-async-io-state-and-connected-tcp-socket and async-io-state-attach-ssl is a list of arguments
for format, which is intended for printing/logging. async-io-ssl-failure-indicator-from-failure-args makes
it easier to decide programmatically what the reason for failure is.

32 The COMM Package

398

http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm

See also

25.9.8 Errors in SSL
create-async-io-state-and-connected-tcp-socket
async-io-state-attach-ssl

async-io-state System Class

Summary

A class of objects that can be used to perform asynchronous I/O.

Package

comm

Superclasses

t

Accessors

async-io-state-name
async-io-state-read-timeout
async-io-state-write-timeout
async-io-state-user-info

Readers

async-io-state-collection
async-io-state-object

Description

Instances of the system class async-io-state can be used to perform asynchronous I/O.

The reader async-io-state-collection returns the wait-state-collection associated with an async-io-state.

The reader async-io-state-object returns the object that was supplied in the call to create-async-io-state that
created the async-io-state.

The accessor async-io-state-name is used to access the name of an async-io-state. The name can be any Lisp
object that names the state for debugging purposes.

The accessor async-io-state-read-timeout is used to access the read-timeout of an async-io-state. The read-
timeout is nil if there is no timeout and otherwise is a positive real representing the timeout in seconds.

The accessor async-io-state-write-timeout is used to access the write-timeout of an async-io-state. The write-
timeout is nil if there is no timeout and otherwise is a positive real representing the timeout in seconds.

The accessor async-io-state-user-info is used to access the user-info of an async-io-state. The user-info can be
any Lisp object and LispWorks itself does not use it for any purpose.

32 The COMM Package

399

See also

async-io-state-max-read
async-io-state-old-length
async-io-state-read-status
async-io-state-write-status
create-async-io-state
create-async-io-state-and-connected-tcp-socket
create-async-io-state-and-connected-udp-socket
create-async-io-state-and-udp-socket
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

async-io-state-abort Function

Summary

Stops I/O and callbacks on an async-io-state and calls an abort callback.

Package

comm

Signature

async-io-state-abort async-io-state abort-callback &optional direction

Arguments

async-io-state⇓ An async-io-state.

abort-callback⇓ A function designator.

direction⇓ One of the keywords :input, :output and :io.

Description

The function async-io-state-abort stops further I/O and calls to any callbacks for direction direction in async-io-state
and asynchronously calls abort-callback with the same arguments that the callback for a running operation would be called,
except when direction is :io, when the callback is called with the state only.

The default value of direction is :input.

If by the time abort-callback is called there is no active operation, then abort-callback is called with async-io-state and nil

for the other arguments.

If async-io-state-abort is called while a callback is running, its effect is delayed until the callback returns.

abort-callback can do what the other callbacks can do. In particular, it can reuse async-io-state, and when it aborts
async-io-state-read-with-checking it can decide how much of the buffered data to discard by calling
async-io-state-discard.

Notes

Due to the asynchronous delay between the time that async-io-state-abort is called and the time that abort-callback is
called, the callback of the operation may have already been called, so if abort-callback does anything except closing async-io

32 The COMM Package

400

state it will normally have to check the state's async-io-state-read-status.

See also

async-io-state-abort-and-close
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

async-io-state-abort-and-close Function

Summary

Aborts any I/O on an async-io-state, closes it and optionally calls a callback.

Package

comm

Signature

async-io-state-abort-and-close async-io-state &key close-callback keep-alive-p

Arguments

async-io-state⇓ An async-io-state.

close-callback⇓ A function designator for a function of one argument, or nil.

keep-alive-p⇓ A generalized boolean.

Description

The function async-io-state-abort-and-close aborts any I/O on async-io-state, closes it and optionally calls close-
callback.

async-io-state-abort-and-close first aborts any I/O operation that is in progress, and then closes the state (using
close-async-io-state).

The value of keep-alive-p is passed to close-async-io-state.

If close-callback is non-nil, it should be a function taking one argument. It is called with the state as its argument after the
state is closed.

async-io-state-abort-and-close is asynchronous. The state is known to be closed only when close-callback is called.

See close-async-io-state about accessing the state after it is closed.

See also

async-io-state-abort
close-async-io-state
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

32 The COMM Package

401

async-io-state-address Function

Summary

Returns the local address and port number for an async-io-state that has a socket.

Package

comm

Signature

async-io-state-address async-io-state => address, port

Arguments

async-io-state⇓ An async-io-state.

Values

address⇓ An integer or an ipv6-address object.

port⇓ An integer.

Description

The function async-io-state-address returns the local address and port number for async-io-state if it has a socket
(currently all states).

address is the local host address of the socket in async-io-state.

port is the local port number of the socket in async-io-state.

See also

async-io-state-peer-address
get-socket-address
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

async-io-state-attach-ssl Function

Summary

Attaches SSL to an async-io-state that contains a TCP socket.

Package

comm

32 The COMM Package

402

Signature

async-io-state-attach-ssl async-io-state callback &key ssl-side ssl-ctx ctx-configure-callback ssl-configure-callback
handshake-timeout tlsext-host-name

Arguments

async-io-state⇓ An async-io-state.

callback⇓ A function designator for a function with two arguments.

ssl-side⇓ One of the keywords :client, :server or :both.

ssl-ctx⇓ A symbol or a foreign pointer.

ctx-configure-callback⇓
A function designator or nil. The default value is nil.

ssl-configure-callback⇓
A function designator or nil. The default value is nil.

handshake-timeout⇓ A real or nil (the default).

tlsext-host-name⇓ A string or nil.

Description

The function async-io-state-attach-ssl attaches SSL to async-io-state, which must contain a TCP socket, typically
the result of create-async-io-state or a state created by
accept-tcp-connections-creating-async-io-states. async-io-state must not have SSL attached to it already.

ssl-side, ssl-ctx, ctx-configure-callback, ssl-configure-callback and handshake-timeout are interpreted as described in 25.9.6
Keyword arguments for use with SSL. ssl-ctx defaults to t and ssl-side defaults to :server.

When SSL has been attached successfully or otherwise, callback is called with two arguments: async-io-state and an error-
indicator. The error-indicator is nil when successful, otherwise it is a list of a format control-string and args, suitable for
applying to format. When the error-indicator is non-nil, async-io-state is not attached to SSL.

async-io-state-attach-ssl must not be called when there is any other operation on async-io-state and new operations
on async-io-state must not be started before callback has been called.

If tlsext-host-name is non-nil, then the SNI extension in the SSL connection is set to its value.

Notes

create-async-io-state-and-connected-tcp-socket and
accept-tcp-connections-creating-async-io-states can attach SSL themselves, and in most cases that is the best
way to do it. async-io-state-attach-ssl allows the attachment to be done later.

See also

create-async-io-state-and-connected-tcp-socket
accept-tcp-connections-creating-async-io-states
async-io-state-detach-ssl
25.9.5 Using Asynchronous I/O with SSL
25 TCP and UDP socket communication and SSL

32 The COMM Package

403

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm

async-io-state-buffered-data-length Function

Summary

Returns the length of the buffered data in an async-io-state.

Package

comm

Signature

async-io-state-buffered-data-length async-io-state => length

Arguments

async-io-state⇓ An async-io-state.

Values

length A non-negative integer.

Description

The function async-io-state-buffered-data-length returns the length of the buffered data in async-io-state.

See also

async-io-state-get-buffered-data
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

async-io-state-ctx Function

Summary

Accesses the SSL_CTX attached to an async-io-state.

Package

comm

Signature

async-io-state-ctx async-io-state => ssl-ctx-pointer

Arguments

async-io-state⇓ An async-io-state.

32 The COMM Package

404

Values

ssl-ctx-pointer A foreign pointer or nil.

Description

The function async-io-state-ctx accesses the SSL_CTX that is attached to the async-io-state async-io-state. This is
of type ssl-ctx-pointer when using the :openssl implementation and of type ssl-context-ref when using the
:apple implementation.

It returns nil if SSL is not attached.

See also

async-io-state
ssl-ctx-pointer
25 TCP and UDP socket communication and SSL

async-io-state-detach-ssl Function

Summary

Detaches SSL to an async-io-state that contains a TCP socket.

Package

comm

Signature

async-io-state-detach-ssl async-io-state callback

Arguments

async-io-state⇓ An async-io-state.

callback⇓ A function designator for a function with one argument.

Description

The function async-io-state-detach-ssl detaches SSL from async-io-state. Subsequent communications through
async-io-state will be without SSL.

When SSL has been detached, callback is called with async-io-state.

If async-io-state did not have SSL attached then async-io-state-detach-ssl has no effect.

async-io-state-detach-ssl must not be called when there is any other operation on async-io-state, and new operations
on async-io-state must not be started before callback has been called.

Notes

There is no need to call async-io-state-detach-ssl before close-async-io-state because that also detaches SSL.

32 The COMM Package

405

See also

async-io-state-attach-ssl
close-async-io-state
25.9.5 Using Asynchronous I/O with SSL
25 TCP and UDP socket communication and SSL

async-io-state-discard Function

Summary

Discards some bytes from the internal buffer in an async-io-state.

Package

comm

Signature

async-io-state-discard async-io-state discard => unread-buffer-length

Arguments

async-io-state⇓ An async-io-state.

discard⇓ A positive integer.

Values

unread-buffer-length⇓ A non-negative integer.

Description

The function async-io-state-discard discards the first discard bytes from the internal buffer in async-io-state. The rest
of the buffer is preserved for future reading.

async-io-state-discard must only be called inside the scope of the callback of
async-io-state-read-with-checking. Once async-io-state-discard has been called, the callback must not
access the buffer again.

The return value unread-buffer-length is the remaining number of bytes in the buffer.

See also

async-io-state-read-with-checking
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

32 The COMM Package

406

async-io-state-finish Function

Summary

Stops the current read operation in an async-io-state.

Package

comm

Signature

async-io-state-finish async-io-state &optional discard => unread-buffer-length

Arguments

async-io-state⇓ An async-io-state.

discard⇓ A positive integer or nil.

Values

unread-buffer-length⇓ A non-negative integer.

Description

The function async-io-state-finish stops the current read operation in async-io-state, so no further calls to the
async-io-state-read-with-checking callback will occur. If discard is non-nil, then it discards the first discard bytes
from the internal buffer in async-io-state. The rest of the buffer is preserved for future reading.

async-io-state-finish must only be called inside the scope of the callback of
async-io-state-read-with-checking. Once async-io-state-finish has been called, the callback must not
access the buffer again and a new read operation can be started.

The return value unread-buffer-length is the remaining number of bytes in the buffer.

See also

async-io-state-read-with-checking
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

async-io-state-get-buffered-data Function

Summary

Copies buffered data from an async-io-state and discards it from the state.

Package

comm

32 The COMM Package

407

Signature

async-io-state-get-buffered-data async-io-state buffer &key start end => length

Arguments

async-io-state⇓ An async-io-state.

buffer⇓ A cl:base-string or an 8-bit cl:simple-array.

start⇓ A lower bounding index designator for buffer.

end⇓ An upper bounding index designator for buffer.

Values

length⇓ A non-negative integer.

Description

The function async-io-state-get-buffered-data copies to the buffer buffer (between start and end) as much as
possible of the buffered data in async-io-state and discards it from async-io-state.

The default value of start is 0. The default value of end is the length of buffer.

The return value length is the number of elements copied into buffer.

async-io-state-get-buffered-data cannot be called while an operation is active in async-io-state, that is between the
call to async-io-state-read-buffer or async-io-state-write-buffer, and the call to the callback or
async-io-state-abort, or between a call to async-io-state-read-with-checking and the call to
async-io-state-finish or async-io-state-abort.

Notes

Use async-io-state-buffered-data-length to find how much buffered data there is in async-io-state.

See also

async-io-state-buffered-data-length
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

async-io-state-handshake Function

Summary

Perform a SSL handshake on an async-io-state.

Package

comm

Signature

async-io-state-handshake async-io-state callback &optional timeout

32 The COMM Package

408

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ar.htm

Arguments

async-io-state⇓ A socket-stream.

callback⇓ A function designator for a function with two arguments.

timeout⇓ nil or a real.

Description

The function async-io-state-handshake performs a handshake on async-io-state, which must be attached to SSL.

When the handshake has finished successfully or failed, callback is called with two arguments: async-io-state and an error-
indicator. The error-indicator is nil when successful, otherwise it is a list suitable for an error call as in
(apply 'error error-indicator). The async-io-state-read-status of async-io-state is also set appropriately.

If the handshake does not finish in timeout seconds, callback is called with non-nil error-indicator:
("Handshake timed out"), and the async-io-state-read-status is set to :timeout. If the other side closes the
socket cleanly, callback is called error-indicator: ("SSL connection closed"), and the
async-io-state-read-status is set to :eof. Other cases indicate an actual error in the handshake.

async-io-state-handshake must not be called when there is any other operation on async-io-state and new operations
on async-io-state must not be started before callback has been called.

Notes

If SSL was attached with ssl-side :both, then you will need to specify which side to take in the handshake by calling
ssl-set-accept-state or ssl-set-connect-state with the ssl-pointer return by socket-stream-ssl.

See also

async-io-state
25.9 Using SSL
25 TCP and UDP socket communication and SSL

async-io-state-max-read Accessor

Summary

Accesses the maximum bytes to read of an async-io-state.

Package

comm

Signature

async-io-state-max-read async-io-state => max-read

setf (async-io-state-max-read async-io-state) max-read => max-read

Arguments

async-io-state⇓ An async-io-state.

32 The COMM Package

409

max-read⇓ An integer.

Values

max-read⇓ An integer.

Description

The accessor async-io-state-max-read is used to read and write the maximum bytes to try to read of async-io-state.
max-read is an integer specifying the maximum number of bytes to try to read between calls to the callback in
async-io-state-read-with-checking.

See also

async-io-state
async-io-state-read-with-checking
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

async-io-state-old-length Function

Summary

Returns the old length of an async-io-state.

Package

comm

Signature

async-io-state-old-length async-io-state => old-length

Arguments

async-io-state⇓ An async-io-state.

Values

old-length⇓ An integer.

Description

The function async-io-state-old-length is used to get the old length of async-io-state. old-length is an integer
specifying the length of the old part in the buffer, that is the part that was seen in the previous invocation of the callback in
async-io-state-read-with-checking.

See also

async-io-state
async-io-state-read-with-checking
25.8.2 The Async-I/O-State API

32 The COMM Package

410

25 TCP and UDP socket communication and SSL

async-io-state-peer-address Function

Summary

Returns the local address and port number for an async-io-state state that has a connected socket.

Package

comm

Signature

async-io-state-peer-address async-io-state => address, port

Arguments

async-io-state⇓ An async-io-state.

Values

address⇓ An integer, an ipv6-address or nil.

port⇓ An integer or nil.

Description

The function async-io-state-peer-address returns the remote address and port number for async-io-state if it has a
socket which is connected.

address is the remote host address of the socket in the state.

port is the remote port number of the socket in the state.

For an unconnected socket both address and port are nil.

See also

async-io-state-address
get-socket-peer-address
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

async-io-state-read-buffer Function

Summary

Asynchronously fills a buffer with bytes read from an async-io-state.

32 The COMM Package

411

Package

comm

Signature

async-io-state-read-buffer async-io-state buffer callback &key start end timeout error-callback user-info

Arguments

async-io-state⇓ An async-io-state.

buffer⇓ A cl:base-string or an 8-bit cl:simple-array.

callback⇓ A function designator for a function of 3 arguments.

start⇓ A lower bounding index designator for buffer.

end⇓ An upper bounding index designator for buffer.

timeout⇓ nil or a positive real.

error-callback⇓ A function designator for a function of 3 arguments, or nil.

user-info⇓ A Lisp object.

Description

The function async-io-state-read-buffer asynchronously fills the buffer buffer between start and end with bytes read
from async-io-state. When buffer is full (between start and end) or the async-io-state-read-timeout of async-io-state
has passed, callback is called like this:

callback async-io-state buffer number-of-bytes-read

If an error occurs during the I/O operation and error-callback is non-nil, then error-callback is called with these same
arguments:

error-callback async-io-state buffer number-of-bytes-read

If error-callback is nil, then callback is called, so it should check for errors using async-io-state-read-status.

The default value of start is 0. The default value of end is the length of buffer.

If the operation does not finish within the state's async-io-state-read-timeout period then state's
async-io-state-read-status is set to :timeout and callback is called.

If timeout or user-info are supplied then they set async-io-state-read-timeout and async-io-state-user-info in
async-io-state for this and subsequent operations.

If another read operation on the state is in progress, an error is signaled.

Notes

callback and error-callback are called in the same process that processes the wait-state-collection of async-io-state
(see 25.8.3 Writing callbacks in Asynchronous I/O operations).

See also

async-io-state-write-buffer

32 The COMM Package

412

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ar.htm

async-io-state-read-with-checking
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

async-io-state-read-status
async-io-state-write-status Functions

Summary

Returns the read or write status of an async-io-state.

Package

comm

Signatures

async-io-state-read-status async-io-state => read-status

async-io-state-write-status async-io-state => write-status

Arguments

async-io-state⇓ An async-io-state.

Values

read-status⇓ nil, :eof, :timeout or an error value.

write-status⇓ nil, :eof, :timeout or an error value.

Description

The function async-io-state-read-status returns the read status of async-io-state. read-status is nil for a working
socket, :eof for end of file, :timeout if a timeout has occurred or some other values meaning an error has occurred.

The function async-io-state-write-status returns the write status of async-io-state. write-status is nil for a working
socket, :eof for end of file, :timeout if a timeout has occurred or some other values meaning an error has occurred.

See also

async-io-state
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

async-io-state-read-with-checking Function

Summary

Repeatedly tries to read bytes from an async-io-state, and invokes a callback.

32 The COMM Package

413

Package

comm

Signature

async-io-state-read-with-checking async-io-state callback &key timeout max-read error-callback user-info element
-type

Arguments

async-io-state⇓ An async-io-state.

callback⇓ A function designator for a function of 3 arguments, or nil.

timeout⇓ nil or a positive real.

max-read⇓ A positive integer.

error-callback⇓ A function designator for a function of 3 arguments, or nil.

user-info⇓ A Lisp object.

element-type⇓ A type specifier.

Description

The function async-io-state-read-with-checking repeatedly tries to read up to async-io-state-max-read more
bytes from async-io-state, append them to the internal buffer and call callback like this:

callback async-io-state buffer end

async-io-state is the argument to async-io-state-read-with-checking, buffer is a cl:simple-array of element
type element-type containing data from index 0 up to end, and end is a positive integer indicating the end of the filled part of
buffer.

The buffer must not be modified or accessed outside the scope of the callback or after async-io-state-discard or
async-io-state-finish have been called.

The element type of buffer is element-type, which can be base-char, (unsigned-byte 8) or (signed-byte 8). The
default value of element-type is base-char.

The callback is responsible for processing the data in the buffer and optionally indicating that the read operation is complete
as follows:

• The function async-io-state-old-length can be used to find the length of the old part in the buffer, that is the part
that contained data in the previous call to the callback. When async-io-state-read-with-checking is called, it
resets the old length to 0, so async-io-state-old-length returns 0 in the first invocation of callback.

• You can use async-io-state-discard with discard between 0 and end to discard the first discard bytes of the buffer.
This is typically done when the callback has processed some of the bytes and does not want to see them again. Until
bytes are discarded explicitly, they are accumulated in the buffer for subsequent calls to the callback.

• When the callback decides that the operation is complete, it needs to call async-io-state-finish. This optionally
discards bytes as described above, and keeps the remaining bytes for future read operations from async-io-state.

If the operation does not finish within the state's async-io-state-read-timeout period then the callback is called with
the state's async-io-state-read-status set to :timeout.

If an error occurs during the I/O operation and error-callback is non-nil, then error-callback is called like this:

32 The COMM Package

414

http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

error-callback async-io-state buffer end

If error-callback is nil, then callback is called, so it should check for errors using async-io-state-read-status.

If timeout, max-read or user-info are supplied then they set async-io-state-read-timeout,
async-io-state-max-read and async-io-state-user-info in async-io-state for this and subsequent operations.

If another read operation is in progress on the state, an error is signaled.

Notes

Once the callback has called async-io-state-finish it can start further reading operations on async-io-state. The
accessors async-io-state-read-timeout, async-io-state-max-read and async-io-state-user-info can be
used to read and write the corresponding values in the callback.

callback and error-callback are called in the same process that processes the wait-state-collection of async-io-state
(see 25.8.3 Writing callbacks in Asynchronous I/O operations).

Examples

Reading http headers, which are separated from the http body by two consecutive newlines. We assume these functions:

1. my-parse-http-headers which takes a buffer, start and end and returns a parsed headers-object.

2. my-read-http-body takes an async-io-state, headers-object and a user-defined object and reads the body via the
Async-IO-State API.

3. my-record-socket-error which takes a user defined object and the error flag and handles a socket error.

4. find-nn-in-buffer which takes buffer, start and end and returns the index of the first two consecutive newlines if any.

The callback is defined like this:

(defun http-header-reading-callback (state buffer end)
 (if-let (cannot-read
 (async-io-state-read-status state))
 (my-record-socket-error
 (async-io-state-user-info state)
 cannot-read)
 (let ((start (async-io-state-old-length state)))
 (let ((start-search-for-nn
 (if (zerop start) 0 (1- start))))
 (when-let (h-end (find-nn-in-buffer
 buffer
 start-search-for-nn
 end))
 (let ((h-object (my-parse-http-headers
 buffer 0 h-end)))
 (async-io-state-finish state (+ h-end 2))
 (my-read-http-body
 state
 h-object
 (async-io-state-user-info state))))))))

The callback is used like this:

(async-io-state-read-with-checking
 state
 'http-header-reading-callback)

32 The COMM Package

415

See also

async-io-state-read-buffer
async-io-state-write-buffer
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

async-io-state-receive-message Function

Summary

Asynchronously receives a message from a socket.

Package

comm

Signature

async-io-state-receive-message async-io-state buffer callback &key start end timeout error-callback needs-address
user-info

Arguments

async-io-state⇓ An async-io-state.

buffer⇓ A cl:base-string or an 8-bit cl:simple-array.

callback⇓ A function designator.

start⇓ A lower bounding index designator for buffer.

end⇓ An upper bounding index designator for buffer.

timeout⇓ nil or a non-negative real.

error-callback⇓ A function designator.

needs-address⇓ A boolean.

user-info⇓ A Lisp object.

Description

The function async-io-state-receive-message starts a read operation of "receiving" on async-io-state, which means
that when there is input on the socket it calls recv or recvfrom to read the data into buffer between start and end.

The default value of start is 0. The default value of end is the length of buffer.

callback should be a function of 3 or 5 arguments. If the reading succeeds and needs-address is nil, then callback is called
with this signature:

callback async-io-state buffer number-of-bytes-read

If the reading succeeds and needs-address is non-nil, then callback is called with this signature:

callback async-io-state buffer number-of-bytes-read ip-address port-number

32 The COMM Package

416

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ar.htm

where ip-address and port-number are the socket address of the sender, and can be used as the hostspec and service when
required. Typically these are used in async-io-state-send-message-to-address to send a message back to the
sender.

The default value of needs-address is nil.

error-callback, timeout, start, end and user-info have the same meaning as in async-io-state-read-buffer.

Notes

1. async-io-state-receive-message is typically used only with an async-io-state containing a UDP socket,
created by create-async-io-state-and-udp-socket,
create-async-io-state-and-connected-udp-socket or calling create-async-io-state with udp non-nil.

2. The socket may or may not be connected.

Examples

(example-edit-file "async-io/udp")

See also

create-async-io-state-and-udp-socket
create-async-io-state-and-connected-udp-socket
async-io-state-send-message
async-io-state-send-message-to-address
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

async-io-state-send-message Function

Summary

Asynchronously sends a message on a connected socket.

Package

comm

Signature

async-io-state-send-message async-io-state buffer callback &key start end timeout error-callback user-info

Arguments

async-io-state⇓ An async-io-state.

buffer⇓ A cl:base-string or an 8-bit cl:simple-array.

callback⇓ A function designator for a function of 1 argument.

start⇓ A lower bounding index designator for buffer.

end⇓ An upper bounding index designator for buffer.

timeout⇓ nil or a non-negative real.

32 The COMM Package

417

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ar.htm

error-callback⇓ A function designator.

user-info⇓ A Lisp object.

Description

The function async-io-state-send-message asynchronously sends a message from buffer between start and end. The
socket in async-io-state must be connected. When the send is successful, callback is called with async-io-state as its only
argument.

The default value of start is 0. The default value of end is the length of buffer.

error-callback, timeout, start, end and user-info have the same meaning as in async-io-state-write-buffer.

Notes

async-io-state-send-message is typically used only with an async-io-state containing a UDP socket, created by
create-async-io-state-and-udp-socket, create-async-io-state-and-connected-udp-socket or calling
create-async-io-state with udp non-nil.

The contents of buffer must not be changed before callback has been called.

For unconnected UDP sockets, use async-io-state-send-message-to-address.

See also

create-async-io-state-and-connected-udp-socket
async-io-state-receive-message
async-io-state-send-message-to-address
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

async-io-state-send-message-to-address Function

Summary

Asynchronously sends a message on an unconnected socket.

Package

comm

Signature

async-io-state-send-message-to-address (async-io-state hostspec service buffer callback &key start end timeout
error-callback user-info)

Arguments

async-io-state⇓ An async-io-state.

hostspec⇓, service⇓ Specify the socket address to send to in the standard way.

buffer⇓ A cl:base-string or an 8-bit cl:simple-array.

callback⇓ A function designator for a function of 1 argument.

32 The COMM Package

418

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ar.htm

start⇓ A lower bounding index designator for buffer.

end⇓ An upper bounding index designator for buffer.

timeout⇓ nil or a non-negative real.

error-callback⇓ A function designator.

user-info⇓ A Lisp object.

Description

The function async-io-state-send-message-to-address asynchronously sends a message from buffer between start
and end to the socket address which is specified by hostspec and service. For the interpretation of hostspec and service see
25.4 Specifying the target for connecting and binding a socket.

The default value of start is 0. The default value of end is the length of buffer.

The socket in async-io-state must not be connected. When the sending is successful, callback is called with async-io-state as
its only argument.

error-callback, timeout, start, end and user-info have the same meaning as in async-io-state-write-buffer.

Notes

1. async-io-state-send-message-to-address is typically used only with an async-io-state containing a UDP
socket, created by create-async-io-state-and-udp-socket,
create-async-io-state-and-connected-udp-socket or calling create-async-io-state with udp non-nil.

2. The contents of buffer must not be changed before callback has been called.

3. If hostspec is a host name (that is a string not specifying an IP address), then
async-io-state-send-message-to-address uses the family of the socket to decide whether to look for IPv6 or
IPv4 addresses. If async-io-state was created by create-async-io-state, the ipv6 argument to
create-async-io-state must match the family of the socket for async-io-state-send-message-to-address
to work.

4. For connected UDP sockets, use async-io-state-send-message.

Examples

(example-edit-file "async-io/udp")

See also

create-async-io-state-and-connected-udp-socket
async-io-state-receive-message
async-io-state-send-message
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

32 The COMM Package

419

async-io-state-shutdown Function

Summary

Performs a shutdown on the socket associated with async-io-state.

Package

comm

Signature

async-io-state-shutdown async-io-state direction &key abort callback => result

Arguments

async-io-state⇓ An async-io-state.

direction⇓ One of :input, :output or :io.

abort⇓ A boolean.

callback⇓ nil or a function of two arguments.

Values

result⇓ t, nil or an error code number.

Description

The function async-io-state-shutdown performs a shutdown on the socket associated with async-io-state.

When direction is :input, receive operations are shut down. When direction is :output, send operations are shut down.
When direction is :io, all operations are shut down.

If async-io-state is currently scheduled for an I/O operation in the direction specified direction (by
async-io-state-read-buffer or async-io-state-write-buffer), then the behavior of
async-io-state-shutdown is determined by the value of abort:

• If abort is nil (the default), then an error is signaled.

• If abort is non-nil, then the operation(s) is/are aborted before performing the shutdown. This happens asynchronously
and async-io-state-shutdown returns nil immediately in this case.

If callback is not nil, it must be a function that takes two arguments. After the shutdown, callback is called with async-io-
state and an argument indicating the result of the shutdown, which will be t for success and otherwise is an integer that is the
error code.

async-io-state-shutdown returns nil when it needs to abort as described as above. Otherwise, it is synchronous and
returns the result of the shutdown (the same value that is passed to callback).

Notes

The error code is errno on Unix-like systems or a Windows error code on Windows and is the result of calling the C
function shutdown.

32 The COMM Package

420

Normally you would perform a shutdown after finishing any I/O operations, in which case async-io-state-shutdown is
synchronous and you do not need to supply abort and callback. If you need to know the result of the shutdown, you can look
at result.

If you want to abort when an I/O operation is still going on, then you need to supply non-nil for abort. If you also need to
know the result or do something after the shutdown, then you need to supply callback too. Note that if
async-io-state-shutdown does abort, then callback is called asynchronously, possibly on another thread. If it does not
need to abort, callback is called synchronously.

See also

async-io-state
25.8.2 The Async-I/O-State API

async-io-state-ssl Function

Summary

Accesses the SSL attached to an async-io-state.

Package

comm

Signature

async-io-state-ssl async-io-state => ssl-pointer

Arguments

async-io-state⇓ An async-io-state.

Values

ssl-pointer A foreign pointer of type ssl-pointer, or nil.

Description

The function async-io-state-ssl accesses the SSL that is attached to the async-io-state async-io-state in the
:openssl implementation.

It returns nil if SSL is not attached or when using the :apple implementation.

See also

async-io-state
ssl-pointer
25 TCP and UDP socket communication and SSL

32 The COMM Package

421

async-io-state-ssl-side Function

Summary

Accesses the ssl-side of an async-io-state.

Package

comm

Signature

async-io-state-ssl-side async-io-state => ssl-side

Arguments

async-io-state⇓ An async-io-state.

Values

ssl-side :client, :server, :both or nil.

Description

The function async-io-state-ssl-side accesses the ssl-side of the async-io-state async-io-state.

It returns nil if SSL is not attached.

Notes

async-io-state-ssl-side is useful as a predicate for testing if an async-io-state has SSL attached.

See also

async-io-state
25 TCP and UDP socket communication and SSL

async-io-state-wait-for-input Function

Summary

Asynchronously waits for input to be available from an async-io-state.

Package

comm

Signature

async-io-state-wait-for-input async-io-state callback &key timeout user-info

32 The COMM Package

422

Arguments

async-io-state⇓ An async-io-state.

callback⇓ A function designator for a function of 1 argument.

timeout⇓ nil or a positive real.

user-info⇓ A Lisp object.

Description

The function async-io-state-wait-for-input waits for input to be available from async-io-state. When input is
available, callback is called with async-io-state as its argument.

If the operation does not finish within the state's async-io-state-read-timeout period then state's
async-io-state-read-status is set to :timeout and callback is called.

If timeout or user-info are supplied then they set async-io-state-read-timeout and async-io-state-user-info in
async-io-state for this and subsequent operations.

If another read operation on the state is in progress, an error is signaled.

Notes

async-io-state-wait-for-input cannot have SSL attached to it.

See also

async-io-state-read-buffer
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

async-io-state-write-buffer Function

Summary

Asynchronously writes a buffer to an async-io-state.

Package

comm

Signature

async-io-state-write-buffer async-io-state buffer callback &key start end timeout error-callback user-info

Arguments

async-io-state⇓ An async-io-state.

buffer⇓ A cl:base-string or an 8-bit cl:simple-array.

callback⇓ A function designator for a function of 3 arguments.

start⇓ A lower bounding index designator for buffer.

32 The COMM Package

423

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ar.htm

end⇓ An upper bounding index designator for buffer.

timeout⇓ nil or a positive real.

error-callback⇓ A function designator for a function of 3 arguments, or nil.

user-info⇓ A Lisp object.

Description

The function async-io-state-write-buffer asynchronously writes the part of buffer buffer between indexes start and
end to async-io-state. When this writing has succeeded or the state's async-io-state-write-timeout has passed,
callback is called like this:

callback async-io-state buffer number-of-bytes-written

The default value of start is 0. The default value of end is the length of buffer.

If an error occurs during the I/O operation and error-callback is non-nil, then error-callback is called with these same
arguments:

error-callback async-io-state buffer number-of-bytes-written

If error-callback is nil, then callback is called, so it should check for errors using async-io-state-write-status.

If the operation does not finish within the state's async-io-state-write-timeout period then the state's
async-io-state-write-status is set to :timeout and callback is called.

If timeout or user-info are supplied then they set the state's async-io-state-write-timeout and
async-io-state-user-info for this and subsequent operations.

Notes

callback and error-callback are called in the same process that processes the wait-state-collection of async-io-state
(see 25.8.3 Writing callbacks in Asynchronous I/O operations).

See also

async-io-state-read-buffer
async-io-state-read-with-checking
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

attach-ssl Function

Summary

Attaches SSL to a socket stream.

Package

comm

32 The COMM Package

424

Signature

attach-ssl socket-stream &key ssl-ctx ssl-side ctx-configure-callback ssl-configure-callback handshake-timeout tlsext-host-
name => ssl

Arguments

socket-stream⇓ A socket-stream.

ssl-ctx⇓ A symbol, a foreign pointer or a ssl-abstract-context.

ssl-side⇓ One of the keywords :client, :server or :both.

ctx-configure-callback⇓
A function designator or nil. The default value is nil.

ssl-configure-callback⇓
A function designator or nil. The default value is nil.

handshake-timeout⇓ A real or nil (the default).

tlsext-host-name⇓ A string or nil.

Values

ssl A foreign pointer of type ssl-pointer.

Description

The function attach-ssl attaches SSL to the socket-stream socket-stream.

The allowed values and meaning of the keyword arguments are as described for socket-stream.

Note that attach-ssl is used by:

(make-instance 'comm:socket-stream :ssl-ctx ...)

and by:

(comm:open-tcp-stream ... :ssl-ctx ...)

but you can also call it explicitly.

Before starting to create objects, attach-ssl ensures the SSL library (by calling ensure-ssl) and calls do-rand-seed
to seed the Pseudo Random Number Generator (PRNG), so normally you do not need to worry about these.

ssl-side, ssl-ctx, ctx-configure-callback, ssl-configure-callback and handshake-timeout are interpreted as described in 25.9.6
Keyword arguments for use with SSL. After this, SSL_set_fd is used to attach the SSL to the socket and this is recorded
in the socket stream.

The default value of ssl-ctx is t and the default value of ssl-side is :server.

If tlsext-host-name is non-nil, then the SNI extension in the SSL connection is set to its value.

When a socket-stream is closed, detach-ssl is called with :retry-count nil, which, if the stream is attached to
SSL, calls SSL_shutdown and then frees the object (or objects) that were automatically allocated.

If SSL is already attached to socket-stream then attach-ssl signals an error.

32 The COMM Package

425

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

See also

detach-ssl
create-ssl-client-context
create-ssl-server-context
25 TCP and UDP socket communication and SSL

call-wait-state-collection Function

Summary

Calls the functions associated with the active states in a wait-state-collection.

Package

comm

Signature

call-wait-state-collection collection

Arguments

collection⇓ A wait-state-collection.

Description

The function call-wait-state-collection calls the functions associated with the active states in collection, and
perform any actions requested by messages that arrive from other processes.

Notes

Typically you would not call call-wait-state-collection yourself, but it will be called by
loop-processing-wait-state-collection.

See also

create-and-run-wait-state-collection
loop-processing-wait-state-collection
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

close-accepting-handle Function

Summary

Closes an accepting handle.

Package

comm

32 The COMM Package

426

Signature

close-accepting-handle accepting-handle &optional callback

Arguments

accepting-handle⇓ An accepting-handle.

callback⇓ A function designator or nil.

Description

The function close-accepting-handle closes the accepting handle accepting-handle. In particular, it closes the socket
which frees up the port that the socket is bound to.

accepting-handle has to be an accepting handle, currently that means the result of
accept-tcp-connections-creating-async-io-states.

If callback is non-nil, it must be a function of one argument. callback is called after closing the handle, with the collection
which was supplied to accept-tcp-connections-creating-async-io-states which created the handle.

close-accepting-handle is asynchronous. To do something which is guaranteed to happen after the socket is closed, use
callback.

Notes

callback is called on the collection process, so it should not do much work.

See also

accepting-handle
accept-tcp-connections-creating-async-io-states
25 TCP and UDP socket communication and SSL

close-async-io-state Function

Summary

Closes an async-io-state and removes it from any internal structures.

Package

comm

Signature

close-async-io-state async-io-state &key keep-alive-p => buffered-data-length

Arguments

async-io-state⇓ An async-io-state.

keep-alive-p⇓ A generalized boolean.

32 The COMM Package

427

Values

buffered-data-length A non-negative integer.

Description

The function close-async-io-state closes async-io-state and removes it from any internal structures. Once async-io-
state has been closed, you cannot perform I/O operations on it.

By default, close-async-io-state also closes the object in async-io-state (that is, the argument to
create-async-io-state). This closing can be prevented by supplying true for keep-alive-p, so you can perform further
I/O operations on that object. In this case you will need to close object later.

async-io-state may contain some buffered data that it read from the object but did not use yet. The return value is the length
of such data and you can use async-io-state-get-buffered-data to get it.

Notes

If async-io-state is attached to SSL, then it is detached. This occurs even if keep-alive-p is true.

See also

25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

close-socket-handle Function

Summary

Closes a socket handle.

Package

comm

Signature

close-socket-handle socket-handle

Arguments

socket-handle⇓ A socket handle.

Description

The function close-socket-handle closes socket-handle, thus releasing all OS resources that are associated with it. After
socket-handle has been closed, it cannot be used anymore. close-socket-handle can also be called with a Java socket,
that is a lw-ji:jobject of Java class java.net.Socket, and closes it using the Java method.

Notes

In typical usage, you do not need to call close-socket-handle, because the socket handle is stored in a socket connection
object (socket-stream or async-io-state) and is closed automatically when the socket connection object is closed (by

32 The COMM Package

428

close for socket-stream and close-async-io-state for async-io-state).

See also

socket-stream
async-io-state
close-async-io-state

close-wait-state-collection Function

Summary

Closes a wait-state-collection and all of its states.

Package

comm

Signature

close-wait-state-collection collection

Arguments

collection⇓ A wait-state-collection.

Description

The function close-wait-state-collection closes all of the states in collection. That means that the underlying
communication object is closed and the async-io-state objects that are currently associated with collection cannot be
used for further I/O and will not receive callbacks anymore.

Notes

close-wait-state-collection does not do anything that affects further processing in collection. In particular, you can
add new states to the collection afterwards, and waiting and calling, either by
loop-processing-wait-state-collection or wait-for-wait-state-collection and
call-wait-state-collection, can continue. loop-processing-wait-state-collection does not stop if
close-wait-state-collection is called inside it.

close-wait-state-collection is a "nasty" call, because it just kills any async-io-state associated with the
collection. Normally should only be used only when you stop using the collection.

close-wait-state-collection cannot be called on a collection in parallel to itself or
loop-processing-wait-state-collection, wait-for-wait-state-collection or
call-wait-state-collection. It can be called inside the scope of call-wait-state-collection, and
loop-processing-wait-state-collection.

You can use apply-in-wait-state-collection-process to cause execution inside the scope of
call-wait-state-collection.

See also

create-and-run-wait-state-collection

32 The COMM Package

429

25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

connect-to-tcp-server Function

Summary

Attempts to connect to a socket on a server.

Package

comm

Signature

connect-to-tcp-server hostspec service &key errorp timeout local-address local-port keepalive nodelay ipv6 =>
socket-handle

Arguments

hostspec⇓ An integer or a string or an ipv6-address object.

service⇓ A string or a fixnum.

errorp⇓ A boolean.

timeout⇓ A positive number, or nil.

local-address⇓ nil, an integer, a string or an ipv6-address object.

local-port⇓ nil, a string or a fixnum.

keepalive⇓ A generalized boolean.

nodelay⇓ A generalized boolean.

ipv6⇓ nil, t or :any.

Values

socket-handle⇓ A socket handle suitable for a socket-stream or a subclass, or nil.

Description

The function connect-to-tcp-server attempts to connect to a socket on a server and returns a socket handle for the
connection if successful. This socket handle can then be used as the socket in a socket-stream or the object in
async-io-state, or in FLI functions using the native TCP socket interface.

The IP address to connect to is specified by hostspec, and the service to provide is specified by service. These two arguments
are interpreted as described in 25.4 Specifying the target for connecting and binding a socket.

If errorp is nil, failure to connect (possibly after timeout seconds) returns nil, otherwise an error is signaled.

timeout specifies a connection timeout. connect-to-tcp-server waits for at most timeout seconds for the TCP
connection to be made. If timeout is nil it waits until the connection attempt succeeds or fails. On failure,
connect-to-tcp-server signals an error or returns nil according to the value of errorp. To provide a timeout for reads
after the connection is made, see read-timeout in socket-stream. The default value of timeout is nil.

32 The COMM Package

430

If local-address is nil then the operating system chooses the local address of the socket. Otherwise the value is interpreted
as for hostspec and specifies the local address of the socket. The default value of local-address is nil.

If local-port is nil then the operating system chooses the local port of the socket. Otherwise the string or fixnum value is
interpreted as for service and specifies the local port of the socket. The default value of local-port is nil.

If keepalive is true, SO_KEEPALIVE is set on the socket. The default value of keepalive is nil.

If nodelay is true, TCP_NODELAY is set on the socket. The default value of nodelay is t.

ipv6 specifies the address family to use when hostspec is a string. When ipv6 is :any, connect-to-tcp-server uses
either of IPv4 or IPv6. When ipv6 is t, it uses only IPv6 addresses, and when ipv6 is nil it tries only IPv4. The default
value of ipv6 is :any.

Notes

1. On Unix-like systems, the name of the service can normally be found in /etc/services. If it is not there, the manual
entry for services can be used to find it.

2. In most situations, open-tcp-stream, which returns a stream rather than a socket handle, is the more convenient
interface. connect-to-tcp-server is useful when want to associate further information with the stream. You can
define a subclass of socket-stream, connect using connect-to-tcp-server, and call make-instance with your
subclass, passing socket-handle as the socket.

3. If socket-handle is used in a socket-stream or async-io-state, it will be closed when the object is closed.
Otherwise, you need to close it yourself by calling close-socket-handle when you have finished with it.

See also

socket-stream
open-tcp-stream
close-socket-handle
create-async-io-state
25 TCP and UDP socket communication and SSL

create-and-run-wait-state-collection Function

Summary

Creates and runs a wait-state-collection.

Package

comm

Signature

create-and-run-wait-state-collection name &key handler with-backtrace => wait-state-collection

Arguments

name⇓ A Lisp object that names the collection. It is used only for printing.

handler⇓ nil, t, the keyword :abort or a function.

with-backtrace⇓ The keyword:bug-form, t, the keyword :quick, or nil.

32 The COMM Package

431

Values

wait-state-collection⇓
A wait-state-collection.

Description

The function create-and-run-wait-state-collection creates and runs a wait-state-collection.

create-and-run-wait-state-collection creates a wait-state-collection and then starts a new process which
calls loop-processing-wait-state-collection on the new wait-state-collection (and therefore activates it),
and returns it as wait-state-collection. The new process has process name "Loop Collection name". When
loop-processing-wait-state-collection exits, wait-state-collection is closed and the other process exits too.

You can use wait-state-collection-stop-loop to make loop-processing-wait-state-collection exit, and
hence close wait-state-collection and make the process go away. Calling process-terminate on the process itself can also
be used, because it will use wait-state-collection-stop-loop. You can use wait-state-collection-alive-p
to detect if wait-state-collection is still alive and can be used.

handler specifies handling of errors that occur on the process in which the collection is run. The values have the following
effects:

nil No handling.

:abort Abort (calls the function cl:abort).

t Print the condition to the standard output, and unless with-backtrace is nil produces a backtrace,
and then aborts.

A function Must be a function of three arguments when with-backtrace is non-nil, or two arguments when
with-backtrace is nil. When a serious condition is signaled, the handler is called inside the
context of the error (like a handler in cl:handler-bind).

When with-backtrace is non-nil:

handler object condition backtrace-string

When with-backtrace is nil:

handler object condition

The object argument is the object that is responsible for the error. Currently this is always the async-io-state with which
the callback that caused the error is associated. If there is an error outside a callback (which should not happen, unless there
is a bug), then object is nil. condition is the condition that is signaled. backtrace-string is a string which is the result of
producing a backtrace. If the handler returns, (cl:abort) is called.

with-backtrace controls whether a backtrace is produced when handler is t or a function. It is passed to
output-backtrace as the first argument. See output-backtrace for details.

The default value of handler is nil. The default value of with-backtrace is :bug-form.

wait-state-collection can be used immediately by passing it to one of the create-async-io-state… functions.

Notes

32 The COMM Package

432

http://www.lispworks.com/documentation/HyperSpec/Body/a_abort.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_handle.htm

1. The wait-state-collection wait-state-collection does nothing by itself. You need to create and use
async-io-state objects to actually do something.

2. Aborting by the handler is done by calling (cl:abort), which aborts to the closest enclosing abort restart. If your code
establishes such a restart around the error, the aborting will abort to it. Otherwise it will abort back to the loop of
waiting and calling.

3. Real applications will probably always pass the handler.

4. While the handler is run, no further processing is done in the collection. Therefore the handler should not do a
significant amount of work.

See also

wait-state-collection-stop-loop
wait-state-collection-alive-p
create-async-io-state-and-connected-tcp-socket
create-async-io-state-and-connected-udp-socket
create-async-io-state
create-async-io-state-and-udp-socket
accept-tcp-connections-creating-async-io-states
25 TCP and UDP socket communication and SSL

create-async-io-state Function

Summary

Creates an async-io-state for a socket.

Package

comm

Signature

create-async-io-state collection object &key read-timeout write-timeout user-info udp ipv6 name queue-output =>
async-io-state

Arguments

collection⇓ A wait-state-collection.

object⇓ A socket-stream or an integer.

read-timeout⇓ nil or a positive real.

write-timeout⇓ nil or a positive real.

user-info⇓ A Lisp object.

udp⇓ nil, t, or the keyword :connected.

ipv6⇓ A boolean.

name⇓ A Lisp object.

queue-output⇓ A boolean.

32 The COMM Package

433

Values

async-io-state⇓ An async-io-state.

Description

The function create-async-io-state creates an async-io-state for the object object. If object is an integer, then it is
assumed to be a socket handle (a file descriptor on Unix-like systems). If object is a socket-stream, then the
async-io-state contains its socket.

async-io-state is associated with collection.

name will be included in the printed representation of async-io-state for debugging purposes.

read-timeout, write-timeout and user-info are set in async-io-state using the corresponding accessors
async-io-state-read-timeout, async-io-state-write-timeout and async-io-state-user-info.

If udp is non-nil and object is a socket, then this tells create-async-io-state that the socket is a UDP socket (rather than
TCP). If udp is :connected, this also tells create-async-io-state that the socket is a connected socket, which affects
whether you can use async-io-state-send-message (connected) or async-io-state-send-message-to-address
(unconnected). When object is a stream, it is always assumed to be a TCP socket, regardless of the value of udp. The default
value of udp is nil.

ipv6 tells create-async-io-state whether the socket was made as an IPv6 socket (with AF_INET6) or IPv4 (with
AF_INET). This makes a difference only for unconnected UDP sockets (it tells
async-io-state-send-message-to-address when called with a host name whether to look for IPv6 or IPv4
addresses).

queue-output controls what happens if you try to perform a write operation on the state while another write operation is
ongoing. When queue-output is nil this will cause an error. When queue-output is non-nil, the second write operation is
queued and actually executed later. The default value of queue-output is nil.

After calling create-async-io-state, object should not be used directly for I/O in the same direction (read or write)
until close-async-io-state has been called.

See also

create-async-io-state-and-connected-tcp-socket
accept-tcp-connections-creating-async-io-states
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

create-async-io-state-and-connected-tcp-socket Function

Summary

Creates an async-io-state which attempts to make a TCP connection.

Package

comm

Signature

create-async-io-state-and-connected-tcp-socket collection hostspec service callback &key read-timeout write-

32 The COMM Package

434

timeout user-info connect-timeout local-address local-port keepalive nodelay name queue-output ssl-ctx ctx-configure-callback
ssl-configure-callback handshake-timeout tlsext-host-name => async-io-state

Arguments

collection⇓ A wait-state-collection.

hostspec⇓ An integer or a string or an ipv6-address object.

service⇓ A string or a fixnum.

callback⇓ A function designator for a function of two arguments.

read-timeout⇓ nil or a positive real.

write-timeout⇓ nil or a positive real.

user-info⇓ A Lisp object.

connect-timeout⇓ nil or a positive real.

local-address⇓ nil, an integer, a string or an ipv6-address object.

local-port⇓ nil, a string or a fixnum.

keepalive⇓ A generalized boolean.

nodelay⇓ A generalized boolean.

name⇓ A Lisp object.

queue-output⇓ A boolean.

ssl-ctx⇓ A symbol, a foreign pointer or a client ssl-abstract-context.

ctx-configure-callback⇓
A function designator or nil. The default value is nil.

ssl-configure-callback⇓
A function designator or nil. The default value is nil.

handshake-timeout⇓ A real or nil (the default).

tlsext-host-name⇓ A string, t or nil.

Values

async-io-state⇓ An async-io-state.

Description

The function create-async-io-state-and-connected-tcp-socket creates an async-io-state which attempts to
make a TCP connection to hostspec on port service within connect-timeout seconds. hostspec and service are interpreted as
described in 25.4 Specifying the target for connecting and binding a socket.

async-io-state is associated with collection. When you have finished with async-io-state, you should close it by calling
close-async-io-state.

When the connection has been made, callback is called with arguments async-io-state and nil. Normally callback will start
asynchronous I/O by calling async-io-state-read-buffer, async-io-state-write-buffer or
async-io-state-read-with-checking. New operations on async-io-state must not be started before callback has been
called.

32 The COMM Package

435

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

If no connection can be made, callback is called with async-io-state, which is already closed, and a list of a format control-
string and args, suitable for applying to format. In general, it does not make much sense for the callback to call error
within callback, so it should report the problem in some way, typiclaly by writing to some log. It may also needs to inform
the user interactively, but that needs be done in another process, and is better done by using some kind of a end-user dialog
rather than invoking error.

Note: callback is called on the process of collection and therefore should not do any significant amout of work. If it does
need to do work, it should do it on another process.

local-address and local-port are used to bind the local side of the socket to a particular address and/or port if non-nil.

keepalive and nodelay set the SO_KEEPALIVE and TCP_NODELAY in the socket. The default value of keepalive is nil.
The default value of nodelay is t.

queue-output controls what happens if you try to perform a write operation on the state while another write operation is
ongoing. When nil, this will cause an error. When non-nil, the second write operation is queued and actually executed later.
The default value of queue-output is nil.

read-timeout, write-timeout, user-info and name are set in async-io-state using the corresponding accessors
async-io-state-read-timeout, async-io-state-write-timeout, async-io-state-user-info and
async-io-state-name.

The default value of name is a string "Connected TCP".

ssl-ctx, ctx-configure-callback, ssl-configure-callback and handshake-timeout are interpreted as described in 25.9.6 Keyword
arguments for use with SSL. Unlike the other ways of creating a socket stream with SSL processing,
create-async-io-state-and-connected-tcp-socket does not take the ssl-side argument and always uses the value
:client.

If tlsext-host-name is a string, then the SNI extension in the SSL connection to set to its value. If tlsext-host-name is t and
hostspec is a string that does not specify a numeric IP address, then the SNI extension in the SSL connection to set to
hostspec. If tlsext-host-name is not supplied and ssl-ctx is non-nil, then the SNI extension is set to hostspec if it is a string that
does not specify a numeric IP address and ssl-ctx is not an ssl-abstract-context that was created with a tlsext-host-
name.

Once the connection has been made, you can get the socket by calling async-io-state-object on async-io-state (see
async-io-state).

Notes

callback, ctx-configure-callback and ssl-configure-callback are called in the same process that processes collection (see
25.8.3 Writing callbacks in Asynchronous I/O operations).

See also

create-async-io-state
accept-tcp-connections-creating-async-io-states
create-ssl-client-context
close-async-io-state
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

32 The COMM Package

436

http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

create-async-io-state-and-connected-udp-socket Function

Summary

Creates an async-io-state where the object is a connected UDP socket.

Package

comm

Signature

create-async-io-state-and-connected-udp-socket collection hostspec service &key queue-output name errorp
ipv6 read-timeout write-timeout user-info local-address local-port => async-io-state

Arguments

collection⇓ A wait-state-collection to associate with the result.

hostspec⇓, service⇓ Specify the socket address to connect to in the standard way.

queue-output⇓ A boolean.

name⇓ A Lisp object.

errorp⇓ A boolean.

ipv6⇓ One of nil, t or the keyword :any.

read-timeout⇓ nil or a positive real.

write-timeout⇓ nil or a positive real.

user-info⇓ A Lisp object.

local-address⇓, local-port⇓
Specify the local socket address in the standard way.

Values

async-io-state⇓ An async-io-state.

Description

The function create-async-io-state-and-connected-udp-socket creates a new UDP socket, connects it to the
socket address specified by hostspec and service, optionally binds it if local-port or local-address are non-nil, and then
creates and returns an async-io-state object that can be used to perform I/O operations on the socket. The I/O operations
are done using async-io-state-receive-message and async-io-state-send-message.

async-io-state is associated with collection.

hostspec and service are interpreted as described in 25.4 Specifying the target for connecting and binding a socket.

local-address and local-port are also interpreted as described in 25.4 Specifying the target for connecting and binding a
socket. Both values can be nil.

Connecting the socket affects the destination of messages sent using the async-io-state, and also restricts the origin of

32 The COMM Package

437

received messages.

When ipv6 is :any, the system selects whether to use an IPv4 or IPv6 socket (normally it will be IPv4). When ipv6 is t it
forces using IPv6, and nil forces IPv4. The default value of ipv6 is :any.

queue-output controls what happens if you try to perform a write operation on the state while another write operation is
ongoing. When queue-output is nil, this will cause an error. When queue-output is non-nil, the second write operation is
queued and actually executed later. The default value of queue-output is t.

read-timeout, write-timeout, user-info and name are set in async-io-state using the corresponding accessors
async-io-state-read-timeout, async-io-state-write-timeout, async-io-state-user-info and
async-io-state-name.

The default value of name is a string "Connected UDP".

When errorp is nil, create-async-io-state-and-connected-udp-socket returns nil for run time errors rather
than signaling an error. The default value of errorp is t.

Notes

1. If you need an unconnected socket, use create-async-io-state-and-udp-socket.

2. The call to create-async-io-state-and-connected-udp-socket itself is synchronous.

3. You cannot use async-io-state-send-message-to-address with the result of
create-async-io-state-and-connected-udp-socket (because the socket address to send to is already specified
by connecting.)

See also

async-io-state-receive-message
async-io-state-send-message
create-async-io-state-and-udp-socket
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

create-async-io-state-and-udp-socket Function

Summary

Creates an async-io-state where object is an unconnected UDP socket.

Package

comm

Signature

create-async-io-state-and-udp-socket collection &key name errorp ipv6 queue-output read-timeout write-timeout
user-info local-address local-port => async-io-state

Arguments

collection⇓ A wait-state-collection to associate with the returned async-io-state.

32 The COMM Package

438

name⇓ A Lisp object.

errorp⇓ A boolean.

ipv6⇓ One of nil, t, the keyword :any or the keyword :both.

queue-output⇓ A boolean.

read-timeout⇓ nil or a positive real.

write-timeout⇓ nil or a positive real.

user-info⇓ A Lisp object.

local-address⇓, local-port⇓
Specify the local socket address in the standard way.

Values

async-io-state⇓ An async-io-state or nil.

Description

The function create-async-io-state-and-udp-socket creates an async-io-state where object is an unconnected
UDP socket.

async-io-state is associated with collection.

create-async-io-state-and-udp-socket creates a new UDP socket, optionally binds it if local-port or local-address
is non-nil, and then creates and returns an async-io-state object that can be used to perform I/O operations on the socket.
The I/O operations are performed using async-io-state-receive-message and
async-io-state-send-message-to-address. local-address and local-port specify the local socket address as
described in 25.4 Specifying the target for connecting and binding a socket. Both values can be nil.

queue-output controls what happens if you try to perform a write operation on the state while another write operation is
ongoing. When nil, this will cause an error. When non-nil, the second write operation is queued and actually executed later.
The default value of queue-output is t.

When ipv6 is :any, the system selects whether to use an IPv4 or IPv6 socket (normally it will be IPv4). When ipv6 is t it
forces using IPv6, and nil forces IPv4. The value :both means using IPv6, but also allow receiving messages in IPv4. The
default value of ipv6 is :any.

When errorp is nil, create-async-io-state-and-udp-socket returns nil for run time errors rather than signaling an
error. The default value of errorp is t.

read-timeout, write-timeout, user-info and name are set the new async-io-state using the corresponding accessors
async-io-state-read-timeout, async-io-state-write-timeout, async-io-state-user-info and
async-io-state-name.

The default value of name is a string "UDP".

Notes

1. If the socket is used to receive messages from unknown senders (that is as a server), then you need to bind the socket by
supplying local-port. If the socket is only used to send messages then you do not need to bind it, because the recipient of
the messages can find the socket's address if it needs to send a reply. You can supply local-address to restrict which
connections are allowed.

32 The COMM Package

439

2. You can find the source address of a message that is received using the result of
create-async-io-state-and-udp-socket by supplying needs-address t to
async-io-state-receive-message.

3. If you need to connect the socket, use create-async-io-state-and-connected-udp-socket instead.

4. The call to create-async-io-state-and-udp-socket itself is synchronous.

5. You cannot use async-io-state-send-message (without address) with the result of
create-async-io-state-and-udp-socket (because the socket address to send to must be specified).

Examples

(example-edit-file "async-io/udp")

See also

async-io-state-receive-message
async-io-state-send-message-to-address
create-async-io-state-and-connected-udp-socket
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

create-ssl-server-context
create-ssl-client-context Functions

Summary

Create an abstract SSL context that can be used as the context with different SSL implementations.

Package

comm

Signatures

create-ssl-server-context &key key-file cert-file password-callback password dh-file protocol-version implementation
openssl-ctx-configure-callback openssl-ssl-configure-callback apple-configure-callback verify-callback client-hello-callback openssl
-trusted-file openssl-trusted-directory apple-use-system-trusted apple-add-trusted-file apple-trust-callback keychain keychain-
password keychain-reset name => ssl-abstract-context

create-ssl-client-context &key key-file cert-file password-callback password protocol-version implementation openssl
-ctx-configure-callback openssl-ssl-configure-callback apple-configure-callback verify-callback cert-request-callback tlsext-host-
name openssl-trusted-file openssl-trusted-directory apple-use-system-trusted apple-add-trusted-file apple-trust-callback keychain
keychain-password keychain-reset name => ssl-abstract-context

Arguments

key-file⇓ nil or a pathname designator.

cert-file⇓ nil or a pathname designator.

password-callback⇓ nil or a designator for a function taking one argument.

password⇓ nil or a string.

32 The COMM Package

440

dh-file⇓ nil or a pathname designator.

protocol-version⇓ A keyword or t.

implementation⇓ A keyword or nil.

openssl-ctx-configure-callback⇓
nil or a designator for a function taking one argument (OpenSSL specific).

openssl-ssl-configure-callback⇓
nil or a designator for a function taking one argument (OpenSSL specific).

apple-configure-callback⇓
nil or a designator for a function taking one argument (Apple specific).

verify-callback⇓ nil or a designator for a function taking one argument or t, nil or :try.

client-hello-callback⇓
nil or a designator for a function taking two arguments (Apple specific).

openssl-trusted-file⇓ nil, :default or a pathname designator (OpenSSL specific).

openssl-trusted-directory⇓
nil, :default or a pathname designator (OpenSSL specific).

apple-use-system-trusted⇓
A boolean (Apple specific).

apple-add-trusted-file⇓
nil or a pathname designator (Apple specific).

apple-trust-callback⇓ Expert use: nil or a designator for a function taking one argument (Apple specific).

keychain⇓ A pathname designator, :temp, :default, nil or a keychain object (Apple specific).

keychain-password⇓ nil or a string (Apple specific).

keychain-reset⇓ A boolean (Apple specific).

name⇓ An object.

cert-request-callback⇓
nil or a designator for a function taking two arguments (Apple specific).

tlsext-host-name⇓ nil or a string.

Values

ssl-abstract-context A ssl-abstract-context object.

Description

The functions create-ssl-server-context and create-ssl-client-context create and return abstract SSL
contexts of type ssl-abstract-context. They are abstract because they do not contain any SSL implementation-specific
objects, allowing the implementation to be chosen later. The ssl-abstract-context can be supplied repeatedly as the
:ssl-ctx keyword argument to functions that attach SSL to TCP streams (mainly open-tcp-stream or
create-async-io-state-and-connected-tcp-socket for the client side, and make-instance with
socket-stream or accept-tcp-connections-creating-async-io-states for the server side). The object to which
SSL is being attached (either a socket-stream or an async-io-state) is referred to below as the connection object, and
most of the callbacks in the ssl-abstract-context are passed this connection object as an argument. When used, the

32 The COMM Package

441

ssl-abstract-context uses a specific implemenation to implement the SSL processing. The implementation may be
either OpenSSL or Apple.

key-file and cert-file can be used to specify file(s) containing keys and certificates. Both must be PEM files. If cert-file is
nil, then key-file is also used as the file for certificates. In the OpenSSL implementation, key-file must contain the private
key (because it is passed to SSL_CTX_use_RSAPrivateKey_file) and, if cert-file is not nil, then it must contain the
certificate(s) (because it is passed to SSL_CTX_use_certificate_chain_file). In the Apple implementation, the
private key can also be in cert-file, in which case key-file can be nil. key-file and cert-file default to nil.

password-callback or password are used to specify the password when opening key-file and cert-file. If password-callback is
non-nil then password is ignored, and when the password is required, password-callback is called with the connection object
and should return the password as a string. Otherwise, if password is non-nil then it should be a string and is used as the
password. password-callback and password default to nil.

When dh-file is non-nil, it specifies the DH (Diffie-Hellman) parameters. Note that only create-ssl-server-context

accepts dh-file and create-ssl-client-context signals an error if dh-file is supplied. If dh-file is nil (the default) then
the SSL implementation will need to compute the DH parameters itself, which takes a significant amount of time (Apple say
as long as 30 seconds), so normally you should always supply dh-file. The file specified by dh-file needs to contain the DH
params in either PEM or DER format.

protocol-version can be used to specify the SSL protocol version. It is interpreted in the same way that a keyword is
interpreted when it is used the value for :ssl-ctx for functions such as open-tcp-stream. The default is t. See 25.9.6
Keyword arguments for use with SSL for details.

implementation allows you to force the ssl-abstract-context to always use a specific SSL implementation. If
implementation is non-nil then it must be :openssl or (in macOS or iOS) :apple. If implementation is nil (the default),
then LispWorks will choose an SSL implementation at the time the ssl-abstract-context is used, so it can use different
implementations at different times. Supplying a non-nil value for implementation forces the ssl-abstract-context to
always use a specific implementation.

openssl-ctx-configure-callback and openssl-ssl-configure-callback are OpenSSL-specific arguments. If openssl-ctx-configure-
callback is non-nil then it is called with the OpenSSL SSL_CTX object (an instance of ssl-ctx-pointer, corresponding to
the type SSL_CTX* in C) immediately after it is created. Note that this happens typically once per image invocation, because
the ssl-ctx-pointer is created and cached the first time the ssl-abstract-context is used. If openssl-ssl-configure-
callback is non-nil then it is called with each OpenSSL SSL object (an instance of ssl-pointer, corresponding to the type
SSL* in C) which is created from the context. Both callbacks are called after LispWorks has applied all the configurations
that are implied by the other values in the ssl-abstract-context. Note that these callbacks receive the foreign pointers
of the underlying implementation (OpenSSL) as an argument, rather than the Lisp connection object that most of the other
callbacks receive.

apple-configure-callback is Apple specific callback. If apple-configure-callback is non-nil then it is called with each
ssl-context-ref instance that is created by the abstract context, after LispWorks has applied all the configurations that
are implied by the other values in the ssl-abstract-context. Note that this callback receives the foreign pointer of the
underlying implementation (Apple) as an argument, rather than the Lisp connection object that most of the other callbacks
receive.

verify-callback controls the verification of certificates and defaults to t in create-ssl-client-context and to nil in
create-ssl-server-context. If verify-callback is nil then the certificate is not verified and, on the server side, it also
does not request a certificate from the client. If verify-callback is t then the certificate is verified, that is LispWorks (using
the underlying implementation) verifies that the certificate chain is correct and the root certificate is trusted. If verify-callback
is :try in create-ssl-server-context then a certificate is verified if the client sends one, but this is not required. If
verify-callback is a function designator, then it is called with the connection object as an argument, and is responsible for
doing all the verification and should return nil if the verification fails and non-nil if it succeeds. If the verification fails then
an error of type ssl-verification-failure is signaled (see the notes below about errors). Otherwise, the handshake
continues. When verify-callback is a function designator, it can call ssl-connection-verify to verify the certificate in
the same way as when verify-callback is t, and then do any further checks it wants to do.

32 The COMM Package

442

Note that to verify the certificate chain, there needs to be a list of trusted certificates that can be used as the root certificates.
In the Apple implementation, these default to the built in trusted list from the operating system, but can be controlled by
apple-use-system-trusted, apple-add-trusted-file and apple-trust-callback (see below). In the OpenSSL implementation, you
can can control it by using openssl-trusted-file and openssl-trusted-directory (see below).

cert-request-callback can be used only in create-ssl-client-context. If cert-request-callback is non-nil then it is
called on the client side with the connection object if the server side requested a certificate during the handshake. If cert-
request-callback returns non-nil, then the handshake continues the certificate is sent to the server. If cert-request-callback
returns nil, then an error of type ssl-verification-failure is signaled (see the notes below about errors). The
certificate may have already been set for the connection using key-file or cert-file, or it may be set in cert-request-callback. If
you want to set the certificate to send in cert-request-callback, you can either call ssl-connection-read-certificates
or use functions from the underlying SSL implementation.

client-hello-callback can be used only in create-ssl-server-context. For the Apple implementation, it requires at least
macOS version 11 or iOS version 9 to work. If client-hello-callback is non-nil then it is called on the server side at the
beginning of the handshake, after the client has sent the hello message but before the server sends the certificate. client-hello-
callback is called with the connection object and the server name that the client sent (in a LispWorks client, you can set this
using the :tlsext-host-name argument to open-tcp-stream or
create-async-io-state-and-connected-tcp-socket). If client-hello-callback returns non-nil, then the handshake
continues. If client-hello-callback returns nil then an error of type ssl-verification-failure is signaled (see the
notes below about errors). Typically, client-hello-callback will want to set the certificate according to the server name, which
can be done either by calling ssl-connection-read-certificates or using functions from the underlying SSL
implementation.

tlsext-host-name can be used only in create-ssl-client-context. If tlsext-host-name is non-nil then it specifies a
default host name for the SNI extension that is sent to the server, and on the Apple implementation it also needs to match the
Common Name of the certificate that the server returns for the verification to succeed. The value of tlsext-host-name can be
overriden each time the abstract context is used by passing a :tlsext-host-name argument to the function that receieves
the abstract context (for example open-tcp-stream). tlsext-host-name defaults to nil.

openssl-trusted-file and openssl-trusted-directory are OpenSSL-specific, and specify where to find trusted certificates that are
acceptable as root certificates when verifying the peer certificate. If both are nil, then there are no trusted certificates,
which will cause any verification to fail. This is the default, but if openssl-trusted-file is :default then openssl-trusted-
directory defaults to :default as well. If either openssl-trusted-file or openssl-trusted-directory is :default, then the
default file or directory (CAfile and CApath in OpenSSL) of the current OpenSSL installation is used. Note that not all
OpenSSL installations install the default path or file. If openssl-trusted-file is a pathname designator then it should specify
the pathname of a PEM file containing the trusted certificates. If openssl-trusted-directory is a pathname designator then it
should specify the pathname of a directory containing the trusted certificates, which has to be arranged in a specific way. See
the documentation of the OpenSSL function SSL_CTX_load_verify_locations for details.

apple-use-system-trusted and apple-add-trusted-file are Apple-specific, and specify the trusted certificates that are acceptable
as root certificates when verifying the peer certificate. apple-use-system-trusted defaults to t, which means that the list of
trusted certificates built into the OS (macOS or iOS) is used. If apple-use-system-trusted is nil, the built in list is not used.
If apple-add-trusted-file is non-nil, then it should specify the pathname of a PEM file containing trusted certificates. If apple-
use-system-trusted is also non-nil, both the system built in trusted certificates and the certificates in the file specified by apple
-add-trusted-file are trusted, otherwise only the certificates in the file are trusted. apple-add-trusted-file defaults to nil.

apple-trust-callback is for expert use. If apple-trust-callback is non-nil, it must be a designator for a function taking one
argument, a foreign pointer corresponding to the C type SecTrustRef. apple-trust-callback is called during the verification
process, just before the trust is "evaluated". apple-trust-callback can then modify the SecTrustRef using C functions from
the Apple Security Framework, and can also do the trust evaluation itself. If apple-trust-callback did not evaluate the trust, it
must return nil, and then LispWorks will do the evaluation. If apple-trust-callback did the evaluation, it must return three
values. The first value must be t (specifying that it evaluated the trust). The second value is a boolean, specifying whether
the trust is accepted or rejected, and the third value is additional information about the evaluation results. The second and
third values are the two values that ssl-connection-verify will return when called on a connection that was made with
the ssl-abstract-context. When the ssl-abstract-context has verify-callback t, the second value is the value that

32 The COMM Package

443

https://www.openssl.org/docs/manmaster/ssl/SSL_CTX_load_verify_locations.html

is used to decide if the verification succeeded or not.

Note: the SecTrustRef passed to apple-trust-callback is a temporary object that will be released after the callback returns
and the trust evaluation has completed (by a cleanup-form of an unwind-protect). If you want to keep it you need to retain
it.

keychain, keychain-password and keychain-reset are Apple-specific, and are used only when key-file or cert-file are non-nil,
when they specify the keychain that is used while reading these files. keychain defaults to nil, and can be one of:

nil or :temp. LispWorks create a temporary keychain with password either keychain-password if it not nil or
a random string, and then deletes the keychain after reading the files.

A pathname designator.

LispWorks opens or creates a keychain in the file specified by keychain, using keychain-password
or a random string as above. If the file already exists and keychain-reset is non-nil, then the
keychain is deleted first. The keychain is not deleted after use.

:default or a FLI pointer to a keychain object.

LispWorks uses the specified keychain (:default means use the default keychain). In this case
the keychain is used (without trying to unlock it) and is not deleted.

name can be any Lisp Object, and is used just to name the ssl-abstract-context. name is used in printing the
ssl-abstract-context, and some error messages associated with processing abstract contexts report the name of the
abstract context if there is one. The name of an ssl-abstract-context can be accessed by
ssl-abstract-context-name.

Notes

The functions that use a ssl-abstract-context receive it by the keyword :ssl-ctx. These functions also take other
keywords to control the SSL behaviour. Of these keywords, :ctx-configure-callback and
:ssl-configure-callback are ignored when a ssl-abstract-context is used, and the callbacks of the
ssl-abstract-context are used instead. If :ssl-side is supplied, it must match the side of the
ssl-abstract-context. If :ssl-side is not supplied then the side in the ssl-abstract-context is used. The
keyword :tlsext-host-name in the receiving function overrides the value of tlsext-host-name as described above. The
keyword :handshake-timeout is used as described in the documentation for the receiving function.

Abstract contexts can be used after saving the image (by save-image or deliver) and restarting. Any pointers to
implementation-specific objects that are cached in the abstract context are discarded the first time it is used in a restarted
image.

If the callbacks that receive the connection object need to do something different depending on which implementation is used,
then they should use ssl-connection-ssl-ref to get the underlying implementation object, and then use typep,
typecase or methods that specialize on the implementation specific types (ssl-pointer or ssl-context-ref).

As described for implementation above, the same ssl-abstract-context can be used to produce connections where the
SSL processing is done either by OpenSSL or by the Apple Security Framework, by setting the
ssl-default-implementation.

Abstract contexts try to cache implementation specific objects as much as possible, which means that the values that are
passed to it may be used only once. For example, the files specified by key-file and cert-file are accessed only the first time
the abstract context is used in the current image invocation. Call reset-ssl-abstract-context to clear any cached
objects in an abstract context.

The various callbacks in the ssl-abstract-context are called while attaching SSL to the connection object, which may
or may not happen before your code "sees" the connection object. For example, if open-tcp-stream is passed an
ssl-abstract-context as the :ssl-ctx argument, then the callbacks in the ssl-abstract-context will typically be

32 The COMM Package

444

http://www.lispworks.com/documentation/HyperSpec/Body/s_unwind.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_typep.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tpcase.htm

called with the connection object before open-tcp-stream returns it. If there is some failure during the handshake,
open-tcp-stream will never return the object that the callbacks received.

Examples

There are examples for using ssl-abstract-context in:

(example-file "ssl/ssl-certificates")
(example-file "ssl/ssl-server")

See also

ssl-abstract-context
reset-ssl-abstract-context
open-tcp-stream
create-async-io-state-and-connected-tcp-socket
accept-tcp-connections-creating-async-io-states
socket-stream
async-io-state
ssl-connection-verify
ssl-default-implementation
25.9 Using SSL
25.9.3 SSL abstract contexts

create-ssl-socket-stream Function

Summary

Create a socket-stream from a socket handle.

Package

comm

Signature

create-ssl-socket-stream socket ssl-ctx &rest initargs &key errorp stream-class => stream-or-nil, maybe-condition

Arguments

socket⇓ A socket handle.

ssl-ctx⇓ A SSL context specifier or nil.

initargs⇓ Initargs for socket-stream.

errorp⇓ A boolean, default to nil.

stream-class⇓ A symbol or a class.

Values

stream-or-nil⇓ A socket-stream or nil.

maybe-condition nil or a condition.

32 The COMM Package

445

http://www.lispworks.com/documentation/HyperSpec/Body/e_cnd.htm

Description

The function create-ssl-socket-stream is a simple way to create a socket-stream with SSL from a socket handle.
Its main purpose is to be used as part of the function that is specified by function in start-up-server, but it can be used
with other socket handles.

socket must be a TCP socket handle that is open for communications.

ssl-ctx specifies the SSL configuration. If ssl-ctx is nil, then the socket-stream is created without SSL. Otherwise ssl-ctx
must be a valid SSL context specifier as described for :ssl-ctx keyword in 25.9.6 Keyword arguments for use with SSL.

stream-class must be a class, or a symbol that names a class. The class must be a subclass of socket-stream. stream-class
defaults to socket-stream.

initargs is used to supply valid initargs for the new instance of stream-class, with the following modifications:

• The :ssl-ctx initarg is forced to have value ssl-ctx.

• If :direction defaults to :io if omitted from initargs.

• If :element-type defaults to base-char if omitted from initargs.

• The :errorp and :stream-class arguments are removed.

create-ssl-socket-stream returns an instance of stream-class made by calling make-instance with the modified
initargs if successful. If an error of type socket-error (which is most likely to be some ssl-condition) is signaled
when the making the instance of stream-class and errorp is nil (the default), then create-ssl-socket-stream returns
nil and the condition as the second value. When errorp is non-nil or an error that is not of type socket-error is signaled,
then the function error is called.

create-ssl-socket-stream takes ownership of socket. If successful, socket will be closed when stream-or-nil is closed.
On failure, create-ssl-socket-stream closes the socket on exit (in a cleanup-form of an unwind-protect).

Notes

The main advantage of using create-ssl-socket-stream over using make-instance with socket-stream is the
error handling and closing of socket on error. If you use make-instance, you need to deal with these issues in your own
code.

Examples

For an example of using create-ssl-socket-stream, see:

(example-edit-file "ssl/ssl-server")

See also

start-up-server
socket-stream
25.9.6 Keyword arguments for use with SSL

32 The COMM Package

446

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_unwind.htm

destroy-ssl Function

Summary

Frees a SSL.

Package

comm

Signature

destroy-ssl ssl-pointer

Arguments

ssl-pointer⇓ A foreign pointer of type ssl-pointer.

Description

The function destroy-ssl frees the SSL pointed to by ssl-pointer and also frees any LispWorks cached values associated
with it.

See also

ssl-pointer
25 TCP and UDP socket communication and SSL

destroy-ssl-ctx Function

Summary

Frees a SSL_CTX.

Package

comm

Signature

destroy-ssl-ctx ssl-ctx-pointer

Arguments

ssl-ctx-pointer⇓ A foreign pointer of type ssl-ctx-pointer.

Description

The function destroy-ssl-ctx frees the SSL_CTX pointed to by ssl-ctx-pointer and also frees any LispWorks cached
values associated with it.

32 The COMM Package

447

See also

ssl-ctx-pointer
25 TCP and UDP socket communication and SSL

detach-ssl Function

Summary

Detaches the SSL from a socket stream.

Package

comm

Signature

detach-ssl socket-stream &key retry-count retry-timeout

Arguments

socket-stream⇓ A socket-stream.

retry-count⇓ A non-negative integer.

retry-timeout⇓ A non-negative real.

Description

The function detach-ssl detaches the SSL from the socket-stream socket-stream. If socket-stream is not attached to an
SSL, detach-ssl just returns immediately. Otherwise, it detaches the SSL from socket-stream, tries to shut down the SSL
cleanly, and then frees the objects that were allocated by attach-ssl.

retry-count specifies how many additional times to call SSL_shutdown after the second to attempt to get a successful
shutdown. The default value of retry-count is 5.

retry-timeout specifies the time in seconds to wait between each of the calls to SSL_shutdown. If it fails to get a successful
shutdown after these attempts, detach-ssl signals an error. The default value of retry-timeout is 0.1.

Note that the shutdown calls happen after the SSL has been detached from socket-stream as far as LispWorks is concerned, so
if an error occurs at this point and is aborted, socket-stream can be used in attach-ssl again (assuming that the peer can
cope with this situation).

If retry-count is nil, detach-ssl does not try to get a successful shutdown call. This value is used when the stream is
closed, but should not be used normally.

See also

attach-ssl
25 TCP and UDP socket communication and SSL

32 The COMM Package

448

do-rand-seed Function

Summary

Calls the SSL function RAND_seed. This should only be called when using the :openssl implementation.

Package

comm

Signature

do-rand-seed

Description

The function do-rand-seed calls the SSL function RAND_seed with some suitable value, which is dependent in a non-
trivial way on the current time, the history of the current process and the history of the machine it is running on.

If the machine that it runs on has the file /dev/urandom, do-rand-seed does nothing.

See also

attach-ssl
25 TCP and UDP socket communication and SSL

ensure-ssl Function

Summary

Initializes SSL.

Package

comm

Signature

ensure-ssl &key library-path already-done implementation

Arguments

library-path⇓ A string or a list of strings.

already-done⇓ A generalized boolean.

implementation⇓ A keyword or nil.

Description

The function ensure-ssl initializes SSL. If it was already called in the image, ensure-ssl does nothing. Otherwise it
loads the library, calls SSL_library_init, calls SSL_load_error_strings and performs internal initializations.

32 The COMM Package

449

If already-done is true, ensure-ssl does only the internal initializations. The default value of already-done is nil.

If library-path is passed, it needs to be either a string, specifying one library, or a list of strings specifying multiple libraries.
The default value of library-path is platform-specific. The initial default value is described in 25.9.2.2 How LispWorks
locates the OpenSSL libraries. This default may be changed by calling set-ssl-library-path.

If implementation is :openssl, then OpenSSL is initialized. If implementation is :apple then the Apple Security
Framework is initialized. If implementation is nil (the default) then the SSL implementation returned by
ssl-default-implementation is initialized. implementation is a new argument in LispWorks 8.0.

See also

openssl-version
set-ssl-library-path
ssl-default-implementation
25 TCP and UDP socket communication and SSL

find-ssl-connection-from-ssl-ref Function

Summary

Finds the SSL connection associated with a SSL FLI pointer, if any.

Package

comm

Signature

find-ssl-connection-from-ssl-ref ssl-ref => ssl-connection-or-nil

Arguments

ssl-ref⇓ A foreign pointer.

Values

ssl-connection-or-nil A socket-stream, async-io-state or nil.

Description

The function find-ssl-connection-from-ssl-ref tries to find the SSL connection (a socket-stream or a
async-io-state) associated with a SSL foreign pointer. The search is based on the address specified by ssl-ref, but not its
type. The search succeeds if the SSL connection is still open and the address of ssl-ref is the same as the address of the SSL
pointer of the SSL connection (the result of ssl-connection-ssl-ref).

See also

ssl-connection-ssl-ref

32 The COMM Package

450

generalized-time System Class

Summary

A representation of time containing fractions of a second and a timezone.

Package

comm

Superclasses

t

Readers

generalized-time-universal-time
generalized-time-microseconds
generalized-time-gmtoffset

Description

Instances of the system class generalized-time represent a time containing fractions of a second and a timezone.

The reader generalized-time-universal-time returns an integer specifying the universal time (in the Common Lisp
sense) of a generalized-time. The reader generalized-time-microseconds returns an integer specifying the
microseconds of a generalized-time, or nil if microseconds were not specified when it was created.
generalized-time-gmtoffset returns the timezone as an offset in seconds from GMT, or :GMT if the
generalized-time explictly specified a GMT time, or nil if the generalized-time does not have a timezone.

See the documentatiuon for make-generalized-time for other operations on generalized-time.

See also

make-generalized-time
parse-printed-generalized-time
generalized-time-pprint
generalized-time-string
generalized-time-p

generalized-time-p
make-generalized-time
generalized-time-pprint
generalized-time-string
parse-printed-generalized-time Functions

Summary

Various operations on generalized-time objects.

32 The COMM Package

451

Package

comm

Signatures

generalized-time-p object => boolean

make-generalized-time &key universal-time microseconds gmtoffset => generalized-time

generalized-time-pprint generalized-time stream

generalized-time-string generalized-time => printed-time

parse-printed-generalized-time printed-time &optional start => generalized-time-or-nil

Arguments

object⇓ Any Lisp object.

universal-time⇓ An integer.

microseconds⇓ An integer or nil.

gmtoffset⇓ An integer, :gmt or nil.

generalized-time⇓ A generalized-time.

stream⇓ A stream.

printed-time⇓ A string.

start⇓ An integer.

Values

boolean nil or t.

generalized-time A generalized-time.

printed-time A string.

generalized-time-or-nil

A generalized-time or nil.

Description

The function generalized-time-p is a predicate, which returns t if object is of type generalized-time and otherwise
returns nil.

The function make-generalized-time constructs a generalized-time object. universal-time must be an integer,
specifying universal time in the Common Lisp sense. microseconds must be an integer or nil. gmtoffset must be an integer
specifying the offset from GMT in seconds, :gmt or nil.

The function generalized-time-pprint prints generalized-time to stream in a human readable format. The format is:

yyyy mon dd hh:mm:ss[.fff|.gggggg][*hhmm| GMT]

• Spaces, colons and dots stand for themselves.

• Items inside square brackets are optional, and the | specifies alternatives.

• yyyy is the year in four digits.

32 The COMM Package

452

• mon is the month, as capitalized three letters.

• dd, hh, mm and ss are the day, hour, minute and second as two digits.

• If generalized-time has a non-nil microseconds then a dot is output followed by fff if microseconds that is divisible by
1000, and is three digits specifying microseconds truncated by 1000 (that is milliseconds), or gggggg if microseconds is
not divisible by 1000, and is the microseconds in 6 digits.

• *hhmm is output if generalized-time has integer gmtoffset. The output is the sign, followed by two digits specifying the
hours (that is gmtoffset truncated by 3600), followed by two digits specifying the minute (that is the remainder of
gmtoffset from 3600 truncated by 60). Note that the printed representation cannot display the seconds of the timezone.

• GMT is output if generalized-time has gmtoffset :gmt.

• No timezone information is output if generalized-time has gmtoffset nil.

The function generalized-time-string returns a string containing the printed representation of generalized-time as
described above.

The function parse-printed-generalized-time parses its argument printed-time, starting from start (which defaults to
0). It expects to find the format that is described above, and does not check that the end of that format is the end of the string.
If parse-printed-generalized-time fails to read the time part, that is it does not find a match to the pattern above up
to the second 's', it returns nil. Otherwise, it creates a generalized-time with this time as its universal time and nil for
microseconds and gmtoffset. It then tries to read the microseconds and gmtoffset and set them in the generalized-time
before returning it.

get-certificate-data
get-certificate-common-name
get-certificate-serial-number Functions

Summary

Expert use: gets data from a certificate pointer.

Package

comm

Signatures

get-certificate-data certificate-pointer => certificate-data

get-certificate-common-name certificate-pointer => common-name

get-certificate-serial-number certificate-pointer => serial-number

Arguments

certificate-pointer⇓ A FLI pointer of type sec-certificate-ref or x509-pointer.

Values

certificate-data⇓ A list of lists.

common-name A string.

32 The COMM Package

453

serial-number An integer.

Description

The function get-certificate-data returns certificate data for certificate-pointer (described below). The function
get-certificate-common-name returns the Common Name of the Subject of certificate-pointer. The function
get-certificate-serial-number returns the serial number of certificate-pointer.

certificate-pointer must be a FLI pointer of type sec-certificate-ref or x509-pointer, pointing to a certificate object
of the underlying SSL implementation. You can obtain such a pointer by calling
ssl-connection-copy-peer-certificates, or using your own FLI interface to the underlying SSL implementation.

certificate-data is a list of lists, where each element is a list of the form:

(keyword value)

keyword specifies the field in the certificate, and value its value. The keywords that appear in the data vary between SSL
implementations. The keywords are that are common to all implementations are:

:subject-common-name

A string: the common name of the subject of the certificate.

:serial-number An integer: the serial number of the certificate.

:emails A list of strings: email addresses (not present if there are no email addresses).

For the Apple implementation, that is when certificate-pointer is of type sec-certificate-ref, certificate-data also
contains the following:

:summary, :long-description, :short-description

The values for these are strings, corresponding to the results of the C functions
SecCertificateCopySubjectSummary, SecCertificateCopyLongDescription and
SecCertificateCopyShortDescription. Note: :long-description and
:short-description are not included on iOS.

:normalized-subject, :normalized-issuer

The values of these are vectors of element type (unsigned-byte 8), corresponding to the
results of the C functions SecCertificateCopyNormalizedSubjectContent and
SecCertificateCopyNormalizedIssuerContent.

For the OpenSSL implementation, certificate-data also contains the following (if they are defined in certificate-pointer):

:subject, :issuer The values of these are lists of lists of two strings. The first string is the name of a field in the
subject or issuer, and the second string is the value of the field. The field names are normally:
"commonName", "organizationalUnitName", "organizationName" and
"countryName". The value associated with "commonName" in :subject is the same string as
the value of :subject-common-name.

:version The value is an integer specifying the version of the certificate.

:not-before, :not-after

The values are objects of type generalized-time specifying the start and end dates of the
validity period of the certificate.

:public-key-algorithm, :signature-algorithm

32 The COMM Package

454

The values of these are strings specifying the algorithm of the public key and signature.

:public-key, :signature

The values of these are arrays of element type (unsigned-byte 8) containing the public key
and signature.

:usage, :extended-usage

The values of these are lists of keywords specifying the usage. For :usage, each keyword is one
of: :digital-signature, :non-repudiation, :key-encipherment,
:data-encipherment, :key-agreement, :key-cert-sign, :crl-sign,
:encipher-only or :deciper-only. For :extended-usage, each keyword is one of:
:ssl-client, :ssl-server, :smime, :objsign, :ssl-ca, :smime-ca or :objsign-ca.

:extensions The value is a list of lists of two strings, where the first string is the name of the extension, and
the second is the value.

Notes

ssl-connection-get-peer-certificates-data returns the same certificate data as get-certificate-data.

Examples

There is an example of using ssl-connection-get-peer-certificates-data, which is useful to see how certificate-
data looks, in:

(example-edit-file "ssl/ssl-certificates")

See also

ssl-connection-get-peer-certificates-data

get-default-local-ipv6-address Function

Summary

Gets the default IPv6 address of the local host.

Package

comm

Signature

get-default-local-ipv6-address => result

Values

result An ipv6-address object or nil.

32 The COMM Package

455

Description

The function get-default-local-ipv6-address tries to find the local default IPv6 address and if successful returns it.

See also

ipv6-address
get-ip-default-zone-id
25 TCP and UDP socket communication and SSL

get-host-entry Function

Summary

Returns address (IPv6 and IPv4) or name information about a given host.

Package

comm

Signature

get-host-entry host &key fields ipv6 v4mapped addrconfig numerichost avoid-reverse-lookup => field-values

Arguments

host⇓ A number or a string.

fields⇓ A list of keywords.

ipv6⇓ nil, t or the keyword :any.

v4mapped⇓ A boolean.

addrconfig⇓ A boolean.

numerichost⇓ A boolean.

avoid-reverse-lookup⇓ A generalized boolean.

Values

field-values Values, one for each field.

Description

The function get-host-entry returns address or name information about the given host. By default, it tries to find
addresses both of IPv6 and IPv4. It uses whatever host naming services are configured on the current machine. nil is
returned if the host is unknown.

host can be one of the following:

• a name string, for example "www.foobar.com"

• a dotted inet address string, for example "209.130.14.246"

• a integer representing the inet address, for example #xD1820EF6

32 The COMM Package

456

fields is a list of keywords describing what information to return for the host. If get-host-entry succeeds, it returns
multiple values, one value for each field specified. The following fields are allowed:

:address The primary IP address.

:ipv6-address The primary IPv6 address.

:ipv4-address The primary IPv4 address.

:addresses A list of all the IP addresses.

:ipv6-addresses A list of all the IPv6 addresses, only.

:ipv4-addresses A list of all the IPv4 addresses, only.

:name The primary name as a string.

:aliases The alias names as a list of strings.

IPv4 addresses are returned as integers and IPv6 addresses are returned as objects of type ipv6-address.

If ipv6 is nil or t the search is restricted to one family only IPv4 or IPv6. The default value of ipv6 is :any, meaning that
addresses in both families are returned. If the argument host is a string, that has a similar effect to using the family-specific
keywords, but it may be faster. For example, these two calls returns the same addresses (possibly in a different order):

(get-host-entry "hostname"
 :fields '(:ipv6-addresses))

(get-host-entry "hostname"
 :fields '(:addresses) :ipv6 t)

If host is an address of the other type, that is integer with ipv6 t or ipv6-address with ipv6 nil, then get-host-entry

first tries to do a reverse lookup to find the name of the host, and then looks for the values as if it was called with this name as
the host.

When avoid-reverse-lookup is non-nil, get-host-entry avoids doing reverse lookup if host is a string which specifies a
valid address (either IPv6 or IPv4). The default value of avoid-reverse-lookup is nil, so by default it does the lookup.

The arguments v4mapped, addrconfig and numerichost have an effect only when host is a string. They define the flags
AI_V4MAPPED, AI_ADDRCONFIG and AI_NUMERICHOST when doing the getaddrinfo call.

When v4mapped is t, the IPv6 addresses contain an IPv4 address mapped to IPv6 (::ffff:<IPv4>). The default value of
v4mapped is nil.

When addrconfig is t, addresses of a family are returned only if the local system is configured to handle them. The default
value of addrconfig is nil.

When numerichost is t, host is assumed to be a numeric address, either IPv4 if dotted notation or IPv6. If it is not,
get-host-entry just returns nil. Using numerichost can speed up get-host-entry, because it prevents any DNS
lookup. This has an effect only if avoid-reverse-lookup is non-nil. The default value of numerichost is nil.

Notes

1. Although the results of get-host-entry are not cached by LispWorks, the Operating System might cache them.

2. When get-host-entry is passed a string specifying an IPv6 address, the address can be followed by '%' character and
a scope ID. If the scope ID is a decimal number or a valid interface name on the local system, the resulting address
contains the scope ID as a number.

32 The COMM Package

457

Examples

CL-USER 16 > (comm:get-host-entry "www.altavista.com"
 :fields '(:address))
3511264349

CL-USER 17 > (comm:get-host-entry 3511264349
 :fields '(:name))
"altavista.com"

CL-USER 18 > (comm:get-host-entry "altavista.com"
 :fields '(:name
 :address
 :aliases))
"altavista.com"
3511264349
("www.altavista.com" "www.altavista.com")

See also

25 TCP and UDP socket communication and SSL

get-ip-default-zone-id Function

Summary

Gets the default zone ID of the local host.

Package

comm

Signature

get-ip-default-zone-id => result

Values

result An integer or a string, or nil.

Description

The function get-ip-default-zone-id tries to find the local default zone ID, and if successful returns it as an integer or
a string.

See also

ipv6-address
get-default-local-ipv6-address
25 TCP and UDP socket communication and SSL

32 The COMM Package

458

get-service-entry Function

Summary

Returns information about a service.

Package

comm

Signature

get-service-entry service protocol &key fields => value*

Arguments

service⇓ An integer or a string.

protocol⇓ A string or nil.

fields⇓ A list of keywords specifying which information is required.

Values

value* Multiple values corresponding to the keywords in fields, as described below.

Description

The function get-service-entry looks up service in the system database. If service is an integer, it is the port number to
look up. If service is a string, it is a name to look up (it may be one of the aliases).

If protocol is a string, then get-service-entry looks for a system database entry with protocol protocol, otherwise it finds
the first entry with any protocol.

fields specifies which information is returned. When get-service-entry finds an entry, it returns information about it as
multiple values corresponding to the keywords in fields. These keywords can be:

:name Return the name of the entry.

:port Return the port number of the entry.

:aliases Return a list of aliases of the service.

:protocol Return the protocol of the entry, as lowercase strings like "tcp" or "udp".

If service is an integer then the default value of fields is (:name). Otherwise the default value of fields is (:port).

Notes

1. get-service-entry tells you what the host computer knows. The results can be quite different between computers.

2. There can be multiple entries with the same name but different protocols. Many services have entries for both UDP and
TCP, normally with the same port number. In many cases the protocol that is selected when you pass protocol nil is not
the correct protocol to use.

32 The COMM Package

459

Examples

(get-service-entry "smtp" nil) => 25

(get-service-entry 25 nil :fields '(:name :aliases)) => "smtp", ("mail")

(get-service-entry "mail" nil) => 25

See also

25.4 Specifying the target for connecting and binding a socket
25 TCP and UDP socket communication and SSL

get-socket-address Function

Summary

Returns the local address and port number of a given socket.

Package

comm

Signature

get-socket-address socket => address, port

Arguments

socket⇓ A socket handle.

Values

address⇓ A integer, ipv6-address or nil.

port⇓ An integer or nil.

Description

The function get-socket-address returns the local address and port of a connected socket socket.

address is the local host address of socket or nil if not connected.

port is the local port number of socket or nil if not connected.

Notes

Connected sockets have two addresses, local and remote.

See also

get-socket-peer-address

32 The COMM Package

460

socket-stream-address
25 TCP and UDP socket communication and SSL

get-socket-peer-address Function

Summary

Returns the remote address and port number of a given socket.

Package

comm

Signature

get-socket-peer-address socket => address, port

Arguments

socket⇓ A socket handle.

Values

address⇓ A integer, ipv6-address or nil.

port⇓ An integer or nil.

Description

The function get-socket-peer-address returns the remote address of a connected socket socket.

address is the remote host address of socket or nil if not connected.

port is the remote port number of socket or nil if not connected.

Notes

Connected sockets have two addresses, local and remote.

See also

get-socket-address
socket-stream-peer-address
25 TCP and UDP socket communication and SSL

get-verification-mode Function

Summary

Returns the mode of the SSL.

32 The COMM Package

461

Package

comm

Signature

get-verification-mode ssl-or-ssl-ctx => result

Arguments

ssl-or-ssl-ctx⇓ A foreign pointer of type ssl-pointer or ssl-ctx-pointer.

Values

result⇓ A list of symbols.

Description

The function get-verification-mode returns the mode of ssl-or-ssl-ctx as a list of symbols.

result is a list containing zero or more of the symbols :verify-client-once , :verify-peer and
:fail-if-no-peer-cert, corresponding to the C constants VERIFY_CLIENT_ONCE VERIFY_PEER and
FAIL_IF_NO_PEER_CERT respectively.

See also

set-verification-mode
25 TCP and UDP socket communication and SSL

ip-address-string Function

Summary

Returns the IP address string for an IP address. This can be either a dotted address for an integer representing an IPv4
address, or an IPv6 address string for ipv6-address.

Package

comm

Signature

ip-address-string ip-address => string-ip-address

Arguments

ip-address⇓ An integer or an ipv6-address.

Values

string-ip-address A string, either dotted string format for an integer or an IPv6 string for ipv6-address.

32 The COMM Package

462

Description

The function ip-address-string converts ip-address to a string in the standard IP address notation. For an IPv4 address
(supplied as an integer) this is the a.b.c.d notation. For IPv6 it is the standard IPv6 address notation (not including scope
ID).

See also

string-ip-address
25 TCP and UDP socket communication and SSL

ipv6-address Type

Summary

Represents IPv6 addresses.

Package

comm

Signature

ipv6-address

Description

Instances of the type ipv6-address represent an IPv6 address.

ipv6-address objects are normally created by get-host-entry. They can also be created by parse-ipv6-address.

ipv6-address can be used wherever an IP address is needed, most commonly open-tcp-stream.

ipv6-address may contain a scope ID, which is not really part of the address, but is needed for using local addresses.

The string representation of an ipv6-address can be retrieved by ip-address-string. The scope ID can be accessed by
ipv6-address-scope-id.

See also

get-host-entry
ipv6-address-p
ip-address-string
ipv6-address-scope-id
parse-ipv6-address
25 TCP and UDP socket communication and SSL

32 The COMM Package

463

ipv6-address-p Function

Summary

The predicate for objects of type ipv6-address.

Package

comm

Signature

ipv6-address-p object => result

Arguments

object⇓ A Lisp object.

Values

result A boolean.

Description

The function ipv6-address-p is the predicate for whether its argument object is of type ipv6-address.

See also

ipv6-address
25 TCP and UDP socket communication and SSL

ipv6-address-scope-id Function

Summary

Returns the scope ID of an IPv6 address.

Package

comm

Signature

ipv6-address-scope-id ipv6-address => scope-id

Arguments

ipv6-address⇓ An ipv6-address object.

32 The COMM Package

464

Values

scope-id⇓ A number or a string.

Description

The function ipv6-address-scope-id returns the scope ID of the IPv6 address ipv6-address.

Global addresses have scope ID 0.

scope-id may be a string or a number.

See also

ipv6-address
25 TCP and UDP socket communication and SSL

ipv6-address-string Function

Summary

Returns the standard string representation of an IPv6 address.

Package

comm

Signature

ipv6-address-string ipv6-address => string

Arguments

ipv6-address⇓ An ipv6-address object.

Values

string⇓ A string.

Description

The function ipv6-address-string returns the standard string representation of ipv6-address.

Notes

The result string does not include the scope ID.

See also

ip-address-string
25 TCP and UDP socket communication and SSL

32 The COMM Package

465

loop-processing-wait-state-collection Function

Summary

Loops processing a wait-state-collection.

Package

comm

Signature

loop-processing-wait-state-collection wait-state-collection

Arguments

wait-state-collection⇓
A wait-state-collection.

Description

The function loop-processing-wait-state-collection loops processing wait-state-collection.

loop-processing-wait-state-collection loops waiting for any state to be ready (using
wait-for-wait-state-collection) and processes any state that is ready (using call-wait-state-collection). It
establishes restarts that allow aborting back into the loop, and a mechanism that allows
wait-state-collection-stop-loop to stop the loop.

If wait-state-collection-stop-loop is called on wait-state-collection, which can be from other threads,
loop-processing-wait-state-collection stops looping and returns.

Notes

In most cases using create-and-run-wait-state-collection is more convenient.

There can be only one loop-processing-wait-state-collection on each wait-state-collection at a time.
Typically this will occur in a process that is made specifically to run loop-processing-wait-state-collection on the
collection.

See also

create-and-run-wait-state-collection
wait-for-wait-state-collection
wait-state-collection-stop-loop
25 TCP and UDP socket communication and SSL

32 The COMM Package

466

make-ssl-ctx Function

Summary

Makes a SSL_CTX object. This should only be called when using the :openssl implementation.

Package

comm

Signature

make-ssl-ctx &key ssl-ctx ssl-side => ssl-ctx-ptr

Arguments

ssl-ctx⇓ A symbol or a foreign pointer.

ssl-side⇓ One of the keywords :client, :server or :both.

Values

ssl-ctx-ptr A foreign pointer of type ssl-ctx-pointer.

Description

The function make-ssl-ctx first calls ensure-ssl, and returns a foreign pointer of type ssl-ctx-pointer.

If the value of ssl-ctx is t, :default, :v2, :v3, :v23 or :tls-v1, make-ssl-ctx creates a SSL_CTX object and returns a
pointer to it.

The value of ssl-ctx can also be a foreign pointer of type ssl-ctx-pointer, in which case it is simply returned. If ssl-ctx is
a foreign pointer of type ssl-pointer, then make-ssl-ctx signals an error.

The meaning of the keyword arguments ssl-ctx and ssl-side is as described for socket-stream. The default value of ssl-ctx
is t and the default value of ssl-side is :server.

See also

ensure-ssl
socket-stream
ssl-ctx-pointer
25 TCP and UDP socket communication and SSL

make-wait-state-collection Function

Summary

Returns a new empty wait-state-collection.

32 The COMM Package

467

Package

comm

Signature

make-wait-state-collection => collection

Values

collection A wait-state-collection.

Description

The function make-wait-state-collection returns a new empty wait-state-collection.

See also

create-and-run-wait-state-collection
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

openssl-version Function

Summary

Returns the version of the loaded OpenSSL library.

Package

comm

Signature

openssl-version &optional what => result

Arguments

what⇓ One of the keywords :version, :directory, :platform, :cflags and :built-on.

Values

result⇓ A string.

Description

The function openssl-version returns a string specifying the version of the loaded OpenSSL library.

The argument what takes these values:

32 The COMM Package

468

:version result is the version string, which looks like:

"OpenSSL 0.9.7i 14 Oct 2005"

or:

"OpenSSL 0.9.8a 11 Oct 2005"

:built-on Returns a string specifying when it was built.

:directory Returns where OpenSSL thinks it is installed.

:platform Returns OpenSSL's idea of which platforms it is.

:cflags The compilation command.

The default value of what is :version.

See also

ensure-ssl
25 TCP and UDP socket communication and SSL

open-tcp-stream Function

Summary

Attempts to connect to a socket on a server and returns a stream object for the connection.

Package

comm

Signature

open-tcp-stream hostspec service &key direction element-type errorp read-timeout write-timeout timeout ssl-ctx ctx-
configure-callback ssl-configure-callback handshake-timeout tlsext-host-name local-address ipv6 local-port nodelay keepalive =>
stream-or-nil, maybe-condition

Arguments

hostspec⇓ An integer or string or an ipv6-address object.

service⇓ A string or a fixnum.

direction⇓ One of :input, :output or :io.

element-type⇓ base-char or a subtype of integer.

errorp⇓ A boolean.

read-timeout⇓ A positive number, or nil.

write-timeout⇓ A positive number, or nil.

timeout⇓ A positive number, or nil.

ssl-ctx⇓ A symbol, a foreign pointer or a client ssl-abstract-context.

32 The COMM Package

469

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm

ctx-configure-callback⇓
A function designator or nil. The default value is nil.

ssl-configure-callback⇓
A function designator or nil. The default value is nil.

handshake-timeout⇓ A real or nil (the default).

tlsext-host-name⇓ A string, t or nil.

local-address⇓ nil, an integer, a string or a ipv6-address object.

ipv6⇓ nil, t or :any.

local-port⇓ nil, a string or a fixnum.

nodelay⇓ A generalized boolean.

keepalive⇓ A generalized boolean.

Values

stream-or-nil⇓ A socket-stream or nil.

maybe-condition⇓ nil or a condition.

Description

The function open-tcp-stream attempts to connect to a socket on a server and returns a socket-stream for the
connection if successful.

The IP address to connect to is specified by hostspec, and the service to provide is specified by service. These two arguments
are interpreted as described in 25.4 Specifying the target for connecting and binding a socket.

The direction of the connection is given by direction. Its default value is :io. The element type of the connection is
determined from element-type, and is base-char by default.

If errorp is nil (the default), failure to connect (possibly after timeout seconds) returns nil as stream-or-nil and a
condition as maybe-condition. The most common types of condition are socket-connect-error for failure to
connect, ssl-failure for failure to attach SSL (maybe because the other side does not use SSL) and
ssl-verification-failure for failure during the handshake in a SSL connection. If errorp is non-nil, any failure is
signaled by a call to error.

timeout specifies a connection timeout. open-tcp-stream waits for at most timeout seconds for the TCP connection to be
made. If timeout is nil it waits until the connection attempt succeeds or fails. On failure, open-tcp-stream signals an
error or returns nil according to the value of errorp. To provide a timeout for reads after the connection is made, see read-
timeout. The default value of timeout is nil.

read-timeout specifies the read timeout of the stream. If it is nil (the default), the stream does not time out during reads, and
these may hang. See socket-stream for more details. To provide a connection timeout, see timeout.

write-timeout is similar to read-timeout, but for writes. See socket-stream for more details.

ssl-ctx, ctx-configure-callback, ssl-configure-callback and handshake-timeout are interpreted as described in 25.9.6 Keyword
arguments for use with SSL. Unlike the other ways of creating a socket stream with SSL processing, open-tcp-stream
does not take the ssl-side argument and always uses the value :client.

If tlsext-host-name is a string, then the SNI extension in the SSL connection to set to its value. If tlsext-host-name is t and
hostspec is a string that does not specify a numeric IP address, then the SNI extension in the SSL connection to set to
hostspec. If tlsext-host-name is not supplied and ssl-ctx is non-nil, then the SNI extension is set to hostspec if it is a string that

32 The COMM Package

470

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_cnd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_cnd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_cnd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

does not specify a numeric IP address and ssl-ctx is not an ssl-abstract-context that was created with a tlsext-host-
name.

If local-address is nil then the operating system chooses the local address of the socket. Otherwise the value is interpreted
as for hostspec and specifies the local address of the socket. The default value of local-address is nil.

If local-port is nil then the operating system chooses the local port of the socket. Otherwise the string or fixnum value is
interpreted as for service and specifies the local port of the socket. The default value of local-port is nil.

ipv6 specifies the address family to use when hostspec is a string. When ipv6 is :any, open-tcp-stream uses either of
IPv4 or IPv6. When ipv6 is t, it uses only IPv6 addresses, and when ipv6 is nil it tries only IPv4. The default value of ipv6
is :any.

If keepalive is true, SO_KEEPALIVE is set on the socket. The default value of keepalive is nil.

If nodelay is true, TCP_NODELAY is set on the socket. The default value of nodelay is t.

Notes

1. On Unix-like systems, the name of the service can normally be found in /etc/services. If it is not there, the manual
entry for services can be used to find it.

2. If switch-open-tcp-stream-with-ssl-to-java was called with its argument on non-nil or not supplied, when
SSL-CTX is non-nil open-tcp-stream uses Java sockets instead of ordinary sockets. This is the default behavior on
Android, because OpenSSL is not available on Android. The resulting streams have some limitations, most importantly
cl:listen is not reliable on them. They also verify the host, which ordinary sockets do not currently do, in the same
way that the default in open-tcp-stream-using-java does. See 25.10 Socket streams with Java sockets and SSL
on Android for a full description, and open-tcp-stream-using-java for details about verification and which
keywords are used.

Examples

The following example opens an HTTP connection to a given host, and retrieves the root page:

(with-open-stream (http (comm:open-tcp-stream
 "www.lispworks.com" 80))
 (format http "GET / HTTP/1.0~C~C~C~C"
 (code-char 13) (code-char 10)
 (code-char 13) (code-char 10))
 (force-output http)
 (write-string "Waiting to reply...")
 (loop for ch = (read-char-no-hang http nil :eof)
 until ch
 do (write-char #\.)
 (sleep 0.25)
 finally (unless (eq ch :eof)
 (unread-char ch http)))
 (terpri)
 (loop for line = (read-line http nil nil)
 while line
 do (write-line line)))

See also

connect-to-tcp-server
start-up-server
socket-stream
socket-stream-shutdown
switch-open-tcp-stream-with-ssl-to-java

32 The COMM Package

471

http://www.lispworks.com/documentation/HyperSpec/Body/f_listen.htm

open-tcp-stream-using-java
create-ssl-client-context
25 TCP and UDP socket communication and SSL
25 TCP and UDP socket communication and SSL

open-tcp-stream-using-java Function

Summary

Open a TCP stream using Java sockets for communication.

Package

comm

Signature

open-tcp-stream-using-java hostspec service &key factory verify direction element-type errorp read-timeout write-
timeout timeout ssl-ctx ctx-configure-callback ssl-configure-callback handshake-timeout tlsext-host-name local-address ipv6 local-
port nodelay keepalive => stream

Arguments

hostspec⇓ An integer or string or an ipv6-address object.

service⇓ A string or a fixnum.

factory⇓ A Java socket factory.

verify⇓ t, nil, :strict, :browser-compat, a string or a jobject.

direction⇓ One of :input, :output or :io.

element-type⇓ base-char or a subtype of integer.

errorp⇓ A boolean.

read-timeout⇓ A positive number, or nil.

write-timeout⇓ Ignored.

timeout⇓ A positive number, or nil.

ssl-ctx⇓ A generalized boolean.

ctx-configure-callback⇓
Ignored.

ssl-configure-callback⇓
Ignored.

handshake-timeout⇓ A real or nil (the default).

tlsext-host-name⇓ Ignored.

local-address⇓ nil, an integer, a string or a ipv6-address object.

ipv6⇓ Ignored.

local-port⇓ nil, a string or a fixnum.

32 The COMM Package

472

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

nodelay⇓ A generalized boolean.

keepalive⇓ A generalized boolean.

Values

stream A socket-stream.

Description

The function open-tcp-stream-using-java opens a TCP stream using Java sockets for communication.

Note: open-tcp-stream-using-java does not have any clear advantage over open-tcp-stream. Use it only when you
really need it.

open-tcp-stream-using-java accepts the same service, direction, element-type, errorp, read-timeout, timeout, local-
address, local-port, nodelay and keepalive arguments as open-tcp-stream, plus factory and verify, but ignores the values
of write-timeout, ipv6, ctx-configure-callback, ssl-configure-callback and tlsext-host-name. It also treats ssl-ctx as a
generalized boolean, where any non-nil value means using SSL Java object.

When using SSL, handshake-timeout is interpreted as described in 25.9.6 Keyword arguments for use with SSL, but
open-tcp-stream-using-java always does a handshake when connecting. This handshake is synchronous, and its
timeout is controlled by handshake-timeout. Later handshakes on a Java SSL socket are done asynchronously (because that
what the underlying Java code does).

open-tcp-stream-using-java opens and returns a socket-stream like open-tcp-stream, but the socket object that
it uses is a Java object. However, cl:listen is unreliable on such streams, and they cannot be used in
wait-for-input-streams. See 25.10 Socket streams with Java sockets and SSL on Android for details.

The keyword argument factory can be used to specify the socket factory to use to create the Java socket. When passed, it
must be a Java socket factory, that is a jobject which is an instance of class javax.net.SocketFactory. In this case the
socket is generated from this factory, the factory determines whether it is a SSL socket or not, and the value of ssl-ctx is used
only to decide whether to do a handshake. By default, the default factory (the result of "getDefault") of
javax.net.SocketFactory (when ssl-ctx is nil) or javax.net.ssl.SSLSocketFactory (when ssl-ctx is non-nil) is
used.

The keyword argument verify is used only when ssl-ctx is non-nil. It controls verification of hostspec when SSL is used,
which means checking that the certificate that was returned by the server is for this server. The default value t means using
SSLCertificateSocketFactory on Android when factory is not supplied (see below), on other platforms it is the same
as :strict. :strict mean uses the strict verifier (Java class
org.apache.http.conn.ssl.StrictHostnameVerifier). :browser-compat means using "browser compatible"
verifier (Java class org.apache.http.conn.ssl.BrowserCompatHostnameVerifier). Verification with
:browser-compat is a little more relaxed than with :strict.

On Android when verify is t and factory is nil, the code uses the socket factory
android.net.SSLCertificateSocketFactory (instead of the default of javax.net.ssl.SSLSocketFactory),
which is doing the verification itself. When factory is non-nil, Android does the same as in the previous paragraph (verify
using the strict verifier). The SSLCertificateSocketFactory has the advantage that it uses SNI (Server Name
Indication), which makes verification work better.

When verify is a string, it has to be the hostname to use for verification, instead of hostspec argument. The verification is
done using the strict verifier.

When verify is a jobject, it must be a verifier (of class javax.net.ssl.HostnameVerifier), and it is used as-is.

The verifier classes above are part of httpclient from apache.org, and therefore to use them (which is the default when
using SSL), you need to have httpclient. On Android it is always available, so it is not an issue, on another architectures

32 The COMM Package

473

http://www.lispworks.com/documentation/HyperSpec/Body/f_listen.htm

it needs to be added to the class path.

When verify is nil, hostspec is not verified, which is not recommended. However, there are valid sites which will fail
verification, because they return a certificate for the wrong site (that happens due to use of virtual hosts). At the time of
writing, "gmail.com" is one of them, and returns a certificate for "mail.google.com". However, if the client uses SNI,
which is used by Java socket in Java 1.7 or higher, this server does return the correct certificate, and in general all servers
should work when using SNI. On Android the default setting uses the SSLCertificateSocketFactory (discussed
above), which is using SNI. Thus there is a problem only when using Java 1.6 or earlier, and for Android only when you use
your own factory. For these cases, you can either use verify nil, or pass the name in the certificate as verify:

(comm:open-tcp-stream-using-java "gmail.com" 443
 :ssl-ctx t
 :verify "mail.google.com")

Note however that this will fail if SNI is used.

Notes

1. The Java virtual machine (JVM) must be running for open-tcp-stream-using-java to work. On Android the JVM
always runs, on other architectures it needs to have been started by init-java-interface. When using ssl-ctx,
httpclient must be available too, and again it is always available on Android.

2. On Android, or if you call switch-open-tcp-stream-with-ssl-to-java, open-tcp-stream uses Java objects
for SSL streams. The result of open-tcp-stream and open-tcp-stream-using-java with ssl-ctx non-nil is
identical in this case.

3. Using Java sockets was added mainly for SSL streams on Android. It may be useful in other circumstances.

4. You can also make a socket-stream with a Java socket by passing the Java socket that your code has created to
(make-instance 'socket-stream ...). Note that closing such a stream will close the socket, and if you want to
avoid that you need to use replace-socket-stream-socket.

See also

25.10 Socket streams with Java sockets and SSL on Android
open-tcp-stream
25 TCP and UDP socket communication and SSL

parse-ipv6-address Function

Summary

Parses a string as an IPv6 address.

Package

comm

Signature

parse-ipv6-address string &key start end trim-whitespace => result

32 The COMM Package

474

Arguments

string⇓ A string.

start⇓, end⇓ Bounding index designators of string.

trim-whitespace⇓ A boolean.

Values

result An ipv6-address object or nil.

Description

The function parse-ipv6-address parses its argument string as an IPv6 address if possible, otherwise it returns nil.

start and end specify the subsequence of string to parse. The default value of start is 0. The default value of end is nil,
meaning the length of string.

trim-whitespace is a boolean specifying that leading and trailing whitespace characters may be ignored. Note that the address
itself must not contain any whitespace. The default value of trim-whitespace is t.

The address has to be in either standard IPv6 address notation, or dotted-quad notation. It can have the standard
simplifications.

In addition, the address may be followed by a '%' character and a scope ID. If the scope ID is a string of decimal characters,
it is read as a decimal number, otherwise it is taken as-is. The address may also be followed by a '/' and a prefix length in
decimal format. The result ipv6-address object remembers the prefix length and prints it when the object is printed, but it
does not affect the address otherwise.

If the syntax of the string string is correct, parse-ipv6-address constructs the ipv6-address object and returns it. It
does not perform any address resolution.

See also

get-host-entry
string-ip-address
25 TCP and UDP socket communication and SSL

pem-read Function

Summary

An interface to the SSL PEM_read_bio_… functions. This should only be called when using the :openssl implementation.

Package

comm

Signature

pem-read thing-to-read filename &key pass-phrase callback errorp => result

32 The COMM Package

475

Arguments

thing-to-read⇓ A string.

filename⇓ A pathname designator.

pass-phrase⇓ A string, or nil.

callback⇓ A function designator, or nil.

errorp⇓ A generalized boolean.

Values

result A foreign pointer or nil.

Description

The function pem-read is an interface to the PEM_read_bio_… set of functions. See the manual entry for pem for
specifications of these functions.

thing-to-read defines which function is required. pem-read concatenates thing-to-read with the string " PEM_read_bio_" to
form the name of the pem function to call.

filename specifies the file to load.

If pass-phrase is non-nil, it must be a string, which is passed to the pem function. The default value of pass-phrase is nil.

If callback is non-nil, it must be a function with signature:

callback maximum-length rwflag => pass-phrase

where maximum-length is an integer, rwflag is a boolean and pass-phrase is the pass-phrase to use. The default value of
callback is nil, but you cannot pass non-nil values for both pass-phrase and callback.

If it succeeds, pem-read returns a foreign pointer to the structure that was returned by the pem function. If pem-read fails,
if errorp is non-nil it signals an error, otherwise it returns nil. The default value of errorp is nil.

See also

25 TCP and UDP socket communication and SSL

read-dhparams Function

Summary

Reads or uses cached SSL DH parameters. This should only be called when using the :openssl implementation.

Package

comm

Signature

read-dhparams filename &key pass-phrase callback errorp force => dh-ptr

32 The COMM Package

476

Arguments

filename⇓ A pathname designator.

pass-phrase⇓ A string, or nil.

callback⇓ A function designator, or nil.

errorp⇓ A generalized boolean.

force⇓ A generalized boolean.

Values

dh-ptr A foreign pointer or nil.

Description

The function read-dhparams reads or uses cached DH parameters.

filename specifies the file to check.

Unless force is true, read-dhparams checks whether the file filename has already been loaded, and if it has been loaded,
uses the cached value.

If force is true, or if there is no cached value for filename, read-dhparams loads the file by calling pem-read with thing-to
-read argument "DHparams", pass-phrase, callback and errorp. read-dhparams caches and returns a foreign pointer to the
resulting DH structure (that is, a pointer corresponding to the C type DH*).

If read-dhparams fails to load the file filename, if errorp is true it signals an error, otherwise it returns nil. The default
value of errorp is t.

See also

pem-read
25 TCP and UDP socket communication and SSL

replace-socket-stream-socket Function

Summary

Replaces the socket in a socket-stream, returning the existing socket object without closing it.

Package

comm

Signature

replace-socket-stream-socket socket-stream socket => socket-or-nil

Arguments

socket-stream⇓ A socket-stream.

socket⇓ A socket object or nil.

32 The COMM Package

477

Values

socket-or-nil⇓ A socket object or nil.

Description

The function replace-socket-stream-socket replaces the socket in the socket-stream socket-stream, returning the
existing socket object without closing it.

A socket object is typcially a socket handle, which is an integer representing an file descriptor socket on Unix-like systems or
a SOCKET on Microsoft Windows, but when using the Java interface it can also be a Java socket (a jobject of Java class
java.net.Socket).

replace-socket-stream-socket sets the socket in socket-stream to the argument socket, and then returns the old socket
object without closing it.

Notes

1. Getting the old socket using the socket-stream accessor socket-stream-socket and then using
(setf socket-stream-socket) to set the new one is different, because the cl:setf will close the old socket.

2. Passing nil as the socket allows you to close the stream while retaining the socket.

3. The new socket does not need to be the same kind of socket as the old one.

4. If socket-or-nil is non-nil then it needs to be closed when it is no longer needed. If it is stored into another
socket-stream or async-io-state, then it will be closed automatically when this object is closed. Otherwise, you
need to call close-socket-handle to close it when you have finished with it.

See also

socket-stream
close-socket-handle
25 TCP and UDP socket communication and SSL

reset-ssl-abstract-context Function

Summary

Resets a ssl-abstract-context, releasing the data that it has cached.

Package

comm

Signature

reset-ssl-abstract-context abstract-context

Arguments

abstract-context⇓ A ssl-abstract-context.

32 The COMM Package

478

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

Description

The function reset-ssl-abstract-context resets abstract-context, which releases all the data that it has cached.
abstract-context can be used afterwards, which will cause the data to be read and cached again.

Notes

reset-ssl-abstract-context is rarely useful, because the caches associated with a ssl-abstract-context are not
large. It may be useful if some of the files that it read have changed.

See also

ssl-abstract-context
create-ssl-server-context
create-ssl-client-context
25.9.3 SSL abstract contexts

sec-certificate-ref FLI Type Descriptor

Summary

Expert use: a FLI type corresponding to the C type SecCertificateRef in the Apple Security Framework.

Package

comm

Syntax

sec-certificate-ref

Description

Instances of the FLI type sec-certificate-ref are FLI pointers corresponding to the C type SecCertificateRef in
the Apple Security Framework. You can get such pointers in Lisp by calling
ssl-connection-copy-peer-certificates, and access them in Lisp by calling get-certificate-data,
get-certificate-common-name and get-certificate-serial-number.

sec-certificate-ref is intended to be used when you want to use your own FLI definitions for the Apple Security
Framework functions to access certificates.

See also

ssl-connection-copy-peer-certificates
get-certificate-data
get-certificate-common-name
get-certificate-serial-number

32 The COMM Package

479

server-terminate Function

Summary

Terminates a server.

Package

comm

Signature

server-terminate &optional process => result

Arguments

process⇓ A mp:process object or nil.

Values

result A boolean.

Description

The function server-terminate terminates a server process.

If process is a process object it must be the result of a call to start-up-server. server-terminate terminates it, and
frees all the associated resources.

If process is nil or is not supplied, the call to server-terminate must be inside the scope of the process that was created
by start-up-server, which can by either function or announce that you passed to start-up-server.
server-terminate returns t in this case, and the actual termination happens after your function (that is, function or
announce) returns.

server-terminate returns t if the server was still active when it was called, otherwise it returns nil. It can be called
repeatedly on the same server, and can be used as a predicate to check whether the server really went away.

Notes

In LispWorks 6.0 and earlier versions, process-kill is the way to terminate servers. This is deprecated, because it may
leave some value in an invalid state.

See also

start-up-server
25 TCP and UDP socket communication and SSL

32 The COMM Package

480

set-ssl-ctx-dh Function

Summary

Sets the DH parameters for a SSL_CTX. This should only be called when using the :openssl implementation.

Package

comm

Signature

set-ssl-ctx-dh ssl-ctx &key dh filename func filename-list pass-phrase callback => result

Arguments

ssl-ctx⇓ A foreign pointer.

dh⇓ A foreign pointer corresponding to the C type DH*.

filename⇓ A pathname designator or nil.

func⇓ A function designator or nil.

filename-list⇓ An association list.

pass-phrase⇓ A string, or nil.

callback⇓ A function designator, or nil.

Values

result⇓ A boolean.

Description

The function set-ssl-ctx-dh sets the DH parameters for a SSL_CTX.

ssl-ctx can be either a foreign pointer of type ssl-ctx-pointer or a foreign pointer of type ssl-pointer.

The value is to use is specified by one of the parameters dh, filename, func or filename-list.

If dh is non-nil, it must be a foreign pointer to a DH (corresponding to the C type DH*), and this DH is used as-is. The default
value of dh is nil.

Otherwise, if filename is non-nil, it must be a pathname designator for a file containing DH parameters, which is loaded (by
read-dhparams) and then used. In this case, pass-phrase and callback can be used, and are passed to pem-read.

Otherwise, if func is non-nil, it must be a function with signature:

func is-export keylength => dh-ptr

where is-export is a boolean, keylength is an integer, and dh-ptr is a pointer to an appropriate DH structure.
set-ssl-ctx-dh installs func as the DH callback.

Otherwise (that is, if each of dh, filename and func are nil) then filename-list must be a non-nil association list of keylengths

32 The COMM Package

481

and filenames, sorted by the keylengths in ascending order (that is, larger keylengths are towards the end of the list).
set-ssl-ctx-dh installs a DH callback which when called finds the first keylength which is equal or bigger than the
required keylength, loads the associated file (by calling read-dhparams), and returns it. It also loads the first file of the list
immediately.

result is t on success, nil otherwise.

See also

pem-read
read-dhparams
ssl-ctx-pointer
ssl-pointer
25 TCP and UDP socket communication and SSL

set-ssl-ctx-options Function

Summary

Sets the options in a SSL_CTX. This should only be called when using the :openssl implementation.

Package

comm

Signature

set-ssl-ctx-options ssl-ctx &key microsoft_sess_id_bug netscape_challenge_bug netscape_reuse_cipher_change_bug
sslref2_reuse_cert_type_bug microsoft_big_sslv3_buffer msie_sslv2_rsa_padding ssleay_080_client_dh_bug tls_d5_bug
tls_block_padding_bug dont_insert_empty_fragments all no_session_resumption_on_renegotiation single_dh_use ephemeral_rsa
cipher_server_preference tls_rollback_bug no_sslv2 no_sslv3 no_tlsv1 pkcs1_check_1 pkcs1_check_2 netscape_ca_dn_bug
netscape_demo_cipher_change_bug

Arguments

ssl-ctx⇓ A foreign pointer.

microsoft_sess_id_bug⇓
A boolean.

netscape_challenge_bug⇓
A boolean.

netscape_reuse_cipher_change_bug⇓
A boolean.

sslref2_reuse_cert_type_bug⇓
A boolean.

microsoft_big_sslv3_buffer⇓
A boolean.

msie_sslv2_rsa_padding⇓
A boolean.

32 The COMM Package

482

ssleay_080_client_dh_bug⇓
A boolean.

tls_d5_bug⇓ A boolean.

tls_block_padding_bug⇓
A boolean.

dont_insert_empty_fragments⇓
A boolean.

all⇓ A boolean.

no_session_resumption_on_renegotiation⇓
A boolean.

single_dh_use⇓ A boolean.

ephemeral_rsa⇓ A boolean.

cipher_server_preference⇓
A boolean.

tls_rollback_bug⇓ A boolean.

no_sslv2⇓ A boolean.

no_sslv3⇓ A boolean.

no_tlsv1⇓ A boolean.

pkcs1_check_1⇓ A boolean.

pkcs1_check_2⇓ A boolean.

netscape_ca_dn_bug⇓ A boolean.

netscape_demo_cipher_change_bug⇓
A boolean.

Description

The function set-ssl-ctx-options sets the options in a SSL_CTX.

ssl-ctx can be either a foreign pointer of type ssl-ctx-pointer or a foreign pointer of type ssl-pointer.

The options are stored as a integer, made by using logior to combine bits for each non-nil value of the keyword arguments
microsoft_sess_id_bug, netscape_challenge_bug, netscape_reuse_cipher_change_bug, sslref2_reuse_cert_type_bug,
microsoft_big_sslv3_buffer, msie_sslv2_rsa_padding, ssleay_080_client_dh_bug, tls_d5_bug, tls_block_padding_bug,
dont_insert_empty_fragments, all, no_session_resumption_on_renegotiation, single_dh_use, ephemeral_rsa,
cipher_server_preference, tls_rollback_bug, no_sslv2, no_sslv3, no_tlsv1, pkcs1_check_1, pkcs1_check_2,
netscape_ca_dn_bug and netscape_demo_cipher_change_bug. The bit used for each non-nil value of keyword keyword is the
value of SSL_OP_keyword. The meaning of the options is specified in the OpenSSL manual page for SSL_set_options.

See also

ssl-ctx-pointer
ssl-pointer
25 TCP and UDP socket communication and SSL

32 The COMM Package

483

http://www.lispworks.com/documentation/HyperSpec/Body/f_logand.htm

set-ssl-ctx-password-callback Function

Summary

Sets the password for a SSL_CTX. This should only be called when using the :openssl implementation.

Package

comm

Signature

set-ssl-ctx-password-callback ssl-ctx &key callback password

Arguments

ssl-ctx⇓ A foreign pointer.

callback⇓ A function designator, or nil.

password⇓ A string, or nil.

Description

The function set-ssl-ctx-password-callback sets the password for a SSL_CTX, either to a callback or a password.

ssl-ctx should be a foreign pointer of type ssl-ctx-pointer.

If callback is non-nil, it must be a function with signature:

callback maximum-length rwflag => result

where maximum-length is an integer, rwflag is a boolean and result is a string. The default value of callback is nil.

If password is non-nil and callback is nil, a callback is installed that simply returns password. The default value of
password is nil.

If both callback and password are nil, set-ssl-ctx-password-callback signals an error.

See also

ssl-ctx-pointer
25 TCP and UDP socket communication and SSL

set-ssl-library-path Function

Summary

Sets the SSL library path. This should only be called when using the :openssl implementation.

32 The COMM Package

484

Package

comm

Signature

set-ssl-library-path library-path

Arguments

library-path⇓ A string or a list of strings.

Description

The function set-ssl-library-path sets the SSL library path.

library-path should be a string or a list of strings. Each string specifies a library to load. The libraries are loaded in the order
they are in the list.

Note that in contrast to ensure-ssl, the effect of set-ssl-library-path persists after saving and restarting the image.

See also

ensure-ssl
25.9.2.2 How LispWorks locates the OpenSSL libraries
25 TCP and UDP socket communication and SSL

set-verification-mode Function

Summary

Sets the verification mode for CTX.

Package

comm

Signature

set-verification-mode ssl-ctx ssl-side mode &optional callback

Arguments

ssl-ctx⇓ A foreign pointer of type ssl-pointer, ssl-ctx-pointer or ssl-context-ref.

ssl-side⇓ :server or :client.

mode⇓ An integer, one of the symbols :never, :always, :once, or a list of keywords.

callback⇓ A foreign function.

Description

The function set-verification-mode sets the verification mode for ssl-ctx according to ssl-side and mode.

32 The COMM Package

485

When ssl-side is :server, mode can be:

An integer mode is passed directly to SSL_set_verify or SSL_CTX_set_verify.

:never The server will not send a client certificate request to the client, so the client will not send a
certificate.

:always The server sends a client certificate request to the client. The certificate returned (if any) is
checked. If the verification process fails, the TLS/SSL handshake is immediately terminated with
an alert message containing the reason for the verification failure.

:once Same as :always except that the client certificate is checked only on the initial TLS/SSL
handshake, and not again in case of renegotiation.

A list The list contains (some of) the keywords :verify-client-once, :verify-peer and
:fail-if-no-peer-cert. These keywords map to the corresponding C constants
VERIFY_CLIENT_ONCE, VERIFY_PEER and FAIL_IF_NO_PEER_CERT respectively. See the
manual entry for SSL_CTX_set_verify for the meaning of the constants.

When ssl-side is :client, mode can be:

An integer mode is passed directly as for ssl-side :server.

:never If not using an anonymous cipher, the server will send a certificate which will be checked by the
client. The handshake will be continued regardless of the verification result.

:always The server certificate is verified. If the verification process fails, the TLS/SSL handshake is
immediately terminated with an alert message containing the reason for the verification failure. If
no server certificate is sent because an anonymous cipher is used, verification is ignored.

A list The list contains keywords as described above for ssl-side :server.

If non-nil callback should be a symbol, function, string or foreign pointer designating a foreign function that is called to
perform verification. The default value of callback is nil.

See also

get-verification-mode
25 TCP and UDP socket communication and SSL

socket-connect-error Condition Class

Summary

The class of error signaled while trying to connect a socket.

Package

comm

Superclasses

socket-error

32 The COMM Package

486

Description

Instancess of the condition class socket-connect-error are signaled upon a failure to connect a socket. When
open-tcp-stream fails to connect, it returns an instance of socket-connect-error as the second value or signals it
(depending on the errorp argument to open-tcp-stream).

socket-connection-peer-address Function

Summary

Returns the IP address and port number of the peer for a socket connection.

Package

comm

Signature

socket-connection-peer-address socket-connection => address, port

Arguments

socket-connection⇓ A socket connection (socket-stream or async-io-state).

Values

address⇓ An IP address or nil.

port⇓ A port number or nil.

Description

The function socket-connection-peer-address returns the peer IP address address and port number port of socket-
connection. socket-connection must be either a socket-stream or a async-io-state. If socket-connection is not
connected then address and port are returned as nil.

Notes

When socket-connection is a socket-stream, socket-connection-peer-address is equivalent to
socket-stream-peer-address.

See also

socket-stream
async-io-state

32 The COMM Package

487

socket-connection-socket Function

Summary

Returns the socket handle of a socket connection.

Package

comm

Signature

socket-connection-socket socket-connection => socket-handle

Arguments

socket-connection⇓ A socket connection (socket-stream or async-io-state).

Values

socket-handle⇓ A socket handle.

Description

The function socket-connection-socket returns the socket handle associated with socket-connection. socket-connection
must be either a socket-stream or a async-io-state.

The result socket-handle is an implementation-specific socket handle, that is a file descriptor on Unix-like systems, a socket
handle on Windows and a lw-ji:jobject of Java class javax.net.ssl.SSLSocket for streams opened with
open-tcp-stream-using-java.

Notes

When socket-connection is a socket-stream, socket-connection-socket is equivalent to socket-stream-socket.

See also

socket-stream-socket
socket-stream
async-io-state

socket-create-error Condition Class

Summary

The class of error signaled while trying to create a socket.

Package

comm

32 The COMM Package

488

Superclasses

socket-error

Description

Instances of the condition class socket-create-error are signaled when an error occurs while trying to create a socket.
"Create" here means all the processing that is local and should work even if the intended peer is not available. For a TCP
client socket and a connected UDP socket, that includes all processing until (but not including) the call to connect. For a
TCP server, that includes all the processing of the listening socket. For an unconnected UDP socket, that includes all
processing before sending and receiving.

You can call socket-error-code to get the code associated with the error, either a value of errno on Unix-like systems or
a Windows error code on Windows. This may be useful for deciding programmatically what to do.

socket-error Condition Class

Summary

The condition class for socket errors.

Package

comm

Superclasses

simple-error

Subclasses

socket-create-error
socket-connect-error
socket-io-error
ssl-condition

Readers

socket-error-code
socket-error-connection

Description

Instances of the condition class socket-error are signaled to indicate some error associated with socket operations.
Specific errors are specified by subclasses of socket-error.

Once they are connected, sockets are normally associated with a connection object, which is either a socket-stream or a
async-io-state. The reader socket-error-connection can be used to get the connection object. Note that errors may
arise before the connection object is created, in which case socket-error-connection will return nil.

If an error is associated with a operating system error code, the reader socket-error-code can be used to get it. In other
errors, it returns nil.

32 The COMM Package

489

http://www.lispworks.com/documentation/HyperSpec/Body/e_smp_er.htm

See also

25 TCP and UDP socket communication and SSL

socket-error Generic Function

Summary

Signals an I/O error for a socket-stream.

Package

comm

Signature

socket-error stream error-code format-control &rest format-arguments

Method signatures

socket-error (stream socket-stream) (error-code t) (format-control t) &rest format-arguments

Arguments

stream⇓ A socket-stream.

error-code⇓ An integer.

format-control⇓ A format control string.

format-arguments⇓ Format arguments for format-control.

Description

The generic function socket-error is called by LispWorks when there is an I/O error in an operation on stream. The
default method specialized on socket-stream signals an error of type socket-io-error.

error-code is the error code of the error, which is a value of errno on Unix-like systems or a Windows error code on
Windows. format-control and format-arguments are used as in simple-condition to give some further information about
the error.

Notes

socket-error existed in LispWorks version before 8.0, but was not documented.

In most cases, handling socket-io-error is the most convenient way to deal with socket I/O errors. Defining your own
method for socket-error may be useful when you want to signal different condition types. To use it, you will have to
define and use your own sub-class of socket-stream and specialize your method on this sub-class.

32 The COMM Package

490

http://www.lispworks.com/documentation/HyperSpec/Body/e_smp_cn.htm

socket-io-error Condition Class

Summary

The class of error signaled while doing I/O on a socket.

Package

comm

Superclasses

socket-error

Description

Instances of the condition class socket-io-error are signaled when an error occured while performing I/O on a socket
connection, which can be either a socket-stream or a async-io-state (which you can access by
socket-error-connection). In most cases, that means that this connection cannot be used anymore, and you should
close it and, if needed, try again.

socket-stream Class

Summary

The socket stream class.

Package

comm

Superclasses

buffered-stream

Initargs

:socket A socket handle.

:direction One of :input, :output, or :io.

:element-type One of base-char, (signed-byte 8) and (unsigned-byte 8).

:read-timeout A positive number or nil.

:write-timeout A positive number or nil.

:ssl-ctx A symbol, a foreign pointer or a ssl-abstract-context.

:ssl-side One of the keywords :client, :server or :both. The default value is :server.

:ctx-configure-callback

A function designator or nil.

:ssl-configure-callback

32 The COMM Package

491

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

A function designator or nil.

:handshake-timeout A real or nil (the default).

:tlsext-host-name A string or nil.

Accessors

socket-stream-socket
stream:stream-read-timeout
stream:stream-write-timeout

Description

The class socket-stream implements a buffered stream connected to a socket. The socket handle, specified by :socket,
and the direction, specified by :direction, must be passed for a meaningful stream to be constructed. Common Lisp input
functions such as read-char will see end-of-file if the other end of the socket is closed.

The :element-type initarg determines the expected element type of the stream traffic. However, stream input and output
functions for character and binary data generally work in the obvious way on a socket-stream with any of the allowed
values of element-type. For example, read-sequence can be called with a string buffer and a binary socket-stream: the
character data is constructed from the input as if by code-char. Similarly write-sequence can be called with a string
buffer and a binary socket-stream: the output is converted from the character data as if by char-code. Also, 8-bit binary
data can be read and written to a base-char socket-stream.

All standard stream I/O functions except for write-byte and read-byte have this flexibility.

The :read-timeout initarg specifies the read timeout in seconds, or is nil, meaning there are no timeouts during reads
(this is the default).

The read-timeout property is intended for use when a socket connection might hang during a call to any Common Lisp input
function. The read-timeout can be set by make-instance or by open-tcp-stream. It can also be modified by
(setf stream:stream-read-timeout). When read-timeout is nil, there is no timeout during reads and the call may
hang. When read-timeout is not nil, and there is no input from the socket for more than read-timeout seconds, any reading
function returns end-of-file. The read-timeout does not limit the time inside read, but the time between successful
extractions of data from the socket. Therefore, if the reading needs several rounds it may take longer than read-timeout.

Using (setf stream:stream-read-timeout) on the stream while it is inside a read function has undefined effects.
However, the setf function can be used between calls to read functions. The read-timeout property of a stream can be read by
(stream:stream-read-timeout stream).

The :write-timeout initarg specifies the write timeout in seconds, or is nil, meaning that there are no timeouts during
writes (this is the default).

The write-timeout property is similar to read-timeout, but for write operations. If flushing the stream buffer takes too long
then error is called.

The initargs :ssl-ctx, :ssl-side, :ctx-configure-callback, :ssl-configure-callback and
:handshake-timeout can be be supplied to create and configure socket streams with SSL processing. See 25.9.6
Keyword arguments for use with SSL for more details.

If :tlsext-host-name initarg is a string then the SNI extension in the SSL connection to set to its value.

If there is a non-local exit while initializing the socket-stream (the most common reason being a SSL handshake failure
when using SSL), then the stream will be closed. This will cause the socket to be closed as well.

Notes

32 The COMM Package

492

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_cha.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_end_of.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_code_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_char_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_by.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_by.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_end_of.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_rd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

1. The function wait-for-input-streams and wait-for-input-streams-returning-first are a convenient
interface for waiting for input from socket streams. The standard I/O functions (cl:read, cl:read-char and so on)
can also wait properly. You can also use process-wait and similar functions with cl:listen in the wait-function,
but you will need to use with-noticed-socket-stream.

2. The socket object in a socket-stream is normally a socket object in the operating system sense. On Unix-like systems
and Microsoft Windows it is an integer corresponding to a socket as returned from the C functions socket and accept. It
can also be a Java socket object, see 25.10 Socket streams with Java sockets and SSL on Android for details.

3. (setf socket-steam-socket) can be used to set the socket object in the stream, and can also set it to nil. When
there is already a socket in the stream, (setf socket-steam-socket) closes it before setting the slot to the new
socket. The function replace-socket-stream-socket can be used to set the socket without closing the old one.

4. Errors while doing I/O on a socket-stream are signaled using the condition class socket-io-error.

Examples

The following makes a bidirectional stream connected to a socket specified by handle.

(make-instance 'comm:socket-stream
 :socket handle
 :direction :io
 :element-type 'base-char)

This example creates a socket stream with a read-timeout:

(make-instance 'comm:socket-stream
 :handle handle
 :direction :input
 :read-timeout 42)

The following form illustrates character I/O in a binary socket-stream:

(with-open-stream (x
 (comm:open-tcp-stream
 "localhost" 80
 :element-type '(unsigned-byte 8)))
 (write-sequence (format nil "GET / HTTP/1.0~%~%") x)
 (force-output x)
 (let ((res (make-array 20 :element-type 'base-char)))
 (values (read-sequence res x) res)))

The following form illustrates binary I/O in a base-char socket-stream:

(with-open-stream (x
 (comm:open-tcp-stream
 "localhost" 80
 :element-type 'base-char))
 (write-sequence
 (map '(simple-array (unsigned-byte 8) 1)
 'char-code
 (format nil "GET / HTTP/1.0~%~%"))
 x)
 (force-output x)
 (let ((res (make-array 20
 :element-type
 '(unsigned-byte 8))))
 (values (read-sequence res x)
 (map 'string 'code-char res))))

32 The COMM Package

493

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_rd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_cha.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_listen.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

See also

connect-to-tcp-server
open-tcp-stream
start-up-server
wait-for-input-streams
replace-socket-stream-socket
socket-io-error
create-ssl-client-context
create-ssl-server-context
25 TCP and UDP socket communication and SSL
25 TCP and UDP socket communication and SSL

socket-stream-address Function

Summary

Returns the local address and port number of a given socket stream.

Package

comm

Signature

socket-stream-address stream => address, port

Arguments

stream⇓ A socket stream.

Values

address⇓ A integer, ipv6-address or nil.

port⇓ An integer or nil.

Description

The function socket-stream-address returns the local address of a connected socket.

address is the local host address of stream or nil if not connected.

port is the local port number of stream or nil if not connected.

Notes

Connected socket streams have two addresses, local and remote.

See also

socket-stream-peer-address
get-socket-address
25 TCP and UDP socket communication and SSL

32 The COMM Package

494

socket-stream-ctx Function

Summary

Accesses the SSL_CTX attached to a socket stream.

Package

comm

Signature

socket-stream-ctx socket-stream => ssl-ctx-pointer

Arguments

socket-stream⇓ A socket-stream.

Values

ssl-ctx-pointer A foreign pointer or nil.

Description

The function socket-stream-ctx accesses the SSL_CTX that is attached to the socket-stream socket-stream. This is of
type ssl-ctx-pointer when using the :openssl implementation and of type ssl-context-ref when using the
:apple implementation.

It returns nil if SSL is not attached.

See also

socket-stream
ssl-ctx-pointer
25 TCP and UDP socket communication and SSL

socket-stream-handshake Function

Summary

Perform a SSL handshake on a stream.

Package

comm

Signature

socket-stream-handshake stream &optional timeout => success

32 The COMM Package

495

Arguments

stream⇓ A socket-stream.

timeout⇓ nil or a real.

Values

success A boolean.

Description

The function socket-stream-handshake performs a handshake on stream, which must be attached to SSL.

socket-stream-handshake returns false if the handshake does not finish in timeout seconds or if the SSL connection was
cleanly closed by the other side. Other failures cause an error to be signaled.

socket-stream-handshake returns true on success.

Notes

The other socket-stream interface functions signal errors if the handshake fail for any reason, including timeout or clean
close.

If SSL was attached with ssl-side :both, then you will need to specify which side to take in the handshake by calling
ssl-set-accept-state or ssl-set-connect-state with the ssl-pointer return by socket-stream-ssl.

See also

socket-stream
25.9 Using SSL
25 TCP and UDP socket communication and SSL

socket-stream-peer-address Function

Summary

Returns the remote address and port number of a given socket stream.

Package

comm

Signature

socket-stream-peer-address stream => address, port

Arguments

stream⇓ A socket-stream.

Values

address⇓ A integer, ipv6-address or nil.

32 The COMM Package

496

port⇓ An integer or nil.

Description

Connected socket streams have two addresses, local and remote. The function socket-stream-peer-address returns the
remote address.

address is the remote host address of stream or nil if not connected.

port is the remote port number of stream or nil if not connected.

See also

socket-stream-address
get-socket-peer-address
25 TCP and UDP socket communication and SSL

socket-stream-shutdown Function

Summary

Performs a shutdown on one or both sides of a TCP socket connection.

Package

comm

Signature

socket-stream-shutdown stream direction &key abort

Arguments

stream⇓ A socket-stream.

direction⇓ One of :input, :output or :io.

abort⇓ A generalized boolean.

Description

The function socket-stream-shutdown performs a shutdown on one or both sides of a TCP socket connection of stream,
which can indicate to the peer that no more data will be sent or received.

When direction is :input, receive operations are shut down. When direction is :output, send operations are shut down.
When direction is :io, all operations are shut down.

If abort is true and direction is :output or :io, then any input or output in the socket stream buffers is discarded. Otherwise
output is flushed and input is left in the buffer.

It is an error to read from stream (after no data is left in the buffer) after shutdown for :input or :io or to write to stream
after shutdown for :output or :io.

32 The COMM Package

497

Notes

socket-stream-shutdown does not close the socket stream, so it is still necessary to call close to free resources
associated with the stream.

See also

socket-stream
25 TCP and UDP socket communication and SSL

socket-stream-ssl Function

Summary

Accesses the SSL attached to a socket stream.

Package

comm

Signature

socket-stream-ssl socket-stream => ssl-pointer

Arguments

socket-stream⇓ A socket-stream.

Values

ssl-pointer A foreign pointer of type ssl-pointer, or nil.

Description

The function socket-stream-ssl accesses the SSL that is attached to the socket-stream socket-stream in the
:openssl implementation.

It returns nil if SSL is not attached or when using the :apple implementation.

See also

socket-stream
ssl-pointer
25 TCP and UDP socket communication and SSL

socket-stream-ssl-side Function

Summary

Accesses the ssl-side of a socket stream.

32 The COMM Package

498

Package

comm

Signature

socket-stream-ssl-side socket-stream => ssl-side

Arguments

socket-stream⇓ A socket-stream.

Values

ssl-side :client, :server, :both or nil.

Description

The function socket-stream-ssl-side accesses the ssl-side of the socket-stream socket-stream.

It returns nil if SSL is not attached.

Notes

socket-stream-ssl-side is useful as a predicate for testing if an socket-stream has SSL attached.

See also

socket-stream
25 TCP and UDP socket communication and SSL

ssl-abstract-context System Class

Summary

A class of SSL abstract contexts.

Package

comm

Superclasses

t

Readers

ssl-abstract-context-name

Description

Instances of the system class ssl-abstract-context represent information to be used when establishing SSL connections
with either socket-stream or async-io-state objects. They are created by create-ssl-client-context and

32 The COMM Package

499

create-ssl-server-context, and used repeatedly by functions that attach SSL to a TCP connection, mainly
open-tcp-stream or create-async-io-state-and-connected-tcp-socket for the client side, and
make-instance with socket-stream or accept-tcp-connections-creating-async-io-states for the server
side.

See create-ssl-server-context for a full discussion.

See also

create-ssl-server-context
create-ssl-client-context
reset-ssl-abstract-context
25.9.3 SSL abstract contexts

ssl-cipher-pointer FLI Type Descriptor

Summary

An FLI type for use with SSL when using the :openssl implementation.

Package

comm

Syntax

ssl-cipher-pointer

Description

The FLI type ssl-cipher-pointer corresponds to the C type SSL_CIPHER*.

See also

25 TCP and UDP socket communication and SSL

ssl-cipher-pointer-stack FLI Type Descriptor

Summary

An FLI type for use with SSL when using the :openssl implementation.

Package

comm

Syntax

ssl-cipher-pointer-stack

32 The COMM Package

500

Description

The FLI type ssl-cipher-pointer-stack corresponds to the C type STACK_OF(SSL_CIPHER).

See also

25 TCP and UDP socket communication and SSL

ssl-closed Condition Class

Summary

The class for SSL errors corresponding to SSL_ERROR_ZERO_RETURN.

Package

comm

Superclasses

ssl-condition

Description

Instances of the condition class ssl-closed are used for the error corresponding to SSL_ERROR_ZERO_RETURN. It means
the underlying socket is dead.

See also

25 TCP and UDP socket communication and SSL

ssl-condition Condition Class

Summary

The condition class for SSL errors.

Package

comm

Superclasses

socket-error

Subclasses

ssl-closed
ssl-error
ssl-failure
ssl-handshake-timeout
ssl-verification-failure

32 The COMM Package

501

ssl-x509-lookup

Readers

ssl-condition-ssl-code

Description

Instances of the condition class ssl-condition are used for errors inside SSL.

The reader ssl-condition-ssl-code returns a ssl-code indicating the reason for the condition, or nil if the reason was
not recorded. When ssl-code is not nil, it can be one of:

A keyword. Indicates the type of failure. See the list below.

A number. The code given by the underlying implementation. For the Apple implementation, it will be one
of the errSSL… constants (Secure Transport Result Codes). The most common codes are defined
by the constants of the name apple-err-ssl-…, which are listed in the documentation for
apple-err-ssl-protocol. For the OpenSSL implementation, it is the result of the OpenSSL
C function ERR_get_error.

A list. In LispWorks 8.1, the car of the list is always the keyword :verification. The second
element is the result of the verification, and has the same meaning as the second return value
(more-info) of ssl-connection-verify. Note that, for the Apple implementation, the most
common failures are converted to keywords (listed below).

When ssl-code is a keyword, it can be one of:

:client-hello-callback, :cert-request-callback or :verify-callback.

A callback that was passed to create-ssl-server-context or
create-ssl-client-context using the keyword given by ssl-code, returned nil.

:closed. The socket was closed with a proper shutdown. This error can occur when trying to write, which
can happen either by an explicit write or during a SSL handshake.

:min-proto-version OpenSSL only. Failed to set the min protocol version.

:x509-lookup OpenSSL only. This is used in ssl-x509-lookup conditions.

:certificate-key-file.

Apple only. Specify a failure to read the certificate or key file.

See also

25 TCP and UDP socket communication and SSL

ssl-connection-copy-peer-certificates
release-certificates-vector
release-certificate Functions

Summary

Expert use: gets pointers to the implementation-specific peer certificate objects.

32 The COMM Package

502

Package

comm

Signatures

ssl-connection-copy-peer-certificates ssl-connection => vector-of-certificates

release-certificates-vector vector-of-certificates-and-nils

release-certificate foreign-certificate

Arguments

ssl-connection⇓ A SSL connection (socket-stream or async-io-state).

vector-of-certificates-and-nils⇓
A simple vector of nils and certificate pointers.

foreign-certificate⇓ A certificate pointer.

Values

vector-of-certificates⇓
A newly allocated simple vector of certificate pointers.

Description

The function ssl-connection-copy-peer-certificates returns the certificates that the peer in ssl-connection sent.
The result vector-of-certificates is a newly allocated simple vector where each element is a certificate pointer, which means a
FLI pointer to a certificate object of the underlying SSL implementation. For the Apple implementation, the pointers are of
type sec-certificate-ref, corresponding to the C type SecCertificateRef in the Apple Security Framework. For
the OpenSSL implementation, the pointers are of type x509-pointer, corresponding to the C type X509* in the OpenSSL
API. ssl-connection can also be a socket-stream using Java sockets (opened by open-tcp-stream-using-java), in
which case the certificate pointer is a lw-ji:jobject of Java class java.security.cert.Certificate.

The certificates are "copied", which really means their reference counters are incremented, and when you finish with them
they need to be released by calling release-certificates-vector or release-certificate, or using the releasing
functions of the underlying SSL implementation. When the certificates are lw-ji:jobjects, it will not leak memory if you
do not release them, but it is (slightly) better to release them anyway.

release-certificates-vector calls release-certificate on each of the non-nil elements of vector-of-certificates-
and-nils, which must be a simple vector where each element is either a certificate pointer as described above or nil.

release-certificate releases foreign-certificate, that is it decrements its reference count. foreign-certificate must be a
certificate pointer.

Notes

The functions get-certificate-data, get-certificate-common-name and get-certificate-serial-number

can be used to access the certificate pointers except when they are lw-ji:jobjects, but they do not give anything that you
cannot get more simply by calling ssl-connection-get-peer-certificates-data. Thus
ssl-connection-copy-peer-certificates is useful when you need more information about the certificates, which
you will need to find using functions or methods of the underlying SSL implementation.

sec-certificate-ref, x509-pointer and lw-ji:jobject are proper Lisp types, which can be used in typep,

32 The COMM Package

503

http://www.lispworks.com/documentation/HyperSpec/Body/f_typep.htm

typecase and as specializers in CLOS methods, so it is easy to write code that does different things for different
implementations.

Typically, you release all the certificates by calling release-certificates-vector on the result of
ssl-connection-get-peer-certificates-data, but sometimes it is useful to keep some of the certificates and
release the rest. In this case, set the elements of the vector that correspond to the certificates you want to keep to nil, and
then call release-certificates-vector to release all the other certificates.

See also

get-certificate-data
get-certificate-common-name
get-certificate-serial-number
ssl-connection-get-peer-certificates-data

ssl-connection-get-peer-certificates-data Function

Summary

Gets the certificate data for the certificates that the peer sent.

Package

comm

Signature

ssl-connection-get-peer-certificates-data ssl-connection => certificates-data

Arguments

ssl-connection⇓ A SSL connection (socket-stream or async-io-state).

Values

certificates-data⇓ A list of certificate data.

Description

The function ssl-connection-get-peer-certificates-data returns a list of certificate data for the certificates that
the peer of ssl-connection sent. ssl-connection must be a SSL connection (a socket-stream or a async-io-state) that
has SSL attached to it.

If the peer did not send any certificates, then ssl-connection-get-peer-certificates-data returns nil.

Each element in certificates-data contains the data for one certificate as a list of lists, where each element of the inner lists is
of the form:

(keyword value)

keyword specifies the field in the certificate, and value its value. The keywords that appear in the data vary between SSL
implementations. The keywords that are common to all implementations are:

:subject-common-name

32 The COMM Package

504

http://www.lispworks.com/documentation/HyperSpec/Body/m_tpcase.htm

A string: the common name of the subject of the certificate.

:serial-number An integer: the serial number of the certificate.

See get-certificate-data for more details.

The certificates are ordered from the leaf to the root, so in a proper chain the first certifiate is the certificate of the peer, and
the last one is the certificate of the root Certificate Authority.

If you need details from the certificates that are not returned by ssl-connection-get-peer-certificates-data, then
you can use ssl-connection-copy-peer-certificates, though it more complex to use.

ssl-connection-get-peer-certificates-data does not work on streams that use Java sockets (opened by
open-tcp-stream-using-java), and returns nil for such streams. You need to use
ssl-connection-copy-peer-certificates for such streams.

See also

get-certificate-data
ssl-connection-copy-peer-certificates

ssl-connection-implementation Function

Summary

Returns the implementation of a SSL connection.

Package

comm

Signature

ssl-connection-implementation ssl-connection => implementation-name

Arguments

ssl-connection⇓ A SSL connection (socket-stream or async-io-state).

Values

implementation-name :apple or :openssl or nil.

Description

The function ssl-connection-implementation returns the implementation that is used to implement the SSL
functionality of ssl-connection. nil means ssl-connection is not using SSL.

See also

ssl-default-implementation
25.9.1 SSL implementations

32 The COMM Package

505

ssl-connection-protocol-version Function

Summary

Returns a keyword indicating the protocol version that is used by the connection.

Package

comm

Signature

ssl-connection-protocol-version ssl-connection => keyword

Arguments

ssl-connection⇓ A SSL connection (socket-stream or async-io-state).

Values

keyword A keyword.

Description

The function ssl-connection-protocol-version returns a keyword indicating which protocol version is used by ssl-
connection. The result will be one :tls-v1-3, :tls-v1-2, :tls-v1-1, :tls-v1, v3 (for SSL 3.0) or :unknown.

ssl-connection-protocol-version can only be called after the first handshake of the connection, otherwise the result
is unreliable. It signals an error if ssl-connection is not a SSL connection.

See 25.9.6 Keyword arguments for use with SSL for how to specify which protocol version is acceptable.

ssl-connection-read-certificates Function

Summary

Specifies certificates for a SSL conection.

Package

comm

Signature

ssl-connection-read-certificates connection key-file &key cert-file password password-callback keychain keychain-
password keychain-reset

Arguments

connection⇓ A SSL connection (socket-stream or async-io-state).

32 The COMM Package

506

key-file⇓ nil or a pathname designator for a PEM file.

cert-file⇓ nil or a pathname designator for a PEM file.

password⇓ nil or a string.

password-callback⇓ nil or a function designator symbol taking one argument.

keychain⇓ A pathname designator, :temp, :default, nil or a keychain object (Apple specific).

keychain-password⇓ nil or a string (Apple specific).

keychain-reset⇓ A boolean (Apple specific).

Description

The function ssl-connection-read-certificates specifies certificate(s) and a key for a SSL connection.

connection must be a SSL connection (a socket-stream or a async-io-state) that has SSL attached to it.

key-file, cert-file, password, password-callback, keychain, keychain-password and keychain-reset are used to read
certificate(s) and a key as described in create-ssl-server-context.

For the OpenSSL implementation, ssl-connection-read-certificates is available only with OpenSSL 1.1 or later.

Notes

If you always use the same certificate(s), then it is better to create a ssl-abstract-context by calling
create-ssl-server-context or create-ssl-client-context and specify the certificate arguments at that time.
This is not only more convenient, but is also more efficient in repeated use. ssl-connection-read-certificates is
needed in cases when you decide which certificate(s) to use after starting the handshake, inside client-hello-callback of
create-ssl-server-context or cert-request-callback of create-ssl-client-context.

ssl-connection-read-certificates is not implemented for streams using Java sockets (opened by
open-tcp-stream-using-java).

Examples

For examples of using ssl-connection-read-certificates, see:

(example-edit-file "ssl/ssl-certificates")

See also

create-ssl-client-context
create-ssl-server-context

ssl-connection-read-dh-params-file Function

Summary

Reads a DH parameters file.

Package

comm

32 The COMM Package

507

Signature

ssl-connection-read-dh-params-file connection filename

Arguments

connection⇓ A SSL connection (socket-stream or async-io-state).

filename⇓ A pathname designator.

Description

The function ssl-connection-read-dh-params-file reads a DH parameters file for a server that uses SSL.

connection must be a SSL connection (a socket-stream or async-io-state) that has SSL attached to it.

filename must specify a file in either PEM or DER format.

Notes

ssl-connection-read-dh-params-file is rarely useful, because it is more convenient and more efficient to create a
ssl-abstract-context using create-ssl-server-context and pass it the DH file using the keyword :dh-file.

ssl-connection-read-dh-params-file is not implemented for streams using Java sockets (opened by
open-tcp-stream-using-java).

See also

create-ssl-server-context

ssl-connection-ssl-ref Function

Summary

Returns a foreign pointer corresponding to the implementation object of a SSL connection.

Package

comm

Signature

ssl-connection-ssl-ref ssl-connection => foreign-pointer

Arguments

ssl-connection⇓ A SSL connection (socket-stream or async-io-state).

Values

foreign-pointer⇓ A FLI pointer, either ssl-pointer or ssl-context-ref.

32 The COMM Package

508

Description

The function ssl-connection-ssl-ref returns a foreign pointer corresponding to the object in the SSL implementation
that LispWorks is using for ssl-connection. ssl-connection must be either a socket-stream or an async-io-state and
must be associated with SSL using the :ssl-ctx keyword (see 25.9.6 Keyword arguments for use with SSL).

If the implementation of SSL is OpenSSL, then foreign-pointer is an instance of ssl-pointer. If the implementation is
Apple Security Framework, then foreign-pointer is an instance of ssl-context-ref.

Both ssl-pointer and ssl-context-ref are Lisp types that can be used in typep, typecase and as method
specializers. This is useful for writing code that does different things depending on the implementation that is used in ssl-
connection.

See also

open-tcp-stream
create-async-io-state-and-connected-tcp-socket
socket-stream
accept-tcp-connections-creating-async-io-states
attach-ssl

ssl-connection-verify Function

Summary

Verify the certificates that the peer in a SSL connection sent.

Package

comm

Signature

ssl-connection-verify ssl-connection => success-p, more-info

Arguments

ssl-connection⇓ A SSL connection (socket-stream or async-io-state).

Values

success-p⇓ A boolean.

more-info⇓ A number or a keyword (implementation dependent).

Description

The function ssl-connection-verify can be used to verify the certificate(s) that the peer has sent, which means
checking that there is a proper chain of certificates that ends with a trusted certificate. ssl-connection must a socket
connection (either a socket-stream or an async-io-state) that is associated with SSL using the :ssl-ctx keyword
(see 25.9.6 Keyword arguments for use with SSL).

The first value success-p indicates whether the verification succeeded. The second value more-info gives more information
about any failure.

32 The COMM Package

509

http://www.lispworks.com/documentation/HyperSpec/Body/f_typep.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tpcase.htm

On the Apple implementation, more-info is a keyword, which can either be :timeout to indicate timeout, or a keyword
corresponding to a C constant in the Apple Security Framework as listed in the table below.

more-info values for the Apple implementation

Keyword Matching C constant in the Apple Security Framework

:proceed kSecTrustResultProceed

:unspecified kSecTrustResultUnspecified

:invalid kSecTrustResultInvalid

:deny kSecTrustResultDeny

:confirm kSecTrustResultConfirm

:recoverable kSecTrustResultRecoverableTrustFailure

:error kSecTrustResultError

:fatal kSecTrustResultFatal

On the OpenSSL implementation, more-info is an integer, which is the value of one of the X509_V_ERR_… constants in
OpenSSL.

Notes

ssl-connection-verify may be called inside the verify-callbck of an ssl-abstract-context (see
create-ssl-client-context). Typically verify-callbck will first call ssl-connection-verify, and then may do
further checks.

The result of ssl-connection-verify is depndent on the configuration of ssl-connection. Most importantly, it will return
nil if the root certificate is not found in the list of trusted certificates. In this case, more-info is 20 for OpenSSL
implementation (value of X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY). For the Apple implementation, more-
info is :recoverable in this case, but that may indicate other kinds of failure too. You can configure the trusted certficates
by using the keywords apple-use-system-trusted and apple-add-trusted-file (Apple) or openssl-trusted-file and openssl-trusted
-directory (OpenSSL) when creating an abstract context using create-ssl-client-context or
create-ssl-server-context.

For the Apple implementation, ssl-connection-verify may also return the results of the Apple trust callback of the
context used to create ssl-connection, See the discussion of apple-trust-callback in the documentation for
create-ssl-client-context and create-ssl-server-context.

ssl-context-ref FLI Type Descriptor

Summary

A foreign pointer corresponding to the Apple Security Framework type SSLContextRef.

Package

comm

Syntax

ssl-context-ref

32 The COMM Package

510

Description

Instances of the FLI type ssl-context-ref are FLI pointers corresponding to the C type SSLContextRef in the Apple
Security Framework. When LispWorks itself creates such objects, it creates the FLI pointer. You can get such pointers by
calling ssl-connection-ssl-ref on the SSL connection object (a socket-stream or an async-io-state). A
ssl-context-ref is passed to the callback specified by apple-configure-callback in create-ssl-server-context and
create-ssl-client-context, and to the callback specified by ssl-configure-callback (when not using an
ssl-abstract-context, see 25.9.6 Keyword arguments for use with SSL).

ssl-context-ref is also a Lisp type, and can be used with typep, typecase and as a specializer in CLOS methods. This
is useful if you want to write code that takes a SSL connection and want to do different things according to the
implementation type.

You can also create a ssl-context-ref yourself using the functions from the Apple Security Framework, and then pass it
with the :ssl-ctx keyword to attach-ssl, async-io-state-attach-ssl or make-instance with
socket-stream. When you do that, it is your resposibility to perform all the required configurations except setting the I/O
functions and connection, which LispWorks always sets itself. For example:

(fli:define-foreign-function (my-create-client-ssl-context-ref
 "my_create_client_ssl_context_ref")
 ((options integer))
 :result-type comm:ssl-context-ref)

...

 (multiple-value-bind (stream maybe-error)
 (comm:open-tcp-stream server-name port-number)
 (if stream
 (progn
 (comm:attach-ssl
 stream
 :ssl-ctx (my-create-client-ssl-context-ref options))
 stream)
 (my-signal-failure-to-open server-name port-number maybe-error)))

Note: when a ssl-context-ref is passed to LispWorks using :ssl-ctx as above, LispWorks takes ownership of it and
will release it when the stream is closed. You cannot use the object in the call to open-tcp-stream, because there would be
no way to ensure that it is released correctly if an error is signaled.

See also

ssl-connection-ssl-ref
open-tcp-stream
create-async-io-state-and-connected-tcp-socket
socket-stream
accept-tcp-connections-creating-async-io-states
attach-ssl

ssl-ctx-pointer FLI Type Descriptor

Summary

An FLI type for use with SSL when using the :openssl implementation.

32 The COMM Package

511

http://www.lispworks.com/documentation/HyperSpec/Body/f_typep.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tpcase.htm

Package

comm

Syntax

ssl-ctx-pointer

Description

The FLI type ssl-ctx-pointer corresponds to the C type SSL_CTX*.

See also

25 TCP and UDP socket communication and SSL

ssl-default-implementation Accessor

Summary

Gets or sets the default SSL implementation to use.

Package

comm

Signature

ssl-default-implementation => implementation-name

setf (ssl-default-implementation) implementation-name => implementation-name

Arguments

implementation-name⇓ :openssl or :apple.

Values

implementation-name⇓ :openssl or :apple.

Description

The accessor ssl-default-implementation gets or sets the default SSL implementation that is used when an
implementation is not specified.

implementation-name is :openssl for OpenSSL and :apple for the Apple Security Framework.

When setting ssl-default-implementation, implementation-name must be a valid implementation that is currently
available, otherwise an error is signaled. ssl-implementation-available-p can be used to check if an implementation
is available.

Notes

The Apple Security Framework implementation is available only on macOS 10.8 or later and on iOS. On these platforms,

32 The COMM Package

512

LispWorks starts with the Apple implementation as the default.

See also

ssl-implementation-available-p
25.9.1 SSL implementations

ssl-error Condition Class

Summary

The class for SSL errors corresponding to SSL_ERROR_SYSCALL.

Package

comm

Superclasses

ssl-condition

Description

Instances of the condition class ssl-error are used for the error corresponding to SSL_ERROR_SYSCALL. It means that
something got broken.

You also get this condition when the peer closes the connection without doing a shutdown.

See also

25 TCP and UDP socket communication and SSL

ssl-failure Condition Class

Summary

The class for SSL errors corresponding to SSL_ERROR_SSL.

Package

comm

Superclasses

ssl-condition

Description

Instances of the condition class ssl-failure are used for the error corresponding to SSL_ERROR_SSL. This means a
failure in processing the input, typically due to a mismatch between the client and the server. You get this error when trying
to use a SSL connection to a non-secure peer.

32 The COMM Package

513

See also

25 TCP and UDP socket communication and SSL

ssl-handshake-timeout Condition Class

Summary

The class of error signaled for a timeout while trying to perform the SSL handshake.

Package

comm

Superclasses

ssl-condition

Description

Instances of the condition class ssl-handshake-timeout are signaled when a timeout occurs while trying to perform the
SSL handshake.

ssl-implementation-available-p Function

Summary

Check if an SSL implementation is available for use.

Package

comm

Signature

ssl-implementation-available-p implementation-name => boolean

Arguments

implementation-name⇓ :openssl or :apple.

Values

boolean A boolean.

Description

The function ssl-implementation-available-p returns non-nil when an implementation named implementation-name
is available, and otherwise returns nil.

implementation-name is :openssl for OpenSSL and :apple for the Apple Security Framework.

32 The COMM Package

514

The Apple Security Framework implementation is available only on macOS 10.8 or later and on iOS.

See also

ssl-default-implementation
25.9.1 SSL implementations

ssl-new Function

Summary

Creates a SSL. This should only be called when using the :openssl implementation.

Package

comm

Signature

ssl-new ssl-ctx-pointer => ssl-pointer

Arguments

ssl-ctx-pointer⇓ A foreign pointer of type ssl-ctx-pointer.

Values

ssl-pointer⇓ A foreign pointer of type ssl-pointer.

Description

The function ssl-new creates a SSL for ssl-ctx-pointer by a direct call to the C function SSL_new.

ssl-pointer is a pointer to the new SSL.

See also

ssl-ctx-pointer
ssl-pointer
25 TCP and UDP socket communication and SSL

ssl-pointer FLI Type Descriptor

Summary

An FLI type for use with SSL.

Package

comm

32 The COMM Package

515

Syntax

ssl-pointer

Description

Instances of the FLI type ssl-pointer are FLI pointers corresponding to the C type SSL* in OpenSSL. When LispWorks
itself creates such objects, it creates the FLI pointer. You can get the pointer by calling ssl-connection-ssl-ref on the
SSL connection object (a socket-stream or an async-io-state). A ssl-pointer is passed to the callback specified
by ssl-configure-callback in create-ssl-server-context, create-ssl-client-context and the functions listed in
25.9.6 Keyword arguments for use with SSL.

ssl-pointer is also a Lisp type, and can be used with typep, typecase and as a specializer in CLOS methods. This is
useful if you want to write code that takes a SSL connection and want to do different things according to the implementation
type.

You can also create a ssl-pointer yourself using the functions from OpenSSL such as ssl-new, and then pass it with the
:ssl-ctx keyword to attach-ssl, async-io-state-attach-ssl or make-instance with socket-stream. When
you do that, it is your resposibility to perform all the required configurations except setting the I/O functions and connection,
which LispWorks always sets itself.

See also

25 TCP and UDP socket communication and SSL

ssl-verification-failure Condition Class

Summary

The class of error signaled for failure during handshake on a SSL connection.

Package

comm

Superclasses

ssl-condition

Description

Instances of the condition class ssl-verification-failure are signaled upon a failure in the SSL handshake process,
which can happen when the certificate that the other end sends is unacceptable. It can also happens if the verify-callback (see
create-ssl-server-context and create-ssl-client-context) returns nil.

ssl-version-or-cipher-mismatch Condition Class

Summary

The class for SSL errors that are the result of problems with the cipher suite of key exchange during establishing the SSL
connection.

32 The COMM Package

516

http://www.lispworks.com/documentation/HyperSpec/Body/f_typep.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tpcase.htm

Package

comm

Superclasses

ssl-failure

Description

Instances of the condition class ssl-version-or-cipher-mismatch are used when SSL connection fails because of
failure to match a cipher between the sides or problems with the key exchange.

Notes

The underlying implementation (OpenSSL or Apple) establishes the connection and decides where to fail, so whether such a
failure occurs (for example, because the DH parameters are too short) depends on the underlying implementaion and its
version.

See also

25 TCP and UDP socket communication and SSL

ssl-x509-lookup Condition Class

Summary

The class for SSL errors corresponding to SSL_ERROR_WANT_X509_LOOKUP when using the :openssl implementation.

Package

comm

Superclasses

ssl-condition

Description

Instances of the condition class ssl-x509-lookup are used for errors corresponding to SSL_ERROR_WANT_X509_LOOKUP.
This can happen when a certificate is rejected by a user callback.

See also

25 TCP and UDP socket communication and SSL

32 The COMM Package

517

start-up-server Function

Summary

Starts a TCP server.

Package

comm

Signature

start-up-server &key function announce service backlog address local-address local-port nodelay keepalive process-
name wait create-stream ipv6 error reuseport => process, startup-condition

Arguments

function⇓ A function name.

announce⇓ An output stream, t, nil or a function.

service⇓ An integer, a string or nil.

backlog⇓ nil or a positive integer.

address⇓ A synonym for local-address.

local-address⇓ An integer, an ipv6-address object, a string or nil.

local-port⇓ A synonym for service.

nodelay⇓ A generalized boolean.

keepalive⇓ A generalized boolean.

process-name⇓ A symbol or string.

wait⇓ A boolean.

create-stream⇓ A boolean, default nil.

ipv6⇓ The keyword :any, the keyword :both, nil or t.

error⇓ A boolean.

reuseport⇓ A boolean. Note: not supported on all platforms.

Values

process⇓ A process, or nil.

startup-condition⇓ A condition object, or nil.

Description

The function start-up-server starts a TCP server. Use open-tcp-stream to send messages from another client to the
server.

function provides the name of the function that processes connections. When a connection is made function is called with the

32 The COMM Package

518

connected socket handle or a socket-stream (if create-stream is non-nil), at which point you can use it to communicate
with the client. The server does not accept more connections until function returns, so normally it should create another
thread to handle the connection. However, the operating system typically provides a small queue of partially accepted
connections, which prevents connection failure for new clients until the server is ready to accept more connections. If
function is not specified the built-in Lisp listener server is used. See the examples section below.

If create-stream is non-nil, function is called with a socket-stream object using the socket handle and :direction :io.
If create-stream is nil (the default), function is called with the socket handle, and if you want a stream you need to use
make-instance or create-ssl-socket-stream to create the socket-stream or if you want to use asynchronous I/O
then create an async-io-state using create-async-io-state.

If announce is a stream or t (denoting *standard-output*), a message appears on the stream when the server is started.

If announce is a function it is called when the server is started. announce should take two arguments: socket and condition.
socket is the socket used by the server: announce can therefore be used to record this socket. condition describes the error if
there is one. announce can be called with socket nil and a condition only if error is nil. If the thread is killed, announce is
called with socket nil and condition nil.

The default for announce is nil, meaning there is no message.

local-port defaults to service, which defaults to the string "lispworks".

local-port is interpreted as described for service in 25.4 Specifying the target for connecting and binding a socket.

backlog specifies the maximum number of pending connections for the socket in the operating system (see your operating
system's documentation for the function listen). The default value of backlog is 5.

local-address defaults to address, which defaults to nil.

If local-address is nil then the server will receive connections to all IP addresses on the computer. If local-address is non-nil
then the server only receives connections for the IP address that local-address specifies. The default value of local-address is
nil.

local-address also determines which family is used when making the socket. AF_INET6 is used in these cases:

• The address is an ipv6-address.

• The address is a string specifying an IPv6 address.

• The address is a string that resolves to an IPv6 address.

Otherwise AF_INET is used. When local-address is not supplied, AF_INET is used. To open a server with AF_INET6

listening to any address, either use the keyword argument ipv6 or pass the zero IPv6 address "::".

If keepalive is true, SO_KEEPALIVE is set on the socket. The default value of keepalive is nil.

If nodelay is true, TCP_NODELAY is set on the socket. The default value of nodelay is t.

process-name specifies the process name. The default is constructed from the service name in the following fashion:

(format nil "~S server" service)

wait argument controls whether start-up-server waits for the server to start or returns immediately. When wait is non-
nil and an error was signaled, process is nil and the error is returned in startup-condition Otherwise just one value, the
server process, is returned. The default for wait is nil.

ipv6 affects the resolution of local-address if it is a string or nil. When ipv6 is nil, it forces IPv4 addresses, and if ipv6 is t
it forces IPv6 addresses. When ipv6 is :any the system tries either IPv4 or IPv6 and uses the first socket that it succeeds to
bind. When ipv6 is :both the system uses IPv6 (like the value t) but allows connection requests in IPv4. Note that with t

only IPv6 connections are allowed. The default value of ipv6 is :any.

32 The COMM Package

519

error controls what happens if an error is signaled in the server thread. If error is nil then the thread is terminated. If error
is non-nil then the debugger is entered. The default value for error is (not wait).

reuseport can be used only on operating systems that support SO_REUSEPORT, which are currently FreeBSD, macOS and
Linux kernels newer than 3.9. If reuseport is true, then SO_REUSEPORT is set in the socket, which allows the same port to be
reused for listening. That will allow you to use start-up-server (and
accept-tcp-connections-creating-async-io-states) with the same port more than once at the same time, either
in the same process or other processes (which must be run by the same user). The default value of reuseport is nil.

Notes

1. Some versions of Microsoft Windows fail to detect the case where more than one server binds a given port, so an error
will not be raised in this situation.

2. When the server is not needed any more, terminate it by calling server-terminate with process (returned by
start-up-server) as its argument, or call server-terminate from within function.

3. When using using ipv6 t, it is possible to listen separately for IPv4 connections on the same service (by another service
or using the Asynchronous I/O API). When using :both, it is not possible to listen separately to IPv4 on the same
service.

4. The server has a mechanism that checks for repeated unexplained failures associated with accepting sockets, and if that
happens too often it closes the accepting socket and opens it again. When that happens, announce is called again with
the same arguments. If service was nil, the port that the underlying system assigned to the first socket is used for
opening the socket again. One situation that invokes that mechanism is putting an iOS device to sleep, which causes the
accepting socket to become broken in a non-obvious way.

5. start-up-server starts its own thread. Typically this is not an issue, because you call it a small number of times in
each invocation of an image, so the overhead is not large. If you do call it many times in the same invocation, it may be
better to use accept-tcp-connections-creating-async-io-states instead. On the other hand, connections to
the server may happen very often, so making a thread for each one is a substantial overhead. You can avoid this either by
using async-io-state objects rather than socket-stream, or have a pool of "worker threads" to do the actual
communication.

6. The socket handle that function receives is a native TCP socket handle, and can be used in the native TCP socket
interface instead of using socket-stream or async-io-state.

7. If socket handle that function receives is used in a socket-stream or async-io-state, it will be closed when the
object is closed. Otherwise, you need to close it yourself by calling close-socket-handle when you have finished
with it.

Compatibility note

In LispWorks 6.1 and previous versions, the argument ipv6 t means either accepting IPv4 or not, depending on the default of
the operating system. In LispWorks 7.0 and later ipv6 t means never allow IPv4 connections.

Examples

The following example uses the built-in Lisp listener server:

(comm:start-up-server :service 10243)

It makes a Lisp listener server on port 10243 (check with local network managers that this port number is safe to use). When
a client connects to this, Lisp calls read. The client should send a string using Common Lisp syntax followed by a newline.
This string is used to name a new light-weight process that runs a Lisp listener. When this has been created, the server waits
for more connections.

32 The COMM Package

520

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_rd.htm

The next example illustrates the use of function. For each line of input read by the server it writes the line back with a
message. The stream generates end of file if the other end closes the connection.

(defvar *talk-port* 10244) ; a free TCP port number

(defun make-stream-and-talk (handle)
 (let ((stream (make-instance 'comm:socket-stream
 :socket handle
 :direction :io
 :element-type
 'base-char)))
 (mp:process-run-function (format nil "talk ~D"
 handle)
 '()
 'talk-on-stream stream)))

(defun talk-on-stream (stream)
 (unwind-protect
 (loop for line = (read-line stream nil nil)
 while line
 do
 (format stream "You sent: '~A'~%" line)
 (force-output stream))
 (close stream)))

(comm:start-up-server :function 'make-stream-and-talk
 :service *talk-port*)

This is a client which uses the talk server:

(defun talking-to-myself ()
 (with-open-stream
 (talk (comm:open-tcp-stream "localhost"
 talk-port))
 (dolist (monolog
 '("Hello self."
 "Why don't you say something original?"
 "Talk to you later then. Bye."))
 (write-line monolog talk)
 (force-output talk)
 (format t "I said: \"~A\"~%"
 monolog)
 (format t "Self replied: \"~A\"~%"
 (read-line talk nil nil)))))

(talking-to-myself)
=>
I said: "Hello self."
Self replied: "You sent: 'Hello self.'"
I said: "Why don't you say something original?"
Self replied: "You sent: 'Why don't you say something original?'"
I said: "Talk to you later then. Bye."
Self replied: "You sent: 'Talk to you later then. Bye.'"

This example illustrates a server which picks a free port and records the socket. The last form queries the socket for the port
used.

(defvar *my-socket* nil)

(defun my-announce-function (socket condition)

32 The COMM Package

521

 (if socket
 (setf *my-socket* socket)
 (my-log-error condition)))

(comm:start-up-server :service nil
 :error nil
 :announce 'my-announce-function)

(multiple-value-bind (address port)
 (comm:get-socket-address *my-socket*)
 port)

For an example of a server that use SSL connections, see:

(example-edit-file "ssl/ssl-server")

See also

open-tcp-stream
server-terminate
socket-stream
create-ssl-socket-stream
accept-tcp-connections-creating-async-io-states
async-io-state
create-async-io-state
close-socket-handle
25 TCP and UDP socket communication and SSL

start-up-server-and-mp Function

Summary

Starts multiprocessing and a TCP server.

Package

comm

Signature

start-up-server-and-mp &key function announce service backlog address local-address local-port nodelay keepalive
process-name wait create-stream ipv6 error

Arguments

function⇓ A function name.

announce⇓ An output stream, t, nil or a function.

service⇓ An integer, a string or nil.

backlog⇓ nil or a positive integer.

address⇓ A synonym for local-address.

local-address⇓ An integer, an ipv6-address object, a string or nil.

local-port⇓ A synonym for service.

32 The COMM Package

522

nodelay⇓ A generalized boolean.

keepalive⇓ A generalized boolean.

process-name⇓ A symbol or string.

wait⇓ A boolean.

create-stream⇓ A boolean, default nil.

ipv6⇓ The keyword :any, the keyword :both, nil or t.

error⇓ A boolean.

Description

The function start-up-server-and-mp starts multiprocessing if it has not already been started and then calls
start-up-server with the supplied function, announce, service, backlog, address, local-address, local-port, nodelay,
keepalive, process-name, wait, create-stream, ipv6 and error arguments.

Notes

start-up-server-and-mp is not implemented on Microsoft Windows.

See also

start-up-server
25 TCP and UDP socket communication and SSL

string-ip-address Function

Summary

Returns either an integer representing an IPv4 address or an ipv6-address object from the given IP address string.

Package

comm

Signature

string-ip-address ip-address-string => ip-address

Arguments

ip-address-string⇓ A string denoting an IP address in either dotted format for IPv4 or standard IPv6 format.

Values

ip-address Either an integer representing an IPv4 address, or an ipv6-address object.

Description

The function string-ip-address takes a string and tries to parse as an IP address. If ip-address-string is in a proper
dotted IP address format, it returns an integer representing an IPv4 address. Otherwise it tries to read it as an IPv6 address

32 The COMM Package

523

using parse-ipv6-address (with trim-whitespace-p nil), which returns an ipv6-address object if it is successful or
nil if it fails.

See also

ip-address-string
parse-ipv6-address
25 TCP and UDP socket communication and SSL

switch-open-tcp-stream-with-ssl-to-java Function

Summary

Make open-tcp-stream use Java sockets for SSL streams.

Package

comm

Signature

switch-open-tcp-stream-with-ssl-to-java &optional on

Arguments

on⇓ A generalized boolean.

Description

The function switch-open-tcp-stream-with-ssl-to-java makes open-tcp-stream use Java sockets for SSL
streams.

The default state corresponds to on being nil, except on Android when switch-open-tcp-stream-with-ssl-to-java

is called before delivering to Android (if the module "comm" was loaded) to switch the state to t. The default value of on is
t.

Once the state switches to t, when open-tcp-stream is called with ssl-ctx non-nil, it uses a Java socket instead of ordinary
socket to implement the stream. The resulting stream has some limitations, in particular cl:listen does not work reliably
on it. See 25.10 Socket streams with Java sockets and SSL on Android for details.

Notes

1. The Java virtual machine (JVM) must be running for open-tcp-stream to work after it is switched to use Java sockets.
On Android the JVM always runs, on other architectures it needs to have been started by init-java-interface.

2. open-tcp-stream-using-java can be used to make plain (non-SSL) socket streams with Java sockets, if that seems
to be useful.

See also

open-tcp-stream
open-tcp-stream-using-java
25.10 Socket streams with Java sockets and SSL on Android
25 TCP and UDP socket communication and SSL

32 The COMM Package

524

http://www.lispworks.com/documentation/HyperSpec/Body/f_listen.htm

wait-for-wait-state-collection Function

Summary

Waits for a state in a collection to become active.

Package

comm

Signature

wait-for-wait-state-collection collection

Arguments

collection⇓ A wait-state-collection.

Description

The function wait-for-wait-state-collection waits for one of the states in collection to become active, or until some
message arrives from another process. Such messages may be a result of creating a new async-io-state associated with
collection, or a result of a call to apply-in-wait-state-collection-process.
wait-for-wait-state-collection returns once any of the states in collection is ready or there is a message.

Notes

Typically you would not call wait-for-wait-state-collection yourself, but it will be called by
loop-processing-wait-state-collection. However, sometimes you may want to create the looping code yourself.
In the latter case, once wait-for-wait-state-collection returns, you will need to call
call-wait-state-collection to handle the active states or messages in collection.

You can use apply-in-wait-state-collection-process with a function that does nothing (e.g. false) to wake up a
waiting call to wait-for-wait-state-collection on a specific collection.

See also

create-and-run-wait-state-collection
loop-processing-wait-state-collection
25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

wait-state-collection Class

Summary

An object that controls asynchronous I/O via an event loop.

32 The COMM Package

525

Package

comm

Superclasses

t

Description

Instances of the class wait-state-collection are used to control asynchronous I/O via an event loop.

See also

25.8.2 The Async-I/O-State API
25 TCP and UDP socket communication and SSL

wait-state-collection-alive-p Function

Summary

Checks if the process of a wait-state-collection is alive.

Package

comm

Signature

wait-state-collection-alive-p wait-state-collection => boolean

Arguments

wait-state-collection⇓
A wait-state-collection object.

Values

boolean A boolean.

Description

The function wait-state-collection-alive-p returns true if the process associated with wait-state-collection is alive
and false otherwise.

wait-state-collection-alive-p is useful for checking if a wait-state-collection that was created by
create-and-run-wait-state-collection is still alive and can be used. The result is not meaningful if wait-state-
collection is managed explicitly by the "lower-level" functions like wait-for-wait-state-collection.

See also

create-and-run-wait-state-collection

32 The COMM Package

526

wait-state-collection-stop-loop Function

Summary

Stops a loop which is processing a wait-state-collection.

Package

comm

Signature

wait-state-collection-stop-loop wait-state-collection

Arguments

wait-state-collection⇓
A wait-state-collection.

Description

The function wait-state-collection-stop-loop stops a loop which is processing wait-state-collection.

If there is currently a call to loop-processing-wait-state-collection with wait-state-collection,
wait-state-collection-stop-loop makes it stop and return.

Notes

wait-state-collection-stop-loop can be called from any process.

See also

loop-processing-wait-state-collection
25 TCP and UDP socket communication and SSL

with-noticed-socket-stream Macro

Summary

Evaluates body with stream "noticed" for input.

Package

comm

Signature

with-noticed-socket-stream (stream) &body body

32 The COMM Package

527

Arguments

stream⇓ A stream created using open-tcp-stream.

body⇓ Code to be executed while the stream is "noticed".

Description

The macro with-noticed-socket-stream evaluates the forms in body with the stream stream "noticed" for input. stream
becomes unnoticed afterwards.

The macro is designed to be used with streams created by open-tcp-stream.

Notes

1. You do not normally need to use this macro, because all of the standard functions that read from socket streams
(read-char and so on) will do this automatically when necessary. However, if you call process-wait yourself with a
wait-function that detects new input from a socket stream, then this macro is necessary to cause LispWorks to evaluate
the wait-function when there is input on the underlying socket. Without that, there might be a delay before the thread
responds to the input.

2. with-noticed-socket-stream is not implemented on the Windows platform.

See also

open-tcp-stream
25 TCP and UDP socket communication and SSL

x509-pointer FLI Type Descriptor

Summary

Expert use: a FLI type corresponding to the C type X509* in the OpenSSL API.

Package

comm

Syntax

x509-pointer

Description

Instances of the FLI type x509-pointer are FLI pointers corresponding to the C type X509* in the OpenSSL API. You can
get such pointers in Lisp by calling ssl-connection-copy-peer-certificates, and access them in Lisp calling
get-certificate-data, get-certificate-common-name and get-certificate-serial-number.

x509-pointer is intended to be used when you want to use your own FLI definitions for OpenSSL functions to access
certificates.

See also

ssl-connection-copy-peer-certificates

32 The COMM Package

528

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_cha.htm

get-certificate-data
get-certificate-common-name
get-certificate-serial-number

32 The COMM Package

529

33 The COMMON-LISP Package

This chapter describes the LispWorks extensions to symbols in the COMMON-LISP package, which is used by default. This
chapter notes only those differences between LispWorks and the ANSI Common Lisp standard.

You should refer to this standard for full documentation about standard Common Lisp symbols. An HTML version, the
Common Lisp HyperSpec, is available in the LispWorks IDE via the menu command Help > Manuals > ANSI Common Lisp
Standard or here: www.lispworks.com/documentation/HyperSpec/.

The See also section of each entry links to the corresponding ANSI Common Lisp documentation in the Common Lisp
HyperSpec.

apropos Function

Summary

Searches for interned symbols.

Package

common-lisp

Signature

apropos string &optional package external-only

Arguments

string⇓ A string designator.

package⇓ A package designator or nil.

external-only⇓ A generalized boolean.

Description

The function apropos behaves as specified in ANSI Common Lisp w.r.t. string and package. There is an additional optional
argument external-only, which if true restricts the search to symbols which are external in the searched package or packages.
The default value of external-only is nil.

See also

apropos in the Common Lisp HyperSpec
apropos-list
describe-print-length
describe-print-level
regexp-find-symbols

530

http://www.lispworks.com/documentation/HyperSpec/
http://www.lispworks.com/documentation/HyperSpec/Body/f_apropo.htm

apropos-list Function

Summary

Searches for interned symbols.

Package

common-lisp

Signature

apropos-list string &optional package external-only => symbols

Arguments

string⇓ A string designator.

package⇓ A package designator or nil.

external-only⇓ A generalized boolean.

Values

symbols A list of symbols.

Description

The function apropos-list behaves as specified in ANSI Common Lisp w.r.t. string and package. There is an additional
optional argument external-only, which if true restricts the search to symbols which are external in the searched package or
packages. The default value of external-only is nil.

See also

apropos-list in the Common Lisp HyperSpec
apropos

base-string
simple-base-string Types

Summary

The base string types.

Package

common-lisp

Signatures

base-string &optional size

33 The COMMON-LISP Package

531

http://www.lispworks.com/documentation/HyperSpec/Body/f_apropo.htm

simple-base-string &optional size

Arguments

size⇓ The length of the string (or *, meaning any).

Description

base-string and simple-base-string are the types of base strings and simple base strings respectively.

If size is supplied, then it constrains the length of the string to that number of elements.

See also

base-string in the Common Lisp HyperSpec
simple-base-string in the Common Lisp HyperSpec
bmp-string
text-string
26.3 Character and String types

close Generic Function

Summary

Implements the standard behavior as a generic function.

Package

common-lisp

Signature

close stream &key abort => result

Method signatures

close :around (stream buffered-stream) &key abort

close (stream buffered-stream) &key abort

Arguments

stream⇓ A stream.

abort⇓ A generalized boolean.

Values

result A boolean.

Description

The generic function close implements the standard function. All external resources used by the stream should be freed and
true returned when that has been done. The result value for close is as per the Common Lisp ANSI specification.

33 The COMMON-LISP Package

532

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ba.htm

When stream is an instance of a subclass of buffered-stream, if abort is true then any remaining data in the buffer can be
discarded. There are two built-in methods on buffered-stream. The primary method specialized on buffered-stream

returns t. The other, an around method specialized on buffered-stream, checks whether the stream is closed, and if it is
does nothing, including not calling the next method, which means not doing any of the primary, before and after methods. If
the stream is opened, it flushes the stream buffer if abort is nil, calls the next method and marks the stream as closed if that
method returns true. Thus the only requirement for a primary method specialized on a subclass of buffered-stream is that
it must close any underlying data source and return true.

Notes

1. You should not define an around method on a subclass of buffered-stream, as that will happen around the around
method on buffered-stream. Use before and after methods instead.

2. The close method on the fundamental-stream class sets a flag for open-stream-p

See also

close in the Common Lisp HyperSpec
buffered-stream
fundamental-stream
open-stream-p

coerce Function

Summary

Extends the function coerce, allowing it to take any Common Lisp type specifier.

Package

common-lisp

Signature

coerce object result-type => result

Arguments

object⇓ A Lisp object.

result-type⇓ A type specifier.

Values

result⇓ An object of type result-type.

Description

The function coerce performs those conversions on object required by the ANSI Common Lisp standard, but a larger set of
type specifiers is allowed for coercion.

A type-error is signaled if result cannot be returned as result-type specifies.

33 The COMMON-LISP Package

533

http://www.lispworks.com/documentation/HyperSpec/Body/f_close.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_tp_err.htm

See also

coerce in the Common Lisp HyperSpec
concatenate

compile Function

Summary

Compiles a lambda expression into a compiled function.

Package

common-lisp

Signature

compile name &optional definition => function, warnings-p, failure-p

Arguments

name⇓ A function name or nil or a list.

definition⇓ A lambda expression or a function.

Values

function A function.

warnings-p, failure-p Booleans.

Description

The function compile calls the compiler to translate a lambda expression into a code vector containing an equivalent
sequence of host specific machine code. A compiled function typically runs between 10 and 100 times faster. It is generally
worth compiling the most frequently called Lisp functions in a large application during the development phase. The compiler
detects a large number of programming errors, and the resulting code runs sufficiently faster to justify the compilation time,
even during development.

Warning messages are printed to *error-output*. Other messages are printed to *standard-output*.

definition and the return values are as specified for Common Lisp. Note that name may be a list not of the form
(setf symbol), which is an extension to Common Lisp.

compile also supports a LispWorks-specific extension allowing compile to compile an arbitrary form. When definition is
not supplied and name is a list not of the form (setf symbol), compile compiles it as if by compile-file but without
any file related processing and does it in-memory, so it has also the same effect as loading. This has a similar effect to
compiling a definition in the LispWorks Editor tool, except that there is no source recording. Multiple forms can be compiled
in one call by wrapping them with progn. When compile is used this way it always returns nil.

Notes

A compiled function object may be returned. Such compiled function objects are not printable (but see disassemble) other
than as:

33 The COMMON-LISP Package

534

http://www.lispworks.com/documentation/HyperSpec/Body/f_coerce.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

#<Function FOO hex-address>

Compatibility notes

In LispWorks 5.1 and previous versions, warning messages are printed to *standard-output*.

Examples

(defun fn (...) ...) ; interpreted definition for fn

(compile 'fn) ; replace with compiled
 ; definition

(compile nil '(lambda (x) (* x x)))
 ; returns compiled squaring function

(compile 'cube '(lambda (x) (* x x x)))
 ; defun and compile in one

Notes

See declare for a list of the declarations that alter the behavior of the compiler.

See also

compile in the Common Lisp HyperSpec
compile-file
disassemble
declare

compile-file Function

Summary

Compiles a Lisp source file into a form that both loads and runs faster.

Package

common-lisp

Signature

compile-file input-file &key output-file verbose print external-format load => output-truename, warnings-p, failure-p

Arguments

input-file⇓ A pathname designator.

output-file⇓ A pathname designator, or :temp.

verbose⇓ A generalized boolean.

print⇓ A generalized boolean.

33 The COMMON-LISP Package

535

http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp.htm

external-format⇓ An external format specification.

load⇓ A generalized boolean or the keyword :delete.

Values

output-truename⇓ A pathname or nil.

warnings-p⇓ A generalized boolean.

failure-p⇓ A generalized boolean.

Description

The function compile-file calls the compiler to translate a Lisp source file into a form that both loads and runs faster. A
compiled function typically runs more than ten times faster than when interpreted (assuming that it is not spending most of its
work calling already compiled functions). A source file with a .lisp or .lsp extension compiles to produce a file with a
.*fasl extension (the actual extension depends on the host machine CPU and the LispWorks implementation). Subsequent
use of load loads the compiled version (which is in LispWorks's FASL or Fast Load format) in preference to the source.

In compiling a file the compiler has to both compile each function and top level form in the file, and to produce the
appropriate FASL directives so that loading has the desired effect. In particular objects need to have space allocated for them,
and top level forms are called as they are loaded.

output-file specifies the location of the output file, relative to the current directory (not the path of the file). If it specifies a
directory, then the output file is placed there instead of the same directory as the source. If it contains a file name but not a
file type, then the platform specific file type is added and the result specifies the full path of the output file. If output-file has
a type, it specifies the full path of the output file. Note that in this case when you want to load the file you will need to add
the type to *binary-file-types*. See the example below.

The special value output-file :temp offers a convenient way to specify that the output file is a temporary file in a location that
is likely to be writable.

verbose controls the printing of messages describing the file being compiled, the current optimization settings, and other
information. If verbose is nil, there are no messages. If verbose is 0, only the "Compiling file..." message is printed. For all
other true values of verbose, messages are also printed about:

• compiler optimization settings before the file is processed, and:

• multiple matches when input-file does not specify the pathname type, and:

• any clean down (garbage collection) that occurs during the compilation.

The default value is the value of *compile-verbose*, which defaults to t.

print controls the printing of information about the compilation. It can have the following values. If print is nil, no
information is printed. If print is a non-positive number, then only warnings are printed. If print is a positive number no
greater than 1, or if print is any non-number object, then the information printed consists of all warning messages and one
line of information per function that is compiled. If print is a number greater than 1, then full information is printed. The
default value of print is the value of *compile-print*, which has the default value 1.

Warning messages are printed to *error-output*. Other messages are printed to *standard-output*.

external-format is interpreted as for open. The default value is :default.

If load is true, then the file is loaded after compilation if that succeeded or an error is signaled if compilation failed. If load is
the special value :delete then the compiled file is deleted after loading it. The source file is not affected. This is especially
useful when using output-file :temp, to avoid leaving compiled files.

33 The COMMON-LISP Package

536

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_cmp_pr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_cmp_pr.htm

output-truename is the truename of the output file, or nil if that cannot be created.

warnings-p is nil if no conditions of type error or warning were detected during compilation. Otherwise warnings-p is a
list containing the conditions.

failure-p is nil if no conditions of type error or warning (other than style-warning) were detected by the compiler,
and t otherwise.

Compatibility notes

In LispWorks 5.1 and previous versions, warning messages are printed to *standard-output*.

Examples

(compile-file "devel/fred.lisp")
 ;; compile fred.lisp to fred.fasl
(compile-file "devel/fred")
 ;; does the same thing

(compile-file "test" :load t)
 ;; compile test.lisp, then load if successful

(compile-file "program" :output-file "program.abc")
 ;; compile "program.lisp" to "program.abc"

(push "abc" sys:*binary-file-types*)
 ;; tells LispWorks that files with extension
 ;; ".abc" are binaries

Notes

See declare for a list of the declarations that alter the behavior of the compiler.

The act of compiling a file should have no side effects, other than the creation of symbols and packages as the input file is
read by the reader.

By default a form is skipped if an error occurs during compilation. If you need to debug an error during compilation by
compile-file, set *compiler-break-on-error* to t.

During compilation of a file foo.lisp (on an Intel Macintosh, for example) a temporary output file named
t_foo.64xfasl is used, so that an unsuccessful compile does not overwrite an existing foo.64xfasl.

LispWorks uses the following naming conventions for fasl files, and it is recommended that you should use them too, to
ensure correct operation of load and so on.

Naming conventions for FASL files

Machine/Implementation Fasl Extension

x86 Windows/32-bit LispWorks .ofasl

x64 Windows/64-bit LispWorks .64ofasl

x86 Linux/32-bit LispWorks .ufasl

amd64 Linux/64-bit LispWorks .64ufasl

33 The COMMON-LISP Package

537

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_warnin.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_warnin.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_style_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

ARM Linux/32-bit LispWorks .rfasl

ARM Linux/64-bit LispWorks .64rfasl

x86 FreeBSD/32-bit LispWorks .ffasl

amd64 FreeBSD/64-bit LispWorks .64ffasl

x86 Solaris/32-bit LispWorks .sfasl

amd64 Solaris/64-bit LispWorks .64sfasl

Intel Macintosh/64-bit LispWorks .64xfasl

Apple silicon Macintosh/64-bit LispWorks .64yfasl

LispWorks for iOS Runtime simulator .64xcfasl

LispWorks for iOS Runtime .64rfasl

LispWorks for Android Runtime on 32-bit ARM .rfasl

LispWorks for Android Runtime on 64-bit ARM .64rfasl

LispWorks for Android Runtime on 32-bit x86 .ufasl

LispWorks for Android Runtime on 64-bit x86_64 .64ufasl

You can find the fasl file extension appropriate for your machine by looking at the variable *binary-file-type*. The
variable *binary-file-types* contains a list of all the file extensions currently recognized by load, require and
load-data-file (in addition to *binary-file-type*).

Compatibility notes

1. In LispWorks for Windows 4.4 and previous versions, the fasl file extension is .fsl. This changed in LispWorks 5.0.

2. In LispWorks for Linux 4.4 and previous versions, the fasl file extension is .ufsl. This changed in LispWorks 5.0.

See also

compile-file in the Common Lisp HyperSpec
compile
compile-file-if-needed
compiler-break-on-error
disassemble

concatenate Function

Summary

Extends the function concatenate allowing it to take any Common Lisp type.

Package

common-lisp

Signature

concatenate result-type &rest sequences => result-sequence

33 The COMMON-LISP Package

538

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm

Arguments

result-type⇓ A type specifier.

sequences⇓ A sequence.

Values

result-sequence⇓ A sequence.

Description

The function concatenate has been extended to concatenate sequences to any Common Lisp type result-type. result-
sequence will be of type result-type unless this is not possible, in which case a type-error is signaled.

See also

concatenate in the Common Lisp HyperSpec
coerce
concatenate*

declaim Macro

Summary

Established a specified declarations.

Package

common-lisp

Signature

declaim &rest declarations

Arguments

declarations⇓ Declaration forms.

Description

The macro declaim behaves as specified in the ANSI Common Lisp Standard with one exception: for a top-level call to
declaim, optimize declarations in declarations are omitted from the compiled binary file. This is useful because you are
unlikely to want to change these settings outside of that file.

See also

declaim in the Common Lisp HyperSpec
compile-file
declare
proclaim

33 The COMMON-LISP Package

539

http://www.lispworks.com/documentation/HyperSpec/Body/e_tp_err.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_concat.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_declai.htm

declare Special Form

Summary

Declares a variable as special, provides advice to the Common Lisp system, or helps the programmer to optimize code.

Package

common-lisp

Signature

declare {declaration}*

Arguments

declaration⇓ A declaration specifier, not evaluated.

Description

The special form declare behaves computationally as if it is not present (other than to affect the semantics), and is only
allowed in certain contexts, such as after the variable list in a let, do, defun and so on. (Consult the syntax definition of
each special form to see if it takes declare forms and/or documentation strings.)

There are three distinct uses of declare: one is to declare Lisp variables as "special" (this affects the semantics of the
appropriate bindings of the variables), the second is to provide advice to help the Common Lisp system (in reality the
compiler) run your Lisp code faster or with more sophisticated debugging options, and the third (using the :explain
declaration) is to help you optimize your code.

If you use declare to specify types (and so eliminate type-checking for the specified symbols) and then supply the wrong
type, you may obtain a "Segmentation Violation". You can check this by interpreting the code (rather than compiling it).

The declare special form can be used as specified in ANSI Common Lisp as well as with the following extensions to the
car or each declaration:

• hcl:special-global, hcl:special-dynamic and hcl:special-fast-access

See 9.7.6 Usage of special variables.

• hcl:lambda-list specifies the value to be returned when a programmer asks for the arglist of a function.

• values specifies the value to be returned when you ask for a description of the results of a function.

• hcl:invisible-frame specifies that calls to this function should not appear in a debugger backtrace.

• hcl:alias specifies that calls to this function should be displayed as calls to an alternative function in a debugger
backtrace.

• hcl:lambda-name declares the name of the surrounding lambda.

• :explain controls messages printed by the compiler while it is processing forms.

You can also use define-declaration to add your own declarations, which do not affect compilation but are useful for
code walkers.

33 The COMMON-LISP Package

540

http://www.lispworks.com/documentation/HyperSpec/Body/s_let_l.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_do_do.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

Description: of hcl:lambda-name

This section documents the hcl:lambda-name declaration, which declares the name of the surrounding lambda. This
declaration is useful only for a lambda that becomes a standalone function, that is lambda forms that are passed to
function.

The dspec of the function that is returned by function is specified by the second element in the declaration. In the special
case when the second element is a two-element list starting with the symbol subfunction, the dspec is that list with the
dspec of the parent function added as a third element. For example, if you have:

(defun my-parent (x)
 #'(lambda (y)
 (declare (lambda-name (subfunction sub-name)))
 (* x y)))

then the dspec of the subfunction that my-parent returns would be (subfunction sub-name my-parent).

hcl:lambda-name is useful for debugging purposes and does not affect the behavior of the program. There are two
different situations when hcl:lambda-name is useful:

• In a defining form that has a similar effect to the effect of defun, (that is creating a "top-level" function at load-time). In
this case, you should also use def to be able to locate the source. For example, look at the output of:

(pprint (macroexpand-1 '(defun func-name ())))

• In a "run time" subfunction (that is a subfunction created by a code at run time by executing
(function (lambda ..))). In this case, you should be using the (subfunction sub-name) form above, so the
recorded name contains the dspec of the parent function, otherwise the debugger will not be able to find the source from
the subfunction.

hcl:lambda-name will also modify the function name of flet and labels, but these already have a name, so this is not
often useful.

Naming functions and subfunctions is useful because it makes it easier to understand the flow of control when you see them
in a backtrace. For subfunctions, it makes it easier to trace and advise them (see trace and defadvice).

Description: of :explain

The remainder of this description documents the syntax and use of :explain declarations.

declaration ::= (:explain option*)
option ::= optionkey | (optionkey optionvalue)
optionkey ::= :none | :variables | :types | :floats | :non-floats
 | :all-calls | :all-calls-with-arg-types | :calls | :boxing
 | :print-original-form | :print-expanded-form
 | :print-length | :print-level

The :explain declaration controls messages printed by the compiler while it is processing forms. The declaration can be
used with proclaim or declaim as a top level form to give it global or file scope. It can also be used at the start of a
#'lambda form or function body to give it the scope of that function. The declaration has unspecified effect when used in
other contexts, for example in the body of a let form.

An :explain declaration consists of a set of options of the form (optionkey optionvalue) which associates optionvalue with
optionkey or optionkey which associates t with optionkey. By default, all of the optionkeys have an associated value nil. All
optionkeys not specified by a declaration remain unchanged (except for the special action of the :none optionkey described
below).

The optionkey should be one of the following:

33 The COMMON-LISP Package

541

http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_let_l.htm

:none Set value associated with all optionkeys to nil. This turns off all explanations.

:variables If optionvalue is non-nil, list all the variables of each function, specifying whether they are
floating point or not.

:types If optionvalue is non-nil, print information about compiler transformations that depend on
declared or deduced type information.

:floats If optionvalue is non-nil, print information about calls to functions that may allocate floats.

:non-floats If optionvalue is non-nil, print information about calls to functions that may allocate non-float
numbers, for example bignums.

:all-calls If optionvalue is non-nil, print information about calls to normal functions.

:all-calls-with-arg-types

If optionvalue is non-nil, print the argument types for calls to normal functions. Must be
combined with :all-calls.

:calls A synonym for :all-calls.

:boxing If optionvalue is non-nil, print information about calls to functions that may allocate numbers,
for example floats or bignums.

:print-original-form

If optionvalue is non-nil, modifies the :all-calls, :floats and :non-floats explanations
to include the original source code form that contains the call.

:print-expanded-form

If optionvalue is non-nil, modifies the :all-calls, :floats and :non-floats explanations
to include the macroexpanded source code form that contains the call.

:print-length Use the optionvalue as the value of *print-length* for :all-calls, :floats and
:non-floats explanations.

:print-level Use the optionvalue as the value of *print-level* for :all-calls, :floats and
:non-floats explanations.

Examples

(defun foo (arg)
 (declare
 (:explain :variables)
 (optimize (float 0)))
 (let* ((double-arg (coerce arg 'double-float))
 (next (+ double-arg 1d0))
 (other (* double-arg 1/2)))
 (values next other)))
;;- Variables with non-floating point types:
;;- ARG OTHER
;;- Variables with floating point types:
;;- DOUBLE-ARG NEXT

See also

declare in the Common Lisp HyperSpec

33 The COMMON-LISP Package

542

http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_lev.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_lev.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_declar.htm

9.5 Compiler control
compile
compile-file
proclaim
define-declaration
declaration-information

defclass Macro

Summary

Extended to add extra control over parsing of class options and slot options, optimization of slot access, and checking of
initargs.

Package

common-lisp

Signature

defclass name superclasses slot-specifiers {class-option}*

Arguments

name⇓ A symbol.

superclasses⇓ A list of class names.

slot-specifiers⇓ A list of slot specifiers.

class-option⇓ A list whose car is a keyword.

Description

The macro defclass is as defined in the ANSI standard with the following extensions.

name and superclasses are processed as in the ANSI standard.

For extra class options in class-option, you may need to define the way these are parsed at defclass macroexpansion time.
See process-a-class-option for details.

For non-standard slot options in slot-specifiers, you may need to define the way these are parsed at defclass
macroexpansion time. See process-a-slot-option for details.

By default, standard slot accessors, and access by slot-value to an argument of a method where the specializer is a class
defined by defclass, are optimized such that they do not call slot-value-using-class. This optimization can be
switched off using the :optimize-slot-access nil class option.

To add valid initialization arguments for the class, use the class option :extra-initargs. The argument passed via this
option is evaluated, and should return a list of extra initialization arguments for the class. make-instance and other CLOS
initializations (see set-clos-initarg-checking) will treat these as valid when checking their arguments.

Compatibility notes

1. When a class is redefined, its extra initargs are always reset.

33 The COMMON-LISP Package

543

http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm

2. In early versions of LispWorks 4.3, extra initargs were not reset when a class was redefined without specifying extra
initargs.

Examples

This session illustrates the effects of the :optimize-slot-access class option. When true, slot access is more efficient
but note that slot-value-using-class is not called.

CL-USER 26 > (compile '(defclass foo ()
 ((a :type fixnum
 :initarg :a
 :reader foo-a))))
NIL

CL-USER 27 > (compile '(defclass bar ()
 ((a :type fixnum
 :initarg :a
 :reader bar-a))
 (:optimize-slot-access nil)))
NIL

CL-USER 28 > (setf *foo*
 (make-instance 'foo :a 42)
 bar (make-instance 'bar :a 99))
#<BAR 21D33D4C>

CL-USER 29 > (progn
 (time (dotimes (i 1000000)
 (foo-a *foo*)))
 (time (dotimes (i 1000000)
 (bar-a *bar*))))
Timing the evaluation of (DOTIMES (I 1000000) (FOO-A *FOO*))

user time = 0.328
system time = 0.015
Elapsed time = 0:00:00
Allocation = 2280 bytes standard / 11002882 bytes conses
0 Page faults
Timing the evaluation of (DOTIMES (I 1000000) (BAR-A *BAR*))

user time = 0.406
system time = 0.015
Elapsed time = 0:00:00
Allocation = 4304 bytes standard / 11004521 bytes conses
0 Page faults
NIL

CL-USER 30 > (trace
 (clos:slot-value-using-class
 :when
 (and (member (first *traced-arglist*)
 (list (find-class 'foo)
 (find-class 'bar)))
 (eq (third *traced-arglist*) 'a))))
(CLOS:SLOT-VALUE-USING-CLASS)

CL-USER 31 > (foo-a *foo*)
42

CL-USER 32 > (bar-a *bar*)
0 CLOS:SLOT-VALUE-USING-CLASS > ...
 >> CLASS : #<STANDARD-CLASS BAR 214897F4>
 >> CLOS::OBJECT : #<BAR 2148820C>
 >> CLOS::SLOT-NAME : A

33 The COMMON-LISP Package

544

0 CLOS:SLOT-VALUE-USING-CLASS < ...
 << VALUE-0 : 99
99

This session illustrates the :extra-initargs class option:

CL-USER 46 > (defclass a () ()
 (:extra-initargs '(:a-initarg)))
#<STANDARD-CLASS A 21C2E4FC>

CL-USER 47 > (defclass b (a) ()
 (:extra-initargs '(:b-initarg)))
#<STANDARD-CLASS B 2068573C>

CL-USER 48 > (defclass c (a) ())
#<STANDARD-CLASS C 22829D44>

CL-USER 49 > (make-instance 'b :a-initarg "A" :b-initarg "B")
#<B 2068BCE4>

CL-USER 50 > (make-instance 'c :a-initarg "A" :b-initarg "B")

Error: MAKE-INSTANCE is called with unknown keyword :B-INITARG among the arguments (C :A-INITARG "A
" :B-INITARG "B") which is not one of (:A-INITARG).
 1 (continue) Ignore the keyword :B-INITARG
 2 (abort) Return to level 0.
 3 Return to top loop level 0.

Type :b for backtrace, :c <option number> to proceed, or :? for other options

CL-USER 51 : 1 >

See also

defclass in the Common Lisp HyperSpec
process-a-class-option
process-a-slot-option

defpackage Macro

Summary

Extended to add a way of specifying the default used packages, and control package name conflict resolution.

Package

common-lisp

Signature

defpackage defined-package-name {option}* => package

option ::= (:add-use-defaults) | (:local-nicknames (local-nickname actual-package-name)*) | standard-
option

33 The COMMON-LISP Package

545

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

Arguments

defined-package-name⇓ A string designator.

local-nickname⇓ A string or a symbol.

actual-package-name⇓ A string or a symbol.

standard-option⇓ The standard keyword options to defpackage.

Values

package A package.

Description

The macro defpackage is as defined in the ANSI standard with standard-options, plus the addition of the
:add-use-defaults and :local-nicknames options. However, the standard explicitly declines to define what
defpackage does if a package named defined-package-name already exists and is in a state that differs from that described
by the defpackage form.

Therefore an extension has been written that allows you to select between alternative behaviors. See
handle-existing-defpackage for full details.

When either the standard :use option is omitted or :add-use-defaults is supplied as an option (with any value), then the
package defined-package-name is defined to inherit from the following packages (as well as any explicitly specified by the
:use option):

• common-lisp

• lispworks

• harlequin-common-lisp

Otherwise, defined-package-name is defined to inherit from the packages specified by the :use option only.

If :local-nicknames is supplied as an option then defined-package-name is defined to have the specified local-
nicknames for the corresponding actual-package-names.

Using :local-nicknames in defpackage is equivalent to doing the defpackage without :local-nicknames, and then
calling add-package-local-nickname for each pair in the list with defined-package-name as the package-designator,
except that DEFPACKAGE does some checking and may give an error before starting to make any changes. See
add-package-local-nickname for details.

Examples

Using :add-use-defaults:

(defpackage "MY-PACKAGE" (:use "CAPI")
 (:add-use-defaults t))

(package-use-list "MY-PACKAGE")
=>
(#<PACKAGE COMMON-LISP> #<PACKAGE LISPWORKS>
 #<PACKAGE HARLEQUIN-COMMON-LISP> #<PACKAGE CAPI>)

Using :local-nicknames (note the warning because defining a local nickname that is the same as the global name of a
different package is risky):

33 The COMMON-LISP Package

546

http://www.lispworks.com/documentation/HyperSpec/Body/m_defpkg.htm

(defpackage "BAR" (:intern "X"))
(defpackage "FOO" (:intern "X"))
(defpackage "QUUX" (:local-nicknames ("BAR" "FOO") ("FOO" "BAR")))
Warning: Local nickname "BAR" for "FOO" in package "QUUX" matches name of "BAR"
Warning: Local nickname "FOO" for "BAR" in package "QUUX" matches name of "FOO"

(find-symbol "X" "FOO")
=>
FOO::X

(find-symbol "X" "BAR")
=>
BAR::X

(let ((*package* (find-package "QUUX")))
 (find-symbol "X" "FOO"))
=> BAR::X

(let ((*package* (find-package "QUUX")))
 (find-symbol "X" "BAR"))
=> FOO::X

See also

defpackage in the Common Lisp HyperSpec
handle-existing-defpackage

describe Function

Summary

Remains as defined in ANSI Common Lisp. Additionally, you can control the depth at which slots inside arrays, structures
and conses are described.

Package

common-lisp

Signature

describe object &optional stream

Arguments

object⇓ An object.

stream⇓ An output stream designator.

Description

The function describe displays information about object to the stream indicated by stream, as specified in ANSI Common
Lisp.

Arrays, structures and conses are described recursively up to the depth given in the value of the variable
describe-level. Beyond that depth, objects are simply printed.

33 The COMMON-LISP Package

547

http://www.lispworks.com/documentation/HyperSpec/Body/m_defpkg.htm

See also

describe in the Common Lisp HyperSpec
describe-length
describe-level
describe-print-length
describe-print-level

directory Function

Summary

Determines which files on the system have names matching a given pathname.

Package

common-lisp

Signature

directory pathname &key test directories flat-file-namestring link-transparency non-existent-link-destinations => pathnames

Arguments

pathname⇓ A pathname, string, or file-stream.

test⇓ A function or nil.

directories⇓ A boolean controlling whether non-matching directories are included in the result.

flat-file-namestring⇓ A generalized boolean.

link-transparency⇓ A generalized boolean.

non-existent-link-destinations⇓
A generalized boolean.

Values

pathnames⇓ A list of physical pathnames.

Description

The function directory collects all the pathnames matching the given pathname.

directory returns truenames, conforming to the ANSI specification for Common Lisp. Some programs may depend on the
old behavior, however (and directory is slower if it has to find the truename for every file in the directory), and so two
keyword arguments are available so that the old behavior can still be used: link-transparency and non-existent-link-
destinations.

Because truenames are now returned, the entries . and .. no longer show up in the output of directory. This means, for
instance, that:

(directory #P"/usr/users/")

does not include #P"/usr", which is the truename of #P"/usr/users/..".

33 The COMMON-LISP Package

548

http://www.lispworks.com/documentation/HyperSpec/Body/f_descri.htm

The specification is unclear as to the appropriate behavior of directory in the presence of links to non-existent files or
directories. For example, if the directory contains foo, which is a symbolic link to bar, and there is no file named bar,
should bar show up in the directory listing? A keyword argument has been added which lets you control this behavior.

directory returns a single pathname if called with a non-wild (fully-specified) pathname. LispWorks truenames are fully-
specified, so this affects recursive calls to directory.

If test is non-nil, then it is called with each pathname and only pathnames when it returns true are collected.

directories, if non-nil, causes paths of directories that are sub-directories of the directory of the argument pathname to be
included in the result, even if they do not match pathname in the name, type or version components. The default value of
directories is nil.

When flat-file-namestring is non-nil, directory matches the file-namestring of pathname as a flat string, rather than a
pathname name and pathname type. The default value of flat-file-namestring is nil.

If link-transparency is t, then symbolic links in the result are resolved. If link-transparency is nil, then symbolic links are
not resolved, but they are still followed in the pathname-directory of pathname. This means that returned names are not
necessarily truenames, but has the useful feature that the pathname-directory of each pathname returned matches the
directory of pathname. The default value of link-transparency is given by the special variable
directory-link-transparency, which has initial value t on non-Windows platforms. By setting this variable to nil,
you can get the old behavior of directory. On Windows, where the file system does not normally support symbolic links,
this variable is initially nil.

If non-existent-link-destinations is non-nil, then the pathname pointed to by a symbolic link appears in the output whether or
not this file actually exists. If link-transparency is non-nil and non-existent-link-destinations is nil (this is the default on non
-Windows platforms), then symbolic links to nonexistent files do not appear. The default value is nil.

Notes

1. The Search files tool in the LispWorks IDE uses this option when the Match flat file-namestring option is selected. See
the LispWorks IDE User Guide for more information about the Search Files tool.

2. File names containing the character * cannot be handled by LispWorks. This is because LispWorks uses * as a wildcard,
so there can be confusion if a file name containing * is created, for example in the value of pathnames returned by
directory.

3. The function fast-directory-files can be used for faster operations when operating on directories with large
number of files.

Compatibility notes

In LispWorks 8.0 and newer, if the file-namestring of pathname is a symbolic link pointing to a directory and link-
transparency is nil, then directory returns it as a file. In previous versions of LispWorks, it was returned as a directory.
Calling file-directory-p on such a link still returns true, so if you neeed to check if it is a directory or not, then you
need to check first. The simplest way is to check that file-namestring returns nil. In LispWorks 8.0, there is also
function file-link-p that may be useful in this situation.

The :check-for-subs argument, implemented in LispWorks 4.0.1 and previous versions, has been removed. This
argument controlled whether directories in the result have null name components. This option is no longer valid since ANSI
Common Lisp specifies that directory returns truenames.

Examples

CL-USER 1 > (pprint (directory "."))

(#P"C:/Program Files/LispWorks/readme-6-1.txt"

33 The COMMON-LISP Package

549

http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pn_hos.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pn_hos.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm

 #P"C:/Program Files/LispWorks/lispworks-6-1-0-x86-win32.exe"
 #P"C:/Program Files/LispWorks/license-6-1.txt"
 #P"C:/Program Files/LispWorks/lib/")

This session illustrates the effect of directories:

CL-USER 5 > (pprint (directory "/tmp/t*"))

(#P"/tmp/test.lisp" #P"/tmp/test2/" #P"/tmp/test1/")

CL-USER 6 > (pprint (directory "/tmp/t*" :directories t))

(#P"/tmp/patches/"
 #P"/tmp/test.lisp"
 #P"/tmp/test2/"
 #P"/tmp/opengl/"
 #P"/tmp/test1/"
 #P"/tmp/mnt/")

This example illustrates directory returning a single pathname in its result when given a full-specified pathname:

CL-USER 1 > (directory
 (make-pathname :host "H"
 :device :unspecific
 :directory (list :absolute
 "tmp")
 :name :unspecific
 :type :unspecific
 :version :unspecific))
(#P"H:/tmp/")

The next two examples illustrate the effect of flat-file-namestring. Suppose the directory dir contains files interp.exe and
file.lisp.

This call matches interp.exe, where the name interp ends with p, but does not match file.lisp, where the name
file ends with e:

(directory "dir/*p")

The next call matches file.lisp, where the namestring file.lisp ends with p, but does not match interp.exe, where
the namestring interp.exe ends with e:

(directory "dir/*p" :flat-file-namestring t)

See also

directory in the Common Lisp HyperSpec
fast-directory-files
truename

33 The COMMON-LISP Package

550

http://www.lispworks.com/documentation/HyperSpec/Body/f_dir.htm

disassemble Function

Summary

Prints the machine code of a compiled function.

Package

common-lisp

Signature

disassemble name-or-function => nil

Arguments

name-or-function⇓ Either a function object, a lambda expression or a symbol with a function definition.

Description

The function disassemble prints the machine code of a compiled function, to *standard-output*.

If the function denoted by name-or-function is not compiled then it is first compiled using the function compile. This
happens if name-or-function is a lambda expression or an symbol naming an interpreted function.

An error is signaled if name-or-function is not suitable.

Examples

(disassemble #'(lambda (x) (progn x)))
(disassemble 'cons)
(disassemble #'map)

Notes

The output from disassemble lacks useful information such as local and lexical variable names. The representation of
integers or characters or Lisp objects in general is not easily readable without detailed knowledge of the internals of the Lisp
system and the host machine instruction set.

See also

disassemble in the Common Lisp HyperSpec
compile
compile-file

33 The COMMON-LISP Package

551

http://www.lispworks.com/documentation/HyperSpec/Body/f_disass.htm

documentation Generic Function

Summary

Extended to add methods for dspec:dspec.

Package

common-lisp

Signature

documentation object doc-type => documentation

Arguments

object⇓ Any object.

doc-type⇓ A symbol.

Values

documentation⇓ A string or nil.

Description

The generic function documentation operates as specified in the ANSI Common Lisp standard, returning documentation
for object and doc-type.

There are also additional methods with signatures:

documentation (dspec t) (doc-type (eql 'dspec:dspec))
(setf documentation) new-value (dspec t) (doc-type (eql 'dspec:dspec))

are provided.

This method allows finding or setting the documentation string when you know the dspec. See 7 Dspecs: Tools for
Handling Definitions for information about dspecs.

dspec must be a dspec, but it can be non-canonical. This method canonicalizes dspec and then calls documentation with the
name as the first argument and the appropriate dspec class name as the second, thereby calling a standard documentation

method.

If you define your own type of definitions (def-saved-value for example) with define-dspec-class you can add
methods on documentation for your dspec class:

(documentation (dspec t) (doc-type (eql 'def-saved-value))

This allows commands in the LispWorks IDE such as Expression > Documentation to display the documentation.

See also

documentation in the Common Lisp HyperSpec

33 The COMMON-LISP Package

552

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

double-float Type

Summary

A subtype of float.

Package

common-lisp

Signature

double-float

Description

The type double-float is disjoint from short-float and single-float in all LispWorks implementations in version
5.0 and later.

Compatibility notes

In LispWorks 4.4 and previous on Windows and Linux platforms, all floats are of type double-float. However, there are
distinct specialized array types (array single-float), with single precision, and (array double-float), with
double precision.

See also

double-float in the Common Lisp HyperSpec
long-float
parse-float
short-float
single-float

features Variable

Summary

The features list.

Package

common-lisp

Initial Value

A list containing :lispworks. The actual value varies depending on the platform.

Description

The variable *features* contains a list of feature names.

33 The COMMON-LISP Package

553

http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm

The following features can be used to distinguish between platforms, or characteristics of the platform or of the LispWorks
implementation.

:solaris2 Solaris2

:svr4 System 5 Release 4 machine (for example Solaris2).

:linux Linux.

:freebsd FreeBSD.

:darwin The variant of FreeBSD underlying macOS.

:unix Unix, including all of the above.

:mswindows Microsoft Windows, including 32-bit and 64-bit.

:lispworks-64bit 64-bit LispWorks.

:lispworks-32bit 32-bit LispWorks.

:x86 All images that run on the x86 architecture have this feature. This includes the 32-bit
implementations on FreeBSD, x86/x86_x64 Linux, x86/x64 Solaris and Windows.

Note: 64-bit LispWorks does not have this feature.

:amd64, :x86-64, :x64

Images that run on the amd64/x86_64/x64 architecture have each of these features. This includes
Intel Macintosh, x86_x64 Linux (64-bit), FreeBSD (64-bit), x86/x64 Solaris (64-bit) and
Windows (64-bit).

:arm Images that run on 32-bit ARM architecture.

:arm64 Images that run on 64-bit ARM architecture, including Apple silicon Macs.

:android-delivery Images generating Android runtimes.

:ios-delivery Images generating iOS runtimes.

:little-endian The compiler targets a little-endian machine, for instance x86.

:package-local-nicknames

Support for package-local nicknames (see add-package-local-nickname).

The following features are present in LispWorks with the meanings defined for ANSI CL:

:ansi-cl

:common-lisp

:ieee-floating-point

Conditionalization for the LispWorks implementations

Code can distinguish the current LispWorks implementations like this:

#+(and :mswindows :x86)
"LispWorks (32-bit) for Windows"
#+(and :mswindows :x86-64)

33 The COMMON-LISP Package

554

"LispWorks (64-bit) for Windows"
#+(and :linux :x86
 (not :android-delivery))
"LispWorks (32-bit) for x86/x86_64 Linux"
#+(and :linux :x86-64
 (not :android-delivery))
"LispWorks (64-bit) for x86_64 Linux"
#+(and :linux :arm
 (not :android-delivery)
 (not :ios-delivery))
"LispWorks (32-bit) for ARM Linux"
#+(and :linux :arm64
 (not :android-delivery)
 (not :ios-delivery))
"LispWorks (64-bit) for ARM Linux"
#+(and :freebsd :x86)
"LispWorks (32-bit) for FreeBSD"
#+(and :freebsd :x86-64)
"LispWorks (64-bit) for FreeBSD"
#+(and :darwin :x86-64 (not :ios-delivery))
"LispWorks (64-bit) for Intel Macintosh"
#+(and :darwin :arm64 (not :ios-delivery))
"LispWorks (64-bit) for Apple silicon Macintosh"
#+(and :solaris2 :x86)
"LispWorks (32-bit) for x86/x64 Solaris"
#+(and :solaris2 :x86-64)
"LispWorks (64-bit) for x86/x64 Solaris"
#+(and :android-delivery :x86)
"LispWorks (32-bit) for Android Runtime for x86"
#+(and :android-delivery :x86-64)
"LispWorks (64-bit) for Android Runtime for x86_64"
#+(and :android-delivery :arm)
"LispWorks (32-bit) for Android Runtime for arm"
#+(and :android-delivery :arm64)
"LispWorks (64-bit) for Android Runtime"
#+(and :ios-delivery :x86-64)
"LispWorks (64-bit) for iOS Runtime simulator on Intel"
#+(and :ios-delivery :arm64)
"LispWorks (64-bit) for iOS Runtime or Runtime simulator on Apple silicon"

Conditionalization for LispWorks versions

The following features can be used to distinguish between versions of LispWorks:

:lispworks4 All major version 4 releases.

:lispworks4.4 Release 4.4.x

:lispworks5 All major version 5 releases.

:lispworks5.0 Release 5.0.x

:lispworks5.1 Release 5.1.x

:lispworks6 All major version 6 releases.

:lispworks6.0 Release 6.0.x

:lispworks6.1 Release 6.1.x

:lispworks7 All major version 7 releases.

:lispworks7.0 Release 7.0.x

33 The COMMON-LISP Package

555

:lispworks7.1 Release 7.1.x

:lispworks8 All major version 8 releases.

:lispworks8.0 Release 8.0.x

:lispworks8.1 Release 8.1.x

Code using new LispWorks functionality should be conditionalized only using features representing earlier versions, so as to
future-proof your code:

(defvar *feature-added-in-LispWorks-8.1*
 #+(or lispworks4 lispworks5 lispworks6 lispworks7 lispworks8.0) nil
 #-(or lispworks4 lispworks5 lispworks6 lispworks7 lispworks8.0) t)

This is because a feature added in LispWorks 8.1 will generally also be in LispWorks 8.2, LispWorks 9.0 and all later
versions.

Similarly:

(defvar *feature-added-in-LispWorks-8.0*
 #+(or lispworks4 lispworks5 lispworks6 lispworks7) nil
 #-(or lispworks4 lispworks5 lispworks6 lispworks7) t)

or:

(defvar *feature-added-in-LispWorks-7.1*
 #+(or lispworks4 lispworks5 lispworks6 lispworks7.0) nil
 #-(or lispworks4 lispworks5 lispworks6 lispworks7.0) t)

or:

(defvar *feature-added-in-LispWorks-7.0*
 #+(or lispworks4 lispworks5 lispworks6) nil
 #-(or lispworks4 lispworks5 lispworks6) t)

or:

(defvar *feature-added-in-LispWorks-6.1*
 #+(or lispworks4 lispworks5 lispworks6.0) nil
 #-(or lispworks4 lispworks5 lispworks6.0) t)

We have seen several problematic examples like this:

(defvar *feature-added-in-LispWorks-6.0*
 #+lispworks6 t
 #-lispworks6 nil)

which breaks in LispWorks 7.0, because that release does not contain the :lispworks6 feature.

In general you should use use the:lispworksx and :lispworksx.y features "in reverse". That is, make your code work for
the latest version of LispWorks and then add conditionalization for any previous versions that you want to support, if needed.

Conditionalization for the LispWorks architectures

Every image from LispWorks 5.0 onwards has exactly one of the features :lispworks-32bit and :lispworks-64bit.

The two LispWorks architectures, 32-bit and 64-bit, can be distinguished by the features:lispworks-32bit or

33 The COMMON-LISP Package

556

:lispworks-64bit.

Notes

1. For a LispWorks image with the CAPI loaded, :capi will appear on *features*.

2. LispWorks for Macintosh supports the native macOS Cocoa-based GUI and the X11/GTK+ GUI. If you need to test for
which of these libraries is loaded, check for the features :cocoa and :gtk. The X11/Motif GUI is also available by
evaluating (require "capi-motif") in the GTK+ image.

3. Sometimes it is necessary to write code that examines *features* at load-time or run-time. For example this is true
when you put platform-dependent code in fasl files that are shared between multiple platforms.

See also

features in the Common Lisp HyperSpec

in-package Macro

Summary

Sets the current package.

Package

common-lisp

Signature

in-package name => package

Arguments

name⇓ A string designator; not evaluated.

Values

package A package.

Description

The macro in-package behaves as specified in the ANSI Common Lisp standard.

in-package does not look for package-local nicknames when interpreting name.

See also

in-package in the Common Lisp HyperSpec
add-package-local-nickname

33 The COMMON-LISP Package

557

http://www.lispworks.com/documentation/HyperSpec/Body/v_featur.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm

input-stream-p Generic Function

Summary

A generic function that determines if an object is an input stream.

Package

common-lisp

Signature

input-stream-p stream => result

Arguments

stream⇓ A stream.

Values

result A generalized boolean.

Description

The generic function input-stream-p implements the standard function. There are methods with stream specialized on
fundamental-stream, fundamental-input-stream and fundamental-output-stream that returns t if stream is
an input stream. If you want to implement a stream class with no inherent directionality (and thus does not inherit from
fundamental-input-stream or fundamental-output-stream) but for which the directionality depends on the
instance, then you should add specialized method for input-stream-p.

Examples

There is an example in 24.2.3 Stream directionality.

See also

input-stream-p in the Common Lisp HyperSpec
fundamental-input-stream
output-stream-p

interactive-stream-p Generic Function

Summary

A generic function that determines if an object is an interactive stream.

Package

common-lisp

33 The COMMON-LISP Package

558

http://www.lispworks.com/documentation/HyperSpec/Body/f_in_stm.htm

Signature

interactive-stream-p stream => result

Arguments

stream⇓ A stream.

Values

result A generalized boolean.

Description

The generic function interactive-stream-p implements the standard function. There is a method with stream
specialized on fundamental-stream that returns nil.

See also

interactive-stream-p in the Common Lisp HyperSpec
input-stream-p
output-stream-p

load-logical-pathname-translations Function

Summary

Searches for and loads the definition of a logical host, if not already defined.

Package

common-lisp

Signature

load-logical-pathname-translations host => just-loaded

Arguments

host⇓ A logical host, expressed as a string.

Values

just-loaded A generalized boolean.

Description

The function load-logical-pathname-translations loads the translations for host by loading the file
host.lisp from the LispWorks directory translations.

Examples

(load-logical-pathname-translations "EDITOR-SRC")

33 The COMMON-LISP Package

559

http://www.lispworks.com/documentation/HyperSpec/Body/f_intera.htm

See also

load-logical-pathname-translations in the Common Lisp HyperSpec

long-float Type

Summary

A subtype of float.

Package

common-lisp

Signature

long-float

Description

The type long-float is the same type as double-float in LispWorks, on all platforms.

See also

long-float in the Common Lisp HyperSpec
double-float
parse-float
short-float
single-float

long-site-name Accessor

Summary

Identifies the physical location of the computer.

Package

common-lisp

Signature

long-site-name => description

setf (long-site-name) description => description

Arguments

description A string.

33 The COMMON-LISP Package

560

http://www.lispworks.com/documentation/HyperSpec/Body/f_ld_log.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm

Values

description A string.

Description

The accessor long-site-name returns a string identifying the physical location of the computer. This should be set using
(setf long-site-name) when you configure your LispWorks image.

See also

long-site-name in the Common Lisp HyperSpec
short-site-name

loop Macro

Summary

Add iteration on the result of a SQL query.

Package

common-lisp

Signature

loop

Description

The macro loop has been extended to allow iteration over the result of a SQL query. See Loop Extensions in Common
SQL in the Common SQL chapter for details.

Notes about the LispWorks implementation of loop:

1. The standard is inconsistent, because 6.1.2.1 Iteration Control includes repeat in the list that "must precede any other
loop clauses" even though the rest of that section is about for clauses.

Also, the description of repeat in 6.1.4 Termination Test Clauses makes repeat sound more like an interation clause
because its form is evaluated once and it does some work before the body rather than being interleaved with other body
forms ("If the expression evaluates to 0 or to a negative number, the loop body is not evaluated.").

In LispWorks, the repeat clause must obey the rules in section 6.1.2.1 Iteration Control. In particular the repeat
clause must precede loop body clauses. To write portable code that uses repeat with other iteration clauses, we
recommend putting the repeat as the final iteration clause so it can also be regarded as the first of the main-clauses,
which makes it match both the syntax as described in the entry for loop and the text of sections section 6.1.2.1 Iteration
Control and 6.1.4 Termination Test Clauses.

See also

loop in the Common Lisp HyperSpec

33 The COMMON-LISP Package

561

http://www.lispworks.com/documentation/HyperSpec/Body/f_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/06_aba.htm
http://www.lispworks.com/documentation/HyperSpec/Body/06_ad.htm
http://www.lispworks.com/documentation/HyperSpec/Body/06_aba.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_loop.htm
http://www.lispworks.com/documentation/HyperSpec/Body/06_aba.htm
http://www.lispworks.com/documentation/HyperSpec/Body/06_aba.htm
http://www.lispworks.com/documentation/HyperSpec/Body/06_ad.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_loop.htm

make-array Function

Summary

Creates and returns a new array which, in addition to the standard functionality, can be a weak array or statically allocated.

Package

common-lisp

Signature

make-array dimensions &key element-type initial-element initial-contents adjustable fill-pointer displaced-to displaced-index-
offset weak allocation single-thread => new-array

Arguments

dimensions⇓, element-type⇓, initial-element⇓, initial-contents⇓, adjustable⇓, fill-pointer⇓, displaced-to⇓,

displaced-index-offset⇓
Same as the ANSI standard.

weak⇓ A generalized boolean.

allocation⇓ nil or one of the keywords :new, :static, :static-new, :old, :long-lived or
:pinnable.

single-thread⇓ A generalized boolean.

Values

new-array⇓ An array.

Description

The function make-array has been extended to accept the keyword arguments :weak, :allocation and
:single-thread. Other uses of dimensions, element-type, initial-element, initial-contents, adjustable, fill-pointer,
displaced-to, displaced-index-offset are used as specified by ANSI Common Lisp.

LispWorks supports specialized array representations for values of element-type that upgrade to base-char, bmp-char,
character, single-float, double-float, (complex single-float), (complex double-float),
(unsigned-byte n) and (signed-byte n) where n is 1, 2, 4, 8, 16, 32 or (on 64-bit LispWorks) 64.

If weak is nil (the default), then make-array behaves in the standard way, and new-array is not weak.

If weak is non-nil, then new-array is a weak array. In this case, displaced-to must be nil and if element-type is supplied it
must be equivalent to t according to upgraded-array-element-type, otherwise an error is signaled. That is, you cannot
make a weak array that is displaced or has array-element-type other than t. In 64-bit LispWorks, allocation cannot be
used with weak and the length of a weak array must be less than 4194304 (222) elements.

See set-array-weak for a description of weak arrays.

The possible values for allocation have the following meanings:

nil or :new Allocate the array normally. This is the default value.

33 The COMMON-LISP Package

562

http://www.lispworks.com/documentation/HyperSpec/Body/t_array.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_upgr_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ar_ele.htm

:static Allocate the array in a static segment in the default static generation number.

:static-new Allocate the array in a static segment in generation 0.

:pinnable Allocate a "pinnable" array (see below).

:long-lived Allocate the array assuming it is going to be long-lived.

:old Same meaning as :long-lived

Arrays (including strings) that are passed by address to foreign functions must be static, and so must be created with
:allocation :static, :allocation :static-new, or :allocation :pinnable.

Allocation with :old or :long-lived is useful when you know that the array will be long-lived, because your program will
avoid the overhead of promoting it to the older generations.

Allocation with :static allocates in the default static generation number, which is set assuming that such objects are long-
lived. If you need static arrays that are short-lived, it is better to allocate them with :static-new, or maybe :pinnable.

Allocation with :pinnable is implemented properly only in 64-bit LispWorks. In 32-bit LispWorks, it does the same as
:static. In 64-bit, it allocates an array that can be pinned either explicitly by the macro with-pinned-objects or
implicitly by the foreign type :lisp-simple-1d-array. Such arrays are useful when you want to pass them to foreign
functions, but you do not know if they are long-lived or short-lived. When using :pinnable, the :element-type keyword
must be used to specify an element-type that does not upgrade (by upgraded-array-element-type) to t or character.
In LispWorks 8.0 that includes integers up to 64 bits, double-float, single-float, (complex double-float) and
(complex single-float).

"Pinnable" arrays are handled by the memory management system like ordinary arrays, except that the memory management
system will not move them while they are pinned. They are intended to be used for arrays that are passed to foreign functions
directly. If the type of the argument in the foreign function call that takes the "pinnable" array is :lisp-simple-1d-array,
then the array is pinned automatically during the call. For the foreign type :lisp-array, you need to pin it explcitly
around the call using with-pinned-objects. with-pinned-objects can be used to pin the array in an arbitrary
dynamic scope, but it adds overhead to the GC, so should be avoided.

If single-thread is true then the system knows that new-array will always be accessed in a single thread context. That makes
some operations faster, in particular vector-pop and vector-push. The default value of single-thread is nil.

Compatibility notes

allocation can also be a fixnum n but this is now deprecated. The intent was to allocate the array in generation n, however the
allocation is not actually guaranteed to be in the specified generation (although it will be in almost every call).

See also

make-array in the Common Lisp HyperSpec
array-weak-p
set-array-single-thread-p
set-array-weak
upgraded-array-element-type
:lisp-simple-1d-array
with-pinned-objects
11.6.8 Freeing of objects by the GC

33 The COMMON-LISP Package

563

http://www.lispworks.com/documentation/HyperSpec/Body/f_upgr_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_po.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_ps.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_upgr_1.htm

make-hash-table Function

Summary

Creates and returns a new hash table which, in addition to the standard functionality, can have a user-defined test, a user-
defined hash function, and be a weak hash table.

Package

common-lisp

Signature

make-hash-table &key test size rehash-size rehash-threshold hash-function weak-kind single-thread free-function => hash
-table

Arguments

test⇓ A designator for a function of two arguments.

size⇓, rehash-size⇓, rehash-threshold⇓
Same as the ANSI standard.

hash-function⇓ A designator for a function of one argument, which returns a hash value.

weak-kind⇓ t, nil, or one of the keywords :value, :key, :both, :one and :either.

single-thread⇓ A generalized boolean.

free-function⇓ A designator for a function of two arguments.

Values

hash-table⇓ A hash-table.

Description

The function make-hash-table has been extended such that test can be any suitable user-defined function. If test is not one
of the standard test functions (eq, eql, equal and equalp), and if hash-function is not supplied, then the hash value is the
same as would be used if test were equalp.

hash-function may be supplied only if test is not one of the standard test functions. It takes a hash key as its argument and
returns a hash value to use for hashing.

Note: test and hash-function may be called while the current thread has locked the hash table, so must not contain any code
that may cause a deadlock (for example, code that waits for another lock that might be locked by another thread which is
trying to lock the hash-table, or some similar situation using process-wait).

If weak-kind is non-nil, it makes hash-table weak. Its semantics are the same as the second argument of
set-hash-table-weak, that is:

(make-hash-table :weak-kind weak-kind ...other-args...)

is equivalent to:

33 The COMMON-LISP Package

564

http://www.lispworks.com/documentation/HyperSpec/Body/t_hash_t.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm

(let ((ht (make-hash-table ...other-args...)))
 (set-hash-table-weak ht weak-kind)
 ht)

The default value of weak-kind is nil.

single-thread, if true, tells make-hash-table that the table is going to be used only in single thread contexts, and therefore
does not need to be thread-safe. Single thread context means that only one thread can access the table at any point in time.
That may be because the table is used only in one thread, but it can also be the case if the table is only ever accessed in the
scope of a lock. Making a table with single-thread makes access to this table faster, but not thread-safe. It does not have
other effects. The default value of single-thread is nil.

free-function adds a "free action" for a weak hash table. This has an effect only if make-hash-table is called with weak-
kind non-nil. free-function is called after an entry is automatically removed by the garbage collector (GC). If weak-kind is
nil, free-function is ignored.

free-function, if supplied, must take two arguments: key and value. When an entry is removed from a weak table hash-table
because the relevant object is not pointed by any other object, the key and the value are remembered. Some time later
(normally short, but not well-defined) free-function is called with key and value as its arguments.

free-function needs to be fast, to avoid delays in unexpected places. Otherwise there are no restrictions on what free-function
does. In particular, it can keep the key or value alive by storing them somewhere.

When objects are removed from the table by explicit calls (remhash, clrhash, (setf gethash)), free-function is not
called.

size, rehash-size and rehash-threshold are used as specified by ANSI Common Lisp.

Notes

Objects are removed from the table when the GC has identified them as free. For long-lived objects, which normally get
promoted to higher generations, that may be quite a long time after the last pointer to them has gone.

free-function can also be specified in a call to set-hash-table-weak.

See also

make-hash-table in the Common Lisp HyperSpec
hash-table-weak-kind
modify-hash
set-hash-table-weak
with-hash-table-locked
11.6.8 Freeing of objects by the GC

make-instance Generic Function

Summary

Creates and returns a new instance of a class.

Package

common-lisp

33 The COMMON-LISP Package

565

http://www.lispworks.com/documentation/HyperSpec/Body/f_remhas.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_clrhas.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_has.htm

Signature

make-instance class &rest initargs &key &allow-other-keys => instance

Arguments

class⇓ A class, or a symbol that names a class.

initargs⇓ An initialization argument list.

Values

instance A fresh instance of class class.

Description

The generic function make-instance behaves as specified in ANSI Common Lisp, making an instance of class using the
initargs initargs.

In particular it checks the initialization arguments as calculated by compute-class-potential-initargs.

This check can be suppressed by passing :allow-other-keys t. In addition, LispWorks provides global control over the
initarg checking via set-clos-initarg-checking and per-class control via class-extra-initargs.

Notes

In a delivered image, make-instance does not check the initialization arguments.

Compatibility notes

In LispWorks 4.2 and previous versions, make-instance does not check the initargs. If your code contains invalid initargs,
you could use one of the techniques mentioned above to resolve it.

See also

make-instance in the Common Lisp HyperSpec
class-extra-initargs
compute-class-potential-initargs
set-clos-initarg-checking

make-pathname Function

Summary

Makes a pathname.

Package

common-lisp

Signature

make-pathname &key host device directory name type version defaults case => pathname

33 The COMMON-LISP Package

566

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_pn.htm

Arguments

host⇓ A valid physical pathname host.

device⇓ A valid pathname device.

directory⇓ A valid pathname directory.

name⇓ A valid pathname name.

type⇓ A valid pathname type.

version⇓ A valid pathname version.

defaults⇓ A pathname designator.

case⇓ One of :common or :local.

Values

pathname A pathname.

Description

The function make-pathname and its use of host, device directory, name, type, version, defaults and case are as specified in
ANSI Common Lisp with some extensions.

On Windows, when host that is a string with more than one character (so cannot be a drive character), or defaults is an UNC
pathname, then make-pathname returns an UNC pathname. See 27.18.5 Windows UNC pathnames (Windows only) for a
discussion of UNC pathnames on Windows.

See also

make-pathname in the Common Lisp HyperSpec
27.18.5 Windows UNC pathnames (Windows only)

make-sequence Function

Summary

Extends the function make-sequence to allow it to take any type specifier.

Package

common-lisp

Signature

make-sequence result-type size &key initial-element => sequence

Arguments

result-type⇓ A type specifier.

size⇓ A non-negative integer.

initial-element⇓ An object.

33 The COMMON-LISP Package

567

http://www.lispworks.com/documentation/HyperSpec/Body/a_pn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_pn.htm

Values

sequence⇓ A sequence.

Description

The function make-sequence has been extended to make a sequence of any Common Lisp type. sequence will be of type
result-type unless this is not possible, in which case a type-error is signaled.

size and initial-element are used as specified by ANSI Common Lisp.

See also

make-sequence in the Common Lisp HyperSpec
concatenate
map
merge

make-string Function

Summary

Creates and returns a string.

Package

common-lisp

Signature

make-string size &key initial-element element-type => string

Arguments

size⇓ A non-negative integer.

initial-element⇓ A character. The default is implementation-dependent.

element-type⇓ A type specifier. The default is defined below.

Values

string A string.

Description

The function make-string behaves as specified in the ANSI Common Lisp Standard with one exception: the default value
of element-type is the value of *default-character-element-type* or the type of initial-element if that is a supertype
of *default-character-element-type*.

Therefore for strict compliance you must call set-default-character-element-type to set the default string element
type to character.

size is used as specified by ANSI Common Lisp.

33 The COMMON-LISP Package

568

http://www.lispworks.com/documentation/HyperSpec/Body/e_tp_err.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_seq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

See also

make-string in the Common Lisp HyperSpec
default-character-element-type
set-default-character-element-type

make-string-output-stream Function

Summary

Creates a character output stream.

Package

common-lisp

Signature

make-string-output-stream &key element-type => stream

Arguments

element-type⇓ A type specifier.

Values

stream A string output stream.

Description

The function make-string-output-stream behaves as specified in the ANSI Common Lisp Standard with one exception:
the default value of element-type is the value of *default-character-element-type*.

Therefore for strict compliance you must call set-default-character-element-type to set the default string type to
character.

See also

make-string-output-stream in the Common Lisp HyperSpec
with-output-to-string
default-character-element-type
set-default-character-element-type

map Function

Summary

Extends the function map to allow it to take any type specifier.

Package

common-lisp

33 The COMMON-LISP Package

569

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_stg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_s_2.htm

Signature

map result-type function &rest {sequence}* => result

Arguments

result-type⇓ A sequence type specifier or nil.

function⇓ A function designator.

sequence⇓ A sequence.

Values

result⇓ A sequence.

Description

The function map has been extended to take any Common Lisp type. result will be of type result-type unless this is not
possible, in which case a type-error is signaled.

function and sequence are used as specified by ANSI Common Lisp.

See also

map in the Common Lisp HyperSpec
concatenate
make-sequence
merge

merge Function

Summary

Redefines the function merge allowing it to take any type specifier.

Package

common-lisp

Signature

merge result-type sequence1 sequence2 predicate &key key => sequence

Arguments

result-type⇓ A type specifier.

sequence1⇓ A sequence.

sequence2⇓ A sequence.

predicate⇓ A function designator.

key⇓ A function designator or nil.

33 The COMMON-LISP Package

570

http://www.lispworks.com/documentation/HyperSpec/Body/t_seq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_seq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_tp_err.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_map.htm

Values

sequence⇓ A sequence.

Description

The function merge has been extended to take any Common Lisp type. sequence will be of type result-type unless this is not
possible, in which case a type-error is signaled.

sequence1, sequence2, predicate and key are used as specified by ANSI Common Lisp.

See also

merge in the Common Lisp HyperSpec
concatenate
make-sequence
map

merge-pathnames Function

Summary

Merges two pathnames.

Package

common-lisp

Signature

merge-pathnames pathname &optional default-pathname default-version => merged-pathname

Arguments

pathname⇓ A pathname designator.

default-pathname⇓ A pathname designator.

default-version⇓ A valid pathname version.

Values

merged-pathname A pathname.

Description

The function merge-pathnames and its use of pathname, default-pathname and default-version are as specified in ANSI
Common Lisp with some extensions.

On Windows, when pathname is an UNC pathname, or the host component of pathname is nil and default-pathname is an
UNC pathname, then merge-pathnames returns an UNC pathname. See 27.18.5 Windows UNC pathnames (Windows
only) for a discussion of UNC pathnames on Windows.

33 The COMMON-LISP Package

571

http://www.lispworks.com/documentation/HyperSpec/Body/e_tp_err.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_merge.htm

See also

merge-pathnames in the Common Lisp HyperSpec
27.18.5 Windows UNC pathnames (Windows only)

open Function

Summary

Creates, opens, and returns a file stream that is connected to a specified file.

Package

common-lisp

Signature

open filespec &key direction element-type external-format if-exists if-does-not-exist => stream

Arguments

filespec⇓ A pathname designator.

direction⇓ One of :input, :output, :io, or :probe.

element-type⇓ A type specifier.

external-format⇓ An external file format designator. By default, this is :default.

if-exists⇓ What to do if the file stream already exists. The possible values for this are as in the ANSI
standard.

if-does-not-exist⇓ What to do if the file stream does not already exist. The possible values for this are as in
the ANSI standard.

Values

stream A file stream, or nil.

Description

The function open opens a file.

filespec, direction, if-exists and if-does-not-exist are used as specified by ANSI Common Lisp.

If direction is :probe, external-format is ignored. The element type and external format of the returned stream are
undefined.

element-type defaults to the value of *default-character-element-type* (the ANSI standard default is character).

If external-format has a name which is not :default and the parameters include :eol-style, it is used as is.

Otherwise, the system decides which external format to use via guess-external-format. By default, this finds a match
based on the filename; or (if that fails), looks in the EMACS-style (-*-) attribute line for an option called encoding or
external-format or coding; or (if that fails), chooses from among likely encodings by analyzing the bytes near the start
of the file. By default, it then also analyzes the start of the file for byte patterns indicating the end-of-line style, and uses a
default end-of-line style if no such pattern is found. This behavior is configurable.

33 The COMMON-LISP Package

572

http://www.lispworks.com/documentation/HyperSpec/Body/f_merge_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

After the external-format has been determined, it is verified using valid-external-format-p; and an error is signaled if
this check fails.

See 26.7 External Formats to translate Lisp characters from/to external encodings for more details about external
formats.

If open gets :default as its element-type arg, it chooses the type on the basis of the external format. If open gets an
element-type other than :default and the direction is :input or :io, the argument must be a supertype of the type of
characters produced by the external format; if the direction is :output or :io, it must be a subtype of the type of characters
accepted by the external format; if it does not satisfy these requirements, an error is signaled.

Standard stream input and output functions for character and binary data generally work in the obvious way on a
file-stream with element-type base-char, (unsigned-byte 8) or (signed-byte 8). For example,
read-sequence can be called with a string buffer and a binary file-stream: the character data is constructed from the
input as if by code-char. Similarly write-sequence can be called with a string buffer and a binary file-stream: the
output is converted from the character data as if by char-code. Also, 8-bit binary data can be read from and written to a
base-char file-stream.

All standard stream I/O functions except for write-byte and read-byte have this flexibility.

See also

open in the Common Lisp HyperSpec
default-character-element-type
guess-external-format
set-file-dates
valid-external-format-p
26.7 External Formats to translate Lisp characters from/to external encodings

open-stream-p Generic Function

Summary

A generic function that determines if a stream has been closed.

Package

common-lisp

Signature

open-stream-p stream => result

Arguments

stream⇓ A stream.

Values

result A generalized boolean.

Description

The generic function open-stream-p implements the standard function. There is a method with stream specialized on

33 The COMMON-LISP Package

573

http://www.lispworks.com/documentation/HyperSpec/Body/t_file_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_file_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_code_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_file_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_char_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_file_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_by.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_by.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm

fundamental-stream that returns t if close has not been called on the stream.

See also

open-stream-p in the Common Lisp HyperSpec
close
fundamental-stream

output-stream-p Generic Function

Summary

A generic function that determines if an object is an output stream.

Package

common-lisp

Signature

output-stream-p stream => result

Arguments

stream⇓ A stream.

Values

result A generalized boolean.

Description

The generic function output-stream-p implements the standard function. There are methods with stream specialized on
fundamental-stream, fundamental-input-stream and fundamental-output-stream that returns t if stream is
an output stream. If you want to implement a stream class with no inherent directionality (and thus does not inherit from
fundamental-input-stream or fundamental-output-stream) but for which the directionality depends on the
instance, then you should add specialized method for output-stream-p.

Examples

There is an example in 24.2.3 Stream directionality.

See also

output-stream-p in the Common Lisp HyperSpec
fundamental-output-stream
input-stream-p

33 The COMMON-LISP Package

574

http://www.lispworks.com/documentation/HyperSpec/Body/f_open_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_in_stm.htm

parse-namestring Function

Summary

Parses a pathname namestring.

Package

common-lisp

Signature

parse-namestring thing &optional host default-pathname &key start end junk-allowed => pathname, position

Arguments

thing⇓ A string, a pathname or a stream associated with a file.

host⇓ A valid pathname host, a logical host, or nil.

default-pathname⇓ A pathname designator.

start⇓, end⇓ Bounding index designators of thing.

junk-allowed⇓ A generalized boolean.

Values

pathname A pathname, or nil.

position A bounding index designator for thing.

Description

The function parse-namestring and its use of thing, host, default-pathname, start, end and junk-allowed are as specified
in ANSI Common Lisp with some extensions.

The syntax of namestrings in LispWorks is explained in 27.18.1 Parsing physical namestrings in LispWorks.

See also

parse-namestring in the Common Lisp HyperSpec
27.18.1 Parsing physical namestrings in LispWorks

proclaim Function

Summary

Established a specified declaration in the global environment.

Package

common-lisp

33 The COMMON-LISP Package

575

http://www.lispworks.com/documentation/HyperSpec/Body/a_pn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_stream.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_pn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pars_1.htm

Signature

proclaim declaration-list

Arguments

declaration-list⇓ A list of declaration forms to be put into immediate and pervasive effect.

Description

The function proclaim parses the declarations in declaration-list (usually a quoted list) and puts their semantics and advice
into global effect. This can be useful when compiling a file for speedy execution, since a proclamation such as:

(proclaim '(optimize (speed 3) (space 0) (debug 0)))

means the rest of the file is compiled with these optimization levels in effect. Other ways of doing this are:

• use the :optimize option in defsystem to establish default optimization qualities for every member of the system,
when compiled via compile-system.

• add appropriate declare declarations in every function in the file.

As proclaim involves parsing a list of lists of symbols and is intended to be used a few times per file at most, its
implementation is not optimized for speed - it makes little sense to use it other than at top level.

Note: For a top-level call to proclaim or declaim, optimize declarations are omitted from the compiled binary file. This
deviates from the ANSI Common Lisp Standard but is useful because you are unlikely to want to change settings outside of
that file. To make the global settings, you can call a function which calls proclaim (so it is not a top-level call).

See 9.5 Compiler control for a more extended description of the compiler optimize qualities.

Examples

(proclaim '(special *fred*))
(proclaim '(type single-float x y z))
(proclaim '(optimize (safety 0) (speed 3)))

Notes

As proclaim involves parsing a list of lists of symbols and is intended to be used a few times per file, its implementation is
not optimized for speed — it makes little sense to use it other than at top level.

Remember to quote the argument list if it is a constant list. (proclaim (special x)) attempts to call a function called
special which signals an error.

Exercise caution if you declare or proclaim variables to be special without regard to the naming convention that surrounds
their names with asterisks.

See also

proclaim in the Common Lisp HyperSpec
compile
compile-file
declaim
declare

33 The COMMON-LISP Package

576

http://www.lispworks.com/documentation/HyperSpec/Body/d_specia.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_procla.htm

read-sequence
write-sequence Functions

Summary

Reads or writes a sequence from or to a stream.

Package

common-lisp

Signatures

read-sequence sequence input-stream &key start end => position

write-sequence sequence output-stream &key start end => sequence

Arguments

sequence⇓ A sequence.

input-stream⇓ An input stream.

start⇓, end⇓ Bounding index designators of sequence.

output-stream⇓ An input stream.

Values

position An index into sequence.

sequence A sequence.

Description

The functions read-sequence and write-sequence read and write sequence, bounded by start and end from input-
stream or to output-stream, as specified in the ANSI Common Lisp standard.

In LispWorks, read-sequence and write-sequence simply call stream:stream-read-sequence or
stream:stream-write-sequence respectively, passing them all the arguments. This allows you to customize the
implementation of read-sequence and write-sequence for your own stream classes by defining specialized methods.

See also

read-sequence in the Common Lisp HyperSpec
write-sequence in the Common Lisp HyperSpec
stream:stream-read-sequence
stream:stream-write-sequence

33 The COMMON-LISP Package

577

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_seq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_seq.htm

restart-case Macro

Summary

Evaluates a restartable form in a special dynamic environment.

Package

common-lisp

Signature

restart-case restartable-form {clause}* => result*

clause ::= (case-name lambda-list [[:interactive interactive-expression | :report report-expression | :test test-
expression]] {declaration}* {form}*)

Arguments

restartable-form⇓ A form.

case-name⇓ A symbol.

lambda-list⇓ An ordinary lambda list.

interactive-expression⇓
A symbol or a lambda expression.

report-expression⇓ One for string, symbol, lambda expression or a form starting with list.

test-expression⇓ A symbol or a lambda expression.

declaration⇓ A declare expression.

form⇓ A form.

Values

result* The values of restartable-form or a form.

Description

The macro restart-case behaves as specified in the ANSI Common Lisp standard.

restartable-form, case-name, lambda-list, report-expression, interactive-expression, test-expression, declaration and form
can be used as specified by ANSI Common Lisp.

In addition to that specification, report-expression may be a form whose car is list. Such a form is evaluated when the
restart is set up and is expected to return a list of a format string and format arguments. When the restart is asked to report,
this is done by calling format on the stream, the format string and the format arguments. This is more efficient than
specifying an equivalent function, because no function object is created.

See also

restart-case in the Common Lisp HyperSpec

33 The COMMON-LISP Package

578

http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_symbol.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_list.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_list.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_rst_ca.htm

room Function

Summary

Print information about the state of internal memory and its management.

Package

common-lisp

Signature

room &optional x

Arguments

x⇓ One of nil, t, or the keyword :default. Additionally in 64-bit LispWorks only, x can
be the keyword :full.

Description

The function room provides statistics on the current state of the memory, including the amount of space currently allocated,
and the amount available for allocation.

As outlined in the Common Lisp HyperSpec, room takes an optional argument which controls the level of detail it produces.

The output of room differs between 32-bit and 64-bit LispWorks, and is described separately below.

Output of room in 32-bit LispWorks

If x is nil, a summary of the total allocation in the entire heap (in kilobytes) is produced. The "allocated" figure only
represents the amount of space allocated in heap segments that are writable, as opposed to read-only segments that hold some
of the system code such as the garbage collector (GC) itself. The free space figure covers all the free space in all segments.
To obtain these values programmatically, call room-values.

If x is not supplied, room additionally prints information on the distribution of space between the generations of the heap.

If x is t, a breakdown of allocation in the individual segments of each generation is produced. Each segment is identified by
its start address in memory. For each segment there is a free space threshold (the "minimum free space")—when the available
space in the segment falls below this value, the GC takes action to attempt to free more space in this segment.

Two statistics about promotion are also reported on a per-segment basis: the number of sweeps that an object must survive in
this generation before becoming eligible for promotion, and the total volume of objects that have survived for that long and
are consequently awaiting promotion to the next generation. These statistics are not relevant for static segments, which are
indicated as "static".

room prints numbers in decimal format, except for the segment start addresses which it prints in hexadecimal format.

Output of room in 64-bit LispWorks

The last line of the output of room is always a line containing the total allocated amount (memory occupied by live objects)
and the total size (memory that LispWorks has allocated from the OS) (the "total line"). Both numbers are given in decimal
followed parenthetically by the same number in hexadecimal. Above the total line is information for each generation.

33 The COMMON-LISP Package

579

If x is nil, room does not print any information about generations.

If x is not supplied, room prints the amount allocated for each generation in decimal.

If x is :full, room prints for each generation the amount allocated, both in decimal and in hexadecimal, and then the
allocated amount of each allocation type in which there is any allocation in this generation.

If x is t, room behaves as if x is :full, and also prints information about the segments in this generation. For each segment
it prints the allocation type and the start and end address for allocation in this segment.

Note that information for segments does not correspond to the allocated size, because not all the area in the segment is
currently allocated.

See 11.4 Memory Management in 64-bit LispWorks for a description of allocation types and segments.

Output of room in the Mobile GC

The last line of the output of room is always a line containing the total allocated amount (memory occupied by live objects)
and the total size (memory that LispWorks has allocated from the OS) (the "total line"). Both numbers are given in decimal
followed parenthetically by the same number in hexadecimal. Above the total line is information for each generation.

(room) and (room :default) prints the allocated and free sizes according to these types:

Cons cons object only.

Other All other objects, except static objects and large objects (> 1 MB).

Static Static objects.

Large Large objects (> 1 MB). Note: this threshold may change in the future, but it is fixed in the
current version.

The Cons and Other segments are divided according to their generation and there may also some permanent segments (as a
result of a call to make-current-allocation-permanent, make-object-permanent or
make-permanent-simple-vector).

In addition, LispWorks also holds some reserved segments that are used during GC, and room prints the size of these too.

(room t) also prints the segments for each type. For each segment, it prints the start and end addresses (in hex), the
allocated area, and whether there is a free "hole" in the middle of it. For the Large and Static segments, it also prints the
generation number of each segment. Permanent Static and Large segments have generation number 3.

See 11.5.2 Mobile GC technical details for more technical details.

Notes

The segments information is useful for debugging problems with memory management, but for analysis of application
allocation (room :full) gives enough information. Especially for very large images, there are many segments, so the
output of (room t) is very large and not so useful (except for debugging).

Examples

CL-USER 22 > (room nil)

Total Size 39424K, Allocated 32591K, Free 6461K

CL-USER 23 > (room)
 Generation 0: Total Size 4394K, Allocated 952K, Free 3433K
 Generation 1: Total Size 1397K, Allocated 795K, Free 589K
 Generation 2: Total Size 4292K, Allocated 2172K, Free 2111K

33 The COMMON-LISP Package

580

http://www.lispworks.com/documentation/HyperSpec/Body/a_cons.htm

 Generation 3: Total Size 29009K, Allocated 28885K, Free 112K

Total Size 39424K, Allocated 32805K, Free 6247K

CL-USER 24 > (room t)
 Generation 0: Total Size 4394K, Allocated 1004K, Free 3382K
 Segment 2008EC80: Total Size 507K, Allocated 353K, Free 149K
 minimum free space 64K,
 Awaiting promotion = 23K, sweeps before promotion =10
 Segment 222B4498: Total Size 3886K, Allocated 650K, Free 3232K
 minimum free space 0K,
 Awaiting promotion = 51K, sweeps before promotion =2
 Generation 1: Total Size 1397K, Allocated 795K, Free 589K
 Segment 2070DC18: Total Size 68K, Allocated 64K, Free 0K
 minimum free space 3K,
 Awaiting promotion = 0K, sweeps before promotion =4
 Segment 21D84498: Total Size 1088K, Allocated 613K, Free 470K
 minimum free space 0K,
 Awaiting promotion = 0K, sweeps before promotion =4
 Segment 200528D8: Total Size 240K, Allocated 118K, Free 118K
 minimum free space 0K, static
 Generation 2: Total Size 4292K, Allocated 2172K, Free 2111K
 Segment 21E94498: Total Size 4224K, Allocated 2107K, Free 2111K
 minimum free space 0K,
 Awaiting promotion = 0K, sweeps before promotion =4
 Segment 20E7DC18: Total Size 68K, Allocated 64K, Free 0K
 minimum free space 117K,
 Awaiting promotion = 0K, sweeps before promotion =4
 Generation 3: Total Size 29009K, Allocated 28885K, Free 112K
 Segment 2071EC90: Total Size 7547K, Allocated 7543K, Free 0K
 minimum free space 0K,
 Awaiting promotion = 0K, sweeps before promotion =10
 Segment 20E8EC90: Total Size 15318K, Allocated 15201K, Free 112K
 minimum free space 0K,
 Awaiting promotion = 0K, sweeps before promotion =10
 Segment 2010DC18: Total Size 6144K, Allocated 6139K, Free 0K
 minimum free space 3K,
 Awaiting promotion = 0K, sweeps before promotion =10

Total Size 39424K, Allocated 32857K, Free 6195K

See also

room in the Common Lisp HyperSpec
find-object-size
room-values
total-allocation
11.2 Guidance for control of the memory management system

short-float Type

Summary

A subtype of float.

Package

common-lisp

33 The COMMON-LISP Package

581

http://www.lispworks.com/documentation/HyperSpec/Body/f_room.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm

Signature

short-float

Description

The type short-float is an immediate type.

short-float is disjoint from double-float in all LispWorks implementations in version 5.0 and later.

short-float is disjoint from single-float in all 32-bit LispWorks implementations, version 5.0 and later. In 64-bit
LispWorks short-float is the same type as single-float.

Compatibility notes

In LispWorks 4.4 and previous on Windows and Linux platforms, short-float is the same type as double-float.

See also

short-float in the Common Lisp HyperSpec
double-float
long-float
parse-float
single-float

short-site-name Accessor

Summary

Identifies the physical location of the computer.

Package

common-lisp

Signature

short-site-name => description

setf (short-site-name) description => description

Arguments

description A string.

Values

description A string.

Description

The accessor short-site-name returns a string briefly identifying the physical location of the computer. This should be set
using (setf short-site-name) when you configure your LispWorks image.

33 The COMMON-LISP Package

582

http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm

See also

short-site-name in the Common Lisp HyperSpec
long-site-name

single-float Type

Summary

A subtype of float.

Package

common-lisp

Signature

single-float

Description

The type single-float is disjoint from double-float in all LispWorks implementations, version 5.0 and later, but
differs between 32-bit and 64-bit LispWorks.

single-float is disjoint from short-float in all 32-bit LispWorks implementations in version 5.0 and later. In 64-bit
LispWorks, single-float is the same type as short-float.

A single-float is an immediate object in 64-bit LispWorks.

A single-float is a boxed object in 32-bit LispWorks.

Compatibility notes

In LispWorks 4.4 and previous on Windows and Linux platforms, single-float is the same type as double-float.
However, there are distinct specialized array types (array single-float), with single precision, and
(array double-float), with double precision.

See also

single-float in the Common Lisp HyperSpec
double-float
long-float
parse-float
short-float

software-type Function

Summary

Identifies the Operating System.

33 The COMMON-LISP Package

583

http://www.lispworks.com/documentation/HyperSpec/Body/f_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm

Package

common-lisp

Signature

software-type => description

Values

description A string or nil.

Description

The function software-type returns a string representing a generic name of the Operating System, or nil if this cannot be
determined.

On Windows, software-type returns "Windows NT". For more detail, use software-version.

See also

software-type in the Common Lisp HyperSpec
software-version

software-version Function

Summary

Identifies the version of the Operating System.

Package

common-lisp

Signature

software-version => description

Values

description⇓ A string or nil.

Description

The function software-version returns a string giving the version of the Operating System, or nil if this cannot be
determined.

On Microsoft Windows systems, description begins with the specific Operating System. For supported systems this is
"Windows Vista", "Windows Server 2008", "Windows 7", "Windows Server 2008 R2", "Windows 8",
"Windows 10", "Windows Server 2012" or "Some Windows NT derivative". This is followed by the version
numbers (Major.Minor), build number and optionally service pack.

33 The COMMON-LISP Package

584

http://www.lispworks.com/documentation/HyperSpec/Body/f_sw_tpc.htm

Compatibility notes

On older unsupported operating systems, description commences with "Windows 95", "Windows 98",
"Windows Millennium", "Windows NT", "Windows 2000" or "Windows XP".

Prior to LispWorks 7.1, the description begins with "Windows 8" when running on Windows 10.

Examples

(software-version)
=>
"Windows 8: 6.2 (build 9200) "

(software-version)
=>
"Windows 7: 6.1 (build 7600)"

(software-version)
=>
"Windows Vista: 6.0 (build 6000)"

See also

software-version in the Common Lisp HyperSpec
software-type

standard-input
standard-output
trace-output
error-output
query-io
debug-io Variables

Summary

These are bound globally to synonyms to the *background-* streams:

Package

common-lisp

Initial Value

Synonyms to the *background-* streams.

Description

The variables *standard-input*, *standard-output*, *trace-output*, *error-output*, *query-io* and
debug-io are bound globally to synonyms to the various default streams as follows:

• *standard-input* - synonym to *background-input*

33 The COMMON-LISP Package

585

http://www.lispworks.com/documentation/HyperSpec/Body/f_sw_tpc.htm

• *standard-output*, *trace-output* and *error-output* - synonym to *background-output*

• *query-io* and *debug-io* - synonym to *background-query-io*

See *background-input* for details.

See also

standard-input in the Common Lisp HyperSpec
background-input

step Macro

Summary

Steps through the evaluation of a form.

Package

common-lisp

Signature

step form => result

Arguments

form⇓ A form to be stepped and evaluated.

Values

result The values returned by form.

Description

The macro step evaluates form and allows you to single-step through it. You can include a call to step inside a tricky
definition to invoke the stepper every time the definition is used. step can also optionally step through macros.

The commands shown below are available. When certain stepper variables (as described below) are set, some of these
commands are not relevant and are therefore not available. Use :help to get a list of the commands.

:s n Step this form and all of its subforms (optional positive integer argument).

:st Step this form without stepping its subforms.

:su Step up out of this form without stepping its subforms.

:sr Return a value to use for this form.

:sq Quit from the current stepper level.

:redo Redo one of the previous commands.

:get Get an item from the history list and put it in a variable.

:help List available commands.

33 The COMMON-LISP Package

586

http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm

:use Replace one form with another form in previous command and redo it.

:his List the commands history.

The optional integer argument n for :s means do :s n times.

Note: step is a Listener-based form stepper. LispWorks also offers a graphical source-code Stepper tool (see 25 The Stepper
in the LispWorks IDE User Guide).

Examples

The following examples illustrate some of these commands.

USER 12 > (step (+ 1 (* 2 3) 4))
(+ 1 (* 2 3) 4) -> :s
 1 -> :s
 1
 (* 2 3) -> :su
 6
 4 -> :s
 4
11
11

USER 13 > (defun foo (x y) (+ x y))
FOO

USER 14 > step (foo (+ 1 1) 2)
(FOO (+ 1 1) 2) -> :st
 (+ 1 1) -> :s
 1 -> :s
 1
 1 -> :s
 1
 2
 2 -> :s
 2
4
4

USER 15 > :redo (STEP (FOO # 2))
 (FOO (+ 1 1) 2) -> :s
 (+ 1 1) -> :s
 1 -> :s
 1
 2
 2 -> :s
 2
 (+ X Y) -> :s
 X -> :s
 2
 Y -> :s
 2
 4
 4
 4

You can interact when an evaluated form returns, by setting the variable *no-step-out* to nil. The prompt changes as
shown below:

33 The COMMON-LISP Package

587

USER 36 > step (cons 1 2)
(CONS 1 2) -> :s
 1 -> :s
 1 = 1 <- :sr 3
 2 -> :s
 2 = 2 <- :sr 4
(CONS 1 2) = (3 . 4) <- :s
(3 . 4)

To allow expansion of macros, set the variable *step-macros* to t.

To step through the function calls in compiled code, set the variable hcl:*step-compiled* to t.

If required, the stepper can print out the step level: set the variable *print-step-level* to t, as shown in this session:

USER 21 > (setq *print-step-level* t)
T
USER 22 > step (cons 1 2)
[1](cons 1 2) -> :s
[2] 1 -> :s 1
[2] 2 -> :s
 2
 (1 . 2)
(1 . 2)

It is not advisable to try to step certain compiled functions, such as car and format. The variable hcl:*step-filter*
contains a list of functions which should not be stepped. If you get deep stack overflows inside the stepper, you may need to
add a function name to hcl:*step-filter*.

By default, the stepper uses the same printing environment as the rest of LispWorks (the same settings of the *print-...*
variables). To control the stepper printing environment independently, set the variable hcl:*step-print-env* to t.

The values of the variables hcl:*step-print-...* are then used instead of the variables *print-...*.

See also

step in the Common Lisp HyperSpec

stream-element-type Generic Function

Summary

Implements the standard behavior as a generic function.

Package

common-lisp

Signature

stream-element-type stream => type

Arguments

stream⇓ A stream.

33 The COMMON-LISP Package

588

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_step.htm

Values

type A type specifier.

Description

The generic function stream-element-type implements the standard function. Depending on the stream, a method should
be defined for this generic function that returns the element type of the stream.

Methods must be implemented for all subclasses of buffered-stream. Typically for character streams, the implementation
can return the array-element-type of the buffer.

There is a method with stream specialized on fundamental-character-stream which returns character. You need to
define a method for your stream classes that inherit from fundamental-binary-stream.

There is an example in 24.2.2 Recognizing the stream element type.

See also

stream-element-type in the Common Lisp HyperSpec
buffered-stream
fundamental-binary-stream
fundamental-character-stream

time Macro

Summary

Determines the execution time of a form in the current environment.

Package

common-lisp

Signature

time form => values

Arguments

form⇓ A form to be evaluated.

Values

values⇓ The values returned by evaluation of form.

Description

The macro time can be used to determine execution times. The macro evaluates the form form and returns its values values.
time also prints some timing and size data: user time, system time, elapsed time, and the total amount of heap space
allocated in executing the form (in bytes).

The user time printed is the time used by LispWorks or any code that it calls in a dynamic library.

33 The COMMON-LISP Package

589

http://www.lispworks.com/documentation/HyperSpec/Body/f_ar_ele.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stm_el.htm

The system time printed is the time used in the operating system kernel when it is doing work on behalf of the LispWorks
process.

The elapsed time printed is the time you could in principle measure with a stopwatch.

If LispWorks is 100% busy throughout the execution of the code, then user time + system time ~= elapsed time.

Each of the times is printed as:

• secs.micros if less than 60 seconds.

• hours:minutes:secs.micros if 60 seconds or more.

The timing and size data covers all stack groups, not just the one that invokes time.

Notes

1. Note that time itself uses a small, constant amount of heap space.

2. time measures all threads, so to test accurately for consing in code you need to do:

(sys:with-other-threads-disabled (time code))

This is particularly important when using the LispWorks IDE. Do not use with-other-threads-disabled in your
application code.

Examples

CL-USER 7 > (time (loop for i below 3000000
 sum (sqrt i)))
Timing the evaluation of (LOOP FOR I BELOW 3000000 SUM (SQRT I))

User time = 0:01:04.187
System time = 0.062
Elapsed time = 0:01:07.297
Allocation = 4932022956 bytes
0 Page faults
Calls to %EVAL 72000048
3.4606518E9

See also

time in the Common Lisp HyperSpec
extended-time
with-other-threads-disabled
with-unique-names
11.2 Guidance for control of the memory management system

trace Macro

Summary

Invoke the Common Lisp tracing facility on the named functions.

33 The COMMON-LISP Package

590

http://www.lispworks.com/documentation/HyperSpec/Body/m_time.htm

Package

common-lisp

Signature

trace {tracing-desc}* => trace-result

tracing-desc ::= function-name | complex-tracing-desc

complex-tracing-desc ::= (function-dspec {trace-keyword form}*)

function-name ::= symbol | (setf symbol)

Arguments

tracing-desc⇓ Specifies the function definition that is to be traced and specifies any additional options
that are required.

function-name⇓ A symbol whose symbol-function is to be traced, or a setf function name. Functions,
macros and generic functions may be specified this way.

function-dspec⇓ A function-dspec as described in 7.5.1 Function dspecs, which apart from symbols, can
specify methods, setf functions and subfunctions.

trace-keyword⇓ One of :after, :allocation, :before, :backtrace, :eval-after,
:eval-before, :break, :break-on-exit, :entrycond, :exitcond, :inside,
:process, :trace-output, :step or :when.

form⇓ A form.

Values

trace-result⇓ A list of traced dspecs.

Description

The macro trace invokes the tracing facility (see 5 The Trace Facility). This is a useful debugging tool that enables
information about selected calls to be generated by the system. The standard way of invoking trace is to call it with the
names of the functions, macros and methods that are to be monitored in this way. Calls to these produce a record of the
function that was called, the arguments it received and the results it produced.

Each tracing-desc specifies a function (or a macro or a method) to be traced via function-name or function-dspec. They may
also contain further instructions to control how the tracing output is displayed, or to cause particular actions to occur when
the functions is called or exited. If trace is called with a function that is already being traced, then the new tracing
specification for that function replaces the old version.

Each trace-keyword is followed by a form with a specific meaning, as described next.

:after is followed by a list of forms; these are evaluated upon returning from the function. The values of these forms are
also printed out by the tracer. The forms are evaluated after printing out the results of the function call, and if they modify
hcl:*traced-results* then the values received by the caller of the function are correspondingly altered (see also hcl:*traced-
results*).

:allocation -- if non-nil, the memory allocation made during a function-call is printed upon exit from the function. This
allocation is counted in bytes. If it is any other symbol (except nil), trace uses the symbol to accumulate the amount of
allocation made between entering and exiting the function. Upon exit from the function, the symbol contains the number of
bytes allocated during the function-call. For example:

33 The COMMON-LISP Package

591

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

(trace (print :entrycond nil
 :exitcond nil
 :allocation $$print-allocation))

results in $$print-allocation containing the sum of the allocation made inside print.

Note that if the function is called again, trace continues to use $$print-allocation as an accumulator of memory allocation. It
adds to the present value rather than re-initializing it each time the function is called.

:backtrace generates a backtrace on each call to the traced function. It is followed by a keyword that can be any of the
following values:

:quick Like the :bq debugger command.

t Like the :b debugger command.

:verbose Like the :b :verbose debugger command.

:bug-form Like the :bug-form debugger command.

:before is followed by a list of forms; these are evaluated upon entering the function and their values are printed out by the
tracer. The forms are evaluated after printing out the arguments to the function, and if they alter *traced-arglist* then
the values received by the body of the function are changed accordingly (see also *traced-arglist*).

:eval-after and :eval-before are similar to :after and :before, without output.

:break is followed by a form. This is evaluated after printing the standard information caused by entering the function, and
after executing any :before forms; if it returns nil then tracing continues normally, otherwise break is called. This
provides a way of entering the debugger through the tracer.

:break-on-exit is followed by a form. This is evaluated after printing the standard information caused by returning from
the function, and before executing any :after forms; if it returns nil then tracing continues normally, otherwise break is
called. This provides a second way of entering the debugger through the tracer.

:entrycond controls the printing of the standard entry message (including the function's arguments). If the form following
it evaluates to give a non-nil value when the function is entered, then the entry message is printed (but otherwise it is not). If
this option is not present then the standard entry message is always printed upon calling the function. See also the :when
option.

:exitcond controls the printing of the standard exit message (including the function's results). If the form following it
evaluates to give a non-nil value when the function is exited, then the exit message is printed (but otherwise it is not). If this
option is not present then the standard exit message is always printed upon returning from the function. See also the :when
option.

:inside restricts the tracing to within one of the functions given as an argument. A single symbolic function name is treated
as a list of one element. For example, :inside format is equivalent to :inside (format).

:process may be used to restrict the tracing to a particular process. If it is followed by a process then the function is only
traced when it is invoked from within that process. If it is followed by t then it is traced from all processes — this is the
default. In any other cases the function is not traced at all.

:trace-output should be followed by a stream. All the output from tracing the function is sent to this stream. By default
output from the tracer is sent to *trace-output*. Use of this argument allows you to dispatch traced output from different
functions to different places.

:step, when non-nil, invokes the stepper (for evaluated functions).

:when overrides all other keywords. It is followed by an expression, and tracing only occurs when that expression evaluates
to non-nil. It is useful if you want to combine :entrycond and :exitcond.

33 The COMMON-LISP Package

592

http://www.lispworks.com/documentation/HyperSpec/Body/f_break.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_break.htm

Values

trace-result If trace is called with no arguments then it returns a list of the names of all the functions
currently being traced. When called with one or more arguments, it returns the symbols of the
functions specified in those arguments.

Notes

For detailed information about the current tracing state, call tracing-state.

For information about problems with tracing and their resolution, see 5.7 Troubleshooting tracing.

Examples: 1

USER 1 > (defvar *number-of-calls-to-max* 0)
NUMBER-OF-CALLS-TO-MAX

USER 2 > (trace (max :after
 ((incf *number-of-calls-to-max*))))
(MAX)

USER 3 > (dotimes (i 2) (max i 1))
0 MAX > (0 1)
0 MAX < (1)
 1
0 MAX > (1 1)
0 MAX < (1)
 2
NIL

USER 4 > *number-of-calls-to-max*
2

USER 5 > (trace (max
 :entrycond
 (> (length compiler:*traced-arglist*)
 2)
 :exitcond nil))
(MAX)

USER 6 > (max 2 3 (max 4 5))
0 MAX > (2 3 5)
5

Examples: 2

This example illustrates the use of :inside.

CL-USER 2 > (defun outer ()
 (inner))
OUTER

CL-USER 3 > (defun inner ()
 10)
INNER

CL-USER 4 > (trace (inner :inside outer))
 ;; only trace when inside OUTER
(INNER)

CL-USER 5 > (inner)
 ;; no tracing occurs since we are not inside OUTER

33 The COMMON-LISP Package

593

10

CL-USER 6 > (outer) ;; INNER is traced inside OUTER
0 INNER > NIL
0 INNER < (10)
10

CL-USER 7 >

Examples: 3

To trace a method:

(defmethod foo (x) x)

(trace ((method foo (t))))

Examples: 4

To trace a setf function:

CL-USER 56 > (defvar *a* 0)
A

CL-USER 57 > (defun (setf foo) (x y) (set y x))
(SETF FOO)

CL-USER 58 > (trace (setf foo))
((SETF FOO))

CL-USER 59 > (setf (foo '*a*) 42)
0 (SETF FOO) > (42 *A*)
 >> X : 42
 >> Y : *A*
0 (SETF FOO) < (42)
42

See also

trace in the Common Lisp HyperSpec
5 The Trace Facility
disable-trace
max-trace-indent
trace-indent-width
trace-level
trace-new-instances-on-access
trace-on-access
trace-output
trace-print-circle
trace-print-length
trace-print-level
trace-print-pretty
trace-verbose
traced-arglist
traced-results
tracing-enabled-p
tracing-state
untrace

33 The COMMON-LISP Package

594

http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm

truename Function

Summary

Returns the truename of a pathname.

Package

common-lisp

Signature

truename filespec => truename

Arguments

filespec⇓ A pathname designator.

Values

truename A fully-specified physical pathname.

Description

The function truename behaves as specified in ANSI Common Lisp. The returned value is a fully-specified pathname
corresponding to filespec.

Truenames are always fully-specified in LispWorks (this prevents them from ever being corrupted by
default-pathname-defaults). Note that this means that the paths returned by directory are always fully specified.

See also

truename in the Common Lisp HyperSpec
directory

untrace Macro

Summary

Turns off the Common Lisp tracing facility on the named functions.

Package

common-lisp

Signature

untrace {untracing-desc}* => untrace-list

untracing-desc ::= function-name | function-dspec

33 The COMMON-LISP Package

595

http://www.lispworks.com/documentation/HyperSpec/Body/v_defaul.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_tn.htm

Arguments

function-name⇓ A symbol whose symbol-function is to be untraced, or a setf function name. Functions,
macros and generic functions may be specified this way.

function-dspec⇓ A function-dspec as described in 7.5.1 Function dspecs, which apart from symbols, can
specify methods, setf functions and subfunctions.

Values

untrace-list A list of untracing-descs.

Description

The macro untrace stops the tracing of functions (see 5 The Trace Facility). If it is called with no arguments then the
tracing of all currently traced functions is stopped. If it is called with one or more arguments, then the tracing of the functions
that are specified by function-name or function-dspec is stopped. A warning is given if untrace is called with a function
that is not being traced.

untrace returns the list of untracing-descs that it stopped tracing.

Examples

USER 12 > (progn (untrace) (trace + - / *))
*

USER 13 > (+ 2 3)
0 + > (2 3)
0 + < (5)
5

USER 14 > (untrace + -)
(* |/|)

USER 15 > (+ 2 3)
5

To untrace a method:

(untrace (clos:method foo (t)))

See also

untrace in the Common Lisp HyperSpec
5 The Trace Facility
trace
untrace-new-instances-on-access
untrace-on-access

33 The COMMON-LISP Package

596

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm

update-instance-for-different-class Generic Function

Summary

As specified for Common Lisp, and locks the redefined instance.

Package

common-lisp

Signature

update-instance-for-different-class previous current &rest initargs &key &allow-other-keys

Arguments

previous⇓ A standard-object.

current⇓ A standard-object.

initargs⇓ An initialization argument list.

Description

The generic function update-instance-for-different-class behaves as specified for ANSI Common Lisp.

previous, current and initargs are used as specified by ANSI Common Lisp.

During the operation of updating the instance, including the call to update-instance-for-different-class, the
redefined instance is locked against access. Any other process that tries to access the instance will hang until the operation
finishes. Therefore your methods must avoid doing anything that may wait for another process which may access the
instance, as this would cause a deadlock.

See also

update-instance-for-different-class in the Common Lisp HyperSpec
update-instance-for-redefined-class

update-instance-for-redefined-class Generic Function

Summary

As specified for Common Lisp, and locks the redefined instance.

Package

common-lisp

Signature

update-instance-for-redefined-class instance added-slots discarded-slots property-list &rest initargs &key
&allow-other-keys

33 The COMMON-LISP Package

597

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_update.htm

Arguments

instance⇓ A standard-object.

added-slots⇓ A list.

discarded-slots⇓ A list.

property-list⇓ A plist.

initargs⇓ An initialization argument list.

Description

The generic function update-instance-for-redefined-class behaves as specified for ANSI Common Lisp.

instance, added-slots, discarded-slots, property-list and initargs are used as specified by ANSI Common Lisp.

During the operation of updating the instance, including the call to update-instance-for-redefined-class, the
redefined instance is locked against access. Any other process that tries to access the instance will hang until the operation
finishes. Therefore your methods must avoid doing anything that may wait for another process which may access the
instance, as this would cause a deadlock.

See also

update-instance-for-redefined-class in the Common Lisp HyperSpec
update-instance-for-different-class

with-output-to-string Macro

Summary

Creates a character output stream, performs a series of operations that may send results to this stream, and then closes the
stream.

Package

common-lisp

Signature

with-output-to-string (var &optional string-form &key element-type) {declaration}* {form}* => string-or-
values

Arguments

var⇓ A symbol.

string-form⇓ A form that evaluates to produce a string that has a fill-pointer, or nil.

element-type⇓ A type specifier.

declaration⇓ A declare expression.

form⇓ A form.

33 The COMMON-LISP Package

598

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_upda_1.htm

Values

string-or-values A string or the value(s) of the last form.

Description

The macro with-output-to-string behaves as specified in the ANSI Common Lisp Standard with one exception: the
default value of element-type is the value of *default-character-element-type*.

Therefore for strict compliance you must call set-default-character-element-type to set the default string type to
character.

var, string-form, declaration and form can be used as specified by ANSI Common Lisp.

See also

with-output-to-string in the Common Lisp HyperSpec
compile-file
declare
proclaim
default-character-element-type
set-default-character-element-type

33 The COMMON-LISP Package

599

http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_out_.htm

34 The DBG Package

This chapter describes symbols available in the DBG package, used to configure the debugging information produced by
LispWorks.

The debugger is discussed in detail in 3 The Debugger.

close-remote-debugging-connection Function

Summary

Close the remote debugging connection.

Package

dbg

Signature

close-remote-debugging-connection connection

Arguments

connection⇓ A remote-debugging-connection.

Description

The function close-remote-debugging-connection performs all the close cleanup operations that were associated with
connection by remote-debugging-connection-add-close-cleanup, closes the underlying stream and clears any
other resources that connection is using.

close-remote-debugging-connection may be called on either side (IDE or client) and causes the other side of the
connection to call close-remote-debugging-connection on its own side.

Notes

close-remote-debugging-connection is called automatically by LispWorks when the other side closes the connection.
It is also called automatically after you call configure-remote-debugging-spec with :setup-default nil when
the Debugger or Remote Listener window is closed.

During debugging, you probably do not need to worry about closing connections, but if you use the remote debugging
connections for other purposes then you will probably need to ensure they are closed, because each connection uses a process
as well as some other resources.

See also

3.7 Remote debugging
remote-debugging-connection-add-close-cleanup

600

configure-remote-debugging-spec Function

Summary

Client side: Configure how LispWorks opens a connection for remote debugging on the client side.

Package

dbg

Signature

configure-remote-debugging-spec host &key port log-stream failure-function timeout open-callback name setup-
default enable ssl ipv6 => host

Arguments

host⇓ A string specifying the IDE side hostname, or nil.

port⇓ An integer.

log-stream⇓ An output stream or nil.

failure-function⇓ nil or a function of two arguments: host and port.

timeout⇓ A non-negative real or nil.

open-callback⇓ nil or a function that takes one argument (a newly opened connection).

name⇓ Any object.

setup-default⇓ :delayed, nil or t.

enable⇓ nil or t.

ssl⇓ A SSL client context specification.

ipv6⇓ :any (the default), t, or nil.

Values

host A string or nil.

Description

The function configure-remote-debugging-spec tells LispWorks how to open a connection for remote debugging on
the client side if there is no existing connection to use (see set-remote-debugging-connection for details).
configure-remote-debugging-spec changes the global settings, unless it is called inside the dynamic extent of
with-remote-debugging-spec, in which case its effects last until the exit from this extent (except for setup-default and
enable, see below).

If port, log-stream, failure-function, timeout, open-callback, name, ssl or ipv6 are supplied then they configure the
corresponding settings, otherwise the settings are not changed.

host and port configure the hostname and TCP port to connect to (see the hostspec and service arguments to
open-tcp-stream). host can also be nil, which specifies that LispWorks must not try to open a debugging connection.
The initial configured value of port is the value of *default-ide-remote-debugging-server-port*, which is 21101

34 The DBG Package

601

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

initially.

timeout configure the timeout in seconds, or nil for indefinite. If a connection to the IDE side cannot be made within the
specified timeout then remote debugging is not used.

log-stream configures logging for communication problems, including failure to open the connection (unless the configured
value of failure-function is non-nil) and errors when communicating across the connection. Failure to open the stream can
happen if the host is not ready, the communication is blocked or the network/host are overloaded. Later failures should not
happen as long as the underlying operating system is not broken. When the configured value of log-stream is non-nil,
LispWorks writes error messages to it. Otherwise (the default) LispWorks does not log errors when communicating across the
connection.

When the configured value of failure-function is non-nil, it will be called with the values of host and port in case of failure to
open the connection, instead of writing to log-stream. The initial value of failure-function is nil.

The configured value of name is used as the name of the connection. It affects how the connection object is printed and also
the name of the Lisp process that handles communication for the connection. It initially defaults to "Remote debugging".

When the configured value of open-callback is non-nil, it is called after the new connection has been opened, with the new
connection as its argument. The initial configured value of open-callback is nil.

setup-default and enable determine whether the new connection becomes the default, and when it should be used. Note that
they always have a global effect, even when configure-remote-debugging-spec is called in the dynamic extent of
with-remote-debugging-spec.

When setup-default is :delayed (the default if the configured open-callback is nil) or t, the new connection will become
the default connection, by a call to set-default-remote-debugging-connection. If enable is non-nil (the default),
then the enabling switch is turned on as if by calling set-remote-debugging-connection with argument t. As a result,
assuming no other calls to set-remote-debugging-connection or set-default-remote-debugging-connection
are made, the new connection will be used in the future whenever a connection is needed. See
set-remote-debugging-connection for more details. If setup-default is :delayed, then the connection will be opened
the first time it is needed. If setup-default is t, then configure-remote-debugging-spec opens the connection
immediately. Thus with the default arguments, the connection will be opened the first time it is needed, and will then be used
whenever a connection is needed.

When setup-default is nil (the default if the configured open-callback is non-nil), the connection is not made a default. If it
is created when entering the debugger or for a Remote Listener, then it will be closed automatically when exiting the
debugger or closing the Listener. See remote-inspect for how it deals with connections.

If ssl is non-nil, then the connection will be made using SSL. This is done by passing ssl as the ssl-ctx argument to
open-tcp-stream when the connection is opened. To be able to configure the SSL connection options, including setting
the certificates, you can supply a comm:ssl-abstract-context. Note that ssl will be used repeatedly.

ipv6 is used when opening the TCP connection, and interpreted the same way as in open-tcp-stream.

Notes

For the connection to open successfully, the machine which is addressed by host must be listening for TCP connections on
port. Normally that should happen as result of calling start-ide-remote-debugging-server, but you can reasonably
easily write your own version of it if required.

It is possible to override the default value of port by configuring the service name lw-remote-debug-ide. On a machine
where this service is registered, if port is not given then the registered value is used instead of
default-ide-remote-debugging-server-port.

Using configure-remote-debugging-spec requires the ability to use open-tcp-stream, which at OS level means
using the C library function connect.

34 The DBG Package

602

Sometimes it is easier to make the connection in the other direction. For example, the Android SDK allows you to redirect
sockets from a host to the android device, by using adb forward, so when the Android device is the client side, it is easier
to connect the other way, in which case you should use start-client-remote-debugging-server on the client side
(instead of using configure-remote-debugging-spec), and call ide-connect-remote-debugging on the IDE side.

Opening a connection once and then re-using it is probably more efficient in most cases and also has the advantage that
remote object handles remain valid. However, if opening a connection is relatively rare, using one-off connections removes
the (quite small) overhead of keeping a connection open.

When you do not re-use the connection, the configured values are used each time you open a connection.

If you wish to open a connection yourself, then note that you cannot implement the delayed automatic opening that
configure-remote-debugging-spec implements when setup-default is :delayed (the default) or nil. You can,
however, implement the equivalent of :setup-default t (that is opening the connection before it is needed) by making
the underlying stream yourself using open-tcp-stream or some other mechanism, using
create-client-remote-debugging-connection to create the client connection and then using
set-default-remote-debugging-connection, set-remote-debugging-connection and
with-remote-debugging-connection as appropriate.

See also

with-remote-debugging-spec
start-ide-remote-debugging-server
start-client-remote-debugging-server
start-remote-listener
remote-inspect
3.7 Remote debugging

create-client-remote-debugging-connection
create-ide-remote-debugging-connection Functions

Summary

Create a client or ide remote debugging connection (advanced).

Package

dbg

Signatures

create-client-remote-debugging-connection name &key socket stream ssl log-stream => client-side-connection

create-ide-remote-debugging-connection name &key socket stream ssl log-stream => ide-side-connection

Arguments

name⇓ A string.

socket⇓ A socket or nil.

stream⇓ An base-char stream stream opened for :io or nil.

ssl⇓ A SSL specification.

log-stream⇓ An output stream or nil.

34 The DBG Package

603

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

Values

client-side-connection⇓
A client-remote-debugging.

ide-side-connection⇓ An ide-remote-debugging.

Description

The function create-client-remote-debugging-connection creates a client side remote debugging connection. The
function create-ide-remote-debugging-connection creates an IDE side remote debugging connection.

Normally you would use the higher level interface functions start-client-remote-debugging-server or
configure-remote-debugging-spec to open a client side connection, and start-ide-remote-debugging-server

or ide-connect-remote-debugging to open an IDE side connection. The higher level functions call these functions to
create the connection.

name specifies a name for the connection, but otherwise does not affect its behavior. On the IDE side it is used in the title of
Remote Listener and Remote Debugger tools. On both sides it is used in the name of the process that handles communication
across the connection.

Either socket or stream (but not both) must be non-nil.

If socket is non-nil, it must be a socket handle, like the one that start-up-server passes to its function argument or the
socket that accept-tcp-connections-creating-async-io-states, when called with :create-state nil, passes
to its connection-function. A socket-stream is created with this socket and used as the stream in the connection. socket
defaults to nil.

If stream is non-nil, it must be an base-char stream opened for :io and it is used directly in the connection. Typically it
will be a socket-stream, but that is not a requirement. stream defaults to nil.

If ssl is non-nil, then attach-ssl is called on the stream, passing ssl as the :ssl-ctx argument. Note that this will work
only if the stream is a socket-stream. ssl defaults to nil.

log-stream, if non-nil, must be an output stream. The connection writes messages to it in situations when communication
fails. log-stream defaults to nil.

For the connection to work, the other side of the socket or stream must be the opposite kind of connection, that is for a client
side connection the other side needs to be an IDE connection and vice versa.

The "ownership" of socket or stream is transferred to the connection by these functions. That means that no further I/O
operations are allowed on socket or stream by other code, and they must not be closed. They will be closed when the
connection is closed.

The value of client-side-connection that is returned by create-client-remote-debugging-connection can be used as
the connection argument to with-remote-debugging-connection, set-remote-debugging-connection or
set-default-remote-debugging-connection, or as the :connection keyword to start-remote-listener or
remote-inspect. It is not remembered by LispWorks anywhere.

The value of ide-side-connection that is returned by create-ide-remote-debugging-connection is remembered by
LispWorks, and is returned by ide-list-remote-debugging-connections or
ide-find-remote-debugging-connection when appropriate. As a result, it may be used by any of the IDE side
functions. It can also be passed explicitly to any of these functions. It is forgotten when it is closed.

Both client-side-connection and ide-side-connection can be manipulated by these functions:

• close-remote-debugging-connection closes it.

34 The DBG Package

604

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

• remote-debugging-connection-add-close-cleanup adds a cleanup callback that is called when the connection
is called.

• remote-debugging-connection-peer-address finds the peer address of the connection.

• remote-debugging-connection-name returns its name.

• ensure-remote-debugging-connection checks if it is still open.

See also

start-client-remote-debugging-server
configure-remote-debugging-spec
start-ide-remote-debugging-server
ide-connect-remote-debugging
close-remote-debugging-connection
remote-debugging-connection-add-close-cleanup
remote-debugging-connection-peer-address
remote-debugging-connection-name
ensure-remote-debugging-connection
3.7 Remote debugging

debug-print-length Variable

Summary

Controls the number of object components printed in debugger output.

Package

dbg

Initial Value

40

Description

The variable *debug-print-length* is used to control the number of components of an object which are printed during
output from the debugger. If its value is a positive integer then the components up to that number are printed. If it is nil then
all the parts of an object are shown.

Examples

USER 83 > (setq dbg:*debug-print-length* 3)

3
USER 84 > (aref
'(1 2 3 4 "Jenny" "cottage" "door")
 2)

Error: (1 2 3 4 Jenny cottage door) must be
 an array
 1 (abort) return to top loop level 0.

34 The DBG Package

605

Type :c followed by a number to proceed

USER 85 : 1 > :v
Call to ARRAY-ACCESS :
Arg 0 (ARRAY): (1 2 3 ...)
Arg 1 (SUBSCRIPTS): (2)
Arg 2 (SET-P): NIL Arg 3 (VALUE): NIL

Notes

debug-print-length is an extension to Common Lisp.

See also

3.6 Debugger control variables

debug-print-level Variable

Summary

Controls the depth to which nested objected are printed in debugger output.

Package

dbg

Initial Value

4

Description

The variable *debug-print-level* controls the depth to which nested objects are printed during output from the
debugger. If its value is a positive integer then components at or above that level are printed. By definition an object to be
printed is considered to be at level 0, its components are at level 1, their subcomponents are at level 2, and so on. If
debug-print-level is nil then objects are printed to arbitrary depth.

Examples

USER 89 > (setq dbg:*debug-print-level* 2)

2
USER 90 > (subseq 3 '(cat (dog) ((goldfish))
 (((hamster)))))

Error: Illegal START argument (CAT (DOG)
 ((GOLDFISH))
 (((HAMSTER))))
 1 (abort) return to top loop level 0.

Type :c followed by a number to proceed

34 The DBG Package

606

USER 91 : 1 > :v
Call to CHECK-START-AND-END :
Arg 0 (START): (CAT (DOG) (#) (#))
Arg 1 (END): NIL

Notes

debug-print-level is an extension to Common Lisp.

See also

3.6 Debugger control variables

default-client-remote-debugging-server-port Variable

Summary

The default TCP port number for the client side remote debugging server.

Package

dbg

Initial Value

21102

Description

The value of the variable *default-client-remote-debugging-server-port* is the default port for
start-client-remote-debugging-server and ide-connect-remote-debugging.

Notes

If you change the port number on one side you must change it to the same number on the other side.

It is possible to override the value of *default-client-remote-debugging-server-port* by configuring the service
name lw-remote-debug-client.

See also

start-client-remote-debugging-server
ide-connect-remote-debugging
3.7 Remote debugging

default-ide-remote-debugging-server-port Variable

Summary

The default TCP port number for the IDE side remote debugging server.

34 The DBG Package

607

Package

dbg

Initial Value

21101

Description

The value of the variable *default-ide-remote-debugging-server-port* is the default port for
start-ide-remote-debugging-server and the initial default for configure-remote-debugging-spec and
with-remote-debugging-spec.

Notes

If you change the port number on one side you must change it to the same number on the other side.

It is possible to override the value of *default-ide-remote-debugging-server-port* by configuring the service
name lw-remote-debug-ide.

See also

start-ide-remote-debugging-server
configure-remote-debugging-spec
with-remote-debugging-spec
3.7 Remote debugging

ensure-remote-debugging-connection Function

Summary

Ensures that an object is a working remote debugging connection.

Package

dbg

Signature

ensure-remote-debugging-connection object => connection-or-nil

Arguments

object⇓ An object.

Values

connection-or-nil A remote-debugging-connection or nil.

Description

The function ensure-remote-debugging-connection checks that object is a remote debugging connection (either IDE

34 The DBG Package

608

or client side) and that it is opened, and if so returns it. Otherwise it returns nil.

Notes

The main purpose of ensure-remote-debugging-connection is to check that the connection is still open. Debugging
connections may close unexpectedly when the other side closes or the Lisp image quits or the machine is shut down, or (less
likely) if something is wrong with the underlying connection between the machines.

See also

3.7 Remote debugging

executable-log-file Function

Summary

Returns the default bug form log file.

Package

dbg

Signature

executable-log-file => log-file

Values

log-file A pathname.

Description

The function executable-log-file returns the default bug form log file for the current executable, which is the default
path for log-bug-form.

The path is also user specific.

See also

log-bug-form
logs-directory

hidden-packages Variable

Summary

A list of packages whose symbols should not be displayed in debugger output.

Package

dbg

34 The DBG Package

609

Initial Value

A list containing the dbg and conditions packages.

Description

The variable *hidden-packages* is used by the debugger. It should be bound to a list of package specifiers. If a package
is included in the list then any symbols in it are not shown by the debugger. Thus during backtraces the call frames
corresponding to functions in these packages are not displayed. This can be useful in restricting the debugger to particular
areas.

Examples

CL-USER 1 > unbound

Error: The variable UNBOUND is unbound.
 1 (continue) Try evaluating UNBOUND again.
 2 Return the value of :UNBOUND instead.
 3 Specify a value to use this time instead of evaluating UNBOUND.
 4 Specify a value to set UNBOUND to.
 5 (abort) Return to level 0.
 6 Return to top loop level 0.

Type :b for backtrace or :c <option number> to proceed.
Type :bug-form "<subject>" for a bug report template or :? for other options.

CL-USER 2 : 1 > :b 3
Call to ERROR
Call to EVAL
Call to CAPI::CAPI-TOP-LEVEL-FUNCTION

CL-USER 3 : 1 > (push "COMMON-LISP" dbg:*hidden-packages*)
("COMMON-LISP" #<The COMPILER package, 3131/4096 internal, 41/64 external> #<The SYSTEM package, 62
58/8192 internal, 1266/2048 external> "DBG" "CONDITIONS")

CL-USER 4 : 1 > :b 3
Call to CAPI::CAPI-TOP-LEVEL-FUNCTION
Call to CAPI::INTERACTIVE-PANE-TOP-LOOP
Call to MP::PROCESS-SG-FUNCTION

CL-USER 5 : 1 >

Notes

1. *hidden-packages* can be set to value by:

(set-debugger-options :hidden value)

2. *hidden-packages* is an extension to Common Lisp.

See also

3.6 Debugger control variables
set-debugger-options

34 The DBG Package

610

ide-attach-remote-output-stream Function

Summary

IDE side: Create a stream on the client side (a "client stream") attached to an IDE side stream.

Package

dbg

Signature

ide-attach-remote-output-stream stream &key connection => stream-remote-object

Arguments

stream⇓ An output stream.

connection⇓ An ide-remote-debugging or nil.

Values

stream-remote-object⇓ A remote object handle.

Description

The function ide-attach-remote-output-stream creates an output stream on the client side which is attached to
stream, such that any output written to the output stream on the client side is sent to the IDE side and written to stream. The
returned stream-remote-object is a remote object handle corresponding to a client side output stream.

ide-attach-remote-output-stream must be called on the IDE side.

connection can be used to specify which connection to use. If connection is nil, then
ide-find-remote-debugging-connection is called to find a connection. See
ide-find-remote-debugging-connection for more details about finding a connection.

ide-attach-remote-output-stream returns the same stream-remote-object if it is called again for the same stream and
connection.

stream-remote-object is returned on the IDE side, but must be used on the client side, so you need to pass it to the client,
normally by one of ide-set-remote-symbol-value, ide-funcall-in-remote or ide-eval-form-in-remote.
For example, you can call:

(dbg:ide-set-remote-symbol-value
 '*my-log-stream*
 (dbg:ide-attach-remote-output-stream
 mp:*background-standard-output*))

After this call, anything that is written to *my-log-stream* on the client side will appear in the background output in the
IDE.

Notes

ide-funcall-in-remote and ide-eval-form-in-remote themselves use this mechanism to bind their output-stream

34 The DBG Package

611

around the evaluation/function call.

If there are any errors when writing to stream, they are reported to the log-stream of the IDE side connection (as specified by
ide-connect-remote-debugging and start-ide-remote-debugging-server). Possible reasons for such errors
are:

• Writing a non base-char to a base-char stream. stream-remote-object itself can handle any character, but if
stream is a base-char stream then an error will be signaled if the client writes a non base-char into it.

• Writing to a file that fills the disk.

• Other I/O errors.

See also

ide-find-remote-debugging-connection
3.7 Remote debugging

ide-connect-remote-debugging Function

Summary

IDE side: Connect to a client remote debugging server.

Package

dbg

Signature

ide-connect-remote-debugging host &key port timeout open-a-listener name log-stream ssl ipv6 => connection

Arguments

host⇓ A string.

port⇓ An integer.

timeout⇓ A non-negative real or nil.

open-a-listener⇓ A boolean.

name⇓ A string.

log-stream⇓ An output stream or nil.

ssl⇓ A SSL client context specification.

ipv6⇓ :any (the default), t, or nil.

Values

connection⇓ An ide-remote-debugging.

Description

The function ide-connect-remote-debugging attempts to open a TCP stream to the client machine named by host on

34 The DBG Package

612

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

port number port. If this is successful within timeout seconds, then create-ide-remote-debugging-connection is
called with the new stream, log-stream and a name constructed from name, host and a counter to create and return
connection.

port defaults to the value of *default-client-remote-debugging-server-port*, which is 21102 initially.

timeout defaults to nil, which means waiting indefinitely (or until the operating system reports an error).

If open-a-listener is non-nil, ide-open-a-listener is called to open a Remote Listener. open-a-listener defaults to nil.

If ssl is non-nil, then the connection is made using SSL. This is done by passing ssl as the ssl-ctx argument to
open-tcp-stream. Note that if you want to configure the SSL options, you can supply a ssl-abstract-context object.

ipv6 is used when opening the TCP connection, and interpreted the same way as in open-tcp-stream.

Notes

The client machine (specified by host) must be accepting TCP connections on port number port, which would normally be
done by calling start-client-remote-debugging-server. Normally you do not need to supply port because both
start-client-remote-debugging-server and ide-connect-remote-debugging default it to the value of
default-client-remote-debugging-server-port.

It is possible to override the default value of port by configuring the service name lw-remote-debug-client. On a
machine where this service is registered, if port is not given then the registered value is used instead of
default-client-remote-debugging-server-port.

The underlying TCP stream functionality must be working between the machines, that is they must be able to connect by
TCP.

When using the Remote Debugger, Remote Listener or Inspector, you do not need to access the connection directly because
the tools make one for you. In addition, create-ide-remote-debugging-connection remembers the connection, so all
the IDE side functions that look for connections will find it.

You could easily implement your own version of ide-connect-remote-debugging if needed using open-tcp-stream

and create-ide-remote-debugging-connection.

The editor command Connect Remote Debugging calls ide-connect-remote-debugging.

See also

start-client-remote-debugging-server
open-tcp-stream
3.7 Remote debugging

ide-eval-form-in-remote
ide-funcall-in-remote
ide-set-remote-symbol-value Functions

Summary

IDE side: Evaluate a Lisp form, call a function or set a variable, all on the client side.

Package

dbg

34 The DBG Package

613

Signatures

ide-eval-form-in-remote form &key encoded-result timeout connection output-stream force-simple => results

ide-funcall-in-remote func-and-args &key encoded-result timeout connection output-stream => results

ide-set-remote-symbol-value symbol value &key connection => value

Arguments

form⇓ A Lisp form.

encoded-result⇓ One of nil, t, :symbols or :not-cons.

timeout⇓ A non-negative real or nil.

connection⇓ An ide-remote-debugging or nil.

output-stream⇓ An output stream.

force-simple⇓ A boolean.

func-and-args⇓ A list.

symbol⇓ A symbol.

value⇓ An object.

Values

results The values returned by evaluating the form or calling the function, or the two values nil
and either :timeout-waiting-for-remote or the remote object handle of a condition
object.

value An object.

Description

The function ide-eval-form-in-remote evaluates form on the client side and returns the result(s). Evaluation is done by
(eval form), unless either the evaluator has been eliminated (delivery with :keep-eval nil) or force-simple is non-nil, in
which case a (very) simple evaluator is used. The simple evaluator recognizes symbols and conses, and returns all other
objects. For a symbol, it returns the symbol-value (not recognizing symbol-macros). For a cons, if the car is one of quote,
if or progn then it uses the Common Lisp semantics (using itself for recursion), otherwise it uses itself to evaluate all the
elements of the cons's cdr and applies the car to those values.

The function ide-funcall-in-remote applies the car of func-and-args to the cdr of func-and-args and returns the
result(s). Note that it does not do any evaluation of the elements of func-and-args.

The function ide-set-remote-symbol-value calls ide-funcall-in-remote to set the client side symbol to value as
in:

(dbg:ide-funcall-in-remote '(set symbol value)
 :connection connection)

ide-eval-form-in-remote and ide-funcall-in-remote handle errors on the client side. If an error is signaled on the
client side, then ide-eval-form-in-remote and ide-funcall-in-remote return the two values nil and a remote
object handle of the condition object for the error.

encoded-result affects how the results are represented, where an "encoded" object is represented as a remote object handle
and an "unencoded" object is represented as an normal object on the IDE side. Numbers, characters and strings are always
unencoded, and all other objects except symbols and conses are always encoded. The value of encoded-result affects symbols

34 The DBG Package

614

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_quote.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_if.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_cnd.htm

and conses as follows:

nil (default) The top-level conses are unencoded, which means that a result that is a list is returned as an
unencoded list on the IDE side. Symbols that are in packages that exist on the IDE side are
returned as unencoded symbols. Note that non top-level conses are encoded.

:symbols The top-level conses are unencoded, but symbols and all other conses are encoded.

:not-cons All conses, and symbols that are in packages that exist on the IDE side, are unencoded.

t All conses and symbols are encoded.

timeout determines how long to wait for the result(s). If the client side does not return result(s) within timeout seconds, then
ide-eval-form-in-remote and ide-funcall-in-remote return the two values nil and
:timeout-waiting-for-remote.

connection can be used to specify which connection to use. If connection is nil, then
ide-find-remote-debugging-connection is called to find a connection. See
ide-find-remote-debugging-connection for more details about finding a connection.

output-stream must be an output stream, and defaults to the value of *standard-output*. During the evaluation or call on
the client side, the variables *standard-output*, *error-output* and *trace-output* are bound to a stream that
sends anything that is written to it back to the IDE side where is it written to output-stream. This is done using
ide-attach-remote-output-stream to create a client side stream.

Notes

form, func-and-args, symbol and value are printed on the IDE side and read on the client side, and therefore must be objects
that can be printed and read correctly. If the client is shaken (for example, delivered at level 2 or more), some symbols may
not exist on the client side and will cause errors. If you want to ensure that specific symbols will work correctly with these
functions, then use deliver-keep-symbols to keep them in the client.

Any remote object handle inside any of form, func-and-args, symbol or value is replaced by the object itself on the client
side.

See also

ide-find-remote-debugging-connection
3.7 Remote debugging

ide-find-remote-debugging-connection
ide-set-default-remote-debugging-connection
ide-list-remote-debugging-connections Functions

Summary

IDE side: Find or set as default an IDE side remote debugging connection.

Package

dbg

34 The DBG Package

615

Signatures

ide-find-remote-debugging-connection => connection-or-nil, default-p

ide-set-default-remote-debugging-connection connection => connection

ide-list-remote-debugging-connections &optional match-string => connections

Arguments

connection⇓ An ide-remote-debugging.

match-string⇓ A string.

Values

connection-or-nil⇓ An ide-remote-debugging or nil.

default-p⇓ A boolean.

connection An ide-remote-debugging.

connections A list of ide-remote-debugging.

Description

The function ide-find-remote-debugging-connection tries to find a useful IDE remote debugging connection. If
ide-set-default-remote-debugging-connection was called, and the connection argument in the last call is still
open, then ide-find-remote-debugging-connection returns this connection as connection-or-nil and default-p is t.
Otherwise it returns the connection that was opened last and is still open as connection-or-nil and default-p is nil. If there
are no opened connections then it returns connection-or-nil and default-p both as nil.

The function ide-set-default-remote-debugging-connection sets the default connection that
ide-find-remote-debugging-connection will return to connection. connection must be a valid IDE side remote
debugging connection, that is an instance of ide-remote-debugging that is still open. You can obtain one by calling
create-ide-remote-debugging-connection, ide-find-remote-debugging-connection,
ide-list-remote-debugging-connections or remote-object-connection.

The function ide-list-remote-debugging-connections returns a list of opened connections. If match-string is nil,
the list contains all the connections. If match-string is non-nil, the list contains only the connections whose name contains
match-string as a substring (plain match, case-insensitive).

Notes

ide-find-remote-debugging-connection is used by all the IDE side remote debugging interface functions like
ide-open-a-listener and ide-eval-form-in-remote when their connection argument is nil (the default).

The various Editor commands (starting with "Remote"), except those ending with "In Listener", use
ide-eval-form-in-remote, and therefore also use ide-find-remote-debugging-connection. The Editor
command Set Default Remote Debugging Connection uses ide-list-remote-debugging-connections and
ide-set-default-remote-debugging-connection.

The Remote Debugger and Remote Listener tools, and all remote object handles, are each associated with a specific
connection, and therefore do not use ide-find-remote-debugging-connection.

ide-find-remote-debugging-connection and ide-list-remote-debugging-connections can find the
connections because create-ide-remote-debugging-connection remembers each connection it creates. The higher
level interface functions start-ide-remote-debugging-server and ide-connect-remote-debugging use
create-ide-remote-debugging-connection.

34 The DBG Package

616

See also

ide-open-a-listener
ide-eval-form-in-remote
ide-funcall-in-remote
ide-set-remote-symbol-value
ide-attach-remote-output-stream
create-ide-remote-debugging-connection
ide-connect-remote-debugging
start-ide-remote-debugging-server
3.7 Remote debugging

ide-open-a-listener Function

Summary

IDE side: Open a Remote Listener tool.

Package

dbg

Signature

ide-open-a-listener &key connection timeout => process-remote-object

Arguments

connection⇓ An ide-remote-debugging or nil.

timeout⇓ A non-negative real or nil.

Values

process-remote-object⇓
A remote object handle or nil.

Description

The function ide-open-a-listener opens a Remote Listener, by calling start-remote-listener on the client side of
the connection.

If connection is non-nil, it is used, otherwise ide-open-a-listener calls
ide-find-remote-debugging-connection to find a connection. See ide-find-remote-debugging-connection
for further details.

timeout specifies the length of time (in seconds) to wait before returning. timeout defaults to 10 and nil means waiting
indefinitely.

When successful, ide-open-a-listener returns process-remote-object, which is a remote object (see
remote-object-p) corresponding to the client process object that runs the read-eval-print loop. When a timeout occurs,
process-remote-object is nil.

34 The DBG Package

617

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

Notes

When process-remote-object is nil it does not necessarily means a failure and the Remote Listener may open later anyway.
In particular, you can use :timeout 0 to avoid any waiting.

See also

ide-find-remote-debugging-connection
3.7 Remote debugging

log-bug-form Function

Summary

Writes a log of an error. This is useful in an application's error handlers.

Package

dbg

Signature

log-bug-form description &key log-file message-stream => path

Arguments

description⇓ A string.

log-file⇓ A pathname designator.

message-stream⇓ An output stream, t or nil.

Values

path A pathname.

Description

The function log-bug-form is a simple interface for writing a log of an error. Your application's error handlers can call it.

log-bug-form opens the file log-file for output. It writes the current date followed by a bug form. The bug form contains
description, and debugging information generated by the system. When it finishes it writes to the stream message-stream a
single line reporting that a bug form was written.

If log-file is supplied it must be a valid path, and it is used to open the file. The default value of log-file is the value returned
by executable-log-file.

log-bug-form calls ensure-directories-exist before opening the log file, therefore so the directory where log-file is
written does not need to exist before log-bug-form is called.

If message-stream is t the message is written to standard output. If message-stream is a stream the message is written to it,
and if message-stream is nil then no message is written. message-stream defaults to the value of *error-output*.

If there is an error during the operation, log-bug-form silently fails and returns nil.

On success log-bug-form returns the path where the log file was written.

34 The DBG Package

618

http://www.lispworks.com/documentation/HyperSpec/Body/f_ensu_1.htm

See also the section "Reporting bugs" in the Release Notes and Installation Guide.

Notes

log-bug-form is invoked automatically if the debugger decides to use the console (the terminal) rather than use the
LispWorks IDE debugging tools. This means that after such an error the user can always find a bug form in the default log
file, which can be found by using executable-log-file.

log-bug-form always appends, so if it is called frequently the log file grows continuously. You may need to clear it
periodically. It may be a good idea to move the file rather than delete it, so a record of errors remains.

When editing the log file it should be noted that each bug form is preceded by the time it was written, and that the bug forms
are in chronological order. That means that the interesting bug form is most often the last one in the file.

If you want to call log-bug-form from a condition handler, then establish that handler using handler-bind so that the
bug form contains a backtrace from where the condition was signaled. If the handler is established using handler-case or
ignore-errors, then the backtrace will only show where the condition was handled, which is not useful.

Compatibility notes

In LispWorks 7.0 and earlier, message-stream defaulted to the value of *debug-io*, but this was not documented.

See also

executable-log-file
logs-directory

logs-directory Function

Summary

Returns the directory in which LispWorks puts log files.

Package

dbg

Signature

logs-directory => dir

Values

dir A directory pathname.

Description

The function logs-directory returns the directory in which LispWorks puts log files for the current user.

See also

executable-log-file
log-bug-form

34 The DBG Package

619

http://www.lispworks.com/documentation/HyperSpec/Body/m_handle.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_hand_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_ignore.htm

output-backtrace Function

Summary

Prints a backtrace of the current stack. For use in exception handling routines.

Package

dbg

Signature

output-backtrace keyword &key stream printer-bindings

Arguments

keyword⇓ Defines how verbose the output should be. It can be one of :quick, :brief, :verbose
or :bug-form, in increasing order of verbosity.

stream⇓ An output stream designator.

printer-bindings⇓ A list of conses.

Description

The function output-backtrace prints a backtrace of the current stack.

The output goes to the stream designated by stream.

printer-bindings, if supplied, must be a list of conses, where the car of each cons is a symbol. printer-bindings is ignored if
keyword is :quick. Otherwise, around the actual printing it binds each symbol to the value in the cdr of the cons. This is
intended to override the bindings that are used in the functions that output-backtrace uses.

output-backtrace should be used by applications in their exception handling routines to log a backtrace whenever an
unexpected situation arises. In general, any application that is not intended to be used by Lisp programmers should have error
handlers to deal with unexpected situations, and all these handlers should use output-backtrace. Establish these handlers
using handler-bind so that the backtrace shows where the error was signaled. If the handler is established using
handler-case or ignore-errors, then the backtrace will only show where the error was handled, which is not useful.

Notes

The symbols that can be bound are not limited to "printer" symbols, so the name printer-bindings is slightly misleading.

See also

log-bug-form

34 The DBG Package

620

http://www.lispworks.com/documentation/HyperSpec/Body/m_handle.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_hand_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_ignore.htm

print-binding-frames Variable

Summary

Controls whether binding frames are printed in debugger output.

Package

dbg

Initial Value

nil

Description

The variable *print-binding-frames* is used by the debugger when it displays the stack frames. Binding frames are
formed when special variables are bound, but are normally not shown by the debugger. However if the value of
print-binding-frames is true then the binding frames are shown.

Notes

1. *print-binding-frames* can be set to value by:

(set-debugger-options :bindings value)

2. *print-binding-frames* is an extension to Common Lisp.

Examples

CL-USER 16 > (defun print-to-length (object length)
 (let ((*print-length* length))
 (prinnt object)))
PRINT-TO-LENGTH

CL-USER 17 > (setf dbg:*print-binding-frames* t)
T

CL-USER 18 > (print-to-length '(x y z) 2)

Error: Undefined operator PRINNT in form (PRINNT OBJECT).
 1 (continue) Try invoking PRINNT again.
 2 Return some values from the form (PRINNT OBJECT).
 3 Try invoking something other than PRINNT with the same arguments.
 4 Set the symbol-function of PRINNT to another function.
 5 Set the macro-function of PRINNT to another function.
 6 (abort) Return to level 0.
 7 Return to top loop level 0.

Type :b for backtrace, :c <option number> to proceed, or :? for other options

CL-USER 19 : 1 > :n print-to-length
Interpreted call to PRINT-TO-LENGTH

CL-USER 20 : 1 > :b :verbose 5
Interpreted call to PRINT-TO-LENGTH:

34 The DBG Package

621

 OBJECT : (X Y Z)
 LENGTH : 2
 PRINT-LENGTH : 2

Block environment contour:
Tag environment contour:
Function environment contour
Variable environment contour: ()

Tag environment contour:
Block environment contour:
Function environment contour
Variable environment contour: ()

Call to EVAL (offset 184)
 EXP : (PRINT-TO-LENGTH (QUOTE (X Y Z)) 2)

Binding frame:
 SYSTEM::*TOP-LOOP-ACTIVE* : -1
 COMPILER::*IN-COMPILER-HANDLER* : #<Unbound Marker>
 * : NIL
 ** : NIL
 *** : NIL
 - : NIL
 + : NIL
 ++ : NIL
 +++ : NIL
 /// : NIL
 // : NIL
 / : NIL
 SYSTEM::*TOP-LOOP-HOOK* : NIL
 SYSTEM::*USER-COMMANDS* : NIL
 SYSTEM::*IN-TOP-LEVEL-READ-A-COMMAND* : NIL

CL-USER 21 : 1 >

See also

3.6 Debugger control variables
set-debugger-options

print-catch-frames Variable

Summary

Controls whether catch frames are printed in debugger output.

Package

dbg

Initial Value

t

34 The DBG Package

622

Description

The variable *print-catch-frames* is used by the debugger when it displays the stack frames. Catch frames are created
when the special form catch is used. They are set up so that throws to the matching tag can be received. By default the
debugger displays these frames, but if *print-catch-frames* is set to nil then the catch frames are no longer shown.

Notes

1. *print-catch-frames* can be set to value by:

(set-debugger-options :catchers value)

2. *print-catch-frames* is an extension to Common Lisp.

Examples

USER 17 > (setq dbg:*print-catch-frames* nil)

NIL
USER 18 > (defun catch-it ()
 (catch 'tag (throw-it) (print "Not caught")))

CATCH-IT
USER 19 > (defun throw-it ()
 (throw 'tag (break)))

THROW-IT
USER 20 > (catch-it)

break
 1 (continue) return from break.
 2 (abort) return to top loop level 0.

Type :c followed by a number to proceed

USER 21 : 1 > :b 5
Interpreted call to (DEFUN THROW-IT):
Call to *%APPLY-INTERPRETED-FUNCTION :
Interpreted call to (DEFUN CATCH-IT):
Call to *%APPLY-INTERPRETED-FUNCTION :
Call to %EVAL :

See also

3.6 Debugger control variables
set-debugger-options

34 The DBG Package

623

http://www.lispworks.com/documentation/HyperSpec/Body/s_catch.htm

print-handler-frames Variable

Summary

Controls whether handler frames are printed in debugger output.

Package

dbg

Initial Value

nil

Description

The variable *print-handler-frames* is used by the debugger when it displays the stack frames. Handler frames are
created by error handlers (see 3.3 The stack in the debugger), and are normally not shown by the debugger. However if
print-handler-frames is set to t then the handler frames are displayed.

Notes

1. *print-handler-frames* can be set to value by:

(set-debugger-options :handler value)

2. *print-handler-frames* is an extension to Common Lisp.

Examples

USER 162 > (setq lw:*print-handler-frames* t)

T
USER 163 > (defun test (n)
 (handler-case (fn-to-use n)
(type-error () (format t "~%Type error~%") 0)))

TEST
USER 164 > (test #C(1 1))

Error: Undefined function: FN-TO-USE, with args
 (#C(1 1))

1 (continue) Call FN-TO-USE again
 2 (abort) return to top loop level 0.

Type :c followed by a number to proceed

USER 165 : 1 > :b 10
Catch frame: (NIL)
Catch frame: #:|block-catcher-1854|

34 The DBG Package

624

Call to *%UNDEFINED-FUNCTION-FUNCTION :
Call to %EVAL :
Call to RETURN-FROM :
Call to %EVAL :
Call to EVAL-AS-PROGN :
Handler frame: ((TYPE-ERROR %LEXICAL-CLOSURE%
 (LAMBDA
 (CONDITIONS::TEMP)
 (GO #:|lambda-633|))
 ((#:|lambda-632|) (N . #))
 NIL ((#:|lambda-631|) (TEST))
 ((#:|lambda-633| # #))))
Catch frame: "<* Catch All Object *>"
Call to LET :

See also

3.6 Debugger control variables
set-debugger-options

print-invisible-frames Variable

Summary

Controls whether invisible frames are printed in debugger output.

Package

dbg

Initial Value

nil

Description

The variable *print-invisible-frames* is used by the debugger when it displays the stack frames.

Invisible frames are those for functions with hcl:invisible-frame declarations. These are normally not shown by the
debugger. However if *print-invisible-frames* is true then these frames are displayed.

Notes

1. *print-invisible-frames* can be set to value by:

(set-debugger-options :invisible value)

2. *print-invisible-frames* is an extension to Common Lisp.

See also

3.6 Debugger control variables
set-debugger-options

34 The DBG Package

625

print-open-frames Variable

Summary

Controls whether open frames are printed in debugger output.

Package

dbg

Initial Value

nil

Description

The variable *print-open-frames* is used by the debugger when it displays the stack frames. Open frames are made by
the system and are normally not shown by the debugger. However if *print-open-frames* is set to t then the open
frames are displayed. It is unlikely that you need to examine open frames: their use is connected with implementation details.

Examples

USER 52 > (setq dbg:*print-open-frames* t)

T
USER 53 > (car 2)

Error: Cannot take CAR of 2
 1 (abort) return to top loop level 0.

Type :c followed by a number to proceed

USER 54 : 1 > :b 3
Open frame (5)
Open frame (5)
Call to CAR-FRAME :

Notes

print-open-frames is an extension to Common Lisp.

print-restart-frames Variable

Summary

Controls whether restart frames are printed in debugger output.

34 The DBG Package

626

Package

dbg

Initial Value

nil

Description

The variable *print-restart-frames* is used by the debugger when it displays the stack frames. Restart frames are
formed when restarts are established (see 3.3 The stack in the debugger), but are normally not shown by the debugger.
However if *print-restart-frames* is set to t then the restart frames are shown.

Examples

USER 43 > (setq dbg:*print-restart-frames* t)

T
USER 44 > (truncate 12.5 0.0)

Error: Division-by-zero caused by TRUNCATE
 of (12.5 0.0)
 1 (continue) Return a value to use
 2 Supply new arguments to use
 3 (abort) return to top loop level 0.

Type :c followed by a number to proceed

USER 45 : 1 > :b 5
Restart frame: (ABORT)
Catch frame: (NIL)
Catch frame: #:|block-catcher-3223|
Call to DIVISION-BY-ZERO-ERROR :
Call to TRUNCATEANY :
USER 46 : 1 >

Notes

1. *print-restart-frames* can be set to value by:

(set-debugger-options :restarts value)

2. *print-restart-frames* is an extension to Common Lisp.

See also

3.6 Debugger control variables
set-debugger-options

34 The DBG Package

627

remote-debugging-connection
client-remote-debugging
ide-remote-debugging System Classes

Summary

Classes of the connections in the remote debugging APIs.

Package

dbg

Superclasses

t

Description

The system class remote-debugging-connection is a superclass of all the connection classes in the remote debugging
APIs. client-remote-debugging and ide-remote-debugging are subclasses of remote-debugging-connection.

All client side connections are instances of client-remote-debugging, and all IDE side connections are instances of
ide-remote-debugging.

You should not try to instantiate these classes or inherit from them. In typical use, you do not need to access instances of
these classes.

See 3.7 Remote debugging for how to create and use remote debugging connections.

See also

3.7 Remote debugging

remote-debugging-connection-add-close-cleanup
remote-debugging-connection-remove-close-cleanup Functions

Summary

Add or remove a function that is called when a remote debugging connection is closed.

Package

dbg

Signatures

remote-debugging-connection-add-close-cleanup connection function => changed-p

remote-debugging-connection-remove-close-cleanup connection function => changed-p

34 The DBG Package

628

Arguments

connection⇓ A remote-debugging-connection.

function⇓ A function designator or a list whose car is a function designator.

Values

changed-p⇓ Boolean.

Description

The function remote-debugging-connection-add-close-cleanup records function as a cleanup in connection.
When connection is closed, for whatever reason, each recorded function is invoked (by funcall for a function or symbol,
or by applying the car to the cdr for a list). function is added only if it is not already in the list (tested by equal).

The function remote-debugging-connection-remove-close-cleanup removes function from the cleanups if it was
already added (tested by equal).

changed-p is t if the cleanups were modified and nil otherwise.

Both functions may be called on either side (IDE or client).

Notes

You should not assume anything about the order of calls to the cleanup functions.

Unhandled errors during the call to function are handled and reported to the log-stream of the connection.

remote-debugging-connection-remove-close-cleanup is needed when you repeatedly create some objects that do
not live for long but you still want cleanups for them. In this situation, the cleanup list would grow indefinitely unless you
call remote-debugging-connection-remove-close-cleanup when an object is discarded.

See also

3.7 Remote debugging
close-remote-debugging-connection

remote-debugging-connection-name Function

Summary

Return the name of a remote debugging connection.

Package

dbg

Signature

remote-debugging-connection-name connection => name

Arguments

34 The DBG Package

629

http://www.lispworks.com/documentation/HyperSpec/Body/f_funcal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_symbol.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_list.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm

connection⇓ A remote-object-connection.

Values

name An object.

Description

The function remote-debugging-connection-name returns the name was supplied (or defaulted) when connection was
made.

remote-debugging-connection-peer-address may be called on either side (IDE or client).

See also

ide-connect-remote-debugging
start-ide-remote-debugging-server
create-ide-remote-debugging-connection
create-client-remote-debugging-connection
configure-remote-debugging-spec
3.7 Remote debugging

remote-debugging-connection-peer-address Function

Summary

Return the address of the other side of a remote debugging connection.

Package

dbg

Signature

remote-debugging-connection-peer-address connection => remote-host, remote-port

Arguments

connection⇓ A remote-object-connection.

Values

remote-host⇓ A string.

remote-port⇓ An integer.

Description

The function remote-debugging-connection-peer-address returns the "peer address" of connection.

Normally debugging connections are implemented over socket streams, so remote-host and remote-port are the results of
calling socket-stream-peer-address on the underlying stream.

remote-debugging-connection-peer-address is implemented by calling

34 The DBG Package

630

remote-debugging-stream-peer-address on the stream of the connection, which has a the method specialized on
socket-stream that calls socket-stream-peer-address.

If connection does not use a socket stream (for example, if it was created by
create-ide-remote-debugging-connection or create-client-remote-debugging-connection with a stream
that is not a socket-stream), then remote-host and remote-port will both be nil unless you define a method on
remote-debugging-stream-peer-address for the stream. That will not affect the behavior of the connection
otherwise.

remote-debugging-connection-peer-address may be called on either side (IDE or client).

See also

remote-debugging-stream-peer-address
3.7 Remote debugging

remote-debugging-stream-peer-address Generic Function

Summary

Advanced: Return the peer address of a remote debugging stream.

Package

dbg

Signature

remote-debugging-stream-peer-address stream => remote-host, remote-port

Method signatures

remote-debugging-stream-peer-address (stream t)

remote-debugging-stream-peer-address (stream socket-stream)

Arguments

stream⇓ A stream.

Values

remote-host⇓ A string.

remote-port⇓ An integer.

Description

The generic function remote-debugging-stream-peer-address returns the "peer address" of stream as two values:

remote-host The hostname of the remote host.

remote-port The port number on the remote host.

remote-debugging-stream-peer-address is called by remote-debugging-connection-peer-address with the

34 The DBG Package

631

stream that its connection uses to communicate with the other side. It is intended to allow you to implement remote
debugging with other types of stream by calling create-client-remote-debugging-connection and
create-ide-remote-debugging-connection. In typical usage you do not need to define a method on
remote-debugging-stream-peer-address.

The method specialized on t returns nil and nil.

The method specialized on socket-stream returns the peer hostname and port using socket-stream-peer-address.

remote-debugging-stream-peer-address may be called on either side (IDE or client).

See also

remote-debugging-connection-peer-address
3.7 Remote debugging

remote-inspect Function

Summary

Client side: inspect a client side object in an Inspector tool on the IDE side.

Package

dbg

Signature

remote-inspect object &key connection

Arguments

object⇓ Any object.

connection⇓ A client-remote-debugging.

Description

The function remote-inspect causes an Inspector tool on the IDE side to inspect a client side object. The actual object in
the Inspector is a remote object handle to the client side object. The Inspector tool itself is an ordinary Inspector tool, and
there is nothing that makes it a "remote" tool in any way.

connection specifies which connection to use. If it is supplied and is a valid open client connection, it is used.

If connection is nil (the default) or is not a valid connection, remote-inspect first checks if there is a default connection
that is enabled (by default, if there is a default connection then it is enabled, see set-remote-debugging-connection)
and uses that, the same as the Debugger and Listener do. However, if there is no default connection enabled,
remote-inspect behaves differently from the Debugger and Listener, because there is no obvious time-point to close
temporary connections.

If there is no enabled default connection, remote-inspect does the following:

• If a previous call to remote-inspect already opened a connection, then remote-inspect re-uses it.

• Otherwise, if there a default connection then remote-inspect uses it anyway (even though it is not enabled).

34 The DBG Package

632

• Otherwise, if there is a remote debugging spec (configured either by configure-remote-debugging-spec or
with-remote-debugging-spec), then remote-inspect tries to open a connection using that spec. If this works, it
uses the new connection, and unless it is configured as the default (setup-default non-nil in
configure-remote-debugging-spec) it also records it for future calls of remote-inspect.

Notes

With the default setting, the connection opening function (start-client-remote-debugging-server or
configure-remote-debugging-spec) both configures and enables the default connection, so remote-inspect will
just use that connection (maybe opening it the first time).

An ordinary inspector can inspect a remote object because the generic function get-inspector-values has a method that
specializes on remote object handles to invoke get-inspector-values on the client side and return the results. Thus
remote-inspect can work only if get-inspector-values works on the client side. which is not guaranteed when
delivering an application at higher values of the level argument to deliver.

The only way to close a non-default connection that was opened by remote-inspect is to terminate the process that runs it
on either the IDE or client side.

You can also inspect a remote object from the Remote Debugger or Remote Listener.

See also

set-remote-debugging-connection
start-client-remote-debugging-server
configure-remote-debugging-spec
get-inspector-values
3.7 Remote debugging

remote-object-p
remote-object-connection Functions

Summary

IDE side: Test for a remote object handle and return its connection.

Package

dbg

Signatures

remote-object-p object => boolean

remote-object-connection remote-object => connection

Arguments

object⇓ Any object.

remote-object⇓ A remote object handle.

34 The DBG Package

633

Values

boolean A boolean.

connection An ide-remote-debugging.

Description

The function remote-object-p is a predicate, returning true if object is a remote object handle and false otherwise.

The function remote-object-connection returns the ide-remote-debugging that remote-object is associated with.

See also

3.7 Remote debugging

set-debugger-options Function

Summary

Sets debugger printing control variables.

Package

dbg

Signature

set-debugger-options &key all bindings catchers hidden handler restarts invisible

Arguments

all⇓ A generalized boolean.

bindings⇓ A generalized boolean.

catchers⇓ A generalized boolean.

hidden⇓ A generalized boolean.

handler⇓ A generalized boolean.

restarts⇓ A generalized boolean.

invisible⇓ A generalized boolean.

Description

The function set-debugger-options allows you to set the various debugger printing control variables without having the
inconvenience of setting each variable individually with a call to setq and without having to remember the names for each of
the variables.

all affects the state of the debugger command :all.

The other arguments set the debugger printing control variables as listed below:

bindings *print-binding-frames*

34 The DBG Package

634

http://www.lispworks.com/documentation/HyperSpec/Body/s_setq.htm

catchers *print-catch-frames*

hidden *hidden-packages*

handler *print-handler-frames*

restarts *print-restart-frames*

invisible *print-invisible-frames*

Notes

The call frames are always displayed, so there is no option to control that.

See also

3.6 Debugger control variables
set-debugger-options

set-default-remote-debugging-connection Function

Summary

Client side (advanced): Sets the client side default connection to use when remote debugging is enabled.

Package

dbg

Signature

set-default-remote-debugging-connection connection => return-connection

Arguments

connection⇓ A client-remote-debugging.

Values

return-connection The value of connection.

Description

The function set-default-remote-debugging-connection sets connection as the default connection for the remote
debugging interface on the client side (used when entering the debugger and by calls to start-remote-listener and
remote-inspect).

The default connection is used when the enabling switch is t, which it typically is because that is the default in
start-client-remote-debugging-server and configure-remote-debugging-spec. The switch can also be set
by set-remote-debugging-connection and in a dynamic scope by with-remote-debugging-connection and
with-remote-debugging-spec.

See set-remote-debugging-connection for a discussion about the enabling switch.

34 The DBG Package

635

Notes

In typical usage, you will not need to use set-default-remote-debugging-connection.

See also

set-remote-debugging-connection
3.7 Remote debugging

set-remote-debugging-connection Function

Summary

Client side (advanced): Set the remote debugging connection to use on the client side.

Package

dbg

Signature

set-remote-debugging-connection connection => res

Arguments

connection⇓ nil, t or a client-remote-debugging.

Values

res The value of connection if it is valid.

Description

The function set-remote-debugging-connection sets an enabling switch controlling which remote debugging
connection will be used by the remote debugging interface (entering the debugger, start-remote-listener or
remote-inspect) on the client side.

If connection is t, then the default connection will be used (which may be set by
set-default-remote-debugging-connection, start-client-remote-debugging-server, or
configure-remote-debugging-spec). If connection is an instance of client-remote-debugging, then connection
itself will be used. If connection is nil, then no connection is specified (the API may open one when needed).

The setting is global, unless it is called within the dynamic extent of with-remote-debugging-connection, in which
case its effects last until the exit from this extent.

When entering the debugger, the connection is used when invoke-debugger is called and no hook blocks it. Possible
hooks include *debugger-hook* and with-debugger-wrapper. For the Remote Listener and Inspector, the functions
start-remote-listener and remote-inspect use the connection.

Notes

In typical usage, you will not need to explicitly call set-default-remote-debugging-connection, because
start-client-remote-debugging-server and configure-remote-debugging-spec (with the default parameters)
both set the default connection.

34 The DBG Package

636

http://www.lispworks.com/documentation/HyperSpec/Body/f_invoke.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debugg.htm

In all cases, if the debugger is invoked and there is no connection to use, LispWorks may open a connection if it was
configured to do so by configure-remote-debugging-spec or with-remote-debugging-spec.

You can obtain a client remote debugging connection by using the :open-callback keyword with
start-client-remote-debugging-server or configure-remote-debugging-spec.

See also

with-remote-debugging-connection
set-default-remote-debugging-connection
start-client-remote-debugging-server
configure-remote-debugging-spec
3.7 Remote debugging

start-client-remote-debugging-server Function

Summary

Client side: Start a remote debugging TCP server on the client side.

Package

dbg

Signature

start-client-remote-debugging-server &key port open-callback log-stream setup-default enable announce error
ssl ipv6 => process

Arguments

port⇓ An integer.

open-callback⇓ nil or a function of one argument: the connection.

log-stream⇓ An output stream or nil.

setup-default⇓ nil or t.

enable⇓ nil or t.

announce⇓ A function of two arguments or a stream, t or nil.

error⇓ A boolean (default t).

ssl⇓ A SSL client context specification.

ipv6⇓ :any (the default), t, or nil.

Values

process⇓ A process.

Description

The function start-client-remote-debugging-server starts a client side server for remote debugging, which will
create a client side remote debugging connection when a remote machine connects to it. With the default settings, this remote

34 The DBG Package

637

debugging connection will become the default connection and will be enabled for re-use whenever a connection is needed
(entering the debugger, or calls to start-remote-listener or remote-inspect).

The main operation of start-client-remote-debugging-server is calling start-up-server with port and a
function that calls create-client-remote-debugging-connection to create a client for every connection to the
server. port defaults to the value of *default-client-remote-debugging-server-port*, which is 21102 initially.

The other keyword arguments affect what else start-client-remote-debugging-server does.

If open-callback is non-nil, it is called with the each new connection that is created. open-callback defaults to nil.

If setup-default is non-nil (the default when open-callback is nil), every new connection is made the default connection by a
call to set-default-remote-debugging-connection, and if enable is non-nil (the default), it will be enabled for re-
use by set-remote-debugging-connection with argument t. If setup-default is nil (the default when open-callback is
non-nil) then enable is ignored. setup-default defaults to (not open-callback).

If log-stream is non-nil, LispWorks writes error messages to it relating to failures during communication on a connection.
These failures should not happen normally, but may happen if something writes to the remote debugging connection not
through the remote debugging interface. log-stream defaults to nil.

announce, error and ipv6 have the same meaning as in start-up-server.

If ssl is non-nil, then the connection is made using SSL. This is done by passing ssl as the ssl-ctx argument to
create-client-remote-debugging-connection when creating each connection. To be able to configure the SSL
connection options, including setting the certificates, you can supply a comm:ssl-abstract-context. Note that ssl will
be used repeatedly.

start-client-remote-debugging-server returns process, which is the result of start-up-server, You can use
server-terminate to stop it.

Notes

To have a connection, the IDE side needs to connect to the client hostname on port number port using
ide-connect-remote-debugging, or code that does similar things.

In normal operation, it is assumed that the IDE side will connect once, and from that point onward this connection will be
used for all remote debugging. If the IDE subsequently opens another connection without first closing the first connection,
then the first connection will "leak" on the client side. It is the responsibility of the IDE to close it in this case.

open-callback allows more complex usage, for example to store the connection somewhere and use it when required by
with-remote-debugging-connection or set-remote-debugging-connection. Note that setup-default is nil by
default when open-callback is non-nil.

It is possible to override the default value of port by configuring the service name lw-remote-debug-client. On a
machine where this service is registered, if port is not given then the registered value is used instead of
default-client-remote-debugging-server-port.

start-client-remote-debugging-server is implemented using the other functions discussed in this section, so you
can can reasonably easily write your own version of it if you need to.

See also

start-up-server
create-client-remote-debugging-connection
set-default-remote-debugging-connection
set-remote-debugging-connection
ide-connect-remote-debugging
3.7 Remote debugging

34 The DBG Package

638

start-ide-remote-debugging-server Function

Summary

IDE side: Start an IDE side remote debugging server, so clients can connect to it.

Package

dbg

Signature

start-ide-remote-debugging-server &key port socket-filter name log-stream announce error connection-callback
ssl ipv6 => server-process

Arguments

port⇓ An integer or string.

socket-filter⇓ A function of one argument or nil.

name⇓ A string.

log-stream⇓ An output stream or nil.

announce⇓ A function of two arguments or a stream, t or nil.

error⇓ A boolean (default t).

connection-callback⇓ A function of two arguments or nil.

ssl⇓ A SSL client context specification.

ipv6⇓ :any (the default), t, or nil.

Values

server-process⇓ A process handling incoming connections.

Description

The function start-ide-remote-debugging-server starts a TCP server (by calling start-up-server) that creates
IDE remote debugging connections.

port must be an integer port number or string service name. It is supplied as the service argument to start-up-server.
port defaults to the value of *default-ide-remote-debugging-server-port*, which is 21101 initially.

name is used in the name of the created connections.

If log-stream is non-nil, LispWorks writes error messages to it relating to failures during communication on a connection.
These failures should not happen normally, but may happen if something writes to the remote debugging connection not
through the remote debugging interface. log-stream defaults to nil.

If socket-filter is non-nil, it is called with the connected socket before creating the connection, and if it returns nil then the
socket is closed and no connection is created. socket-filter defaults to nil.

The server creates IDE remote debugging connections by calling create-ide-remote-debugging-connection with the

34 The DBG Package

639

connected socket, a name (constructed from name, the peer address of the socket and a counter) and log-stream.

announce, error and ipv6 have the same meaning as in start-up-server.

If connection-callback is non-nil, then after start-ide-remote-debugging-server has tried to open a connection (that
is it got a TCP socket and it passed socket-filter if any), it calls connection-callback with two arguments. If it succeeded to
open the remote debugging connection, the first argument is the new connection and the second is nil. If it failed, the first
argument is nil and the second one is the condition.

If ssl is non-nil, then the connection is made using SSL. This is done by passing ssl as the ssl-ctx argument to
create-ide-remote-debugging-connection when creating each connection. To be able to configure the SSL
connection options, including setting the certificates, you can supply a comm:ssl-abstract-context. Note that ssl will
be used repeatedly.

start-ide-remote-debugging-server returns server-process, which is the first result of start-up-server. You can
terminate the server by calling server-terminate with server-process.

Notes

The client would normally open a connection using configure-remote-debugging-spec with host specifying the
machine on which start-ide-remote-debugging-server has been called with the same port as port (which defaults to
the value of *default-ide-remote-debugging-server-port* for both functions).

It is possible to override the default value of port by configuring the service name lw-remote-debug-ide. On a machine
where this service is registered, if port is not given then the registered value is used instead of
default-ide-remote-debugging-server-port.

The underlying TCP stream functionality must be working between the machines, that is they must be able to connect by
TCP.

When using the Remote Debugger, Remote Listener or Inspector, you do not need to access the connection directly because
the tools do it for you. In addition, create-ide-remote-debugging-connection remembers the connection, so all the
IDE side functions that look for connections will find it.

socket-filter can call get-socket-peer-address to check who is connecting. It can also be used just to log that a
connection has been made, but must return t in this case.

You could easily implement your own version of start-ide-remote-debugging-server if needed using
start-up-server and create-ide-remote-debugging-connection.

See also

start-up-server
create-ide-remote-debugging-connection
3.7 Remote debugging

start-remote-listener Function

Summary

Client side: Start a Remote Listener on the IDE side.

Package

dbg

34 The DBG Package

640

Signature

start-remote-listener &key new-process-p message connection close-on-exit => started-p

Arguments

new-process-p⇓ A boolean, default t.

message⇓ A string or nil.

connection⇓ A client-remote-debugging or nil.

close-on-exit⇓ A boolean.

Values

started-p A boolean.

Description

The function start-remote-listener starts a Remote Listener tool on the IDE side, such that reading and evaluation is
done on the client side where the start-remote-listener was called.

start-remote-listener first tells the IDE to start the Listener, and then runs a read-eval-print loop that communicates
with the IDE's Listener over the connection.

If new-process-p is non-nil (the default), then a new Lisp process is created to start the Listener and run the read-eval-print
loop. This process runs until the read-eval-print loop exits. If new-process-p is nil, then the read-eval-print loop runs in the
current process and start-remote-listener does not return until the read-eval-print loop exits.

message, when is not nil, is printed into the Listener tool before the first prompt appears.

connection (default nil) controls which connection to use. If connection is non-nil and is connected then it is used.
Otherwise start-remote-listener uses the same mechanism as the debugger to find the connection, which by default
means re-using an existing connection if one exists, or opening a new one (under the control of the remote debugging spec).
In typical usage, this be set up by either configure-remote-debugging-spec or
start-client-remote-debugging-server. See 3.7.1 Simple usage and 3.7.5 Advanced usage - multiple
connections for details.

close-on-exit is used only when connection is non-nil. When close-on-exit is non-nil, the connection is closed when the read-
eval-print loop exits. Otherwise (the default), the connection remains open for later re-use.

If the Listener tool on the IDE side is closed, then the read-eval-print loop exits. Normally this is the only way that the loop
exits, but you could also exit it by throwing to a surrounding catch (when new-process-p is nil) or by terminating the process
(by current-process-kill).

start-remote-listener returns nil if connection is not a valid connection (either nil or already closed) and it cannot
find the connection to use. Otherwise, if new-process-p is non-nil (the default) it returns t immediately, and if new-process-p
is nil it returns nil only when the Listener is closed.

Notes

Using message is an easy way for the client to write some text to the IDE even when you do not need a Listener.

See also

set-remote-debugging-connection
configure-remote-debugging-spec

34 The DBG Package

641

3.7 Remote debugging

terminal-debugger-block-multiprocessing Variable

Summary

Controls blocking of multiprocessing in the terminal debugger.

Package

dbg

Initial Value

t

Description

When the debugger is entered on the terminal, multiprocessing is blocked if the value of the variable
terminal-debugger-block-multiprocessing is t. This is the default value.

If you set this variable to nil then other processes, including timers, will continue to run in parallel to the process that
entered the terminal debugger (as they did before the debugger was entered). Beware that this will make it more difficult to
debug multi-process activities.

The other allowed value is :maybe. This means that multiprocessing is blocked in the terminal debugger unless the debugger
was entered from the CAPI environment.

The value of *terminal-debugger-block-multiprocessing* affects the behavior of a REPL started by
start-tty-listener.

Examples

This listener session illustrates the effect of *terminal-debugger-block-multiprocessing*.

Firstly we see the default behavior whereby a call to print in another process is blocked by the debugger.

CL-USER 1 > dbg:*terminal-debugger-block-multiprocessing*
T

CL-USER 2 > unbound

Error: The variable UNBOUND is unbound.
 1 (continue) Try evaluating UNBOUND again.
 2 Specify a value to use this time instead of evaluating UNBOUND.
 3 Specify a value to set UNBOUND to.
 4 (abort) Return to level 0.
 5 Return to top-level loop.
 6 Return from multiprocessing.

Type :b for backtrace, :c <option number> to proceed, or :? for other options

CL-USER 3 : 1 > (setq *timer* (mp:make-timer 'print 10))
Warning: Setting unbound variable *TIMER*
#<Time Event : PRINT>

CL-USER 4 : 1 > (mp:schedule-timer-relative *timer* 1)
#<Time Event : PRINT>

34 The DBG Package

642

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_pr.htm

CL-USER 5 : 1 > :a

On leaving the debugger the output 10 from the call to print appears. Then we set
terminal-debugger-block-multiprocessing to nil and repeat the commands:

CL-USER 6 >
10
(setf dbg:*terminal-debugger-block-multiprocessing* nil)
 NIL

CL-USER 7 > unbound

Error: The variable UNBOUND is unbound.
 1 (continue) Try evaluating UNBOUND again.
 2 Specify a value to use this time instead of evaluating UNBOUND.
 3 Specify a value to set UNBOUND to.
 4 (abort) Return to level 0.
 5 Return to top-level loop.
 6 Return from multiprocessing.

Type :b for backtrace, :c <option number> to proceed, or :? for other options

CL-USER 8 : 1 > (setq *timer* (mp:make-timer 'print 10))
#<Time Event : PRINT>

CL-USER 9 : 1 > (mp:schedule-timer-relative *timer* 1)
#<Time Event : PRINT>

CL-USER 10 : 1 >
10

Notice above that the output 10 from the call to print appears after 1 second, in the debugger. Multiprocessing was not
blocked.

See also

start-tty-listener

with-debugger-wrapper Macro

Summary

Executes code with a "debugger wrapper" which is called only if the debugger is invoked during the execution.

Package

dbg

Signature

with-debugger-wrapper wrapper &body body => results

Arguments

wrapper⇓ A function designator.

34 The DBG Package

643

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_pr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_pr.htm

body⇓ Forms.

Values

results Results of body.

Description

The macro with-debugger-wrapper executes forms in body with the function wrapper bound as a "debugger wrapper".
This debugger wrapper takes effect only if the code in body tries to invoke the debugger (by a call to invoke-debugger),
typically indirectly as a result of an error. Instead of entering the debugger, the debugger wrapper is called with two
arguments: a function to call to enter the debugger, and the condition. The wrapper can do whatever is needed. If it wants to
enter the debugger, it does it by calling its first argument with the second argument:

(funcall function condition)

Notes

The debugger wrappers are called only if the function bound to *debugger-hook* returns.

Uses of with-debugger-wrapper can be nested, in which case the innermost debugger wrapper is called first and calling
its first argument will invoke the next wrapper.

Examples

Suppose that you run many processes in parallel with the same code. If the code is broken then every process will get an
error. This example shows how a debugger wrapper can be used to keep a lock around entry to the debugger, so that the
processes enter the debugger one by one. It contains firstly the "application code", then the debugger wrapper, and lastly
forms which execute the application with or without the debugger wrapper.

;;
;;;;;;;;;; application code ;;;;;;;;;;;;
;;
(in-package "CL-USER")

(defglobal-parameter *a* 0)

(defun foo (index cons)
 (sys:atomic-push (* index *a*) (cdr cons)))

;; This gets the process function so we can pass
;; the wrapper function instead.
(defun my-run-processes (do-error &optional
 (process-function 'foo))
 (setq *a* (if do-error :do-error 7))
 (let ((cons (cons nil nil)))
 (dotimes (x 10)
 (mp:process-run-function
 (format nil "My test process ~d" x)
 ()
 process-function
 x cons))
 (sleep 0.2)
 (print (cdr cons))))

;;
;;;;;;;;;; debugger wrapper ;;;;;;;;;;;;
;;
(defglobal-parameter *my-debugger-lock*

34 The DBG Package

644

http://www.lispworks.com/documentation/HyperSpec/Body/f_invoke.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debugg.htm

 (mp:make-lock :name "Debugger Lock"))

(defun my-debugger-wrapper (func condition)
 (mp:with-lock (*my-debugger-lock*)
 (funcall func condition)))

(defun foo-wrapper (index cons)
 (dbg:with-debugger-wrapper 'my-debugger-wrapper
 (foo index cons)))

;; Running the application without the wrapper fills
;; your screen with notifiers
(my-run-processes t)

;; Running with the wrapper raises the notifiers one by
;; one. You can use the Process Browser kill them all.
(my-run-processes t 'foo-wrapper)

See also

3.5 Debugger troubleshooting

with-remote-debugging-connection Macro

Summary

Client side (advanced): Dynamically bind the remote debugging connection to use on the client side.

Package

dbg

Signature

with-remote-debugging-connection (connection) &body body => body-values

Arguments

connection⇓ nil, t or a client-remote-debugging.

body⇓ Lisp forms.

Values

body-values The values returned by body.

Description

The macro with-remote-debugging-connection dynamically binds an enabling switch controlling which remote
debugging connection will be used by the remote debugging interface (entering the debugger, start-remote-listener,
remote-inspect) on the client side while evaluating the forms in body as an implicit progn.

See set-remote-debugging-connection for details of how connection is interpreted.

Inside the dynamic extent of body, calls to set-remote-debugging-connection affect the switch only until the end of
the with-remote-debugging-connection form.

34 The DBG Package

645

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

Notes

In typical usage, you will not need to use with-remote-debugging-connection.

See also

3.7 Remote debugging
set-remote-debugging-connection

with-remote-debugging-spec Macro

Summary

Client side: Tell LispWorks how to open a connection for remote debugging on the client side within a dynamic extent.

Package

dbg

Signature

with-remote-debugging-spec (host &key port log-stream failure-function timeout open-callback ssl ipv6) &body
body => body-values

Arguments

host⇓ A string specifying the IDE side hostname, or nil.

port⇓ An integer.

log-stream⇓ An output stream or nil.

failure-function⇓ nil or a function of two arguments: Host and Port.

timeout⇓ A non-negative real or nil.

open-callback⇓ nil or a function that takes one argument, a newly opened connection.

ssl⇓ A SSL client context specification.

ipv6⇓ :any (the default), t, or nil.

body⇓ Lisp forms.

Values

body-values The values returned by body.

Description

The macro with-remote-debugging-spec establishes a dynamic extent of connection specification, calls
configure-remote-debugging-spec passing it host, any supplied keywords (port, log-stream, failure-function, timeout,
open-callback, ssl, ipv6) and also :setup-default nil :enable nil. body is evaluated as an implicit progn in this
dynamic extent. On exiting with-remote-debugging-spec, the connection specification reverts to what it was on entry.

The effect is to have a configured connection specification in the dynamic extent of body that is different from the global one,
without having any effect on the global settings.

34 The DBG Package

646

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

with-remote-debugging-spec returns the values returned by body.

See configure-remote-debugging-spec for the meaning of host and the other keywords.

See also

3.7 Remote debugging
configure-remote-debugging-spec

34 The DBG Package

647

35 The DSPEC Package

This chapter describes symbols available in the DSPEC package.

The dspec system is discussed in detail in 7 Dspecs: Tools for Handling Definitions.

active-finders Variable

Summary

Controls how source finding operates.

Package

dspec

Initial Value

(:internal)

Description

The variable *active-finders* controls how the functions find-name-locations and find-dspec-locations

operate. This in turn controls source the finding commands in the LispWorks IDE. You can switch between different sources
of location information by setting this variable.

The legal values for the elements of *active-finders* are:

:internal The internal database of definitions performed in this image.

:tags Prompt for a tags file, when first used.

pathname Either a tags file or a tags database.

A tags database is a fasl file generated by save-tags-database.

The order of this list determines the order that the results from the finders are combined in — you would usually want
:internal to be the first item on this list, as it contains the up-to-date information about the state of the image. More than
one pathname is allowed.

Notes

The value of *active-finders* is affected by editor commands such as Rotate Active Finders and
Visit Tags File.

See also

discard-source-info
find-dspec-locations
find-name-locations

648

save-tags-database

at-location Macro

Summary

Tells the dspec system of the source location.

Package

dspec

Signature

at-location (location) &body body => result

Arguments

location⇓ A pathname or a keyword.

body⇓ Forms, including defining forms.

Values

result The result of body.

Description

The macro at-location informs the dspec system that the source for definitions done during the execution of body are at
the location location.

location is usually a pathname, for definitions occurring in a file or editor buffer with that pathname.

Other locations are reserved for internal use. These are:

An editor buffer Defined in an editor buffer with no pathname.

:listener Interactively defined.

:unknown Defined without dspec information being recorded.

:implicit An aggregate defined by the existence of a part.

(:inside dspec loc) A subform of dspec at location loc.

canonicalize-dspec Function

Summary

Returns the canonical form for a dspec.

35 The DSPEC Package

649

Package

dspec

Signature

canonicalize-dspec dspec => canonical-dspec

Arguments

dspec⇓ A dspec.

Values

canonical-dspec A canonical dspec.

Description

The function canonicalize-dspec checks that dspec is syntactically correct and returns its canonical form if dspec is
valid. Otherwise canonicalize-dspec returns nil.

canonicalize-dspec expands dspec aliases.

Examples

CL-USER 12 > (dspec:canonicalize-dspec 'foo)
(FUNCTION FOO)

CL-USER 13 > (dspec:canonicalize-dspec '(defmethod bar (list t)))
(METHOD BAR (LIST T))

See also

define-dspec-alias

def Macro

Summary

Informs the system of a name for a definition.

Package

dspec

Signature

def dspec &body body => result

Arguments

dspec⇓ A dspec.

body⇓ Lisp forms, evaluated as an implicit progn.

35 The DSPEC Package

650

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

Values

result The result of body.

Description

The macro def informs the system that any definitions within body should be recorded as being within the dspec dspec. This
means that when something attempts to locate such a definition, it should look for a definition named dspec.

Use def to wrap a group of definitions so that source location for one of the group causes the LispWorks Editor to look for
the dspec in the def instead. Typically you will also need a define-form-parser definition for the macro that expands
into the def.

dspec can be non-canonical.

You can also use def to provide a dspec for a definition that has its own class that has been defined with
define-dspec-class. In this case, you arrange to call record-definition with the same dspec as in the example
below.

It is also possible to mix these cases, recording a dspec and also grouping inner definitions. For example defstruct does
this, recording itself and also grouping definitions such as the constructor function.

In all cases, to make source location work in the LispWorks editor you typically also need a define-form-parser
definition for the macro that expands into the def.

Examples

(defmacro define-wibble (x y)
 `(dspec:def (define-wibble ,x)
 (set-wibble-definition ',x ',y (dspec:location))))

(defun set-wibble-definition (x y loc)
 (when (record-definition `(define-wibble ,x) loc)
 ;; defining code here
))

See also

location

define-dspec-alias Macro

Summary

Informs the dspec system that a definer expands into another definer.

Package

dspec

Signature

define-dspec-alias name lambda-list &body body

35 The DSPEC Package

651

http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm

Arguments

name⇓ A symbol naming a definer.

lambda-list⇓ A list representing the parameters of a name dspec.

body⇓ Forms evaluated to yield a dspec.

Description

The macro define-dspec-alias works rather like deftype. Dspecs whose car is name should have parameters that
match lambda-list. They will be canonicalized into the dspec returned by body.

define-dspec-alias is useful when you add a new way of making existing definitions with a new defining form that
expands into a system-provided defining form. The dspec system should consider the new and system-provided definers as
variant forms of the same dspec class. define-dspec-alias is used to convert one of them to the other during
canonicalization by canonicalize-dspec.

Examples

defparameter is pre-defined as an alias for defvar.

See also

canonicalize-dspec

define-dspec-class Macro

Summary

Defines a dspec class.

Package

dspec

Signature

define-dspec-class name superspace documentation &key pretty-name undefiner canonicalize prettify definedp object-
dspec defined-parts aggregate-class

Arguments

name⇓ A symbol naming the dspec class.

superspace⇓ A symbol naming the superspace.

documentation⇓ A string describing the dspec class.

undefiner⇓ A function that generates the undefining form for the class.

canonicalize⇓ A function to canonicalize a dspec if it belongs to the class.

prettify⇓ A function to return a prettier form of a dspec of the class.

definedp⇓ A function to decide if a dspec of the class currently has a definition.

35 The DSPEC Package

652

http://www.lispworks.com/documentation/HyperSpec/Body/m_deftp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm

object-dspec⇓ A function to return the dspec from an object if it was defined by the class.

defined-parts⇓ A function to return all the currently defined parts in the class for a given a primary-name.

aggregate-class⇓ The aggregate dspec class for a part dspec.

Description

The macro define-dspec-class defines a dspec class, providing handlers for definitions in that dspec class.

define-dspec-class defines name as a dspec class, inheriting from the dspec class superspace. superspace should be
nil to define a new top-level dspec class.

documentation should be a string documenting the dspec class. For example "My Objects".

After evaluating a define-dspec-class form, name can be used by defining forms to record locations of definitions of
that dspec class name by calling record-definition.

All of the remaining arguments described below can be omitted if not needed. The most important arguments for the
LispWorks IDE are definedp and undefiner.

If undefiner is supplied, its value must be a function of one argument. When LispWorks wants to remove a definition, it will
call the function with a canonical dspec of class name. undefiner should return a form that removes the current definition of
that dspec. For example, the undefining form for package dspecs might be delete-package. If undefiner is omitted, then
definitions of this class cannot be undefined.

If canonicalize is supplied, its value must be a function of one argument. The function will be called by
canonicalize-dspec for a dspec of the given class. The value returned by the canonicalize function must be a fully
canonical dspec of the given class. A typical use for the canonicalize function would be to remove extra options from the
dspec which are not required to make the dspec unique. The canonicalize function should return nil for malformed dspecs
and should take care not to signal an error. The default canonicalize function returns the dspec if it has the form:

(name symbol)

If prettify is supplied, its value must be a function of one argument. When LispWorks wants to print a dspec, for example in
an error message, it will call the prettify function for the class of the dspec. The argument will be the canonical dspec and the
function should return a dspec which is considered "prettier" for a user to see. The default prettify function returns the dspec
unchanged.

If definedp is supplied, its value must be function of one argument. When LispWorks wants to discover if a given dspec is
defined, it calls the function with the dspec-primary-name of the dspec. A call to definedp should return true if the
primary name is defined in this dspec class and nil otherwise. The default definedp function always returns nil.

If object-dspec is supplied, its value must be a function of one argument. When LispWorks wants to find the dspec that
created a given object (for example a package object created by a defpackage form), it calls every dspec class's object-
dspec function. object-dspec should return a dspec for the object if that object was defined by the dspec class or nil
otherwise. For example, object-dspec for package dspecs might be:

#'(lambda (obj)
 (and (packagep obj)
 `(package ,(package-name obj))))

object-dspec is used by the menu commandFind Source in the LispWorks IDE Inspector tool to find where the current object
was defined.

If defined-parts is supplied, its value must be a function of one argument. When LispWorks wants to find all the definitions
that are parts of a given aggregate dspec class, it finds all the dspec classes that aggregate with the given class and calls their
defined-parts functions with the dspec-primary-name. defined-parts should return a list of dspecs which are defined parts

35 The DSPEC Package

653

http://www.lispworks.com/documentation/HyperSpec/Body/f_del_pk.htm

of the primary name in the class name. If defined-parts is supplied, aggregate-class must also be supplied.

If aggregate-class is supplied and non-nil, its value must be a symbol naming a dspec class that is the aggregate class of the
parts defined by name dspecs. For example, the aggregate class of method is defgeneric because methods are the defined
parts of a particular generic function. If aggregate-class is supplied, then defined-parts must also be supplied. If aggregate-
class is nil then name is not a part class.

To make cl:documentation work for your dspec class, add a suitable method as described for documentation.

Examples

See 7.3.1 Dspec classes.

See also

canonicalize-dspec
def
dspec-primary-name
record-definition

define-form-parser Macro

Summary

Establishes a parser for top level forms with the given definer.

Package

dspec

Signature

define-form-parser definer-and-options &optional parameters &body body => parser

definer-and-options ::= definer | (definer {option}*)

option ::= (:parser parser-function) | (:alias alias) | (:anonymous anonymous)

parameters ::= nil | ({param}* [&rest param-getter])

Arguments

body⇓ The body of a parser function.

definer⇓ A symbol naming a definer of functions, macros, variables and so on.

parser-function⇓ A symbol.

alias⇓ A symbol naming a definer of functions, macros, variables and so on.

anonymous⇓ A boolean.

param⇓ A symbol.

param-getter⇓ A symbol.

35 The DSPEC Package

654

http://www.lispworks.com/documentation/HyperSpec/Body/t_method.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defgen.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

Values

parser A form parser function.

Description

The macro define-form-parser defines a form parser function for forms beginning with definer.

When a symbol definer has an associated form parser function, this function is used by the source location commands such as
Expression > Find Source in the LispWorks IDE. Having identified the file where the definition was recorded, LispWorks
parses the top level forms in the file looking for the one which matches the definition spec. When found, this match is
displayed.

If parameters and body are omitted, then the form parser is expected to be defined by a different define-form-parser
form. In this case, you can either supply the :alias option, which makes the form parser for definer be the same as the form
parser for alias, or you can supply the :parser option to name another form parser function.

If parameters and body are supplied, then define-form-parser defines a global function named parser-function that
executes the forms in body and is expected to return the dspec of the form being parsed. If the :parser option is omitted
then parser-function defaults to a symbol in the current package whose symbol name is the symbol name of definer with
"-FORM-PARSER" appended. While executing body, definer is bound to the car of the actual form being parsed. In simple
cases, this is just definer itself, but if definer is used in the :alias option of another form parser then definer will be bound
to the car of that form instead. In addition, each param are bound to subsequent subforms of the form being parsed. If
&rest param-getter is supplied, then it is bound to a function of no arguments that returns two values: the next subform of
the form being parsed if there is one and a boolean to indicate if a subform was found.

If definer is the name of a defining macro (for example defvar), then body is expected to return a dspec for that macro or
nil if this is not possible.

Alternatively, definer can be a macro that acts like an implicit progn. Such macros (for example, eval-when) are used in a
source file to wrap other definitions in the file, but do not have a name themselves. For these macros, body should return a
list (progn n) where n is the index of the first subform that contains a definition. For example for eval-when, the form
parser would return (progn 2).

If anonymous is non-nil then definer is not associated with the form parser. This is useful in conjunction with parameters and
body for defining generic form parsers that can be used in other define-form-parser forms.

LispWorks contains pre-defined form parser functions for the Common Lisp definers defun, defmethod, defgeneric,
defvar, defparameter, defconstant, defstruct, defclass, defmacro and deftype and for LispWorks definers
such as fli:define-foreign-type and define-form-parser itself.

Examples

Define a parser for def-foo forms which have a single name as the second element in the form:

(dspec:define-form-parser def-foo (name)
 `(,def-foo ,name))

Define a parser for def-other-foo forms which are like def-foo forms:

(dspec:define-form-parser
 (def-other-foo (:parser def-foo-form-parser)))

Define a parser for def-bar forms whose name is made from the second element of the form and any subsequent keywords:

(dspec:define-form-parser def-bar (name &rest details)
 `(,def-bar (,name

35 The DSPEC Package

655

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_eval_w.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_eval_w.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defgen.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcon.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmac.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_deftp.htm

 ,@(loop for detail = (funcall details)
 while (keywordp detail)
 collect detail))))

Define a parser for forms which have another name as the second element in the form:

(dspec:define-form-parser (two-names
 (:anonymous t)) (name1 name2)
 `(,two-names ,name1 ,name2))

Define a new way to define CLOS methods, and tell the dspec system to treat them the same. Note the use of
define-dspec-alias to inform the dspec system that my-defmethod is another way of naming defmethod dspecs:

(defmacro my-defmethod (name args &body body)
 `(defmethod ,name ,args
 ,@body))

(dspec:define-dspec-alias my-defmethod
 (name &rest args)
 `(defmethod ,name ,@args))

(my-defmethod foo ((x number))
 42)

(dspec:define-form-parser
 (my-defmethod
 (:parser
 #.(dspec:get-form-parser 'defmethod))))

A simpler way to write the last form is:

(dspec:define-form-parser
 (my-defmethod
 (:alias defmethod)))

See also

get-form-parser
parse-form-dspec

discard-source-info Function

Summary

Clears the internal dspec database.

Package

dspec

Signature

discard-source-info => nil

35 The DSPEC Package

656

http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm

Description

The function discard-source-info removes all source location information from the internal dspec database.

Examples

To build my-image which does not contain source locations for the definitions loaded, but retaining a tags database of those
definitions:

(in-package "CL-USER")
(load-all-patches)
(load "my-code")
(dspec:save-tags-database
 (compile-file-pathname #P"my-tags-database"))
(dspec:discard-source-info)
(save-image "my-image")

See also

save-tags-database

dspec-class Function

Summary

Returns the dspec class of a dspec.

Package

dspec

Signature

dspec-class dspec => class

Arguments

dspec⇓ A dspec.

Values

class A dspec class name.

Description

The function dspec-class returns the dspec class name for dspec.

Examples

CL-USER 14 > dspec:dspec-class 'foo
FUNCTION

CL-USER 15 > dspec:dspec-class '(defmacro foo)
DEFMACRO

35 The DSPEC Package

657

CL-USER 16 > dspec:dspec-class '(defmethod foo)
DEFMETHOD

See also

dspec-name

dspec-classes Variable

Summary

Lists all the dspec classes.

Package

dspec

Initial Value

All of the built-in dspec classes.

Description

The variable *dspec-classes* contains a list of the names of all the dspec classes.

dspec-defined-p Function

Summary

The predicate for whether a dspec has a definition.

Package

dspec

Signature

dspec-defined-p dspec => definedp

Arguments

dspec⇓ A dspec.

Values

definedp The canonical form of dspec if dspec is defined, or nil otherwise.

Description

The function dspec-defined-p determines whether the dspec dspec has a definition. If so, it returns the canonical form of

35 The DSPEC Package

658

dspec.

If dspec has no definitions, dspec-defined-p returns nil.

Examples

CL-USER 23 > (dspec:dspec-defined-p '(function list))
(DEFUN LIST)

dspec-definition-locations Function

Summary

Returns the locations of the known definitions.

Package

dspec

Signature

dspec-definition-locations dspec => locations

Arguments

dspec⇓ A dspec.

Values

locations⇓ A list of pairs (recorded-dspec location).

Description

The function dspec-definition-locations returns the locations of the definitions recorded for the dspec dspec.

For each known definition recorded-dspec names the definition that defined dspec in location, and location is a pathname or
keyword as described in at-location.

Note that non-file locations, such as :unknown, can occur in the list. The locations in locations are all basic locations: that
is, there are no (:inside ...) locations.

If dspec is a local dspec, the parent function is located.

Examples

CL-USER 6 > (dspec:dspec-definition-locations
 '(defun foo-bar))
(((DEFSTRUCT FOO) #P"C:/temp/hack.lisp"))

See also

name-definition-locations

35 The DSPEC Package

659

dspec-equal Function

Summary

Tests two dspecs for equality as dspecs.

Package

dspec

Signature

dspec-equal dspec1 dspec2 => result

Arguments

dspec1⇓, dspec2⇓ Dspecs.

Values

result A boolean.

Description

The function dspec-equal compares dspec1 and dspec2 for equality as dspecs.

Both arguments are canonicalized before the comparison.

Dspecs in different subclasses of the same namespace are dspec-equal if their names match.

Unknown dspecs are compared simply by equal.

Examples

CL-USER 44 > (dspec:dspec-equal '(deftype foo)
 '(defclass foo))
T

dspec-name Function

Summary

Extracts the name from a canonical dspec.

Package

dspec

Signature

dspec-name dspec => name

35 The DSPEC Package

660

http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm

Arguments

dspec⇓ A canonical dspec.

Values

name A dspec name.

Description

The function dspec-name extracts the name from the canonical dspec dspec.

Note that for part classes this is a list starting with the primary name.

If dspec is not canonicalized, dspec-name signals an error.

See also

dspec-class

dspec-primary-name Function

Summary

Extracts the primary name from a canonical dspec.

Package

dspec

Signature

dspec-primary-name dspec => name

Arguments

dspec⇓ A canonical dspec.

Values

name A dspec name.

Description

The function dspec-primary-name extracts the primary name from the canonical dspec dspec.

Note that for part classes this is the name of the aggregate definition, for example for methods it returns the name of the
generic function.

See also

dspec-class

35 The DSPEC Package

661

dspec-progenitor Function

Summary

Returns the ultimate parent of a subfunction dspec.

Package

dspec

Signature

dspec-progenitor dspec => result

Arguments

dspec⇓ A dspec.

Values

result⇓ A dspec.

Description

The function dspec-progenitor returns a dspec result which is the ultimate parent of a subfunction dspec argument
dspec.

If the argument dspec is not a local dspec, it is simply returned.

Note that result is not necessarily a canonical dspec.

Examples

(dspec-progenitor
 '(subfunction 1 (subfunction (flet a) (defun foo))))
=>
(defun foo)

See also

local-dspec-p

dspec-subclass-p Function

Summary

Tests whether one dspec class is a subclass of another.

35 The DSPEC Package

662

Package

dspec

Signature

dspec-subclass-p class1 class2 => result

Arguments

class1⇓, class2⇓ Symbols naming dspec classes.

Values

result A boolean.

Description

The function dspec-subclass-p determines whether the dspec class denoted by class1 is a subclass of that denoted by
class2.

Examples

CL-USER 55 > (dspec:dspec-subclass-p 'defmacro 'type)
NIL

CL-USER 56 > (dspec:dspec-subclass-p 'defmacro
 'function)
T

dspec-undefiner Function

Summary

Returns an undefining expression for a dspec.

Package

dspec

Signature

dspec-undefiner dspec => form

Arguments

dspec⇓ A dspec.

Values

form A Lisp form.

35 The DSPEC Package

663

Description

The function dspec-undefiner returns a form which would undefine dspec, whether or not dspec is currently defined.

If no such form can be constructed, nil is returned.

Examples

CL-USER 66 > (dspec:dspec-undefiner '(defun foo))
(PROGN (FMAKUNBOUND (QUOTE FOO))
 (SETF (DOCUMENTATION (QUOTE FOO) (QUOTE FUNCTION)) NIL))

find-dspec-locations Function

Summary

Returns the locations of the definitions of a dspec.

Package

dspec

Signature

find-dspec-locations dspec => locations

Arguments

dspec⇓ A dspec.

Values

locations⇓ A list of pairs (recorded-dspec location).

Description

The function find-dspec-locations returns the locations of the relevant definitions for the dspec dspec.

For each known definition recorded-dspec names the definition that defined dspec in location, and location is a pathname or
keyword as described in at-location.

If dspec is a local dspec, the parent function is located.

The location information is collected from all finders on *active-finders*, that is, the relevant definitions are those
known to at least one of these finders.

If two or more finders return the same pair (recorded-dspec location), as compared by dspec-equal and location equality,
then only the first occurrence of the pair (in the order of *active-finders*) appears in locations.

See also

active-finders
dspec-definition-locations
dspec-equal

35 The DSPEC Package

664

find-name-locations Function

Summary

Returns the locations of the definitions of a name.

Package

dspec

Signature

find-name-locations classes name => locations

Arguments

classes⇓ A list of dspec class names.

name⇓ A name.

Values

locations⇓ A list of pairs (recorded-dspec location).

Description

The function find-name-locations returns the locations of the relevant definitions for name in the classes listed in
classes.

For each known definition recorded-dspec names the definition that defined name in location, and location is a pathname or
keyword as described in at-location.

The location information is collected from all finders on *active-finders*, that is, the relevant definitions are those
known to at least one of these finders.

If two or more finders return the same pair (recorded-dspec location), as compared by dspec-equal and location equality,
then only the first occurrence of the pair (in the order of *active-finders*) appears in locations.

See also

active-finders
name-definition-locations
dspec-equal

get-form-parser Function

Summary

Returns the form parser associated with a definer.

35 The DSPEC Package

665

Package

dspec

Signature

get-form-parser definer => parser

Arguments

definer⇓ A symbol naming a definer.

Values

parser A form parser function, or nil.

Description

The function get-form-parser returns a form parser function if there is one associated with definer.

This is the case for predefined definers and for those for which you have established a form parser using
define-form-parser.

If there is no associated form parser, nil is returned.

Examples

CL-USER 1 > (dspec:get-form-parser 'defun)
DSPEC:NAME-ONLY-FORM-PARSER

See also

define-form-parser
parse-form-dspec

local-dspec-p Function

Summary

The predicate for local dspecs.

Package

dspec

Signature

local-dspec-p dspec => localp

Arguments

dspec⇓ A dspec.

35 The DSPEC Package

666

Values

localp A boolean.

Description

The function local-dspec-p determines whether the dspec dspec is a local dspec.

Local dspecs name local definitions, such as local functions.

Currently a local dspec is a list whose car is subfunction.

See also

dspec-progenitor

location Macro

Summary

Returns the source location.

Package

dspec

Signature

location => location

Values

location A pathname or a keyword.

Description

The macro location returns a location suitable for passing to record-definition. This is usually done via a separate
defining function. You will need to use location only if you create your own ways of making definitions (and not if your
definers call only system-provided definers).

Examples

(defmacro define-wibble (x y)
 `(dspec:def (define-wibble ,x)
 (set-wibble-definition ',x ',y (dspec:location))))

(defun set-wibble-definition (x y loc)
 (when (record-definition `(define-wibble ,x) loc)
 ;; defining code here
))

See also

at-location

35 The DSPEC Package

667

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

def
record-definition

name-defined-dspecs Function

Summary

Returns defined dspecs matching a name.

Package

dspec

Signature

name-defined-dspecs classes name => dspecs

Arguments

classes⇓ A list of dspec class names.

name⇓ A name.

Values

dspecs⇓ A list of canonical dspecs.

Description

The function name-defined-dspecs looks in each of the dspec classes classes for definitions of name.

For each definition found (as if by dspec-defined-p), the result dspecs contains the canonical dspec.

See also

dspec-defined-p

name-definition-locations Function

Summary

Returns the locations of the known definitions.

Package

dspec

Signature

name-definition-locations classes name => locations

35 The DSPEC Package

668

Arguments

classes⇓ A list of dspec class names.

name⇓ A name.

Values

locations A list of pairs (recorded-dspec location).

Description

The function name-definition-locations returns the locations of the definitions recorded for the name name in any of
the dspec classes in classes.

For each known definition recorded-dspec names the definition that defined name in location, and location is a pathname or
keyword as described in at-location.

Notes

name-definition-locations does not use *active-finders*.

Examples

CL-USER 7 > (dspec:name-definition-locations
 '(function) 'foo-bar)
(((DEFSTRUCT FOO) #P"C:/temp/hack.lisp"))

See also

dspec-definition-locations

name-only-form-parser Function

Summary

A pre-defined form parser.

Package

dspec

Signature

name-only-form-parser definer-name getter => dspec

Arguments

definer-name⇓ A top level defining form.

getter⇓ The subform getter function.

35 The DSPEC Package

669

Values

dspec A dspec.

Description

The function name-only-form-parser is a predefined form parser for use with define-form-parser. The parser
consumes one subform by calling getter and returns it. definer-name is ignored.

name-only-form-parser can be used for function definitions where the function name is an abbreviation for the full
dspec. It is the predefined parser for defun, defmacro and defgeneric forms.

You can define it to be the parser for your defining forms. using define-form-parser.

Examples

(defmacro my-definer (name &body body)
 `(defun ,name (x)
 ,@body))

(dspec:define-form-parser
 (my-definer (:parser
 dspec:name-only-form-parser)))

See also

define-form-parser

object-dspec Function

Summary

Returns the dspec of an object.

Package

dspec

Signature

object-dspec object => dspec

Arguments

object⇓ Any object.

Values

dspec⇓ A dspec or nil.

Description

The function object-dspec returns a dspec for object if there is one, or nil otherwise. When the result dspec is not nil, it
is a dspec as described in 7.2 Forms of dspecs.

35 The DSPEC Package

670

http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmac.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defgen.htm

An object has a dspec only when it represents the result of some definition. The most useful cases are functions (of any kind)
and methods, because their dspecs can be used to trace and advise them. Classes and packages also have dspecs.

Dspecs can also be useful for finding where the definition of the object originated, either by using dspec functions like
find-dspec-locations, which returns the location, or using the editor command Find Source For Dspec, which
edits them. The Common Lisp function ed also recognizes dspecs and goes to the source.

If object does not have a dspec then object-dspec returns nil.

See also

trace
defadvice
find-dspec-locations

parse-form-dspec Function

Summary

Parses the dspec from a defining form.

Package

dspec

Signature

parse-form-dspec form => result

Arguments

form⇓ A form.

Values

result A dspec or nil.

Description

The function parse-form-dspec invokes the defined form parser for form and returns the resulting dspec.

Examples

(parse-form-dspec '(def-foo my-foo (arg) (foo-it arg)))
=>
(def-foo my-foo)

See also

define-form-parser
get-form-parser

35 The DSPEC Package

671

http://www.lispworks.com/documentation/HyperSpec/Body/f_ed.htm

record-definition Function

Summary

Checks for existing definitions and records a new definition.

Package

dspec

Signature

record-definition dspec location &key check-redefinition-p => result

Arguments

dspec⇓ A dspec.

location⇓ A pathname or keyword.

check-redefinition-p⇓ A boolean.

Values

result⇓ A generalized boolean.

Description

The function record-definition tells the system that dspec is defined at location.

The system-provided definer macros call the function record-definition with the current location.

location should be a pathname or keyword as returned by location.

When check-redefinition-p is true (the default) and the same name has already been defined in a different location (or more
than once in the same file) then warning or error is signaled depending on the value of *redefinition-action*.
Otherwise, there is no check for existing definitions.

If the definition is made, then result is true. If the definition is not made then result is nil. This can happen if you choose the
"Don't redefine ..." restart at a redefinition error.

Notes

You should not usually call record-definition, since all the system-provided definers call it. However, for new classes
of definition which you add with define-dspec-class, you should call record-definition for dspecs in their new
classes.

Compatibility notes

record-definition was documented in the lispworks package in LispWorks 4.3 and earlier. Although it is currently
still available there, this may change in future releases and you should now reference it via the dspec package.

35 The DSPEC Package

672

See also

define-dspec-class
redefinition-action
location
7.7.2 Recording definitions and redefinition checking

record-source-files Variable

Summary

Controls whether the locations of definitions are recorded.

Package

dspec

Initial Value

t

Description

The variable *record-source-files* controls whether locations of definitions are recorded in the internal tags database.

Compatibility notes

record-source-files was documented in the lispworks package in LispWorks 4.3 and earlier. Although it is
currently still available there, this may change in future releases and you should now reference it via the dspec package.

See also

active-finders

redefinition-action Variable

Summary

Specifies the action on some redefinitions.

Package

dspec

Initial Value

:warn

Description

The variable *redefinition-action* controls messages about redefinitions seen by the source location system.

35 The DSPEC Package

673

If *redefinition-action* is set to :warn then you are warned. If it is set to :quiet or nil, the redefinition is done
quietly. If, however, it is set to :error, then LispWorks signals an error.

These messages are triggered by defining forms provided, but they could also be from any call to record-definition.

Notes

redefinition-action does not affect the behavior of cl:defstruct.

Compatibility notes

redefinition-action is documented in the lispworks package in LispWorks 4.3 and earlier. It is still currently still
available there but this may change in future releases and you should now reference it via the dspec package.

See also

handle-warn-on-redefinition
record-definition

replacement-source-form Macro

Summary

Allows source location to work when a form is copied by a macro.

Package

dspec

Signature

replacement-source-form original-form new-form => new-form-value

Arguments

original-form⇓ A Lisp form.

new-form⇓ A Lisp form.

Values

new-form-value⇓ A Lisp object.

Description

A call to replacement-source-form can be used to allow the debugger and stepper to identify that original-form has been
replaced by new-form in a macro expansion. Forms in a macro expansion that are eq to forms in the arguments to the macro
will be identified automatically, but some macros (such as iterate) need to generate new forms that are equivalent to the
original forms and wrapping them with replacement-source-form allows them to be identified too.

original-form should be a form that occurred in the arguments to the macro and does not otherwise occur in the expansion of
the macro. new-form should be a form that was created by the macro.

The value of new-form, new-form-value, is returned when the replacement-source-form form is evaluated.

35 The DSPEC Package

674

http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://common-lisp.net/project/iterate/

Examples

Without the replacement-source-form, the calls to pprint would be unknown to the debugger and stepper because the
forms do not occur in the original source code:

(defmacro pprint-for-print (&body forms)
 `(progn
 ,@(loop for form in forms
 collect
 (if (and (consp form)
 (eq (car form) 'print))
 `(dspec:replacement-source-form
 ,form
 (pprint ,@(cdr form)))
 form))))

save-tags-database Function

Summary

Saves the current internal dspec database to a given file.

Package

dspec

Signature

save-tags-database pathname => pathname

Arguments

pathname⇓ A filename.

Values

pathname The filename that was supplied.

Description

The function save-tags-database saves the current internal dspec database into the file given by pathname. The file can
then be used in the variable *active-finders*.

See also

active-finders
discard-source-info

35 The DSPEC Package

675

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_pr.htm

single-form-form-parser Function

Summary

A pre-defined form parser.

Package

dspec

Signature

single-form-form-parser definer-name getter => dspec

Arguments

definer-name⇓ A top level defining form.

getter⇓ The subform getter function.

Values

dspec A dspec.

Description

The function single-form-form-parser is a predefined form parser for use with define-form-parser. The parser
consumes one subform by calling getter and returns a dspec made from definer-name and the subform. This can be used in
the common case where a defining form has a name that follows the defining macro and the dspec class is the same as the
defining macro, for example defclass.

single-form-form-parser is the predefined parser for defvar, defparameter, defconstant,
define-symbol-macro, define-compiler-macro, deftype, defsetf, define-setf-expander, defpackage,
defclass, define-condition and define-method-combination top level forms. It is also the parser for various
LispWorks extensions such as defsystem.

You can define it to be the parser for your defining forms. using define-form-parser.

See also

define-form-parser

single-form-with-options-form-parser Function

Summary

A pre-defined form parser.

Package

dspec

35 The DSPEC Package

676

http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcon.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defi_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_define.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_deftp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defset.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defi_3.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defi_5.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defi_4.htm

Signature

single-form-with-options-form-parser definer-name getter => dspec

Arguments

definer-name⇓ A top level defining form.

getter⇓ The subform getter function.

Values

dspec A dspec.

Description

The function single-form-with-options-form-parser is a predefined form parser for use with
define-form-parser. The parser consumes one subform by calling getter and returns a dspec made from definer-name
and either the first element of the subform if it is a cons or the subform itself otherwise. This can be used in the common case
where a defining form has a name with options that follows the defining macro and the dspec class is the same as the
defining macro, for example defstruct.

single-form-with-options-form-parser is the predefined parser for defstruct,
fli:define-foreign-function, fli:define-foreign-variable, fli:define-c-struct,
fli:define-c-union, fli:define-c-enum and fli:define-c-typedef forms.

You can define it to be the parser for your defining forms. using define-form-parser.

See also

define-form-parser

traceable-dspec-p Function

Summary

Tests whether definition can be traced.

Package

dspec

Signature

traceable-dspec-p dspec => result

Arguments

dspec⇓ A dspec.

Values

result A generalized boolean.

35 The DSPEC Package

677

http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm

Description

The function traceable-dspec-p determines whether the dspec dspec denotes a definition that can be traced using the
Common Lisp macro trace.

To be traceable, dspec must be defined, according to dspec-defined-p. The result does not depend on whether dspec is
currently traced.

Examples

CL-USER 68 > (dspec:traceable-dspec-p '(defun open))
OPEN

See also

5 The Trace Facility

tracing-enabled-p Accessor

Summary

Gets and sets the global tracing state..

Package

dspec

Signature

tracing-enabled-p => enabledp

setf (tracing-enabled-p) enabledp => enabledp

Arguments

enabledp⇓ A generalized boolean.

Values

enabledp⇓ A generalized boolean.

Description

The accessor tracing-enabled-p determines whether tracing (by the Common Lisp macro trace) is currently on. This is
independent of whether any functions are currently traced.

The function (setf tracing-enabled-p) switches tracing on or off according to the value of enabledp. This does not
affect the list of functions that are currently traced.

See also

trace
tracing-state

35 The DSPEC Package

678

tracing-state Accessor

Summary

Gets the current trace details.

Package

dspec

Signature

tracing-state &optional dspec => state

setf (tracing-state &optional dspec) state => state

Arguments

dspec⇓ A dspec.

state⇓ A list.

Values

state⇓ A list.

Description

The accessor tracing-state returns a listing describing the current state of the tracing system. It shows the current tracing
state for the dspec dspec, or for all traced definitions if dspec is not supplied.

The result state is a list each element of which is a list whose car is a dspec naming the traced definition and whose cdr is the
additional trace options. Note that tracing-state returns more information than is returned by trace. It is useful for
preserving a complex set of traces.

The function (setf tracing-state) sets the state of the tracing system. It changes the current tracing state for the dspec
dspec, or for all traced definitions if dspec is not supplied.

(setf tracing-state) can be used to switch between different sets of traces. Note however that turning tracing on or off
is better done using tracing-enabled-p.

See also

trace
tracing-enabled-p

35 The DSPEC Package

679

36 The EXTERNAL-FORMAT Package

This chapter describes symbols available in the EXTERNAL-FORMAT package, along with some of the actual external formats
(typically with keyword names).

Use of these symbols are discussed in 26 Internationalization: characters, strings and encodings.

:bmp
:bmp-native
:bmp-reversed External Formats

Summary

Implement reading and writing of 16-bit characters only (excluding supplementary characters).

Package

keyword

Signatures

:bmp &key use-replacement little-endian

:bmp-native &key use-replacement

:bmp-reversed &key use-replacement

Arguments

use-replacement⇓ A generalized boolean.

little-endian⇓ A generalized boolean.

Description

The external format :bmp and its variants implement reading and writing of 16-bit characters only (excluding supplementary
characters).

:bmp-native and :bmp-reversed are the actual implementation formats. They implement reading and writing 16-bit
characters with the native byte order (:bmp-native) or the reversed byte order (:bmp-reversed).

:bmp implements reading and writing 16-bit characters with control over the byte order. This format maps to either
:bmp-native or :bmp-reversed as appropriate.

If little-endian is supplied, it determines the byte order. Otherwise, if it is used for opening a file, LispWorks checks whether
the file starts with the BOM (Byte Order Mark), and if so it uses it. Otherwise the native byte order is used. LispWorks uses
the required byte order and the native byte order of the computer it executes on to decide whether to use :bmp-native or
:bmp-reversed.

680

When writing, these :bmp external formats signal an error when trying to write supplementary characters (code greater than
#xffff).

:bmp cannot read surrogate code points. When encountering a surrogate code point it either signals an error (the default), or
if use-replacement is non-nil, replaces it with the replacement character. When use-replacement is non-nil, these external
formats never signal an error when reading.

Compatibility note:

These formats were new in LispWorks 7.0. In LispWorks 6.1 and earlier versions :unicode is the external format to read 16
-bit characters. Other than the treatment of surrogate code points, :bmp now does what :unicode used to do.

See also

26.7 External Formats to translate Lisp characters from/to external encodings
26.7.2 16-bit External formats guide

char-external-code Function

Summary

Returns the code of a character in the specified character set.

Package

external-format

Signature

char-external-code char set => code

Arguments

char⇓ The character whose code you wish to return.

set⇓ A character set. Legal values for set are :unicode, :latin-1, :ascii,
:macos-roman, :jis-x-208, :jis-x-212, :euc-jp, :sjis, :koi8-r,
:windows-cp936 and :gbk. Additionally, on Windows, set can be a valid Windows
code page identifier.

Values

code⇓ The code of char in the character set set. An integer.

Description

The function char-external-code returns the code of the character char in the coded character set specified by set, or
nil, if there is no encoding. Note that a coded character set is not the same thing as an external format.

If set is :jis-x-208 or :jis-x-212 then code is the KUTEN index (from the 1990 version of these standards) encoded as:

(+ (* 100 row) column)

36 The EXTERNAL-FORMAT Package

681

If set is :euc-jp then code is the complete two-byte format encoded as:

(+ (* 256 first-byte) second-byte)

If set is :sjis then code is Shift-JIS encoded in the same way. Strictly speaking, EUC and Shift-JIS are not coded character
sets, but encodings of the JIS sets, but the encoding is easily expressed as an integer, so the same interface to it is used.

See also

26.7 External Formats to translate Lisp characters from/to external encodings
find-external-char

decode-external-string Function

Summary

Decodes a series of integers to make a string.

Package

external-format

Signature

decode-external-string vector-or-function external-format &key start end into => result

Arguments

vector-or-function⇓ A vector of integers or a function.

external-format⇓ An external format spec.

start⇓, end⇓ Bounding index designators of vector-or-function.

into⇓ nil, a string or a function.

Values

result A string, t or a non-negative integer.

Description

The function decode-external-string decodes integers using encoding external-format to make characters.

If vector-or-function is a vector, then the integers from it bounded by start and end are decoded; otherwise vector-or-function
must be a function, which is called repeatedly with no arguments and should either return the next integer or return nil to
indicate that there are no more integers..

If into is nil, then a new string containing the decoded characters is returned; if into is a function then it is called with each
decoded character and t is returned; otherwise into should be a string of sufficient length into which the decoded characters
are stored and the index of the first unmodified element of into is returned.

If vector-or-function is a vector then its element type does not need to match the external-format-foreign-type of
external-format.

36 The EXTERNAL-FORMAT Package

682

Compatibility notes

This function exists in LispWorks 5.0 but is not documented and does not take the :start and :end arguments. Also, it was
inefficient prior to LispWorks 5.0.1.

See also

26.7 External Formats to translate Lisp characters from/to external encodings
encode-lisp-string

encode-lisp-string Function

Summary

Converts a string to an encoded series of integers.

Package

external-format

Signature

encode-lisp-string string external-format &key start end into => result

Arguments

string⇓ A string.

external-format⇓ An external format spec.

start⇓, end⇓ Bounding index designators of string.

into⇓ nil, a vector or a function.

Values

result A vector, t or a non-negative integer.

Description

The function encode-lisp-string converts the part of string bounded by start and end to integers, to be encoded in
encoding external-format.

If into is nil, then a new vector containing the encoded integers is returned (with element type that matches the
external-format-foreign-type of external-format); if into is a function then it is called with each encoded integer and
t is returned; otherwise into should be a vector of sufficient length into which the encoded integers are stored and the index
of the first unmodified element of into is returned.

Compatibility notes

This function exists in LispWorks 5.0 but is not documented and does not take the :start and :end arguments. Also, it was
inefficient prior to LispWorks 5.0.1.

36 The EXTERNAL-FORMAT Package

683

See also

26.7 External Formats to translate Lisp characters from/to external encodings
decode-external-string

external-format-error Condition Class

Summary

The superclass of all errors relating to external formats.

Package

external-format

Superclasses

error

Initargs

:name The name of the external format involved.

Description

The condition class external-format-error provides a slot for the name of external format involved: this is the fully
expanded form of the specification with all the parameters filled in. It is also useful for users who want to set up a handler for
encoding errors.

See also

26.7 External Formats to translate Lisp characters from/to external encodings

external-format-foreign-type Function

Summary

Returns a type specifier for the integers handled by a specified external format.

Package

external-format

Signature

external-format-foreign-type external-format => type-specifier

Arguments

external-format⇓ An external character format.

36 The EXTERNAL-FORMAT Package

684

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

Values

type-specifier A type specifier describing the integer types handled by external-format.

Description

The function external-format-foreign-type returns a Lisp type specifier for the type of integers that external-format
handles on the foreign side.

Examples

(ef:external-format-foreign-type :latin-1)
=> (unsigned-byte 8)

See also

26.7 External Formats to translate Lisp characters from/to external encodings
external-format-type

external-format-type Function

Summary

Returns a type specifier for the characters handled by a specified external format.

Package

external-format

Signature

external-format-type external-format => type-specifier

Arguments

external-format⇓ An external character format.

Values

type-specifier A type specifier describing the character types handled by external-format.

Description

The function external-format-type returns a type specifier for the type of characters that external-format handles on the
Lisp side.

Examples

(ef:external-format-type :latin-1)
=> base-char

36 The EXTERNAL-FORMAT Package

685

See also

26.7 External Formats to translate Lisp characters from/to external encodings
external-format-foreign-type

find-external-char Function

Summary

Returns the character of a given code in a specified character set.

Package

external-format

Signature

find-external-char code set => char

Arguments

code⇓ A character code. This is an integer.

set⇓ A character set. Legal values for set are :unicode, :latin-1, :ascii,
:macos-roman, :jis-x-208, :jis-x-212, :euc-jp, :sjis, :koi8-r,
:windows-cp936 and :gbk. Additionally, on Windows, set can be a valid Windows
code page identifier.

Values

char The character represented by code. If code is not a legal code in the specified set, the
return value is undefined.

Description

The function find-external-char returns the character that has the code code (an integer) in the coded character set
specified by set, or nil, if that character is not represented in the Lisp character set. Note that a coded character set is not the
same thing as an external format.

If set is :jis-x-208 or :jis-x-212 then code is the KUTEN index (from the 1990 version of these standards) encoded as:

(+ (* 100 row) column)

If set is :euc-jp then code is the complete two-byte format encoded as:

(+ (* 256 first-byte) second-byte)

If set is :sjis then code is Shift-JIS encoded in the same way. Strictly speaking, EUC and Shift-JIS are not coded character
sets, but encodings of the JIS sets, but the encoding is easily expressed as an integer, so the same interface to it is used.

See also

26.7 External Formats to translate Lisp characters from/to external encodings
char-external-code

36 The EXTERNAL-FORMAT Package

686

:unicode External Format

Summary

Implements UTF-16 translation.

Package

keyword

Signature

:unicode &key little-endian

Arguments

little-endian⇓ A generalized boolean.

Description

The external format :unicode implements UTF-16 translation, with default byte order the native one. :unicode is
equivalent to (:utf-16 :little-endian little-endian) where the value of little-endian depends on the byte order of the
native machine.

When opening a file with :external-format :unicode (without supplying little-endian), LispWorks checks for the
existence of the BOM (Byte Order Mark) in the beginning of the file, and if there is a BOM uses it to determine the correct
byte order. Otherwise, it uses the native byte order. There are no checks for a BOM in other situations.

Notes

:unicode differs from :utf-16 when little-endian is not supplied and there is no BOM, because :unicode uses the native
endianness and :utf-16 uses big-endian. In all other circumstances :unicode is equivalent to :utf-16.

Compatibility note

In LispWorks 6.1 and earlier versions, :unicode reads only 16-bit characters, including character objects corresponding to
surrogate code points. There is no exact match to that in LispWorks 7.0 and later, because there is no external format that
reads surrogates. :bmp can be used to read 16-bit characters, either giving an error or using the replacement character for
surrogate code points.

See also

26.7 External Formats to translate Lisp characters from/to external encodings
26.7.2 16-bit External formats guide

36 The EXTERNAL-FORMAT Package

687

:utf-16
:utf-16be
:utf-16le
:utf-16-native
:utf-16-reversed External Formats

Summary

Implement translations according to the UTF-16 standard of Unicode.

Package

keyword

Signatures

:utf-16 &key use-replacement little-endian

:utf-16be &key use-replacement

:utf-16le &key use-replacement

:utf-16-native &key use-replacement

:utf-16-reversed &key use-replacement

Arguments

use-replacement⇓ A generalized boolean.

little-endian⇓ A generalized boolean.

Description

The external format :utf-16 and variants implement translations according to the UTF-16 standard of Unicode.

The variants differ only in their treatment of byte order.

The parameter use-replacement is a boolean which defaults to nil. It controls what happens when reading encounters an
illegal combination. Illegal combinations are either a leading surrogate (#xd800 to #xdbff) not followed by a trailing
surrogate (#xdc00 to #xdfff), or a trailing surrogate not following a leading surrogate. By default, the input code signals an
error of type external-format-error. If use-replacement is non-nil, the input code replaces the error byte or pair of
bytes by the replacement character (#xfffd).

:utf-16-native and :utf-16-reversed implement UTF-16 in the native or the reverse of the byte order of the
computer that they are executing on.

:utf-16be and :utf-16le implement the UTF-16BE and UTF-16LE standard format, that is UTF-16 big-endian and UTF
-16 little-endian. LispWorks maps these to either of :utf-16-native or :utf-16-reversed.

:utf-16 implements the UTF-16 standard. The byte order defaults to big-endian byte order.

When opening a file with :external-format :utf-16 (without supplying little-endian), LispWorks checks for the

36 The EXTERNAL-FORMAT Package

688

existence of the BOM (Byte Order Mark) in the beginning of the file, and if there is a BOM uses it to determine the right byte
order. Otherwise, it uses big-endian (:utf-16be). There are no checks for a BOM in other situations.

Compatibility notes

These formats were new in LispWorks 7.0.

In LispWorks 6.1 and earlier versions the :unicode external format is the format to read 16-bit characters.

See also

26.7 External Formats to translate Lisp characters from/to external encodings
26.7.2 16-bit External formats guide

:utf-32
:utf-32le
:utf-32be
:utf-32-native
:utf-32-reversed External Formats

Summary

Implement UTF-32 format, which means reading and writing 32-bit chunks as characters.

Package

keyword

Signatures

:utf-32 &key use-replacement little-endian

:utf-32le &key use-replacement

:utf-32be &key use-replacement

:utf-32-native &key use-replacement

:utf-32-reversed &key use-replacement

Arguments

use-replacement⇓ A generalized boolean.

little-endian⇓ A generalized boolean.

Description

The external format :utf-32 and its variants implement UTF-32 format, which means reading and writing 32-bit chunks as
characters.

:utf-32-native and :utf-32-reversed are the actual implementation formats. They implement UTF-32 with the
native byte order (:utf-32-native) or the reversed byte order (:utf-32-reversed).

36 The EXTERNAL-FORMAT Package

689

:utf-32le and :utf-32be implement UTF-32 with little-endian (:utf-32le) and big-endian (:utf-32be) byte order.
LispWorks maps them to one of :utf-32-native or :utf-32-reversed as appropriate.

:utf-32 implements UTF-32 with control over the byte order. This format maps to one of :utf-32-native or
:utf-32-reversed as appropriate. If little-endian is supplied, it determines the byte order. Otherwise, if it is used for
opening a file, LispWorks checks whether the file starts with the BOM (Byte Order Mark), and uses it if found. Otherwise
the big-endian order is used. LispWorks uses the required byte order and the native byte order of the computer it executes on
to decide whether to use :utf-32-native or :utf-32-reversed.

If the :utf-32 formats encounter a surrogate code point or a character code which is too large, they by default signal an
error of type external-format-error. If use-replacement is non-nil, they replace the illegal input by the replacement
character. When use-replacement is non-nil these formats never signal an error.

When writing, the :utf-32 formats never signal an error.

Compatibility notes

These formats were new in LispWorks 7.0. In LispWorks 6.1 and earlier versions there is an undocumented external format
character that works similarly to :utf-32-native in LispWorks 7.0 and later. This is now mapped to
:utf-32-native to avoid errors in existing code, and should not be used in new code.

See also

26.7 External Formats to translate Lisp characters from/to external encodings

valid-external-format-p Function

Summary

Tests whether an external format spec is valid.

Package

external-format

Signature

valid-external-format-p ef-spec &optional env => result

Arguments

ef-spec⇓ An external format spec.

env⇓ An environment across which the spec should apply.

Values

result⇓ A boolean.

Description

The function valid-external-format-p tests whether the external format spec ef-spec is valid (in the environment env).

result is t if ef-spec is a valid spec, and nil otherwise.

36 The EXTERNAL-FORMAT Package

690

http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

Examples

(valid-external-format-p '(:Unicode :eol-style :lf))

See also

26.7 External Formats to translate Lisp characters from/to external encodings

36 The EXTERNAL-FORMAT Package

691

37 The HCL Package

This chapter describes symbols available in the HCL package. This package is used by default. Its symbols are visible in the
CL-USER package.

Various uses of the symbols documented here are discussed throughout this manual.

add-code-coverage-data
subtract-code-coverage-data
reverse-subtract-code-coverage-data
destructive-add-code-coverage-data
destructive-subtract-code-coverage-data
destructive-reverse-subtract-code-coverage-data Functions

Summary

Add or subtract two code-coverage-data objects.

Package

hcl

Signatures

add-code-coverage-data ccd1 ccd2 name => new-ccd

subtract-code-coverage-data ccd1 ccd2 name => new-ccd

reverse-subtract-code-coverage-data ccd1 ccd2 name => new-ccd

destructive-add-code-coverage-data ccd1 ccd2 => ccd1

destructive-subtract-code-coverage-data ccd1 ccd2 => ccd1

destructive-reverse-subtract-code-coverage-data ccd1 ccd2 => ccd1

Arguments

ccd1⇓ A code-coverage-data object or (for the non-destructive functions only) t.

ccd2⇓ A code-coverage-data object or t.

name⇓ A Lisp object, normally a symbol or a string.

Values

new-ccd A code-coverage-data object.

ccd1 A code-coverage-data object.

692

Description

Adding (subtracting) code coverage datas means adding (subtracting) all pairs of counters for the same piece of code from the
two datas. When the data contains actual counters, adding (subtracting) really means adding (subtracting) the counter values,
and reverse subtract means subtracting the first argument from the second. When the data contains only binary flags (that is,
the code was compiled with counters = nil, see generate-code-coverage), addition is performed by doing logical OR,
and subtraction by doing logical AND-NOT. Note that having counters is a property of each individual file, and a
code-coverage-data object may have files that are compiled with either of these options.

If ccd1 or ccd2 has value t, this is interpreted as the internal code-coverage-data object.

These functions operate on each file in ccd1 (first argument), and for each of these file for which there is a match in ccd2,
perform the operation on all the counters of this file. That is, they add (subtract) the counter from ccd2 to (from) the
matching counter in ccd1. If there is no matching file in ccd2, the operation is done with 0 so the information from ccd1 is
used unchanged.

For files which have matches in ccd2, the information must be based on the same binary file, otherwise these functions signal
an error.

The functions add-code-coverage-data, subtract-code-coverage-data and
reverse-subtract-code-coverage-data all produce a new code-coverage-data object (with name name) which is
the result of the operation. The functions destructive-add-code-coverage-data,
destructive-subtract-code-coverage-data and destructive-reverse-subtract-code-coverage-data all
overwrite ccd1 with the result and return it.

For all these functions the result is a code-coverage-data object with information for each file for which there is
information in ccd1, combined with the counters from ccd2 for files with a match. Files in ccd2 for which there is no match
in ccd1 are ignored.

Notes

For reverse-subtract-code-coverage-data and destructive-reverse-subtract-code-coverage-data the
result for files with no match may be considered inconsistent, because negation their counters may be more consistent.

See also

10 Code Coverage

add-package-local-nickname Function

Summary

Adds a package-local nickname to a package.

Package

hcl

Signature

add-package-local-nickname local-nickname actual-package &optional package-designator => package

37 The HCL Package

693

Arguments

local-nickname⇓ A symbol or a string.

actual-package⇓ A package designator.

package-designator⇓ A package designator.

Values

package⇓ A package.

Description

The function add-package-local-nickname adds local-nickname as the package-local nickname for actual-package in
the package designated by package-designator.

If actual-package is a string or symbol, then a package with the same globally visible name must exist.

package-designator defaults to the current package.

The return value package is the package designated by package-designator.

add-package-local-nickname signals a continuable error of type package-error if local-nickname is already a
package-local nickname for a package other than actual-package, or if local-nickname is one of "CL", "COMMON-LISP" or
"KEYWORD", or if local-nickname is the name (or a nickname of) the package designated by package-designator.

Package-local nicknames are case-sensitive like other package names.

When *package* is bound to package-designator, calls to find-package with one of the local-nicknames will return the
corresponding actual-package. The same occurs for the Common Lisp reader and the functions and macros that take a
package designator as an argument. That include all the functions and macros in the Common Lisp HyperSpec section The
Packages Dictionary that take a package designator argument and also gentemp. Note that this does not inlcude
in-package.

In addition, local-nickname will be printed instead of actual-package when printing a symbol whose home package is actual-
package while *package* is bound to package-designator.

Notes

Package-local nicknames are experimental and subject to change.

Symbol :package-local-nicknames is present on *features* when package-local are supported.

in-package does not recognize package-local nicknames. Its name argument must name be a package name or a global
nickname.

The lookup of the symbol inside a tilde slash operator in a FORMAT control string is done with CL-USER as the current
package, so will use any local nicknames in CL-USER.

Functions in the LispWorks IDE that take a package argument do not recognize local nicknames. The same is true for Editor
commands.

set-up-profiler recognizes package-local nicknames.

The functions in the Java interface that import classes and take a package name argument recognize local nicknames. The
same is true for COM interface functions/macros that take package argument.

Using a package-local nickname that matches a global package name or nickname is allowed, but should be avoided because

37 The HCL Package

694

http://www.lispworks.com/documentation/HyperSpec/Body/e_pkg_er.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_find_p.htm
http://www.lispworks.com/documentation/HyperSpec/Body/c_packag.htm
http://www.lispworks.com/documentation/HyperSpec/Body/c_packag.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_gentem.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pkg.htm

it can be confusing. It produces a warning.

See also

package-local-nicknames
package-locally-nicknamed-by-list
remove-package-local-nickname
defpackage option :local-nicknames

add-special-free-action Function

Summary

Adds a function to perform a special action during garbage collection.

Package

hcl

Signature

add-special-free-action function => function-list

Arguments

function⇓ A function designator for a function of one argument.

Values

function-list A list of the functions currently called to perform special actions, including the one just
added.

Description

When some objects are garbage collected, you may require a "special action" to be performed as well. The function
add-special-free-action adds the function function to perform the special action. Note that the function is applied to
all objects flagged for special-free-action, so the function function should check for the object's type, so that it only affects
relevant objects. Also, it should be fast when called with other objects.

The functions flag-special-free-action and flag-not-special-free-action flag and unflag objects for action.

When function is called, the object is still alive but is no longer flagged for special free action. Normally, the object will be
collected on the next garbage collection cycle, but you can also store it somewhere which will prevent this. It may even be
passed to flag-special-free-action again.

Notes

You should not rely on special free actions for objects with a high turn-over rate (that is, where many such objects are
allocated and they become garbage fairly quickly), because some may not get collected early enough. Either ensure that the
cleanup is called elsewhere, or arrange for a GC to happen.

37 The HCL Package

695

Examples

(defun free-my-app (object)
 (when (my-app-p object)
 (free-some-external-resources object)))

(add-special-free-action 'free-my-app)

See also

remove-special-free-action
flag-special-free-action
flag-not-special-free-action

add-symbol-profiler Function

Summary

Deprecated. Adds a symbol to the list of profiled symbols.

Package

hcl

Signature

add-symbol-profiler symbol => nil

Arguments

symbol⇓ A symbol to be added to the *profile-symbol-list*.

Description

The function add-symbol-profiler is deprecated. It adds symbol to the list of profiled symbols.

See also

remove-symbol-profiler

allocation-in-gen-num Macro

Summary

Allocates objects from a specified generation within the scope of evaluating a number of forms in 32-bit LispWorks.

Package

hcl

37 The HCL Package

696

Signature

allocation-in-gen-num gen-num &body body => result

Arguments

gen-num⇓ An integer.

body⇓ Lisp forms.

Values

result The result of evaluating body.

Description

The macro allocation-in-gen-num allocates objects from a generation specified by gen-num during the extent of the
evaluation of body. If gen-num is out of range for a valid generation number, it is rounded either to the youngest or oldest
generation. If gen-num is negative, the specified generation is: the highest generation number + 1 - gen-num, so that an
argument of -1 specifies the highest generation number.

Normally objects are allocated from the first (youngest) generation, which assumes that they are short-lived. The memory
allocator and garbage collector perform better if allocation of large numbers of non-ephemeral objects is done explicitly into a
generation other than the youngest.

Notes

allocation-in-gen-num is implemented only in 32-bit LispWorks. In 64-bit implementations, use
apply-with-allocation-in-gen-num or the :allocation argument to make-array instead.

Examples

(allocation-in-gen-num
 1
 (setq tab (make-hash-table :size 1200
 :test 'eq)
 arr (make-array 20)))

See also

apply-with-allocation-in-gen-num
make-array
set-default-generation
get-default-generation
symbol-alloc-gen-num
11.3 Memory Management in 32-bit LispWorks

analyzing-special-variables-usage Macro

Summary

Prints an analysis of proclaimed symbols seen during compilation, as an aid to improving declarations.

37 The HCL Package

697

Package

hcl

Signature

analyzing-special-variables-usage (&key all default maybe-globals maybe-dynamics unused only-bound wrong-
global inconsistent stream) &body body => results

Arguments

all⇓ A boolean.

default⇓ A boolean.

maybe-globals⇓ A boolean.

maybe-dynamics⇓ A boolean.

unused⇓ A boolean.

only-bound⇓ A boolean.

wrong-global⇓ A boolean.

inconsistent⇓ A boolean.

stream⇓ t or an output stream.

body⇓ Lisp forms that call the compiler.

Values

results The results of running body.

Description

The macro analyzing-special-variables-usage executes the code in body, which needs to call the compiler,
typically many times (compiling a whole system, for example). When body exits, it prints a simple analysis of symbols that
were proclaimed and how they were proclaimed, in a way that is intended to be helpful in improving declarations. For a full
explanation of how you might add or alter declarations, see 9.7.6 Usage of special variables.

The analysis is based solely on what the compiler sees, ignoring what is already in the image. It also ignores inline
declarations.

Only symbols for which the compiler sees a special proclamation are reported (including cl:defvar, cl:defparameter,
defglobal-parameter and defglobal-variable, but not cl:defconstant).

all and default are convenience arguments to control groups of the other keyword arguments, which are all boolean flags. The
default value of all is nil. all provides the default value of maybe-globals and maybe-dynamics. The default value of default
is t. default provides the default value of unused, only-bound, wrong-global and inconsistent.

stream determines where the analysis goes, and is interpreted as if by cl:format. It does not affect any of the I/O in body.
The default value of stream is t, meaning standard output.

inconsistent controls whether to print symbols where the declaration and usage is inconsistent. Inconsistencies include:

1. Accessing or binding the symbol before the proclamation.

2. Multiple declarations which are different (for example, change from hcl:special-dynamic to cl:special)

37 The HCL Package

698

http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcon.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_specia.htm

The messages controlled by inconsistent are the most useful. A well written program should not produce any such message.

unused controls whether to report symbols that are proclaimed special but are otherwise not used. For this option to be really
useful, body needs to force compile many source files.

Since such unused variables do not affect the code, unused is normally useful only for finding and eliminating dead
declarations, but it can also flag situations when the wrong variable is used (if the variable that is supposed to be used is not
used elsewhere).

only-bound controls whether to report symbols that have been seen bound, but whose value has not been read. The comments
about unused also apply to only-bound.

wrong-global controls whether to print symbols that are bound but are also proclaimed hcl:special-global. If the
proclamation preceded the binding, the compiler will signal a compiler-error.

maybe-globals controls whether to report symbols that were not seen bound. If these symbols are really never bound, they
can be proclaimed global by defining them with defglobal-parameter and defglobal-variable, or proclaim with
hcl:special-global (see declare), both for speed and also to prevent them getting bound by mistake.

It is quite useful to force compile a program each now and then with maybe-globals true, then check through the report and
proclaim global all those symbols that can be proclaimed global.

maybe-dynamics controls whether to report symbols that have been seen bound, and are proclaimed special, but not
hcl:special-dynamic or hcl:special-global. Some of these may be proclaimed hcl:special-dynamic.

The report that is generated is grouped according to the file in which a proclamation was found. If a variable was proclaimed
in multiple files, it will appear multiple times in the output. Within each file the output is grouped according to what is
reported.

For the keyword arguments except inconsistent, the symbols are simply listed. For inconsistent, it outputs several lines for
each symbol. Each line starts with one of the symbols cl:special, hcl:special-global, hcl:special-dynamic,
hcl:special-fast-access (these four signify a proclamation), :bound or :accessed (these two indicate the usage). It
is followed by the pathname of the file in which this one found. Only occurrences which give rise to inconsistency are listed.

Notes

The report about inconsistent usage is almost always useful. unused and only-bound are mostly useful when body force
compiles many files, though they have limited utility in partial compilation too. maybe-globals and maybe-dynamics need
full compilation to be really useful. Of the latter maybe-globals is the more useful.

See also

declare
defglobal-parameter
defglobal-variable

android-build-value Function

Summary

Android only: Returns the value of a field in the android.os.Build Java class.

Package

hcl

37 The HCL Package

699

http://www.lispworks.com/documentation/HyperSpec/Body/d_specia.htm

Signature

android-build-value &optional name => result

Arguments

name⇓ nil or a string.

Values

result⇓ A string.

Description

The function android-build-value is defined only in LispWorks for Android Runtime images, and can be used only
when running on Android. It returns values of fields from the android.os.Build Java class.

If name is non-nil, it must a string naming a field in the android.os.Build Java class. result in this case is the value of this
field.

If name is nil (the default), then android-build-value returns a string containing the names and values of most of the
fields in the android.os.Build class. For each field, result contains a substring of the form:

"<field-name> : <field-value><newline>"

result is the concatenation of all of these substrings. The fields that are looked up are:

BOARD
BOOTLOADER
BRAND
CPU_ABI
CPU_ABI2
DEVICE
DISPLAY
FINGERPRINT
HARDWARE
HOST
MANUFACTURER
MODEL
PRODUCT
RADIO
SERIAL
TAGS
TIME
TYPE
USER

See also

16 Android interface

37 The HCL Package

700

android-funcall-in-main-thread
android-funcall-in-main-thread-list Functions

Summary

Call a function on the Android main (GUI) thread.

Package

hcl

Signatures

android-funcall-in-main-thread func &rest args

android-funcall-in-main-thread-list func-and-args

Arguments

func⇓ A function designator.

args⇓ Arguments for func.

func-and-args⇓ A cons (func . args).

Description

The functions android-funcall-in-main-thread and android-funcall-in-main-thread-list arrange for func
to be applied to args on the Android main thread (which is the GUI thread too). android-funcall-in-main-thread
actually does it by consing func and args and calling android-funcall-in-main-thread-list with the result.
android-funcall-in-main-thread-list is the "primitive" interface.

The invocation of the function is done by the event loop of the GUI thread, so it is synchronous with respect to processing
events, in other words it will not happen in the middle of processing an event.

These functions should be used when func does something that needs to run on the main thread, most commonly operations
that interact with GUI elements.

To allow for testing, these functions can be called on any architecture. On non-Android architectures, there is no "Android
main process". In this case, android-funcall-in-main-thread-list first tests whether the variable
android-main-process-for-testing is non-nil (which value must be a process), and if it is sends func-and-args to
this process by process-send. This is based the assumption that this process processes cons events by applying the
cl:car to the cl:cdr, which is the "normal" behavior of the system event processing (that is, what
general-handle-event does). If you set this variable, make sure that this process processes events in this way. If
android-main-process-for-testing is nil, android-funcall-in-main-thread-list arranges for the idle
process to apply the cl:car to the cl:cdr.

Notes

android-funcall-in-main-thread-list always queues the function, even if it runs on the main thread. If you need to
execute immediately when running on the main thread, check first using android-main-thread-p.

37 The HCL Package

701

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

See also

android-main-process-for-testing
android-main-thread-p
16 Android interface

android-get-current-activity Function

Summary

Return the current activity that was set by the Java method com.lispworks.Manager.setCurrentActivity.

Package

hcl

Signature

android-get-current-activity => result

Values

result An object of class android.app.Activity, or nil.

Description

The function android-get-current-activity returns the current activity that was set by the Java method
com.lispworks.Manager.setCurrentActivity, if the current thread is the Android main thread.

android-get-current-activity first checks whether the current thread is the main thread, and if it is not returns nil.
Otherwise, it returns the activity that was last set by com.lispworks.Manager.setCurrentActivity (an object of class
android.app.Activity). This is the object that is needed to create dialogs.

Notes

The main purpose of android-get-current-activity is to decide whether the current code can raise dialogs, and if so
to get the activity to use as a context.

Examples

(example-edit-file "android/dialog")

See also

android-main-thread-p
com.lispworks.Manager.setCurrentActivity

37 The HCL Package

702

android-main-process-for-testing Variable

Summary

Variable defining the "Android main process" when not running on Android.

Package

hcl

Initial Value

nil

Description

The variable *android-main-process-for-testing* defines the "Android main process" when not running on
Android.

android-main-process-for-testing defaults to nil. If it is set, it must be a mp:process object, which processes
events which are a cons by applying the cl:car to the cl:cdr.

android-main-process-for-testing is used by android-funcall-in-main-thread-list and
android-funcall-in-main-thread when they are called on non-Android platforms.

Notes

general-handle-event processes conses by applying the cl:car to the cl:cdr, and therefore any process that uses it to
process events will do the right thing. That includes the CAPI events loop, and users of wait-processing-events and
process-all-events.

android-main-thread-p Function

Summary

Tests whether the current thread is the Android main (GUI) thread.

Package

hcl

Signature

android-main-thread-p => result

Values

result A boolean.

37 The HCL Package

703

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

Description

The function android-main-thread-p is the predicate for whether the current thread is the Android main (GUI) thread.

For testing, on non-Android platforms android-main-thread-p checks whether the current Lisp process is
android-main-process-for-testing (if this variable is non-nil) or the Idle process (if
android-main-process-for-testing is nil).

See also

android-funcall-in-main-thread
android-main-process-for-testing

any-capi-window-displayed-p Function

Summary

A predicate for whether any CAPI window is currently displayed.

Package

hcl

Signature

any-capi-window-displayed-p => result

Values

result A boolean.

Description

The function any-capi-window-displayed-p is a predicate for whether any CAPI window (other than dialogs) is
currently displayed.

Notes

1. See the CAPI User Guide and Reference Manual for a description of the CAPI toolkit which allows you to write
graphical user interfaces in Lisp.

2. Tools in the LispWorks IDE are all CAPI windows.

array-single-thread-p Function

Summary

The predicate for single-thread arrays.

Package

hcl

37 The HCL Package

704

Signature

array-single-thread-p array => result

Arguments

array⇓ An array.

Values

result A boolean.

Description

The function array-single-thread-p is the predicate for whether array is one known to be only accessed in a single
thread context, as created by:

(make-array ... :single-thread t)

or set by set-array-single-thread-p.

See also

make-array
set-array-single-thread-p

array-weak-p Function

Summary

The predicate for whether an object is a weak array.

Package

hcl

Signature

array-weak-p object => result

Arguments

object⇓ A Lisp object.

Values

result A boolean.

Description

The function array-weak-p returns t if its argument object is a weak array, and otherwise returns nil.

37 The HCL Package

705

See also

make-array
set-array-weak

augment-environment Function

Summary

Returns a new environment based on an existing one with different bindings.

Package

hcl

Signature

augment-environment env &key variable symbol-macro function macro declare reset => newenv

Arguments

env⇓ An environment or nil.

variable⇓ A list of symbols.

symbol-macro⇓ A list of lists.

function⇓ A list of function names.

macro⇓ A list of lists.

declare⇓ A list of declaration-specifiers.

reset⇓ A generalized boolean.

Values

newenv⇓ An environment.

Description

The function augment-environment returns a new environment newenv, based on env but modified according to the
keyword arguments variable, symbol-macro, function, macro, declare and reset.

If env is nil, then newenv will be based on the null environment. Otherwise, if reset is false (the default) then all of the
bindings in env will be present in newenv unless overridden by the other keyword arguments. Otherwise, if reset is true then
all of the non-local bindings in env will be present in newenv but none of the local bindings will be present. Passing reset as
true allows you to create an environment object for calls to variable-information and so on which can access the file
compilation environment without seeing local bindings in the lexical environment.

variable should be a list of symbols and newenv will contain these symbols as local variable bindings. A binding will be a
special binding if the symbol is declared special non-lexically in env or a special declaration is present in declare.

symbol-macro should be a list of lists of the form (symbol expansion) and newenv will contain local symbol-macro bindings
for each symbol with expansion as its macroexpansion.

function should be a list of function names and newenv will contain these names as local function bindings. Functions names

37 The HCL Package

706

are symbols or lists of the form (setf symbol).

macro should be a list of lists of the form (symbol macrofunction) and newenv will contain local macro bindings for each
symbol with macrofunction as its macroexpansion function. Each macrofunction is a function of two arguments, a form and
an environment, which should return the expanded form.

declare should be a list of declaration-specifiers, which will be added to newenv as if by declare.

It is an error to use a symbol in symbol-macro that is also in variable or is declared special.

It is an error to use a symbol in macro that is also in function.

newenv has the same extent as env, that is it might have dynamic extent within the function that created env.

The lists passed to augment-environment should be not destructively modified afterwards.

Notes

augment-environment is part of the environment access API which is based on that specified in Common Lisp: the
Language (2nd Edition).

See also

declaration-information
define-declaration
function-information
map-environment
variable-information

avoid-gc Function

Summary

Avoids garbage collection if possible in 32-bit LispWorks.

Package

hcl

Signature

avoid-gc => previous-results

Values

previous-results ??.

Description

The function avoid-gc sets various internal parameters so that garbage collection is avoided as far as possible.

This can be useful with non-interactive programs.

If you use avoid-gc, use normal-gc later to reset the parameters to their default settings.

avoid-gc returns the previous settings of minimum-for-sweep, maximum-overflow and minimum-overflow (see

37 The HCL Package

707

set-gc-parameters for details of these).

Notes

avoid-gc is implemented only in 32-bit LispWorks. It is not relevant to the Memory Management API in 64-bit
implementations. In 64-bit implementations, you can use set-default-segment-size to increase the default size of
segments in the lower generations (typically generations 0 and 1). This will lead to less frequent garbage collections.

See also

gc-if-needed
normal-gc
set-gc-parameters
set-default-segment-size
without-interrupts
11.3 Memory Management in 32-bit LispWorks

background-input
background-output
background-query-io Variables

Summary

Default streams for the standard streams.

Package

hcl

Initial Value

The value of cl:*terminal-io*.

Description

The variables *background-input*, *background-output* and *background-query-io* are default streams for the
standard Common Lisp streams.

These variables are all set to the value of cl:*terminal-io* when the image starts, but when the LispWorks IDE starts it
sets:

• *background-output* to mp:*background-standard-output*.

• *background-input* to a stream that always returns EOF.

• *background-query-io* to a stream that interacts with the user using CAPI prompters.

The default value of each of the standard streams is a synonym stream referencing one of these background streams:

• *standard-input* is a synonym referencing *background-input*.

• *standard-output*, *trace-output* and *error-output* are synonyms referencing *background-output*.

• *query-io* and *debug-io* are synonyms referencing *background-query-io*.

37 The HCL Package

708

http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

Thus when the LispWorks IDE is running, output to the standard output streams goes to the
mp:*background-standard-output*, and can be viewed in the Output tab of the Listener and Editor windows, and the
Output Browser tool. Trying to read from *standard-input* once the environment is running returns EOF. Using
query-io causes on-screen prompting.

The main purpose of these variables is to redirect the standard input and output streams once the LispWorks IDE is running,
because writing to cl:*terminal-io* is not useful in most cases.

You can set or rebind these variables if required, and this changes the default destination of the standard streams.

Notes

Processes that are created by CAPI for an interface while the IDE is running rebind the standard input, output and query I/O
streams to themselves (so setting them in these processes does not change the global value). This does not happen on
processes that are not created by CAPI, and does not happen when the LispWorks IDE is not running, in particular in
delivered applications. When the LispWorks IDE is running, the output to standard output stream on other processes will still
go by default to the mp:*background-standard-output*, because *background-output* is set to it.

Compatibility note

These variables were new in LispWorks 7.0.

In LispWorks 6.1 and earlier versions, CAPI processes in the LispWorks IDE bound the output streams to
mp:*background-standard-output*, the standard input to a stream that returns EOF and *query-io* to a stream that
interacts with the user using CAPI prompters. Hence, for these processes, the default behavior has not changed. However
input and output on other processes was going to/from the cl:*terminal-io* by default, which caused various problems.
The main purpose of these variables is to fix these problems.

See also

standard-input

binds-who Function

Summary

Lists special variables bound by a definition.

Package

hcl

Signature

binds-who function => result

Arguments

function⇓ A symbol or a function dspec.

Values

result A list.

37 The HCL Package

709

http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

Description

The function binds-who returns a list of the special variables bound by the definition named by function.

Notes

The cross-referencing information used by binds-who is generated when code is compiled with source-level debugging
switched on.

See also

references-who
sets-who
toggle-source-debugging
who-binds

block-promotion Macro

Summary

Prevents promotion of objects into generation 2 during the execution of body.

Package

hcl

Signature

block-promotion &body body => result

Arguments

body⇓ Lisp forms executed as an implicit progn.

Values

result The result of evaluating the final form in body.

Description

The macro block-promotion executes body and prevents promotion of objects into generation 2 during this execution.
After body is executed, generations 0 and 1 are collected.

This is useful when a significant number of transient objects actually survive all the garbage collections on generation 1.
These would normally then be promoted and, by default, never get collected. In such a situation, (gc-generation t) will
free a large amount of space in generation 2. block-promotion can be thought of as doing set-promotion-count on
generation 1 with an infinite count, for the duration of body.

block-promotion is suitable only for use in particular operations that are known to create such relatively long-lived, but
transient, objects. In typical uses these are objects that live for a few seconds to several hours. An example usage is
LispWorks compile-file, to ensure the transient compile-time data gets collected.

block-promotion has global scope and hence may not be useful in an application such as a multithreaded server. During
the execution of body, generation 1 grows to accommodate all the allocated data, which may have some negative effects on

37 The HCL Package

710

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

the behavior of the system, in particular on its interactive response.

Notes

1. Symbols and process stacks are allocated in generation 2 or 3 (see *symbol-alloc-gen-num*) hence
block-promotion cannot prevent these getting into that generation. allocation-in-gen-num can also cause
allocation in higher generations.

2. In 64-bit LispWorks, block-promotion is implemented using set-blocking-gen-num.

See also

allocation-in-gen-num
mark-and-sweep
set-promotion-count

building-main-architecture-p Function

Summary

Determine whether LispWorks is building the main architecture of an executable.

Package

hcl

Signature

building-main-architecture-p => main-architecture-p

Values

main-architecture-p A boolean.

Description

The function building-main-architecture-p returns nil when it is called inside the x86_64 subprocess that
save-universal-from-script runs on an arm64 Macintosh, and t in all other cases (including when running on an
x86_64 Macintosh).

The purpose of building-main-architecture-p is to control execution of forms in a build script that is passed to
save-universal-from-script, such that they are executed only once, even though the script is executed twice. Since it
also returns t outside of save-universal-from-script, using building-main-architecture-p makes the script
execute the form once whether it used to build a mono-architecure executable or a universal binary one.

Notes

In LispWorks 6.1 and earlier, there was a function save-argument-real-p that had the same behaviour and in LispWorks
7.0 and 7.1 save-argument-real-p always returned t.

Examples

(example-file "configuration/save-macos-application.lisp")

37 The HCL Package

711

See also

save-universal-from-script
building-universal-intermediate-p
27.12 Universal binaries on macOS

building-universal-intermediate-p Function

Summary

Used in a build script to determine if LispWorks is building an intermediate image when making a universal binary.

Package

hcl

Signature

building-universal-intermediate-p => intermediatep

Values

intermediatep A boolean.

Description

The function building-universal-intermediate-p is used to determine if it is being executed to build one of the
architectures of a universal binary. It returns t if it is called inside one of the subprocesses that
save-universal-from-script runs on an arm64 Macintosh, and nil in all other circumstances.

This is useful if there is some configuration that should be done only when building a universal binary image but not in a
mono-architecture ("thin") image.

See also

save-universal-from-script
building-main-architecture-p
27.12 Universal binaries on macOS

calls-who Function

Summary

Lists functions called by a function.

Package

hcl

Signature

calls-who dspec => callees

37 The HCL Package

712

Arguments

dspec⇓ A dspec.

Values

callees A list.

Description

The function calls-who returns a list of the dspecs naming the functions called by the function named by dspec.

See also the editor commands List Callees, and Show Paths From.

Notes

The cross-referencing information used by calls-who is generated when code is compiled with source-level debugging
switched on.

Examples

(calls-who '(method foo (string)))

See also

toggle-source-debugging
who-calls

cd Macro

Summary

Changes the current directory.

Package

hcl

Signature

cd &optional directory => current-dir

Arguments

directory⇓ A pathname designator specifying the new directory.

Values

current-dir A physical pathname.

37 The HCL Package

713

Description

The macro cd changes the current directory to that specified by directory. directory may be an absolute or relative pathname,
and defaults to the string "~/".

Notes

cd should not be used in multithreaded applications. In general we discourage you from using it.

See also

change-directory
get-working-directory

change-directory Function

Summary

Changes the current directory.

Package

hcl

Signature

change-directory directory => current-dir

Arguments

directory⇓ A pathname designator specifying the new directory.

Values

current-dir A physical pathname.

Description

The function change-directory changes the current directory to that specified by directory. directory may be an absolute
or relative pathname.

Use get-working-directory to find the current directory.

Notes

change-directory should not be used in multithreaded applications. In general we discourage you from using it.

See also

cd
get-working-directory

37 The HCL Package

714

check-fragmentation Function

Summary

Provides information about the fragmentation in a generation in 32-bit LispWorks.

Package

hcl

Signature

check-fragmentation gen-num => total-free, total-small-blocks, total-large-blocks

Arguments

gen-num⇓ An integer between 0 and 3, inclusive.

Values

total-free⇓ An integer.

total-small-blocks⇓ An integer.

total-large-blocks⇓ An integer.

Description

The function check-fragmentation provides information about the fragmentation in the generation gen-num in 32-bit
LispWorks.

gen-num should be 0 for the most recent generation, 1 for the most recent two generations, and so on up to a maximum
(usually 3). Numbers outside this range signal an error.

total-free is the total free space in the generation.

total-small-blocks is the amount of free space in the generation which is available in blocks of 512 bytes or larger.

total-large-blocks is the amount of free space in the generation which is available in blocks of 4096 bytes or larger.

total-small-blocks and total-large-blocks give indication of the level of fragmentation in the generation. This information can
be used, for example, to decide whether to call try-move-in-generation.

Notes

check-fragmentation is implemented only in 32-bit LispWorks. It is not relevant to the Memory Management API in 64-
bit implementations, where gen-num-segments-fragmentation-state is available instead.

See also

try-compact-in-generation
try-move-in-generation
11.2 Guidance for control of the memory management system

37 The HCL Package

715

clean-down Function

Summary

Frees memory and reduces the size of the image, if possible.

Package

hcl

Signature

clean-down &optional full => new-size

Arguments

full⇓ A generalized boolean.

Values

new-size A positive integer.

Description

The function clean-down tries to free as much memory as possible and then reduce the size of the image as much as
possible, and also move all the allocated objects to an old generation.

full controls whether to operate on the highest generation. The default value of full is t.

If full is t, clean-down does a mark and sweep on generation 3, promotes all the objects into generation 3, deletes the
empty segments and tries to reduce the image size. This is called by default before saving an image.

If full is nil, clean-down does a mark and sweep on generation 2, promotes all the objects to generation 2 and tries to
reduce the size of all generations up to 2, but does not touch generation 3.

clean-down returns the new size of the Lisp image after reduction, in bytes.

clean-down may fail to delete empty segments if there are static segments in high address space.

Notes

1. try-move-in-generation (which is implemented only in 32-bit LispWorks) uses less CPU than clean-down,
though it does not do the mark and sweep.

2. In 64-bit LispWorks, clean-down is implemented as if by (gc-generation 7 :coalesce t) though you can use
gc-generation directly for better control.

3. In the Mobile GC, clean-down performs the same GC as (gc-generation t).

4. clean-down may temporarily increase memory usage, and when called with full nil may result in a larger Lisp image
(though better organized, and therefore behaving better). In 32-bit LispWorks in situations where it is important not to
increase memory usage, such as when the operating system signals that memory is low, use reduce-memory instead.

37 The HCL Package

716

See also

gc-generation
reduce-memory
save-image
try-move-in-generation
11.2 Guidance for control of the memory management system

clean-generation-0 Function

Summary

Attempts to promote all objects from generation 0 into generation 1, in 32-bit LispWorks.

Package

hcl

Signature

clean-generation-0

Description

The function clean-generation-0 attempts to promote all objects from generation 0 into generation 1, thereby clearing
generation zero, in 32-bit LispWorks.

This is useful when passing from a phase of creating long-lived data to a phase of mostly ephemeral data, for example, the
end of loading an application and the start of its use.

Notes

1. The function may not be very useful, as it may be more efficient to directly allocate the objects in a particular generation
in the first place, using allocation-in-gen-num or set-default-generation.

2. clean-generation-0 is implemented only in 32-bit LispWorks. It is not relevant to the Memory Management API in
64-bit implementations, where the same effect can be obtained by a call (gc-generation 0).

Examples

; allocate lots of non-ephemeral objects
;
(clean-generation-0)

See also

allocation-in-gen-num
collect-generation-2
collect-highest-generation
expand-generation-1
gc-generation
set-promotion-count
11.3 Memory Management in 32-bit LispWorks

37 The HCL Package

717

clear-code-coverage
reset-code-coverage
restore-code-coverage-data Functions

Summary

Modify the internal code-coverage-data object.

Package

hcl

Signatures

clear-code-coverage => result

reset-code-coverage => result

restore-code-coverage-data code-coverage-data &key error => result

Arguments

code-coverage-data⇓ A code-coverage-data object.

error⇓ :warn, nil or t.

Values

result⇓ A boolean.

Description

The function clear-code-coverage clears the internal code-coverage-data object, which means removing all the files
from it, so that their counters are not accessible anymore. Note that it does not actually remove the counters from the code.

The function reset-code-coverage resets all the counters in the internal code-coverage-data object to 0.

The function restore-code-coverage-data sets the counters of all files that appear in both the internal code coverage
data and the argument code-coverage-data to the counters in code-coverage-data. All these files need to have the same code
coverage code, that is they must be based on the same binary file.

error controls what happens for files that do not have the same code coverage code. Value :warn means warn and continue,
nil means quietly skip it, and t means signal an error. restore-code-coverage-data never restores a file with no
matching code coverage code. The default value of error is :warn.

The value of result indicates whether there was an internal code-coverage-data object when the function was called.

Notes

1. If error is t, some of the files would be restored and some not, leaving the internal code-coverage-data object in an
inconsistent state.

2. All these functions also reset any snapshot by calling reset-code-coverage-snapshot.

37 The HCL Package

718

See also

10 Code Coverage

code-coverage-data System Class

Summary

A structure containing information about code coverage.

Package

hcl

Superclasses

t

Accessors

code-coverage-data-name

Readers

code-coverage-data-create-time

Description

The system class code-coverage-data is a structure containing information about code coverage.

code-coverage-data contains information about some set of files. With the exception of the internal code coverage data,
code-coverage-data does not change after it is created. The internal code coverage data contains information about all
files that have been loaded with code coverage (since the last call to clear-code-coverage). A file is "with code
coverage" when it is a binary file compiled with code coverage on (see generate-code-coverage).

The counters in the internal code coverage data are the counters that the actual code is referencing, and therefore they are
modified whenever any of this code is executing. For each file the counters are either actual counters or binary flags (see
counters argument in generate-code-coverage), but inside the structure there may be files of either counter type.

All other code-coverage-data structures start their life as copies of the internal code coverage data, and then they can be
further manipulated. They are displayed by code-coverage-data-generate-coloring-html or the LispWorks IDE.

The name is supplied to the data when it is created by functions like copy-current-code-coverage, and the create-time
is the universal time when the data was created. These values are provided so that you can track your data: they are not used
by the system. name can be any Lisp object, but normally should be a symbol or a string (because if you save the data name
will be written too, so it is best if does not point to a large structure).

See also

10 Code Coverage

37 The HCL Package

719

code-coverage-data-generate-coloring-html Function

Summary

Generates HTML showing the code coverage.

Package

hcl

Signature

code-coverage-data-generate-coloring-html target &key code-coverage-data shared-source-directory filter target-
type color-uncovered color-covered show-counters counter-space index-filename index-name index-sort index-mark-not-entered
index-mark-partial index-show-non-runtime open

Arguments

target⇓ A pathname designator.

code-coverage-data⇓ A code-coverage-data object.

shared-source-directory⇓
A pathname designator.

filter⇓ A string, a function or a symbol naming a function.

target-type⇓ A string or nil.

color-uncovered⇓ A boolean.

color-covered⇓ A boolean.

show-counters⇓ A boolean.

counter-space⇓ nil, :before, :after, :both or t.

index-filename⇓ A pathname designator or nil.

index-name⇓ A string.

index-sort⇓ One of the keywords :relative-name, :name and :uncovered.

index-mark-not-entered⇓
A boolean.

index-mark-partial⇓ A boolean.

index-show-non-runtime⇓
A boolean.

open⇓ A boolean.

Description

The function code-coverage-data-generate-coloring-html generates HTML showing the code coverage.

target specifies the directory for the HTML files, and optionally the name of the index file, if target has a name component
and index-filename is not supplied.

37 The HCL Package

720

code-coverage-data must be a code-coverage-data object to use. Otherwise
code-coverage-data-generate-coloring-html uses the internal data.

shared-source-directory must specify a directory path. It has two effects:

• HTML is produced only for source files in the directory specified by shared-source-directory (filter may exclude some of
these).

• The path of each HTML file is constructed from the relative path of the source file with respect to shared-source-
directory (as produced by cl:enough-namestring) merged with target. The result is a tree of HTML files which is
parallel to the tree of the source files.

If shared-source-directory is not supplied, all files that pass filter are produced, and the target HTML file has the same
filename as the source file, but inside the directory specified by target. Note that this may cause clashes if there are files with
the same name in the data.

filter can be used to restrict which files HTML is produced for. If filter is a string it is interpreted as a regexp. If the
cl:namestring of the truename of a source file matches filter (as by find-regexp-in-string) then HTML is produced
for this source file. If filter is a function (or fbound symbol) it must take two arguments, the truename and the
code-coverage-file-stats for this source file, and return a boolean specifying whether to produce HTML for this
source file. The stats object can be accessed by the code-coverage-file-stats accessor functions (for example
code-coverage-file-stats-lambdas-count). If filter is not supplied, all files (or, if shared-source-directory is
supplied, all those files inside it) are produced.

target-type specifies the type of the output files. The default value of target-type is "htm".

color-uncovered, color-covered, show-counters and counter-space control the HTML output. See "Source files HTML
coloring" below for details. Note that the colors to actually use are specified by
code-coverage-set-html-background-colors.

color-uncovered controls whether uncovered forms are colored. These include forms that did not execute at all, eliminated
forms and forms which were partially executed but the unexecuted part is hidden (in a macroexpansion). The default value of
color-uncovered is t.

color-covered controls whether covered forms are colored. These include forms that were fully executed, and those parts of
partially executed forms that were executed. The default value of color-covered is nil.

show-counters controls whether to insert counters in the HTML. The default value of show-counters is t.

counter-space specifies whether to insert a space before and/or after each counter. The value t has the same meaning as
:both. The default value of counter-space is :after.

index-filename, index-name, index-sort, index-mark-not-entered, index-mark-partial and index-show-non-runtime control the
generation of the index file. See "Index file" below for the description of the index file's contents.

index-filename, when supplied, specifies the name of the index file. It is merged with target to generate the full path. Note
that the file type should be included in either index-filename or target. If index-filename is not supplied, it defaults to
"code-coverage-index.htm". If index-filename is nil, no index file is produced.

index-name is printed (with format directive ~A) as part of the title of the index file, and not used otherwise. The default
value of index-name is "Index".

index-sort controls the order files are listed in the table in the index. :relative-name means sort by the relative name of
the source file with respect to shared-source-directory. If shared-source-directory is not supplied, :relative-name has the
same effect as :name. :name means sort by the name of the source file. :uncovered means sort by the number of not fully
covered run time lambdas in the file (the sum of code-coverage-file-stats-not-called and
code-coverage-file-stats-partially-covered called with :runtime). The default value of index-sort is
:relative-name.

37 The HCL Package

721

http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm

index-mark-not-entered controls whether to mark cells in the run time part for uncovered lambdas. The default value of index
-mark-not-entered is t.

index-mark-partial controls whether to mark cells in the run time part for lambdas that are partially covered. The default
value of index-mark-partial is t.

index-show-non-runtime controls whether to show the non-run time part of the table. The default value of index-show-non-
runtime is t.

open specifies whether the index file should opened (by open-url) once it is generated. The default value of open is nil.

The HTML output

code-coverage-data-generate-coloring-html generates a HTML file for each source file in code-coverage-data
found in shared-source-directory (or all source files if shared-source-directory is nil) and pass filter (or all if filter is nil),
as described above, and one index file with statistics. It uses background colors to mark various things (see below), and these
colors can be set by code-coverage-set-html-background-colors. The colors that are described below are the
default colors.

Index file

The index file contains a table with a single row per file.

The first column shows the file "relative name", which is relative to the optional shared-source-directory, or just the filename.
The rest of the columns contain statistics, which are divided into 2 parts: run time lambdas and optional non-run time
lambdas. "Lambda" here means a separate piece of code (for example code that is called inline does not count as a separate
lambda). Run time lambdas refer to code that is expected to run at run time, which includes things like functions and
methods. Non-run time lambdas are other lambdas, like macros and top-level forms (as known as one-shot forms). More
accurately, run time and non-run time refer to the counts which are returned by the code-coverage-file-stats accessor
functions (for example code-coverage-file-stats-lambdas-count) when they are called with :runtime or
:non-runtime. See code-coverage-file-stats for details.

The run time and the non-run time parts each contain 4 columns:

Total The total number of lambdas, as returned by code-coverage-file-stats-lambdas-count.

Full The number of lambdas that were fully covered, as returned by
code-coverage-file-stats-fully-covered.

Partial The number of lambdas that were partially covered, as returned by
code-coverage-file-stats-partially-covered.

None The number of lambdas that were not covered, as returned by
code-coverage-file-stats-not-called.

In the run time columns, Partial and None cells which are non-zero are optionally marked with a colored background. This
helps you to see which files contain run time forms that were not executed. The default color is DarkSalmon, and this can be
set by code-coverage-set-html-background-colors with keyword argument marked-cell.

Source files HTML coloring

The HTML file corresponding to a source file contains the full text of the source file (including comments), with parts
optionally highlighted by background colors, and optional counters and some text added. At the time of writing, the default
behavior is to highlight uncovered forms and add counters. The background colors can be changed by
code-coverage-set-html-background-colors. The general issues associated with coloring are covered in 10.7
Understanding the code coverage output.

37 The HCL Package

722

Notes

If no file containing code coverage code was loaded, there is no internal data, so if code-coverage-data is not supplied then
code-coverage-data-generate-coloring-html signals an error.

See also

code-coverage-data
code-coverage-set-html-background-colors
10 Code Coverage
10.7 Understanding the code coverage output

code-coverage-data-generate-statistics Function

Summary

Generates statistics about code coverage.

Package

hcl

Signature

code-coverage-data-generate-statistics &key code-coverage-data sort => result

Arguments

code-coverage-data⇓ A code-coverage-data object.

sort⇓ A generalized boolean.

Values

result A vector of code-coverage-file-stats objects.

Description

The function code-coverage-data-generate-statistics generates statistics about code coverage.

code-coverage-data, if supplied, must be a code-coverage-data object, otherwise the internal code-coverage-data
object is used. For each file in the data, code-coverage-data-generate-statistics generates a
code-coverage-file-stats object. It returns a vector of these code-coverage-file-stats objects.

If the argument sort is non-nil (the default), the vector is sorted by the cl:file-namestring of the source file.

Notes

1. The stats objects do not change after code-coverage-data-generate-statistics returns, even if the data that
was used is the internal one.

2. The statistics are only coverage, that is they treat the counters as binary zero/non-zero values. That includes negative
counters (which may occur if the supplied data is a result of subtraction), which counted as "Covered".

3. The stats objects can be accessed by the code-coverage-file-stats readers.

37 The HCL Package

723

http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm

See also

code-coverage-data
code-coverage-file-stats

code-coverage-file-stats System Class

Summary

A class of objects containing code coverage statistics.

Package

hcl

Superclasses

t

Readers

code-coverage-file-stats-source-file

Description

Instances of the system class code-coverage-file-stats are created by
code-coverage-data-generate-statistics, and are then accessed by the readers.

code-coverage-file-stats-source-file returns the truename of the source file.

See also

10 Code Coverage
code-coverage-data-generate-statistics
code-coverage-file-stats-lambdas-count
code-coverage-file-stats-called
code-coverage-file-stats-fully-covered
code-coverage-file-stats-hidden-covered
code-coverage-file-stats-not-called
code-coverage-file-stats-partially-covered
code-coverage-file-stats-counters-count
code-coverage-file-stats-counters-executed
code-coverage-file-stats-counters-hidden

code-coverage-file-stats-lambdas-count
code-coverage-file-stats-called
code-coverage-file-stats-fully-covered
code-coverage-file-stats-hidden-covered
code-coverage-file-stats-not-called
code-coverage-file-stats-partially-covered

37 The HCL Package

724

code-coverage-file-stats-counters-count
code-coverage-file-stats-counters-executed
code-coverage-file-stats-counters-hidden Functions

Summary

Functions to access varous code coverage statistics.

Package

hcl

Signatures

code-coverage-file-stats-lambdas-count ccfs keyword => count

code-coverage-file-stats-called ccfs keyword => count

code-coverage-file-stats-fully-covered ccfs keyword => count

code-coverage-file-stats-hidden-covered ccfs keyword => count

code-coverage-file-stats-not-called ccfs keyword => count

code-coverage-file-stats-partially-covered ccfs keyword => count

code-coverage-file-stats-counters-count ccfs keyword => count

code-coverage-file-stats-counters-executed ccfs keyword => count

code-coverage-file-stats-counters-hidden ccfs keyword => count

Arguments

ccfs⇓ A code-coverage-file-stats object.

keyword⇓ One of :functions, :macros, :one-shot, :lambdas, :all, :runtime or
:non-runtime.

Values

count An integer.

Description

These functions return integers counting "lambdas" in the file associated with ccfs, where "lambda" here means a separate
function object that was produced by the compiler. In most cases these correspond to pieces of code that you can see, like a
function that results from cl:defun or cl:defmethod, or a lambda that appears in your code, but in some cases the
compiler generates functions in a non-obvious way.

keyword specifies the kind of lambda. All lambdas belong to one of these four kinds:

:functions Functions that are defined by cl:defun.

:macros Macros and macro-like (for example cl:defsetf).

:one-shot Load time lambdas that the compiler generates.

37 The HCL Package

725

http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defset.htm

:lambdas Other lambdas (including cl:defmethod).

In addition, the following three values of keyword can be used:

:all All lambdas.

:runtime :functions and :lambdas.

:non-runtime :one-shot and :macros.

Each function returns the number of lambdas or counters of the kind specified by keyword in the file associated with ccfs.
These are:

code-coverage-file-stats-lambdas-count

All lambdas.

code-coverage-file-stats-called

Lambdas that have been called.

code-coverage-file-stats-fully-covered

Lambdas which were fully covered, that is all of their counters are non-zero.

code-coverage-file-stats-hidden-covered

Lambdas where there are counters which are 0, but do not correspond to actual source code
(result of macroexpansion).

code-coverage-file-stats-not-called

Lambdas that were not called at all.

code-coverage-file-stats-partially-covered

Lambdas that were partially covered, but part of the source did not execute.

code-coverage-file-stats-counters-count

All counters.

code-coverage-file-stats-counters-executed

Counters that executed (that is, they are not zero).

code-coverage-file-stats-counters-hidden

Counters which have not been executed and are hidden, that is not in the source (in a result of
macroexpansion).

Notes

1. The statistics are based on interpreting the counters as a binary switch of zero/non-zero. Negative counter values (which
may occur if the code coverage data is a result of a subtraction operation such as subtract-code-coverage-data)
are interpreted as "executed".

2. The run time/non-run time distinction is intended to correspond to code that would run in the actual application (run
time) and code that is used only at compile-time or load-time.

37 The HCL Package

726

http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm

Examples

code-coverage-file-stats-called code-coverage-file-stats :runtime
=>
lambda-count

where lambda-count is the number of lambdas in the file which are "run time" and have been called.

See also

10 Code Coverage
code-coverage-data-generate-statistics
code-coverage-file-stats

code-coverage-set-editor-colors Function

Summary

Specifies the colors that the editor uses to color code coverage.

Package

hcl

Signature

code-coverage-set-editor-colors &key counters counters-negative uncovered partially-covered fully-covered hidden-
partial error warn eliminated

Arguments

counters⇓ A CAPI color or an editor face.

counters-negative⇓ A CAPI color or an editor face.

uncovered⇓ A CAPI color or an editor face.

partially-covered⇓ A CAPI color or an editor face.

fully-covered⇓ A CAPI color or an editor face.

hidden-partial⇓ A CAPI color or an editor face.

error⇓ A CAPI color or an editor face.

warn⇓ A CAPI color or an editor face.

eliminated⇓ A CAPI color or an editor face.

Description

The function code-coverage-set-editor-colors changes the colors or faces that the editor uses to color code
coverage.

Each of the keyword arguments counters, counters-negative, uncovered, partially-covered, fully-covered, hidden-partial,
error, warn and eliminated is a CAPI color name, color alias or color specification, or an editor:face object (the result of
editor:make-face). See "The Color System" in the CAPI User Guide and Reference Manual for details about CAPI

37 The HCL Package

727

colors.

When an argument value is an editor:face, it specifies the face to use. Otherwise, it specifies the background color to use.

The faces and colors are used to color parts of the code as in code-coverage-set-html-background-colors. Note
that code-coverage-set-editor-colors does not accept a :marked keyword argument like
code-coverage-set-html-background-colors does.

See also

code-coverage-set-html-background-colors
15 The Color System in the CAPI User Guide and Reference Manual

code-coverage-set-editor-default-data Function

Summary

Sets the default code coverage data that the editor uses when coloring.

Package

hcl

Signature

code-coverage-set-editor-default-data object

Arguments

object⇓ A code-coverage-data object, a string, a pathname or nil.

Description

The function code-coverage-set-editor-default-data sets the default code coverage data that the editor uses when
it colors a file.

If object is a code-coverage-data object, this is used as-is.

If object is a string or pathname then it should name a file that was created by save-current-code-coverage or
save-code-coverage-data. The data is loaded from this file using load-code-coverage-data and used.

If object is nil then code-coverage-set-editor-default-data uses the internal code coverage data. The default
value of object is nil.

Notes

The editor commands Code Coverage File and Code Coverage Current Buffer use this data.

See also

code-coverage-data
save-current-code-coverage
save-code-coverage-data
load-code-coverage-data

37 The HCL Package

728

Code Coverage File in the Editor User Guide
Code Coverage Current Buffer in the Editor User Guide
Code Coverage Set Default Data in the Editor User Guide
Code Coverage Load Default Data in the Editor User Guide

code-coverage-set-html-background-colors Function

Summary

Sets the background colors used in the HTML code coverage output.

Package

hcl

Signature

code-coverage-set-html-background-colors &key counters counters-negative uncovered partially-covered fully-
covered hidden-partial error warn eliminated marked-cell

Arguments

counters⇓ A string.

counters-negative⇓ A string.

uncovered⇓ A string.

partially-covered⇓ A string.

fully-covered⇓ A string.

hidden-partial⇓ A string.

error⇓ A string.

warn⇓ A string.

eliminated⇓ A string.

marked-cell⇓ A string.

Description

The function code-coverage-set-html-background-colors sets the background colors that
code-coverage-data-generate-coloring-html uses to color the output.

Each of the keyword arguments counters, counters-negative, uncovered, partially-covered, fully-covered, hidden-partial,
error, warn, eliminated and marked-cell, when supplied, must specify a color that is valid HTML. This can be either:

• A hexadecimal value "rrggbb" where rr, gg and bb are hexadecimal numbers specifying the Red, Green and Blue values,
or:

• A name that web browsers recognize.

LispWorks does not actually check that the name is a known name.

Only those colors for which a keyword argument is supplied are affected.

37 The HCL Package

729

See 10.7 Understanding the code coverage output for details of how the colors are used.

See also

code-coverage-data-generate-coloring-html
code-coverage-set-editor-colors
10.7 Understanding the code coverage output

collect-generation-2 Function

Summary

Controls whether generation 2 is garbage collected in 32-bit LispWorks.

Package

hcl

Signature

collect-generation-2 on => size

Arguments

on⇓ A generalized boolean.

Values

size The current size of the image.

Description

The function collect-generation-2 controls whether generation 2 is garbage collected. (Generation 2 normally holds
long-lived objects created dynamically.)

If on is nil, generation 2 is not garbage collected. If on is non-nil, the generation is garbage collected.

Notes

collect-generation-2 is implemented only in 32-bit LispWorks. It is not relevant to the Memory Management API in
64-bit implementations, where you can use set-blocking-gen-num instead.

See also

clean-generation-0
collect-highest-generation
expand-generation-1
set-blocking-gen-num
set-promotion-count
11.2 Guidance for control of the memory management system
11.3 Memory Management in 32-bit LispWorks

37 The HCL Package

730

collect-highest-generation Function

Summary

Controls whether the top generation is garbage-collected in 32-bit LispWorks.

Package

hcl

Signature

collect-highest-generation flag

Arguments

flag⇓ A generalized boolean.

Description

The function collect-highest-generation controls whether the top generation is garbage-collected in 32-bit
LispWorks.

If flag is non-nil, the top generation is collected; if flag is nil, the top generation is not collected (this is the default setting).

Notes

collect-highest-generation is implemented only in 32-bit LispWorks. It is not relevant to the Memory Management
API in 64-bit implementations.

See also

avoid-gc
clean-generation-0
collect-generation-2
expand-generation-1
normal-gc
11.3 Memory Management in 32-bit LispWorks

compile-file-if-needed Function

Summary

Compiles a Lisp source file if it is newer than the corresponding fasl file.

Package

hcl

37 The HCL Package

731

Signature

compile-file-if-needed input-pathname &key output-file load &allow-other-keys => output-truename, warnings-
p, failure-p

Arguments

input-pathname⇓ A pathname designator.

output-file⇓ A pathname designator.

load⇓ A generalized boolean.

Values

output-truename A pathname or nil.

warnings-p A generalized boolean.

failure-p A generalized boolean.

Description

The function compile-file-if-needed compares the file-write-date of the source file named by input-pathname
with the file-write-date of the appropriate fasl file (as computed by compile-file-pathname from input-pathname
and output-file). compile-file-if-needed also checks if the fasl file was compiled by the same version of LispWorks as
the image in which compile-file-if-needed is called.

If the fasl file does not exist or is older than input-pathname or was compiled by another version, then compile-file is
called with input-pathname, output-file, load and any other arguments passed., and the values returned are those returned
from compile-file.

Otherwise, if load is true compile-file-if-needed loads the fasl file and returns nil, and if load is nil it simply returns
nil.

Examples

CL-USER 19 > (compile-file-if-needed "H:/tmp/foo.lisp"
 :output-file
 "C:/temp/")
;;; Compiling file H:/tmp/foo.lisp ...
;;; Safety = 3, Speed = 1, Space = 1, Float = 1, Interruptible = 0
;;; Compilation speed = 1, Debug = 2, Fixnum safety = 3
;;; Source level debugging is off
;;; Source file recording is on
;;; Cross referencing is off
; (TOP-LEVEL-FORM 1)
; (TOP-LEVEL-FORM 2)
; (TOP-LEVEL-FORM 3)
; FOO
; BAR
#P"C:/temp/foo.ofasl"
NIL
NIL

CL-USER 20 > (compile-file-if-needed "H:/tmp/foo.lisp"
 :output-file
 "C:/temp/"
 :load t)
; Loading fasl file C:\temp\foo.ofasl
NIL

37 The HCL Package

732

http://www.lispworks.com/documentation/HyperSpec/Body/f_file_w.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_file_w.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp__1.htm

See also

compile-file

compiler-break-on-error Variable

Summary

Controls whether compile-file handles compilation errors.

Package

hcl

Initial Value

nil

Description

If an error occurs during compilation of a form by compile-file, an error handler normally causes the compilation of that
form to be skipped, and the error is reported later.

When the variable *compiler-break-on-error* is non-nil, an error during compilation by compile-file is signaled
and the debugger is entered.

See also

compile-file

concatenate* Function

Summary

Concatenates a list of sequences.

Package

hcl

Signature

concatenate* result-type sequences => result-sequence

Arguments

result-type⇓ A sequence type specifier.

sequences⇓ A list of sequences.

37 The HCL Package

733

Values

result-sequence A proper sequence of type result-type.

Description

The function concatenate* concatenates sequences to a sequence of type result-type, exactly the same way as
concatenate does.

concatenate* is a useful replacement for concatenate in cases where the code does:

(apply 'concatenate result-type a-list-of-sequences)

In particular when a-list-of-sequences is long. It is also a useful replacement for use of apply with append:

(apply 'append list-of-lists)
=>
(concatenate* 'list list-of-lists)

(apply 'append list1 list2 list3 list-of-lists)
=>
(append list1 list2 list3 (concatenate* 'list list-of-lists))

The call to concatenate* is both more efficient that the apply of append, and can be used with lists that are longer than
call-arguments-limit.

copy-code-coverage-data
copy-current-code-coverage
load-code-coverage-data
save-code-coverage-data
save-current-code-coverage Functions

Summary

Copy, save and load code-coverage-data objects.

Package

hcl

Signatures

copy-code-coverage-data ccd name => new-ccd

copy-current-code-coverage &optional name => new-ccd

load-code-coverage-data pathname &key errorp => ccd

save-code-coverage-data pathname ccd => t

save-current-code-coverage pathname &optional name => t

37 The HCL Package

734

http://www.lispworks.com/documentation/HyperSpec/Body/f_apply.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_append.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_apply.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_append.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_call_a.htm

Arguments

ccd⇓ A code-coverage-data object.

name⇓ A Lisp object, normally a symbol or a string.

pathname⇓ A pathname designator.

errorp⇓ nil, t or another symbol.

Values

new-ccd⇓ A code-coverage-data object.

ccd A code-coverage-data object.

Description

The function copy-code-coverage-data copies its ccd argument. The copy is deep, such that ccd and new-ccd do not
share data, except read-only objects like pathnames. name is the name supplied to the new copy.

The function copy-current-code-coverage copies the internal code coverage data. The default value of name is
"Copy".

The function save-code-coverage-data saves the code coverage data in pathname. The saving is done in the same
binary form that the compiler and dump-forms-to-file use. The data can be loaded by load-code-coverage-data.
save-code-coverage-data always saves to a file with type "ccd". If pathname does not have a type,
save-code-coverage-data adds the type "ccd". If pathname has another type, save-code-coverage-data signals
an error.

The function save-current-code-coverage saves the internal code coverage data. name is the name supplied to the
saved data. The default value of name is (pathname-name pathname). Like save-code-coverage-data,
save-current-code-coverage always saves to a file with type "ccd".

The function load-code-coverage-data loads code coverage data from pathname and returns it. pathname must name a
file that was created by save-code-coverage-data or save-current-code-coverage (with or without the "ccd"
type). errorp determines what to do when load-code-coverage-data fails to load. Value nil means return nil,
otherwise it calls error. If errorp is true but not t, when load-code-coverage-data calls error it passes errorp as if it
is the name of the function that fails. This can be used to give a better indication which function failed. The default value of
errorp is t.

Notes

A code-coverage-data object can be also written "by hand" into fasl files using dump-form or dump-forms-to-file.
In this case you will need to arrange to recover it when the fasl is loaded. load-code-coverage-data uses
load-data-file with a callback.

See also

code-coverage-data
10 Code Coverage

37 The HCL Package

735

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

copy-to-weak-simple-vector Function

Summary

Creates a weak vector with the same contents as the supplied vector.

Package

hcl

Signature

copy-to-weak-simple-vector vector-t => weak-vector

Arguments

vector-t⇓ An array of type (vector t).

Values

weak-vector A weak array of type (vector t).

Description

The function copy-to-weak-simple-vector creates and returns a weak vector with the same contents as the argument
vector-t.

Apart from the checking of arguments, this is equivalent to:

(replace (make-array (length vector-t)
 :weak t)
 vector-t)

See set-array-weak for a description of weak vectors.

See also

make-array
set-array-weak
11.6.8 Freeing of objects by the GC

create-macos-application-bundle Function

Summary

Creates a macOS application bundle for the running LispWorks image.

Package

hcl

37 The HCL Package

736

Signature

create-macos-application-bundle target-path &key template-bundle bundle-name signature package-type extension
application-icns identifier version build version-string help-book-folder help-book-name document-types executable-name =>
path

Arguments

target-path⇓ A pathname designator.

template-bundle⇓ A pathname designator.

bundle-name⇓ A string.

signature⇓ A string.

package-type⇓ A string.

extension⇓ A string.

application-icns⇓ A pathname designator.

identifier⇓ A string.

version⇓ A string.

build⇓ A string.

version-string⇓ A string.

help-book-folder⇓ A string.

help-book-name⇓ A string.

document-types⇓ A list or t.

executable-name⇓ t or nil.

Values

path⇓ A pathname.

Description

The function create-macos-application-bundle creates a macOS application bundle for the running LispWorks
image, and returns the pathname path in which an image is expected to be saved. If you are saving an image, it is convenient
to use save-image-with-bundle.

target-path is where the new bundle is created.

By default create-macos-application-bundle uses the application bundle of the current image as a template, and
modifies it according to its arguments. If you do not supply of any of the keyword arguments, the only modification is to the
actual path.

One of the files that create-macos-application-bundle copies is Info.plist. In the template bundle, the source for
Info.plist may be in a file named Info.plist.template in the Contents directory.
create-macos-application-bundle first looks for Info.plist, and if it does not exist uses
Info.plist.template. This allows you to make the template bundle look different from a real application bundle, so that
macOS does not treat it as one.

template-bundle can be supplied to provide a path for an application bundle which will be used as a template. If template-
bundle is not supplied, create-macos-application-bundle uses the path of the bundle of the current image. Except
when specified, all the other parameters default to their values in the application bundle (the current image or from template-

37 The HCL Package

737

bundle).

bundle-name provides CFBundleName. The default value is the name of the last directory component in target-path.

signature is the signature in the PkgInfo file.

package-type is the package type, CFBundlePackageType. The default value of package-type is "APPL".

extension is the extension to add to the last component of target-path. The default value of extension is "app", as in
"LispWorks.app".

application-icns provides CFBundleIconFile.

identifier provides CFBundleIdentifier. You must change this if you are creating a bundle for your own application.

version is the version value, CFBundleVersion. If template-bundle is nil, version defaults to the value returned by
cl:lisp-implementation-version.

version-string provides CFBundleShortVersionString. If version-string is nil (the default), then version and build (if non
nil) are used to make a default string.

help-book-folder provides CFBundleHelpBookFolder.

help-book-name provides CFBundleHelpBookName.

document-types provides the CFBundleDocumentTypes dict array. Each item of the list document-types should be a list of the
form (name extensions icns-file os-types role) which provide the dict values as follows: the string name provides
CFBundleTypeName; the list of strings extensions provides the contents of the array CFBundleTypeExtensions; the
pathname designator icns-file provides the string CFBundleTypeIconFile; the list of strings os-types provides the contents of
the array CFBundleTypeOSTypes and the string role provides CFBundleTypeRole. role can be omitted and defaults to
"Editor". os-types can be omitted and defaults to ("****").The default value of document-types is t, which means copy
them from the application bundle template-bundle.

executable-name is the filename of the LispWorks image executable, not including the directory. The default value of
executable-name is the pathname name of the last component of target-path.

Notes

create-macos-application-bundle is implemented only in LispWorks for Macintosh.

See also

save-image-with-bundle

create-temp-file
open-temp-file Functions

Summary

Creates a "temp file" and returns a pathname or a stream to it.

Package

hcl

37 The HCL Package

738

http://www.lispworks.com/documentation/HyperSpec/Body/f_lisp_i.htm

Signatures

create-temp-file &key file-type directory prefix => pathname

open-temp-file &key file-type element-type directory prefix delete-when-close external-format => stream

Arguments

file-type⇓ A string or nil.

directory⇓ A pathname designator.

prefix⇓ A string or nil.

element-type⇓ A type specifier.

delete-when-close⇓ A generalized boolean.

external-format⇓ An external file format designator.

Values

pathname⇓ A pathname.

stream⇓ An I/O stream.

Description

The function open-temp-file opens a "temp file". This is a new file in the "temp directory" which is guaranteed to be new.
Its name contains a random element. The permissions of the file are read-write for the user only.

file-type is the file type of the name. The default value of file-type is "tmp".

directory, if supplied, is the directory to create the file in. It defaults to the default temp directory, which is what
get-temp-directory returns, which defaults to what the Operating System uses as the temp directory.

prefix is used as the first part of the file name. The default prefix is "lwtemp_machinename_pid". More characters are
appended to make the name unique and random.

If delete-when-close is non-nil, when the stream stream that is returned is closed, the system tries to delete the file quietly.
That is, it tries to avoid giving an error if it fails.

element-type and external-format are interpreted the same way as in open.

The stream that is returned is an I/O stream.

The function create-temp-file creates a new temp file and returns its pathname as pathname. create-temp-file
behaves exactly like open-temp-file, as described above, except that it returns a pathname rather than a stream to the new
file.

Notes

1. pathname can be called to find the pathname that was used in open-temp-file. The file can be guaranteed to be new
only if the temp directory is configured correctly.

2. The default "temp directory" can be found by using get-temp-directory.

3. When delete-when-close is non-nil, it tries to delete the file when the stream is closed, but that does not necessarily
succeed. On Microsoft Windows it certainly fails when the file is still opened (for example, by another stream in the
same process or another process).

37 The HCL Package

739

http://www.lispworks.com/documentation/HyperSpec/Body/a_pn.htm

See also

get-temp-directory
open
set-temp-directory

create-universal-binary Function

Summary

Creates a universal binary from two mono-architecture LispWorks images.

Package

hcl

Signature

create-universal-binary target-image src-image1 src-image2 &key image-type output-stream => target-image

Arguments

target-image⇓ A pathname designator.

src-image1⇓ A pathname designator.

src-image2⇓ A pathname designator.

image-type⇓ nil or one of the keywords :exe, :dll or :bundle.

output-stream⇓ An output stream or nil.

Values

target-image A pathname designator.

Description

The function create-universal-binary is intended for expert use only. The function save-universal-from-script

and the Application Builder in the LispWorks IDE are simpler ways to create a universal binary.

create-universal-binary writes a universal binary to the file target-image from the saved image files specified by src-
image1 and src-image2. The value of target-image is returned.

The source images src-image1 and src-image2 must both be LispWorks for Macintosh mono-architecture ("thin") images and
one should be for the arm64 architecture and the other for the x86_64 architecture (the order is immaterial). For example,
they could have been created by save-image or deliver.

image-type is interpreted as for save-image and defaults to :exe.

If output-stream is non-nil, then diagnostic messages may be written to it. output-stream defaults to the value of
standard-output.

Notes

create-universal-binary checks that src-image1 and src-image2 are LispWorks images of different architectures, but it

37 The HCL Package

740

does not check how they were saved or how similar they are. You need to ensure that both images contain the same
functionality.

create-universal-binary can only be called from a LispWorks for Macintosh image that is itself a universal binary,
such as the distributed image.

Compatibility note

In LispWorks 6,1 for Macintosh and earlier versions, create-universal-binary was implemented as above.

In LispWorks 7.0 and 7.1, create-universal-binary was deprecated and always signaled an error.

Examples

Suppose that you have saved two images, my-application-arm64 and my-application-x86_64, which contain the same
application code loaded on an arm64 Macintosh and a x86_64 Macintosh. The following command will combine them into a
universal binary my-application that will run on both kinds of Macintosh:

(create-universal-binary "my-application"
 "my-application-arm64"
 "my-application-x86_64")

See also

save-image
save-universal-from-script
27.12 Universal binaries on macOS

current-function-name Function

Summary

Return the name of the currently executing function as a string.

Package

hcl

Signature

current-function-name => name

Values

name⇓ A string or nil.

Description

The function current-function-name returns the name of the currently executing function as a string.

name is a string representing the name of the function from which current-function-name is called. The result is
generated by prin1-to-string with the variable *package* bound to the KEYWORD package.

37 The HCL Package

741

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pkg.htm

Notes

current-function-name is for use in debugging, for example to give more context in a run time error message that is
produced by a macroexpansion.

The result when current-function-name is called outside a function (in a Listener or at the top level of a file) is not well
defined. It is either nil or a name of some internally generated function.

current-stack-length Function

Summary

Returns the size of the current stack.

Package

hcl

Signature

current-stack-length => stack-size

Values

stack-size A positive integer.

Description

The function current-stack-length returns the current size of the stack, in 32 bit words (in 32-bit implementations) or
64-bit words (in 64-bit implementations).

Compatibility notes

In LispWorks 4.4 and previous on Windows and Linux platforms, current-stack-length was not implemented. This is
fixed in LispWorks 5.0 and later.

Examples

(current-stack-length) => 16000

See also

extend-current-stack
sg-default-size

37 The HCL Package

742

date-string Function

Summary

Return a string representing the date and time.

Package

hcl

Signature

date-string &optional universal-time expand-month => string

Arguments

universal-time⇓ nil (default) or an integer.

expand-month⇓ A generalized boolean, default false.

Values

string⇓ A string.

Description

The function date-string returns a string representing the date and time (including seconds).

If universal-time is non-nil then it is interpreted as a universal time. If universal-time is nil (the default), then the value
returned by calling get-universal-time is used. string is the printed representation of that universal time in the current
time zone.

If expand-month is true then the date is written as DD MMM YYYY, with the month in characters. Otherwise, the date is
written as YYYY/MM/DD, with the month in digits.

The time follows the date, separated by a space, and is always written as HH:MM:SS.

date-string is intended as a quick way of marking some text as related to some time. For example, the function
log-bug-form starts by doing something like:

(format stream "=== Log at ~a ===~2%" (date-string))

declaration-information Function

Summary

Return information about the function bindings of a symbol in an environment.

Package

hcl

37 The HCL Package

743

http://www.lispworks.com/documentation/HyperSpec/Body/f_get_un.htm

Signature

declaration-information decl-name &optional env => info

Arguments

decl-name⇓ A declaration name.

env⇓ An environment or nil.

Values

info⇓ Information about decl-name.

Description

The function declaration-information returns information about the declarations for decl-name in the environment env.

The following values for decl-name are supported:

optimize The value of info is a list of lists of the form (quality value), where quality is one of the
optimization qualities specified by the Common Lisp standard and LispWorks extensions
(float, for example). Each value is the corresponding value for that quality.

declaration The value of info is a list of symbols that have been declared as declaration names, for example
by:

(declaim (declaration ...))

There are currently no other supported values for decl-name.

Notes

declaration-information is part of the environment access API which is based on that specified in Common Lisp: the
Language (2nd Edition).

See also

augment-environment
define-declaration
function-information
map-environment
variable-information

default-package-use-list Variable

Summary

List of packages that newly created packages use by default.

Package

hcl

37 The HCL Package

744

http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_declar.htm

Initial Value

("CL" "LW" "HCL")

Description

The variable *default-package-use-list* is the default value of the :use keyword to defpackage, which specifies
which existing packages the package being defined inherits from.

default-profiler-collapse Variable

Summary

Controls collapsing of the profile tree.

Package

hcl

Initial Value

nil

Description

The variable *default-profiler-collapse* is a boolean indicating whether the profile tree should collapse functions
with only one child function. The default value is nil.

See also

print-profile-list
set-up-profiler

default-profiler-cutoff Variable

Summary

The minimum percentage that the profiler will display in the output tree.

Package

hcl

Initial Value

0

Description

The variable *default-profiler-cutoff* is the minimum percentage (0 to 100) that the profiler will display in its
output tree. Functions below this percentage will not be displayed. The initial value is 0, meaning display everything.

37 The HCL Package

745

See also

print-profile-list
set-up-profiler

default-profiler-limit Variable

Summary

The maximum number of lines of output that are printed during profiling.

Package

hcl

Initial Value

100,000,000

Description

The variable *default-profiler-limit* is the maximum number of lines of output in profile results. The default value
is large to ensure that you receive all possible output requested. *default-profiler-limit* only counts output lines for
functions that are actually called during profiling. Therefore, if *default-profiler-limit* is 19, and 20 functions were
profiled, you would receive full output if one or more of the functions were not actually called during profiling.

See also

print-profile-list
set-up-profiler

default-profiler-sort Variable

Summary

The default sorting style for the profiler.

Package

hcl

Initial Value

:profile

Description

The variable *default-profiler-sort* controls which column of the profiler's columnar report is used for sorting.

The value can be one of :profile, :call or :top.

37 The HCL Package

746

See also

print-profile-list
set-up-profiler

defglobal-parameter Macro

Summary

Defines a hcl:special-global parameter.

Package

hcl

Signature

defglobal-parameter name initial-value &optional doc => name

Arguments

name⇓ A symbol.

initial-value⇓ A Lisp object.

doc⇓ A string.

Values

name A symbol.

Description

The macro defglobal-parameter has the same semantics as cl:defparameter, but also declares the name name to be
hcl:special-global. initial-value is used as the value of the parameter and doc is used as its documentation string.

See also

defglobal-variable

defglobal-variable Macro

Summary

Defines a hcl:special-global variable.

Package

hcl

37 The HCL Package

747

http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm

Signature

defglobal-variable name &optional initial-value doc => name

Arguments

name⇓ A symbol.

initial-value⇓ A Lisp object.

doc⇓ A string.

Values

name A symbol.

Description

The macro defglobal-variable has the same semantics as cl:defvar, but also declares the name name to be
hcl:special-global. initial-value is used as the value of the parameter and doc is used as its documentation string.

See also

defglobal-parameter

define-declaration Macro

Summary

Define a user declaration handler for code walkers.

Package

hcl

Signature

define-declaration decl-name lambda-list &rest body => decl-name

Arguments

decl-name⇓ A symbol.

lambda-list⇓ A list of two symbols.

body⇓ One or more forms.

Values

decl-name A symbol.

Description

The macro define-declaration defines a handler for decl-name, which tells the compiler and augment-environment

how to deal with this declaration. The handler is a function with lambda list lambda-list, and body body, that is the same

37 The HCL Package

748

http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm

function as would be produced by:

#'(lambda lambda-list . body)

When the compiler and augment-environment processes a declaration with decl-name as the first element, the handler is
called with two arguments:

• The declaration itself.

• The environment, which is the compilation environment in the compiler and the new environment in
augment-environment.

The handler must return two values. The first value specifies what kind of declaration it is, and must be one of:

:variable The declaration applies to variable bindings, and hence affects the result of
variable-information.

:function The declaration applies to function bindings, and hence affects the result of
function-information .

:declare The declaration does not apply to bindings, and affects the result of
declaration-information.

If the first value is :variable or :function then the second value must be a list, the elements of which are lists of the
form (binding-name key value). If the corresponding information function (either variable-information or
function-information) is called with binding-name and the environment, then the a-list returned by the information
function as its third value will have value associated with key.

If the first value is :declare, then the second value must be a cons of the form (key . value). The function
declaration-information will return value when called with key and the environment.

define-declaration causes decl-name to be proclaimed as a declaration, as if by:

(proclaim '(declaration decl-name))

decl-name must not be a standard declaration identifier; define-declaration signals an error if it is.

The consequences are undefined if a key returned by a declaration handler defined with define-declaration is a symbol
that is used by the corresponding information function to return information about any standard declaration specifier. For
example, if the first return value from the handler is :variable, then the second return value should not use the symbols
dynamic-extent, ignore, or type as key, because they are reserved by variable-information to return information
about the corresponding standard declaration.

Notes

Using a declaration defined by define-declaration affects only the return values of variable-information,
function-information or declaration-information as described above. It does not affect the behavior of the
compiler. define-declaration is intended for use by code walkers that require extra information in the environment.

The evaluator ignores declarations defined by define-declaration.

define-declaration does not have any compile-time effect so must have be evaluated before a declaration for decl-name
is processed.

augment-environment processes declarations last, so the environment that is passed to the handler already contain any
other information that was passed to augment-environment.

The implementation of define-declaration is based on the specification in Common Lisp the Language, 2nd Edition as

37 The HCL Package

749

http://www.lispworks.com/documentation/HyperSpec/Body/d_dynami.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_ignore.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_type.htm

on CMU website on 10 Feb 2016: http://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node102.html.

See also

declare
declaration-information
function-information
variable-information
augment-environment
undefine-declaration

delete-advice Macro

Summary

Removes a piece of advice.

Package

hcl

Signature

delete-advice function-dspec name => nil

Arguments

function-dspec⇓ A function-dspec Specifies the function definition to which the piece of advice belongs.
See 7.5.1 Function dspecs for description of function-dspec.

name⇓ A symbol naming the piece of advice to be removed. Since several pieces of advice may
be attached to a single functional definition, the name is necessary to indicate which one is
to be removed.

Description

The macro delete-advice is used to remove a piece of advice named name for the definition named by function-dspec.
Advice is a way of altering the behavior of functions. Pieces of advice are associated with a function using defadvice.
They define additional actions to be performed when the function is invoked, or alternative code to be performed instead of
the function, which may or may not access the original definition. As well as being attached to ordinary functions, advice
may be attached to methods and to macros (in this case it is in fact associated with the macro's expansion function).

remove-advice is a function, identical in effect to delete-advice, except that you need to quote the arguments.

Notes

delete-advice is an extension to Common Lisp.

See also

defadvice
remove-advice
6 The Advice Facility

37 The HCL Package

750

delivered-image-p Function

Summary

The predicate for whether the running image is a delivered image.

Package

hcl

Signature

delivered-image-p => result

Values

result⇓ A boolean.

Description

The function delivered-image-p returns true if the running image is a delivered image, that is an executable or dynamic
library created by deliver.

Otherwise the running image is a LispWorks development image (potentially a Saved Session or saved explicitly by
save-image) and then result is false.

See also

deliver

deliver-to-android-project Function

Summary

Deliver LispWorks for Android. Implemented only in LispWorks for Android Runtime.

Package

hcl

Signature

deliver-to-android-project function project-path level &key library-name no-sub-dir studio-p &allow-other-
keys

Arguments

function⇓ A symbol.

project-path⇓ A pathname designator.

37 The HCL Package

751

level⇓ An integer in the inclusive range [0, 5].

library-name⇓ A string.

no-sub-dir⇓ A pathname or a string specifying a directory, or t or nil.

studio-p⇓ A boolean.

Description

The function deliver-to-android-project delivers a LispWorks runtime for the Android platform.

deliver-to-android-project creates two files, a Lisp heap and a dynamic library. It does some processing that is
specific to delivering for Android, including producing the dynamic library, and then calls deliver to produce the Lisp
heap. The two files are specific to the architecture of the image in which the call happens. The architecture can be 32-bit or
64-bit ARM, which correspond to the armeabi-v7a or arm64-v8a Android ABIs respectively, or 32-bit or 64-bit x86,
which correspond to x86 and x86_64 respectively. Thus to deliver an Android project for multiple ABIs, you need to deliver
using deliver-to-android-project in each architecture. See 16.1.1 Configuration for Separate APKs for different
architectures for discussion.

To actually use the Lisp code, the Lisp heap and dynamic library need to be included in your APK and the application's Java
code needs to call com.lispworks.Manager.init. See the description of project-path below, together with no-sub-dir
and studio-p, for details about how the files can be included in your APK.

library-name defaults to "LispWorks", and when supplied must be a string. It defines the base name of the files that
deliver-to-android-project produces, and much match the name that you supply as the deliverName argument in the
call to the Java method com.lispworks.Manager.init (which also defaults to "LispWorks").

The dynamic library file that deliver-to-android-project generates is named liblibrary-name.so. The heap file is
named liblibrary-name.so.armeabiv7a.lwheap for the 32-bit ARM architecture,
liblibrary-name.so.arm64v8a.lwheap for the 64-bit ARM architecture, liblibrary-name.so.x86.lwheap for the x86
architecture or liblibrary-name.so.x86_64.lwheap for the x86_64 architecture. Thus the default names are
libLispWorks.so and either libLispWorks.so.armeabiv7a.lwheap, libLispWork.so.arm64v8a.lwheap,
libLispWork.so.x86.lwheap, or libLispWork.so.x86_64.lwheap. com.lispworks.Manager.init assumes
this naming scheme based on its deliverName argument, so if you rename the files after delivery then you need to change the
deliverName argument.

function can be nil, in which case it is ignored. If function is non-nil it is a restart function that is called after the LispWorks
runtime finishes initializing. It is called asynchronously with no arguments (by mp:funcall-async) and its return value is
not used. By the time function is called, LispWorks is ready to receive calls from Java, and a call from function to Java may
be used to inform Java that LispWorks is ready, as an alternative to using the reporter argument to
com.lispworks.Manager.init (or in parallel to it). function should return in a short time (because it is called by
mp:funcall-async), so it should call mp:process-run-function to start another process if it might take a long time.

level is the delivery level. It is passed to deliver. See the documentation for deliver for details.

After deliver-to-android-project has determined the names of the files and where they go (see Determining the
location to write the files), it prepares the image for running on Android and generates the dynamic library. It then calls
deliver, passing function, the appropriate path, level, the deliver keywords :split, :exe-file, :dll-exports and
:image-type with the correct values for Android, and all the keyword arguments it was supplied with except library-name,
studio-p and no-sub-dir. The keywords that deliver-to-android-project passes explicitly should not be used, but the
rest of the deliver keywords can be used and are interpreted in the standard way (see the Delivery User Guide for details).
However, since CAPI is not available on Android, all keywords related to CAPI are not useful.

Description: Determining the location to write the files

no-sub-dir defaults to nil, and studio-p default to (not no-sub-dir). If studio-p is non-nil, then

37 The HCL Package

752

deliver-to-android-project deduces a "source set" directory (as described below). This directory is assumed to be a
"source set" directory as used by Android Studio, and the files are placed in directories below it where Android Studio
expects them to be. The dynamic library file is put in a sub-sub-directory named according to the architecture in which
deliver-to-android-project is called: jniLibs/armeabi-v7a for ARM 32-bit, jniLibs/arm64-v8a for ARM 64
-bit, jniLibs/x86 for x86 32-bit or jniLibs/x86_64 for x86 64-bit. The heap file is placed in a sub-directory named
assets. If studio-p is nil, both files are placed directly in the directory that is deduced by project-path and no-sub-dir.

If no-sub-dir is nil (the default), then deliver-to-android-project deduces the "source set" directory using the first
step that matches from the following steps:

1. If the directory specified by project-path contains a file named AndroidManifest.xml, then project-path is the
"source set" directory.

2. If there is a file named AndroidManifest.xml in the path app/src/main/ relative to project-path, then
project-path/app is taken as the "module directory", and the "source set" directory is deduced inside it as described in the
next step.

3. If there is a file named AndroidManifest.xml in the path src/main/ relative to project-path, then project-path is
assumed to be the "module directory".

deliver-to-android-project then checks if there is an "architecture specific source set directory" relative to the
"module directory". The "architecture specific source set directory" is expected to be src/archspecific, where
archspecific is specific to the architecture in which deliver-to-android-project is called: armeabiv7a for ARM
32-bit, arm64v8a for ARM 64-bit, x86 for x86 32-bit and x86_64 for x86 64-bit (Note that the ARM names contain no
hyphens, unlike the corresponding Android ABI names). If such a directory exists, then this is the "source set" directory
to put the files in, otherwise the standard location src/main/ under the "module directory" is the "source set" directory.

Note that armeabiv7a, arm64v8a, x86 and x86_64 are not standard Android Studio directories. The intention of this
feature is that you have APK flavors with these names, and Android Studio uses these directories as extra "source set"
directories. See 16.1.2 ABI splitting using flavors in the OthelloDemo for example how this is intended to be used.

4. If project-path has a sub-directory with a named archspecific (described in the previous step), then this sub-directory is
the "source set" directory. Note that in this case, it does not check for the existence of AndroidManifest.xml. This
case is intended to allow you to use the same project-path for all architectures even when saving in a directory that is not
inside the directory tree of the Android Studio project.

5. If deliver-to-android-project does not find any "source set" by matching any of the steps above, it signals an
error. Thus to place the files in an arbitrary place you need to supply a non-nil value for no-sub-dir.

If no-sub-dir is non-nil, then project-path specifies the directory. Note that in this case, studio-p defaults to nil, so if you
pass :no-sub-dir t and want to place the files in the appropriate directories as described above you need to also pass
:studio-p t. If no-sub-dir is a string or a pathname, it specifies a directory which is merged using merge-pathnames

with project-path as the defaults argument to specify where the Lisp heap file is to be written. This allows you to put the two
files in two arbitrary and unrelated directories.

Notes

1. Prior to LispWorks 8.0, the default placing of the files in deliver-to-android-project was like in an Eclipse
project. From LispWorks 8 onwards, the default matches an Android Studio project and
deliver-to-android-project has features to make it simple to deliver ARM 32-bit, ARM 64-bit, x86 32-bit and
x86 64-bit separately in order to create separate APKs for the two Android ARM ABIs (armeabi-v7a and arm64-v8a)
and when using the x86 Android Emulator. See 16.1.2 ABI splitting using flavors in the OthelloDemo for an example
of how the Android Studio project is intended to be configured for it to work. For a directory structure different from
Android Studio's, use no-sub-dir to put the files in the correct places. In addition, the using-ndk argument has been
removed because it was only useful for Eclipse projects.

37 The HCL Package

753

2. Like deliver, deliver-to-android-project cannot be called with multiprocessing running, and is best called
inside a script that is passed to LispWorks by the -build command line argument.

3. deliver-to-android-project is available only in the Android delivery images
(lispworks-8-1-0-arm-linux-android, lispworks-8-1-0-arm64-linux-android,
lispworks-8-1-0-x86-linux-android and lispworks-8-1-0-amd64-linux-android). These images must
be run either on Linux with the corresponding architecture or using an emulator such as QEMU.

You can use the shell script examples/android/run-lw-android.sh to deliver a LispWorks for Android Runtime
image with a delivery script that calls deliver-to-android-project using the QEMU emulator:

run-lw-android.sh -build /path/to/delivery-script.lisp

Note that this script tries to deliver both 32-bit and 64-bit for ARM and x86 architectures on the host machine
architecture when possible. It assumes that you have installed LispWorks for Android in your home directory, and that
you are running on an ARM machine or have QEMU installed in your home directory. You may need to edit the script if
these assumptions are incorrect.

See also

16 Android interface
Delivery User Guide

disable-trace Variable

Summary

Controls tracing.

Package

hcl

Initial Value

nil

Description

The variable *disable-trace* controls tracing without affecting the tracing state. If it is set to t then tracing is switched
off, but this does not call untrace. When the value of *disable-trace* is restored to nil, tracing continues as before.

Notes

disable-trace is an extension to Common Lisp.

See also

trace

37 The HCL Package

754

do-profiling Function

Summary

A convenience function for profiling multiple threads, combining start-profiling and stop-profiling.

Package

hcl

Signature

do-profiling &key initialize processes profile-waiting ignore-in-foreign sleep function arguments func-and-args print
stream

Arguments

initialize⇓ A boolean.

processes⇓ One of :current, :all, a mp:process or a list of mp:process objects.

profile-waiting⇓ A boolean.

ignore-in-foreign⇓ A boolean.

sleep⇓ A non-negative number, or nil.

function⇓ A function designator.

arguments⇓ Arguments passed to function.

func-and-args⇓ A function designator or a list (function-designator . args).

print⇓ A generalized boolean.

stream⇓ An output stream.

Description

The function do-profiling is a convenience function for profiling multiple threads, combining start-profiling and
stop-profiling.

The behavior of do-profiling with no arguments is the same as:

(progn
 (start-profiling :processes :all :time t)
 (sleep 6)
 (stop-profiling))

The arguments initialize, processes, profile-waiting and ignore-in-foreign are passed to start-profiling. They have the
same default values as for start-profiling, except processes which defaults to :all.

The arguments print and stream are passed to stop-profiling. They have the same default values as in
stop-profiling. print is also passed as the value of time in the call to start-profiling. print defaults to t.

sleep is the time to sleep in seconds. If sleep is nil or 0 then do-profiling does not sleep. Also, if sleep is not supplied
and either function or func-and-args are passed, it does not sleep.

37 The HCL Package

755

func-and-args, and function together with arguments, can both be used for calling a function you supply. func-and-args is
either a list of the form (function-designator . args), in which case function-designator is applied to the args, or it is a
function designator which is called without arguments. function is applied to arguments.

The order of execution is first func-and-args (if this is non-nil), then function together with arguments if function is non-nil,
and then sleep if sleep was passed explicitly or both function and func-and-args are nil.

On exit, do-profiling always stops the profiler rather than suspending it, that is the call to stop-profiling is with
:suspend nil.

Examples

To profile whatever happens in the next 6 seconds:

(hcl:do-profiling)

To profile whatever happens in the next 10 minutes:

(hcl:do-profiling :sleep 600)

To run 4 processes in parallel with the same function and profile until they all die:

(defun check-all-processes-died (processes)
 (dolist (p processes t)
 (when (mp:process-alive-p p)
 (return nil))))

(let ((processes
 (loop for x below 4
 collect
 (mp:process-run-function
 (format nil "my process ~a" x)
 () 'my-function))))
 (hcl:do-profiling
 :func-and-args
 (list 'mp:process-wait
 "Waiting for processes to finish"
 'check-all-process-died
 processes)))

See also

start-profiling
stop-profiling

dump-form Function

Summary

Dump a form to a file in a binary format.

Package

hcl

37 The HCL Package

756

Signature

dump-form form fasl-stream => nil

Arguments

form⇓ A form.

fasl-stream⇓ An opaque structure created using with-output-to-fasl-file.

Description

The function dump-form dumps form to fasl-stream, which must have been opened by using
with-output-to-fasl-file.

See dump-forms-to-file for more details.

See also

load-data-file
dump-forms-to-file
with-output-to-fasl-file

dump-forms-to-file Function

Summary

Dump forms to a file in a binary format, which can then be loaded using load-data-file.

Package

hcl

Signature

dump-forms-to-file pathname forms &key overwrite dump-standard-objects delete-on-error => nil

Arguments

pathname⇓ A pathname designator.

forms⇓ A list of forms.

overwrite⇓ A boolean.

dump-standard-objects⇓
A boolean.

delete-on-error⇓ A boolean.

Description

The function dump-forms-to-file allows you to dump each item in forms to a file pathname in a binary format, which
can then be loaded using load-data-file.

It is equivalent to using with-output-to-fasl-file and calling dump-form on each item in forms.

37 The HCL Package

757

overwrite specifies what to do if pathname already exists. If overwrite is non-nil, then the existing file is overwritten,
otherwise they signal an error. The default value of overwrite is t.

delete-on-error specifies what to in case of a non-local exit from dump-forms-to-file (typically abort after an error). By
default, the file is deleted, but if delete-on-error is nil then the file is left as it is. The default value of delete-on-error is t.

dump-standard-objects specifies what to do when trying to dump a standard object (that is, an instance of a subclass of
standard-object) which does not have a user-defined make-load-form. If dump-standard-objects is nil, an error is
signaled. If dump-standard-objects is non-nil, the instance is dumped using make-load-form-saving-slots. The default
value of dump-standard-objects is nil.

When the generated file is loaded by load-data-file, the forms are loaded and by default evaluated, though
load-data-file can also load without evaluating. If callback is passed to load-data-file, it gets each of the results.
Otherwise the results are discarded (except being printed when passing :print t). Hence to be useful, either
load-data-file must be called with callback, or evaluation of the forms should have some side effect, for example setting
the value of some special symbol or adding entries to some global table.

For a form which is not a list or an object with make-load-form, or is a quoted list, eval does nothing. Dumping such
forms and then using using the callback in load-data-file to do some work with them is the natural way of using
dump-forms-to-file and load-data-file to transfer large amounts of data.

Files generated by dump-forms-to-file can be loaded (by load-data-file) on any LispWorks platform with the same
byte order. All x86/x64 architectures have the same byte order (little-endian), so load-data-file on any x86/x64
architecture can be used load a data file that was generated on any x86/x64 architecture. The ARM architectures have the
same byte order as x86/x64. The reverse byte order (big-endian) is used by AIX and SPARC (old Solaris).

Notes

1. The dumping of objects is done the same way that compile-file dumps when it creates a fasl file, except for the
treatment of standard objects when dump-standard-objects is non-nil.

2. Dumping means creating a deep copy of the form. The elements and slots of lists, arrays of element type t, structures
(unless they have a make-load-form), and, when dump-standard-objects is non-nil, standard objects without
make-load-form are dumped recursively.

3. dump-forms-to-file cope with cyclic structures.

4. If you want to dump parts of cyclic structures, you can stop the recursion by defining an appropriate make-load-form
method for the objects at the nodes where the recursion should stop.

5. A fasl file created using dump-forms-to-file must be loaded only by load-data-file, and not by load.

Examples

(dump-forms-to-file "my-forms.data"
 '(#(1 2 3)
 89
 (* 7 7)
 '(* 9 9)))

Note that the first * form lacks a quote while the second has a quote.

Then (potentially in a different LispWorks version and/or on a different architecture) this:

(load-data-file "my-forms.data"
 :callback 'print)

prints this:

37 The HCL Package

758

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ld_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_l_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ld_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eval.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ld_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ld_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ld_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

#(1 2 3)
89
49
(* 9 9)

In contrast, loading the same binary file without evaluation:

(load-data-file "my-forms.data"
 :callback 'print
 :eval nil)

prints this:

#(1 2 3)
89
(* 7 7)
(QUOTE (* 9 9))

If you have evaluate following code:

(defclass my-class () ((a :initarg :a :accessor my-a)))
(defmethod make-load-form ((self my-class) &optional environment)
 (declare (ignore environment))
 `(make-instance ',(class-name (class-of self))
 :a ',(my-a self)))
(setq *my-instance* (make-instance 'my-class :a 42))
(dump-forms-to-file
 (compile-file-pathname "my-instance")
 (list `(setq *my-instance* ,*my-instance*)))

then in another session, with the same definition of my-class, loading the file "my-instance" using load-data-file will
create an equivalent instance of my-class and set *my-instance* to it:

(sys:load-data-file
 (compile-file-pathname "my-instance"))

See also

load-data-file

editor-color-code-coverage Function

Summary

Displays code coverage in an Editor tool for one file.

Package

hcl

Signature

editor-color-code-coverage filename &key code-coverage-data for-editing show-counters color-covered color-
uncovered font-lock-p comment-counters real-filename runtime-only => result

37 The HCL Package

759

Arguments

filename⇓ A pathname designator.

code-coverage-data⇓ A code-coverage-data object.

for-editing⇓ A boolean.

show-counters⇓ A boolean.

color-covered⇓ A boolean, controlled by preferences.

color-uncovered⇓ A boolean, controlled by preferences.

font-lock-p⇓ nil, t or the keyword :force. The default value of font-lock-p is t.

comment-counters⇓ A boolean, controlled by preferences.

real-filename⇓ A pathname.

runtime-only⇓ A boolean, controlled by preferences.

Values

result An editor buffer object, or a list.

Description

The function editor-color-code-coverage displays code coverage in an Editor tool in the LispWorks IDE for one file.

filename must specify a source file, which has code coverage information in code-coverage-data.

If code-coverage-data is not supplied, it defaults to the internal code coverage data, that is its binary file with code coverage
data was loaded in the current image or restore-code-coverage-data was called with data that contains this file.
Otherwise, it must specify a code-coverage-data object with data for this file.

for-editing specifies whether is intended that the buffer with the coloring will be editable. When for-editing is nil, a buffer
without a pathname is created with a different name from the source file, which prevents accidental overwriting of the source
file. If for-editing is non-nil, the file is opened in the normal way, which may mean using an existing editor buffer if it is
already opened. Unless you supply show-counters, a buffer that is opened with for-editing non-nil does not contain any
modification of the source code. The default value of for-editing is nil.

Depending on the value of comment-counters, the counters may be wrapped by #||#. When show-counters is non-nil,
counters are inserted inside the source code. The counters are wrapped in #||#, so the code is still functional, but less
readable. The default value of show-counters is (not for-editing).

color-covered and color-uncovered control whether to color covered and uncovered forms respectively. The default value of
color-covered is nil. The default value of color-uncovered is t. The default for color-covered and color-uncovered can be
set in the LispWorks IDE Preferences... dialog for Code Coverage Browser, tab Coloring.

font-lock-p controls whether font lock (that is, color according to Lisp syntax in the normal way) should be done. When it is
t, if the buffer is not already "font locked", it is "font locked" before coloring for code coverage. If font-lock-p is :force,
the buffer is always "font locked" first.

comment-counters controls whether to comment counters when they are added. It has no effect when show-counters is nil.
When the counters are commented, the code is still valid, because the reader just skips the counters, so you can edit and
compile it. When the counters are not commented, the code is not valid, but it is easier to read. The default for comment-
counters can be set in the Preferences... dialog for Code Coverage Browser, tab Coloring. The initial default value of
comment-counters is t.

runtime-only controls whether to display only run time forms, which means exclude forms that execute only at compile time

37 The HCL Package

760

or load time. The default for runtime-only can be set in the Preferences... dialog for Code Coverage Browser, tab Coloring.
The initial default value of runtime-only is nil.

real-filename may be used to specify the actual file to load. When it is non-nil, filename should be a pathname which is the
same as the truename that the compiler used when it compiled the file to generate the code coverage. The filename is used to
lookup the data in code-coverage-data, while real-filename is used as the actual text to load. Note that while filename needs
to be the same as the truename that the compiler used, it is not necessarily a real truename on the current machine.

editor-color-code-coverage returns the editor buffer if it is successful. If it fails it returns a list containing a format
string followed by format arguments, which can be used to present an error or message to the user.

If editor-color-code-coverage succeeds and for-editing is nil, it remembers that it generated the buffer for filename,
and if it is called again with the same filename and for-editing nil and succeeds, deletes the previous buffer.

See 10.7 Understanding the code coverage output for details of how to interpret the coloring.

Notes

real-filename is used when the coloring is done on a machine which sees the file via a different pathname than the machine
that compiled it, or when the code coverage data is generated from a copy of the source. The mapping in the Code Coverage
browser uses it. Figuring out the truename on a different machine is not always easy. The best way is way is to use the one
from the data, which you can find either by searching the data using map-code-coverage-data, or from a
code-coverage-file-stats object if you already have it.

See also

10.7 Understanding the code coverage output
10 Code Coverage
code-coverage-data

enlarge-generation Function

Summary

Enlarges a generation in 32-bit LispWorks.

Package

hcl

Signature

enlarge-generation gen-num size => result

Arguments

gen-num⇓ A generation number.

size⇓ The amount (in bytes) by which the generation is to be enlarged.

Values

result⇓ A boolean.

37 The HCL Package

761

Description

The function enlarge-generation enlarges generation gen-num by size bytes. If possible, an existing segment in
generation gen-num is enlarged, otherwise a new segment of size size is added to the generation.

result is t on success and nil on failure.

This function is useful when it is known that a generation will need to grow. After enlarge-generation is called, the
garbage collector is saved the work of deducing that the generation must grow.

enlarge-generation is most useful in non-interactive applications, where relatively long GC delays are not a problem. In
this case, enlarging generations 0 and 1 by several MB may improve the overall performance of the GC.

Notes

enlarge-generation is implemented only in 32-bit LispWorks. It is not relevant to the Memory Management API in 64-
bit implementations. In 64-bit implementations you can use set-default-segment-size.

See also

set-default-segment-size
11.3 Memory Management in 32-bit LispWorks

enlarge-static Function

Summary

Enlarges the size of the first static segment in 32-bit LispWorks.

Package

hcl

Signature

enlarge-static size => result

Arguments

size⇓ A non-negative fixnum.

Values

result⇓ A boolean.

Description

The function enlarge-static can be used when the system would otherwise allocate additional static segments. Such
additional segments would cause the application to grow irreversibly.

size is the amount (in bytes) by which the static segment is to be enlarged. It is rounded up to a multiple of 64K.

result is t if the static segment was successfully enlarged, and nil otherwise.

37 The HCL Package

762

http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm

Use room, with argument t, to find the size of the static segments, and thus the size by which to enlarge the first static
segment.

Notes

enlarge-static is implemented only in 32-bit LispWorks. It is not relevant to the Memory Management API in 64-bit
implementations, where the irreversible growth problem described above does not exist.

See also

in-static-area
room
set-default-segment-size
switch-static-allocation
11.3 Memory Management in 32-bit LispWorks

ensure-hash-entry Function

Summary

Gets a value from a hash-table, adding a new value if this fails, all with the table locked.

Package

hcl

Signature

ensure-hash-entry key hash-table new-value &optional in-lock-constructor => result

Arguments

key⇓ A Lisp object.

hash-table⇓ A hash-table.

new-value⇓ A Lisp object.

in-lock-constructor⇓ A function designator for a function of one argument.

Values

result A Lisp object.

Description

The function ensure-hash-entry gets the value for the key key in the hash table hash-table, and if this fails puts a new
value new-value in hash-table and returns it. ensure-hash-entry does all this with hash-table locked.

If the key key is not found, then if in-lock-constructor is non-nil then in-lock-constructor is called with new-value as its
argument, and the result is put in the table and returned. If key is not found and in-lock-constructor is nil, new-value is put
in the table and returned.

37 The HCL Package

763

http://www.lispworks.com/documentation/HyperSpec/Body/t_hash_t.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_hash_t.htm

Notes

ensure-hash-entry is quite inefficient because it always locks the hash table. Normally you should use
with-ensuring-gethash or gethash-ensuring instead.

See also

gethash-ensuring
with-ensuring-gethash
19.5 Modifying a hash table with multiprocessing

error-situation-forms Macro

Summary

Informs the compiler of "error situation" forms.

Package

hcl

Signature

error-situation-forms &body body => result

Arguments

body⇓ Lisp forms.

Values

result The result of evaluating body.

Description

The macro error-situation-forms tells the compiler that a body of code comprises "error situation" forms.

body is evaluated as an implicit progn, but its forms are treated as "error situation" forms. Currently that means that the
compiler does not generate code coverage inside body or for the (error-situation-forms ...) form itself, unless force
was supplied non-nil to generate-code-coverage or with-code-coverage-generation.

In the future, it may also affect other parameters.

Notes

For code coverage, error-situation-forms differs from without-code-coverage in that it does not generate a
counter for the (error-situation-forms ...) form itself, and therefore is more convenient to use.

Examples

(if (check-something)
 (ok-code)
 (error-situation-forms (call-error)))

37 The HCL Package

764

See also

without-code-coverage
generate-code-coverage
with-code-coverage-generation

expand-generation-1 Function

Summary

Controls expansion of generation 1 in 32-bit LispWorks.

Package

hcl

Signature

expand-generation-1 on

Arguments

on⇓ t, nil or 1.

Description

The function expand-generation-1 controls the subsequent behavior of the garbage collector when insufficient space is
freed by a mark-and-sweep. When this occurs, either generation 1 is expanded, or the objects in it are promoted.

If on is nil, generation 1 is never expanded.

If on is t, generation 1 is always expanded (rather than promotion) when needed.

If on is 1, generation 1 is only expanded if its current size is less than 500000 bytes. This is the initial setting.

Notes

expand-generation-1 is implemented only in 32-bit LispWorks. It is not relevant to the Memory Management API in 64-
bit implementations, where you can use set-default-segment-size.

See also

clean-generation-0
collect-generation-2
collect-highest-generation
mark-and-sweep
set-default-segment-size
set-gc-parameters
11.3 Memory Management in 32-bit LispWorks

37 The HCL Package

765

extend-current-stack Function

Summary

Extends the current stack.

Package

hcl

Signature

extend-current-stack &optional how-much => size

Arguments

how-much⇓ What percentage the stack should be extended by. The default is 50.

Values

size The new size of the stack, after extending.

Description

The function extend-current-stack extends the current stack by the percentage given by how-much.

Compatibility notes

In LispWorks 4.4 and previous on Windows and Linux platforms, extend-current-stack is not implemented. This is
fixed in LispWorks 5.0 and later.

Examples

To double the size of the current stack:

(hcl:extend-current-stack 100)

See also

current-stack-length
stack-overflow-behaviour

extended-time Macro

Summary

Prints useful timing information, including information on garbage collection (GC) activity.

37 The HCL Package

766

Package

hcl

Signature

extended-time &body body

Arguments

body⇓ The Lisp forms to be timed.

Description

The macro extended-time runs the forms in body. It then prints a summary of the time taken followed by a breakdown of
time spent in the GC.

The three columns of the GC breakdown show, respectively, total time, user time, and system time, all in seconds. The rows
of the GC breakdown indicate the type of activity.

In 32-bit LispWorks these rows begin:

main promote indicates promotions from generation 0.

internal promote indicates when an attempt to promote from one generation to the next causes promotion of the
higher generation, to make room for the objects from the lower generation.

fixup is a part of the compaction and promotion process.

In 64-bit LispWorks these rows begin:

Standard gen-num (n calls)

indicates n Standard GCs (includes automatic GCs and calls to gc-generation) in which the
highest generation collected was gen-num.

Marking gen-num (n calls)

indicates n Marking GCs (includes calls to marking-gc) in which the highest generation
collected was gen-num.

Thus in the example below:

Standard 1 (1 calls) ...

indicates that there was 1 Standard GC in which the highest generation collected was 1.

Notes

extended-time does not print Garbage Collector times if it is used while GC timing is on (after start-gc-timing is
called, and before get-gc-timing is called with reset non-nil).

Examples

This example illustrates output in 32-bit LispWorks:

CL-USER 57 > (extended-time (foo))

37 The HCL Package

767

Timing the evaluation of (PROGN (FOO))

User time = 26.703
System time = 0.109
Elapsed time = 27.047
Allocation = 40021902832 bytes
0 Page faults

 total / user / system
total gc activity = 3.312500 / 3.312500 / 0.000000
main promote (1 calls) = 0.000000 / 0.000000 / 0.000000
mark and sweep (7305 calls) = 3.312500 / 3.312500 / 0.000000
internal promote (0 calls) = 0.000000 / 0.000000 / 0.000000
promote (0 calls) = 0.000000 / 0.000000 / 0.000000
fixup (1 calls) = 0.000000 / 0.000000 / 0.000000
compact (0 calls) = 0.000000 / 0.000000 / 0.000000
10006387712
0.0

This example illustrates output in 64-bit LispWorks:

CL-USER 3 > (extended-time (foo))
Timing the evaluation of (PROGN (FOO))

User time = 11.433
System time = 0.268
Elapsed time = 11.197
Allocation = 80040251696 bytes
5 Page faults

 total / user / system
total gc activity = 2.168062 / 2.126444 / 0.041618
Standard 0 (28545 calls) = 2.153886 / 2.119799 / 0.034087
Standard 1 (1 calls) = 0.014176 / 0.006645 / 0.007531
10006387712
0.0

See also

start-gc-timing
time
11.2 Guidance for control of the memory management system

fasl-error Condition Class

Summary

The class of error signaled when loading a file which is not a proper fasl file.

Package

hcl

Superclasses

simple-error
file-error
stream-error

37 The HCL Package

768

http://www.lispworks.com/documentation/HyperSpec/Body/e_smp_er.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_file_e.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_stm_er.htm

Description

The condition class fasl-error is used by load and load-data-file to signal an error when the file is not a proper
binary file ("fasl file"), or seems to be corrupted.

See also

load-data-file

fast-directory-files
fdf-handle-directory-p
fdf-handle-directory-string
fdf-handle-last-access
fdf-handle-last-modify
fdf-handle-link-p
fdf-handle-size
fdf-handle-writable-p Functions

Summary

Maps a callback on the names of files in a specified directory and returns a list of those for which the callback returned true.
The callback can retrieve information about the files.

Package

hcl

Signatures

fast-directory-files dir-pathname callback => result

fdf-handle-directory-p fdf-handle => directory-p

fdf-handle-directory-string fdf-handle => directory-string

fdf-handle-last-access fdf-handle => last-access

fdf-handle-last-modify fdf-handle => last-modify

fdf-handle-link-p fdf-handle => link-p

fdf-handle-size fdf-handle => size

fdf-handle-writable-p fdf-handle => writable-p

Arguments

dir-pathname⇓ A pathname designator without wild characters in its directory path.

callback⇓ A function designator.

fdf-handle⇓ An opaque object used to retrieve information about a file in dir-pathname.

37 The HCL Package

769

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

Values

result A list of strings.

directory-p A boolean.

directory-string A string.

last-access, last-modify

Integers.

link-p A boolean.

size An integer.

writable-p A boolean.

Description

The function fast-directory-files maps the function callback on the names of the files in directory specified by dir-
pathname, and returns a list of the names for which callback returned non-nil.

dir-pathname must be a pathname designator, which does not contain wild characters in its directory path. To be useful, it
should either be a directory (with no name and type), or with wild name and/or type.

callback must be a function of two arguments, the name of the file and an opaque object (referred to as fdf-handle) which can
be used to retrieve information about the file, by calling any of the fdf-handle-… functions documented on this page.

fast-directory-files traverses the files that match dir-pathname in an undefined way, and for each file calls callback
with the file's name (not including the directory) and a fdf-handle. If callback returns non-nil it adds the name to a list. It
returns the list of names for which callback returned non-nil. Note that the names do not contain the directory name.

fdf-handle can be accessed by the following readers. Functions named in parentheses would return the same value when
called on the full path of the file:

fdf-handle-size returns the size of the file in bytes.

fdf-handle-last-modify returns the universal time of the last modification of the file (cl:file-write-date).

fdf-handle-last-access returns the universal time of the last access of the file.

fdf-handle-directory-p is a predicate for whether the file is a directory (file-directory-p).

fdf-handle-link-p is a predicate for whether the file is a soft link (always returns nil on Windows).

fdf-handle-writable-p is a predicate for whether the file is writable (file-writable-p).

fdf-handle-directory-string returns a string with the directory path followed by a separator. Therefore the full path
of the file can be constructed by:

(string-append (fdf-handle-directory-string fdf-handle)
 name)

Notes

fdf-handle can be used only within the dynamic scope of the callback to which it was passed.

See also

directory
27.14.2 Fast access to files in a directory

37 The HCL Package

770

http://www.lispworks.com/documentation/HyperSpec/Body/f_file_w.htm

file-binary-bytes Function

Summary

Creates a vector from the contents of a file.

Package

hcl

Signature

file-binary-bytes pathname &key length element-type => vector

Arguments

pathname⇓ A pathname designator.

length⇓ An integer or nil.

element-type⇓ A valid array element type.

Values

vector⇓ A vector with element type element-type.

Description

The function file-binary-bytes reads the bytes of the file specified by pathname and returns a vector containing those
bytes.

length specifies the length of the vector to create. If length is nil (the default), file-binary-bytes uses the length of the
file. If the file is shorter than length, the rest of the vector is uninitialized.

element-type is used both to specify the element type of vector and for opening the file. It should be one of the "natural"
binary element types such as (unsigned-byte 8) (the default) or (signed-byte 16).

file-link-p Function

Summary

Determines whether a pathname is a symbolic link.

Package

hcl

Signature

file-link-p pathname => link-p

37 The HCL Package

771

Arguments

pathname⇓ A pathname designator.

Values

link-p A boolean.

Description

The function file-link-p returns t if the path specifies by pathname is a symbolic link in the filesystem and nil

otherwise.

Notes

On Windows, file-link-p always returns nil.

See also

directory
file-directory-p

file-string Function

Summary

Returns the contents of a file as a string.

Package

hcl

Signature

file-string file &key length external-format => string

Arguments

file⇓ A pathname designator.

length⇓ An integer or nil (the default).

external-format⇓ An external format specification.

Values

string A string.

Description

The function file-string returns the entire contents of file (if length is nil), or the first length characters, as a string.

external-format is interpreted as for open. The default value is :default.

37 The HCL Package

772

Examples

CL-USER 26 > file-string "configure.lisp" :length 18
";; -*- Mode: Lisp;"

See also

guess-external-format

file-writable-p Function

Summary

Tests whether a file is writable.

Package

hcl

Signature

file-writable-p file => result

Arguments

file⇓ A pathname, string or file-stream, designating a file.

Values

result t or nil.

Description

The function file-writable-p checks whether file is writable. Note that this checks the properties of the file, so trying to
write to the file may still fail if the file is non-writable for other reasons, for example if it is opened for writing by another
program.

Examples

CL-USER 44 > (file-writable-p (sys:lispworks-file "private-patches/load.lisp"))
T

filter-code-coverage-data Function

Summary

Filters information from a code-coverage-data object.

37 The HCL Package

773

Package

hcl

Signature

filter-code-coverage-data ccd filter &key without-stats name => result

Arguments

ccd⇓ A code-coverage-data object or t.

filter⇓ A string or a function designator.

without-stats⇓ A boolean.

name⇓ A Lisp object, normally a symbol or a string.

Values

result A code-coverage-data object.

Description

The function filter-code-coverage-data creates a new code-coverage-data object with information for some of
the files in the argument ccd, as determined by filter. If ccd is t, this is interpreted as the internal code-coverage-data
object.

If filter is a string, it is interpreted as a regexp (see find-regexp-in-string) matched against the namestring of each file.
without-stats is ignored in this case.

If filter is a function designator, it is called with the truename of each file if without-stats is true and with the truename of
each file and a code-coverage-file-stats object for the file if without-stats is false. The default value of without-stats
is nil.

name is the name supplied to the new code-coverage-data object. The default value of name is "Filter".

See also

code-coverage-data
code-coverage-file-stats
map-code-coverage-data
10 Code Coverage

find-object-size Function

Summary

Returns the size in bytes of the representation of any Lisp object.

Package

hcl

37 The HCL Package

774

Signature

find-object-size object => size

Arguments

object⇓ Any Common Lisp form.

Values

size⇓ An integer.

Description

The function find-object-size returns the size in bytes of object.

size is the number of bytes of heap memory currently used to represent object. If object takes up no heap memory (fixnum or
character), then 0 is returned. Such objects are represented by an immediate value held in a single machine "word".

size includes hidden space required to hold type and other information; for instance, a base-string of 10 1-byte characters
occupies more than 10 bytes of memory.

Certain Common Lisp objects are not represented by a single heap object; for instance, using find-object-size on a hash
-table is misleading as the function returns the size of the hash-table descriptor, rather than the total of the descriptor and the
hash-table-array. General vectors and arrays also have this property. All symbols are of the same size, since the print name is
not part of a symbol object.

Examples

(hcl:find-object-size
 (make-string 1000 :initial-element #\A
 :element-type 'base-char))
=>
1012

See also

room
total-allocation

find-throw-tag Function

Summary

The predicate for whether there is a specific catch in the dynamic scope.

Package

hcl

Signature

find-throw-tag tag => result

37 The HCL Package

775

Arguments

tag⇓ A catch tag.

Values

result A boolean.

Description

The function find-throw-tag is the predicate for whether there is a catch in the dynamic scope with the supplied catch tag
tag, so that cl:throw will succeed to throw to it.

Notes

find-throw-tag needs to traverse all the catch frames on the stack until it finds the tag, and therefore would be slower then
checking a dynamically bound variable. If the check needs to be called often, then it is normally better to bind a special
variable when the catch is established, and then check that variable. In situations when the check is rare (for example, it is
called only in cases of error), using find-throw-tag is better because it eliminates the overhead of binding the special.

See also

throw-if-tag-found

finish-heavy-allocation Function

Summary

Tells the system that allocation of many long-lived objects is over.

Package

hcl

Signature

finish-heavy-allocation

Description

The function finish-heavy-allocation tells the system that the application finished doing 'heavy' allocation, and from
that point onwards allocation is 'normal'. The main distinction between heavy and normal allocation is the typical lifetime of
objects: normal allocation means most of new objects are ephemeral, while heavy allocation a large proportion of the new
objects are long-lived.

Heavy allocation normally happens when loading, either the application itself or large amount of data. Operations that do not
involve loading will almost always be normal. Hence the time that is useful to call finish-heavy-allocation is after
loading something.

See also

with-heavy-allocation

37 The HCL Package

776

http://www.lispworks.com/documentation/HyperSpec/Body/s_throw.htm

flag-not-special-free-action Function

Summary

Unflags an object for special action on garbage collection.

Package

hcl

Signature

flag-not-special-free-action object => nil

Arguments

object⇓ The object on which the special actions are to be removed.

Description

The function flag-not-special-free-action unflags object for special action on garbage collection.

Examples

CL-USER 1 > (make-instance 'capi:title-pane)
#<CAPI:TITLE-PANE "" 20F9898C>

CL-USER 2 > (flag-not-special-free-action *)
NIL

See also

add-special-free-action
flag-special-free-action
remove-special-free-action

flag-special-free-action Function

Summary

Flags an object for special action on garbage collection.

Package

hcl

Signature

flag-special-free-action object => t

37 The HCL Package

777

Arguments

object⇓ The object on which the special actions are to be performed. This cannot be a symbol.

Description

The function flag-special-free-action flags object for special action on garbage collection.

Note that all the current special-free-action functions are performed on the object. Use flag-not-special-free-action
to unflag an object.

Notes

Each object that is flagged for special free action adds some overhead to every garbage collection. This is not significant for a
small number of objects, but calling flag-special-free-action with a large number of objects may slow the system
significantly. Thus you should avoid using special free actions where possible. Normally, they should be used only for
objects that keep some external resources which need to be freed.

Examples

CL-USER 29 > (make-instance 'capi:title-pane)
#<CAPI:TITLE-PANE "" 20F9898C>

CL-USER 30 > (flag-special-free-action *)
T

See also

add-special-free-action
flag-not-special-free-action
remove-special-free-action

function-information Function

Summary

Return information about the function bindings of a symbol in an environment.

Package

hcl

Signature

function-information function-name &optional env => kind, localp, decls

Arguments

function-name⇓ A function name.

env⇓ An environment or nil.

37 The HCL Package

778

Values

kind⇓ Either nil, or one of the keywords :macro, :function and :special-form.

localp⇓ A boolean.

decls⇓ An a-list.

Description

The function function-information returns information about how function-name is bound in the environment env.
function-name can be a symbol or setf function name.

The value of kind will be as follows:

nil There is no information about function-name in env.

:macro function-name has a macro binding in env.

:function function-name has a function binding in env.

:special-form function-name has a special operator binding in env.

localp will be true if function-name is bound by a form that has indefinite scope (for example flet) or false if function-name
has global scope (for example defun).

decls is an a-list of declarations that refer to function-name. The cdr of each pair is specified according to the car of the pair
as follows:

dynamic-extent The cdr is non-nil if function-name is declared dynamic-extent in env.

inline The cdr is inline or notinline if function-name is explicitly declared inline or notinline in
env. The cdr is nil (or the pair is omitted) if this information is not known.

ftype The cdr is the type specifier that is declared for function-name in env if any.

Notes

1. Not all of these declarations are supported.

2. function-information is part of the environment access API which is based on that specified in Common Lisp: the
Language (2nd Edition).

See also

augment-environment
declaration-information
define-declaration
map-environment
variable-information

gc-generation Function

Summary

Does a Copying GC.

37 The HCL Package

779

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_dynami.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_dynami.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_inline.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_inline.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_inline.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_ftype.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

Package

hcl

Signature

gc-generation gen-num &key coalesce promote block => allocation

Arguments

gen-num⇓ An integer between 0 and 7 inclusive, or t.

coalesce⇓ A generalized boolean.

promote⇓ A generalized boolean.

block⇓ An integer between 0 and 7, inclusive, or one of the keywords :blocking-gen-num and
:all.

Values

allocation The total allocation in generation gen-num and younger generations.

Description

The function gc-generation does a Garbage Collection of a specific generation. The actual operation is different between
64-bit LispWorks and 32-bit LispWorks.

gen-num should be a valid generation number, or t. The value t is mapped to the blocking generation number in 64-bit
LispWorks, and to 2 in 32-bit LispWorks. For backwards compatibility the keyword :blocking-gen-num is also accepted,
with the same meaning as t.

It is especially helpful to GC the blocking generation (or other higher generations) when large, long-lived data structures
become garbage. This is because higher generations are rarely collected by default. For the higher generations, the GC takes
longer but recovers more space.

Another situation which may require gc-generation is when objects are marked for special free action (by
flag-special-free-action or free-function in a weak hash table). If such objects live long enough to be promoted to
higher generation, they may not be garbage collected long after there are no pointers to them. If the free action is important,
you may need to periodically GC higher generation (typically the blocking generation, by passing gen-num t).

Operation in 64-bit LispWorks

By default gc-generation operates on the live objects in generation gen-num and all lower generations at or above the
generation specified by block by copying them inside their current generation, and it operates on the live objects in
generations lower than block by copying them to the next higher generation.

If promote is non-nil, the live objects in generation gen-num are also promoted to the next generation. That is the same
operation that happens when the GC is invoked automatically. The default value of promote is nil.

If coalesce is non-nil, all non-static live objects in lower generations are promoted to generation gen-num. That is what
clean-down does (with gen-num being the highest generation). It may be useful directly in some cases. The default value of
coalesce is nil.

block specifies a generation number up to which to promote. An integer value specifies the generation number. If block is
:blocking-gen-num, then gc-generation promotes up to the blocking generation. If block is :all, then
gc-generation promotes nothing. The default value of block is :blocking-gen-num.

37 The HCL Package

780

gc-generation is useful when you know points in your application where many objects tend to die, or when you know that
that application is less heavily loaded at some time. Typically many objects die in the end (or beginning) of an iteration in a
top level loop of the application, and that is normally a useful place to put a call to gc-generation of generation 2 or
generation 3. If you know a time when the application can spend time garbage collecting, a call to gc-generation with a
higher value of gen-num may be useful. It is probably never really useful to use gc-generation on generation 0 or 1.

To decide on which gen-num to call gc-generation, check which generation gets full by making periodic calls to room.

gc-generation with promote or coalesce may also be useful to move objects from the blocking generation to higher
generations, which does not happen automatically (except when saving the image). For example, after loading a large amount
of code, and before generating any data that may die shortly, assuming the blocking generation is 3, it may be useful to do:

(gc-generation 4 :coalesce t)

to move all (non-static) objects to generation 4, where they will not be touched by the GC any more (except following
pointers to younger generations).

Operation in 32-bit LispWorks

gc-generation marks and sweeps the generation gen-num and all generations below, and then does some additional
cleanups. coalesce, promote and block are ignored.

Operation in the Mobile GC

When gen-num is a number, it must be 0, 1 or 2. The value t (and :blocking-gen-num) is interpreted as 2.

Generation 0 is always promoted, but the :promote keyword affects generation 1 and, if non-nil, promotes even if
promotion was blocked by set-promote-generation-1.

The keyword :block is ignored.

Otherwise, the function acts as in 64-bit LispWorks above.

Compatibility notes

In 32-bit LispWorks, gc-generation simply calls mark-and-sweep. This has a similar effect, but two significant
differences must be noted:

1. by default, gc-generation promotes the young generations, so repeated calls to gc-generation will promote
everything to generation gen-num or generation block (whichever is lower). In contrast mark-and-sweep never
promotes.

2. In 32-bit LispWorks, generation 2 is the blocking generation. In 64-bit LispWorks, the default blocking generation is
generation 3. That is because the 64-bit implementation promotes faster and so needs more generations before the block.

Also note that:

(gc-generation t)

is intended as the replacement for:

(mark-and-sweep 2)

See also

clean-down

37 The HCL Package

781

mark-and-sweep
marking-gc
set-blocking-gen-num
11.2 Guidance for control of the memory management system

gc-if-needed Function

Summary

Garbage collects if the previous call requires more space that is actually available in 32-bit LispWorks.

Package

hcl

Signature

gc-if-needed => nil

Description

The function gc-if-needed checks to see if the amount of allocation from the previous call is more than
system:*allocation-interval*, and if it is, performs a mark and sweep and promotion on generation 0. It also tries to
reduce the big-chunk area. This is a fairly brief operation, and can be used whenever some operation is finished and may
have left some garbage. The system itself uses it after compiling and loading files, when waiting for input, etc.

Notes

gc-if-needed does nothing in 64-bit LispWorks.

See also

avoid-gc
get-gc-parameters
mark-and-sweep
normal-gc
set-gc-parameters
without-interrupts
with-heavy-allocation
11.3 Memory Management in 32-bit LispWorks

generate-code-coverage Function

Summary

Switches code coverage generation on or off.

Package

hcl

37 The HCL Package

782

Signature

generate-code-coverage &key on atomic-p counters force count-implicit-branch => on

Arguments

on⇓ A boolean.

atomic-p⇓ A boolean.

counters⇓ A boolean.

force⇓ A boolean.

count-implicit-branch⇓
A boolean.

Values

on A boolean.

Description

The function generate-code-coverage switches code coverage generation on or off.

on determines whether code coverage is generated. If on is true, code coverage generation is switched on, which means that
when compile-file is called in the conventional way, that is generate a binary file from a source file, it generates code
coverage code. If on is nil, code coverage generation is switched off and in this case the other keyword arguments are
ignored. The default value of on is t.

generate-code-coverage returns t or nil, depending on the value of on.

atomic-p controls whether counting is done atomically or not. It is ignored when counters is nil. Passing atomic-p true
makes the counters atomic, which may be much slower than counting non-atomically, but guarantees that the code is not
going to drop counts when running multiprocessing. The default value of atomic-p is nil.

counters controls whether the code coverage code actually counts executions, or simply sets a flag to indicate that the code
has been executed. Passing counters nil generates code which is a little smaller and faster, but does not count the number of
times a piece of code has been executed. The default value of counters is t.

force, if true, forces generating counters in code that is marked not to generate counters by without-code-coverage or
error-situation-forms. The default value of force is nil.

count-implicit-branch controls whether to generate counters for implicit branches. Implicit branches are generated by macros
like cl:when, where the source only contains the "then" branch, and the "else" branch (which returns nil) is implicit. The
other macros are cl:unless (when it is an implicit "then"), and the switch macros cl:cond, cl:case and cl:typecase

when they do not have a t or otherwise clause. When count-implicit-branch is true, the compiler generates a counter for
the implicit branch, which counts the number of times that the implicit branch was executed. In other words for cl:when this
is the number of times that the condition returned nil; for cl:unless this is the number of times that the condition
returned true, and for the switch macros it is the number of times that all the clauses returned nil.

When coloring with an implicit branch with counter 0 inside a form with a non-zero counter, there is nowhere to put the color
for the uncovered code, so the form is colored as a hidden-partial form (see 10.7 Understanding the code coverage
output).

The default value of count-implicit-branch is t.

37 The HCL Package

783

http://www.lispworks.com/documentation/HyperSpec/Body/m_when_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_when_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_cond.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_case_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tpcase.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_case_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_when_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_when_.htm

Notes

If generate-code-coverage is called outside the body of with-code-coverage-generation, it switches the
generation globally. Inside the body of with-code-coverage-generation it switches the generation within the scope of
the surrounding with-code-coverage-generation, but has no effect once this with-code-coverage-generation
exited.

See also

code-coverage-data-generate-coloring-html
editor-color-code-coverage
error-situation-forms
with-code-coverage-generation
without-code-coverage
10 Code Coverage

get-code-coverage-delta
reset-code-coverage-snapshot
set-code-coverage-snapshot Functions

Summary

Generate "deltas", which are code-coverage-data objects with information for a period.

Package

hcl

Signatures

get-code-coverage-delta &key snapshot name => ccd

reset-code-coverage-snapshot => nil

set-code-coverage-snapshot => t

Arguments

snapshot⇓ A boolean.

name⇓ A Lisp object, normally a symbol or a string.

Values

ccd A code-coverage-data object.

Description

The function get-code-coverage-delta returns a code-coverage-data object with information covering the period
since the previous snapshot, and with name name. Normally this would be set by set-code-coverage-snapshot or
get-code-coverage-delta with snapshot non-nil. If there was no such previous call, then the "delta" period commences,
for each file, from the time it was loaded.

The function reset-code-coverage-snapshot eliminates any snapshot. This is useful because the snapshot uses

37 The HCL Package

784

memory.

The function set-code-coverage-snapshot creates a snapshot of the internal code coverage data, to be used by
get-code-coverage-delta.

When snapshot is non-nil, get-code-coverage-delta sets up a new snapshot. This is more efficient than using
set-code-coverage-snapshot again, but otherwise has the same effect. The default value of snapshot is nil.

Notes

1. The functions reset-code-coverage, clear-code-coverage and restore-code-coverage-data also
eliminate the snapshot.

2. Code coverage manipulation functions like subtract-code-coverage-data can also be used to compute deltas, but
get-code-coverage-delta will normally do it using less memory.

See also

clear-code-coverage
code-coverage-data
reset-code-coverage
restore-code-coverage-data
subtract-code-coverage-data

get-default-generation Function

Summary

Returns the current default generation.

Package

hcl

Signature

get-default-generation => default-gen

Values

default-gen An integer.

Description

By default, all new objects are allocated to a specific generation. The function get-default-generation returns the
current value of this default generation.

Notes

In 64-bit LispWorks get-default-generation returns 0.

See also

allocation-in-gen-num

37 The HCL Package

785

clean-generation-0
collect-generation-2
collect-highest-generation
expand-generation-1
set-default-generation
symbol-alloc-gen-num
11.3 Memory Management in 32-bit LispWorks

get-gc-parameters Function

Summary

Returns the current values of various garbage collector parameters in 32-bit LispWorks.

Package

hcl

Signature

get-gc-parameters parameters => values

Arguments

parameters⇓ A keyword representing a single GC parameter. Any other value means all parameters.

Values

values If parameters specifies a single GC parameter, the value of that parameter is returned.
Otherwise values is an alist containing every GC parameter, together with its current
value.

Description

The function get-gc-parameters returns the current values of the garbage collector parameters in 32-bit LispWorks
specified by parameters. See set-gc-parameters for a full description of these parameters.

With keyword argument, of one of the parameters, the corresponding value is returned.

Notes

get-gc-parameters is implemented only in 32-bit LispWorks. It is not relevant to the Memory Management API in 64-bit
implementations.

Examples

CL-USER 1 > (get-gc-parameters :minimum-overflow)
500000

CL-USER 2 > (pprint (get-gc-parameters t))

((:ENLARGE-BY-SEGMENTS . 10)
 (:MINIMUM-FOR-PROMOTE . 1000)
 (:MAXIMUM-OVERFLOW . 1000000)
 (:MINIMUM-OVERFLOW . 500000)

37 The HCL Package

786

 (:MINIMUM-BUFFER-SIZE . 200)
 (:NEW-GENERATION-SIZE . 262144)
 (:PROMOTE-MAX-BUFFER . 100000)
 (:PROMOTE-MIN-BUFFER . 200)
 (:MAXIMUM-BUFFER-SIZE . 131072)
 (:MINIMUM-FOR-SWEEP . 8000)
 (:BIG-OBJECT . 131072))

See also

set-gc-parameters
11.3 Memory Management in 32-bit LispWorks

gethash-ensuring Function

Summary

A thread-safe way to get a value from a hash-table, adding a value if the key is not already present.

Package

hcl

Signature

gethash-ensuring key hash-table constructor &optional in-lock-constructor => result

Arguments

key⇓ A Lisp object.

hash-table⇓ A hash-table.

constructor⇓ A function designator for a function of no arguments.

in-lock-constructor⇓ A function designator for a function of one argument.

Values

result A Lisp object.

Description

The function gethash-ensuring gets the value for the key key from the hash table hash-table, and if this fails constructs a
new value, puts it in the table and returns it. gethash-ensuring does this in a thread-safe way, which means that all
threads calling it with the same key and hash-table return the same value (as long as nothing removes it from the table).

If key is not found and constructor is non-nil, constructor is called to construct the new value. constructor is called without
any lock, and can do whatever is needed. The value that constructor returns may be discarded by gethash-ensuring if, by
the time it returns, there is already a matching value in hash-table (added by another thread or even inside constructor).

If in-lock-constructor is non-nil it is called with the result of constructor, or with nil if constructor is nil. in-lock-
constructor is called with hash-table locked, and its return value is guaranteed to be put in the table and to be returned by
gethash-ensuring. If in-lock-constructor is nil then the value that is returned by constructor, or nil, is used.

37 The HCL Package

787

http://www.lispworks.com/documentation/HyperSpec/Body/t_hash_t.htm

Notes

1. If constructor or in-lock-constructor are complicated, it is easier to use with-ensuring-gethash.

2. In most situations, using constructor to do all the work (which requires minimal holding of the lock) is better than using
in-lock-constructor. It means that sometimes the work that constructor did is wasted, because another thread put the
value in the table, but that overhead is normally less significant than the overhead of holding the lock for longer, with the
associated potential deadlocks. Use in-lock-constructor only if it is essential that the result goes into the table.

See also

ensure-hash-entry
with-ensuring-gethash
19.5 Modifying a hash table with multiprocessing

get-temp-directory Function

Summary

Returns a directory that can be used for temporary files.

Package

hcl

Signature

get-temp-directory => directory

Values

directory A pathname.

Description

The function get-temp-directory returns a directory which is likely to be writable and can be used for temporary files.

Notes

By default, the functions create-temp-file and open-temp-file use the result of get-temp-directory as the
directory to create their temp file in.

See also

create-temp-file
example-compile-file
open-temp-file

37 The HCL Package

788

get-working-directory Function

Summary

Finds the current working directory.

Package

hcl

Signature

get-working-directory => cwd

Values

cwd The current working directory, as a pathname.

Description

The function get-working-directory is used to find the current working directory. It returns a pathname, the directory
component of which is the current working directory.

Examples

CL-USER 1 > (get-working-directory)
#P"/u/dubya/"

See also

cd
change-directory

handle-existing-defpackage Variable

Summary

Controls LispWorks' response when defpackage is used on an existing package that is different from the definition given.

Package

hcl

Initial Value

(:warn :modify)

Description

The standard explicitly declines to define what defpackage does if the named package already exists and is in a different

37 The HCL Package

789

state to that described by the defpackage form. The variable *handle-existing-defpackage* is an extension to
Common Lisp which allows you to select between alternative behaviors that are known to be useful.

The two alternatives are to modify the package to conform exactly to the definition, removing features if necessary, or to
merely add features specified in the defpackage but missing from the package. You can also control whether a condition is
signaled.

The variable consists of a list of any of the following:

:error Signal an error.

:warn Signal a warning.

:add Add the new symbols to the externals, imports, and so on.

:modify Modify the package to have only these externals.

:verbose The signaled errors or warnings also contain details of the differences.

The options :error and :warn cannot be specified at the same time. One of :add and :modify must be specified.
Undistinguished internals (that is, internal symbols that are not imported or shadowed), :intern options and sizes are
ignored when deciding whether to signal.

Note that when you use :modify some symbols can be uninterned if defpackage imports another symbol with the same
name from another package through :import-from, :shadowing-import-from or :export. This happens whether the
symbol has a definition as a function, a variable, or nay other Lisp construct, so after making such a change in the package,
you should re-execute the definitions that were (presumably erroneously) attached to the uninterned symbols.

Notes

handle-existing-defpackage is an extension to Common Lisp.

See also

defpackage

handle-old-in-package Variable

Summary

Controls the handling of CLtL1-style in-package forms.

Package

hcl

Initial Value

:warn

Description

The variable *handle-old-in-package* controls what happens when a CLtL1-style in-package form is processed.
This refers to the specification in Common Lisp the Language, first Edition, which preceded ANSI Common Lisp and
specified in-package as a function with keyword arguments.

37 The HCL Package

790

The allowed values are as follows:

:quiet Quietly use the CLtL1 definition of the in-package function.

:warn Signal a warning and use the old definition.

:error Signal a continuable error.

See also

handle-old-in-package-used-as-make-package

handle-old-in-package-used-as-make-package Variable

Summary

Controls the handling of CLtL1-style in-package forms.

Package

hcl

Initial Value

:quiet

Description

The variable *handle-old-in-package-used-as-make-package* controls what happens when a CLtL1-style
in-package form which attempts to create a package is processed. This refers to the specification in Common Lisp the
Language, first Edition, which preceded ANSI Common Lisp and specified in-package as a function with keyword
arguments.

The allowed values are as follows:

:quiet Handle according to the value of *handle-old-in-package*.

:warn Signal a warning and create the package.

:error Signal a continuable error.

See also

handle-old-in-package

hash-table-weak-kind Function

Summary

Returns the weak kind of a hash table.

37 The HCL Package

791

Package

hcl

Signature

hash-table-weak-kind hash-table => weakness-state

Arguments

hash-table⇓ A hash table.

Values

weakness-state⇓ A keyword or nil.

Description

The function hash-table-weak-kind returns the weak kind (or weakness state) of the hash table hash-table.

See set-hash-table-weak for the meaning of the different values of weakness-state.

See also

set-hash-table-weak
make-hash-table

load-data-file Function

Summary

Loads a binary data file created by dump-forms-to-file or with-output-to-fasl-file.

Package

hcl

Signature

load-data-file pathname &rest load-args &key eval allow-any-type callback => result

Arguments

pathname⇓ A pathname designator.

load-args⇓ All of the arguments.

eval⇓ A generalized boolean.

allow-any-type⇓ A generalized boolean.

callback⇓ A function of one argument.

37 The HCL Package

792

Values

result A generalized boolean.

Description

The function load-data-file loads a fasl file created by dump-forms-to-file or with-output-to-fasl-file.

pathname names a file which must have been created by dump-forms-to-file or with-output-to-fasl-file.

eval controls whether the form is actually evaluated. When eval is nil, the form as loaded from the file (without evaluation)
is passed to callback (if supplied) and printed (if :print t is supplied). When eval is non-nil, the form is evaluated before
being passed to the callback and/or printed. The default value of eval is t.

When allow-any-type is true and the supplied pathname has a type, load-data-file tries to load it as a binary file without
checking whether the type is known. When allow-any-type is nil, load-data-file tries to load only pathnames with
known binary types (that is, either *binary-file-type* or in the list *binary-file-types*), exactly like load. The
default value of allow-any-type is t.

callback is called with the result of the evaluation of each form in the file (or the form itself if eval is nil). When callback is
supplied, the keyword :print (which normally would be processed by load) has no effect. Note: callback works only
when the file was generated by LispWorks 7.0 or later.

The other arguments in load-args are passed to load.

load-data-file has similar semantics to load, but treats fasl files differently:

• It cannot load a fasl generated by compile-file.

• It allows loading of fasls generated by dump-forms-to-file or with-output-to-fasl-file, including those
generated by a previous version of LispWorks, or other architectures of LispWorks, provided they have the same byte
order.

• It allows the option of a callback that is called on the result of loading the file.

Fasl files generated by dump-forms-to-file or with-output-to-fasl-file must only be loaded using
load-data-file.

load-data-file never loads a file as a text file, only files that are recognized as binary, which can be one of these
possibilities:

• pathname has a known type (either *binary-file-type* or in the list *binary-file-types*), or:

• pathname has an unknown type and allow-any-type is non-nil, or:

• pathname does not have a type and a matching file with the type matching *binary-file-type* is found.

If load-data-file ends up trying to load a file that is not a proper binary file, it signals an error of type fasl-error.

During the load, each form is loaded and, if eval is true, evaluated. If there is a callback, it is called with the result of the
evaluation. Otherwise, the result may be printed if :print t was passed, and is then discarded.

Notes

1. The default value of eval is t to give the same behavior as in LispWorks 6.1 and earlier versions. Passing eval as nil
and using a callback is probably a better way of transferring data around, because it avoids the calls to eval. If needed,
callback can call eval explicitly.

37 The HCL Package

793

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eval.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eval.htm

2. All x86/x64 and ARM architectures have the same byte order, so load-data-file on any x86/x64 or ARM
architecture can be used to load a data file that was generated on any x86/x64 or ARM architecture. The reverse byte
order is used by Power architecture (IBM AIX and old PowerPC Macs) and SPARC (old Solaris).

3. load-data-file returns the same value as load. In particular, the return value has nothing to do with the forms in the
file. To actually have an effect, either the forms themselves have side effects, or callback is used to perform any required
side effects.

4. load-data-file does not do any read operation, but if the forms in the file contain symbols (except nil) such
symbols need to be interned.

Compatibility notes

1. In LispWorks 6.1 and earlier versions load-data-file was in the SYSTEM package. It is still exported from
SYSTEM for backwards compatibility.

2. In LispWorks 6.1 and earlier versions load-data-file gave errors if the type was not recognized, but now by default
it allows any type.

3. In LispWorks 6.1 and earlier versions load-data-file, when given a plain lisp file, would load it the same way that
load does. In LispWorks 7.0 or later it signals an error of type fasl-error.

4. callback works only when the fasl file was generated by LispWorks 7.0 or later.

Examples

For a simple example see dump-forms-to-file.

See also

dump-forms-to-file
with-output-to-fasl-file
fasl-error
binary-file-type
binary-file-types
28.3 Transferring large amounts of data

load-fasl-or-lisp-file Variable

Summary

Controls the behavior of load for untyped pathnames.

Package

hcl

Initial Value

:load-fasl

Description

The variable *load-fasl-or-lisp-file* determines whether (load "foo") should load the binary file (foo.ofasl,
foo.ufasl, foo.64xfasl etc, depending on platform) or foo.lisp, when both exist. It may take the following values:

37 The HCL Package

794

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

:load-newer If the fasl is out-of-date, the lisp file is loaded, and a warning message is output in verbose mode.

:load-newer-no-warn

Like :load-newer, but without the warning.

:load-fasl Always choose fasl files in preference to lisp files, but when verbose, warn if the lisp file is
newer.

:load-fasl-no-warn Like :load-fasl, but without the warning.

:load-lisp Always choose lisp files in preference to fasl.

:recompile If the fasl file is out-of-date or there is none, compile and load the new fasl.

:maybe-recompile If the fasl is out-of-date, queries whether to load it, recompile and then load it, or load the lisp
file.

make-ring Function

Summary

Creates a "ring" object.

Package

hcl

Signature

make-ring size name &optional delete-function => ring

Arguments

size⇓ A positive fixnum.

name⇓ A string.

delete-function⇓ A function designator for a function of one argument.

Values

ring⇓ A "ring" object.

Description

The function make-ring creates a "ring" object, which can hold up to size elements. A ring has stack like behavior but is
limited in size, and can be rotated.

size is the maximum number of elements that the ring ring can hold. Once ring has this number of elements, if an element is
added to ring (by ring-push), an element is first removed from the ring.

name simply names the ring, but has no effect on its functionality. It is used when printing the ring object, and is returned by
ring-name.

37 The HCL Package

795

delete-function, if supplied, is called each time an element is removed from the ring (by ring-push) because it is full. The
default value of delete-function is #'identity.

The ring keeps the elements in a logical ring with an "insertion position". The function ring-push adds an element before
the insertion position. If the ring is full, it first removes the element immediately after the insertion position.

The function ring-pop removes from the ring the element before the insertion point, and returns that element. Thus when
using ring-push and ring-pop on their own, the ring behaves like a stack with limited length.

rotate-ring can be used to move the insertion point. ring-ref can be used to index into the ring. map-ring,
position-in-ring, and position-in-ring-forward can be used to iterate through the ring's elements.

All access to a ring is thread-safe. Therefore access to a ring may hang if another process keeps it locked. If you need to
guarantee no hanging, you can use with-ring-locked with non-nil timeout around the critical calls.

See also

ring-push
ring-pop
rotate-ring
ring-ref
ring-length
ringp
ring-name
map-ring
position-in-ring
with-ring-locked

make-unlocked-queue
unlocked-queue-read
unlocked-queue-peek
unlocked-queue-ready
unlocked-queue-send
unlocked-queue-count
unlocked-queue-size Functions

Summary

Create and use an unlocked-queue object.

Package

hcl

Signatures

make-unlocked-queue &key size name => new-unlocked-queue

unlocked-queue-read unlocked-queue => object

unlocked-queue-peek unlocked-queue => object

unlocked-queue-ready unlocked-queue => result

37 The HCL Package

796

unlocked-queue-send unlocked-queue object => object

unlocked-queue-count unlocked-queue => count

unlocked-queue-size unlocked-queue object => size

Arguments

size⇓ A positive integer.

name⇓ A Lisp object.

unlocked-queue⇓ An unlocked-queue object.

object⇓ A Lisp object.

Values

new-unlocked-queue⇓ An unlocked-queue object.

object A Lisp object.

result A boolean.

count A positive integer.

size A positive integer.

Description

The function make-unlocked-queue creates a new, empty unlocked-queue object.

The functions unlocked-queue-read, unlocked-queue-peek, unlocked-queue-ready, unlocked-queue-send,
unlocked-queue-count and unlocked-queue-size use an unlocked-queue object unlocked-queue.

size is a hint of the maximum number of objects that are expected to be in the queue simultaneously. The queue is extended
as needed, so size does not have to be a good guess.

name is used when printing new-unlocked-queue and so it is useful for debugging. name is not used otherwise.

unlocked-queue-read checks whether there is anything in the queue, and if so removes the first object in the queue and
returns it. Otherwise it returns nil.

unlocked-queue-peek checks whether there is anything in the queue, and if so returns the first object in the queue without
modifying the queue. Otherwise it returns nil.

unlocked-queue-ready returns a boolean specifying whether there is anything in the queue.

unlocked-queue-send adds object to the end of the queue, extending the queue if needed. It returns its second argument.

unlocked-queue-count returns the number of objects in the queue.

unlocked-queue-size returns the current size of the queue. Note that it is increased when needed by
unlocked-queue-send.

See also

make-mailbox
unlocked-queue

37 The HCL Package

797

map-code-coverage-data Function

Summary

Calls a function on each of the files in a code-coverage-data object.

Package

hcl

Signature

map-code-coverage-data ccd function &key without-stats collect => list

Arguments

ccd⇓ A code-coverage-data object or t.

function⇓ A function designator.

without-stats⇓ A generalized boolean.

collect⇓ nil, t or :truenames.

Values

list nil or a list either of truenames or of code-coverage-file-stats objects.

Description

The function map-code-coverage-data maps function over the files in ccd and optionally collects items for some of them.
If ccd is t, this is interpreted as the internal code-coverage-data object.

The arguments passed to function depend on without-stats. If without-stats is false then function is called with the truename
and a code-coverage-file-stats object for the file. If without-stats is true, then function is applied only to the
truename. The default value of without-stats is false.

If collect is t (the default), then map-code-coverage-data collects the stats (when without-stats is false) or the truename
(when without-stats is true) for each call to function that returns true. If collect is :truenames, then
map-code-coverage-data collects the truename for each call to function that returns true.

When collect is nil, map-code-coverage-data returns nil. Otherwise, it returns a list of the objects it collected.

See also

filter-code-coverage-data
code-coverage-data
code-coverage-file-stats
10 Code Coverage

37 The HCL Package

798

map-ring Function

Summary

Calls a function on each element of a ring, modifying the element.

Package

hcl

Signature

map-ring ring function

Arguments

ring⇓ A ring object created by make-ring.

function⇓ A function designator for a function of one argument.

Description

The function map-ring funcalls the function function on each element in the ring in turn, and sets that ring element to the
result.

Notes

1. function is called with the ring locked.

2. If you do not intend to modify the elements of ring, ensure that function returns its argument.

See also

make-ring
position-in-ring
position-in-ring-forward

mark-and-sweep Function

Summary

Garbage collects a specified generation in 32-bit LispWorks. This function is deprecated: use gc-generation instead.

Package

hcl

Signature

mark-and-sweep gen-number => bytes

37 The HCL Package

799

Arguments

gen-number⇓ 0 for the most recent generation, 1 for the most recent two generations, and so on up to a
maximum (usually 3). Numbers outside this range signal an error.

Values

bytes The number of bytes allocated in that generation.

Description

The function mark-and-sweep is used to garbage-collect the memory of generation gen-number (and all lower generations).
A call to this function forces the garbage collector to scan the specified generations. This can be of use in obtaining
consistent timings of programs that require memory allocation. Alternatively, performance can sometimes be improved by
forcing a garbage collection, when it is known that little memory has been allocated since a previous collection, rather than
waiting for a later, more extensive collection. For example, the function could be called outside a loop that allocates a small
amount of memory.

It is specially helpful to mark and sweep generation 2 when large, long-lived data structures become garbage, because by
default it is never marked and swept. The higher the generation number the more time the mark-and-sweep takes, but also
the more space recovered.

Notes

mark-and-sweep is implemented only in 32-bit LispWorks, and is deprecated. Use gc-generation instead.

mark-and-sweep is not relevant to the Memory Management API in 64-bit implementations. In 64-bit implementations you
can use gc-generation or marking-gc.

Examples

(mark-and-sweep 0) ; collect most recent generation
(mark-and-sweep 3) ; collect all generations

See also

avoid-gc
block-promotion
get-gc-parameters
gc-generation
gc-if-needed
normal-gc
set-array-weak
set-gc-parameters
set-hash-table-weak
without-interrupts
with-heavy-allocation
11.2 Guidance for control of the memory management system

37 The HCL Package

800

max-trace-indent Variable

Summary

The maximum level of indentation used in trace output.

Package

hcl

Initial Value

50

Description

The variable *max-trace-indent* is the maximum indentation that is used during output from tracing. Typically each
successive invocation of tracing causes the output to be further indented, making it easier to see how the calls are nested. The
value of *max-trace-indent* should be an integer.

Examples

USER 8 > (setq hcl:*max-trace-indent* 4)
4
USER 9 > (defun sum (n res) (if (= n 0)
 res
 (+ n (sum (1- n) res))))
SUM

USER 10 > (trace sum)
SUM

USER 11 > (sum 3 0)
 0 SUM > (3 0)
 1 SUM > (2 0)
 2 SUM > (1 0)
 3 SUM > (0 0)
 3 SUM < (0)
 2 SUM < (1)
 1 SUM < (3)
 0 SUM < (6)
 6

Notes

max-trace-indent is an extension to Common Lisp.

See also

trace

37 The HCL Package

801

merge-code-coverage-data
destructive-merge-code-coverage-data Functions

Summary

Merge two code-coverage-data objects.

Package

hcl

Signatures

merge-code-coverage-data ccd1 ccd2 name => result

destructive-merge-code-coverage-data ccd1 ccd2 => ccd1

Arguments

ccd1⇓ A code-coverage-data object or (for merge-code-coverage-data only) t.

ccd2⇓ A code-coverage-data object or t.

name⇓ A Lisp object, normally a symbol or a string.

Values

result A code-coverage-data object.

ccd1 A code-coverage-data object.

Description

The function merge-code-coverage-data and destructive-merge-code-coverage-data merge two
code-coverage-data objects.

Merging means taking all the files from ccd1 together with those files from ccd2 which do not have information in ccd1. For
files that appear in both ccd1 and ccd2, the information in ccd2 is ignored.

merge-code-coverage-data creates a new code-coverage-data object containing the information for each file, and
with name name.

destructive-merge-code-coverage-data adds to ccd1 those files from ccd2 which are not already there, and returns
ccd1.

If either of the datas is the internal code-coverage-data object, the file information is copied, so it does not change
anymore. Otherwise it just copies the pointer, because the file information is read-only.

See also

10 Code Coverage
code-coverage-data

37 The HCL Package

802

modify-hash Function

Summary

Reads and writes an entry in a hash table atomically.

Package

hcl

Signature

modify-hash hash-table key function => new-value, key

Arguments

hash-table⇓ A hash table.

key⇓ An object.

function⇓ A function designator.

Values

new-value⇓ An object.

key An object.

Description

The function modify-hash locks the hash table hash-table. It then calls the function function with three arguments: key, the
value currently associated with key in hash-table (if any), and a flag which is true if key was in the table. (This last argument
is needed in case the associated value is nil).

When function returns a value new-value, modify-hash then sets new-value as the value for key in the table.

modify-hash then unlocks the hash table and returns two values, new-value and key.

The overall effect is like:

(with-hash-table-locked
 hash-table
 (multiple-value-bind (value found-p)
 (gethash key hash-table)
 (let ((new-value (funcall function
 key value found-p)))
 (setf (gethash key hash-table) new-value)
 (values new-value key))))

but modify-hash should be more efficient.

It is guaranteed that no other thread can modify the value associated with key until modify-hash returns.

37 The HCL Package

803

Notes

function is called with hash-table locked, so it should not do anything that may cause excessive delays, or that waits for
another thread that tries to modify the table.

See also

make-hash-table
with-hash-table-locked
19.3 Atomicity and thread-safety of the LispWorks implementation
19.5 Modifying a hash table with multiprocessing

normal-gc Function

Summary

Returns the image to normal garbage collection activity in 32-bit LispWorks.

Package

hcl

Signature

normal-gc => t

Description

The function normal-gc resets various internal parameters that determine the frequency and extent of garbage collection to
their default settings.

normal-gc is generally used in conjunction with avoid-gc, to cancel the effects of the latter.

Notes

normal-gc is useful only in 32-bit LispWorks. In 64-bit implementations it does nothing and simply returns nil.

See also

avoid-gc
get-gc-parameters
gc-if-needed
mark-and-sweep
set-gc-parameters
without-interrupts
with-heavy-allocation
11.3 Memory Management in 32-bit LispWorks

37 The HCL Package

804

package-locally-nicknamed-by-list Function

Summary

Returns the other packages with a package-local nickname for a package.

Package

hcl

Signature

package-locally-nicknamed-by-list package-designator => packages

Arguments

package-designator⇓ A package designator.

Values

packages A list of package.

Description

The function package-locally-nicknamed-by-list returns a list of other packages that have a package-local nickname
for the package designated by package-designator.

Notes

Package-local nicknames are experimental and subject to change.

See also

add-package-local-nickname
package-local-nicknames
remove-package-local-nickname
defpackage option :local-nicknames

package-local-nicknames Function

Summary

Returns the package-local nicknames of a package.

Package

hcl

37 The HCL Package

805

Signature

package-local-nicknames package-designator => nicknames

Arguments

package-designator⇓ A package designator.

Values

nicknames⇓ An alist.

Description

The function package-local-nicknames returns an alist of containing the package-local nicknames of the package
designated by package-designator.

Each element of nicknames is a list of the form:

(local-nickname . actual-package)

local-nickname and actual-package are canonicalized, which means local-nickname is a string and actual-package is a
package object, regardless of what values were given when the nickname was added.

See add-package-local-nickname for a description of how package-local nicknames are affect the implementation of
LispWorks.

Notes

Package-local nicknames are experimental and subject to change.

See also

add-package-local-nickname
package-locally-nicknamed-by-list
remove-package-local-nickname
defpackage option :local-nicknames

packages-for-warn-on-redefinition Variable

Summary

A list specifying packages whose symbols should be checked on attempted definitions.

Package

hcl

Initial Value

(:implementation)

37 The HCL Package

806

Description

The variable *packages-for-warn-on-redefinition* is a list of package names or the keyword :implementation,
specifying packages which are "protected". For "protected" packages, LispWorks checks before defining (using any of the
definer macros like cl:defun, cl:defclass and so on) any external symbol of these packages, and takes the action
specified by *handle-warn-on-redefinition* (which defaults to signaling an error).

The symbol :implementation in *packages-for-warn-on-redefinition* indicates all of the packages which are
part of the LispWorks implementation. That includes all the documented packages, including COMMON-LISP and
KEYWORD but excluding some "user" packages like CL-USER and KW-USER, and some packages that are used internally.

For symbol value, setting and rebinding is not checked, but defining using definer macros like cl:defvar and
cl:defparameter is checked.

Notes

1. The checking is useful because it is relatively easy to redefine an external symbol by mistake, and it leads to undefined
behavior which is difficult to debug. It is therefore a bad idea to remove :implementation from the list. In situations
when this is required, you should do it by rebinding *packages-for-warn-on-redefinition* rather than setting it.

2. You can protect your packages by adding their package names to this list.

3. The check is applied for any definition, whether it is actually a redefinition or not. For example, trying to define the
symbol cl:stream as a function gives an error (by default), even though cl:stream has only a class definition, and
trying to define cl:car as a class also errors even though cl:car has only a function definition.

4. You can check whether a package is an implementation package by using package-flagged-p with the keyword
:implementation.

Compatibility note

:implementation was new in LispWorks 7.0.

In LispWorks 6.1 and earlier versions, the list could contain only package names, and the initial value was a long list of
package names.

See also

handle-warn-on-redefinition
package-flagged-p
7.7.2.2 Protecting packages

parse-float Function

Summary

Parses a float from a string and returns it as float.

Package

hcl

Signature

parse-float string &key start end default-format => float

37 The HCL Package

807

http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_stream.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_stream.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

Arguments

string⇓ A string.

start⇓, end⇓ Bounding index designators for string.

default-format⇓ One of the atomic type specifiers short-float, single-float, double-float, or
long-float.

Values

float⇓ A float.

Description

The function parse-float parses a float from the substring of string delimited by start and end and returns it as float.

If the substring represents an integer or the exponent marker is E or is omitted, then float will be of type default-format,
which defaults to the value of *read-default-float-format*. Otherwise, its type will match the exponent marker as
specified by 2.3.2.2 "Syntax of a Float" in the Common Lisp standard.

If the substring does not represent an integer or a float, then an error of type parse-error is signaled.

Examples

(parse-float "10") => 10.0f0

(parse-float "10" :default-format 'double-float) => 10.0d0

(parse-float "10d0") => 10.0d0

(parse-float "10.5") => 10.5f0

(parse-float "10.5d0") => 10.5d0

position-in-ring
position-in-ring-forward Functions

Summary

Finds the first ring element that matches a supplied item and returns its index.

Package

hcl

Signatures

position-in-ring ring item index &key test => result

position-in-ring-forward ring item index &key test => result

37 The HCL Package

808

http://www.lispworks.com/documentation/HyperSpec/Body/v_rd_def.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_parse_.htm

Arguments

ring⇓ A ring object created by make-ring.

item⇓ A Lisp object.

index⇓ A non-negative integer.

test⇓ A function designator for a function of two arguments.

Values

result A non-negative integer or nil.

Description

The function position-in-ring finds in the ring ring the first element that matches item and returns its index, or nil if
there is no match. The search starts from index index and proceeds "backward" up to the length of the ring (its current
number of elements). In other words, it tests all the elements that would be returned by ring-ref with indices index,
index+1, ... , length-1. It does not wrap around, so elements between indices 0 and index are not tested.

The function position-in-ring-forward does the same except that it searches from index "forward" to the insertion
point. In other words, it tests the elements that would be returned by ring-ref with indices index, index-1, ..., 0.

The comparison is done by calling test, with item as first argument and each element in the ring as the second argument. The
default value of test is eql.

Notes

test is called with the ring locked.

Compatibility notes

In LispWorks 6.1 and earlier versions, these functions are called find-in-ring and find-in-ring-forward. They have
been renamed to match the Common Lisp convention that a function returning an index is named position-*. The old
names are retained for backwards compatibility, but are deprecated.

See also

make-ring
map-ring

print-escape-potential-numbers Variable

Summary

Controls escaping when printing potential numbers that are not actually numbers.

Package

hcl

Initial Value

t

37 The HCL Package

809

http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm

Description

The variable *print-escape-potential-numbers* controls whether the Lisp printer escapes symbols whose names
have the syntax of a potential number but do not actually have the syntax of a number. Such symbols are printed without
escapes when *print-escape-potential-numbers* is nil and printed with escapes otherwise.

print-escape-potential-numbers has no effect when escaping is off, that is when both *print-readably* and
print-escape are nil.

The section Potential Numbers as Tokens in the Common Lisp HyperSpec specifies that symbols with names that are
potential numbers need to be printed with escapes when escaping is on. This is the default behaviour in LispWorks. If the
value of *print-escape-potential-numbers* is nil, then the printer escapes only symbol names that would read as
numbers with the current read settings.

Prior to LispWorks 8.1, all potential numbers were printed with escapes.

Examples

(prin1-to-string '5h__h)
=> "|5H__H|" ; escaped because it is a potential number

(let ((*print-escape-potential-numbers* nil))
 (prin1-to-string '5h__h))
=> "5H__H" ; not escaped because not readable as number

(let ((*print-escape-potential-numbers* nil))
 (prin1-to-string '5\.6))
=> "|5.6|" ; escaped because readable as number

print-profile-list Function

Summary

Prints a report of symbols that have been profiled.

Package

hcl

Signature

print-profile-list &key sort limit cutoff collapse => nil

Arguments

sort⇓ :call, :profile or :top.

limit⇓ An integer.

cutoff⇓ A real number.

collapse⇓ A generalized boolean.

Description

The function print-profile-list prints a report of symbols, after profiling using profile, or start-profiling

37 The HCL Package

810

http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_rda.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_esc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/02_caa.htm

followed by stop-profiling.

If the profiler was set up with style :tree, then a tree of calls is printed first, according to limit, cutoff and collapse. Then a
columnar report is printed showing how often each function was called, profiled and found on the top of the stack. This
report is sorted by the column indicated by the value of sort.

If the profiler was set up with style :list, then only the columnar report is printed.

sort can take these values:

:call Sort by the number of times the function was called.

:profile Sort by the number of times the function was found on the stack.

:top Sort by the number of times the function was found at the top of the stack.

If sort is not passed then the results are printed as after the profiling run. The default is the value of the variable
default-profiler-sort.

limit is the maximum number of lines printed in the columnar report as described for *default-profiler-limit*. The
default is the value of the variable *default-profiler-limit*.

cutoff is the minimum percentage that the profiler will display in the output tree as described for
default-profiler-cutoff. The default is the value of the variable *default-profiler-cutoff*.

collapse controls collapsing of the output tree as described for *default-profiler-collapse*. The default is the value
of the variable *default-profiler-collapse*.

Notes

You should not call print-profile-list while the profiler is running (see profile and start-profiling) or
suspended (see stop-profiling).

Examples

First set up the profiler :

CL-USER 1 > (set-up-profiler
 :symbols
 '(cadr car eql fixnump + 1+ caadr cddr))

CL-USER 2 > (profile (dotimes (a 1000000 nil)
 (+ a a)
 (car '(foo))))

Then call print-profile-list:

CL-USER 3 > (print-profile-list :sort :top)

Profiler sampled 251 times

Call tree
Symbol seen (%)
 1: LET 251 (100)
 2: UNWIND-PROTECT 251 (100)
 3: MULTIPLE-VALUE-PROG1 251 (100)
 4: BLOCK 251 (100)
 5: LET 251 (100)
 6: LET 251 (100)
 7: TAGBODY 251 (100)

37 The HCL Package

811

 8: SETQ 100 (40)
 9: THE 44 (18)
 10: THE 23 (9)
 11: CADR 1 (0)
 10: 1+ 2 (1)
 10: FIXNUMP 1 (0)
 9: SETQ 10 (4)
 10: CDDR 1 (0)
 10: CADR 1 (0)
 9: CADR 2 (1)
 8: IF 24 (10)
 8: GO 10 (4)
 9: CDDR 1 (0)
 9: EQL 1 (0)
 9: CAADR 1 (0)
 8: WITHOUT-CODE-COVERAGE 4 (2)
 8: QUOTE 2 (1)

Cumulative profile summary
Symbol called profile (%) top (%)
SETQ 0 110 (44) 30 (12)
THE 0 67 (27) 15 (6)
TAGBODY 0 251 (100) 8 (3)
WITHOUT-CODE-COVERAGE 0 4 (2) 4 (2)
GO 0 10 (4) 4 (2)
CADR 0 4 (2) 4 (2)
QUOTE 0 2 (1) 2 (1)
IF 0 24 (10) 2 (1)
CDDR 0 2 (1) 2 (1)
1+ 0 2 (1) 2 (1)
FIXNUMP 0 1 (0) 1 (0)
EQL 0 1 (0) 1 (0)
CAADR 0 1 (0) 1 (0)
UNWIND-PROTECT 0 251 (100) 0 (0)
BLOCK 0 251 (100) 0 (0)
MULTIPLE-VALUE-PROG1 0 251 (100) 0 (0)
LET 0 753 (300) 0 (0)

On average 1.0 stacks profiled each profiler sampling
Top of stack not monitored 70% of the time
Sampled while in GC 0 times (0% of 251 samplings)
NIL

Notes

You can suppress printing of those symbols that are currently profiled but which were not called in the profiling run by setting
system:*profiler-print-out-all* to nil.

system:*profiler-print-out-all* is a variable defined when the profiler is loaded by set-up-profiler. Its initial
value is nil.

See also

default-profiler-collapse
default-profiler-cutoff
default-profiler-limit
default-profiler-sort

37 The HCL Package

812

print-string Variable

Summary

Specifies a maximum length when printing strings.

Package

hcl

Initial Value

t

Description

The variable *print-string* controls whether the printer uses an abbreviated form for strings when *print-escape* is
true.

If the value of *print-string* is t then strings are printed in full as specified by ANSI Common Lisp.

If the value of *print-string* is nil, then strings are printed as unreadable objects with no specific information about the
string.

If the value of *print-string* is an integer, then strings longer than *print-string* are printed as unreadable objects
that include the type, length and first *print-string* characters.

profile Macro

Summary

Profile while executing some forms.

Package

hcl

Signature

profile &body forms => results-of-final-form

Arguments

forms⇓ Lisp forms.

Values

results-of-final-form Results of the final form in forms.

37 The HCL Package

813

http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_esc.htm

Description

The macro profile starts the profiler, evaluates forms, stops the profiler, reports the results of the profiling, and then returns
the results of the last form in forms.

The profiler is described in 12 The Profiler.

Notes

profile profiles all processes. For better control of this, use start-profiling or do-profiling.

If profile is invoked before set-up-profiler was ever called, it calls set-up-profiler implicitly without arguments.

profile cannot be called while another profiling operation is running, either by a parallel call to profile or
start-profiling.

See also

start-profiling
stop-profiling
set-up-profiler
12 The Profiler
11.2 Guidance for control of the memory management system

profiler-threshold Variable

Summary

Controls which symbols are profiled on repeated profiling runs.

Package

hcl

Initial Value

0

Description

The variable *profiler-threshold* is used with repeated profiling runs, to control which symbols are profiled. It is set
by set-profiler-threshold.

See also

set-profiler-threshold

37 The HCL Package

814

profiler-tree-from-function Function

Summary

Prints a call tree of profiled code below a given function.

Package

hcl

Signature

profiler-tree-from-function function-name &optional max-depth

Arguments

function-name⇓ A symbol naming a function.

max-depth⇓ A number or nil.

Description

The function profiler-tree-from-function prints a tree with root function-name whose children are the callees of
function-name and their callees.

profiler-tree-from-function uses the data from the previous 'profile session' with style :tree. A profile session ends
at the end of profile or when stop-profiling is called, or when the Profiler tool finishes profiling.

In both cases the counts of profile calls is the total counts of the calls to function-name. Note that the percentages (the
number in parentheses) are percentages from the total number of profile calls, rather than from the numbers of calls to
function-name.

If max-depth is a number it limits the depth of tree that is printed to that value. The default value of max-depth is nil,
meaning no limit on the depth that is printed.

See also

profile
start-profiling
stop-profiling
12.4 Profiler output

profiler-tree-to-allocation-functions Function

Summary

Prints a reversed call tree of profiled code below allocation functions.

Package

hcl

37 The HCL Package

815

Signature

profiler-tree-to-allocation-functions &optional max-depth

Arguments

max-depth⇓ A number or nil.

Description

The function profiler-tree-to-allocation-functions prints a tree of function calls where the roots are the various
allocation functions of LispWorks, and the children are their callers. The tree is reversed, with callers appearing under their
callees.

profiler-tree-to-allocation-functions uses the data from the previous profile session with style :tree. A profile
session ends at the end of profile or when stop-profiling is called or when the Profiler tool finishes profiling.

max-depth limits the depth of tree that is printed. If max-depth is nil then there is no limit on the depth that is printed. The
default value of max-depth is 12.

See also

profiler-tree-to-function
profile
stop-profiling

profiler-tree-to-function Function

Summary

Prints a reversed call tree of profiled code below a given function.

Package

hcl

Signature

profiler-tree-to-function function-name &optional max-depth

Arguments

function-name⇓ A symbol naming a function.

max-depth⇓ A number or nil.

Description

The function profiler-tree-to-function prints a tree with root function-name whose children are the callers of
function-name and their callers. Note that the tree is reversed, that is, callers appear under their callees.

profiler-tree-to-function uses the data from the previous 'profile session' with style :tree. A profile session ends at
the end of profile or when stop-profiling is called, or when the Profiler tool finishes profiling.

In both cases the counts of profile calls is the total counts of the calls to function-name. Note that the percentages (the

37 The HCL Package

816

number in parentheses) are percentages from the total number of profile calls, rather than from the numbers of calls to
function-name.

max-depth limits the depth of tree that is printed. If max-depth is nil there is no limit on the depth that is printed. The
default value of max-depth is 7.

See also

profile
profiler-tree-from-function
stop-profiling
12.4 Profiler output

profile-symbol-list Variable

Summary

Deprecated. The list of symbols to be profiled.

Package

hcl

Initial Value

nil

Description

The variable *profile-symbol-list* is the list of symbols that are profiled if profile is called. Symbols in this list are
monitored by the profiler to see if their function objects are on the stack when the profiler interrupts the Lisp process. The
length of this list does not affect the speed of the profiling run.

Notes

profile-symbol-list should normally be set by one of the above functions which check that the symbol is suitable for
profiling before adding them to the list.

See also

add-symbol-profiler
remove-symbol-profiler
set-up-profiler

reduce-memory Function

Summary

Attempts to reduce the size of the Lisp image, without enlarging it even temporarily.

37 The HCL Package

817

Package

hcl

Signature

reduce-memory &optional full => new-size

Arguments

full⇓ nil or t (or 0, 1, 2 or :aggressive on Mobile GC).

Values

new-size A positive integer.

Description

The function reduce-memory frees memory and tries to reduce the size of the Lisp image, without enlarging it even
temporarily.

reduce-memory has the same effect as clean-down, except that clean-down may temporarily increase the size of the
image in order to be able to promote from lower generations. reduce-memory never increases the image size, which means
that it may fail to promote. This will cause future garbage collections to be slower, until the promotion actually occurs.

reduce-memory is intended to be used when the operating system signals that the memory is low, which is a common
feature of mobile platforms, for example onTrimMemory and onLowMemory in Android and didRceciveMemoryWarning

in iOS. Using clean-down in this situation may cause a temporary increase in size, which may cause the system to run out
of memory, or maybe just kill the Lisp process. In other circumstances clean-down should do a better job (and you might
also consider try-move-in-generation).

In 32-bit LispWorks, if full is nil, reduce-memory frees memory and promotes live objects to generation 2. When full is
non-nil, reduce-memory frees and promotes to generation 3.

In ordinary (Sparse) 64-bit LispWorks, full is ignored. The call just frees what it can free easily.

When using the Mobile GC, if full is nil, reduce-memory just frees what it can free easily. If full is t, reduce-memory
performs a garbage collection on generation 2 and then frees what it can free easily. If full is :aggressive,
reduce-memory performs one or more garbage collections until memory is no longer being freed and then frees what it can
free easily. When full is a integer (0, 1 or 2), it specifies a generation number to garbage collect and reduce-memory

garbage collects this generation and then frees what it can free easily. Using 2 is the same as using t.

The default value of full is nil.

reduce-memory returns the new size of the Lisp image after reduction, in bytes.

Notes

1. The default of full is nil, which is different from clean-down where it defaults to t.

2. In 32-bit LispWorks, reduce-memory with no argument or nil differs from (clean-down nil) by trying to reduce
the memory. (clean-down nil) frees and promotes, but does not try to reduce the size (and may actually increase it).

3. When using the Mobile GC, reduce-memory releases any reserved memory that the system keeps. As a result any
following reduce-memory with argument non-nil will be less effective because there will be no reserved memory to
perform copying garbage collection.

37 The HCL Package

818

See also

clean-down
try-move-in-generation (32-bit only)

references-who Function

Summary

Lists special variables referenced by a definition.

Package

hcl

Signature

references-who function => result

Arguments

function⇓ A symbol or a function dspec.

Values

result A list.

Description

The function references-who returns a list of the special variables referenced by the definition named by function.

Notes

The cross-referencing information used by references-who is generated when code is compiled with source-level
debugging switched on.

See also

binds-who
toggle-source-debugging
sets-who
who-references

remove-package-local-nickname Function

Summary

Removes a package-local nickname from a package.

37 The HCL Package

819

Package

hcl

Signature

remove-package-local-nickname old-nickname &optional package-designator => existsp

Arguments

old-nickname⇓ A string or a symbol.

package-designator⇓ A package designator.

Values

existsp A boolean.

Description

The function remove-package-local-nickname removes old-nickname from the package-local nicknames of the
package designated by package-designator if it was present and returns true. Otherwise, false is returned.

package-designator defaults to the current package.

Notes

Package-local nicknames are experimental and subject to change.

See also

add-package-local-nickname
package-local-nicknames
package-locally-nicknamed-by-list
defpackage option :local-nicknames

remove-special-free-action Function

Summary

Removes the specified function from the special actions performed when flagged objects are garbage collected.

Package

hcl

Signature

remove-special-free-action function => function-list

Arguments

function⇓ The function to be removed.

37 The HCL Package

820

Values

function-list A list of the functions currently called to perform special actions, not including the one
just removed.

Description

The function remove-special-free-action removes function from the special actions performed when flagged objects
are garbage-collected. (The special actions are added by add-special-free-action.)

See also

add-special-free-action
flag-special-free-action
flag-not-special-free-action

remove-symbol-profiler Function

Summary

Deprecated. Removes a symbol from the list of profiled symbols.

Package

hcl

Signature

remove-symbol-profiler symbol => nil

Arguments

symbol⇓ A symbol to be removed from the *profile-symbol-list*.

Description

The function remove-symbol-profiler is deprecated. It removes symbol from the list of profiled symbols.

See also

add-symbol-profiler

reset-profiler Function

Summary

Resets the profiler so that symbols below a given threshold are no longer profiled.

Package

hcl

37 The HCL Package

821

Signature

reset-profiler &key according-to => nil

Arguments

according-to⇓ Either :profile or :top.

Description

The function reset-profiler updates the list of symbols being profiled based on the results of the previous profiling run.
reset-profiler runs down the list of symbols being profiled and removes any symbols whose appearance in the previous
profiling run falls below the value *profiler-threshold*. In this way the number of symbols being considered by the
profiler can be reduced to just those which are important.

according-to refers to which column of the profiling results that reset-profiler compares with
profiler-threshold. The default is :profile.

Examples

(reset-profiler :according-to :top)

Notes

Reducing the number of symbols in the list of symbols to profile does not actually speed up the execution of the form being
profiled, but does reduce the setting up time of the profiler and the size of the list of results.

See also

profile
profiler-threshold
print-profile-list
set-profiler-threshold

reset-ring Function

Summary

Resets a ring.

Package

hcl

Signature

reset-ring ring => nil

Arguments

ring⇓ A ring object created by make-ring.

37 The HCL Package

822

Description

The function reset-ring resets the ring, that is it makes ring completely empty.

See also

make-ring

ring-length Function

Summary

Gets the element count and maximum size of a ring.

Package

hcl

Signature

ring-length ring => number-of-elements, size

Arguments

ring⇓ A ring object created by make-ring.

Values

number-of-elements⇓ A non-negative fixnum.

size⇓ A positive fixnum.

Description

The function ring-length returns as multiple values the number of elements number-of-elements in ring and its maximum
size size.

See also

make-ring

ring-name Function

Summary

Returns the name of a ring.

Package

hcl

37 The HCL Package

823

Signature

ring-name ring => name

Arguments

ring⇓ A ring object created by make-ring.

Values

name A string.

Description

The function ring-name returns the name of the ring ring.

See also

make-ring

ringp Function

Summary

The predicate for rings.

Package

hcl

Signature

ringp object => result

Arguments

object⇓ A Lisp object.

Values

result A boolean.

Description

The function ringp returns true if object is a ring object created by make-ring and false otherwise.

See also

make-ring

37 The HCL Package

824

ring-pop Function

Summary

Removes an element from a ring and returns the element before the insertion point.

Package

hcl

Signature

ring-pop ring &optional remove => object

Arguments

ring⇓ A ring object created by make-ring.

remove⇓ A generalized boolean.

Values

object A Lisp object.

Description

The function ring-pop removes (by default) an element from ring and returns the element before the insertion point.

If remove is true then the element is removed from ring. If remove is nil then the element remains and instead ring is rotated
by 1 as if by (rotate-ring ring 1). The default value of remove is t.

ring-pop signals an error when called on an empty ring.

Examples

These 3 forms all return the same values, but the first form removes an element from a ring, while the other two leave all the
elements in the ring:

(values (ring-pop ring) (ring-ref ring 0))

(values (ring-pop ring t) (ring-ref ring 0))

(values (ring-ref ring 0) (rotate-ring ring 1))

See also

ring-push
make-ring
rotate-ring
ring-ref
ring-length

37 The HCL Package

825

ring-push Function

Summary

Adds a Lisp object to a ring.

Package

hcl

Signature

ring-push object ring => object

Arguments

object⇓ A Lisp object.

ring⇓ A ring object created by make-ring.

Values

object A Lisp object.

Description

The function ring-push adds object as an element of ring before the "insertion position", which means that a following call
to ring-pop will return it. If ring is full, that is the number of elements in ring is the same as its size (see make-ring), then
ring-push first removes the element after the insertion point.

Once it finished modifying ring, if ring-push removed an element and there is a delete-function (see make-ring), then
ring-push calls delete-function with the element that it removed.

ring-push returns object.

See also

ring-pop
make-ring
rotate-ring
ring-ref

ring-ref Accessor

Summary

Gets or sets the element at a specified offset from the insertion point in a ring.

Package

hcl

37 The HCL Package

826

Signature

ring-ref ring index => object

setf (ring-ref ring index) object => object

Arguments

ring⇓ A ring object created by make-ring.

index⇓ A non-negative integer.

object⇓ A Lisp object.

Values

object⇓ A Lisp object.

Description

The accessor ring-ref returns or sets the element at index places before the insertion point in ring.

index must be a non-negative integer smaller than the number of elements in the ring, otherwise an error is signaled. index 0
returns or sets the element object just before the insertion point, and a larger index goes "back" (in the same direction as
ring-pop and rotate-ring).

The setf function replaces the element in the ring with the new element object without affecting the ring otherwise (in
particular it does not call delete-function).

See also

make-ring
ring-pop
rotate-ring

rotate-ring Function

Summary

Rotates a ring, that is moves the insertion point.

Package

hcl

Signature

rotate-ring ring how-many => object

Arguments

ring⇓ A ring object created by make-ring.

how-many⇓ A fixnum.

37 The HCL Package

827

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

Values

object A Lisp object.

Description

The function rotate-ring rotates ring, that is it moves the insertion point "back", which is the same direction that
ring-pop would progress.

how-many is the number of positions to rotate. It has to be a fixnum, but otherwise is not limited.

rotate-ring returns the element before the insertion point after the rotation (the one that (ring-ref ring 0) would
return if called immediately after rotate-ring).

Examples

If a ring contains 3 elements or more, then:

(progn
 (ring-pop ring)
 (ring-pop ring)
 (ring-ref ring 0))

returns the same value as:

(rotate-ring ring 2)

but the second form does not remove an element from the ring, while the first form removes 2 elements.

See also

ring-push
make-ring
ring-pop
ring-ref

safe-format-to-string
safe-format-to-limited-string
safe-prin1-to-string
safe-princ-to-string Functions

Summary

Print or format "safely", which means catching errors.

Package

hcl

Signatures

safe-format-to-string &rest format-args => string

37 The HCL Package

828

safe-format-to-limited-string limit &rest format-args => string

safe-prin1-to-string object => string

safe-princ-to-string object => string

Arguments

format-args⇓ A control-string and arguments as passed to format.

limit⇓ A positive integer.

object⇓ Any object.

Values

string⇓ A string.

Description

safe-format-to-string, safe-prin1-to-string and safe-princ-to-string are analogs to the standard
functions format (with first argument nil), prin1-to-string and princ-to-string. If format-args and object can be
printed without any errors then they are equivalent to the standard functions, except that they bind *print-readably* and
print-circle to nil.

The difference is when there is an error during the printing operation. The "safe" functions catch the error, and try to produce
something that indicates that an error occurred during the printing operation and what it was, without causing recursive
errors.

safe-format-to-limited-string is like safe-format-to-string, except that the length of the result string is
limited to limit. The printing is stopped when the output become longer than limit and the result is a string of length limit,
with the last three characters being "...". Limiting the length in this way also copes well when printing deeply nested objects.

Notes

These functions are intended to be used in code that handles and reports errors, where it is important to avoid recursive errors.

The debugging tools of the LispWorks IDE use these functions.

See also

prin1-to-string
princ-to-string
format

save-argument-real-p Function

Summary

Deprecated. Returns t.

Package

hcl

37 The HCL Package

829

http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_rda.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_cir.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm

Signature

save-argument-real-p => realp

Values

realp⇓ A boolean.

Description

The function save-argument-real-p always returns t.

Compatibility note

In LispWorks 6.1 for Macintosh and earlier versions, save-argument-real-p can be used to determine whether a build
script knows the real name of the image being saved. The return value realp is nil only when building an intermediate image
for the purpose of building a universal binary.

In LispWorks 7.0 and later versions, universal binaries are not supported hence save-argument-real-p always returns t.

See also

save-universal-from-script
building-universal-intermediate-p
deliver
save-image
save-image-with-bundle
27.12 Universal binaries on macOS

save-current-profiler-tree Function

Summary

Save the current profiler tree to a file.

Package

hcl

Signature

save-current-profiler-tree filename name => path

Arguments

filename⇓ A pathname designator.

name⇓ An object.

Values

path A pathname.

37 The HCL Package

830

Description

The function save-current-profiler-tree checks if filename has a type, and if not adds the type "tree". It then
opens the file for writing with :if-exists :supersede and :external-format :utf-8, and writes the current
profiler tree into it. name is written to the file as the name of the tree, using format with ~A.

The current profiler tree is set either when profile finishes successfully, or when stop-profiling is called with nil for
its suspend argument (the default). There is only one current tree, and it is overwritten each time it is set.

The intention of the file is that you can load it into the Profiler tool in the LispWorks IDE to view its contents. However, you
can also parse it yourself, or view it as a text file for simple queries.

name should be useful for you to remember what the tree is about. For example, it may be something like the result of:

(string-append "Computing this and that at "
 (date-string))

The Profiler tool displays name in the message area of the interface (at the bottom), and it is used in the History menu.

save-current-profiler-tree returns the path that was used.

The format of the file is described in 12.7 Profiler tree file format.

See also

stop-profiling
profile
12.7 Profiler tree file format

save-current-session Function

Summary

Saves the LispWorks session.

Package

hcl

Signature

save-current-session pathname &rest save-image-args => result

Arguments

pathname⇓ A pathname designator.

save-image-args⇓ Arguments.

Values

result A boolean.

37 The HCL Package

831

http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm

Description

The function save-current-session closes all windows and stops multiprocessing, saves an image at the location
supplied in pathname, and restarts multiprocessing and the windows. For more information see 13.4 Saved sessions.

save-image-args are passed to the saving function, which is save-image on Windows, GTK and Motif, or
save-image-with-bundle on Cocoa.

save-current-session returns nil if the pathname supplied is unacceptable (not writable), otherwise it returns t. The
actual operation is done asynchronously.

Notes

1. save-current-session is intended for saving the state of a windowing image. While save-current-session can
be used to save a session in a console image, this achieves nothing more than save-image.

2. The released LispWorks image runs the default session. Therefore after you have used save-current-session,
starting the supplied image (for example via the Windows start menu or macOS Dock) will run itself only if the default
session is "LispWorks Release".

See also

save-image
save-image-with-bundle

save-image Function

Summary

Saves the image to a new file.

Package

hcl

Signature

save-image filename &key dll-exports dll-added-files dll-extra-link-options automatic-init gc type normal-gc restart-function
multiprocessing console environment remarks clean-down image-type split => nil

Arguments

filename⇓ A pathname designator.

dll-exports⇓ A list of strings, or the keyword :default.

dll-added-files⇓ A list of strings.

dll-extra-link-options⇓
A list of strings.

automatic-init⇓ A generalized boolean.

gc⇓ A generalized boolean.

type⇓ A keyword.

37 The HCL Package

832

normal-gc⇓ A generalized boolean.

restart-function⇓ A function or nil.

multiprocessing⇓ One of nil, t or :with-tty-listener.

console⇓ One of :default, t, :input, :output, :io, :init or :always.

environment⇓ One of :default, nil, t or :with-tty-listener.

remarks⇓ A string or nil.

clean-down⇓ A generalized boolean.

image-type⇓ One of the keywords :exe, :dll or :bundle.

split⇓ nil, t or :resources or :default (the default).

Description

The function save-image saves the LispWorks image to a new executable or dynamic library containing any modifications
you have made to the supplied image.

filename is used as the name of the file that the image is saved as. This name should not be the same as the original name of
the image.

For information about the sort of changes you might want to save in a new image, see 13 Customization of LispWorks.

Do not use save-image when the graphical IDE is running. Instead create a build script and use it with the -build
command line argument similar to the examples below, or run LispWorks in a subprocess using the Application Builder tool.

You cannot use save-image when multiprocessing is running. It signals an error in this case.

On Cocoa you can combine a call to save-image with the creation of an application bundle containing your new LispWorks
image, as in the example shown below.

dll-exports is implemented only on Windows, Linux, x86/x64 Solaris, Macintosh and FreeBSD. It controls whether the
image saved is an executable or a dynamic library (DLL). The default value is :default and this value means an executable
is saved. The value :com is supported on Microsoft Windows only (see below). Otherwise dll-exports should be list
(potentially nil). In this case a dynamic library is saved, and each string in dll-exports names a function which becomes an
export of the dynamic library and should be defined as a Lisp function using fli:define-foreign-callable. Each
exported name can be found by GetProcAddress (on Windows) or dlsym (on other platforms). The exported symbol is
actually a stub which ensures that the LispWorks dynamic library has finished initializing, and then enters the Lisp code.

On Microsoft Windows, dll-exports can also contain the keyword :com, or dll-exports can simply be the keyword:com, both
of which mean that the DLL is intended to be used as a COM server. See the COM/Automation User Guide and Reference
Manual for details.

On macOS, the default behavior is to generate an object of type "Mach-O dynamically linked shared library" with file type
dylib. See image-type below for information about creating another type of library on macOS.

On Linux, Macintosh, x86/x64 Solaris and FreeBSD, to save a dynamic library image the computer needs to have a C
compiler installed. This is typically gcc (which is available by installing Xcode on the Macintosh).

An image saved as a dynamic library (DLL):

• always runs multiprocessing, and:

• may need to be shut down by QuitLispWorks or by a callback which uses dll-quit.

automatic-init specifies whether a LispWorks dynamic library should initialize inside the call to LoadLibrary (on Microsoft
Windows) or dlopen (on other platforms), or wait for further calls. Automatic initialization is useful when the dynamic

37 The HCL Package

833

library does not communicate by function calls. On Microsoft Windows it also allows LoadLibrary to succeed or fail
according to whether the LispWorks dynamic library initializes successfully or not. Not using automatic initialization allows
you to relocate the library if necessary using InitLispWorks, and do any other initialization that may be required. The
default value of automatic-init is t on Windows, nil on other platforms. For more information about automatic initialization
in LispWorks dynamic libraries, see 14 LispWorks as a dynamic library.

dll-added-files should be a list of filenames. It is ignored on Microsoft Windows. On other platforms if dll-added-files is non-
nil then a dynamic library containing each named file is saved. Each file must be of a format that the default C compiler
(scm:*c-default-compiler*) knows about and can incorporate into a shared library. Typically they will be C source
files, but can also be assembler or object files. They must not contain exports that clash with names in the LispWorks
dynamic library (see 52 Dynamic library C functions for the predefined exports). The added files are useful to write
wrappers around calls into the LispWorks dynamic library. Such wrappers are useful for:

• Calling InitLispWorks when required, for example to relocate the LispWorks dynamic library to avoid memory
clashes with other software, as described under 27.6 Startup relocation.

• Calling QuitLispWorks when required.

• Changing calls that involve complex C structs or even C++ objects into plain calls, because accessing C structures in
Lisp requires defining the structure, while in C it only needs to include the header.

• Creating 'stub' functions that can be called from Lisp, for example for calling a C++ method. The address of the stub
function can be passed to Lisp which can call it using a function defined by fli:define-foreign-funcallable.

• Adding code that runs automatically inside the call to dlopen, by using __attribute__ ((constructor))

dll-extra-link-options should be a list of strings. It is ignored on Microsoft Windows. On other platforms if dll-extra-link-
options is non-nil then the strings are passed as extra command line arguments to the linker. See the documentation for the
linker (typically called ld) for the operating system you are using for the meaning of these arguments. On Macintosh, a
default value for the -install_name option is generated using the file-namestring of the dynamic library if
"-install_name" is not specified in dll-extra-link-options.

image-type defaults to :exe or :dll according to the value of dll-exports and therefore you do not normally need to supply
image-type.

image-type :bundle is used only when saving a dynamic library. On macOS it generates an object of type "Mach-O bundle"
and is used for creating shared libraries that will be used by applications that cannot load dylibs (FileMaker for example). It
also does not force the filename extension to be dylib. On other Unix-like systems, image-type merely has the effect of not
forcing the file type of the saved image, and the format of the saved image is the same as the default. On Microsoft Windows
image-type :bundle is ignored.

Note: image-type :bundle is completely unrelated to the macOS notion of an application bundle.

When split is :default on non-macOS, it behaves the same as when split is nil, which means that the saved image is
written as a single executable file containing the Lisp heap. When split is :default on macOS, it behaves the same as when
split is t, unless the executable is being saved into a bundle, in which case it behaves the same as when split is :resources.
save-image recognizes a bundle by checking that the last two components of the directory of the executable are Contents
and MacOS. split defaults to :default.

If split is t, then the saved Lisp heap is split into a separate file, named by adding .lwheap to the name of the executable.
When the executable runs, it reloads the Lisp heap from this file automatically.

In addition, when saving LispWorks on the Macintosh as an application bundle (for example by using
create-macos-application-bundle) or as a framework bundle, split can be the symbol :resources. This places the
Lisp heap file in the Resources directory of the bundle, which allows the heap to be included in the bundle's signature. For
an application bundle, the Resources directory is in the Contents directory alongside the MacOS directory. For a
framework bundle, the Resources directory is alongside the shared library. The executable and Lisp heap file must be in
these directories within the bundle at run time.

37 The HCL Package

834

Supplying split does not interact well with saving macOS universal binaries, because save-universal-from-script
does not see it. Thus you should normally avoid supplying it and rely on the default to be the correct one. If you do need to
supply it and you want to use save-universal-from-script, then you may need to supply it to
save-universal-from-script too.

The main use of a non-nil value for split is to allow third-party code signing to be applied to the executable, which is often
not possible when saving an image with the Lisp heap included in a single file.

restart-function, if non-nil, specifies a function (with no arguments) to be called when the image is started. If multiprocessing
is true, restart-function is called in a new process. restart-function is called after the initialization file is loaded. The default
value of restart-function is nil.

Note: restart-function is not called if the command line argument -no-restart-function is present.

When multiprocessing is nil, the executable image will start without multiprocessing enabled. When multiprocessing is true
or the image is a DLL, the image will start with multiprocessing enabled, starting processes in the list
initial-processes. When *initial-processes* is nil or multiprocessing is :with-tty-listener, a TTY
listener process is started as well. The default value of multiprocessing is nil.

console is implemented only in LispWorks for Windows and LispWorks for Macintosh. On Windows console controls
whether the new image will be a Console or GUI application and when, if ever, to make a console window in the latter
case.On the Macintosh console controls when, if ever, to make a console window. The possible values for console are as
follows:

:default Unchanged since previous save.

t On the Macintosh, the value t has the same effect as the value :always.

On Windows, a Console application is saved, else a Windows application is saved which creates
its own console according to the other possible values.

:input, :output, :io

Whenever input, output or any I/O is attempted on *terminal-io*.

:init At startup, if input and output are not redirected.

:always At startup, even if input and output are redirected.

The LispWorks for Windows and LispWorks for Macintosh images shipped have console set to :input.

environment controls whether the LispWorks environment is started on restart. possible values for environment are as follows:

:default Unchanged since previous save.

nil Start with just the TTY listener.

t Start the environment automatically, no TTY listener.

:with-tty-listener Start the environment automatically, but still have a TTY listener.

The LispWorks image shipped is saved with :environment t on all platforms except for the GTK images on macOS.

You should not try to save a new image over an existing one. Always save images using a unique image name, and then, if
necessary, replace the new image with the old one after the call to save-image has returned.

If gc is non-nil, there is a garbage collection before the image is saved. The default value of gc is t.

type determines if some global variables are cleared before the image is saved. You can generally use the default value, which
is :user.

37 The HCL Package

835

http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

If normal-gc is non-nil, then the function normal-gc is called before the image is saved. The default of normal-gc is t.

If clean-down is non-nil, save-image calls (clean-down t). The default of clean-down is t.

If remarks is a string, then it is added as a comment in the save history.

Notes

1. Do not supply :multiprocessing nil along with a true value of :environment t. Multiprocessing is needed for
the GUI environment.

2. In the example build scripts below, the call to load-all-patches is not strictly required when the script is used with
the -build command line argument, because LispWorks 6.1 and later versions call load-all-patches automatically.
However, it does no harm for the build script to call load-all-patches too.

Compatibility notes

1. LispWorks 5.0 and previous versions documented -init as the way to run LispWorks with a build script. This way is
deprecated.

2. Note that LispWorks quits automatically after processing a build script via -build, whereas with -init you need to
call quit explicitly at the end of the build script.

3. In LispWorks 5.0 and previous versions dll-exports is supported only on Windows.

4. dll-added-files and automatic-init were new in LispWorks 5.1.

Examples

Here is an example build script. Save this to a file such as c:/build-my-image.lisp:

(in-package "CL-USER")
(load-all-patches)
(load "my-code")
(save-image "my-image")

Then run LispWorks with the command line argument -build c:/build-my-image.lisp to save the image
my-image.exe.

This example shows a portable build script which, on Cocoa, saves your new LispWorks image in a macOS application
bundle. This allows your new LispWorks for Macintosh image to be launchable from the Finder or Dock and to have its own
icon or other resources:

(in-package "CL-USER")
(load-all-patches)
(load "my-code")
#+:cocoa
(compile-file-if-needed
 (example-file
 "configuration/macos-application-bundle")
 :load t)
(save-image
 #+:cocoa
 (write-macos-application-bundle
 "/Applications/LispWorks 8.1/My LispWorks.app")
 #-:cocoa
 "my-lispworks")

37 The HCL Package

836

See also

deliver
dll-quit
initial-processes
InitLispWorks
LispWorksDlsym
load-all-patches
quit
QuitLispWorks
save-current-session
11.2 Guidance for control of the memory management system

save-image-with-bundle Function

Summary

Saves a LispWorks for Macintosh image with an application bundle, thus allowing it to work properly in the Cocoa
windowing system.

Package

hcl

Signature

save-image-with-bundle bundle-path &rest save-image-args &key bundle-arguments bundle-function &allow-other
-keys

Arguments

bundle-path⇓ A pathname designator.

save-image-args⇓ Arguments passed to save-image.

bundle-arguments⇓ Arguments passed to bundle-function.

bundle-function⇓ A function designator.

Description

The function save-image-with-bundle first creates the application bundle using the function bundle-function, and then
saves the LispWorks image in the bundle.

The default value of bundle-arguments is nil.

The default value of bundle-function is create-macos-application-bundle. You can modify the created bundle by
supplying bundle-arguments.

With the default values of bundle-function and bundle-arguments, it copies the application bundle of the running image to the
bundle path with the minimal necessary modifications, and then saves an image in it.

save-image-with-bundle operates as follows:

1. It calls bundle-function with bundle-path and bundle-arguments, and then uses the result as the filename for
save-image.

37 The HCL Package

837

2. It applies save-image to the path derived in the first step and the remaining arguments in save-image-args passed to
save-image-with-bundle (other than bundle-arguments and bundle-function).

Notes

save-image-with-bundle is implemented only in LispWorks for Macintosh.

See also

create-macos-application-bundle
save-image

save-universal-from-script Function

Summary

Saves a universal binary LispWorks image using a script designed for saving a mono-architecture image.

Package

hcl

Signature

save-universal-from-script script-name &key output-stream split keep-temps => target-image

Arguments

script-name⇓ A pathname designator.

output-stream⇓ A stream, t or nil.

split⇓ nil, t or :resources.

keep-temps⇓ A boolean.

Values

target-image⇓ A pathname designator.

Description

The function save-universal-from-script provides a convenient way to create a universal binary on a macOS Apple
silicon (arm64) computer, using a script designed for saving a mono-architecture image.

script-name is the name of a LispWorks build script (written in Lisp) for saving or delivering an image, as would be used to
create a mono-architecture image. It should load the application and then call either deliver or save-image as
appropriate.

save-universal-from-script runs the current LispWorks image in two subprocesses, once for the native arm64
architecture and once for the x86_64 architecture, passing -build script-name on the command line. The contents of script-
name are evaluated as normal, except that the images are written to temporary files rather than to the filenames that are
passed to save-image or deliver. If these two subprocesses are successful, then the temporary files are combined to make
a universal binary in the same way as create-universal-binary.

37 The HCL Package

838

The arm64 subprocess is run first, and the filename argument that the script supplies to deliver or save-image in this
subprocess is recorded and later used by save-universal-from-script as the target-name for creating the universal
binary. During the arm64 run, calls to the function building-main-architecture-p return t.

The x86_64 subprocess runs second. The filename argument that the script supplies to deliver or save-image in this
subprocess is ignored completely, and calls to the function building-main-architecture-p return nil inside this
subprocess.

Calls to the function building-universal-intermediate-p return t in both subprocesses.

The command line arguments of the images run by the subprocesses will include the command line arguments that were
passed to the current image. In addition, various undocumented command line arguments will be prepended, which control
how deliver or save-image work in the script.

If output-stream is non-nil, then any output generated by the subprocesses is written to it. If output-stream is t (the default),
then the output is written to *standard-output*. If output-stream is nil, then the output is discarded.

split can be used to control the splitting of the universal binary. It has the same behaviour as in save-image. Normally it is
more convenient not to use split and rely on the default value.

If keep-temps is non-nil, the temporary files that save-universal-from-script creates are not deleted. which is
sometimes useful for debugging.

The result target-image is the path of the universal binary that was created.

Notes

save-universal-from-script can only be called from a LispWorks for Macintosh image that is itself a universal binary,
such as the distributed image, and is running on an Apple silicon (arm64) computer.

The script may contain code that should execute only once, for example creating a macOS bundle structure. Call
building-main-architecture-p to control such code, as in the example.

When building a universal binary, the Application Builder in the LispWorks IDE does exactly the same as
save-universal-from-script, except for how it displays the output.

save-universal-from-script signals an error if load-all-patches has not been called in the current session.

Compatibility note

In LispWorks 6,1 for Macintosh and earlier versions, save-universal-from-script had an additional argument, target-
name. As described above, the target name is now determined by the argument to save-image or deliver in the main
architecture run (that is arm64 run).

In LispWorks 7.0 and 7.1, save-universal-from-script was deprecated and always signaled an error.

Examples

The example file:

(example-edit-file "configuration/save-macos-application.lisp")

demonstrates how to save an image with your configuration, and is intended to be used in the Application Builder, but you
can also use it as an argument to save-universal-from-script. Create a file with your configuraion in
~/my-configuration.lisp, and then evaluate:

(save-universal-from-script
 (example-file "configuration/save-macos-application.lisp"))

37 The HCL Package

839

See also

save-image
create-universal-binary
building-universal-intermediate-p
building-main-architecture-p
27.12 Universal binaries on macOS

set-array-single-thread-p Function

Summary

Tells the system whether an array is accessed only in a single thread context, or not.

Package

hcl

Signature

set-array-single-thread-p array on-p

Arguments

array⇓ An array.

on-p⇓ A generalized boolean.

Description

The function set-array-single-thread-p tells LispWorks whether the array array is accessed only in a single thread
context or not, depending on the value of on-p. Arrays that are marked for single thread access are faster for some operations,
in particular vector-push and vector-pop.

See also

array-single-thread-p
make-array

set-array-weak Function

Summary

Sets the weakness state of an array.

Package

hcl

Signature

set-array-weak array weakp => weakp

37 The HCL Package

840

http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_ps.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_po.htm

Arguments

array⇓ A non-displaced array, with array-element-type t.

weakp⇓ A generalized boolean.

Values

weakp A generalized boolean.

Description

The function set-array-weak sets the weakness state array to weakp.

If weakp is non-nil, then array is made weak. If weakp is nil, then array is made non-weak.

By default, arrays are non-weak, and they keep alive all the objects that are stored in them. A weak array may remove a
pointer if the object that it points to is not pointed to from somewhere else. When a pointer is removed like this, it is replaced
in array with nil.

Pointers are replaced by nil after a garbage collector (GC) operation that identifies that they can be replaced. This means
that if the object that is pointed to has been promoted to a higher generation, a garbage collection of the higher generation is
required to remove the pointer. Note that by default the system does not automatically GC the blocking generation or higher.

The weakness state of an array can be changed many times.

In all implementations, array must not be a displaced array, and the array-element-type of array must be t.

In 64-bit LispWorks, an additional requirement is that array must be an adjustable array. However, you can make a non-
adjustable weak array using make-array with the :weak t arguments.

set-array-weak can be called at any moment.

Notes

An array can be made weak at creation time using the :weak argument to make-array.

See also

array-weak-p
copy-to-weak-simple-vector
set-hash-table-weak
make-array
mark-and-sweep
11.6.8 Freeing of objects by the GC

set-console-external-format Function

Summary

Sets the external format of the console on non-Windows platforms.

Package

hcl

37 The HCL Package

841

http://www.lispworks.com/documentation/HyperSpec/Body/f_ar_ele.htm

Signature

set-console-external-format external-format => stream

Arguments

external-format⇓ An external format specification.

Values

stream⇓ A stream.

Description

The function set-console-external-format sets the external format of the console on non-Windows platforms to
external-format. The stream that *terminal-io* is bound to is changed to have this external format, so if external-format
is different from the existing one, then *terminal-io* is set to a stream with this external format.

external-format must be a name of a defined external format (see 26.7 External Formats to translate Lisp characters
from/to external encodings). external-format must be a "8-bit byte" format, so its "foreign-type" (which you can check by
calling ef:external-format-foreign-type) must be (unsigned-byte 8). In LispWorks 8.0, that includes all the
external formats except those related to :utf-32 and those listed in 26.7.2 16-bit External formats guide.

If the value of any of the LispWorks background stream variables (*background-input*, *background-output* and
background-query-io) is the same as the value of *terminal-io* before the call to
set-console-external-format, then set-console-external-format sets this variable to the new value of
terminal-io.

The result stream is the new value of *terminal-io* (which may be the also the old value if the external format has not
changed).

Notes

On startup on non-Windows platforms, LispWorks tries to determine the appropriate external format to use for the console.
See 27.16 The console external format for more details. In most of the cases it is better to rely on what LispWorks has
determined, because it matches what other software does.

set-console-external-format does nothing on Windows.

See also

26.7 External Formats to translate Lisp characters from/to external encodings
terminal-io
background-input

set-default-generation Function

Summary

Set the current generation for memory allocation in 32-bit LispWorks.

Package

hcl

37 The HCL Package

842

http://www.lispworks.com/documentation/HyperSpec/Body/t_stream.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

Signature

set-default-generation num => num

Arguments

num⇓ The number of the generation from which to do future allocation.

Values

num The number of the generation from which to do future allocation.

Description

The function set-default-generation sets the current generation for memory allocation to num. By default the system
allocates memory from the youngest generation (generation 0).

Notes

set-default-generation is useful only in 32-bit LispWorks. In 64-bit implementations it does nothing and returns 0.

Examples

(set-default-generation 1)
 ;; allocate from an
 ;; older generation
(set-default-generation 0)
 ;; return to normal

See also

allocation-in-gen-num
clean-generation-0
collect-generation-2
collect-highest-generation
expand-generation-1
get-default-generation
set-promotion-count
symbol-alloc-gen-num
11.3 Memory Management in 32-bit LispWorks

set-gc-parameters Function

Summary

Sets the parameters for the garbage collector in 32-bit LispWorks. This function is deprecated.

Package

hcl

37 The HCL Package

843

Signature

set-gc-parameters &key maximum-buffer-size minimum-buffer-size big-object promote-min-buffer promote-max-buffer new-
generation-size minimum-overflow maximum-overflow minimum-for-sweep minimum-for-promote enlarge-by-segments

Arguments

maximum-buffer-size⇓ A positive integer or nil.

minimum-buffer-size⇓ A positive integer or nil.

big-object⇓ A positive integer or nil.

promote-min-buffer⇓ A positive integer or nil.

promote-max-buffer⇓ A positive integer or nil.

new-generation-size⇓ A non-negative integer or nil.

minimum-overflow⇓ A positive integer or nil.

maximum-overflow⇓ A positive integer or nil.

minimum-for-sweep⇓ A non-negative integer or nil.

minimum-for-promote⇓ A non-negative integer or nil.

enlarge-by-segments⇓ A positive integer or nil.

Description

The function set-gc-parameters sets the parameters of the garbage collector. Unless stated, arguments are in bytes and
values that are nil (the default for all arguments) do not change the corresponding parameter.

If maximum-buffer-size is non-nil, it specifies the maximum size of the small objects buffer.

If minimum-buffer-size is non-nil, it specifies the minimum size of the small objects buffer.

If big-object is non-nil, then an object that is bigger than big-object is "big". That is, it is not allocated from the small objects
buffer, but from the big-chunk area (if it is allocated in generation 0 in the normal way).

During promotion, a buffer is allocated in the generation being promoted into, and the objects promoted are moved into it. If
promote-min-buffer is non-nil, it controls the minimum size of this buffer.

Likewise, if promote-max-buffer is non-nil it controls the maximum size of the promotion buffer.

If new-generation-size is non-nil, it controls the minimum enlargement of generation gen-num, for gen-num > 0. If new-
generation-size is 0, it means the generation is not expanded. Otherwise, new-generation-size must be a fixnum in the
exclusive range (10000, 100000000) and the minimum expansion is then new-generation-size * gen-num words. new-
generation-size has no effect on the enlargement of generation 0.

If minimum-overflow is non-nil, it specifies the minimum size of the small-objects buffer in the big-chunk area.

If maximum-overflow is non-nil, it specifies the maximum size of the small-objects buffer in the big-chunk area.

If minimum-for-sweep is non-nil, it controls when a mark and sweep takes place. Setting minimum-for-sweep to a high value
causes the system to mark and sweep less often, which means it has to grow. The CPU time spent in garbage collection is
mostly smaller, but the process is bigger and may cause more disk access.

If minimum-for-promote is non-nil, it controls the frequency of promotions. Setting minimum-for-promote to a high value
causes the system to promote less frequently. This may improve performance for programs that allocate a lot of data for a
short term and then delete it.

37 The HCL Package

844

If enlarge-by-segments is non-nil, it specifies a minimum for how much the image grows each time a segment is enlarged, as
a multiple of 64 KB. This parameter is ignored when adding a static segment.

Notes

set-gc-parameters is implemented only in 32-bit LispWorks. It is not relevant to the Memory Management API in 64-bit
implementations.

See also

get-gc-parameters
11.3 Memory Management in 32-bit LispWorks

set-hash-table-weak Function

Summary

Sets the weakness state of a hash-table.

Package

hcl

Signature

set-hash-table-weak hash-table weak &optional free-function => weak

Arguments

hash-table⇓ A hash-table.

weak⇓ One of t, :value, :key, :both, :one, :either or nil.

free-function⇓ A designator for a function of two arguments, or nil.

Values

weak One of t, :value, :key, :both, :one, :either or nil.

Description

The function set-hash-table-weak sets the weakness state of hash-table to weak.

By default, hash-tables are not weak, which means that they keep alive all the keys and the values in the table.

A weak hash-table has a non-nil weak-kind, which allows entries to be removed if there are no other pointers to them. The
weak-kind tells the system which entries may be removed like this.

Entries that can be removed are removed after a garbage collector (GC) operation which identifies that they can be removed.
This means that if the relevant object(s) (the key or the value) have been promoted to a higher generation, a garbage
collection (GC) of the higher generation is required to remove them from the table. Note that by default the system does not
automatically GC the blocking generation or higher.

The weak-kind of a hash-table can be set initially by make-hash-table and can be changed repeatedly, at any time, by
calling set-hash-table-weak with the following values of weak:

37 The HCL Package

845

:value or t An entry is kept if there is a pointer to the value from another object.

:key An entry is kept if there is a pointer to the key from another object.

:both An entry is kept if there are pointers to both the key and the value.

:one or :either An entry is kept if there is a pointer to either the key or the value.

nil Make the hash-table non-weak. All entries are kept.

If free-function is non-nil then it specifies a free function as described for make-hash-table. It has no effect if weak-kind is
nil.

The return value weak is the same as the argument weak.

See also

hash-table-weak-kind
make-hash-table
mark-and-sweep
set-array-weak
11.6.8 Freeing of objects by the GC

set-minimum-free-space Function

Summary

Sets the minimum free space for a segment of the specified generation in 32-bit LispWorks.

Package

hcl

Signature

set-minimum-free-space gen-num size &optional segment => generation-size

Arguments

gen-num⇓ The generation to be affected.

size⇓ The size (in bytes) to set the segment to.

segment⇓ An integer specifying the segment to be affected. The default value is 0, meaning the first
segment of the generation.

Values

generation-size A list showing information for the generation just specified in the call.

Description

The function set-minimum-free-space sets the minimum free space for segment segment of generation gen-num to size.

By default, affects the first segment — supply segment to affect a different segment of the generation.

37 The HCL Package

846

The minimum free space is shown by room.

Notes

set-minimum-free-space is implemented only in 32-bit LispWorks. It is not relevant to the Memory Management API in
64-bit implementations.

See also

clean-generation-0
collect-generation-2
collect-highest-generation
expand-generation-1
room
set-promotion-count
11.3 Memory Management in 32-bit LispWorks

set-process-profiling Function

Summary

Controls the set of processes that are profiled.

Package

hcl

Signature

set-process-profiling flag processes

Arguments

flag⇓ :add, :remove or :set.

processes⇓ One of :current, :all, :new, a mp:process object, or a list of mp:process objects
which may also contain :current or :new.

Description

The function set-process-profiling modifies the set of processes for which profiling information is (or will be)
collected.

If set-process-profiling is called while profiling (that is after a call to start-profiling and before the next call to
stop-profiling with print non-nil) the system immediately starts collecting profile information for the new set of
processes.

When start-profiling is called without passing processes, it sets the processes to profile according to the last call to
set-process-profiling.

flag determines how the set of processes to profile is modified:

:add The given processes are added to the set.

:remove The given processes are removed from the set.

37 The HCL Package

847

:set The given processes are used as the set.

processes controls which processes are added to the set, removed from the set or are contained in the set, as follows:

:current Means the current process. When start-profiling is called it interprets :current to mean
the current process at the time it is called. If set-process-profiling is called while
profiling, :current is interpreted as the current process when set-process-profiling is
called.

:all Means all processes, including those which are created after profiling started.

:new All processes created after the call to start-profiling, unless set-process-profiling is
called while profiling, in which case it is any process created after this call.

A mp:process object Means that process itself.

A list Means the processes in that list. The list can contain the symbols :current or :new, which are
interpreted as described above.

set-process-profiling can be called whether or not the profiler is collecting information. See start-profiling and
stop-profiling.

Note: This function only works on platforms in SMP LispWorks ; in non-SMP LispWorks, all processes are profiled.

Examples

Add process1 to the set:

(set-process-profiling :add process1)

Turn off profiling for the current process:

(set-process-profiling :remove :current)

Turn off all profiling:

(set-process-profiling :remove :all)

Set all processes for later profiling:

(set-process-profiling :set :all)

See also

profile
start-profiling
stop-profiling
12 The Profiler

37 The HCL Package

848

set-profiler-threshold Function

Summary

Sets the percentage threshold for symbols to be profiled in a subsequent run.

Package

hcl

Signature

set-profiler-threshold value => value

Arguments

value⇓ A fixnum between 0 and 100.

Values

value A fixnum between 0 and 100.

Description

The function set-profiler-threshold sets the value of *profiler-threshold* to value. This is the value below
which symbols are not profiled in a repeated profiling run. After a profiling run, all the symbols being profiled have a
percentage value for the amount of time they were on the top of the stack. If *profiler-threshold* is set to 40 then by
running reset-profiler with argument :top all symbols which are found on the top of the stack less than forty percent of
the time are removed from the list of those symbols considered for profiling.

set-profiler-threshold returns value.

Examples

(set-profiler-threshold 40)

See also

reset-profiler
profile
profiler-threshold

set-promotion-count Function

Summary

Controls when objects can be promoted to the next generation in 32-bit LispWorks. This function is deprecated.

37 The HCL Package

849

Package

hcl

Signature

set-promotion-count gen-num count &optional segment => effective-count

Arguments

gen-num⇓ The generation number affected.

count⇓ A positive integer or nil.

segment⇓ A non-negative integer.

Values

effective-count⇓ A positive integer.

Description

The function set-promotion-count controls how many garbage collections an object in a segment must survive before
promotion to the next generation.

gen-num specifies the generation number affected.

count specifies the number of garbage collections survived by objects in gen-num, before promotion. If count is nil, the
function just returns the current promotion count setting.

segment specifies which segment in gen-num is to be affected. The default is 0, meaning the lowest segment of the
generation.

set-promotion-count returns effective-count, which is count if that is non-nil or the current promotion count otherwise.

Notes

1. set-promotion-count is deprecated, because experience has shown that it is not useful.

2. set-promotion-count is implemented only in 32-bit LispWorks. It is not relevant to the Memory Management API
in 64-bit implementations, wherein you may be able to achieve the effect with set-delay-promotion.

See also

block-promotion
clean-generation-0
collect-generation-2
collect-highest-generation
expand-generation-1

37 The HCL Package

850

sets-who Function

Summary

Lists special variables set by a definition.

Package

hcl

Signature

sets-who function => result

Arguments

function⇓ A symbol or a function dspec.

Values

result A list.

Description

The function sets-who returns a list of the special variables set by the definition named by function.

Notes

The cross-referencing information used by sets-who is generated when code is compiled with source-level debugging
switched on.

See also

binds-who
who-sets
toggle-source-debugging
references-who

set-system-message-log Function

Summary

Manipulates the system message log.

Package

hcl

37 The HCL Package

851

Signature

set-system-message-log &key stream collect get callback => result

Arguments

stream⇓ An output stream designator, or :no-change.

collect⇓ A boolean, or :no-change.

get⇓ t or :keep.

callback⇓ A function designator, or :no-change.

Values

result A list of strings, or nil.

Description

The function set-system-message-log manipulates the system message log. This log is used by the system to produce
messages that indicate that something is not as expected, but is not an error. For example, putting a bad Break-Gesture in a
GTK resource file.

If stream is t or a stream, the system message log stream is set, with t meaning *standard-output*. This stream is used
when writing messages.

When collect is true but not :no-change, messages are collected in an internal list, which can be retrieved by using get.

callback can be a designator for a function of one argument, a string. This function is called when a message is generated.
The callback must not try to perform GUI operations.

The default value of each of stream, collect and callback is :no-change, which does not change the current setting.

When get is supplied set-system-message-log returns a list of the messages that has been collected. Each message is a
single string. If get is t, the internal list is reset to nil. If get is :keep, the internal list is not reset, so the next call with get
will get them again.

set-system-message-log returns nil if get is not supplied.

set-system-message-log returns the list of collected messages if get is supplied.

Notes

stream, callback and collect are mutually independent. It is possible to set the system to any combination of these.

The order of operation when a message is generated is first to print, then call the callback, and then collect.

When collecting messages it can accumulate, so it is important to periodically get the message to ensure it does not bloat the
memory.

Using collect t when it is already collecting has no effect, in particular it does not affect the list of collected messages.

37 The HCL Package

852

set-up-profiler Function

Summary

Declares the parameter values of the profiling function.

Package

hcl

Signature

set-up-profiler &key symbols packages kind interval limit cutoff collapse style gc call-counter show-unknown-frames
kw-contexts subfunctions

Arguments

symbols⇓ A symbol or a list of symbols.

packages⇓ A valid package name, or a list of package names, :none or :all.

kind⇓ :profile, :virtual or :real.

interval⇓ An integer greater than or equal to 10000.

limit⇓ An integer or nil.

cutoff⇓ An integer or nil.

collapse⇓ A generalized boolean.

style⇓ :tree, :list or nil.

gc⇓ One of t, nil or :exclude. Default nil.

call-counter⇓ A generalized boolean.

show-unknown-frames⇓ A generalized boolean.

kw-contexts⇓ t or a list of KnowledgeWorks context names.

subfunctions⇓ A boolean.

Description

The function set-up-profiler is used to declare the values of the parameters of the profiling function.

packages specifies that the symbols in these packages should be monitored, that is added to *profile-symbol-list*. If
packages is :all, then symbols in all packages are monitored. If packages is :none , then no package is used to find
symbols to monitor. Otherwise, packages should be a list of package specifiers, and the symbols in these packages are
monitored.

If symbols is non-nil, it should be a list of function-dspecs to monitor in addition to the symbols that were specified by
packages. These are typically symbols, but can be other functions as specified in 7.5.1 Function dspecs.

Note: When a symbol that names a generic function should be monitored, LispWorks adds all the methods of the generic
function to the profile list.

If both packages and symbols are nil, then set-up-profiler behaves as if packages is :all. Thus if you actually want to

37 The HCL Package

853

monitor no symbols, you need to pass :packages :none. That is useful if you want to monitor only KnowledgeWorks
rules (see kw-contexts below).

kind specifies the way that the time between samples is measured on Unix-like platforms:

:profile Process time only.

:virtual Process time and system time for the process.

:real Real time.

The default value of kind is :profile.

Note: kind is ignored on Microsoft Windows platforms.

interval specifies the interval in microseconds between profile samples. The minimum value of interval is 10000, that is 10
ms. The default value of interval is 10000.

limit, when non-nil, sets *default-profiler-limit*. This limits the maximum number of lines printed in the profile
output (not including the tree). The default value is 100.

cutoff, when non-nil, sets *default-profiler-cutoff*. This is the default minimum percentage that the profiler will
display in the output tree. Functions below this percentage will not be displayed. The default is nil, that is there is no cutoff.

collapse specifies whether functions with only one callee in the profile tree should be collapsed, that is, only the child is
printed. When passed, sets *default-profiler-collapse*. The default value of collapse is nil.

style controls the format of output. If style is not passed or passed as nil, the format does not change. If style is passed, it
can take these values:

:list The profiler will show the functions seen on the stack.

:tree The profiler will generate a tree of calls seen in the profiler, as well as the output shown by
:list.

The default value of style is :tree.

gc specifies profiling of functions in the memory management code that perform garbage collection (GC). The default nil
means that they are not profiled. t means that they are profiled. :exclude means that, if the profiler finds that a GC
operation is in progress when it tries to sample, then it will skip the sample. Note that :exclude does not explicitly exclude
profiling of allocation functions, but since large part of the time that allocation functions take is taken by GC, they will
appear less in the output when :exclude is used.

call-counter specifies whether to add extra code to count calls. The counting is done dynamically. If call-counter is nil, call
counters are not added, and the call counter of all functions is displayed as 0. The default value of call-counter is nil in
SMP LispWorks and t in non-SMP LispWorks. This is because the counting significantly affects the performance of
applications using Symmetric Multiprocessing (SMP).

show-unknown-frames controls whether the profile tree shows nodes where the name of the function is unknown. The default
value of show-unknown-frames is nil.

kw-contexts allows you to profile forward chaining rules in KnowledgeWorks (see the KnowledgeWorks and Prolog User
Guide). When kw-contexts is t (the default), all context are profiled. Otherwise it should be a list of context names. The
profiler profiles all the forward rules in each context.

subfunctions controls whether to profile subfunctions of the functions that are profiled. When it is non-nil, for each function
that the profiler is profiling, the profiler checks if it has subfunctions, and if it has then it profiles them too. The default value
of subfunctions is nil.

If subfunctions is non-nil then initializing the profiler is somewhat slower, and also, because the names of subfunctions are

37 The HCL Package

854

long, the output is more messy. It is sometimes useful though.

Notes

1. If the profiler is invoked before any call to set-up-profiler, it calls set-up-profiler implicitly without any
arguments. That means it will monitor all symbols in the image, and if KnowledgeWorks is loaded also all forward
chaining rules. In most cases this is a useful behavior, so it is not necessary to use set-up-profiler.

2. set-up-profiler finds all the symbols in the specified packages at the time it is called. Thus symbols that are give
function definitions after the call to set-up-profiler are not profiled, whether or not they are in packages that were
passed to set-up-profiler. If you want to ensure that all symbols are profiled, you need to call set-up-profiler
just before invoking the profiler.

3. Call counting can affect performance significantly on some platforms. To get accurate timing (in scales of a few
percentage points), pass call-counter nil. However, in most cases the profiler is used to find bottlenecks where the
slowdown is hundreds of percentage points and so the effect of call counting is less significant.

4. call-counter is effective only on x86 platforms or in 64-bit LispWorks. On non-x86 platforms 32-bit LispWorks does call
counting for a given function if the compiler optimize quality debug is greater than 0 at compile-time, and call-counter
has no effect.

5. limit, cutoff and collapse affect only the display of the results, not the collection of profiler data.

Examples

(set-up-profiler :packages '(my-package common-lisp))

(set-up-profiler :symbols
 (my-list-all-interesting-functions))

See also

default-profiler-collapse
default-profiler-cutoff
default-profiler-limit
profile
start-profiling
stop-profiling
12 The Profiler

source-debugging-on-p Function

Summary

Tests if source level debugging is on for compiled code.

Package

hcl

Signature

source-debugging-on-p => bool

37 The HCL Package

855

http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm

Values

bool If t, source level debugging is on.

Description

The function source-debugging-on-p returns t if source level debugging is on for compiled code; otherwise it returns
nil.

See also

toggle-source-debugging

start-gc-timing
stop-gc-timing
get-gc-timing Functions

Summary

Time Garbage Collector (GC) operations.

Package

hcl

Signatures

start-gc-timing &key initialize

stop-gc-timing

get-gc-timing &key reset

Arguments

initialize⇓ A generalized boolean.

reset⇓ A generalized boolean.

Description

The functions start-gc-timing, stop-gc-timing and get-gc-timing time Garbage Collector (GC) operations.

start-gc-timing causes the system to start collecting GC timing. If initialize is non-nil, start-gc-timing also resets
the Garbage Collector times to 0. The default value of initialize is t.

stop-gc-timing stops collecting GC timing, but does not affect the times.

get-gc-timing returns the GC timing as a plist of the form:

(:total total :user user :system system)

where total, user and system are real numbers giving the total, user and system times in seconds spent inside the Garbage
Collector while GC timing is on since the timing was last reset. When reset is non-nil, get-gc-timing also switches GC

37 The HCL Package

856

timing off and resets the timing to 0. The default value of reset is nil.

The GC timing is the same timing that is collected by extended-time. Once start-gc-timing is called,
extended-time does not try to collect GC timing and print it until get-gc-timing is called with reset non-nil.

get-gc-timing can be called while GC timing is being collected.

Notes

stop-gc-timing and start-gc-timing (with initialize = nil) can be used to collect GC timing only in specific periods
without resetting the times. However the points at which the Garbage Collector is invoked are not well-defined, so the
program may allocate while GC timing is on, and spend time Garbage Collecting after you stopped collecting.

See also

extended-time
room
time

start-profiling Function

Summary

Starts collecting profiling information.

Package

hcl

Signature

start-profiling &key initialize processes profile-waiting ignore-in-foreign time

Arguments

initialize⇓ A boolean.

processes⇓ One of :current, :all, a mp:process or a list of mp:process objects.

profile-waiting⇓ A boolean.

ignore-in-foreign⇓ A boolean.

time⇓ t, nil or :extended.

Description

The function start-profiling starts collecting profiling information.

If initialize is non-nil any profiling information collected so far is discarded. The default value of initialize is t.

If processes is supplied, the set of processes that will be profiled is set as if by calling:

(set-process-profiling :set :processes processes)

Otherwise, the set of processes remains unchanged, so is controlled by any previous calls to set-process-profiling.

37 The HCL Package

857

processes only works in SMP LispWorks. In non-SMP LispWorks, all processes are profiled.

profile-waiting is used only in SMP LispWorks. When profile-waiting is true, processes that are marked for profiling are
profiled even if they are in a wait state. In non-SMP LispWorks, only processes that are active are profiled.

ignore-in-foreign controls whether to ignore processes that are inside foreign calls. The default value of ignore-in-foreign is
nil.

time controls whether to output overall timing information with the profiler output. If time is nil then no timing information
is output. If time is t (the default), then output like time is printed. If time is :extended, output like extended-time is
printed. The output is done when stop-profiling is called with print and suspend nil, which are the defaults.

start-profiling can be repeatedly called without intervening calls to stop-profiling, for example to change the
setting of profile-waiting or the profiled processes.

start-profiling cannot be used while profile is used or while the Profiler tool is profiling (on any thread). Between
the call to start-profiling and the next call to stop-profiling with print t (or omitted), profile and the Profiler
tool cannot be used.

Various parameters which are set by set-up-profiler control the behavior of the profiler. See the documentation for
set-up-profiler.

If start-profiling is called before any call to set-up-profiler, it implicitly calls set-up-profiler without
arguments, which will cause it to monitor all fbound symbols in the image.

Examples

The following sequence of calls to start-profiling and stop-profiling can be used to profile only interesting work
and print the results:

Start profiling the current process:

(start-profiling :processes :current)
(do-interesting-work)

Temporarily suspend profiling:

(stop-profiling :print nil)
(do-uninteresting-work)

Resume profiling:

(start-profiling :initialize nil)
(do-more-interesting-work)
(stop-profiling)

See also

profile
do-profiling
set-process-profiling
stop-profiling
11.2 Guidance for control of the memory management system
12 The Profiler

37 The HCL Package

858

stop-profiling Function

Summary

Stops collecting profiling information.

Package

hcl

Signature

stop-profiling &key print stream suspend

Arguments

print⇓ A generalized boolean.

stream⇓ An output stream.

suspend⇓ A generalized boolean.

Description

The function stop-profiling stops collecting profiling information, and optionally prints the results.

If suspend is false, then the next call to start-profiling must pass initialize t or omit the initialize argument. In addition,
if print is true, then the collected profiler information is printed.

If suspend is true, then the profiler is put into a suspended state where no profiling information is collected, but can be
restarted by calling:

(start-profiling :initialize nil)

The default value of print is t and the default value of suspend is (not print). The value of print is ignored if suspend is true.

stream specifies the stream for output when print is non-nil. It is ignored when print is nil. The default value of stream is
the value of *trace-output*.

Notes

Parameters set by set-up-profiler control the format of the output.

See also

do-profiling
profile
set-process-profiling
start-profiling
11.2 Guidance for control of the memory management system
12 The Profiler

37 The HCL Package

859

string=-limited
string-equal-limited Functions

Summary

Compare two string up to the length of the second string.

Package

hcl

Signatures

string=-limited string1 string2 &optional start1 => boolean

string-equal-limited string1 string2 &optional start1 => boolean

Arguments

string1⇓, string2⇓ A string designator.

start1⇓ An integer.

Values

boolean A boolean.

Description

The functions string=-limited and string-equal-limited compare string1 and string2, with the comparison limited
by the length of string2. string=-limited compares the characters as if using char=, while string-equal-limited
compare the characters as if using char-equal.

start1 defaults to 0, and specifies an index into string1 where the comparison should start.

If start1 plus the length of string2 is bigger than the length string1, then false is returned. Otherwise, the part of string1
starting from start1 is compared with string2 up to the length of string2, and true is returned if the characters are the same.

Notes

string=-limited and string-equal-limited are intended to simplify comparison in typical cases where you read a
string from "somewhere" (for example, a line from a configuration file), and want to check if the start of this string matches
something. In particular, they avoid the need to check the length of the strings.

See also

string-equal
string=

37 The HCL Package

860

http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm

string-trim-whitespace Function

Summary

Trims whitespace characters from the beginning and end of a string.

Package

hcl

Signature

string-trim-whitespace string => trimmed-string

Arguments

string⇓ A string.

Values

trimmed-string A string.

Description

The function string-trim-whitespace returns a substring of string, with all whitespace characters stripped off the
beginning and end. A whitespace character is a character for which whitespace-char-p returns t.

See also

whitespace-char-p
cl:string-trim

sweep-all-objects Function

Summary

Applies a function to all the live objects in the image.

Package

hcl

Signature

sweep-all-objects function &optional gen-0 => nil

Arguments

function⇓ A function of one argument, the object.

gen-0⇓ A generalized boolean, default value nil.

37 The HCL Package

861

http://www.lispworks.com/documentation/HyperSpec/Body/f_stg_tr.htm

Description

The function sweep-all-objects calls function with all the live objects in the image. Normally it is not useful to sweep
objects in generation 0 because they are ephemeral, so by default sweep-all-objects does not sweep generation 0. This
can be changed by passing a non-nil value as gen-0.

function should take one argument, the object. It can allocate, but if it allocates heavily the sweeping becomes unreliable.
Small amounts of allocation will normally happen only in generation 0, and so will not affect sweeping of other generations.

To call sweep-all-objects reliably, do it inside with-other-threads-disabled.

Notes

In 64-bit LispWorks and in the Mobile GC there is a more specific alternative: function sweep-gen-num-objects can be
used to call a function on all live objects in a particular generation.

In the Mobile GC, sweep-all-objects does not sweep cons objects. There is also a more specific alternative: function
mobile-gc-sweep-objects can be used to call a function on all live objects in particular generations.

See also

sweep-gen-num-objects
mobile-gc-sweep-objects

switch-static-allocation Function

Summary

Controls whether objects are allocated in the static area.

Package

hcl

Signature

switch-static-allocation flag => previous-flag

Arguments

flag⇓ A generalized boolean.

Values

previous-flag A generalized boolean.

Description

The function switch-static-allocation controls whether subsequent allocation occurs in the static area or not.

If flag is non-nil, subsequent objects are allocated in the static area; if flag is nil, objects are allocated conventionally.

Objects in the static area are garbage-collected, but not moved.

37 The HCL Package

862

http://www.lispworks.com/documentation/HyperSpec/Body/a_cons.htm

switch-static-allocation returns the previous setting of flag.

You should avoid using this function.

See also

enlarge-static
in-static-area

symbol-alloc-gen-num Variable

Summary

The generation in which interned symbols and their symbol names are allocated.

Package

hcl

Initial Value

2 in 32-bit LispWorks, 3 in 64-bit LispWorks.

Description

The variable *symbol-alloc-gen-num* controls the generation in which interned symbols and their symbol names are
allocated.

See also

allocation-in-gen-num
get-default-generation
set-default-generation
11.6.3 Allocation of interned symbols and packages

symbol-dynamically-bound-p Function

Summary

The predicate for whether a symbol is dynamically bound.

Package

hcl

Signature

symbol-dynamically-bound-p symbol => result

Arguments

symbol⇓ A non-nil symbol.

37 The HCL Package

863

Values

result A boolean.

Description

The function symbol-dynamically-bound-p is the predicate for whether the symbol symbol is dynamically bound in the
current environment.

See also

28 Miscellaneous Utilities

throw-if-tag-found Macro

Summary

Throws to a specified catch tag or returns nil if the catch tag is not found.

Package

hcl

Signature

throw-if-tag-found catch-tag result-form => result

Arguments

catch-tag⇓ A catch tag.

result-form⇓ A Lisp form.

Values

result nil if a non-local exit does not occur.

Description

The macro throw-if-tag-found checks whether it can find the catch tag catch-tag by using find-throw-tag. If it finds
catch-tag it throws to catch-tag the value(s) of evaluating result-form. Otherwise throw-if-tag-found returns nil,
without evaluating result-form.

The throwing operation is done by a normal throw. Therefore the only the difference between this and cl:throw is when the
tag is not found. In this case, cl:throw would evaluate the result form and then give an error, but throw-if-tag-found
simply returns nil.

See also

find-throw-tag

37 The HCL Package

864

http://www.lispworks.com/documentation/HyperSpec/Body/s_throw.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_throw.htm

toggle-source-debugging Function

Summary

Changes compiler settings affecting production of source level debugging information.

Package

hcl

Signature

toggle-source-debugging &optional on => bool

Arguments

on⇓ Flag (t or nil) to control the resulting setting of the variables. The default is t.

Values

bool The current state of source level debugging: t if source level debugging is on.

Description

The function toggle-source-debugging sets certain compiler parameters to on, and also turns leaf case optimizations on
(when on is nil) or off (when on is t). For all these parameters, the value nil reduces compilation time.

toggle-source-debugging is called in the configuration file a-dot-lispworks.lisp, and the initial state of
LispWorks such that source level debugging is on.

The parameters relate to information required for source level debugging, cross-referencing and finding all changed
definitions.

The parameters (all in the compiler package) are:

produce-xref-info

When true, the compiler produces information for the Cross Referencer.

load-xref-info When true, the cross-referencing information produced by the compiler is loaded when the
corresponding file is loaded.

notice-changed-definitions

When true, the Cross Referencer notices when a function is redefined, including an interpreted
redefinition..

source-level-debugging

When true, the compiler generates information used by the debugger.

toggle-source-debugging modifies the status of the variables, and then returns the new value. To check whether all the
variables are set to true, without modifying them, use source-debugging-on-p.

Cross-referencing information is used by the functions who-calls, who-binds, who-references, who-sets, and

37 The HCL Package

865

friends.

Compatibility notes

In LispWorks 4.2 and earlier, toggle-source-debugging controlled source file recording information. In LispWorks 4.3
and later, this is controlled independently by *record-source-files*.

See also

source-debugging-on-p

total-allocation Function

Summary

Calculates memory consumed since the image was started.

Package

hcl

Signature

total-allocation => total

Values

total An non-negative integer.

Description

The function total-allocation returns the total amount of memory consumed since the current image was created. Use
at the start and end of a piece of code, to see how much it allocates.

See also

find-object-size
room
11.3 Memory Management in 32-bit LispWorks

traced-arglist Variable

Summary

The list of arguments given to the function being traced.

Package

hcl

37 The HCL Package

866

Initial Value

nil

Description

Upon entering a function that is being traced, the variable *traced-arglist* is bound to the list of arguments given to the
function. *traced-arglist* is then printed after the function name in the output from tracing. It is accessible in the
:before and :after forms to trace. However care should be used when manipulating this variable, since it is the value of
traced-arglist itself that is used when calling the traced function. Thus if this value is altered by the :before forms
then the function receives the altered argument list.

Examples

USER 14 > (trace (+ :before
 ((setq *traced-arglist*
 (mapcar #'1+
 traced-arglist)))))

+
USER 15 > (+ 1 2 3)

0 + > (1 2 3)
 (2 3 4)
0 + < (9)
9

Notes

traced-arglist is an extension to Common Lisp.

See also

trace

traced-results Variable

Summary

The list of results from the function being traced.

Package

hcl

Initial Value

nil

Description

Upon leaving a function that is being traced, the variable *traced-results* is bound to the list of results from the
function. *traced-results* is then printed after the function name in the output from tracing. It is accessible in the

37 The HCL Package

867

:after forms to trace. However care should be used when manipulating this variable, since it is the value of
traced-results itself that is used when returning from the traced function. Thus if this value is altered by the :after
forms then the caller of the traced function receives the altered results.

Examples

USER 5 > (trace (ceiling
 :after
 ((setq *traced-results*
 (mapcar #'1- *traced-results*)))))

CEILING
USER 6 > (multiple-value-call #'+ (ceiling 4 3))

0 CEILING > (4 3)
0 CEILING < (2 -2)
 (1 -3)
-2

Notes

traced-results is an extension to Common Lisp.

See also

trace

trace-indent-width Variable

Summary

The amount of extra indentation in the trace output for each level of nesting.

Package

hcl

Initial Value

2

Description

The variable *trace-indent-width* is the extra amount by which the traced output for function calls is indented upon
entering a deeper level of nesting (that is, a traced call from a function that is itself traced). If it is 0 then no indentation
occurs.

Examples

CL-USER 1 > (setq *trace-indent-width* 4
 max-trace-indent 50)
50

37 The HCL Package

868

CL-USER 2 > (defun quad (a b c) (- (* b b) (* 4 a c)))
QUAD

CL-USER 3 > (trace quad *)
(QUAD *)

CL-USER 4 > (quad 4 3 14)
0 QUAD > ...
 >> A : 4
 >> B : 3
 >> C : 14
 1 * > ...
 >> SYSTEM::ARGS : (3 3)
 1 * < ...
 << VALUE-0 : 9
 1 * > ...
 >> SYSTEM::ARGS : (4 4 14)
 1 * < ...
 << VALUE-0 : 224
0 QUAD < ...
 << VALUE-0 : -215
-215

Notes

trace-indent-width is an extension to Common Lisp.

See also

trace

trace-level Variable

Summary

The current depth of tracing.

Package

hcl

Initial Value

0

Description

The variable *trace-level* holds the current depth of tracing. The current value of *trace-level* is printed before the
function name during the output from tracing.

Examples

USER 8 > (defun fac (n) (if (<= n 1)
 1
 (* n (fac (1- n)))))

37 The HCL Package

869

FAC
USER 9 > (trace fac)

FAC
USER 10 > (fac 3)

0 FAC > (3)
 1 FAC > (2)
 2 FAC > (1)
 2 FAC < (1)
 1 FAC < (2)
0 FAC < (6)
6

Notes

trace-level is an extension to Common Lisp.

See also

trace

trace-print-circle Variable

Summary

Controls how circular structure are printed in trace output.

Package

hcl

Initial Value

nil

Description

The variable *trace-print-circle* controls how circular structures are printed during output from tracing. It allows the
printing of circular structures by the tracer to be controlled independently of the usual printing mechanism, which is governed
by *print-circle*. *print-circle* is bound to the value of *trace-print-circle* while printing tracing
information.

Examples

USER 19 > (setq *trace-print-circle* t)

T
USER 20 > (defun circ (l)
 (rplacd (last l) l)
 l)

CIRC

37 The HCL Package

870

http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_cir.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_cir.htm

USER 21 > (trace second)

SECOND
USER 22 > (second (circ '(1 2 3 4)))
0 SECOND > (#1=(1 2 3 4 . #1#))
0 SECOND < (2) 2

Notes

trace-print-circle is an extension to Common Lisp.

See also

trace

trace-print-length Variable

Summary

The number of components of an object that are printed in trace output.

Package

hcl

Initial Value

100

Description

The variable *trace-print-length* controls the number of components of an object which are printed during output
from tracing. If its value is a positive integer then the first *trace-print-length* components are printed.

print-length is bound to the value of *trace-print-length* while printing tracing information. If
trace-print-length is nil then all the components of the object are printed.

Examples

USER 5 > (trace append)
APPEND
USER 6 > (setq *trace-print-length* 3)

3
USER 7 > (dotimes (i 10) (setq li (if (zerop i)
 nil
 (cons i li))))

NIL
USER 8 > (append li '(a b))
0 APPEND > ((9 8 7 ...) (A B))
0 APPEND < ((9 8 7 ...))
(9 8 7 6 5 4 3 2 1 A B)

37 The HCL Package

871

http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_lev.htm

Notes

trace-print-length is an extension to Common Lisp.

See also

trace

trace-print-level Variable

Summary

The depth to which nested objects are printed in trace output.

Package

hcl

Initial Value

5

Description

The variable *trace-print-level* controls the depth to which nested objects are printed during output from tracing. If
its value is a positive integer then components at or above that level are suppressed. By definition an object to be printed is
considered to be at level 0, its components are at level 1, their subcomponents are at level 2, and so on.

print-level is bound to the value of *trace-print-level* while printing tracing information. If
trace-print-level is nil then objects are printed without regard to depth.

Examples

USER 8 > (trace append)

APPEND
USER 9 > (dotimes (i 10) (setq li (if (zerop i)
 nil
 (list i li))))

NIL
USER 10 > (append li '(a b))
0 APPEND > ((9 (8 (7 (6 #)))) (A B))
0 APPEND < ((9 (8 (7 (6 #))) A B))
(9 (8 (7 (6 (5 (4 (3 (2 (1 NIL)))))))) A B)

Notes

trace-print-level is an extension to Common Lisp.

See also

trace

37 The HCL Package

872

http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_lev.htm

trace-print-pretty Variable

Summary

Controls the amount of whitespace in trace output.

Package

hcl

Initial Value

nil

Description

The variable *trace-print-pretty* controls the amount of whitespace printed during output from tracing. If it is not
nil then extra whitespace is inserted to make the output more comprehensible. *print-pretty* is bound to the value of
trace-print-pretty while printing tracing information.

Examples

USER 6 > (trace macroexpand-1)

MACROEXPAND-1
USER 7 > (setq *trace-print-pretty* t
 print-pretty nil)

NIL
USER 8 > (defmacro sum (n)
 '(do ((i 0 (1+ i))
 (res 0 (+ i res)))
 ((= i ,n) res)))

SUM
USER 9 > (macroexpand-1 '(sum 3))

0 MACROEXPAND-1 > ((SUM 3))
0 MACROEXPAND-1 < ((DO ((I 0 (1+ I))
 (RES 0 (+ I RES)))
 ((= I 3)
 RES))
 T)
(DO ((I 0 (1+ I)) (RES 0 (+ I RES))) ((= I 3) RES))
T

Notes

trace-print-pretty is an extension to Common Lisp.

37 The HCL Package

873

http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_pre.htm

See also

trace

trace-verbose Variable

Summary

Controls how arguments and values are printed in trace output.

Package

hcl

Initial Value

:only

Description

The variable *trace-verbose* controls the way arguments and values are printed in trace output.

If the value is not nil then trace attempts to decode the arguments and values, and prints them.

When the value is :only, trace does not print the lists of arguments and values after the function name.

Notes

trace-verbose is an extension to Common Lisp.

See also

trace

try-compact-in-generation Function

Summary

Compacts the most fragmented segment(s) in a generation in 32-bit LispWorks.

Package

hcl

Signature

try-compact-in-generation generation-number time-threshold &optional fraction-threshold => result

Arguments

generation-number⇓ An integer between 0 and the maximum generation number.

37 The HCL Package

874

time-threshold⇓ A real number.

fraction-threshold⇓ A real number between 0 and 1.

Values

result⇓ A boolean.

Description

The function try-compact-in-generation finds the most fragmented segment in the generation specified by generation-
number.

If generation-number is 0, then most recent generation is considered; if generation-number is 1 then the most recent two
generations are considered and so on up to a maximum (usually 3). Numbers outside this range signal an error.

If time-threshold is positive, it compacts this segment, and repeats this operation until time-threshold seconds have elapsed.
At this point try-compact-in-generation returns, with value t if at least one segment was compacted and value nil
otherwise. Because the operation cannot be stopped in the middle, the actual time taken will always be larger than time-
threshold.

fraction-threshold specifies the minimum fragmentation to actually compact. The default is 0.25. If fraction-threshold is 1,
try-compact-in-generation does nothing. If fraction-threshold is 0, try-compact-in-generation will compact all
uncompacted segments (unless it runs out of time). With the default (0.25) try-compact-in-generation compacts only
moderately fragmented segments.

If time-threshold is negative, then try-compact-in-generation does not actually compact any segments. result is a
boolean indicating whether try-compact-in-generation would actually try to compact a segment if it were to be called
with a positive time-threshold and the other arguments unchanged.

This function is typically used after a call to check-fragmentation. For more information, see 11.3.11 Controlling
Fragmentation.

Notes

try-compact-in-generation is implemented only in 32-bit LispWorks. It is not relevant to the Memory Management
API in 64-bit implementations, where marking-gc with the what-to-copy argument offers similar functionality (although
set-blocking-gen-num is intended to solve the problem of fragmentation automatically).

See also

check-fragmentation
try-move-in-generation
11.3 Memory Management in 32-bit LispWorks

try-move-in-generation Function

Summary

Moves objects out of the most fragmented segment(s) in a generation, leaving them empty in 32-bit LispWorks.

Package

hcl

37 The HCL Package

875

Signature

try-move-in-generation generation-number time-threshold &optional fraction-threshold => result

Arguments

generation-number⇓ An integer between 0 and the maximum generation number.

time-threshold⇓ A real number.

fraction-threshold⇓ A real number between 0 and 1.

Values

result⇓ A boolean.

Description

The function try-move-in-generation finds the most fragmented segment in the generation specified by generation-
number.

If generation-number is 0, then most recent generation is considered; if generation-number is 1 then the most recent two
generations are considered and so on up to a maximum (usually 3). Numbers outside this range signal an error.

If time-threshold is positive, it moves objects out of this segment, leaving it empty, and repeats this operation until time-
threshold seconds have elapsed. At this point try-move-in-generation returns, with value t if at least one segment was
moved and value nil otherwise. Because the operation cannot be stopped in the middle, the actual time taken will always be
larger than time-threshold.

fraction-threshold specifies the minimum fragmentation to actually move. The default is 0.25. If fraction-threshold is 1,
try-move-in-generation does nothing. If fraction-threshold is 0, try-move-in-generation will move all
uncompacted segments (unless it runs out of time). With the default (0.25) try-move-in-generation moves only
moderately fragmented segments.

If time-threshold is negative, then try-move-in-generation does not actually move any segments. result is a boolean
indicating whether try-move-in-generation would actually try to move a segment if it were to be called with a positive
time-threshold and the other arguments unchanged.

This function is typically used after a call to check-fragmentation. For more information, see 11.3.11 Controlling
Fragmentation.

Notes

try-move-in-generation is implemented only in 32-bit LispWorks. It is not relevant to the Memory Management API in
64-bit implementations, where marking-gc with the what-to-copy argument offers similar functionality (although
set-blocking-gen-num is intended to solve the problem of fragmentation automatically).

See also

check-fragmentation
try-compact-in-generation
11.2 Guidance for control of the memory management system

37 The HCL Package

876

undefine-declaration Function

Summary

Remove a user declaration handler.

Package

hcl

Signature

undefine-declaration decl-name => decl-name

Arguments

decl-name⇓ A symbol.

Values

decl-name A symbol.

Description

The function undefine-declaration causes decl-name not to be recognized as a declaration. It can be used to undo the
effect of define-declaration, but also to undo the effect of proclaiming decl-name as a declaration by proclaim or
declaim. Note that undefine-declaration is a function, unlike define-declaration which is a macro.

undefine-declaration returns its argument.

See also

define-declaration
declare
declaration-information
function-information
variable-information
augment-environment

unlocked-queue Type

Summary

A fast queue.

Package

hcl

37 The HCL Package

877

Signature

unlocked-queue

Description

The type unlocked-queue is a fast queue (first in, first out) that is unlocked, not thread-safe and does not have waiting
functionality. It does not do anything that mailbox cannot do, but it is faster. It is useful when you always access the queue
together with other operations that need to be "atomic", so that you need a lock around them anyway, or when queueing and
de-queueing is done on the same process.

See also

make-unlocked-queue

unwind-protect-blocking-interrupts Macro

Summary

Does unwind-protect blocking interrupts.

Package

hcl

Signature

unwind-protect-blocking-interrupts protected-form &rest cleanups => results

Arguments

protected-form⇓ A form.

cleanups⇓ Forms.

Values

results The values of protected-form.

Description

The macro unwind-protect-blocking-interrupts executes protected-form with interrupts blocked. On exit, whether
local or not, cleanups are executed with interrupts blocked.

In compiled code, the macro is equivalent to:

(mp:with-interrupts-blocked
 (unwind-protect
 protected-form
 (mp:current-process-block-interrupts)
 cleanup1 cleanup2 ..)))

However, in interpreted code the macro is expanded to ensure that the call to
(mp:current-process-block-interrupts) actually happens. If the above form is interpreted and protected-form uses

37 The HCL Package

878

http://www.lispworks.com/documentation/HyperSpec/Body/s_unwind.htm

current-process-unblock-interrupts, the evaluator may throw (if the process is killed, for example) before calling
current-process-unblock-interrupts.

Notes

1. Both the protected form and the cleanups can block and unblock interrupts using
current-process-block-interrupts and current-process-unblock-interrupts. Typically the protected
form would set up something and then unblock the interrupts. The cleanups may unblock interrupts if some of the
cleanups are essential and others are not.

2. Blocking interrupts causes the process to not respond to interrupts, including killing. You should make sure that forms
which are executed with interrupts blocked do not hang.

See also

current-process-block-interrupts
current-process-unblock-interrupts
unwind-protect-blocking-interrupts-in-cleanups

unwind-protect-blocking-interrupts-in-cleanups Macro

Summary

Does unwind-protect blocking interrupts around the cleanups.

Package

hcl

Signature

unwind-protect-blocking-interrupts-in-cleanups protected-form &rest cleanups => results

Arguments

protected-form⇓ A form.

cleanups⇓ Forms.

Values

results The values of protected-form.

Description

The macro unwind-protect-blocking-interrupts-in-cleanups executes protected-form. On exit, whether local or
not, cleanups are executed with interrupts blocked.

In compiled code, the macro is equivalent to:

(unwind-protect
 protected-form
 (mp:with-interrupts-blocked cleanup1 cleanup2 ..)

37 The HCL Package

879

http://www.lispworks.com/documentation/HyperSpec/Body/s_unwind.htm

However, in interpreted code the macro is expanded to ensure that the body of mp:with-interrupts-blocked actually
happens. If the form above is interpreted the evaluator may throw (if the process is killed, for example) before completing
macroexpansion of mp:with-interrupts-blocked and doing the actual blocking.

Notes

1. cleanups can block and unblock interrupts using current-process-block-interrupts and
current-process-unblock-interrupts. This may be useful if some of the cleanups are essential and others are
not.

2. Blocking interrupts causes the process to not respond to interrupts, including killing. You should make sure that forms
which are executed with interrupts blocked do not hang.

See also

current-process-block-interrupts
current-process-unblock-interrupts
unwind-protect-blocking-interrupts
with-interrupts-blocked

variable-information Function

Summary

Returns information about the variable bindings of a symbol in an environment.

Package

hcl

Signature

variable-information variable &optional env => kind, localp, decls

Arguments

variable⇓ A symbol.

env⇓ An environment or nil.

Values

kind⇓ nil or one of the keywords :special, :lexical, :symbol-macro and :constant.

localp⇓ A boolean.

decls⇓ An a-list.

Description

The function variable-information returns information about how the variable symbol is bound in the environment env.

The value of kind will be as follows:

nil There is no information about variable in env.

37 The HCL Package

880

:special variable has a special binding in env.

:lexical variable has a lexical binding in env.

:symbol-macro variable has a symbol-macro binding in env.

:constant variable has a constant binding in env.

localp will be true if variable is bound by a form that has lexical scope (for example let, lambda) or false if variable has
global scope (for example defvar).

decls is an a-list of declarations that refer to variable. The cdr of each pair is specified according to the car of the pair as
follows:

dynamic-extent The cdr is non-nil if variable is declared dynamic-extent in env.

ignore The cdr is non-nil if variable is declared ignore in env.

type The cdr is the type specifier that is declared for variable in env if any.

Notes

variable-information is part of the environment access API which is based on that specified in Common Lisp: the
Language (2nd Edition).

See also

augment-environment
declaration-information
define-declaration
function-information
map-environment

who-binds Function

Summary

Returns the definitions which bind a special variable.

Package

hcl

Signature

who-binds symbol => result

Arguments

symbol⇓ A special variable.

Values

result A list.

37 The HCL Package

881

http://www.lispworks.com/documentation/HyperSpec/Body/s_let_l.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_lambda.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_dynami.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_dynami.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_ignore.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_ignore.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_type.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

Description

The function who-binds returns a list of dspecs naming the definitions which bind the special variable symbol.

Notes

The cross-referencing information used by who-binds is generated when code is compiled with source-level debugging
switched on.

See also

binds-who
toggle-source-debugging
who-sets
who-references

who-calls Function

Summary

Returns the callers of a function.

Package

hcl

Signature

who-calls dspec => callers

Arguments

dspec⇓ A dspec.

Values

callers A list.

Description

The function who-calls returns a list of dspecs naming the definitions which call the function named by dspec.

See also the editor commands List Callers and Show Paths To.

Notes

The cross-referencing information used by who-calls is generated when code is compiled with source-level debugging
switched on.

See also

calls-who
toggle-source-debugging

37 The HCL Package

882

who-references Function

Summary

Returns the definitions which reference a special variable.

Package

hcl

Signature

who-references symbol => result

Arguments

symbol⇓ A special variable.

Values

result A list.

Description

The function who-references returns a list of dspecs naming the definitions which reference the special variable symbol.

Notes

The cross-referencing information used by who-references is generated when code is compiled with source-level
debugging switched on.

See also

references-who
toggle-source-debugging
who-binds
who-sets

who-sets Function

Summary

Returns the definitions which set a special variable.

Package

hcl

37 The HCL Package

883

Signature

who-sets symbol => result

Arguments

symbol⇓ A special variable.

Values

result A list.

Description

The function who-sets returns a list of dspecs naming the definitions which set the value of the special variable symbol.

Notes

The cross-referencing information used by who-sets is generated when code is compiled with source-level debugging
switched on.

See also

sets-who
toggle-source-debugging
who-binds
who-references

with-code-coverage-generation Macro

Summary

Switches code coverage generation during the execution of a body of code.

Package

hcl

Signature

with-code-coverage-generation (&key on atomic-p counters force count-implicit-branch) &body body => result

Arguments

on⇓ A boolean.

atomic-p⇓ A boolean.

counters⇓ A boolean.

force⇓ A boolean.

count-implicit-branch⇓
A boolean.

37 The HCL Package

884

body⇓ Lisp forms.

Values

result The result of executing body.

Description

The macro with-code-coverage-generation switches code coverage generation on or off inside the dynamic scope of
body.

on, atomic-p, counters, force and count-implicit-branch are interpreted as by generate-code-coverage.

See also

generate-code-coverage

with-ensuring-gethash Macro

Summary

A thread-safe way to get a value from a hash-table, adding a value if the key is not present. Allows a complicated form to
construct the new value.

Package

hcl

Signature

with-ensuring-gethash key hash-table &key constructor constructor-form in-lock-constructor in-lock-constructor-form
=> result

Arguments

key⇓ A Lisp object.

hash-table⇓ A hash-table.

constructor⇓ A function designator for a function of no arguments, or nil.

constructor-form⇓ A Lisp form, or nil.

in-lock-constructor⇓ A function designator for a function of one argument, or nil.

in-lock-constructor-form⇓
A Lisp form, or nil.

Values

result A Lisp object.

Description

The macro with-ensuring-gethash gets the value for the key key from the hash table hash-table, and if this fails

37 The HCL Package

885

http://www.lispworks.com/documentation/HyperSpec/Body/t_hash_t.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_hash_t.htm

constructs a new value, puts it in the table and returns it. with-ensuring-gethash does this in a thread-safe way, which
means that all threads calling it with the same key and hash-table return the same value (as long as nothing removes it from
the table).

Only one of constructor-form or constructor can be non-nil. When key is not found, constructor-form or constructor is used
to construct the new value. If constructor is non-nil, it is called without arguments. If constructor-form is non-nil, it is
executed. If both are nil, the new value is nil unless in-lock-constructor or in-lock-constructor-form construct it. The call
to constructor or execution of constructor-form is done without any lock. The result may be discarded if, by the time it
returned, there is a match for key in the table.

Only one of in-lock-constructor or in-lock-constructor-form can be non-nil, which is used when key is not found after
constructing the new value. If in-lock-constructor-form is non-nil, it is executed and the result is the actual value to use (the
result of the construction by constructor-form or constructor is ignored). If in-lock-constructor is non-nil, it is called with the
result of the construction by constructor-form or constructor, and the result is used as the new value. In either case, the call
or execution is done with hash-table locked, and the result is guaranteed to be put in hash-table and returned. If both in-lock-
constructor and in-lock-constructor-form are nil, the result of the construction is used.

Notes

1. When both constructor-form and in-lock-constructor-form are nil, gethash-ensuring is probably simpler and better.

2. In most situations, doing all the construction out of the lock is better than doing anything inside the lock. It means that
sometimes the work that was done in the constructions is wasted because another thread put the value in the table, but
that overhead is normally less significant than the overhead of holding the lock for longer, with the associated potential
deadlocks.

See also

ensure-hash-entry
gethash-ensuring
19.5 Modifying a hash table with multiprocessing

with-hash-table-locked Macro

Summary

Evaluates code with a hash-table locked against modification by other threads.

Package

hcl

Signature

with-hash-table-locked hash-table &body body => results

Arguments

hash-table⇓ A hash table.

body⇓ Lisp forms.

37 The HCL Package

886

Values

results The results of evaluating body.

Description

The macro with-hash-table-locked evaluates body with the hash table hash-table locked against modification by other
threads. The current thread can modify hash-table. The lock is exclusive, so if more than one thread tries to lock the same
table, one thread will hold the lock and the others will wait until that thread leaves the body of with-hash-table-locked.

with-hash-table-locked is useful not only for multiple accesses to the same table, but also when an access to the table
must be consistent with some other operation, avoiding the need to make a separate lock.

See also

gethash-ensuring
make-hash-table
modify-hash
with-ensuring-gethash
19.3 Atomicity and thread-safety of the LispWorks implementation

with-heavy-allocation Macro

Summary

Slows up garbage collection during the execution of code that allocates a lot of space.

Package

hcl

Signature

with-heavy-allocation &rest body => result

Arguments

body⇓ The forms for which you want the garbage collector to behave differently from normal.

Values

result The result of executing body.

Description

The macro with-heavy-allocation is for use with code that allocates a lot of space but is not interactive. It ensures that
garbage collection (GC) is carried out less frequently while body are being executed. However, each GC may take longer.

Compatibility notes

In LispWorks 5.0 with-heavy-allocation is implemented only in 32-bit LispWorks. In version 5.1 and later it is
implemented in 64-bit LispWorks as well.

37 The HCL Package

887

See also

avoid-gc
gc-if-needed
get-gc-parameters
mark-and-sweep
normal-gc
set-gc-parameters
finish-heavy-allocation
without-interrupts
11.3 Memory Management in 32-bit LispWorks

without-code-coverage Macro

Summary

Prevents generation of code coverage for a body of code.

Package

hcl

Signature

without-code-coverage &body body => result

Arguments

body⇓ Lisp forms.

Values

result The result of evaluating body.

Description

The macro without-code-coverage prevents generation of code coverage for the forms of body.

body is evaluated as an implicit progn, except that inside body the compiler does not generate code coverage counters, unless
force was supplied non-nil to generate-code-coverage or with-code-coverage-generation.

without-code-coverage is useful for error forms that you do not want to be counted.

Notes

There will be a counter for the (without-code-coverage ...) form itself. If you do not want this counter, use
error-situation-forms instead.

See also

error-situation-forms
generate-code-coverage
with-code-coverage-generation

37 The HCL Package

888

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

with-output-to-fasl-file Macro

Summary

Opens a file in a binary format that can be used to dump objects.

Package

hcl

Signature

with-output-to-fasl-file (fasl-stream-var pathname &key overwrite dump-standard-objects delete-on-error) &body
body => nil

Arguments

fasl-stream-var⇓ A variable.

pathname⇓ A pathname designator.

overwrite⇓ A boolean.

dump-standard-objects⇓
A boolean.

delete-on-error⇓ A boolean.

body⇓ Lisp forms that call dump-form.

Description

The macro with-output-to-fasl-file helps to dump forms to a file in a binary format, which can then be loaded using
load-data-file.

with-output-to-fasl-file binds fasl-stream-var to an opaque structure associated with pathname. Inside body,
dump-form can be used to dump individual forms to the file.

See dump-forms-to-file for a description of how overwrite, delete-on-error and dump-standard-objects are used.

A fasl file created using with-output-to-fasl-file must be loaded only by load-data-file, and not by load.

See also

load-data-file
dump-forms-to-file
dump-form

37 The HCL Package

889

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

with-pinned-objects Macro

Summary

Prevents objects from moving while in the dynamic scope of some code.

Package

hcl

Signature

with-pinned-objects (&rest objects) &body body => body-result*

Arguments

objects⇓ "Pinnable" Lisp objects.

body⇓ Lisp forms.

Values

body-result* The values returned by body.

Description

The macro with-pinned-objects "pins" the objects in objects while executing the form of body. Pinning means that the
objects do not move.

Each element in objects is evaluated, and must produce an object suitable for pinning, which means either a static object or a
"pinnable" object. Such objects are the result of calling make-array with the keyword :allocation being one of
:static, :static-new or :pinnable.

with-pinned-objects signals an error if any element of objects is not suitable for pinning. It also prevents the elements
of objects from being garbage collected while body executes.

with-pinned-objects is intended to be used for objects that are passed directly to foreign functions using the foreign type
:lisp-array. Such objects must not be moved during the foreign call, so must be either static objects, or "pinnable"
objects that are pinned dynamically by with-pinned-objects. Note that the foreign type :lisp-simple-1d-array
implicitly pins the object, so there is no need to use with-pinned-objects for arguments that are passed with
:lisp-simple-1d-array.

with-pinned-objects adds overhead to any garbage collections that occur while body is executed, so should be used with
the smallest scope possible.

Pinning of an object has a global effect, but it is a thread-specific operation, so you cannot pin an object on one thread, and
then rely on it being pinned on another thread.

The same object can be concurrently pinned multiple times on different threads or pinned recursively.

See also

define-foreign-function
:lisp-array

37 The HCL Package

890

make-array
:lisp-simple-1d-array

with-ring-locked Macro

Summary

Locks a ring such that no other thread can access it while some code is executed.

Package

hcl

Signature

with-ring-locked (ring &optional whostate timeout) &body body => result

Arguments

ring⇓ A ring object created by make-ring.

whostate⇓ The status of the process while the ring is locked.

timeout⇓ A timeout period, in seconds.

body⇓ Lisp forms.

Values

result The result of executing body.

Description

The macro with-ring-locked locks the ring ring that during the execution of body no other thread can access ring,
whether for modification or merely reading values.

whostate and timeout are used in the same way as in with-lock.

See also

make-ring

write-string-with-properties Function

Summary

Writes the string to the stream, and adds properties if the stream supports it.

Package

hcl

37 The HCL Package

891

Signature

write-string-with-properties string properties &optional stream &key start end => string

Arguments

string⇓ A string.

properties⇓ A property list.

stream⇓ An output stream designator.

start⇓, end⇓ Bounding index designators of string.

Values

string A string.

Description

The function write-string-with-properties writes a part of string, bounded by start and end, to stream exactly like
cl:write-string does, and then adds properties if stream supports this operation. Currently the only types of stream
that support properties are Editor streams, which means streams that write to Editor buffers.

properties must be a property list, with alternating key and value. When adding the properties, each pair of key and value is
processed separately, in the order they occur in the list.

If key is :highlight, then value must specify a editor:face. It can be an editor:face object, a face name (which
means a symbol that was used as the name in editor:make-face), or one of the following keywords:

:underline Underline the text.

:bold Make the text bold.

:italic Make the text italic.

:bold-italic Make the text bold and italic.

:inverse Invert the background and foreground.

:compiler-error-highlight

The face that the compiler uses when it outputs an error to an editor buffer.

:compiler-warning-highlight

The face that the compiler uses when it outputs a warning to an editor buffer.

:compiler-note-highlight

The face that the compiler uses when it outputs a note to an editor buffer.

:editor-error-highlight

The face that the editor uses in the echo area when it reports an editor error.

If key is :menu-items, value specifies menu items that are added to the context menu that is displayed when the current
point is inside string in the Editor buffer. The value must a list where each element specifies a menu-item by a list of three
elements: title , function and arg. title must be a string, and is what the end user sees. If the user selects this item, function is
called with arg as a single argument.

37 The HCL Package

892

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_stg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_stream.htm

If key is not :menu-items or :highlight, the key / value is added as a text property using
editor:put-text-property, with key as the property argument and value as value.

Examples

Output "A string in bold" in bold face to mp:*background-standard-output*:

(write-string-with-properties
 "A string in bold"
 '(:highlight :bold)
 mp:*background-standard-output*)

Notes

write-string-with-properties can be used where ever write-string is used, because it does exactly the same for
streams that do not implement properties.

The LispWorks compiler uses write-string-with-properties to write compiler errors, warnings and notes with
:complier-...-highlight keywords above. This is how it produces the colored errors/warnings/notes when it writes to
the Listener or is invoked in the Editor.

Support for :menu-items is implemented by the method:

(method capi:pane-popup-menu-items
 (capi:editor-pane capi:interface))

Therefore, if this method is not called, for example if you make a capi:editor-pane and pass it :pane-menu, then items
will not be added to the menu.

See also

cl:write-string

write-to-system-log
format-to-system-log Functions

Summary

Write a message to the operating system log.

Package

hcl

Signatures

write-to-system-log message &key priority tag &allow-other-keys

format-to-system-log priority tag format-control-string &rest format-args

Arguments

message⇓ A string.

37 The HCL Package

893

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_stg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_stg.htm

priority⇓ A Lisp object. Default :info.

tag⇓ A string.

format-control-string⇓
A string.

format-args⇓ Lisp objects.

Description

The functions write-to-system-log and format-to-system-log write messages to the log of the underlying
operation system. format-to-system-log first calls safe-format-to-string with format-control-string and format-
args to generate the message, and then calls write-to-system-log with the message, priority, and tag.
write-to-system-log does the actual writing as specified below.

Implementation on Operating systems other than Android and Windows

On operating systems other than Android and Windows, the writing is done using the C function syslog.

If priority is one of the keywords :error, :debug or :warn, then the priority argument to syslog is LOG_ERR,
LOG_DEBUG or LOG_WARN respectively. priority :warning also uses LOG_WARN. For all other values of priority, LOG_INFO
is used.

The format string for syslog is always "%s".

The first argument to the format string is a string generated by appending tag, colon, space and message. tag defaults to the
result of lisp-image-name.

If message is long, it is split to sub-strings, with each sub-string written by a separated call to syslog. tag is only prepended
to the first sub-string.

Implementation on Windows

On Windows, the writing is done using the C function ReportEvent.

tag is used to create the event log handle (the first argument to ReportEvent) by passing it as the source name to
RegisterEventSource. tag defaults to the result of lisp-image-name.

If priority is one of the keywords :error or :warn, the type argument to ReportEvent is EVENTLOG_ERROR_TYPE or
EVENTLOG_WARNING_TYPE respectively. priority :warning also uses EVENTLOG_WARNING_TYPE. For all other values of
priority, EVENTLOG_INFORMATION_TYPE is used.

Implementation on Android

On Android, the writing is done using the C function __android_log_write, which has the same effect as using that
methods in the Java class android.util.Log.

tag is used the tag argument for __android_log_write. It defaults to "LispWorks".

If priority is one of the keywords :error, :debug, :warn or :verbose, the prio argument to __android_log_write is
ANDROID_LOG_ERROR, ANDROID_LOG_DEBUG, ANDROID_LOG_WARN, or ANDROID_LOG_VERBOSE respectively. priority
:warning also uses ANDROID_LOG_WARN. For all other values of priority, ANDROID_LOG_INFO is used.

Notes

These functions where added initially for Android, where they are useful for debugging because they add messages to the

37 The HCL Package

894

logcat.

37 The HCL Package

895

38 The LISPWORKS Package

This chapter describes symbols available in the LISPWORKS package. This package is used by default. Its symbols are visible
in the CL-USER package.

Various uses of the symbols documented here are discussed throughout this manual.

16-bit-string Type

Summary

The 16 bit string type.

Package

lispworks

Signature

16-bit-string &optional length

Arguments

length⇓ The length of the string (or *, meaning any, which is the default).

Description

Instances of the type 16-bit-string are strings that can hold simple chars of codes 0…65533. This is the string type that
is guaranteed to always take 16 bits per element.

If length is not *, then it constrains the length of the string to that number of elements.

8-bit-string Type

Summary

The 8 bit string type.

Package

lispworks

Signature

8-bit-string &optional length

896

Arguments

length⇓ The length of the string (or *, meaning any, which is the default).

Description

Instances of the type 8-bit-string are strings that can hold simple chars of codes 0…255. This is the string type that is
guaranteed to always take 8 bits per element.

If length is not *, then it constrains the length of the string to that number of elements.

appendf Macro

Summary

Appends lists to the end of a given list.

Package

lispworks

Signature

appendf place &rest lists => result

Arguments

place⇓ A place.

lists⇓ A set of lists.

Values

result An object.

Description

The macro appendf modifies place by appending the lists given by lists to the end. See append for more details.

See also

removef

append-file Function

Summary

Appends the contents of a file to another file.

Package

lispworks

38 The LISPWORKS Package

897

http://www.lispworks.com/documentation/HyperSpec/Body/f_append.htm

Signature

append-file from to

Arguments

from⇓ A pathname designator.

to⇓ A pathname designator.

Description

The function append-file appends the contents of the file from to another file. The file from must exist.

append-file opens from for input and to for output using if-exists :append (see cl:open in the Common Lisp HyperSpec)
and copies the contents from from to to.

On any failure append-file signals an error.

append-file does not return a useful value.

See also

copy-file

autoload-asdf-integration Variable

Summary

Determines whether ASDF integration code is loaded automatically.

Package

lispworks

Initial Value

t

Description

The variable *autoload-asdf-integration* is consulted used when the LispWorks IDE starts. If its value is true, then
the system arranges for ASDF integration code to be loaded automatically when ASDF is loaded.

The ASDF integration code makes the LispWorks IDE tools (System Browser, Search Files) work with ASDF systems
(defined with asdf:defsystem) as well as 'native' systems defined with defsystem.

See 20.3 Using ASDF for more information about using ASDF with LispWorks.

See also

defsystem

38 The LISPWORKS Package

898

http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm

base-character Type

Summary

A synonym for base-char.

Package

lispworks

Signature

base-character

Description

The type base-character is a synonym for the Common Lisp type base-char.

See also

base-char-code-limit

base-character-p Function

Summary

A predicate for base characters.

Package

lispworks

Signature

base-character-p object => result

Arguments

object⇓ The object to be tested.

Values

result⇓ A boolean.

Description

The function base-character-p is a predicate for base characters.

result is t if object is a base character, and nil otherwise.

38 The LISPWORKS Package

899

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

See also

base-character

base-char-code-limit Constant

Summary

Upper bound for character codes in base characters.

Package

lispworks

Description

The constant base-char-code-limit is the upper exclusive bound for values of (char-code char) among base
characters.

base-char-p Function

Summary

A predicate for base characters.

Package

lispworks

Signature

base-char-p object => result

Arguments

object⇓ The object to be tested.

Values

result⇓ A boolean.

Description

The function base-char-p is a predicate for base characters., only with standard spelling.

result is t if object is a base character, and nil otherwise.

See also

base-character-p

38 The LISPWORKS Package

900

base-string-p
simple-base-string-p Functions

Summary

The predicates for base strings.

Package

lispworks

Signatures

base-string-p object => result

simple-base-string-p object => result

Arguments

object⇓ The object to be tested.

Values

result⇓ A boolean.

Description

The functions base-string-p and simple-base-string-p are the predicates for base strings and simple base strings
respectively.

result is t if object is a base-string (or simple-base-string), and nil otherwise.

See also

base-string
simple-base-string

bmp-char Type

Summary

The type of characters that fit in the Basic Multilingual Plane.

Package

lispworks

Signature

bmp-char

38 The LISPWORKS Package

901

Description

The type bmp-char is the type of characters that fit in the Unicode Basic Multilingual Plane, that is all characters that fit in
16 bits.

The Basic Multilingual Plane (BMP) is the range of Unicode code points below #x10000.

Notes

1. Normally you should not be able to produce a Lisp character object corresponding to a surrogate code point. If such an
object is created, it is treated as bmp-char.

2. The corresponding string types are bmp-string and simple-bmp-string. bmp-char can be written to a stream or
passed to the FLI with external format :bmp without ever getting an error.

Compatibility note

bmp-char was new in LispWorks 7.0. In LispWorks 6.1 and earlier versions simple-char has the most similar meaning.

bmp-char has no obvious equivalent in LispWorks 6.1 and earlier versions, where simple-char is the closest thing, but in
most cases when you used simple-char it actually better to use cl:character (or leave it as simple-char, because it is
now a synonym for cl:character).

See also

bmp-char-p
bmp-string

bmp-char-p Function

Summary

The predicate for bmp-char objects.

Package

lispworks

Signature

bmp-char-p object => result

Arguments

object⇓ A Lisp object.

Values

result A boolean.

Description

The function bmp-char-p returns t if object is a character with a code less than #x10000, otherwise it returns nil.

38 The LISPWORKS Package

902

http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

Compatibility note

bmp-char-p was new in LispWorks 7.0. In LispWorks 6.1 and earlier versions simple-char-p has the most similar
meaning.

See also

bmp-char

bmp-string
simple-bmp-string Types

Summary

String types that hold bmp-chars.

Package

lispworks

Signatures

bmp-string &optional length

simple-bmp-string &optional length

Arguments

length⇓ The length of the string (or *, meaning any, which is the default).

Description

Instances of the type bmp-string are strings that can hold characters of type bmp-char, that is characters with code below
#x10000 (that is 16-bit). This corresponds to the Basic Multilingual Plane of Unicode.

simple-bmp-string is the simple version of bmp-string, that is it is a simple-array of characters of type bmp-char.

If length is not *, then it constrains the length of the string to that number of elements.

Notes

1. bmp-strings use less memory than cl:character strings (type text-string), but cannot hold supplementary
characters (that is, characters with code #x10000 or greater).

2. The corresponding character type is bmp-char.

Compatibility note

bmp-string was new in LispWorks 7.0. In LispWorks 6.1 and earlier versions text-string is similar to bmp-string.
However, in most cases where you use text-string you probably still want to use text-string (using its new meaning,
covering all the Unicode range).

38 The LISPWORKS Package

903

http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

See also

text-string
bmp-char
26.3 Character and String types

bmp-string-p
simple-bmp-string-p Functions

Summary

The predicates for bmp-string and simple-bmp-string.

Package

lispworks

Signatures

bmp-string-p object => result

simple-bmp-string-p object => result

Arguments

object⇓ A Lisp object.

Values

result A boolean.

Description

The functions bmp-string-p and simple-bmp-string-p return t if object is a bmp-string or a simple-bmp-string
respectively and return nil otherwise.

See also

bmp-string
simple-bmp-string

browser-location Variable

Summary

Specify where to find a browser to display documentation.

Package

lispworks

38 The LISPWORKS Package

904

Initial Value

:unset

Description

The variable *browser-location* controls how the online documentation interface and the function open-url find a
web browser executable (either Netscape, Firefox, Mozilla or Opera) to use. The value should be nil, :unset or a string.

If the value is nil, LispWorks attempts to find the browser using the value of the environment variable PATH.

If the value is :unset, LispWorks uses the location set by the Help > Browser Preferences... menu option in the LispWorks
IDE, or "/usr/bin/" on Linux and "/usr/local/bin/" on other platforms.

If the value is a string, it specifies the directory in which the browser is installed. Typical values are "/usr/bin/" and
"/usr/local/bin/".

Note: do not omit the trailing slash.

Note: *browser-location* is used only in the GTK+-based or Motif-based IDE.

See also

open-url

call-next-advice Function

Summary

Calls the next piece of advice associated with a function.

Package

lispworks

Signature

call-next-advice &rest args => value*

Arguments

args⇓ Arguments to be given to the next piece of advice to be called.

Values

value* Values produced by the call to the next piece of advice or the original definition.

Description

The function call-next-advice is the local function used to invoke the next item in the ordering of pieces of advice
associated with a function. It can only be called from within the scope of the around advice. Advice may be attached to a
function by defadvice and this allows the behavior of a function to be modified. Extra code to be performed before or after
the function may be simply added by creating before or after advice for it. Around advice is more powerful and replaces the
original definition. All the advice for a function is ordered with the around advice coming first.

38 The LISPWORKS Package

905

The first piece of around advice receives the arguments to the function and may return any values at all. It has access to the
rest of the advice, and to the original definition, by means of call-next-advice. A call to call-next-advice from
within the body of the around advice invokes the next piece of around advice with the arguments args. Any number of
arguments may be given in this way, including keyword arguments, and there is no requirement for pieces of around advice to
receive the same number of arguments as the original definition expected. The last piece of around advice in the ordering
invokes the sequence of before advice, the original definition, and after advice if it calls call-next-advice. Around
advice may contain any number of calls to call-next-advice, including no calls.

Notes

1. call-next-advice is an extension to Common Lisp. See 6 The Advice Facility for a broader discussion of advice.

2. call-next-advice is not like cl:call-next-method, where passing no arguments has a special meaning. To pass
the same arguments to the next advice, you need something like:

(lw:defadvice (my-func my-func-advice :around)
 (a b c &rest other-args)
 (format t "my-func advice~%")
 (apply #'lw:call-next-advice a b c other-args)
)

or:

(lw:defadvice (my-func my-func-advice :around)
 (&rest args)
 (format t "my-func advice~%")
 (apply #'lw:call-next-advice args)
)

See also

defadvice
6 The Advice Facility

choose-unicode-string-hash-function Function

Summary

Returns a hash function suitable for strings, ignoring case using specified Unicode rules.

Package

lispworks

Signature

choose-unicode-string-hash-function &key style => hash-function

Arguments

style⇓ A keyword.

38 The LISPWORKS Package

906

http://www.lispworks.com/documentation/HyperSpec/Body/f_call_n.htm

Values

hash-function⇓ A hash function.

Description

The function choose-unicode-string-hash-function return a function which is suitable for use as the hash-function
argument to make-hash-table. The function hash-function generates a hash value for a string, ignoring case using
specified Unicode comparison rules specified by style.

The current implementation only supports one value of style:

:simple-case-fold Compares each character of the string using the simple case folding rules in Unicode 6.3.0.

See also

make-hash-table
unicode-string-equal

compile-system Function

Summary

Compiles all the files in a system necessary to make a consistent set of object files.

Package

lispworks

Signature

compile-system system-name &key force simulate load args target-directory

Arguments

system-name⇓ A symbol or string.

force⇓ A generalized boolean.

simulate⇓ One of nil, t, :ask or :each.

load⇓ One of nil, t or :no.

args⇓ Arguments to be passed directly to the compiler.

target-directory⇓ A pathname designator or nil.

Description

The function compile-system compiles all the files in a system necessary to make a consistent set of object files.

system-name must be a symbol or string representing the name of the system. The system must have been defined already
using the defsystem macro.

If force is non-nil then all the files in the system are compiled regardless. (This argument was formerly called force-p. The
old name is currently still accepted for compatibility.). Otherwise only files that need it are compiled.

38 The LISPWORKS Package

907

If simulate is nil (the default) then compile-system works silently. Otherwise a plan of the actions which
compile-system intends to carry out is printed. What happens next depends on the value of simulate:

t Do nothing.

:ask You are asked if you wish the plan to be carried out using y-or-n-p.

:each compile-system displays each action in the plan one at a time, and asks you whether you want
to carry out this particular action. The answer c executes the rest of the plan without further
prompting, e returns from compile-system without further processing, and y and n work as
expected. :simulate may be abbreviated as :sim.

If load is t then load-system is called after compile-system has finished. If :no then no files are loaded at all. The
default is nil.

args are are passed directly to compile-file.

If target-directory is non-nil, it must be a pathname designator representing a valid directory. It defaults to the
:default-pathname option to defsystem. This is the directory where the object files created are put. If target-directory
is supplied then dependency information expressed in the system rules is ignored. :target-directory may be abbreviated
as :t-dir.

Examples

(compile-system 'blackboard :simulate :ask)

(compile-system 'tms :load t)

(compile-system 'packages :load :no
 :target-directory "/usr/users/386i/")

Notes

If load is t then load-system is called after the system has been compiled.

C source files, for example foo.c, can be included in a system (see the use of :default-type and :type in defsystem).
The corresponding object file name is foon.so on Linux, FreeBSD and x86/x64 Solaris and foon.dylib on macOS,
where n is a platform-specific integer. On Windows the object file name is foo.dll.

See also

concatenate-system
defsystem
load-system

concatenate-system Function

Summary

Produces a single, concatenated fasl from a defsystem system or systems.

Package

lispworks

38 The LISPWORKS Package

908

http://www.lispworks.com/documentation/HyperSpec/Body/f_y_or_n.htm

Signature

concatenate-system output-file system-name &key force simulate source-only target-directory => result

Arguments

output-file⇓ The name of the required concatenated fasl.

system-name⇓ The name of a system defined using defsystem.

force⇓ If t, then all files in the system will be concatenated.

simulate⇓ Verbosity conditions, see Description for more detail.

source-only⇓ If t, the source files of the system are concatenated.

target-directory⇓ The directory to search for the object files.

Values

result A list containing the name or names of the concatenated systems.

Description

The function concatenate-system produces a single, concatenated fasl, output-file, from a list of individual systems.
system-name can be repeated before the first keyword argument to concatenate more than one system.

If force is non-nil then all the files in the system are concatenated even if output-file is newer.

If simulate is nil or is not present, concatenate-system will work silently. Otherwise, a plan of the actions which
concatenate-system intends to carry out is printed. What happens next depends upon the value of simulate:

• If it is t, the function does nothing.

• If :ask, then the user is asked, using y-or-n-p, if the plan should be carried out.

• If it is :each, the user is asked at each stage in the plan if the current action should be carried out. The responses y and n
work as normal. If e is typed, concatenate-system exits without further processing.

If source-only is t, files will be loaded only if they are sources.

If, when searching target-directory for an object file, the file cannot be found, the appropriate source file from the system's
default directory will be loaded instead. :target-directory may be abbreviated as :t-dir.

See also

compile-system
defsystem
load-system

copy-file Function

Summary

Copies the contents of a file to another file.

38 The LISPWORKS Package

909

http://www.lispworks.com/documentation/HyperSpec/Body/f_y_or_n.htm

Package

lispworks

Signature

copy-file from to &key copy-times-p copy-permissions-p

Arguments

from⇓ A pathname designator.

to⇓ A pathname designator.

copy-times-p⇓ A generalized boolean.

copy-permissions-p⇓ A generalized boolean.

Description

The function copy-file copies the contents of the file from to another file. The file from must exist.

copy-file opens from for input and to for output using if-exists :supersede (see cl:open in the Common Lisp
HyperSpec) and copies the contents from from to to.

When copy-times-p is non-nil, the times of from are copied to to. On non-Windows platforms, this means the last access and
last modified times and on Windows, it means the creation date, last access date and last write time (modification).

When copy-permissions-p is non-nil, the permissions of from are copied to to. On non-Windows platforms, this means the
mode bits without any of the "s-bits" (S_ISUID, S_ISGID, S_ISVTX). On Windows, it means the readonly bit.

On any failure copy-file signals an error.

copy-file does not return a useful value.

See also

append-file

count-regexp-occurrences Function

Summary

Count the occurrences of a pattern in a string.

Package

lispworks

Signature

count-regexp-occurrences pattern string &key start end overlap case-sensitive space-string => count

Arguments

pattern⇓ A string or a precompiled-regexp.

38 The LISPWORKS Package

910

http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm

string⇓ A string.

start⇓, end⇓ Bounding index designators of string.

overlap⇓ A generalized boolean.

case-sensitive⇓ A generalized boolean.

space-string⇓ nil (the default), t or a regexp string.

Values

count An integer.

Description

The function count-regexp-occurrences counts the occurrences of pattern in the part of string bounded by start and
end.

If pattern is a string, count-regexp-occurrences precompiles it first. If you use count-regexp-occurrences with
the same pattern string several times, it is better to precompile it using precompile-regexp.

start and end have the sames meaning as in count and other Common Lisp sequence functions.

If overlap is false (the default), then count-regexp-occurrences counts matches that to not overlap. If overlap is non-
nil, matches can overlap, and count-regexp-occurrences finds all of the ways in which the pattern can be matched
inside string.

case-sensitive controls whether a string pattern is precompiled as a case sensitive or case insensitive search. A non-nil value
means a case sensitive search. The value nil (the default) means a case insensitive search.

When space-string is non-nil and pattern is a string, then a "Lax whitespace" search is performed. That means that any
sequence of space characters in pattern is effectively replaced by the regexp specified by space-string. If space-string is t, it
specifies a regexp that matches "whitespace", specifically any non-empty sequence of the space, tab, return or newline
characters.

The regular expression syntax used by count-regexp-occurrences is similar to that used by Emacs, as described in 28.7
Regular expression syntax.

Examples

(count-regexp-occurrences "aaa" "aaaaa")
=>
1

(count-regexp-occurrences "aaa" "aaaaa" :overlap t)
=>
3

(count-regexp-occurrences "12" "81267124")
=>
2

(count-regexp-occurrences "12" "81267124" :start 4)
=>
1

(let* ((path (example-file
 "capi/elements/text-input-pane.lisp"))
 (file-string (file-string path)))
 (count-regexp-occurrences ":title" file-string))

38 The LISPWORKS Package

911

http://www.lispworks.com/documentation/HyperSpec/Body/f_countc.htm

=>
20 ; in LispWorks 7.1

See also

find-regexp-in-string
precompile-regexp
precompiled-regexp

current-pathname Function

Summary

Computes a pathname relative to the current path.

Package

lispworks

Signature

current-pathname &optional relative-pathname type => pathname

Arguments

relative-pathname⇓ A pathname designator.

type⇓ A string or nil.

Values

pathname⇓ A pathname.

Description

The function current-pathname is useful for loading other files relative to a file.

current-pathname computes a pathname from the current operation as follows:

When loading a file Uses *load-pathname*.

When compiling a file Uses *compile-file-pathname*.

When evaluating or compiling an Editor buffer

Uses the pathname of the buffer, if available, otherwise uses the current working directory.

Otherwise Uses the current working directory.

The pathname computed above is then translated to a physical pathname, and the argument relative-pathname is merged with
this physical pathname. The pathname-type of the result pathname is set to type if supplied, the pathname-version is
set to :newest, and pathname is returned.

A useful value for type is nil, which can be used to allow load to choose between lisp or fasl regardless of the type of the

38 The LISPWORKS Package

912

http://www.lispworks.com/documentation/HyperSpec/Body/v_ld_pns.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_cmp_fi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pn_hos.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pn_hos.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

current pathname.

Notes

defsystem uses current-pathname with its :default-host argument.

Examples

Suppose you want the file foo to load the file bar.

While loading the source file foo.lisp:

(current-pathname "bar")
=>
#P"C:/temp/bar.lisp"

While loading the binary file foo.ofasl:

(current-pathname "bar")
=>
#P"C:/temp/bar.ofasl"

To load bar.lisp or bar.ofasl according to the value of *load-fasl-or-lisp-file*, regardless of whether
foo.lisp or foo.ofasl is being loaded, specify type nil:

(load (current-pathname "bar" nil))

See also

defsystem
pathname-location

defadvice Macro

Summary

Defines a new piece of advice.

Package

lispworks

Signature

defadvice (function-dspec name advice-type &key where documentation) lambda-list &body body => nil

advice-type ::= :before |:after |:around

Arguments

function-dspec⇓ A function dspec.

name⇓ A symbol.

where⇓ Either :start or :end.

38 The LISPWORKS Package

913

documentation⇓ A string or nil.

lambda-list⇓ A lambda list.

body⇓ Forms.

Description

The macro defadvice is the macro used to define a new piece of advice for function-dspec. See 7.5.1 Function dspecs for
description of function dspecs.

Advice provides a way to change the behavior of existing functional definitions in the system. In a simple instance advice
might be used to carry out some additional actions before or after the original definition. More sophisticated uses allow the
definition to be replaced by new code that can access the original function repeatedly or as rarely as desired, and that can
receive different numbers of arguments and return any values. A function may have any number of pieces of advice attached
to it by using defadvice.

When function-dspec names a macro, then the function with which the advice is associated is the expansion function for that
macro. Thus before and after advice for a macro receive the arguments given to the macro expansion function, which are
normally the macro call form and an environment.

There are three kinds of advice that may be defined: before, after and around advice. The first two kinds attach auxiliary
code to be carried out alongside the original definition (before it for before advice, after it in the case of after advice). Around
advice replaces the function altogether; it may define code that never accesses the original definition, that receives different
numbers of arguments, and returns different values. All the pieces of advice for a function are ordered. The ordering is
important in determining how all the pieces of advice for a function are combined. Around advice always comes first, then
before advice, then the original definition, and lastly the after advice.

Conceptually the before advice, the original definition and the after advice are amalgamated into one new construct. If this
gets called then each of its components receives the same arguments in turn, and the values returned are those produced by
the last piece of after advice to be called in this way (or the original function if there is no after advice). The code associated
with before and after advice should not destructively modify its arguments.

If around advice is present then the first piece of around advice is called, instead of the combination involving before and
after advice discussed above. It does not have to access any of the other advice, nor the original definition. Its only link to the
rest of the advice is by means of a call to call-next-advice. It may invoke this as often as it chooses, and by doing so it
accesses the next piece of around advice if present, or else it accesses the combination of before and after advice together
with the original definition.

name is used to name the advice. It should be unique to the advised function, but does not need to be globally unique. If you
use the same name again then the advise will be redefined.

advice-type specifies the kind of advice wanted.

where specifies where this advice should be placed in the ordering of pieces of advice for the function. By default a piece of
advice is placed at the start of the corresponding section. If this argument is supplied and is :end then the advice is instead
placed at the end of its section. The other permissible value for this argument is :start, which places the advice at the start
of its section in the ordering (as in the default behavior).

documentation provides documentation on the piece of advice.

lambda-list is the lambda list for the piece of advice. In the case of :before and :after advice this should be compatible
with the lambda list for the original definition, since such advice receives the same arguments as that function.

body is main body of the advice.

Remove advice using remove-advice or delete-advice.

38 The LISPWORKS Package

914

Notes

defadvice is an extension to Common Lisp.

See also

call-next-advice
delete-advice
remove-advice
6 The Advice Facility

default-action-list-sort-time Variable

Summary

Determines when actions in action lists are sorted.

Package

lispworks

Initial Value

:execute

Description

The variable *default-action-list-sort-time* is a keyword that is either :execute or :define-action, denoting
when actions in action-lists are sorted (see define-action-list for an explanation of ordering specifiers). Actions are
sorted either at time of definition (:define-action) or when their action-list is executed (:execute). The default sort
time is :execute.

See also

define-action
define-action-list

default-character-element-type Parameter

Summary

Provides defaults for all character type parameters.

Package

lispworks

Initial Value

base-char

38 The LISPWORKS Package

915

Description

The parameter *default-character-element-type* provides defaults for all character type parameters. The legal
values are cl:base-char, bmp-char and cl:character. simple-char is also supported for backwards compatibility.

Its value must only be set via a call to set-default-character-element-type.

This is intended for efficiency of applications with only 8-bit strings, where you can do:

(set-default-character-element-type 'base-char)

and also for efficiency of applications with only 16-bit strings, where you can do:

(set-default-character-element-type 'lw:bmp-char)

If your program uses 16-bit or 32-bit strings you should already be aware of these issues, and make some attempt to provide
explicit types.

When the compiler does type inferencing it behaves as if this variable was bound to cl:character; if you want
assumptions about types to be hard-coded into your program, you must supply explicit declarations and type arguments.

See also

make-string
open
set-default-character-element-type
with-output-to-string

define-action Macro

Summary

Adds a new action to a specified list.

Package

lispworks

Signature

define-action name-or-list action-name data &rest specs

Arguments

name-or-list⇓ A list or action list object.

action-name⇓ A general lisp object.

data⇓ An object.

specs⇓ A list.

Description

The macro define-action adds a new action to the action list specified by name-or-list; this action will be executed

38 The LISPWORKS Package

916

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

according to the action-list's execution-function (see execute-actions) when executed. If the action-list specified by name
-or-list does not exist, then this is handled according to the value of *handle-missing-action-list*.

name-or-list is evaluated to give either a list UID (to be looked up in the global registry of lists) or an action list object. action
-name is a UID (general lisp object, to be compared by equalp). It uniquely identifies this action within its list (as opposed
to among all lists).

data specifies an object referring to data relevant to the action.

specs is a free-form list of ordering specifiers and extra keywords, used to control more details of how and when this action is
executed.

Action-items are normally expected not to be redefined. If an action-item with that action-name already exists in the action-
list (that is, one with an identifier equalp to the action-name), then the notification and subsequent handling of this attempt
is controlled by the values in the list *handle-existing-action-in-action-list*. This is to prevent problems due to
re-evaluating an action definition inappropriately. Notification and redefine behavior can be overridden by using the :force
keyword argument. In this case, any required redefinition is performed unconditionally and without notification.

The following keywords are recognized in specs:

:after The following element in specs is a UID. :after specifies that the action-item being defined
must be run after the action-item named. If there is no action-item with a matching name, the
restriction is ignored.

:before Like :after, but this action-item must be run before the one specified.

:after and :before can be specified as many times as necessary to describe the ordering constraints of this action-item
with respect to its neighbors.

:once Specifies that this action-item should be executed only once; after execution, it is disabled.

:force Specifies that this definition should override any previous definition of this action-item, rather
than be subject to the value of *handle-existing-action-in-action-list*.

Examples

(define-action :network-startup "Reset decnet buffers"
 '(decnet::reset-network-buffers
 net-buffers)
 :after "Reset core network"
 :once))

See also

undefine-action

define-action-list Macro

Summary

Defines a registered action list.

Package

lispworks

38 The LISPWORKS Package

917

http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm

Signature

define-action-list uid &key documentation sort-time dummy-actions default-order execution-function

Arguments

uid⇓ A Lisp object.

documentation⇓ A string.

sort-time⇓ One of :execute or :define-action.

dummy-actions⇓ A list.

default-order⇓ A list.

execution-function⇓ A function.

Description

The macro define-action-list defines an action list.

uid is a unique identifier, and must be a general Lisp object, to be compared by equalp. It names the list in the global
registry of action lists. See make-unregistered-action-list to create unnamed, "unregistered" action-lists. uid may be
quoted, but is not required to be. It is possible, but not recommended, to define an action-list with unique identifier nil. If a
registered action-list already exists with a name equalp to uid, then notification and subsequent handling is controlled by
the value of the variable *handle-existing-action-list*.

If documentation is a string, it allows you to provide documentation for the action list.

sort-time is a keyword specifying when added actions are sorted for the given list — either :execute or :define-action
(see *default-action-list-sort-time*).

dummy-actions is a list of action-names that specify placeholding actions; they cannot be executed and are constrained to the
order specified in this list, for example:

'(:beginning :middle :end)

default-order specifies default ordering constraints for subsequently defined action-items where no explicit ordering
constraints are specified. An example is:

'(:after :beginning :before :end)

execution-function specifies a function that you define. It must accept arguments of the form:

(the-action-list other-args-list &rest keyword-value-pairs)

where the two required arguments are the action-list and a list of additional arguments passed to execute-actions,
respectively. The remaining arguments are any number of keyword-value pairs that may be specified in the call to
execute-actions. If no execution function is specified, then the default execution function will be used to execute the
action-list.

See the manual entries for with-action-list-mapping and with-action-item-error-handling for examples of
execution-functions.

To add an action to an action list you have defined, use define-action.

38 The LISPWORKS Package

918

http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm

See also

default-action-list-sort-time
define-action
handle-existing-action-list
undefine-action-list
with-action-item-error-handling
with-action-list-mapping

defsystem Macro

Summary

Defines a system for use with the LispWorks system tools.

Package

lispworks

Signature

defsystem name options &key members rules => system-name

Arguments

name⇓ A string or a symbol, not evaluated.

options⇓ A list of keyword-value pairs.

members⇓ A list of strings or lists.

rules⇓ A list.

Values

system-name A string.

Description

The macro defsystem is used to define systems for use with the LispWorks system tools. A system is a collection of files
and other systems that, together with rules expressing the interdependencies of those files and subsystems, make a complete
program. The LispWorks system tools support the development and maintenance of large programs. Find a full description at
20 Common Defsystem and ASDF.

The name of the system to be made is a string specified by name. If name is a symbol, then its symbol name is used.

options are expressed as a list of keyword-value pairs. The following keywords are recognized:

:package The default package that files are compiled and loaded in. If not specified, this defaults to the
value of *package* at macroexpansion time.

:default-pathname Used to compute a default pathname in which to find files. defsystem uses
current-pathname to compute the pathname. defsystem checks that all the files given as
members actually exist.

38 The LISPWORKS Package

919

http://www.lispworks.com/documentation/HyperSpec/Body/v_pkg.htm

:default-host The root pathname of a system is defined to be the :default-host if it is given. Otherwise, it
is taken to be the directory containing the defsystem file.

Absolute pathnames are interpreted literally, and relative pathnames are taken relative to the root
pathname.

:default-type This is the default type of the members of the system. This may be :lisp-file, :lsp-file,
:c-file, or :system.

The corba module adds :idl-file, :idl-client-definition,
:idl-client-definition-only, :idl-server-definition and
:idl-server-definition-only.

The com module adds the type :midl-file and the automation module adds
:midl-type-library-file.

The default is :lisp-file, which means files with file type (extension) "lisp".

:documentation This is a string.

:object-pathname A string or pathname specifying a directory where object files are written.

Note: This option will not work if the names in members represent absolute pathnames.

:optimize A declaration specifying default compilation qualities within the scope of compile-system.
These settings override the current global setting. They can be overridden per member by the
:optimize option (for subsystems) or proclaim (in files). The :optimize defsystem
option accepts the same optimize qualities as proclaim and which are fully described in 9.5
Compiler control. See below for examples.

members is a list defining the members of the system. Elements of the list may be a string name representing the name of the
physical file or system referred to. Elements of the list may also be a symbol, which is interpreted as its symbol name.

Elements of members list can also be a list of the form:

(member-name {keyword value}*)

where member-name is once again a string or a symbol naming a file or system.

The members of each system must have unique names, as compared by equalp. For example, if members contains "foo"
then there cannot be another member (either a file or a system) named "foo", "FOO" or foo.

The possible keywords and their values are:

:type The type of this member. Allowed values are as for :default-type. If not specified it defaults
to the value of :default-type given as an option.

:root-module If nil then this member is not loaded unless its loading is specifically requested as a result of a
dependency on another module.

:source-only Only the source file for this member is ever loaded.

:load-only The member is never compiled by defsystem, objects are loaded in preference to source files.

:load-for-compile-only

The member is only loaded as necessary during compilation and is never loaded independently.

:features The member is only considered during planning if the feature expression is true.

38 The LISPWORKS Package

920

http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm

:package A default package for the member.

:embedded-module Only allowed when the value for :type is :c-file. The value embedded-module is used to
create a FLI embedded module named embedded-module instead of loading the object file. See
fli:install-embedded-module for how to load the embedded module.

On Windows, the automation module adds the keyword :com for a member with type :midl-type-library-file. Then
a member of the form:

("mso97.tlb" :type :midl-type-library-file :com nil)

can be specified when you use only Automation client code, reducing the memory used.

rules is a list of rules of the following format :

({:in-order-to} action {:all | ({ member-name }*)}
 (:caused-by {(action {:previous |{member-name }* }) }*)
 (:requires {(action {:previous |{ member-name }*}) }*))

The keyword :all refers to all the members of the system. It provides a shorthand for specifying that a rule should apply to
all the system's members. The keyword :previous refers to all the members of the system that are before the member in the
list of members. This makes it easy, for example, to specify that in order to compile a file in a system, all the members that
come before it must be loaded.

The name of the system is returned.

There are more details about the rules in 20.2.4 DEFSYSTEM rules.

Examples

(defsystem defsys-macros
 (:default-pathname "/usr/users/james/scm/defsys/"
 :default-type :lisp-file
 :package defsystem)
 :members ("new-macros"
 "scm-timemacros"))

(defsystem clos-sys
 (:default-pathname "/usr/users/clc/defsys/"
 :default-type :lsp-file
 :package defsystem)
 :members
 (("defsys-macros" :type :system :root-module nil)
 "class"
 "time-methods"
 ("scm-pathname" :source-only t)
 "execute-plan"
 "file-types"
 "make-system"
 "conv-defsys")
 :rules
 ((:in-order-to :compile ("class" "time-methods")
 (:caused-by (:compile "defsys-macros"))
 (:requires
 (:load "defsys-macros")))
 (:in-order-to :compile
 ("time-methods" "execute-plan")
 (:requires (:load "class")))))

38 The LISPWORKS Package

921

(defsystem dataworks-demo
 (:default-type :system)
 :members (
 "db-class"
 "planar"
 "dataworks-dep"
 "dataworks-interface-tk"
 "dataworks-interface-tools"
 "drugs-demo"
 ("gen-demo" :type :lisp-file)
 ("load-icon" :type :lisp-file :source-only t)
)
 :rules ((:in-order-to :compile :all
 (:requires (:load :previous)))))

This example illustrates the use of :optimize.

(defsystem foo (:optimize ((speed 3) (space 3)
 (safety 0)))
 :members ("bar"
 "baz")
 :rules ((:compile :all
 (:requires (:load :previous)))))

This last example illustrates the use of :embedded-module.

(defsystem my-foreign-code ()
 :members
 (("my-c-code.c" :type :c-file
 :embedded-module my-module)))

Then initialize at run time with:

(fli:install-embedded-module 'my-module)

Notes

1. Subsystems must be defined before any system of which they are part.

2. The order of members is important and reflects the order in which operations are carried out on the members of the
system, subject to rules.

See also

load-system
compile-system
concatenate-system
current-pathname
defsystem-verbose

defsystem-verbose Variable

Summary

Controls the amount of messages printed by defsystem about system (re)definition.

38 The LISPWORKS Package

922

Package

lispworks

Initial Value

t

Description

The variable *defsystem-verbose* is a generalized boolean controlling the amount of messages printed by defsystem.

When the value is true, the system prints messages about system definition and redefinition. The default value is t.

See also

defsystem

delete-directory Function

Summary

Deletes a directory.

Package

lispworks

Signature

delete-directory directory &optional error => result

Arguments

directory⇓ A pathname designator.

error⇓ nil, :error or :no-error.

Values

result t or nil.

Description

The function delete-directory attempts to delete the directory directory. It returns t on success, and on failure either
returns nil or signals an error.

error determines what happens when delete-directory fails. When error is nil (the default), if directory does not exist
delete-directory returns nil, otherwise any failure causes an error to be signaled. If error is :no-error,
delete-directory returns nil on any failure. If error is :error, any failure causes an error to be signaled.

Typical reasons for failures in delete-directory are that directory is not empty, or that the user does not have the right
permissions.

38 The LISPWORKS Package

923

deliver Function

Summary

The main interface to the Delivery tools.

Package

lispworks

Signature

deliver function file level &rest keywords

Arguments

function⇓ A symbol.

file⇓ A string or pathname.

level⇓ An integer in the inclusive range [0, 5].

keywords⇓ Keyword arguments.

Description

The function deliver is the main interface to the LispWorks delivery tools. You use it to create LispWorks executable
applications and dynamic libraries.

For more information about Delivery including a detailed description of deliver, function, file, level and keywords see
deliver in the Delivery User Guide.

For information about invoking deliver using the IDE, see "The Application Builder" in the LispWorks IDE User Guide.

See also

delivered-image-p
save-image
deliver in the Delivery User Guide
11.2 Guidance for control of the memory management system

describe-length Variable

Summary

Determines how many attributes of a composite object are described.

Package

lispworks

38 The LISPWORKS Package

924

Initial Value

20

Description

The variable *describe-length* controls how many attributes of a composite object the function describe describes.

This means the number of elements of a sequence, entries in a hash table, slots of a structure instance, and so on.

If *describe-length* is nil then describe describes all of the attributes. Use this value only with care.

Notes

The describe functionality is load-on-demand in the LispWorks image as shipped. Therefore if you have not done
(require "describe") or called describe, *describe-length* may be unbound.

See also

describe

describe-level Variable

Summary

Controls the depth to which describe describes arrays, structures and conses.

Package

lispworks

Initial Value

1

Description

The variable *describe-level* controls the depth to which the function describe describes arrays, structures and
conses.

Notes

The describe functionality is load-on-demand in the LispWorks image as shipped. Therefore if you have not do
(require "describe") or called describe, *describe-level* may be unbound.

Examples

CL-USER 23 > (describe 1)
[... load output not shown ...]

1 is a BIT
DECIMAL 1
HEX 1
OCTAL 1
BINARY 1

38 The LISPWORKS Package

925

CL-USER 24 > *describe-level*
1

CL-USER 25 > (defstruct foo a s d)
FOO

CL-USER 26 > (defmethod describe-object ((f foo) (s stream))
 (format s "FOO ~S~%" f)
 (describe (foo-a f) s))
#<STANDARD-METHOD DESCRIBE-OBJECT NIL (FOO STREAM) 2068295C>

CL-USER 27 > (describe (make-foo :a (vector 1 2 3) :s 42))

FOO #S(FOO A #(1 2 3) S 42 D NIL)
#(1 2 3)

To make describe operate on objects inside the structure instance, increase the value of *describe-level*:

CL-USER 28 > (setf *describe-level* 2)
2

CL-USER 29 > (describe (make-foo :a (vector 1 2 3) :s 42))

FOO #S(FOO A #(1 2 3) S 42 D NIL)
#(1 2 3) is a SIMPLE-VECTOR
 0 1
 1 2
 2 3

See also

describe

describe-print-length Variable

Summary

Specifies a print length for describe and apropos.

Package

lispworks

Initial Value

10

Description

If *print-length* is nil, describe and apropos bind *print-length* to the value of the variable
describe-print-length.

See also

describe

38 The LISPWORKS Package

926

http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_lev.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_lev.htm

describe-print-level Variable

Summary

Specifies a print level for describe and apropos.

Package

lispworks

Initial Value

10

Description

If *print-level* is nil, describe and apropos bind *print-level* to the value of the variable
describe-print-level.

See also

describe

dll-quit Function

Summary

Makes a LispWorks dynamic library quit.

Package

lispworks

Signature

dll-quit &key kill-all-processes timeout output force => result, quit-output

Arguments

kill-all-processes⇓ A generalized boolean.

timeout⇓ A positive integer or nil.

output⇓ An output stream designator.

force⇓ A generalized boolean.

Values

result⇓ t or nil.

quit-output⇓ A string or nil.

38 The LISPWORKS Package

927

http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_lev.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_lev.htm

Description

The function dll-quit makes a LispWorks dynamic library (or DLL) quit on returning from the callback in which it was
called. It must be called only:

• In an image running as a dynamic library, meaning an image created by save-image with :dll-exports or by
deliver with :dll-exports, and:

• Inside the dynamic scope of a callback into the dynamic library. That is, not in a process that was started by
process-run-function.

dll-quit sets up the internal state such that just before returning into its caller in the LispWorks dynamic library it causes
LispWorks to quit. After quitting the callback returns as normal. The library can be unloaded using FreeLibrary, or you
can re-use it (without re-loading).

By default kill-all-processes is nil which means that, if there are other running processes, dll-quit just returns nil. If kill
-all-processes is non-nil, dll-quit tries to kill all the other processes, and if it succeeds, it quits.

If kill-all-processes is true, timeout is a maximum time to wait after killing the other processes. It allows timeout seconds for
all processes to die.

dll-quit should be called when no other processes are running, whether they were created by a callback or by
process-run-function. If such processes exist, by default dll-quit does nothing and returns nil. If force is non-nil,
dll-quit always tries to set LispWorks up for quitting. LispWorks will quit even after a failure to kill all other processes
and complete any required shut down operations. A true value of force automatically implies kill-all-processes true.
However, if any of the other processes is stuck in a foreign call, the quitting may fail to finish properly. The default value of
force is nil.

If output is supplied, dll-quit generates output if it is called when other processes are still running, or a required shut down
operation was not completed. output can be an output stream, t (interpreted as *standard-output*) or nil. If output is
nil, dll-quit collects the output and returns it as second argument quit-output. Otherwise it writes the output to the stream
and quit-output is nil.

The output contains a list of the other processes that are still running. If kill-all-processes or force was supplied, and killing
the other processes failed, the output also contains backtraces of the other processes, and possibly other debugging
information.

result is t on success: the LispWorks dynamic library is set to quit on returning from the callback. result is nil when other
processes are running: the image is not set to quit.

quit-output contains the output which was generated when output nil was passed. Otherwise quit-output is nil.

If dll-quit is called inside a recursive foreign callback, the LispWorks dynamic library quits only when the outermost
callback returns.

Notes

1. dll-quit is intended for use when a LispWorks dynamic library is loaded by a main process which you (the LispWorks
programmer) do not control. If you control the main process, then use QuitLispWorks instead.

It is expected that the main process will call into the dynamic library with some "shutdown" call, and then calls
FreeLibrary to free the library. The shutdown call should close and free everything that needs to be closed or freed,
call dll-quit, and return.

2. dll-quit is supported only where LispWorks can be a dynamic library. Currently this is in LispWorks on Microsoft
Windows, Macintosh, Linux, x86/x64 Solaris and FreeBSD.

38 The LISPWORKS Package

928

See also

deliver
save-image

do-nothing Function

Summary

Ignores its arguments and returns an unspecified value.

Package

lispworks

Signature

do-nothing &rest ignore => unspecified

Arguments

ignore⇓ All arguments are ignored.

Values

unspecified An unspecified value.

Description

The function do-nothing ignores its arguments ignore and returns an unspecified value. It is useful as a function argument.

See also

false
true

dotted-list-length Function

Summary

A function similar to list-length.

Package

lispworks

Signature

dotted-list-length list => result

38 The LISPWORKS Package

929

http://www.lispworks.com/documentation/HyperSpec/Body/f_list_l.htm

Arguments

list⇓ A list.

Values

result An integer.

Description

The function dotted-list-length performs the same action as list-length, except that if the last cdr of list is not
nil then instead of signaling an error, it returns the number of conses plus 1.

See also

dotted-list-p

dotted-list-p Function

Summary

Tests whether a cons is a list ending in a non-nil cdr.

Package

lispworks

Signature

dotted-list-p list => result

Arguments

list⇓ A list, which must be a cons.

Values

result A generalized boolean.

Description

The function dotted-list-p is a predicate which tests whether list (which must be a cons) is a list ending in a non-nil
cdr. It returns true if this is the case, otherwise it returns false.

See also

dotted-list-length

38 The LISPWORKS Package

930

http://www.lispworks.com/documentation/HyperSpec/Body/f_list_l.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_cons.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_cons.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_cons.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

enter-debugger-directly Variable

Summary

Controls direct entry into the Debugger tool.

Package

lispworks

Initial Value

nil

Description

The variable *enter-debugger-directly* is a generalized boolean which affects the behavior of the LispWorks IDE
when an error is signaled outside of the Listener REPL.

Value nil causes an error notifier window to be displayed (from which you can abort, report a bug, or raise a Debugger tool).

A true value causes the Debugger tool to be displayed immediately, and no error notifier appears.

Notes

Errors signaled in a Listener Read-Eval-Print loop are handled in the REPL and therefore *enter-debugger-directly*
has no effect on the behavior in this case.

environment-variable Accessor

Summary

Reads the value of an environment variable from the environment table of the calling process.

Package

lispworks

Signature

environment-variable name => value

setf (environment-variable name) value => value

Arguments

name⇓ A string.

value A string or nil.

38 The LISPWORKS Package

931

Values

value A string or nil.

Description

The accessor environment-variable accesses the environment variable specified by name and returns its value, or nil if
the variable could not be found.

A setter is also defined, allowing you to set the value of an environment variable:

(setf (environment-variable name) value)

If value is a string, then name is set to be value. If value is nil then name is removed from the environment table.

On non-Windows platforms, the environment variables are encoded as specfied in 27.14.1 Encoding of file names and
strings in OS interface functions.

Examples

In this first example the value of the environment variable PATH is returned:

(environment-variable "PATH")

The result is a string of all the defined paths:

"c:\\hqbin\\nt\\x86;c:\\hqbin\\nt\\x86\\perl;c:\\hqbin\\win32;c:\\usr\\local\\bin;C:\\WINNT35\\syst
em32;C:\\WINNT35;;C:\\MSTOOLS\\bin;C:\\TGS3D\\PROGRAM;c:\\program
files\\devstudio\\sharedide\\bin\\ide;c:\\program files\\devstudio\\sharedide\\bin;c:\\program
files\\devstudio\\vc\\bin;c:\\msdev\\bin;C:\\WINDOWS;C:\\WINDOWS\\COMMAND;C:\\WIN95\\COMMAND;C:\\MS
INPUT\\MOUSE"

In the second example, the variable MYTZONE is found not to be in the environment table:

(environment-variable "MYTZONE")

NIL

It is set to be GMT using the setf method:

(setf (environment-variable "MYTZONE") "GMT")

See also

27.4.2 Accessing environment variables

errno-value Function

Summary

Returns the current value of the POSIX variable errno.

38 The LISPWORKS Package

932

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

Package

lispworks

Signature

errno-value => value

Values

value The current value of errno.

Description

The function errno-value returns the current value of the POSIX variable errno.

Notes

errno-value is implemented only on non-Windows platforms.

Examples

USER 10 > (errno-value)
2

USER 11 > (get-unix-error 2)
"no such file or directory"

See also

get-unix-error

example-compile-file Function

Summary

Compiles a file in the examples folder to a temporary output file.

Package

lispworks

Signature

example-compile-file file &rest args => output-truename, warnings-p, failure-p

Arguments

file⇓ A pathname designator.

args⇓ Arguments passed to compile-file.

38 The LISPWORKS Package

933

Values

output-truename A pathname or nil.

warnings-p A generalized boolean.

failure-p A generalized boolean.

Description

The function example-compile-file constructs the path to file in the examples folder of the LispWorks library, and a
path to an output file in a temporary location which is likely to be writable.

It then calls compile-file with these paths as the input-file and output-file, also passing the other args, and returns the
values returned by compile-file.

See also

get-temp-directory
example-file
example-edit-file

example-edit-file Function

Summary

Displays a file from the examples folder in an Editor.

Package

lispworks

Signature

example-edit-file file

Arguments

file⇓ A pathname designator.

Description

The function example-edit-file constructs the path to the file file in the examples folder of the LispWorks library, adding
the "lisp" extension if no extension is specified, and opens the file in an Editor tool in the LispWorks IDE.

If file is a directory name (ending in a slash), then the list of files with "lisp" extension in that directory is displayed in the
Editor.

Examples

This form displays the file lib/8-1-0-0/examples/capi/applications/othello.lisp from the LispWorks library:

(example-edit-file "capi/applications/othello")

38 The LISPWORKS Package

934

See also

example-file
example-compile-file

example-file Function

Summary

Returns a path in the examples folder.

Package

lispworks

Signature

example-file file => path

Arguments

file⇓ A pathname designator.

Values

path A pathname.

Description

The function example-file returns an absolute path to a file file in the examples folder of the LispWorks library.

It does not actually test for the existence of the file.

Examples

(example-file "capi/applications/othello.lisp")
=>
#P"C:/Program Files/LispWorks/lib/8-1-0-0/examples/capi/applications/othello.lisp"

See also

example-compile-file
example-edit-file

example-load-binary-file Function

Summary

Loads a fasl file compiled by example-compile-file.

38 The LISPWORKS Package

935

Package

lispworks

Signature

example-load-binary-file file => result

Arguments

file⇓ A pathname designator.

Values

result⇓ A generalized boolean.

Description

The function example-load-binary-file constructs the path to an output file associated with file, but in the temporary
location that would be used as the output-file by example-compile-file.

It then calls load on that path, and returns the value result returned by load.

See also

example-compile-file

execute-actions Macro

Summary

Executes in sequence the actions on a given list.

Package

lispworks

Signature

execute-actions (name-or-list &rest keyword-value-pairs) &rest other-args

Arguments

name-or-list⇓ An action list.

keyword-value-pairs⇓ A plist.

other-args⇓ A list.

Description

The macro execute-actions executes, in sequence, the actions on the specified list. If the action-list specified by name-or
-list does not exist, then this is handled according to the value of *handle-missing-action-list*. Note that name-or-
list is evaluated.

38 The LISPWORKS Package

936

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

If a user-defined execution function was specified when the action list was defined, then it should accept the following
arguments:

(action-list other-args &rest keyword-value-pairs)

Note that other-args is passed as a single list.

If a user-defined execution function was not specified when the action list was defined, then the following default mapping
occurs. Each action's data is invoked via apply on other-args:

(apply data other-args)

This behavior is modified by keyword-value-pairs, thus:

• If the keyword parameter :ignore-errors-p is non-nil, any otherwise-unhandled errors signaled inside the execution
of that function will be trapped, and a warning issued. Execution continues with the next action-item. If
:ignore-errors-p is nil (or not specified), then the error is not trapped.

• If the keyword parameter :post-process is non-nil, the first value returned by each action is handled, according to
:post-process, thus:

:collect Collect values into list.

:and Return t only if all values are t. Return nil immediately if any value is nil.

:or Return first non-nil value.

See also

define-action
with-action-list-mapping

extended-character Type

Summary

A synonym for extended-char.

Package

lispworks

Signature

extended-character

Description

The type extended-character is a synonym for the Common Lisp type extended-char.

38 The LISPWORKS Package

937

http://www.lispworks.com/documentation/HyperSpec/Body/t_extend.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_extend.htm

extended-character-p Function

Summary

A predicate for extended characters.

Package

lispworks

Signature

extended-character-p object => result

Arguments

object⇓ The object to be tested.

Values

result⇓ A boolean.

Description

The function extended-character-p is a predicate for extended characters.

result is t if object is an extended character, and nil otherwise.

See also

extended-character

extended-char-p Function

Summary

A predicate for extended characters.

Package

lispworks

Signature

extended-char-p object => result

Arguments

object⇓ The object to be tested.

38 The LISPWORKS Package

938

Values

result⇓ A boolean.

Description

The function extended-char-p is a predicate for extended characters, only with standard spelling.

result is t if object is an extended character, and nil otherwise.

See also

extended-char
extended-character-p

external-formats Variable

Summary

A list of the names of the defined external formats.

Package

lispworks

Initial Value

See Examples below.

Description

The variable *external-formats* contains a list of the names of the defined external formats.

The platform-specific external format names are:

code-page Uses the encoding in the Microsoft Windows code page specified by the :id parameter.

latin-portable Intended for use when communicating with X servers, for example when passing XLFD names.
Uses the X Portable Character Set.

host-portable A synonym for latin-portable.

Examples

The initial value on Microsoft Windows platforms is:

(WIN32:CODE-PAGE FLI::UNICODE-WCHAR FLI::LATIN-1-WCHAR FLI:ASCII-WCHAR :KOI8-R :MACOS-ROMAN :UTF-32
:UTF-32BE :UTF-32LE :UTF-32-REVERSED :UTF-32-NATIVE :UTF-16 :UTF-16BE :UTF-16LE :UTF-16-REVERSED
:UTF-16-NATIVE :UTF-8 :GBK :WINDOWS-CP936 EXTERNAL-FORMAT:DOUBLE-BYTE-TABLE-LOOKUP :JIS :EUC-JP
:SJIS :LATIN-1-TERMINAL :BMP :UNICODE :LATIN-1-SAFE :LATIN-1-CHECKED :LATIN-1 :EUC :SHIFT-JIS
:NIHONGO-MS :NIHONGO-EUC :NIHONGO-JIS CHARACTER :BMP-REVERSED :BMP-NATIVE EXTERNAL-FORMAT::RAW-BASE
-CHARACTER :ASCII-TERMINAL :ASCII)

The initial value on all other platforms is:

38 The LISPWORKS Package

939

http://www.lispworks.com/documentation/HyperSpec/Body/t_extend.htm

(FLI::UNICODE-WCHAR FLI::LATIN-1-WCHAR FLI:ASCII-WCHAR :KOI8-R :MACOS-ROMAN :UTF-32 :UTF-32BE :UTF-
32LE :UTF-32-REVERSED :UTF-32-NATIVE :UTF-16 :UTF-16BE :UTF-16LE :UTF-16-REVERSED :UTF-16-NATIVE
:UTF-8 :GBK :WINDOWS-CP936 EXTERNAL-FORMAT:DOUBLE-BYTE-TABLE-LOOKUP :JIS :EUC-JP :SJIS :LATIN-1-
TERMINAL :BMP :UNICODE :LATIN-1-SAFE :LATIN-1-CHECKED :LATIN-1 :EUC :SHIFT-JIS :NIHONGO-MS :NIHONGO
-EUC :NIHONGO-JIS EXTERNAL-FORMAT::HOST-PORTABLE EXTERNAL-FORMAT::LATIN-PORTABLE CHARACTER :BMP-
REVERSED :BMP-NATIVE EXTERNAL-FORMAT::RAW-BASE-CHARACTER :ASCII-TERMINAL :ASCII)

false Function

Summary

Ignores its arguments and returns nil.

Package

lispworks

Signature

false &rest ignore => nil

Arguments

ignore⇓ All arguments are ignored.

Description

The function false takes any number of arguments ignore, which it ignores, and returns nil. It is useful as a functional
argument.

See also

do-nothing
true

file-directory-p Function

Summary

Tests for the presence of a directory.

Package

lispworks

Signature

file-directory-p pathname => bool

Arguments

38 The LISPWORKS Package

940

pathname⇓ A pathname, string, or file-stream.

Values

bool A boolean.

Description

The function file-directory-p return t if the path specified by pathname is a directory that exists in the filesystem and
returns nil if it either does not exist or it is not a directory.

Examples

CL-USER 70 > (file-directory-p "~")
T

CL-USER 71 > (file-directory-p ".login")
NIL

See also

file-link-p

find-regexp-in-string Function

Summary

Matches a regular expression against a string.

Package

lispworks

Signature

find-regexp-in-string pattern string &key start end from-end case-sensitive brackets-limits space-string => pos,
len, brackets-limits-vector

Arguments

pattern⇓ A string or a precompiled-regexp.

string⇓ A string.

start⇓, end⇓ Bounding index designators of string.

from-end⇓ A generalized boolean.

case-sensitive⇓ A generalized boolean.

brackets-limits⇓ A generalized boolean.

space-string⇓ nil (the default), t or a regexp string.

38 The LISPWORKS Package

941

Values

pos⇓ A non-negative integer or nil.

len⇓ A non-negative integer or nil.

brackets-limits-vector⇓
A vector.

Description

The function find-regexp-in-string searches the string string for a match for the regular expression pattern. The index
in string of the start of the first match is returned in pos, and the length of the match is len.

If from-end is nil (the default value) then the search starts at index start and ends at index end. start defaults to 0 and end
defaults to nil. If from-end is true, then the search direction is reversed.

pattern should be a precompiled-regexp or a string. If pattern is a string then find-regexp-in-string first makes a
precompiled-regexp object. This operation allocates, therefore if you need to repeatedly call find-regexp-in-string
with the same pattern, it is better to call precompile-regexp once and pass its result, a precompiled-regexp, as
pattern.

case-sensitive controls whether a string pattern is precompiled as a case sensitive or case insensitive search. A non-nil value
means a case sensitive search. The value nil (the default) means a case insensitive search. case-sensitive is ignored if
pattern is not a string.

When brackets-limits is non-nil, a successful call to find-regexp-in-string returns a third value brackets-limits-vector
which is a vector specifying the limits of matches of any pair of \(and \) in the search pattern. The length of the vector is
twice the number of pairs, and the elements are offsets from the beginning of the match of the whole pattern. Each pair of \(
and \) is assigned a number in the order of the appearance of the \(in the pattern. This number multiplied by two is the
index into the vector where the match for this pair starts, and the next element specifies the end of the match. When brackets-
limits is nil (the default), only two values are returned.

When space-string is non-nil and pattern is a string, then a "Lax whitespace" search is performed. That means that any
sequence of space characters in pattern is effectively replaced by the regexp specified by space-string. If space-string is t, it
specifies a regexp that matches "whitespace", specifically any non-empty sequence of the space, tab, return or newline
characters.

The regular expression syntax used by find-regexp-in-string is similar to that used by Emacs, as described in 28.7
Regular expression syntax.

Examples

This form allocates several regular expression objects:

(loop with pos = 0
 with len = 0
 while pos
 do (multiple-value-setq (pos len)
 (find-regexp-in-string "[0,2,4,6,8]" "0123456789"
 :start (+ pos len)))
 when pos
 do (format t "~&Match at pos ~D len ~D~%"
 pos len))

This form does the same matching but allocates just one precompiled regular expression object:

(loop with pattern = (precompile-regexp "[0,2,4,6,8]")
 with pos = 0

38 The LISPWORKS Package

942

 with len = 0
 while pos
 do (multiple-value-setq (pos len)
 (find-regexp-in-string pattern "0123456789"
 :start (+ pos len)))
 when pos do (format t "~&Match at pos ~D len ~D~%"
 pos len))

See also

precompile-regexp
regexp-find-symbols
count-regexp-occurrences
precompiled-regexp

function-lambda-list Function

Summary

Returns the argument list of the given function.

Package

lispworks

Signature

function-lambda-list function &optional error-p => args

Arguments

function⇓ A symbol or a function.

error-p⇓ A boolean.

Values

args A list, :none or :dont-know.

Description

The function function-lambda-list returns the argument list of function if this is known or :dont-know otherwise.

If error-p is nil, then function-lambda-list returns :none if function is not defined. The default value of error-p is t,
meaning that an error is signaled if function is undefined.

Examples

TEST 2 > (function-lambda-list 'editor:create-buffer-command)
(EDITOR::P &OPTIONAL EDITOR:BUFFER-NAME)

38 The LISPWORKS Package

943

get-inspector-values Generic Function

Summary

Customizes the information display of attributes/values in the LispWorks IDE Inspector tool.

Package

lispworks

Signature

get-inspector-values object mode => names, values, getter, setter, type

Arguments

object⇓ The object to be inspected.

mode⇓ Name of a mode, or nil. nil defines the default inspection format for object.

Values

names, values The two lists displayed in columns in the Inspector window.

getter Ignored.

setter A function used to update slot values.

type Displayed in the Inspector window.

Description

The generic function get-inspector-values allows you to customize the LispWorks IDE Inspector tool by adding new
ways to display attributes/values of class instances.

Defining a method on get-inspector-values allows you to add new formats (corresponding to different values of mode)
in which object can be inspected. Mode nil is the default mode, which is always present (it can be overwritten).

LispWorks includes methods for:

(get-inspector-values (object nil))
(get-inspector-values (standard-object nil))
(get-inspector-values (structured-object nil))
(get-inspector-values (sequence nil))
(get-inspector-values cons nil))

and so on.

You can also define a method on sort-inspector-p to sort the list of displayed attributes/values.

Examples

This example allows inspection of a CLOS object, displaying only direct slots form a chosen class in its class precedence list.
This can be useful when an object inherits many slots from superclasses, and the inherited slots are of no interest.

(defmethod lispworks:get-inspector-values

38 The LISPWORKS Package

944

 ((object standard-object)
 (mode (eql 'direct-as)))
 (declare (ignore mode))
 (loop with object-class =
 (class-of object)
 with precedence-list =
 (class-precedence-list object-class)
 with items =
 (loop for super in precedence-list
 collecting (list*
 (format nil "~a"
 (class-name super))
 super))
 with class =
 (or (capi:prompt-with-list items
 "Direct slots as ...")
 object-class)
 ;; default if no selection
 with slots =
 (class-direct-slots class)
 for slot in slots
 for name =
 (clos::slot-definition-name slot)
 collect name into names
 collect (if (slot-boundp object name)
 (slot-value object name)
 :slot-unbound)
 into values
 finally
 (return
 (values
 names
 values
 nil
 #'(lambda
 (x slot-name index new-value)
 (declare (ignore index))
 (setf (slot-value x slot-name)
 new-value))
 (format nil "~a - direct slots as ~a"
 (class-name object-class)
 (class-name class))))))

See also

sort-inspector-p

get-unix-error Function

Summary

Returns the text associated with a given error.

Package

lispworks

Signature

get-unix-error number => error

38 The LISPWORKS Package

945

Arguments

number⇓ The errno value whose text is required.

Values

error The text associated with the error.

Description

The function get-unix-error returns the text associated with the specified value number of the POSIX variable errno.

Notes

get-unix-error is implemented only on non-Windows platforms.

See also

errno-value

grep-command Variable

Summary

Determines the search utility used by Grep searches in the Search Files tool in the LispWorks IDE.

Package

lispworks

Initial Value

"grep" on non-Windows platforms and nil on Windows.

Description

If the value of the variable *grep-command* is a string, it is the search utility to run in the Search Files tool.

If the value is nil, then the value of:

(sys:lispworks-file "etc/grep")

is expected to be an executable, which is run. On Windows a suitable grep.exe is included with LispWorks in this location.

The search utility is passed arguments constructed using *grep-command-format* and *grep-fixed-args*.

See the LispWorks IDE User Guide for more information about the Search Files tool.

See also

grep-command-format
grep-fixed-args

38 The LISPWORKS Package

946

grep-command-format Variable

Summary

The format string used to construct the arguments passed to the Search Files tool to perform a Grep search.

Package

lispworks

Initial Value

"cd '~a'; ~a ~a ~a /dev/null" on non-Windows platforms and "~a ~a ~a NUL" on Windows.

Description

The variable *grep-command-format* is a format string used to construct the arguments passed to the Search Files tool to
perform a Grep search.

On non-Windows platforms, the first format argument is the current directory.

The remainder of the format arguments are:

• the value of *grep-command* or, if this is nil, the value of (sys:lispworks-file "etc/grep").

• the value of *grep-fixed-args*.

• the arguments you specify.

See the LispWorks IDE User Guide for more information about the Search Files tool.

See also

grep-command
grep-fixed-args

grep-fixed-args Variable

Summary

Arguments added to the command string of a Grep search in the Search Files tool.

Package

lispworks

Initial Value

"-n"

38 The LISPWORKS Package

947

Description

The variable *grep-fixed-args* provides arguments added to a Grep command string in the Search Files tool. The value
should ensure that the line number is output at the start of each match.

See the LispWorks IDE User Guide for more information about the Search Files tool.

See also

grep-command
grep-command-format

handle-existing-action-in-action-list Variable

Summary

Contains keywords determining behavior on exceptions raised when an action definition already exists in a given action list.

Package

lispworks

Initial Value

(:warn :redefine)

Description

The variable *handle-existing-action-in-action-list* is a list containing one of :warn, or :silent,
determining whether to notify the user, and one of :skip, or :redefine, to determine what to do about an action definition
when the action already exists in the given action list.

It is used by define-action.

See also

define-action

handle-existing-action-list Variable

Summary

Determins what to do about a given action list operation when the action list already exists.

Package

lispworks

Initial Value

(:warn :skip)

38 The LISPWORKS Package

948

Description

The variable *handle-existing-action-list* contains keywords determining what to do about a given action list
operation when the action list already exists.

handle-existing-action-list can contain either :warn or :silent, determining whether to notify the user, and
either :skip or :redefine to determine what to do about an action list operation when the action list already exists. The
initial value is (:warn :skip).

It is used by the macro define-action-list .

See also

define-action-list

handle-missing-action-in-action-list Variable

Summary

Denotes how to handle an operation on a missing action.

Package

lispworks

Initial Value

:warn

Description

The variable *handle-missing-action-in-action-list* is a keyword; one of :warn, :error or :ignore,
denoting how to handle an operation on a missing action. Its initial value is :warn. It is used by undefine-action.

See also

undefine-action

handle-missing-action-list Variable

Summary

Defines how to handle an operation on a missing action list.

Package

lispworks

Initial Value

:error

38 The LISPWORKS Package

949

Description

The variable *handle-missing-action-list* is a keyword; one of :warn, :error, or :ignore, denoting how to
handle an operation on a missing action-list. The default value is :error.

handle-missing-action-list is used by undefine-action-list, print-actions, execute-actions,
define-action and undefine-action.

See also

define-action
execute-actions
print-actions
undefine-action
undefine-action-list

handle-warn-on-redefinition Variable

Summary

Specifies the action on defining a symbol in certain packages.

Package

lispworks

Initial Value

:error

Description

The variable *handle-warn-on-redefinition* specifies what action should be taken on defining external symbols in
certain packages. It is designed to protect against (re)definition of symbols in implementation packages.

The protected packages are those specified in the variable *packages-for-warn-on-redefinition*.

If *handle-warn-on-redefinition* is set to :warn then you are warned. If it is set to :quiet or nil, the definition is
done quietly. If, however, it is set to :error, then LispWorks signals an error.

Notes

The checking is useful because it is relatively easy to redefine an external symbol by mistake, and it leads to undefined
behavior which is difficult to debug. It is therefore a bad idea to change the value of *handle-warn-on-redefinition*
to something else. If required, do this by rebinding *handle-warn-on-redefinition* rather than setting its global
value.

See also

packages-for-warn-on-redefinition
redefinition-action
7.7.2.2 Protecting packages

38 The LISPWORKS Package

950

hardcopy-system Function

Summary

Prints each file of a system to a printer.

Package

lispworks

Signature

hardcopy-system system-name &key command simulate => nil

Arguments

system-name⇓ A symbol or string.

command⇓ A string.

simulate⇓ One of nil, t, :ask or :each.

Description

The function hardcopy-system prints each file of a system to a printer.

system-name must be a symbol or string representing the name of the system. The system must have been defined already
using the defsystem macro.

Each file is printed by sending command to a shell. command defaults to the value of *print-command*.

If simulate is nil (the default) then hardcopy-system works silently. Otherwise a plan of the actions which
hardcopy-system intends to carry out is printed. What happens next depends on the value of simulate:

t Do nothing.

:ask You are asked if you wish the plan to be carried out using y-or-n-p.

:each hardcopy-system displays each action in the plan one at a time, and asks you whether you
want to carry out this particular action. The answer c executes the rest of the plan without further
prompting, e returns from hardcopy-system without further processing, and y and n work as
expected. :simulate may be abbreviated as :sim.

Examples

(hardcopy-system 'blackboard)

(hardcopy-system 'tms :simulate :ask :command "lpr")

See also

defsystem
print-command

38 The LISPWORKS Package

951

http://www.lispworks.com/documentation/HyperSpec/Body/f_y_or_n.htm

init-file-name Variable

Summary

The default user initialization file.

Package

lispworks

Initial Value

"~/.lispworks"

Description

The variable *init-file-name* is the name of the default user initialization file.

However, if the user initialization file is specified by either:

• the command line argument -init, or:

• user preferences (as set via the Preferences dialog in the LispWorks IDE).

then the value of *init-file-name* is not used.

inspect-through-gui Variable

Summary

Controls what inspect does in the development environment.

Package

lispworks

Initial Value

nil

Description

The variable *inspect-through-gui* controls what inspect does in the development environment.

When the value is nil, inspect uses a command line interface in the REPL.

When the value is true, inspect invokes an Inspector tool in the LispWorks IDE.

38 The LISPWORKS Package

952

http://www.lispworks.com/documentation/HyperSpec/Body/f_inspec.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_inspec.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_inspec.htm

lisp-image-name Function

Summary

Returns the name of the running image.

Package

lispworks

Signature

lisp-image-name => name

Values

name A string.

Description

The function lisp-image-name returns a string representing the full path to the running LispWorks image. The example
below is in typical LispWorks for Windows and LispWorks for Linux installations. In resaved and delivered images
(including dynamic libraries such as Windows DLLs), the appropriate path is returned.

Examples

On Windows:

CL-USER 1 > (lisp-image-name)
"C:\\Program Files\\LispWorks\\lispworks-8-1-0-x86-win32.exe"

On Linux:

CL-USER 1 > (lisp-image-name)
"/usr/bin/lispworks-8-1-0-x86-linux"

See also

line-arguments-list

lispworks-directory Variable

Summary

The main LispWorks installation directory.

Package

lispworks

38 The LISPWORKS Package

953

Initial Value

See Examples below.

Description

The variable *lispworks-directory* holds the name of the directory where various files important for the running of
LispWorks are located.

When LispWorks starts in a directory which contains an appropriate numbered subdirectory such as lib/8-1-0-0/, then it
assumes this is the LispWorks installation directory and sets *lispworks-directory* accordingly. Additionally,
LispWorks for Macintosh running on Cocoa looks for such a subdirectory in the Library folder alongside its application
bundle, and if found it sets *lispworks-directory* accordingly.

On non-Windows platforms, LispWorks then consults the POSIX environment variable LISPWORKS_DIRECTORY. If this is
set, then *lispworks-directory* is set accordingly.

The lib/8-1-0-0/ subdirectory of *lispworks-directory* should include these subdirectories:

config, which contains the configuration files.

patches, which contains any public (numbered) patches that are distributed by LispWorks Ltd.

private-patches, which is the place to put private (named) patches that are sent to you by Lisp Support.

postscript, which contains configuration files for printing using the CAPI printing library. See 13.12 Configuring the
printer for more information on printer configuration.

examples, which contains various files of example code.

Other directories are etc, load-on-demand and manual. There is also app-defaults for platforms where Motif is
supported.

Examples

Some examples of the initial value are:

#P"/usr/local/lib/LispWorks/" on Linux (for an installation from the tar archive) x86/x64 Solaris or FreeBSD.

#P"/usr/lib64/LispWorks/" on Linux (for an RPM installation).

#P"C:\Program Files\LispWorks\" or #P"C:\Program Files (x86)\LispWorks\" on Microsoft Windows.

#P"/Applications/LispWorks 8.1 (64-bit)/Library/" on macOS.

Note however that the value can be set when configuring an image or on startup.

load-all-patches Function

Summary

Loads all patch files into the image.

Package

lispworks

38 The LISPWORKS Package

954

Signature

load-all-patches => nil

Description

The function load-all-patches loads all appropriate files from the directory patches in the directory determined by
lispworks-directory, and then loads the file private-patches/load.lisp where load forms for any private
patches may be placed. When the appropriate patches have successfully been loaded, the updated version of the image can be
saved using save-image.

load-all-patches is called by LispWorks on startup and when the -build command line argument is used.

The system expects all patches to be loaded sequentially. If a patch is missing, there is a warning message. In this situation, it
is advisable to contact Lisp Support to obtain a copy of the missing patch.

load-system Function

Summary

Loads each file of a system into the Lisp image if either the file has not been loaded, or the file has been written since it was
last loaded.

Package

lispworks

Signature

load-system system-name &key force simulate source-only target-directory => nil

Arguments

system-name⇓ A symbol or string.

force⇓ A generalized boolean.

simulate⇓ One of nil, t, :ask or :each.

source-only⇓ A generalized boolean.

target-directory⇓ A pathname designator or nil.

Description

The function load-system ensures that all the files in a system have been loaded.

system-name must be a symbol or string representing the name of the system. The system must have been defined already
using the defsystem macro.

If force is non-nil then all the files in the system are compiled regardless. (This argument was formerly called force-p. The
old name is currently still accepted for compatibility.). Otherwise only files that need it are compiled.

If simulate is nil (the default) then load-system works silently. Otherwise a plan of the actions which load-system

intends to carry out is printed. What happens next depends on the value of simulate:

t Do nothing.

38 The LISPWORKS Package

955

:ask You are asked if you wish the plan to be carried out using y-or-n-p.

:each load-system displays each action in the plan one at a time, and asks you whether you want to
carry out this particular action. The answer c executes the rest of the plan without further
prompting, e returns from load-system without further processing, and y and n work as
expected. :simulate may be abbreviated as :sim.

If source-only is non-nil, the source files of the system are loaded. This only applies to file types where it makes sense to load
a source file.

If target-directory is non-nil, it must be a pathname designator representing a valid directory. It defaults to the
:default-pathname option to defsystem. This is the directory to search the object files. If the object file cannot be
found here then the source file from the system's default directory are loaded.

Examples

(load-system 'blackboard)

(load-system 'tms :simulate :ask :source-only t)

Notes

For Lisp files load-system loads the object file (if it exists) into the image, unless over-ridden by the :source-only
keyword argument. This behavior can be changed so that the newest file (whether source or object) is loaded by setting the
variable *load-source-if-newer* to t.

C source files, for example foo.c, can be included in a system (see the use of :default-type and :type in defsystem).
The corresponding object file name is foon.so on Linux, FreeBSD and x86/x64 Solaris and foon.dylib on macOS,
where n is a platform-specific integer. On Windows the object file name is foo.dll.

See also

defsystem
compile-system
concatenate-system

make-mt-random-state Function

Summary

Creates an object of type mt-random-state.

Package

lispworks

Signature

make-mt-random-state &optional state => new-state

38 The LISPWORKS Package

956

http://www.lispworks.com/documentation/HyperSpec/Body/f_y_or_n.htm

Arguments

state⇓ nil, t or an object of type mt-random-state. The default is nil.

Values

new-state⇓ A new object of type mt-random-state.

Description

The function make-mt-random-state creates a new object of type mt-random-state which is suitable for use as the
value of *mt-random-state*.

If state is an object of type mt-random-state, then new-state is a copy of state. If state is nil, then new-state is a copy of
the value of *mt-random-state*. If state is t then new-state is an object of type mt-random-state initialized using a
call to get-universal-time.

make-mt-random-state is analogous to cl:make-random-state.

See also

mt-random
mt-random-state
mt-random-state

make-unregistered-action-list Function

Summary

Makes an unregistered action list.

Package

lispworks

Signature

make-unregistered-action-list &key documentation sort-time dummy-actions default-order execution-function

Arguments

documentation⇓ A string.

sort-time⇓ One of :execute or :define-action.

dummy-actions⇓ A list.

default-order⇓ A list.

execution-function⇓ A function.

Description

The function make-unregistered-action-list makes an action-list that is not registered in the global registry of lists.
The keyword arguments are as for define-action-list.

38 The LISPWORKS Package

957

http://www.lispworks.com/documentation/HyperSpec/Body/f_get_un.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_rnd.htm

If documentation is a string, it allows you to provide documentation for the action list.

sort-time is a keyword specifying when added actions are sorted for the given list — either :execute or :define-action
(see *default-action-list-sort-time*).

dummy-actions is a list of action-names that specify placeholding actions; they cannot be executed and are constrained to the
order specified in this list, for example:

'(:beginning :middle :end)

default-order specifies default ordering constraints for subsequently defined action-items where no explicit ordering
constraints are specified. An example is:

'(:after :beginning :before :end)

execution-function specifies a user-defined function accepting arguments of the form:

(the-action-list other-args-list &rest keyword-value-pairs)

where the two required arguments are the action-list and a list of additional arguments passed to execute-actions,
respectively. The remaining arguments are any number of keyword-value pairs that may be specified in the call to
execute-actions. If no execution function is specified, then the default execution function will be used to execute the
action-list.

See also

define-action-list
handle-warn-on-redefinition

mt-random Function

Summary

Returns a pseudo-random number using the Mersenne Twister algorithm.

Package

lispworks

Signature

mt-random arg &optional state => random-number

Arguments

arg⇓ A positive integer or a positive float.

state⇓ An object of type mt-random-state. The default is the value of *mt-random-state*.

Values

random-number⇓ A non-negative number less than arg and of the same type as arg.

38 The LISPWORKS Package

958

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm

Description

The function mt-random returns a pseudo-random number which is non-negative, less than arg and is of the same type as
arg.

state contains the state of the pseudo-random number generator and is updated.

random-number is generated using the Mersenne Twister algorithm published by Makoto Matsumoto and Takuji Nishimura at
http://www.math.keio.ac.jp/~matumoto/emt.html.

We thank the authors for making the algorithm freely available.

mt-random is analogous to cl:random.

See also

make-mt-random-state
mt-random-state

mt-random-state Variable

Summary

The default random state used by mt-random.

Package

lispworks

Initial Value

A mt-random-state object.

Description

The variable *mt-random-state* contains an object of type mt-random-state which is the default state used by
mt-random if a state is not supplied.

mt-random-state is analogous to cl:*random-state*.

See also

make-mt-random-state
mt-random
mt-random-state

mt-random-state Type

Summary

The type of objects containing state information used by mt-random.

38 The LISPWORKS Package

959

http://www.lispworks.com/documentation/HyperSpec/Body/f_random.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_rnd_st.htm

Package

lispworks

Signature

mt-random-state

Description

Instances of the type mt-random-state contain the Mersenne Twister state data used by mt-random.

mt-random-state is analogous to cl:random-state.

See also

mt-random-state
mt-random
mt-random-state-p

mt-random-state-p Function

Summary

The predicate for objects of type mt-random-state.

Package

lispworks

Signature

mt-random-state-p arg => result

Arguments

arg⇓ An object.

Values

result A boolean.

Description

The function mt-random-state-p returns t if arg is an object of type mt-random-state, and nil otherwise.

mt-random-state-p is analogous to cl:random-state-p.

See also

mt-random-state

38 The LISPWORKS Package

960

http://www.lispworks.com/documentation/HyperSpec/Body/t_rnd_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rnd_st.htm

pathname-location Function

Summary

Returns the location of a file.

Package

lispworks

Signature

pathname-location pathname => location

Arguments

pathname⇓ A pathname designator.

Values

location⇓ A pathname.

Description

The function pathname-location returns a pathname location that represents the directory where the file pathname
resides. Each of the name, type and version components of location are nil.

Examples

Due to the ANSI Common Lisp definition of the directory function and the fact that LispWorks returns fully specified
truenames, the form:

(directory (truename "/tmp/"))

will always signal an error or return the list (#P"/tmp/"). To obtain the contents of the /tmp directory, use the form:

(directory (pathname-location (truename "/tmp/")))

See also

current-pathname
directory

precompiled-regexp System Class

Summary

A precompiled regular expression.

38 The LISPWORKS Package

961

Package

lispworks

Superclasses

t

Description

Instances of the system class precompiled-regexp represent a precompiled regular expression. They are produced by the
function precompile-regexp, and are used by the functions find-regexp-in-string, regexp-find-symbols,
count-regexp-occurrences and editor:regular-expression-search.

See also

precompile-regexp
precompiled-regexp-p
find-regexp-in-string
regexp-find-symbols
count-regexp-occurrences
editor:regular-expression-search

precompiled-regexp-p Function

Summary

Predicate for the system class precompiled-regexp.

Package

lispworks

Signature

precompiled-regexp-p object => boolean

Arguments

object⇓ A Lisp object.

Values

boolean A boolean.

Description

The function precompiled-regexp-p returns t if object is of type precompiled-regexp and otherwise it returns nil.

See also

precompile-regexp
precompiled-regexp

38 The LISPWORKS Package

962

precompile-regexp Function

Summary

Precompiles a regular expression object.

Package

lispworks

Signature

precompile-regexp string &key case-sensitive space-string error-function => pattern, condition-designators

Arguments

string⇓ A string.

case-sensitive⇓ A generalized boolean.

space-string⇓ nil (the default), t or a regexp string.

error-function⇓ nil or a function that takes arguments like error.

Values

pattern⇓ A precompiled-regexp.

condition-designators⇓
A list.

Description

The function precompile-regexp returns a precompiled regular expression object (a precompiled-regexp) suitable for
passing as pattern to functions like find-regexp-in-string.

case-sensitive controls whether string is precompiled as a case sensitive or case insensitive search. A non-nil value means a
case sensitive pattern. The value nil (the default) means a case insensitive pattern.

When space-string is non-nil, then string is precompiled to do a "Lax whitespace" search. That means that any sequence of
space characters in string is effectively replaced by the regexp specified by space-string. If space-string is t, it specifies a
regexp that matches "whitespace", specifically any non-empty sequence of the space, tab, return or newline characters.

error-function is used when the string is not a legal regular expression. In this case, if error-function is not nil, it is applied
to a list of arguments which are designators for a condition like the arguments that error takes. If error-function is nil,
precompile-regexp returns nil as the first argument and the list of arguments as a second return value, condition-
designators. error-function defaults to error.

Notes

For the regular expression syntax, see 28.7 Regular expression syntax.

38 The LISPWORKS Package

963

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

See also

find-regexp-in-string
regexp-find-symbols
count-regexp-occurrences
editor:regular-expression-search
precompiled-regexp
precompiled-regexp-p

print-action-lists Function

Summary

Prints a list of all the action lists in the global registry.

Package

lispworks

Signature

print-action-lists &optional stream

Arguments

stream⇓ An output stream.

Description

The function print-action-lists prints a listing of all the action lists in the global registry. The ordering of the action
lists is random.

The output is written to the stream stream. The default value of stream is the value of *standard-output*.

See also

print-actions

print-actions Function

Summary

Prints a listing of the action items on a given action list in order.

Package

lispworks

Signature

print-actions name-or-list &optional stream

38 The LISPWORKS Package

964

Arguments

name-or-list⇓ An action list.

stream⇓ An output stream.

Description

The function print-actions prints a listing of the action items on the action-list denoted by name-or-list, in order.

If the action-list specified by name-or-list does not exist, then this is handled according to the value of
handle-missing-action-list.

The output is written to the stream stream. The default value of stream is the value of *standard-output*.

See also

print-action-lists

print-command Variable

Summary

A command used for some printing operations.

Package

lispworks

Initial Value

"print" on Windows and "lpr" on macOS and all Unix-like systems.

Description

The variable *print-command* is used as the command sent by LispWorks to the shell in hardcopy-system.

See also

hardcopy-system

print-nickname Variable

Summary

Controls the package prefix used when a symbol is printed.

Package

lispworks

38 The LISPWORKS Package

965

Initial Value

nil

Description

The variable *print-nickname* controls which package prefix is used when a symbol is printed and the symbol's package
needs to be output.

If *print-nickname* is true and the package has at least one nickname, then the first of the nicknames (that is, the first
nickname in the list returned by package-nicknames) is output. Otherwise, the package name is output.

prompt Variable

Summary

Defines the LispWorks listener prompt.

Package

lispworks

Initial Value

"~%~A ~D~[~:;~:* : ~D~] > "

Description

The variable *prompt* defines the LispWorks listener prompt. Its value can be a:

Function designator A function of zero arguments which should return the prompt as a string.

String A format string with processing three arguments: the current package name, the next history
number, and the debug level.

A form The form is passed to eval and should return a format string, which is used as for the string case
above.

Examples

CL-USER 1 > (defvar *default-prompt* *prompt*)
DEFAULT-PROMPT

CL-USER 2 > (progn
 (setf *prompt*
 '(string-append "~&"
 (sys:get-user-name)
 #\Space
 (subseq *default-prompt* 2)))
 nil)
NIL
dubya CL-USER 3 >

38 The LISPWORKS Package

966

http://www.lispworks.com/documentation/HyperSpec/Body/f_pkg_ni.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eval.htm

push-end
push-end-new Macros

Summary

Append an item to a list stored in a place.

Package

lispworks

Signatures

push-end item place => new-place-value

push-end-new item place &key key test test-not => new-place-value

Arguments

item⇓ Anything.

place⇓ A generalized reference form as described in section 5.1.1 Overview of Places and
Generalized Reference of the Common Lisp HyperSpec.

key⇓, test⇓, test-not⇓
Function designators.

Values

new-place-value⇓ A list which is the new value of place.

Description

The macros push-end and push-end-new are analogs to push and pushnew, except that they append item to the end of
the list rather then prepend it.

place must contain a proper list.

push-end sets place to a copy of this list with item appended in the end.

push-end-new does the same as push-end, except when item is already on the list, in which case push-end-new does
nothing. The check is done using the values of key, test and test-not in the same way that pushnew does.

The return value new-place-value is the value of place after the operation. Except when item is already in the list, it is always
a new list.

Notes: Multithreading

push-end and push-end-new are not atomic.

If place is globally accessible and may be read by another thread without synchronization (by a lock or other
synchronization mechanism), then you need to wrap place by globally-accessible, for example:

(push-end my-item

38 The LISPWORKS Package

967

http://www.lispworks.com/documentation/HyperSpec/Body/05_aa.htm
http://www.lispworks.com/documentation/HyperSpec/Body/05_aa.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_push.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_pshnew.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_pshnew.htm

 (sys:globally-accessible
 a-global-symbol))

See 19.3.4 Making an object's contents accessible to other threads for a discussion.

push and pushnew also have the same issues with Multithreading.

quit Function

Summary

Quits LispWorks.

Package

lispworks

Signature

quit &key status confirm ignore-errors-p return

Arguments

status⇓ An integer.

confirm⇓ A generalized boolean.

ignore-errors-p⇓ A generalized boolean.

return⇓ A generalized boolean.

Description

The function quit exits LispWorks unless the user cancels the operation.

There are two stages which may allow the user the chance to cancel.

1. First the action items of the action list "Confirm when quitting image" are run. If any action item returns nil,
then LispWorks does not exit.

2. Otherwise, if confirm is true (the default value is nil) then a question like
"Do you really want to exit LispWorks?"
is presented to the user. If the answer No is supplied, then LispWorks does not exit. Otherwise, the action items of the
action list "When quitting image" are run, and then LispWorks exits, and the value status is returned to the
Operating System as the exit value of the LispWorks process. The default value of status is 0.

If ignore-errors-p is true, then any error signaled during the running of the action list items or the confirm prompt is ignored
and quit proceeds to exit the image. If ignore-errors-p is nil and an error is signaled during the running of the action list
items, then a restart is available allowing the user to choose to continue to exit the image. The default values of ignore-errors-
p is nil.

If return is true and LispWorks is going to exit, then quit returns t. This can be used if you want some other Lisp process to
kill the current one later, rather than it self-destructing immediately. This can be useful to allow more precise control over
process termination. If return is nil then quit does not return. The default value of return is nil.

38 The LISPWORKS Package

968

http://www.lispworks.com/documentation/HyperSpec/Body/m_push.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_pshnew.htm

Notes

On Cocoa, when you define your own application menu (by passing :application-menu when making the application
interface), the Quit menu item needs to call capi:destroy on the application interface, rather than quit. See
capi:cocoa-default-application-interface in the CAPI User Guide and Reference Manual for more information.

See also

save-image

rebinding Macro

Summary

Ensures unique names for all the variables in a groups of forms.

Package

lispworks

Signature

rebinding (&rest vars) &body body => form

Arguments

vars⇓ The variables to be rebound.

body⇓ A body of forms, the variables in which should be unique.

Values

form A form.

Description

The macro rebinding returns body wrapped in a form which creates a unique name for each variables in vars (compare
with gensym) and binds these names to the values of the variables. This ensures that the body can refer to the variables
without name clashes with other variables elsewhere.

Examples

After defining:

(defmacro lister (x y)
 (rebinding (x y)
 '(list ,x ,y)))

the form (lister i j) macroexpands to:

(LET* ((#:X-77 I)
 (#:Y-78 J))
 (LIST #:X-77 #:Y-78))

38 The LISPWORKS Package

969

http://www.lispworks.com/documentation/HyperSpec/Body/f_gensym.htm

See also

with-unique-names

regexp-find-symbols Function

Summary

Returns a list of symbols that match a supplied regular expression.

Package

lispworks

Signature

regexp-find-symbols pattern &key case-sensitive packages test external-only => symbols

Arguments

pattern⇓ A string or a precompiled-regexp.

case-sensitive⇓ A boolean.

packages⇓ A list of package designators, a single package designator, or the keyword :all.

test⇓ A function of one argument returning a boolean result.

external-only⇓ A generalized boolean.

Values

symbols⇓ A list of symbols.

Description

The function regexp-find-symbols returns a list of symbols that match the regular expression in pattern.

pattern should be a precompiled-regexp or a string. If pattern is a string then regexp-find-symbols first makes a
precompiled-regexp object. This operation allocates, therefore if you need to repeatedly call regexp-find-symbols
with the same pattern, it is better to call precompile-regexp once and pass its result, a precompiled-regexp, as
pattern.

case-sensitive controls whether a string pattern is precompiled as a case sensitive or case insensitive search. A non-nil value
means a case sensitive search. The value nil (the default) means a case insensitive search. case-sensitive is ignored if
pattern is not a string.

packages specifies in which packages to search. The default value of packages is :all, meaning search in all packages.

test, if supplied, must be a function of one argument, which returns t if the argument should be returned, and nil otherwise.
The function test is applied to each symbol that matches pattern, and if it returns nil the symbol is not included in the
returned value symbols. If test is nil all matches are returned. The default value of test is nil.

external-only, if true, specifies that only external symbols should be checked, which makes the search much faster. The
default value of external-only is nil.

38 The LISPWORKS Package

970

The regular expression syntax used by regexp-find-symbols is similar to that used by Emacs, as described in 28.7
Regular expression syntax.

Examples

To find all exported symbols that start with DEF:

(lw:regexp-find-symbols "^def" :external-only t)

To find all symbols that contain lower case "slider":

(regexp-find-symbols "slider" :case-sensitive t)

See also

apropos
find-regexp-in-string

remove-advice Function

Summary

Remove a piece of advice.

Package

lispworks

Signature

remove-advice function-dspec name

Arguments

function-dspec⇓ A function-dspec Specifies the function definition to which the piece of advice belongs.
See 7.5.1 Function dspecs for description of function-dspec.

name⇓ A symbol naming the piece of advice to be removed. Since several pieces of advice may
be attached to a single functional definition, the name is necessary to indicate which one is
to be removed.

Description

The function remove-advice removes a piece of advice named name for the definition named by function-dspec. Advice is
a way of altering the behavior of functions. Pieces of advice are associated with a function using defadvice. They define
additional actions to be performed when the function is invoked, or alternative code to be performed instead of the function,
which may or may not access the original definition. As well as being attached to ordinary functions, advice may be attached
to methods and to macros (in this case it is in fact associated with the macro's expansion function).

hcl:delete-advice is a macro, identical in effect to remove-advice, except that you do not need to quote the
arguments.

38 The LISPWORKS Package

971

Notes

remove-advice is an extension to Common Lisp.

See also

defadvice
delete-advice
6 The Advice Facility

removef Macro

Summary

Removes an item from a sequence.

Package

lispworks

Signature

removef place item &key test test-not start end key => result

Arguments

place⇓ A place.

item⇓ An object.

test⇓ A test function.

test-not⇓ A test function.

start⇓ An integer.

end⇓ An integer or nil.

key⇓ A key function.

Values

result A sequence.

Description

The macro removef modifies the sequence in place by removing item using remove. See remove for more details for how
test, test-not, start, end and key are used.

See also

appendf

38 The LISPWORKS Package

972

http://www.lispworks.com/documentation/HyperSpec/Body/f_rm_rm.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rm_rm.htm

remove-user-preference Function

Summary

Removes a persistent value from the user's registry.

Package

lispworks

Signature

remove-user-preference path value-name &key product => removedp

Arguments

path⇓ A string or a list of strings.

value-name⇓ A string.

product⇓ A keyword.

Values

removedp A boolean.

Description

The function remove-user-preference removes the registry entry value-name under path under the registry path defined
for product by (setf product-registry-path). If the registry entry was found, non-nil is returned, otherwise nil is
returned.

If path is a list of strings, then it is interpreted like the directory component of a pathname. If path is a string, then any
directory separators should be appropriate for the platform - that is, use backslash on Windows, and forward slash on non-
Windows systems.

Notes

While product can in principle be any Lisp object, values of product are compared by eq, so you should use keywords.

See also

user-preference
product-registry-path

require-verbose Variable

Summary

Controls the output of require.

38 The LISPWORKS Package

973

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm

Package

lispworks

Initial Value

t

Description

The variable *require-verbose* is a generalized boolean controlling whether require prints the names of the files
which are being loaded.

rotate-byte Function

Summary

Rotates specified bits within an integer.

Package

lispworks

Signature

rotate-byte count bytespec integer => result-integer

Arguments

count⇓ An integer.

bytespec⇓ A byte specifier.

integer⇓ An integer.

Values

result-integer An integer.

Description

The function rotate-byte returns integer with the bits specified by bytespec rotated left by count bits. Other bits remain
the same as in integer. If count is negative, then the effect is to rotate right.

Examples

(rotate-byte 2 (byte 3 1) 99) => 105
(rotate-byte -2 (byte 3 1) 99) => 101

See also

http://www.cliki.net/rotate-byte

38 The LISPWORKS Package

974

http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm
http://www.cliki.net/rotate-byte

round-to-single-precision Function

Summary

Rounds the given float to single-precision format (32 bits) and returns it as a double-float (64 bits).

Package

lispworks

Signature

round-to-single-precision float => double-float

Arguments

float⇓ A float.

Values

double-float A double-float with single-float precision.

Description

The function round-to-single-precision rounds float to single-precision format (32 bits) and returns the value as a
double-float (64 bits). This function allows you to model the rounding behavior of a machine or implementation that
performs 32-bit floating point arithmetic.

LispWorks supports multiple floating point formats: short-float (only on 32-bit LispWorks), single-float and
double-float. If this function is called with a single-float or a short-float, it returns the equivalent
double-float, that is, it is the same as evaluating:

(coerce float 'double-float)

Compatibility notes

LispWorks 4.4 and previous on Windows and Linux platforms supports just one floating point format. In LispWorks 5.0 and
later, at least two floating point formats are supported on all platforms.

Examples

CL-USER 197 > pi
3.141592653589793D0

CL-USER 198 > round-to-single-precision pi
3.1415927410125732D0

38 The LISPWORKS Package

975

sbchar Accessor

Summary

The accessor for simple base strings.

Package

lispworks

Signature

sbchar string index => value

setf (sbchar string index) value => value

Arguments

string⇓ A simple-base-string.

index⇓ An index.

value A base-char.

Values

value A base-char.

Description

The accessor sbchar accesses the character in string at index. It can only be used when string is a simple-base-string
and can be optimized by the compiler.

See also

simple-base-string
char

sequencep Function

Summary

A predicate to check for sequences.

Package

lispworks

Signature

sequencep object => result

38 The LISPWORKS Package

976

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_char_.htm

Arguments

object⇓ A Lisp object.

Values

result A generalized boolean.

Description

The function sequencep returns true if object is of type sequence and false otherwise.

Examples

(sequencep '(1 2 3)) => t

(sequencep #(1 2 3)) => t

(sequencep 123) => nil

set-compile-file-proclaim-handling Function

Summary

Sets the way compile-file handles proclaim as a top level form.

Package

lispworks

Signature

set-compile-file-proclaim-handling value

Arguments

value⇓ One of nil (the default), :warn, :compile-time-too, :warn-on-optimize,
:ignore-optimize, :optimize-compile-time-only.

Description

The function set-compile-file-proclaim-handling tells compile-file how to handle a top level form that is a call
to proclaim (a proclaim form). The meaning of value is:

nil compile-file does not recognize a top level proclaim form specially, and hence treats it like
any unknown top level form. This is the default in LispWorks 8.1 onwards, and matches the
ANSI Common Lisp standard.

:compile-time-too compile-file effectively evaluates the form both at compile time and load time, except where
the declaration argument is an optimize declaration (a proclaim optimize form), in which
case the form is evaluated only at compile time. This is what LispWorks did prior to version 8.1.

38 The LISPWORKS Package

977

http://www.lispworks.com/documentation/HyperSpec/Body/t_seq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm

:warn The same as nil, but a warning is signaled at compile time.

:warn-on-optimize The same as nil, but a warning is signaled at compile time when it is a proclaim optimize
form.

:ignore-optimize The same as nil except that proclaim optimize forms are completely ignored and a warning
is signaled at compile time.

:optimize-compile-time-only

The same as nil except for a proclaim optimize form, which is evaluated only at compile
time.

With :warn-on-optimize, :ignore-optimize and :optimize-compile-time-only, a proclaim form is
recognized as a proclaim optimize form only if the declaration is a quoted form starting with the symbol optimize.

Notes

A proclaim form that is not a top level form was never recognized by the compiler as special, and is not affected by this
setting.

A proclaim form inside a top level eval-when form is not affected by this setting, except when (a) it is a proclaim
optimize and (b) the setting is :compile-time-too and (c) the eval-when forms indicates compile time too. In this
case, it is evaluated only at compile time as described above, even if the eval-when form indicates load time too, to match
the behavior of LispWorks prior to version 8.1.

The :compile-time-too value makes LispWorks behave exactly like it did prior to version 8.1.

The :warn and :warn-on-optimize values make LispWorks be ANSI Common Lisp standard compliant, except the
warnings.

The effects of the change between LispWorks version 8.0 and version 8.1 can be grouped in two groups:

1. proclaim optimize forms.

The change in LispWorks 8.1 moves the evaluation from compile time to load time. That will affect compilation of forms
that follow in the same file and, after loading the file, also any compilation (both by compile-file and compile) that
does not set the optimize values itself. Note also that the optimize declaration is global and affects all compilation,
while other declarations are specific to the symbol(s) that they declare, and affect only code that refers to these symbols.
Therefore the change for proclaim optimize forms is much more problematic, and is more difficult to detect its
effects, than the change for other forms.

2. All other proclaim forms.

The change is that the form is not evaluated at compile time in LispWorks 8.1 (with the default setting nil), but it was
evaluated at compile time in previous versions. This affects the compilation of forms that follow in the file, but not in
other files. If the proclamation is needed at compile time, it should either be wrapped in eval-when or changed to use
declaim.

The values :warn and :warn-on-optimize are intended to be used to find top level proclaim forms in your code, and
then decide how to change these forms if necessary. You may want to change all such forms to be inside eval-when with
appropriate keywords (or use declaim), and keep the setting to :warn or :warn-on-optimize.

The value :ignore-optimize can be used to prevent any optimization settings from leaking (that is changing the global
optimization setting) from top level proclaim optimize forms.

The value :optimize-compile-time-only makes compile-file evaluate the proclaim optimize only at compile
time, like it did prior to LispWorks 8.1, while it behaves like nil for all other proclaim forms.

38 The LISPWORKS Package

978

http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_eval_w.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_eval_w.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_eval_w.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_eval_w.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_eval_w.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm

set-default-character-element-type Function

Summary

Configures the value of *default-character-element-type*.

Package

lispworks

Signature

set-default-character-element-type type => type-defaults

Arguments

type⇓ A character type. This can take any of the values cl:base-char, bmp-char and
cl:character. For backwards compatibility, simple-char is also allowed, and is
treated as if cl:character was passed.

Values

type-defaults The new value of *default-character-element-type*.

Description

The function set-default-character-element-type sets the value of *default-character-element-type* to
type, ensuring that the system's internal state is also updated accordingly.

If you are running an existing 8-bit application you will only need to have this in your site or user configuration file:

(lw:set-default-character-element-type 'base-char)

It would be a mistake to call this function in a loadable package and it is not intended to be called while running code. In
particular, it is global, not thread-specific.

Hence we consider *default-character-element-type* a parameter.

Compatibility note:

simple-char is deprecated. Its meaning has changed between LispWorks 6 and 7.

See also

make-string
open
default-character-element-type
with-output-to-string
26.2 Unicode support
26.6.3 Controlling string construction

38 The LISPWORKS Package

979

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

set-quit-when-no-windows Function

Summary

Overrides the :quit-when-no-windows keyword argument to deliver.

Package

lispworks

Signature

set-quit-when-no-windows on

Arguments

on⇓ nil, t or the keyword :check.

Description

The function set-quit-when-no-windows can be used at run time in a delivered application to override the value of the
:quit-when-no-windows keyword to deliver. This can be useful if the application runs in various modes, some with
windows and some without. It has no effect in a non-delivered application.

If on is nil, then the application will not quit merely because there are no remaining open windows.

If on is t, then the application will quit when there are no remaining open windows after the application has opened at least
one CAPI window.

If on is :check, then the application will quit immediately if there are no open windows at the current time. Unlike with
:quit-when-no-windows t, this occurs even if the application has not opened any CAPI windows so far. If there are
open windows currently, then it turns on quitting like when on is t.

See also

:quit-when-no-windows keyword in the LispWorks® User Guide and Reference Manual

simple-char Type

Summary

The simple character type (deprecated).

Package

lispworks

Signature

simple-char

38 The LISPWORKS Package

980

Description

Instances of the type simple-char are simple characters (standard term for characters with null implementation-defined
attributes, that is, no bits).

simple-char is a synonym for cl:character, and is deprecated.

Notes

16-bit characters and 16-bit strings are implemented by the types bmp-char and bmp-string and simple-bmp-string.

simple-char-p Function

Summary

The predicate for simple characters (deprecated).

Package

lispworks

Signature

simple-char-p object => result

Arguments

object⇓ The object to be tested.

Values

result⇓ A boolean.

Description

The function simple-char-p is the predicate for simple characters.

result is t if object is a simple character, and nil otherwise.

simple-char-p is deprecated.

See also

simple-char

split-sequence Function

Summary

Returns a list of subsequences of a sequence, split at specified separator elements.

38 The LISPWORKS Package

981

http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

Package

lispworks

Signature

split-sequence separator-bag sequence &key start end test key coalesce-separators count => sequences

Arguments

separator-bag⇓ A sequence.

sequence⇓ A sequence.

start⇓, end⇓ Bounding index designators for sequence.

test⇓ A function designator.

key⇓ A function designator or nil.

coalesce-separators⇓ A generalized boolean.

count⇓ A positive integer, default most-positive-fixnum.

Values

sequences⇓ A list of sequences.

Description

The function split-sequence returns a list of subsequences of sequence (bounded by start and end), split when an element
in the sequence separator-bag is found. The structure of sequence is not changed and the elements matching separator-bag
are not included in sequences.

The function test, which defaults to eql, is used to compare the elements of sequence and the elements of separator-bag.

If true, the function key, is applied to the elements of sequence before test is called.

If coalesce-separators is true, then empty sequences are omitted from sequences.

count specifies the maximum number of subsequences returned. The last subsequence consists of all the remaining elements
of sequence.

Examples

(split-sequence '(#\space) "one two three")
=>
("one" "two" "three")

(split-sequence '(#\space) "one two three" :count 2)
=>
("one" "two three")

See also

split-sequence-if

38 The LISPWORKS Package

982

http://www.lispworks.com/documentation/HyperSpec/Body/v_most_p.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm

split-sequence-if
split-sequence-if-not Functions

Summary

Returns a list of subsequences of a sequence, split at elements for which a predicate returns true or false.

Package

lispworks

Signatures

split-sequence-if predicate sequence &key start end key coalesce-separators count => sequences

split-sequence-if-not predicate sequence &key start end key coalesce-separators count => sequences

Arguments

predicate⇓ A function designator.

sequence⇓ A sequence.

start⇓, end⇓ Bounding index designators for sequence.

key⇓ A function designator or nil.

coalesce-separators⇓ A generalized boolean.

count⇓ A positive integer, default most-positive-fixnum.

Values

sequences⇓ A list of sequences.

Description

The function split-sequence-if returns a list of subsequences of sequence (bounded by start and end), split by where the
function predicate returns true for an element.

The function split-sequence-if-not returns a list of subsequences of sequence (bounded by start and end), split by
where the function predicate returns false for an element.

The structure of sequence is not changed and the elements identified by the predicate are not included in sequences.

If non-nil, the function key is applied to the elements of sequence before predicate is called.

If coalesce-separators is true, then empty sequences are omitted from sequences.

count specifies the maximum number of subsequences returned. The last subsequence consists of all the remaining elements
of sequence.

Examples

(split-sequence-if 'digit-char-p "one1two2three3")

38 The LISPWORKS Package

983

http://www.lispworks.com/documentation/HyperSpec/Body/v_most_p.htm

=>
("one" "two" "three" "")

(split-sequence-if-not 'digit-char-p "one1two2three3")
=>
("" "" "" "1" "" "" "2" "" "" "" "" "3")

See also

split-sequence

start-tty-listener Function

Summary

Starts a listener in the startup shell.

Package

lispworks

Signature

start-tty-listener force => process

Arguments

force⇓ A generalized boolean.

Values

process A listener process, or nil.

Description

The function start-tty-listener returns a process that runs a listener read-eval-print loop connected to
terminal-io.

If force is nil, then start-tty-listener checks whether the default listener process is alive or if there is a live process
with name "TTY Listener". If such a process exists, start-tty-listener simply returns nil and does not start a new
process. If no such process exists, or if force was t, then start-tty-listener starts a new listener process named "TTY
Listener", and returns it.

If a REPL with I/O through *terminal-io* (such as a REPL started by start-tty-listener) is in the debugger, then
by default it blocks multiprocessing. This behavior is controlled by the value of
terminal-debugger-block-multiprocessing.

See also

terminal-debugger-block-multiprocessing

38 The LISPWORKS Package

984

http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

stchar Accessor

Summary

The accessor for simple text strings.

Package

lispworks

Signature

stchar string index => value

setf (stchar string index) value => value

Arguments

string⇓ A simple-text-string.

index⇓ An index.

value The character in string at index.

Values

value The character in string at index.

Description

The accessor stchar accesses the character in string at index. It can only be used when string is a simple-text-string
and can be optimized by the compiler.

See also

simple-text-string

string-append Function

Summary

Constructs a single string from a number of strings.

Package

lispworks

Signature

string-append &rest strings => string

38 The LISPWORKS Package

985

Arguments

strings⇓ Any number of string designators.

Values

string⇓ A string.

Description

The function string-append takes any number of string designators and constructs a single string from them.

Each of the elements of strings is first coerced into a string using the string function if it is not already a string.

string is a string of the "widest" type amongst strings. That is, the constructed string is of the same type as the argument with
the largest element type.

Examples

(readtable-case *readtable*)
=>
:UPCASE

(string-append "foo" 'bar)
=>
"fooBAR"

(type-of
 (string-append
 (coerce "A" 'simple-base-string)
 (coerce "A" 'simple-text-string)
))
=>
SIMPLE-TEXT-STRING

See also

string-append*

string-append* Function

Summary

Constructs a single string from a list of strings.

Package

lispworks

Signature

string-append* strings => string

38 The LISPWORKS Package

986

http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm

Arguments

strings⇓ A list of string designators.

Values

string⇓ A string.

Description

The function string-append* takes a list of string designators and constructs a single string from them.

Each of the elements of strings is first coerced into a string using the function string if it is not already a string.

string is a string of the "widest" type amongst strings. That is, the constructed string is of the same type as the string with the
largest element type amongst those supplied in the argument.

Examples

(readtable-case *readtable*)
=>
:UPCASE

(string-append* '("foo" bar))
=>
"fooBAR"

(type-of
 (string-append*
 (list (coerce "A" 'simple-base-string)
 (coerce "A" 'simple-text-string)
)))
=>
SIMPLE-TEXT-STRING

See also

string-append

structurep Function

Summary

A predicate to check for structure objects.

Package

lispworks

Signature

structurep object => result

38 The LISPWORKS Package

987

http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm

Arguments

object⇓ A Lisp object.

Values

result A generalized boolean.

Description

The function structurep returns true if object is of type structure-object and false otherwise.

Examples

(structurep #(1 2 3)) => nil

Given the definition:

(defstruct my-struct a)

then:

(structurep (make-my-struct)) => t

but metaclasses are not structures so:

(structurep (find-class 'my-struct)) => nil

text-string
simple-text-string Types

Summary

The text string types.

Package

lispworks

Signatures

text-string &optional length

simple-text-string &optional length

Arguments

length⇓ The length of the string (or *, meaning any, which is the default).

Description

Instances of the type text-string are strings that can hold any character, that is, (vector cl:character length). This

38 The LISPWORKS Package

988

http://www.lispworks.com/documentation/HyperSpec/Body/t_stu_ob.htm

is the string type that is guaranteed to always hold any character used in writing text (program text or natural language).

simple-text-string is the simple version of text-string, that is, the string itself is simple. Equivalent to:

(simple-vector cl:character length)

If length is not *, then it constrains the length of the string to that number of elements.

Notes

text-string uses 32 bits per character. Applications that use many strings and are very large, when they know they do not
use the full Unicode range, can consider using base-string (up to 8 bits) or bmp-string (up to 16 bits) to reduce memory
usage.

Compatibility note

In LispWorks 6.1 and earlier versions, text-string uses 16 bits per character.

See also

bmp-string
base-string
text-string-p
26.3 Character and String types

text-string-p
simple-text-string-p Functions

Summary

The predicates for text strings.

Package

lispworks

Signatures

text-string-p object => result

simple-text-string-p object => result

Arguments

object⇓ A Lisp object.

Values

result⇓ A boolean.

Description

The functions text-string-p and simple-text-string-p are the predicates for text strings and simple text strings

38 The LISPWORKS Package

989

respectively.

result is t if object is a text-string (or simple-text-string), and nil otherwise.

See also

text-string
simple-text-string

true Function

Summary

Ignores its arguments and returns t.

Package

lispworks

Signature

true &rest ignore => t

Arguments

ignore⇓ All arguments are ignored.

Description

The function true ignores all its arguments ignore and returns t. It is useful as a functional argument.

See also

do-nothing
false

undefine-action Macro

Summary

Removes an action from a specified list.

Package

lispworks

Signature

undefine-action name-or-list action-name

38 The LISPWORKS Package

990

Arguments

name-or-list⇓ A list or action list object.

action-name⇓ A general lisp object.

Description

The macro undefine-action removes the action specified by action-name from the action list specified by name-or-list. If
the action specified by action-name does not exist, then this is handled according to the value of
handle-missing-action-in-action-list.

name-or-list is evaluated to give either a list UID (to be looked up in the global registry of lists) or an action list object. action
-name is a UID (general lisp object, to be compared by equalp). It uniquely identifies this action within its list (as opposed
to among all lists).

See also

define-action

undefine-action-list Macro

Summary

Removes a given defined action list.

Package

lispworks

Signature

undefine-action-list uid

Arguments

uid⇓ A lisp object.

Description

The macro undefine-action-list flushes the specified list (and all its action-items). If the action-list specified by uid
does not exist, then handling is controlled by the value of the variable *handle-missing-action-list*.

See also

define-action-list

38 The LISPWORKS Package

991

http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm

unicode-alpha-char-p Function

Summary

Returns a value like cl:alpha-char-p, but using specified Unicode rules.

Package

lispworks

Signature

unicode-alpha-char-p char &key style => flag

Arguments

char⇓ A character.

style⇓ A keyword.

Values

flag⇓ A generalized boolean.

Description

The function unicode-alpha-char-p returns flag as true if char is an alphabetic character according to the Unicode rules
specified by style.

The current implementation only supports one style:

:general-category Use the "general category" for char in Unicode 6.3.0.

See also

unicode-alphanumericp
unicode-both-case-p

unicode-alphanumericp Function

Summary

Returns a value like cl:alphanumericp, but using specified Unicode rules.

Package

lispworks

Signature

unicode-alphanumericp char &key style => flag

38 The LISPWORKS Package

992

http://www.lispworks.com/documentation/HyperSpec/Body/f_alpha_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_alphan.htm

Arguments

char⇓ A character.

style⇓ A keyword.

Values

flag⇓ A generalized boolean.

Description

The function unicode-alphanumericp returns flag as true if char is alphanumeric according to the Unicode rules specified
by style.

The current implementation only supports one style:

:general-category Use the "general category" for char in Unicode 6.3.0.

See also

unicode-alpha-char-p
unicode-both-case-p

unicode-both-case-p Function

Summary

Returns a value like cl:both-case-p, but using specified Unicode rules.

Package

lispworks

Signature

unicode-both-case-p char &key style => flag

Arguments

char⇓ A character.

style⇓ A keyword.

Values

flag⇓ A generalized boolean.

Description

The function unicode-both-case-p returns flag as true if char has case according to the Unicode rules specified by style.

The current implementation only supports one style:

38 The LISPWORKS Package

993

http://www.lispworks.com/documentation/HyperSpec/Body/f_upper_.htm

:general-category Use the "general category" for char in Unicode 6.3.0.

Notes

The name of unicode-both-case-p is slightly confusing, because it matches the ANSI Common Lisp definition "a
character with case" whereas there is no guarantee that both cases actually exist. Note also that there are some "alpha" chars
which are not lower or upper case.

See also

unicode-alpha-char-p
unicode-lower-case-p
unicode-upper-case-p

unicode-char-equal
unicode-char-not-equal Functions

Summary

Compares two characters, ignoring case using specified Unicode rules.

Package

lispworks

Signatures

unicode-char-equal char1 char2 &key style => flag

unicode-char-not-equal char1 char2 &key style => flag

Arguments

char1⇓ A character.

char2⇓ A character.

style⇓ A keyword.

Values

flag A generalized boolean.

Description

The function unicode-char-equal returns true if the characters char1 and char2 are equal, and the function
unicode-char-not-equal returns true if the characters char1 and char2 are not equal. Both functions ignore case using
Unicode rules specified by style.

The current implementation only supports one style of comparison:

:simple-case-fold Compares characters using the simple case folding rules in Unicode 6.3.0.

38 The LISPWORKS Package

994

See also

unicode-char-greaterp

unicode-char-greaterp
unicode-char-lessp Functions

Summary

Compares two characters, ignoring case using specified Unicode rules.

Package

lispworks

Signatures

unicode-char-greaterp char1 char2 &key style => flag

unicode-char-lessp char1 char2 &key style => flag

Arguments

char1⇓ A character.

char2⇓ A character.

style⇓ A keyword.

Values

flag A generalized boolean.

Description

The functions unicode-char-greaterp and unicode-char-lessp return true if the character char1 is greater than (or
for unicode-char-lessp, less than) the character char2, similarly to cl:char-greaterp and cl:char-lessp but
ignoring case using Unicode rules specified by style.

The current implementation only supports one style of comparison:

:simple-case-fold Compares characters using the simple lowercase folding rules in Unicode 6.3.0.

See also

unicode-char-equal
unicode-char-not-greaterp

38 The LISPWORKS Package

995

http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm

unicode-char-not-greaterp
unicode-char-not-lessp Functions

Summary

Compares two characters, ignoring case using specified Unicode rules.

Package

lispworks

Signatures

unicode-char-not-greaterp char1 char2 &key style => flag

unicode-char-not-lessp char1 char2 &key style => flag

Arguments

char1⇓ A character.

char2⇓ A character.

style⇓ A keyword.

Values

flag A generalized boolean.

Description

The functions unicode-char-not-greaterp and unicode-char-not-lessp return true if the character char1 is not
greater (or for unicode-char-not-lessp, not less) than the character char2, similarly to cl:char-not-greaterp and
cl:char-not-lessp but ignoring case using Unicode rules specified by style.

The current implementation only supports one style of comparison:

:simple-case-fold Compares characters using the simple lowercase folding rules in Unicode 6.3.0.

See also

unicode-char-equal
unicode-char-greaterp

unicode-lower-case-p Function

Summary

Returns a value like cl:lower-case-p, but using specified Unicode rules.

38 The LISPWORKS Package

996

http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_upper_.htm

Package

lispworks

Signature

unicode-lower-case-p char &key style => flag

Arguments

char⇓ A character.

style⇓ A keyword.

Values

flag⇓ A generalized boolean.

Description

The function unicode-lower-case-p returns flag as true if char is lowercase according to the Unicode rules specified by
style.

The current implementation only supports one style:

:general-category Use the "general category" for char in Unicode 6.3.0.

See also

unicode-both-case-p
unicode-upper-case-p

unicode-string-equal
unicode-string-not-equal Functions

Summary

Compares two strings, ignoring case using specified Unicode rules.

Package

lispworks

Signatures

unicode-string-equal string1 string2 &key start1 end1 start2 end2 style => flag

unicode-string-not-equal string1 string2 &key start1 end1 start2 end2 style => mismatch-index

Arguments

string1⇓ A string designator.

string2⇓ A string designator.

38 The LISPWORKS Package

997

start1⇓, end1⇓ Bounding index designators of string1.

start2⇓, end2⇓ Bounding index designators of string2.

style⇓ A keyword.

Values

flag⇓ A generalized boolean.

mismatch-index⇓ A bounding index of string1 or nil.

Description

The functions unicode-string-equal and unicode-string-not-equal compare the designated substrings of string1
and string2, ignoring case using Unicode rules specified by style. The values of start1 and start2 default to 0, while the
values of end1 and end2 default to nil.

The returned value flag of unicode-string-equal is true if the strings are equal and false otherwise.

The returned value mismatch-index of unicode-string-not-equal is the index where the strings mismatch (as an offset
from the beginning of string1) or nil otherwise.

The current implementation only supports one style of comparison:

:simple-case-fold Compares each character of the strings using the simple case folding rules in Unicode 6.3.0.

See also

choose-unicode-string-hash-function

unicode-string-greaterp
unicode-string-lessp Functions

Summary

Compares two strings, ignoring case using specified Unicode rules.

Package

lispworks

Signatures

unicode-string-greaterp string1 string2 &key start1 end1 start2 end2 style => mismatch-index

unicode-string-lessp string1 string2 &key start1 end1 start2 end2 style => mismatch-index

Arguments

string1⇓ A string designator.

string2⇓ A string designator.

start1⇓, end1⇓ Bounding index designators of string1.

38 The LISPWORKS Package

998

start2⇓, end2⇓ Bounding index designators of string2.

style⇓ A keyword.

Values

mismatch-index⇓ A bounding index of string1 or nil.

Description

The functions unicode-string-greaterp and unicode-string-lessp compare the designated substrings of string1
and string2, similarly to cl:string-greaterp and cl:string-greaterp but ignoring case using Unicode rules
specified by style. The values of start1 and start2 default to 0, while the values of end1 and end2 default to nil.

The value of mismatch-index is the index where the strings mismatch (as an offset from the beginning of string1) if
substring1 is greater (or for unicode-string-lessp, less) than substring2, or nil otherwise.

The current implementation only supports one style of comparison:

:simple-case-fold Compares each character of the string using the simple lowercase folding rules in Unicode 6.3.0.

See also

unicode-string-equal
unicode-string-not-greaterp

unicode-string-not-greaterp
unicode-string-not-lessp Functions

Summary

Compares two strings, ignoring case using specified Unicode rules.

Package

lispworks

Signatures

unicode-string-not-greaterp string1 string2 &key start1 end1 start2 end2 style => mismatch-index

unicode-string-not-lessp string1 string2 &key start1 end1 start2 end2 style => mismatch-index

Arguments

string1⇓ A string designator.

string2⇓ A string designator.

start1⇓, end1⇓ Bounding index designators of string1.

start2⇓, end2⇓ Bounding index designators of string2.

style⇓ A keyword.

38 The LISPWORKS Package

999

http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm

Values

mismatch-index⇓ A bounding index of string1 or nil.

Description

The functions unicode-string-not-greaterp and unicode-string-not-lessp compare the designated substrings
of string1 and string2, similarly to cl:string-not-greaterp and cl:string-not-lessp but ignoring case using
Unicode rules specified by style. The values of start1 and start2 default to 0, while the values of end1 and end2 default to
nil.

The value of mismatch-index is the index where the strings mismatch (as an offset from the beginning of string1) if
substring1 is not greater (or for unicode-string-not-lessp, not less) than substring2, or nil otherwise.

The current implementation only supports one style of comparison:

:simple-case-fold Compares each character of the string using the simple lowercase folding rules in Unicode 6.3.0.

See also

unicode-string-equal
unicode-string-greaterp

unicode-upper-case-p Function

Summary

Returns a value like cl:upper-case-p, but using specified Unicode rules.

Package

lispworks

Signature

unicode-upper-case-p char &key style => flag

Arguments

char⇓ A character.

style⇓ A keyword.

Values

flag⇓ A generalized boolean.

Description

The function unicode-upper-case-p returns flag as true if char is uppercase according to the Unicode rules specified by
style.

The current implementation only supports one style:

38 The LISPWORKS Package

1000

http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_upper_.htm

:general-category Use the "general category" for char in Unicode 6.3.0.

See also

unicode-both-case-p
unicode-lower-case-p

user-preference Accessor

Summary

Gets or sets a persistent value in the user's registry.

Package

lispworks

Signatures

user-preference path value-name &key product => value, valuep

setf (user-preference path value-name &key product) value => value

Arguments

path⇓ A string or a list of strings.

value-name⇓ A string.

product⇓ A keyword.

value⇓ A Lisp object.

Values

value A Lisp object.

valuep A boolean.

Description

The accessor user-preference reads the value of the registry entry value-name under path under the registry path defined
for product by (setf product-registry-path). If the registry entry was found a second value t is returned. If the
registry entry was not found, then value is nil.

The function (setf user-preference) sets the value of that registry entry to value.

If path is a list of strings, then it is interpreted like the directory component of a pathname. If path is a string, then any
directory separators should be appropriate for the platform - that is, use backslash on Windows, and forward slash on non-
Windows systems.

Notes

1. When value is a string, user-preference stores a print-escaped string in the registry and reads it back with
read-from-string. Therefore it may not work with string values stored by other software.

38 The LISPWORKS Package

1001

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_fro.htm

2. While product can in principle be any Lisp object, values of product are compared by eq, so you should use keywords.

3. The CAPI provides a way to store window geometry - see the reference entry for
capi:top-level-interface-save-geometry-p in the CAPI User Guide and Reference Manual.

Examples

This example is on Microsoft Windows. Note the use of backslashes as directory separators in path:

(setf (user-preference "My Stuff\\FAQ"
 "Ultimate Answer"
 :product :deep-thought)
 42)
=>
42

This is equivalent to the previous example, and is portable because we avoid the explicit directory separators in path:

(setf (user-preference (list "My Stuff" "FAQ")
 "Ultimate Answer"
 :product :deep-thought)
 42)
=>
42

We can retrieve values on Windows like this:

(user-preference "My Stuff\\FAQ"
 "Ultimate Answer"
 :product :deep-thought)
=>
42
t

We can retrieve values on any platform like this:

(user-preference (list "My Stuff" "FAQ")
 "Ultimate Question"
 :product :deep-thought)
=>
nil
nil

See also

remove-user-preference
copy-preferences-from-older-version
product-registry-path

when-let
when-let*
if-let Macros

38 The LISPWORKS Package

1002

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm

Summary

Executes a body of code if a form or series of forms evaluate to non-nil, making the result of the form(s) available in the body
of code.

Package

lispworks

Signatures

when-let (var form) &body body => result*

when-let* bindings &body body => result*

if-let (var form) then-form &optional else-form => result*

bindings ::= ((var form)*)

Arguments

var⇓ A symbol.

form⇓ A form.

body⇓ A body of code to be evaluated conditionally on the result of form.

then-form⇓, else-form⇓
Forms.

Values

result* The results of evaluating body, then-form or else-form (see below).

Description

The macro when-let first evaluates form. If form returns non-nil, then var is bound to this value, the forms of body are
evaluated sequentially and the values of the final form of body are returned. Otherwise nil is returned.

The macro when-let* expands into nested when-let forms. The bindings are evaluated in turn as long as each form
returns non-nil. If the last form also evaluates to non-nil, the forms of body are evaluated sequentially. Each variable var is
bound to the result of the corresponding form form while evaluating the next binding and all variables are bound while
evaluating body. If body is evaluated then the values of its final form are returned. Otherwise nil is returned.

The macro if-let first evaluates form. If form returns non-nil then var is bound to the value of form and the values returned
by evaluating then-form are returned. Otherwise the values of returned by evaluating else-form are returned.

Examples

The form:

(when-let (position (search string1 string2))
 (print position))

is equivalent to:

(let ((position (search string1 string2)))
 (when position

38 The LISPWORKS Package

1003

 (print position)))

This example uses the when-let* macro:

(defmacro divisible (n &rest divisors)
 `(when-let* ,(loop for div in divisors
 collect (list (gensym)
 (zerop (mod n div))))
 t))

See also

when
if
let
let*

whitespace-char-p Function

Summary

Tests whether a character represents white space.

Package

lispworks

Signature

whitespace-char-p char => result

Arguments

char⇓ A character.

Values

result⇓ A boolean.

Description

The function whitespace-char-p is a predicate for [whitespace1], as described in the definition of whitespace n.1. in
the Common Lisp HyperSpec.

result is t if char represents white space, and nil otherwise.

If the value of *extended-spaces* is t, then U+3000 Ideographic Space is also considered whitespace.

See also

extended-spaces

38 The LISPWORKS Package

1004

http://www.lispworks.com/documentation/HyperSpec/Body/m_when_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_if.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_let_l.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_let_l.htm
http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_w.htm#whitespace

with-action-item-error-handling Macro

Summary

Executes a body of code across action lists and items, signaling errors and then continuing to the next action item.

Package

lispworks

Signature

with-action-item-error-handling action-list-var action-item-var ignore-errors-p &body body

Arguments

action-list-var⇓ A variable.

action-item-var⇓ A variable.

ignore-errors-p⇓ A boolean.

body⇓ A body of Lisp code.

Description

The macro with-action-item-error-handling executes body with action-list-var and action-item-var are bound to the
action list and item respectively. If ignore-errors-p is set to t then errors are handled. The behavior of the handler is to signal
a warning in which the action-list, item and original error are all reported; execution then continues with the next action-
item.

Examples

(defun my-execution-function (the-action-list
 other-args
 &key ignore-errors-p
 &allow-other-keys)
 (with-action-list-mapping (the-action-list
 an-action-item
 action-item-data)
 (with-action-item-error-handling (the-action-list
 an-action-item
 ignore-errors-p)
 (do-something-interesting-first)
 (apply (car action-item-data) other-args (cdr action-item-data)))))

If this function was invoked with the keyword argument :ignore-errors-p t, and an error was signaled while executing
the body-form(s) for one of the action-items, then a warning such as:

Warning: Got an error 'The variable *PREV-STATE* is
unbound.' while executing action "Initialize State" in list "Startup Inits".

would be signaled and execution would continue with the next action-item.

38 The LISPWORKS Package

1005

See also

handle-missing-action-in-action-list

with-action-list-mapping Macro

Summary

Maps over an action list's actions with given variables bound to the executing action and its data.

Package

lispworks

Signature

with-action-list-mapping (action-list item-var data-var &optional post-process) &body body

Arguments

action-list⇓ An action list.

item-var⇓ A Lisp symbol.

data-var⇓ A Lisp symbol.

post-process⇓ A keyword.

body⇓ A body of Lisp code.

Description

The macro with-action-list-mapping evaluates body for every action-item of action-list. During evaluation of body,
the symbols specified for item-var and data-var are bound to the executing action-item and its data respectively. See
execute-actions for more on post-processing.

If post-process is :collect, then a list the values returned by each action-item's setf operation are returned.

Examples

(defun my-execution-function
 (the-action-list other-args
 &key (post-process nil)
 &allow-other-keys)
 (declare (ignore other-args))
 (with-action-list-mapping (the-action-list
 an-action-item
 action-item-data
 post-process)
 (do-something-interesting-first)
 (setf (symbol-value (car action-item-data))
 (apply (cadr action-item-data)
 (cddr action-item-data)))))

See also

execute-actions

38 The LISPWORKS Package

1006

with-unique-names Macro

Summary

Returns a body of code with each specified name bound to a similar name.

Package

lispworks

Signature

with-unique-names (&rest names) &body body => result

Arguments

names⇓ The names to be rebound in body.

body⇓ The body of code within which names are rebound.

Values

result The result of evaluating body.

Description

The macro with-unique-names returns body with each name in names bound to a symbol of a similar name (compare
gensym).

Examples

After defining:

(defmacro lister (p q)
 (with-unique-names (x y)
 `(let ((,x (x-function))
 (,y (y-function)))
 (list ,p ,q ,x ,y))))

the form (lister i j) macroexpands to:

(LET* ((#:X-88 (X-FUNCTION))
 (#:Y-89 (Y-FUNCTION)))
 (LIST i j #:X-88 #:Y-89))

See also

rebinding

38 The LISPWORKS Package

1007

http://www.lispworks.com/documentation/HyperSpec/Body/f_gensym.htm

39 The LW-JI Package

This chapter describes symbols available in the LW-JI package, the LispWorks Java interface.

The uses of these symbols are discussed in 15 Java interface.

call-java-method Function

Summary

Call a Java method.

Package

lw-ji

Signature

call-java-method full-method-name &rest args => result-of-java-method

Arguments

full-method-name⇓ A string.

args⇓ Lisp objects.

Values

result-of-java-method The result of calling the Java method full-method-name.

Description

The function call-java-method calls a Java method on the supplied args.

full-method-name must specify the full name of the Java method to call, including the package, class and method name, for
example "java.io.File.exists". call-java-method first uses the string to lookup a caller, and if that fails it
produces a caller in the same way that define-java-caller and setup-java-caller do and caches it. It then uses the
caller to call the Java method with args, and returns the result.

The process of actually calling is the same as in ordinary Java callers defined by define-java-caller. See the
documentation for define-java-caller for details.

If full-method-name is incorrect (does not have class and method name, class cannot be found or method cannot be found),
call-java-method signals an error of type call-java-method-error, which reports the actual failure.

call-java-method may call either static or non-static Java methods. If it finds both a static and a non-static method that
match full-method-name and the argument types, then it calls the non-static method. Use jobject-call-method or
call-java-static-method to enforce calling non-static or static methods.

1008

Notes

call-java-method needs to look up the caller using the string, so the call is slightly slower than calls for ordinary Java
callers, but the difference is not significant. There is also no way to verify that the string is correct. It also has to keep some
extra code that can be shaken out if only define-java-caller is used, but not much. If you find it convenient, there is no
reason not to use it.

See also

define-java-caller
call-java-method-error
jobject-call-method
call-java-static-method
call-java-non-virtual-method
15.3.3 Defining specific callers

call-java-method-error Condition Class

Summary

call-java-method failed to find the method.

Package

lw-ji

Superclasses

java-interface-error

Description

Instances of the condition class call-java-method-error are signaled when call-java-method or
call-java-static-method failed to find the method.

See also

call-java-method

call-java-non-virtual-method Function

Summary

Call a Java method.

Package

lw-ji

Signature

call-java-non-virtual-method full-method-name &rest args => result-of-java-method

39 The LW-JI Package

1009

Arguments

full-method-name⇓ A string.

args⇓ Lisp objects.

Values

result-of-java-method The result of calling the Java method full-method-name.

Description

The function call-java-non-virtual-method is the same as call-java-method, except that the call is non-virtual
and it looks only for ordiary methods (that is ignoring static method). That has the same effect as using :non-virtual-p t

in define-java-caller. Note that this is not normal Java behaviour, and may lead to surprising effects.

See call-java-method for a description of how full-method-name and args are used.

See also

define-java-caller
call-java-method
15.3.3 Defining specific callers

call-java-static-method Function

Summary

Call a Java static method.

Package

lw-ji

Signature

call-java-static-method full-method-name &rest args => result-of-java-method

Arguments

full-method-name⇓ A string.

args⇓ Lisp objects.

Values

result-of-java-method The result of calling the Java method full-method-name.

Description

The function call-java-static-method calls a Java static method named full-method-name with the supplied args.

full-method-name must specify the full name of the Java method to call, including the package, class and method name, for
example "java.lang.Array.sort". call-java-static-method first uses the string to lookup a caller, and if that fails

39 The LW-JI Package

1010

it produces a caller in the same way that define-java-caller and setup-java-caller with :static-p t do and
caches it. It then uses the caller to call the Java method with args, and returns the result.

The process of actually calling is the same as in ordinary Java callers defined by define-java-caller with
:static-p t. See the documentation for define-java-caller for details.

If full-method-name is incorrect (does not have class and method name, class cannot be found or static method cannot be
found), call-java-static-method signals an error of type call-java-method-error, which reports the actual
failure.

Notes

call-java-static-method is new in LispWorks 8.0. Previous versions had only call-java-method, which may call
either static or non-static methods. call-java-static-method is guaranteed to call only static methods, and is therefore
a better match the the calls from Java code.

To call non-static method only, use jobject-call-method.

call-java-static-method needs to look up the caller using the string, so the call is slightly slower than calls for
ordinary Java callers, but the difference is not significant. There is also no way to verify that the string is correct. It also has
to keep some extra code that can be shaken out if only define-java-caller is used, but not much. If you find it
convenient, there is no reason not to use it.

See also

define-java-caller
call-java-method
jobject-call-method
call-java-method-error
15.3.3 Defining specific callers

catching-java-exceptions
catching-exceptions-bind Macros

Summary

Execute Lisp code with a catch for Java exceptions.

Package

lw-ji

Signatures

catching-java-exceptions &body body

catching-exceptions-bind (result exception) form &body body

Arguments

body⇓ Lisp code.

result⇓ A variable.

exception⇓ A variable.

39 The LW-JI Package

1011

form⇓ A Lisp form.

Description

The macro catching-java-exceptions executes body with a catch for Java exceptions. The code of body is executed
normally, and if no Java exception is signaled through the execution, returns whatever body returns. If there is an exception,
instead of signaling an error of class java-exception, catching-java-exceptions returns two values: nil and the
Java exception object (analogous to cl:ignore-errors).

The macro catching-exceptions-bind executes form and binds result and exception to the first two return values if there
was no exception. If there was an exception they are bound to nil and the exception. It then executes the code of body
within the scope of the bind. catching-exceptions-bind is equivalent to:

(multiple-value-bind (result exception)
 (catching-java-exceptions form)
 body)

Notes

1. jobject-string, jobject-class-name and jobject-of-class-p are useful general utilities for deciding what
to do with the exception. For find-grained handling, you will need to access the exception using your own callers or
call-java-method when applicable.

2. These macros have no effect on signaling and handling of other errors in Lisp, except that they prevent Java exceptions
from being signaled as errors.

3. Some exceptions can happen during normal execution and handled by the system in a user-invisible way (analogous to
the way that try in Java code does). These macros do not affect the behavior for these cases, so even though when
running under a Java debugger you may see an exception, it will not necessarily be visible with these macros.

4. In general, these macros are less useful in high-level code, because they cause exceptions to throw out, preventing them
from being signaled as Lisp errors and handled by error handler in the scope of body (for
catching-java-exceptions) or form (for catching-exceptions-bind). They should normally be used in low-
level code that actually does Java calls, with any Lisp error handlers wrapped around them.

5. For simple handling of exceptions you can use standard handlers (cl:handler-case, cl:handler-bind), for
java-exception and its subclasses.

See also

jobject-string
jobject-class-name
jobject-of-class-p

check-lisp-calls-initialized Function

Summary

Tests whether calls from Java into Lisp can work.

Package

lw-ji

39 The LW-JI Package

1012

http://www.lispworks.com/documentation/HyperSpec/Body/m_ignore.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_hand_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_handle.htm

Signature

check-lisp-calls-initialized => result

Values

result A boolean.

Description

The function check-lisp-calls-initialized returns t if Lisp calls have been initialized successfully, which means
that calls from Java into Lisp can work.

The main factor that may affect successful initialization of Lisp calls is the availability of the class
com.lispworks.LispCalls, which comes from LispWorks and will not be available if you do not make it available to the
Java Virtual Machine in some way.

Notes

On Android the LispCalls class is available because it is in the lispworks.aar file that must be included in the
application.

See also

15.4 Calling from Java to Lisp

create-instance-from-jobject Function

Summary

Create a CLOS instance based on a jobject.

Package

lw-ji

Signature

create-instance-from-jobject jobject &optional errorp => instance

Arguments

jobject⇓ A jobject.

errorp⇓ A generalized boolean.

Values

instance A CLOS object.

Description

The function create-instance-from-jobject creates a CLOS instance based on the jobject jobject.

39 The LW-JI Package

1013

jobject must be a jobject. Its class name (that is, the result of jobject-class-name) must have been associated with the
name of a CLOS subclass of standard-java-object using record-java-class-lisp-symbol (the importing
interface, when defining a class, does it automatically).

create-instance-from-jobject uses the record to find the class, and makes the CLOS instance by calling
make-instance, passing it jobject.

The result is an instance of the CLOS class, which can be passed to Java interface functions and Java methods.

If create-instance-from-jobject fails to find the CLOS class it signals an error if errorp is non-nil, otherwise it
returns nil. The default value of errorp is true.

See also

record-java-class-lisp-symbol
15.8 CLOS partial integration

create-instance-jobject-list
create-instance-jobject Functions

Summary

Construct a jobject for a CLOS instance.

Package

lw-ji

Signatures

create-instance-jobject-list instance args => jobject

create-instance-jobject instance &rest args

Arguments

instance⇓ An instance of a subclass of standard-java-object.

args⇓ A list or t.

Values

jobject A jobject.

Description

The functions create-instance-jobject-list and create-instance-jobject construct a jobject for the CLOS
instance instance and set its slot to that jobject.

The type of instance (that is, the class name of its class) must have been associated with a Java constructor by passing it as
the class-symbol argument to define-java-constructor or setup-java-constructor.

create-instance-jobject just calls create-instance-jobject-list with instance and args.

create-instance-jobject-list constructs the jobject using args. args can be either the list of arguments for the

39 The LW-JI Package

1014

constructor (the list may be nil), or t, in which case create-instance-jobject-list uses
default-constructor-arguments to create a list of arguments and uses it instead. The Java constructor is called in the
same way that it would be called by the caller that is defined by define-java-constructor. See
define-java-constructor for details of calling. The result of the construction is stored in instance and is returned.

Notes

1. The importing interface, when defining a class, automatically generates the define-java-constructor form passing
it the class-symbol argument. define-java-constructor also defines a caller for the constructor, which can be used
independently. create-instance-jobject-list and create-instance-jobject do not actually call it, but
share information with it.

2. create-instance-jobject-list and create-instance-jobject ignore the current jobject in instance, if
there is one. There is no problem calling create-instance-jobject-list and create-instance-jobject

repeatedly on the same instance.

See also

define-java-constructor

create-java-object Function

Summary

Invoke the Java constructor.

Package

lw-ji

Signature

create-java-object class-name &rest args => result

Arguments

class-name⇓ A string.

args⇓ Lisp objects.

Values

result A Java object.

Description

The function create-java-object invokes the Java constructor for the class class-name with the supplied args.

class-name must specify a Java class. create-java-object first uses class-name to lookup a caller, and if that fails it
produces a caller in the same way that define-java-constructor and setup-java-constructor do and caches it. It
then uses the caller to call the constructor with args, and returns the result.

The process of actual calling is the same as in ordinary Java callers defined by define-java-constructor. See the
documentation for define-java-constructor for details.

39 The LW-JI Package

1015

If the string is incorrect (that is, it does not look like a Java class name or the class cannot be found), create-java-object
signals an error of type create-java-object-error, which reports the actual failure.

Notes

create-java-object needs to lookup the caller using the string, so the call is slightly slower than calls for ordinary Java
constructors, but the different is not significant. It also has to keep some extra code that can be shaken out if only
define-java-constructor is used, but not much. If you find it convenient, there is no reason not to use it.

See also

define-java-constructor

create-java-object-error Condition Class

Summary

create-java-object failed to find constructors.

Package

lw-ji

Superclasses

java-interface-error

Description

Instances of the condition class create-java-object-error are signaled when create-java-object failed to find
constructors.

See also

create-java-object

default-constructor-arguments Generic Function

Summary

Returns a default list of arguments to pass to the constructor.

Package

lw-ji

Signature

default-constructor-arguments instance => list

39 The LW-JI Package

1016

Method signatures

default-constructor-arguments (instance standard-java-object)

Arguments

instance⇓ An instance of a subclass of standard-java-object.

Values

list A list.

Description

The generic function default-constructor-arguments returns a default list of arguments to pass to the jobject
constructor for the CLOS instance instance.

It is called by create-instance-jobject-list when its args argument is t. default-constructor-arguments is
also called by the cl:initialize-instance method of standard-java-object when :construct is passed with
value t. It is intended for you to specialize on your own classes.

The default method (on standard-java-object) returns nil, which is sometimes useful, but in most cases you probably
need to pass some arguments to the constructor.

See also

create-instance-jobject-list

default-name-constructor Function

Summary

The default name-constructor used by the importing interface.

Package

lw-ji

Signature

default-name-constructor prefix method-or-field-name => symbol-name

Arguments

prefix⇓ A string.

method-or-field-name⇓ A string.

Values

symbol-name A string.

39 The LW-JI Package

1017

http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm

Description

The function default-name-constructor is the default name-constructor used by the importing interface. See
generate-java-class-definitions for a description of what it does and how prefix and method-or-field-name are
used.

define-field-accessor Macro

Summary

Defines a Java field accessor.

Package

lw-ji

Signature

define-field-accessor name class-name field-name static-p &optional is-final => name

Arguments

name⇓ A symbol.

class-name⇓ A string.

field-name⇓ A string.

static-p⇓ A boolean.

is-final⇓ A boolean.

Values

name A symbol.

Description

The macro define-field-accessor defines a field accessor for a field in a Java class.

name, class-name, field-name, static-p and is-final are interpreted as for setup-field-accessor.

Unlike setup-field-accessor, define-field-accessor does not look up anything. The accessor does the look up
first time it is called, and signals an error if something failed. This error should be of type:

java-class-error Failed to find the class.

java-field-error Failed to find the field, or found the field but wrong static-p value.

field-access-exception

Got an exception trying to access the field.

Notes

39 The LW-JI Package

1018

1. In general, accessing fields should be avoided, because they are typically a less well-defined and implemented interface
than methods, but sometimes it is necessary.

2. The importing interface generates appropriate define-field-accessor forms for public fields.

See also

setup-field-accessor

define-java-caller
define-java-constructor Macros

Summary

Define a Java caller, which is a function that calls a Java method or a constructor.

Package

lw-ji

Signatures

define-java-caller name class-name method-name &key signatures static-p return-jobject non-virtual-p => result

define-java-constructor name class-name &key class-symbol signatures => result

Arguments

name⇓ A symbol.

class-name⇓ A string.

method-name⇓ A string.

signatures⇓ A list of strings.

static-p⇓ t, nil or :either (the default).

return-jobject⇓ A boolean, default nil.

non-virtual-p⇓ A boolean. default nil.

class-symbol⇓ A symbol.

Values

result name or nil.

Description

The macros define-java-caller and define-java-constructor define a Java caller, which is a function that calls a
Java method or a constructor. Once this the caller is defined, calls to name ultimately invoke a Java method or constructor.

class-name must be the full name of a Java class, in the correct case. The '.' in the name may be replaced by '/'.

method-name must be a public method name of the class, with the correct case.

39 The LW-JI Package

1019

signatures is used for documentation only. If non-nil, it should be a list of strings, where each string is a signature of the Java
method. LispWorks creates a documentation string from the list and sets the documentation of name, so that
(documentation name 'function) returns it. LispWorks does not parse the strings. signatures is used by the importing
interface (see 15.3.2 Importing classes) to document the definitions it produces.

static-p tells define-java-caller whether it should look for static or non-static methods. If static-p is :either, it tries
both. If a call to name with some arguments matches both a static and a non-static method, an error of type
java-program-error is signaled. If static-p is t, define-java-caller looks only for static methods, and if static-p is
nil, define-java-caller looks only for non-static methods.

By default, when the method is an ordinary method (not static and not constructor), the invocation is virtual (normal Java
behavior), which means that if the class of the first argument is a subclass of class-name, then it may invoke a method that is
defined in a subclass of class-name. If non-virtual-p is non-nil, it makes the call non-virtual. Note that this is not normal Java
behaviour, and may lead to surprising effects. non-virtual-p was added in LispWorks 8.0. When non-virtual-p is non-nil, it
makes the caller look only for ordinary methods. If non-virtual-p is non-nil and static-p is t, an error is invoked.

If the return value type is a primitive type, the caller converts the result of the method to the matching Lisp type before
returning it. For method signature return types other than java.lang.String and java.lang.Object, the caller returns
a jobject representing the Java object, or nil if the method returned null. Constructors always return jobjects.

return-jobject controls the returned value when the method signature return value type is java.lang.String or
java.lang.Object. With the default nil, return value java.lang.String is converted to a Lisp string, and return value
java.lang.Object is converted to Lisp value when possible (see 15.2 Types and conversion between Lisp and Java). If
return-jobject is non-nil, all non-primitive values are returned as jobjects. For any other non-primitive return values in the
method signature, a jobject is always returned. Note that name may call different methods with different return value types
when called with different arguments.

class-symbol, when it is non-nil, must name a class. It creates a mapping from the class to the constructor info, which allow
functions like make-java-instance and create-instance-jobject to construct a jobject for an instance of the
class named by class-symbol.

The effect of these macros is to set the symbol function of name to a function (the caller) that calls a method in the class or a
constructor of the class. Before performing the first call, the caller looks up and caches all the methods that are defined for
class-name and are named method-name, including inherited methods. When it finds more then one method, the caller
decides dynamically in each call which of these methods to call, based on the arguments it gets.

For a successful call to name, it needs to be called with the correct arguments for the Java method. For an ordinary method,
this must include the object on which the method should be applied, followed by the arguments of the method. For static
methods and constructors, the arguments to name are just the arguments to the method/constructor.

For arguments of primitive type or a matching Java class (for example Integer), the Lisp argument must be either a Lisp
object of matching type (see 15.2 Types and conversion between Lisp and Java), or a jobject of the corresponding Java
class. For strings (that is argument type java.lang.String) the argument must be a string, nil, or a jobject of type
java.lang.String. For other non-primitive types, the argument must be a jobject of the correct class or nil. nil is
passed as Java null for non-primitive types.

When the called method is an ordinary method (not static and not constructor), the invocation is virtual (normal Java
behavior), which means that if the object's class is of a subclass of class-name, it may invoke a method that is defined in a
subclass of class-name.

Unlike the functions setup-java-caller and setup-java-constructor, the macros define-java-caller and
define-java-constructor do not do any actual lookup, they just set up the symbol function and therefore they do not
require running Java to perform the definition. They are also recognized by the LispWorks Editor as definer forms, so source
finders like the Editor command Find Source can locate them. These macros are intended as the main method of defining
callers. They are produced by the importing interface to actually define the callers.

For callers defined by these macros, the actual lookup happens the first time the caller is invoked, or for

39 The LW-JI Package

1020

http://www.lispworks.com/documentation/HyperSpec/Body/a_null.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_null.htm

define-java-caller by verify-java-caller or verify-java-callers. If the lookup fails during the function call,
an error is signaled of type java-class-error (when the class cannot be found) or java-method-error (when no
method can be found).

The macros (when successful) return name.

Notes

1. There is no difference in performance between callers defined by these macros and callers defined by
setup-java-caller and setup-java-constructor. If you use setup-java-caller and
setup-java-constructor in a delivered application then extra machinery is retained.

2. If you need several define-java-caller forms with the same class, consider using define-java-callers.

3. If you need many define-java-caller forms with the same class, you may want to use the importing interface. Even
if you want to define your own names for the callers, you can either pass name-constructor to the import function, or
use write-java-class-definitions-to-file and edit the definitions that it generated (which saves typing the
method names).

4. For methods it is possible to use verify-java-callers or verify-java-caller at run time to check that the
methods are found, which is a way of guarding against typing errors in entering the method name.

5. There is no restriction on defining more than one caller for the same method or constructor.

6. Unlike for setup-java-caller and setup-java-constructor, name is not evaluated.

See also

setup-java-caller
define-java-callers
write-java-class-definitions-to-file
import-java-class-definitions
verify-java-callers
verify-java-caller
jobject-call-method
call-java-method
call-java-static-method
call-java-non-virtual-method
15.3.3 Defining specific callers

define-java-callers Macro

Summary

Define multiple Java callers for methods in the same class.

Package

lw-ji

Signature

define-java-callers class-name &body method-specs => class-name

39 The LW-JI Package

1021

Arguments

class-name⇓ A string.

method-specs⇓ Lists.

Values

class-name A string.

Description

The macro define-java-callers defines multiple Java callers for methods in the same class.

class-name must specify a Java class by its full name.

Each item of method-specs must be a list where the first element is a symbol (the Java caller name), the second element is a
string (the method name) and optionally followed by keyword/value pairs for define-java-caller.
define-java-callers processes each item by inserting class-name after the Java caller name, and then using the result as
the arguments to define-java-caller:

(define-java-callers class-name
 (caller-name1 method-name1)
 (caller-name2 method-name2))
=>
(progn
 (define-java-caller caller-name1 class-name method-name1)
 (define-java-caller caller-name2 class-name method-name2)
 class-name)

define-java-callers is a more compact way to write several methods for the same class, but functionally it is identical
to using define-java-caller explicitly.

define-java-callers returns class-name.

See also

define-java-caller

define-lisp-proxy Macro

Summary

Defines a Lisp proxy.

Package

lw-ji

Signature

define-lisp-proxy name &body interface-and-method-descs => name

39 The LW-JI Package

1022

Arguments

name⇓ A non-nil symbol.

interface-and-method-descs⇓
A body of Lisp code.

Values

name A non-nil symbol.

Description

The macro define-lisp-proxy defines a Lisp proxy, which means creating a Lisp proxy definition and attaching it to
name, which can then be used to create Lisp proxies, which are Java proxies where methods invocation ends up calling Lisp
functions.

define-lisp-proxy parses interface-and-method-descs to a proxy definition, and attaches it to name. This operation is a
"load-time" operation: it does not require running Java, and does not create any proxy. The name can then be used at run
time as argument to make-lisp-proxy or make-lisp-proxy-with-overrides, or to the Java method
com.lispworks.LispCalls.createLispProxy. The result of any these calls is a proxy that implements the interfaces
listed in interface-and-method-descs, and can be used in Java whenever an object that implements any of these interfaces is
required.

interface-and-method-descs describes the Java interfaces to implement and the Lisp functions to call. It is parsed as a body of
Lisp forms.

Each element in the list must be either a string which is the Java interface name, or a list where the cl:car is the Java
interface name. Each item specifies a Java interface to implement, except that one item (at most) may specify options relating
to the whole proxy definition, by using a list starting with the keyword :options instead of giving an interface name.

When the item is a list starting with an interface name, the rest of the list are method specifications. Note that you do not
need to have a method specification for each method of the interface.

Each method specification must be a list, where the first element is a string with the name of the Java method, and the second
element is the symbol specifying what Lisp function to call for this method. The symbol specifies the function to call except
when it is overridden (see below about "Overriding"). In some cases, you will want to always override the function to call
(typically when you want to use a closure as the function), in which case the symbol can be and should be a keyword (which
is ignored by the verifying functions), but does not have to be. See below for how the calling of the Lisp function is done.

The rest of the method specification can contain keyword/value pairs. Currently, the only supported keyword is
:with-user-data, which takes a boolean value, overrides the default value of :with-user-data of the proxy definition.
The default of :with-user-data of the definition defaults to nil, and can be changed in the :options. The value of
:with-user-data specifies whether to pass the user-data of a proxy to the Lisp function.

The :options item is specified by an item in interface-and-method-descs where the cl:car is the keyword :options. The
rest of the item is keyword/value pairs. The keywords currently supported are:

:default-function Specifies the default function to call for methods which do not have a Lisp function. This
function is applied to the arguments of the method preceded by the method-name, and if
:default-function-with-user-data is non-nil also with user-data preceding the method-
name.

The default function can be overridden by make-lisp-proxy and
make-lisp-proxy-with-overrides.

:default-function-with-user-data

39 The LW-JI Package

1023

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

A boolean specifying whether the user-data of a proxy should be passed when the default
function is called. When it is non-nil, the user-data is passed as the first argument to the default-
function (or the function that overrides it). The default value of
:default-function-with-user-data is nil.

:with-user-data A boolean specifying whether the default for calling functions in the proxy definition is with user
-data or not. Each method description can override it as described above. The default value of
:with-user-data is nil.

:print-name Must be a string or a symbol. Specifies the first part of the print-name of each proxy.

:jobject-scope One of :global, :local or nil. This controls the scope of jobject arguments (that is,
arguments that are not of primitive type or string). With the default value :global, jobjects
are passed as global jobjects and can be used indefinitely. When :jobject-scope is
:local, jobjects are passed as a local jobject, which means that they must not be used
outside the scope of the function that is invoked by the proxy. Using a local jobject out of
scope can cause the system to crash (rather than call cl:error). When :jobject-scope is
nil, jobjects are not passed at all to the functions. Note that means that the number of
arguments that the functions in the proxy receive is different when :jobject-scope is nil,
because only arguments of primitive type or strings are passed.

If you use :jobject-scope :local, the function can convert it to global using
jobject-ensure-global, and then it can be used out of scope.

The default value of :jobject-scope is :global.

user-data

The user-data is set up for each individual proxy object by make-lisp-proxy or make-lisp-proxy-with-overrides,
and thus allows you to associate each individual proxy with an arbitrary Lisp object. The proxy definition determines whether
to use it when calling the Lisp functions in the proxy definition. The default value of user-data is nil, so if you want to use
it you need to specify it by using :with-user-data, either in the :options which would give the default value for all calls
in the definition, or in individual method specifications. When user-data is passed, it is always passed to the Lisp function as
the first argument. Another way to individualize proxies is to use overriding, which also allows you to use closures.

Overriding

When make-lisp-proxy or make-lisp-proxy-with-overrides make a proxy, they can specify overriding of some of
the symbols in the proxy definition. Overriding here means mapping one symbol to to another symbol or a function object.
When a symbol is supposed to be called and it is overridden, the target of the mapping is called rather than the symbol. Note
that the overriding is specific to each individual proxy rather to the proxy definition, and therefore you can have different
proxies using the same proxy definition (and hence implementing the same interfaces), but calling different Lisp functions.
An advantage of overriding is that it allows you to use closures created at run time instead of symbols.

See the documentation for make-lisp-proxy for how the overriding is created.

Calling the Lisp function

After a proxy is created from a proxy definition, any invocation of a Java method on it (except the Object methods
toString, equals and hashCode) enters Lisp.

When a method is invoked on a proxy (normally from Java, but can be done from Lisp too), the steps for invoking your Lisp
function are:

39 The LW-JI Package

1024

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

1. Check whether the item in interface-and-method-descs for the interface of the method contains a method specification
with the method-name of the method.

2. Convert the Java method arguments to Lisp arguments where possible. See 15.2 Types and conversion between Lisp
and Java.

Note that that if the first step above found a method specification, and it contains the keyword :jobject-scope, it
affects the way non-primitive arguments are processed as described above.

3. Calling the user code:

(i) If a method specification was found in the first step above:

(a) Take the symbol from the method specification, then:

(b) Check whether the symbol is overridden, and if it is use the target as a function to call. Otherwise, check whether the
symbol is fbound, and if it is use it as a function to call, then:

(c) If as a result of (b) there is a function to call, check whether it should be called with the user-data. If
:with-user-data was used in the method specification then use its value, otherwise if :with-user-data was used
in :options item use this value, otherwise default to nil, then:

(d) Apply the function: if using user-data, apply the function to the user-data followed by the Lisp arguments, otherwise
apply the function to the Lisp arguments only.

(ii) If the method-specific call in (i) did not happen (no method specification found, or the symbol is not fbound and not
overridden), try to apply the default function:

(a) If there is a default function, check whether it is overridden and if so use the target as the function to call. Otherwise
use the default-function itself as the function to call, then:

(b) Check whether need to pass user-data, which is specified by the :default-function-with-user-data in the
:options item, then:

(c) Apply the function: if user-data needs to be used, apply the function to the user-data, method-name and the Lisp
arguments. Otherwise apply the function to the method-name and Lisp arguments.

(iii) If the calls in (i) and (ii) did not happen, an error is signaled. See handling of errors below.

4. Return a value: currently, if the user function returned a Java object (a jobject or an instance of
standard-java-object), it is returned without checking. Otherwise, try to convert it to the appropriate Java object
and return it. Otherwise, report it by calling the java-to-lisp-debugger-hook (see init-java-interface) with a
cl:simple-error condition and return a default value from the Java method invocation, which is 0 for primitive types
or null for other types.

Throwing out and error handling

The call to the Lisp function is wrapped dynamically such that any throw from it is blocked, and the default value as in the
last step above is returned.

In addition, there is a debugger wrapper (using with-debugger-wrapper) which calls the java-to-lisp-debugger-hook (see
init-java-interface) with the condition and then calls cl:abort. If this abort is not caught by your cl:abort restart,
it is handled by the "throwing blocker" from the previous paragraph, that is the Java method returns 0 or null.

Verification

The verification functions verify-lisp-proxies and verify-lisp-proxy are provided to allow you to do some
checking of the correctness of your proxy definition. Two things can be verified:

39 The LW-JI Package

1025

http://www.lispworks.com/documentation/HyperSpec/Body/e_smp_er.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_null.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_abort.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_abort.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_null.htm

• That the symbols to be called in the proxy definition are fbound. In principle this check could happen at load-time, but
that would enforce defining the functions before the proxy. The verification allows you to define the proxies and
functions in any order, and then verify all the definitions, for example just before delivery.

• Check that all methods that are declared in the Java interfaces have a method-desc, and report those that do not. This
requires running Java.

Note that neither of these issues is actually an error, because the default function can handle them. However it is useful to
check them in case you did miss something.

Performance issues

There is a little overhead associated with using setup-lisp-proxy as opposed to define-lisp-proxy, both in the size
of the delivered application (very small) and in run time, but the difference is not large enough to prevent using
setup-lisp-proxy when it is appropriate.

There is an overhead associated with initializing a proxy definition. It is therefore a bad idea to use setup-lisp-proxy
many times.

Overrides and using multiple interfaces add a negligible overhead.

:jobject-scope with nil or :local are useful optimizations. In proxies that are invoked infrequently, say less than 10
times each second, the difference is probably insignificant, but it is useful for proxies that are called repeatedly by Java code.
For example, if you implement the interface "java.io.FilenameFilter" to pass to "java.io.File.list" on large
directories, using :jobject-scope :local or nil will reduce the overhead significantly.

Examples

(example-edit-file "android/android-othello-user")

See also

make-lisp-proxy
make-lisp-proxy-with-overrides
verify-lisp-proxy
verify-lisp-proxies
check-lisp-calls-initialized
15.4.2 Using proxies
15.4.1 Direct calls

ensure-lisp-classes-from-tree Function

Summary

Creates a Lisp class, and potentially some or all the superclasses as needed based on the tree.

Package

lw-ji

Signature

ensure-lisp-classes-from-tree lisp-name java-class-tree force-p => class

39 The LW-JI Package

1026

Arguments

lisp-name⇓ A symbol.

java-class-tree⇓ A tree.

force-p⇓ A generalized boolean.

Values

class A class metaobject.

Description

The function ensure-lisp-classes-from-tree creates a class for lisp-name, and potentially some or all the
superclasses as needed based on the tree. Note that all references to "class" here are to Lisp classes.
ensure-lisp-classes-from-tree does not actually know anything about Java.

ensure-lisp-classes-from-tree appears the output of the importing interface functions, where it is called with the
output of get-superclass-and-interfaces-tree. Users can use it as well, but normally using plain defclass is
much more appropriate.

java-class-tree is a tree representing the hierarchy of the Java classes. The structure of the tree is describe in the
documentation for get-superclass-and-interfaces-tree. In general it is assumed that this tree was generated by
get-superclass-and-interfaces-tree, but you can generate it yourself if you find it useful, but normally simply
using defclass to define the classes you want is better.

force-p controls whether to force classes to exist or not.

The processing of a node in the tree when force-p is nil is as follows (note that java-class-tree is the first node):

1. Find the symbol corresponding to the class. For the first node, this is lisp-name. For other nodes, it first checks whether
record-java-class-lisp-symbol recorded the java-class-name to lisp-name mapping, and use it if it did. if not,
ensure-lisp-classes-from-tree skips this node and use instead the superclass node.

2. Once the symbol is found, ensure-lisp-classes-from-tree processes the nodes of the superclass and the nodes of
the interfaces, each one of which returns a class, and construct the superclasses list from the result. It remove duplicates
from the list, which can happen because interfaces can be implemented by more than one route.

3. Once it got the superclasses, except for the first node, ensure-lisp-classes-from-tree checks whether the
symbol has got a class definition, and if this class definition inherit from all the superclasses. If it does, it returns this
class as the result. If a class is found but is not inheriting all the superclasses, ensure-lisp-classes-from-tree
redefine it to inherit all the superclasses (ignoring the existing definition), and return it. If the class is not found,
ensure-lisp-classes-from-tree skips this node and use instead the superclass node.

For the first node, ensure-lisp-classes-from-tree always creates the class.

If force-p is true, then ensure-lisp-classes-from-tree never fails for any node. Instead, in step 1 when it does not
find the symbol it generates a symbol in the same way that generate-java-class-definitions does by default, and in
step 3 if there is no class it creates it.

Notes

1. ensure-lisp-classes-from-tree does not need running Java.

2. The main purpose of ensure-lisp-classes-from-tree is to create the needed class(es) at load-time without a need
for running Java. It is not intended to be used at run time.

39 The LW-JI Package

1027

3. ensure-lisp-classes-from-tree uses clos:ensure-class to create or redefine classes, so requires keeping
CLOS in a delivered image (as described in the Delivery User Guide).

4. When java-class-tree matches the Java hierarchy, as it is when it is the result of
get-superclass-and-interfaces-tree, if force-p is true ensure-lisp-classes-from-tree generates a full
hierarchy with a CLOS class matching each Java class. with force-p nil, at least standard-java-object will always
be in the hierarchy, plus any classes that were define by the importing interface or recorded by the user using
record-java-class-lisp-symbol.

See also

get-superclass-and-interfaces-tree
generate-java-class-definitions

ensure-supers-contain-java.lang.object Function

Summary

Checks that at least one of the supplied symbols names a subclass of standard-java-object.

Package

lw-ji

Signature

ensure-supers-contain-java.lang.object super-symbols lisp-name => nil

Arguments

super-symbols⇓ A list of symbols.

lisp-name⇓ A symbol.

Description

The function ensure-supers-contain-java.lang.object checks that at least one of the symbols in super-symbols
names a subclass of standard-java-object (or standard-java-object itself), otherwise it signals an error reporting
that the superclasses for lisp-name do not have a subclass of standard-java-object.

intern-and-export-list is a utility function that is used by the importing interface when lisp-supers is passed to ensure
at load-time that the supers contain a subclass of standard-java-object.

See also

generate-java-class-definitions

39 The LW-JI Package

1028

http://www.lispworks.com/documentation/lw70/MOP/mop/dictionary.html#ensure-class

field-access-exception Condition Class

Summary

Conditions signaled when accessing a field gets an exception.

Package

lw-ji

Superclasses

field-exception

Readers

field-access-exception-set-p

Description

The condition class field-access-exception is a subclass of field-exception.

field-access-exception is signaled when an attempt to access a field gets an exception. This can occur for various
reasons, for example the new value that was passed for setting is not an acceptable value.

The reader field-access-exception-set-p indicates whether the attempted access was setting or reading.

Notes

You can use the field-exception readers field-exception-class-name and field-exception-field-name on
conditions of class field-access-exception.

See also

field-exception

field-exception Condition Class

Summary

An abstract class, meaning that it is not signaled. Its readers can be used to access the subclasses.

Package

lw-ji

Superclasses

java-normal-exception

39 The LW-JI Package

1029

Subclasses

field-access-exception

Readers

field-exception-class-name
field-exception-field-name

Description

The condition class field-exception is a subclass of java-normal-exception. field-exception is an abstract
class, meaning that it is not signaled. Instances of its subclass field-access-exception is signaled however and its
readers can be used to access those conditions.

field-exception-class-name returns the class name and field-exception-field-name returns the field name.

See also

field-access-exception

find-java-class Function

Summary

Finds a Java class and returns a jobject representing it.

Package

lw-ji

Signature

find-java-class class-sym-or-string &optional errorp => result

Arguments

class-sym-or-string⇓ A symbol or a string.

errorp⇓ A generalized boolean.

Values

result A jobject or nil.

Description

The function find-java-class finds a Java class and returns a jobject representing it.

If class-sym-or-string is a string, it should be the full name of class. find-java-class allows the '.' in the names to be
replaced by '/' (which is how the class is actually looked up). find-java-class also recognizes class names of primitives
(for example, "int"), and can also find classes for arrays, using the internal syntax with leading '[' character(s).

If class-sym-or-string is a symbol, it can be a keyword specifying a primitive class (see the table in 15.2 Types and

39 The LW-JI Package

1030

conversion between Lisp and Java), one of :object or t to specify java.lang.Object, :string to specify
java.lang.String, or a symbol which is set to a string, in which case the value is used to search for a class.

If find-java-class finds the Java class, it returns a jobject representing it.

Otherwise, if errorp is non-nil it signals an error, otherwise it returns nil. The default value of errorp is t.

Notes

For most of the Java interface, you do not actually need to find the class.

format-to-java-host Function

Summary

Formats a string and sends it to the Java host.

Package

lw-ji

Signature

format-to-java-host format-string args => result

Arguments

format-string⇓ A format control string.

args⇓ Arguments for format-string.

Values

result⇓ A boolean.

Description

The function format-to-java-host sends a message to the Java host.

It creates a message by applying cl:format with destination nil to format-string and args, and sends it using
send-message-to-java-host with where-keyword :append.

result is the value returned by send-message-to-java-host.

See also

send-message-to-java-host

39 The LW-JI Package

1031

http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm

generate-java-class-definitions Function

Summary

Returns a list of forms which are definitions of Java callers that call the public methods (including constructors) of the
supplied class, and accessors for public fields.

Package

lw-ji

Signature

generate-java-class-definitions java-class-name &key lisp-name package-name prefix name-constructor export-p
create-defpackage lisp-class-p lisp-supers => list-of-definitions, lisp-name-symbol, package-name-string

Arguments

java-class-name⇓ A string.

lisp-name⇓ A symbol.

package-name⇓ A string.

prefix⇓ A string or nil.

name-constructor⇓ A function designator.

export-p⇓ A generalized boolean.

create-defpackage⇓ A generalized boolean.

lisp-class-p⇓ A generalized boolean.

lisp-supers⇓ A list of symbols.

Values

list-of-definitions A list.

lisp-name-symbol A symbol.

package-name-string A package name.

Description

The function generate-java-class-definitions returns a list of forms which are definitions of Java callers that call
the public methods (including constructors) of the class specified by java-class-name, and accessors for public fields. These
include inherited methods and fields.

generate-java-class-definitions is normally used indirectly by using import-java-class-definitions, but
can also be used directly. write-java-class-definitions-to-file and
write-java-class-definitions-to-stream do the same processing as generate-java-class-definitions,
and then generate output based on the result.

java-class-name must name a Java class, and it must be the precise full name, for example "java.io.File",
"android.view.View".

39 The LW-JI Package

1032

If lisp-name is supplied it must be a Lisp symbol. In this case it specifies the package to intern the names of definitions in,
and if a CLOS class is defined, the name of this class. It is also automatically defined as a constant with a value of java-class-
name. lisp-name can also be nil.

If lisp-name is not supplied, the system creates a Lisp symbol based on java-class-name. Note that this is different from
passing nil, because in the latter case lisp-name stays nil.

package-name is used only if lisp-name is supplied as nil, to specify the package where the names of the definitions are
interned. It must be a string containing the package name (in the desired case). The package is created if it does not exist
already. If lisp-name is nil and package-name is nil or not supplied, the current package is used.

prefix, if supplied, specifies a prefix to use for the names of the definitions. If prefix is not supplied or is nil, the name of the
Java class without the package part is uppercased and used as prefix (for example for "java.io.File" prefix is "FILE"). prefix is
passed to name-constructor to construct names for the Java callers.

If name-constructor is supplied, it must be a function taking two string arguments: prefix and the name of the Java method or
field that the Java caller is going to call or access (for constructors, the string "new" is passed as the method name). It must
return a string which is then interned (without changing the case) in the package to create the symbol that is used as the name
of the caller. name-constructor defaults to a function (default-name-constructor) that concatenates prefix as it is, a dot
and uppercase of the method/field name. For example, for the method "exists" in the Java class "java.io.File", the default
name constructor with the default prefix would generate "FILE.EXISTS".

export-p controls whether all the Java callers are exported from the package. If it is t all the Java callers are exported,
otherwise they are not. The default of export-p is t.

create-defpackage controls what form to generate to do the package manipulation. With the default,
generate-java-class-definitions generates a form that check that the package exists, otherwise creates it, and if
export-p is t, a form that exports all the symbols. If create-defpackage is non-nil, generate-java-class-definitions
generates a defpackage form instead. The default value of create-defpackage is nil.

Note: the reason create-defpackage defaults to nil is that the defpackage form would contain only the symbols that were
defined by the importing, which would be wrong if the package needs to export other symbols too, which is quite likely with
the default settings (because other classes in the same Java package will default to use the same Lisp package). create-
defpackage is useful when you want to create a package that exports only the definitions for a single Java class.

lisp-supers and lisp-class-p control whether a CLOS class is defined for the Java class. By default, no CLOS class is defined.
See in "Creating CLOS class" on page 1264.

The generation of the Java callers and accessors by generate-java-class-definitions is as follows:

1. Based on the arguments as described above, it determines the what package, prefix and name-constructor to use, and
whether it has a lisp-name and needs to define a CLOS class. It then finds the definition of the Java class.

2. It uses Java methods to find the names of all the public methods, constructors and fields of the class (including inherited
ordinary methods and fields).

3. For each name, it calls name-constructor with prefix and the name to generate a symbol name which is then interned in
the package to generate a symbol. It then generates a form where the operator is one of the macros
define-java-caller, define-java-constructor, or define-field-accessor, as appropriate, using the
symbol as the name.

For example, with the defaults generating for "java.io.File", the constructor would be defined by:

(define-java-constructor FILE.NEW "java/io/File")

The caller for the method "exists" would be defined by:

(define-java-caller FILE.EXISTS "java/io/File" "exists")

39 The LW-JI Package

1033

the accessor for for the field "separator" would be defined by:

(define-field-accessor file.separator "java/io/File" "separator" t t)

Note that generate-java-class-definitions uses '/' rather than '.' as separator between the components. The
definer macros accept both '/' and '.' as separators. The actual generated forms may contain additional keywords, for
example :signatures.

4. generate-java-class-definitions also identifies pairs of methods where one has the name set<something>
and the other has the name get<something> or is<something>, which are assumed to be setter and getter for the
same field. It then generates a cl:setf definition to allow using cl:setf on the symbol corresponding to
get<something> or is<something> name to call the set<something> method.

5. For fields, generate-java-class-definitions also generates a symbol macro with a name that is the symbol
name preceded and followed by the * character, and allows getting and the setting the field using this symbol.

The first return value of generate-java-class-definitions is a list of forms. The list contains the following forms in
this order:

• Package manipulation forms (ensuring the package exist and exporting if required) either as defpackage forms or
forms that explicitly ensure the existence of the package and do any exporting.

• If there is a lisp-name, define it as constant with the class name as value, and record the relation between the Java class
name and the symbol (this is used by create-instance-from-jobject).

• All the Java callers and accessors that were defined as described in the previous paragraph.

• If a CLOS class is needed, a form to create the class.

generate-java-class-definitions also returns lisp-name (supplied or generated) as second return value, and the
package name of the package that it used as third value.

Creating CLOS class

Note: see the discussion 15.8 CLOS partial integration.

The arguments lisp-class-p, lisp-supers and lisp-name control whether the importing also defines a class. lisp-name and
either lisp-supers or lisp-class-p must be non-nil to generate a Lisp class.

lisp-name, when non-nil, defines the name of the class. Note that by default lisp-name is not nil, because
generate-java-class-definitions generates a symbol if lisp-name is not supplied.

If lisp-supers is supplied and non-nil (and lisp-name is non-nil) a class is created, using a plain defclass form, and the
value lisp-class-p is ignored. lisp-supers must be a list of symbols naming classes, of which at least one is
standard-java-object or a subclass of it. This list defines the superclasses of the class that is defined.

If lisp-class-p is non-nil and lisp-supers is nil (and lisp-name is non-nil) a class is created using
ensure-lisp-classes-from-tree. If lisp-class-p is the keyword :complete, force-p is passed as t, otherwise it is
nil. See ensure-lisp-classes-from-tree for details.

generate-java-class-definitions returns three arguments: the list of definitions, lisp-name and the package name.

Notes

1. generate-java-class-definitions require running Java Virtual Machine, and access to the class definition via
the java.lang.reflect package functionality.

2. It is often simpler to call Java methods using functions such as jobject-call-method instead of importing the whole
class.

39 The LW-JI Package

1034

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

See also

write-java-class-definitions-to-stream
write-java-class-definitions-to-file
import-java-class-definitions
jobject-call-method
15.3.2 Importing classes

get-host-java-virtual-machine Function

Summary

Return the host Java virtual machine in a dynamic library loaded by Java.

Package

lw-ji

Signature

get-host-java-virtual-machine => jvm

Values

jvm⇓ A java-vm-poi or nil.

Description

The function get-host-java-virtual-machine returns the host Java virtual machine when it is called in a dynamic
library that was delivered with a call setup-deliver-dynamic-library-for-java, and the dynamic library was loaded
by Java. In all other circumstances it returns nil.

If the initialization of the Java interface is synchronous, which is determined the asynchronous argument of
setup-deliver-dynamic-library-for-java and is the default, then during the call to the deliver startup function (the
first argument ot deliver), get-host-java-virtual-machine still returns nil. It is guaranteed to return the correct
value only when the function argument of setup-deliver-dynamic-library-for-java (if any) is called. In the
asynchronous case, get-host-java-virtual-machine always returns the correct value.

The result jvm, when it is not nil, is an object of type java-vm-poi.

get-host-java-virtual-machine is useful as a predicate to determine if the library was loaded by Java or non-Java
code.

Notes

get-host-java-virtual-machine can find the virtual machine because Java calls JNI_OnLoad with it. If a non-Java
code calls JNI_OnLoad with something else, then get-host-java-virtual-machine will return that something else.

When init-java-interface is called without a specified Java virtual machine, it uses
get-host-java-virtual-machine to try to find the current one.

See also

setup-deliver-dynamic-library-for-java

39 The LW-JI Package

1035

init-java-interface
15 Java interface

get-java-virtual-machine Function

Summary

If a Java virtual machine has started, return it.

Package

lw-ji

Signature

get-java-virtual-machine => java-virtual-machine

Values

java-virtual-machine A java-vm-poi.

Description

The function get-java-virtual-machine returns the Java virtual machine if it has started. If LispWorks already knows
what the virtual machine is, it just returns it. Otherwise, it tries to use the C function JNI_GetCreatedJavaVMs to try to
find it.

See also

init-java-interface

get-jobject
ensure-is-jobject Functions

Summary

Get the jobject of the argument.

Package

lw-ji

Signatures

get-jobject object => jobject

ensure-is-jobject object caller => jobject

Arguments

object⇓ A Lisp object.

39 The LW-JI Package

1036

caller⇓ A Lisp object.

Values

jobject A jobject.

Description

The functions get-jobject and ensure-is-jobject both get the jobject of object. If object is already a jobject it is
simply returned. If it is an instance of standard-java-object and has an associated jobject, this jobject is returned.

Otherwise, get-jobject returns nil but ensure-is-jobject signals an error. ensure-is-jobject uses caller in the
error message to identify where the error occurred.

Notes

get-jobject is the predicate to check whether an object is a Java object.

See also

jobject-p
jobject
15.2 Types and conversion between Lisp and Java
15.8 CLOS partial integration

get-primitive-array-region
set-primitive-array-region Functions

Summary

Copy between a Java array of primitive type and a buffer specified by a foreign pointer.

Package

lw-ji

Signatures

get-primitive-array-region array &key start end buffer buffer-size => target-buffer, foreign-type

set-primitive-array-region array buffer &key start end => t, foreign-type

Arguments

array⇓ A Java array of primitive type.

start⇓, end⇓ Bounding index designators for array.

buffer⇓ An FLI pointer.

buffer-size⇓ A non-negative integer.

39 The LW-JI Package

1037

Values

target-buffer buffer or a new buffer.

foreign-type⇓ A foreign type.

Description

The function get-primitive-array-region copies from a Java array of primitive type to a buffer specified by a foreign
pointer.

The function set-primitive-array-region copies from a buffer specified by a foreign pointer to a Java array of
primitive type.

buffer, if supplied, must be a foreign pointer pointing to a suitable buffer, which means large enough to receive the data in
get-primitive-array-region, or containing the desired data in set-primitive-array-region.

start and end are bounding index designators for array, specifying the region to copy in number of elements.

buffer-size is used only when buffer is also supplied. buffer-size specifies the number of bytes to copy into buffer. If copying
the required number of elements requires more bytes, get-primitive-array-region signals an error. Note that buffer-
size is specified in bytes, while start and end are specified in elements.

If buffer is not supplied to get-primitive-array-region it creates a buffer of the correct size using
fli:allocate-foreign-object. In this case you will need to free the buffer using fli:free-foreign-object when
the program has finished with it.

get-primitive-array-region copies the required number of elements into the buffer, and returns two values: the target
buffer (either buffer or the new buffer) and the foreign type foreign-type corresponding to the Java primitive type (one of
jbyte, jshort. jint. jlong, jfloat, jdouble, jboolean and jchar).

set-primitive-array-region copies the required number of elements from buffer to array, and returns two values: t
and the foreign type.

Notes

These functions are useful when you need to pass the data to foreign code. If you need the data in Lisp, use
lisp-array-to-primitive-array or primitive-array-to-lisp-array instead.

See also

lisp-array-to-primitive-array
primitive-array-to-lisp-array
15.5 Working with Java arrays

get-superclass-and-interfaces-tree Function

Summary

Returns the superclasses and implemented interfaces of a supplied Java class.

Package

lw-ji

39 The LW-JI Package

1038

Signature

get-superclass-and-interfaces-tree java-class => java-class-tree

Arguments

java-class⇓ A jobject.

Values

java-class-tree A tree.

Description

The function get-superclass-and-interfaces-tree takes a Java class and returns of its superclasses and
implemented interfaces. It is used by the importing interface to generate a tree which is then output as argument to
ensure-lisp-classes-from-tree. It may be useful on its own, as a quick way of finding the tree for a class.

java-class must be a Java class, that is a jobject corresponding to a class. Typically that would be the result of
find-java-class, but it can be the result of your calls to Java methods. Using the Java methods "getInterfaces",
"getSuperclass" and "getName" in the Java class "java.lang.Class", get-superclass-and-interfaces-tree constructs
a complete tree of the superclasses and implemented interfaces of the class and its superclasses.

Each node in the tree is a vector of three elements:

• The full name of the class as a string.

• A node for the superclass (in Java terminology, the one it extends), or nil if there is no superclass (for
java.lang.Object and interfaces).

• A list of nodes corresponding to the interfaces that the class implements.

get-superclass-and-interfaces-tree returns the node for the class itself.

See also

ensure-lisp-classes-from-tree
generate-java-class-definitions

get-throwable-backtrace-strings Function

Summary

Returns the Java backtrace of a throwable.

Package

lw-ji

Signature

get-throwable-backtrace-strings throwable-jobject => backtrace-list

39 The LW-JI Package

1039

Arguments

throwable-jobject⇓ A jobject or an instance of standard-java-object.

Values

backtrace-list⇓ A list of Lisp strings.

Description

The function get-throwable-backtrace-strings returns a list of strings containing a Java backtrace based on the
information in throwable-jobject, which is typically an exception thrown by some Java method. If throwable-jobject contains
a cause (that is the Java method getCause returns non-null), then get-throwable-backtrace-strings recurses to
generate a backtrace for the cause as well.

throwable-jobject must be either a jobject of Java class throwable or an instance of standard-java-object
associated with such jobject.

The result backtrace-list is a list of strings, each string representing a StackTraceElement in the stack trace of throwable-
jobject. Recursive backtraces are preceded by a string saying "CAUSED BY:".

Note that if you have a java-exception object, then it already contains the backtrace which can be accessed by
java-exception-java-backtrace. You need get-throwable-backtrace-strings only when you deal with
throwable objects directly.

See also

java-exception
java-exception-java-backtrace

import-java-class-definitions Macro

Summary

Generates all the definitions for a Java class.

Package

lw-ji

Signature

import-java-class-definitions java-class-name &key lisp-class-p lisp-name export-p package-name name-constructor
lisp-supers => lisp-name-symbol

Arguments

java-class-name⇓ A string.

lisp-class-p⇓ A generalized boolean.

lisp-name⇓ A symbol.

export-p⇓ A generalized boolean.

39 The LW-JI Package

1040

package-name⇓ A package designator.

name-constructor⇓ A function designator.

lisp-supers⇓ A list of symbols.

Values

lisp-name-symbol⇓ A symbol.

Description

The macro import-java-class-definitions generates all the definitions for the class java-class-name, and wraps
cl:progn around them, and returns this from the macroexpansion. Therefore evaluation of an
import-java-class-definitions form defines all the callers for java-class-name.

java-class-name name must name a Java Class, and it must be the precise full name.

The generation of the definitions is done by generate-java-class-definitions, and the keyword arguments lisp-class
-p, lisp-name, export-p, package-name, name-constructor and lisp-supers are all are passed to it. See the documentation for
generate-java-class-definitions for the effects of the keywords.

During macroexpansion, import-java-class-definitions needs to be able to find the class definitions, for which it
needs running Java, which means a Java Virtual Machine running and the class being accessible. The evaluation of the
definitions does not require Java. Thus if you compile a file containing an import-java-class-definitions form, the
binary file can be loaded without Java, but the compilation needs running Java, and loading the source file also requires
running Java.

The returned value lisp-name-symbol is the Lisp name (which is lisp-name, or is generated by
generate-java-class-definitions if lisp-name was not supplied).

See 15.3.2 Importing classes for discussion.

Notes

1. You can avoid the need for running Java during compilation by writing the definitions using the writers
(write-java-class-definitions-to-file or write-java-class-definitions-to-stream) once, and
incorporate the output into your sources.

2. Even when you use import-java-class-definitions, it is probably useful to look at the output of the writers to
have a better idea what is actually being generated.

3. It is often simpler to call Java methods using functions such as jobject-call-method instead of importing the whole
class.

Examples

(import-java-class-definitions "java.io.File")

See also

generate-java-class-definitions
write-java-class-definitions-to-file
write-java-class-definitions-to-stream
jobject-call-method
15.3.2 Importing classes

39 The LW-JI Package

1041

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

init-java-interface
setup-java-interface-callbacks Functions

Summary

Initializes the Java interface.

Package

lw-ji

Signatures

init-java-interface &key jvm-library-path java-class-path option-strings jni-env-finder java-virtual-machine class-finder
class-loader-finder java-to-lisp-debugger-hook report-error-to-java-host send-message-to-java-host => result

setup-java-interface-callbacks &key class-finder java-to-lisp-debugger-hook report-error-to-java-host send-message-
to-java-host => t

Arguments

jvm-library-path⇓ A string, t or nil.

java-class-path⇓ A string or a list of strings.

option-strings⇓ A list.

jni-env-finder⇓ A function designator, or nil.

java-virtual-machine⇓ A foreign pointer of type java-vm-poi, or t.

class-finder⇓ A function designator or nil.

class-loader-finder⇓ A function designator or nil.

java-to-lisp-debugger-hook⇓
A function designator or nil.

report-error-to-java-host⇓
A function designator or nil.

send-message-to-java-host⇓
A function designator or nil.

Values

result t or the keyword :no-java-to-lisp.

Description

The function init-java-interface needs to be called before using any of the run time part of the Java interface. That
includes the interface functions that are documented as requiring Java, and any of the user-defined callers. The definers in
general do not need running Java, but the importing interface does.

Note: On Android and in dynamic libraries that were delivered with setup-deliver-dynamic-library-for-java with
init-java true (the default), init-java-interface is called automatically by the system initialization, so you do not need

39 The LW-JI Package

1042

to (and must not) call it.

init-java-interface may be used to first initialize the Java Virtual Machine (JVM) or can be called with the JVM
already running.

Initializing the virtual machine

If init-java-interface needs to initialize the JVM, it must be called with jvm-library-path either t or the path of a
dynamic library, and jni-env-finder must be nil. When jvm-library-path is t, init-java-interface uses a default JVM
library path, which is currently "/System/Library/Frameworks/JavaVM.framework/JavaVM" on macOS and
"-ljvm" on other Unix variants. On Windows, init-java-interface checks the registry for the location of the JVM
library, using the keys that Oracle document in Java 2 Runtime Environment for Microsoft Windows. The library must
implement the JVM, which means exporting the JNI functions, and to be able to find any supporting files that it may need. It
loads this library by fli:register-module, and then initializes it using JNI_CreateJavaVM. The keyword arguments
java-class-path and option-strings can be used to pass options to JNI_CreateJavaVM. Except on macOS, passing jvm-
library-path t can work only if the library path contains the JVM library.

java-class-path specifies the class path(s) for additional classes on top of the system ones. It is used to specify the
-Djava.class.path option. If java-class-path is a string, it is passed as is, and may contain more than path separated by
the appropriate separator (#\: on Unix, #\; on Windows), for example
"/myhomedir/myjavaclass;/systemdir/systemjavaclasses/". If it is a list, each string should be a path. Each
path needs to specify either a directory containing JAR files, or a full path of a JAR file.

If you want to make calls from Java to Lisp, you will need to have the Java class com.lispworks.LispCalls.
com.lispworks.LispCalls is defined in the JAR file lispcalls.jar which is part of the LispWorks distribution in the
etc directory, that is (lispworks-file "etc/lispcalls.jar"), so this JAR file will have to be on the path. If you
develop for Android and want to import Android classes, you will need the android.jar on the path too.

option-strings can be used to pass options to JNI_CreateJavaVM. Each element of option-strings is either a string or a cons
of two strings. An element which is a string is passed as the option string (slot optionString of the JavaVMOption C
struct). For a cons, the car is passed as the option string, and the cdr as the extra info (slot extraInfo in the
JavaVMOption). Note that that you should not use the option -Djava.class.path when using java-class-path.

java-class-path and option-strings are ignored when init-java-interface is called after the JVM started.

Calling with JVM already running

If init-java-interface is called with the JVM already running, then jvm-library-path must be nil, and either jni-env-
finder or java-virtual-machine must be supplied as non-nil, except when called inside a dynamic library delivered with
setup-deliver-dynamic-library-for-java, when all arguments can be nil.

If jni-env-finder is non-nil then it must be a function of no arguments that returns a pointer to the JNI environment for the
current thread. The result of the finder must be a foreign pointer of type jni-env-poi, corresponding to the C pointer
JNIEnv*. The finder function needs to cope with being called on any thread and the result needs to be valid until that thread
dies, at which point implementing code must deal with eliminating it. In general, this function needs to know how to find the
Java virtual machine, and then use the JNI functions AttachCurrentThread or GetEnv.

If jni-env-finder is nil, then java-virtual-machine is used. If java-virtual-machine is t, LispWorks tried to find the Java
virtual machine by first calling get-host-java-virtual-machine, and if this returns nil, by calling
JNI_GetCreatedJavaVMs. Otherwise, java-virtual-machine is used as the virtual machine and must be a foreign pointer of
type java-vm-poi, corresponding to the C type JavaVM*.

When running in a dynamic library delivered with setup-deliver-dynamic-library-for-java,
init-java-interface should be called with jvm-library-path, jni-env-finder and java-virtual-machine all nil because the
Java virtual machine is obtained using get-host-java-virtual-machine in this case.

39 The LW-JI Package

1043

http://www.oracle.com/technetwork/java/javase/overview/runtime-win32-139627.html

Notes

The simple option when the JVM is already running is just passing java-virtual-machine t. However, the function that the
system uses, JNI_GetCreatedJavaVMs, is a relic from the time when Java allowed more than one Java VM in each
process, which it no longer allows. So in principle some day it may be eliminated (Android already does not define it, but on
Android the system calls init-java-interface with jni-env-finder, so this does not matter). On the other hand it is
documented in the latest version (8) without any indication that it is deprecated.

You may have a pointer to the Java VM to pass to init-java-interface either because you got it from code that started
the Java VM (by JNI_CreateJavaVM), or by exporting JNI_OnLoad from a dynamic library. However, it is not a good idea
to export JNI_OnLoad as a foreign callable from LispWorks when it is delivered as a dynamic library, because it will have
to wait until LispWorks finished initialization. See 15.7 Loading a LispWorks dynamic library into Java.

By default, setup-deliver-dynamic-library-for-java sets up automatic initialization of the Java interface on
startup. You need (and can call) init-java-interface in such a dynamic library only if you passed nil for the init-java
argument to setup-deliver-dynamic-library-for-java.

If you call init-java-interface with jvm-library-path, jni-env-finder and java-virtual-machine all nil and
get-host-java-virtual-machine returns nil, then init-java-interface returns nil rather than give an error.

Description: (cont.)

class-finder specifies a class finder function to be used if the normal search fails. It must be a function taking a string
argument, and return a jobject representing a class for this string (for example, a caller for the method
java.lang.Class.forName does the right thing). It is useful when the application knows how to find classes which are
not visible from the system class loader. On Android, class-finder is passed with a function that calls
java.lang.Class.forName with the application Class loader, which will find all classes in the application.

class-loader-finder is used when initializing the LispCalls. If class-loader-finder is non-nil, it must be a function of no
arguments that returns a ClassLoader jobject. It is called once during initialization, and the result is stored to be used to
find the interfaces when initializing a proxy definition. On Android, it is passed with a function that returns the application
class finder. You need to be a Java expert to use this option. If class-loader-finder is nil, the Java method
ClassLoader.getSystemClassLoader is used.

java-to-lisp-debugger-hook, when supplied, must be either a function of one argument or nil. When it is a function, it will
be called when the debugger is invoked inside a call from Java to Lisp. The argument is a cl:condition object describing
the problem. The function needs to do something to inform the user of the problem but not actually interactively, and return.
The caller will then return a default value to Java. By default there is a hook that logs a bug form (by log-bug-form) and
prints a message to the console. On Android, it is set to a function that logs the error and then invokes the user Java error
reporters (set in Java by com.lispworks.Manager.setErrorReporter and
com.lispworks.Manager.setGuiErrorReporter, see the documentation for setErrorReporter).

report-error-to-java-host, when supplied, must be a function of two arguments, both of which are strings. When it is passed,
if the function report-error-to-java-host is called it uses this function to actually do the report. The first argument is
assumed to the error string and the second a filename where there is a bug form, or nil. The function should report to the
Java host, whatever that actually means. This keyword is used by the Android interface to set a function that calls into the
Android Java code and invokes the same user Java error reporters that are used for the debugger hook above.

The system does not call report-error-to-java-host itself, so the context in which the function may be called is
defined by your calls to it. However, it is intended to be used in error handlers, which means it should be able to cope with
any context. The default function just prints to cl:*terminal-io*, which may be useful enough when just debugging.

send-message-to-java-host, when supplied, must be a function of two arguments: a string which is the message and a
keyword, which tells it how to deal with it. The intent is to modify the "messages output" as described for the where-keyword
in send-message-to-java-host. The meaning of "messages output" and the actual behavior is up to the function. On
Android it is supplied a function that ends up calling the method com.LispWorks.Manager.addMessage. The default
function checks the keyword and then writes the string to cl:*terminal-io*, which is probably good enough for testing

39 The LW-JI Package

1044

http://www.lispworks.com/documentation/HyperSpec/Body/e_cnd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

purposes.

init-java-interface returns either t for success, or :no-java-to-lisp when it is successful but failed to initialize
Java-to-Lisp calls, so you cannot call from Java to Lisp or use Lisp proxies. This failure would normally mean that it failed to
find the class com.lispworks.LispCalls.

setup-java-interface-callbacks can be called after init-java-interface was called to change the values of
class-finder, java-to-lisp-debugger-hook, report-error-to-java-host or send-message-to-java-host. This is useful in the
situations where LispWorks performs the call to init-java-interface, which happens in Android and in a dynamic
library delivered with setup-deliver-dynamic-library-for-java.

See also

15 Java interface

intern-and-export-list Function

Summary

Interns strings in a package and exports the resulting symbols.

Package

lw-ji

Signature

intern-and-export-list symbol-name-list package-name => nil

Arguments

symbol-name-list⇓ A list of strings.

package-name⇓ A package designator.

Description

The function intern-and-export-list finds the package specified by package-name, interns all the strings in symbol-
name-list in this package, and exports the resulting symbols.

intern-and-export-list is a utility function that is used by the importing interface to export symbols by default (when
not using defpackage).

See also

generate-java-class-definitions

39 The LW-JI Package

1045

jaref Accessor

Summary

Read and set an element in a Java array.

Package

lw-ji

Signatures

jaref array &rest indices => element

setf (jaref array &rest indices) new-value => new-value

Arguments

array⇓ A Java array, of any type.

indices⇓ Non-negative integers.

new-value⇓ A valid element for array.

Values

element A Lisp object, a jobject or nil.

new-value A valid element for array.

Description

The accessor jaref reads and sets the value of an element in the Java array array.

Each element of indices must be an integer in the right range, which means greater than or equal to 0, and less than than the
length of the sub-array ("current array" below) for which they are used. There must be at least one index, and the number of
indices must be smaller or equal to the array rank (that is, the number of dimensions) of array.

new-value must be a valid value to store in array. It has the same restrictions as new-value in (setf jvref). See the
discussion in jvref for details.

The operation of jaref and (setf jaref) is as follows: For each index except the last, load the element from the "current
array", which is the array itself for the first index or the element that was loaded for the previous index. When reaching the
last index, jaref and (setf jaref) get or set the element in the "current array" the same way that jvref does. Note that
this means that if there are less indices than number of the dimensions of the array, the access will be for a sub-array rather
than actual element.

Notes

Because jaref needs to load the sub-array for each index except the last, repeated calls to jaref for elements inside the
same array are wasteful. It is much more efficient to get the sub-array and access it using jvref, or the multiple access
functions.

39 The LW-JI Package

1046

See also

jvref
map-java-object-array
primitive-array-to-lisp-array
lisp-array-to-primitive-array
15.5 Working with Java arrays

java-array-element-type Function

Summary

Returns the element type of a Java array.

Package

lw-ji

Signature

java-array-element-type object => result

Arguments

object⇓ A Java object.

Values

result⇓ A keyword, t or nil.

Description

The function java-array-element-type returns the element type of object if object is a Java array:

• For primitive types, result is a keyword from the table in 15.2 Types and conversion between Lisp and Java.

• If the array is multi-dimensional, result is :array.

• If the array element type is java.lang.Object, result is :object.

• If the array element type is java.lang.String, result is :string.

• For other arrays result is t.

If object is some other type of Java object, java-array-element-type returns nil. Otherwise it signals an error.

Notes

1. java-array-element-type is designed to be fast, so it can be used as a predicate to test whether a Java object is an
array, and also to check whether some specific operations are applicable to it.

2. If you want to check whether the array is primitive or not, use java-primitive-array-element-type or
java-object-array-element-type instead.

39 The LW-JI Package

1047

See also

java-primitive-array-element-type
java-object-array-element-type
15.5 Working with Java arrays

java-array-error Condition Class

Summary

An abstract class, meaning that it is not signaled. Its readers can be used to access the subclasses.

Package

lw-ji

Superclasses

java-interface-error

Subclasses

java-array-simple-error
java-out-of-bounds-error
java-storing-wrong-type-error

Readers

java-array-error-caller
java-array-error-array

Description

The condition class java-array-error is an abstract class, meaning that it is not signaled. Its readers can be used to
access the subclasses.

java-array-indices-error Condition Class

Summary

Conditions signaled by jaref or (setf jaref) when either too many indices are supplied for the array, or when a sub-
array is null.

Package

lw-ji

Superclasses

java-array-simple-error

39 The LW-JI Package

1048

http://www.lispworks.com/documentation/HyperSpec/Body/a_null.htm

Readers

java-array-indices-error-rank
java-array-indices-error-indices

Description

Instances of the condition class java-array-indices-error are signaled when by jaref or (setf jaref) when either
too many indices are supplied for the array, or when a sub-array is null.

Notes

You can use the java-array-error readers java-array-error-caller and java-array-error-array on these
conditions.

See also

java-array-error
java-out-of-bounds-error

java-array-length Function

Summary

Returns the length of a Java array.

Package

lw-ji

Signature

java-array-length object => result

Arguments

object⇓ A Java object.

Values

result A non-negative integer or nil.

Description

The function java-array-length returns the length of object if this is a Java array. For multi-dimensional arrays,
java-array-length returns the first dimension. If object is some other type of Java object, java-array-length returns
nil. Otherwise it signals an error.

See also

java-array-element-type
15.5 Working with Java arrays

39 The LW-JI Package

1049

http://www.lispworks.com/documentation/HyperSpec/Body/a_null.htm

java-array-simple-error Condition Class

Summary

Conditions signaled in miscellaneous array errors.

Package

lw-ji

Superclasses

java-array-error

Subclasses

java-array-indices-error

Description

The condition class java-array-simple-error is a subclass of java-array-error, signaled in miscellaneous array
errors (those resulting from bad arguments).

Notes

You can use the java-array-error readers java-array-error-caller and java-array-error-array on these
conditions.

See also

java-array-error

java-bad-jobject Condition Class

Summary

An abstract class, meaning that it is not signaled. Its readers can be used to access the subclasses.

Package

lw-ji

Superclasses

java-interface-error

Subclasses

java-not-a-java-object-error
java-instance-without-jobject-error
java-not-an-array-error

39 The LW-JI Package

1050

Readers

java-bad-jobject-caller
java-bad-jobject-object

Description

The condition class java-bad-jobject is an abstract class, meaning that it is never signaled. Instances of its subclasses are
signaled and its readers can be used to access those conditions.

See also

java-not-a-java-object-error
java-instance-without-jobject-error
java-not-an-array-error

java-definition-error
java-class-error
java-method-error
java-field-error Condition Classes

Summary

Conditions that are signaled when code defined by the Java interface fails to execute.

Package

lw-ji

Superclasses

java-interface-error

Readers

java-definition-error-class-name
java-definition-error-name
java-method-error-method-name
java-method-error-args-num
java-field-error-field-name
java-field-error-static-p

Description

Instances of the condition classes java-class-error, java-method-error and java-field-error are signaled when
code that is defined by the Java interface (for example, define-java-caller, define-field-accessor) fails to
execute because the Java entity that it expects is not found.

They are subclasses of java-definition-error. java-definition-error is never signaled, and you should not
signal these conditions.

The errors normally occur because the definition is wrong in some sense, but they can also happen if the Java virtual machine
misses some of the classes or has a class definition that differs from what it should be.

39 The LW-JI Package

1051

java-definition-error-name returns the name of the Lisp function that fails, for example the name in the
define-java-caller form.

java-definition-error-class-name returns the class name in the definition.

For a java-method-error, java-method-error-method-name returns the method name (or nil if it is a constructor,
see define-java-constructor) and java-method-error-args-num returns the number of arguments that were
passed to the call.

For a java-field-error, java-field-error-field-name returns the field name and
java-field-error-static-p queries whether the field was defined as static.

See also

define-java-constructor
define-java-caller
define-field-accessor

java-exception Condition Class

Summary

The superclass of all conditions that are signaled for Java exceptions.

Package

lw-ji

Superclasses

error

Subclasses

java-normal-exception
java-serious-exception

Readers

java-exception-string
java-exception-exception-name
java-exception-java-backtrace

Description

The condition class java-exception is the superclass of all conditions that are signaled for Java exceptions.

The reader java-exception-string returns a string specifying the reason for the exception (result of jobject-string
on the Java exception).

The reader java-exception-exception-name returns a string with the exception name (name of the exception class, the
result of jobject-class-name on the Java exception).

The reader java-exception-java-backtrace returns a list of strings specifying the Java backtrace for the exception.
Each string shows one Java frame.

39 The LW-JI Package

1052

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

java-field-setting-error Condition Class

Summary

Conditions signaled when setting a field is wrong, either because the field is final or because the value supplied is wrong.

Package

lw-ji

Superclasses

java-interface-error

Readers

java-field-setting-error-field-name
java-field-setting-error-class-name
java-field-setting-error-class-name-for-setting
java-field-setting-error-new-value

Description

Instances of the condition class java-field-setting-error are signaled when setting a field is wrong, either because the
field is final or because the value supplied is wrong. The setting can happen either by a call to set-java-field or by
using (setf name) where name was defined by either define-field-accessor or setup-field-accessor.

The new value returned by the accessor java-field-setting-error-new-value can be the keyword :is-final,
which indicates that the error occurs because the field is final. Otherwise it is the new value, which is of an unacceptable
type. The class-name of the field can be read using java-field-setting-error-class-name-for-setting (this is
what java-field-class-name-for-setting would return for the same field).

See also

set-java-field
define-field-accessor
setup-field-accessor

java-id-exception Condition Class

Summary

Conditions signaled if Lisp failed to find the ID for a method or a field.

Package

lw-ji

Superclasses

java-serious-exception

39 The LW-JI Package

1053

Description

Instances of the condition class java-id-exception are signaled if Lisp failed to find the ID for a method or a field. This
is serious, so applications should save and exit.

java-instance-without-jobject-error Condition Class

Summary

Conditions signaled when an argument that need to be a Java object is an instance of standard-java-object that does not
have a jobject.

Package

lw-ji

Superclasses

java-bad-jobject

Description

Instances of the condition class java-instance-without-jobject-error are signaled when an argument that needs to
be a Java object is an instance of standard-java-object that does not have a jobject.

Notes

You can use the java-bad-jobject readers java-bad-jobject-caller and java-bad-jobject-object on these
conditions.

See also

java-bad-jobject
java-not-a-java-object-error
java-not-an-array-error

java-interface-error Condition Class

Summary

The superclass of the *-error conditions in the Java interface.

Package

lw-ji

Superclasses

cl:error

39 The LW-JI Package

1054

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

Subclasses

call-java-method-error
create-java-object-error
java-array-error
java-bad-jobject
java-definition-error
java-field-setting-error

Description

The condition class java-interface-error is the superclass of the *-error conditions in the Java interface.

java-low-level-exception Condition Class

Summary

Conditions signaled for failures in low level code.

Package

lw-ji

Superclasses

java-exception

Description

Instances of the condition class java-low-level-exception are signaled for failures in low level code. This is serious, so
applications should save and exit.

java-method-exception Condition Class

Summary

Conditions signaled when an exception occurs inside a call to a Java method or constructor.

Package

lw-ji

Superclasses

java-normal-exception

Readers

java-method-exception-name
java-method-exception-class-name
java-method-exception-method-name
java-method-exception-args

39 The LW-JI Package

1055

Description

Instances of the condition class java-method-exception are signaled when an exception occurs inside a call to a Java
method or a constructor. Such exceptions are normal behavior for Java, so these exceptions should in general be handled
somehow.

The java-exception accessors (java-exception-exception-name, java-exception-string) can be used on a
java-method-exception and are useful for simple handling. For more complex handling, you can use
catching-java-exceptions around pieces of your code, and then look at the actual Java exception.

The reader java-method-exception-name returns the name of the Java caller (a Lisp symbol) that caused the exception.

The reader java-method-exception-class-name returns the Java class name of the method or constructor.

The reader java-method-exception-method-name returns the method name if the exception is inside a method, or nil
if the exception is inside a constructor.

The reader java-method-exception-args returns the arguments that were passed to the caller.

See also

catching-java-exceptions
java-exception

java-normal-exception Condition Class

Summary

This condition is signaled for a "normal" exception.

Package

lw-ji

Superclasses

java-exception

Subclasses

field-exception
java-method-exception

Description

Instances of the condition class java-normal-exception are signaled for exceptions that are "normal", that is they do not
suggest that the system is broken.

39 The LW-JI Package

1056

java-not-a-java-object-error Condition Class

Summary

Conditions signaled when an argument that needs to be a Java object is not a jobject or an instance of
standard-java-object.

Package

lw-ji

Superclasses

java-bad-jobject

Description

Instances of the condition class java-not-a-java-object-error are signaled when an argument that needs to be a Java
object is not a jobject or an instance of standard-java-object.

Notes

You can use the java-bad-jobject readers java-bad-jobject-caller and java-bad-jobject-object on these
conditions.

See also

java-bad-jobject
java-instance-without-jobject-error
java-not-an-array-error

java-not-an-array-error Condition Class

Summary

Conditions signaled when an argument that needs to be an array of some type is not an array of the expected type.

Package

lw-ji

Superclasses

java-bad-jobject

Description

Instances of the condition class java-not-an-array-error are signaled when an argument that needs to be an array is not
an array, or when an argument that needs to be a primitive array is not a primitive array, or when an argument that needs to
be an object array is not an object array.

39 The LW-JI Package

1057

Notes

You can use the java-bad-jobject readers java-bad-jobject-caller and java-bad-jobject-object on these
conditions.

See also

java-bad-jobject
java-not-a-java-object-error
java-instance-without-jobject-error

java-null Constant

Summary

A constant representing a Java null pointer.

Package

lw-ji

Description

The constant *java-null* represents a Java null pointer.

See also

15.2.3 Java non-primitive objects

java-object-array-element-type Function

Summary

Returns the element type of a Java array of a non-primitive element type.

Package

lw-ji

Signature

java-object-array-element-type object => result

Arguments

object⇓ A Java object.

Values

result One of the keywords :array, :object and :string, or nil.

39 The LW-JI Package

1058

Description

The function java-object-array-element-type returns the element type (as a keyword as listed in 15.2 Types and
conversion between Lisp and Java) if object is an array with non-primitive element type. If object is some other type of
Java object, java-object-array-element-type returns nil. Otherwise it signals an error.

Notes

1. You can use java-object-array-element-type to test whether a Java object is an array of non-primitive element
type.

If you want to check whether object is any array (primitive or not), use java-array-element-type instead. Sometimes
java-primitive-array-element-type may be more convenient.

See also

java-array-element-type
java-primitive-array-element-type
15.5 Working with Java arrays

java-objects-eq Function

Summary

Tests whether two objects represent the same Java object.

Package

lw-ji

Signature

java-objects-eq obj1 obj2 => result

Arguments

obj1⇓, obj2⇓ Lisp objects.

Values

result A boolean.

Description

The function java-objects-eq tests whether obj1 and obj2 represent the same Java object.

See also

jobject-p
jobject
15.2 Types and conversion between Lisp and Java
15.8 CLOS partial integration

39 The LW-JI Package

1059

java-out-of-bounds-error
java-storing-wrong-type-error Condition Classes

Summary

Errors signaled when bad array indices are passed, or on trying to store a bad value into a Java array.

Package

lw-ji

Superclasses

java-array-error

Description

Instances of the condition class java-out-of-bounds-error are signaled when a bad index value is passed to jaref or
jvref or their setters, or bad start/end values are passed to map-java-object-array and other functions which access
arrays.

The condition class java-storing-wrong-type-error is signaled on an attempt to store value of wrong type into a Java
array by (setf jvref), (setf jaref) or map-java-object-array.

You can use the java-array-error readers java-array-error-caller and java-array-error-array on these
conditions.

java-primitive-array-element-type Function

Summary

Returns the element type of a Java array of a primitive element type.

Package

lw-ji

Signature

java-primitive-array-element-type object => result

Arguments

object⇓ A Java object.

Values

result A keyword, t or nil.

39 The LW-JI Package

1060

Description

The function java-primitive-array-element-type returns the element type (as a keyword as listed in 15.2 Types and
conversion between Lisp and Java) if object is an array with primitive element type. If object is some other type of Java
object, java-primitive-array-element-type returns nil. Otherwise it signals an error.

Notes

1. java-primitive-array-element-type is designed to be fast, so you can use it to test whether a Java object is an
array of primitive element type.

2. If you want to check whether object is any array (primitive or not), use java-array-element-type instead,
Sometimes java-object-array-element-type may be more convenient.

See also

java-array-element-type
java-object-array-element-type
15.5 Working with Java arrays

java-program-error Condition Class

Summary

Runtime error when using the Java interface.

Package

lw-ji

Superclasses

java-interface-error

Description

The condition class java-program-error is signaled when the Java interface detects an error at runtime. In most of the
cases, that means arguments of the wrong type or the wrong number of arguments. The printed string explains the reason for
the the error.

java-serious-exception Condition Class

Summary

Conditions signaled when something in the system is not really as it should be.

Package

lw-ji

39 The LW-JI Package

1061

Superclasses

java-exception

Subclasses

java-id-exception
java-low-level-exception

Description

Instances of the condition class java-serious-exception are signaled for an exception that is serious, which means
something in the system is not really as it should be. Applications that get this should try to save everything and exit.

In general, these exceptions should not happen, and you should not need to worry about these. If you do get any such
exception, please report it with as many details as possible to Lisp Support, following the guidelines at
www.lispworks.com/support/bug-report.html.

java-type-to-lisp-array-type
lisp-array-type-to-java-type Functions

Summary

Return the Lisp array element type matching a supplied foreign type, or the foreign type matching a Lisp array element type.

Package

lw-ji

Signatures

java-type-to-lisp-array-type jtype => l-result

lisp-array-type-to-java-type lisp-type

Arguments

jtype⇓ A foreign type.

lisp-type⇓ A Lisp type specifier.

Values

l-result A Lisp array element type, or nil.

Description

The function java-type-to-lisp-array-type returns the matching Lisp array element type for the foreign type jtype,
which needs to be one of the foreign types corresponding to a Java primitive type, or nil if the argument is not such a foreign
type.

The function lisp-array-type-to-java-type returns the matching foreign type, corresponding to a Java primitive type,
for the Lisp array element type lisp-type, or nil if there is no match.

39 The LW-JI Package

1062

http://www.lispworks.com/support/bug-report.html

Both functions use the table below for doing the match:

Correspondence between Java foreign types and Lisp array element types

Foreign type Lisp type

jbyte (signed-byte 8)

jshort (signed-byte 16)

jint (signed-byte 32)

jlong (signed-byte 64)

jdouble double-float

jfloat single-float

jchar (unsigned-byte 16)

jboolean (unsigned-byte 8)

java-vm-poi FLI Type Descriptor

Summary

The Java virtual machine pointer type.

Package

lw-ji

Syntax

java-vm-poi

Description

The FLI type java-vm-poi is used for the Java virtual machine pointer (JavaVM* in C). You need it only when you want to
pass the virtual machine to init-java-interface by the java-virtual-machine argument.

See also

init-java-interface

jboolean
jbyte
jchar
jdouble
jfloat
jint
jlong

39 The LW-JI Package

1063

jshort FLI Type Descriptors

Summary

FLI types corresponding to the Java primitive types.

Package

lw-ji

Syntax

jboolean

jbyte

jchar

jdouble

jfloat

jint

jlong

jshort

Description

These FLI types correspond to the Java primitive types. Normally you do not need to use any of these.

See 15.2 Types and conversion between Lisp and Java for discussion.

jni-env-poi FLI Type Descriptor

Summary

The JNI environment pointer type.

Package

lw-ji

Syntax

jni-env-poi

Description

The FLI type jni-env-poi is used for the JNI environment pointer (JNIEnv* in C).

When jni-env-finder is passed to init-java-interface, it needs to be a function that returns a jni-env-poi.

39 The LW-JI Package

1064

See also

init-java-interface

jobject FLI Type Descriptor

Summary

The type of objects representing all non-primitive Java objects.

Package

lw-ji

Syntax

jobject

Description

The FLI type jobject is the type of objects representing all non-primitive Java objects (including arrays).

jobjects that represent the same Java object are not necessarily equal in any Lisp sense, and their addresses are not
necessarily equal either. In fact, normally they will be different if they come from a different Java call. To check whether two
jobjects represent the same Java object, use java-objects-eq (which takes CLOS Java instances too).

Notes

The print-function of jobject tries to print its Java class name, but what it prints may be a parent class of the actual class of
the jobject. The function jobject-class-name returns the name of the actual class of the jobject, and also caches it in
the jobject.

See also

jobject-p
java-objects-eq
jobject-string
jobject-class-name
jobject-of-class-p
jobject-to-lisp
jobject-pretty-class-name
15.2 Types and conversion between Lisp and Java

jobject-call-method Function

Summary

Call a Java method on a jobject.

Package

lw-ji

39 The LW-JI Package

1065

Signature

jobject-call-method jobject method-name &rest args => result-of-java-method

Arguments

jobject⇓ A Java object (a jobject or an instance of standard-java-object).

method-name⇓ A string naming a Java method.

args⇓ Arguments for the Java method named by method-name.

Values

result-of-java-method The result of calling method-name.

Description

The function jobject-call-method looks up the non-static Java method named method-name that is applicable to jobject,
and then calls it with jobject and args.

method-name must be the unqualified name of the method, that is without the package and class name. For example, if you
have a jobject of class java.io.File, you can check if the file actually exists by calling:

(jobject-call-method jobject "exists")

If jobject-call-method does not find the method named by method-name, it signals an error of type
jobject-call-method-error.

Notes

For static methods, use call-java-static-method.

jobject-call-method is the natural match to the way method calls look in Java syntax, but it is a little slower than
call-java-method, because the lookup is more complex. The difference is probably not significant in most of the case,
and in most of the cases it is better to use jobject-call-method.

See also

call-java-method
jobject

jobject-call-method-error Condition Class

Summary

jobject-call-method failed to find a method.

Package

lw-ji

39 The LW-JI Package

1066

Superclasses

java-interface-error

Description

The condition class jobject-call-method-error is signaled when jobject-call-method failed to find the method.

See also

jobject-call-method

jobject-class-name Function

Summary

Returns the name of the class to which a jobject belongs.

Package

lw-ji

Signature

jobject-class-name jobject => class-name

Arguments

jobject⇓ A jobject.

Values

class-name A string.

Description

The function jobject-class-name returns a string which is the name of the class to which the Java object jobject belongs.
The name is then cached in the jobject.

The class for arrays is the internal class name, which is different from the way it is declared in Java. For other objects, the
name is the full name of the class.

To obtain the class name as declared in Java, use jobject-pretty-class-name.

See also

jobject
jobject-of-class-p
jobject-pretty-class-name
15.2 Types and conversion between Lisp and Java

39 The LW-JI Package

1067

jobject-ensure-global Function

Summary

Returns a global jobject pointing to the same Java object as the argument.

Package

lw-ji

Signature

jobject-ensure-global jobject => global-jobject

Arguments

jobject⇓ A jobject.

Values

global-jobject A jobject.

Description

The function jobject-ensure-global returns a jobject pointing to the same Java object as the argument jobject, but
which is guaranteed to be global.

In most cases, jobjects are global anyway. However, when using map-java-object-array, by default, the jobjects
are local and cannot be used outside the scope of the function that was passed to map-java-object-array. Similarly,
jobjects can be made local inside functions that are invoked by proxies, using the :jobject-scope option (see
define-lisp-proxy). In these situations, if you want to access the Java object outside the scope of the function that was
invoked by map-java-object-array or by the proxy, you need to use jobject-ensure-global inside the scope of the
function, and then you can use the result outside the scope of the function.

If the argument jobject is not a jobject an error is signaled.

If the argument jobject is already a global reference, jobject-ensure-global simply returns it.

Notes

1. jobject-ensure-global cannot access local references outside the right scope (like any other function).

2. jobject-ensure-global does not accept an instance of standard-java-object.

See also

jobject-p
map-java-object-array
define-lisp-proxy

39 The LW-JI Package

1068

jobject-field-value Accessor

Summary

Reads and sets a non-static field in a Java object.

Package

lw-ji

Signatures

jobject-field-value jobject field-name => field-value

setf (jobject-field-value jobject field-name) value => value

Arguments

jobject⇓ A Java object.

field-name⇓ A string.

value⇓ A Lisp object that can be converted to a Java value.

Values

field-value The value of the field.

value A Lisp object that can be converted to a Java value.

Description

The accessor jobject-field-value access the value of the non-static field field-name in jobject.

field-name needs to be a field name without the package and class, for example "separator".

An error of type java-field-error is signaled if no field named field-name exists in jobject.

value must be of an acceptable type (see 15.2 Types and conversion between Lisp and Java) and the field must not be final,
otherwise an error of type java-field-setting-error is signaled.

See also

read-java-field
set-java-field
java-field-error
java-field-setting-error
15 Java interface

39 The LW-JI Package

1069

jobject-of-class-p Function

Summary

The predicate for whether a Java object is an instance of a given Java class.

Package

lw-ji

Signature

jobject-of-class-p object class-spec => result

Arguments

object⇓ A Java object.

class-spec⇓ A class specifier that find-java-class accepts or a Java class.

Values

result A generalized boolean.

Description

The function jobject-of-class-p returns true if object is an instance of the class specified by class-spec or any of its
subclasses; nil is returned otherwise.

class-spec must be either a class specifier that find-java-class accepts, or a Java class, that is a Jobject of class
java.lang.Class. The Java class may be an interface, in which case the result verifies whether the object implements the
interface.

See also

jobject
jobject-class-name
15.2 Types and conversion between Lisp and Java

jobject-p Function

Summary

The predicate for objects of type jobject.

Package

lw-ji

39 The LW-JI Package

1070

Signature

jobject-p object => result

Arguments

object⇓ A Lisp object.

Values

result A boolean.

Description

The function jobject-p returns true if object is of type jobject and false otherwise.

See also

jobject
lisp-java-instance-p
get-jobject
ensure-is-jobject
15.2 Types and conversion between Lisp and Java

jobject-pretty-class-name Function

Summary

Returns a string which is the name of the class to which a given jobject belongs.

Package

lw-ji

Signature

jobject-pretty-class-name jobject => name

Arguments

jobject⇓ A jobject.

Values

name⇓ A string.

Description

The function jobject-pretty-class-name returns a string which is the name of the class to which jobject belongs. The
name is then cached in jobject.

The class for arrays is "prettified", which means converting it to the way it is declared in Java. For other objects, name is the
same as the result of jobject-class-name.

39 The LW-JI Package

1071

See also

jobject
jobject-class-name
15.2 Types and conversion between Lisp and Java

jobject-string Function

Summary

Calls the Java method Object.toString on a Java object.

Package

lw-ji

Signature

jobject-string jobject => string

Arguments

jobject⇓ A jobject.

Values

string A string.

Description

The function jobject-string returns a string which is the result of calling the Java method Object.toString on the
Java object jobject on it.

See also

jobject
15.2 Types and conversion between Lisp and Java

jobject-to-lisp Function

Summary

Converts a jobject to a Lisp object where possible.

Package

lw-ji

Signature

jobject-to-lisp object &optional nil-when-fail => lisp-object

39 The LW-JI Package

1072

Arguments

object⇓ A jobject or nil.

nil-when-fail⇓ A generalized boolean.

Values

lisp-object A Lisp object.

Description

The function jobject-to-lisp converts a jobject to a Lisp object where possible.

The argument object must be a jobject or nil, otherwise an error is signaled. If object is nil, jobject-to-lisp returns
nil. If object is a jobject of type java.lang.String or any of the primitive types, jobject-to-lisp returns the
matching Lisp object. See 15.2 Types and conversion between Lisp and Java for a full description.

If the conversion cannot be done, the return value depends on the value of nil-when-fail. When nil-when-fail is true
jobject-to-lisp returns nil for failure. When nil-when-fail is false, jobject-to-lisp returns the jobject itself.
The default value of nil-when-fail is true.

Notes

You need to pass nil-when-fail as nil for the cases when you want to be able to distinguish between return value nil for the
Java boolean false and failure to convert. When you do that, the caller code needs to compare the result to the argument,
instead of checking for non-nil, like this:

(let ((my-res (jobject-to-lisp my-obj nil)))
 (if (eq my-obj my-res)
 (fail-branch)
 (success-branch)))

jvalue FLI Type Descriptor

Summary

For expert use: The FLI type descriptor corresponding to the JNI C type jvalue.

Package

lw-ji

Syntax

jvalue

Description

The FLI type jvalue is a union FLI type corresponding to the jvalue JNI C type.

The slots in the union are named by single character keywords, where the character match the C name.

39 The LW-JI Package

1073

jvalue slot names and their type

Lisp slot name C slot name slot type

:z z jboolean

:b b jbyte

:c c jchar

:s s jshort

:i i jint

:j j jlong

:f f jfloat

:d d jdouble

:l l jobject

Notes

In typical usage of the Java interface, you will not need to use jvalue at all.

Examples

Reading an integer from a jvalue object a-jvalue:

(fli:foreign-slot-value a-jvalue :i)

Create a jvalue object and storing a double-float in it:

(setq a-jvalue (fli:allocate-foreign-object :type 'jvalue))
(setf (fli:foreign-slot-value a-jvalue :d) 15.3d1)

See also

15.6 Utilities and administration
jvalue-store-jobject
jvalue-store-jboolean
jvalue-store-jbyte
jvalue-store-jchar
jvalue-store-jshort
jvalue-store-jint
jvalue-store-jlong
jvalue-store-jfloat
jvalue-store-jdouble

jvalue-store-jboolean
jvalue-store-jbyte
jvalue-store-jchar
jvalue-store-jshort
jvalue-store-jint

39 The LW-JI Package

1074

jvalue-store-jlong
jvalue-store-jfloat
jvalue-store-jdouble Functions

Summary

For expert use: Store a primitive value in a jvalue object.

Package

lw-ji

Signatures

jvalue-store-jboolean jvalue value => stored-p

jvalue-store-jbyte jvalue value => stored-p

jvalue-store-jchar jvalue value => stored-p

jvalue-store-jshort jvalue value => stored-p

jvalue-store-jint jvalue value => stored-p

jvalue-store-jlong jvalue value => stored-p

jvalue-store-jfloat jvalue value => stored-p

jvalue-store-jdouble jvalue value => stored-p

Arguments

jvalue⇓ A FLI pointer to a jvalue.

value⇓ A Lisp object.

Values

stored-p A boolean.

Description

These functions check if value is an acceptable value, and if it is, store it in jvalue.

jvalue must a FLI pointer to a jvalue.

value can be any Lisp value. Each of these functions regards value as acceptable if value is of the type indicated by the last
part of its name. For example, jvalue-store-jint checks that value is integer inside the range of jint.

If the value is acceptable, the function stores it in jvalue and returns t. Otherwise it returns nil.

Notes

In typical usage of the Java interface, you will not need to use any of these functions.

39 The LW-JI Package

1075

See also

15.6 Utilities and administration
jvalue
jvalue-store-jobject

jvalue-store-jobject Function

Summary

For expert use: Stores a jobject in a jvalue.

Package

lw-ji

Signature

jvalue-store-jobject jvalue value => stored-p

Arguments

jvalue⇓ A FLI pointer to a jvalue.

value⇓ A Lisp object.

Values

stored-p A boolean.

Description

The function jvalue-store-jobject checks if value is either a jobject or an instance of standard-java-object. If
it is, jvalue-store-jobject stores value (for jobject) or the jobject associated with value (for
standard-java-object) in jvalue and returns t. Otherwise, jvalue-store-jobject returns nil.

jvalue must be a FLI pointer to a jvalue.

Notes

In typical usage of the Java interface, you will not need to use this functions.

See also

15.6 Utilities and administration
jvalue
jvalue-store-jboolean
jvalue-store-jbyte
jvalue-store-jchar
jvalue-store-jshort
jvalue-store-jint
jvalue-store-jlong
jvalue-store-jfloat
jvalue-store-jdouble

39 The LW-JI Package

1076

jvref Accessor

Summary

Read and set an element in a Java array.

Package

lw-ji

Signatures

jvref array index => element

setf (jvref array index) new-value => new-value

Arguments

array⇓ A Java array.

index⇓ A non-negative integer.

new-value⇓ A valid value for array.

Values

element A Lisp object, a jobject or nil.

new-value A valid value for array.

Description

The accessor jvref reads and sets the value of an element in the Java array array.

index must be in the right range:

0 <= index < (java-array-length array)

new-value must be a valid value to store in array (discussed below).

jvref returns the corresponding element from array. If the element is of a primitive type, or is of type
java.lang.String, it is converted to the Lisp object, otherwise it is returned as a jobject or nil if it is null. See 15.2
Types and conversion between Lisp and Java.

(setf jvref) sets the element to new-value. new-value must be a valid element for array. For a primitive array, new-value
must be a Lisp object of the correct type:

byte, short, int, long

Integers with less than 8, 16, 32 and 64 bits respectively.

float, double Any float.

boolean nil or t.

39 The LW-JI Package

1077

http://www.lispworks.com/documentation/HyperSpec/Body/a_null.htm

char Integers in the inclusive range [0,#xffff].

For a non-primitive array, new-value must be convertible to a jobject of the correct class. If the element type of array is
java.lang.Object (java-array-element-type returns :object), then any Lisp value that can converted to a Java
primitive type is acceptable (see 15.2 Types and conversion between Lisp and Java), as well as strings and any Java object.
If the element type of array is java.lang.String (java-array-element-type returns :string), then strings or Java
objects of class java.lang.String are acceptable. In all other cases, only Java objects are acceptable, and need to be of
the correct type.

Notes

For accessing multiple elements in the same array, the multiple access functions (map-java-object-array,
primitive-array-to-lisp-array, lisp-array-to-primitive-array) can be much faster.

jvref and (setf jvref) access the top level of the array. If array is multi-dimensional, jvref and (setf jvref) will
return and set the sub-array. See jaref for accessing elements in a multi-dimensional array.

jvref and (setf jvref) are slightly faster than jaref and (setf jaref) with one index, and give a proper error when
called with the wrong number of arguments.

See also

map-java-object-array
lisp-array-to-primitive-array
primitive-array-to-lisp-array
jaref
15.5 Working with Java arrays

lisp-java-instance-p Function

Summary

The predicate for objects of type standard-java-object.

Package

lw-ji

Signature

lisp-java-instance-p object => result

Arguments

object⇓ A Lisp object.

Values

result A boolean.

Description

The function lisp-java-instance-p returns true if object is a standard-java-object and false otherwise.

39 The LW-JI Package

1078

See also

jobject-p
jobject
get-jobject
ensure-is-jobject
15.2 Types and conversion between Lisp and Java
15.8 CLOS partial integration

lisp-to-jobject Function

Summary

Converts a Lisp object to an appropriate jobject.

Package

lw-ji

Signature

lisp-to-jobject lisp-object &optional errorp => result

Arguments

lisp-object⇓ A Lisp object.

errorp⇓ A generalized boolean.

Values

result A jobject or nil.

Description

The function lisp-to-jobject tries to convert the argument lisp-object to a jobject. It succeeds if lisp-object is of a
type that matches any Java primitive type or is a string. In general that means integers up to 64 bits, floats, t, nil and
strings.

See 15.2 Types and conversion between Lisp and Java for a full description.

If it fails, lisp-to-jobject calls cl:error, unless errorp is nil, in which case it returns nil.

See also

jobject-to-lisp
15.2 Types and conversion between Lisp and Java

39 The LW-JI Package

1079

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

make-java-array Function

Summary

Create a Java array object.

Package

lw-ji

Signature

make-java-array type first-dim &rest dims => array

Arguments

type⇓ A string, one of the keywords :byte, :short, :int, :long, :float, :double,
:char, :boolean, :object and :string, an FLI type specifier, or t.

first-dim⇓ A non-negative integer.

dims⇓ Non-negative integers.

Values

array⇓ A new array.

Description

The function make-java-array creates a Java array object array.

type specifies the type of elements in array. To make an array of any Java class, type needs to be a string with the full name
of the class. To make an array of primitive type, type should be the corresponding keyword (:byte, :short, :int, :long,
:float, :double, :char or :boolean). type can also be :object or t meaning java.lang.Object, and :string

meaning java.lang.String, and the FLI types matching the primitive types.

The dimension(s) of the array are specified by first-dim and dims, which must all be non-negative integer(s).

make-java-array returns the new array.

See also

15.5.2 Making Java arrays

make-java-instance Function

Summary

Create a CLOS instance and its jobject.

39 The LW-JI Package

1080

Package

lw-ji

Signature

make-java-instance symbol-or-class &rest args => instance

Arguments

symbol-or-class⇓ A class designator.

args⇓ Lisp objects.

Values

instance A CLOS object.

Description

The function make-java-instance creates a CLOS instance and its jobject.

The class symbol-or-class must be a subclass of standard-java-object, and must have been associated with a Java
constructor by passing the class name to define-java-constructor or setup-java-constructor as the class-symbol
argument (the importing interface, when defining a class, does it automatically).

make-java-instance makes the CLOS instance by calling make-instance on symbol-or-class, then passing the instance
and args to create-instance-jobject-list to create the jobject, and then returns the instance.

The result is a CLOS instance of symbol-or-class, which can be passed to Java interface functions and Java methods.

See also

create-instance-jobject-list
define-java-constructor
setup-java-constructor
15.8 CLOS partial integration

make-lisp-proxy
make-lisp-proxy-with-overrides Functions

Summary

Make a Lisp proxy.

Package

lw-ji

Signatures

make-lisp-proxy name &key user-data print-name overrides overrides-plist class-loader => proxy

make-lisp-proxy-with-overrides name &rest args &key user-data print-name class-loader &allow-other-

39 The LW-JI Package

1081

keys => proxy

Arguments

name⇓ A symbol.

user-data⇓ A Lisp object.

print-name⇓ A string or a symbol.

overrides⇓ An association list.

overrides-plist⇓ A plist.

class-loader⇓ A jobject representating a Java ClassLoader or nil (the default).

args⇓ A plist.

Values

proxy⇓ A jobject.

Description

The functions make-lisp-proxy and make-lisp-proxy-with-overrides make a Lisp proxy, which is a Java proxy
where method invocation ends up calling Lisp code. The result is a jobject proxy which represents the proxy, which can
then be used in Java where an object that implements any of the interfaces that the proxy implements is required.

Note: The jobject is "local", which means that if it is generated in the scope of a call from Java it must be used (passed to
Java method, return to the call from Java or pass it to jobject-ensure-global) in the scope of the call from Java. You
cannot store it in Lisp and use it later (but you can do that with the result of jobject-ensure-global). If the jobject is
generated not in the scope of a Java call, it must be used on the same thread that it was made.

name must be associated with a proxy definition, either by define-lisp-proxy or setup-lisp-proxy. The proxy
definition determines which interfaces the proxy implements, and what happens when a method is invoked on the proxy. The
processing of invocation of a method on the proxy is described in the documentation for define-lisp-proxy.

user-data is an arbitrary object. It is passed to the Lisp function if the proxy definition specifies that it should be passed
(keyword :with-user-data or :default-function-with-user-data for the default function).

print-name specifies the name of the proxy, after it is converted to a string by cl:princ-to-string. If the proxy definition
has a print-name too, the full print name of the proxy is formed by concatenating the definition's print-name and the proxy's
print-name separated by " - ", otherwise the full print name is the proxy's print-name. The full print name is used when
printing the proxy, and is also returned when the Java method toString is applied to it. If print-name is nil, a counter is
used.

overrides, if supplied, must be an association list specifying overriding (see "Overrides" below), that is a list of conses
where the cl:car is the symbol to override and the cl:cdr is the target. When overrides is non-nil overrides-plist is
ignored.

If overrides-plist is supplied it must be a plist specifying overriding, that is a list of even length where each even element is a
symbol to override and the following odd element is the target.

class-loader specifies the ClassLoader to pass as the first argument to the Java method Proxy.newProxyInstance when
making the Lisp proxy. If class-loader is non-nil, it must be a jobject representing the Java ClassLoader to use. If class-
loader is nil, then the internal ClassLoader is used (see the description of the class-loader-finder keyword in
init-java-interface for how this is set up).

The argument args of make-lisp-proxy-with-overrides is used as a plist specifying overrides, after removing any

39 The LW-JI Package

1082

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

occurrences of :print-name and :user-data from it.

Overrides

Overrides allow make-lisp-proxy and make-lisp-proxy-with-overrides to override symbols in the proxy
definition, which means that instead of calling the symbol in the proxy definition the target in the overrides is called. See the
documentation for define-lisp-proxy for details of the processing.

make-lisp-proxy-with-overrides is intended to make it simpler to use overrides. It is equivalent to calling
make-lisp-proxy with overrides-plist, and actually calls make-lisp-proxy (so may get errors that look like they came
from make-lisp-proxy).

make-lisp-proxy and make-lisp-proxy-with-overrides signal error if name is not associated with a proxy
definition, and if any overrides are not of the right form or any of the functions to call is not a function designator. They may
also signal an error if the proxy definition was not initialized and they failed to initialize it.

See also

define-lisp-proxy
setup-lisp-proxy
15.4.2 Using proxies

map-java-object-array Function

Summary

Apply a function to the elements in an array.

Package

lw-ji

Signature

map-java-object-array function array &key collect reverse start end pass-args convert write-back => result

Arguments

function⇓ A function designator or nil.

array⇓ A Java array of non-primitive type.

collect⇓ A generalized boolean.

reverse⇓ A generalized boolean.

start⇓, end⇓ Bounding index designators for array.

pass-args⇓ One of the keywords :element, :index and :element-index.

convert⇓ nil, t, or one of the keywords :force-nil, :force-local and :force-global.

write-back⇓ A generalized boolean.

Values

result⇓ A list or a Lisp vector.

39 The LW-JI Package

1083

Description

The function map-java-object-array applies the function function to the elements in the Java array array.

The default behavior is simply to apply function to each element. The keyword arguments can be used to change this
behavior, including modifying elements.

function should take one or two arguments, depending on pass-args. The default value of pass-args is :element, which
means that function takes one argument, the element in the array. pass-args can also be :element-index, and then function
should take two arguments, the element and the index. pass-args can also be :index in which case function just takes the
index. The latter case is useful when map-java-object-array is used to modify the element in the array. When function
is nil, the "result" of the function call is the element itself. That is useful for simple collection (that is, supplying a true
value of collect).

Note: When the element that is passed to function is a jobject, it is by default a "local" object, which means it must not be
used outside the dynamic scope of the function call. collect and convert can change this.

When write-back is nil the result of the call to function is ignored. When write-back is non-nil, the result of function is the
new value to write back. The default value of write-back is nil.

When reverse is non-nil map-java-object-array starts from the highest index and maps down, otherwise it maps up. The
default value of reverse is nil.

start and end specify the range in array to map: start defaults to 0 and is inclusive, and end defaults to the length of array
and is exclusive. If either of these is not an integer or is out of bounds, or end is smaller than start, then an error of type
java-out-of-bounds-error is signaled.

pass-args controls the arguments to function as described above.

collect, if non-nil, specifies that the results of applying function should be collected and returned from
map-java-object-array. If collect is t, map-java-object-array returns a list of the results. collect can also be
:vector or cl:vector, in which case result is a Lisp vector. When convert is either nil or t, collect overrides it and
forces conversion of primitive types and strings to Lisp objects, and makes jobjects non-local, so they can be used outside
the scope of the function calls and map-java-object-array. The default value of collect is nil.

convert controls conversion to Lisp objects. When convert is t, primitive types and strings are converted to Lisp objects
before they are passed to function. When convert is nil, all elements are passed as jobjects. Note that when collect is non-
nil and convert is nil or t, collect overrides convert as described above. The default value of convert is t.

When convert is one of :force-nil, :force-local or :force-global it overrides collect. :force-nil causes the
object to pass as a jobject (the same as when collect is nil and convert is nil). :force-local causes primitive types to
pass as Lisp objects, and other types as local jobjects (the same as when collect is nil and convert is t). :force-global
causes primitive types to be passed as Lisp objects and other types as global objects.

Note: local jobjects, which you get when convert is either :force-nil or :force-local, or when collect is nil and
convert is not :force-global, must not be used outside the scope of the function function that is passed to
map-java-object-array. Using local objects out of scope can cause the system to crash (rather than signal an error).
Note that you must not even use a local jobject from one call to function in another call to function within the same call to
map-java-object-array.

Converting to global objects adds a substantial overhead to the system, though for small arrays this is not very bad. If you
want to map over a large array, and dynamically decide to use only some of the jobjects out of scope, you can convert local
jobjects to global using jobject-ensure-global.

When write-back is true, the result of the application of function is written back to array. The default value of write-back is
nil.

39 The LW-JI Package

1084

http://www.lispworks.com/documentation/HyperSpec/Body/a_vector.htm

If array is not a non-primitive Java array, or pass-args or collect is not one of the acceptable values, or write-back is non-nil
and function returns an object of wrong type, map-java-object-array signals an error of type java-array-error.

Notes

1. map-java-object-array accesses only non-primitive arrays. For primitive arrays use one of
primitive-array-to-lisp-array, lisp-array-to-primitive-array, get-primitive-array-region and
set-primitive-array-region.

2. The function java-object-array-element-type can be used to test whether a Java object is a non-primitive array.

3. When accessing more than one element, map-java-object-array may be much faster than accessing the elements
using jvref or jaref.

4. map-java-object-array traverses one level. If a multi-dimensional array is supplied, the elements that it passes to
function are sub-arrays (which may be null too).

See also

jvref
jaref
primitive-array-to-lisp-array
lisp-array-to-primitive-array
get-primitive-array-region
set-primitive-array-region
java-object-array-element-type
jobject-ensure-global
15.5 Working with Java arrays

primitive-array-to-lisp-array
lisp-array-to-primitive-array Functions

Summary

Copy elements between a Java primitive array and a Lisp array of matching type.

Package

lw-ji

Signatures

primitive-array-to-lisp-array p-array &key start end target-start target-end lisp-array => l-result

lisp-array-to-primitive-array l-array &key start end target-start target-end primitive-array => p-result

Arguments

p-array⇓ A Java array of primitive type.

start⇓, end⇓ Bounding index designators.

target-start⇓, target-end⇓
Bounding index designators.

39 The LW-JI Package

1085

http://www.lispworks.com/documentation/HyperSpec/Body/a_null.htm

lisp-array⇓ A Lisp array of an acceptable type, or nil.

l-array⇓ A Lisp array of an acceptable type.

primitive-array⇓ A Java array of primitive type, or nil.

Values

l-result lisp-array or a new Lisp array.

p-result primitive-array or a new primitive array.

Description

The function primitive-array-to-lisp-array takes a Java array p-array of primitive type and copies elements from it
to a Lisp array of matching type. The target lisp-array is created by default, but can also be supplied as an argument.

The function lisp-array-to-primitive-array takes a Lisp array l-array of an acceptable Lisp type and copies
elements from it to a Java array of matching type. The target primitive-array is created by default, but can also be supplied as
an argument.

start and end are bounding index designators for the source p-array or l-array, specifying the range to copy.

target-start and target-end are used only if the target is supplied (by lisp-array or primitive-array). They specify the start and
end for copying in the target. The actual number of elements copied is the minimum of the lengths specified for the source
and for the target.

If the target (lisp-array or primitive-array) is not supplied, these functions create an array of the correct type and the copy
length, and copy into it.

The Lisp array that is passed to lisp-array-to-primitive-array must be of one of the types listed below, and when
the target array is supplied, its type must match the type of the source array according to the table below, except that
cl:base-char array (cl:simple-base-string) is acceptable when the Java side is byte.

Correspondence between Java primitive and Lisp array element types

Java primitive type Keyword
(result of
java-array-element-type)

Lisp type
(result of
cl:array-element-type)

byte :byte (signed-byte 8)

short :short (signed-byte 16)

int :int (signed-byte 32)

long :long (signed-byte 64)

double :double double-float

float :float single-float

char :char (unsigned-byte 16)

boolean :boolean (unsigned-byte 8)

For boolean, 1 is true and 0 is false.

Notes

For a large number of elements, these functions are much faster than jvref. If the primitive data is needed for passing to or

39 The LW-JI Package

1086

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ba.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ar_ele.htm

from foreign functions, use get-primitive-array-region and set-primitive-array-region instead. These
functions work only on arrays with one dimension with primitive element type. For non-primitive arrays of one dimension
you can use map-java-object-array.

See also

get-primitive-array-region
set-primitive-array-region
map-java-object-array
jvref
jaref
15.5 Working with Java arrays

read-java-field
checked-read-java-field
set-java-field
check-java-field
java-field-class-name-for-setting Functions

Summary

Access a field, either static or in a Java object.

Package

lw-ji

Signatures

read-java-field full-field-name &optional object => field-value

checked-read-java-field full-field-name &optional object => field-value-or-nil, nil-or-condition

set-java-field full-field-name value &optional object => value

check-java-field full-field-name static-p => result

java-field-class-name-for-setting full-field-name static-p => class-name-or-nil

Arguments

full-field-name⇓ A string.

object⇓ A Java object or nil.

value⇓ A Lisp object that can be converted to a Java value.

static-p⇓ A boolean.

Values

field-value The value of the field.

field-value-or-nil The value of the field or nil.

39 The LW-JI Package

1087

nil-or-condition nil or a cl:error.

value A Lisp object that can be converted to a Java value.

result⇓ A boolean.

class-name-or-nil A string or nil.

Description

The functions read-java-field, checked-read-java-field and set-java-field access the value of a field in a
Java Object or a static field.

The functions check-java-field and java-field-class-name-for-setting are used to check whether it is possible
to access the value of the field.

full-field-name needs to be a full field name including the package and class, for example "java.io.File.separator".

If object is supplied and is non-nil, it must be a Java object from which to read/to which set the value. The field must be non-
static in this case. If object is nil, the field must be static.

read-java-field returns the value of the field. If it fails to get it, it signals an error. If the class is not found, this is a
java-class-error, if the field is not found it is a java-field-error.

checked-read-java-field returns the value like read-java-field and another value which is nil when the read is
successful. If the class or the field is not found, checked-read-java-field returns nil and a condition specifying the
error (java-field-error or java-class-error). Note that it may still signal other errors, for example if full-field-name
does not look like a proper field name.

set-java-field sets the field to value. value must be of an acceptable type (see 15.2 Types and conversion between
Lisp and Java) and the field must not be final, otherwise it signals java-field-setting-error.

check-java-field checks whether the field exists and matches the value of static-p, and returns a boolean result
accordingly.

java-field-class-name-for-setting checks whether the field exists and matches the value of static-p and whether it
is not final, and if it is returns the class name of the field. It returns nil otherwise.
java-field-class-name-for-setting is useful for checking whether set-java-field can be used on a a field, and
whether a value is suitable to be stored in his field, by using jobject-of-class-p.

Notes

It is also possible to access fields using accessors defined by define-field-accessor and setup-field-accessor.

See also

java-field-error
java-class-error
java-field-setting-error
define-field-accessor
setup-field-accessor
15 Java interface

39 The LW-JI Package

1088

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

record-java-class-lisp-symbol Function

Summary

Records a correspondence between the name of a Java class and a Lisp symbol.

Package

lw-ji

Signature

record-java-class-lisp-symbol java-class-name lisp-name => lisp-name

Arguments

java-class-name⇓ A string.

lisp-name⇓ A symbol.

Values

lisp-name A symbol.

Description

java-class-name must be the precise full name of a Java class. lisp-name must be a Lisp symbol corresponding to the Java
class. The function record-java-class-lisp-symbol records this correspondence.

At the time of writing this correspondence is used only to find CLOS class names from Java class name by
create-instance-from-jobject and ensure-lisp-classes-from-tree.

record-java-class-lisp-symbol is used by the importing interface when lisp-name is non-nil. You can can use it
yourself, but lisp-name must name an appropriate class (subclass of standard-java-object) .

See also

write-java-class-definitions-to-stream
write-java-class-definitions-to-file
import-java-class-definitions
create-instance-from-jobject
ensure-lisp-classes-from-tree

report-error-to-java-host Function

Summary

Tries to report an error to the Java host.

39 The LW-JI Package

1089

Package

lw-ji

Signature

report-error-to-java-host error-string log-file-string => result

Arguments

error-string⇓ A string.

log-file-string⇓ A string or nil.

Values

result⇓ A boolean.

Description

The function report-error-to-java-host tries to report an error to the Java host.

It is assumed that error-string specifies the error and log-file-string specifies a file where a log of the error is written.
report-error-to-java-host funcalls the function that was passed as the report-error-to-java-host argument to
init-java-interface, or the default function, with these two arguments.

On Android the keyword argument to init-java-interface is passed with a function that invokes the user Java error
reporters (set in Java by com.lispworks.Manager.setErrorReporter and
com.lispworks.Manager.setGuiErrorReporter).

The default function just prints to cl:*terminal-io*, which may be useful enough for debugging.

result is t if there is a function, and nil otherwise.

See also

init-java-interface

reset-java-interface-for-new-jvm Function

Summary

Resets the Java interface.

Package

lw-ji

Signature

reset-java-interface-for-new-jvm &key for-shaking-p

39 The LW-JI Package

1090

http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

Arguments

for-shaking-p⇓ A generalized boolean.

Description

The function reset-java-interface-for-new-jvm resets the Java interface, which means eliminating all cached
information. for-shaking-p needs to be true when it is called before shaking.

The system automatically calls reset-java-interface-for-new-jvm when delivering, so you do not need to call it
then. Applications should never use it. It may be useful during debugging if the JVM is manipulated in some way.

The default value of for-shaking-p is nil.

send-message-to-java-host Function

Summary

Sends a message to the Java host.

Package

lw-ji

Signature

send-message-to-java-host message-string where-keyword => result

Arguments

message-string⇓ A string.

where-keyword⇓ One of the keywords :append, :add, :prepend, :add-no-scroll,
:append-no-scroll and :reset.

Values

result⇓ A boolean.

Description

The function send-message-to-java-host sends a message to the Java host. It funcalls the function that was passed as
the send-message-to-java-host argument to init-java-interface, or the default function, with message-string and where
-keyword.

On Android init-java-interface is given a function that ends up calling the method
com.lispworks.Manager.addMessage.

The default function checks the keyword and then writes the string to cl:*terminal-io*, which is probably good enough
for testing purposes.

result is t if there is a function, and nil otherwise.

39 The LW-JI Package

1091

http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

Notes

The intended meanings of where-keyword are:

:reset Erase any existing text and replace it by the message.

:prepend Insert the message and a newline before any existing text.

:add-no-scroll Add the message after all existing text.

:add Like :add-no-scroll, and scroll to the beginning of the new message.

:append-no-scroll Like :add-no-scroll, plus add a following newline.

:append Like :append-no-scroll, and scroll to the beginning of the new message.

Compatibility note

The values :add-no-scroll and :add for where-keyword are new in LispWorks 7.1.

See also

init-java-interface
format-to-java-host

setup-deliver-dynamic-library-for-java Function

Summary

Prepare for delivery of a dynamic library that can be loaded by Java.

Package

lw-ji

Signature

setup-deliver-dynamic-library-for-java &key init-java function asynchronous => result

Arguments

init-java⇓ Boolean, default t.

function⇓ A function designator for a function of no arguments.

asynchronous⇓ Boolean, default nil.

Values

result Always t.

Description

The function setup-deliver-dynamic-library-for-java prepares the LispWorks internal state for delivering (using
deliver) a dynamic library that can be loaded from Java and use the Java interface.

39 The LW-JI Package

1092

setup-deliver-dynamic-library-for-java should be called just before calling deliver. It causes the call to
deliver to produce a dynamic library even if the call to deliver is not given any keywords that indicate it should produce
a dynamic library. When the delivered image is loaded into Java by System.loadLibrary or System.load (or the
underlying Runtime methods), the host Java virtual machine is remembered by LispWorks and can be retrieved by calling
get-host-java-virtual-machine, and if init-java is non-nil (the default) the Java interface is automatically initialized
by a call to init-java-interface. Finally, if function is non-nil, it is then called with no arguments.

The initialization of the Java interface and calling of function are done after the rest of the initialization of LispWorks. In
particular, they occur after the deliver startup function (the first argument of deliver) has returned. If the deliver startup
function does not return, the Java initialization does not occur.

asynchronous controls whether the initialization is asynchronous from the Java point of view. When asynchronous is false
(the default), the Java method that loads Lisp waits until Lisp has finished initialization, initialized the Java interface and
function (if non-nil) has been called and returned. When asynchronous is true, the loading method returns immediately and
LispWorks initializes asynchronously.

In the asynchronous case, calls from Java to Lisp (using methods in the com.lispworks.LispCalls class) may happen
before Lisp is ready. Such calls are blocked until Lisp is ready, or 50 seconds have passed. If Lisp is not ready within 50
seconds, you will get an exception. It is possible to check if Lisp is ready by using
com.lispworks.LispCalls.waitForInitialization.

There is a minimal example of delivering LispWorks for Java in:

(example-edit-file "java/lisp-as-dll/README.txt")

Notes

function is intended for performing Java-specific initialization after the Java interface has been initialized, including any
initialization that requires the Java interface (which therefore cannot be done by the deliver startup function).

setup-deliver-dynamic-library-for-java works by setting up and exporting the C symbol JNI_OnLoad, which the
loading methods in Java invoke. If you want to export your own JNI_OnLoad, you must not use
setup-deliver-dynamic-library-for-java.

The function get-host-java-virtual-machine can be used to get the host Java virtual machine. In the synchronous
case (the default), get-host-java-virtual-machine returns nil when called from the deliver startup function (first
argument to deliver), because Lisp did not receive the Java virtual machine yet. In the asynchronous case,
get-host-java-virtual-machine returns the virtual machine from the beginning.

A non-Java program can also load a dynamic library that was created by delivering with
setup-deliver-dynamic-library-for-java. In this case, the Java interface is not initialized automatically, function is
not called, and get-host-java-virtual-machine returns nil. get-host-java-virtual-machine can be used as
predicate to tell whether the loading was done from a Java program or not.

If you want initialization that happens only when loaded by Java but not otherwise and you need this to happen before the
Java interface is initialized, the easiest approach is to pass nil for init-java and pass, as function, a function that does your
initialization and before calling init-java-interface. For example:

(setup-deliver-dynamic-library-for-java
 :init-java nil
 :function #'(lambda ()
 (my-java-pre-inits)
 (init-java-interface)
 (my-java-post-inits)))

If init-java is nil, you cannot use the Java interface until you call init-java-interface, as in the example above. The
call to init-java-interface in this case can happen much later than the initialization, but note that calls from Java to

39 The LW-JI Package

1093

Lisp that happen without checking if Lisp is ready will hang, and get an exception after 50 seconds.

In the asynchronous case with nil for init-java, init-java-interface can be called from the deliver startup function or
later.

setup-deliver-dynamic-library-for-java modifies the way that init-java-interface looks for the virtual
machine. In particular, you can call init-java-interface without specifying the Java virtual machine as in the example
above, and init-java-interface will use get-host-java-virtual-machine to find it.

When init-java is true (the default), you can use setup-java-interface-callbacks to set some of the callbacks that in
other situations you would pass to init-java-interface. setup-java-interface-callbacks should be called
inside function, so they happen after the initialization of the Java interface.

LispWorks dynamic libraries that were delivered without using setup-deliver-dynamic-library-for-java can be
loaded into Java, but to use the Java interface init-java-interface must be called with the Java virtual machine. It
requires some expertise to pass the virtual machine to Lisp.

See also

init-java-interface
get-host-java-virtual-machine
setup-java-interface-callbacks
15.7 Loading a LispWorks dynamic library into Java

setup-field-accessor Function

Summary

Defines a Java field accessor.

Package

lw-ji

Signature

setup-field-accessor name class-name field-name static-p &optional is-final => result, error

Arguments

name⇓ A symbol.

class-name⇓ A string.

field-name⇓ A string.

static-p⇓ A boolean.

is-final⇓ A boolean.

Values

result name or nil.

error A condition or nil.

39 The LW-JI Package

1094

Description

The function setup-field-accessor defines a field accessor for a field in a Java class.

class-name must name a Java class.

field-name must be a field name.

static-p specifies whether the field is static or not.

is-final specifies whether the field is final (read-only) or not.

setup-field-accessor sets the symbol function of name to a function that reads the value of the field. If is-final is nil,
it also defines (setf name) as the setter.

The arguments for the getter and setter are determined by the value of static-p. If static-p is non-nil, the getter takes no
arguments and the setter takes the new value. If static-p is nil, the getter takes that object from which to get the value, and
the setter gets the value and the object.

setup-field-accessor looks up the field definition in Java, and if the definition is incorrect returns nil and the
condition as the second value.

Notes

In general, accessing fields should be avoided, because they are typically a less well-defined and implemented interface than
methods, but sometimes it is necessary.

See also

define-field-accessor

setup-java-caller
setup-java-constructor Functions

Summary

Define a Java caller, which is a function that calls a Java method or a constructor.

Package

lw-ji

Signatures

setup-java-caller name class-name method-name &key signatures static-p return-jobject non-virtual-p => result,
condition

setup-java-constructor name class-name &key class-symbol signatures => result, condition

Arguments

name⇓ A symbol.

class-name⇓ A string.

method-name⇓ A string.

39 The LW-JI Package

1095

signatures⇓ A list of strings.

static-p⇓ t, nil or :either (the default).

return-jobject⇓ A boolean, default nil.

non-virtual-p⇓ A boolean. default nil.

class-symbol⇓ A symbol.

Values

result name or nil.

condition A condition object.

Description

The functions setup-java-caller and setup-java-constructor define a Java caller, which is a function that calls a
Java method or a constructor. Once this the caller is defined, calls to name ultimately invoke the Java method or constructor.

Interpretation of class-name, method-name, signatures, static-p, return-jobject, non-virtual-p and class-symbol and the
behavior of the defined caller is the same as the macros define-java-caller and define-java-constructor.

Unlike the macros define-java-caller and define-java-constructor. the functions setup-java-caller and
setup-java-constructor do the lookup immediately, and therefore require running Java. If the lookup fails, they do not
set the symbol function, and return two values: nil and a condition indicating the reason for the failure.

The functions (when successful) return name.

See also

define-java-caller
15.3.3 Defining specific callers

setup-lisp-proxy Function

Summary

Defines a Lisp proxy.

Package

lw-ji

Signature

setup-lisp-proxy name interface-and-method-descs => lisp-proxy-name

Arguments

name⇓ A symbol.

interface-and-method-descs⇓
A list.

39 The LW-JI Package

1096

Values

lisp-proxy-name A symbol.

Description

The function setup-lisp-proxy defines a Lisp proxy, as described for define-lisp-proxy.

Unlike define-lisp-proxy name can be nil, in which case setup-lisp-proxy generates a symbol by cl:gensym,
uses it as the name and returns it.

interface-and-method-descs describes the Java interfaces to implement and the Lisp functions to call. setup-lisp-proxy
takes it as a single argument, which must be a list, but otherwise parses it just like define-lisp-proxy.

See also

define-lisp-proxy

standard-java-object Class

Summary

A class for jobject.

Package

lw-ji

Superclasses

standard-object

Initargs

:jobject

Accessors

java-instance-jobject

Description

The class standard-java-object is a class for jobject.

Instances of standard-java-object can be passed to the Java interface functions and callers you define, and returned
from Java calls whenever a jobject is needed. Each instance is normally associated with a jobject, which is used by the
Java interface.

Apart from accessing the jobject in the instance, the Java interface does not do anything with the class, and makes no
assumptions about it. There is no need for the class hierarchy in Lisp to reflect the class hierarchy in Java.

You can define your own classes that inherit from standard-java-object as well as other classes using standard
defclass. Alternatively, you can tell the importing interface to define classes. There is no obvious advantage for using the
latter.

39 The LW-JI Package

1097

http://www.lispworks.com/documentation/HyperSpec/Body/f_gensym.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm

The jobject slot defaults to nil, which the Java interface interprets as an invalid value. Your code needs to do something to
set it. One option is to set it explicitly using the accessor java-instance-jobject. When you do that, the object must be
a jobject, but the interface does not put any other restrictions. As long as it fits with the logic of your program, an instance
of any Lisp class can hold a jobject of any Java class.

The other way to set the jobject slot is to use one of the interface functions that does it implicitly. This include the functions
make-java-instance, create-instance-jobject and create-instance-jobject-list, and the :construct
keyword argument to make-instance.

The :construct keyword is processed by an :after method of cl:initialize-instance on
standard-java-object. When :construct is supplied, it needs to be either a list (possibly nil) of arguments for the
constructor, or t, which means use default-constructor-arguments to get the argument list. The method then calls
create-instance-jobject-list with the instance and the arguments to set create and set the jobject.

Additionally, the instance that is returned by create-instance-from-jobject also has the jobject.

Notes

When you pass :construct t, the call to default-constructor-arguments happens inside
cl:initialize-instance, before all the cl:initialize-instance methods were called (the actual order of calls is
the standard order). That means that if default-constructor-arguments depends on some values in the instance that
may be set by an cl:initialize-instance method of another class, it may not work properly. You can avoid this
problem by not passing the keyword :construct and instead using create-instance-jobject-list on the result of
make-instance.

The interface for setting the jobject implicitly requires an association from the CLOS class name to the constructor, by
using define-java-constructor or setup-java-constructor with the class-symbol argument.

create-instance-from-jobject requires an association from the Java class name to the CLOS class name, which is
created by record-java-class-lisp-symbol.

throw-an-exception Function

Summary

Throws a Java exception from a proxy method invocation.

Package

lw-ji

Signature

throw-an-exception exception-class-or-exception &rest args

Arguments

exception-class-or-exception⇓
A string or a Java object.

args⇓ Lisp objects.

39 The LW-JI Package

1098

http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm

Description

The function throw-an-exception throws a Java exception from a proxy method invocation.

throw-an-exception must be called inside the function that is invoked from a proxy, otherwise a Lisp error is signaled. It
causes throwing of a Java exception from the call.

exception-class-or-exception can be either a string naming an exception class or a Java object of an exception class. When it
is a string, throw-an-exception constructs an exception of this class using args as arguments (same as
create-java-object). If exception-class-or-exception is an exception then args is ignored.

throw-an-exception throws in the Lisp sense out of your code, thus executing unwinding forms of surrounding
cl:unwind-protect, and only then actually does the Java throwing (using JNI).

throw-an-exception can be used with the exception that is caught by catching-java-exceptions, if it is desired that
the exception will be handled by the Java caller to the proxy. It is also needed when the method is documented to throw a
specific exception in some situation.

See also

define-lisp-proxy
15.4.2 Using proxies

to-java-host-stream Variable

Summary

An output stream that sends its output to the Java host.

Package

lw-ji

Initial Value

An output stream.

Description

The variable *to-java-host-stream* is bound globally to an output stream that sends any output that is written to it to
the Java host, by calling send-message-to-java-host. The where-keyword argument to
send-message-to-java-host is :add, so the output is added at the end and scrolled if needed. If you do not want
scrolling, you can use *to-java-host-stream-no-scroll* instead.

See send-message-to-java-host for details.

Notes

The connection to the Java host is made by init-java-interface. Until init-java-interface has been called,
output to *to-java-host-stream* does nothing.

to-java-host-stream is not buffered and makes frequent calls to send-message-to-java-host. This should be
OK for dealing with a few kilobytes for each user gesture.

39 The LW-JI Package

1099

http://www.lispworks.com/documentation/HyperSpec/Body/s_unwind.htm

See also

send-message-to-java-host
to-java-host-stream-no-scroll

to-java-host-stream-no-scroll Variable

Summary

An output stream that sends its output to the Java host without scrolling.

Package

lw-ji

Initial Value

An output stream.

Description

The variable *to-java-host-stream-no-scroll* is bound globally to an output stream that sends any output that is
written to it to the Java host, by calling send-message-to-java-host. The where-keyword argument to
send-message-to-java-host is :add-no-scroll, so the output is added at the end, without ever scrolling. If you want
it to scroll when needed, you can use *to-java-host-stream* instead.

See send-message-to-java-host for details.

Notes

The connection to the Java host is made by init-java-interface. Until init-java-interface is called, output to
to-java-host-stream-no-scroll does nothing.

to-java-host-stream-no-scroll is not buffered and makes frequent calls to send-message-to-java-host. This
should be OK for dealing with a few kilobytes for each user gesture.

See also

send-message-to-java-host
to-java-host-stream

verify-java-caller Function

Summary

Verify the Java caller.

Package

lw-ji

39 The LW-JI Package

1100

Signature

verify-java-caller name => result

Arguments

name⇓ A symbol.

Values

result A boolean.

Description

The function verify-java-caller verifies the Java caller, which means looking up the corresponding Java methods and
setting up the caller for name.

name must be a caller name defined by define-java-caller (but not any of the other definers or setup-java-caller).
If it is not, an error is signaled. Note that the importing interface defines the caller using define-java-caller and that
define-java-callers also expands to define-java-caller, so verify-java-caller can be used on such caller
(but not on constructors or field accessors).

verify-java-caller looks up the Java class and method of the caller (unless they are already cached), and caches the
information (so future calls to name or verification can use it).

verify-java-caller returns t if successful, nil otherwise.

verify-java-caller requires running Java.

Notes

1. In most cases using verify-java-callers to verify all the callers is more convenient.

2. Verification is useful to guard against typing mistakes when you typed the define-java-caller explicitly because
that does not do any lookup until run time, or when you are not sure that the class definition has not changed between the
time you imported the definition and the time it is used.

See also

verify-java-callers
define-java-caller
define-java-callers
15.3 Calling from Lisp to Java

verify-java-callers Function

Summary

Verify all Java callers and return information about which was successful.

Package

lw-ji

39 The LW-JI Package

1101

Signature

verify-java-callers &key classes return => result

Arguments

classes⇓ A list of strings, or nil.

return⇓ t, or one of the keywords :name-only, :name, :info-only and :successful.

Values

result A list.

Description

The function verify-java-callers verifies all Java callers and returns information about which was successful and
which was not.

If classes is non-nil, it must be a list of strings specifying Java classes. In this case, verify-java-callers verifies only
callers for these classes. By default verify-java-callers verifies all callers that were defined by
define-java-caller.

return specifies what to return. See below for details.

verify-java-callers maps through all the callers that were defined by define-java-caller on all classes (if classes
is nil) or on the supplied classes.

Note that the importing interface defines the caller using define-java-caller and that define-java-callers also
expands to define-java-caller, so verify-java-callers verifies these callers too. verify-java-callers does
not verify constructors or field accessors.

For each caller, verify-java-callers looks up the Java class and the method of the caller (unless it is already cached),
and caches the information so calls to the caller and future verifications can use it.

verify-java-callers returns a list containing an item for each failed lookup, except when return is the keyword
:successful, in which case there is an item for each successful lookup. The value of each item depends on the value of
return as follows:

t Each item is a cons (args . condition) where args is a list (name class-name method-name) of
the required arguments of the define-java-caller form, and condition is the condition that
was produced when looking up. Unless something very unusual happened, this condition will be
of type either java-class-error (if it failed to find the class) or java-method-error (if it
failed to find the method).

:name-only Each item is the name of the caller that failed.

:name Each item is a cons where the cl:car is the name caller and the cl:cdr is the condition that
was generated when trying the lookup.

:info-only Each item is the list (name class-name method-name) of the required arguments for
define-java-caller of the failed caller.

:successful Each item is the name of a successful caller.

The default value of return is t.

verify-java-callers requires running Java.

39 The LW-JI Package

1102

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

Verification is useful to guard against typing mistakes when you typed the define-java-callers explicitly because that
does not do any lookup until run time, or when you are not sure that the class definition has not changed between the time
you imported the definition and the time it is used.

The intention is that you call verify-java-callers on starting your application, at least during the development phase,
log the result and check it to see if anything is missing.

See also

verify-java-caller
define-java-caller
define-java-callers
15.3 Calling from Lisp to Java

verify-lisp-proxy
verify-lisp-proxies Functions

Summary

Verify proxy definition(s).

Package

lw-ji

Signatures

verify-lisp-proxy &optional do-undefined-method => unbounds, undefined-methods

verify-lisp-proxies &optional do-undefined-method => defs-with-unbounds, defs-with-undefined-methods

Arguments

do-undefined-method⇓ A generalized boolean.

Values

unbounds⇓ A list of lists, each of length 2.

undefined-methods⇓ A string or a list or nil.

defs-with-unbounds⇓ A list of lists.

defs-with-undefined-methods⇓
A list of lists.

Description

The function verify-lisp-proxy verifies a single proxy definition.

The function verify-lisp-proxies verifies all the proxy definitions that were defined by define-lisp-proxy (but not
those created by setup-lisp-proxy).

Verify means two things:

39 The LW-JI Package

1103

• Check that all symbols in the definition which are not keywords have function definitions.

• Check that the methods that are declared in the interfaces that the definition uses have method-specs. This check is
performed only if do-undefined-method is non-nil, and requires running Java. The default value of do-undefined-method
is nil.

verify-lisp-proxy returns two values:

unbounds reports symbols lacking function definitions. For each list in unbounds, its first element is the method name, and
its second element is the symbol that is not fbound. If the default function is not fbound, there is a list where the first element
is "Default function".

undefined-methods (if do-undefined-method is non-nil) can be either a string if one of the interfaces cannot be found (the
string says that it cannot find an interface and gives its names), or a list. Each element in the list corresponds to an interface.
The first element is the interface name, and the rest of the elements are strings specifying methods for which there is no
matching method-descs.

verify-lisp-proxies maps through the proxy definitions that were defined by define-lisp-proxy, and verifies each
one of them. It returns two values, a list for definitions with symbols are not fbound, and a list for definitions with methods
that are undefined. Each item of defs-with-unbounds is a list corresponding to a definition with symbol not fbound, where the
cl:car is the definition name and the cl:cdr is the value of unbounds as returned by verify-lisp-proxy. Each item in
defs-with-undefined-methods is a cons corresponding to a definition where a method is undefined, where the cl:car is the
definition name and the cl:cdr is a string or a list of undefined methods as described above.

Notes

Failure to find an interface is a real error, and will cause make-lisp-proxy to signal error when trying to make a proxy.
Symbols which are not fbound and missing methods would cause the default function to be called, which may or may not be
the intention. Symbols that are not fbound are useful when they are intended to be always overridden, in which case they
should be keywords, so verification ignores them.

See also

define-lisp-proxy

write-java-class-definitions-to-file
write-java-class-definitions-to-stream Functions

Summary

Generate and output the definitions for a specified Java class.

Package

lw-ji

Signatures

write-java-class-definitions-to-file java-class-name filename &key lisp-name lisp-class-p package-name prefix
name-constructor export-p create-defpackage lisp-supers add-in-package print-case if-exists => java-class-name

write-java-class-definitions-to-stream java-class-name stream &key lisp-name lisp-class-p package-name name-
constructor prefix export-p create-defpackage lisp-supers add-in-package print-case => java-class-name

39 The LW-JI Package

1104

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

Arguments

java-class-name⇓ A string.

filename⇓ A pathname designator.

lisp-name⇓ A symbol.

lisp-class-p⇓ A generalized boolean.

package-name⇓ A package designator.

prefix⇓ A string or nil.

name-constructor⇓ A function designator.

export-p⇓ A generalized boolean.

create-defpackage⇓ A generalized boolean.

lisp-supers⇓ A list of symbols.

add-in-package⇓ A generalized boolean.

print-case⇓ One of the symbols :upcase, :downcase, or :capitalize.

if-exists⇓ One of the symbols :error, :new-version, :rename, :rename-and-delete,
:overwrite, :append, :supersede, or nil.

stream⇓ An output stream.

Values

java-class-name A string.

Description

The functions write-java-class-definitions-to-file and write-java-class-definitions-to-stream

generate the definitions for the Java class named by java-class-name, and then write them to the destination specified by
filename or stream.

The generation of forms as the same as generate-java-class-definitions does, except that when add-in-package is
non-nil write-java-class-definitions-to-stream and write-java-class-definitions-to-file insert a
cl:in-package form after the package manipulation forms. The default value of add-in-package is non-nil.

The arguments java-class-name, lisp-name, lisp-class-p, package-name, name-constructor, prefix, export-p, create-
defpackage and lisp-supers are processed as described in the documentation for generate-java-class-definitions.

If add-in-package is non-nil, then after writing the package manipulation forms, a cl:in-package form is written with the
package in which the definition names are interned, and the current package is bound to this package, which means the
definition names do not need to be qualified with the package name.

print-case controls the binding of cl:*print-case* while outputting. The default value of print-case is :downcase.

if-exists is used by write-java-class-definitions-to-file when opening the file, in the same way as open.

write-java-class-definitions-to-stream generates the definitions for the class, and then writes all the definitions
to the stream stream, with all the printer control variable set to the default except cl:*print-case* which takes its value
from print-case, It adds some comments, as lines starting with ";;;".

write-java-class-definitions-to-file first open the file for output using filename and if-exists, and then calls
write-java-class-definitions-to-stream with all the arguments except filename and if-exists.

39 The LW-JI Package

1105

http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_cas.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_cas.htm

write-java-class-definitions-to-stream and write-java-class-definitions-to-file return java-class-
name.

Notes

1. write-java-class-definitions-to-stream and write-java-class-definitions-to-file require Java
running, that is a working Java Virtual Machine and access to the definition of the class.

The generated code, however, is plain lisp, and can be compiled and loaded without Java. They allow you to use either
of these functions once to generate the definitions, and add the output or file to your sources, and hence be able to
compile and sources without running Java. Note that the output has no machine dependency at all. so as long as you can
assume that the definition of the class does not change, you can output the definitions anywhere. For "globally public"
classes (in the Java or Android packages), you can probably ask Lisp Support to generate the classes you need, and never
bother with running Java on your development machine.

2. The output of these functions is all "user code", that is it uses only exported functions and macros that are available to
user. It can be edited as desired, and definitions from it can be copied and used elsewhere.

3. write-java-class-definitions-to-stream is intended to allow writing the definitions of several classes to the
same file. This especially useful when you write the definitions of several Java classes with the same package.

See also

generate-java-class-definitions
import-java-class-definitions
15.3.2 Importing classes

39 The LW-JI Package

1106

40 Java classes and methods

This chapter describes the Java classes and methods available in LispWorks.

For an overview of this functionality with examples of use, see 15 Java interface.

com.lispworks.LispCalls Java Class

Summary

public class com.lispworks.LispCalls implements InvocationHandler

The Java class com.lispworks.LispCalls defines methods for calling from Java to Lisp.

com.lispworks.LispCalls is part of the LispWorks distribution. For Android it is part of the
8-1-0-0/etc/lispworks.aar file. See the 16 Android interface for details. On other platforms it is defined in the JAR
file lispcalls.jar which is part of the LispWorks distribution in the etc directory, that is
(lispworks-file "etc/lispcalls.jar"). This JAR file needs to be on the classpath (for example by the keyword
argument :java-class-path to init-java-interface).

com.lispworks.LispCalls.callIntV
com.lispworks.LispCalls.callIntA
com.lispworks.LispCalls.callDoubleV
com.lispworks.LispCalls.callDoubleA
com.lispworks.LispCalls.callObjectV
com.lispworks.LispCalls.callObjectA
com.lispworks.LispCalls.callVoidV
com.lispworks.LispCalls.callVoidA Methods

public static int callIntV(String name, Object... args)

public static int callIntA(String name, Object[] args)

public static double callDoubleV(String name, Object... args)

public static double callDoubleA(String name, Object[] args)

public static Object callObjectV(String name, Object... args)

public static Object callObjectA(String name, Object[] args)

public static void callVoidV(String name, Object... args)

public static void callVoidA(String name, Object[] args)

1107

Description

The <type> in each method name call<type>[VA], the type specifies the return type, and V or A specifies whether the
arguments are supplied as Variable arguments or Array. Otherwise the pairs of V and A methods behave the same.

name argument is a string specifying a Lisp symbol. The name is parsed by a simple parser as described for
com.lispworks.LispCalls.checkLispSymbol (with fboundp = true).

If the symbol is not found or is not fbound, these methods throw a RuntimeException with a string giving the reason for
failure.

If the symbol is found, it is applied to the arguments args. For each argument, if it is a primitive type or of a class
corresponding to a primitive type or a string, it is converted to the corresponding Lisp value. Otherwise it is passed as a
jobject. See 15.2 Types and conversion between Lisp and Java. The result of the call is converted to the return type of
the method and returned from the method. The conversion of the result type allows any float to be returned as a double, but
does not coerce between integers and floats. For the Object return value, the result must be either a Java object (jobject or
an instance of standard-java-object), or a Lisp object that can be converted to a Java object. See 15.2 Types and
conversion between Lisp and Java.

The Lisp function is an ordinary Lisp function, but it needs to return the right value. Unless the call is using the Void callers
(com.lispworks.LispCalls.callVoidA or com.lispworks.LispCalls.callVoidV), returning the wrong value
will call the java-to-lisp-debugger-hook (see init-java-interface) with an appropriate condition, and then return zero of
the correct type (that is 0, 0d0 or Java null) from the call.

The call to the Lisp function is wrapped such that trying to throw out of it does not actually finish the throw, and instead
returns zero of the correct type from the call. It is also wrapped by a debugger hook, which is invoked if the code tries to
enter the debugger (normally as a result of an unhandled error, but could be any call to cl:invoke-debugger). The hook
calls the java-to-lisp-debugger-hook (see init-java-interface) with the condition, and then calls cl:abort. If there is
no cl:abort restart inside the Lisp function that catches this abort, this causes returning a zero of the correct type.

An important issue to remember is that when delivering with shaking, LispWorks eliminates symbols for which there is no
reference. If the only call to a Lisp symbol foo is from Java, LispWorks will not see the reference and it will eliminate foo.
To guard against this, you can either pass foo in a list to the deliver keyword :keep-symbols, or more conveniently, use
the function deliver-keep-symbols (see the Delivery User Guide), for example:

(defun function-called-from-java (arg1 arg2)
 ...
)

(deliver-keep-symbols 'function-called-from-java)

Examples

int sum = com.lispworks.LispCalls.callIntV("+", 2, 3, 10);
=> sum = 15

int position = com.lispworks.LispCalls.callIntV("search", "r", "international");
=> position = 4
double logThree = com.lispworks.LispCalls.callDoubleV("log", 3);
=> logThree = 1.0986123

com.lispworks.LispCalls.checkLispSymbol Method

public static boolean checkLispSymbol(String name, boolean fboundp)

40 Java classes and methods

1108

http://www.lispworks.com/documentation/HyperSpec/Body/f_invoke.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_abort.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_abort.htm

Description

Checks whether a Lisp symbol exists, and optionally whether it is fbound.

name specifies the name of the Lisp symbol. The string name is parsed in a simple way, rather than using the Lisp reader.
The parsing involves:

1. Upcase the string.

2. If there is a colon, take the part before it as a package name. Otherwise use "COMMON-LISP-USER" as the package
name.

3. If the colon is followed by another colon, skip it and set a flag allowing internals. Otherwise, set a flag allowing only
externals.

4. Take the rest of the string as the symbol name.

5. Find the package from the package name.

6. Find the symbol using the package and the symbol name. If it is internal, use it only if the flag allowing internal was set.

7. If fboundp is true, check whether the symbol is fbound.

If all these steps succeed, checkLispSymbol returns true. Otherwise it returns false.

For symbols with names that do not need escaping, the result is the same normal processing by the Lisp reader without
interning when there is no symbol.

checkLispSymbol caches the results in the Java side, which means that if the symbol appears or gets defined after the first
call to checkLispSymbol it may return the wrong result.

See also

15.4 Calling from Java to Lisp
init-java-interface
define-lisp-proxy
deliver

com.lispworks.LispCalls.createLispProxy Method

public static native Object createLispProxy(String name)

Description

Creates a Lisp proxy, which is a Java proxy which calls Lisp functions.

name specifies a symbol which is the name of a proxy definition, defined in Lisp by either define-lisp-proxy or
setup-lisp-proxy. name is parsed by a simple parser as described for
com.lispworks.LispCalls.checkLispSymbol (with fboundp = false).

Once it found the symbol, it makes a proxy the same way that calling make-lisp-proxy with name would, and returns it.
The result is an Object that implements all the interfaces that are defined in the proxy definition, and when the methods of
these interfaces are called on the object it calls into Lisp. See define-lisp-proxy for details.

If createLispProxy is successful it returns the proxy object. If there is any problem, this will cause a call to cl:error. If
the cl:error call is not handled, the java-to-lisp-debugger-hook (see init-java-interface) is called with the
condition, and then null is returned from createLispProxy. If the error is handled and tries to throw out of the context of
the Lisp side of createLispProxy, the throw is blocked and createLispProxy returns null.

40 Java classes and methods

1109

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

com.lispworks.LispCalls.waitForInitialization Method

static public boolean waitForInitialization()

static public boolean waitForInitialization(long seconds)

static public boolean waitForInitialization(long timeout , java.util.concurrent.TimeUnit unit)

Description

Waits for a LispWorks dynamic library to finish initialization and accept foreign calls.

Note: You should not call waitForInitialization from the main thread on Android. Use the methods in
com.lispworks.Manager instead, in particular com.lispworks.Manager.init and
com.lispworks.Manager.status. If you call waitForInitialization from a non-main thread on Android, then this
must be after the call to com.lispworks.Manager.init.

The method without arguments waits for up to 10000 seconds. The method that takes long waits for up to seconds seconds.
The method that takes long and java.util.concurrent.TimeUnit waits for up to the period defined by timeout and
unit. See the Java documentation for the possible values of java.util.concurrent.TimeUnit.

waitForInitialization returns when LispWorks has finished its initialization or when the wait period has passed. If
LispWorks finishes its initialization first, waitForInitialization returns true. If the wait period has passed,
waitForInitialization returns false.

When waitForInitialization is called with 0 seconds, it returns immediately with true if LispWorks is already
initialized, and false otherwise. Thus it can be used as a predicate without waiting.

Notes

Until LispWorks finishes its initialization, calls into LispWorks from Java using the other methods in
com.lispworks.LispCalls hang, and raise an exception if hanging for too long. If this is an acceptable behavior, then
you do not need waitForInitialization. If this is not acceptable, waitForInitialization allows you to check and
avoid this situation. Typically your code will do something like:

if (com.lispworks.LispCalls.waitForInitialization(1))
 com.lispworks.LispCalls.callIntV("A-LISP-FUNCTION");
else
 do_something_else();

If the LispWorks dynamic library was created with synchronous initialization (the default), then by the time the loading
method (normally System.loadLibrary or System.load) returns, LispWorks has finished initializing. In this case you
need waitForInitialization only in code that does not know if the loading method has returned (or even called at all).

If the LispWorks dynamic library was created with asynchronous initialization
(setup-deliver-dynamic-library-for-java was called with true for asynchronous), the loading method returns
immediately, and LispWorks initializes asynchronously. In this situation you can be sure that LispWorks finished initializing
only after a call to waitForInitialization has returned true.

If you don't know how the LispWorks dynamic library was created, just assume that it is asynchronous and always check
using waitForInitialization.

See also

setup-deliver-dynamic-library-for-java

40 Java classes and methods

1110

41 Android Java classes and methods

This chapter describes the Android interface Java code.

For an overview of this functionality with examples of use, see 16 Android interface.

com.lispworks.BugFormLogsList Java Class

Summary

public class BugFormLogsList extends ListActivity

The Java class com.lispworks.BugFormLogsList is used by com.lispworks.Manager.showBugFormLogs to show
the list of bug form logs.

See also

com.lispworks.Manager.showBugFormLogs

com.lispworks.BugFormViewer Java Class

Summary

public class BugFormViewer extends Activity

The Java class com.lispworks.BugFormViewer is used by com.lispworks.Manager.showBugFormLogs to show an
individual log.

See also

com.lispworks.Manager.showBugFormLogs

com.lispworks.Manager Java Class

Summary

public class com.lispworks.Manager

The Java class com.lispworks.Manager defines methods for using Lisp on Android . It contains one essential method,
com.lispworks.Manager.init, which loads and initializes LispWorks. It also contains methods to set error reporters that
will get called when an error inside Lisp is not caught by user handlers or when report-error-to-java-host is called,
some methods to define where messages from Lisp (calls to send-message-to-java-host or format-to-java-host)
go, and some other utilities.

See 16.1 Delivering for Android for details.

1111

com.lispworks.Manager defines these methods and fields:

Initialization

public static int init(Context context , String deliverName, Runnable reporter)
public static int init(Context context)
public static int init(Context context, Runnable reporter)
public static int init(Context context, String deliverName)

public static int status()
public static int init_result_code()
public static String mInitErrorString = ""

public static boolean loadLibrary()
public static boolean loadLibrary(String deliverName)
final public static int STATUS_INITIALIZING = 0
final public static int STATUS_READY = 1
final public static int STATUS_NOT_INITIALIZED = -1
final public static int STATUS_ERROR = -2
final public static int INIT_ERROR_NO_LIBRARY = -2000
final public static int INIT_ERROR_NO_ASSET = -2001
final public static int INIT_ERROR_FAIL_HEAP = -2002

Error handling

public static void setErrorReporter(LispErrorReporter ler)
public static void setGuiErrorReporter(LispGuiErrorReporter ler)
public interface LispErrorReporter
public interface LispGuiErrorReporter
public static synchronized void clearBugFormLogs(int count)
public static void showBugFormLogs(Activity act)
public static String mInitErrorString = ""
public static int mMaxErrorLogsNumber = 5

Message handling

public interface MessageHandler
public void setMessageHandler(MessageHandler handler)
public static synchronized void setTextView(android.widget.TextView textview)
public static void addMessage(String message, int where)
public static int mMessagesMaxLength
final public static int ADDMESSAGE_RESET = 0
final public static int ADDMESSAGE_APPEND = 1
final public static int ADDMESSAGE_PREPEND = 2
final public static int ADDMESSAGE_APPEND_NO_SCROLL = 3
final public static int ADDMESSAGE_ADD = 4
final public static int ADDMESSAGE_ADD_NO_SCROLL = 5

Others

public static void setCurrentActivity(android.app.Activity activity)
public static ClassLoader getClassLoader()
public static Context getApplicationContext()

41 Android Java classes and methods

1112

Special pre-init settings

public static void setRuntimeLispHeapDir(String dir)
public static void setLispTempDir(String dir)
public static void setClassLoader(ClassLoader cl)

Notes

The com.lispworks.Manager class is part of the LispWorks distribution, inside the lispworks.aar file.

com.lispworks.Manager.init Method

public static int init(Context context)

public static int init(Context context, Runnable reporter)

public static int init(Context context, String deliverName)

public static int init(Context context, String deliverName, Runnable reporter)

Description

Load and initialize Lispworks asynchronously.

init first checks whether LispWorks is already initialized or in the process of initializing, and if it is returns immediately the
appropriate value (STATUS_READY or STATUS_INITIALIZING). Otherwise it loads LispWorks, and initiates the
initialization process on another thread. It returns before initialization finished.

context is any object of class android.content.Context. init uses it to find the application context, and hence where
the LispWorks heap is.

reporter is a Runnable that is invoked (that is its run method is invoked) when LispWorks finished initialization. The
invocation is on the main thread. In general, reporter should use com.lispworks.Manager.status to check that
initializing LispWorks succeeded. Once reporter has been invoked and com.lispworks.Manager.status returned
STATUS_READY, it is possible to make calls into Lisp by methods in com.lispworks.LispCalls. If reporter is not
supplied, it is possible to know that LispWorks is ready by two other mechanisms:

• Use the com.lispworks.Manager.status method from other places.

• Call from Lisp into Java from the restart function (the first argument to deliver-to-android-project). When this
restart function runs, LispWorks is already ready.

deliverName specifies the name of the delivered LispWorks, specifically the base name of the heap and the dynamic library.
See deliver-to-android-project for discussion. The default for deliverName is "LispWorks", which is the default in
deliver-to-android-project, so normally you do not need it.

init returns one of the STATUS_… constants. See the entry for com.lispworks.Manager.status.

init can be called repeatedly and it is thread-safe. The second and subsequent calls will not try to initialize it, unless the
status is STATUS_ERROR, in which case it will try again. Each reporter that is passed to init is called independently. This is
designed so if your application does not initialize LispWorks on startup, each part of it that relies on LispWorks can use
com.lispworks.Manager.status to check whether LispWorks is ready, and if not call init with a reporter, and when a
reporter is invoked check that com.lispworks.Manager.status returns STATUS_READY, and then rely on working
LispWorks.

In most applications, all you need to do it initialize LispWorks is to call init Some specialized application may need to do
some configuration before calling init, which can be done using com.lispworks.Manager.setRuntimeLispHeapDir,

41 Android Java classes and methods

1113

com.lispworks.Manager.setLispTempDir or com.lispworks.Manager.setClassLoader. You should consult
LispWorks support if you believe you need to use these.

See also

com.lispworks.Manager.status
deliver-to-android-project
com.lispworks.Manager
16.1 Delivering for Android

com.lispworks.Manager.status Method And Fields

public static int status()

final public static int STATUS_INITIALIZING = 0

final public static int STATUS_READY = 1

final public static int STATUS_NOT_INITIALIZED = -1

final public static int STATUS_ERROR = -2

Description

Return the status of LispWorks:

STATUS_INITIALIZING

LispWorks started initializing but has not finished yet. Because
com.lispworks.Manager.init is asynchronous, it typically returns this value.

STATUS_READY LispWorks finished initializing.

STATUS_NOT_INITIALIZED

LispWorks has not started initializing, that is before com.lispworks.Manager.init was
called.

STATUS_ERROR There was an error during initialization that prevented initialization. The method
com.lispworks.Manager.init_result_code and the field
com.lispworks.Manager.mInitErrorString gives more information about the reason for
failure.

See also

com.lispworks.Manager.init
com.lispworks.Manager.init_result_code
com.lispworks.Manager.mInitErrorString
16.1 Delivering for Android

com.lispworks.Manager.init_result_code Method And Fields

public static int init_result_code()

final public static int INIT_ERROR_NO_LIBRARY = -2000

final public static int INIT_ERROR_NO_ASSET = -2001

41 Android Java classes and methods

1114

final public static int INIT_ERROR_FAIL_HEAP = -2002

Description

Return a more detailed code specifying the result of the call to com.lispworks.Manager.init. The code is either one of
the three INIT_ERROR_… constants above, or one of the codes that InitLispWorks returns.

INIT_ERROR_NO_LIBRARY

com.lispworks.Manager.init did not find the library.

Normally that would mean it is not in the project where it should be (libs/armeabi-v7a for
Eclipse, jniLibs/armeabi-v7a for Android Studio), or its name is not correct. See
deliver-to-android-project for details.

INIT_ERROR_NO_ASSET

com.lispworks.Manager.init failed to find the LispWorks heap in the assets. Normally that
means that the LispWorks heap is missing from the project (it should be in assets), or its name is
incorrect. See deliver-to-android-project for details.

INIT_ERROR_FAIL_HEAP

Extracting the heap from the assets failed. That in general should not happen. It may happen if
the disk on the system is full.

Other values are documented for InitLispWorks. In general:

• 0 or greater means success (com.lispworks.Manager.status returns STATUS_READY).

• Values greater than -100 and lower than 0 mean timeout. Since com.lispworks.Manager.init is asynchronous, that
would be the values during initialization (com.lispworks.Manager.status returns STATUS_INITIALIZING).

• -100 means not initialized (com.lispworks.Manager.status returns STATUS_NOT_INITIALIZED).

• Values lower than -100 indicate an error (com.lispworks.Manager.status returns STATUS_ERROR).

init_result_code would typically be used after com.lispworks.Manager.status returned STATUS_ERROR.

When there is an error, com.lispworks.Manager.mInitErrorString contains a string describing it.

See also

com.lispworks.Manager.mInitErrorString
com.lispworks.Manager.init
com.lispworks.Manager.status
deliver-to-android-project
16.1 Delivering for Android

com.lispworks.Manager.mInitErrorString Field

public static String mInitErrorString = ""

Description

Contains a string explaining the result for an error during initialization.

mInitErrorString is set to a non-empty string if there is an error during initialization of LispWorks, which would be

41 Android Java classes and methods

1115

detected either by using com.lispworks.Manager.status or com.lispworks.Manager.init_result_code.

The explanation is technical, so it will not be useful to show it to end users, but it should be helpful to developers, and
certainly to LispWorks support.

See also

com.lispworks.Manager.init
com.lispworks.Manager.status
com.lispworks.Manager.init_result_code
16.1 Delivering for Android

com.lispworks.Manager.loadLibrary Method

public static boolean loadLibrary()

public static boolean loadLibrary(String deliverName)

Description

Loads only the LispWorks dynamic library without initializing, for debugging.

Normally loadLibrary is called by com.lispworks.Manager.init, and in general you should not use it. It is supplied
because it is sometimes useful for debugging.

com.lispworks.Manager.init can be called after loadLibrary was called, and will skip the call to it in this case.

deliverName has the same meaning as in com.lispworks.Manager.init.

Note that loadLibrary is not thread-safe on its own.

loadLibrary returns true on success, otherwise it returns false and sets
com.lispworks.Manager.mInitErrorString.

See also

com.lispworks.Manager.init
com.lispworks.Manager.mInitErrorString

com.lispworks.Manager.LispErrorReporter
com.lispworks.Manager.setErrorReporter
com.lispworks.Manager.LispGuiErrorReporter
com.lispworks.Manager.setGuiErrorReporter Methods And Interfaces

public interface LispErrorReporter {
 boolean report(String errorString, String filename);
}

public static void setErrorReporter(LispErrorReporter ler)

public interface LispGuiErrorReporter {
 boolean report(String errorString, String filename);
}

public static void setGuiErrorReporter(LispGuiErrorReporter ler)

41 Android Java classes and methods

1116

Description

Set error reporters that gets invoked when either report-error-to-java-host is called, or an error is not caught by your
handler or hook.

setErrorReporter and setGuiErrorReporter are used to set error reporters. When either
report-error-to-java-host is called (by your code, the system does not use it) or an error is not handled by your
handlers (including debugger-wrappers and cl:*debugger-hook*), the report method of the interface is invoked. By
default the reporters are both null.

errorString is a string describing the error and filename is the name of a file that contains a log file, but can be also null.

Note: when report-error-to-java-host is called it is your responsibility to pass the right strings.

The reporters should do whatever you want to do. The return value should indicate if the error was dealt with completely, so
there is no need to call com.lispworks.Manager.addMessage (see below).

The reporter that is set by setErrorReporter ("the Lisp error reporter") and the reporter that is set by
setGuiErrorReporter ("the Lisp GUI error reporter") differ by the scope in which their report method is invoked:

• The report method of the Lisp error reporter is invoked within the scope of the error, which also means it can be any
thread. It is therefore cannot do anything related to the GUI, and needs to be runnable on any thread. In general, it
should only set internal variables and return, but it may also do things like copying the log file somewhere.

• The report method of the Lisp GUI error reporter is invoked outside the scope of the error, on the GUI thread. It is
done by the event loop of the GUI thread, so it is also synchronous with respect to processing events. It can therefore
safely access the GUI and perform what is needed to inform the user that an error has occurred.

setErrorReporter and setGuiErrorReporter can be called at any time, before or after
com.lispworks.Manager.init. There is only one Lisp error reporter and one Lisp GUI error reporter, and each call to
setErrorReporter or setGuiErrorReporter overwrites the previous value. The reporters can be set to null.

When Lisp calls into Java to report an error, it does the following steps:

1. If com.lispworks.Manager.mMaxErrorLogsNumber is greater than 0, records the error and delete previous
record(s) if the number of records reached com.lispworks.Manager.mMaxErrorLogsNumber (these records can be
displayed by com.lispworks.Manager.showBugFormLogs).

2. If the Lisp error reporter (the non-GUI one) is not null, invoke its report method.

3. If the Lisp GUI error reporter is not null, arrange for its report method to be invoked on the GUI process, and does
the next 2 steps after this invocation.

4. If neither of the reporters returned true, use com.lispworks.Manager.addMessage to append the error message.
See documentation for com.lispworks.Manager.addMessage.

5. If com.lispworks.Manager.mMaxErrorLogsNumber is not greater than 0, delete the log file if it is not null.

Notes

The log files are deleted when LispWorks starts (when com.lispworks.Manager.init is successful). They are also in the
internal cache directory, which means they are not visible to other applications. If you want to make the logs visible, the
reporter needs to copy the file to an external directory.

See also

report-error-to-java-host
com.lispworks.Manager.init
com.lispworks.Manager.addMessage

41 Android Java classes and methods

1117

http://www.lispworks.com/documentation/HyperSpec/Body/v_debugg.htm

com.lispworks.Manager.showBugFormLogs
com.lispworks.Manager.mMaxErrorLogsNumber

com.lispworks.Manager.clearBugFormLogs Method

public static synchronized void clearBugFormLogs(int count)

Description

Clear the bug form logs list.

LispWorks keeps a record of error reports containing the error strings and the file names containing the log (the arguments the
report method of com.lispworks.Manager.LispErrorReporter received). clearBugFormLogs eliminates all
entries except the last count entries, and removes the files.

The record is limited to com.lispworks.Manager.mMaxErrorLogsNumber, which defaults to 5.

The record can be displayed by com.lispworks.Manager.showBugFormLogs, which allows the user to open the log file
of a record by selecting it.

Notes

The log files are also automatically deleted when LispWorks starts (that is when com.lispworks.Manager.init is
successful).

See also

com.lispworks.Manager.setErrorReporter
com.lispworks.Manager.mMaxErrorLogsNumber
com.lispworks.Manager.showBugFormLogs

com.lispworks.Manager.mMaxErrorLogsNumber Field

public static int mMaxErrorLogsNumber = 5

Description

Maximum number of error logs to keep.

The default value of 5 is a compromise between keeping many logs (in case some are useful) and avoiding filling the disk.
During development you may want to enlarge it, and in the finished product maybe reduce it, possibly to 0.

The log files are deleted when LispWorks is initialized.

com.lispworks.Manager.showBugFormLogs Method

public static void showBugFormLogs(Activity act)

Description

This method is for debugging.

showBugFormLogs shows a list of the BugFormLogs, where each item is an error string, and allows you to open the
associated log file by touching the item. If there is only one item, it opens it immediately.

41 Android Java classes and methods

1118

act is the activity that invokes the bug list.

The bug list is displayed in its own activity, com.lispworks.BugFormLogsList, and the log file is opened to another
activity, com.lispworks.BugFormViewer. To make showBugFormLogs work, you must add these activities to the file
AndroidManifest.xml in your project like this:

<activity android:name="com.lispworks.BugFormViewer" android:label="Bug Form viewer"> </activity>
<activity android:name="com.lispworks.BugFormLogsList" android:label="Bug Form Logs"> </activity>

The AndroidManifest.xml of the OthelloDemo examples contains these lines. Apart from putting the activities in the
AndroidManifest.xml, you should not do anything else with them.

This method shows Lisp bug forms, so is useful only for Lisp developers.

There will not be any bug form logs if there was no error, or com.lispworks.Manager.mMaxErrorLogsNumber is set to
0, in which case showBugFormLogs does nothing. It is also possible for the user error reporters (see
com.lispworks.Manager.setErrorReporter) to delete the log files, so com.lispworks.BugFormViewer will fail
to show it.

showBugFormLogs is useful during development. Once the application is working, you probably want to remove the
activities from AndroidManifest.xml and not use showBugFormLogs.

See also

com.lispworks.Manager.mMaxErrorLogsNumber
com.lispworks.Manager.setErrorReporter
com.lispworks.BugFormLogsList
com.lispworks.BugFormViewer

com.lispworks.Manager.addMessage
com.lispworks.Manager.mMessagesMaxLength Method And Fields

public static void addMessage(String message, int where)

public static int mMessagesMaxLength = 10000

final public static int ADDMESSAGE_RESET = 0

final public static int ADDMESSAGE_APPEND = 1

final public static int ADDMESSAGE_PREPEND = 2

final public static int ADDMESSAGE_APPEND_NO_SCROLL = 3

final public static int ADDMESSAGE_ADD = 4

final public static int ADDMESSAGE_ADD_NO_SCROLL = 5

Description

Adds a message.

The actual meaning of adding a message is either to call the message handler if it was set by
com.lispworks.Manager.setMessageHandler, or put the message in the output text view if it was set by
com.lispworks.Manager.setTextView, if neither the handler or the view are set, then addMessage accumulates the
messages, and inserts the text next time that that com.lispworks.Manager.setTextView is called.

The operation of addMessage is first to check whether the handler is not null, and if it is call the handler with the two

41 Android Java classes and methods

1119

arguments. If the handler returns true, addMessage does not do anything else. Otherwise, if there is a textview it adds the
message to it, otherwise it adds the message to its own buffer.

where needs to be one of the six ADDMESSAGE_… constants, and determines how the message is added. ADDMESSAGE_RESET
causes addMessage to first clear the textview or the internal string before adding the message. ADDMESSAGE_PREPEND
means adding the string at the beginning of the textview or internal string, followed by a newline. ADDMESSAGE_APPEND,
ADDMESSAGE_APPEND_NO_SCROLL, ADDMESSAGE_ADD and ADDMESSAGE_ADD_NO_SCROLL all add the message to the end
of the textview or internal string. ADDMESSAGE_APPEND and ADDMESSAGE_APPEND_NO_SCROLL follow the message by a
newline, while the ADDMESSAGE_ADD and ADDMESSAGE_ADD_NO_SCROLL do not. ADDMESSAGE_APPEND_NO_SCROLL and
ADDMESSAGE_ADD_NO_SCROLL do not scroll, while ADDMESSAGE_APPEND and ADDMESSAGE_ADD scroll the textview to
make at least the top of the new message visible.

addMessage is used by LispWorks to perform the operation of send-message-to-java-host, and to report errors which
are not dealt with by the error reporters. You can use it when it is useful.

The call to the handler is done on the thread on which addMessage is called, so the handler must be able to cope with being
called on any thread, and needs to be thread-safe. The access to the textview or the internal string is done on the GUI thread
and is thread-safe.

mMessagesMaxLength limits the length that addMessage accumulates. The length of the text that addMessage
accumulates, either internally or in the TextView, is limited to the value mMessagesMaxLength (default 10000). When
appending causes the length to overflow this value, addMessage removes the beginning of the old accumulated text so the
total is the limited to mMessagesMaxLength. However, it does not remove part of the message itself, so calling
addMessage with a string longer than mMessagesMaxLength will cause the TextView or internal string to be longer than
mMessagesMaxLength (the old text would be removed completely in this case).

Compatibility notes

ADDMESSAGE_ADD and ADDMESSAGE_ADD_NO_SCROLL are new in LispWorks 7.1. In LispWorks 7.0, the
ADDMESSAGE_APPEND and ADDMESSAGE_APPEND_NO_SCROLL inserted the newline before the message. If you rely on that,
you may have to modify your code.

See also

send-message-to-java-host
com.lispworks.Manager.setErrorReporter
com.lispworks.Manager.setMessageHandler
com.lispworks.Manager.setTextView

com.lispworks.Manager.setMessageHandler
com.lispworks.Manager.MessageHandler Method And Interface

public void setMessageHandler(MessageHandler handler) {

mMessagehandler = handler;

}

public interface MessageHandler {
 boolean handle(String message, int where);
}

Description

Sets the message handler which com.lispworks.Manager.addMessage uses.

41 Android Java classes and methods

1120

The handler is null by default, and can be set to null.

When handler is not null, com.lispworks.Manager.addMessage calls the handle method with its arguments. The
result tells com.lispworks.Manager.addMessage whether to deal further with the string, see its reference entry for
further details.

Note that handler can be called on any thread, and needs to be thread-safe.

See also

com.lispworks.Manager.addMessage

com.lispworks.Manager.setTextView Method

public static synchronized void setTextView(android.widget.TextView textview)

Description

Sets the TextView for com.lispworks.Manager.addMessage.

The TextView defaults to null and can be set to null. When it is null, com.lispworks.Manager.addMessage
accumulates the message.

When setTextView is called, if there is already a TextView it takes the content first and puts it in the buffer of
com.lispworks.Manager.addMessage. If textview is not null, it puts into it the buffer of
com.lispworks.Manager.addMessage and clears the buffer. This is designed such that you can set the TextView to
another TextView or to null without losing text.

The intention is that TextView makes it easy to display messages that come from Lisp. In a fully-developed product you
probably want a better mechanism, by setting the message handler with com.lispworks.Manager.setMessageHandler.

There is no expectation by setTextView or com.lispworks.Manager.addMessage about the properties of the
TextView except that it is possible to add text to it and delete all the text from it. You can manipulate it yourself (for
example delete all the text, or all the text except the last 100 lines) while is set.

setTextView can be called on any thread, and is thread-safe. The manipulation of the TextView by
com.lispworks.Manager.addMessage is always done on the GUI process.

See also

com.lispworks.Manager.addMessage
com.lispworks.Manager.setMessageHandler

com.lispworks.Manager.getClassLoader
com.lispworks.Manager.getApplicationContext Methods

public static ClassLoader getClassLoader()

public static Context getApplicationContext()

Description

Return the application context of the Context that was supplied to com.lispworks.Manager.init, and the
ClassLoader associated with it.

These are utility methods that LispWorks itself uses and you may find useful. They must be called only after

41 Android Java classes and methods

1121

com.lispworks.Manager.init was called.

See also

com.lispworks.Manager.init

com.lispworks.Manager.setCurrentActivity Method

public static void setCurrentActivity(android.app.Activity activity)

Description

Sets the current activity that can be used inside Lisp using android-get-current-activity.

activity must be the current active Activity, or null. The Lisp function android-get-current-activity returns this
activity.

Once activity becomes inactive, setCurrentActivity needs to be called with null, or the new active Activity.

Notes

1. setCurrentActivity is effectively licensing the Lisp side to raise dialogs in the current activity.

2. Activity instances that are used in setCurrentActivity should reset it by calling it with null in their onPause
method, to ensure that they are not used after they are no longer visible.

3. Activities that allow Lisp to raise dialogs throughout their lifetime should set it on in the onResume method.

4. If all the activities in the application set the current activity, then you do not need to reset it in the onPause method.

5. setCurrentActivity only affects what android-get-current-activity returns. Code that gets the Activity
in other way will not be affected.

See also

android-get-current-activity

com.lispworks.Manager.setRuntimeLispHeapDir Method

public static void com.lispworks.Manager.setRuntimeLispHeapDir(String dir)

Description

Sets the directory that com.lispworks.Manager.init will use for the runtime heap of LispWorks.

Note: normally you should not need to use this method.

To initialize, LispWorks needs its heap (which is in the APK), to be written to disk. By default,
com.lispworks.Manager.init uses a sub-directory named lispworks-system inside the directory that is specified by
the dataDir field of the ApplicationInfo of the Context that is passed to com.lispworks.Manager.init (i.e.
context.getApplicationInfo().dataDir). Normally you do not need to change that, but on rare occasions you may
want to use another directory, and you can use setRuntimeLispHeapDir to do that.

setRuntimeLispHeapDir must be called before com.lispworks.Manager.init is called, and throws a
RuntimeException if it called after com.lispworks.Manager.init.

41 Android Java classes and methods

1122

dir must specify the full path of the directory to use. If it does not end with a slash, then setRuntimeLispHeapDir adds a
slash. It then checks if the directory exists, and if not tries to create it using File.mkdirs (which may throw an exception).
It also checks that it is an existing file, and throws RuntimeException if it is.

com.lispworks.Manager.init checks if the directory already contains a Lisp heap, and uses this heap if it does, which
speeds up the initialization after the first one. Therefore, you cannot use a directory that may be shared with other
applications, and it is better to use the same one each time.

See also

com.lispworks.Manager.init

com.lispworks.Manager.setLispTempDir Method

public static void com.lispworks.Manager.setLispTempDir(String dir)

Description

Sets the temporary directory for that LispWorks uses.

Note: normally you should not need to use this method.

The temporary directory that LispWorks uses (which you can obtain inside LispWorks by calling get-temp-directory) is
normally the directory that getCacheDir returns from the Context that is passed to com.lispworks.Manager.init

(i.e. context.getCacheDir()). Normally you should not change this, but on rare occasions you may want to. It is also
possible to change it inside LispWorks by calling sys:set-temp-directory. setLispTempDir allows you to set it in
Java before calling com.lispworks.Manager.init.

setLispTempDir must be called before com.lispworks.Manager.init, and throws a RuntimeException if it called
after com.lispworks.Manager.init.

dir must specify the full path of the directory to use. If it does not end with a slash, then setLispTempDir adds a slash. It
then checks if the directory exists, and if not tries to create it using File.mkdirs (which may throw an exception). It also
checks that it is an existing file and throws RuntimeException if it is.

See also

com.lispworks.Manager.init

com.lispworks.Manager.setClassLoader Method

public static void com.lispworks.Manager.setClassLoader(ClassLoader cl)

Description

Sets the ClassLoader that LispWorks uses.

Note: normally you should not need to use this method.

By default, LispWorks uses the Class Loader from the ApplicationInfo of the Context that is passed to
com.lispworks.Manager.init (i.e. context.getApplicationContext().getClassLoader()). Normally you
should not change that, but on rare occasions it may be useful.

setClassLoader must be called before com.lispworks.Manager.init, and throws a RuntimeException if it called
after com.lispworks.Manager.init.

41 Android Java classes and methods

1123

cl is set to be the ClassLoader that LispWorks uses. It is also returned by com.lispworks.Manager.getClassLoader.

See also

com.lispworks.Manager.init
com.lispworks.Manager.getClassLoader

41 Android Java classes and methods

1124

42 The MP Package

This chapter describes symbols available in the MP package, giving you access to the multiprocessing capabilities of
LispWorks.

Multiprocessing is discussed in detail in 19 Multiprocessing.

allowing-block-interrupts Macro

Summary

Allows control over blocking interrupts.

Package

mp

Signature

allowing-block-interrupts start-blocked &body body => results

Arguments

start-blocked⇓ A generalized boolean.

body⇓ Code.

Values

results Values returned by evaluating body.

Description

The macro allowing-block-interrupts executes body allowing control over blocking interrupts by
current-process-block-interrupts and current-process-unblock-interrupts.

Within the dynamic scope of allowing-block-interrupts, you can switch the blocking of interrupts on and off.
Blocking interrupts prevents any interruption of the current process, including process-interrupt, process-kill,
process-reset, process-break and process-stop. These interrupts are all queued and processed once interrupts
become unblocked.

Blocking interrupts also blocks interrupts due to POSIX signals. Such interrupts are processed either by another Lisp thread,
or once interrupts become unblocked.

If start-blocked is true, allowing-block-interrupts blocks interrupts on entry. If start-blocked is false, the state does
not change on entry. If you want to ensure that the initial forms of allowing-block-interrupts are interruptible even if
it is inside the scope of another allowing-block-interrupts, you need to explicitly call
current-process-unblock-interrupts on entry.

allowing-block-interrupts can be used recursively.

1125

In compiled code, allowing-block-interrupts with a true value of start-blocked is guaranteed not to process interrupts
before an explicit change to the blocking state (that includes exiting the scope of allowing-block-interrupts). In
particular, if the first cleanup form of an unwind-protect is a call to allowing-block-interrupts, it is guaranteed to
execute without interrupts on exit from the protected form. No such guarantee is given in interpreted code.

On exit from allowing-block-interrupts, the current state of interrupt blocking and whether there is a surrounding use
of allowing-block-interrupts or with-interrupts-blocked is restored to the state that existed on entry.

allowing-block-interrupts returns the results of body.

See also

current-process-block-interrupts
current-process-unblock-interrupts
process-break
process-interrupt
process-kill
process-reset
process-stop
with-interrupts-blocked

any-other-process-non-internal-server-p Function

Summary

Tests whether there is any other process except the caller that is not marked as "internal server".

Package

mp

Signature

any-other-process-non-internal-server-p => result

Values

result A boolean.

Description

The function any-other-process-non-internal-server-p is the predicate for whether there is any other process,
except the caller process, that is not marked as "internal server".

Notes

Processes are marked as "internal server" by a true value for :internal-server amongst the keywords in a call to
process-run-function.

See also

process-run-function
process-internal-server-p

42 The MP Package

1126

http://www.lispworks.com/documentation/HyperSpec/Body/s_unwind.htm

barrier System Class

Summary

A class of objects for synchronizing processes.

Package

mp

Superclasses

t

Description

Instances of the system class barrier are used for synchronizing processes. They are made by make-barrier and
barrier-wait is typically called at synchronization points.

See also

make-barrier
barrier-wait
19.7.2 Synchronization barriers

barrier-arriver-count Function

Summary

Returns the arriver count of a barrier.

Package

mp

Signature

barrier-arriver-count barrier => result

Arguments

barrier⇓ A barrier.

Values

result A positive fixnum, or nil.

Description

The function barrier-arriver-count returns the arriver count of the barrier barrier, or nil for a disabled barrier.

42 The MP Package

1127

Notes

If barrier is in use, the arriver count can change at any time.

See also

barrier
barrier-wait
make-barrier
19.7.2 Synchronization barriers

barrier-block-and-wait Function

Summary

Enables a barrier, waits until a specified number of arrivers arrive, and then wakes immediately.

Package

mp

Signature

barrier-block-and-wait barrier count &key wait-if-used-p errorp timeout unblock => result

Arguments

barrier⇓ A barrier.

count⇓ A positive integer.

wait-if-used-p⇓ A generalized boolean.

errorp⇓ A boolean.

timeout⇓ A non-negative real or nil.

unblock⇓ A boolean.

Values

result⇓ An integer, a symbol or a mp:process object.

Description

The function barrier-block-and-wait enables the barrier barrier with t, that is it makes any number of arrivers wait,
and then waits until count arrivers arrive.

wait-if-used-p controls whether to wait if another process is already inside barrier-block-and-wait. The default value
of wait-if-used-p is nil.

barrier is a barrier made by make-barrier.

errorp controls whether to signal an error if another process is already inside barrier-block-and-wait and wait-if-used-
p is nil. The default value of errorp is nil.

timeout, if non-nil, specifies the time in seconds to wait before timing out. The default value of timeout is nil.

42 The MP Package

1128

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

unblock specifies whether processes that already wait on barrier should be unblocked first. The default value of unblock is
nil.

barrier-block-and-wait is "using" barrier, and only one process can do this the same time.
barrier-block-and-wait first tries to mark barrier as used by the current process, which will fail if another process is
inside barrier-block-and-wait with the same barrier. In this case it does one of three options:

1. If wait-if-used-p is non-nil, it calls barrier-wait on barrier (without any keyword argument) and returns the result.

2. If errorp is non-nil, it calls error.

3. Otherwise is returns the other process.

Once barrier-block-and-wait has successfully marked barrier as used, it changes its count to t as if by calling
(barrier-change-count barrier t), which will cause other barrier-wait calls to wait. If unblock is non-nil, it first
unblocks all processes that wait on the barrier, so the effect is the same as (barrier-enable barrier t).

It then waits until the arriver count of barrier is greater than or equal to count, or, if timeout is supplied, timeout seconds
passed. It then returns the number of arrivers.

result can be one of three types:

integer The call was successful, and result is the number of arrivers.

symbol barrier was in use, and wait-if-used-p is non-nil, so barrier-wait was called. result is the
result of barrier-wait.

mp:process barrier is in use, and result is the process that uses it.

Notes

1. When barrier-block-and-wait returns. barrier is still set with t, that is calls to barrier-wait on barrier will
wait. Normally the current process will go on to do some operations that require the other processes to wait, and then
release them by calling barrier-disable or barrier-enable.

2. In typical usage, the arriver count is just increased by one by each call to barrier-wait, so as long as other processes
use only barrier-wait (or barrier-block-and-wait with wait-if-used-p non-nil), barrier-block-and-wait
will return after count processes called barrier-wait and are waiting. That is the intended purpose of
barrier-block-and-wait. If other processes call functions that manipulate the arriver count or the count of barrier
(barrier-disable, barrier-enable, barrier-unblock, barrier-change-count), then
barrier-block-and-wait will "get confused", in the sense that while its behavior is still well-defined, it is not
intuitive.

3. With the default keyword values (not counting timeout), barrier-block-and-wait is useful for controlling a fixed
set of processes by another "master" process. The processes in the set need to call barrier-wait at appropriate points.
When the "master" process wants to stop them for a while, it calls barrier-block-and-wait. When it wants to
restart them, it calls barrier-disable.

4. A non-nil value of wait-if-used-p is useful when any member of a group of processes may decide that it needs to stop all
the other processes in the group. In this case, this process calls barrier-block-and-wait with wait-if-used-p non-nil
(and count the number of processes in the group minus one). If two of the processes happen to call it at the same time,
one will get the barrier, and the other process will have to wait.

5. The effect of barrier-block-and-wait can be approximated by using barrier-change-count followed by
normal process-wait that checks the arrivers count in the wait function. barrier-block-and-wait has two
advantages:

(a) It checks against more than one process trying to do it at the same time.

42 The MP Package

1129

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_symbol.htm

(b) barrier-block-and-wait will wake up immediately when the arriver count reaches the right number.
process-wait will wake up only when the scheduler checks the wait function and wakes it up.

See also

barrier
barrier-wait
make-barrier
barrier-enable
barrier-disable
19.7.2 Synchronization barriers

barrier-change-count Function

Summary

Changes the count of a barrier.

Package

mp

Signature

barrier-change-count barrier new-count => result

Arguments

barrier⇓ A barrier.

new-count⇓ A positive fixnum, or t meaning most-positive-fixnum.

Values

result A boolean.

Description

The function barrier-change-count changes the count of the barrier barrier to new-count.

If barrier is enabled and the arriver count is less than new-count, this just sets the count of barrier to new-count and returns t.
Otherwise, it calls:

(barrier-unblock barrier :reset-count new-count)

and returns nil.

See also

barrier
barrier-unblock
19.7.2 Synchronization barriers

42 The MP Package

1130

http://www.lispworks.com/documentation/HyperSpec/Body/v_most_p.htm

barrier-count Function

Summary

Returns the current count of a barrier.

Package

mp

Signature

barrier-count barrier => result

Arguments

barrier⇓ A barrier.

Values

result A positive fixnum, or nil.

Description

The function barrier-count returns the current count of the barrier barrier, or nil if barrier is disabled.

Notes

The count value can be changed by barrier-unblock, barrier-enable, barrier-disable or
barrier-change-count.

See also

barrier
barrier-wait
make-barrier
barrier-change-count
barrier-disable
barrier-enable
barrier-unblock
19.7.2 Synchronization barriers

barrier-disable Function

Summary

Unblocks and disables a barrier.

Package

mp

42 The MP Package

1131

Signature

barrier-disable barrier &optional kill-waiting

Arguments

barrier⇓ A barrier.

kill-waiting⇓ A boolean.

Description

The function barrier-disable unblocks the barrier barrier and then disables it. If kill-waiting is true,
barrier-disable also kills any waiting thread. This is done by calling:

(barrier-unblock barrier :disable t :kill-waiting kill-waiting)

See also

barrier
barrier-unblock
barrier-wait
make-barrier
19.7.2 Synchronization barriers

barrier-enable Function

Summary

Ensures that a barrier is enabled.

Package

mp

Signature

barrier-enable barrier count &optional kill-waiting

Arguments

barrier⇓ A barrier.

count⇓ A positive fixnum, or t meaning most-positive-fixnum.

kill-waiting⇓ A boolean.

Description

The function barrier-enable ensures that the barrier barrier is enabled after unblocking it if it is already enabled, and
sets its count to count. If kill-waiting is true, barrier-enable also kills any waiting threads. This is done by calling:

(barrier-unblock barrier
 :reset-count count

42 The MP Package

1132

http://www.lispworks.com/documentation/HyperSpec/Body/v_most_p.htm

 :kill-waiting kill-waiting)

See also

barrier
barrier-wait
make-barrier
barrier-unblock
19.7.2 Synchronization barriers

barrier-name Function

Summary

Returns the name of a barrier.

Package

mp

Signature

barrier-name barrier => name

Arguments

barrier⇓ A barrier.

Values

name A string.

Description

The function barrier-name returns the name of barrier, as supplied or defaulted in the call to make-barrier.

See also

barrier
make-barrier
19.7.2 Synchronization barriers

barrier-pass-through Function

Summary

Increments the arriver count of a barrier.

Package

mp

42 The MP Package

1133

Signature

barrier-pass-through barrier => result

Arguments

barrier⇓ A barrier.

Values

result One of the keywords :unblocked and :passed-through.

Description

The function barrier-pass-through increments the arriver count of the barrier barrier. If the arriver count thereby
reaches the count, barrier-pass-through unblocks barrier and returns :unblocked, otherwise it returns
:passed-through.

barrier-pass-through is equivalent to calling barrier-wait with pass-through t. See barrier-wait for details.

See also

barrier
barrier-wait
make-barrier
19.7.2 Synchronization barriers

barrier-unblock Function

Summary

Unblocks a barrier.

Package

mp

Signature

barrier-unblock barrier &key disable reset-count kill-waiting

Arguments

barrier⇓ A barrier.

disable⇓ A boolean.

reset-count⇓ A positive fixnum, t or nil.

kill-waiting⇓ A boolean.

Description

The function barrier-unblock unblocks the barrier barrier, potentially disabling it, resetting its count or killing the
waiting processes.

42 The MP Package

1134

Without keyword arguments, barrier-unblock unblocks barrier, which means that any thread that is waiting on barrier
wakes and returns from barrier-wait, and its arriver count is reset to 0.

If disable is true, or if disable is not passed and barrier was made with disable-on-unblock true, then barrier-unblock

also disables barrier, so any further calls to barrier-wait return nil immediately.

If reset-count is non-nil, it must be valid count (a positive fixnum or t), and barrier-unblock sets the count of barrier to
this value.

If kill-waiting is true, instead of waking up the waiting threads, barrier-unblock kills them (by process-terminate).

See also

process-terminate
barrier
barrier-wait
make-barrier
19.7.2 Synchronization barriers

barrier-wait Function

Summary

Waits on a barrier until enough threads arrive.

Package

mp

Signature

barrier-wait barrier &key timeout callback pass-through discount-on-abort discount-on-timeout disable-on-unblock =>
result

Arguments

barrier⇓ A barrier.

timeout⇓ A non-negative real or nil.

callback⇓ A function designator.

pass-through⇓ A boolean.

discount-on-abort⇓ A boolean.

discount-on-timeout⇓ A boolean.

disable-on-unblock⇓ A boolean.

Values

result⇓ t, nil or one of the keywords :unblocked, :passed-through and :timeout.

Description

The function barrier-wait waits on a barrier until enough threads arrive on barrier. When barrier-wait is called, it

42 The MP Package

1135

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

"arrives", and when the number of arrivers reaches the count of the barrier (that is, the count argument to make-barrier),
barrier-wait returns. Effectively, the last "arriver" unblocks the barrier and wakes up all the other waiting threads.

timeout is the maximum time to wait in seconds.

If pass-through is true, barrier-wait performs the other operations but does not wait.

discount-on-abort controls whether to change the arrivers count of barrier on an abort (see later).

discount-on-timeout controls whether to change the arrivers count of barrier on a timeout (see later).

disable-on-unblock controls whether to disable barrier when unblocking.

callback, if supplied, specifies a callback called before unblocking.

barrier-wait first checks whether barrier is disabled, and if it is then barrier-wait returns nil immediately. It then
checks the number of arrivers of barrier, which is the number of other calls to barrier-wait on the same barrier since it
was last unblocked or created.

If the number of arrivers is less than the count minus 1, barrier-wait increases the number of arrivers by 1, and then waits
for barrier to be unblocked (unless pass-through is true, which causes it to return immediately). If the number of arrivers of
barrier equals its count minus 1, then barrier-wait unblocks barrier (as described below) and returns :unblocked.

discount-on-abort, discount-on-timeout, disable-on-unblock and callback allow you to control how barrier-wait waits
and also how barrier is unblocking. For each of these, the effective value is either that supplied to barrier-wait, or if it
was not supplied to barrier-wait, the value in barrier itself (see make-barrier).

timeout can be used to limit the time that barrier-wait waits. It is either a number of seconds or nil (the default),
meaning wait forever. If barrier-wait times out, it returns :timeout. By default it does not change the number of
arrivers after a timeout, so the call is still counted as an "arrival", but this can be changed by using discount-on-timeout. If
discount-on-timeout is true then barrier-wait decrements the arrivers count after a timeout, so the call has no overall
effect on the arrivers count.

If barrier-wait is aborted while it waits (for example by process-terminate or throwing using
process-interrupt), it does not change the arrivers count by default, so the call still counts as an arrival, but this can be
changed by using discount-on-abort. If discount-on-abort is true, then barrier-wait decrements the arrivers count on
aborting, so the call has no overall effect on the arrivers count.

If barrier-wait would have waited but pass-through is true, it returns the symbol :passed-through instead of waiting.
Hence a call to barrier-wait with a true value of pass-through has the effect of incrementing the arriver count, and
unblocking other waiters if needed, but never itself waiting.

Unblocking a barrier: when the number of arrivers at barrier equals its count minus 1, barrier-wait "unblocks the
barrier". This involves the following steps:

1. If callback is non-nil, it is called with barrier while holding an internal lock in the barrier. See the comment in
make-barrier. If callback aborts, nothing will have been changed in barrier (including no change to the number of
arrivers).

2. barrier is marked as unblocked for the currently waiting threads.

3. The number of arrivers in barrier is reset to 0. Unless the next step disables barrier, this means that any subsequent call
to barrier-wait will wait, as if barrier had just been created.

4. If disable-on-unblock is true, barrier-wait then disables barrier. Until it is re-enabled, any other call to
barrier-wait will return immediately.

5. All the threads waiting on barrier are woken.

6. The symbol :unblocked is returned.

42 The MP Package

1136

The possible values of result occur in these circumstances:

t The current process waited and some other process unblocked barrier.

:unblocked The current process unblocked barrier.

:timeout The wait timed out.

:passed-through The current process did not wait because pass-through is true.

nil barrier is disabled.

See also

barrier
barrier-arriver-count
barrier-block-and-wait
barrier-change-count
barrier-count
barrier-disable
barrier-enable
barrier-name
barrier-pass-through
barrier-unblock
make-barrier
19.7.2 Synchronization barriers

change-process-priority Function

Summary

Changes the priority of a process.

Package

mp

Signature

change-process-priority process new-priority => new-priority

Arguments

process⇓ A process.

new-priority⇓ A fixnum.

Values

new-priority A fixnum.

Description

The function change-process-priority changes the priority of process to be new-priority.

42 The MP Package

1137

See also

process-priority

condition-variable System Class

Summary

A class of objects for synchronizing processes.

Package

mp

Superclasses

t

Description

Instances of the system class condition-variable are used for synchronizing processes. They are made by
make-condition-variable.

See also

make-condition-variable
condition-variable-wait
condition-variable-signal
19.7.1 Condition variables

condition-variable-broadcast Function

Summary

Wakes all threads currently waiting on a given condition-variable.

Package

mp

Signature

condition-variable-broadcast condvar => signaledp

Arguments

condvar⇓ A condition-variable.

Values

signaledp⇓ A generalized boolean.

42 The MP Package

1138

Description

The function condition-variable-broadcast wakes all threads currently waiting on the condition-variable
condvar. In most uses of condition variables, the caller should be holding the lock that the waiter used when calling
condition-variable-wait for condvar, but this is not required. When using the lock, you may prefer to use
lock-and-condition-variable-broadcast.

The return value signaledp is non-nil if some processes were signaled, or nil if there were no processes waiting.

See also

condition-variable-wait
make-condition-variable
lock-and-condition-variable-broadcast
lock-and-condition-variable-wait
simple-lock-and-condition-variable-wait
lock-and-condition-variable-signal
condition-variable-signal
19.7.1 Condition variables

condition-variable-signal Function

Summary

Wakes one thread waiting on a given condition-variable.

Package

mp

Signature

condition-variable-signal condvar => signaledp

Arguments

condvar⇓ A condition-variable.

Values

signaledp⇓ A generalized boolean.

Description

The function condition-variable-signal wakes exactly one thread waiting on the condition-variable condvar. In
most uses of condition variables, the caller should be holding the lock that the waiter used when calling
condition-variable-wait for condvar, but this is not required. When using the lock, you may prefer to use
lock-and-condition-variable-signal.

The return value signaledp is non-nil if a process was signaled, or nil if there were no processes waiting.

See also

condition-variable-wait

42 The MP Package

1139

make-condition-variable
lock-and-condition-variable-signal
lock-and-condition-variable-wait
simple-lock-and-condition-variable-wait
lock-and-condition-variable-broadcast
condition-variable-broadcast
19.7.1 Condition variables

condition-variable-wait Function

Summary

Waits for a given condition-variable to be signaled.

Package

mp

Signature

condition-variable-wait condvar lock &key timeout wait-reason => wakep

Arguments

condvar⇓ A condition-variable.

lock⇓ A lock.

timeout⇓ A non-negative real or nil.

wait-reason⇓ A string.

Values

wakep⇓ A generalized boolean.

Description

The function condition-variable-wait waits at most timeout seconds for the condition-variable condvar to be
signaled. The lock lock is released while waiting and claimed again before returning. The caller must be holding the lock
lock before calling this function.

The return value wakep is non-nil if the signal was received or nil if there was a timeout. If timeout is nil,
condition-variable-wait waits indefinitely.

If wait-reason is non-nil, it is used as the wait reason while waiting for the signal.

It is recommended that you use lock-and-condition-variable-wait or
simple-lock-and-condition-variable-wait instead of condition-variable-wait. The locking functions make
it easier to avoid mistakes, and can be more efficient.

Notes

timeout controls how long to wait for the signal: before returning, the function waits to claim lock, possibly indefinitely.

42 The MP Package

1140

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

See also

condition-variable-wait-count
make-condition-variable
lock-and-condition-variable-wait
simple-lock-and-condition-variable-wait
lock-and-condition-variable-signal
lock-and-condition-variable-broadcast
condition-variable-signal
condition-variable-broadcast
19.7.1 Condition variables

condition-variable-wait-count Function

Summary

Returns the current number of threads that are still waiting for a condition-variable.

Package

mp

Signature

condition-variable-wait-count condvar => wait-count

Arguments

condvar⇓ A condition-variable.

Values

wait-count A non-negative integer.

Description

The function condition-variable-wait-count returns the current number of threads that are still waiting for condvar.
Note that for a condition-variable that is actually in use, this number can change at any time.

See also

condition-variable-wait
19.7.1 Condition variables

current-process Variable

Summary

Contains the object that is the current process.

42 The MP Package

1141

Package

mp

Initial Value

nil when not running multiprocessing, otherwise a process object.

Description

The variable *current-process* is always bound to the object that is the current process. Do not set or bind
current-process yourself.

During normal execution, *current-process* is bound to the currently executing process.

During calls to a process wait function (the argument to process-wait and similar functions), *current-process* is
bound to the waiting process, that it process that called process-wait. In contrast, get-current-process always
returns the currently executing process. Functions that implictly use the the current process, for example
current-process-send and with-interrupts-blocked, use the currently executig process and ignore
current-process.

See also

get-current-process

current-process-block-interrupts Function

Summary

Blocks interrupts in the current process.

Package

mp

Signature

current-process-block-interrupts => t

Description

The function current-process-block-interrupts blocks interrupts in the current process.

It signals an error if called outside the dynamic scope of allowing-block-interrupts or
with-interrupts-blocked.

Blocking interrupts prevents any interruption of the current process, including process-interrupt, process-kill,
process-reset, process-break and process-stop. These interrupts are all queued and processed once interrupts
become unblocked.

Blocking interrupts also blocks interrupts due to POSIX signals. Such interrupts are processed either by another Lisp thread,
or once interrupts become unblocked.

The effect of current-process-block-interrupts stays in force until the next call to either
current-process-unblock-interrupts or current-process-block-interrupts, or an exit out of the scope of a

42 The MP Package

1142

surrounding allowing-block-interrupts or with-interrupts-blocked. Inside this range bodies of
allowing-block-interrupts and with-interrupts-blocked have their own state, but they restore it on exit.

See also

allowing-block-interrupts
current-process-unblock-interrupts
process-break
process-interrupt
process-kill
process-reset
process-stop
with-interrupts-blocked

current-process-in-cleanup-p Function

Summary

The predicate for whether the current process is cleaning up after being killed.

Package

mp

Signature

current-process-in-cleanup-p => result

Values

result A boolean.

Description

The function current-process-in-cleanup-p returns true after the current process is killed. In particular, it returns true
while the cleanups that were set by ensure-process-cleanup execute.

See also

ensure-process-cleanup

current-process-kill Function

Summary

Kill the current process.

Package

mp

42 The MP Package

1143

Signature

current-process-kill

Description

The function current-process-kill kills the current process.

current-process-kill signals an error if it is called when interrupts are blocked, unless it is inside the scope of
with-other-threads-disabled, in which case the process is marked as "dying", and actually dies on exit from
with-other-threads-disabled.

Normally, current-process-kill throws out and does not return. It does execute all surrounding unwind-protect

forms.

If current-process-kill is called while the process is already doing cleanups, it just returns.

Notes

If you have a process that is broken and repeatedly goes into the debugger and you are not interested in debugging it, then
calling current-process-kill is the best way of getting rid of it. This is especially useful on non-Cocoa platforms
(GTK+ and Windows) when you get an interface that is badly broken.

See also

with-other-threads-disabled

current-process-pause Function

Summary

Sleeps for a specified time, but can be woken up.

Package

mp

Signature

current-process-pause time &optional function &rest args => result

Arguments

time⇓ A positive number.

function⇓ A function designator.

args⇓ Arguments passed to function.

Values

result A Lisp object.

42 The MP Package

1144

http://www.lispworks.com/documentation/HyperSpec/Body/s_unwind.htm

Description

The function current-process-pause sleeps for time seconds, but wakes up if another process did something to wake up
the current process (normally this is process-poke, but it can also be process-interrupt, process-stop,
process-unstop or process-kill).

current-process-pause is quite similar to cl:sleep, but it returns if anything causes the process to wake up, even if
the time did not pass.

If function is passed just before going to sleep, current-process-pause applies function to args, and if this returns a true
value current-process-pause returns it immediately. function and args are not used otherwise. If another process calls
process-poke on the current process after setting something that causes function to return true, it guarantees that
current-process-pause will return immediately without sleeping.

If another process woke up the current process, current-process-pause returns the keyword :poked. If it slept the full
time, it returns nil.

Notes

1. In contrast to process-wait, the argument function to current-process-pause is applied only once, and within
the dynamic scope of current-process-pause. It therefore does not have any of the restrictions that the wait-
function of process-wait has.

2. The purpose of function is to guard against the possibility that another process pokes the current process while it is in the
process of going to sleep.

3. There is no way to distinguish between the function returning :poked and the process being poked in some way.

4. The pausing does not happen reliably, and it can return :poked in a situation when it seems unexpected. For example, if
the current process does:

(mailbox-read *mailbox*)
...
(current-process-pause)

the call to current-process-pause may return poked, because a process that sent an event to the mailbox tried to
poke the current process, and by the time this poke happened the current process is already inside
current-process-pause. The only guarantees are that current-process-pause does not wait when a poke
occurred, and that it returns nil only when it paused the full time.

Examples

Supposed you want to have a process that each minute does some cleanup, but may also be told by other processes to go and
do the cleanup. The process be doing:

(loop
 (mp:current-process-pause 60 'check-for-need-cleanup)
 (do-cleanup))

Another process which wants to provoke a cleanup will do:

(setup-cleanup-flag)

(mp:process-poke *cleanup-process*)

Note that check-for-need-cleanup is passed to current-process-pause, because another process may call
process-poke after current-process-pause was called but before it went to sleep. If check-for-need-cleanup

42 The MP Package

1145

http://www.lispworks.com/documentation/HyperSpec/Body/f_sleep.htm

was not passed, current-process-pause would unnecessarily sleep the whole 60 seconds in this case. The same thing
could be implemented by process-wait-with-timeout, but the implementation above does not require a wait function
that can run in another dynamic scope repeatedly at arbitrary times, and it uses much less system resources. It is also easier to
debug.

See also

process-poke

current-process-send Function

Summary

Sends an object as an event to the current process.

Package

mp

Signature

current-process-send object

Arguments

object⇓ A Lisp object.

Description

The function current-process-send sends object as an event to the current process.

This is useful when you want to execute code as an event rather than in the current context. A typical example is when a
CAPI callback needs to do something in the current process which is not appropriate to invoke inside the callback.

For the object to actually be processed as an event, the current process must process events sometime after
current-process-send is called. In the "standard" situation, for example in a process started by CAPI, the object will be
processed as an event by calling general-handle-event.

See also

process-send
general-handle-event
19.6.3 Communication between processes and synchronization

current-process-set-terminate-method Function

Summary

Sets the Terminate Method of the current process.

42 The MP Package

1146

Package

mp

Signature

current-process-set-terminate-method &key local-terminator remote-terminator terminate-by-send

Arguments

local-terminator⇓ A function designator for a function of no arguments.

remote-terminator⇓ A function designator for a function of one argument.

terminate-by-send⇓ A generalized boolean.

Description

The function current-process-set-terminate-method sets the Terminate Method of the current process. See
process-run-function for the meaning of local-terminator, remote-terminator and terminate-by-send.

The default value of terminate-by-send is t. Therefore calling current-process-set-terminate-method without
arguments sets the Terminate Method to terminate-by-send. Calling current-process-set-terminate-method with
terminate-by-send nil makes the process not have a Terminate Method.

See also

process-run-function
process-terminate
current-process-kill

current-process-unblock-interrupts Function

Summary

Unblocks interrupts in the current process.

Package

mp

Signature

current-process-unblock-interrupts => t

Description

The function current-process-unblock-interrupts unblocks interrupts in the current process.

It signals an error if called outside the dynamic scope of allowing-block-interrupts or
with-interrupts-blocked.

The effect of current-process-unblock-interrupts stays in force until the next call to either
current-process-unblock-interrupts or current-process-block-interrupts, or an exit out of the scope of a
surrounding allowing-block-interrupts or with-interrupts-blocked. Inside this range bodies of

42 The MP Package

1147

allowing-block-interrupts and with-interrupts-blocked have their own state, but they restore it on exit.

See also

allowing-block-interrupts
current-process-block-interrupts
with-interrupts-blocked

debug-other-process Function

Summary

Examine the stack of a process other than the current process.

Package

mp

Signature

debug-other-process process

Arguments

process⇓ A process or a string.

Description

The function debug-other-process causes the debugger to be entered to examine the stack of another process process.
The debugger itself continues to run in the current process, and the execution of the other process process is not affected.
That means that all debugger commands that try to affect execution (for example :a, :c , :res, :ret, :trap) do not work
as in the normal debugger. :a is changed instead to exit the debugger.

Note: if the other process is still active, the stack will change "under the feet" of the debugger, with unpredictable results.
Thus debug-other-process is useful only for debugging purposes, or when you already stopped the other process.

The usual way to enter a debugger on another thread is to use process-break. However, that would fail if the other process
hangs for some reason. In this situation, you can use debug-other-process to try to find out why it hangs.

If process is a string, the process is found as if by find-process-from-name. The list of process names can be found via
ps.

See also

find-process-from-name
process-break
ps
map-all-processes-backtrace

42 The MP Package

1148

default-process-priority Variable

Summary

The default priority for processes.

Package

mp

Initial Value

0

Description

The variable *default-process-priority* contains the default priority for processes.

See also

process-run-function

ensure-process-cleanup Function

Summary

Run forms when a given process terminates.

Package

mp

Signature

ensure-process-cleanup cleanup-form &key priority force process

Arguments

cleanup-form⇓ Form to run when process terminates.

priority⇓ An integer in the inclusive range [-1000000, 1000000].

force⇓ A boolean.

process⇓ A mp:process object.

Description

The function ensure-process-cleanup ensures that cleanup-form is present for the process process. When process
terminates, its cleanup forms are run. Cleanup forms can be functions of one argument (process), or lists, in which case the
cl:car is applied to process and the cl:cdr of the list.

42 The MP Package

1149

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

process is the process to watch for termination. By default, this is the value returned by get-current-process.

priority determines the execution order of the forms. Higher priority means later execution. The system uses values between
700000 and 900000 for cleanups that need to be last, and 0 for other cleanups. The default value of priority is 0.

force determines what to do if the same cleanup is already registered but with a different priority. When adding cleanup
forms, ensure-process-cleanup uses cl:equal to ensure that the form is only added once. If a cleanup already exists
with the same priority, ensure-process-cleanup just returns nil, otherwise it acts according to force: if force is nil it
invokes an error, but if force is t then ensure-process-cleanup removes the old entry before adding the new entry. The
default value of force is nil.

When ensure-processes-cleanup is called on a foreign thread, that is a thread that was not created by LispWorks, the
cleanups are executed after the outermost foreign-callable returns and before return to the foreign code that called it (that is
when no Lisp frames remain on the stack).

Compatibility note

Before LispWorks 7.1, the cleanups where never executed when ensure-processes-cleanup was called in a foreign
thread.

Notes

1. You can test for whether the current process is executing its cleanups with current-process-in-cleanup-p.

2. For compatibility wth LispWorks 6.1 and earlier versions, ensure-process-cleanup can also be called like this:

(ensure-process-cleanup cleanup-form process)

Such calls are still allowed, for backwards compatibility, however please update your programs to call it like this:

(ensure-process-cleanup cleanup-form
 :priority priority
 :force force
 :process process)

Examples

A process calls add-process-dependent each time a dependent object is added to a process. When the process
terminates, inform-dependent-of-dead-process is called on all dependent objects.

(defun add-process-dependent (dependent)
 (mp:ensure-process-cleanup
 `(delete-process-dependent ,dependent)))

(defun delete-process-dependent (process dependent)
 (inform-dependent-of-dead-process dependent process))

See also

current-process-in-cleanup-p
process-terminate

42 The MP Package

1150

http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm

find-process-from-name Function

Summary

Finds a process from its name.

Package

mp

Signature

find-process-from-name process-name => result

Arguments

process-name⇓ A string.

Values

result A mp:process, or nil.

Description

The function find-process-from-name returns the process with the name process-name.

If there is no such process, the function returns nil.

Examples

CL-USER 16 > (mp:find-process-from-name "Listener 1")
#<MP:PROCESS Name "Listener 1" Priority 600000 State "Running">

See also

get-process

funcall-async
funcall-async-list Functions

Summary

Funcall a function asynchronously.

Package

mp

42 The MP Package

1151

Signatures

funcall-async func &rest args

funcall-async-list func-and-args

Arguments

func⇓ A function designator.

args⇓ Arguments.

func-and-args⇓ A cons (func . args).

Description

The functions funcall-async and funcall-async-list apply the function func with arguments args, that is what
cl:funcall would do, but asynchronously.

func-and-args must be a cons of a function designator and a proper list of arguments.

Multiprocessing must have already started.

These functions do not return a useful value.

Notes

1. These functions are effectively lightweight versions of process-run-function.

2. On most architectures they are implemented using worker processes, which are named "Background Execute n".

3. The maximum number background processes is limited by default to 5 and this is adequate in most cases. However, if
you use funcall-async and/or funcall-async-list often, you may want to increase the limit, by using
set-funcall-async-limit.

4. The dynamic context of the call to func is undefined, and must not be relied upon.

5. The current process should not be accessed inside func, except when you want another process to poke the process that
runs func (this is sometimes useful if func calls a wait function). In this case you can call get-current-process
inside the dynamic scope of func to get the process that the other process should poke.

6. funcall-async and funcall-async-list are intended for functions that finish quickly. If func takes a long time, it
prevents the background process from executing other async calls, and if all of the background processes become
occupied by long-executing functions it will cause other async calls to be delayed until one of the background processes
finishes. Thus if you have a long-executing function that you want to run asynchronously, it is better to use
process-run-function instead, or use your own pool of worker processes.

See also

process-run-function
set-funcall-async-limit

42 The MP Package

1152

http://www.lispworks.com/documentation/HyperSpec/Body/f_funcal.htm

general-handle-event Generic Function

Summary

"handles" an event, depending on the type of the event object.

Package

mp

Signature

general-handle-event event-object

Arguments

event-object⇓ A Lisp object.

Description

The generic function general-handle-event "handles" event-object. What this actually means depends on the type of the
object.

There are system defined methods for these classes:

list Apply the car to the cdr.

function Call it.

symbol If fbound call it, otherwise do nothing.

t Do nothing.

You can add methods for your own classes.

general-handle-event is used by all functions that process events, for example wait-processing-events and
process-all-events, as well as by internal waiting functions.

See also

process-all-events
process-send
19.6.3 Communication between processes and synchronization

get-current-process Function

Summary

Returns the current Lisp process.

42 The MP Package

1153

http://www.lispworks.com/documentation/HyperSpec/Body/a_list.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_symbol.htm

Package

mp

Signature

get-current-process => result

Values

result⇓ A mp:process, or nil.

Description

The function get-current-process returns the actual process in which it is called. In this respect it differs from
current-process, which can be bound to another process. In particular, when a process A calls the wait-function of
process B, in the wait-function get-current-process returns the process A, but *current-process* is bound to
process B.

result is nil if multiprocessing is off.

See also

current-process

get-process Function

Summary

Returns a process corresponding to a supplied designator.

Package

mp

Signature

get-process process-designator => process

Arguments

process-designator⇓ A mp:process, a string, a stack-group, a function, a symbol or a fixnum.

Values

process A mp:process.

Description

The function get-process returns a process according to the supplied process-designator, which is interpreted as follows:

mp:process Return it.

42 The MP Package

1154

A string Find the first process (highest priority) with matching name. Process names are compared by
string=.

A stack-group Return the process of the stack-group.

A function Return the first process that has process-designator as its function (that is, the third argument of
process-run-function).

A symbol First search for a process using the symbol name as a string, and (if that fails) then search using
the symbol as a function.

A fixnum Find a process for which process-designator is its unique id. The unique id of the current process
can be found by (sys:current-thread-unique-id).

result is nil if multiprocessing is off.

See also

find-process-from-name

get-process-private-property Function

Summary

Gets the value of a process private property.

Package

mp

Signature

get-process-private-property indicator process &optional default => result

Arguments

indicator⇓ A Lisp object.

process⇓ A process.

default⇓ A Lisp object.

Values

result A property value, or default.

Description

The function get-process-private-property gets the value associated with indicator in the private properties of the
process process. If there is no such property or process is dead, then default is returned.

get-process-private-property can be used to read the values of private properties from another process.

The default value of default is nil.

42 The MP Package

1155

http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm

See also

process-private-property
remove-process-private-property
pushnew-to-process-private-property
remove-from-process-private-property

initialize-multiprocessing Function

Summary

Initializes multiprocessing before use.

Package

mp

Signature

initialize-multiprocessing &rest main-process-args => nil

Arguments

main-process-args⇓ A set of arguments for process-run-function.

Description

The function initialize-multiprocessing initializes multiprocessing, and it does not return until multiprocessing is
finished.

initialize-multiprocessing applies the function process-run-function to each of the entries in
initial-processes to create the initial processes.

When called with main-process-args, it creates a mp:process object for the initial thread using the arguments in that list as
if in the call:

(apply 'mp:process-run-function main-process-args)

Supplying main-process-args is useful on macOS if you want to run a pure Cocoa application, since the main thread needs to
run the Cocoa event loop.

It is not necessary to call initialize-multiprocessing when the LispWorks IDE is running (that is, after
env:start-environment has been called), as this automatically starts up multiprocessing.

You can supply the :multiprocessing t arguments to save-image to save an image that starts up with multiprocessing.

Notes

On Microsoft Windows, Linux, x86/x64 Solaris, FreeBSD and macOS (using the Cocoa image), the LispWorks IDE starts up
by default.

See also

initial-processes

42 The MP Package

1156

process-run-function

initial-processes Variable

Summary

A list of the processes the system initializes on startup.

Package

mp

Initial Value

nil

Description

The variable *initial-processes* specifies the processes which the system initializes on startup.

Each element of the *initial-processes* list is a set of arguments for process-run-function.

Examples

To create a listener process as well as your own processes, evaluate this form before saving your image:

(push mp::*default-listener-process*
 mp:*initial-processes*)

See also

process-run-function

last-callback-on-thread Function

Summary

Informs LispWorks that there are probably not going to be more callbacks from foreign code on the current thread, allowing
it to free some data.

Package

mp

Signature

last-callback-on-thread => result

Values

result t or nil.

42 The MP Package

1157

Description

The function last-callback-on-thread informs LispWorks that there are probably not going to be more callbacks from
foreign code on the current thread (but does not guarantee this).

last-callback-on-thread must be used in the scope of a call into LispWorks by a foreign callable on a thread that was
not created by LispWorks. It informs LispWorks that there are unlikely to be more callbacks into Lisp on the current thread.
As a result, LispWorks can cleanup its side.

For each thread that was not created by Lisp and on which there was a call into Lisp, LispWorks keeps data on the Lisp side
which it uses to make the entry faster. If the thread goes away, this data is not needed and so LispWorks can free it.

If another callback occurs on the same thread after a callback that called last-callback-on-thread, LispWorks will
have to recreate its side, which takes a little more time, but otherwise it works in the same way. Thus it is possible to call
last-callback-on-thread even when it is not guaranteed that there will not be further callbacks on the same thread.

Calling last-callback-on-thread on a thread that was created by LispWorks has no effect.

last-callback-on-thread returns t when called on a thread that was not created by LispWorks, otherwise it returns
nil.

list-all-processes Function

Summary

Lists all the Lisp processes currently in the system.

Package

mp

Signature

list-all-processes => process-list

Values

process-list A list of all the currently active Lisp processes.

Description

The function list-all-processes returns a list of all the active Lisp processes in LispWorks.

Examples

CL-USER 71 > (pprint (mp:list-all-processes))

(#<MP:PROCESS Name "Editor 1" Priority 70000000 State "Waiting for events">
 #<MP:PROCESS Name "Listener 1" Priority 70000000 State "Running">
 #<MP:PROCESS Name "LispWorks 5.1.0" Priority 70000000 State "Waiting for events">
 #<MP:PROCESS Name "default listener process" Priority 60000000 State "Waiting for terminal input."
>
 #<MP:PROCESS Name "CAPI Execution Listener 1" Priority 60000000 State "Running">
 #<MP:PROCESS Name "Background execute 2" Priority 50000000 State "Waiting for job to execute">
 #<MP:PROCESS Name "Background execute 1" Priority 50000000 State "Waiting for job to execute">
 #<MP:PROCESS Name "Editor DDE server" Priority 0 State "Waiting for an event">

42 The MP Package

1158

 #<MP:PROCESS Name "The idle process" Priority -536870912 State "Running (preempted)">)

lock System Class

Summary

A class of objects for preventing synchronous access.

Package

mp

Superclasses

t

Description

Instances of the system class lock are used to prevent synchronous access to the some object(s) by more than one process at
a time. They are made by make-lock.

See also

make-lock
with-lock
process-lock
process-unlock
19.4 Locks

lock-and-condition-variable-broadcast Function

Summary

Locks, applies a setup function, calls condition-variable-broadcast and unlocks.

Package

mp

Signature

lock-and-condition-variable-broadcast lock condvar lock-timeout setup-function &rest args => signaledp

Arguments

lock⇓ A lock.

condvar⇓ A condition-variable.

lock-timeout⇓ A non-negative real or nil.

setup-function⇓ A function designator.

42 The MP Package

1159

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

args⇓ Arguments to setup-function.

Values

signaledp A generalized boolean.

Description

The function lock-and-condition-variable-broadcast locks the lock lock, applies the function setup-function to
args, calls condition-variable-broadcast with condvar and unlocks lock.
lock-and-condition-variable-broadcast makes it easier to avoid mistakes when using a condition-variable.

If lock-timeout is non-nil, then lock-and-condition-variable-broadcast returns nil if lock cannot be locked within
lock-timeout seconds.

lock-and-condition-variable-broadcast performs the equivalent of:

(mp:with-lock (lock nil lock-timeout)
 (apply setup-function args)
 (mp:condition-variable-broadcast condvar))

It returns the result of the call to condition-variable-broadcast.

See condition-variable-broadcast and with-lock for more details.

Notes

setup-function is called with lock held, so it should do the minimum amount of work and avoid locking other locks.

See also

lock-and-condition-variable-wait
simple-lock-and-condition-variable-wait
lock-and-condition-variable-signal
condition-variable-wait
condition-variable-signal
condition-variable-broadcast
processes-count
with-lock
19.7.1 Condition variables
19.4 Locks

lock-and-condition-variable-signal Function

Summary

Locks, applies a setup function, calls condition-variable-signal and unlocks.

Package

mp

42 The MP Package

1160

Signature

lock-and-condition-variable-signal lock condvar lock-timeout setup-function &rest args => signaledp

Arguments

lock⇓ A lock.

condvar⇓ A condition-variable.

lock-timeout⇓ A non-negative real or nil.

setup-function⇓ A function designator.

args⇓ Arguments to setup-function.

Values

signaledp A generalized boolean.

Description

The function lock-and-condition-variable-signal locks the lock lock, applies setup-function to args, calls
condition-variable-signal with condvar and unlocks lock. lock-and-condition-variable-signal makes it
easier to avoid mistakes when using a condition-variable.

If lock-timeout is non-nil, then lock-and-condition-variable-signal returns nil if lock cannot be locked within lock
-timeout seconds.

lock-and-condition-variable-signal performs the equivalent of:

(mp:with-lock (lock nil lock-timeout)
 (apply setup-function args)
 (mp:condition-variable-signal condvar))

It returns the result of the call to condition-variable-signal.

See condition-variable-signal and with-lock for more details.

Notes

setup-function is called with lock held, so it should do the minimum amount of work and avoid locking other locks. Normally
setup-function should only set the cell that the process(es) that wait(s) on the condition-variable condvar check with
the predicate in lock-and-condition-variable-wait.

See also

lock-and-condition-variable-wait
simple-lock-and-condition-variable-wait
lock-and-condition-variable-broadcast
condition-variable-wait
condition-variable-signal
condition-variable-broadcast
19.7.1 Condition variables
19.4 Locks

42 The MP Package

1161

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

lock-and-condition-variable-wait Function

Summary

Locks a lock and calls a predicate. If this returns nil, performs the equivalent of condition-variable-wait. Optionally
calls a function on return.

Package

mp

Signature

lock-and-condition-variable-wait lock condvar predicate &key args return-function return-function-args lock-
timeout lock-wait-reason condvar-timeout condvar-wait-reason => result

Arguments

lock⇓ A lock.

condvar⇓ A condition-variable.

predicate⇓ A function designator.

args⇓ Arguments topredicate.

return-function⇓ A function designator or nil.

return-function-args⇓ Arguments to return-function.

lock-timeout⇓ A non-negative real or nil.

lock-wait-reason⇓ A string or nil.

condvar-timeout⇓ A non-negative real or nil.

condvar-wait-reason⇓ A string or nil.

Values

result See below.

Description

The function lock-and-condition-variable-wait first locks the lock lock as in with-lock, using lock-wait-reason
and lock-timeout for the whostate and timeout arguments of with-lock.

It then applies predicate to args. If this call returns nil it performs the equivalent of a call to condition-variable-wait,
passing it condvar, lock, condvar-timeout and condvar-wait-reason.

If return-function is supplied, it is then applied to return-function-args, and the return value(s) are returned.

Before returning, lock is unlocked (in an unwinding form) as in with-lock.

lock-and-condition-variable-wait returns whatever return-function returns if it is supplied. If return-function is not
supplied, lock-and-condition-variable-wait returns the result of predicate if this is not nil, otherwise it returns the
result of the equivalent call to condition-variable-wait.

42 The MP Package

1162

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm

Notes

1. predicate and return-function are called with lock held, so they should do as little as needed, and avoid locking anything
else.

2. lock-and-condition-variable-wait makes it much easier to avoid mistakes when using
condition-variables.

3. When return-function is not supplied, lock-and-condition-variable-wait does not lock on return, which makes
it it much more efficient than the equivalent code using with-lock and condition-variable-wait.

4. When return-function is not needed, simple-lock-and-condition-variable-wait may be more convenient.

5. All the four signaling functions (condition-variable-signal, condition-variable-broadcast,
lock-and-condition-variable-signal, lock-and-condition-variable-broadcast) can be used to wake a
process waiting in lock-and-condition-variable-wait.

See also

condition-variable-wait
simple-lock-and-condition-variable-wait
lock-and-condition-variable-signal
lock-and-condition-variable-broadcast
condition-variable-signal
condition-variable-broadcast
19.7.1 Condition variables
19.4 Locks

lock-locked-p Function

Summary

The predicate for whether a lock is locked.

Package

mp

Signature

lock-locked-p lock => result

Arguments

lock⇓ A lock.

Values

result A boolean.

Description

The function lock-locked-p is the predicate for whether lock is locked. Since that can change at any time, the result is
reliable only if you know that the state is not going to change.

42 The MP Package

1163

If lock is a "sharing" lock, this checks whether it is locked exclusively.

See also

lock
make-lock
19.4 Locks

lock-name Function

Summary

Returns the name of a lock.

Package

mp

Signature

lock-name lock => name

Arguments

lock⇓ A lock.

Values

name A string.

Description

The function lock-name returns the name of lock, which was either passed as the name argument to make-lock or
defaulted.

Examples

(let ((lock (mp:make-lock :name "my lock")))
 (mp:lock-name lock))

=> "my lock"

See also

lock
make-lock
with-lock
process-lock
process-unlock
lock-owner
19.4 Locks

42 The MP Package

1164

lock-owned-by-current-process-p Function

Summary

Checks whether a lock is locked by the current thread.

Package

mp

Signature

lock-owned-by-current-process-p lock => result

Arguments

lock⇓ A lock.

Values

result A boolean.

Description

The function lock-owned-by-current-process-p checks whether the lock lock is locked by the current thread. If this
returns nil, then lock is either unlocked or locked by another process.

If lock is a "sharing" lock, this also checks whether the current process has an exclusive lock on it. It ignores any shared lock.

See also

lock
make-lock
19.4 Locks

lock-owner Function

Summary

Returns the owner of a lock.

Package

mp

Signature

lock-owner lock => result

42 The MP Package

1165

Arguments

lock⇓ A lock.

Values

result⇓ A process, t or :unknown.

Description

The function lock-owner returns the process that currently owns lock, or nil.

If lock is a "sharing" lock then lock-owner checks whether it is locked exclusively (see
lock-owned-by-current-process-p).

If lock is locked then result is normally the process that locked it. If lock was locked while multiprocessing was not running
then result is t. Also, if lock was locked by an unknown process (for example, the process is killed while holding lock) then
result is :unknown.

result is nil if lock is not locked.

Examples

CL-USER 1 > (let ((lock (mp:make-lock :name
 "my lock")))
 (mp:lock-owner lock))
NIL

CL-USER 2 > (let ((lock (mp:make-lock :name
 "my lock")))
 (mp:with-lock (lock)
 (mp:lock-owner lock)))
#<MP:PROCESS Name "CAPI Execution Listener 1" Priority 0 State "Running">

See also

lock
lock-owned-by-current-process-p
make-lock
with-lock
process-lock
process-unlock
lock-name
lock-owned-by-current-process-p
19.4 Locks

lock-recursively-locked-p Function

Summary

The predicate for whether a lock is recursively locked.

Package

mp

42 The MP Package

1166

Signature

lock-recursively-locked-p lock => result

Arguments

lock⇓ A lock.

Values

result A boolean.

Description

The function lock-recursively-locked-p is the predicate for whether lock is recursively locked. Since that can change
at any time, the result is reliable only if you know that the state is not going to change. For the definition of recursive locking,
see the make-lock argument recursivep.

If lock is a "sharing" lock, lock-recursively-locked-p checks whether is is locked exclusively.

See also

lock
make-lock
19.4 Locks

lock-recursive-p Function

Summary

The predicate for whether a lock allows recursive locking.

Package

mp

Signature

lock-recursive-p lock => result

Arguments

lock⇓ A lock.

Values

result A boolean.

Description

The function lock-recursive-p is the predicate for whether the lock lock allows recursive locking (that is, whether it can
be repeatedly locked by the same process).

42 The MP Package

1167

See the make-lock argument recursivep.

Notes

lock-recursive-p does not check whether lock is currently locked recursively. The function
lock-recursively-locked-p does that.

See also

lock
make-lock
19.4 Locks

mailbox System Class

Summary

The class of objects representing mailboxes.

Package

mp

Superclasses

t

Description

Instances of the system class mailbox are used to communicate between processes. The communication is done by
"sending" objects (any Lisp object) to a mailbox, and "reading" these objects from the mailbox. The objects will be read in
the order in which they were sent. Sending is done by mailbox-send or mailbox-send-limited. Reading is done by
mailbox-wait-for-event, mailbox-wait or mailbox-read. All mailbox access functions are thread-safe. You create
a mailbox by using make-mailbox. You can also obtain the mailbox of a process by process-mailbox.

See also

mailbox-send
mailbox-send-limited
mailbox-wait-for-event
mailbox-wait
mailbox-read
make-mailbox
19.6.3 Communication between processes and synchronization

mailbox-count Function

Summary

Returns the number of objects currently in a mailbox.

42 The MP Package

1168

Package

mp

Signature

mailbox-count mailbox => count

Arguments

mailbox⇓ A mailbox.

Values

count⇓ A non-negative integer.

Description

The function mailbox-count returns the number of objects currently in the mailbox mailbox.

mailbox should be an object of type mailbox.

A mailbox is empty if its count is 0.

See also

mailbox-empty-p
mailbox-not-empty-p
make-mailbox
19.6.3 Communication between processes and synchronization

mailbox-empty-p Function

Summary

Tests whether a mailbox is empty.

Package

mp

Signature

mailbox-empty-p mailbox => bool

Arguments

mailbox⇓ A mailbox.

Values

bool A boolean.

42 The MP Package

1169

Description

The function mailbox-empty-p returns t if the given mailbox is empty and nil otherwise.

See also

mailbox-not-empty-p
mailbox-send
mailbox-peek
mailbox-read
make-mailbox
19.6.3 Communication between processes and synchronization

mailbox-full-p Function

Summary

Tests whether a mailbox is full.

Package

mp

Signature

mailbox-full-p mailbox => bool

Arguments

mailbox⇓ A mailbox.

Values

bool A boolean.

Description

The function mailbox-full-p returns true if mailbox is empty and false otherwise.

Notes

Because of multiprocessing, it cannot be guaranteed that a subsequent call to mailbox-send will work without expansion
even if mailbox-full-p returns false. mailbox-full-p is intended to be used as a wait-function (or inside a wait-
function), and once it returns false you should use mailbox-send-limited to actually send and check what it returns.

See also

mailbox-send-limited
mailbox-size
mailbox-count
19.6.3 Communication between processes and synchronization

42 The MP Package

1170

mailbox-not-empty-p Function

Summary

Tests whether a mailbox has contents.

Package

mp

Signature

mailbox-not-empty-p mailbox => bool

Arguments

mailbox⇓ A mailbox.

Values

bool A boolean.

Description

The function mailbox-not-empty-p returns nil if the given mailbox is empty and t otherwise.

See also

mailbox-count
mailbox-empty-p
mailbox-send
mailbox-peek
mailbox-read
make-mailbox
19.6.3 Communication between processes and synchronization

mailbox-peek Function

Summary

Returns the first object in a mailbox.

Package

mp

Signature

mailbox-peek mailbox => result, value-p

42 The MP Package

1171

Arguments

mailbox⇓ A mailbox.

Values

result⇓ Any object or nil.

value-p⇓ t or nil.

Description

The function mailbox-peek returns the first object in the mailbox without removing it. If the mailbox is empty, nil is
returned.

If the mailbox mailbox is not empty, the function mailbox-peek returns the first object in the mailbox without removing it.
The second returned value value-p is t.

If mailbox is empty, both return values result and value-p are nil.

Notes

1. Since another process may modify the mailbox at any point, the result is not necessarily the next object that the next call
to mailbox-read will read, unless no other process is reading from the mailbox.

2. mailbox-peek needs to lock the mailbox, which means it is significantly slower than mailbox-not-empty-p, and
also may affect other processes. In most cases, mailbox-not-empty-p is sufficient and hence is preferable.

See also

mailbox-empty-p
mailbox-not-empty-p
mailbox-send
mailbox-read
make-mailbox
19.6.3 Communication between processes and synchronization

mailbox-read Function

Summary

Reads the next object in a mailbox.

Package

mp

Signature

mailbox-read mailbox &optional wait-reason timeout => object, flag

Arguments

mailbox⇓ A mailbox.

42 The MP Package

1172

wait-reason⇓ A string or nil.

timeout⇓ A non-negative real or nil.

Values

object An object.

flag⇓ A boolean.

Description

The function mailbox-read returns the next object from the mailbox mailbox, or nil.

If mailbox is empty and timeout is nil, then mailbox-read blocks until an object is placed in mailbox. If mailbox is empty
and timeout is a non-negative real, then mailbox-read blocks until an object is placed in mailbox or timeout seconds have
passed. If the timeout occurs, then mailbox-read returns nil as the first value and also flag is nil. If an object is actually
read from the mailbox, then flag is t.

wait-reason defaults to "Waiting for message in #<Mailbox...>" and will be the value returned by
process-whostate while mailbox-read is blocking.

The default value of timeout is nil.

See also

mailbox-empty-p
mailbox-peek
mailbox-send
mailbox-wait-for-event
make-mailbox
19.6.3 Communication between processes and synchronization

mailbox-reader-process Function

Summary

Returns the reader process of a mailbox.

Package

mp

Signature

mailbox-reader-process mailbox => process

Arguments

mailbox⇓ A mailbox.

Values

process A process or nil.

42 The MP Package

1173

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

Description

The function mailbox-reader-process returns the reader process of mailbox.

mailbox-send Function

Summary

Adds an object to a mailbox.

Package

mp

Signature

mailbox-send mailbox object

Arguments

mailbox⇓ A mailbox.

object⇓ An object.

Description

The function mailbox-send sends object to mailbox. The object is queued in the mailbox for retrieval by the reader.

When objects are read from from the mailbox (using mailbox-read or higher level functions such as
mailbox-wait-for-event), they are read in the order in which they were added to the mailbox.

Notes

If mailbox is full, mailbox-send expands it. In situations where the mailbox can grow too much, you can use
mailbox-send-limited instead.

See also

mailbox-empty-p
mailbox-peek
mailbox-read
mailbox-send-limited
mailbox-count
mailbox-size
process-send
make-mailbox
19.6.3 Communication between processes and synchronization

42 The MP Package

1174

mailbox-send-limited Function

Summary

Adds an object to a mailbox if it is not full.

Package

mp

Signature

mailbox-send-limited mailbox object limit &optional timeout wait-reason wait-function &rest args => success

Arguments

mailbox⇓ A mailbox.

object⇓ An object.

limit⇓ An integer.

timeout⇓ A non-negative real or nil.

wait-reason⇓ A string or nil.

wait-function⇓, args⇓ A function and its arguments.

Values

success⇓ A boolean.

Description

The function mailbox-send-limited adds object to mailbox in the same way as mailbox-send, except in the case
where mailbox is full.

If mailbox is full and has a size less than limit then mailbox is enlarged to have a size that is at most limit and object is added
to mailbox.

Otherwise, if mailbox is full and has a size not less than limit then mailbox-send-limited waits until mailbox becomes
not full before adding object. While waiting, mailbox-send-limited will return without adding object to mailbox if
timeout is non-nil and timeout seconds has elapsed or if wait-function is non-nil and applying wait-function to args returns
true.

wait-reason is used as the wait-reason while waiting.

success is true if the object was added to the mailbox and false otherwise (timeout reached or wait-function returned true).

Notes

mailbox-send-limited only prevents the mailbox from expanding to more than limit: if is already bigger than the limit,
and there is still a space in it, mailbox-send-limited add the object to the mailbox even if that means that the mailbox
has more objects than limit. As long as all of the sending calls on a mailbox are limited, the mailbox may grow until it
reaches the largest limit, and if it was made with the :size argument equal or larger than the largest limit, it will never grow.

42 The MP Package

1175

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

However, if mailbox-send is called then that may enlarge it.

process-send uses mailbox-send, so may expand the mailbox too. It also has a limit argument.

mailbox-send-limited waits like process-wait-with-timeout. As a result, there may be some latency between the
time the mailbox becomes non-full and the waiting returns, because it depends on the scheduler. wait-reason, timeout, wait-
function and args are analogous to the arguments of process-wait-with-timeout. wait-function is applied within the
wait-function that mailbox-send-limited uses, so has the same limitations as the wait-function of
process-wait-with-timeout.

When timeout is 0 mailbox-send-limited never waits.

See also

mailbox-send
mailbox-read
process-send
mailbox-count
mailbox-size
mailbox-full-p
19.6.3 Communication between processes and synchronization

mailbox-size Function

Summary

Returns the size of a mailbox.

Package

mp

Signature

mailbox-size mailbox => size

Arguments

mailbox⇓ A mailbox.

Values

size An non-negative integer.

Description

The function mailbox-size returns the size of mailbox, which is the number of objects that can be added without it
growing.

mailbox-send automatically expands the mailbox indefinitely when it is full, but mailbox-send-limited and
process-send will expand it up to some specified limit.

42 The MP Package

1176

See also

mailbox-send
mailbox-send-limited
process-send
make-mailbox
19.6.3 Communication between processes and synchronization

mailbox-wait Function

Summary

Waits until there is an object in the mailbox.

Package

mp

Signature

mailbox-wait mailbox &optional wait-reason timeout => result

Arguments

mailbox⇓ A mailbox.

wait-reason⇓ A string or nil.

timeout⇓ A non-negative real or nil.

Values

result⇓ A boolean.

Description

The function mailbox-wait waits until there is an object in the mailbox mailbox.

If mailbox is empty and timeout is nil, then mailbox-wait blocks until an object is placed in mailbox. If mailbox is empty
and timeout is a non-negative real, then mailbox-wait blocks until an object is placed in mailbox or timeout seconds have
passed. If there is no object after timeout seconds, then mailbox-wait returns nil. Once there is an object in mailbox,
mailbox-wait returns t.

Note that mailbox-wait does not remove the object from mailbox, in contrast to mailbox-read which does.

Note that if there are multiple processes reading from mailbox, another process may read the object from it, so result is
reliable only if you know that the current process is the only process that may read from the mailbox.

wait-reason defaults to a string:

"Waiting for message in #<Mailbox...>"

and will be the value returned by process-whostate while mailbox-wait is blocking.

The default value of timeout is nil.

42 The MP Package

1177

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

mailbox-wait arranges for immediate notification when an object is placed in mailbox (unless other processes ware waiting
too, in which case one of the processes is notified immediately). It is therefore better than using process-wait with
mailbox-not-empty-p because it does not rely on the scheduler to wake it up. It is also less expensive because does not
add work to the scheduler.

See also

mailbox-not-empty-p
mailbox-empty-p
mailbox-peek
mailbox-send
mailbox-wait-for-event
mailbox-read
19.6.3 Communication between processes and synchronization

mailbox-wait-for-event Function

Summary

Waits for an event in a "windowing friendly" way.

Package

mp

Signature

mailbox-wait-for-event mailbox &key wait-reason wait-function process-other-messages-p no-hang-p stop-at-user-
operation-p => result

Arguments

mailbox⇓ A mailbox.

wait-reason⇓ A string or nil.

wait-function⇓ A function designator.

process-other-messages-p⇓
A generalized boolean.

no-hang-p⇓ A generalized boolean.

stop-at-user-operation-p⇓
A generalized boolean.

Values

result⇓ An event or nil.

Description

The function mailbox-wait-for-event waits for an event in a mailbox in a "windowing friendly" way. It reads an event
from the mailbox mailbox. If there is no event in the mailbox, it waits for an event (unless no-hang-p is true).

42 The MP Package

1178

The value result is any object that was put in the mailbox, or nil if the mailbox is empty, possibly after waiting.

mailbox-wait-for-event is the appropriate way to wait for an event in a mailbox in an application with a graphical user
interface, because it interacts correctly with the windowing system. Most importantly, on Microsoft Windows, when process
-other-messages-p is true it processes Windows messages while it is waiting. The default value of process-other-messages-p
is t.

If wait-function is non-nil, then is it called as a Process Wait function (see 19.6.2 Generic Process Wait functions) with the
mailbox mailbox as its argument while waiting for an event. If the call returns true before any events arrive, then
mailbox-wait-for-event will return nil.

wait-reason is used as the wait reason if it needs to wait. The default value of wait-reason is "Waiting for an event".

process-other-messages-p controls processing of other messages. On Microsoft Windows this means Windows messages. On
other platforms it has no effect.

no-hang-p controls whether mailbox-wait-for-event should really wait. If no-hang-p is true and there is no event, it
returns immediately except on Microsoft Windows, where it may first process all Windows messages (depending on the value
of process-other-messages-p). The default value of no-hang-p is nil.

stop-at-user-operation-p on Microsoft Windows causes mailbox-wait-for-event to return if it received a user operation
message (meaning keyboard or mouse input). It has no effect on other platforms. The default value of stop-at-user-operation-
p is nil.

If mailbox-wait-for-event is called when not Lisp is not multiprocessing, it returns immediately. The return value is an
event or nil.

See also

mailbox-read
mailbox-send
make-mailbox
process-wait-for-event
19.6.3 Communication between processes and synchronization

main-process Variable

Summary

The process associated with the main thread.

Package

mp

Initial Value

A process object associated with the main thread.

Description

The variable *main-process* contains the process associated with the main thread of the application. On macOS with the
Cocoa GUI, this is the thread that runs the Cocoa event loop. On other platforms, this variable is always nil.

42 The MP Package

1179

make-barrier Function

Summary

Returns a new barrier.

Package

mp

Signature

make-barrier count &key discount-on-abort discount-on-timeout callback disable-on-unblock name => barrier

Arguments

count⇓ A positive fixnum or t.

discount-on-abort⇓ A boolean.

discount-on-timeout⇓ A boolean.

callback⇓ A function designator for a function of one argument.

disable-on-unblock⇓ A boolean.

name⇓ A string.

Values

barrier⇓ A barrier.

Description

The function make-barrier returns a new barrier with count count.

count can be t, which is interpreted as most-positive-fixnum.

barrier has the name name, which is useful for debugging but is not used otherwise. If name is omitted, then a default name
is generated that is unique among all such default names.

discount-on-timeout and discount-on-abort determine the default behavior when a thread times out or aborts while in the
function barrier-wait. See the documentation for barrier-wait.

If disable-on-unblock is true, then barrier-wait will disable barrier by default when it unblocks it. See disable-on-
unblock in the documentation for barrier-wait.

callback is called by barrier-wait just before it unblocks barrier. It is called with a single argument, barrier, while
holding an internal lock in barrier that will prevent other operations on barrier from running. The callback is guaranteed to
happen before barrier-wait allows any of the other threads to continue.

Notes

Because the callback is called inside a lock, you should ensure that it is relatively short to prevent congestion if another
thread tries to access barrier. Allocating a few objects is reasonable. If there is a more expensive operation that has to be
done by only one of the threads, it can be done by the thread that returned :unblocked from barrier-wait. The

42 The MP Package

1180

http://www.lispworks.com/documentation/HyperSpec/Body/v_most_p.htm

advantage of using the callback is that it is called before any of the waiting threads pass the barrier.

See also

barrier
barrier-arriver-count
barrier-block-and-wait
barrier-change-count
barrier-count
barrier-disable
barrier-enable
barrier-name
barrier-pass-through
barrier-unblock
barrier-wait
19.7.2 Synchronization barriers

make-condition-variable Function

Summary

Makes a condition-variable.

Package

mp

Signature

make-condition-variable &key name => condvar

Arguments

name⇓ A string naming the condition-variable.

Values

condvar A condition-variable.

Description

The function make-condition-variable makes a condition-variable for use with condition-variable-wait,
condition-variable-signal and condition-variable-broadcast.

name is used when printing the condition-variable, and is useful for debugging. If name is omitted, then a default name
is generated that is unique among all such default names.

See also

condition-variable
condition-variable-wait
condition-variable-signal
condition-variable-broadcast
19.7.1 Condition variables

42 The MP Package

1181

make-lock Function

Summary

Makes a lock.

Package

mp

Signature

make-lock &key name important-p safep recursivep sharing => lock

Arguments

name⇓ A string.

important-p⇓ A generalized boolean.

safep⇓ A generalized boolean.

recursivep⇓ A generalized boolean.

sharing⇓ A generalized boolean.

Values

lock⇓ A lock.

Description

The function make-lock creates a lock. See 19.4 Locks for a general description of locks.

name names lock and can be queried with lock-name. The default value of name is "Anon".

important-p controls whether lock is automatically freed when the holder process finishes. When important-p is true, the
system notes that lock is important, and automatically frees it when the holder process finishes. important-p should be nil
for locks which are managed completely by the application, as it is wasteful to record all locks in a global list if there is no
need to free them automatically. This might be appropriate when two processes sharing a lock must both be running for the
system to be consistent. If one process dies, then the other one kills itself. Thus the system does not need to worry about
freeing the lock because no process could be waiting on it forever after the first process dies. The default value of important-p
is nil.

safep controls whether lock is safe. A safe lock gives an error if process-unlock is called on it when it is not locked by the
current process, and potentially in other 'dangerous' circumstances. An unsafe lock does not signal these errors. The default
value of safep is t.

recursivep, when true, allows lock to be locked recursively. Trying to lock a lock that is already locked by the current thread
just increments its lock count. If lock is created with recursivep nil then trying to lock again causes an error. This is useful
for debugging code where lock is never expected to be claimed recursively. The default value of recursivep is t.

When sharing is false (the default), lock is an ordinary lock that can only be locked by one process at a time. When sharing is
true, lock is a "sharing" lock, which supports sharing and exclusive locking. At any given time, a sharing lock may be free,
or it may be locked for sharing by any number of threads or locked for exclusive use by a single thread. Note that use of

42 The MP Package

1182

sharing locks requires a different set of functions and macros from the set that is used for ordinary locks. See 19.4.1
Recursive and sharing locks for details.

Examples

CL-USER 3 > (setq *my-lock* (mp:make-lock
 :name "my-lock"))
#<MP:LOCK "my-lock" Unlocked 2008CAC7>

CL-USER 4 > (mp:process-lock *my-lock*)
T

CL-USER 5 > *my-lock*
#<MP:LOCK "my-lock" Locked once by "CAPI Execution Listener 1" 2008CAC7>

CL-USER 6 > (mp:process-lock *my-lock*)
T

CL-USER 7 > *my-lock*
#<MP:LOCK "my-lock" Locked 2 times by "CAPI Execution Listener 1" 2008CAC7>

See also

lock
current-process
lock-recursive-p
process-lock
process-unlock
schedule-timer
with-lock
19.4 Locks

make-mailbox Function

Summary

Makes a new mailbox.

Package

mp

Signature

make-mailbox &key size name => mailbox

Arguments

size⇓ An integer.

name⇓ A Lisp object.

Values

mailbox⇓ A mailbox.

42 The MP Package

1183

Description

The function make-mailbox returns a new mailbox.

size specifies the initial size of the mailbox mailbox.

The reader process is set to nil.

name does not affect the functionality of mailbox, but can be very useful for debugging. It appears in the printed
representation of mailbox, and also in the process-whostate of any process that waits for mailbox (using
mailbox-read).

See also

mailbox
mailbox-empty-p
mailbox-peek
mailbox-read
mailbox-send
process-whostate
make-unlocked-queue
19.6.3 Communication between processes and synchronization

make-named-timer Function

Summary

Creates and returns a named timer.

Package

mp

Signature

make-named-timer name function &rest arguments => timer

Arguments

name⇓ A string or symbol.

function⇓ A function.

arguments⇓ A set of arguments to function.

Values

timer⇓ A timer.

Description

The function make-named-timer creates and returns a named timer.

name is a string or symbol naming timer.

function is a function to be applied arguments when timer expires. Use the function schedule-timer or

42 The MP Package

1184

schedule-timer-relative to set an expiration time.

In comparison, the function make-timer creates an unnamed timer.

Examples

(setq timer (mp:make-named-timer 'timer-1 'print 10
standard-output))

#<Time Event TIMER-1 : PRINT>

See also

make-timer
schedule-timer
schedule-timer-milliseconds
schedule-timer-relative
schedule-timer-relative-milliseconds
timer-expired-p
timer-name
unschedule-timer

make-semaphore Function

Summary

Makes a semaphore.

Package

mp

Signature

make-semaphore &key name count => sem

Arguments

name⇓ An object.

count⇓ A non-negative fixnum.

Values

sem A semaphore.

Description

The function make-semaphore returns a new semaphore for use with semaphore-acquire and semaphore-release.
The unit count is initialized to count, which defaults to 1. If name is supplied, the semaphore will have that name. If name is
not supplied, the semaphore will be given a unique anonymous name.

42 The MP Package

1185

See also

semaphore
semaphore-acquire
semaphore-count
semaphore-name
semaphore-release
semaphore-wait-count
19.7.3 Counting semaphores

make-timer Function

Summary

Creates and returns an unnamed timer.

Package

mp

Signature

make-timer function &rest arguments => timer

Arguments

function⇓ A function.

arguments⇓ A set of arguments to function.

Values

timer⇓ A timer.

Description

The function make-timer creates and returns an unnamed timer. function is a function to be applied to arguments when
timer expires. Use the function schedule-timer or schedule-timer-relative to set an expiration time.

If function returns the keyword :stop, then timer is unscheduled (as if by unschedule-timer). This allows you to
schedule a repeating timer (by passing repeat-time to schedule-timer, schedule-timer-relative,
schedule-timer-milliseconds or schedule-timer-relative-milliseconds) that unschedules itself when some
condition is true. Otherwise the values returned by function are ignored.

Note that the function make-named-timer creates a named timer.

Examples

(setq timer
 (mp:make-timer 'print 10 *standard-output*))
=>
#<Time Event : PRINT>

42 The MP Package

1186

See also

make-named-timer
make-timer
schedule-timer
schedule-timer-milliseconds
schedule-timer-relative
schedule-timer-relative-milliseconds
timer-expired-p
timer-name
unschedule-timer
19.9 Timers

map-all-processes Function

Summary

Calls a predicate function on processes in turn until a true value is returned.

Package

mp

Signature

map-all-processes function => result

Arguments

function⇓ A function taking one argument.

Values

result A process or nil.

Description

The function map-all-processes calls function on processes..

function is passed each process in turn as its single argument.

For a process argument p, if function returns nil then map-all-processes continues by calling function on the next
process, but if function returns true then map-all-processes returns p immediately and stops calling function (so function
may not get called on all processes).

See also

map-processes
map-all-processes-backtrace

42 The MP Package

1187

map-all-processes-backtrace Function

Summary

Produces a backtrace for every known process.

Package

mp

Signature

map-all-processes-backtrace &optional function

Arguments

function⇓ A function taking one argument.

Description

The function map-all-processes-backtrace calls function, which defaults to print, for every known process and each
line of its backtrace.

See also

map-process-backtrace
debug-other-process

map-process-backtrace Function

Summary

Produces a backtrace for a process.

Package

mp

Signature

map-process-backtrace process function

Arguments

process⇓ A process.

function⇓ A function taking one argument.

Description

The function map-process-backtrace collects a backtrace for the process specified by process, and the function function

42 The MP Package

1188

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_pr.htm

is called on each line of the backtrace in turn.

Examples

CL-USER 1 > (mp:map-process-backtrace mp:*current-process* 'print)

DBG::GET-CALL-FRAME
MP:MAP-PROCESS-BACKTRACE
SYSTEM::%INVOKE
SYSTEM::%EVAL
EVAL
SYSTEM::DO-EVALUATION
SYSTEM::%TOP-LEVEL-INTERNAL
SYSTEM::%TOP-LEVEL
SYSTEM::LISTENER-TOP-LEVEL
CAPI::CAPI-TOP-LEVEL-FUNCTION
CAPI::INTERACTIVE-PANE-TOP-LOOP
(SUBFUNCTION MP::PROCESS-SG-FUNCTION MP::INITIALIZE-PROCESS-STACK)
SYSTEM::%%FIRST-CALL-TO-STACK
NIL

See also

map-all-processes-backtrace

map-processes Function

Summary

Calls a predicate function on processes in turn until a true value is returned.

Package

mp

Signature

map-processes function => result

Arguments

function⇓ A function taking one argument.

Values

result A process or nil.

Description

The function map-processes calls function on processes.

function is passed each live process (as determined by process-alive-p) in turn as its single argument.

For a process argument p, if function returns nil then map-processes continues by calling function on another process, but
if function returns true then map-processes returns p immediately and stops calling function (so function may not get

42 The MP Package

1189

called on all processes).

See also

map-all-processes

notice-fd Function

Summary

Add a file descriptor to the set of interesting input file descriptors.

Package

mp

Signature

notice-fd fd

Arguments

fd⇓ A POSIX file descriptor.

Description

The function notice-fd adds the given fd to the set of fds that cause LispWorks to wake up when they contain input.

This function is not implemented on Microsoft Windows.

See also

unnotice-fd

process-alive-p Function

Summary

Determines if a process is alive.

Package

mp

Signature

process-alive-p process => bool

Arguments

process⇓ A process.

42 The MP Package

1190

Values

bool A boolean.

Description

The function process-alive-p returns t if process is alive, that is, if process-terminate has not been called on the
process.

Examples

(mp:process-alive-p mp:*current-process*)

=> T

(let ((process (mp:process-run-function
 "test" nil 'identity nil)))
 (sleep 2)
 (mp:process-alive-p process))

=> NIL

process-all-events Function

Summary

Processes the events in the mailbox of the current process.

Package

mp

Signature

process-all-events => processedp

Values

processedp A boolean.

Description

The function process-all-events processes all the events in the mailbox of the current process, by calling
general-handle-event on each one of them.

process-all-events returns a boolean indicating whether it processed any event.

See also

general-handle-event
process-mailbox
process-send

42 The MP Package

1191

process-allow-scheduling Function

Summary

Allows scheduling within a process, so that the process is interruptible.

Package

mp

Signature

process-allow-scheduling

Description

The function process-allow-scheduling gives other Lisp processes a chance to run.

process-arrest-reasons Function

Summary

Returns a list of the reasons why a Lisp process has stopped.

Package

mp

Signature

process-arrest-reasons process => reasons

Arguments

process⇓ A process.

Values

reasons A list of reasons.

Description

The function process-arrest-reasons returns a list of the reasons why process has stopped. A process is inactive if it
has any arrest reasons.

Use of (setf mp:process-arrest-reasons) is deprecated. You should use process-stop instead. If you set the
arrest reasons of the current process, this causes the current process to stop immediately, before returning from
process-arrest-reasons (like process-stop).

42 The MP Package

1192

Compatibility notes

The immediate stopping behavior of (setf mp:process-arrest-reasons) is different from LispWorks 5.0 and
previous versions.

See also

process-run-reasons
process-stop

process-break Function

Summary

Breaks a Lisp process and enters the debugger.

Package

mp

Signature

process-break process

Arguments

process⇓ A process.

Description

The function process-break forces the process process to break and enter the debugger.

See also

debug-other-process

process-continue Function

Summary

Wakes up a process.

Package

mp

Signature

process-continue process => nil

42 The MP Package

1193

Arguments

process⇓ A mp:process object.

Description

The function process-continue wakes up the process process, regardless of whether it is sleeping, stopped or waiting.

process-continue returns nil.

processes-count Function

Summary

Returns the number of Lisp processes that are currently alive.

Package

mp

Signature

processes-count => count

Values

count⇓ A non-negative integer.

Description

The function processes-count returns the number of Lisp processes that are currently alive.

count includes all processes that are alive, that is started executing and did not die. It does not include any thread that was
started by foreign code, unless it calls into Lisp, in which case Lisp automatically generates a matching Lisp process which is
included in the count.

In general processes can start and die so the real count may change by the time the function has returned. The only guarantee
is that the count was accurate at some point between the time processes-count was called and the time it returns.

See also

list-all-processes

process-exclusive-lock Function

Summary

Like process-lock, but on a "sharing" lock.

Package

mp

42 The MP Package

1194

Signature

process-exclusive-lock sharing-lock &optional whostate timeout => result

Arguments

sharing-lock⇓ A sharing lock.

whostate⇓ A string or nil.

timeout⇓ A non-negative real or nil.

Values

result⇓ A boolean.

Description

The function process-exclusive-lock is the same as process-lock, but on a "sharing" lock. It waits until sharing-
lock is free before locking it in exclusive mode.

If whostate is non-nil, it is used as the wait reason while waiting for sharing-lock.

timeout, if non-nil, specifies the time in seconds to wait before timing out. The default value of timeout is nil.

result is t if sharing-lock was successfully locked, and nil otherwise.

Calls to process-exclusive-lock should be paired with process-exclusive-unlock calls. In most cases the macro
with-exclusive-lock the best way to achieve this.

Notes

It is not possible to use exclusive lock in the scope of a sharing lock on the same lock, and trying to do this will cause the
process to hang. Whether it is possible to use an exclusive lock inside an exclusive lock of the same lock is determined by the
recursivep argument in make-lock.

process-exclusive-lock is guaranteed to return if it locked sharing-lock, but may throw before locking, as described in
19.4.3 Guarantees and limitations when locking and unlocking.

See also

make-lock
process-lock
with-exclusive-lock
19.4 Locks

process-exclusive-unlock Function

Summary

Like process-unlock, but on a "sharing" lock.

Package

mp

42 The MP Package

1195

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

Signature

process-exclusive-unlock sharing-lock

Arguments

sharing-lock⇓ A sharing lock.

Description

The function process-exclusive-unlock is the same as process-unlock but for a "sharing" lock.

Calls to process-exclusive-unlock should be paired with process-exclusive-lock calls. In most cases the macro
with-exclusive-lock the best way to achieve this.

Notes

process-exclusive-unlock is guaranteed to successfully unlock sharing-lock, but is not guaranteed to return, as
described in 19.4.3 Guarantees and limitations when locking and unlocking.

See also

process-exclusive-lock
process-unlock
with-exclusive-lock
19.4 Locks

process-idle-time Function

Summary

Returns the time for which a process has been idle.

Package

mp

Signature

process-idle-time process => time

Arguments

process⇓ A process.

Values

time A non-negative integer.

Description

The function process-idle-time returns the length of time in internal time units that process has been idle. If the process
is running (for example the current process) then the return value is 0.

42 The MP Package

1196

See also

process-run-time

process-initial-bindings Variable

Summary

Specifies the variables initially bound in a new process.

Package

mp

Initial Value

A list of bindings that are needed by LispWorks.

Description

The variable *process-initial-bindings* specifies the variables that are initially bound in a Lisp process when that
process is created. This variable is an association list of symbols and initial value forms. The initial value forms are
processed by a simple evaluation that handles symbols and function call forms, but not special operators.As a special case, if
the value form is the same as the symbol and that symbol is unbound, then the symbol will be unbound in the new process.

When process-run-function is called, it performs the evaluation in the dynamic environment of the call. It is therefore
possible to bind *process-initial-bindings* dynamically around the call, as shown in the examples below, and that is
the preferred way of using *process-initial-bindings* (rather than setting the global value).

The initial value forms in *process-initial-bindings* are also evaluated in outer calls on foreign threads, which are
threads that were made by foreign code rather than by Lisp. See 19.12.1 Foreign callbacks on threads not created by Lisp
for discussion. Note that in this case. the evaluation occurs in a dynamic environment where the variables in
process-initial-bindings are not bound yet. That is different from calls to process-run-function, where all
the variables that were in *process-initial-bindings* at the time that the calling process was created are already
bound.

Notes

Changing the global value of *process-initial-bindings* affects all new processes in the system, including processes
that will be associated with foreign threads. Unless that is what you want, you should not set the global value. When you do
set it, you should take care to avoid errors.

Errors in the evaluation are signaled in the standard way when they occur due to to process-run-function. When
LispWorks creates processes for its own use, it just ignores such errors and binds the corresponding variable to nil. When
the evaluation is for a foreign thread, the error is signaled as usual, wrapped with a restart that allows you to use nil as the
value.

Examples

This example shows a typical use with a bound symbol:

(defvar *binding-1* 10)

42 The MP Package

1197

(let ((mp:*process-initial-bindings*
 (cons '(*binding-1* . 20)
 mp:*process-initial-bindings*)))
 (mp:process-run-function
 "binding-1"
 '()
 #'(lambda (stream)
 (format stream "~&Binding 1 is ~S.~%" *binding-1*))
 standard-output)
 (sleep 1))
=>
Binding 1 is 20.

This example shows the special case with an unbound symbol:

(defvar *binding-2*)

(let ((mp:*process-initial-bindings*
 (cons '(*binding-2* . *binding-2*)
 mp:*process-initial-bindings*)))
 (flet ((check-binding-2 ()
 (mp:process-run-function
 "binding-2"
 '()
 #'(lambda (stream)
 (if (boundp '*binding-2*)
 (format stream "~&Binding 2 is ~S.~%" *binding-2*)
 (format stream "~&Binding 2 is unbound.~%")))
 standard-output)
 (sleep 1)))
 (check-binding-2)
 (let ((*binding-2* 123))
 (check-binding-2))))
=>
Binding 2 is unbound.
Binding 2 is 123.

process-internal-server-p Function

Summary

Tests whether a process is an internal server.

Package

mp

Signature

process-internal-server-p process => result

Arguments

process⇓ A mp:process object.

42 The MP Package

1198

Values

result A boolean.

Description

The function process-internal-server-p is the predicate for whether process is marked as "internal server".

Notes

Processes are marked as "internal server" by a true value for :internal-server amongst the keywords in a call to
process-run-function.

See also

process-run-function
any-other-process-non-internal-server-p

process-interrupt Function

Summary

Interrupts a process.

Package

mp

Signature

process-interrupt process function &rest arguments

Arguments

process⇓ A process.

function⇓ A function to apply on resuming process.

arguments⇓ Arguments to supply to function.

Description

The function process-interrupt causes the Lisp process process to apply function to arguments when it is next resumed.
Afterwards the process resumes its normal execution, as long as function does not throw. A waiting process is temporarily
woken up.

Notes

Interrupts should be used only for simple operations such as setting a variable. Any more complex interrupt function is
potentially dangerous and should be avoided. The problem is that even simple code like:

(let ((message (read-message)))
 (process-message message))

42 The MP Package

1199

may lose the message if an interrupt ends up throwing between the two lines. In addition, the code in the interrupt may be
executed while some tree of pointers is in an inconsistent state (while the message is incompletely processed, for example).

See also

process-interrupt-list

process-interrupt-list Function

Summary

Interrupts a process.

Package

mp

Signature

process-interrupt-list process function arguments

Arguments

process⇓ A process.

function⇓ A function to apply on resuming process.

arguments⇓ A list of the arguments to supply to function.

Description

The function process-interrupt-list causes the Lisp process process to apply function to arguments when it is next
resumed. It is just like process-interrupt except that arguments are supplied as a list.

See also

process-interrupt

process-join Function

Summary

Waits until a specified process dies, or a timeout is reached.

Package

mp

Signature

process-join process &key timeout => flag

42 The MP Package

1200

Arguments

process⇓ A process.

timeout⇓ A non-negative real or nil.

Values

flag A boolean.

Description

The function process-join waits until the process process dies, or timeout seconds passed.

If the process dies then process-join returns t. If the timeout passed it returns nil.

process-join can be used on dead processes, and in this case returns t immediately.

The effect of process-join is similar to:

(mp:process-wait-with-timeout
 "Waiting for process to die" timeout
 #'(lambda (x)
 (not (mp:process-alive-p x))) process)

but the call above may not return until the next time the scheduler runs, possibly causing a delay. In contrast process-join
returns immediately when the process dies.

See also

process-wait-with-timeout

process-kill Function

Summary

Kills the specified Lisp process (deprecated).

Package

mp

Signature

process-kill process

Arguments

process⇓ A process.

Description

The function process-kill kills process.

process-kill is deprecated. Use process-terminate instead.

42 The MP Package

1201

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

Notes

1. process-kill kills the process by sending it an interrupt with current-process-kill, which will throw out of
whatever it is doing. That means that any code that is executing without interrupts blocked may abort in the middle. It is
wise in general to block interrupts around all sensitive places, so that process-kill may kill the process in a non-
sensitive place.

2. If process-kill is called while the process is in a no-interrupt context, the killing will actually happen when the
process exits that no-interrupt context.

3. If the killing happens inside the cleanup forms of unwind-protect, it may terminate a cleanup in the middle. It is
possible to protect against this by doing all cleanups with interrupts disallowed, but that is not easy. Thus
process-kill may be problematic, and should be avoided when possible. Whenever possible, make your processes
check some flag that can be set by other threads and exit when the flag is set to some value.

See also

ensure-process-cleanup
process-terminate

process-lock Function

Summary

Locks a lock for the current process.

Package

mp

Signature

process-lock lock &optional whostate timeout => result

Arguments

lock⇓ A lock.

whostate⇓ A string or nil.

timeout⇓ A non-negative real or nil.

Values

result⇓ A boolean.

Description

The function process-lock attempts to lock lock and returns t if successful, or nil if timed out.

If lock is already locked and its owner is the same as the result of get-current-process, then the value of recursivep in
lock (see make-lock) controls what happens. If recursivep is true, then lock remains locked and an internal count is
incremented (this is called recursive locking). Otherwise, an error is signaled.

The Lisp process sleeps until the lock can be locked or the timeout period specified by timeout in seconds expires. If timeout

42 The MP Package

1202

http://www.lispworks.com/documentation/HyperSpec/Body/s_unwind.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

is nil (the default) then process-lock waits indefinitely.

If whostate is non-nil, it is used as the wait reason while waiting for lock.

result is t if lock was successfully locked, and nil otherwise.

Notes

process-lock is guaranteed to return if it locked process, but may throw before locking, as described in 19.4.3 Guarantees
and limitations when locking and unlocking.

Examples

(process-lock *my-lock* "waiting to lock" 10)

See also

make-lock
process-exclusive-lock
process-unlock
with-lock
19.4 Locks

process-mailbox Accessor

Summary

Accesses the mailbox associated with a process.

Package

mp

Signature

process-mailbox process => mailbox

setf (process-mailbox process) mailbox => mailbox

Arguments

process⇓ A process.

mailbox A mailbox or nil.

Values

mailbox A mailbox or nil.

Description

The accessor process-mailbox returns or sets the mailbox associated with process.

42 The MP Package

1203

Examples

(setf (mp:process-mailbox mp:*current-process*)
 (mp:make-mailbox))

process-name Function

Summary

Returns the name of a specified process.

Package

mp

Signature

process-name process => name

Arguments

process⇓ A process.

Values

name The name of the process specified by process.

Description

The function process-name returns the name process.

process-p Function

Summary

The predicate for processes.

Package

mp

Signature

process-p object => bool

Arguments

object⇓ Any object.

42 The MP Package

1204

Values

bool A generalized boolean.

Description

The function process-p returns t if object is a process, and nil otherwise.

process-plist Function

Summary

Returns the plist associated with a process. This function is deprecated.

Package

mp

Signature

process-plist process => plist

Arguments

process⇓ A process.

Values

plist A plist.

Description

The function process-plist returns the plist associated with process.

Notes

It is not possible to manipulate the plist in a thread-safe manner, and process-plist may interact badly with other users of
the plist, hence process-plist is deprecated. Use instead process-property and get-process-private-property

etc.

process-poke Function

Summary

Makes a waiting process call its wait function.

Package

mp

42 The MP Package

1205

Signature

process-poke process => result

Arguments

process⇓ A process.

Values

result A boolean.

Description

If the process process is waiting, the function process-poke causes it to run its wait-function as soon as possible, and if the
wait function returns true, the process returns from the waiting function.

process-poke is especially useful when using the process-wait-local-* functions. With process-wait-local and
process-wait-local-with-timeout, it is the only way to ensure that the waiting process checks the wait function. The
other functions also check periodically, but process-poke is still useful to make them wake up immediately.

With a non-local wait function (that is, in process-wait and process-wait-with-timeout), process-poke is useful
in SMP LispWorks to ensure that the process wakes and checks its wait-function immediately. process-poke has no effect
on non-SMP LispWorks for process-wait and process-wait-with-timeout.

You can also use process-poke to wake up a process that waits using current-process-pause.

process-poke returns t if it actually poked the process or nil otherwise (when the process is not waiting or is stopped).

The process wait functions are designed to call the wait-function just before going to sleep, in a way that guards against a race
condition between process-poke and the waiting function. In particular, they ensure that if a process goes to wait with a
wait-function that checks some value, and another process sets this value and calls process-poke on the first process, the
first either will check the value before going to sleep, or wake up and check the value. The first process is never going to get
stuck because it went to sleep just as the other process set the value. Note that this is guaranteed only when the value is set
before process-poke is called.

Functions that cause specific wait functions to be ready to run (for example mailbox-send which causes mailbox-read to
be ready to run) implicitly pokes a process that waits, so there is no need to use process-poke when these functions are
used.

Examples

Worker process function:

(defun worker-process-function (work-struct)
 (loop (mp:process-wait-local "Waiting for request"
 'worker-struct-request
 work-struct)
 (process-request
 (worker-struct-request work-struct))
 (setf (worker-struct-request work-struct) nil)))

Another process distributes requests:

(dolist (work-struct *work-structs*)
 (unless (worker-struct-request work-struct)
 (setf (worker-struct-request work-struct) request)
 (mp:process-poke

42 The MP Package

1206

 (worker-struct-process work-struct))
 (return work-struct)))

This specific example can be implemented a little more simply by mailbox-read and mailbox-send, but if the wait
function needs to check for something else it can be easily added.

See also

current-process-pause
process-wait
process-wait-local
process-wait-local-with-periodic-checks
process-wait-local-with-timeout
process-wait-local-with-timeout-and-periodic-checks
process-wait-with-timeout

process-priority Function

Summary

Returns the numerical priority of the Lisp process.

Package

mp

Signature

process-priority process => priority

Arguments

process⇓ A process.

Values

priority A fixnum, the priority of process.

Description

The function process-priority returns the numerical priority of process. This can be modified by calling
change-process-priority.

Examples

CL-USER 17 > (mp:process-priority mp:*current-process*)
600000

See also

change-process-priority

42 The MP Package

1207

process-private-property Accessor

Summary

Gets or sets the value of a private property of the current process.

Package

mp

Signature

process-private-property indicator &optional default => value

setf (process-private-property indicator &optional default) value => value

Arguments

indicator⇓ A Lisp object.

default⇓ A Lisp object.

value⇓ A Lisp object.

Values

value⇓ A Lisp object.

Description

The accessor process-private-property gets or sets the value that is associated with indicator in the private properties
of the current process (that is, the result of calling get-current-process).

If indicator is not associated with a value in the private properties, process-private-property returns default.

(setf process-private-property) overwrites any existing value for indicator to value and default is ignored.

The default value of default is nil.

Notes

1. Private properties can be read from other processes using get-process-private-property, but cannot be set by
other processes.

2. Process private property access is faster than than process property access in SMP LispWorks, because the
implementation of the latter must deal with parallel setting.

3. Private properties are discarded when the process dies.

See also

remove-process-private-property
pushnew-to-process-private-property
remove-from-process-private-property
get-process-private-property

42 The MP Package

1208

process-property Accessor

Summary

Gets and sets a general property for a process.

Package

mp

Signature

process-property indicator &optional process default => value

setf (process-property indicator &optional process default) value => value

Arguments

indicator⇓ A Lisp object.

process⇓ A process.

default⇓ A Lisp object.

value⇓ A Lisp object.

Values

value⇓ A Lisp object.

Description

The accessor process-property gets or sets the value that is associated with indicator for the process process.

If process is not supplied or is nil, the current process (that is, the result of calling get-current-process) is used.

If indicator is not associated with a value in the properties, process-property returns default.

(setf process-property) overwrites any existing value for indicator to value and default is ignored.

The default value of default is nil.

Notes

In the typical case when only the current process sets the property (even if other processes read it), private properties can be
used, and are much faster in SMP LispWorks, because they do not need to deal with parallel setting. See
process-private-property.

Examples

(process-property 'foo (get-current-process) 'bar)

=> BAR

42 The MP Package

1209

(setf (process-property 'foo) 'foo-value)
=> FOO-VALUE

(process-property 'foo)

=> FOO-VALUE

See also

process-private-property
remove-process-property
remove-from-process-property
pushnew-to-process-property

process-reset Function

Summary

Resets a process by discarding its current state.

Package

mp

Signature

process-reset process

Arguments

process⇓ A process.

Description

The function process-reset interrupts the execution of process and "throws away" its current state. Upon resuming
execution, the process calls its function with its initial argument and priority.

process-reset modifies the dynamic execution state of process. It performs a non-local exit from the currently running
function, to cause the process's main function to return. unwind-protect forms will be run.

process-reset does not modify any of the attributes of the process, in particular its priority, items on the plist, or
accumulated run-time.

Notes

Since process-reset causes an asynchronous non-local exit, it is possible that it can occur within an unwind-protect

cleanup form or before data used by an unwind-protect cleanup form has been initialized. In some cases, not all cleanups
within that form will be run.

42 The MP Package

1210

http://www.lispworks.com/documentation/HyperSpec/Body/s_unwind.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_unwind.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_unwind.htm

process-run-function Function

Summary

Create a new process, passing it a function to run.

Package

mp

Signature

process-run-function name keywords function &rest arguments => process

Arguments

name⇓ A name for the new process.

keywords⇓ Keywords specifying properties of the new process.

function⇓ A function to apply.

arguments⇓ Arguments to pass to function.

Values

process⇓ The newly created process.

Description

The function process-run-function creates a new Lisp process with name name. Other properties of process may be
specified in keyword/value pairs in keywords:

:priority A fixnum representing the priority for the process. If :priority is not supplied, the process
priority becomes the value of the variable *default-process-priority*.

:mailbox A mailbox, a string, t or nil, used to initialize the process-mailbox of process.

True values specify that process should have a mailbox. A mailbox is used as-is; a string is
used as the name of a new mailbox; and t causes it to create a mailbox with the same name as
process, that is, name.

Note that both process-send and process-wait-for-event force the relevant process to
have a mailbox.

:internal-server When true, this indicates that the process is an "internal server", which means that it responds to
requests for work from other processes. The main effect of this is that if the only processes that
remain are "internal servers", nothing is going to happen, so LispWorks quits. The system marks
some of the processes that it creates as "internal server".

:remote-terminator A function designator for a function of one argument.

:local-terminator A function designator for a function of no arguments.

42 The MP Package

1211

http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm

:terminate-by-send A generalized boolean.

The new process is preset to apply function to arguments and runs in parallel, while process-run-function returns
immediately.

:remote-terminator, :local-terminator or :terminate-by-send define the Terminate Method of the process,
which is what process-terminate uses. If more than one of these keyword arguments is supplied, then
:remote-terminator takes precedence over :local-terminator which takes precedence over :terminate-by-send.

If remote-terminator is supplied, it must be a function of one argument. When process-terminate is called, it funcalls
remote-terminator on the process that process-terminate was called on, which normally will be another process. It
should then terminate the process somehow. Typically the process itself will be frequently checking some flag which tells it
to exit, and the function remote-terminator just sets this flag. remote-terminator should return non-nil when it is "successful",
that is it did something that should cause the process to terminate. process-terminate checks the result of the call to
remote-terminator, and if it is nil it also calls process-kill on the process.

If local-terminator is supplied, it must be a function of no arguments. When process-terminate is called it sends to the
process a list with the local-terminator as the only element. That relies on the process itself processing what is sent to it and
funcalling the function. This is what general-handle-event does, which is what system processes tend to use. In
particular, all processes that are created by CAPI use it.

If terminate-by-send is supplied and non-nil, process-terminate sends the process a list containing
current-process-kill (that is it is the same as :local-terminator 'current-process-kill). CAPI processes
use this keyword.

Examples

CL-USER 253 > (defvar *stream* *standard-output*)
STREAM

CL-USER 254 > (mp:process-run-function
 "My process"
 '(:priority 42)
 #'(lambda (x)
 (loop for i below x
 do (and (print i *stream*)
 (sleep 1))
 finally
 (print (mp:process-priority
 mp:*current-process*)
 stream)))
 3)
#<MP:PROCESS Name "My process" Priority 850000 State "Running">

0
1
2
42
CL-USER 255 >

See also

current-process-kill
default-process-priority
initial-processes
list-all-processes
map-processes
process-alive-p

42 The MP Package

1212

process-join
process-terminate
process-whostate
ps

process-run-reasons Accessor

Summary

Returns the reasons that a specified process is running.

Package

mp

Signature

process-run-reasons process => reasons

setf (process-run-reasons process) reasons => reasons

Arguments

process⇓ A process.

reasons A list of run reasons.

Values

reasons A list of run reasons.

Description

The accessor process-run-reasons returns a list of reasons for process to run. These can be changed using setf.

A process is only active if it has at least one run reason and no arrest reasons.

See also

process-arrest-reasons
process-run-function
process-whostate

process-run-time Function

Summary

Returns the current run time for a process.

Package

mp

42 The MP Package

1213

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

Signature

process-run-time process => time

Arguments

process⇓ A process.

Values

time A positive integer or nil.

Description

The function process-run-time returns the current run time for process in internal time units. If the value cannot be
determined (currently this is only on FreeBSD), then the return value is nil.

Notes

The value returned by get-internal-run-time is similar, but on some operating systems it is the total time for all Lisp
processes in the image.

See also

process-idle-time

process-send Function

Summary

Sends an object to the mailbox of a given process.

Package

mp

Signature

process-send process object &key change-priority limit timeout error-if-dead-p => success

Arguments

process⇓ A process.

object⇓ An object.

change-priority⇓ A fixnum, nil, t, or :default.

limit⇓ An integer or nil.

timeout⇓ A non-negative real or nil.

error-if-dead-p⇓ A generalized boolean.

42 The MP Package

1214

http://www.lispworks.com/documentation/HyperSpec/Body/f_get__1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

Values

success A boolean.

Description

The function process-send queues object in the mailbox of the given process.

object can any kind of Lisp object, and it is up to the receiving process to interpret it.

process-send only sends the event: it is the responsibility of the receiving process to actually read the event and then
interpret it. Reading is typically done by calling process-wait-for-event. Interpreting the event is up the caller of
process-wait-for-event. In the "standard" situation, for example in a process started by CAPI, the object will be
processed as an event by calling general-handle-event.

process-send actually uses the process-mailbox of process, creating a mailbox for process if it does not already have
one. In principle object can be read by another process, by calling mailbox-read (or process-wait-for-event) on the
mailbox.

If change-priority, which has a default value of :default, is non-nil, it controls how the priority of that process is calculated
as follows:

• fixnum — use the value of change-priority as the new priority.

• t — set the priority to the interactive priority.

• :default — set the priority to the normal running priority.

error-if-dead-p defaults to nil, which means that if process-send is called with a dead process, it just returns false. If
error-if-dead-p is non-nil, when process-send is called on a dead process it signals a continuable error.

limit defaults to nil. If it is non-nil, it must be a positive integer that specifies the maximum size to which process-send

may expand the mailbox of the process. When limit is non-nil. process-send adds the object to the mailbox as if by:

(mailbox-send-limited mailbox object limit timeout)

See mailbox-send-limited for details.

timeout defaults to nil and is used when limit is non-nil as described above, otherwise it is ignored.

process-send returns true if it put the object in the mailbox of the process and false otherwise. The latter can happen either
because the process is dead, or because the process's mailbox is full and reached the size specified by limit and timeout is
non-nil.

See also

general-handle-event
mailbox-send
mailbox-send-limited
process-wait-for-event
19.6.3 Communication between processes and synchronization

42 The MP Package

1215

http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm

process-sharing-lock Function

Summary

Like process-lock, but on a "sharing" lock.

Package

mp

Signature

process-sharing-lock sharing-lock &optional whostate timeout => result

Arguments

sharing-lock⇓ A sharing lock.

whostate⇓ A string or nil.

timeout⇓ A non-negative real or nil.

Values

result⇓ A boolean.

Description

The function process-sharing-lock is like process-lock, but sharing-lock must be a "sharing" lock and it will be
locked in shared mode. That means that other threads can also lock it in shared mode.

Before locking, process-sharing-lock waits for sharing-lock to be free of any exclusive lock, but it does not check for
other shared mode use of the same lock.

If whostate is non-nil, it is used as the wait reason while waiting for sharing-lock.

timeout, if non-nil, specifies the time in seconds to wait before timing out. The default value of timeout is nil.

result is t if sharing-lock was successfully locked, and nil otherwise.

Calls to process-sharing-lock should be matched by calls to process-sharing-unlock with sharing-lock. Normally
with-sharing-lock is the best way to achieve this.

Notes

It is possible to lock for sharing inside the scope of a sharing lock and inside the scope of an exclusive lock.

process-sharing-lock is guaranteed to return if it locked sharing-lock, but may throw before locking, as described in
19.4.3 Guarantees and limitations when locking and unlocking.

See also

process-lock
process-sharing-unlock
with-sharing-lock

42 The MP Package

1216

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

19.4 Locks

process-sharing-unlock Function

Summary

Removes a sharing lock.

Package

mp

Signature

process-sharing-unlock sharing-lock

Arguments

sharing-lock⇓ A sharing lock.

Description

The function process-sharing-unlock is the same as process-unlock but for a "sharing" lock.

Calls to process-sharing-unlock should be matched by calls to process-sharing-lock with sharing-lock. Normally
with-sharing-lock is the best way to achieve this.

Notes

process-sharing-unlock is guaranteed to successfully unlock sharing-lock, but is not guaranteed to return, as described
in 19.4.3 Guarantees and limitations when locking and unlocking.

See also

process-unlock
with-sharing-lock
19.4 Locks

process-stop Function

Summary

Stops a process.

Package

mp

Signature

process-stop process

42 The MP Package

1217

Arguments

process⇓ A mp:process object.

Description

The function process-stop stops the process process.

process-stop causes process to stop until some other process explicitly wakes it up. If it is called on the current process,
the current process stops during the call, and returns from process-stop after the process gets woken up.

In SMP LispWorks, if process is not the current process, process-stop returns immediately and the execution of process
stops at some point, possibly after process-stop returned. In non-SMP LispWorks if process is not the current process,
process stops before process-stop returns.

You can wake up a stopped process (that is, make it runnable) by calling process-terminate, process-unstop or
process-continue.

process-interrupt does not wake up a stopped process.

There is a discussion of a typical use of process-stop in the section 19.11.3 Stopping and unstopping processes.

process-stop does not return any useful value.

See also

process-arrest-reasons
process-stopped-p
process-unstop

process-stopped-p Function

Summary

The predicate for stopped processes.

Package

mp

Signature

process-stopped-p process => result

Arguments

process⇓ A mp:process object.

Values

result⇓ A boolean.

42 The MP Package

1218

Description

The function process-stopped-p queries whether the process process is stopped or not.

If process stopped because it called process-stop on itself, then process-stopped-p result is t only if process-stop
really stopped it (that is, a later call to process-unstop will unstop the process).

See also

process-stop
process-unstop

process-terminate Function

Summary

Kills a process "nicely".

Package

mp

Signature

process-terminate process &key join-timeout force-timeout

Arguments

process⇓ A mp:process object.

join-timeout⇓ A non-negative real or nil.

force-timeout⇓ A non-negative real or nil.

Description

The function process-terminate terminates the process process, which means killing it "nicely". process-terminate
invokes the Terminate Method of process, if it has one, otherwise it calls process-kill.

The terminate is set either by supplying one of local-terminator, remote-terminator or terminate-by-send in the call to
process-run-function, or by a call to current-process-set-terminate-method on the process. See the entry for
process-run-function for details.

If the process does not have a Terminate Method, process-terminate calls process-kill.

If force-timeout is non-nil then process-terminate sets a timer that kills the process after force-timeout seconds.

If join-timeout is non-nil then it is the time in seconds to "join" the process, that is waiting for it to die. When join-timeout is
non-nil, after invoking the Terminate Method or calling process-kill, process-terminate calls process-join using
join-timeout as the timeout, and returns the result.

process-terminate returns the result of process-join if join-timeout is non-nil, otherwise it returns 0.

Notes

42 The MP Package

1219

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

1. process-terminate is the appropriate way to kill processes, because it gives the process the option to decide when to
exit. process-kill kills the process whenever it is not blocking interrupts, which may still be sensitive in some sense.

2. When multiprocessing stops (for example when quitting, or saving a session), the system uses first
process-terminate and then process-kill, so processes that exit with process-terminate have the chance to
clean up as needed.

3. process-terminate is better than process-kill only when the process has a Terminate Method. When the process
does not have a Terminate Method, process-terminate can cause the other to exit in the middle of some sensitive
piece of code.

See also

process-run-function
current-process-set-terminate-method
current-process-kill

process-unlock Function

Summary

Unlocks a lock held by the current process.

Package

mp

Signature

process-unlock lock &optional errorp => result

Arguments

lock⇓ The lock.

errorp⇓ A generalize boolean.

Values

result⇓ A boolean.

Description

The function process-unlock attempts to unlock lock. If lock is owned by *current-process*, then
process-unlock decrements an internal count. If this count is then zero, lock is unlocked. Note that process-unlock
relates only on Lisp processes.

If errorp is non-nil (the default), an error is signaled if *current-process* is not the owner of lock. Otherwise
process-unlock does nothing.

result is t if the lock was released, and nil otherwise.

42 The MP Package

1220

Notes

process-sharing-unlock is guaranteed to successfully unlock lock, but is not guaranteed to return, as described in 19.4.3
Guarantees and limitations when locking and unlocking.

See also

lock
make-lock
process-exclusive-unlock
process-lock
with-lock
19.4 Locks

process-unstop Function

Summary

Unstops a process.

Package

mp

Signature

process-unstop process => result

Arguments

process⇓ A mp:process object.

Values

result⇓ A boolean.

Description

The function process-unstop unstops the process process if it is stopped.

If process was stopped (by process-stop), it is unstopped and resumes execution.

result is t if process was stopped, and nil otherwise.

There is a discussion of a typical use of process-unstop in the section 19.11.3 Stopping and unstopping processes.

See also

process-stop
process-stopped-p

42 The MP Package

1221

process-wait Function

Summary

Suspends the current process until a condition is true.

Package

mp

Signature

process-wait wait-reason wait-function &rest wait-arguments

Arguments

wait-reason⇓ A string describing the reason that the process is waiting.

wait-function⇓ A function designator.

wait-arguments⇓ The arguments that wait-function is applied to.

Description

The function process-wait suspends the current Lisp process until the predicate wait-function applied to wait-arguments
returns true. This is tested periodically by the scheduler, but in situations where you want more control over the timing you
should consider using process-wait-local instead of process-wait and then call process-poke in the process that is
expected to cause wait-function to return true.

wait-function has several limitations: it must not do a non-local exit, it should not have side effects and (since it is called
frequently) it should be efficient.

Also, wait-function is called with interrupts blocked. It should therefore not allow interrupts, because this could cause
deadlocks.

wait-reason allows you to find out why a process is waiting via the function process-whostate.

See also

process-poke
process-wait-local
process-wait-with-timeout
process-whostate
19.6 Process Waiting and communication between processes

process-wait-for-event Function

Summary

Waits for an event in a "windowing friendly" way.

42 The MP Package

1222

Package

mp

Signature

process-wait-for-event &key wait-reason wait-function process-other-messages-p no-hang-p stop-at-user-operation-p =>
event

Arguments

wait-reason⇓ A string or nil.

wait-function⇓ A function designator.

process-other-messages-p⇓
A generalized boolean.

no-hang-p⇓ A generalized boolean.

stop-at-user-operation-p⇓
A generalized boolean.

Values

event⇓ An event or nil.

Description

The function process-wait-for-event calls mailbox-wait-for-event on the mailbox of the current process, after
ensuring that the current process has a mailbox.

See mailbox-wait-for-event for details of wait-reason, wait-function, process-other-messages-p, no-hang-p, stop-at-
user-operation-p and event.

See also

mailbox-wait-for-event

process-wait-function Function

Summary

Returns a function that determines whether a process should continue to wait.

Package

mp

Signature

process-wait-function process => wait-function

42 The MP Package

1223

Arguments

process⇓ A process.

Values

wait-function⇓ A function designator.

Description

The function process-wait-function returns the "wait function" of process which is a function that determines whether
the Lisp process waits. LispWorks periodically calls wait-function to decide whether to wake the process up.

The process has a "wait function" when it is in the scope of a generic non-local wait function, for example process-wait.
See 19.6 Process Waiting and communication between processes for details.

See also

process-wait

process-wait-local Function

Summary

Has the same semantics as process-wait, but does not interact with the scheduler.

Package

mp

Signature

process-wait-local wait-reason function &rest args => t

Arguments

wait-reason⇓ A string.

function⇓ A function designator.

args⇓ Arguments passed to function.

Description

The function process-wait-local suspends the current Lisp process until the predicate function applied to args returns
true.

process-wait-local has same semantics as process-wait, but is "local", which here means that it does not interact
with the scheduler. The scheduler does not call the wait function and hence never wakes the waiting process.

The wait function function is called only by the calling process, before going to sleep, and whenever it is "poked". A process
is typically "poked" by calling process-poke, but all the other process managing functions (process-unstop,
process-interrupt, process-terminate) also "poke" the process. Returning from any of the generic Process Waiting
functions (see 19.6.2 Generic Process Wait functions) or cl:sleep also implicitly pokes the process. A process may be

42 The MP Package

1224

http://www.lispworks.com/documentation/HyperSpec/Body/f_sleep.htm

also poked internally.

Because the wait function is checked only when the process is poked, it is the responsibility of the application to poke the
process when it should check the wait function. This is the disadvantage of process-wait-local and
process-wait-local-with-timeout.

wait-reason is used as the wait-reason while waiting.

Note: See process-wait-local-with-periodic-checks and
process-wait-local-with-timeout-and-periodic-checks for functions that periodically check the wait functions.

One advantage of using the "local" waiters is that the wait function is called only by the waiting process. This means that the
wait function does not have any of the restrictions that the wait function of process-wait has. In particular:

1. It does not matter if the wait function is not very fast. Note however, that it may be called several times, and not always
in a predictable way, so it is better not to make it too slow or allocate much. You also cannot rely on any side effect that
is cumulative inside the wait function, except in the call that returns true (because this happens at most once).

2. If there is an unhandled error in the wait function it enters the debugger like normal Lisp code, so it is easier to debug.

3. The wait function is in the dynamic scope of the calling process, and so it sees all the dynamic bindings and can throw to
all the catchers. That also means that all the handlers and restarts of the calling process are applicable in the wait
function.

4. The wait function can itself call Process Waiting functions or cl:sleep, with a small caveat: since these functions may
implicitly "poke" the process, if the wait function calls any of them and then returns false, it may be immediately called
again (if it returns true then process-wait-local itself returns). Normally this is not a problem, because it is still
waiting, but it does mean that the wait function is called more times than expected.

5. The wait function, because it can call Process Waiting functions, can use locks without causing errors. Note, however,
that if the lock is held, it will cause an internal call to a Process Waiting function, which will "poke" the process and
hence cause another call of the wait function (unless it returns true).

6. The wait function is visible in the output of the profiler.

Another advantage of the "local" functions is that they do not interact with the scheduler and so they reduce the overhead of
the scheduler.

process-wait-local always returns t.

See also

process-poke
process-wait-local-with-periodic-checks
process-wait-local-with-timeout
19.6 Process Waiting and communication between processes

process-wait-local-with-periodic-checks Function

Summary

Like process-wait-local, but also calls the wait function periodically.

Package

mp

42 The MP Package

1225

http://www.lispworks.com/documentation/HyperSpec/Body/f_sleep.htm

Signature

process-wait-local-with-periodic-checks wait-reason period function &rest args

Arguments

wait-reason⇓ A string.

period⇓ A positive real.

function⇓ A function designator.

args⇓ Arguments passed to function.

Description

The function process-wait-local-with-periodic-checks suspends the current Lisp process until the wait function
function applied to args returns true. It is like process-wait-local, but also calls function periodically.

period is in seconds.

After each call to function, the process sleeps at most period seconds before calling function again. If the process is poked
while sleeping, it wakes up, calls function, and then (if function returns nil), sleeps again for at most period seconds.

wait-reason is used as the wait-reason while waiting.

Notes

The resolution of the period is dependent on the underlying operating system. Many systems give time-slices of few
milliseconds, so the actual period may be out by a few milliseconds. In general, periods of 0.1 seconds or more are
reasonably reliable, though not exact. Shorter periods become less and less reliable.

If the period is short, the wait function is called frequently, and hence there is more overhead for the system. With a
reasonable wait function and a period of 0.1 or more, this overhead is probably insignificant. If you use shorter periods, or an
expensive wait function, you may want to check what the overhead is. The easiest way to check is to make sure your system
is such that the wait function returns nil, then run:

(ignore-errors ; just in case
 (sys:with-other-threads-disabled
 (time (mp:process-wait-local-with-timeout-and-periodic-checks
 "Timing" 5 period function args))))

When this form returns, compare the user and system times (which is what it actually used) to the elapsed time (which should
be approximately 5 seconds). That will tell you what fraction of a "CPU" is used by the call. If the user and system time are
less than 0.01 seconds, you may want to increase the time to get a more accurate number.

Warning: inside the scope of with-other-threads-disabled, the rest of the threads are disabled. So if your wait
function ends up waiting for something that has to happen on another thread, your system will be deadlocked.

See also

process-poke
process-wait-local
process-wait-local-with-timeout-and-periodic-checks
19.6 Process Waiting and communication between processes

42 The MP Package

1226

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

process-wait-local-with-timeout Function

Summary

Has the same semantics as process-wait-with-timeout, but does not interact with the scheduler.

Package

mp

Signature

process-wait-local-with-timeout wait-reason timeout function &rest args => result

Arguments

wait-reason⇓ A string.

timeout⇓ A non-negative real or nil.

function⇓ A function designator.

args⇓ Arguments passed to function.

Values

result A boolean.

Description

The function process-wait-local-with-timeout suspends the current Lisp process until the predicate function applied
to args returns true or until timeout seconds have passed.

process-wait-local-with-timeout has same semantics as process-wait-with-timeout, but is "local", which
here means that it does not interact with the scheduler. The scheduler does not call the wait function and hence never wakes
the waiting process.

wait-reason is used as the wait-reason while waiting.

timeout is in seconds.

The circumstances in which the function wait-function is called, and the restrictions on it, are as documented for
process-wait-local except that the wait function can additionally be called when it times out.

process-wait-local-with-timeout returns t if a call to the wait function returns true. It returns nil if it times out.

See also

process-poke
process-wait-local
19.6 Process Waiting and communication between processes

42 The MP Package

1227

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

process-wait-local-with-timeout-and-periodic-checks Function

Summary

Like process-wait-local-with-timeout, but also calls the wait function periodically.

Package

mp

Signature

process-wait-local-with-timeout-and-periodic-checks wait-reason timeout period function &rest args

Arguments

wait-reason⇓ A string.

timeout⇓ A non-negative real or nil.

period⇓ A positive real number.

function⇓ A function designator.

args⇓ Arguments passed to function.

Description

The function process-wait-local-with-timeout-and-periodic-checks suspends the current Lisp process until the
wait function function applied to args returns true or until timeout seconds have passed. It is like
process-wait-local-with-timeout, but also calls function periodically.

wait-reason is used as the wait-reason while waiting.

timeout and period are both in seconds.

For information about the periodic calls, see process-wait-local-with-periodic-checks.

See also

process-poke
process-wait-local-with-periodic-checks
process-wait-local-with-timeout
19.6 Process Waiting and communication between processes

process-wait-with-timeout Function

Summary

Suspend the current process until certain conditions are true, or until a timeout expires.

42 The MP Package

1228

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

Package

mp

Signature

process-wait-with-timeout wait-reason timeout &optional wait-function &rest wait-arguments => bool

Arguments

wait-reason⇓ A string describing the reason that the process is waiting.

timeout⇓ A non-negative real or nil.

wait-function⇓ A function to test.

wait-arguments⇓ The arguments to apply to wait-function.

Values

bool⇓ A boolean.

Description

The function process-wait-with-timeout uses process-wait to suspend the current Lisp process until the predicate
wait-function applied to wait-arguments returns true, or until timeout seconds have passed.

wait-function is called periodically by the scheduler, but in situations where you want more control over the timing you
should consider using process-wait-local instead of process-wait and then call process-poke in the process that is
expected to cause wait-function to return true.

wait-function is called with interrupts blocked. It should therefore not allow interrupts, because this could cause deadlocks.

wait-reason is used as the wait-reason while waiting.

bool is nil if the timeout occurred before wait-function returned true. bool is true otherwise.

See also

process-join
process-poke
process-wait
process-wait-local-with-timeout
process-wait-local-with-timeout-and-periodic-checks
19.6 Process Waiting and communication between processes

process-whostate Function

Summary

Returns the state of a process.

Package

mp

42 The MP Package

1229

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

Signature

process-whostate process => reason

Arguments

process⇓ A process.

Values

reason⇓ A string.

Description

The function process-whostate returns a string describing the state of the process.

Depending on the state of process, reason can be:

• "Dead"

• "Stopped"

• "Sleeping"

• "Running"

• "Running (preempted)"

reason can also be the wait-reason of the process, as passed to wait-processing-events, process-wait,
mailbox-read and so on.

reason can also be a string containing the run-reasons, as set by (setf process-run-reasons).

See also

wait-processing-events
process-wait
process-run-reasons

ps Function

Summary

Prints the processes in the system.

Package

mp

Signature

ps

42 The MP Package

1230

Description

The function ps prints a list of the processes in the system, ordered by priority. (This function is analogous to the POSIX
command ps.)

See also

map-all-processes
map-all-processes-backtrace

pushnew-to-process-private-property Function

Summary

Pushes a new value to a private property of the current process.

Package

mp

Signature

pushnew-to-process-private-property indicator value &key test => result

Arguments

indicator⇓ A Lisp object.

value⇓ A Lisp object.

test⇓ A function designator for a function of two arguments.

Values

result A list.

Description

The function pushnew-to-process-private-property pushes value to the value of the private property associated with
indicator for the current process. It uses the function test to compare existing private property values with value and does not
push if one matches, in the same way as cl:pushnew.

It behaves just like pushnew-to-process-property.

See also

process-private-property
pushnew-to-process-property
remove-process-private-property
get-process-private-property

42 The MP Package

1231

http://www.lispworks.com/documentation/HyperSpec/Body/m_pshnew.htm

pushnew-to-process-property Function

Summary

Pushes a new value to a general property of a process.

Package

mp

Signature

pushnew-to-process-property indicator value &key process test => result

Arguments

indicator⇓ A Lisp object.

value⇓ A Lisp object.

process⇓ A process, or nil.

test⇓ A function designator for a function of two arguments.

Values

result⇓ A list.

Description

The function pushnew-to-process-property pushes value to the value of the property associated with indicator for the
process process. It uses the function test to compare existing property values of process with value and does not push if one
matches, in the same way as cl:pushnew.

The default value of test is #'eql.

If there is a property associated with indicator, the value of the property must be a list.

If process is not supplied or is nil, the current process (that is, the result of calling get-current-process) is used.

result is the new value of the process property.

The modification is done in a thread-safe way.

Notes

In the typical case when only the current process sets the property (even if other processes read it), private properties can be
used, and are much faster in SMP LispWorks, because they do not need to deal with parallel setting. See
process-private-property.

See also

process-property
process-private-property
remove-process-property

42 The MP Package

1232

http://www.lispworks.com/documentation/HyperSpec/Body/m_pshnew.htm

remove-from-process-private-property Function

Summary

Removes a value from a private property of the current process.

Package

mp

Signature

remove-from-process-private-property indicator value &key test => result

Arguments

indicator⇓ A Lisp object.

value⇓ A Lisp object.

test⇓ A function designator for a function of two arguments.

Values

result A list.

Description

The function remove-from-process-private-property removes value from the value of the private property
associated with indicator for the current process. Values are compared using test, which defaults to eql.

It behaves just like remove-from-process-property.

See also

process-private-property
remove-from-process-property
remove-process-private-property
get-process-private-property

remove-from-process-property Function

Summary

Removes a value from a general property of a process.

Package

mp

42 The MP Package

1233

http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm

Signature

remove-from-process-property indicator value &key process test => result

Arguments

indicator⇓ A Lisp object.

value⇓ A Lisp object.

process⇓ A process, or nil.

test⇓ A function designator for a function of two arguments.

Values

result⇓ A list.

Description

The function remove-from-process-property removes value from the value of the property associated with indicator
for the process process. It uses the function test to compare value with existing values, in the same way as cl:remove.

The default value of test is #'eql.

If there is a property associated with indicator, the value of the property must be a list.

If process is not supplied or is nil, the current process (that is, the result of calling get-current-process) is used.

result is the new value of the process property.

The modification is done in a thread-safe way.

Notes

In the typical case when only the current process sets the property (even if other processes read it), private properties can be
used, and are much faster in SMP LispWorks, because they do not need to deal with parallel setting. See
process-private-property.

See also

process-property
process-private-property
remove-process-property

remove-process-private-property Function

Summary

Removes a property from the private properties of the current process.

Package

mp

42 The MP Package

1234

http://www.lispworks.com/documentation/HyperSpec/Body/f_rm_rm.htm

Signature

remove-process-private-property indicator => removedp

Arguments

indicator⇓ A Lisp object.

Values

removedp A generalized boolean.

Description

The function remove-process-private-property removes the property associated with indicator from the private
properties of the current process.

Note that removing a property is different from setting its value to nil, because when process-private-property is
called with a default for a property that was removed, it returns the default, but for a property that was set to nil it returns
nil.

See also

process-private-property
pushnew-to-process-private-property
remove-from-process-private-property
get-process-private-property

remove-process-property Function

Summary

Removes a general property from a process.

Package

mp

Signature

remove-process-property indicator &optional process => removedp

Arguments

indicator⇓ A Lisp object.

process⇓ A process.

Values

removedp⇓ A generalized boolean.

42 The MP Package

1235

Description

The function remove-process-property removes the general property associated with indicator from the process
process.

If process is not supplied or is nil, the current process (that is, the result of calling get-current-process) is used.

Note that removing a property is different from setting its value to nil, because when process-property is called with a
default for a property that was removed, it returns the default, but for a property that was set to nil it returns nil.

removedp is true if the property was removed.

Notes

In the typical case when only the current process sets the property (even if other processes read it), private properties can be
used, and are much faster in SMP LispWorks, because they do not need to deal with parallel setting. See
process-private-property.

See also

pushnew-to-process-property
remove-from-process-property
process-property
process-private-property

schedule-timer Function

Summary

Schedules a timer to expire at a given time after the start of the program.

Package

mp

Signature

schedule-timer timer absolute-expiration-time &optional repeat-time => timer

Arguments

timer⇓ A timer.

absolute-expiration-time⇓
A non-negative real number or nil.

repeat-time⇓ A non-negative real number or nil.

Values

timer A timer.

Description

The function schedule-timer schedules a timer to expire at a given time after the start of the program. timer is a timer,

42 The MP Package

1236

returned by make-timer or make-named-timer. absolute-expiration-time is a non-negative real number of seconds since
the start of the program at which timer is to expire. If repeat-time is specified, it is a non-negative real number of seconds that
specifies a repeat interval. Each time timer expires, it is rescheduled to expire after this repeat interval.

If timer is already scheduled to expire at the time this function is called, it is rescheduled to expire at the time specified by
absolute-expiration-time. If that argument is nil, timer is not rescheduled, but the repeat interval is set to the interval
specified by repeat-time.

If timer is not scheduled or has already expired and absolute-expiration-time is nil and repeat-time is non-nil, then timer is
scheduled to the current time plus repeat-time. Note: this is new in LispWorks 8.0. In previous versions, this would have
signaled an error.

The function schedule-timer-relative schedules a timer to expire at a time relative to the call to that function.

Examples

The following example schedules a timer to expire 15 minutes after the start of the program and every 5 minutes thereafter.

(setq timer
 (mp:make-timer 'print 10 *standard-output*))

#<Time Event : PRINT>

(mp:schedule-timer timer 900 300)

#<Time Event : PRINT>

See also

make-named-timer
make-timer
schedule-timer-milliseconds
schedule-timer-relative
schedule-timer-relative-milliseconds
timer-expired-p
timer-name
unschedule-timer
19.9 Timers

schedule-timer-milliseconds Function

Summary

Schedules a timer to expire after a given amount of time.

Package

mp

Signature

schedule-timer-milliseconds timer absolute-expiration-time &optional repeat-time => timer

42 The MP Package

1237

Arguments

timer⇓ A timer.

absolute-expiration-time⇓
A non-negative real number or nil.

repeat-time⇓ A non-negative real number or nil.

Values

timer A timer.

Description

The function schedule-timer-milliseconds schedules a timer to expire at a given time after the start of the program.
timer is a timer returned by make-timer or make-named-timer. absolute-expiration-time is a non-negative real number of
milliseconds since the start of the program at which timer is to expire. If repeat-time is specified, it is a non-negative real
number of milliseconds that specifies a repeat interval. Each time timer expires, it is rescheduled to expire after this repeat
interval.

If timer is already scheduled to expire at the time this function is called, it is rescheduled to expire at the time specified by
absolute-expiration-time. If that argument is nil, timer is not rescheduled, but the repeat interval is set to the interval
specified by repeat-time.

If timer is not scheduled or has already expired and absolute-expiration-time is nil and repeat-time is non-nil, then timer is
scheduled to the current time plus repeat-time. Note: this is new in LispWorks 8.0. In previous versions, this would have
signaled an error.

The function schedule-timer-relative-milliseconds schedules a timer to expire at a time relative to the call to that
function.

Notes

schedule-timer-milliseconds has the same precision as schedule-timer, but may avoid some allocation when
computing the time.

Examples

The following example schedules a timer to expire 15 minutes after the start of the program and every 5 minutes thereafter.

(setq timer
 (mp:make-timer 'print 10 *standard-output*))

#<Time Event : PRINT>

(mp:schedule-timer-milliseconds timer 900000 300000)

#<Time Event : PRINT>

See also

make-named-timer
make-timer
schedule-timer

42 The MP Package

1238

schedule-timer-relative
schedule-timer-relative-milliseconds
timer-expired-p
timer-name
unschedule-timer

schedule-timer-relative Function

Summary

Schedules a timer to expire at a given time after this function is called.

Package

mp

Signature

schedule-timer-relative timer relative-expiration-time &optional repeat-time => timer

Arguments

timer⇓ A timer.

relative-expiration-time⇓
A non-negative real or nil.

repeat-time⇓ A non-negative real or nil.

Values

timer A timer.

Description

The function schedule-timer-relative schedules a timer to expire at a given time after the call to the function. timer is
a timer returned by make-timer or make-named-timer. relative-expiration-time is a non-negative real number of seconds
after the call to the function at which timer is to expire. If repeat-time is specified, it is a non-negative real number of seconds
that specifies a repeat interval. Each time timer expires, it is rescheduled to expire after this repeat interval.

If timer is already scheduled to expire at the time this function is called, it is rescheduled to expire at the time specified by
relative-expiration-time. If that argument is nil, timer is not rescheduled, but the repeat interval is set to the interval
specified by repeat-time.

If timer is not scheduled or has already expired and relative-expiration-time is nil and repeat-time is non-nil, then timer is
scheduled to the current time plus repeat-time. Note: this is new in LispWorks 8.0. In previous versions, this would have
signaled an error.

The function schedule-timer schedules a timer to expire at a time relative to the start of the program.

Examples

The following example schedules a timer to expire 5 seconds after the call to schedule-timer-relative and every 5
seconds thereafter.

42 The MP Package

1239

(setq timer
 (mp:make-timer 'print 10 *standard-output*))

#<Time Event : PRINT>

(mp:schedule-timer-relative timer 5 5)

#<Time Event : PRINT>

See also

make-named-timer
make-timer
schedule-timer
schedule-timer-milliseconds
schedule-timer-relative-milliseconds
timer-expired-p
timer-name
unschedule-timer

schedule-timer-relative-milliseconds Function

Summary

Schedules a timer to expire at a given time after this function is called.

Package

mp

Signature

schedule-timer-relative-milliseconds timer relative-expiration-time &optional repeat-time => timer

Arguments

timer⇓ A timer.

relative-expiration-time⇓
A non-negative real or nil.

repeat-time⇓ A non-negative real or nil.

Values

timer A timer.

Description

The function schedule-timer-relative-milliseconds schedules a timer to expire at a given time after the call to the
function. timer is a timer returned by make-timer or make-named-timer. relative-expiration-time is a non-negative real
number of milliseconds after the call to the function at which timer is to expire. If repeat-time is specified, it is a non-
negative real number of milliseconds that specifies a repeat interval. Each time timer expires, it is rescheduled to expire after

42 The MP Package

1240

this repeat interval.

If timer is already scheduled to expire at the time this function is called, it is rescheduled to expire at the time specified by
relative-expiration-time. If that argument is nil, timer is not rescheduled, but the repeat interval is set to the interval
specified by repeat-time.

If timer is not scheduled or has already expired and relative-expiration-time is nil and repeat-time is non-nil, then timer is
scheduled to the current time plus repeat-time. Note: this is new in LispWorks 8.0. In previous versions, this would have
signaled an error.

The function schedule-timer-milliseconds schedules a timer to expire at a time relative to the start of the program.

Notes

schedule-timer-relative-milliseconds has the same precision as schedule-timer-relative, but may avoid
some allocation when computing the time.

Examples

The following example schedules a timer to expire 5 seconds after the call to
schedule-timer-relative-milliseconds and every 5 seconds thereafter.

(setq timer
 (mp:make-timer 'print 10 *standard-output*))

#<Time Event : PRINT>

(mp:schedule-timer-relative-milliseconds timer 5000
 5000)

#<Time Event : PRINT>

See also

make-named-timer
make-timer
schedule-timer
schedule-timer-milliseconds
schedule-timer-relative
timer-expired-p
timer-name
unschedule-timer

semaphore System Class

Summary

A class of objects for synchronizing access to a shared resource that contains some number of available units.

Package

mp

42 The MP Package

1241

Superclasses

t

Description

Instances of the system class semaphore are used for synchronizing access to a shared resource that contains some number
of available units. They are made by make-semaphore and are used semaphore-acquire and semaphore-release.

See also

make-semaphore
semaphore-acquire
semaphore-release
19.7.3 Counting semaphores

semaphore-acquire Function

Summary

Acquires units from a semaphore.

Package

mp

Signature

semaphore-acquire sem &key timeout wait-reason count => flag

Arguments

sem⇓ A semaphore.

timeout⇓ A non-negative real or nil.

wait-reason⇓ A string or nil.

count⇓ A non-negative fixnum.

Values

flag A generalized boolean.

Description

The function semaphore-acquire acquires count units from the semaphore sem.

It attempts to atomically decrement the semaphore's unit count by count. If this gives a non negative result, then it changes
the semaphore's unit count accordingly and returns true. The default value of count is 1.

However, if decrementing the semaphore's unit count would result in a negative number then semaphore-acquire waits
until the semaphore's unit count is larger than count and tries again. If wait-reason is true, then it is used as the thread's wait-
reason when waiting for the semaphore.

42 The MP Package

1242

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

If timeout is nil, semaphore-acquire can wait forever. Otherwise, if the semaphore count cannot be decremented within
timeout seconds, then semaphore-acquire returns false and the semaphore is unaffected. Pass timeout 0 if you do not want
to wait at all.

Notes

You can get the current unit count of a semaphore by calling semaphore-count.

See also

semaphore
make-semaphore
semaphore-count
semaphore-release
semaphore-wait-count
19.7.3 Counting semaphores

semaphore-count Function

Summary

Gets the current unit count of a semaphore.

Package

mp

Signature

semaphore-count sem => count

Arguments

sem⇓ A semaphore.

Values

count A non negative fixnum.

Description

The function semaphore-count returns the current unit count of the semaphore sem. The value is 0 if the semaphore has
no unit remaining.

Notes

The current unit count value can change in the semaphore after calling semaphore-count.

The value returned by semaphore-count is never negative.

See also

semaphore

42 The MP Package

1243

make-semaphore
semaphore-acquire
semaphore-release
semaphore-wait-count
19.7.3 Counting semaphores

semaphore-name Function

Summary

Gets the name of a semaphore.

Package

mp

Signature

semaphore-name sem => name

Arguments

sem⇓ A semaphore.

Values

name An object.

Description

The function semaphore-name returns the name that semaphore sem was given when it was created.

See also

semaphore
make-semaphore
19.7.3 Counting semaphores

semaphore-release Function

Summary

Releases units back to a semaphore.

Package

mp

Signature

semaphore-release sem &key count => flag

42 The MP Package

1244

Arguments

sem⇓ A semaphore.

count⇓ A non negative fixnum.

Values

flag⇓ A generalized boolean.

Description

The function semaphore-release releases count units back to the semaphore sem.

It atomically increments the semaphore's unit count by count (which defaults to 1).

The returned flag is true if any other thread was waiting for the semaphore and false otherwise.

See also

semaphore
make-semaphore
semaphore-acquire
semaphore-count
semaphore-wait-count
19.7.3 Counting semaphores

semaphore-wait-count Function

Summary

Get the current wait count of a semaphore.

Package

mp

Signature

semaphore-wait-count sem => wait-count

Arguments

sem⇓ A semaphore.

Values

wait-count⇓ A non negative fixnum.

Description

The function semaphore-wait-count returns the current number of units that other threads are waiting for from the
semaphore sem. The value wait-count is 0 if the semaphore has no thread waiting for it.

42 The MP Package

1245

Notes

The value can change in the semaphore after calling semaphore-wait-count.

See also

semaphore
make-semaphore
semaphore-acquire
semaphore-count
semaphore-release
19.7.3 Counting semaphores

set-funcall-async-limit Function

Summary

Limit the number of parallel asynchronous calls.

Package

mp

Signature

set-funcall-async-limit new-limit => result

Arguments

new-limit⇓ An integer in the exclusive range (0,100000) or nil.

Values

result⇓ An integer in the exclusive range (0,100000).

Description

The function set-funcall-async-limit limits the number of asynchronous calls (by funcall-async or
funcall-async-list) which can run in parallel. Further asynchronous calls are queued, and when a running call finishes
another call starts.

When new-limit is an integer the limit is set to new-limit, and result is the previous limit.

When new-limit is nil, the limit is not changed and result is the current limit.

The default limit is 5, which is adequate if funcall-async and/or funcall-async-list are only used occasionally. If
you use them often, you may want to increase this limit to between 10 and 30. A larger limit probably does not make sense.

See also

funcall-async
funcall-async-list

42 The MP Package

1246

simple-lock-and-condition-variable-wait Function

Summary

A variant of lock-and-condition-variable-wait with a simpler lambda list.

Package

mp

Signature

simple-lock-and-condition-variable-wait lock lock-timeout condvar condvar-timeout predicate &rest args =>
result

Arguments

lock⇓ A lock.

lock-timeout⇓ A non-negative real or nil.

condvar⇓ A condition-variable.

condvar-timeout⇓ A non-negative real or nil.

predicate⇓ A function designator.

args⇓ Arguments topredicate.

Values

result See below.

Description

The function simple-lock-and-condition-variable-wait is a variant of lock-and-condition-variable-wait
that does not take keyword arguments. Also it takes the arguments of predicate as &rest args. It interprets and acts on lock,
lock-timeout, condvar and condvar-timeout just like lock-and-condition-variable-wait.

simple-lock-and-condition-variable-wait returns the result of calling predicate or the wait, like
lock-and-condition-variable-wait when return-function is not supplied.

Notes

simple-lock-and-condition-variable-wait does not take wait reason arguments, so you should give names to the
lock lock and the condition-variable condvar for debugging (by passing name in make-lock and
make-condition-variable).

See also

condition-variable-wait
lock-and-condition-variable-wait
lock-and-condition-variable-signal
lock-and-condition-variable-broadcast
condition-variable-signal

42 The MP Package

1247

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm

condition-variable-broadcast
19.7.1 Condition variables
19.4 Locks

symeval-in-process Accessor

Summary

Reads the value of symbol which is dynamically bound in a given process.

Package

mp

Signatures

symeval-in-process symbol process => value, flag

setf (symeval-in-process symbol process) value => value

Arguments

symbol⇓ A symbol.

process⇓ A process.

value⇓ A Lisp object.

Values

value A Lisp object.

flag⇓ One of t, nil or the keyword :unbound.

Description

The accessor symeval-in-process reads the value of the symbol symbol in the process process if it is bound dynamically.
The global value of symbol is never returned.

If symbol is not bound in process, then value and flag are both nil. If symbol is bound in process but makunbound has been
called within the dynamic scope of the binding, value is nil and flag is :unbound. Otherwise, value is the value of symbol
and flag is t.

In addition, the form:

(setf (symeval-in-process symbol process) value)

sets the value of symbol to value in process. It is an error if process has no binding for symbol. This setf form returns value
as specified by Common Lisp.

Notes

symeval-in-process is mostly intended for debugging. It is OK to call it on a thread known to be idle, or in
process-wait or process-stop, but it should not be called while the thread is running.

42 The MP Package

1248

http://www.lispworks.com/documentation/HyperSpec/Body/f_makunb.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

timer-expired-p Function

Summary

Returns t if a given timer has expired or is about to expire.

Package

mp

Signature

timer-expired-p timer &optional delta => bool

Arguments

timer⇓ A timer.

delta⇓ A non-negative real.

Values

bool A boolean.

Description

The function timer-expired-p returns t if the specified timer is not scheduled to expire or is scheduled to expire within
the number of seconds specified by delta after the call to timer-expired-p. Otherwise, the function returns nil.

timer is a timer, returned by make-timer or make-named-timer.

delta, if supplied, is a non-negative real number of seconds.

Examples

(setq timer
 (mp:make-timer 'print 10 *standard-output*))

#<Time Event : PRINT>

(mp:schedule-timer-relative timer 5)

#<Time Event : PRINT>

(mp:timer-expired-p timer)

NIL

See also

make-named-timer

42 The MP Package

1249

make-timer
schedule-timer
schedule-timer-milliseconds
schedule-timer-relative
timer-name
unschedule-timer

timer-name Accessor

Summary

Returns the name of a specified timer.

Package

mp

Signature

timer-name timer => name

setf (timer-name timer) name => name

Arguments

timer⇓ A timer.

name A string.

Values

name A string.

Description

The accessor timer-name returns the name of timer, which is a timer returned by make-timer or make-named-timer. If
timer has no name, timer-name returns nil.

The name of a timer created by either make-timer or make-named-timer can be set by:

(setf (mp:timer-name timer) name)

Examples

(setq timer
 (mp:make-timer 'print 10 *standard-output*))

#<Time Event : PRINT>

(mp:timer-name timer)

NIL

42 The MP Package

1250

(setf (mp:timer-name timer) 'timer-1)

TIMER-1

(mp:timer-name timer)

TIMER-1

See also

make-named-timer
make-timer
schedule-timer
schedule-timer-milliseconds
schedule-timer-relative
timer-expired-p
unschedule-timer

unnotice-fd Function

Summary

Removes a file descriptor from the set of interesting input file descriptors.

Package

mp

Signature

unnotice-fd fd

Arguments

fd⇓ A file descriptor.

Description

The function unnotice-fd removes fd from the set of fds that cause LispWorks to wake up when they contain input.

This function is not implemented on Microsoft Windows.

See also

notice-fd

42 The MP Package

1251

unschedule-timer Function

Summary

Unschedules a scheduled timer.

Package

mp

Signature

unschedule-timer timer => result

Arguments

timer⇓ A timer.

Values

result⇓ A timer or nil.

Description

The function unschedule-timer unschedules timer.

If the specified timer has been scheduled to expire at a time after the call to unschedule-timer, then result is timer.
Otherwise, result is nil.

timer is a timer, returned by make-timer or make-named-timer.

Examples

(setq timer
 (mp:make-timer 'print 10 *standard-output*))

#<Time Event : PRINT>

(mp:schedule-timer-relative timer 60)

#<Time Event : PRINT>

(mp:unschedule-timer timer)

#<Time Event : PRINT>

(mp:timer-expired-p timer)

T

42 The MP Package

1252

See also

make-named-timer
make-timer
schedule-timer
schedule-timer-milliseconds
schedule-timer-relative
timer-expired-p
timer-name

wait-processing-events Function

Summary

Waits processing events.

Package

mp

Signature

wait-processing-events timeout &key wait-reason wait-function wait-args => result

Arguments

timeout⇓ A non-negative real or nil.

wait-reason⇓ A string.

wait-function⇓ A function designator.

wait-args⇓ A list.

Values

result⇓ t or nil.

Description

The function wait-processing-events does not return until one of two conditions is met:

• timeout is non-nil and timeout seconds have passed.

In this case, result is nil.

• wait-function returns a true value.

In this case, result is t.

wait-reason provides the value returned by process-whostate when called on the current process.

wait-function is called periodically with arguments wait-args. wait-function may be called many times and in several places.
Therefore wait-function should be fast and make no assumptions about its dynamic context.

wait-processing-events processes all events sent to the current process, including system events such as window
messages on Microsoft Windows, and objects sent by other processes via process-send. In the latter case, the objects must

42 The MP Package

1253

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

be lists of the form (function . arguments), which cause function to be applied to arguments (the values are discarded).

wait-processing-events is a useful alternative to sleep in a situation where you want to process events to see window
updates and so on.

See also

process-send
process-whostate

with-exclusive-lock Macro

Summary

Holds a sharing lock in exclusive mode while evaluating its body, and then unlocks the lock.

Package

mp

Signature

with-exclusive-lock (sharing-lock &optional whostate timeout) &body body => results

Arguments

sharing-lock⇓ A sharing lock.

whostate⇓ A string or nil.

timeout⇓ A non-negative real or nil.

body⇓ The forms to execute.

Values

results The values returned from evaluating body.

Description

The macro with-exclusive-lock is the same as with-lock, except that sharing-lock must be a "sharing" lock, that is,
created with the argument sharing true in make-lock. It waits until sharing-lock is completely free, that is, not locked in a
sharing mode and is not locked in exclusive mode by another thread. It then locks sharing-lock in exclusive mode, evaluates
body and unlocks sharing-lock.

If whostate is non-nil, it is used as the wait reason while waiting for sharing-lock.

timeout, if non-nil, specifies the time in seconds to wait before timing out. The default value of timeout is nil.

Notes

It is not possible to hold an exclusive lock in the scope of a sharing-lock on the same lock, and trying to do it will cause the
process to hang. Whether it is possible to hold an exclusive lock inside an exclusive-lock of the same lock is determined by
the recursivep argument in make-lock.

42 The MP Package

1254

http://www.lispworks.com/documentation/HyperSpec/Body/f_sleep.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

See also

make-lock
with-lock
19.4 Locks

with-interrupts-blocked Macro

Summary

Evaluates code with interrupts blocked.

Package

mp

Signature

with-interrupts-blocked &body body => results

Arguments

body⇓ Code.

Values

results Values returned by evaluating body.

Description

The macro with-interrupts-blocked evaluates body with interrupts blocked.

It is equivalent to:

(mp:allowing-block-interrupts t ,@body)

which means it also allows you to change the blocking of interrupts inside body.

See the entry for allowing-block-interrupts for full details.

See also

allowing-block-interrupts

with-lock Macro

Summary

Executes a body of code while holding a lock.

42 The MP Package

1255

Package

mp

Signature

with-lock (lock &optional whostate timeout) &body body => result

Arguments

lock⇓ The lock.

whostate⇓ A string or nil.

timeout⇓ A non-negative real or nil.

body⇓ The forms to execute.

Values

result The result of executing body.

Description

The macro with-lock executes body while holding lock, and unlocks lock when body exits. This is the recommended way
of using a lock. The value of body is returned normally. body is not executed if lock could not be locked, in which case,
with-lock returns nil. timeout and whostate are used as specified by process-lock.

See also

make-lock
process-lock
process-unlock
with-exclusive-lock
with-sharing-lock
19.4 Locks

without-interrupts Macro

Summary

This macro is obsolete. Causes any interrupts that occur during the execution of a body of code to be queued, in non-SMP
LispWorks only.

Package

mp

Signature

without-interrupts &rest body => result

Arguments

body⇓ The forms to execute while interrupts are queued.

42 The MP Package

1256

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

Values

result The result of executing body.

Description

The macro without-interrupts execute body.

While body is executing, all interrupts (for example, preemption, keyboard break etc.) are queued. They are executed when
body exits.

Notes

without-interrupts is not supported in SMP LispWorks.

Examples

To ensure that the seconds and milliseconds slots are always consistent in non-SMP LispWorks, you can use
without-interrupts within the function which sets them.

(defstruct elapsed-time
 seconds
 milliseconds)

(defun update-elapsed-time-atomically
 (elapsed-time seconds milliseconds)
 (mp:without-interrupts
 (setf (elapsed-time-seconds elapsed-time) seconds
 (elapsed-time-milliseconds elapsed-time)
 milliseconds)))

See also

without-preemption

without-preemption Macro

Summary

This macro is obsolete. Identifies forms which should not be preempted during execution, in non-SMP LispWorks only.

Package

mp

Signature

without-preemption &rest body => result

Arguments

body⇓ The forms to be evaluated atomically.

42 The MP Package

1257

Values

result The result of executing body.

Description

The macro without-preemption prevents preempted while executing body.

Notes

without-preemption is not supported in SMP LispWorks.

with-sharing-lock Macro

Summary

Holds a lock in shared mode while executing a body of code.

Package

mp

Signature

with-sharing-lock (sharing-lock &optional whostate timeout) &body body => results

Arguments

sharing-lock⇓ A sharing lock.

whostate⇓ A string or nil.

timeout⇓ A non-negative real or nil.

body⇓ The forms to execute.

Values

results The values returned from evaluating body.

Description

The macro with-sharing-lock is like with-lock, but sharing-lock must be a "sharing" lock and will be locked in
shared mode. That means that other threads can also lock it in shared mode.

Before locking, with-sharing-lock waits for sharing-lock to be free of any exclusive lock, but it does not check for other
shared mode use of the same lock. It then locks sharing-lock in sharing mode, evaluates body and unlocks sharing-lock.

If whostate is non-nil, it is used as the wait reason while waiting for sharing-lock.

timeout, if non-nil, specifies the time in seconds to wait before timing out. The default value of timeout is nil.

Notes

It is possible to lock for sharing inside the scope of sharing lock and inside the scope of an exclusive lock.

42 The MP Package

1258

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

See also

make-lock
with-lock
19.4 Locks

yield Function

Summary

Allows preemption to happen in low safety code.

Package

mp

Signature

yield

Description

Normally code compiled at safety 0 cannot be preempted because the necessary checks are omitted. This can be overcome by
calling the function yield at regular intervals. Usually there is no need to call this if you use functions from the
common-lisp package because these are not compiled at safety 0, but for example if you find that preemption is not working
in a loop with no function calls, yield can be useful. Note that process-allow-scheduling also allows preemption,
but also checks the wait functions of other processes.

See also

process-allow-scheduling

42 The MP Package

1259

43 The PARSERGEN Package

This chapter describes symbols available in the PARSERGEN package, the LispWorks parser generator.

This functionality is discussed in detail in 21 The Parser Generator.

defparser Macro

Summary

Creates a parsing function of the given name for the grammar defined.

Package

parsergen

Signature

defparser name-and-options {rule}* => parsing-function

name-and-options ::= name | (name [[option]])

option ::= :accept-without-eoi-p accept-without-eoi-p

rule ::= normal-rule | error-rule | combined-rule

normal-rule ::= ((non-terminal {grammar-symbol}*) {form}*)

error-rule ::= ((non-terminal :error) {form}*)

combined-rule ::= (non-terminal {combined-rule-clause}*)

combined-rule-clause ::= (combined-rule-lhs {form}*)

combined-rule-lhs ::= ({grammar-symbol}*) | (:error)

grammar-symbol ::= token | non-terminal

Arguments

name⇓ The name of the parser.

accept-without-eoi-p⇓ A generalized boolean.

non-terminal⇓ A symbol.

form⇓ A Lisp form.

token⇓ A grammar token as returned by the lexer.

Values

parsing-function The symbol naming the parsing function.

1260

Description

The macro defparser creates a parsing function named name for the grammar defined. The parsing function is defined as if
by:

(defun name (lexer &optional (symbol-to-string #'identity)
 &key (message-stream t)
 return-match-tree-p)
 ...)

See 21.3 Functions defined by defparser for a description of the arguments and the result of the function named name.

The rules define the productions of the grammar and the associated forms define the semantic actions for the rules.

When accept-without-eoi-p is true, the parser accepts the input as soon as the top level rule matches completely rather than
waiting for end of input (eoi). The default value of accept-without-eoi-p is false.

For a full description or token, non-terminal, grammar-symbol and form and examples, see 21 The Parser Generator.

43 The PARSERGEN Package

1261

44 The SERIAL-PORT Package

This chapter describes the symbols available in the SERIAL-PORT package.

The Serial Port functionality is loaded into LispWorks by evaluating:

(require "serial-port")

See open-serial-port for platform-specific details.

close-serial-port Function

Summary

Closes a serial port.

Package

serial-port

Signature

close-serial-port serial-port

Arguments

serial-port⇓ A serial-port object.

Description

The function close-serial-port closes the serial port associated with the given serial-port object.

If serial-port is already closed, an error is signaled.

See also

open-serial-port

get-serial-port-state Function

Summary

Queries various aspects of the state of a serial port.

Package

serial-port

1262

Signature

get-serial-port-state serial-port keys => state

Arguments

serial-port⇓ A serial-port object.

keys⇓ A list of keywords.

Values

state⇓ A list.

Description

The function get-serial-port-state queries various aspects of the state of the serial port associated with serial-port.

The argument keys should be a list of one or more of the keywords :dsr and :cts. These cause get-serial-port-state
to check the DSR and CTS lines respectively.

The result state is a list giving the state of each line in the same order as they appear in the argument keys.

open-serial-port Function

Summary

Attempts to open the named serial port and return a serial-port object.

Package

serial-port

Signature

open-serial-port name &key baud-rate data-bits stop-bits parity cts-flow-p dsr-flow-p dtr rts read-interval-timeout read
-total-base-timeout read-total-byte-timeout write-total-base-timeout write-total-byte-timeout => serial-port

Arguments

name⇓ A string naming a serial port.

baud-rate⇓ A non-negative integer.

data-bits⇓ A non-negative integer.

stop-bits⇓ One of 1, 1.5 (Windows only) or 2.

parity⇓ One of :even, :mark, :none, :odd or :space.

cts-flow-p⇓ A generalized boolean.

dsr-flow-p⇓ A generalized boolean.

dtr⇓ One of nil, t, or :handshake.

rts⇓ One of nil, t, or :handshake.

44 The SERIAL-PORT Package

1263

read-interval-timeout⇓
A non-negative real or :none.

read-total-base-timeout⇓
A non-negative real.

read-total-byte-timeout⇓
A non-negative real.

write-total-base-timeout⇓
A non-negative real.

write-total-byte-timeout⇓
A non-negative real.

Values

serial-port A serial-port object.

Description

The function open-serial-port attempts to open the serial port name and return a serial-port object.

On Windows, name is passed directly to CreateFile(). For ports COMn where n > 9, you must take care to pass the real
port name expected by Windows. At the time of writing this issue is documented at
http://support.microsoft.com/kb/115831.

On non-Windows platforms, name should be the device file name (for example "/dev/cu.usbmodem14111").

If any of baud-rate, data-bits, stop-bits and parity are supplied then the corresponding serial port settings are changed. The
values of baud-rate and data-bits should each be an appropriate integer. The value of stop-bits should be 1, 1.5 (Windows
only) or 2. The value of parity should be one of the keywords :even, :none or :odd, or on Windows, :mark or :space.

cts-flow-p and dsr-flow-p control whether write operations respond to CTS and DSR flow control. A non-nil value means that
the corresponding flow control is used. Note that dsr-flow-p is only supported on Windows.

dtr and rts control whether read operations generate DTR or RTS flow control. If the value is :handshake then the
corresponding flow control signal is generated automatically. If the value is nil or t then the initial state of the flow control
signal is set and automatic flow control is not used. See set-serial-port-state for manual flow control. Note: the
value :handshake for dtr is only supported on Windows.

read-interval-timeout can be used to control the maximum time to wait between each input character. The value :none
means that reading will not wait for characters at all, only returning whatever is already in the input buffer.

read-total-base-timeout and read-total-byte-timeout can be used to control the maximum time to wait for a sequence of
characters. write-total-base-timeout and write-total-byte-timeout can be used to control the maximum time to wait when
transmitting a sequence of characters. For both reading and writing the timeout is given by the expression:

base_timeout + nchars * byte_timeout

The default value of each of read-total-base-timeout, read-total-byte-timeout, write-total-base-timeout and write-total-byte-
timeout is nil and this means that the corresponding parameter in the OS is left unchanged and there is zero timeout.
Otherwise the value should be a non-negative real number specifying a timeout in seconds.

44 The SERIAL-PORT Package

1264

http://support.microsoft.com/kb/115831

See also

close-serial-port
set-serial-port-state

read-serial-port-char Function

Summary

Reads a character from a serial port.

Package

serial-port

Signature

read-serial-port-char serial-port &optional timeout-error-p timeout-char => char

Arguments

serial-port⇓ A serial-port object.

timeout-error-p⇓ A boolean.

timeout-char⇓ A character.

Values

char A character.

Description

The function read-serial-port-char reads and returns a character from the serial port associated with serial-port.

A timeout will occur if the character is not available before the read timeout (as specified by values given when the serial port
was opened by open-serial-port).

When a timeout occurs, if timeout-error-p is non-nil, then an error of type serial-port-timeout is signaled, otherwise
timeout-char is returned. The default value of timeout-error-p is t.

See also

read-serial-port-string

read-serial-port-string Function

Summary

Reads a string from a serial port.

44 The SERIAL-PORT Package

1265

Package

serial-port

Signature

read-serial-port-string string serial-port &optional timeout-error-p &key start end => nread

Arguments

string⇓ A string.

serial-port⇓ A serial-port object.

timeout-error-p⇓ A boolean.

start⇓, end⇓ Bounding index designators for string.

Values

nread⇓ An integer.

Description

The function read-serial-port-string reads characters from the serial port associated with serial-port and places them
in string, bounded by start and end.

The default values of start and end are 0 and nil (interpreted as the length of string) respectively. The number of characters
requested is the difference between end and start.

If the number of characters actually read, nread, is less than the number requested, then if timeout-error-p is non-nil an error
of type serial-port-timeout is signaled.

If nread is the number of characters requested, or if timeout-error-p is nil, nread is returned.

The default value of timeout-error-p is t.

See also

read-serial-port-char

serial-port Class

Summary

The class of objects representing serial ports.

Package

serial-port

Superclasses

t

44 The SERIAL-PORT Package

1266

Description

The class serial-port is the class of objects representing serial ports. These are constructed by open-serial-port - do
not create them directly.

See also

open-serial-port

serial-port-input-available-p Function

Summary

Checks whether a character is available on a serial port.

Package

serial-port

Signature

serial-port-input-available-p serial-port => result

Arguments

serial-port⇓ A serial-port object.

Values

result⇓ A boolean.

Description

The function serial-port-input-available-p checks the serial port associated with serial-port to see if a character is
available. result is t if input is available, and nil otherwise.

set-serial-port-state Function

Summary

Changes various aspects of the state of a serial port.

Package

serial-port

Signature

set-serial-port-state serial-port &key dtr rts break

44 The SERIAL-PORT Package

1267

Arguments

serial-port⇓ A serial-port object.

dtr⇓ A boolean.

rts⇓ A boolean.

break⇓ A boolean.

Description

The function set-serial-port-state changes various aspects of the state of the serial port associated with serial-port.

dtr, if supplied, controls the DTR line. A true value means set and nil means clear. If dtr is not supplied, the state is
unchanged.

rts controls the RTS line in the same way.

break controls the break state of the data line in the same way.

wait-serial-port-state Function

Summary

Waits for some aspect of the state of a serial port to change.

Package

serial-port

Signature

wait-serial-port-state serial-port keys &key timeout => result

Arguments

serial-port⇓ A serial-port object.

keys⇓ A list of keywords.

timeout⇓ A number.

Values

result⇓ A list.

Description

The function wait-serial-port-state waits for some state in the serial port associated with serial-port to change.

The argument keys should be a list of one or more of the keywords :cts, :dsr, :err, :ring, :rlsd and :break.

result is a list giving the keys for which the state has changed.

If timeout is non-nil then the function will return nil after that many seconds even if the state has not changed.

44 The SERIAL-PORT Package

1268

write-serial-port-char Function

Summary

Writes a character to a serial port.

Package

serial-port

Signature

write-serial-port-char char serial-port &optional timeout-error-p => char

Arguments

char⇓ A character.

serial-port⇓ A serial-port object.

timeout-error-p⇓ A boolean.

Values

char The character char or nil.

Description

The function write-serial-port-char writes the character char to the serial port associated with serial-port, and returns
char.

A timeout will occur if the character cannot be written before the write timeout (as specified by values given when the serial
port was opened by open-serial-port).

When a timeout occurs, if timeout-error-p is non-nil, then an error of type serial-port-timeout is signaled, otherwise
nil is returned. The default value of timeout-error-p is t.

See also

write-serial-port-string

write-serial-port-string Function

Summary

Writes a string to a serial port.

Package

serial-port

44 The SERIAL-PORT Package

1269

Signature

write-serial-port-string string serial-port &optional timeout-error-p &key start end => result

Arguments

string⇓ A string.

serial-port⇓ A serial-port object.

timeout-error-p⇓ A boolean.

start⇓, end⇓ Bounding index designators for string.

Values

result The string string or nil.

Description

The function write-serial-port-string writes characters from the subsequence of string bounded by start and end to
the serial port associated with serial-port.

The default values of start and end are 0 and nil (interpreted as the length of string) respectively.

If the characters are successfully written then string is returned.

A timeout will occur if the characters cannot be written before the write timeout (as specified by values given when the serial
port was opened by open-serial-port).

When a timeout occurs, if timeout-error-p is non-nil, then an error of type serial-port-timeout is signaled, otherwise
nil is returned. The default value of timeout-error-p is t.

See also

write-serial-port-char

44 The SERIAL-PORT Package

1270

45 The SQL Package

This chapter describes the symbols available in the SQL package which implements Common SQL. You should use this
chapter in conjunction with 23 Common SQL. In particular that chapter contains more information about the Oracle LOB
interface (that is, those functions with names beginning sql:ora-lob-).

On Microsoft Windows, Linux, x86/x64 Solaris, FreeBSD and macOS, Common SQL is included only in LispWorks
Enterprise Edition.

accepts-n-syntax Function

Summary

Return whether a database connection accepts or requires the N syntax for non-ASCII strings.

Package

sql

Signature

accepts-n-syntax &key database => nil-t-required

Arguments

database⇓ A database object (default *default-database*).

Values

nil-t-required⇓ t, nil or :required.

Description

The function accepts-n-syntax returns nil-t-required to indicate the behavior of the N syntax for string literals in the
database specified by database. (The N syntax prefixes a string literal by the character N.)

nil-t-required can be one of:

nil the database will give an error.

t the database accepts it but does not require it.

:required the database requires it (at least in some cases).

Currently, Microsoft SQL Server (which can be used via ODBC) is the only supported database that requires the N syntax for
non-ASCII strings. SQLite and Microsoft Access (via ODBC) give errors. The other supported databases accept the syntax
but do not need it.

If you use the 23.5 Symbolic SQL syntax, then you can use the string pseudo-operator, which is described in 23.5.1.6
SQL string literals to obtain the correct syntax.

1271

http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm

See also

23.5.1.6 SQL string literals
23.12.4 Using non-ASCII strings on Microsoft SQL Server
string-needs-n-prefix
string-prefix-with-n-if-needed

add-sql-stream Function

Summary

Adds a stream to the broadcast list for SQL commands or results traffic.

Package

sql

Signature

add-sql-stream stream &key type database => added-stream

Arguments

stream⇓ A stream, or t.

type⇓ A keyword.

database⇓ A database.

Values

added-stream The argument stream.

Description

The function add-sql-stream adds the stream stream to the list of streams which receive SQL commands traffic or results
traffic for database.

To add *standard-output* to the list, pass stream t.

type is one of :commands, :results or :both, and determines whether a stream for commands traffic, results traffic, or
both is added. type defaults to :commands.

database defaults to the value of *default-database*.

See also

default-database
delete-sql-stream
list-sql-streams
sql-recording-p
sql-stream
start-sql-recording
stop-sql-recording

45 The SQL Package

1272

attribute-type Function

Summary

Returns the type of an attribute.

Package

sql

Signature

attribute-type attribute table &key database owner => datatype

Arguments

attribute⇓ An attribute from table.

table⇓ A table.

database⇓ A database.

owner⇓ nil, :all or a string.

Values

datatype⇓ A keyword or list denoting a vendor-specific type.

Description

The function attribute-type returns the type of the attribute specified by attribute in the table given by table in database.

database defaults to the value of *default-database*.

If owner is nil, only user-owned attributes are considered. This is the default.

If owner is :all, all attributes are considered.

If owner is a string, this denotes a username and only attributes owned by owner are considered.

datatype demotes a vendor-specific type. Examples in a MS Access database are :integer, :longchar and :datetime.
When datatype is a list, the second element is the length of the type, for example (:varchar 255).

Examples

To print the type of every attribute in the database, do:

(loop for tab in
 (sql:list-tables)
 do
 (loop for att in
 (sql:list-attributes tab)
 do
 (format t "~&Table ~S Attribute ~S Type ~S"
 tab att
 (sql:attribute-type att tab))))

45 The SQL Package

1273

See also

default-database
list-attribute-types
list-attributes

cache-table-queries Function

Summary

Controls the caching of attribute type information.

Package

sql

Signature

cache-table-queries table &key database action

Arguments

table⇓ A string naming a table, :default or t.

database⇓ A database.

action⇓ t, nil or :flush.

Description

The function cache-table-queries provides per-table control on the caching in a particular database connection of
attribute type information using during update operations.

If table is a string, it is the name of the table for which caching is to be altered. If table is t, then action applies to all tables.
If table is :default, then the default caching action is set for those tables which do not have an explicit setting.

database specifies the database connection, its default value is the value of *default-database*.

action specifies the caching action. The value t means cache the attribute type information. The value nil means do not
cache the attribute type information. If table is :default, the setting applies to all tables which do not have an explicit
setup.

The value :flush means remove any existing cache for table in database, but continue to cache.

cache-table-queries should be called with action :flush when the attribute specifications in table have changed.

See also

cache-table-queries-default
default-database

45 The SQL Package

1274

cache-table-queries-default Variable

Summary

The default attribute type caching behavior.

Package

sql

Initial Value

nil

Description

The variable *cache-table-queries-default* provides the default attribute type caching behavior.

It allowed values are as described for the action argument of cache-table-queries.

See also

cache-table-queries

commit Function

Summary

Commits changes made to a database.

Package

sql

Signature

commit &key database => nil

Arguments

database⇓ A database.

Description

The function commit commits changes made to the database specified by database, which is *default-database* by
default.

Examples

This example changes records in a database, and uses commit to make those changes permanent.

45 The SQL Package

1275

(insert-records :into [emp]
 :attributes '(x y z)
 :values '(a b c))
(update-records [emp]
 :attributes [dept]
 :values 50
 :where [= [dept] 40])
(delete-records :from [emp]
 :where [> [salary] 300000])
(commit)

See also

default-database
rollback
with-transaction

connect Function

Summary

Opens a connection to a database.

Package

sql

Signature

connect connection-spec &key if-exists database-type interface name encoding signal-rollback-errors default-table-type
default-table-extra-options date-string-format sql-mode prefetch-rows-number prefetch-memory sqlite-keywords odbc-keywords =>
database

Arguments

connection-spec⇓ The connection specifications.

if-exists⇓ A keyword.

database-type⇓ A database type.

interface⇓ A displayed CAPI element, :none or nil.

name⇓ A Lisp object.

encoding⇓ A keyword naming an encoding.

signal-rollback-errors⇓
nil, the keyword :default, or a function designator.

default-table-type⇓ A string, the keyword :support-transactions, or nil.

default-table-extra-options⇓
A string or nil.

date-string-format⇓ A string, or the keyword :standard, or nil.

sql-mode⇓ A string or nil.

45 The SQL Package

1276

prefetch-rows-number⇓ An integer or the keyword :default.

prefetch-memory⇓ An integer or the keyword :default.

sqlite-keywords⇓ A property list of keywords and values specific to SQLite.

odbc-keywords⇓ A property list of keywords and values specific to ODBC.

Values

database A database.

Description

The function connect opens a connection to a database of type database-type.

The allowed values for database-type are :odbc, :odbc-driver, :mysql, :postgresql, :oracle8 and :oracle,
though not all of these are supported on some platforms. See 23.1.2 Supported databases for details of per-platform
database support.

The default for database-type is the value of *default-database-type*.

connect sets the variable *default-database* to an instance of the database opened, and returns that instance.

connect may signal an error if it cannot open the connection. If it fails to establish a connection, the error if of class
sql-failed-to-connect-error. That typically indicates an incorrect connection specification, for example the wrong
user or password. If the failure is a failure to configure the connection after making it, the error will of some subclass of
sql-database-error. Other errors can be signaled if the arguments to connect are wrong in a way that can be identfied
by LispWorks without trying to connect.

If connection-spec is a list it is interpreted as a plist of keywords and values. Some of the keywords are database-type
specific: see 23.2.4 Connecting to Oracle, 23.2.5 Connecting to ODBC, 23.2.6 Connecting to MySQL or 23.2.7
Connecting to PostgreSQLas appropriate.

General connection-spec keywords are:

:username User name

:password Password

:connection A specification of the connection. In general, this is supposed to be sufficient information (other
than the username and password) to open a connection.The precise meaning varies according to
database-type.

If connection-spec is a string, it is interpreted canonically as:

username/password@connection

where connection can be omitted along with the '@' in cases when there is a default connection, password can be omitted
along with the preceding '/', and username can be omitted if there is a default user. For example, if you have an Oracle user
matching the current Unix username and that does not need a password to connect, you can call:

(connect "/")

Specific values of database-type may allow more elaborate syntax, but conforming to the pattern above. See the section 23.2
Initialization for details.

Additionally when database-type is :odbc or :odbc-driver, if connection-spec does not include the '@' character then the

45 The SQL Package

1277

string is interpreted in a special way, for backward compatibility with LispWorks 4.4 and earlier versions. See the section
23.2.5 Connecting to ODBC for details.

name can be passed to explicitly specify the name of the connection. If name is supplied then it is used as-is for the
connection name. Therefore it can be found by another call to connect and calls to find-database. Connection names
are compared with equalp. If name is not supplied, then a unique database name is constructed from connection-spec and a
counter.

If name is supplied then existing connections are found by comparing their name with name and then if-exists modifies the
behavior of connect as follows:

:new Makes a new connection even if connections to the same database already exist.

:warn-new Makes a new connection but warns about existing connections.

:error Makes a new connection but signals an error for existing connections.

:warn-old Selects an existing connection if there is one (and warns), or makes a new connection.

:old Selects an existing connection if there is one, or makes a new one.

If name is supplied then if-exists defaults to the value of *connect-if-exists*. If name is not supplied then if-exists must
be :new or omitted, otherwise an error is signaled (this is a new requirement in LispWorks 8.0).

interface is used if connect needs to display a dialog to ask the user for username and password. If interface is a CAPI
element, this is used. If interface is :none, connect does not raises a dialog, and instead signals an error. If interface is nil
(the default), and connect is called in a process that is associated with a CAPI interface, then this CAPI interface is used.
interface has been added because dialogs asking for passwords can fail otherwise. This depends on the driver that the
datasource uses: the problem has only been observed using MS SQL on Microsoft Windows.

encoding specifies the encoding to use in the connection. The value should be a keyword naming an acceptable encoding, or
nil (the default). The value :unicode is accepted for all values of database-type, and this will try to make a connection that
can support sending and retrieving double-byte string values. Other values are database-type specific:

:mysql If encoding is nil or :default then the encoding is chosen according to the default character
set of the connection (if available) and if that fails the encoding :utf-8 is used. The other
recognized values of encoding are :unicode, :utf-8, :ascii, :latin-1, :euc and :sjis.

:unicode uses :utf-8 internally.

45 The SQL Package

1278

http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm

:postgresql If encoding is nil or :default LispWorks does not set anything in the connection. If the
connection character set is SQL_ASCII, LispWorks uses :latin-1 to convert to and from Lisp
strings, otherwise it uses :utf-8.

If encoding is one of the keywords listed below, LispWorks uses it as the external format for
converting to and from Lisp strings, and LispWorks also sets the connection character set to the
corresponding string:

Keyword character-set alias

:utf-8 UTF-8 :unicode

:latin-1 SQL_ASCII

:ascii SQL_ASCII

:gbk GBK

:euc-jp EUC_JP :euc

:sjis SJIS :shift-jis

An alias maps to the corresponding keyword.

In addition, encoding can be a string or a cons of a keyword and a string. If it is a string
LispWorks uses :utf-8 as the external format, and sets the connection character set to the
string. If it is a cons, the keyword (the car) is used as the external format, and the string (cdr) is
used to set the character set.

See "character set support" in the PostgreSQL manual for known character sets.

:oracle The only recognized values of encoding are nil and :unicode.

:oracle8 encoding is ignored.

:odbc or :odbc-driver

The valid values of encoding are :unicode or nil. When encoding is nil it uses the default
multibyte encoding.

:sqlite If encoding is :default, :unicode or :utf-8 then UTF-8 is used (by calling the C function
sqlite3_open_v2). If encoding is :utf-16 or :utf-16-native, then UTF-16 in the native
byte order is used (by calling the C function sqlite3_open16). It is not obvious in what
circumstances UTF-16 is better and it is made available only because the underlying library
supports it.

signal-rollback-errors controls what happens when an attempted rollback causes an error, for databases that do not support
rollback properly (for example MySQL with the default settings). For values of database-type other than :mysql signal-
rollback-errors is ignored and such an error is always signaled. For database-type :mysql signal-rollback-errors is
interpreted as follows:

nil Ignore the error.

:default If default-table-type is :support-transactions, "innodb" or "bdb", then rollback errors
are signaled. Otherwise rollback errors are not signaled.

45 The SQL Package

1279

Function designator The function signal-rollback-errors should take two arguments: the database object and a string
(for an error message). The function is called when a rollback signaled an error.

The default value of signal-rollback-errors is :default.

default-table-type specifies the default value of the :type argument to create-table. See create-table for details. The
default value of default-table-type is nil.

default-table-extra-options specifies the default value of the :extra-options argument to create-table. See
create-table for details. The default value of default-table-extra-options is nil.

date-string-format specifies which format to use to represent dates. If the value is a string, it should be appropriate for
database-type. The value :standard means that the standard SQL date format is used. If the value is nil (the default), then
the date format is not changed. Currently only database-type :oracle uses the value of date-string-format, and in this case
it must be a valid date format string for Oracle.

sql-mode specifies the mode of the SQL connection for database-type :mysql. By default (that is, when sql-mode is not
supplied) connect sets the mode of the connection to ANSI, by executing this statement:

set sql_mode='ansi'

sql-mode can be supplied as nil, in which case no statement is executed. Otherwise it should be a string which is a valid
setting for sql_mode, and then connect executes the statement:

set sql_mode='sql-mode'

When database-type is not :mysql, sql-mode is ignored.

prefetch-rows-number and prefetch-memory are used when database-type is :oracle, and specify the amount of data to
prefetch when performing queries. prefetch-rows-number is the number of rows to prefetch, with default value 100. prefetch-
memory is the maximum number of bytes to prefetch, with default value #x100000. prefetch-rows-number and prefetch-
memory can both also have the value :default, which allows the database to choose the amount to prefetch.

sqlite-keywords is used only when connecting to SQLite (database-type is :sqlite) and is ignored otherwise. See 23.2.8.3
SQLite connection keywords for more details.

The value of odbc-keywords is used only when connection using ODBC, that is when database-type is :odbc or
:odbc-driver. It has to a plist. See 23.2.5.3 ODBC keywords for details.

Notes

All the Common SQL functions that accept the keyword argument :database use find-database to find the database if
the given value is not a database. Therefore these functions can now find only databases that that were opened with an
explicit name:

(connect ... :name name ...)

Compatibility notes

LispWorks 4.4 (and previous versions) use connection-spec passed to connect as the database name. connect checks
whether a connection with this name already exists (according to the value of if-exists). find-database can be used to find
a database using this name.

LispWorks 5.0 (and later versions) does not use connection-spec as the name. Instead, by default it generates a name from
connection-spec. The name is intended to be unique (by including a counter). Thus normally connect will not find an
existing connection even if it is called again with identical value of connection-spec.

45 The SQL Package

1280

Examples

The following example connects LispWorks to the info database.

(connect "info")

The next example connects to the ODBC database personnel using the username "admin" and the password "secret".

(connect "personnel/admin/secret" :database-type :odbc)

The next example opens a connection to MySQL which treats quotes as in ANSI but does not set other ANSI features:

(sql:connect "me/mypassword/mydb"
 :sql-mode "ANSI_QUOTES")

See also

default-database
default-database-type
connected-databases
connect-if-exists
database-name
disconnect
find-database
reconnect
status

connected-databases Function

Summary

Returns a list of connected databases.

Package

sql

Signature

connected-databases => database-list

Values

database-list A list of connected databases.

Description

The function connected-databases returns a list of the databases LispWorks is connected to.

See also

connect
disconnect
status

45 The SQL Package

1281

find-database
database-name

connect-if-exists Variable

Summary

The default value for the if-exists keyword of the connect function.

Package

sql

Initial Value

:error

Description

The variable *connect-if-exists* is the default value for the if-exists keyword of the connect function. It can take the
following values:

:new Instructs connect to make a new connection even if connections to the same database already
exist.

:warn-new Instructs connect to make a new connection but warn about existing connections.

:error Instructs connect to make a new connection but signal an error for existing connections.

:warn-old Instructs connect to select an old connection if one exists (and warns) or make a new one.

:old Instructs connect to select an old connection if one exists or make a new one.

See also

connect

create-index Function

Summary

Creates an index for a table.

Package

sql

Signature

create-index name &key on unique attributes database

45 The SQL Package

1282

Arguments

name⇓ The name of the index.

on⇓ The name of a table.

unique⇓ A boolean.

attributes⇓ A list of attributes.

database⇓ A database.

Description

The function create-index creates an index called name on the table specified by on. The attributes of the table to index
are given by attributes. Setting unique to t includes UNIQUE in the SQL index command, specifying that the columns
indexed must contain unique values.

The default value of unique is nil. The default value of database is *default-database*.

Examples

(create-index [manager]
 :on [emp] :unique t :attributes '([ename] [sal]))

See also

default-database
drop-index
create-table

create-table Function

Summary

Creates a table.

Package

sql

Signature

create-table name description &key database type extra-options

Arguments

name⇓ The name of the table.

description⇓ The table properties.

database⇓ A database.

type⇓ A string or the keyword :support-transactions, or nil.

extra-options⇓ A string or nil.

45 The SQL Package

1283

Description

The function create-table creates a table called name and defines its columns and other properties with description. The
argument description is a list containing lists of attribute-name and type information pairs.

The default value of database is *default-database*.

type and extra-options are treated in a database-type specific way. Currently only database-type :mysql uses these options,
as follows.

If type is not supplied, it defaults to the value (if any) of default-table-type that was supplied to connect. If extra-options is
not supplied, it defaults to the value (if any) of default-table-extra-options that was supplied to connect.

type, if non-nil, is used as argument to TYPE in the SQL statement:

create table MyTable (column-specs) TYPE = type

except that if type is :support-transactions then create-table will attempt to make tables that support transactions,
by using the type innodb.

extra-options (if non-nil) is appended in the end of this SQL statement.

When database-type is not :mysql, type and extra-options are ignored.

Examples

The following code:

(create-table [manager]
 '(([id] (char 10) not-null)
 ([salary] (number 8 2))))

is equivalent to the following SQL:

CREATE TABLE MANAGER
 (ID CHAR(10) NOT NULL,SALARY NUMBER(8,2))

See also

connect
default-database
drop-table

create-view Function

Summary

Creates a view using a specified query.

Package

sql

45 The SQL Package

1284

Signature

create-view name &key as column-list with-check-option database

Arguments

name⇓ The view to be created.

as⇓ A SQL query statement.

column-list⇓ A list.

with-check-option⇓ A boolean.

database⇓ A database.

Description

The function create-view creates a view called name using the query as and the optional column-list and with-check-
option. column-list is a list of columns to add to the view. with-check-option adds WITH CHECK OPTION to the resulting
SQL.

The default value of with-check-option is nil. The default value of database is *default-database*.

Examples

This example creates the view manager with the records in the employee table whose department is 50.

(create-view [manager] :as [select [*]
 :from [emp]
 :where [= [dept] 50]])

See also

create-index
create-table
default-database
drop-view

create-view-from-class Function

Summary

Creates a view in a database based on a class that defines the view.

Package

sql

Signature

create-view-from-class class &key database

45 The SQL Package

1285

Arguments

class⇓ A class.

database⇓ A database.

Description

The function create-view-from-class creates a view in database based on class which defines the view. The argument
database has a default value of *default-database*.

See also

default-database
drop-view-from-class
create-view

database-name Function

Summary

Returns the name of a database.

Package

sql

Signature

database-name database => connection

Arguments

database⇓ A database.

Values

connection A string.

Description

The function database-name returns the name of the database specified by database.

See also

connect
disconnect
connected-databases
find-database
status

45 The SQL Package

1286

decode-to-db-standard-date
decode-to-db-standard-timestamp Functions

Summary

Converts a Lisp universal time to standard SQL DATE and TIMESTAMP.

Package

sql

Signatures

decode-to-db-standard-date universal-time &key stream quoted => date

decode-to-db-standard-timestamp universal-time &key stream quoted => timestamp

Arguments

universal-time⇓ A universal time.

stream⇓ nil, t, or an output stream.

quoted⇓ A boolean.

Values

date A string or nil.

timestamp A string or nil.

Description

The functions decode-to-db-standard-date and decode-to-db-standard-timestamp convert universal-time to a
SQL DATE or TIMESTAMP respectively.

The format of the date is YYYY-MM-DD.

The format of the timestamp is YYYY-MM-DD HH:MM:SS.

stream is interpreted as in cl:format. If stream is nil then the string representing the DATE or TIMESTAMP is returned,
otherwise the string is written to the stream and nil is returned. The default value of stream is nil.

When quoted is true, the date or timestamp is quoted (by single quote). This is useful when these functions are used while
building a SQL command string, and the result should be interpreted as a string. The default value of quoted is nil.

See also

encode-db-standard-date
encode-db-standard-timestamp
connect
23.6 Working with date fields

45 The SQL Package

1287

http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm

default-database Variable

Summary

The default database in database operations.

Package

sql

Initial Value

nil

Description

The variable *default-database* is set by connect and specifies the default database to be used for database operations.

See also

connect

default-database-type Variable

Summary

Specifies the default type of database.

Package

sql

Initial Value

nil

Description

The variable *default-database-type* specifies the default type of database. You can set this or it is initialized by the
initialize-database-type function.

LispWorks supports the values shown in 23.1.2 Supported databases.

See also

initialize-database-type

45 The SQL Package

1288

default-update-objects-max-len Variable

Summary

The default maximum number of objects supplying data for a query when updating remote joins.

Package

sql

Initial Value

nil

Description

The variable *default-update-objects-max-len* provides the default value of the max-len argument in the function
update-objects-joins.

See also

update-objects-joins

def-view-class Macro

Summary

Extends the syntax of defclass to allow specified slots to be mapped onto the attributes of database views.

Package

sql

Signature

def-view-class name superclasses slots &rest class-options => class

Arguments

name⇓ A class name.

superclasses⇓ The superclasses of the class to be created.

slots⇓ The slot definitions of the new class.

class-options⇓ The class options of the new class.

Values

class The defined class.

45 The SQL Package

1289

Description

The macro def-view-class creates a class called name which maps onto a database view. Such a class is called a View
Class.

The macro def-view-class extends the syntax of defclass to allow special base slots to be mapped onto the attributes of
database views (presently single tables). When a select query that names a View Class is submitted, then the
corresponding database view is queried, and the slots in the resulting View Class instances are filled with attribute values
from the database.

If superclasses is nil then standard-db-object automatically becomes the superclass of the newly-defined View Class.
If superclasses is nil, it must include standard-db-object.

Slot Options

The slot options in slots for def-view-class are :db-kind and :db-info. In addition the slot option :type is treated
specially for View Classes.

:db-kind may be one of :base, :key, :join, or :virtual. The default is :base. Each value is described below:

:base This indicates that this slot corresponds to an ordinary attribute of the database view. You can
name the database attribute by using the keyword :column. By default, the database attribute is
named by the slot.

:key This indicates that this slot corresponds to part of the unique key for this view. A :key slot is
also a :base slot. All View Classes must have :key fields that uniquely distinguish the
instances, to maintain object identity.

To specify a key which spans multiple slots, each of the slots should have :db-kind :key. The
underlying requirement is that tuples of the form (key1 ... keyN) are unique. The
:db-kind :key slots do not need to be keys in the table.

:join This indicates that this slot corresponds to a join. A slot of this type will contain View Class
objects.

:virtual This indicates that this slot is an ordinary CLOS slot not associated with a database column.

A join is defined by the slot option :db-info, which takes a list. Items in the list may be:

:join-class class-name

This is the class to join on.

:home-key slot-name This is the slot of the defining class to be a subject for the join. The argument slot-name may be
an element or a list of elements, where elements can be symbols, nil, strings, integers or floats.

:foreign-key slot-name

This is the name of the slot of the :join-class to be a subject for the join. The slot-name may
be an element or a list of elements, where elements can be symbols, nil, strings, integers or
floats.

:target-slot target-slot

45 The SQL Package

1290

This is the name of a :join slot in :join-class. This is optional and is only specified if you
want the defining slot to contain instances of this target slot as opposed to those of
:join-class. The actual behavior depends on the value of set. An example of its usage is
when the :join-class is an intermediate class and you are really only interested in it as a route
to the :target-slot.

:retrieval retrieval-time

retrieval-time can be :deferred, which defers filling this slot from the database until the slot
itself is accessed. This is the default value.

retrieval-time can alternatively be :immediate which generates the join SQL for this slot
whenever a query is generated on the class. In other words, this is an intermediate class only,
which is present for the purpose of joining two entities of other classes together. When retrieval-
time is :immediate, then set is nil.

:set set When set is t and target-slot is defined, the slot will contain a list of pairs (target-value join-
instance) where target-value is the value of the target slot and join-instance is the corresponding
instance of the join class.

When set is t and target-slot is undefined, the slot will contain a list of instances of the join
class.

When set is nil the slot will contain a single instance.

The default value of set is t.

The syntax for :home-key and :foreign-key means that an object from a join class will only be included in the join slot if
the values from home-key are equal to the values in foreign-key, in order. These values are calculated as follows: if the
element in the list is a symbol it is taken to be a slot name and the value of the slot is used, otherwise the element is taken to
be the value. See the second example below.

The :type slot option is treated specially for View Classes. There is a need for stringent type-checking in View Classes
because of the translation into database data, and therefore :type is mandatory for slots with :db-kind :base or :key.
Some methods are provided for type checking and type conversion. For example, a :type specifier of (string 10) in SQL
terms means allow a character type value with length of less than or equal to 10. The following Lisp types are accepted for
type, and correspond to the SQL type shown:

(string n) CHAR(n)

integer INTEGER

(integer n) INTEGER(n)

float FLOAT

(float n) FLOAT(n)

sql:universal-time TIMESTAMP

Class Options

def-view-class recognizes the following class-options in addition to the standard class options defined for defclass:

(:base-table table-name)

The slots of the class name will be read from the table table-name. If you do not specify the
:base-table option, then table-name defaults to the name of the class.

45 The SQL Package

1291

http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm

Examples

The following example shows a class corresponding to the traditional employees table, with the employee's department given
by a join with the departments table.

(def-view-class employee (standard-db-object)
 ((employee-number :db-kind :key
 :column empno
 :type integer)
 (employee-name :db-kind :base
 :column ename
 :type (string 20)
 :accessor employee-name)
 (employee-department :db-kind :base
 :column deptno
 :type integer
 :accessor employee-department)
 (employee-job :db-kind :base
 :column job
 :type (string 9))
 (employee-manager :db-kind :base
 :column mgr
 :type integer)
 (employee-location :db-kind :join
 :db-info (:join-class department
 :retrieval :deferred
 :set nil
 :home-key
 employee-department
 :foreign-key
 department-number
 :target-slot
 department-loc)
 :accessor employee-location))
 (:base-table emp))

The following example illustrates how elements or lists of elements can follow :home-key and :foreign-key in the
:db-info slot option.

(def-view-class flex-schema ()
 ((name :type (string 8) :db-kind :key)
 (description :type (string 256))
 (classes :db-kind :join
 :db-info (:home-key name
 :foreign-key schema-name
 :join-class flex-class
 :retrieval :deferred)))
 (:base-table flex_schema))

(def-view-class flex-class ()
 ((schema-name :type (string 8) :db-kind :key
 :column schema_name)
 (name :type (string 32) :db-kind :key)
 (base-name :type (string 64) :column base_name)
 (super-classes :db-kind :join
 :db-info (:home-key
 (schema-name name)
 :foreign-key
 (schema-name class-name)
 :join-class
 flex-superclass
 :retrieval :deferred))
 (schema :db-kind :join

45 The SQL Package

1292

 :db-info (:home-key schema-name
 :foreign-key name
 :join-class flex-schema
 :set nil))
 (properties :db-kind :join
 :db-info (:home-key (schema-name name "")
 :foreign-key
 (schema-name class-name slot-name)
 :join-class flex-property
 :retrieval :deferred)))
 (:base-table flex_class))

(def-view-class flex-slot ()
 ((schema-name :type (string 8) :db-kind :key
 :column schema_name)
 (class-name :type (string 32) :db-kind :key
 :column class_name)
 (name :type (string 32) :db-kind :key)
 (class :db-kind :join
 :db-info (:home-key (schema-name class-name)
 :foreign-key (schema-name name)
 :join-class flex-class
 :set nil))
 (properties :db-kind :join
 :db-info (:home-key
 (schema-name class-name name)
 :foreign-key
 (schema-name class-name slot-name)
 :join-class flex-property
 :retrieval :deferred)))
 (:base-table flex_slot))

(def-view-class flex-property ()
 ((schema-name :type (string 8) :db-kind :key
 :column schema_name)
 (class-name :type (string 32) :db-kind :key
 :column class_name)
 (slot-name :type (string 32) :db-kind :key
 :column slot_name)
 (property :type (string 32) :db-kind :key)
 (values :db-kind :join
 :db-info (:home-key
 (schema-name class-name
 slot-name property)
 :foreign-key
 (schema-name class-name
 slot-name property)
 :join-class flex-property-value
 :retrieval :deferred)))
 (:base-table flex_property))

(def-view-class flex-property-value ()
 ((schema-name :type (string 8) :db-kind :key
 :column schema_name)
 (class-name :type (string 32) :db-kind :key
 :column class_name)
 (slot-name :type (string 32) :column slot_name)
 (property :type (string 32) :db-kind :key)
 (order :type integer)
 (value :type (string 128)))
 (:base-table flex_property_value))

45 The SQL Package

1293

See also

create-view-from-class
delete-instance-records
drop-view-from-class
standard-db-object
update-record-from-slot
update-records-from-instance

delete-instance-records Function

Summary

Deletes records corresponding to View Class instances.

Package

sql

Signature

delete-instance-records instance

Arguments

instance⇓ An instance of a View Class.

Description

The function delete-instance-records deletes the records represented by instance from the database associated with it.
If instance has no associated database, delete-instance-records signals an error.

See also

update-records
update-records-from-instance

delete-records Function

Summary

Deletes rows from a database table.

Package

sql

Signature

delete-records &key from where database

45 The SQL Package

1294

Arguments

from⇓ A database table.

where⇓ A SQL conditional statement.

database⇓ A database.

Description

The function delete-records deletes rows from a table specified by from in which the condition where is true. The
argument database specifies a database from which the records are to be removed, and defaults to *default-database*.

See also

default-database
insert-records
update-records

delete-sql-stream Function

Summary

Deletes a stream from the broadcast list for SQL commands or results traffic.

Package

sql

Signature

delete-sql-stream stream &key type database => deleted-stream

Arguments

stream⇓ A stream or t.

type⇓ A keyword.

database⇓ A database.

Values

deleted-stream The argument stream.

Description

The function delete-sql-stream deletes the stream stream from the list of streams which receive SQL commands or
results traffic.

To remove *standard-output* from the list, pass stream t.

The keyword type is :commands, :results or :both. It determines whether a stream for SQL commands traffic, results
traffic, or both is deleted.

The default value of type is :commands. The default value for database is the value of *default-database*.

45 The SQL Package

1295

See also

add-sql-stream
default-database
list-sql-streams
sql-recording-p
sql-stream
start-sql-recording
stop-sql-recording

destroy-prepared-statement Function

Summary

Destroys a prepared-statement and frees its resources.

Package

sql

Signature

destroy-prepared-statement prepared-statement => nil

Arguments

prepared-statement⇓ A prepared-statement.

Description

The function destroy-prepared-statement destroys the prepared-statement prepared-statement and frees its
resources. It should be called before closing the database associated with prepared-statement. A destroyed
prepared-statement can be reused by calling set-prepared-statement-variables with a new database.

destroy-prepared-statement always returns nil.

See also

prepare-statement
with-prepared-statement
set-prepared-statement-variables
prepared-statement-set-and-execute

disable-sql-reader-syntax Function

Summary

Turns off square bracket syntax.

Package

sql

45 The SQL Package

1296

Signature

disable-sql-reader-syntax

Description

The function disable-sql-reader-syntax turns off square bracket syntax and sets state so that
restore-sql-reader-syntax-state will make the syntax disabled if it is consequently enabled.

See also

enable-sql-reader-syntax
locally-disable-sql-reader-syntax
locally-enable-sql-reader-syntax
restore-sql-reader-syntax-state

disconnect Function

Summary

Closes a connection to a database.

Package

sql

Signature

disconnect &key database error => success

Arguments

database⇓ A database.

error⇓ A boolean.

Values

success⇓ A boolean.

Description

The function disconnect closes a connection to a database specified by database. If successful, success is t and if only one
other connection exists, *default-database* is reset.

The default value for database is *default-database*. If database is a database object, then it is used directly.
Otherwise, the list of connected databases is searched to find one with database as its connection specifications (see
connect). If no such database is found, then if error and database are both non-nil an error is signaled, otherwise
disconnect returns nil.

Examples

(disconnect :database "test")

45 The SQL Package

1297

See also

connect
connected-databases
database-name
default-database
find-database
reconnect
status

do-query Macro

Summary

Repeatedly binds a set of variables to the results of a query, and executes a body of code using the bound variables.

Package

sql

Signature

do-query ((&rest args) query &key database not-inside-transaction get-all) &body body

Arguments

args⇓ A set of variables.

query⇓ A database query or a prepared-statement containing a query.

database⇓ A database.

not-inside-transaction⇓
A generalized boolean.

get-all⇓ A generalized boolean.

body⇓ A Lisp code body.

Description

The macro do-query repeatedly executes body within a binding of args on the attributes of each record resulting from query.
do-query returns no values.

The default value of database is *default-database*.

not-inside-transaction and get-all may be useful when fetching many records through a connection with database-type
:mysql. Both of these arguments have default value nil. See the section 23.9.6 Special considerations for iteration
functions and macros for details.

Examples

The following code repeatedly binds the result of selecting an entry in ename from the table emp to the variable name, and
then prints name using the Lisp function print.

(do-query ((name) [select [ename] :from [emp]])

45 The SQL Package

1298

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_pr.htm

 (print name))

See also

Loop Extensions in Common SQL
map-query
prepare-statement
query
select
simple-do-query

drop-index Function

Summary

Deletes an index from a database.

Package

sql

Signature

drop-index index &key database

Arguments

index⇓ The name of an index.

database⇓ A database.

Description

The function drop-index deletes index from database.

The default value of database is *default-database*.

See also

create-index
drop-table

drop-table Function

Summary

Deletes a table from a database.

Package

sql

45 The SQL Package

1299

Signature

drop-table table &key database

Arguments

table⇓ The name of a table.

database⇓ A database.

Description

The function drop-table deletes table from a database.

The default value of database is *default-database*.

See also

create-table
default-database

drop-view Function

Summary

Deletes a view from a database.

Package

sql

Signature

drop-view view &key database

Arguments

view⇓ A view.

database⇓ A database.

Description

The function drop-view deletes view from database.

The default value of database is *default-database*.

Notes

DROP VIEW is not implemented in MS Access SQL, so drop-view does not work with that database. Use drop-table
instead.

45 The SQL Package

1300

See also

create-view
default-database
drop-index
drop-table

drop-view-from-class Function

Summary

Deletes a view from a database based on a class defining the view.

Package

sql

Signature

drop-view-from-class class &key database

Arguments

class⇓ A class.

database⇓ A database.

Description

The function drop-view-from-class deletes a view or base table from database based on class which defines that view.
The argument database has a default value of *default-database*.

See also

create-view-from-class
default-database
drop-view

enable-sql-reader-syntax Function

Summary

Turns on square bracket SQL syntax.

Package

sql

Signature

enable-sql-reader-syntax

45 The SQL Package

1301

Description

The function enable-sql-reader-syntax turns on square bracket syntax and sets the state so that
restore-sql-reader-syntax-state will make the syntax enabled if it is subsequently disabled.

See also

disable-sql-reader-syntax
locally-disable-sql-reader-syntax
locally-enable-sql-reader-syntax
restore-sql-reader-syntax-state

encode-db-standard-date
encode-db-standard-timestamp Functions

Summary

Convert standard SQL DATE and TIMESTAMP to Lisp universal time.

Package

sql

Signatures

encode-db-standard-date date-string => result

encode-db-standard-timestamp timestamp-string => result

Arguments

date-string⇓ A string.

timestamp-string⇓ A string.

Values

result A Lisp universal time or nil.

Description

The functions encode-db-standard-date and encode-db-standard-timestamp interpret their argument as a DATE
or TIMESTAMP and return the corresponding universal time.

date-string must be a string of length at least 10, where the first 10 characters specify a DATE, that is have the format YYYY
-MM-DD.

timestamp-string must be a string of length at least 19, where the first 19 characters specify a TIMESTAMP, that is have the
format YYYY-MM-DD HH:MM:SS.

encode-db-standard-date and encode-db-standard-timestamp do not actually check the separators between the
numeric values, so the hyphens, space and colons can each be replaced by any character. Both functions return nil if the
argument is not correct.

45 The SQL Package

1302

See also

decode-to-db-standard-date
decode-to-db-standard-timestamp
connect
23.6 Working with date fields

execute-command Function

Summary

Executes a SQL expression.

Package

sql

Signature

execute-command sql-exp &key database

Arguments

sql-exp⇓ Any SQL statement other than a query.

database⇓ A database.

Description

The function execute-command executes the SQL command specified by sql-exp for the database specified by database,
which has a default value of *default-database*. The argument sql-exp may be any SQL statement other than a query.

To run a stored procedure, pass an appropriate string. The call to the procedure needs to be wrapped in a PL/SQL
BEGIN END pair, for example:

(sql:execute-command
"BEGIN my_procedure(1, 'foo'); END;")

See also

default-database
query

find-database Function

Summary

Returns a database, given a database or database name.

Package

sql

45 The SQL Package

1303

Signature

find-database database &optional errorp => database, count

Arguments

database⇓ A string or a database.

errorp⇓ A boolean. Default value: t.

Values

database A database.

count⇓ An integer.

Description

The function find-database, given a string database, searches amongst the connected databases for one matching the
name database.

If there is exactly one such database, it is returned and the second return value count is 1. If more than one databases match
and errorp is nil, then the most recently connected of the matching databases is returned and count is the number of
matches. If no matching database is found and errorp is nil, then nil is returned. If none, or more than one, matching
databases are found and errorp is true, then an error is signaled.

If the argument database is a database, it is simply returned.

See also

connect
connected-databases
database-name
disconnect
status

initialize-database-type Function

Summary

Initializes a database type.

Package

sql

Signature

initialize-database-type &key database-type => type

Arguments

database-type⇓ A database type.

45 The SQL Package

1304

Values

type A database type.

Description

The function initialize-database-type initializes a database type by loading code and appropriate database libraries
according to the value of database-type. If *default-database-type* is not initialized, this function initializes it. It adds
database-type to the list of initialized types. The initialized database type is returned.

When connect tries to connect using a database type that has not been initialized yet, it calls
initialize-database-type to initialize it before actually trying to connect. Therefore, in most of the cases you do not
need to call initialize-database-type explicitly.

See also

database-name
initialized-database-types
default-database-type

initialized-database-types Variable

Summary

A list of initialized database types.

Package

sql

Initial Value

nil

Description

The variable *initialized-database-types* contains a list of database types that have been initialized by calls to
initialize-database-type.

See also

initialize-database-type

insert-records Function

Summary

Inserts a set of values into a table.

Package

sql

45 The SQL Package

1305

Signature

insert-records &key into attributes values av-pairs query database

Arguments

into⇓ A database table.

attributes⇓ A list of attributes, or nil.

values⇓ A list of values, or nil.

av-pairs⇓ A list of two-element lists, or nil.

query⇓ A query expression, or nil.

database⇓ A database.

Description

The function insert-records inserts records into the table into.

The records created contain values for attributes (or av-pairs). The argument values is a list of values. If attributes is
supplied then values must be a corresponding list of values for each of the listed attribute names.

If av-pairs is non-nil, then both attributes and values must be nil.

If query is non-nil, then neither values nor av-pairs should be. query should be a query expression, and the attribute names in
it must also exist in the table into.

The default value of database is *default-database*.

Examples

In the first example, the Lisp expression:

(insert-records :into [person]
 :values '("abc" "Joe" "Bloggs" 10000 3000 nil
 "plumber"))

is equivalent to the following SQL:

INSERT INTO PERSON
 VALUES ('abc','Joe',
 'Bloggs',10000,3000,NULL,'plumber')

In the second example, the LispWorks expression:

(insert-records :into [person]
 :attributes '(person_id income surname occupation)
 :values '("aaa" 10 "jim" "plumb"))

is equivalent to the following SQL:

INSERT INTO PERSON
 (PERSON_ID,INCOME,SURNAME,OCCUPATION)
 VALUES ('aaa',10,'jim','plumb')

The following example demonstrates how to use :av-pairs.

45 The SQL Package

1306

(insert-records :into [person] :av-pairs
 '((person_id "bbb") (surname "Jones")))

See also

default-database
delete-records
update-records

instance-refreshed Generic Function

Summary

Provides a hook for user code on View Class instance updates.

Package

sql

Signature

instance-refreshed instance

Arguments

instance⇓ An instance of a View Class.

Description

The generic function instance-refreshed is called inside select when its refresh argument is true and the instance
instance has just been updated.

The supplied method on standard-db-object does nothing. If your application needs to take action when a View Class
instance has been updated by:

(select ... :refresh t)

then add an instance-refresh method specializing on your subclass of standard-db-object.

See also

def-view-class
select

list-attributes Function

Summary

Returns a list of attributes from a table in a database.

45 The SQL Package

1307

Package

sql

Signature

list-attributes table &key database owner => result

Arguments

table⇓ A table in the database.

database⇓ A database.

owner⇓ nil, :all or a string.

Values

result A list of attributes.

Description

The function list-attributes returns a list of attributes from table in database, which has a default value of
default-database.

If owner is nil, only user-owned attributes are considered. This is the default.

If owner is :all, all attributes are considered.

If owner is a string, this denotes a username and only attributes owned by owner are considered.

See also

attribute-type
list-attribute-types
list-tables

list-attribute-types Function

Summary

Returns type information for a table's attributes.

Package

sql

Signature

list-attribute-types table &key database owner => result

Arguments

table⇓ A table.

45 The SQL Package

1308

database⇓ A database.

owner⇓ nil, :all or a string.

Values

result⇓ A list.

Description

The function list-attribute-types returns type information for the attributes in the table given by table in database.

database defaults to the value of *default-database*.

If owner is nil, only user-owned attributes are considered. This is the default.

If owner is :all, all attributes are considered.

If owner is a string, this denotes a username and only attributes owned by owner are considered.

result is a list in which each element is a list (attribute datatype precision scale nullable). attribute is a string denoting the
attribute name. datatype is the vendor-specific type as described in attribute-type. nullable is 1 if the attribute accepts
the value NULL, and 0 otherwise.

Notes

When using ODBC to connect to Access database, the nullable value is not reliable, at least on version 7.1. There seems to
be a bug in the driver. Using ODBC with other DBMS works as documented.

Examples

To print the type of every attribute in the database, do:

(loop for tab in
 (sql:list-tables)
 do
 (loop for type-info in
 (sql:list-attribute-types tab)
 do
 (format t "~&Table ~S Attribute ~S Type ~S"
 tab
 (first type-info)
 (second type-info))))

See also

attribute-type
list-attributes

list-classes Function

Summary

Returns a list of View Classes connected to a given database.

45 The SQL Package

1309

Package

sql

Signature

list-classes &key database root-class test => result-list

Arguments

database⇓ A database.

root-class⇓ A class.

test⇓ A test function.

Values

result-list A list of class objects.

Description

The function list-classes collects all the classes below root-class (which defaults to standard-db-object) that are
connected to the given database specified by database, and which satisfy test. The default for test is cl:identity.

By default, list-classes returns a list of all the classes connected to the default database, *default-database*.

list-sql-streams Function

Summary

Returns the broadcast list of streams recording SQL commands or results traffic.

Package

sql

Signature

list-sql-streams &key type database => streams

Arguments

type⇓ A keyword.

database⇓ A database.

Values

streams⇓ A list.

Description

The function list-sql-streams returns the broadcast list of streams recording SQL commands or results traffic.

45 The SQL Package

1310

http://www.lispworks.com/documentation/HyperSpec/Body/f_identi.htm

Each element of streams is a stream or the symbol t, denoting *standard-output*.

The keyword type is one of :commands or :results, and determines whether to return a list of streams for SQL commands
or results traffic.

The default value of type is :commands. The default value for database is the value of *default-database*.

See also

add-sql-stream
delete-sql-stream
sql-recording-p
sql-stream
start-sql-recording
stop-sql-recording

list-tables Function

Summary

Returns a list of the table names in a database.

Package

sql

Signature

list-tables &key database owner => table-list

Arguments

database⇓ A database.

owner⇓ nil, :all or a string.

Values

table-list A list of table names.

Description

The function list-tables returns the list of table names in database, which has a default value of *default-database*.

If owner is nil, only user-owned tables are considered. This is the default.

If owner is :all, all tables are considered.

If owner is a string, this denotes a username and only tables owned by owner are considered.

See also

create-table
drop-table
list-attributes

45 The SQL Package

1311

table-exists-p

lob-stream Class

Summary

The LOB stream class.

Package

sql

Superclasses

buffered-stream

Initargs

:lob-locator A LOB locator.

:direction One of :input or:output.

:free-lob-locator-on-close

A generalized boolean.

Accessors

lob-stream-lob-locator

Description

The class lob-stream implements LOB streams in the Oracle LOB interface.

A lob-stream for input can be returned from select or query by specifying :input-stream as the type to return for the
LOB column.

A lob-stream for output can be returned from select or query by specifying :output-stream as the type to return for
the LOB column.

A lob-stream can be attached to an existing LOB locator by creating the stream explicitly.

direction specifies whether the stream is for input or output. The default value of direction is :input.

By default, if the stream is closed the LOB locator is freed, unless free-lob-locator-on-close is passed as nil. The default
value of free-lob-locator-on-close is t.

Examples

This creates an input stream connected to the LOB locator lob-locator:

(make-instance 'lob-stream :lob-locator lob-locator)

See also

query

45 The SQL Package

1312

select

locally-disable-sql-reader-syntax Function

Summary

Turns off square bracket syntax and does not change syntax state.

Package

sql

Signature

locally-disable-sql-reader-syntax

Description

The function locally-disable-sql-reader-syntax turns off square bracket syntax and does not change syntax state.
This ensures that restore-sql-reader-syntax-state restores the current enable/disable state.

Examples

The intended use of locally-disable-sql-reader-syntax is in a file:

#.(locally-disable-sql-reader-syntax)
<Lisp code not using [...] syntax>
#.(restore-sql-reader-syntax-state)

See also

disable-sql-reader-syntax
enable-sql-reader-syntax
locally-enable-sql-reader-syntax
restore-sql-reader-syntax-state

locally-enable-sql-reader-syntax Function

Summary

Turns on square bracket syntax and does not change syntax state.

Package

sql

Signature

locally-enable-sql-reader-syntax

45 The SQL Package

1313

Description

The function locally-enable-sql-reader-syntax turns on square bracket syntax and does not change the syntax state.
This ensures that restore-sql-reader-syntax-state restores the current enable/disable state.

Examples

The intended use of locally-enable-sql-reader-syntax is in a file:

#.(locally-enable-sql-reader-syntax)

<code using [...] syntax>

#.(restore-sql-reader-syntax-state)

See also

disable-sql-reader-syntax
enable-sql-reader-syntax
locally-disable-sql-reader-syntax
restore-sql-reader-syntax-state

map-query Function

Summary

Returns the results of mapping a function across a SQL query statement.

Package

sql

Signature

map-query output-type-spec function query-exp &key database not-inside-transaction get-all => result

Arguments

output-type-spec⇓ The output type specification.

function⇓ A function.

query-exp⇓ A SQL query or a prepared-statement containing a query.

database⇓ A database.

not-inside-transaction⇓
A generalized boolean.

get-all⇓ A generalized boolean.

Values

result A sequence of type output-type-spec containing the results of the map function.

45 The SQL Package

1314

Description

The function map-query returns the result of mapping function across the results of query-exp. output-type-spec specifies
the type of the result sequence as per the Common Lisp map function.

The default value of database is *default-database*.

not-inside-transaction and get-all may be useful when fetching many records through a connection with database-type
:mysql. Both of these arguments have default value nil. See the section 23.9.6 Special considerations for iteration
functions and macros for details.

Examples

This example binds name to each name in the employee table and prints it.

(map-query
 nil
 #'(lambda (name) (print name))
 [select [ename] :from [emp] :flatp t])

See also

do-query
Loop Extensions in Common SQL
prepare-statement
print-query
query
select
simple-do-query

mysql-library-directories Variable

Summary

Helps LispWorks for Windows to locate the MySQL library.

Package

sql

Initial Value

nil

Description

The variable *mysql-library-directories* helps LispWorks for Windows to locate the MySQL library for use with
database-type :mysql.

It specifies a directory or a list of directories in which to search for the MySQL library. If the value is a directory pathname
designator then it is passed to directory. If the value is a list of directory pathname designators then each item is passed to
directory. The collected results are the list of directories to search in.

45 The SQL Package

1315

Notes

The default value nil causes the system to use *mysql-library-sub-directories* to construct the search path. With
the default installation of MySQL this copes better with 64-bit/32-bit mixing on the same machine. When
mysql-library-directories is non-nil, it overrides *mysql-library-sub-directories*.

Compatibility notes

In LispWorks 6.0 *mysql-library-directories* has initial value "C:\\Program Files\\MySQL\\MySQL*\\bin".

In LispWorks 6.1 and later, *mysql-library-directories* has initial value nil so the search path is constructed using
mysql-library-sub-directories.

See also

mysql-library-path
mysql-library-sub-directories

mysql-library-path Variable

Summary

Helps LispWorks locate the MySQL library.

Package

sql

Initial Value

See below.

Description

The variable *mysql-library-path* helps the system to locate the MySQL library for use with database-type :mysql. It
specifies the library name, and can also be set to a full path. If it is not a name, the system searches the standard library
locations.

You can override the value of *mysql-library-path* by setting the environment variable LW_MYSQL_LIBRARY.

The initial value on Microsoft Windows is:

"libmysql.dll"

The initial value on other platforms with pthreads is:

"-lmysqlclient_r"

The initial value on other platforms without pthreads is:

"-lmysqlclient"

45 The SQL Package

1316

See also

mysql-library-directories

mysql-library-sub-directories Variable

Summary

Helps LispWorks for Windows to locate the MySQL library.

Package

sql

Initial Value

"MySQL\\MySQL*\\bin"

Description

The variable *mysql-library-sub-directories* helps LispWorks for Windows to locate the MySQL library for use
with database-type :mysql.

It specifies a directory in which to search for the MySQL library, as a sub-directory of the appropriate Program Files
directory. On a 32-bit machine that normally means C:\Program Files\, while on a 64-bit machine it normally means
C:\Program Files\ for 64-bit programs and C:\Program Files (x86)\ for 32-bit programs.

The value must be a pathname designator. It is merged with the Program Files directory yielding a path (for example
"C:\\Program Files\\MySQL\\MySQL*\\bin") which is then passed to directory. The result is a list of directories
that are used to search for the MySQL library.

The default value matches the default MySQL installation.

If *mysql-library-directories* is non-nil, it overrides *mysql-library-sub-directories*.

Note that this default will match any MySQL release, so if you need to be sure to match a specific MySQL release, you need
to change the value of *mysql-library-sub-directories* such that it matches only that particular release.

See also

mysql-library-directories

ora-lob-append Function

Summary

Appends two internal LOBs together.

Package

sql

45 The SQL Package

1317

Signature

ora-lob-append src-lob-locator dest-lob-locator &key errorp

Arguments

src-lob-locator⇓ A LOB locator.

dest-lob-locator⇓ A LOB locator.

errorp⇓ A generalized boolean.

Description

The function ora-lob-append appends the contents of the LOB pointed to by src-lob-locator to the end of LOB pointed by
dest-lob-locator. The source and destination LOBs must be of the same internal LOB type, that is, either both BLOB or both
CLOB/NCLOB.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

ora-lob-append is applicable to internal LOBs only.

Notes

1. ora-lob-append is a direct call OCILobAppend.

2. ora-lob-append is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB interface
for more information.

ora-lob-assign Function

Summary

Assigns a LOB to another LOB locator.

Package

sql

Signature

ora-lob-assign src-lob-locator &key dest-lob-locator errorp => lob-locator

Arguments

src-lob-locator⇓ A LOB locator.

dest-lob-locator⇓ A LOB locator.

errorp⇓ A generalized boolean.

Values

lob-locator A LOB locator.

45 The SQL Package

1318

Description

The function ora-lob-assign assigns the underlying LOB for src-lob-locator to another LOB locator.

If dest-lob-locator is nil then a new LOB locator is created and returned. Otherwise dest-lob-locator should be an existing
LOB locator which is modified and returned. The default value of dest-lob-locator is nil.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. ora-lob-assign is a direct call to OCILobAssign.

2. ora-lob-assign is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB interface
for more information.

ora-lob-char-set-form Function

Summary

Returns the character set form of a LOB.

Package

sql

Signature

ora-lob-char-set-form lob-locator &key errorp => charset

Arguments

lob-locator⇓ A LOB locator.

errorp⇓ A generalized boolean.

Values

charset⇓ A non-negative integer.

Description

The function ora-lob-char-set-form returns the char set form of the LOB underlying lob-locator.

charset is 0 for a binary LOB (BLOB or BFILE), SQLCS_IMPLICIT (1) for a character LOB (CFILE or CLOB) and
SQLCS_NCHAR (2) for a NCLOB.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call to OCILobCharSetForm.

45 The SQL Package

1319

2. ora-lob-char-set-form is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

ora-lob-char-set-id Function

Summary

Returns the database character set identifier of a LOB.

Package

sql

Signature

ora-lob-char-set-id lob-locator &key errorp => db-charset-id

Arguments

lob-locator⇓ A LOB locator.

errorp⇓ A generalized boolean.

Values

db-charset-id⇓ A non-negative number.

Description

The function ora-lob-char-set-id returns the database charactor set identifier of the LOB underlying lob-locator.

db-charset-id is 0 for a binary LOB.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call to OCILobCharSetID.

2. ora-lob-char-set-id is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

ora-lob-close Function

Summary

Closes an opened LOB.

Package

sql

45 The SQL Package

1320

Signature

ora-lob-close lob-locator &key errorp

Arguments

lob-locator⇓ A LOB locator.

errorp⇓ A generalized boolean.

Description

The function ora-lob-close closes lob-locator, which must have been opened by ora-lob-open.

For more information see ora-lob-open.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call to OCILobClose.

2. ora-lob-close is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB interface for
more information.

See also

ora-lob-open

ora-lob-copy Function

Summary

Copies part of an internal LOB.

Package

sql

Signature

ora-lob-copy dest-lob-locator src-lob-locator amount &key dest-offset src-offset errorp

Arguments

dest-lob-locator⇓ A LOB locator.

src-lob-locator⇓ A LOB locator.

amount⇓ A non-negative integer.

dest-offset⇓ A non-negative integer.

src-offset⇓ A non-negative integer.

errorp⇓ A generalized boolean.

45 The SQL Package

1321

Description

The function ora-lob-copy copies part of the LOB pointed to by src-lob-locator into the LOB pointed to by dest-lob-
locator.

The details of the operation are determined by amount, src-offset and dest-offset. These numbers are in characters for
CLOB/NCLOB and bytes for BLOB, and the offsets start from 1. The part of the source LOB from offset src-offset of length
amount is copied into the destination LOB at offset dest-offset. The default value of dest-offset is 1 and the default value of
src-offset is 1.

The destination LOB is extended if needed. If dest-offset is beyond the end of the destination LOB, the gap between the end
and dest-offset is erased, that is, filled with 0 for BLOBs or spaces for CLOBs.

Both LOBs must be internal LOBs, and they must be of the same type, that is, either both BLOB or both CLOB/NCLOB.

ora-lob-append is applicable to internal LOBs only.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call OCILobCopy.

2. This function is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB interface for
more information.

See also

ora-lob-load-from-file

ora-lob-create-empty Function

Summary

Creates an empty LOB.

Package

sql

Signature

ora-lob-create-empty &key db type => lob-locator

Arguments

db⇓ A database.

type⇓ A Lisp object.

Values

lob-locator A LOB locator.

45 The SQL Package

1322

Description

The function ora-lob-create-empty creates an empty LOB object and returns a LOB locator for it.

If type is :lob then ora-lob-create-empty creates a LOB of type BLOB/CLOB. If type is any other value, it creates a
file LOB. The default value of type is :lob.

Empty LOBs can be put in the database by passing them to insert-records or update-records. However, the preferred
approach is to use the Oracle SQL function EMPTY_BLOB as described in the section 23.11.1.3 Inserting empty LOBs.

The default value of db is the value of *default-database*.

Notes

ora-lob-create-empty is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

ora-lob-create-temporary Function

Summary

Creates a temporary LOB.

Package

sql

Signature

ora-lob-create-temporary db-or-lob-locator &key errorp cache session-duration clob-p => lob-locator

Arguments

db-or-lob-locator⇓ A database or a LOB locator.

errorp⇓ A generalized boolean.

cache⇓ A generalized boolean.

session-duration⇓ A generalized boolean.

clob-p⇓ A generalized boolean.

Values

lob-locator A LOB locator.

Description

The function ora-lob-create-temporary creates a temporary LOB.

db-or-lob-locator specifies the database to associate the new LOB with. If it is a LOB locator the database from which the
LOB locator came is used.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

45 The SQL Package

1323

cache specifies whether to use a cache or not. The default value of cache is nil.

session-duration specifies the lifetime: if it is true then it uses OCI_DURATION_SESSION, otherwise it uses
OCI_DURATION_CALL. The default value of session-duration is t.

If clob-p is true then the new LOB is a CLOB, otherwise it is a BLOB. The default value of clob-p is nil.

The new temporary LOB locator is returned.

Notes

1. This is a direct call to OCILobCreateTemporary.

2. ora-lob-create-temporary is available only when the "oracle" module is loaded. See the section 23.11 Oracle
LOB interface for more information.

See also

ora-lob-free-temporary
ora-lob-is-temporary

ora-lob-disable-buffering Function

Summary

Disables the buffering of the Oracle client.

Package

sql

Signature

ora-lob-disable-buffering lob-locator &key errorp

Arguments

lob-locator⇓ A LOB locator.

errorp⇓ A generalized boolean.

Description

The function ora-lob-disable-buffering disables the buffering of the Oracle client for lob-locator. This function does
not flush the buffers.

This function is applicable to internal LOBs only.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call to OCILobDisableBuffering.

45 The SQL Package

1324

2. ora-lob-disable-buffering is available only when the "oracle" module is loaded. See the section 23.11 Oracle
LOB interface for more information.

See also

ora-lob-enable-buffering
ora-lob-flush-buffer

ora-lob-element-type Function

Summary

Returns the Lisp element type corresponding to that of a LOB locator.

Package

sql

Signature

ora-lob-element-type lob-locator => type

Arguments

lob-locator⇓ A LOB locator.

Values

type⇓ A Lisp type descriptor.

Description

The function ora-lob-element-type returns the Lisp element type that best corresponds to the charset of the LOB locator
lob-locator.

For BLOB and BFILE type is (unsigned-byte 8). For CLOB, NCLOB and CFILE type is either base-char or
simple-char, depending on the charset.

Notes

ora-lob-element-type is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

ora-lob-enable-buffering Function

Summary

Enables the buffering of the Oracle client.

45 The SQL Package

1325

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

Package

sql

Signature

ora-lob-enable-buffering lob-locator &key errorp

Arguments

lob-locator⇓ A LOB locator.

errorp⇓ A generalized boolean.

Description

The function ora-lob-enable-buffering enables the buffering of the Oracle client for lob-locator. This function does
not flush the buffers.

This function is applicable to internal LOBs only.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call to OCILobEnableBuffering.

2. ora-lob-enable-buffering is available only when the "oracle" module is loaded. See the section 23.11 Oracle
LOB interface for more information.

See also

ora-lob-disable-buffering
ora-lob-flush-buffer

ora-lob-env-handle Function

Summary

Returns a foreign pointer to the environment handle of a LOB.

Package

sql

Signature

ora-lob-env-handle lob-locator => pointer

Arguments

lob-locator⇓ A LOB locator.

45 The SQL Package

1326

Values

pointer A foreign pointer of type p-oci-env.

Description

The function ora-lob-env-handle returns a foreign pointer to the environment handle of the LOB underlying lob-locator.

Notes

ora-lob-env-handle is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB interface
for more information.

ora-lob-erase Function

Summary

Erases part of an internal LOB.

Package

sql

Signature

ora-lob-erase lob-locator offset amount &key errorp => erased

Arguments

lob-locator⇓ A LOB locator.

offset⇓ A non-negative integer.

amount⇓ A non-negative integer.

errorp⇓ A generalized boolean.

Values

erased⇓ A non-negative integer.

Description

The function ora-lob-erase erases part of the LOB pointed to by lob-locator. That is, it fills part of the LOB with 0 for
BLOBs or spaces for CLOBs.

The operation starts from offset offset into the LOB and erases amount of data in the LOB, or to the end of the LOB. Note
that the offset starts from 1, and that offset and amount are in characters for CLOBs and bytes for BLOB.

Erasing does not extend beyond the end of the LOB. The return value erased is the number of characters or bytes erased.
erased will be smaller than amount if the sum of offset and amount is greater than the length of the LOB.

ora-lob-erase is applicable to internal LOBs only.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type

45 The SQL Package

1327

sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call to OCILobErase.

2. ora-lob-erase is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB interface for
more information.

ora-lob-file-close Function

Summary

Closes a file LOB.

Package

sql

Signature

ora-lob-file-close file-lob-locator &key errorp

Arguments

file-lob-locator⇓ A file LOB locator.

errorp⇓ A generalized boolean.

Description

The function ora-lob-file-close closes the file that file-lob-locator is associated with.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call to OCILobFileClose.

2. ora-lob-file-close is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

See also

ora-lob-file-open

45 The SQL Package

1328

ora-lob-file-close-all Function

Summary

Closes all the file LOBs.

Package

sql

Signature

ora-lob-file-close-all &key db errorp

Arguments

db⇓ A database.

errorp⇓ A generalized boolean.

Description

The function ora-lob-file-close-all closes the files that are associated with all the file LOB locators that are opened
through the database connection specified by database.

The default value of db is the value of *default-database*.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call to OCILobFileCloseAll.

2. ora-lob-file-close-all is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

See also

ora-lob-file-close

ora-lob-file-exists Function

Summary

The predicate for whether a LOB file exists.

Package

sql

45 The SQL Package

1329

Signature

ora-lob-file-exists lob-locator &key errorp => result

Arguments

lob-locator⇓ A LOB locator.

errorp⇓ A generalized boolean.

Values

result A boolean.

Description

The function ora-lob-file-exists returns t if the file associated with lob-locator exists. This function is applicable only
to file LOBs (CFILE or BFILE).

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call to OCILobFileExists.

2. ora-lob-file-exists is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

ora-lob-file-get-name Function

Summary

Returns the directory and name for the file associated with a file LOB.

Package

sql

Signature

ora-lob-file-get-name lob-locator &key errorp => dir, filename

Arguments

lob-locator⇓ A LOB locator.

errorp⇓ A generalized boolean.

Values

dir⇓ A string of length no greater than 30.

filename⇓ A string of length no greater than 255.

45 The SQL Package

1330

Description

The function ora-lob-file-get-name returns as multiple values the directory alias dir and the filename filename
associated with the LOB denoted by lob-locator. The function is applicable only to file LOBs (CFILE or BFILE).

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call to OCILobFileGetName.

2. ora-lob-file-get-name is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

ora-lob-file-is-open Function

Summary

The predicate for whether a LOB file is open.

Package

sql

Signature

ora-lob-file-is-open lob-locator &key errorp => result

Arguments

lob-locator⇓ A LOB locator.

errorp⇓ A generalized boolean.

Values

result A boolean.

Description

The function ora-lob-file-is-open returns t if the file associated with lob-locator is open. This function is applicable
only to file LOBs (CFILE or BFILE).

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call to OCILobFileIsOpen.

2. ora-lob-file-is-open is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

45 The SQL Package

1331

ora-lob-file-open Function

Summary

Opens a file LOB.

Package

sql

Signature

ora-lob-file-open file-lob-locator &key errorp

Arguments

file-lob-locator⇓ A file LOB locator.

errorp⇓ A generalized boolean.

Description

The function ora-lob-file-open opens the file that file-lob-locator is associated with.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call to OCILobFileOpen.

2. ora-lob-file-open is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

See also

ora-lob-file-close

ora-lob-file-set-name Function

Summary

Sets the name of a file LOB.

Package

sql

Signature

ora-lob-file-set-name file-lob-locator dir-alias name &key errorp

45 The SQL Package

1332

Arguments

file-lob-locator⇓ A file LOB locator.

dir-alias⇓ A string or nil.

name⇓ A string or nil.

errorp⇓ A generalized boolean.

Description

The function ora-lob-file-set-name sets the directory alias and the name of the file LOB pointed to by file-lob-locator.

If dir-alias is a string it should be of length no greater than 30. If it is nil then the directory alias of the file LOB is not
changed.

If name is a string it should be of length no greater than 255. If it is nil then the name of the file LOB is not changed.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call to OCILobFileSetAlias.

2. ora-lob-file-set-name is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

ora-lob-flush-buffer Function

Summary

Flushes the buffer of the Oracle client.

Package

sql

Signature

ora-lob-flush-buffer lob-locator &key free-buffer errorp

Arguments

lob-locator⇓ A LOB locator.

free-buffer⇓ A generalized boolean.

errorp⇓ A generalized boolean.

Description

The function ora-lob-flush-buffer flushes the buffer that is used by the Oracle client for lob-locator.

If free-buffer is true, it also frees the buffer. The default value of free-buffer is nil.

45 The SQL Package

1333

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call to OCILobFlushBuffer.

2. ora-lob-flush-buffer is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

See also

ora-lob-enable-buffering

ora-lob-free Function

Summary

Frees a LOB locator.

Package

sql

Signature

ora-lob-free lob-locator

Arguments

lob-locator⇓ A LOB locator.

Description

The function ora-lob-free frees the LOB locator lob-locator.

If lob-locator was retrieved inside an iteration macro or function (that is, one of map-query, do-query,
simple-do-query and Loop Extensions in Common SQL), it is freed before the next record is fetched, or when
terminating the iteration for the last record.

LOB locators which were retrieved by select or query, or were created by the user by ora-lob-assign or
ora-lob-create-empty are freed automatically when the database connection is closed by a call to disconnect.

If you create many LOB locators without closing the connection, it is useful to free them by calling ora-lob-free, to free
the resources that are associated with them.

Freeing a LOB locator does not affect the underlying LOB. In particular, after modifications to the LOB there is no
rollback even if there was not yet a commit.

Notes

ora-lob-free is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB interface for more
information.

45 The SQL Package

1334

ora-lob-free-temporary Function

Summary

Frees a temporary LOB locator.

Package

sql

Signature

ora-lob-free-temporary temp-lob-locator &key errorp

Arguments

temp-lob-locator⇓ A temporary LOB locator.

errorp⇓ A generalized boolean.

Description

The function ora-lob-free-temporary frees a temporary LOB locator.

temp-lob-locator should be a temporary LOB locator as created by ora-lob-create-temporary.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. Temporary LOB locators are freed automatically when the database connection is closed by disconnect.

2. This is a direct call to OCILobFreeTemporary.

3. ora-lob-free-temporary is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

See also

ora-lob-create-temporary
ora-lob-is-temporary

ora-lob-get-buffer Function

Summary

Gets a buffer for efficient I/O with foreign functions.

Package

sql

45 The SQL Package

1335

Signature

ora-lob-get-buffer lob-locator &key for-writing offset => amount/size, foreign-buffer, eof-or-error-p

Arguments

lob-locator⇓ A LOB locator.

for-writing⇓ A generalized boolean.

offset⇓ A non-negative integer or nil.

Values

amount/size⇓ A non-negative integer.

foreign-buffer⇓ A FLI pointer.

eof-or-error-p⇓ A boolean or an error object.

Description

The function ora-lob-get-buffer gets a buffer from lob-locator for efficient I/O with foreign functions.

If for-writing is nil, then ora-lob-get-buffer fills an internal buffer and returns three values: amount/size is how much
it filled, foreign-buffer points to the actual buffer, and eof-or-error-p is the return value from the call to
ora-lob-read-foreign-buffer. The offset offset is passed directly ora-lob-read-foreign-buffer.

If for-writing is true, then ora-lob-get-buffer returns two values: amount/size is the size of the foreign buffer and
foreign-buffer points to the actual buffer, which then can be passed to ora-lob-write-foreign-buffer.

The default value of for-writing is nil.

The buffer that is used by ora-lob-get-buffer is always the same for the LOB locator, it is used by
ora-lob-read-buffer and ora-lob-write-buffer, and is freed automatically when the LOB locator is freed. Thus
until you finish with the buffer, you cannot use ora-lob-read-buffer or ora-lob-write-buffer or call
ora-lob-get-buffer again or free the LOB locator.

Notes

ora-lob-get-buffer is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB interface
for more information.

Examples

This first example illustrates reading using the buffer obtained by ora-lob-get-buffer. You have a foreign function:

my_chunk_processor(char *data, int size)

with this FLI definition:

(fli:define-foreign-function my_chunk_processor
 ((data :pointer)
 (size :int)))

You can pass all the data from the LOB locator to this function. Assuming no other function reads from it, it will start from
the beginning.

45 The SQL Package

1336

(loop
 (multiple-value-bind (amount buffer eof-or-error-p)
 (ora-lob-get-buffer lob)
 (when (zerop amount) (return))
 (my_chunk_processor buffer amount))

This second example illustrates writing with the buffer obtained by ora-lob-get-buffer. You have a foreign function that
fills a buffer with data, and you want to write it to a LOB. First you should lock the record, and if required trim the LOB
locator.

(multiple-value-bind (size buffer)
 (ora-lob-get-buffer lob-locator
 :for-writing t
 ;; start at the beginning
 :offset 1)
 (loop (let ((amount (my-fill-buffer buffer size)))
 (when (zerop amount) (return))
 (ora-lob-write-foreign-buffer
 lob-locator nil
 amount buffer size))))

See also

ora-lob-read-buffer
ora-lob-read-foreign-buffer
ora-lob-write-buffer
ora-lob-write-foreign-buffer

ora-lob-get-chunk-size Function

Summary

Returns the chunk size of a LOB.

Package

sql

Signature

ora-lob-get-chunk-size lob-locator &key errorp => size

Arguments

lob-locator⇓ A LOB locator.

errorp⇓ A generalized boolean.

Values

size A non-negative integer.

Description

The function ora-lob-get-chunk-size returns the chunk size of the LOB locator lob-locator, which is the best value for

45 The SQL Package

1337

the size of a buffer.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call to OCILobGetChunkSize.

2. ora-lob-get-chunk-size is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

ora-lob-get-length Function

Summary

Returns the length of a LOB.

Package

sql

Signature

ora-lob-get-length lob-locator &key errorp => length

Arguments

lob-locator⇓ A LOB locator.

errorp⇓ A generalized boolean.

Values

length A non-negative integer.

Description

The function ora-lob-get-length returns the current length of the LOB underlying lob-locator.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call to OCILobGetLength.

2. ora-lob-get-length is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

45 The SQL Package

1338

ora-lob-internal-lob-p Function

Summary

The predicate for internal LOBs.

Package

sql

Signature

ora-lob-internal-lob-p lob-locator => result

Arguments

lob-locator⇓ A LOB locator.

Values

result A boolean.

Description

The function ora-lob-internal-lob-p returns t if lob-locator is internal (BLOB, CLOB, or NCLOB). Otherwise it
returns nil.

Notes

ora-lob-internal-lob-p is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

ora-lob-is-equal Function

Summary

The comparison function for LOB locators.

Package

sql

Signature

ora-lob-is-equal lob-locator1 lob-locator2 => result

Arguments

lob-locator1⇓ A LOB locator.

45 The SQL Package

1339

lob-locator2⇓ A LOB locator.

Values

result A boolean.

Description

The function ora-lob-is-equal returns t if lob-locator1 and lob-locator2 point to the same LOB object.

Notes

1. This is a direct call to OCILobIsEqual.

2. ora-lob-is-equal is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB interface
for more information.

ora-lob-is-open Function

Summary

The predicate for whether a LOB locator is opened.

Package

sql

Signature

ora-lob-is-open lob-locator &key errorp => result

Arguments

lob-locator⇓ A LOB locator.

errorp⇓ A generalized boolean.

Values

result A boolean.

Description

The function ora-lob-is-open returns t if the LOB pointed to by lob-locator is opened (by ora-lob-open).

ora-lob-is-open is applicable to internal LOBs only.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call to OCILobIsOpen.

45 The SQL Package

1340

2. ora-lob-is-open is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB interface
for more information.

See also

ora-lob-open

ora-lob-is-temporary Function

Summary

The predicate for whether a LOB is temporary.

Package

sql

Signature

ora-lob-is-temporary lob-locator &key errorp => result

Arguments

lob-locator⇓ A LOB locator.

errorp⇓ A generalized boolean.

Values

result A boolean.

Description

The function ora-lob-is-temporary returns t if the LOB underlying lob-locator is temporary, that is, it was created by
ora-lob-create-temporary.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call to OCILobIsTemporary.

2. ora-lob-is-temporary is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

See also

ora-lob-create-temporary

45 The SQL Package

1341

ora-lob-load-from-file Function

Summary

Loads data from a file LOB into a LOB.

Package

sql

Signature

ora-lob-load-from-file dest-lob-locator src-lob-file amount &key src-offset dest-offset errorp

Arguments

dest-lob-locator⇓ An internal LOB locator.

src-lob-file⇓ A file LOB locator.

amount⇓ A non-negative integer.

src-offset⇓ A non-negative integer.

dest-offset⇓ A non-negative integer.

errorp⇓ A generalized boolean.

Description

The function ora-lob-load-from-file loads the data from src-lob-file into the destination LOB pointed to by dest-lob-
locator.

The source LOB must be a BFILE and the destination must be an internal LOB.

The details of the operation are determined by amount, src-offset and dest-offset. amount and dest-offset are in characters for
CLOB/NCLOB and are in bytes for BLOB. src-offset is in bytes. The offsets start from 1. The default value of dest-offset is
1 and the default value of src-offset is 1.

No conversion is performed by ora-lob-load-from-file, so if the destination is a CLOB/NCLOB, the source must
already be in the right format.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call to OCILobLoadFromFile. The Oracle documentation is ambiguous on whether it is mandatory to
open the source LOB before calling this function.

2. ora-lob-load-from-file is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

See also

ora-lob-copy

45 The SQL Package

1342

ora-lob-lob-locator Function

Summary

Returns a foreign pointer to the underlying LOB locator.

Package

sql

Signature

ora-lob-lob-locator lob-locator => pointer

Arguments

lob-locator⇓ A LOB locator.

Values

pointer⇓ A foreign pointer.

Description

The function ora-lob-lob-locator returns a foreign pointer to the OCI LOB locator underlying lob-locator.

pointer is of type p-oci-lob-locator or p-oci-file.

Notes

ora-lob-lob-locator is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB interface
for more information.

ora-lob-locator-is-init Function

Summary

The predicate for whether a LOB is initialized.

Package

sql

Signature

ora-lob-locator-is-init lob-locator &key errorp => result

Arguments

lob-locator⇓ A LOB locator.

45 The SQL Package

1343

errorp⇓ A generalized boolean.

Values

result A boolean.

Description

The function ora-lob-locator-is-init returns t if the LOB locator lob-locator is initialized.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

Notes

1. This is a direct call to OCILobIsInit.

2. ora-lob-locator-is-init is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

ora-lob-open Function

Summary

Opens a LOB.

Package

sql

Signature

ora-lob-open lob-locator &key errorp

Arguments

lob-locator⇓ A LOB locator.

errorp⇓ A generalized boolean.

Description

The function ora-lob-open opens the LOB pointed to by lob-locator, which can be an internal LOB or a file LOB.

Opening the LOB creates a transaction, so any updates associated with modifying the LOB are delayed until the
ora-lob-close call. This saves round-trips and avoids extra work on the server side. However it is not mandatory to use
ora-lob-open.

Calls to ora-lob-open must be strictly paired to calls to ora-lob-close, and the latter must be called before a call to
commit. It is also an error to call ora-lob-open on a server LOB object that is already open, even if it has been opened via
a different LOB locator.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

45 The SQL Package

1344

Notes

1. This is a direct call to OCILobOpen.

2. ora-lob-open is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB interface for
more information.

See also

ora-lob-close
ora-lob-is-open

ora-lob-read-buffer Function

Summary

Reads from a LOB into a buffer.

Package

sql

Signature

ora-lob-read-buffer lob-locator offset amount buffer &key buffer-offset csid => amount-read, eof-or-error-p

Arguments

lob-locator⇓ A LOB locator.

offset⇓ A non-negative integer or nil.

amount⇓ A non-negative integer.

buffer⇓ A string, or a vector of element type (unsigned-byte 8).

buffer-offset⇓ A non-negative integer.

csid⇓ A.Character Set ID.

Values

amount-read⇓ A non-negative integer.

eof-or-error-p⇓ A boolean or an error object.

Description

The function ora-lob-read-buffer reads into buffer from the LOB pointed to by lob-locator.

offset specifies the offset to start reading from. It starts with 1, and specifies characters for CLOB/NCLOB/CFILE and bytes
for BLOB/BFILE. If offset is nil then the offset after the end of the previous read operation is used (write operations are
ignored). This is especially useful for reading linearly from the LOB.

amount is the amount to read, in characters for CLOB/NCLOB/CFILE and bytes for BLOB/BFILE.

The element type of buffer should match the element type of the LOB locator (see ora-lob-element-type). For this

45 The SQL Package

1345

comparison (unsigned-byte 8) and base-char are considered as the same.

If the buffer buffer is not static, there is some additional overhead. For small amounts of data, this is probably insignificant.

buffer-offset specifies where to put the data. It is an offset in bytes from the beginning of the buffer. The default value of
buffer-offset is 0.

csid specifies what Character Set ID the data in the target buffer should be. It defaults to the CSID of the LOB pointed to by
lob-locator.

The return value amount-read is the number of elements (characters or bytes) that were read.

If the return value eof-or-error-p is nil then there is still more to read. If eof-or-error-p is t then it read to the end of the
LOB. If an error occurred then eof-or-error-p is an error object.

Notes

1. This is a direct call to OCILobRead, without callback.

2. ora-lob-read-buffer is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

Examples

This example sequentially reads the LOB data into a string, starting from offset 10000. It calls a processing function on each
chunk of data and then reads in the next chunk starting from where the previous read ended.

(let ((my-buffer (make-string 1000
 :element-type 'base-char))
 (offset 10000))
 (loop
 (let ((nread
 (ora-lob-read-buffer lob-locator
 offset
 1000
 my-buffer)))
 (when (zerop nread) ; end of the LOB
 (return))
 (my-processing-function my-buffer nread))
 (setq offset nil))) ; so next time it continues
 ; from where it finished

See also

ora-lob-element-type
ora-lob-read-foreign-buffer

ora-lob-read-foreign-buffer Function

Summary

Reads from a LOB into a foreign buffer.

Package

sql

45 The SQL Package

1346

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

Signature

ora-lob-read-foreign-buffer lob-locator offset amount foreign-buffer buffer-length &key buffer-offset csid =>
amount-read, eof-or-error-p

Arguments

lob-locator⇓ A LOB locator.

offset⇓ A non-negative integer or nil.

amount⇓ A non-negative integer.

foreign-buffer⇓ A FLI pointer.

buffer-length⇓ A non-negative integer.

buffer-offset⇓ A non-negative integer.

csid⇓ A.Character Set ID.

Values

amount-read A non-negative integer.

eof-or-error-p A boolean or an error object.

Description

The function ora-lob-read-foreign-buffer reads from the LOB pointed to by lob-locator into the foreign buffer
foreign-buffer.

This is just like ora-lob-read-buffer except that it reads from the LOB locator into a foreign buffer. See
ora-lob-read-buffer for details of offset, amount, buffer-offset and csid.

foreign-buffer is a FLI pointer to a buffer, which must be of size at least buffer-length.

Notes

1. This is a direct call to OCILobRead, without callback.

2. ora-lob-read-foreign-buffer is available only when the "oracle" module is loaded. See the section 23.11 Oracle
LOB interface for more information.

See also

ora-lob-get-buffer
ora-lob-read-buffer

ora-lob-read-into-plain-file Function

Summary

Writes the contents of a LOB into a file.

45 The SQL Package

1347

Package

sql

Signature

ora-lob-read-into-plain-file lob-locator file-name &key offset file-offset if-exists

Arguments

lob-locator⇓ A LOB locator.

file-name⇓ A pathname designator.

offset⇓ A non-negative integer, or nil.

file-offset⇓ A non-negative integer, or nil.

if-exists⇓ A keyword or nil.

Description

The function ora-lob-read-into-plain-file writes the contents of lob-locator into a file.

file-name specifies the file to write, which should be a standard file. The file is always opened in a binary mode, so if the
LOB is a CLOB, the file will be generated in the right format when reading it from the LOB.

offset is the offset into the LOB from where to start reading. It starts from 1, counts characters in a CLOB, and if it is nil
then the operation starts from the end of the previous read operation. The default value of offset is nil.

file-offset specifies the offset into the file to start the operation from. If file-offset is nil then it starts writing at the start of the
file. The default value of file-offset is nil.

if-exists is passed to open when opening the file, with the standard Common Lisp meaning. The default value of if-exists is
:error.

Notes

ora-lob-read-into-plain-file is available only when the "oracle" module is loaded. See the section 23.11 Oracle
LOB interface for more information.

See also

ora-lob-write-from-plain-file

ora-lob-svc-ctx-handle Function

Summary

Returns a foreign pointer to the context handle of a LOB.

Package

sql

45 The SQL Package

1348

Signature

ora-lob-svc-ctx-handle lob-locator => pointer

Arguments

lob-locator⇓ A LOB locator.

Values

pointer A foreign pointer of type p-oci-svc-ctx.

Description

The function ora-lob-svc-ctx-handle returns a foreign pointer to the context handle of the LOB underlying lob-locator.

Notes

ora-lob-svc-ctx-handle is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

ora-lob-trim Function

Summary

Trims an internal LOB.

Package

sql

Signature

ora-lob-trim lob-locator new-size &key errorp

Arguments

lob-locator⇓ A LOB locator.

new-size⇓ A non-negative integer.

errorp⇓ A generalized boolean.

Description

The function ora-lob-trim trims the LOB pointed to by lob-locator to a new size new-size, which must be smaller than its
current size.

Note that new-size is in characters for CLOBs and bytes for BLOBs.

ora-lob-trim is applicable to internal LOBs only.

If an error occurs and errorp is true, an error is signaled. If errorp is false, the function returns an object of type
sql-database-error. The default value of errorp is nil.

45 The SQL Package

1349

Notes

1. This is a direct call to OCILobTrim.

2. ora-lob-trim is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB interface for
more information.

ora-lob-write-buffer Function

Summary

Writes a buffer to a LOB.

Package

sql

Signature

ora-lob-write-buffer lob-locator offset amount buffer &key buffer-offset csid => amount-written, eof-or-error-p

Arguments

lob-locator⇓ A LOB locator.

offset⇓ A non-negative integer or nil.

amount⇓ A non-negative integer.

buffer⇓ A string, or a vector of element type (unsigned-byte 8).

buffer-offset⇓ A non-negative integer.

csid⇓ A.Character Set ID.

Values

amount-written⇓ A non-negative integer.

eof-or-error-p⇓ A boolean or an error object.

Description

The function ora-lob-write-buffer writes to the LOB pointed to by lob-locator from buffer.

offset specifies the offset to start writing to. It starts with 1, and specifies characters for CLOB/NCLOB/CFILE and bytes for
BLOB/BFILE. If offset is nil then the offset after the end of the previous write operation is used (read operations are
ignored). This is especially useful for writing linearly to the LOB.

amount is the amount to write, in characters for CLOB/NCLOB/CFILE and bytes for BLOB/BFILE.

The element type of buffer should match the element type of the LOB locator (see ora-lob-element-type). For this
comparison (unsigned-byte 8) and base-char are considered as the same.

If the buffer buffer is not static, there is some additional overhead. For small amounts of data, this is probably insignificant.

buffer-offset specifies where in the buffer to start writing data from. It is an offset in bytes from the beginning of the buffer.

45 The SQL Package

1350

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

The default value of buffer-offset is 0.

csid specifies what Character Set ID the data in the source buffer should be. It defaults to the CSID of the LOB pointed to by
lob-locator.

The return value amount-written is the number of elements (characters or bytes) that were written.

The LOB is extended as required.

If the return value eof-or-error-p is nil then there is still more to write. If eof-or-error-p is t then it wrote to the end of the
LOB. If an error occurred then eof-or-error-p is an error object.

Notes

1. The record from which the LOB came must be locked. See the section 23.11.3 Locking.

2. ora-lob-write-buffer is a direct call to OCILobWrite, without callback.

3. ora-lob-write-buffer is available only when the "oracle" module is loaded. See the section 23.11 Oracle LOB
interface for more information.

See also

ora-lob-element-type
ora-lob-write-foreign-buffer

ora-lob-write-foreign-buffer Function

Summary

Writes a foreign buffer to a LOB.

Package

sql

Signature

ora-lob-write-foreign-buffer lob-locator offset amount foreign-buffer buffer-length &key buffer-offset csid =>
amount-written, eof-or-error-p

Arguments

lob-locator⇓ A LOB locator.

offset⇓ A non-negative integer or nil.

amount⇓ A non-negative integer.

foreign-buffer⇓ A FLI pointer.

buffer-length⇓ A non-negative integer.

buffer-offset⇓ A non-negative integer.

csid⇓ A.Character Set ID.

45 The SQL Package

1351

Values

amount-written A non-negative integer.

eof-or-error-p A boolean or an error object.

Description

The function ora-lob-write-foreign-buffer writes to the LOB pointed to by lob-locator from buffer.

This is just like ora-lob-write-buffer except that it writes the LOB locator from a foreign buffer. See
ora-lob-write-buffer for details of offset, amount, buffer-offset and csid.

foreign-buffer is a FLI pointer to a buffer, which must be of size at least buffer-length.

Notes

ora-lob-write-foreign-buffer is available only when the "oracle" module is loaded. See the section 23.11 Oracle
LOB interface for more information.

See also

ora-lob-get-buffer
ora-lob-write-buffer

ora-lob-write-from-plain-file Function

Summary

Writes the contents of a file into a LOB.

Package

sql

Signature

ora-lob-write-from-plain-file lob-locator file-name &key offset file-offset if-does-not-exist

Arguments

lob-locator⇓ A LOB locator.

file-name⇓ A pathname designator.

offset⇓ A non-negative integer, or nil.

file-offset⇓ A non-negative integer, or nil.

if-does-not-exist⇓ A keyword or nil.

Description

The function ora-lob-write-from-plain-file writes the contents of a file into lob-locator.

file-name specifies the file to read, which should be a standard file. The file is always opened in a binary mode, so if the LOB

45 The SQL Package

1352

is a CLOB, the file must be in the right format when writing it into the LOB.

offset is the offset into the LOB from where to start writing. It starts from 1, counts characters in a CLOB, and if it is nil
then the operation starts from the end of the previous write operation. The default value of offset is nil.

file-offset specifies the offset into the file to start the operation from. If file-offset is nil then it starts reading at the start of the
file. The default value of file-offset is nil.

if-does-not-exist is passed to open when opening the file, with the standard Common Lisp meaning. The default value of if-
does-not-exist is :error.

Notes

ora-lob-write-from-plain-file is available only when the "oracle" module is loaded. See the section 23.11 Oracle
LOB interface for more information.

See also

ora-lob-read-into-plain-file

p-oci-env FLI Type Descriptor

Summary

A foreign type representing objects in the Oracle interface.

Package

sql

Syntax

p-oci-env

Description

The FLI type p-oci-env represents a pointer to an OCIEnv object in the Oracle interface.

23.11.6 Interactions with foreign calls for details.

p-oci-file FLI Type Descriptor

Summary

A foreign type representing objects in the Oracle interface.

Package

sql

45 The SQL Package

1353

Syntax

p-oci-file

Description

The FLI type p-oci-file represents a pointer to a FILE value type descriptor in the Oracle interface.

See 23.11.6 Interactions with foreign calls for details.

p-oci-lob-locator FLI Type Descriptor

Summary

A foreign type representing objects in the Oracle interface.

Package

sql

Syntax

p-oci-lob-locator

Description

The FLI type p-oci-lob-locator represents a pointer to a LOB value type descriptor in the Oracle interface.

See 23.11.6 Interactions with foreign calls for details.

p-oci-lob-or-file FLI Type Descriptor

Summary

A foreign type representing objects in the Oracle interface.

Package

sql

Syntax

p-oci-lob-or-file

Description

The FLI type p-oci-lob-or-file represents a pointer to a FILE or LOB value type descriptor in the Oracle interface.

See 23.11.6 Interactions with foreign calls for details.

45 The SQL Package

1354

p-oci-svc-ctx FLI Type Descriptor

Summary

A foreign type representing objects in the Oracle interface.

Package

sql

Syntax

p-oci-svc-ctx

Description

The FLI type p-oci-svc-ctx represents a pointer to a OCISvcCtx object in the Oracle interface.

See 23.11.6 Interactions with foreign calls for details.

prepared-statement System Class

Summary

A class of objects prepared SQL statements.

Package

sql

Superclasses

t

Description

Each instance of the system class prepared-statement represents a SQL statement prepared by prepare-statement.

See also

prepare-statement

prepared-statement-set-and-execute
prepared-statement-set-and-execute*
prepared-statement-set-and-query
prepared-statement-set-and-query* Functions

45 The SQL Package

1355

Summary

Set the values of the variables in a prepared-statement and execute or query it.

Package

sql

Signatures

prepared-statement-set-and-execute prepared-statement &rest values

prepared-statement-set-and-execute* prepared-statement values &key database

prepared-statement-set-and-query prepared-statement &rest values => result-list, field-names

prepared-statement-set-and-query* prepared-statement values &key database => result-list, field-names

Arguments

prepared-statement⇓ A prepared-statement.

values⇓ A list.

database⇓ A database or nil.

Values

result-list, field-names

The results of query.

Description

The functions prepared-statement-set-and-execute, prepared-statement-set-and-execute*,
prepared-statement-set-and-query and prepared-statement-set-and-query* set the variables of a
prepared-statement and then execute or query using it. They first call set-prepared-statement-variables,
passing it prepared-statement and values, and for prepared-statement-set-and-execute* and
prepared-statement-set-and-query* also database, and then call either execute-command
(prepared-statement-set-and-execute and prepared-statement-set-and-execute*) or query
(prepared-statement-set-and-query and prepared-statement-set-and-query*). The latter two return the
result of the call to query.

Examples

The following code shows insertion of multiple records using a prepared statement and
prepared-statement-set-and-execute.

(progn
 (when (sql:table-exists-p "a_table_of_squares")
 (sql:drop-table "a_table_of_squares"))
 (sql:execute-command "create table a_table_of_squares (num integer, square_of_num integer)")

 (sql:with-prepared-statement (ps "insert into a_table_of_squares values (:1, :2)")
 (dotimes (x 10)
 (sql:prepared-statement-set-and-execute ps x (* x x))))

 ;; check it
 (pprint (sql:query "select * from a_table_of_squares")))

45 The SQL Package

1356

See also

prepare-statement
set-prepared-statement-variables
with-prepared-statement
execute-command
query

prepare-statement Function

Summary

Returns a prepared-statement object for a sql-exp in a database.

Package

sql

Signature

prepare-statement sql-exp &key database variable-types count flatp result-types => prepared-statement

Arguments

sql-exp⇓ A SQL expression.

database⇓ A database.

variable-types⇓ A list.

count⇓ A non-negative integer or nil.

flatp⇓ A boolean.

result-types⇓ A list of symbols.

Values

prepared-statement A prepared-statement.

Description

The function prepare-statement returns a prepared-statement object for the SQL statement sql-exp in the database
database. sql-exp can contain bind-variables in the form :n where n is a positive integer.

If database is supplied, then the prepared-statement is associated with the database. Otherwise
set-prepared-statement-variables will do the association even if it is called without a database.

If variable-types is supplied, then it should be a list containing a keyword element for each bind-variable in sql-exp. It has an
effect in two cases:

• :string forces the variable to be passed to the database as a string. That may be useful if you have numeric values in
Lisp which are stored as strings in the database.

• :date cause an integer to be interpreted as a universal-time and be converted properly to an Oracle date. This is not
supported on SQLite databases, which do not support date fields.

45 The SQL Package

1357

If variable-types is not supplied, then the types will be chosen dynamically from the values passed to
set-prepared-statement-variables.

If count is supplied, then it should equal the maximum number of bind-variables in the sql-exp. If count is not supplied, then
it is calculated from sql-exp.

flatp and result-types are interpreted the same as in select.

The result of prepare-statement is a prepared-statement. This can be used by calling
set-prepared-statement-variables to actually bind the variables, and then use one of the querying or executing
interfaces that take a SQL expression argument: execute-command, query, do-query, simple-do-query, map-query
and the loop for...being each record construct.

A prepared-statement that is associated with a database should be destroyed (by destroy-prepared-statement)
before the database is closed, otherwise it may leak memory.

Notes

sql-exp can be any valid SQL expression, not only a query.

Examples

Create a prepared-statement for a SQL expression:

(setq ps
 (sql:prepare-statement
 "insert into TABLETWO values(:1, :2)"))

Then insert records into TABLETWO (which has two columns) by repeatedly doing:

(sql:set-prepared-statement-variables
 ps
 (list value1 value2))

(sql:execute-command ps))

See also

query
do-query
simple-do-query
map-query
select
set-prepared-statement-variables
destroy-prepared-statement
prepared-statement-set-and-execute
with-prepared-statement

print-query Function

Summary

Prints a tabulated version of records resulting from a query.

45 The SQL Package

1358

Package

sql

Signature

print-query query-exp &key titles formats sizes stream database

Arguments

query-exp⇓ A SQL query expression.

titles⇓ A list of strings.

formats⇓ A list of strings.

sizes⇓ A list.

stream⇓ An output stream.

database⇓ A database.

Description

The function print-query takes a symbolic SQL query expression query-exp and formatting information and prints onto
stream a table containing the results of the query in database.

database defaults to the value of *default-database*.

A list of strings to use as column headings is given by titles, which has a default value of nil.

formats is a list of format strings used to print each attribute, and has a default value of t, which means that ~A or ~VA are
used if sizes are provided or computed.

The field sizes are given by sizes. It has a default value of t, which specifies that minimum sizes are computed.

The output stream is given by stream, which has a default value of t. This specifies that *standard-output* is used.

Examples

The following call prints out two even columns of names and salaries:

(print-query [select [surname] [income] :from [person]]
 :titles '("NAME" "SALARY"))

See also

map-query
print-query
select

45 The SQL Package

1359

query Function

Summary

Queries a database and returns a list of values.

Package

sql

Signature

query sql-exp &key database result-types flatp => result-list, field-names

Arguments

sql-exp⇓ A SQL query statement or a prepared-statement containing a query.

database⇓ A database.

result-types⇓ A list of symbols.

flatp⇓ A boolean.

Values

result-list⇓ A list of values.

field-names⇓ A list of strings.

Description

The function query is the basic SQL query function. It queries the database specified by database with a SQL query
statement given by sql-exp.

The argument database defaults to *default-database*.

result-types is a list of symbols such as :string and :integer, one for each field in the query, which are used to specify
the types to return. It is ignored if sql-exp is a prepared-statement.

flatp is used as in select and is ignored if sql-exp is a prepared-statement.

result-list is a list of values as per select, and field-names is a list of field names selected in sql-exp.

Examples

The following two queries, on a table whose second column contains dates that we want to return as strings, are equivalent:

(sql:query "select * from some_table"
 :result-types '(nil :string))

(sql:query [select [*]
 :from [some_table]
 :result-types '(nil :string)])

45 The SQL Package

1360

See also

do-query
execute-command
lob-stream
Loop Extensions in Common SQL
map-query
prepare-statement
select
simple-do-query

reconnect Function

Summary

Reconnects a database to its underlying RDBMS.

Package

sql

Signature

reconnect &key database error force => success

Arguments

database⇓ The database to be reconnected.

error⇓ A boolean.

force⇓ A boolean.

Values

success⇓ A boolean.

Description

The function reconnect reconnects database to its underlying RDBMS. If successful, success is t and the variable
default-database is set to the newly reconnected database.

The default value for database is *default-database*. If database is a database object, then it is used directly.
Otherwise, the list of connected databases is searched to find one with database as its connection specifications (see
connect). If no such database is found, then if error and database are both non-nil an error is signaled, otherwise
reconnect returns nil.

force controls whether an error should be signaled if the existing database connection cannot be closed. When non-nil (this is
the default value) the connection is closed without error checking. When force is nil, an error is signaled if the database
connection has been lost.

Notes

force non-nil might result in a memory leak if the database driver fails to release its memory (some drivers do not allow the
connection to be closed if the underlying RDBMS is not responding).

45 The SQL Package

1361

See also

connect
connected-databases
default-database

restore-sql-reader-syntax-state Function

Summary

Sets the enable/disable square bracket syntax state to reflect the last call to either disable-sql-reader-syntax or
enable-sql-reader-syntax.

Package

sql

Signature

restore-sql-reader-syntax-state

Description

The function restore-sql-reader-syntax-state sets the enable/disable state of the square bracket syntax to reflect the
last call to either enable-sql-reader-syntax or disable-sql-reader-syntax. The default state of the square
bracket syntax is disabled.

See also

disable-sql-reader-syntax
enable-sql-reader-syntax
locally-disable-sql-reader-syntax
locally-enable-sql-reader-syntax

rollback Function

Summary

Rolls back changes made to a database since the last commit.

Package

sql

Signature

rollback &key database => nil

Arguments

database⇓ A database.

45 The SQL Package

1362

Description

The function rollback rolls back changes made in database since the last commit, that is, changes made since the last
commit are not recorded. The argument database defaults to *default-database*.

See also

commit
with-transaction

select Function

Summary

Selects data from a database given a number of specified constraints.

Package

sql

Signature

select &rest selections &key all set-operation distinct from result-types flatp where group-by having database order-by
refresh for-update => result-list

Arguments

selections⇓ A set of database identifiers or strings.

all⇓ A boolean.

set-operation⇓ A SQL operation.

distinct⇓ A boolean.

from⇓ A SQL table.

result-types⇓ A list of symbols.

flatp⇓ A boolean.

where⇓ A SQL condition.

group-by⇓ A SQL condition.

having⇓ A SQL condition.

database⇓ A database.

order-by⇓ A SQL condition.

refresh⇓ A boolean.

for-update⇓ t, :nowait, a string or a list.

Values

result-list A list of selections.

45 The SQL Package

1363

Description

The function select selects data from database, which has a default value of *default-database*, given the constraints
specified by the rest of the arguments. It returns a list of objects as specified by selections. By default, the objects will each
be represented as lists of attribute values.

The argument selections consists either of database identifiers, type-modified database identifiers or literal strings.

A type-modified database identifier is an expression such as [foo :string] which means that the values in column foo

are returned as Lisp strings. This syntax can be used to force values in time/date fields to be returned as strings (see below for
an example). It can also be used to affect the value returned from MySQL, using the keywords mentioned in the section 23.9
Using MySQL. It can also be used to return lob-stream objects for queries on Oracle LOB columns, using an expression
like [foo :input-stream] or [foo :output-stream].

result-types is used when selections is * or [*]. It should be a list of symbols such as :string and :integer, one for each
field in the table being selected in order to specify the types to return. Note that, for specific selections, the result type can be
specified by using a type-modified identifier as described above. However, you cannot use result-types to modify the type
returned from a time/date field.

flatp, which has a default value of nil, specifies if full bracketed results should be returned for each matched entry. If flatp is
nil, the results are returned as a list of lists. If flatp is t, the results are returned as elements of a list, only if there is only
one result per row. See the examples section for an example of the use of flatp.

The arguments all, set-operation, distinct, from, where, group-by, having and order-by have the same function as the
equivalent SQL expression.

for-update is used to specify the FOR UPDATE clause in a select statement which is used by Oracle to lock the selected
records. If for-update is t then a plain "FOR UPDATE" clause is generated. This locks all retrieved records, waiting for the
locks to become available. If for-update is :nowait then a "FOR UPDATE NOWAIT" clause is generated. This locks all the
retrieved records, or otherwise returns with error ora-00054 which causes Lisp to signal a sql-temporary-error. If for-
update is a string then it should specify a column to be locked and a clause "FOR UPDATE OF for-update" is generated. If
for-update is a list then the elements of the list should be strings each specifying a column to be locked, except that the last
element of the list may be :nowait. A clause locking multiple columns is generated, waiting for the locks according to
whether :nowait was supplied. For an example see the section 23.11.3 Locking.

The function select is common across both the functional and object-oriented SQL interfaces. If selections refers to View
Classes then the select operation becomes object-oriented. This means that select returns a list of View Class instances,
and slot-value becomes a valid SQL operator for use within where.

In the View Class case, a second equivalent select call will return the same View Class instance objects. If refresh is true,
then existing instances are updated if necessary, and in this case you might need to extend the hook instance-refreshed.
Any join slots defined using retrieval :deferred will be recomputed the next time time they are accessed. The default value
of refresh is nil.

SQL expressions used in the select function are specified using the square bracket syntax, once this syntax has been
enabled using enable-sql-reader-syntax.

SQL expressions used in the select function are commonly specified using the 23.5 Symbolic SQL syntax. Note that you
need to enable it by using enable-sql-reader-syntax or locally-enable-sql-reader-syntax so they can be read
correctly. An expression can also be made dynamically by using sql-expression.

Examples

The following is a potential query and result:

(select [person_id] [surname] :from [person])

45 The SQL Package

1364

http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm

=> ((111 "Brown") (112 "Jones") (113 "Smith"))

In the next example, flatp is t, and the result is a simple list of surname values:

(select [surname] :from [person] :flatp t)

=> ("Brown" "Jones" "Smith")

In this example data in the attribute largenum, which is of a vendor-specific large numeric type, is returned to Lisp as
strings:

(sql:select [largenum :string] :from [my-table])

In this example the second column of some_table is a date that we want to return as a string:

(sql:select [*]
 :from [some_table]
 :result-types '(nil :string))

In this example we see that a time/date field value is returned as an integer. We then use Common Lisp to decode that
universal time, and finally query the database again, forcing the return value to be a string formatted by the database:

CL-USER 219 > (sql:select [MyDate]
 :from [MyTable]
 :flatp t)
(3313785600)
("MYDATE")

CL-USER 220 > (decode-universal-time (car *))
0
0
0
4
1
2005
1
NIL
0

CL-USER 221 > (sql:select [MyDate :string]
 :from [MyTable]
 :flatp t)
("2005-01-04 00:00:00")
("MYDATE")

Finally this code gets the first 1 KB of data from the first LOB returned by a query on an Oracle table containing a column of
type LOB:

(let* ((array
 (make-array 1024
 :element-type '(unsigned-byte 8)))
 (lobs (sql:select [my-lob-column :input-stream]
 :from [mytable] :flatp t)))
 (read-sequence array (car lobs)))

See also

instance-refreshed
lob-stream

45 The SQL Package

1365

prepare-statement
print-query
sql-expression
query
23.5 Symbolic SQL syntax
23.3.1.1 Querying

set-prepared-statement-variables Function

Summary

Sets the values of the bind variables in a prepared-statement.

Package

sql

Signature

set-prepared-statement-variables prepared-statement values &key database => prepared-statement

Arguments

prepared-statement⇓ A prepared-statement.

values⇓ A list.

database⇓ A database or nil.

Values

prepared-statement A prepared-statement.

Description

The function set-prepared-statement-variables sets the values of the bind variables in the prepared-statement
prepared-statement to the objects in the list given by values. The length of values must equal the number of bind-variables in
prepared-statement (that is, the supplied or computed count in prepare-statement). If database is supplied, then
prepared-statement is (re)associated with that database.

If database is not supplied and the statement is not associated with a database yet,
set-prepared-statement-variables associates it with the default database *default-database*. If the statement
was already associated and database is nil, the association does not change.

set-prepared-statement-variables returns the prepared-statement.

In the common situation when you want to set the values and immediately execute or query the prepared statement, you can
use one of prepared-statement-set-and-execute, prepared-statement-set-and-execute*,
prepared-statement-set-and-query or prepared-statement-set-and-query*.

See also

prepared-statement
prepare-statement
destroy-prepared-statement

45 The SQL Package

1366

prepared-statement-set-and-execute
with-prepared-statement

simple-do-query Macro

Summary

Repeatedly binds a variable to the results of a query, optionally binds another variable to the column names, and executes a
body of code within the scope of these bindings.

Package

sql

Signature

simple-do-query (values-list query &key names-list database not-inside-transaction get-all) &body body

Arguments

values-list⇓ A variable.

query⇓ A database query or a prepared-statement containing a query.

names-list⇓ A variable, or nil.

database⇓ A database.

not-inside-transaction⇓
A generalized boolean.

get-all⇓ A generalized boolean.

body⇓ A Lisp code body.

Description

The macro simple-do-query repeatedly executes body within a binding of values-list to the attributes of each record
resulting from query.

If a variable names-list is supplied, then it is bound to a list of the column names for the query during the execution of body.
The default value of names-list is nil.

simple-do-query returns no values.

The default value of database is *default-database*.

not-inside-transaction and get-all may be useful when fetching many records through a connection with database-type
:mysql. Both of these arguments have default value nil. See the section 23.9.6 Special considerations for iteration
functions and macros for details.

Examples

(sql:simple-do-query
 (person-details [select [Surname][ID] :from [person]]
 :names-list xx)
 (format t "~&~A: ~A, ~A: ~A~%"

45 The SQL Package

1367

 (first xx)
 (first person-details)
 (second xx)
 (second person-details)))
=>
SURNAME: Brown, ID: 2
SURNAME: Jones, ID: 3
SURNAME: Smith, ID: 4

See also

do-query
Loop Extensions in Common SQL
map-query
prepare-statement
query
select

sql Function

Summary

Generates SQL from a set of expressions.

Package

sql

Signature

sql &rest args => sql-expression

Arguments

args⇓ A set of expressions.

Values

sql-expression A SQL expression.

Description

The function sql generates SQL from a set of expressions given by args. Each argument to sql is translated into SQL and
then concatenated with a single space between each pair. The rules for translation into SQL, based on the type of each
individual argument arg, are as follows:

string (format nil "'~A'" arg)

nil "NULL"

symbol (symbol-name arg)

number (princ-to-string arg)

list (format nil "(~{~A~^,~})" (mapcar #'sql arg))

45 The SQL Package

1368

vector (format nil "~{~A~^,~}" (map 'list #'sql arg))

sql-expression The expression represented by arg.

Any other type. The printed representation of arg.

See also

sql-expression
sql-operation
sql-operator

sql-connection-error Condition Class

Summary

Used to signal errors with the connection to the database.

Package

sql

Superclasses

sql-database-error

Subclasses

sql-fatal-error
sql-timeout-error

Description

The condition class sql-connection-error is used to signal an error with the connection to the database.

sql-database-data-error Condition Class

Summary

Used to signal errors with given data.

Package

sql

Superclasses

sql-database-error

Description

The condition class sql-database-data-error is used to signal an error with the data given. This means either a syntax

45 The SQL Package

1369

error or things like accessing a non-existent table.

It signifies an error that must be fixed for the code to work.

sql-database-error Condition Class

Summary

Used to signal errors in the database interface.

Package

sql

Superclasses

simple-error

Subclasses

sql-connection-error
sql-database-data-error
sql-failed-to-connect-error
sql-temporary-error

Accessors

sql-error-error-id
sql-error-secondary-error-id
sql-error-database-message

Description

The condition class sql-database-error is used to signal errors in the database interface that Common SQL uses.

sql-error-error-id returns the primary error identifier. On ODBC the value is a string. On Oracle it is some number,
the "v2 return code" in the Cursor Data Area.

sql-error-secondary-error-id returns the secondary error identifier. On ODBC this is the error code from the
underlying database. On Oracle that is the "v4 return code" (also known as "return code") in the Cursor Data Area, which is
the useful code.

sql-error-database-message is a string (maybe nil) that came back from the foreign code.

Notes

ODBC drivers for Oracle return the "v4 return code" as the underlying database code. Therefore in the event of an error on
connection to an Oracle database, sql-error-secondary-error-id always returns the "v4 return code" whether the
connection is through ODBC.

See also

sql-user-error

45 The SQL Package

1370

http://www.lispworks.com/documentation/HyperSpec/Body/e_smp_er.htm

sql-enlarge-static Variable

Summary

This variable is obsolete. Controls how to enlarge static memory before loading database code.

Package

sql

Initial Value

100000

Description

The value of the variable *sql-enlarge-static* is ignored.

sql-expression Function

Summary

Generate a SQL expression from the supplied keywords.

Package

sql

Signature

sql-expression &key string table attribute owner alias type n-qualified parameter-index => sql-expression

Arguments

string⇓ A string.

table⇓ String, symbol or sql-expression-object.

attribute⇓ String, symbol or sql-expression-object.

owner⇓ String, symbol or sql-expression-object.

alias⇓ A string.

type⇓ A keyword.

n-qualified⇓ A string.

parameter-index⇓ Integer.

Values

sql-expression⇓ A sql-expression-object .

45 The SQL Package

1371

Description

The function sql-expression generates a SQL expression from the supplied keywords. The result sql-expression is of type
sql-expression-object, which specifies some SQL that can be used inside other calls to sql-expression, a "[...]"
syntax expression or as an argument to the Common SQL functions. sql-expression matches what the read-time "[...]"
syntax generates for identifiers (see 23.5.1.1 Enclosing database identifiers), but can be used at run time.

If string is non-nil, it must be the only keyword and specifies the entire SQL, directly without any further processing.

If attribute is supplied, it specifies an attribute (column) name, and the resulting SQL is an attribute named by attribute. It
can optionally be qualified by table and owner (the schema that owns the table), so the attribute name becomes table.attribute
if owner is nil or owner.table.attribute if owner is non-nil. If table is nil the attribute name is not qualified.

If table is supplied, it specifies a table name. If attribute is supplied too, it qualifies the attribute as in the previous paragraph,
otherwise the resulting SQL is a table name. It can be optionally qualified by owner, which specifies owner.table as the table
name.

owner can be non-nil only when table is supplied, and qualifies table as described above. It specifies the schema to which the
table belongs.

If alias is non-nil it specifies an alias, which added to the SQL after the attribute name if attribute is supplied or after the
table name otherwise.

type can be non-nil only if attribute is supplied, and specifies the expected type of the attribute. This does not affect the SQL,
but tells the querying interface (select, query) what type the value should be. It is useful when the attribute is used in the
selection list of a query (see 23.5.1.2 Specifying the type of retrieved values.).

If parameter-index is non-nil, it must be the only keyword, and sql-expression generates a bind-variable in the SQL.
This can be used in an expression that is passed to prepare-statement and then later bound by
set-prepared-statement-variables.

If n-qualified is non-nil, it must be the only keyword, and the value is used as-is as an N syntax string. This is required for
passing non-ASCII string to Microsoft SQL Server (via ODBC), but does not work on SQLite or Microsoft Access.

(sql-expression :n-qualified "aa")
=>
#<SQL: "N'aa'">

(sql-expression :string "aa")
=>
#<SQL: "aa">

See 23.5.1.6 SQL string literals for discussion of N syntax strings.

Examples

Define a function that queries for the value of a supplied attribute in a supplied table using a supplied type:

(defun query-attribute (table-name attribute-name type)
 (let* ((table-arg
 (sql-expression
 :table table-name))
 (selection-arg
 (sql-expression
 :attribute attribute-name
 :type type)))
 (select selection-arg :from table-arg)))

45 The SQL Package

1372

See also

sql
sql-operation
sql-operator
sql-expression-object
23.5 Symbolic SQL syntax

sql-expression-object System Class

Summary

A class of objects representing some SQL.

Package

sql

Superclasses

t

Description

Each instance of the system class sql-expression-object represents a SQL expression. They can be used inside another
instance of sql-expression-object, in a "[...]" syntax expression or as arguments to the Common SQL functions. They
are created by the "[...]" syntax (see 23.5.1.1 Enclosing database identifiers) or dynamically by sql-expression or
string-prefix-with-n-if-needed.

See also

sql-expression
23.5.1.1 Enclosing database identifiers

sql-failed-to-connect-error Condition Class

Summary

A conditional class indicating failure to connect to a SQL database.

Package

sql

Superclasses

sql-database-error

Description

The condition class sql-failed-to-connect-error is used by connect to signal an error for a failure to connect to a
SQL database server. It typically indicates an incorrect connection specification such as a bad user name.

45 The SQL Package

1373

See also

connect

sql-fatal-error Condition Class

Summary

Used to signal fatal SQL errors.

Package

sql

Superclasses

sql-connection-error

Description

The condition class sql-fatal-error is used to signal errors that mean the connection can no longer be used.

sqlite-blob System Class

Summary

A class of objects that provide read/write access to a BLOB or TEXT field in a SQLite database.

Package

sql

Superclasses

t

Description

An instance of the system class sqlite-blob provides direct read/write access to a BLOB or TEXT field in a SQLite
database. See replace-from-sqlite-blob for details.

See also

replace-from-sqlite-blob
sqlite-raw-blob

45 The SQL Package

1374

sqlite-last-insert-rowid Function

Summary

Return the ROWID of the last inserted row in a SQLite database.

Package

sql

Signature

sqlite-last-insert-rowid &key database => rowid

Arguments

database⇓ A SQLite database.

Values

rowid⇓ An integer.

Description

The function sqlite-last-insert-rowid returns the ROWID of the last row that was inserted in database, or 0 if none.

Notes

sqlite-last-insert-rowid is not thread-safe, and you will need to ensure that no other thread inserts rows into
database in parallel to the insertion of the row and calling sqlite-last-insert-rowid.

The result rowid is useful when you want to later access a BLOB in the row using sqlite-open-blob.

ROWIDs in SQLite are described in the SQLite documentation: "ROWIDs and the INTEGER PRIMARY KEY" in
"CREATE TABLE" https://www.sqlite.org/lang_createtable.html#rowid.

Because sqlite-last-insert-rowid is called on the database connection, any row insertion into database affects it,
even if it is not in the same table or even not the same file (if another file is attached to the connection using the "ATTACH
DATABASE" statement). Therefore, there must not be another insertion into database in parallel to the sequence of insertion
and calling sqlite-last-insert-rowid.

These restrictions mirror the underlying limitation of the C function sqlite3_last_insert_rowid.

See also

sqlite-open-blob

45 The SQL Package

1375

sqlite-open-blob
sqlite-close-blob
sqlite-blob-p
sqlite-blob-length
replace-from-sqlite-blob
replace-into-sqlite-blob
sqlite-reopen-blob Functions

Summary

Read/write access to a BLOB or TEXT field in a SQLite database.

Package

sql

Signatures

sqlite-open-blob table-name column-name rowid &key database owner read-only => sqlite-blob

sqlite-close-blob sqlite-blob => boolean

sqlite-blob-p object => boolean

sqlite-blob-length sqlite-blob => length

replace-from-sqlite-blob binary-array sqlite-blob &key array-start array-end blob-start blob-end => binary-array

replace-into-sqlite-blob sqlite-blob binary-array &key blob-start blob-end array-start array-end => sqlite-blob

sqlite-reopen-blob sqlite-blob rowid

Arguments

table-name⇓, column-name⇓
Strings.

rowid⇓ An integer.

database⇓ A SQLite database.

owner⇓ A string.

read-only⇓ A generalized boolean.

sqlite-blob⇓ An object of type sqlite-blob.

object⇓ Any object.

binary-array⇓ An array with integer or float element type, or a base-string, or a bmp-string.

array-start⇓, array-end⇓
Bounding index designators of binary-array.

blob-start⇓, blob-end⇓

45 The SQL Package

1376

Bounding index designators of sqlite-blob.

Values

sqlite-blob An object of type sqlite-blob.

boolean A boolean.

length An integer.

binary-array An array with integer or float element type, or a base-string, or a bmp-string.

Description

Instances of the system class sqlite-blob allow reading and writing from/to BLOB or TEXT fields in a SQLite database.
It corresponds to the C structure sqlite3_blob (see "A Handle To An Open BLOB" in the SQLite documentation,
https://www.sqlite.org/c3ref/blob.html).

The function sqlite-open-blob creates an object of type sqlite-blob, which can be used to access the data in a
specific column and row of a SQLite database table, as specified by database, owner, table-name, column-name and rowid.
owner specifies the schema-name (which defaults to "main"), and thus allows access to attached databases. table-name and
column-name specify the table and column. rowid specifies the row where the value is. For documentation about rowid, see
"ROWIDs and the INTEGER PRIMARY KEY" in "CREATE TABLE" in the SQLite documentation
(https://www.sqlite.org/lang_createtable.html#rowid), and also the notes below. read-only (which defaults to nil) specifies
whether the result sqlite-blob is read-only or not.

The function sqlite-blob-p returns true if object is of type sqlite-blob and false otherwise.

The function sqlite-blob-length returns the length of sqlite-blob in bytes. Note that there is no way to change the
length.

The functions replace-from-sqlite-blob and replace-into-sqlite-blob are used to copy from/to sqlite-blob,
similar to replace or fli:replace-foreign-array. binary-array must be a binary array, which means an array of
element type base-char, bmp-char, single-float, double-float, (unsigned-byte bit-size) or
(signed-byte bit-size), where bit-size is one of 8, 16, 32 or (64-bit LispWorks only) 64. Note that simple-string is not
regarded as a binary array, but bmp-string and base-string are. The length of sqlite-blob in elements is the length in
bytes, as returned by the function sqlite-blob-length, truncated by the number bytes per element in binary-array. The
values of array-start, array-end, blob-start and blob-end are all in elements (rather than bytes).

The function replace-from-sqlite-blob replaces the elements of binary-array between array-start and array-end by
the elements of sqlite-blob between blob-start and blob-end. The function replace-into-sqlite-blob replaces in the
other direction.

blob-start and array-start default to 0, array-end defaults to nil, meaning the length of binary-array, and blob-end defaults
to nil, meaning the length of sqlite-blob in elements. When supplied, array-start must be a non-negative integer and not
bigger than the length of binary-array, array-end must be not smaller than array-start and not bigger than the length of
binary-array, blob-start must be a non-negative integer and not bigger than the length of sqlite-blob in elements, and blob-
end must be not smaller than blob-start and not bigger than the length of sqlite-blob in elements. The number of elements
copied is the smaller of the difference between blob-start and blob-end, and the difference between array-start and array-
end.

replace-from-sqlite-blob and replace-into-sqlite-blob return their first argument.

The function sqlite-close-blob closes sqlite-blob and returns t if it closed, or nil if sqlite-blob was already closed.

The function sqlite-reopen-blob changes sqlite-blob to refer to a field in another row. In effect it closes sqlite-blob and
reopens it with a different rowid but otherwise the same arguments as the sqlite-open-blob call that opened it.

45 The SQL Package

1377

http://www.lispworks.com/documentation/HyperSpec/Body/f_replac.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_st.htm

Notes

You can obtain a ROWID by using rowid in the selection list of a query. For example, the following query returns a list of
ROWIDs for records that match somecondition in the table SomeTable (in *default-database*):

(sql:select [rowid] :from [SomeTable]
 :where somecondition
 :flatp t)

The ROWID may be also be the value of a primary key in the table, as described in the SQLite documentation: "ROWIDs
and the INTEGER PRIMARY KEY" in "CREATE TABLE" https://www.sqlite.org/lang_createtable.html#rowid.

It is also possible to find the ROWID of the last inserted row by sqlite-last-insert-rowid.

If the row where the field that sqlite-blob is accessing is modified, further access to sqlite-blob by
replace-into-sqlite-blob or replace-from-sqlite-blob signals an error (of type sql-user-error). That is
because SQLite itself does not allow further access. As a result, using sqlite-blob is not thread-safe, and you need be sure
that no other code is trying to modify the same row while sqlite-blob is open.

sqlite-open-blob may fail for various reasons. When this happens, LispWorks retrieves the error message using the C
function sqlite3_errmsg, which is not thread-safe (an apparent misdesign of SQLite). As a result, you will get a
misleading error message in very rare occasions, if another thread executing on the same database got an error in parallel.
However, the error number, is always correct and its values are documented in the SQLite documentation "Result Code
Meanings" https://www.sqlite.org/rescode.html#error.

Leaving a sqlite-blob opened is not only a resource leak, but also leaves some locks in the database connection that
prevents some operations in the future (dropping the table or disconnecting the database for example). Therefore, you should
close a sqlite-blob as soon as possible. We recommend using with-sqlite-blob to open and close the sqlite-blob
when possible.

See also

with-sqlite-blob
sqlite-blob
23.13 Using SQLite

sqlite-raw-blob System Class

Summary

A class of objects that allow efficient access to a SQLite BLOB.

Package

sql

Superclasses

t

Description

An instance of the system class sqlite-raw-blob allows you to efficiently access SQLite BLOB objects inside the
dynamic extent of the Common SQL iterative querying interface.

45 The SQL Package

1378

See copy-from-sqlite-raw-blob for details.

See also

copy-from-sqlite-raw-blob
sqlite-blob

sqlite-raw-blob-p
sqlite-raw-blob-valid-p
sqlite-raw-blob-length
sqlite-raw-blob-ref
copy-from-sqlite-raw-blob
replace-from-sqlite-raw-blob Functions

Summary

Efficient access to a SQLite BLOB field in a query.

Package

sql

Signatures

sqlite-raw-blob-p object => boolean

sqlite-raw-blob-valid-p sqlite-raw-blob => boolean

sqlite-raw-blob-length sqlite-raw-blob => length

sqlite-raw-blob-ref sqlite-raw-blob index &optional foreign-element-type => value

copy-from-sqlite-raw-blob sqlite-raw-blob &key start end element-type => binary-array

replace-from-sqlite-raw-blob binary-array sqlite-raw-blob &key array-start array-end blob-start blob-end =>
binary-array

Arguments

object⇓ Any Lisp object.

sqlite-raw-blob⇓ An object of type sqlite-raw-blob.

index⇓ An integer.

foreign-element-type⇓ A foreign element type.

start⇓, end⇓ Bounding index designators of sqlite-raw-blob.

element-type⇓ A Lisp element type for a binary array.

binary-array⇓ An array with integer or float element type or a base-string or a bmp-string.

array-start⇓, array-end⇓
Bounding index designators of binary-array.

45 The SQL Package

1379

blob-start⇓, blob-end⇓
Bounding index designators of sqlite-raw-blob.

Values

boolean A boolean.

length An integer.

value⇓ A Lisp value of type matching foreign-element-type.

binary-array An array with integer or float element type or a base-string or a bmp-string.

Description

The sqlite-raw-blob interface allows a flexible and more efficient way to read from a SQLite BLOB object inside the
dynamic extent of a Common SQL the iterative querying interface. The iterative querying interfaces include map-query,
do-query, simple-do-query, loop with each record, but does not include select and query.

Note that sqlite-raw-blob corresponds to the result of the C function sqlite3_column_blob. You can read data from
a BLOB using sqlite-raw-blob, but cannot modify it. For an interface that corresponds to the C structure
sqlite3_blob, see sqlite-blob.

You receive a sqlite-raw-blob object as the value from the query for fields where you specify the type as :blob. This
object is associated with a SQLite BLOB corresponding to the value of this field in the current row. For example, you can
print the size (in bytes) of all the fields in the DataPointsColumn in SomeTable using this code:

(do-query
 ((raw-data-points)
 [select [DataPointsColumn :blob]
 :from [Sometable]])
 (print (sqlite-raw-blob-length raw-data-points)))

The function sqlite-raw-blob-p returns true if object is of type sqlite-raw-blob and false otherwise.

The function sqlite-raw-blob-length returns the length in bytes of the BLOB associated with sqlite-raw-blob.

For the functions sqlite-raw-blob-ref, copy-from-sqlite-raw-blob and replace-from-sqlite-raw-blob,
sqlite-raw-blob can be regarded as a handle to a foreign array of bytes, whose length in bytes as returned by
sqlite-raw-blob-length. When the element type argument (foreign-element-type or element-type) requires more than
one byte, then the length of sqlite-raw-blob in elements is the length in bytes truncated by the number of bytes per element.

The function sqlite-raw-blob-ref is analogous to fli:dereference. The element type is specified by foreign-
element-type, which defaults to (:unsigned :byte). index must be a non-negative integer and smaller than the length of
sqlite-raw-blob in elements. sqlite-raw-blob-ref returns value in the same way that
(fli:dereference pointer-to-the-blob-data :index index :type foreign-element-type) would return it, if pointer-to-the-
blob-data pointed to a foreign array with the same contents as sqlite-raw-blob.

The function copy-from-sqlite-raw-blob returns a Lisp array of element type element-type containing the elements of
sqlite-raw-blob bounded by start and end. start and end specify the start and the end indices in elements (rather than bytes)
into sqlite-raw-blob. start defaults to 0, and end to nil, meaning the length of sqlite-raw-blob in elements. When supplied,
start must be a non-negative integer and not bigger than the length of sqlite-raw-blob in elements, and end must be not
smaller than start and not bigger than the length of sqlite-raw-blob in elements. element-type specifies the Lisp type of binary
-array. It is upgraded by upgraded-array-element-type, and the result must be one of:

• base-char

• bmp-char

45 The SQL Package

1380

http://www.lispworks.com/documentation/HyperSpec/Body/f_upgr_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

• single-float

• double-float

• (unsigned-byte 8)

• (unsigned-byte 16)

• (unsigned-byte 32)

• (unsigned-byte 64) (64-bit LispWorks only.)

• (signed-byte 8)

• (signed-byte 16)

• (signed-byte 32)

• (signed-byte 64) (64-bit LispWorks only.)

The function replace-from-sqlite-raw-blob is analogous to fli:replace-foreign-array. It replaces the
elements of binary-array, bounded by array-start and array-end, by the elements of sqlite-raw-blob, bounded by blob-start
and blob-end (all in elements). binary-array must be a binary array, which means an array with one of the element types
listed in the previous paragraph. array-start and blob-start default to 0, array-end defaults to nil, meaning the length of
binary-array, and blob-end defaults to nil, meaning the length of sqlite-raw-blob in elements. When supplied, array-start
must be a non-negative integer and not bigger than the length of binary-array, array-end must be not smaller than array-start
and not bigger than the length of binary-array, blob-start must be a non-negative integer and not bigger than the length of
sqlite-raw-blob in elements, and blob-end must be not smaller than blob-start and not bigger than the length of sqlite-raw-
blob in elements. The number of elements copied is the smaller of the difference between array-start and array-end, and the
difference between blob-start and blob-end. replace-from-sqlite-raw-blob returns binary-array.

A sqlite-raw-blob object is valid only inside the dynamic extent of the code that receives it from the iterative querying
interface function or macro. Note that the sqlite-raw-blob is already invalid in the next iteration of the same operation.
Trying to read data from an invalid sqlite-raw-blob using one of sqlite-raw-blob-ref,
copy-from-sqlite-raw-blob or replace-from-sqlite-raw-blob signals an error (of type sql-user-error).
sqlite-raw-blob-length still returns the correct value for an invalid sqlite-raw-blob.
sqlite-raw-blob-valid-p can be used to check if a sqlite-raw-blob is valid, but should be rarely useful.

See also

map-query
do-query
simple-do-query
Loop Extensions in Common SQL
sqlite-raw-blob
sqlite-blob
23.3.1.5 Iteration

sql-libraries Variable

Summary

Overrides default database libraries.

45 The SQL Package

1381

Package

sql

Initial Value

nil

Description

The variable *sql-libraries* holds a pathname or list of libraries to override default database library loading. The value
should be a pathname or a list.

If its value is a pathname, it is prepended to a list of relative pathnames in the same manner that the supplied environment
variable (for example ORACLE_HOME) would be. If its value is a list, then it is assumed to be a complete list of full library
names which are loaded verbatim.

Notes

sql-libraries is applicable only on Unix-like systems.

sql-loading-verbose Variable

Summary

This variable is obsolete. Controls verbosity od database library loading.

Package

sql

Initial Value

nil

Description

The value of the variable *sql-loading-verbose* is ignored.

sql-operation Function

Summary

Generates a SQL statement from an operator and arguments.

Package

sql

Signature

sql-operation op &rest args => sql-result

45 The SQL Package

1382

Arguments

op⇓ An operator.

args⇓ A set of arguments for op.

Values

sql-result A SQL expression.

Description

The function sql-operation takes an operator op and its arguments args, and returns a SQL expression.

(sql-operation op args)

is shorthand for:

(apply (sql-operator op) args).

The following pseudo operators can be used for op:

sql-function A call for the form:

(sql-operation 'sql-function name &rest function-args)

allows an arbitrary function name to be passed. In this case, name is put in the SQL expression
using princ, and function-args are given as arguments.

sql-boolean-operator and sql-operator

Calls for the form:

(sql-operation 'sql-operator value-inop left &rest rights)
(sql-operation 'sql-boolean-operator bool-inop left &rest rights)

generate SQL that calls an infix operator with left on the left and rights on the right separated by
spaces.

Use sql-boolean-operator for SQL infix operators bool-inop that return a boolean and use
sql-operator for any other SQL infix operator value-inop.

Notes

The pseudo operator sql-operator should not be confused with the Common SQL function sql-operator.

Examples

The following code, uses sql-operation to produce a SQL expression.

(sql-operation 'select
 (sql-expression :table 'foo :attribute 'bar)
 (sql-expression :attribute 'baz)
 :from (list
 (sql-expression :table 'foo)
 (sql-expression :table 'quux))
 :where

45 The SQL Package

1383

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_pr.htm

 (sql-operation 'or
 (sql-operation '>
 (sql-expression :attribute 'baz)
 3)
 (sql-operation 'like
 (sql-expression :table 'foo :attribute 'bar)
 "SU%")))

The following SQL expression is produced.

#<SQL-QUERY: "(SELECT FOO.BAR,BAZ FROM FOO,QUUX
 WHERE ((BAZ > 3) OR (FOO.BAR LIKE 'SU%')))">

The following code illustrates use of the pseudo operator sql-function:

(sql-operation 'sql-function "TO_DATE" "03/06/99"
 "mm/DD/RR")

The following SQL expression is produced.

#<SQL-VALUE-EXP "TO_DATE('03/06/99','mm/DD/RR')">

See also

sql
sql-expression
sql-operator

sql-operator Function

Summary

Returns the symbol for a SQL operator.

Package

sql

Signature

sql-operator symbol => sql-symbol

Arguments

symbol⇓ A symbol naming a SQL operator.

Values

sql-symbol A symbol.

Description

The function sql-operator returns the Lisp symbol for the SQL operator symbol.

45 The SQL Package

1384

See also

sql
sql-expression
sql-operation

sql-recording-p Function

Summary

A predicate for determining if SQL commands or results traffic is being recorded.

Package

sql

Signature

sql-recording-p &key type database => recording-p

Arguments

type⇓ One of :commands or :results.

database⇓ A database.

Values

recording-p A boolean.

Description

The function sql-recording-p returns t if type is :commands and SQL commands traffic is being recorded, or if type is
:results and SQL results traffic is being recorded. Otherwise it returns nil.

The default value of type is :commands. The default value of database is the value of *default-database*.

See also

add-sql-stream
delete-sql-stream
list-sql-streams
sql-stream
start-sql-recording
stop-sql-recording

sql-stream Function

Summary

Returns the broadcast stream used for recording SQL commands or results traffic.

45 The SQL Package

1385

Package

sql

Signature

sql-stream &key type database => stream

Arguments

type⇓ One of :commands or :results.

database⇓ A database.

Values

stream⇓ A broadcast stream.

Description

The function sql-stream returns the broadcast stream used for recording SQL commands or results traffic.

type can be either :commands or :results, and specifies whether to return the broadcast stream for commands or results
traffic.

The default value of type is :commands. The default value of database is the value of *default-database*.

Note that SQL traffic can appear on *standard-output* as well as on stream. See add-sql-stream for details.

See also

add-sql-stream
delete-sql-stream
list-sql-streams
sql-recording-p
start-sql-recording
stop-sql-recording

sql-temporary-error Condition Class

Summary

Used to signal an error that results from other users using the same database.

Package

sql

Superclasses

sql-database-error

Description

The condition class sql-temporary-error is used to signal an error that results from other users using the same database.

45 The SQL Package

1386

This can be a table lock, but also running out of various resources.

It means the code can work without change, once the other users stop using the database.

sql-timeout-error Condition Class

Summary

Used to signal errors due to the time out of some operation.

Package

sql

Superclasses

sql-connection-error

Description

The condition class sql-timeout-error is used to signal an error due to the time out of some operation.

sql-user-error Condition Class

Summary

Used to signal errors in Lisp code.

Package

sql

Superclasses

simple-error

Description

The condition class sql-user-error is used to signal errors in Lisp code.

See also

sql-database-error

45 The SQL Package

1387

http://www.lispworks.com/documentation/HyperSpec/Body/e_smp_er.htm

standard-db-object Class

Summary

A class of objects that implements View Classes.

Package

sql

Superclasses

standard-object

Description

The class standard-db-object implements View Classes.

See also

def-view-class

start-sql-recording Function

Summary

Starts recording SQL commands or results traffic.

Package

sql

Signature

start-sql-recording &key type database

Arguments

type⇓ A keyword.

database⇓ A database.

Description

The function start-sql-recording starts recording SQL traffic, potentially to multiple streams. The traffic recorded can
be the commands, the results, or both commands and results.

By default the output appears only *standard-output*. You can modify the broadcast list of recording streams using
add-sql-stream and delete-sql-stream.

type is one of :commands, :results or :both. It determines whether SQL commands traffic, results traffic or both is

45 The SQL Package

1388

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm

recorded.

The default value of type is :commands. The default value for database is the value of *default-database*.

See also

add-sql-stream
delete-sql-stream
list-sql-streams
sql-stream
sql-recording-p
stop-sql-recording

status Function

Summary

Prints status information for the connected databases and initialized database types.

Package

sql

Signature

status &optional full

Arguments

full⇓ A boolean.

Description

The function status prints status information to the standard output, for the connected databases and initialized database
types.

If full is t, detailed status information is printed. The default value of full is nil.

See also

connect
connected-databases
database-name
disconnect
find-database

stop-sql-recording Function

Summary

Stops recording SQL commands or results traffic.

45 The SQL Package

1389

Package

sql

Signature

stop-sql-recording &key type database

Arguments

type⇓ A keyword.

database⇓ A database.

Description

The function stop-sql-recording stops recording SQL commands or results traffic.

type is one of :commands, :results or :both. It determines whether the recording of SQL commands traffic, results
traffic or both is stopped.

The default value of type is :commands. The default value for database is *default-database*.

See also

add-sql-stream
delete-sql-stream
list-sql-streams
sql-recording-p
sql-stream
start-sql-recording

string-needs-n-prefix Function

Summary

Returns whether a string needs the N syntax.

Package

sql

Signature

string-needs-n-prefix string &key database => needs-n-prefix-p

Arguments

string⇓ A string.

database⇓ A database.

Values

needs-n-prefix-p A boolean.

45 The SQL Package

1390

Description

The function string-needs-n-prefix returns true if string needs to be prefixed by N when passed to database (default
default-database).

Notes

The function string-prefix-with-n-if-needed can be used to add the prefix if needed. The function
sql-expression with :n-qualified can be used to unconditionally add the prefix.

At the time of writing, the prefix is required only when database is a connection to Microsoft SQL Server, and string
contains characters which are not recognized by the code page of the server.

See also

string-prefix-with-n-if-needed
sql-expression
23.5.1.6 SQL string literals

string-prefix-with-n-if-needed Function

Summary

Adds the N syntax to a string if needed.

Package

sql

Signature

string-prefix-with-n-if-needed string &key database => result

Arguments

string⇓ A string.

database⇓ A database.

Values

result A string or a sql-expression-object.

Description

The function string-prefix-with-n-if-needed checks if string, when passed to database, needs to be prefixed by N.
If the prefix is required, it returns a sql-expression-object with the string prefixed. Otherwise it returns string.

Notes

string-prefix-with-n-if-needed is equivalent to:

(if (string-needs-n-prefix string :database database)
 (sql-expression :n-qualified string)

45 The SQL Package

1391

 string)

See also

23.5.1.6 SQL string literals
string-needs-n-prefix

table-exists-p Function

Summary

A predicate for the existence of a table.

Package

sql

Signature

table-exists-p table &key database owner => result

Arguments

table⇓ A potential table name.

database⇓ A database.

owner⇓ nil, :all or a string.

Values

result A boolean.

Description

The function table-exists-p determines whether there is a table named table in database database.

If owner is nil, only user-owned tables are considered. This is the default.

If owner is :all, all tables are considered.

If owner is a string, this denotes a username and only tables owned by owner are considered.

The default value of database is *default-database*.

See also

list-tables

45 The SQL Package

1392

update-instance-from-records Generic Function

Summary

Updates a View Class instance.

Package

sql

Signature

update-instance-from-records instance &key database => instance

Arguments

instance⇓ An instance of a View Class.

database⇓ A database.

Values

instance The updated View Class instance.

Description

The generic function update-instance-from-records updates the values in the slots of the View Class instance instance
using the data in the database database.

database defaults to the database that instance is associated with, or the value of *default-database*. If instance is
associated with a database, then database must be that same database.

The argument slot is the CLOS slot name; the corresponding column names are derived from the View Class definition.

The update is not recursive on joins. Join slots (that is, slots with :db-kind :join) are updated, but the joined objects are
not updated.

See also

def-view-class
update-slot-from-record

update-objects-joins Function

Summary

Updates the remote join slots.

Package

sql

45 The SQL Package

1393

Signature

update-objects-joins objects &key slots force-p class-name max-len

Arguments

objects⇓ A list of database objects.

slots⇓ A list of slot names, or t.

force-p⇓ A boolean.

class-name⇓ The class of the objects, or nil.

max-len⇓ A non-negative integer, or nil.

Description

The function update-objects-joins updates the remote join slots, that is those slots defined without :retrieval
:immediate.

This is an optimization function which can improve the efficiency of an application by reducing the number of queries of the
database. For each slot, it queries the database using the data from all the objects, and then assigns the appropriate value to
each object.

objects is a list of database objects. If class-name is non-nil, then all the database objects are of this class. If class-name is
nil, then all the database objects are of the class of the first database object in the list objects.

If objects is nil, then update-objects-joins does nothing.

class-name specifies a class containing all the database objects in the list objects. If class-name is nil (the default) then the
class of the first database object is used.

slots provides a list of the names of slots to update. Each of these slots should be a remote join slot (as defined above).

slots can also be t, meaning update all the remote join slots. The default value of slots is t.

force-p controls whether to force the update of all values in the objects. If force-p is nil, then slots which are already are not
updated. The default value of force-p is t.

max-len, if non-nil, is a maximum number of objects from which to use data in a single query. If the length of the list objects
is greater than max-len then update-objects-joins performs multiple queries using the data from no more than max-len
objects in each query. This is useful if the DBMS may reject large queries, but it will increase the number of queries and
hence reduce overall performance to some extent. The default value of max-len is the value of the variable
default-update-objects-max-len.

See also

default-update-objects-max-len
def-view-class

update-record-from-slot Generic Function

Summary

Updates an individual data item from a slot.

45 The SQL Package

1394

Package

sql

Signature

update-record-from-slot instance slot &key database

Arguments

instance⇓ An instance of a View Class.

slot⇓ A slot.

database⇓ A database.

Description

The generic function update-record-from-slot updates an individual data item in the column represented by slot.
database is only used if instance is not yet associated with any database, in which case a record is created in database. Only
slot is initialized in this case; other columns in the underlying database receive default values. The argument slot is the CLOS
slot name; the corresponding column names are derived from the View Class definition.

See also

def-view-class
update-records-from-instance

update-records Function

Summary

Changes the values of fields in a table.

Package

sql

Signature

update-records table &key attributes values av-pairs where database

Arguments

table⇓ A database table.

attributes⇓ A set of columns.

values⇓ A set of values.

av-pairs⇓ An association list alternative to attributes and values.

where⇓ A condition.

database⇓ A database.

45 The SQL Package

1395

Description

The function update-records changes the values of existing fields in table in database with columns specified by
attributes and values (or av-pairs) where the condition where is true.

See also

delete-instance-records
delete-records
insert-records
update-records-from-instance

update-records-from-instance Generic Function

Summary

Updates a set of specified records in a database.

Package

sql

Signature

update-records-from-instance instance &key database

Arguments

instance⇓ An instance of a View Class.

database⇓ A database.

Description

The generic function update-records-from-instance updates the records in database represented by instance. If the
instance is already associated with a database, that database is used, and database is ignored. If instance is not yet associated
with a database, a record is created for instance in the appropriate table of database and the instance becomes associated with
that database.

update-records-from-instance only updates the records from the base slots of instance - it does not look at the join
slots.

See also

def-view-class
delete-instance-records
update-records

45 The SQL Package

1396

update-slot-from-record Generic Function

Summary

Updates a slot in a View Class instance.

Package

sql

Signature

update-slot-from-record instance slot => instance

Arguments

instance⇓ An instance of a View Class.

slot⇓ A slot name.

Values

instance The updated View Class instance.

Description

The generic function update-slot-from-record updates the value in the slot slot of the View Class instance instance
using the records in the database.

instance must be associated with a database.

The argument slot is the CLOS slot name; the corresponding column names are derived from the View Class definition.

The update is not recursive on joins. Join slots (that is, slots with :db-kind :join) are updated, but the joined objects are
not updated.

See also

def-view-class
update-instance-from-records

use-n-syntax-for-non-ascii-strings Variable

Summary

Control whether the symbolic SQL syntax uses the N syntax for non-ASCII SQL string literals.

Package

sql

45 The SQL Package

1397

Initial Value

nil

Description

The variable *use-n-syntax-for-non-ascii-strings* controls whether SQL string literals containing non-ASCII
characters are put into SQL expressions with the N syntax. When *use-n-syntax-for-non-ascii-strings* is nil
(the default), all string literals are produced without the N syntax. When *use-n-syntax-for-non-ascii-strings* is
non-nil, non-ASCII string literals are produced with the N syntax.

A non-ASCII string is any string that contains character codes out of the ASCII range 0 to 127.

For example:

(sql:sql-operation '= [name] "hhh<Greek>")
=>
#<SQL-RELATIONAL-EXP "(NAME = 'hhh<Greek>')">

(let ((sql:*use-n-syntax-for-non-ascii-strings* t))
 (sql:sql-operation '= [name] "hh<Greek>"))
=>
#<SQL-RELATIONAL-EXP "(NAME = N'hh<Greek>')">

For the symbolic SQL "[...]" syntax , the effect of *use-n-syntax-for-non-ascii-strings* occurs at macro
expansion time. Therefore, if you use the symbolic SQL syntax and want to make of use
use-n-syntax-for-non-ascii-strings, then you need to set it before compiling your code.

See 23.5.1.6 SQL string literals for details.

Notes

Microsoft SQL Server is currently the only SQL backend that requires the N syntax.

use-n-syntax-for-non-ascii-strings does not affect what sql-expression with :string does.

with-prepared-statement Macro

Summary

Execute code with a variable bound to a prepared-statement and destroys it afterwards.

Package

sql

Signature

with-prepared-statement (ps-var sql-exp &key database variable-types count flatp result-types) &body body =>
results*

Arguments

ps-var⇓ A symbol.

sql-exp⇓ An SQL expression.

45 The SQL Package

1398

database⇓ A database or nil.

variable-types⇓ A list.

count⇓ A non-negative integer or nil.

flatp⇓ A boolean.

result-types⇓ A list of symbols.

body⇓ Lisp forms.

Values

results* The results of executing body.

Description

The macro with-prepared-statement binds ps-var to a new prepared-statement, executes the forms of body,
destroys the prepared-statement, and returns the values that body returns.

The prepared-statement is created by calling prepare-statement, passing it sql-exp and any of database, variable-
types, count, flatp and result-types that are supplied.

Examples

The following code shows insertion of multiple records using a prepared statement.

(progn
 (when (sql:table-exists-p "a_table_of_squares")
 (sql:drop-table "a_table_of_squares"))
 (sql:execute-command "create table a_table_of_squares (num integer, square_of_num integer)")

 (sql:with-prepared-statement (ps "insert into a_table_of_squares values (:1, :2)")
 (dotimes (x 10)
 (sql:prepared-statement-set-and-execute ps x (* x x))))

 ;; check it
 (pprint (sql:query "select * from a_table_of_squares")))

See also

prepare-statement
prepared-statement-set-and-execute
set-prepared-statement-variables
execute-command
query

with-sqlite-blob Macro

Summary

Execute code with an open handle to a BLOB in SQLite.

Package

sql

45 The SQL Package

1399

Signature

with-sqlite-blob (blob-var table-name column-name rowid &key database owner read-only) &body body => results-
of-body

Arguments

blob-var⇓ A symbol.

table-name⇓, column-name⇓
Strings.

rowid⇓ An integer.

database⇓ A SQLite database.

owner⇓ A string.

read-only⇓ A generalized boolean.

body⇓ Lisp forms.

Values

results-of-body⇓ Multiple values of any Lisp type.

Description

The macro with-sqlite-blob opens a BLOB by calling sqlite-open-blob with database, owner, table-name, column
-name, rowid and read-only, binds blob-var to the resulting sqlite-blob, and evaluates the forms in body (as an implicit
progn) inside the binding and inside an unwind-protect that closes blob-var on exit.

The return values of with-sqlite-blob, results-of-body, are whatever body returns.

Notes

Because with-sqlite-blob guarantees to close the BLOB when it exits, you should use it in preference to calling
sqlite-open-blob directly.

See also

sqlite-open-blob

with-transaction Macro

Summary

Performs a body of code within a transaction for a database.

Package

sql

Signature

with-transaction &key database &body body => results

45 The SQL Package

1400

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_unwind.htm

Arguments

database⇓ A database.

body⇓ A set of Lisp expressions.

Values

results The values returned by body.

Description

The macro with-transaction executes body within a transaction for database (which defaults to
default-database). The transaction is committed if the body finishes successfully (without aborting or throwing),
otherwise the database is rolled back.

with-transaction returns the value or multiple values returned from body.

Examples

The following example shows how to use with-transaction to insert a new record, updates the department number of
employees from 40 to 50, and removes employees whose salary is higher than 300,000. If an error occurs anywhere in the
body and an abort or throw is executed, none of the updates are committed.

(with-transaction
 (insert-record :into [emp]
 :attributes '(x y z)
 :values '(a b c))
 (update-records [emp]
 :attributes [dept]
 :values 50
 :where [= [dept] 40])
 (delete-records :from [emp]
 :where [> [salary] 300000]))

See also

commit
rollback

45 The SQL Package

1401

http://www.lispworks.com/documentation/HyperSpec/Body/a_abort.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_throw.htm

46 The STREAM Package

This chapter describes the symbols available in the stream package that provide users with the functionality to define their
own streams for use by the standard I/O functions.

This is discussed in detail in 24 User Defined Streams.

buffered-stream Class

Summary

A stream class giving access to stream buffers.

Package

stream

Superclasses

fundamental-stream

Subclasses

lob-stream
string-stream
socket-stream

Initargs

:direction One of :input, :output or :io. This argument is required.

:element-type One of base-char, bmp-char, simple-char or character.

:static-buffers A boolean.

Description

The class buffered-stream provides default methods for the majority of the functions in the User Defined Streams
protocol. The default methods implement buffered I/O, requiring the user to define only the methods
stream-read-buffer, stream-write-buffer and stream-element-type for each subclass of buffered-stream.
You are at liberty to redefine other methods in subclasses as long as they obey the rules outlined here. For example it is
usually desirable to implement methods on stream-listen, stream-check-eof-no-hang and close as well.

The initargs are handled by the method (method initialize-instance :after (buffered-stream)) as follows:

Input and/or output buffers are created based on the value direction. There is no default value, and you must supply a value.

element-type determines the stream-element-type of the stream. The default is base-char. For binary streams, use
base-char.

static-buffers controls whether the buffers for input and output are allocated as static objects (see 11.3.2.1 Allocation of static

1402

http://www.lispworks.com/documentation/HyperSpec/Body/t_stg_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

objects). The default is nil, which causes these buffers are allocated as ordinary Lisp objects that may be moved by the
garbage collector. If static-buffers is non-nil, then the buffers are made as static Lisp objects. Most importantly, that allows
you to pass the buffers directly to foreign functions, and that is typically the reason for supplying static-buffers. Note: The
static buffers are allocated from a resource, and are released when the stream is closed, so foreign code should not access
them after that.

All the methods in the User Defined Streams protocol are defined for buffered-stream as follows:

• The methods on stream-read-char, stream-read-line, stream-read-sequence, stream-unread-char,
stream-read-char-no-hang, stream-clear-input handle input from the buffer. They each call
stream-fill-buffer to fill the empty buffer as required.

• The methods on stream-write-char, stream-write-string, stream-write-sequence,
stream-clear-output, stream-finish-output, stream-force-output and stream-line-column handle
output to the buffer. They each call stream-flush-buffer to make the buffer empty as required.

• There are :around methods on stream-listen and close which handle the buffer.

• The methods on input-stream-p, output-stream-p return the appropriate values based on the value of the
:direction initarg.

• The open-stream-p method returns true if close has not been called.

Examples

See the extended example in:

(example-edit-file "streams/buffered-stream")

See also

close
stream-flush-buffer
stream-fill-buffer
stream-listen
stream-read-buffer
stream-write-buffer
with-stream-input-buffer

fundamental-binary-input-stream Class

Summary

A stream class for binary input.

Package

stream

Superclasses

fundamental-binary-stream
fundamental-input-stream

46 The STREAM Package

1403

Description

The class fundamental-binary-input-stream provides a class for generating customized binary input stream classes.
A method for stream-read-byte should be provided when using this class.

See also

fundamental-binary-stream
fundamental-input-stream
stream-read-byte

fundamental-binary-output-stream Class

Summary

A stream class for binary output.

Package

stream

Superclasses

fundamental-binary-stream
fundamental-output-stream

Description

The class fundamental-binary-output-stream provides a class for generating customized binary output stream
classes. A method for stream-write-byte should be provided.

See also

fundamental-binary-stream
fundamental-output-stream
stream-write-byte

fundamental-binary-stream Class

Summary

A class for binary streams.

Package

stream

Superclasses

fundamental-stream

46 The STREAM Package

1404

Subclasses

fundamental-binary-input-stream
fundamental-binary-output-stream

Description

The class fundamental-binary-stream is the superclass of the binary input and output stream classes. A method for
stream-element-type should be provided for concrete subclasses of this class.

See also

fundamental-binary-input-stream
fundamental-binary-output-stream
fundamental-stream
stream-element-type

fundamental-character-input-stream Class

Summary

A class that should be included in stream classes for character input.

Package

stream

Superclasses

fundamental-character-stream
fundamental-input-stream

Description

The class fundamental-character-input-stream provides default methods for generic functions used for character
input, and should therefore be included by stream classes concerned with character input. The user can provide methods for
these generic functions specialized on the user-defined class. Methods for other generic functions must be provided by the
user.

There is an example in 24.2.1 Defining a new stream class.

See also

fundamental-character-stream
fundamental-input-stream
stream-clear-input
stream-listen
stream-peek-char
stream-read-char
stream-read-char-no-hang
stream-read-line
stream-read-sequence
stream-unread-char

46 The STREAM Package

1405

fundamental-character-output-stream Class

Summary

A class that should be included in stream classes for character output.

Package

stream

Superclasses

fundamental-character-stream
fundamental-output-stream

Description

The class fundamental-character-output-stream provides default methods for generic functions used for character
output, and should therefore be included by stream classes concerned with character output. The user can provide methods
for these generic functions specialized on the user-defined class. Methods for other generic functions must be provided by the
user.

There is an example in 24.2.1 Defining a new stream class.

See also

fundamental-character-stream
fundamental-input-stream
stream-clear-output
stream-finish-output
stream-force-output
stream-start-line-p
stream-terpri
stream-line-column
stream-write-char
stream-write-sequence
stream-write-string

fundamental-character-stream Class

Summary

A class whose inclusion provides a method for stream-element-type that returns character.

Package

stream

Superclasses

fundamental-stream

46 The STREAM Package

1406

http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

Subclasses

fundamental-character-input-stream
fundamental-character-output-stream

Description

The class fundamental-character-stream is a superclass for character streams. Its inclusion provides a method for the
generic function stream-element-type that returns the symbol character.

See also

fundamental-character-input-stream
fundamental-character-output-stream
fundamental-stream
stream-element-type

fundamental-input-stream Class

Summary

A class whose inclusion causes input-stream-p to return t.

Package

stream

Superclasses

fundamental-stream

Subclasses

fundamental-binary-input-stream
fundamental-character-input-stream

Description

The class fundamental-input-stream is a superclass to the binary and character input classes. Its inclusion causes the
generic function input-stream-p to return t.

See also

fundamental-binary-input-stream
fundamental-character-input-stream
fundamental-stream
input-stream-p

46 The STREAM Package

1407

http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

fundamental-output-stream Class

Summary

A class whose inclusion causes output-stream-p to return t.

Package

stream

Superclasses

fundamental-stream

Subclasses

fundamental-binary-output-stream
fundamental-character-output-stream

Description

The class fundamental-output-stream is a superclass to the binary and character output classes. Its inclusion causes the
generic function output-stream-p to return t.

See also

fundamental-binary-output-stream
fundamental-character-output-stream
fundamental-stream
input-stream-p

fundamental-stream Class

Summary

A class whose inclusion causes streamp to return t.

Package

stream

Superclasses

standard-object
stream

Subclasses

fundamental-binary-stream
fundamental-character-stream
fundamental-input-stream

46 The STREAM Package

1408

http://www.lispworks.com/documentation/HyperSpec/Body/f_stmp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_stream.htm

fundamental-output-stream

Description

The class fundamental-stream is a superclass to the fundamental input, output, character and binary streams. Its
inclusion causes streamp to return t.

See also

close
fundamental-binary-stream
fundamental-character-stream
fundamental-input-stream
fundamental-output-stream
open-stream-p

stream-advance-to-column Generic Function

Summary

Writes the required number of blank spaces to ensure that the next character will be written in a given column.

Package

stream

Signature

stream-advance-to-column stream column => result

Arguments

stream⇓ A stream.

column⇓ An integer.

Values

result A boolean.

Description

The generic function stream-advance-to-column writes enough blank spaces to stream to ensure that the next character
is written at column. The generic function returns t if the operation is successful, or nil if it is not supported for this stream.

This function is intended for use by print and format ~t. The default method uses stream-line-column and repeated
calls to stream-write-char with a #\Space character, and returns nil if stream-line-column returns nil.

See also

stream-line-column

46 The STREAM Package

1409

http://www.lispworks.com/documentation/HyperSpec/Body/f_stmp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_pr.htm

stream-check-eof-no-hang Generic Function

Summary

Determines whether a stream is at end of file.

Package

stream

Signature

stream-check-eof-no-hang stream => result

Arguments

stream⇓ An input stream.

Values

result⇓ nil or :eof.

Description

The generic function stream-check-eof-no-hang determines if the data source of the stream is at end of file, without
hanging.

stream should be an instance of a subclass of buffered-stream.

result is :eof if stream is at end of file and nil otherwise.

There is a built-in method specialized on buffered-stream which returns :eof in all cases.

See also

buffered-stream

stream-clear-input Generic Function

Summary

Implements clear-input.

Package

stream

Signature

stream-clear-input stream => nil

46 The STREAM Package

1410

http://www.lispworks.com/documentation/HyperSpec/Body/f_clear_.htm

Arguments

stream⇓ A stream.

Description

The generic function stream-clear-input implements clear-input. The default method specalizes stream on
fundamental-input-stream and does nothing.

See also

fundamental-input-stream

stream-clear-output Generic Function

Summary

Implements clear-output.

Package

stream

Signature

stream-clear-output stream => nil

Arguments

stream⇓ A stream.

Description

The generic function stream-clear-output implements clear-output. The default method specalizes stream on
fundamental-output-stream and does nothing.

There is an example in 24.2.5 Stream output.

See also

fundamental-output-stream

stream-file-position Accessor

Summary

Returns or changes the current position within a stream.

Package

stream

46 The STREAM Package

1411

http://www.lispworks.com/documentation/HyperSpec/Body/f_clear_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_finish.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_finish.htm

Signatures

stream-file-position stream => position

(setf stream-file-position) position-spec stream => success-p

Arguments

stream⇓ A stream.

position-spec⇓ A file position designator.

Values

position A file position or nil.

success-p⇓ A generalized boolean.

Description

The accessor stream-file-position implements file-position using two generic functions
stream-file-position and (setf stream-file-position).

stream-file-position is called when file-position is called with one argument.

(setf stream-file-position) is called when file-position is called with two arguments.

The return value is returned by file-position. For the setf function, this is a slight anomaly because setf functions
normally return the new value. However in this case it should return success-p as mandated by the ANSI Common Lisp
standard.

The default methods specializing stream on stream return nil and ignore position-spec.

stream-fill-buffer Generic Function

Summary

Fills the stream buffer.

Package

stream

Signature

stream-fill-buffer stream => result

Arguments

stream⇓ An input stream.

Values

result A generalized boolean.

46 The STREAM Package

1412

http://www.lispworks.com/documentation/HyperSpec/Body/f_file_p.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_file_p.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_file_p.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_file_p.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_stream.htm

Description

The generic function stream-fill-buffer is called by the reading functions to fill an empty stream buffer from the
underlying data source.

stream should be an instance of a subclass of buffered-stream.

stream-fill-buffer should block until some data is available or return false at end of file. If data is available, it should
place it in a buffer, set the stream's input buffer, index and limit appropriately and return a true value. The existing stream
buffer can be reused if desired but the index and limit must be updated. The buffer must be of type simple-string, whose
element type matches that given when the stream was constructed.

There is a built-in method specialized on buffered-stream which usually suffices. It calls stream-read-buffer with
the whole buffer and returns false if this call returns 0. If not, the input index is set to 0 and the input limit is set to the value
returned by stream-read-buffer.

See also

buffered-stream
stream-read-buffer

stream-finish-output Generic Function

Summary

Implements finish-output.

Package

stream

Signature

stream-finish-output stream => nil

Arguments

stream⇓ A stream.

Description

The generic function stream-finish-output implements finish-output. The default method specializes stream on
fundamental-output-stream and does nothing.

There is an example in 24.2.5 Stream output.

See also

fundamental-output-stream

46 The STREAM Package

1413

http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_finish.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_finish.htm

stream-flush-buffer Generic Function

Summary

Flushes a stream's buffer.

Package

stream

Signature

stream-flush-buffer stream => result

Arguments

stream⇓ An output stream.

Values

result⇓ A generalized boolean.

Description

The generic function stream-flush-buffer is called by the writing functions to flush a stream buffer to the underlying
data sink.

stream should be an instance of a subclass of buffered-stream.

Before returning, stream-flush-buffer must set the output index of stream so that more characters can be written to the
buffer. If desired, the output buffer and limit can be set too.

There is a built-in method specialized on buffered-stream which usually suffices. It calls stream-write-buffer with
the currently active part of the stream's output buffer and sets the output index to 0.

result is true if the buffer was flushed.

See also

buffered-stream
stream-write-buffer

stream-force-output Generic Function

Summary

Implements force-output.

Package

stream

46 The STREAM Package

1414

http://www.lispworks.com/documentation/HyperSpec/Body/f_finish.htm

Signature

stream-force-output stream => nil

Arguments

stream⇓ A stream.

Description

The generic function stream-force-output implements force-output. The default method specializes stream on
fundamental-output-stream and does nothing.

There is an example in 24.2.5 Stream output.

See also

fundamental-output-stream

stream-fresh-line Generic Function

Summary

Used by fresh-line to start a new line on a given stream.

Package

stream

Signature

stream-fresh-line stream => bool

Arguments

stream⇓ A stream.

Values

bool⇓ A generalized boolean.

Description

The generic function stream-fresh-line is used by fresh-line to start a new line on a stream. The default method
specializes stream on fundamental-stream and uses stream-start-line-p and stream-terpri. bool is t if a new
line is output successfully.

See also

stream-start-line-p
stream-terpri

46 The STREAM Package

1415

http://www.lispworks.com/documentation/HyperSpec/Body/f_finish.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_terpri.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_terpri.htm

stream-line-column Generic Function

Summary

Returns the column number where the next character will be written.

Package

stream

Signature

stream-line-column stream => column

Arguments

stream⇓ A stream.

Values

column An integer.

Description

The generic function stream-line-column returns the column number where the next character will be written from
stream, or nil if this is not meaningful for the stream. This function is used in the implementation of print and the
format ~t directive. A method for this function must be defined for every character output stream class that is defined,
although at its simplest it may be defined to always return nil.

See also

fundamental-character-output-stream
stream-start-line-p

stream-listen Generic Function

Summary

A function used by listen that returns t if there is input available.

Package

stream

Signature

stream-listen stream => result

46 The STREAM Package

1416

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_pr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_listen.htm

Arguments

stream⇓ A stream.

Values

result⇓ A generalized boolean.

Description

The generic function stream-listen is called to determine if there is data immediately available on the stream stream,
without hanging.

result should be true if here is input, and nil otherwise (including at end of file).

This method must be implemented for subclasses of buffered-stream that handle input.

There is a built-in primary method specialized on buffered-stream which returns nil. There is a built-in :around

method specialized on buffered-stream which checks for input in the buffer and calls the next method if the buffer is
empty. Thus a primary method specialized on a subclass of buffered-stream need only check the underlying data source.

The built-in method on fundamental-input-stream uses stream-read-char-no-hang and stream-unread-char.
Most streams should define their own method as this is usually trivial and more efficient than the method provided.

See also

buffered-stream
stream-read-char-no-hang
stream-unread-char

stream-output-width Generic Function

Summary

Used by the pretty printer to determine the output width when *print-right-margin* is nil.

Package

stream

Signature

stream-output-width stream => result

Arguments

stream⇓ A stream.

Values

result⇓ An integer or nil.

46 The STREAM Package

1417

http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_rig.htm

Description

The generic function stream-output-width is used by the pretty printer to determine the output width when
print-right-margin is nil. It returns result, the integer width of stream in units of ems, or nil if the width is not
known. The default method provided by fundamental-stream returns nil.

See also

fundamental-stream

stream-peek-char Generic Function

Summary

A generic function used by peek-char that returns a character on a given stream without removing it from the stream buffer.

Package

stream

Signature

stream-peek-char stream => result

Arguments

stream⇓ A stream.

Values

result A character or :eof.

Description

The generic function stream-peek-char is used to implement peek-char, and corresponds to a peek-type of nil. The
default method specializes stream on fundamental-stream and reads a character from the stream without removing it
from the stream buffer, by using stream-read-char and stream-unread-char.

See also

stream-listen
stream-read-char
stream-unread-char

stream-read-buffer Generic Function

Summary

Reads data into the stream buffer.

46 The STREAM Package

1418

http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_rig.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_peek_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_peek_c.htm

Package

stream

Signature

stream-read-buffer stream buffer start end => result

Arguments

stream⇓ An input stream.

buffer⇓ A stream buffer.

start⇓, end⇓ Bounding indexes for a subsequence of buffer.

Values

result⇓ A non-negative integer.

Description

The generic function stream-read-buffer is called by stream-fill-buffer to place characters into the region of the
buffer buffer bounded by start and end.

stream should be an instance of a subclass of buffered-stream.

stream-read-buffer should block until some data is available. result should be the number of characters actually placed
in the buffer (0 if at end of file). This method must be implemented for subclasses of buffered-stream that handle input.

See also

buffered-stream
stream-fill-buffer

stream-read-byte Generic Function

Summary

A generic function used by read-byte to read an integer from a binary stream.

Package

stream

Signature

stream-read-byte stream => result

Arguments

stream⇓ An input stream.

46 The STREAM Package

1419

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_by.htm

Values

result An integer or :eof.

Description

The generic function stream-read-byte is used by read-byte, and returns either an integer read from the binary stream
specified by stream, or the keyword :eof.

A method must be implemented for all binary subclasses of buffered-stream that handle input. A typical implementation
will call stream-read-char and convert the character to an integer using char-code.

A method should be defined for a subclass of fundamental-binary-input-stream.

See also

buffered-stream
fundamental-binary-input-stream
fundamental-binary-stream
stream-read-char

stream-read-char Generic Function

Summary

Read one character from a stream.

Package

stream

Signature

stream-read-char stream => character

Arguments

stream⇓ An input stream.

Values

character A character or :eof.

Description

The generic function stream-read-char reads one item from stream. The item read is either a character or the end of file
symbol :eof if the stream is at the end of a file. Every subclass of fundamental-character-input-stream must define
a method for this function.

See also

fundamental-character-input-stream
stream-unread-char

46 The STREAM Package

1420

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_by.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_char_c.htm

stream-read-char-no-hang Generic Function

Summary

Returns either a character from the stream, :eof if the end-of-file is reached, or nil if no input is currently available.

Package

stream

Signature

stream-read-char-no-hang stream => result

Arguments

stream⇓ An input stream.

Values

result Either a character, :eof or nil.

Description

The generic function stream-read-char-no-hang implements read-char-no-hang. It returns either a character read
from the stream, or:eof if end-of-file is reached, or nil if no input is available. The default method specializes stream on
fundamental-character-input-stream and simply calls stream-read-char which is sufficient for file streams, but
interactive streams should define their own method.

See also

fundamental-character-input-stream
stream-read-char

stream-read-line Generic Function

Summary

Returns a string read from a stream.

Package

stream

Signature

stream-read-line stream => result terminated

46 The STREAM Package

1421

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_c_1.htm

Arguments

stream⇓ An input stream.

Values

result A string or :eof.

terminated⇓ A boolean.

Description

The generic function stream-read-line reads a line of characters from stream and returns this line as a string. If the string
is terminated by an end-of-file instead of a newline then terminated is t.

The default method uses repeated calls to stream-read-char, and uses stream-element-type to determine the element
-type of its result.

See also

fundamental-character-input-stream
stream-element-type
stream-read-char

stream-read-sequence Generic Function

Summary

Reads a number of items from a stream into a sequence.

Package

stream

Signature

stream-read-sequence stream sequence start end => position

Method signatures

stream-read-sequence (stream t) (sequence t) (start t) (end t)

stream-read-sequence (stream stream) (sequence t) (start t) (end t)

stream-read-sequence (stream buffered-stream) (sequence t) (start t) (end t)

Arguments

stream⇓ A stream.

sequence⇓ A sequence.

start⇓ An integer.

end⇓ An integer.

46 The STREAM Package

1422

Values

position An integer.

Description

The generic function stream-read-sequence reads from stream into sequence. Elements from start in sequence are
replaced by elements from stream until end in sequence or the end-of-file in stream is reached. The index of the first element
in sequence that is not replaced is returned.

The method specializing stream on t just signals an error.

The method specializing stream on stream repeatedly reads elements from stream and stores them into sequence (starting
from start) until it reaches end or it reaches the end-of-file of stream. The elements are read using stream-read-char if
stream-element-type returns a subtype of character and stream-read-byte otherwise.

The method specializing stream on buffered-stream is optimized to be efficient, and is proper reliant on the
implementation of buffered-stream. See the documentation for buffered-stream for details.

Notes

In the method for stream, if sequence is not of the appropriate type to receive the elements that come from stream, an error
is signaled when it tries to store the element. For example, if sequence is a simple-base-string and stream has element
type character, it will read and store elements as long as stream-read-char returns elements of type base-char, and
will signal an error only when stream-read-char returns a non-base-char element. Similarly if the element type of
sequence is (signed-byte 8) and the element type of stream is (unsigned-byte 8), it will work as long
stream-read-byte returns elements less than 128.

The method for stream is not very efficient, and it forces the element type to be what stream-element-type returns. If
you need more flexibility then you should write your own method specialized on your stream type, which can be also be
made more efficient if it can make assumptions about sequence or stream.

Prior to LispWorks 8.0, there were also methods specialized on fundamental-character-output-stream and
fundamental-binary-output-stream, which used stream-read-char and stream-read-byte respectively
without checking the element type. These have been removed in LispWorks 8.0.

See also

fundamental-binary-input-stream
fundamental-character-input-stream
stream-read-byte
stream-read-char

stream-start-line-p Generic Function

Summary

A generic function that returns t if the stream is positioned at the beginning of a line.

Package

stream

46 The STREAM Package

1423

http://www.lispworks.com/documentation/HyperSpec/Body/t_stream.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_stream.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_stream.htm

Signature

stream-start-line-p stream => result

Arguments

stream⇓ A stream.

Values

result A boolean.

Description

The generic function stream-start-line-p returns t if stream is positioned at the beginning of a line, and nil otherwise.
It is permissible to define a method that always returns nil.

Note that although a value of 0 from stream-line-column also indicates the beginning of a line, there are cases where
stream-start-line-p can be meaningfully implemented and stream-line-column cannot. For example, for a window
using variable-width characters the column number is not very meaningful, whereas the beginning of a line has a clear
meaning.

The default method for stream-start-line-p on class fundamental-character-output-stream uses
stream-line-column. Therefore, if this is defined to return nil, a method should be provided for either
stream-start-line-p or stream-fresh-line.

See also

fundamental-character-output-stream
stream-fresh-line
stream-line-column

stream-terpri Generic Function

Summary

Writes an end of line to a stream.

Package

stream

Signature

stream-terpri stream => nil

Arguments

stream⇓ A stream.

Description

The generic function stream-terpri writes an end of line to stream, as for terpri. The default method specializes stream

46 The STREAM Package

1424

http://www.lispworks.com/documentation/HyperSpec/Body/f_terpri.htm

on fundamental-stream and is equivalent to:

(stream-write-char stream #\\Newline)

See also

stream-write-char

stream-unread-char Generic Function

Summary

Undoes the last call to stream-read-char.

Package

stream

Signature

stream-unread-char stream character => nil

Arguments

stream⇓ A stream.

character⇓ A character.

Description

The generic function stream-unread-char undoes the last call to stream-read-char for stream, assuming it returned
character as in unread-char. Every subclass of fundamental-character-input-stream must define a method for
this function.

See also

fundamental-character-input-stream

stream-write-buffer Generic Function

Summary

Writes a part of stream's buffer.

Package

stream

Signature

stream-write-buffer stream buffer start end

46 The STREAM Package

1425

http://www.lispworks.com/documentation/HyperSpec/Body/f_unrd_c.htm

Arguments

stream⇓ An output stream.

buffer⇓ A stream buffer.

start⇓, end⇓ Bounding indexes for a subsequence of buffer.

Description

The generic function stream-write-buffer is called by stream-flush-buffer to write the region of buffer bounded
by start and end to the stream's underlying data sink.

stream should be an instance of a subclass of buffered-stream.

This method must be implemented for subclasses of buffered-stream that handle output.

See also

buffered-stream
stream-flush-buffer

stream-write-byte Generic Function

Summary

A generic function used by write-byte to write an integer to a binary stream.

Package

stream

Signature

stream-write-byte stream integer => result

Arguments

stream⇓ A stream.

integer⇓ An integer.

Values

result An integer.

Description

The generic function stream-write-byte is used by write-byte, and writes the integer integer to the binary stream
specified by stream.

A method must be implemented for all binary subclasses of buffered-stream that handle output. A typical
implementation will convert the integer to a character using code-char and call stream-write-char.

A method should be defined for all subclasses of fundamental-binary-output-stream.

46 The STREAM Package

1426

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_by.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_by.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_code_c.htm

See also

buffered-stream
fundamental-binary-output-stream
fundamental-binary-stream
stream-write-char

stream-write-char Generic Function

Summary

Writes a character to a specified stream.

Package

stream

Signature

stream-write-char stream character => character

Arguments

stream⇓ A stream.

character⇓ A character.

Values

character A character.

Description

The generic function stream-write-char writes character to stream. Every subclass of
fundamental-character-output-stream must have a method defined for this function.

There is an example in 24.2.5 Stream output.

See also

fundamental-character-output-stream

stream-write-sequence Generic Function

Summary

Writes a subsequence of a sequence to a stream.

Package

stream

46 The STREAM Package

1427

Signature

stream-write-sequence stream sequence start end => result

Method signatures

stream-write-sequence (stream t) (sequence t) (start t) (end t)

stream-write-sequence (stream stream) (sequence t) (start t) (end t)

stream-write-sequence (stream buffered-stream) (sequence t) (start t) (end t)

Arguments

stream⇓ A stream.

sequence⇓ A sequence.

start⇓ An integer.

end⇓ An integer.

Values

result A sequence.

Description

The generic function stream-write-sequence is used by write-sequence to write a subsequence of sequence
delimited by start and end to stream.

The method specializing stream on t just signals an error.

The method specializing stream on stream checks if the element type of stream (as returned by stream-element-type) is
a subtype of character.

If the element type is a subtype of character, then if sequence is a string, stream-write-sequence calls
stream-write-string with the arguments. Otherwise it iterates over the elements of sequence between start and end,
calling stream-write-char on each element that is a character. An error is signaled if a non-character element is found.

If the element type is not a subtype of character, then stream-write-sequence iterates over the elements of sequence
between start and end, calling stream-write-byte on each element that is an integer. An error is signaled if a non-integer
element is found.

The method specializing stream on buffered-stream is optimized to be efficient and is reliant on the proper
implementation of buffered-stream. See the documentation for buffered-stream for details.

Notes

The method for stream detects and signals some errors itself, but may still get errors in stream-write-byte,
stream-write-char, or stream-write-string if sequence contains elements that are out of the range that these
functions can deal with when called with stream.

The method for stream is not very efficient, and it forces the element type to be what stream-element-type returns. If
you need more flexibility then you should write your own method specialized on your stream type, which can be also be
made more efficient if it can make assumptions about sequence or stream.

Prior to LispWorks 8.0, there were also methods specialized on fundamental-character-output-stream and
fundamental-binary-output-stream, which used stream-write-char and stream-write-byte respectively

46 The STREAM Package

1428

http://www.lispworks.com/documentation/HyperSpec/Body/t_stream.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_stream.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_stream.htm

without checking the element type. These have been removed in LispWorks 8.0.

See also

fundamental-binary-output-stream
fundamental-character-output-stream
stream-read-sequence
stream-write-byte
stream-write-char

stream-write-string Generic Function

Summary

Used by write-string to write a string to a character output stream.

Package

stream

Signature

stream-write-string stream string &optional start end => result

Arguments

stream⇓ A stream.

string⇓ A string.

start⇓ An integer.

end⇓ An integer.

Values

result A string.

Description

The generic function stream-write-string is used by write-string to write string to stream. The string can,
optionally, be delimited by start and end.

The default method provided by fundamental-character-output-stream uses repeated calls to
stream-write-char.

There is an example in 24.2.5 Stream output.

See also

fundamental-character-output-stream
stream-write-char

46 The STREAM Package

1429

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_stg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_stg.htm

with-stream-input-buffer Macro

Summary

Allows access to the input buffer.

Package

stream

Signature

with-stream-input-buffer (buffer index limit) stream &body body => result

Arguments

buffer⇓, index⇓, limit⇓
Variables.

stream⇓ An input stream.

body⇓ Code.

Values

result The value returned by body.

Description

The macro with-stream-input-buffer allows access to the state of the input buffer for the given buffered stream.

stream should be an instance of a subclass of buffered-stream.

Within the code body, the variables buffer, index and limit are bound to the buffer of stream, its current index and the limit of
the buffer. Setting buffer, index or limit will change the values in the stream stream but note that other changes to these values
(for example, by calling other stream functions) will not affect the values bound within the macro. See the example for a
typical use which shows how this restriction can be handled.

The buffer is always of type simple-string. The stream-element-type of stream depends on how it was constructed.

The index is the position of the next element to be read from the buffer and the limit is the position of the element after the
end of the buffer. Therefore there is no data in the buffer when index is greater than or equal to limit.

Examples

This example function returns a string with exactly four characters read from a buffered stream. If end-of-file is reached
before four characters have been read, it returns nil.

(defun read-4-chars (stream)
 (declare (type stream:buffered-stream stream))
 (let ((res (make-string 4))
 (elt 0))
 ;; Outer loop handles buffer filling.
 (loop
 ;; Inner loop handles buffer scanning.

46 The STREAM Package

1430

http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_end_of.htm

 (loop (stream:with-stream-input-buffer (buf ind lim) stream
 (when (>= ind lim)
 ;; End of buffer: try to refill.
 (return))
 (setf (schar res elt) (schar buf ind))
 (incf elt)
 (incf ind)
 (when (= elt 4)
 (return-from read-4-chars res))))
 (unless (stream:stream-fill-buffer stream)
 (return-from read-4-chars nil)))))

See also

buffered-stream
with-stream-output-buffer

with-stream-output-buffer Macro

Summary

Allows access to the output buffer.

Package

stream

Signature

with-stream-output-buffer (buffer index limit) stream &body body => result

Arguments

buffer⇓, index⇓, limit⇓
Variables.

stream⇓ An output stream.

body⇓ Code.

Values

result The value returned by body.

Description

The macro with-stream-output-buffer allows access to the state of the output buffer for the given buffered stream.

stream should be an instance of a subclass of buffered-stream.

Within the code body, the variable names buffer, index and limit are bound to the buffer of stream, its current index and the
limit of the buffer. Setting buffer, index or limit will change the values in the stream stream but note that other changes to
these values (for example, by calling other stream functions) will not affect the values bound within the macro. See the
example for a typical use which shows how this restriction can be handled.

The buffers are always of type simple-string. The stream-element-type of stream depends on how the stream was

46 The STREAM Package

1431

http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_st.htm

constructed.

The index is the position of the next free element in the buffer and the limit is the position of the element after the end of the
buffer. Therefore the buffer is full when index is greater than or equal to limit.

Examples

This example function writes a four character string to a buffered stream.

(defun write-4-chars (stream string)
 (declare (type stream:buffered-stream stream))
 (let ((elt 0))
 ;; Outer loop handles buffer flushing.
 (loop
 ;; Inner loop handles buffer updating.
 (loop (stream:with-stream-output-buffer (buf ind lim) stream
 (when (>= ind lim)
 ;; Buffer full: try to flush.
 (return))
 (setf (schar buf ind) (schar string elt))
 (incf elt)
 (incf ind)
 (when (= elt 4)
 (return-from write-4-chars))))
 (stream:stream-flush-buffer stream))))

See also

buffered-stream
with-stream-input-buffer

46 The STREAM Package

1432

47 The SYSTEM Package

This chapter describes symbols available in the SYSTEM package.

Various uses of the symbols documented here are discussed throughout this manual.

allocated-in-its-own-segment-p Function

Summary

64-bit LispWorks only: Returns if the object is allocated in its own segment.

Package

system

Signature

allocated-in-its-own-segment-p object => result

Arguments

object⇓ Any object.

Values

result A boolean.

Description

The function allocated-in-its-own-segment-p returns true if object is allocated in its own own segment and false
otherwise.

Notes

An object is allocated in its own segment if it is "very large". Currently that means larger than 64 MB for the ordinary 64-bit
GC, or larger than 1 MB for the Mobile GC.

allocated-in-its-own-segment-p is intended to help to decide whether to call the functions that are useful only for
such objects (make-object-permanent and release-object-and-nullify).

See also

make-object-permanent
release-object-and-nullify
11.5.2 Mobile GC technical details

1433

apply-with-allocation-in-gen-num Function

Summary

Allows control over which generation objects are allocated in, in 64-bit LispWorks.

Package

system

Signature

apply-with-allocation-in-gen-num what gen-num func &rest args => results

Arguments

what⇓ One of the keywords :cons, :symbol, :function, :non-pointer and :other.

gen-num⇓ An integer in the inclusive range [0,7], or nil.

func⇓ A function designator.

args⇓ The arguments passed to func.

Values

results The values returned from the call to func with args.

Description

The function apply-with-allocation-in-gen-num applies the function func to args such that objects of allocation type
what are allocated in generation gen-num, in 64-bit LispWorks.

See also the keyword :allocation to make-array, which catches the most common cases.

It is probably quite rare that it is useful to use this function, unless the function allocates a lot, and you are certain that every
object that is allocated of the allocation type is long-lived, which is normally difficult to tell.

Notes

1. Allocation of interned symbols is controlled separately by *symbol-alloc-gen-num*.

2. In 32-bit LispWorks the argument what is ignored and the effect is like that of the macro allocation-in-gen-num.

3. In the Mobile GC, gen-num must be 0, 1 or 2.

See also

allocation-in-gen-num
make-array
symbol-alloc-gen-num

47 The SYSTEM Package

1434

approaching-memory-limit Condition Class

Summary

The class of conditions signaled when 32-bit LispWorks approaches its memory limit.

Package

system

Superclasses

storage-condition

Description

The condition class approaching-memory-limit is used for signalling an error when 32-bit LispWorks approaches its
memory limit.

Notes

approaching-memory-limit is not relevant to 64-bit LispWorks.

See also

11.3.6 Approaching the memory limit
set-approaching-memory-limit-callback

atomic-decf
atomic-incf Macros

Summary

Like incf and decf, but does the operation atomically.

Package

system

Signatures

atomic-decf place &optional delta => new-value

atomic-incf place &optional delta => new-value

Arguments

place⇓ One of the specific set of places defined for low level atomic operations.

delta⇓ A number, default value 1.

47 The SYSTEM Package

1435

http://www.lispworks.com/documentation/HyperSpec/Body/e_storag.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm

Values

new-value A number.

Description

The macro atomic-decf is like decf and atomic-incf is like incf, decreasing or increasing the value in place by delta,
except that they are guaranteed atomic for a suitable place.

place must be one of the places described in 19.13.1 Low level atomic operations, or expand to one of them.

Notes

Unlike atomic-fixnum-decf and atomic-fixnum-incf, these macros can deal with any number.

See also

atomic-fixnum-decf
atomic-fixnum-incf
low-level-atomic-place-p

atomic-exchange Macro

Summary

Atomically exchange a place value with a new value, returning the old value.

Package

system

Signature

atomic-exchange place new-value => old-value

Arguments

place⇓ One of the specific set of places defined for low level atomic operations.

new-value⇓ An object.

Values

old-value⇓ An object.

Description

The macro atomic-exchange exchanges the value in place with new-value, returning old-value. The operation is
guaranteed to be atomic.

place must be one of the places described in 19.13.1 Low level atomic operations, or expand to one of them.

47 The SYSTEM Package

1436

http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm

See also

compare-and-swap
low-level-atomic-place-p

atomic-fixnum-decf
atomic-fixnum-incf Macros

Summary

Like decf and incf, but does the operation atomically.

Package

system

Signatures

atomic-fixnum-decf place &optional fixnum-delta => new-value

atomic-fixnum-incf place &optional fixnum-delta => new-value

Arguments

place⇓ One of the specific set of places defined for low level atomic operations.

fixnum-delta⇓ A fixnum, default value 1.

Values

new-value A fixnum.

Description

The macro atomic-fixnum-decf is like decf (for fixnums only) and atomic-fixnum-incf is like incf (for fixnums
only), except that they are guaranteed atomic for a suitable place.

place must be one of the places described in 19.13.1 Low level atomic operations, or expand to one of them.

Both the value in place and fixnum-delta must be fixnums. The arithmetic is done without checking for overflow.

See also

atomic-decf
atomic-incf
low-level-atomic-place-p

47 The SYSTEM Package

1437

http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm

atomic-pop Macro

Summary

Like pop, but does the operation atomically.

Package

system

Signature

atomic-pop place => element

Arguments

place⇓ One of the specific set of places defined for low level atomic operations.

Values

element An object.

Description

The macro atomic-pop is the same as cl:pop, but is guaranteed atomic for a suitable place.

place must be one of the places described in 19.13.1 Low level atomic operations, or expand to one of them.

See also

atomic-push
low-level-atomic-place-p

atomic-push Macro

Summary

Like push, but does the operation atomically.

Package

system

Signature

atomic-push obj place => new-place-value

Arguments

obj⇓ An object.

47 The SYSTEM Package

1438

http://www.lispworks.com/documentation/HyperSpec/Body/m_pop.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_pop.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_push.htm

place⇓ One of the specific set of places defined for low level atomic operations.

Values

new-place-value A list (the new value of place).

Description

The macro atomic-push is the same as cl:push, pushing obj onto the list in place, but is guaranteed atomic for a suitable
place.

place must be one of the places described in 19.13.1 Low level atomic operations, or expand to one of them.

Notes

In many cases the natural inverse of push is delete, but there is no way to do delete atomically, except by using a
separate lock, which must also be held while doing the push.

See also

atomic-pop
low-level-atomic-place-p

augmented-string
simple-augmented-string Types

Summary

Deprecated synonyms for text-string and simple-text-string.

Package

system

Signatures

augmented-string &optional length

simple-augmented-string &optional length

Arguments

length⇓ The length of the string (or *, meaning any).

Description

The types augmented-string and simple-augmented-string are deprecated synonyms for text-string and
simple-text-string.

If length is not *, then it constrains the length of the string to that number of elements.

47 The SYSTEM Package

1439

http://www.lispworks.com/documentation/HyperSpec/Body/m_push.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_push.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rm_rm.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rm_rm.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_push.htm

See also

text-string
simple-text-string

augmented-string-p
simple-augmented-string-p Functions

Summary

Deprecated synonyms for text-string-p and simple-text-string-p.

Package

system

Signatures

augmented-string-p object => result

simple-augmented-string-p object => result

Arguments

object⇓ A Lisp object.

Values

result A boolean.

Description

The functions augmented-string-p and simple-augmented-string-p are deprecated synonyms for text-string-p
and simple-text-string-p, testing the type of object.

See also

text-string-p
simple-text-string-p

binary-file-type Variable

Summary

The default file type of binary files.

Package

system

47 The SYSTEM Package

1440

Initial Value

The initial value depends on the host CPU and the LispWorks implementation. See Naming conventions for FASL files.

Description

The variable *binary-file-type* is the file type that load and require recognize as a binary (FASL) file (in addition to
any additional file types in *binary-file-types*).

Normally you should not set *binary-file-type*. If you need to load files with another type, push that type on to
binary-file-types.

See also

binary-file-types
load-data-file

binary-file-types Variable

Summary

A list of file types that are loaded as binary files.

Package

system

Initial Value

nil

Description

The variable *binary-file-types* contains a list of strings naming file types which load and require recognize as
binary (FASL) files. FASL files are the output of compile-file, dump-forms-to-file or
with-output-to-fasl-file.

You need to add a type to this list if you want load such files but they have an extension which is different from the default
(the value of *binary-file-type*).

See also

binary-file-type

call-system Function

Summary

Executes a command by a shell or directly by the underlying Operating System.

47 The SYSTEM Package

1441

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm

Package

system

Signature

call-system command &key current-directory wait shell-type => status, signal-number

Arguments

command⇓ A string, a non-empty list of strings, a simple-vector of strings, or nil.

current-directory⇓ nil or a pathname designator.

wait⇓ A boolean.

shell-type⇓ A string or nil.

Values

status⇓ An integer or nil.

signal-number⇓ An integer or nil.

Description

The function call-system allows executables and DOS or Unix shell commands to be called from Lisp code as a separate
OS process. The output goes to standard output, as the operating system sees it. (This normally means *terminal-io* in
LispWorks.)

If command is a string then it is passed to the shell as the command to run, using the -c option, without any other arguments.
The type of shell to run is determined by shell-type as described below. Note that for typical Unix shells, the string
command may contain multiple commands separated by ; (semicolon).

If command is a non-empty list then it becomes the argv of a command to run directly, without invoking a shell. The first
element is the command to run directly and the other elements are passed as arguments on the command line (that is, element
0 has its name in argv[0] in C, and so on).

If command is a simple vector of strings, the element at index 0 is the command to run directly, without invoking a shell. The
other elements are the complete set of arguments seen by the command (that is, element 1 becomes argv[0] in C, and so on).

If command is nil, then the shell is run.

On Microsoft Windows, if command is a string, LispWorks hides the first window of the execution of the command, because
that is the console that cmd.exe starts in a DOS window. If the command itself is a console application, you may want to see
the console. In this case run the command as a direct command. To do this, pass a list or a vector as described above.
Conversely, if you run a console application and do not want to see the console, pass the command as a string.

If current-directory is non-nil, then it must be a pathname designator for a directory and is used as the current directory in the
new process. Otherwise, the current directory of the LispWorks process is used (the default).

On non-Windows platforms, if shell-type is a string it specifies the shell. If shell-type is nil (the default) then the Bourne
shell, /bin/sh, is used. The C shell may be obtained by passing "/bin/csh".

On supported versions of Microsoft Windows if shell-type is nil then cmd.exe is used.

On non-Windows platforms, the command line arguments and environment variables are encoded as specfied in 27.14.1
Encoding of file names and strings in OS interface functions.

47 The SYSTEM Package

1442

http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

If wait is true (the default), then call-system does not return until the process has exited and then returns the exit status
status of the process it created. Additionally on non-Windows platforms if the process was terminated by a signal then
call-system returns a second value signal-number which is the number of that signal. For a discussion of these return
values see 27.7.1 Interpreting the exit status.

If wait is nil, then call-system returns nil as status.

Notes

If you need to be able to check whether the child process is alive or to retrieve its exit status and maybe to kill it, then instead
of call-system, use open-pipe with save-exit-status non-nil (and maybe direction :none) or run-shell-command with
wait nil and save-exit-status non-nil, and then use pipe-exit-status and maybe pipe-kill-process.

Compatibility notes

1. The argument :shell-type is not implemented in LispWorks for Windows 4.4 and earlier, and cmd.exe is not used
implicitly.

2. On Microsoft Windows, LispWorks 5.0 and later use shell-type cmd.exe by default when command is a string. In
LispWorks 5.x the user may see a DOS command window in this case, but LispWorks 6.0 and later explicitly hide the
DOS window. To call your command directly command should be a list, as in the last example below.

3. On Microsoft Windows, LispWorks 8.1 and later, current-directory defaults to the current directory of the LispWorks
process. In previous releases, it defaulted to the pathname-location of the current-pathname. In practice, this is
only different when loading or compiling a file.

Examples

On Unix-like systems:

(call-system (format nil "tr Z q < ~a > ~a"
 (namestring a)
 (namestring b)))

On Microsoft Windows:

(sys:call-system "sleep 3" :wait t)

(sys:call-system '("notepad" "myfile.txt"))

See also

open-pipe
call-system-showing-output
run-shell-command
27.7.1 Interpreting the exit status

call-system-showing-output Function

Summary

Executes a command by a shell or directly by the underlying Operating System and show the output.

47 The SYSTEM Package

1443

Package

system

Signature

call-system-showing-output command &key current-directory prefix show-cmd output-stream wait shell-type kill-
process-on-abort external-format => status, output-string-or-signal-number

Arguments

command⇓ A string, a non-empty list of strings, a simple-vector of strings, or nil.

current-directory⇓ nil or a pathname designator.

prefix⇓ A string.

show-cmd⇓ A boolean.

output-stream⇓ An output stream or nil, t or :tty.

wait⇓ A boolean.

shell-type⇓ A string. Supported only on non-Windows platforms.

kill-process-on-abort⇓
A generalized boolean.

external-format⇓ An external file format designator. Defaults to :default. New in LispWorks 8.1.

Values

status The exit status of the invoked shell or process.

output-string-or-signal-number⇓
A string, an integer or nil.

Description

The function call-system-showing-output is an extension to call-system which allows output to be redirected. On
non-Windows platforms this means it can be redirected to places other than the shell process from which the LispWorks
image was invoked. call-system-showing-output therefore allows the user to, for example, invoke a shell command
and redirect the output to the current Listener window.

command is interpreted as by call-system. On Microsoft Windows there is one difference: when command is a non-empty
list or vector and the executable (that is, the first element of the sequence command) in call-system-showing-output is
not a GUI application, LispWorks hides the first window, which is the console that the executable will normally open. Note
that for a non-direct command (that is, a string) LispWorks always hides the first window (which is the console) in both
call-system and call-system-showing-output.

If current-directory is non-nil, then it must be a pathname designator for a directory and is used as the current directory in the
new process. Otherwise, the current directory of the LispWorks process is used (the default).

prefix is a prefix to be printed at the start of any output line. The default value is "; ".

show-cmd specifies whether or not the cmd invoked will be printed as well as the output for that command. If t then cmd will
be printed. The default value for show-cmd is t.

output-stream specifies where the output will be sent to. If output-stream is an output stream, the output is written to it. If
output-stream is t, the output is written to *standard-output*. If output-stream is nil, the output is collected as a string,

47 The SYSTEM Package

1444

and returned as a second value output-string-or-signal-number. If output-stream is :tty, call-system-showing-output
behaves like call-system. The default value is *standard-output*. On non-Windows platforms, if output-stream is
non-nil and the process was terminated by a signal, then the second return value output-string-or-signal-number is the
number of that signal. For a discussion of these return values see 27.7.1 Interpreting the exit status.

If wait is true, call-system-showing-output does not return until the process has exited. If nil,
call-system-showing-output returns immediately and no output is shown. The default for wait is t.

shell-type is a string naming a UNIX shell. The default is "/bin/sh".

If kill-process-on-abort is true, then when call-system-showing-output is aborted the process is killed. The default
value of kill-process-on-abort is nil.

external-format specifies the external format to use if it is not :default. See 26.7 External Formats to translate Lisp
characters from/to external encodings for a description of external formats. external-format is ignored if wait is nil or
output-stream is :tty.

On non-Windows platforms, if external-format is :default, then LispWorks tries to determine the external format to use
using the POSIX environment variables LC_ALL, LC_CTYPE and LANG (in that order). If it fails to find a known external
format, call-system-showing-output creates a stream that does not use an external format.

On Windows if external-format is :default it does not use external format.

On non-Windows platforms, the command line arguments and environment variables are encoded as specfied in 27.14.1
Encoding of file names and strings in OS interface functions.

call-system-showing-output returns the exit status of the shell invoked to execute the command on non-Windows
platforms, or the process created on Microsoft Windows.

Compatibility note

• On Microsoft Windows, LispWorks 8.1 and later, current-directory defaults to the current directory of the LispWorks
process. In previous releases, it defaulted to the pathname-location of the current-pathname. In practice, this is
only different when loading or compiling a file.

Examples

On Linux:

CL-USER 1 > (sys:call-system-showing-output "pwd" :prefix "***")
***pwd
***/amd/xanfs1-cam/u/ldisk/sp/lispsrc/v42/builds
0

CL-USER 2 > (sys:call-system-showing-output "pwd" :prefix "&&&"
 :show-cmd nil)
&&&/amd/xanfs1-cam/u/ldisk/sp/lispsrc/v42/builds
0

On Microsoft Windows:

CL-USER 223 > (sys:call-system-showing-output
 "cmd /c type hello.txt"
 :prefix "***")
***cmd /c type hello.txt
***Hi there
0

CL-USER 224 > (sys:call-system-showing-output
 "cmd /c type hello.txt"

47 The SYSTEM Package

1445

 :prefix "&&&"
 :show-cmd nil)
&&&Hi there
0

See also

call-system
open-pipe
run-shell-command

cdr-assoc Accessor

Summary

A generalized reference for alist elements.

Package

system

Signatures

cdr-assoc item alist &key test test-not key => result

setf (cdr-assoc item place &key test test-not key) value => value

Arguments

item⇓ An object.

alist⇓ An association list.

test⇓ A function designator.

test-not⇓ A function designator.

key⇓ A function designator.

place⇓ A setf place containing an association list.

value⇓ An object.

Values

result An object (from alist) or nil.

value An object.

Description

The accessor cdr-assoc provides a generalized reference for elements in an association list. The arguments are all as
specified for the Common Lisp function assoc. cdr-assoc and its setf expander read and write the cdr of an element in a
manner consistent with the Common Lisp notion of places.

cdr-assoc returns the cdr of the first cons in the alist alist that matches item (tested using test, test-not and key as for
assoc), or nil if no element of alist matches.

47 The SYSTEM Package

1446

http://www.lispworks.com/documentation/HyperSpec/Body/f_assocc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_assocc.htm

Using cdr-assoc with setf modifies the first cons in the value of place that matches item, setting its cdr to value. If no
element matches, then it pushes the value of (cons item value) onto the value of place and sets place to this new alist. This
is similar to how cl:getf is defined.

When place is a globally accessible place that may be read by another thread without synchronization (by a lock or other
synchronization mechanism), you need to wrap alist by globally-accessible. See 19.3.4 Making an object's contents
accessible to other threads for a discussion.

Examples

CL-USER 1 > (defvar *my-alist*
 (list (cons :foo 1)
 (cons :bar 2)))
MY-ALIST

CL-USER 2 > (setf (sys:cdr-assoc :bar
 my-alist) 3)
3

CL-USER 3 > *my-alist*
((:FOO . 1) (:BAR . 3))

check-network-server Variable

Summary

Indicates the presence of a network license.

Package

system

Initial Value

nil

Description

The variable *check-network-server* should always be set to t for a site (that is, network) license — the licensing
mechanism does not work in any other circumstances. Do not set the variable otherwise, as it overrides any useful diagnostics
which may accompany keyfile errors. Not applicable to LispWorks for Linux, Windows, x86/x64 Solaris, FreeBSD or
Macintosh.

coerce-to-gesture-spec Function

Summary

Returns a gesture-spec.

Package

system

47 The SYSTEM Package

1447

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_getf.htm

Signature

coerce-to-gesture-spec object &optional errorp => gspec

Arguments

object⇓ A character, keyword, gesture-spec or string.

errorp⇓ A generalized boolean.

Values

gspec⇓ A gesture-spec.

Description

The function coerce-to-gesture-spec returns a gesture-spec gspec which can be used to represent the keystroke
indicated by object.

If object is a Lisp character, then gspec's data is its cl:char-code and gspec's modifiers are 0.

If object is a keyword, then it must be one of the known Gesture Spec keywords and becomes gspec's data. gspec's modifiers
is 0.

If object is a string, then coerce-to-gesture-spec expects it to be a sequence of modifier key names separated by the -
character, followed by a single character or a character name as returned by name-char or the name of one of the known
Gesture Spec keywords. Then gspec contains the corresponding Gesture Spec keyword or char-code in its data, and the
modifier keys are represented in its modifiers.

If object is a gesture-spec, it is simply returned.

coerce-to-gesture-spec does not create wild gesture specs.

If object cannot be converted to a gesture-spec and errorp is non-nil (the default) then an error is signaled. Otherwise nil
is returned.

Examples

(sys:coerce-to-gesture-spec :F10)
=>
#S(SYSTEM:GESTURE-SPEC :DATA :F10 :MODIFIERS 0)

(sys:coerce-to-gesture-spec "Ctrl-C")
=>
#S(SYSTEM:GESTURE-SPEC :DATA 67 :MODIFIERS 2)

(sys:coerce-to-gesture-spec "Shift-F10")
=>
#S(SYSTEM:GESTURE-SPEC :DATA :F10 :MODIFIERS 1)

See also

gesture-spec
gesture-spec-control-bit
gesture-spec-p
gesture-spec-to-character
make-gesture-spec
print-pretty-gesture-spec

47 The SYSTEM Package

1448

http://www.lispworks.com/documentation/HyperSpec/Body/f_char_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_name_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_char_c.htm

compare-and-swap Macro

Summary

Performs a conditional store, atomically.

Package

system

Signature

compare-and-swap place compare new-value => result

Arguments

place⇓ One of the specific set of places defined for low level atomic operations.

compare⇓ An object.

new-value⇓ An object.

Values

result A boolean.

Description

The macro compare-and-swap compares the value in place with compare, and if they are the same (by eq), stores new-
value in place.

compare-and-swap returns non-nil if the store occurred, or nil if the store did not occur.

place must be one of the places described in 19.13.1 Low level atomic operations, or expand to one of them.

The operation is guaranteed to be atomic.

See also

atomic-exchange
low-level-atomic-place-p

copy-preferences-from-older-version Function

Summary

Copies uses preferences.

Package

system

47 The SYSTEM Package

1449

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm

Signature

copy-preferences-from-older-version old-path new-path &optional flag-name

Arguments

old-path⇓ A preference path.

new-path⇓ A preference path.

flag-name⇓ A string.

Description

The function copy-preferences-from-older-version copies uses preferences from one part of the registry to another.

old-path and new-path are the paths of preferences for the old and the new version, corresponding to the paths that were
passed to (setf product-registry-path).

flag-name is a name of the flag to use to record in the registry that the copy is already done. flag-name must be a valid
registry value name on Microsoft Windows, and a valid filename on all other platforms. The default value of flag-name is the
string "copied-old-preferences".

copy-preferences-from-older-version performs several checks:

1. It checks whether it already copied to new-path in the current session, and if so does nothing.

2. It checks whether flag-name entry exists, and if so it does nothing.

3. It checks whether another call to copy-preferences-from-older-version is already executing (in another thread),
and if so it just waits for the other call to finish.

Then if all the checks above indicate that copying is still needed, copy-preferences-from-older-version copies the
values from the tree below old-path to a tree below new-path. It traverses the entire tree below old-path, and checks each key
to see if it has any values.

For a key that has values, it checks whether the key exists under new-path, and if the key exists it does not copy any of the
values for this key, though it still traverses and maybe copies its subkeys. If the key does not exist under new-path, it creates
the key and copies the values.

Because it makes checks before doing any work, copy-preferences-from-older-version is an inexpensive call that
can be used freely.

See also

product-registry-path
user-preference

count-gen-num-allocation Function

Summary

Returns the amount of allocated data in a generation in 64-bit LispWorks.

47 The SYSTEM Package

1450

Package

system

Signature

count-gen-num-allocation gen-num &optional include-lower-generations => allocation

Arguments

gen-num⇓ An integer between 0 and 7, inclusive.

include-lower-generations⇓
A generalized boolean.

Values

allocation⇓ An integer.

Description

The function count-gen-num-allocation returns the amount of allocated data in generation gen-num. If include-lower-
generations is non-nil, the returned value allocation also includes the data in the younger generations.

Notes

count-gen-num-allocation is implemented only in 64-bit LispWorks. It is not relevant to the Memory Management API
in 32-bit implementations, where you can use room-values instead.

On the Mobile GC, the argument gen-num can be 0, 1, 2 or 3 (3 means permanent).

See also

room-values

debug-initialization-errors-in-snap-shot Variable

Summary

Controls use of the snapshot debugger.

Package

system

Initial Value

t

Description

The variable *debug-initialization-errors-in-snap-shot* controls whether, in an image which is configured to
start the LispWorks IDE automatically, an error during initialization is handled and displayed in a snapshot debugger after the

47 The SYSTEM Package

1451

IDE starts.

If the value of *debug-initialization-errors-in-snap-shot* is nil LispWorks behaves like LispWorks 5.0 and
previous versions. That is, it attempts to enter the command line debugger.

default-eol-style Function

Summary

Provides a default end of line style for a file.

Package

system

Signature

default-eol-style pathname ef-spec buffer length => new-ef-spec

Arguments

pathname⇓ Pathname identifying location of buffer.

ef-spec⇓ An external format spec.

buffer⇓ A buffer whose contents are examined.

length⇓ Length (an integer) up to which buffer should be examined.

Values

new-ef-spec A new external format spec created by merging ef-spec with the encoding that was found.

Description

The function default-eol-style merges ef-spec with (:default :eol-style :crlf) on Microsoft Windows,
(:default :eol-style :lf) on non-Windows platforms. This is usually used as the last function on its list.

pathname, buffer and length are ignored.

See also

file-eol-style-detection-algorithm

default-stack-group-list-length Variable

Summary

The size of the stack cache.

Package

system

47 The SYSTEM Package

1452

Initial Value

10

Description

The variable *default-stack-group-list-length* determines the maximum size of the stack cache.

Process stacks are cached and reused. When a process dies, its stack is put in the stack cache for future reuse if there are
currently less than *default-stack-group-list-length* stacks in the cache. Therefore if your application repeatedly
creates and discards more than 10 processes you should consider increasing the value of this variable.

See also

mark-and-sweep

define-atomic-modify-macro Macro

Summary

An atomic version of define-modify-macro.

Package

system

Signature

define-atomic-modify-macro name lambda-list function &optional doc-string => name

Arguments

name⇓ A symbol.

lambda-list⇓ A define-modify-macro lambda list.

function⇓ A symbol.

doc-string⇓ A string, not evaluated.

Values

name A symbol.

Description

The macro define-atomic-modify-macro has the same syntax as cl:define-modify-macro, and performs a similar
operation.

The resulting macro name can be used only on one of the specific set of places defined for low level atomic operations as
listed in 19.13.1 Low level atomic operations. The macro name reads the value of the place, calls the function function with
that value and the other arguments from lambda-list, and then writes the result of the function call if the value in place has
not changed since it was first read. If that value did change, the operation is repeated until it succeeds.

Note that this means:

47 The SYSTEM Package

1453

http://www.lispworks.com/documentation/HyperSpec/Body/m_defi_2.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defi_2.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defi_2.htm

1. The function function may be called more than once for each invocation of the defined macro. Therefore function should
not have any side effects.

2. function must be thread-safe, because it may run concurrently in several threads if the defined macro name is used from
several threads simultaneously.

3. It is possible in principle for the value to change more than once between reading the place and writing the new value.
This may end up resetting the value in place to its original value, and hence the operation will succeed. This is
equivalent to the code being invoked after the last change, unless function itself looks at place, which may cause
inconsistent results.

If doc-string is supplied then it is stored as the function documentation for name.

See also

low-level-atomic-place-p

define-top-loop-command Macro

Summary

Defines a top level loop command.

Package

system

Signature

define-top-loop-command name-and-options lambda-list form*

name-and-options ::= name | (name {option}*)

option ::= (:aliases {alias}*) | (:result-type result-type)

Arguments

lambda-list⇓ A destructuring lambda list.

form⇓ Lisp forms.

name⇓ A keyword naming the command.

alias⇓ A keyword naming an alias for the command.

result-type⇓ One of the symbols values, eval and nil.

Description

The macro define-top-loop-command defines a top level loop command called name which takes the parameters
specified by lambda-list. If &whole is used in lambda-list then the variable will be bound to a list containing the whole
command line, including the command name, but the command name is not included in lambda-list otherwise.

If any alias's are specified in option, these keywords will also invoke the command.

When the command is used, each form is evaluated in sequence with the variables from lambda-list bound to the subsequent
forms on the command line.

47 The SYSTEM Package

1454

http://www.lispworks.com/documentation/HyperSpec/Body/a_values.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eval.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_dd.htm

If result-type is values (the default), then the values of the last form will be returned to the top level loop.

If result-type is eval, then the value of the last form should be a form and is evaluated by the top level loop as if it had been
entered at the prompt.

If result-type is nil, then the last form should return two values. If the second value is nil then the first value is treated as a
list of values to returned to the top level loop. If the second value is non-nil then the first value should be a form and is
evaluated by the top level loop as if it had been entered at the prompt.

Notes

For details of pre-defined top level loop commands, enter :? at the Listener prompt.

Examples

Given this definition:

(define-top-loop-command (:lave
 (:result-type eval)) (form)
 (reverse form))

then the command line:

:lave (1 2 list)

will evaluate the form (list 2 1).

Here are definitions for two commands both of which will run apropos:

(define-top-loop-command (:apropos-eval
 (:result-type eval))
 (&rest args)
 `(apropos ,@args))

(define-top-loop-command :apropos-noeval (&rest args)
 (apply 'apropos args))

The first one will evaluate the arguments before calling apropos whereas the second one will just pass the forms, so:

:apropos-noeval foo

will find all the symbols containing the string foo, whereas:

(setq foo "bar")

:apropos-eval foo

will find all the symbols containing the string bar.

47 The SYSTEM Package

1455

http://www.lispworks.com/documentation/HyperSpec/Body/a_values.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eval.htm

detect-eol-style Function

Summary

Detects the end of line style of a file.

Package

system

Signature

detect-eol-style pathname ef-spec buffer length => new-ef-spec

Arguments

pathname⇓ Pathname identifying location of buffer.

ef-spec⇓ An external format spec.

buffer⇓ A buffer whose contents are examined.

length⇓ Length (an integer) up to which buffer should be examined.

Values

new-ef-spec A new external format spec created by merging ef-spec with the encoding that was found.

Description

The function detect-eol-style attempts to detect the end of line style from buffer.

When the encoding in ef-spec has foreign type (unsigned-byte 8), search buffer up to length for the first occurrence of
the byte (10). If found, and it is preceded in buffer by (13), merge ef-spec with:

(:default :eol-style :crlf)

If found and is not preceded by (13), merge ef-spec with:

(:default :eol-style :lf)

Thus a complete external format spec is constructed. Otherwise, return ef-spec.

When the encoding in ef-spec has foreign type (unsigned-byte 16), search buffer up to length for the first occurrence of
the byte sequence (13 0 10). If found, merge ef-spec with:

(:default :eol-style :crlf)

If (13 0 10) is not found, search buffer up to length for (10 0) or (0 10). If found, merge ef-spec with:

(:default :eol-style :lf)

Thus a complete external format spec is constructed. Otherwise, return ef-spec.

47 The SYSTEM Package

1456

pathname is ignored.

See also

file-eol-style-detection-algorithm

detect-japanese-encoding-in-file Function

Summary

Determines which type of Japanese encoding is used in a buffer.

Package

system

Signature

detect-japanese-encoding-in-file pathname ef-spec buffer length => new-ef-spec

Arguments

pathname⇓ Pathname identifying location of buffer.

ef-spec⇓ An external format spec.

buffer⇓ A buffer whose contents are examined.

length⇓ Length (an integer) up to which buffer should be examined.

Values

new-ef-spec A new external format spec created by merging ef-spec with the Japanese encoding that
was found.

Description

The function detect-japanese-encoding-in-file assumes the encoding is one of :jis, :sjis, :euc, :unicode
and :ascii, and tries to determine which of these it is, by looking for distinctive byte sequences in buffer up to length. If
found, merge ef-spec with that encoding.

pathname is ignored.

See also

file-encoding-detection-algorithm

47 The SYSTEM Package

1457

detect-unicode-bom
detect-utf32-bom
detect-utf8-bom Functions

Summary

Looks for the Unicode Byte Order Mark, which if found is assumed to indicate the matching Unicode encoding.

Package

system

Signatures

detect-unicode-bom pathname ef-spec buffer length => new-ef-spec

detect-utf32-bom pathname ef-spec buffer length => new-ef-spec

detect-utf8-bom pathname ef-spec buffer length => new-ef-spec

Arguments

pathname⇓ Pathname identifying the location of buffer.

ef-spec⇓ An external format spec.

buffer⇓ A buffer whose contents are examined.

length⇓ Length (an integer) up to which buffer should be examined.

Values

new-ef-spec A new external format spec created by merging ef-spec with the encoding that was found.

Description

These functions are called as part of open's encoding detection routine, and try to detect the encoding if it is not already
supplied by ef-spec (i.e. is not :default).

detect-unicode-bom tries to detect UTF-16 encoding.

detect-utf32-bom tries to detect UTF-32 encoding.

detect-utf8-bom tries to detect UTF-8 encoding.

These functions work by checking whether the bytes in buffer (bounded by length) starts with the Unicode character #xFEFF
(BOM) encoded in the relevant encoding, and if it does assumes the file is encoded in this encoding. detect-unicode-bom
and detect-utf32-bom also deduce the direction (little-endian or big-endian) if ef-spec does not include this.

Note that files starting with 0xff 0xfe 0x00 0x00 can match both UTF-16 and UTF-32 little-endian. By default
detect-utf32-bom is applied first, because it precedes detect-unicode-bom in
file-encoding-detection-algorithm. You can change this behavior by altering the order of functions in
file-encoding-detection-algorithm.

pathname is ignored.

47 The SYSTEM Package

1458

See also

file-encoding-detection-algorithm

directory-link-transparency Variable

Summary

Controls whether directory returns truenames on Unix-like systems.

Package

system

Initial Value

t on non-Windows platforms, nil on Microsoft Windows.

Description

In line with the ANSI Common Lisp standard, directory returns truenames by default.

Setting the variable *directory-link-transparency* to nil allows you to get the old behavior of directory,
whereby soft links are not resolved in the pathnames returned.

directory-link-transparency is the default value of the link-transparency argument to directory.

See also

directory

ensure-loads-after-loads Function

Summary

For expert use: Ensures all following loads in the program are executed after all prior loads.

Package

system

Signature

ensure-loads-after-loads => nil

Description

The function ensure-loads-after-loads is a synchronization function which ensures order of memory between
operations in different threads.

See 19.13.3 Ensuring order of memory between operations in different threads for a full description and example.

47 The SYSTEM Package

1459

Notes

You should have a good understanding of multiprocessing issues at the CPU level to write code that actually needs this.

See also

ensure-memory-after-store
ensure-stores-after-memory
ensure-stores-after-stores

ensure-memory-after-store Function

Summary

For expert use: Ensures all following stores and loads in the program are executed after all prior stores.

Package

system

Signature

ensure-memory-after-store => nil

Description

The function ensure-memory-after-store is a synchronization function which ensures order of memory between
operations in different threads.

See 19.13.3 Ensuring order of memory between operations in different threads for a full description and example.

Notes

You should have a good understanding of multiprocessing issues at the CPU level to write code that actually needs this.

See also

ensure-loads-after-loads
ensure-stores-after-memory
ensure-stores-after-stores

ensure-stores-after-memory Function

Summary

For expert use: Ensures all following stores in the program are executed after all prior stores and loads.

Package

system

47 The SYSTEM Package

1460

Signature

ensure-stores-after-memory => nil

Description

The function ensure-stores-after-memory is a synchronization function which ensures order of memory between
operations in different threads.

See 19.13.3 Ensuring order of memory between operations in different threads for a full description and example.

Notes

You should have a good understanding of multiprocessing issues at the CPU level to write code that actually needs this.

See also

ensure-loads-after-loads
ensure-memory-after-store
ensure-stores-after-stores

ensure-stores-after-stores Function

Summary

For expert use: Ensures all following stores in the program are executed after all prior stores.

Package

system

Signature

ensure-stores-after-stores => nil

Description

The function ensure-stores-after-stores is a synchronization function which ensures order of memory between
operations in different threads.

See 19.13.3 Ensuring order of memory between operations in different threads for a full description and example.

Notes

You should have a good understanding of multiprocessing issues at the CPU level to write code that actually needs this.

See also

ensure-loads-after-loads
ensure-memory-after-store
ensure-stores-after-memory

47 The SYSTEM Package

1461

extended-spaces Variable

Summary

Extends the notion of space to include more than just the space character.

Package

system

Initial Value

nil

Description

When the variable *extended-spaces* is true, the concept of "space" is extended from just #\Space to include other
appropriate characters. The default is nil, for ANS compliance, but we recommend that you set it to t.

This variable controls how the format directives ~:C and ~:@C output graphic characters which have an empty glyph. When
this variable is t, all such characters are output using the name:

(format nil "~:C" #\No-break-space) -> "No-Break-Space"
(format nil "~:C" (code-char #x3000)) -> "Ideographic-Space"

When false, only one such character is output using the name:

(format nil "~:C" #\Space) -> "Space"
(format nil "~:C" #\No-break-space) -> " "
(format nil "~:C" (code-char #x3000)) -> " "

It also affects whitespace-char-p.

See also

whitespace-char-p

file-encoding-detection-algorithm Variable

Summary

List of functions to call to work out an encoding.

Package

system

Initial Value

(find-filename-pattern-encoding-match
 find-encoding-option

47 The SYSTEM Package

1462

 detect-utf32-bom
 detect-unicode-bom
 detect-utf8-bom
 specific-valid-file-encoding
 locale-file-encoding)

Description

The variable *file-encoding-detection-algorithm* contains a list of functions to call to work out an encoding for a
file.

Functions on this list take four arguments—the pathname of the file; an external format spec; a vector of element-type
(unsigned-byte 8) which contains the first bytes of the file; and a non-negative integer which is the maximum extent of
buffer to be searched. This length argument is 0 in the case that the file does not exist, or the direction is :output. They
return an external format spec, which normally is either ef-spec unmodified, or the result of merging ef-spec with another
external format spec via merge-ef-specs.

See the entry for guess-external-format for details of how *file-encoding-detection-algorithm* is used.

Notes

For files starting with 0xff 0xfe 0x00 0x00, both detect-utf32-bom and detect-unicode-bom may match it.
detect-utf32-bom is called first so by default the encoding will be detected as (:utf-32 :little-endian t). You
can change this behavior by setting *file-encoding-detection-algorithm* to a re-ordered list.

Examples

If you want open and so on, when opening a file for input, to inspect the attribute line and then fall back to a default if no
attribute line is found, then set the variable to this value:

(find-encoding-option locale-file-encoding)

There are further examples in 26.7.3.3 Guessing the external format.

See also

find-filename-pattern-encoding-match
find-encoding-option
detect-unicode-bom
detect-japanese-encoding-in-file
guess-external-format
locale-file-encoding

file-encoding-resolution-error Condition Class

Summary

An error type to signal when an external file format cannot be deduced.

Package

system

47 The SYSTEM Package

1463

Superclasses

error

Initargs

:ef-spec An external format specification.

Description

An instance of the condition class file-encoding-resolution-error is signaled when open, load or compile-file
fail to detect an external format to use.

The ef-spec slot contains the incomplete external format specification argument constructed by guess-external-format.

See also

guess-external-format

file-eol-style-detection-algorithm Variable

Summary

List of functions for determining the end of line style of a file.

Package

system

Initial Value

(detect-eol-style default-eol-style)

Description

The variable *file-eol-style-detection-algorithm* contains a list of functions for determining the end of line style
of a file.

Functions on this list satisfy the same specifications as for those in *file-encoding-detection-algorithm*. However
they will only be passed an external format spec with the name already determined.

See also

detect-eol-style
default-eol-style
guess-external-format

47 The SYSTEM Package

1464

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

filename-pattern-encoding-matches Variable

Summary

An association of filename patterns to external format specs.

Package

system

Initial Value

(("TAGS" . (:latin-1 :eol-style :lf)))

Description

The variable *filename-pattern-encoding-matches* is an alist of filename patterns to external format specs.

See find-filename-pattern-encoding-match for details of how this is used.

See also

find-filename-pattern-encoding-match

find-encoding-option Function

Summary

Examines a buffer for an encoding option.

Package

system

Signature

find-encoding-option pathname ef-spec buffer length => result

Arguments

pathname⇓ Pathname identifying location of buffer.

ef-spec⇓ An external format spec.

buffer⇓ A buffer whose contents are examined.

length⇓ Length (an integer) up to which buffer should be examined.

Values

result⇓ An external format spec.

47 The SYSTEM Package

1465

Description

The function find-encoding-option looks in buffer (bounded by length) for file options (EMACS-style -*- lines)
containing an option called encoding or external-format, with value value.

If encoding or external-format is found, it reads value as a Lisp expression in the keyword package. If coding is
found, it attempts to translate value from a GNU Emacs coding system name to a LispWorks external-format name.

It then merges ef-spec with the external format spec derived from value, and returns the result as result. Thus it does not
override a supplied ef-spec.

pathname is ignored.

See also

file-encoding-detection-algorithm

find-filename-pattern-encoding-match Function

Summary

Finds the encoding of a file based on the filename.

Package

system

Signature

find-filename-pattern-encoding-match pathname ef-spec buffer length => new-ef-spec

Arguments

pathname⇓ Pathname identifying location of buffer.

ef-spec⇓ An external format spec.

buffer⇓ A buffer whose contents are examined.

length⇓ Length (an integer) up to which buffer should be examined.

Values

new-ef-spec⇓ An external format spec.

Description

The function find-filename-pattern-encoding-match compares pathname (using pathname-match-p) with
elements of *filename-pattern-encoding-matches*.

If a match is found, merges ef-spec with the corresponding external format spec and returns the result as new-ef-spec. Thus it
does not override a supplied ef-spec.

buffer and length are ignored.

47 The SYSTEM Package

1466

http://www.lispworks.com/documentation/HyperSpec/Body/f_pn_mat.htm

See also

file-encoding-detection-algorithm
filename-pattern-encoding-matches

force-using-select-for-io Function

Summary

For expert use: Tell LispWorks whether to use select or poll when waiting for I/O on non-Windows platforms.

Package

system

Signature

force-using-select-for-io fd-count

Arguments

fd-count⇓ nil or an (integer 16 #x100000).

Description

The function force-using-select-for-io tells LispWorks whether to use select or poll when waiting for I/O on non
-Windows platforms.

If fd-count is nil, LispWorks will use poll to wait for I/O. This is the default on all architectures except macOS and iOS.

If fd-count is non-nil, LispWorks will use select to wait for I/O. In this case, fd-count must be integer in the range 16 to
#x100000. It specified the maximum expected value of a file descriptor.

force-using-select-for-io must be called before starting multiprocessing, and before any application-initiated I/O.

Notes

force-using-select-for-io is provided for situations where the underlying implementation of poll is not working
properly, which is difficult to identify in general. Therefore, before using force-using-select-for-io, contact
LispWorks support to check if it is the right solution to the issue you try to resolve.

LispWorks can cope with file descriptors that are larger than fd-count, with a small overhead. A larger fd-count also means
more overhead. Thus, ideally, you want fd-count to be as small as possible but larger than any file descriptor that the
application ever creates, but it is not important to get it right. Typical values are between 256 and 4096.

generation-number Function

Summary

Returns the current generation number for an object.

47 The SYSTEM Package

1467

Package

system

Signature

generation-number object => integer

Arguments

object⇓ A Lisp object.

Values

integer An integer.

Description

The function generation-number returns the generation number in which the Lisp object object currently is. See the
discussion in 11 Memory Management.

If object is an immediate object then generation-number returns -1. Immediates are objects which are not allocated,
including fixnums, characters and short floats, and single floats in 64-bit LispWorks.

See also

11.2 Guidance for control of the memory management system

gen-num-segments-fragmentation-state Function

Summary

Shows the fragmentation state in a generation in 64-bit LispWorks.

Package

system

Signature

gen-num-segments-fragmentation-state gen-num &optional statics-too => fragmentation-state

Arguments

gen-num⇓ A number.

statics-too⇓ A generalized boolean?.

Values

fragmentation-state A list in which each element is a list of length 3.

47 The SYSTEM Package

1468

Description

The function gen-num-segments-fragmentation-state shows the fragmentation state in generation gen-num in 64-bit
LispWorks.

gen-num-segments-fragmentation-state returns a list, where each element is a sub-list showing the fragmentation
state in a segment. The sub-list is of the form:

(allocation-type allocated free)

where allocation-type is the allocation type of the segment, allocated is the amount of allocated data in the segment, and free
is the total size of free areas in the segment that cannot be easily used.

The ratio free/allocated is the ratio that is compared to the fragmentation threshold to decide whether to copy a segment
when doing a marking GC with copying (see set-blocking-gen-num and marking-gc).

Allocation types :cons-static, :non-pointer-static, :mixed-static, :other-big and :non-pointer-big are
included in the result only if statics-too is non-nil. The default value of statics-too is nil.

Notes

1. The implementation of set-blocking-gen-num is intended to solve any fragmentation issues automatically.

2. gen-num-segments-fragmentation-state is implemented only in 64-bit LispWorks. It does nothing in the Mobile
GC and its return value is not meaningful. It is not relevant to the Memory Management API in 32-bit implementations,
where check-fragmentation is available instead.

See also

check-fragmentation
marking-gc
set-blocking-gen-num
11.2 Guidance for control of the memory management system

gesture-spec System Class

Summary

A class for input gestures.

Package

system

Superclasses

t

Readers

gesture-spec-data
gesture-spec-modifiers

47 The SYSTEM Package

1469

Description

Instances of the system class gesture-spec are used to represent input gestures. A gesture-spec represents either a
character or a keystroke like F6 and potential modifiers like Shift and Control. They are produced by LispWorks itself in
response to user input and passed to user callbacks. They can also be made explictly by make-gesture-spec and
coerce-to-gesture-spec.

gesture-spec-data returns the data of the gesture-spec. If the gesture-spec represents a character,
gesture-spec-data returns the char-code of this character. If the gesture-spec represents a keystroke,
gesture-spec-data returns a keyword such as :f6 representing this key. See make-gesture-spec for a full list of
possible keywords.

gesture-spec-modifiers returns an integer representing the modifiers in the gesture-spec. The integer is a
combination by logior of some (or none) of the constants gesture-spec-accelerator-bit,
gesture-spec-control-bit, gesture-spec-meta-bit, gesture-spec-hyper-bit, gesture-spec-shift-bit
and gesture-spec-super-bit.

Compatibility note

The concept of gesture specs existed prior to LispWorks 8.0, but gesture-spec was an internal undocumented symbol.

See also

make-gesture-spec
coerce-to-gesture-spec
print-pretty-gesture-spec
gesture-spec-p
coerce-to-gesture-spec
gesture-spec-accelerator-bit
gesture-spec-control-bit
gesture-spec-meta-bit
gesture-spec-hyper-bit
gesture-spec-shift-bit
gesture-spec-super-bit

gesture-spec-accelerator-bit
gesture-spec-caps-lock-bit
gesture-spec-control-bit
gesture-spec-hyper-bit
gesture-spec-meta-bit
gesture-spec-shift-bit
gesture-spec-super-bit Constants

Summary

Used in the representation of keystrokes with the various modifier keys.

Package

system

47 The SYSTEM Package

1470

http://www.lispworks.com/documentation/HyperSpec/Body/f_char_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_logand.htm

Description

These constants are used to represent the accelerator and modifier keys in a gesture-spec, as follows:

gesture-spec-accelerator-bit

Accelerator key.

gesture-spec-caps-lock-bit

Caps Lock modifier key.

gesture-spec-control-bit

Control modifier key.

gesture-spec-hyper-bit

Hyper modifier key.

gesture-spec-meta-bi
t

Meta modifier key.

gesture-spec-shift-bit

Shift modifier key.

gesture-spec-super-bit

Super modifier key.

See the reference entry for capi:output-pane in the CAPI User Guide and Reference Manual for more information about
the use of Gesture Specs.

Notes

1. You may not construct a gesture-spec with a both-case-p character represented in the data and with modifiers
equal to gesture-spec-shift-bit. See make-gesture-spec for details and examples.

2. The gesture-spec-caps-lock-bit is used to represent the state of Caps Lock, in situations where the bits are used
to represent the keyboard state. It is not used in Gesture Specs that are generated by the system.

3. The gesture-spec-hyper-bit is used to represent the Command key.

4. The gesture-spec-accelerator-bit is a "virtual" bit. It corresponds to different keys on different GUI systems,
currently these are Command on Cocoa, Control on GTK+ and Control on Windows.

See also

coerce-to-gesture-spec
gesture-spec-modifiers
make-gesture-spec

47 The SYSTEM Package

1471

http://www.lispworks.com/documentation/HyperSpec/Body/f_upper_.htm

gesture-spec-p Function

Summary

The predicate for gesture-spec objects.

Package

system

Signature

gesture-spec-p object => result

Arguments

object⇓ A Lisp object.

Values

result A boolean.

Description

The function gesture-spec-p is the predicate for whether the object object is a gesture-spec.

See also

coerce-to-gesture-spec
make-gesture-spec
gesture-spec

gesture-spec-to-character Function

Summary

Returns the character corresponding to a gesture-spec.

Package

system

Signature

gesture-spec-to-character gspec &key errorp => char

Arguments

gspec⇓ A gesture-spec.

errorp⇓ A generalized boolean.

47 The SYSTEM Package

1472

Values

char A Lisp character.

Description

The function gesture-spec-to-character returns the Lisp character object corresponding to gspec.

A gesture-spec with modifiers or data which is not an integer cannot be converted to a character. When supplied such a
gesture-spec, gesture-spec-to-character either signals an error (if errorp is true), or returns nil (if errorp is nil).
The default value of errorp is t.

gesture-spec-accelerator-bit is ignored.

Compatibility note

In LispWorks 6.1 and earlier versions, gesture-spec-to-character allows modifiers and does not error when the data is
not an integer. LispWorks 7.0 and later versions do not support character bits, therefore if gspec contains non-zero modifier
bits, gesture-spec-to-character signals an error.

See also

coerce-to-gesture-spec
make-gesture-spec

get-file-stat Function

Summary

Provides read access to the C stat structure which describes files.

Package

system

Signature

get-file-stat filename-or-fd => file-stat, errno

Arguments

filename-or-fd⇓ A string denoting a file, or a file descriptor.

Values

file-stat⇓ On success, an object representing the stat values, otherwise nil.

errno⇓ On failure, indicates the errno value returned by the system call.

Description

The function get-file-stat returns an object representing the stat values associated with filename-or-fd, as would be
returned by the system call stat (for a filename) or the system call fstat (for an fd). It is not applicable on Microsoft

47 The SYSTEM Package

1473

http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

Windows.

The values in file-stat are the raw data, and it is the responsibility of the user to interpret them when needed. See the POSIX
manual entry for stat for details.

On failure, nil is returned as the first value file-stat and the second value errno is the errno from the system call.

The values can be read from file-stat by these readers:

sys:file-stat-inode

The inode of the file.

sys:file-stat-device

The id of the device where the file is.

sys:file-stat-owner-id

The user id of the owner of the file.

sys:file-stat-group-id

The group id of the file's group.

sys:file-stat-size The size of the file in bytes.

sys:file-stat-blocks

The number of 512-bytes blocks used by the file.

sys:file-stat-mode The protection value of the file.

sys:file-stat-last-access

The time of the last access to the file in seconds from 1 January 1970.

sys:file-stat-last-change

The time of the last change in the data of the file in seconds from 1 January 1970.

sys:file-stat-last-modify

The time of the last modification of the file status in seconds from 1 January 1970.

sys:file-stat-links

The number of hard links to the file.

sys:file-stat-device-type

The device type (sometimes called Rdev).

47 The SYSTEM Package

1474

get-folder-path Function

Summary

Gets the path of a special folder.

Package

system

Signature

get-folder-path what &key create => result

Arguments

what⇓ A keyword.

create⇓ A boolean.

Values

result⇓ A directory pathname naming the path, or nil.

Description

The function get-folder-path obtains the current value for various special folders often used by applications. It is useful
because these paths may differ between versions of the operating system. get-folder-path is implemented all platforms,
using system APIs on Microsoft Windows, macOS, iOS and Android.

On platforms other than Windows, macOS, iOS and Android it is a dummy function, which makes a path to a directory
inside the user's home directory that looks like <homedir>/get-folder-path/<symbol-name-downcased>. This
allows testing code that uses get-folder-path to work in the sense that files can be written and read from these
directories.

what indicates the purpose of the special folder. For instance, :common-appdata means the folder containing application
data for all users.

The following values of what are recognized on Microsoft Windows, macOS and iOS:

:appdata, :documents, :my-documents and :local-appdata.

:documents is an alias for :my-documents.

The following values of what are recognized on Microsoft Windows, macOS:

:common-appdata and :common-documents.

The following values are recognized on Microsoft Windows only: :program-files, :programs and
:common-programs.

The following values are recognized on macOS and iOS only:

:my-library, :my-appsupport, :my-preferences, :my-caches and :my-logs.

47 The SYSTEM Package

1475

The following values are recognized on macOS only:

:common-library, :common-appsupport, :common-preferences, :common-caches, :common-logs,
:system-library.

On macOS and iOS, :appdata is an alias for :my-appsupport, :common-appdata is an alias for
:common-appsupport, and :local-appdata is an alias for :common-appsupport.

If the folder does not exist and create is true, the folder is created. If the folder does not exist and create is false, result is
nil. The default value of create is false.

The following values of what are recognized on Android:

:appdata, :local-appdata

Both of these return the same directory. It is the directory which is returned by the
getFilesDir on the application context. Note that this is a private directory, not visible to other
applications.

:my-documents, :documents

On Android 4.4 and later this returns the "documents" directory in the "public external" directory
(the result of calling
android.os.Environment.getExternalStoragePublicDirectory with the value of
android.os.Environment.DIRECTORY_DOCUMENTS). In previous versions it uses the
"downloads" directory, because there does not seem to be another useful place for it.

Note: This is used as the home directory on Android, that is what
cl:user-homedir-pathname returns.

:alarms, :dcim, :downloads, :movies, :music, :notifications, :pictures, :podcasts, :ringtones

Return the matching directory in the "public external" directory. This is the result of calling
android.os.Environment.getExternalStoragePublicDirectory with the value of
android.os.Environment.DIRECTORY_name, where name is the symbol name of what, for
example android.os.Environment.DIRECTORY_RINGTONES.

:common-appdata Returns the external storage directory of the application if it is accessible, otherwise returns nil.
The external storage directory is the result of calling getExternalFilesDir on the
application context with null.

Note that the application will need permission to access the external storage, by having uses-
permission android.permission.WRITE_EXTERNAL_STORAGE or
android.permission.READ_EXTERNAL_STORAGE in the AndroidManifest.xml file.

Compatibility notes

1. In LispWorks 6.1 and earlier versions, get-folder-path is implemented only on Windows and macOS.

2. In LispWorks 5.0 and previous versions, get-folder-path returns a string.

Examples

This form constructs a pathname to a file foo.lisp in the user's documents directory:

(make-pathname
 :name "foo"
 :type "lisp"

47 The SYSTEM Package

1476

http://www.lispworks.com/documentation/HyperSpec/Body/f_user_h.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_null.htm

 :defaults
 (sys:get-folder-path :my-documents))

See also

get-user-profile-directory

get-maximum-allocated-in-generation-2-after-gc Function

Summary

Mobile GC only: Returns the maximum number of allocated bytes in generation 2 immediately after a GC.

Package

system

Signature

get-maximum-allocated-in-generation-2-after-gc &optional reset-p => other-size-in-bytes, cons-size-in-byte,
gen-2-gc-count

Arguments

reset-p⇓ Boolean.

Values

other-size-in-bytes⇓, cons-size-in-byte⇓, gen-2-gc-count⇓
Integers.

Description

The function get-maximum-allocated-in-generation-2-after-gc returns the maximum bytes used by live objects
in generation 2 immediately after any of the preceding GCs of generation 2 since the previous "reset" (a call to
get-maximum-allocated-in-generation-2-after-gc with reset-p non-nil). It also returns the number of GCs of
generation 2 since the previous reset.

other-size-in-bytes is the maximum size of live objects in Other segments (that is not Cons, Large or Static) immediately after
any of these GCs, and cons-size-in-byte is the maximum size of live conses.

gen-2-gc-count if the number of GCs of generation 2 that have occurred since the last call with reset-p non-nil.

The values of other-size-in-bytes and cons-size-in-byte match the values that would have been reported for generation 2 by
room, if it had been called immediately after a GC of generation 2.

reset-p defaults to nil. When it is non-nil, the maximums and count are reset to 0.

Notes

The purpose of get-maximum-allocated-in-generation-2-after-gc is to give useful information for controlling
generation 2, for example to decide what values to use in set-expected-allocation-in-generation-2-after-gc.
This function is also useful for just counting the number of GCs of generation 2.

47 The SYSTEM Package

1477

See also

set-expected-allocation-in-generation-2-after-gc
11.5.3.2 Preventing/reducing GC of generation 2

get-user-profile-directory Function

Summary

Gets the root of the user's profile on a Windows system.

Package

system

Signature

get-user-profile-directory => result

Values

result⇓ A directory pathname naming the path, or nil.

Description

The function get-user-profile-directory obtains the path to the current user's profile folder on a Windows system.
get-user-profile-directory is implemented only on Microsoft Windows.

result names the root of the profile directory.

Note that the default path for each user's profile may differ between versions of the operating system.

Compatibility notes

In LispWorks 5.0 and previous versions, get-user-profile-directory returns a string.

Examples

On Windows 10, Windows 8 and Windows 7:

(sys:get-user-profile-directory)
=>
#P"C:/Users/dubya/"

On Windows XP (now unsupported):

(sys:get-user-profile-directory)
=>
#P"C:/Documents and Settings/dubya/"

See also

get-folder-path

47 The SYSTEM Package

1478

globally-accessible Macro

Summary

A wrapper setf place that ensures earlier stores are visible to other threads before storing into the inner place.

Package

system

Signature

globally-accessible place => value

Arguments

place⇓ A generalized reference form as described in section 5.1.1 Overview of Places and
Generalized Reference of the Common Lisp Hyperspec.

Values

value Any Lisp object.

Description

The macro globally-accessible expands to place. The effect of using (globally-accessible place) is the same as
place, except when used inside setf or a related macro such as push or incf where it also ensures all stores are visible to
other threads before modifying place. This includes all the stores that were made into the new value and, for a modifying
macro or complex accessor, any stores that are done by the expansion.

See 19.3.5 Ensuring stores are visible to other threads for a full discussion when globally-accessible is needed.

When used with accessors that take a place as argument (getf, mask-field, ldb or cdr-assoc),
globally-accessible needs to be used around innermost place, rather than the accessor, for example:

(setf (getf (sys:globally-accessible *a-global-symbol*)
 key)
 value)

rather than:

(setf ; WRONG
 (sys:globally-accessible
 (getf *a-global-symbol* key))
 value)

globally-accessible tries to avoid ensuring all stores when it is possible to avoid it, for example when used inside
pushnew if the value is already in the list.

Notes

You do not need to use globally-accessible when any of the following apply:

47 The SYSTEM Package

1479

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/05_aa.htm
http://www.lispworks.com/documentation/HyperSpec/Body/05_aa.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_push.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_getf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mask_f.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_ldb.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_pshnew.htm

• place can be accessed only by the same thread that stores into it (so it is not globally accessible). This is the common
situation for stores.

• Access to place (both read and writes) is synchronized between threads, normally by a lock but maybe by some other
synchronization mechanism. This is the preferred way to access globally accessible cells.

• The store is done by one of: (setf gethash), vector-push, vector-push-extend,
(setf symbol-function), (setf macro-function) and the hash-table or vector containing the globally
accessible cell was not created as single-threaded.

In other cases (globally accessible cells which are read without synchronization), you probably need
globally-accessible. See 19.3.5 Ensuring stores are visible to other threads for exact details.

See also

19.3.5 Ensuring stores are visible to other threads

guess-external-format Function

Summary

Tries to work out the external format.

Package

system

Signature

guess-external-format pathname ef-spec buffer length => ef-spec

Arguments

pathname⇓ Pathname identifying location of buffer.

ef-spec⇓ An external format spec.

buffer⇓ A buffer whose contents are examined.

length⇓ Length (an integer) up to which buffer should be examined.

Values

ef-spec An external format spec.

Description

The function guess-external-format tries to detect any unspecified components of ef-spec using pathname and buffer
(bounded by length).

If ef-spec is complete, then it is returned. Otherwise guess-external-format calls, in turn, functions on the list
file-encoding-detection-algorithm. If a complete external format spec is returned it is used, otherwise the return
value is passed to the next function. If the name of the external format spec returned by the last function on this list is
:default, an error of type file-encoding-resolution-error is signaled. Otherwise guess-external-format
proceeds to guess the eol-style.

47 The SYSTEM Package

1480

http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_ps.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_vec_ps.htm

To guess the eol-style, functions on the list *file-eol-style-detection-algorithm* are called in turn. If a complete
external format spec is returned it is used, otherwise the return value is passed to the next function. If the external format spec
returned by the last function on this list does not contain :eol-style, an error of type
file-encoding-resolution-error is signaled.

See also

file-encoding-detection-algorithm
file-eol-style-detection-algorithm
file-encoding-resolution-error

immediatep Function

Summary

The predicate for immediate objects.

Package

system

Signature

immediatep object => result

Arguments

object⇓ A Lisp object.

Values

result A boolean.

Description

The function immediatep returns t if object is an "immediate" object, that is an object that does not actually use heap
memory. It returns nil for an object that does use heap memory.

in-static-area Macro

Summary

Allocates the objects produced by the specified forms to the static area (deprecated).

Package

system

Signature

in-static-area &rest body => result

47 The SYSTEM Package

1481

Arguments

body⇓ The forms for which you want the garbage collector to allocate space in the static area.

Values

result The result of executing body.

Description

The macro in-static-area allocates the objects produced by evaluating the forms in body to the static area. Objects in the
static area are not moved, though they are garbage collected when there is no longer a pointer to the object.

Notes

in-static-area is deprecated. Use make-array with :allocation :static where possible instead.

In 64-bit LispWorks and the Mobile GC, in-static-area does not affect the allocation conses. There is no interface to
make static conses in 64-bit LispWorks or the Mobile GC.

Examples

(system:in-static-area (make-string 10))

See also

enlarge-static
make-array
staticp

int32 Type

Summary

A type used to generate optimal 32-bit arithmetic code.

Package

system

Signature

int32

Description

The type int32 is used to generate optimal 32-bit arithmetic code.

Objects of type int32 are generated and can be manipulated using the functions in the INT32 API but the compiler can
optimize such source code by eliminating the intermediate int32 objects to produce efficient raw 32-bit code.

See the section 28.2.2 Fast 32-bit arithmetic for more information.

47 The SYSTEM Package

1482

See also

int32*
+int32-0+
+int32-1+
int32-1+
int32/=
int32<<
int32-aref
int32-logand
int32-minusp
int32-to-integer
integer-to-int32
make-simple-int32-vector
simple-int32-vector

int32*
int32+
int32-
int32/ Functions

Summary

The arithmetic operators for int32 objects.

Package

system

Signatures

int32* x y => int32

int32+ x y => int32

int32- x y => int32

int32/ x y => int32

Arguments

x⇓ An int32 object or an integer of type (signed-byte 32).

y⇓ An int32 object or an integer of type (signed-byte 32).

Values

int32 An int32 object.

Description

The function int32* is the multiply operator for int32 objects.

The function int32+ is the add operator for int32 objects.

47 The SYSTEM Package

1483

The function int32- is the subtract operator for int32 objects.

The function int32/ is the divide operator for int32 objects.

x and y can be int32 objects or integers of type (signed-byte 32).

See the section 28.2.2 Fast 32-bit arithmetic for more information about the INT32 API.

See also

int32

int32/=
int32<
int32<=
int32=
int32>
int32>= Functions

Summary

The comparison operators for int32 objects.

Package

system

Signatures

int32/= x y => result

int32< x y => result

int32<= x y => result

int32= x y => result

int32> x y => result

int32>= x y => result

Arguments

x⇓ An int32 object or an integer of type (signed-byte 32).

y⇓ An int32 object or an integer of type (signed-byte 32).

Values

result A boolean.

47 The SYSTEM Package

1484

Description

The function int32/= is the not equal comparison for int32 objects.

The function int32< is the less than comparison for int32 objects.

The function int32<= is the less than or equal comparison for int32 objects.

The function int32= is the equal comparison for int32 objects.

The function int32> is the greater than comparison for int32 objects.

The function int32>= is the greater than or equal comparison for int32 objects.

x and y can be int32 objects or integers of type (signed-byte 32).

See the section 28.2.2 Fast 32-bit arithmetic for more information about the INT32 API.

See also

int32

+int32-0+ Symbol Macro

Summary

Shorthand for (sys:integer-to-int32 0).

Package

system

Description

The symbol macro +int32-0+ expands to (sys:integer-to-int32 0).

See also

integer-to-int32

+int32-1+ Symbol Macro

Summary

Shorthand for (sys:integer-to-int32 1).

Package

system

Description

The symbol macro +int32-1+ expands to (sys:integer-to-int32 1).

47 The SYSTEM Package

1485

See also

integer-to-int32

int32-1+
int32-1- Functions

Summary

The operators for int32 objects corresponding to the functions 1+ and 1-.

Package

system

Signatures

int32-1+ x => int32

int32-1- x => int32

Arguments

x⇓ An int32 object or an integer of type (signed-byte 32).

Values

int32 An int32 object.

Description

The functions int32-1+ and int32-1- are the operators for int32 objects corresponding to the functions 1+ and 1-.

x can be an int32 object or an integer of type (signed-byte 32).

See the section 28.2.2 Fast 32-bit arithmetic for more information about the INT32 API.

See also

int32

int32<<
int32>> Functions

Summary

The shift operators for int32 objects.

Package

system

47 The SYSTEM Package

1486

http://www.lispworks.com/documentation/HyperSpec/Body/f_1pl_1_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_1pl_1_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_1pl_1_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_1pl_1_.htm

Signatures

int32<< x y => result

int32>> x y => result

Arguments

x⇓ An int32 object or an integer of type (signed-byte 32).

y⇓ An int32 object or an integer of type (signed-byte 32).

Values

result An int32 object.

Description

The function int32<< is a shift left operator for int32 objects.

The function int32>> is a shift right operator for int32 objects.

x and y can be int32 objects or integers of type (signed-byte 32).

See the section 28.2.2 Fast 32-bit arithmetic for more information about the INT32 API.

See also

int32

int32-aref Accessor

Summary

The accessor for a simple-int32-vector.

Package

system

Signatures

int32-aref vector index => int32

setf (int32-aref vector index) int32-or-int => int32-or-int

Arguments

vector⇓ An simple-int32-vector.

index⇓ A non-negative fixnum.

int32-or-int⇓ An int32 object or an integer of type (signed-byte 32).

47 The SYSTEM Package

1487

Values

int32 An int32 object.

int32-or-int An int32 object or an integer of type (signed-byte 32).

Description

The accessor int32-aref gets and sets the elements a simple-int32-vector. The reader returns an int32 object for
the value at index index in vector. The writer sets the value at index index in vector to the int32 object or integer int32-or-int
supplied.

See the section 28.2.2 Fast 32-bit arithmetic for more information about the INT32 API.

See also

int32
simple-int32-vector

int32-logand
int32-logandc1
int32-logandc2
int32-logbitp
int32-logeqv
int32-logior
int32-lognand
int32-lognor
int32-lognot
int32-logorc1
int32-logorc2
int32-logtest
int32-logxor Functions

Summary

The bitwise logical operators for int32 objects.

Package

system

Signatures

int32-logand x y => int32

int32-logandc1 x y => int32

int32-logandc2 x y => int32

47 The SYSTEM Package

1488

int32-logbitp index x => result

int32-logeqv x y => int32

int32-logior x y => int32

int32-lognand x y => int32

int32-lognor x y => int32

int32-lognot x => int32

int32-logorc1 x y => int32

int32-logorc2 x y => int32

int32-logtest x y => result

int32-logxor x y => int32

Arguments

x⇓ An int32 object or an integer of type (signed-byte 32).

y⇓ An int32 object or an integer of type (signed-byte 32).

index⇓ An int32 object or an integer of type (signed-byte 32).

Values

int32 An int32 object.

result An boolean.

Description

The function int32-logand is the bitwise logical 'and' operator for int32 objects.

The function int32-logandc1 is the bitwise logical operator for int32 objects which 'ands' the complement of x with y.

The function int32-logandc2 is the bitwise logical operator for int32 objects which 'ands' x with the complement of y.

The function int32-logbitp is the test for int32 objects which returns t if if the bit at index index in x is 1, and nil if it
is 0.

The function int32-logeqv is the bitwise logical operator for int32 objects which returns the complement of the
'exclusive or' of x and y.

The function int32-logior is the bitwise logical 'inclusive or' operator for int32 objects.

The function int32-lognand is the bitwise logical operator for int32 objects which returns the complement of the 'and' of
x and y.

The function int32-lognor is the bitwise logical operator for int32 objects which returns the complement of the 'inclusive
or' of x and y.

The function int32-lognot is the bitwise logical operator for int32 objects which returns the complement of its argument
x.

The function int32-logorc1 is the bitwise logical operator for int32 objects which 'inclusive ors' the complement of x
with y.

47 The SYSTEM Package

1489

The function int32-logorc2 is the bitwise logical operator for int32 objects which 'inclusive ors' x with the complement
of y.

The function int32-logtest is the bitwise test for int32 objects which returns t if any of the bits designated by 1 in x is 1
in y, and returns nil otherwise.

The function int32-logxor is the bitwise logical 'exclusive or' operator for int32 objects.

See the section 28.2.2 Fast 32-bit arithmetic for more information about the INT32 API.

See also

int32

int32-minusp
int32-plusp
int32-zerop Functions

Summary

The minusp, plusp and zerop tests for an int32 object.

Package

system

Signatures

int32-minusp x => result

int32-plusp x => result

int32-zerop x => result

Arguments

x⇓ An int32 object or an integer of type (signed-byte 32).

Values

result A boolean.

Description

The function int32-minusp tests whether its argument x is int32< than the value of +int32-0+.

The function int32-plusp tests whether its argument x is int32> than the value of +int32-0+.

The function int32-zerop tests whether its argument x is int32= to the value of +int32-0+.

See the section 28.2.2 Fast 32-bit arithmetic for more information about the INT32 API.

47 The SYSTEM Package

1490

http://www.lispworks.com/documentation/HyperSpec/Body/f_minusp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_minusp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_zerop.htm

See also

int32

int32-to-int64 Function

Summary

Converts from int32 to int64.

Package

system

Signature

int32-to-int64 x => y

Arguments

x⇓ An int32 object.

Values

y⇓ An int64 object.

Description

The function int32-to-int64 converts the int32 object x to the corresponding int64 object y.

See also

int32
int64
int64-to-int32

int32-to-integer Function

Summary

The destructor converting an int32 object to an integer.

Package

system

Signature

int32-to-integer int32 => integer

47 The SYSTEM Package

1491

Arguments

int32⇓ An int32 object or an integer of type (signed-byte 32).

Values

integer⇓ An integer of type (signed-byte 32).

Description

The function int32-to-integer returns an integer integer of type (signed-byte 32) corresponding to the int32
object int32. The argument int32 can also be an integer of type (signed-byte 32), in which case it is simply returned.

An error is signaled if int32 is not of type int32 or (signed-byte 32).

See the section 28.2.2 Fast 32-bit arithmetic for more information about the INT32 API.

See also

int32

int64 Type

Summary

A type used to generate optimal 64-bit arithmetic code.

Package

system

Signature

int64

Description

The type int64 is used to generate optimal 64-bit arithmetic code.

Objects of type int64 are generated and can be manipulated using the functions in the INT64 API but the compiler can
optimize such source code by eliminating the intermediate int64 objects to produce efficient raw 64-bit code.

See the section 28.2.3 Fast 64-bit arithmetic for more information.

See also

int64*
+int64-0+
+int64-1+
int64-1+
int64/=
int64<<
int64-aref
int64-logand
int64-minusp

47 The SYSTEM Package

1492

int64-to-integer
integer-to-int64
make-simple-int64-vector
simple-int64-vector

int64*
int64+
int64-
int64/ Functions

Summary

The arithmetic operators for int64 objects.

Package

system

Signatures

int64* x y => int64

int64+ x y => int64

int64- x y => int64

int64/ x y => int64

Arguments

x⇓ An int64 object or an integer of type (signed-byte 64).

y⇓ An int64 object or an integer of type (signed-byte 64).

Values

int64 An int64 object.

Description

The function int64* is the multiply operator for int64 objects.

The function int64+ is the add operator for int64 objects.

The function int64- is the subtract operator for int64 objects.

The function int64/ is the divide operator for int64 objects.

x and y can be int64 objects or integers of type (signed-byte 64).

See the section 28.2.3 Fast 64-bit arithmetic for more information about the INT64 API.

47 The SYSTEM Package

1493

See also

int64

int64/=
int64<
int64<=
int64=
int64>
int64>= Functions

Summary

The comparison operators for int64 objects.

Package

system

Signatures

int64/= x y => result

int64< x y => result

int64<= x y => result

int64= x y => result

int64> x y => result

int64>= x y => result

Arguments

x⇓ An int64 object or an integer of type (signed-byte 64).

y⇓ An int64 object or an integer of type (signed-byte 64).

Values

result A boolean.

Description

The function int64/= is the not equal comparison for int64 objects.

The function int64< is the less than comparison for int64 objects.

The function int64<= is the less than or equal comparison for int64 objects.

The function int64= is the equal comparison for int64 objects.

The function int64> is the greater than comparison for int64 objects.

47 The SYSTEM Package

1494

The function int64>= is the greater than or equal comparison for int64 objects.

x and y can be int64 objects or integers of type (signed-byte 64).

See the section 28.2.3 Fast 64-bit arithmetic for more information about the INT64 API.

See also

int64

+int64-0+ Symbol Macro

Summary

Shorthand for (sys:integer-to-int64 0).

Package

system

Description

The symbol macro +int64-0+ expands to (sys:integer-to-int64 0).

See also

integer-to-int64

+int64-1+ Symbol Macro

Summary

Shorthand for (sys:integer-to-int64 1).

Package

system

Description

The symbol macro +int64-1+ expands to (sys:integer-to-int64 1).

See also

integer-to-int64

47 The SYSTEM Package

1495

int64-1+
int64-1- Functions

Summary

The operators for int64 objects corresponding to the functions 1+ and 1-.

Package

system

Signatures

int64-1+ x => int64

int64-1- x => int64

Arguments

x⇓ An int64 object or an integer of type (signed-byte 64).

Values

int64 An int64 object.

Description

The functions int64-1+ and int64-1- are the operators for int64 objects corresponding to the functions 1+ and 1-.

x can be an int64 object or an integer of type (signed-byte 64).

See the section 28.2.3 Fast 64-bit arithmetic for more information about the INT64 API.

See also

int64

int64<<
int64>> Functions

Summary

The shift operators for int64 objects.

Package

system

47 The SYSTEM Package

1496

http://www.lispworks.com/documentation/HyperSpec/Body/f_1pl_1_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_1pl_1_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_1pl_1_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_1pl_1_.htm

Signatures

int64<< x y => result

int64>> x y => result

Arguments

x⇓ An int64 object or an integer of type (signed-byte 64).

y⇓ An int64 object or an integer of type (signed-byte 64).

Values

result An int64 object.

Description

The function int64<< is a shift left operator for int64 objects.

The function int64>> is a shift right operator for int64 objects.

x and y can be int64 objects or integers of type (signed-byte 64).

See the section 28.2.3 Fast 64-bit arithmetic for more information about the INT64 API.

See also

int64

int64-aref Accessor

Summary

The accessor for a simple-int64-vector.

Package

system

Signatures

int64-aref vector index => int64

setf (int64-aref vector index) int64-or-int => int64-or-int

Arguments

vector⇓ An simple-int64-vector.

index⇓ A non-negative fixnum.

int64-or-int⇓ An int64 object or an integer of type (signed-byte 64).

47 The SYSTEM Package

1497

Values

int64 An int64 object.

int64-or-int An int64 object or an integer of type (signed-byte 64).

Description

The accessor int64-aref gets and sets the elements of a simple-int64-vector. The reader returns an int64 object for
the value at index index in vector. The writer sets the value at index index in vector to the int64 object or integer int64-or-int
supplied.

See the section 28.2.3 Fast 64-bit arithmetic for more information about the INT64 API.

See also

int64
simple-int64-vector

int64-logand
int64-logandc1
int64-logandc2
int64-logbitp
int64-logeqv
int64-logior
int64-lognand
int64-lognor
int64-lognot
int64-logorc1
int64-logorc2
int64-logtest
int64-logxor Functions

Summary

The bitwise logical operators for int64 objects.

Package

system

Signatures

int64-logand x y => int64

int64-logandc1 x y => int64

int64-logandc2 x y => int64

47 The SYSTEM Package

1498

int64-logbitp index x => result

int64-logeqv x y => int64

int64-logior x y => int64

int64-lognand x y => int64

int64-lognor x y => int64

int64-lognot x => int64

int64-logorc1 x y => int64

int64-logorc2 x y => int64

int64-logtest x y => result

int64-logxor x y => int64

Arguments

x⇓ An int64 object or an integer of type (signed-byte 64).

y⇓ An int64 object or an integer of type (signed-byte 64).

index⇓ An int64 object or an integer of type (signed-byte 64).

Values

int64 An int64 object.

result An boolean.

Description

The function int64-logand is the bitwise logical 'and' operator for int64 objects.

The function int64-logandc1 is the bitwise logical operator for int64 objects which 'ands' the complement of x with y.

The function int64-logandc2 is the bitwise logical operator for int64 objects which 'ands' x with the complement of y.

The function int64-logbitp is the test for int64 objects which returns t if if the bit at index index in x is 1, and nil if it
is 0.

The function int64-logeqv is the bitwise logical operator for int64 objects which returns the complement of the
'exclusive or' of x and y.

The function int64-logior is the bitwise logical 'inclusive or' operator for int64 objects.

The function int64-lognand is the bitwise logical operator for int64 objects which returns the complement of the 'and' of
x and y.

The function int64-lognor is the bitwise logical operator for int64 objects which returns the complement of the 'inclusive
or' of x and y.

The function int64-lognot is the bitwise logical operator for int64 objects which returns the complement of its argument
x.

The function int64-logorc1 is the bitwise logical operator for int64 objects which 'inclusive ors' the complement of x
with y.

47 The SYSTEM Package

1499

The function int64-logorc2 is the bitwise logical operator for int64 objects which 'inclusive ors' x with the complement
of y.

The function int64-logtest is the bitwise test for int64 objects which returns t if any of the bits designated by 1 in x is 1
in y, and returns nil otherwise.

The function int64-logxor is the bitwise logical 'exclusive or' operator for int64 objects.

See the section 28.2.3 Fast 64-bit arithmetic for more information about the INT64 API.

See also

int64

int64-minusp
int64-plusp
int64-zerop Functions

Summary

The minusp, plusp and zerop tests for an int64 object.

Package

system

Signatures

int64-minusp x => result

int64-plusp x => result

int64-zerop x => result

Arguments

x⇓ An int64 object or an integer of type (signed-byte 64).

Values

result A boolean.

Description

The function int64-minusp tests whether its argument x is int64< than the value of +int64-0+.

The function int64-plusp tests whether its argument x is int64> than the value of +int64-0+.

The function int64-zerop tests whether its argument x is int64= to the value of +int64-0+.

See the section 28.2.3 Fast 64-bit arithmetic for more information about the INT64 API.

47 The SYSTEM Package

1500

http://www.lispworks.com/documentation/HyperSpec/Body/f_minusp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_minusp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_zerop.htm

See also

int64

int64-to-int32 Function

Summary

Converts from int64 to int32.

Package

system

Signature

int64-to-int32 x => y

Arguments

x⇓ An int64 object.

Values

y⇓ An int32 object.

Description

The function int64-to-int32 converts the int64 object x to the corresponding int32 object y.

See also

int32
int32-to-int64
int64

int64-to-integer Function

Summary

The destructor converting an int64 object to an integer.

Package

system

Signature

int64-to-integer int64 => integer

47 The SYSTEM Package

1501

Arguments

int64⇓ An int64 object or an integer of type (signed-byte 64).

Values

integer⇓ An integer of type (signed-byte 64).

Description

The function int64-to-integer returns an integer integer of type (signed-byte 64) corresponding to the int64
object int64. The argument int64 can also be an integer of type (signed-byte 64), in which case it is simply returned.

An error is signaled if int64 is not of type int64 or (signed-byte 64).

See the section 28.2.3 Fast 64-bit arithmetic for more information about the INT64 API.

See also

int64

integer-to-int32 Function

Summary

The constructor for int32 objects.

Package

system

Signature

integer-to-int32 integer => int32

Arguments

integer⇓ An integer of type (signed-byte 32).

Values

int32 An int32 object.

Description

The function integer-to-int32 constructs an int32 object from an integer. An error is signaled if integer is not of type
(signed-byte 32).

See the section 28.2.2 Fast 32-bit arithmetic for more information about the INT32 API.

See also

int32

47 The SYSTEM Package

1502

integer-to-int64 Function

Summary

The constructor for int64objects.

Package

system

Signature

integer-to-int64 integer => int64

Arguments

integer⇓ An integer of type (signed-byte 64).

Values

int64 An int64 object.

Description

The function integer-to-int64 constructs an int64 object from an integer. An error is signaled if integer is not of type
(signed-byte 64).

See the section 28.2.3 Fast 64-bit arithmetic for more information about the INT64 API.

See also

int64

line-arguments-list Variable

Summary

List of the command line arguments used when LispWorks was invoked.

Package

system

Initial Value

nil

Description

The variable *line-arguments-list* contains a list of strings. These are the arguments with which LispWorks was
called, in the same order. The first element is the executable itself.

47 The SYSTEM Package

1503

You can implement command line processing in your application by testing elements in *line-arguments-list*. Use a
string comparison function such as string= to compare them.

For a description of the command line arguments processed by LispWorks, see 27.4 The Command Line.

See also

lisp-image-name

locale-file-encoding Function

Summary

Provides an encoding corresponding to the current code page on Microsoft Windows, and the locale on Unix-like systems.

Package

system

Signature

locale-file-encoding pathname ef-spec buffer length => new-ef-spec

Arguments

pathname⇓ Pathname identifying location of buffer.

ef-spec⇓ An external format spec.

buffer⇓ A buffer whose contents are examined.

length⇓ Length (an integer) up to which buffer should be examined.

Values

new-ef-spec Default external format spec created by merging ef-spec with the encoding that was found.

Description

The function locale-file-encoding consults the ANSI code page on Microsoft Windows. If the code page identifier is
in win32:*latin-1-code-pages*, locale-file-encoding merges ef-spec with :latin-1. This external format
writes Latin-1 on output, giving an error for any non-Latin-1 characters that are written. If the code page identifier is not in
win32:*latin-1-code-pages* then locale-file-encoding merges ef-spec with an encoding corresponding to the
current code page that gives an error for characters that cannot be encoded.

locale-file-encoding merges ef-spec with :latin-1 on Unix-like systems.

pathname, buffer and length are ignored.

See also

file-encoding-detection-algorithm
latin-1-code-pages
multibyte-code-page-ef
safe-locale-file-encoding

47 The SYSTEM Package

1504

http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm

low-level-atomic-place-p Function

Summary

The predicate for whether a place is suitable for use with the low-level atomic operators.

Package

system

Signature

low-level-atomic-place-p place &optional environment => result

Arguments

place⇓ A place.

environment⇓ An environment object.

Values

result A boolean.

Description

The function low-level-atomic-place-p is the predicate for whether the place place is one of the places for which low-
level atomic operations are defined, and is therefore suitable for use with those operators.

environment is used to macroexpand place if it is a macro.

These places are described in 19.13.1 Low level atomic operations.

See also

atomic-decf
atomic-exchange
atomic-fixnum-decf
atomic-pop
atomic-push
compare-and-swap
define-atomic-modify-macro

make-current-allocation-permanent Function

Summary

Mobile GC only: Makes all the objects currently in generation 2 permanent (non-GCable).

Package

system

47 The SYSTEM Package

1505

Signature

make-current-allocation-permanent &key gc-p coalesce

Arguments

gc-p⇓, coalesce⇓ Booleans.

Description

The function make-current-allocation-permanent makes all the objects currently allocated in generation 2
permanent, which means that they will never be GCed.

If gc-p is non-nil (the default) then make-current-allocation-permanent does an initial GC by calling
(gc-generation 2 :coalesce coalesce), which by default means that all currently live objects are promoted to
generation 2, and hence are made permanent. coalesce defaults to t. See the documentation for gc-generation for details.

For Static objects, only segments that are in generation 2 are made permanent (because static objects are never promoted
between generations).

The function generation-number returns 3 when its argument is a permanent object. room reports the Other and Cons
objects that were made permanent under Permanent Other and Permanent Cons, except Large and Static, where (room t)
reports permanent segments as being in generation 3.

Making objects permanent saves work for the GC, but wastes some memory. Repeated calls to
make-current-allocation-permanent wastes more memory. The operation itself is fast, but the initial GC takes time
depending on the amount allocated.

Notes

The operation is done by moving whole segments to the permanent segments, which means that any free area in the segments
is moved as well and hence is wasted (permanently). It is therefore essential to reduce the free area in generation 2 before
calling make-current-allocation-permanent by performing a GC of generation 2. Hence you should pass gc-p nil

only if you already did the GC of generation 2 explicitly.

Passing coalesce nil means that currently live objects in generation 0 are not made permanent. This is useful for objects that
are short-lived, but will cause young long-lived objects to stay in the GCed generations. The effect either way is unlikely to
be large.

Note also that since permanent objects are not GCed, a permanent object that points to a non-permanent one will keep the
non-permanent object live forever (unless the pointer is overwritten explicitly by the application). That will make the non-
permanent object live forever as well, and hence add work for the GC.

The main effect of making objects permanent is to reduce the time and the memory peak required for GC of generation 2, so
can have a very beneficial effect on performance. It is particularly useful if the relatively few objects are allocated after the
call that live forever, so the size of generation 2 after a GC of generation 2 is relatively small. Using
make-current-allocation-permanent is probably useful even if 20% of the permanent objects would have died after a
while if left in the GCable generations. If the application does not create new permanent objects, but does have objects that
live long enough to be promoted to generation 2 before dying ("generation leak"), it maybe useful to call
make-current-allocation-permanent even if 50% of the objects would have died otherwise. These percentages
should only be used as a guide.

make-current-allocation-permanent wastes the memory that is free in generation 2 before the operation. The amount
of free memory after the initial GC is typically independent of the amount allocated, and averages around 8 MB. Thus it is
not useful to use make-current-allocation-permanent unless you have significantly more than 8 MB of permanent
objects. The waste happens on each call to make-current-allocation-permanent, so you should minimize the number
of calls and typically call it once in a run of the application.

47 The SYSTEM Package

1506

The amount wasted in the permanent areas is the amount that room reports as free under Permanent Cons and Permanent
Other, plus the size of the objects in these areas that are effectively dead (not pointed by any other live object). Since the GC
does not collect the permanent objects, there is no easy way to know which of them are effectively dead. If you want to know
that, you need to run the application without calling make-current-allocation-permanent, see how much is allocated
in generation 2 in this case, and compare this to the amount allocated permanently when you do call
make-current-allocation-permanent.

Large objects (currently that means larger than 1 MB) can be made permanent individually by make-object-permanent

and make-permanent-simple-vector, and can be explicitly released and the memory returned to the operating system
by using release-object-and-nullify.

See also

gc-generation
make-object-permanent
make-permanent-simple-vector
release-object-and-nullify
11.5.3.2 Preventing/reducing GC of generation 2
11.5.2 Mobile GC technical details

make-gesture-spec Function

Summary

Create a gesture-spec.

Package

system

Signature

make-gesture-spec data modifiers &optional can-shift-both-case-p => gspec

Arguments

data⇓ A non-negative integer less than cl:char-code-limit, or a Gesture Spec keyword, or
nil.

modifiers⇓ A non-negative integer less than 64, or nil.

can-shift-both-case-p⇓
A generalized boolean.

Values

gspec⇓ A gesture-spec.

Description

The function make-gesture-spec returns a new gesture-spec gspec. This can be used to represent a keystroke
consisting of the key indicated by data, modified by the modifier keys indicated by modifiers.

If data is an integer, it represents the key (code-char data). If data is a keyword, it must be one of the known Gesture

47 The SYSTEM Package

1507

http://www.lispworks.com/documentation/HyperSpec/Body/v_char_c.htm

Spec keywords and represents the key with the same name. If data is nil, then gspec has a wild data component.

These are the Gesture Spec keywords:

• :f1

• :f2

• :f3

• :f4

• :f5

• :f6

• :f7

• :f8

• :f9

• :f10

• :f11

• :f12

• :f13

• :f14

• :f15

• :f16

• :f17

• :f18

• :f19

• :f20

• :f21

• :f22

• :f23

• :f24

• :f25

• :f26

• :f27

• :f28

• :f29

• :f30

47 The SYSTEM Package

1508

• :f31

• :f32

• :f33

• :f34

• :f35

• :help

• :left

• :right

• :up

• :down

• :home

• :prior

• :next

• :end

• :begin

• :select

• :print

• :execute

• :insert

• :undo

• :redo

• :menu

• :find

• :cancel

• :break

• :clear

• :pause

• :kp-f1

• :kp-f2

• :kp-f3

• :kp-f4

• :kp-enter

47 The SYSTEM Package

1509

• :applications-menu

• :print-screen

• :scroll-lock

• :sys-req

• :reset

• :stop

• :user

• :system

• :clear-line

• :clear-display

• :insert-line

• :delete-line

• :insert-char

• :delete-char

• :prev-item

• :next-item

Not all of these Gesture Spec keywords will be generated by all platforms and/or keyboards.

If modifiers is an integer, it represents modifier keys according to the values gesture-spec-accelerator-bit,
gesture-spec-control-bit, gesture-spec-hyper-bit, gesture-spec-meta-bit, gesture-spec-shift-bit,
and gesture-spec-super-bit. If modifiers is nil, then gspec has a wild modifiers component.

The gesture Shift+X could potentially be represented by the unmodified uppercase character X, or lowercase x with the
Shift modifier. In order to ensure a consistent representation the latter form is not supported by Gesture Specs by default.
That is, a both-case-p character may not be combined with the single modifier Shift in the accelerator argument. This
can be overridden by passing a true value for can-shift-both-case-p.

A both-case-p character is allowed with Shift if there are other modifiers. See the below for examples.

Wild Gesture Specs can be useful when specifying an input model for a capi:output-pane.

Examples

(sys:make-gesture-spec
 97
 (logior sys:gesture-spec-control-bit
 sys:gesture-spec-meta-bit))

A both-case-p character may not be combined with the single modifier Shift in the accelerator argument, so code like
this signals an error:

(sys:make-gesture-spec
 (char-code #\x)
 sys:gesture-spec-shift-bit)

47 The SYSTEM Package

1510

http://www.lispworks.com/documentation/HyperSpec/Body/f_upper_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_upper_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_upper_.htm

Instead you should use:

(sys:make-gesture-spec (char-code #\X) 0)

A both-case-p character is allowed with Shift if there are other modifiers:

(sys:make-gesture-spec
 (char-code #\x)
 (logior sys:gesture-spec-shift-bit
 sys:gesture-spec-meta-bit))

See also

gesture-spec
gesture-spec-accelerator-bit
gesture-spec-control-bit
gesture-spec-hyper-bit
gesture-spec-meta-bit
gesture-spec-p
gesture-spec-shift-bit
gesture-spec-super-bit
print-pretty-gesture-spec

make-object-permanent Function

Summary

Mobile GC only: Make a large object permanent.

Package

system

Signature

make-object-permanent object => did-it-p

Arguments

object⇓ An object that is allocated in its own segment.

Values

did-it-p A boolean.

Description

The function make-object-permanent makes object permanent (if possible), which means that GC will never scan or free
it (but will still follow pointers from it). That reduces the amount of work for the GC.

make-object-permanent can only make object permanent if it is allocated in its own segment, so it must be a large object
(> 1 MB).

make-object-permanent returns true if object was made permanent (or is already permanent) and false otherwise.

47 The SYSTEM Package

1511

http://www.lispworks.com/documentation/HyperSpec/Body/f_upper_.htm

Notes

An object that has been made permanent will never be freed by the GC, so you must use release-object-and-nullify
to free it.

After the object is made permanent, the segment in which the object resides is reported by (room t) to be in generation 3.

make-object-permanent does not work (it just returns false) on an array that is displaced to a vector that is allocated on
its own segment. To work it must be called on the vector itself.

Large vectors that do not contain pointers (that is every vector except simple-vector) are not scanned by the GC, so
making them permanent does not give a significant gain. Thus make-object-permanent is really useful only for
simple-vector objects.

If you make a new large simple-vector objects and want to make them permanent immediately, it is better to use
make-permanent-simple-vector, because make-object-permanent causes the next GC to take more time, while
make-permanent-simple-vector does not (unless supplied an initial-element which is not immediate or permanent).

See also

make-permanent-simple-vector
release-object-and-nullify
allocated-in-its-own-segment-p
11.5.2.3 Special considerations for the Mobile GC

make-permanent-simple-vector Function

Summary

Create a permanent (when possible) simple-vector.

Package

system

Signature

make-permanent-simple-vector size &optional initial-element => simple-vector

Arguments

size⇓ A fixnum.

initial-element⇓ Any Lisp object.

Values

simple-vector⇓ A simple-vector.

Description

The function make-permanent-simple-vector creates a simple-vector of length size with initial element initial-
element as if by the call (make-array size :initial-element initial-element), except that it is allocated as a permanent
object when possible.

47 The SYSTEM Package

1512

http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ve.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ve.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ve.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ve.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ve.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ve.htm

When not in the Mobile GC, simple-vector is allocated in the highest generation number.

In the Mobile GC, if size is larger than (ash 1 17) (#x20000, 131072), so simple-vector is allocated in its own segment, it
is made permanent. Otherwise it is allocated n generation 2.

Notes

make-permanent-simple-vector is intended mainly for allocating large simple-vector objects in the Mobile GC
(that is, those that can be made permanent). When not in the Mobile GC, it does not do anything that make-array cannot
do, but it may be convenient sometimes.

Note that, except for large simple-vector objects in the Mobile GC, simple-vector is not actually permanent, and a GC of
the highest generation will scan it (or free it if nothing point to it).

When simple-vector is permanent, and you do not need it any more, then you need to release it by
release-object-and-nullify.

In the Mobile GC with large vectors, if initial-element is not supplied or it is an immediate or a permanent object,
make-permanent-simple-vector is much better than using make-object-permanent after a call to make-array,
because it knows that it does not contain pointers to a lower generation.

See also

make-object-permanent
release-object-and-nullify
allocated-in-its-own-segment-p
11.5.2.3 Special considerations for the Mobile GC

make-simple-int32-vector Function

Summary

The constructor for simple-int32-vector objects.

Package

system

Signature

make-simple-int32-vector length &key initial-contents initial-element => vector

Arguments

length⇓ A non-negative fixnum.

initial-contents⇓ A sequence of integers of type (signed-byte 32), or nil.

initial-element⇓ An integer of type (signed-byte 32).

Values

vector⇓ A simple-int32-vector.

47 The SYSTEM Package

1513

http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ve.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_smp_ve.htm

Description

The function make-simple-int32-vector is the constructor for simple-int32-vector objects.

The argument initial-contents, if supplied, should be a sequence of length length. It specifies the contents of vector.

The argument initial-element, if supplied, specifies the contents of vector.

An error is signaled if both initial-contents and initial-element are supplied.

See the section 28.2.2 Fast 32-bit arithmetic for more information about the INT32 API.

See also

int32
simple-int32-vector

make-simple-int64-vector Function

Summary

The constructor for simple-int64-vector objects.

Package

system

Signature

make-simple-int64-vector length &key initial-contents initial-element => vector

Arguments

length⇓ A non-negative fixnum.

initial-contents⇓ A sequence of integers of type (signed-byte 64), or nil.

initial-element⇓ An integer of type (signed-byte 64).

Values

vector⇓ A simple-int64-vector.

Description

The function make-simple-int64-vector is the constructor for simple-int64-vector objects.

The argument initial-contents, if supplied, should be a sequence of length length. It specifies the contents of vector.

The argument initial-element, if supplied, specifies the contents of vector.

An error is signaled if both initial-contents and initial-element are supplied.

See the section 28.2.3 Fast 64-bit arithmetic for more information about the INT64 API.

47 The SYSTEM Package

1514

See also

int64
simple-int64-vector

make-stderr-stream Function

Summary

Returns an output stream connected to stderr.

Package

system

Signature

make-stderr-stream => stream

Values

stream An output stream.

Description

The function make-stderr-stream returns an output stream connected to stderr.

make-stderr-stream returns the same stream each time. Calling close on this stream has no effect (except that it forces
the output).

Notes

1. On Microsoft Windows, if the stderr is not redirected on the command line then output to the stderr stream appears in a
console.

The console window will be created if it does not exist. That is not desirable for typical (non-console) applications.
Therefore writing to the stderr stream is probably useful only in a console application (see the :console keyword
argument in save-image), or when you know that stderr is going to be redirected.

2. Ensure your delivered Windows application calls make-stderr-stream at run time rather than in the build script,
because it contains the handle of Windows stderr.

3. On macOS, applications that are launched from the desktop have their stderr redirected to the "console messages".

make-typed-aref-vector Function

Summary

Makes a vector that can be accessed efficiently.

Package

system

47 The SYSTEM Package

1515

Signature

make-typed-aref-vector byte-length &key allocation => vector

Arguments

byte-length⇓ A non-negative fixnum.

allocation⇓ nil or one of the keywords :new, :static, :static-new, :old, :long-lived or
:pinnable.

Values

vector⇓ A vector.

Description

The function make-typed-aref-vector returns a vector which is suitable for efficient access at compiler optimization
level safety = 0.

byte-length is measured in 8-bit bytes.

allocation gives you control of where the new vector is allocated. It is interpreted the same way as in make-array.

Use typed-aref to access vector efficiently.

Notes

Declaring the result of make-typed-aref-vector as cl:dynamic-extent causes it to allocate the array on the stack (in
LispWorks 7.0 and later versions).

Examples

To make a typed vector of the type (unsigned-byte 32) or single-float with length 10:

(make-typed-aref-vector (* 10 4))

To make a typed vector of the type double-float with length 10:

(make-typed-aref-vector (* 10 8))

See also

typed-aref
28.2 Optimized integer arithmetic and integer vector access

map-environment Function

Summary

Maps functions over the bindings in an environment.

47 The SYSTEM Package

1516

http://www.lispworks.com/documentation/HyperSpec/Body/d_dynami.htm

Package

system

Signature

map-environment env &key variable function block tag

Arguments

env⇓ An environment or nil.

variable⇓ A function designator.

function⇓ A function designator.

block⇓ A function designator.

tag⇓ A function designator.

Description

The function map-environment calls variable for each local variable binding in env, function for each local function
binding in env, block for each block binding in env and tag for each tag binding in env.

variable is called with the following arguments: name kind info.

name A symbol naming a variable.

kind One of :special, :symbol-macro or :lexical, which specifies the kind of binding (see
variable-information).

info The symbol-macro expansion if kind is :symbol-macro and is unspecified otherwise.

function is called with the following arguments: name kind info.

name A symbol or list of the form (setf symbol) naming a function.

kind One of :macro or :function, which specifies the kind of binding (see
function-information).

info The macro expansion function if kind is :macro and is unspecified otherwise.

block is called with the following arguments: name kind info.

name A symbol naming a block in a block form.

kind The keyword :block.

info Unspecified.

tag is called with the following arguments: name kind info.

name A symbol or integer naming a tag in a tagbody form.

kind The keyword :tag.

info Unspecified.

47 The SYSTEM Package

1517

http://www.lispworks.com/documentation/HyperSpec/Body/s_block.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_tagbod.htm

See also

augment-environment
declaration-information
define-declaration
function-information
variable-information

marking-gc Function

Summary

Performs a Marking GC in 64-bit LispWorks.

Package

system

Signature

marking-gc gen-num &key what-to-copy max-size max-size-to-copy fragmentation-threshold

Arguments

gen-num⇓ An integer in the inclusive range [0,7].

what-to-copy⇓ One of the keywords :cons, :symbol, :function, :non-pointer, :other, :weak,
:all or :default.

max-size⇓ A synonym for max-size-to-copy.

max-size-to-copy⇓ A positive number or nil.

fragmentation-threshold⇓
A number in the inclusive range [0, 10].

Description

The function marking-gc garbage collects (GCs) the generation specified by gen-num, and all younger generations. It uses
mark and sweep, rather than copy.

Mark and sweep garbage collection uses less virtual memory during its operation, but leaves the memory fragmented, which
has a detrimental effect on the performance of the system afterwards. It is therefore not used automatically by the system,
except to garbage collect static objects.

marking-gc is useful when you want to GC a generation which contains large amount (gigabytes) of data, to make sure
there are no spurious pointers from this generation to a younger generation, and you do not expect many objects in the large
generation to be collected. In this scenario, a Copying GC would use virtual memory which is almost double the size of the
large generation during its operation, and so would possibly cause heavy paging.

Marking GC causes fragmentation. You can reduce the amount of fragmentation by supplying either (or both) of the
arguments what-to-copy and max-size-to-copy. These specify that part of the data should be collected by copying instead.
Using some copying GC rather than mark and sweep will reduce the amount of fragmentation.

what-to-copy specifies the allocation type to copy. It can be one of the main allocation types or :weak, meaning copy only
objects in segments of that type. what-to-copy can also be :all, meaning copy objects in all segments. If what-to-copy is

47 The SYSTEM Package

1518

:default then each call to marking-gc chooses one of the main allocation types or :weak to copy, and successive calls
with :default cycle through these allocation types.

max-size-to-copy (or max-size) can be used to limit the amount that is copied, and thus limit the virtual memory that the
operation needs. If max-size-to-copy is non-nil, it specifies the limit, in gigabytes, of memory that can be used for copying. If
there is more than max-size-to-copy gigabytes of data of the type what-to-copy, the rest of this data is garbage collected by
marking. The default value of max-size-to-copy is nil, which means there is no limit on the amount that is copied.

fragmentation-threshold should be a number between 0 and 10. It specifies a minimum ratio between the free area in a
segment that cannot be easily used for more allocation and the allocated area in this segment. Segments that are below this
threshold are not copied. The default value of fragmentation-threshold is 1.

Notes

marking-gc is implemented only in 64-bit LispWorks. It is not relevant to the Memory Management API in 32-bit
implementations.

In the Mobile GC, marking-gc is equivalent to (gc-generation gen-num).

See also

gc-generation
set-blocking-gen-num
11.2 Guidance for control of the memory management system

memory-growth-margin Function

Summary

Returns the difference between the top of the Lisp heap and a maximum memory limit in 32-bit LispWorks.

Package

system

Signature

memory-growth-margin => result

Values

result An integer address, or nil.

Description

If a limit on the maximum memory has been set by set-maximum-memory, then the function memory-growth-margin

returns the difference between the current top of the Lisp heap and that limit. That is, the amount by which the heap can
grow.

Otherwise memory-growth-margin returns nil. This is the default behavior.

Notes

memory-growth-margin is implemented only in 32-bit LispWorks. It is not relevant to the Memory Management API in

47 The SYSTEM Package

1519

64-bit implementations.

See also

set-maximum-memory
11.3 Memory Management in 32-bit LispWorks

merge-ef-specs Function

Summary

Creates a new external format spec from two other external format specs.

Package

system

Signature

merge-ef-specs ef-spec1 ef-spec2 => ef-spec

Arguments

ef-spec1⇓ An external format spec.

ef-spec2⇓ An external format spec.

Values

ef-spec The resultant external format spec created from information in ef-spec1 and ef-spec2.

Description

The function merge-ef-specs returns an external format spec constructed by adding information not supplied in ef-spec1
from ef-spec2.

Each external format spec argument is either a symbol or a list.

If ef-spec1 and ef-spec2 have the same value for their name component (whether they are lists or symbols), return ef-spec1
combined with any parameters from ef-spec2 that are not specified in ef-spec1.

Otherwise, if ef-spec1 is :default or a list beginning with :default, return ef-spec2 with parameters modified to be a
union of the parameters from ef-spec1 and ef-spec2, with those from ef-spec1 taking priority.

Otherwise, return ef-spec1 with any :eol-style parameter from ef-spec2 if ef-spec1 does not specify :eol-style.

mobile-gc-p Function

Summary

Returns true when using the Mobile GC, otherwise false.

47 The SYSTEM Package

1520

Package

system

Signature

mobile-gc-p => result

Values

result A boolean.

Description

The function mobile-gc-p is a predicate that returns true when 64-bit LispWorks is using the Mobile GC and false
otherwise. In 32-bit LispWorks, it always returns false.

See also

11.5 The Mobile GC

mobile-gc-sweep-objects Function

Summary

Mobile GC only: Sweeps objects for the Mobile GC.

Package

system

Signature

mobile-gc-sweep-objects function &key permanent permanent-weak permanent-non-pointer permanent-new long-lived
static large gen-0 gen-1 gen-2

Arguments

function⇓ A function or fbound symbol that takes one argument.

permanent⇓, permanent-weak⇓, permanent-non-pointer⇓, permanent-new⇓, long-lived⇓, static⇓, large⇓, gen-0⇓,

gen-1⇓, gen-2⇓
Booleans.

Description

The function mobile-gc-sweep-objects sweeps objects in the manner that sweep-all-objects and
sweep-gen-num-objects do, but gives you a better control over which objects are swept. It is therefore most efficient for
sweeping certain subsets of the objects.

function is called with each object that matches the criteria specified by non-nil values of the keyword arguments.

Permanent objects are objects that the GC does not scan or free, which include objects that were alive when the image was

47 The SYSTEM Package

1521

delivered and objects that were alive when make-current-allocation-permanent was called. Large objects that were
made permanent by make-object-permanent or make-permanent-simple-vector are also permanent, but in
mobile-gc-sweep-objects sweeping them is controlled by large.

permanent defaults to nil. It controls whether sweeping includes permanent objects that contain pointers, and is also the
default value for permanent-weak, permanent-non-pointer and permanent-new. permanent-weak controls sweeping of
permanent weak objects. permanent-non-pointer control sweeping of permanent objects that do not contain pointers.
permanent-new controls sweeping of objects that were made permanent by a call to
make-current-allocation-permanent.

long-lived defaults to nil, and is used as the default value for gen-2, gen-1, large and static. gen-0 defaults to nil.
Therefore, if long-lived is non-nil and no other keyword arguments are supplied, then all non permanent objects are swept
except those in generation 0.

gen-2, gen-1, gen-0, large and static control the sweeping of ordinary objects in generation 2, generation 1, generation 0,
large objects and static objects respectively.

Notes

With the default values of the keywords, mobile-gc-sweep-objects does nothing.

mobile-gc-sweep-objects is useful for sweeping specific objects, for example all static objects. For this case, it is much
more efficient than using sweep-all-objects and checking each object using staticp.

mobile-gc-sweep-objects is thread-safe but not atomic with respect to allocation or GC, so gets confused if a GC occurs
while it is sweeping segments that are affected by the GC or there is allocation in any of these segments. It is therefore rarely
useful to sweep generation 0, and sweeping generation 1 is probably not useful either.

See also

sweep-all-objects
sweep-gen-num-objects
11.5.2 Mobile GC technical details

object-address Function

Summary

Returns the address of a Lisp object.

Package

system

Signature

object-address object => address

Arguments

object⇓ A Lisp object.

47 The SYSTEM Package

1522

Values

address⇓ An integer.

Description

The function object-address returns the address of the Lisp object object as an integer address. Note that the address of
object may change during garbage collection so this integer should be used for debugging purposes only.

See also

immediatep
object-pointer
pointer-from-address

object-pointer Function

Summary

Returns an integer specifying the representation of an object.

Package

system

Signature

object-pointer object => result

Arguments

object⇓ A Lisp object.

Values

result An integer.

Description

The function object-pointer returns an integer specifying the actual representation of the object object. For most objects,
that would be the pointer to it, which is its address (as returned by object-address) plus some tag. Some objects are
"immediate" (that is they do not use memory, and immediatep returns t) and for these object-pointer returns the actual
address.

The Garbage Collector can move objects, therefore the result of object-pointer is not permanent. It should be used only
for debugging.

Notes

The result of object-pointer is what cl:print-unreadable-object uses for the object's "identity". It is normally
what appears when using cl:print-unreadable-object with identity t.

47 The SYSTEM Package

1523

http://www.lispworks.com/documentation/HyperSpec/Body/m_pr_unr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_pr_unr.htm

Examples

(let ((gf #'make-instance))
 (format t "~a pointer is ~x~%" gf
 (sys:object-pointer gf)))

See also

immediatep
object-address
pointer-from-address

octet-ref
base-char-ref Accessors

Summary

Loads an octet from a simple vector and returns it as an integer or base-char.

Package

system

Signatures

octet-ref vector octet-index => int

setf (octet-ref vector octet-index) int => int

base-char-ref vector octet-index => char

setf (base-char-ref vector octet-index) char => char

Arguments

vector⇓ A simple-base-string, a simple-bmp-string or a simple binary vector.

octet-index⇓ A non-negative integer.

int An integer in the inclusive range [0, 255].

char A base-char.

Values

int An integer in the inclusive range [0, 255].

char A base-char.

Description

The functions octet-ref and base-char-ref load an octet (8-bits element) from the simple vector vector at offset octet-
index, and return it as an integer or base-char.

vector must be either a string with element type base-char or bmp-char or a simple binary vector, which means a simple
vector of element type (unsigned-byte n) or (signed-byte n) for n = 8, 16, 32. In 64-bit LispWorks, n = 64 is also

47 The SYSTEM Package

1524

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

supported. vector cannot be displaced, adjustable or have a fill pointer, and it cannot be a string with element type
character.

octet-index must be an integer, which is used as the count of octets (rather than array elements) to compute the actual offsets.

octet-ref, base-char-ref and their setters are intended to allow efficient access to (unsigned-byte 8) vectors and
simple-base-string in the same code. For these types of vector they match what aref and (setf aref) do except that
they always take and return the same value/result type, while aref and (setf aref) take and return a value of a type
which depends on the type of the vector. octet-ref (and base-char-ref) are also more efficient than aref.

octet-ref, base-char-ref and their setters also work on simple binary vectors with element length other than 8 bits, and
the results are consistent between themselves. However their results for such vectors do not match aref, because they will
load and set either part of an element or multiple elements. Also the results of octet-ref (and base-char-ref) and the
result of aref can differ between different platforms due to endianness.

Notes

octet-ref, base-char-ref and their setters cannot be used on a simple-text-string.

See also

28.2 Optimized integer arithmetic and integer vector access

open-pipe Function

Summary

Runs an executable or shell command in a subshell.

Package

system

Signature

open-pipe command &key direction element-type interrupt-off shell-type use-pty save-exit-status current-directory external-
format => stream

Arguments

command⇓ A string, a non-empty list of strings, a simple-vector of strings, or nil.

direction⇓ :input, :output, :io or :none.

element-type⇓ A type specifier.

interrupt-off⇓ A boolean. Not implemented on Microsoft Windows.

shell-type⇓ A shell type.

use-pty⇓ A boolean.

save-exit-status⇓ A boolean.

current-directory⇓ nil or a pathname designator. New in LispWorks 8.1.

external-format⇓ An external file format designator. Defaults to :default. New in LispWorks 8.0.

47 The SYSTEM Package

1525

http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_aref.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_aref.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_aref.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_aref.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_aref.htm

Values

stream⇓ A pipe stream.

Description

The function open-pipe runs an executable or shell command with its input and/or output connected to a stream.

On non-Windows platforms the behavior of open-pipe is analogous to that of popen in the POSIX C library. It creates a
pipe to/from a subprocess and returns a stream. The stream can be read from or written to as appropriate.

On Microsoft Windows open-pipe calls CreateProcess and CreatePipe and returns a bidirectional stream.

command is interpreted as by call-system-showing-output.

direction is a keyword for the stream direction. The default value is :input. Bidirectional (I/O) pipes may be created by
passing :io. See the example below. direction can also be :none, which means no input and no output like call-system,
but is useful when you want to use pipe-exit-status and pipe-kill-process. On Windows it is not possible to open
a unidirectional pipe, so :input and :output both have the same effect as :io.

When save-exit-status is non-nil, the status of the child process that open-pipe creates is tracked, so pipe-exit-status

and pipe-kill-process can be used reliably. The default value of save-exit-status is nil.

external-format specifies the external format to use if it is not :default. See 26.7 External Formats to translate Lisp
characters from/to external encodings for a description of external formats.

On non-Windows platforms, if external-format is :default and element-type is also :default (the defaults), then
LispWorks tries to determine the external format to use using the POSIX environment variables LC_ALL, LC_CTYPE and
LANG (in that order). If external-format is :default and element-type is not :default or it fails to find a known external
format, open-pipe creates a stream that does not use an external format.

On Windows if external-format is :default it does not use external format.

Note that external-format is new in LispWorks 8.0. In previous versions, open-pipe never used an external format.

element-type specifies the type of the stream as with open. It defaults to :default, which causes open-pipe to choose the
appropriate element-type for external-format, as determined by ef:external-format-type. If there is no external format,
it chooses base-char.

interrupt-off, if t, ensures that Ctrl+C (SIGINT) to the LispWorks image is ignored by the subprocess. This argument is not
implemented on Microsoft Windows.

shell-type specifies the type of shell to run. On Unix-like systems the default value is "/bin/sh". On Microsoft Windows
the default value is "cmd".

use-pty is useful on Unix-like systems if the sub-process behaves differently when running interactively and non-interactively.
When use-pty is non-nil, the input and output of the sub-process are opened using PTY (Pseudo-pty). That means that the
sub-process sees its input and output as if they come from an interactive terminal. The PTY also processes special characters
such as Ctrl-C the same way that an ordinary TTY does.

use-pty is probably not useful on Microsoft Windows as there is no concept corresponding to the Unix behavior. If use-pty is
non-nil then it uses the CREATE_NEW_PROCESS_GROUP flag when creating the child, but it is not obvious when this might be
useful.

stream supports mixed character and binary I/O in the same way as file streams constructed by open.

If current-directory is non-nil, then it must be a pathname designator for a directory and is used as the current directory in the
new process. Otherwise, the current directory of the LispWorks process is used (the default).

47 The SYSTEM Package

1526

http://www.lispworks.com/documentation/HyperSpec/Body/t_stream.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

Compatibility notes

1. When open-pipe is called on non-Windows platforms and neither of external-format or element-type are supplied, then
it may choose an external format based on environment variables hence and behave differently from previous versions,
and also between different environments. If the data that is passed in the pipe conforms to the external format specified
by the environment variables, for example it is the output of standard Unix utilities, that is the useful behavior.
Otherwise, you should supply the required external-format or element-type to control it. If you use sys:open-pipe in
previous versions of LispWorks without supplying element-type and you want it to continue to not process the data using
an external-format, then supply element-type with base-char if you want code to work on all versions of LispWorks.

2. On Microsoft Windows, LispWorks 8.1 and later, the current directory in the new process defaults to the current
directory of the LispWorks process and can be changed by supplying current-directory. In previous releases, it defaulted
to the pathname-location of the current-pathname and there was no way to change it. In practice, the default is
only different when loading or compiling a file.

Examples

Example on Unix:

CL-USER 1 > (setf *ls* (sys:open-pipe "ls"))
Warning: Setting unbound variable *LS*
#<SYSTEM::PIPE-STREAM "ls">

CL-USER 2 > (loop while
 (print (read-line *ls* nil nil)))

"hello"
"othello"
NIL
NIL

CL-USER 3 > (close *ls*)
T

The following example shows you how to use bidirectional pipes.

CL-USER 1 > (with-open-stream
 (s (sys:open-pipe "/bin/csh"
 :direction :io))
 (write-line "whereis ls" s)
 (force-output s)
 (read-line s))
"ls: /sbin/ls /usr/bin/ls /usr/share/man/man1.Z/ls.1"
NIL

Example on Microsoft Windows:

CL-USER 40 > (setf *ls* (sys:open-pipe "dir"))
#<WIN32::TWO-WAY-PIPE-STREAM 205F03F4>

CL-USER 41 > (loop while
 (print (read-line *ls* nil nil)))

" Volume in drive Z is lispsrc"
" Volume Serial Number is 82E3-1342"
""
" Directory of Z:\\v42\\delivery-tests"
""
"20/02/02 11:57a <DIR> ."
"20/02/02 11:57a <DIR> .."
"14/02/02 07:04p 6,815,772 othello.exe"

47 The SYSTEM Package

1527

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

"14/02/02 07:07p 6,553,628 hello.exe"
" 4 File(s) 13,369,400 bytes"
" 3,974,103,040 bytes free"
NIL
NIL

CL-USER 42 > (close *ls*)
T

This last example illustrates the use of save-exit-status. This form runs LispWorks as a subprocess such that it quits
immediately with exit status 1623:

(setq *sub*
 (sys:open-pipe
 (list (lisp-image-name)
 "-eval"
 "(quit :status 1623)")
 :save-exit-status t))

This form then returns 1623:

(sys:pipe-exit-status *sub*)

See also

call-system
call-system-showing-output
pipe-exit-status
pipe-kill-process
pipe-close-connection

open-url Function

Summary

Displays a HTML page in a web browser.

Package

system

Signature

open-url url

Arguments

url⇓ A string.

Description

The function open-url displays the page at the URL url in a web browser.

Supported browsers are Netscape, Firefox, Mozilla, Opera on all platforms, Microsoft Internet Explorer on Microsoft
Windows and macOS, plus Safari on macOS.

47 The SYSTEM Package

1528

open-url is defined in the "hqn-web" module.

Compatibility notes

If your code uses the unsupported function hqn-web:browse please change to use open-url in LispWorks 5.0 and later.

Examples

(sys:open-url "www.lispworks.com")

See also

browser-location

package-flagged-p Function

Summary

Queries whether a package is flagged.

Package

system

Signature

package-flagged-p package flag => result

Arguments

package⇓ A package designator.

flag⇓ A keyword.

Values

result A boolean.

Description

The function package-flagged-p is the predicate for whether the package package is flagged with the keyword flag.

Current valid values for flag are:

:implementation Packages that are part of the LispWorks implementation. You must not add definitions to them.

:documented Packages that are fully documented (that is, all external symbols are documented), and all
external symbols are intended for your use.

47 The SYSTEM Package

1529

pipe-close-connection Function

Summary

Close the connection that a pipe-stream uses without closing the stream.

Package

system

Signature

pipe-close-connection stream

Arguments

stream⇓ A pipe stream.

Description

The function pipe-close-connection closes the connection underlying stream without closing the stream itself. This
means that you cannot communicate with the child process anymore, but pipe-exit-status can still return the exit-status
of the child process after a call to pipe-close-connection. This differs from close, which prevents
pipe-exit-status from working on Microsoft Windows. You should still call close on stream when you have finished
using it.

Notes

pipe-close-connection is useful when you need to send end-of-file to the child process, which causes the child process
to exit, and then you want to obtain the exit status.

See also

open-pipe
pipe-exit-status

pipe-exit-status Function

Summary

Returns the exit status of a child process.

Package

system

Signature

pipe-exit-status stream &key timeout wait => exit-status, signal-number

47 The SYSTEM Package

1530

Arguments

stream⇓ A pipe stream.

timeout⇓ nil or non-negative real.

wait⇓ A boolean. Deprecated.

Values

exit-status⇓ An integer, nil or the keyword :closed.

signal-number An integer or nil.

Description

The function pipe-exit-status returns the exit status of the child process that open-pipe or run-shell-command
created.

stream must be a pipe stream object which was returned by a call to open-pipe with save-exit-status non-nil or
run-shell-command with wait nil and save-exit-status non-nil.

timeout defaults to nil, which means that pipe-exit-status waits until the child process dies. If timeout is a real, it
specifies a period of seconds to wait. If the process does not exit before the end of this period, pipe-exit-status returns
nil. If timeout is 0, pipe-exit-status never waits at all.

wait is deprecated, and is kept for backward compatibility with releases before LispWorks 8.0. It is ignored if timeout is
supplied. If timeout is not supplied and wait is nil, then pipe-exit-status does not wait (the same as when timeout is 0).
Otherwise wait does not affect the behaviour of pipe-exit-status.

On Microsoft Windows, if close was called on stream before the child process died, then pipe-exit-status returns exit-
status :closed. On non-Windows platforms, it works after close but for compatibility it should be called only before
calling close. If you need to send an end-of-file to the child process but also want to read the exit status, use
pipe-close-connection before calling pipe-exit-status, and call close afterwards.

If exit-status is not nil or :closed, it is an integer which is the exit status of the child process. See 27.7.1 Interpreting the
exit status for the interpretation of the exit status and the signal number.

See also

open-pipe
call-system
run-shell-command
pipe-kill-process
pipe-close-connection
27.7.1 Interpreting the exit status

pipe-kill-process Function

Summary

Tries to kill the process of a pipe stream.

Package

system

47 The SYSTEM Package

1531

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

Signature

pipe-kill-process pipe-stream => result

Arguments

pipe-stream⇓ A pipe stream.

Values

result A boolean.

Description

The function pipe-kill-process tries to kill the process of a pipe stream.

pipe-stream must be the result of open-pipe. pipe-kill-process tries to kill the process that open-pipe creates.

The return value nil means that the process has already died. In this case the process is guaranteed to have died.

The return value t means that the process was still alive when pipe-kill-process was called, and it tried to kill it.

On Microsoft Windows, it causes the process to exit, but there may be some delay until it actually exits, so the process may
still be alive at the time pipe-kill-process returns.

On non-Windows platforms, it sends SIGTERM to the process, which normally would cause it to exit, but in principle the
process may handle SIGTERM and continue to run.

Notes

1. When open-pipe is called with a string, it executes it using a shell (non-Windows) or cmd (Windows), so the process
that pipe-kill-process will kill is the shell or cmd. When open-pipe is called with a list, it executes the process
(first element of the list) directly, and pipe-kill-process kills this process (the different behavior is actually
documented in call-system).

2. On Microsoft Windows, pipe-kill-process needs to be be called before the stream is closed by close. On Unix-
like systems it works after close too, but for compatibility pipe-kill-process should not be called after close.

3. On Unix-like systems, if open-pipe was called with save-exit-status nil, there is a possibility that the child process
that open-pipe started died and another process started with the same Process ID, and then pipe-kill-process may
wrongly kill the new process. When open-pipe is called with save-exit-status non-nil, the status of the child process is
tracked properly, and pipe-kill-process is guaranteed to do the right thing. On Windows pipe-kill-process
always does the right thing.

4. When open-pipe was called with a string as the command, the process killed is the shell (Unix) or cmd (Windows),
which normally kills the child process too. On Unix-like systems the shell may execute the child process directly
(overwriting itself with the child without forking) in which case it will kill the child. If you want to guarantee killing of
the actual child, pass the command to open-pipe as a list or a vector.

See also

open-pipe
call-system

47 The SYSTEM Package

1532

pointer-from-address Function

Summary

Returns the object into which the given address is pointing.

Package

system

Signature

pointer-from-address address => object

Arguments

address⇓ An integer giving the address of the object.

Values

object The object pointed to by address.

Description

The function pointer-from-address returns the object into which the given integer address is pointing. Note that this
address may not be pointing into this object after a garbage collection, unless the object is static and is still referenced by
another Lisp variable or object.

Examples

CL-USER 8 > (setq static-string
 (make-array 3
 :element-type 'base-char
 :allocation :static))
Warning: Setting unbound variable STATIC-STRING
")?"

CL-USER 9 > (sys:object-address static-string)
537166552

CL-USER 10 > (sys:pointer-from-address *)
")?"

CL-USER 11 > (eq * static-string)
T

See also

object-address
object-pointer

47 The SYSTEM Package

1533

print-pretty-gesture-spec Function

Summary

Prints a gesture-spec as a keystroke.

Package

system

Signature

print-pretty-gesture-spec gspec stream &key force-meta-to-alt force-shift-for-upcase => gspec

Arguments

gspec⇓ A gesture-spec.

stream⇓ An output stream.

force-meta-to-alt⇓ A boolean.

force-shift-for-upcase⇓
A boolean.

Values

gspec The gesture-spec that was passed.

Description

The function print-pretty-gesture-spec prints the keystroke represented by gspec to the stream stream.

If force-meta-to-alt is true, then gesture-spec-meta-bit is represented as Alt in the output; otherwise it is represented
as Meta. force-meta-to-alt defaults to nil.

If force-shift-for-upcase is true and gspec represents uppercase input such as A, then the Shift modifier is printed, indicating
that Shift is pressed to obtain the A character. force-shift-for-upcase defaults to t.

If gspec has a wild modifiers or data component (that is, gesture-spec-modifiers and/or gesture-spec-data return
nil) then <Wild> appears in the output.

See also

gesture-spec-data
gesture-spec-meta-bit
gesture-spec-modifiers
make-gesture-spec

47 The SYSTEM Package

1534

print-symbols-using-bars Variable

Summary

Controls how escaping is done when symbols are printed.

Package

system

Initial Value

nil

Description

The variable *print-symbols-using-bars* controls how escaping is done when symbols are printed.

When the value is true, printing symbols that must be escaped (for example, those with names containing the colon character
:) is done using the bar character | instead of the backslash character \ in cases when the readtable case and *print-case*

are both :upcase or both :downcase.

Examples

CL-USER 1 > readtable-case *readtable*
:UPCASE

CL-USER 2 > (let ((sys:*print-symbols-using-bars* t)
 (*print-case* :upcase))
 (print (intern "FOO:BAR"))
 (values))

|FOO:BAR|

CL-USER 3 > (let ((sys:*print-symbols-using-bars* t)
 (*print-case* :downcase))
 (print (intern "FOO:BAR"))
 (values))

foo\:bar

product-registry-path Accessor

Summary

Gets or sets a registry path for use with your software.

Package

system

47 The SYSTEM Package

1535

http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_cas.htm

Signatures

product-registry-path product => path-string

setf (product-registry-path product) path => path

Arguments

product⇓ A Lisp object.

path⇓ A string or a list of strings.

Values

path-string The path as a string.

path The path as a string or a list of strings.

Description

The accessor product-registry-path gets or sets the registry subpath path defined for the product denoted by product.

The reader always returns a string.

If path is a string it can contain backslash \ or forward slash / as directory separators - these are translated internally to the
separator appropriate for the system. Note that any backslash will need escaping (with another backslash) if you input the
string value via the Lisp reader.

If path is a list of strings, then it is interpreted like the directory component of a pathname.

This registry subpath is used when reading and storing user preferences with user-preference.

Note that while product can be any Lisp object, values of product are compared by eq, so you should use keywords.

Notes

To store CAPI window geometries under the registry path for your product, see the entry for
capi:top-level-interface-geometry-key in the CAPI User Guide and Reference Manual.

Examples

(setf (sys:product-registry-path :deep-thought)
 (list "Deep Thought" "1.0"))

Then, on non-Windows systems:

(sys:product-registry-path :deep-thought)
=>
"Deep Thought/1.0"

And on Microsoft Windows:

(sys:product-registry-path :deep-thought)
=>
"Deep Thought\\1.0"

47 The SYSTEM Package

1536

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm

See also

copy-preferences-from-older-version
user-preference

release-object-and-nullify Macro

Summary

64-bit LispWorks only: Explicitly release the memory of an object if possible.

Package

system

Signature

release-object-and-nullify place => released-p

Arguments

place⇓ A generalized reference (see the Common Lisp definition).

Values

released-p A boolean.

Description

The macro release-object-and-nullify checks if place contains a pointer to an object that can be explicitly released,
and if it does then it frees the object and sets place to nil.

place must be the only reference to the object to be released, and no other thread can be still accessing the object.
release-object-and-nullify releases the memory and stores nil in place, so there is no dangling pointer to the object.

The released memory is returned to the operating system for objects that are allocated in their own segment. Currently, these
are objects larger than 1 MB in the Mobile GC, larger than 64 MB in the ordinary 64-bit GC. For other objects, the memory
will eventually be reclaimed by the GC, except for permanent objects that are not in their own segment, which are never
reclaimed.

release-object-and-nullify cannot be executed in interpreted code (because the interpreted code would keep pointers
to the object). It must be compiled.

Notes

If the pointer in place is not the only reference, then you will be left with "dangling" pointers to a free memory, with
unpredictable results.

release-object-and-nullify is mainly intended to be used with references to the large objects that are allocated in
their own segment, where it can return the memory to the operating system, and hence reduce the memory usage substantially
without waiting for a GC. In particular, it is the only way to release the memory of such objects that were made permanent in
the Mobile GC. This is the main purpose of it.

Since release-object-and-nullify does not release the memory for objects that are not in their own segment, it is not

47 The SYSTEM Package

1537

very useful for such objects. However, it may have a useful effect when called on an object that contains pointers and is in a
higher generation, because objects in lower generations that are kept alive because of pointers from this object can be GCed
earlier, but in most cases it probably does not justify the effort. release-object-and-nullify can be called with a
reference to a permanent object too, and if it is allocated in its own segment then the memory will also be released.

release-object-and-nullify releases only the object that is referenced by place, but not anything that this object
points to, which means that you may not get the effect you expect for an object that is complex, such as a hash-table, a
CLOS instance, a pathname or a non-simple array.

See also

allocated-in-its-own-segment-p
make-object-permanent
make-permanent-simple-vector
11.5.2 Mobile GC technical details

right-paren-whitespace Variable

Summary

Controls what happens when an unexpected right parentheses is found during reading.

Package

system

Initial Value

nil

Description

The variable *right-paren-whitespace* controls what happens when an unexpected right parenthesis is found during
reading. It can have the following values:

nil Signal an error, as specified by ANSI Common Lisp.

t Silently treat it as whitespace.

:warn Signal a warning and treat it as whitespace.

Compatibility note

right-paren-whitespace is newly documented in LispWorks 8.0 but has existed is all versions of LispWorks.

room-values Function

Summary

Returns information about the state of internal memory.

47 The SYSTEM Package

1538

http://www.lispworks.com/documentation/HyperSpec/Body/t_hash_t.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_pn.htm

Package

system

Signature

room-values => result

Values

result A plist: (:total-size size :total-allocated allocated :total-free free).

Description

The function room-values returns a plist containing information about the state of internal memory. This information is the
same as would be printed by (room nil).

Notes

In 64-bit LispWorks you can also use count-gen-num-allocation and gen-num-segments-fragmentation-state.

See also

count-gen-num-allocation
room
11.2 Guidance for control of the memory management system

run-shell-command Function

Summary

Allows executables and DOS or Unix shell commands to be called from Lisp code.

Package

system

Signature

run-shell-command command &key input output error-output separate-streams wait if-input-does-not-exist if-output-exists
if-error-output-exists show-window environment element-type save-exit-status current-directory external-format => result-or-
stream, signal-number-or-error-stream, process

Arguments

command⇓ A string, a non-empty list of strings, a simple-vector of strings, or nil.

input⇓ nil, :stream or a file designator. Default value nil.

output⇓ nil, :stream or a file designator. Default value nil.

error-output⇓ nil, :stream, :output or a file designator. Default value nil.

separate-streams⇓ A boolean. True value not currently supported.

wait⇓ A boolean, default value t.

47 The SYSTEM Package

1539

if-input-does-not-exist⇓
:error, :create or nil. Default value :error.

if-output-exists⇓ :error, :overwrite, :append, :supersede or nil. Default value :error.

if-error-output-exists⇓
:error, :overwrite, :append, :supersede or nil. Default value :error.

show-window⇓ A boolean. True value not currently supported.

environment⇓ An alist of strings naming environment variables and values. Default value nil.

element-type⇓ A type descriptor. Default value base-char.

save-exit-status⇓ A boolean, default value nil.

current-directory⇓ nil or a pathname designator. New in LispWorks 8.1.

external-format⇓ An external file format designator. Defaults to :default. New in LispWorks 8.0.

Values

result-or-stream⇓ The exit status of the process running command or a stream or a process ID.

signal-number-or-error-stream⇓
An integer, a stream, or nil.

process⇓ A process ID or nil.

Description

The function run-shell-command allows executables and DOS or Unix shell commands to be called from Lisp code with
redirection of the stdout, stdin and stderr to Lisp streams. It creates a subprocess which executes the command command.

The argument command is interpreted as by call-system. In the cases where a shell is run, the shell to use is determined
by the environment variable SHELL, or defaults to /bin/csh or /bin/sh if that does not exist.

If wait is true, then run-shell-command executes command and does not return until the process has exited. In this case
none of input, output or error-output may have the value :stream, and the single value result-or-stream is the exit status of
the process that ran command. On non-Windows platforms, signal-number-or-error-stream is the integer signal number if the
process was terminated by a signal, otherwise nil. signal-number-or-error-stream is always nil on Microsoft Windows.

If wait and save-exit-status are nil and none of input, output or error-output have the value :stream then
run-shell-command executes command and returns a single value result-or-stream which is the process ID of the process
running command.

If wait is nil and either of input or output have the value :stream then run-shell-command executes command and
returns three values: result-or-stream is a Lisp stream which acts as the stdout of the process if output is :stream, and is the
stdin of the process if input is :stream. signal-number-or-error-stream is a Lisp stream or nil, determined by the argument
error-output as described below. process is the process ID of the process.

If wait and save-exit-status are nil and neither of input or output have the value :stream then the first return value, result-
or-stream, is nil.

If wait is nil, save-exit-status is true and neither of input or output have the value :stream then the first return value, result-
or-stream, is a dummy stream that can only be used with pipe-exit-status (see save-exit-status below).

If wait is nil and error-output has the value :stream then run-shell-command executes command and returns three
values. result-or-stream is determined by the arguments input and output as described above. signal-number-or-error-stream
is a Lisp stream which acts as the stderr of the process. process is the process ID of the process.

47 The SYSTEM Package

1540

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

If wait is nil and error-output is not :stream then the second return value, signal-number-or-error-stream, is nil. If error-
output is :output, then stderr goes to the same place as stdout.

Any streams returned in result-or-stream or signal-number-or-error-stream have element type element-type, which defaults to
base-char if not supplied.

If input is a pathname or string, then open is called with :if-does-not-exist if-input-does-not-exist. The resulting
file-stream acts as the stdin of the process.

If output is a pathname or string, then open is called with :if-exists if-output-exists. The resulting file-stream acts as
the stdout of the process.

If error-output is a pathname or string, then open is called with :if-exists if-error-output-exists. The resulting
file-stream acts as the stderr of the process.

This table describes the streams created, for each combination of stream arguments:

The streams created by run-shell-command

Arguments result-or-stream value signal-number-or-error-stream value

input is :stream
output is :stream
error-output is :stream

An I/O stream connected to stdin and
stdout

An input stream connected to stderr

input is not :stream
output is :stream
error-output is :stream

An input stream connected to stdout An input stream connected to stderr

input is :stream
output is not :stream
error-output is :stream

An output stream connected to stdin An input stream connected to stderr

input is not :stream
output is not :stream
error-output is :stream

nil An input stream connected to stderr

input is :stream
output is :stream
error-output is :output

An I/O stream connected to stdin,
stdout and stderr

nil

input is not :stream
output is :stream
error-output is :output

An input stream connected to stdout
and stderr

nil

input is :stream
output is not :stream
error-output is :output

An output stream connected to stdin nil

input is not :stream
output is not :stream
error-output is :output

nil nil

input is :stream
output is :stream
error-output is not :stream or
:output

An I/O stream connected to stdin and
stdout

nil

47 The SYSTEM Package

1541

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_file_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_file_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_file_s.htm

input is not :stream
output is :stream
error-output is not :stream or
:output

An input stream connected to stdout nil

input is :stream
output is not :stream
error-output is not :stream or
:output

An output stream connected to stdin nil

input is not :stream
output is not :stream
error-output is not :stream or
:output

nil nil

If any of input, output or error-output are streams, then they must be file-streams or socket-streams capable of acting
as the stdin, stdout or stderr of the process.

environment should be an alist of strings naming environment variables and their values. The process runs in an environment
inherited from the Lisp process, augmented by environment.

If save-exit-status is true then LispWorks stores the exit status of the process, so that it can be recovered by calling
pipe-exit-status on result-or-stream or signal-number-or-error-stream if either of these is a stream.

If current-directory is non-nil, then it must be a pathname designator for a directory and is used as the current directory in the
new process. Otherwise, the current directory of the LispWorks process is used (the default).

external-format is used as in the description of open-pipe.

separate-streams and show-window must be nil.

On non-Windows platforms, the command line arguments and environment variables are encoded as specfied in 27.14.1
Encoding of file names and strings in OS interface functions.

Compatibility note

• On Microsoft Windows, LispWorks 8.1 and later, current-directory defaults to the current directory of the LispWorks
process. In previous releases, the current directory defaulted to the pathname-location of the current-pathname.
In practice, this is only different when loading or compiling a file.

Examples

(multiple-value-bind (out err pid)
 (sys:run-shell-command "sh -c 'echo foo >&2; echo bar'"
 :wait nil
 :output :stream
 :error-output :stream)
 (with-open-stream (out out)
 (with-open-stream (err err)
 (values (read-line out) (read-line err)))))
=>
"bar", "foo"

See also

call-system
call-system-showing-output

47 The SYSTEM Package

1542

http://www.lispworks.com/documentation/HyperSpec/Body/t_file_s.htm

open-pipe
pipe-exit-status

safe-locale-file-encoding Function

Summary

Provides a safe encoding which corresponds to the current code page on Microsoft Windows, and the locale on Unix.

Package

system

Signature

safe-locale-file-encoding pathname ef-spec buffer length => new-ef-spec

Arguments

pathname⇓ Pathname identifying location of buffer.

ef-spec⇓ An external format spec.

buffer⇓ A buffer whose contents are examined.

length⇓ Length (an integer) up to which buffer should be examined.

Values

new-ef-spec Default external format spec created by merging ef-spec with the encoding that was found
to be valid.

Description

The function safe-locale-file-encoding is similar to locale-file-encoding except that it always returns a safe
external format. That is, the external format does not signal error on writing characters not in the encoding.

On Microsoft Windows, safe-locale-file-encoding consults the ANSI code page. If the code page identifier id is in
win32:*latin-1-code-pages*, it merges ef-spec with :latin-1-safe. This external format writes Latin-1 on output,
using 63 (ASCII '?') to replace any non-Latin-1 characters that are written. If the code page identifier id is not in
win32:*latin-1-code-pages* then safe-locale-file-encoding merges ef-spec with an encoding corresponding to
the current code page that uses the code page's replacement code for characters that cannot be encoded.

safe-locale-file-encoding merges ef-spec with :latin-1-safe on Unix.

pathname, buffer and length are ignored.

See also

file-encoding-detection-algorithm
latin-1-code-pages
locale-file-encoding

47 The SYSTEM Package

1543

set-approaching-memory-limit-callback Function

Summary

Sets a callback that it is called when 32-bit LispWorks approaches its memory limit.

Package

system

Signature

set-approaching-memory-limit-callback callback

Arguments

callback⇓ A function designator.

Description

The function set-approaching-memory-limit-callback sets a callback that it is called when 32-bit LispWorks
approaches its limit of memory.

The function callback must take two arguments: the size of the image and the margin of growth:

callback size margin

Normally callback should do something to prevent further growth of the image, or at least minimize the damage if LispWorks
crashes when it actually reaches its limit (for example by saving data to disk).

callback can prevent an error being signaled by calling cl:continue.

If there is no callback (the default) or callback returns, LispWorks signals an error.

Notes

set-approaching-memory-limit-callback is not relevant to 64-bit LispWorks.

set-approaching-memory-limit-callback does not return a useful value.

See also

11.3.6 Approaching the memory limit
approaching-memory-limit

set-automatic-gc-callback Function

Summary

Sets a function or functions to call after an automatic GC in 64-bit LispWorks.

47 The SYSTEM Package

1544

http://www.lispworks.com/documentation/HyperSpec/Body/a_contin.htm

Package

system

Signature

set-automatic-gc-callback blocking-gen-num-func &optional other-func => other-func

Arguments

blocking-gen-num-func⇓
A function designator for a function of two arguments, or nil.

other-func⇓ A function designator for a function of one argument, or nil.

Values

other-func A function designator for a function of one argument, or nil.

Description

The function set-automatic-gc-callback sets a function or functions to call after an automatic garbage collection
(GC).

If blocking-gen-num-func is a function designator it should take two arguments: the generation number and, if do-gc in the
last call to set-blocking-gen-num was a number, the number of copied segments. It is called whenever the blocking
generation is garbage collected automatically. If blocking-gen-num-func is nil, then this callback is switched off.

If other-func is a function designator it should take one argument, the generation number that was garbage collected. It is
called whenever an automatic GC occurred and blocking-gen-num-func was not called, either because the blocking generation
was not garbage collected, or because blocking-gen-num-func was passed as nil. If other-func is nil (the default) then this
callback is switched off.

The calls occur after the GC has finished and there is no restriction on what they can do. If the call ends up allocating enough
to trigger another automatic GC, they enter again recursively.

Notes

set-automatic-gc-callback is implemented only in 64-bit LispWorks. It is not relevant to the Memory Management
API in 32-bit implementations.

See also

set-blocking-gen-num
11.4 Memory Management in 64-bit LispWorks

set-blocking-gen-num Function

Summary

Sets the blocking generation in 64-bit LispWorks.

47 The SYSTEM Package

1545

Package

system

Signature

set-blocking-gen-num gen-num &key do-gc max-size max-size-to-copy gc-threshold => old-blocking-gen-num, do-gc,
max-size-to-copy, old-gc-threshold

Arguments

gen-num⇓ An integer between 0 and 7, inclusive.

do-gc⇓ One of t, nil and :mark, or a real number between 0 and 10, inclusive.

max-size⇓ A synonym for max-size-to-copy.

max-size-to-copy⇓ A positive real number, or nil.

gc-threshold⇓ An integer greater than 12800, or a real in the inclusive range [0 100], or nil.

Values

old-blocking-gen-num An integer between 0 and 7, inclusive.

do-gc One of t, nil and :mark, or a real number between 0 and 10, inclusive.

max-size-to-copy A positive real number.

old-gc-threshold A number.

Description

The function set-blocking-gen-num sets gen-num as the generation that blocks. That is, no object is automatically
promoted out of generation gen-num to a higher generation.

If do-gc is non-nil, then generation gen-num is automatically collected when needed, as defined by gc-threshold (see
set-gen-num-gc-threshold).

The actual value of do-gc specifies how to GC the blocking generation when required. The possible values of do-gc are
interpreted as follows:

t Use Copying GC.

:mark Use Marking GC.

A number in the inclusive range [0, 10]

Use Marking GC with copying of fragmented segments. The value specifies the fragmentation-
threshold (the same as the argument to marking-gc). This is the ratio between the amount of
free space that cannot be easily used and the amount of allocated space inside a segment. Only
segments with fragmentation higher than the threshold are copied.

The default value of do-gc is t.

max-size-to-copy (or max-size) is meaningful only if do-gc is a number. It specifies the maximum size in Gigabytes to try to
copy. If the fragmented segments contain more data than this value, only some of them are copied in each GC.

If gc-threshold is non-nil, it is used to set the threshold for automatic GC using set-gen-num-gc-threshold.

The initial setup is as if this call has been made:

47 The SYSTEM Package

1546

(sys:set-blocking-gen-num 3)

That is, the system will GC automatically according to the default gc-threshold using Copying GC.

Setting the blocking generation gen-num to a lower number is useful into two situations:

1. When you have an operation that allocates a significant amount of data, and almost of it goes when the operation
finishes, it is useful to reduce the blocking gen-num during the operation. The macro block-promotion is a convenient
way of doing that.

2. If you have a good idea of how your application behaves, it may be useful to block at a lower generation (2 or 1), and
then periodically call gc-generation explicitly to promote long living objects to a higher generation. The advantage of
doing this is that you can call gc-generation in places where you know there are not many short-lived objects alive.

Passing a do-gc value other than t is useful when the blocking generation can be large enough that copying it all may cause
very serious paging. Passing do-gc :mark will stop the system from copying the blocking generation, but may cause
fragmentation if a significant number of long-lived objects die after a while, and there are not explicit calls to
gc-generation or marking-gc.

set-blocking-gen-num returns four values: the old blocking generation number, the old value of do-gc, max-size-to-
copy, and the old value ofgc-threshold. It can be called with gen-num nil to query the values without changing any of them.

Notes

set-blocking-gen-num is implemented only in 64-bit LispWorks. It does nothing in the Mobile GC and its return value is
not meaningful. It is not relevant to the Memory Management API in 32-bit implementations.

See also

block-promotion
gc-generation
marking-gc
set-automatic-gc-callback
set-gen-num-gc-threshold
11.2 Guidance for control of the memory management system

set-default-segment-size Function

Summary

Sets the default initial size of a segment in 64-bit LispWorks.

Package

system

Signature

set-default-segment-size gen-num allocation-type size-in-mb => segment-size

Arguments

gen-num⇓ An integer between 0 and 3, inclusive.

47 The SYSTEM Package

1547

allocation-type⇓ One of :cons, :symbol, :function, :non-pointer, :other, :mixed,
:cons-static, :non-pointer-static, :mixed-static, :weak, :other-big,
and :non-pointer-big.

size-in-mb⇓ A number, or nil.

Values

segment-size⇓ A number.

Description

The function set-default-segment-size sets the default initial size of a segment for a generation gen-num and
allocation type allocation-type.

The default initial size is also used as the default size for enlargement of the segment.

allocation-type can be any of the allocation types. However, if allocation-type is :other-big or :non-pointer-big, this
function has no effect.

If size-in-mb is a number, it specifies the size in megabytes. If size-in-mb is nil then set-default-segment-size

returns the default initial segment size without altering it.

The returned value, segment-size, is the previous default initial segment size.

During automatic garbage collections (GCs) the system collects an ephemeral generation when any of its segments for the
main allocation types is full. Thus the size of the segments defines the frequency of GCs in these generations.

Notes

set-default-segment-size is implemented only in 64-bit LispWorks. It does nothing in the Mobile GC and its return
value is not meaningful. It is not relevant to the Memory Management API in 32-bit implementations, where
enlarge-generation is available.

See also

avoid-gc
enlarge-generation
set-maximum-segment-size
11.4 Memory Management in 64-bit LispWorks

set-delay-promotion Function

Summary

Delays promotion for a specified generation in 64-bit LispWorks.

Package

system

Signature

set-delay-promotion gen-num on => on

47 The SYSTEM Package

1548

Arguments

gen-num⇓ An integer between 0 and 7, inclusive.

on⇓ A generalized boolean.

Values

on A generalized boolean.

Description

The function set-delay-promotion delays promotion for generation gen-num if on is non-nil, which means that objects
are promoted to the next generation in the second garbage collection (GC) that they survive in generation gen-num. By
default, objects are promoted in the first GC.

It is not obvious under what circumstances delayed promotion is more useful than the default behavior. If you find this
function useful, please let us know at Lisp Support.

Notes

set-delay-promotion is implemented only in 64-bit LispWorks. It does nothing in the Mobile GC and its return value is
not meaningful. It is not relevant to the Memory Management API in 32-bit implementations.

See also

set-blocking-gen-num

set-expected-allocation-in-generation-2-after-gc Function

Summary

Mobile GC only: tells the GC what is the maximum amount that you expect to be allocated in generation 2 after a GC of
generation 2.

Package

system

Signature

set-expected-allocation-in-generation-2-after-gc &key expected-other-mbs expected-cons-mbs max-needed-
other-mbs max-needed-cons-mbs => prev-expected-other-mbs, prev-expected-cons-mbs, prev-max-needed-other-mbs, prev-max-
needed-cons-mbs

Arguments

expected-other-mbs⇓, expected-cons-mbs⇓, max-needed-other-mbs⇓, max-needed-cons-mbs⇓
Non-negative integers or nil.

Values

prev-expected-other-mbs, prev-expected-cons-mbs, prev-max-needed-other-mbs, prev-max-needed-cons-mbs

47 The SYSTEM Package

1549

Non-negative integers.

Description

The function set-expected-allocation-in-generation-2-after-gc is intended to improve the behavior of the
application, but it may also degrade the performance if not used appropriately. It sets internal values associated with each of
the parameters max-needed-other-mbs, max-needed-cons-mbs, expected-other-mbs and expected-cons-mbs.

All parameters and return values are in megabytes. If any parameter is nil or is larger than the maximum, which is 65535,
then the maximum is used for that parameter. expected-other-mbs defaults to its current internal value and max-needed-other-
mbs defaults to the maximum of its current internal value and expected-other-mbs (see below). Likewise for expected-cons-
mbs and max-needed-cons-mbs. LispWorks starts with all internal values set to the maximum.

The main purpose of set-expected-allocation-in-generation-2-after-gc is to tell the GC what you expect to be
the maximum allocated megabytes in generation 2 after a GC of generation 2. That allows LispWorks to perform a better GC
in situations where it does not have enough memory to copy all of generation 2. You set this separately for Other and cons

objects, by supplying expected-other-mbs and expected-cons-mbs. Note that Other does not include Large and Static objects.

In situations where LispWorks cannot get enough memory from the operating system to copy all of generation 2, but can get
the expected size that you have set, the GC is faster than it would have been if the expected size was not set (that is, set to the
maximum), and more importantly, the memory usage after the GC will be smaller (sometimes much smaller). On the other
hand, if the expected size is set too low in such a situation, then the GC is a little slower, and more importantly, the memory
usage after the GC is larger than it would have been if the expected size was not set, until the next GC of generation 2 where
the expectation is met. Thus for the expected size setting to be useful, it needs to be met (that is, the allocated size after GC
must be less than the setting) in almost all GCs of generation 2. It probably needs to met more than 90% in the GCs to be
useful.

The function get-maximum-allocated-in-generation-2-after-gc is designed to allow you to find out what values
to use. You exercise the application by trying to do anything that an end user may do, and then call
get-maximum-allocated-in-generation-2-after-gc to see the maximums. Note that with normal settings, the
points at which GC of generation 2 is invoked (and hence the amount alive after it) are not well defined. Therefore, you need
to exercise the application more than once to find the correct numbers. Alternatively, if you block GC of generation 2 (by
using set-generation-2-gc-options) and invoke the GC yourself, you can be more confident that you know the
memory state at the time the GC is invoked. Alternatively, instead of calling
get-maximum-allocated-in-generation-2-after-gc you can use the second and third return values of
(count-gen-num-allocation 2), or the values that room reports for "Other 2" and "Cons 2". You can use
set-automatic-gc-callback to set a function that will be called immediately after GC of generation 2.

In situations where LispWorks can get all the memory it needs to perform a GC of generation 2, the setting of expected-other-
mbs and expected-cons-mbs has no effect.

max-needed-other-mbs and max-needed-cons-mbs set an upper bound on the amount of memory that LispWorks tries to get
from the operating system for a GC of generation 2.

set-expected-allocation-in-generation-2-after-gc ensures that the settings of max-needed-other-mbs and max-
needed-cons-mbs are always equal or larger than the setting of expected-other-mbs and expected-cons-mbs respectively, by
enlarging the setting of max-needed-other-mbs or max-needed-cons-mbs when needed.

Smaller values of max-needed-other-mbs and max-needed-cons-mbs cause LispWorks to use less memory in situations where
it could get more memory from the operating system than they specify. That means the memory peak that happens during the
GC will be smaller. That should not have much effect the performance of LispWorks itself, but when the operating system is
close to running out of memory, that may prevent it from actually running out of memory while the GC is running. On the
other hand, if the GC requires more than max-needed-other-mbs or max-needed-cons-mbs, it will try to get more memory
during the GC operation, and if this fails it has larger effect on performance than failure to allocate during the initialization of
the GC.

The return values are the settings before the call.

47 The SYSTEM Package

1550

http://www.lispworks.com/documentation/HyperSpec/Body/a_cons.htm

set-expected-allocation-in-generation-2-after-gc is thread-safe. It can be called repeatedly with different
values.

Notes

set-expected-allocation-in-generation-2-after-gc is useful in the situation when you have a "generation leak",
that is objects live long enough to be promoted from generation 1 to 2 but die soon afterwards, and you do not have much
allocated in generation 2 otherwise. In this case, the size of the live objects after a call to GC of generation 2 would be small,
which means that the GC will be fast because the timing of a GC that works as planned is dependent on the amount allocated
after the GC.

However, the memory peak will still be dependent on the size of generation 2 before the GC, which may cause failure to get
memory from the operating system, and hence result in a slower and much less effective GC. Setting the values reduces the
chance of such a failure, and reduces the memory usage even in situation where LispWorks could get the memory. Therefore,
as long as the settings are correct (that is, in the vast majority of GCs of generation 2, the amount allocated after the GC is
less than the setting) it can improve the performance of LispWorks significantly.

See also

get-maximum-allocated-in-generation-2-after-gc
count-gen-num-allocation
room
set-automatic-gc-callback
11.5.3.2 Preventing/reducing GC of generation 2

set-file-dates Function

Summary

Sets the modification and access times of a file.

Package

system

Signature

set-file-dates file &key creation modification access

Arguments

file⇓ A pathname designator.

creation⇓ A non-negative integer, or nil.

modification⇓ A non-negative integer, or nil.

access⇓ A non-negative integer, or nil.

Description

The function set-file-dates sets the modification and access times of the file file for each of modification and access that
is non-nil.

On Microsoft Windows, if creation is non-nil, the creation time of the file is also set. creation is ignored on other platforms.

47 The SYSTEM Package

1551

creation, modification and access are interpreted as a universal time representing the time to set, unless it is nil in which
case the corresponding time for file is not changed. Each keyword argument has default value nil.

An error of type file-error is signaled on failure.

See also

open

set-generation-2-gc-options Function

Summary

Mobile GC only: Controls the automatic GC of generation 2.

Package

system

Signature

set-generation-2-gc-options &key minimal-size-for-gc allocation-increase-factor => prev-minimal-size-for-gc, prev-
allocation-increase-factor

Arguments

minimal-size-for-gc⇓ nil, t or a non-negative fixnum.

allocation-increase-factor⇓
nil or a real between 0 and 16 (exclusive).

Values

prev-minimal-size-for-gc

Previous setting of minimal-size-for-gc.

prev-allocation-increase-factor

Previous setting of allocation-increase-factor.

Description

The function set-generation-2-gc-options sets internal variables that control when to automatically GC generation 2.

For both arguments, the value nil (the default) causes no change to the corresponding internal variable.

minimal-size-for-gc is used to set the minimum allocated bytes in generation 2 that will trigger an automatic GC of generation
2. The special value t is interpreted as most-positive-fixnum, and effectively blocks any automatic GC of generation 2.
Integers up to 10000 are interpreted as a size in megabytes, while integers above 10000 are interpreted as a size in bytes.

allocation-increase-factor controls how large an increase (since the last GC) in the allocated bytes in generation 2 will trigger
another automatic GC of generation 2.

After each GC of generation 2 (automatic or user invoked), LispWorks computes a value for gen-2-gc-threshold using the
expression:

47 The SYSTEM Package

1552

http://www.lispworks.com/documentation/HyperSpec/Body/e_file_e.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_most_p.htm

(max minimal-size-for-gc
 (* (1+ allocation-increase-factor)
 allocated-gen-2-bytes))

where allocated-gen-2-bytes is the allocated bytes in generation 2.

The next automatic GC of generation 2 will be triggered only when the allocated bytes in generation 2 exceeds gen-2-gc-
threshold in the future.

set-generation-2-gc-options also sets gen-2-gc-threshold to minimal-size-for-gc if it is non-nil (allocation-increase-
factor has no effect on this setting).

The initial values are 64 megabytes for minimal-size-for-gc and 0.5 for allocation-increase-factor.

Notes

Setting a small threshold causes relatively frequent GCs of generation 2, which is acceptable if each GC is short enough that
it does not bother the end user. That may be true if the total allocated (after a GC) in your application is only few 10's of
megabytes. You should try to either time a GC of generation 2 by (time (gc-generation 2)) on the slowest device to
which you target your application, or alternatively try to use the application on such a device with the small threshold settings
and see if you notice unacceptable delays.

A small threshold probably reduces the efficiency of the application a little, but has some advantages:

• It reduces the memory foot-print of your application.

• It reduces the chance that the application will run into a memory limitation when doing a GC. When the GC runs into
such a limitation, it becomes much less efficient.

• It reduces the lifetime of objects in generation 0 and 1 that may stay alive because they are pointed to by objects in
generation 2 that are actually dead but have not been GCed yet. As a result, in some circumstances frequent GC of
generation 2 may increase the efficiency of the application.

Therefore, if the delays are not long enough to be annoying then it is probably a good idea to have a low threshold.

By contrast, a large threshold causes less frequent GCs of generation 2, which normally causes it to grow more before a GC
occurs. As long as LispWorks can get all the memory it needs to perform a copying GC, the time taken to do a GC correlates
to the amount of memory that is still alive after (rather then before) the GC. Thus if generation 2 contains mainly "generation
leak" objects (see 11.5.3.2 Preventing/reducing GC of generation 2) that are removed by the GC, then each GC would take
approximately the same time regardless of how frequently GC occurs. In that situation, doing a GC less frequently results in
less time overall. However, if LispWorks fails to get memory from the operating system to do a copying GC, then the GC is
done partially by a marking GC, which is slower and less effective. Thus you do not want to increase the threshold "too
much". A copying GC needs to increase the memory size by approximately the current amount allocated, but it is difficult to
predict how much memory the operating system is ready to give at any point, and it depends on the hardware and operating
system. It is therefore difficult to say how much is "too much".

See also

set-promote-generation-1
11.5.3.2 Preventing/reducing GC of generation 2

47 The SYSTEM Package

1553

set-gen-num-gc-threshold Function

Summary

Sets the additional allocation threshold that triggers a GC in the blocking generation in 64-bit LispWorks.

Package

system

Signature

set-gen-num-gc-threshold gen-num threshold => old-threshold

Arguments

gen-num⇓ An integer between 0 and 7, inclusive.

threshold⇓ An integer greater than 12800, or a real in the inclusive range [0 100], or nil.

Values

old-threshold A number.

Description

The function set-gen-num-gc-threshold sets the threshold for additional allocation that triggers a garbage collection
(GC) in generation gen-num when this is the blocking generation (as set by set-blocking-gen-num). A GC is triggered
when the allocation in generation gen-num grows more than threshold over the allocation after the last GC of this generation
(or a GC of a higher generation).

To set the threshold, threshold can be an integer greater than 12800, which is interpreted as the absolute value. Alternatively
threshold can be a real number in the inclusive range [0 100], which is multiplied by the allocation since the previous GC to
get the actual threshold to set.

The default threshold for all generations is 1. That is, for all generations gen-num, when generation gen-num is the blocking
generation and allocation in it has doubled since the previous GC, generation gen-num is collected automatically.

set-gen-num-gc-threshold can be called when the generation gen-num is not the blocking generation, and will set the
value for that gen-num. Such a call will not take effect until the generation gen-num becomes the blocking generation, as set
by a call to set-blocking-gen-num (with :do-gc non-nil).

Increasing the threshold reduces the number of GC calls, but may increase the virtual memory usage.

set-gen-num-gc-threshold returns the old threshold for the generation gen-num. It can be called with threshold nil to
return the threshold value without changing it.

Notes

set-gen-num-gc-threshold is implemented only in 64-bit LispWorks. It does nothing in the Mobile GC and its return
value is not meaningful. It is not relevant to the Memory Management API in 32-bit implementations.

47 The SYSTEM Package

1554

See also

set-blocking-gen-num
11.4 Memory Management in 64-bit LispWorks

set-maximum-memory Function

Summary

Sets or removes a limit for the top of the Lisp heap in 32-bit LispWorks.

Package

system

Signature

set-maximum-memory address

Arguments

address⇓ An integer address, or nil.

Description

The function set-maximum-memory sets or removes a limit for the maximum address that the Lisp heap can grow to. If
address is an integer, this becomes the maximum address. If address is nil, any limit set by set-maximum-memory is
removed.

LispWorks sets the maximum memory on startup. In all cases the system is constrained by the size of the physical memory.

When the maximum memory is reached (either that set by set-maximum-memory or the physical memory limit) the system
will become unstable. Therefore this situation should be avoided. The benefit of having the maximum memory set is that a
useful error is signaled if the limit is reached.

An application which is likely to grow to the maximum memory should test the amount of available memory using
memory-growth-margin or room-values at suitable times, and take action to reclaim memory. Do not rely on handling
the error signaled when the maximum memory is reached, since the system is already unstable at this point.

Notes

set-maximum-memory is implemented only in 32-bit LispWorks. It is not relevant to the Memory Management API in 64-
bit implementations.

See also

check-fragmentation
mark-and-sweep
memory-growth-margin
room-values
11.3 Memory Management in 32-bit LispWorks

47 The SYSTEM Package

1555

set-maximum-segment-size Function

Summary

Defines the maximum segment size for a generation and allocation type in 64-bit LispWorks.

Package

system

Signature

set-maximum-segment-size gen-num allocation-type size-in-mb => max-segment-size

Arguments

gen-num⇓ An integer between 0 and 7, inclusive.

allocation-type⇓ One of :cons, :symbol, :function, :non-pointer and :other.

size-in-mb⇓ An integer between 1 and 256 inclusive, or nil.

Values

max-segment-size⇓ A number.

Description

The function set-maximum-segment-size sets the maximum segment size for generation gen-num and allocation type
allocation-type in 64-bit LispWorks.

allocation-type can be any of the main allocation types described in 11.4.2 Segments and Allocation Types.

size-in-mb is the size in megabytes.

For the non-ephemeral generations (that is, the blocking generation and above), if the system needs more memory of some
allocation type in some generation, its normal operation is to enlarge one of the existing segments in this generation of this
allocation type. If it does not find a segment that it can enlarge, it allocates a new segment of the same allocation type in the
same generation. Therefore the maximum segment size affects the number of segments that will be used.

There is an overhead to using more segments, so normally having the largest segment size which the implementation allows
(256MB) is the best. Reducing the size may be useful when using marking-gc with what-to-copy non-nil or
set-blocking-gen-num with do-gc a number to prevent fragmentation in the blocking generation. In this situation,
reducing the size of each segment makes it easier for the system to find segments to copy, even if the max-size-to-copy
parameter is set to a low number to avoid using too much virtual memory.

The returned value, max-segment-size, is the previous maximum segment size.

If size-in-mb is a number, it specifies the size in megabytes. If size-in-mb is nil then set-maximum-segment-size

returns the maximum segment size without altering it.

Notes

set-maximum-segment-size is implemented only in 64-bit LispWorks. It does nothing in the Mobile GC and its return

47 The SYSTEM Package

1556

value is not meaningful. It is not relevant to the Memory Management API in 32-bit implementations.

See also

marking-gc
set-blocking-gen-num
set-default-segment-size
11.4 Memory Management in 64-bit LispWorks

set-memory-check Function

Summary

Sets a memory check in 64-bit LispWorks.

Package

system

Signature

set-memory-check size function

Arguments

size⇓ An integer.

function⇓ A function designator.

Description

The function set-memory-check sets a memory check.

size must be an integer. It specifies the total size in bytes of the mapped areas of Lisp at which the check is triggered.

function is a function of no arguments.

After each automatic garbage collection (GC) the system checks whether the mapped area (excluding stacks) is larger than
size. If it is larger, function is called with no arguments.

Inside the dynamic scope of the call, the check is disabled. There are no restrictions or special considerations on what the
function function does.

The current mapped area can be found by the :total-size value returned by room-values.

Notes

set-memory-check is implemented only in 64-bit LispWorks. It is not relevant to the Memory Management API in 32-bit
implementations.

See also

set-memory-exhausted-callback

47 The SYSTEM Package

1557

set-memory-exhausted-callback Function

Summary

Sets a callback that is called when memory is exhausted in 64-bit LispWorks.

Package

system

Signature

set-memory-exhausted-callback function &optional where => callbacks

Arguments

function⇓ A function designator, the keyword :reset, or nil.

where⇓ :first, :last or nil.

Values

callbacks A list of function designators.

Description

The function set-memory-exhausted-callback adds a callback that is called when memory is exhausted. That is, when
the system fails to map memory.

Note: set-memory-check is a more robust way to protect against memory exhaustion problems.

If function is a function designator then it should be a function with signature:

function gen-num size type-name static

function is expected to report what the system was trying to allocate when it failed to map memory. Its arguments are:

gen-num The number of the generation in which it was trying to allocate.

size The size in bytes which it was trying to allocate.

type-name A string naming the allocation type it was trying to allocate.

static A boolean, true if it was trying to allocate a static object, and false otherwise.

function can also have the special value :reset, which resets the callback list to nil.

function can also be nil, which means do nothing but simply return the current list of callbacks.

where defines the position in the list that the callback function is placed. Its allowed values are:

:first function is placed first in the callbacks list.

:last function is placed last in the callbacks list.

nil function is removed from the callbacks list.

47 The SYSTEM Package

1558

set-memory-exhausted-callback always first removes function from the callbacks list, and then adds it according to
where. The default value of where is :first. Functions in the list are compared with equalp.

set-memory-exhausted-callback returns the callback list.

When a callback is called, Lisp already failed to map memory. This means that you must not rely on the callback to do real
work. It should therefore attempt only a minimal amount of work such as clean-ups and generating debug information. It
should not try to do real work.

After all the callbacks are called, the system signals an error of type storage-exhausted. The condition can be accessed
using the accessors described for storage-exhausted.

Notes

set-memory-exhausted-callback is implemented only in 64-bit LispWorks. It is not relevant to the Memory
Management API in 32-bit implementations.

See also

set-memory-check
storage-exhausted

set-promote-generation-1 Function

Summary

Mobile GC only: Set whether promotion occurs from generation 1 to 2.

Package

system

Signature

set-promote-generation-1 on &optional promote-all => prev-value

Arguments

on⇓ A boolean.

promote-all⇓ nil, t or :full-gc.

Values

prev-value A boolean.

Description

The function set-promote-generation-1 controls whether promotion can occur from generation 1 to 2. LispWorks
starts with promotion on, so objects in generation 1 that survive a GC are promoted to generation 2. Calling
set-promote-generation-1 with on nil changes the behavior to leave those objects in generation 1.

set-promote-generation-1 can be repeatedly called to switch promotion on or off. It affects all threads.

When on is nil and promote-all is non-nil then set-promote-generation-1 promotes all currently live objects to

47 The SYSTEM Package

1559

http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm

generation 2, and then switches off promotion of generation 1. If promote-all is t, this promotion is done by a GC of
generation 1. If promote-all is :full-gc, it is done by a GC of generation 2.

set-promote-generation-1 returns the previous setting.

Notes

Blocking promotion of generation 1 prevents "generation leaks", that is promotion of objects to generation 2 that die not long
afterwards, but it causes growth of generation 1, which makes GC of generation 1 slower. As long as generation 1 is not too
large, then that is not a problem, and blocking the potential leaks into generation 2 is useful. If generation 1 grows as a result
of blocking promotion, GC of generation 1 starts to take noticeable time, and it is better not to block but to tune generation 2.

See also

11.5.3.2 Preventing/reducing GC of generation 2

set-reserved-memory-policy Function

Summary

Mobile GC only: Tell LispWorks how much reserved memory to try to keep.

Package

system

Signature

set-reserved-memory-policy fixed-size => policy

Arguments

fixed-size⇓ A real or nil.

Values

policy nil or integer.

Description

The function set-reserved-memory-policy tells LispWorks how much reserved memory to keep.

If fixed-size is not nil, it tells LispWorks that it should keep this number of bytes of reserved memory. The reserved memory
is held in segments of fixed size of 8 MB, the actual amount reserved is fixed-size rounded up to the nearest 8 MB. If fixed-
size is nil, LispWorks uses the total size of generation 0 plus generation 1 after each GC to compute the size to keep.

LispWorks starts with the setting being nil.

Calling set-reserved-memory-policy does not change the current size of the reserved area. LispWorks only reduces the
reserved area after a GC if it is too large. It only increases it, up to the limit, when the GC has copied all objects from a
segment.

set-reserved-memory-policy returns the current setting.

47 The SYSTEM Package

1560

See also

11.5.2 Mobile GC technical details

set-signal-handler Function

Summary

Installs or removes a handler for a POSIX signal (non-Windows platforms).

Package

system

Signature

set-signal-handler signum handler

Arguments

signum⇓ A POSIX signal number.

handler⇓ A function or nil.

Description

The function set-signal-handler configures a POSIX signal handler.

If handler is non-nil, then handler will be called when the POSIX signal signum occurs.

If handler is nil, any handler for signum is removed.

handler should be defined to take an &rest argument, and ignore it. There are no restrictions on handler other than those
applying to any asynchronous function call, and that it may be called in any thread. In particular there is no need to handle
the signal immediately.

The configuration established by set-signal-handler is not persistent over image saving (or application delivery), so it
should be called each time the image (or application) is started.

Notes

The currently defined signal handlers are shown in the output of the bug report template which can generated via the
:bug-form listener command. For example, there is a SIGINT handler which calls break. You should consult Lisp Support
before overwriting existing signal handlers.

LispWorks initially has no SIGHUP handler. SIGHUP will kill a LispWorks process which does not have a SIGHUP handler
installed. When the LispWorks IDE starts up, a SIGHUP handler (which attempts to release locks in the environment) is
installed. However if you need a SIGHUP handler in a server application, for example, you should install one using
set-signal-handler.

Examples

(defun my-hup-handler (&rest x)
 (declare (ignorable x))
 (cerror "Continue"

47 The SYSTEM Package

1561

http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_break.htm

 "Got a HUP signal"))

(sys:set-signal-handler 1 'my-hup-handler)

Note that the LispWorks IDE overwrites a SIGHUP handler, so you would need to reinstall it after GUI startup.

set-spare-keeping-policy Function

Summary

Controls the behavior of the system when a segment is emptied in 64-bit LispWorks.

Package

system

Signature

set-spare-keeping-policy gen-num policy => old-policy

Arguments

gen-num⇓ An integer in the inclusive range [0,7].

policy⇓ A generalized boolean.

Values

old-policy⇓ A generalized boolean.

Description

The function set-spare-keeping-policy controls the behavior of the system when a segment is emptied in 64-bit
LispWorks.

If policy is non-nil, then when a segment in generation gen-num is emptied by copying all the objects out from it, it may be
kept as a spare segment to be used in the future. This increases the use of virtual memory, but reduces the number of calls to
mmap and munmap. It may be useful in applications that allocate at a very high rate.

If timing an application reveals a lot (more than 5%) of time in the "System Time", and especially if this shows up in the GC
times produced by extended-time, it may be useful to set the policy to non-nil in generation 1, 2 and maybe in generation
3.

The default policy is nil for all generations, meaning that empty segments are discarded.

The returned value old-policy is the previous policy for the generation gen-num.

Notes

set-spare-keeping-policy is implemented only in 64-bit LispWorks. It does nothing in the Mobile GC and its return
value is not meaningful. It is not relevant to the Memory Management API in 32-bit implementations.

47 The SYSTEM Package

1562

See also

extended-time

set-split-promotion Function

Summary

Mobile GC only: Sets splitting promotion of generation 1.

Package

system

Signature

set-split-promotion on-p => prev-on-p

Arguments

on-p⇓ A boolean.

Values

prev-on-p A boolean.

Description

The function set-split-promotion switches split promotion of generation 1 on or off, depending of the value of on-p.
Split promotion means that in a copying (the default) GC, objects in generation 1 that already survived a GC of generation 1
are promoted to generation 2, while objects that are new in generation 1 stay in generation 1. Non-split promotion means that
all objects in generation 1 are promoted to generation 2.

Split promotion makes it less likely that objects will reach generation 2 and then die (causing a "generation leak"), but means
that the GC spends more time on long-lived objects in generation 1 that should be in generation 2. Since "generation leak" is
the more serious problem, the default is on, and it is probably rarely useful to switch it off.

A situation when it is useful to switch it off is when you have an "initialization" phase when you allocate mostly long-lived
objects, and explicitly invoke a GC of generation 2 at the end of this phase. In this situation, you are not worried about
generation leak, because all the leaked objects will be discarded when you invoke the GC of generation 2, so switching off
split promotion during the phase may speed it up. However the effect is unlikely to be large, and you should time the
initialization phase with and without split promotion to see which is faster.

set-split-promotion returns the previous setting.

See also

11.5.2 Mobile GC technical details

47 The SYSTEM Package

1563

set-static-segment-size Function

Summary

Mobile GC only: set the default static segment size, and optionally the size of the initial segment.

Package

system

Signature

set-static-segment-size size &optional init-size => prev-size, prev-init-size

Arguments

size⇓ A positive integer in the range #x10000 to #x1000000 or nil.

init-size⇓ A positive integer in the range #x10000 to #x1000000 or nil.

Values

prev-size, prev-init-size

Integer.

Description

The function set-static-segment-size sets the size of new static segments other than the initial one, and optionally the
size of the initial one.

Normally you should not use static objects, because it makes the GC less efficient. However, in some circumstances it may
be the best solution. In this situation set-static-segment-size can be used to minimize the overhead.

The overhead for the GC depends on the number of segments, so it is best to minimize the number of static segments by
making them larger. On the other hand, if a segment is not full, it wastes memory. Hence the ideal solution would be the
smallest single segment that is large enough to accommodate all static allocation. You can check the current number and sizes
of static segments by looking at the output of (room t).

By default, LispWorks allocates a small segment on startup of size 64 kB (#x10000). It actually uses very little of it (a few
hundred bytes, up to several kB if you have many processes), and if your application uses only a few kB that should be
enough. If there is further static allocation and the initial segment becomes full, then LispWorks allocates another segment of
size 1 MB, and repeats this as needed.

set-static-segment-size controls these sizes. size controls the size of all the static segments except the one that is
allocated on startup. init-size controls the size of the initial segment.

The initial segment is allocated before your code is called on startup, so to set the initial segment size you need to call
set-static-segment-size before delivering the image. set-static-segment-size gives an error if init-size is non-
nil and the Mobile GC is already running.

A nil value means do not change the value. Calling set-static-segment-size with nil is a way to get the current
settings.

set-static-segment-size returns the previous settings.

47 The SYSTEM Package

1564

See also

11.5.2 Mobile GC technical details

set-temp-directory Function

Summary

Sets the default temp directory.

Package

system

Signature

set-temp-directory temp-dir

Arguments

temp-dir⇓ A pathname or nil.

Description

The function set-temp-directory sets the default temp directory, that is the directory that get-temp-directory
returns, and which is also used by create-temp-file and open-temp-file.

temp-dir must be either a pathname of a suitable directory, or nil, which means use the default. The default is what the
Operating System returns for a temp directory.

Notes

set-temp-directory affects the global setting, that is all threads, and it is not thread-safe. If you need to call it, do that
during start up. When you want to use temp files not in the default temp directory, you should call open-temp-file or
create-temp-file with a suitable directory argument.

See also

open-temp-file
create-temp-file
get-temp-directory

setup-atomic-funcall Function

Summary

Sets up mutually atomic funcalls in SMP LispWorks.

Package

system

47 The SYSTEM Package

1565

Signature

setup-atomic-funcall &rest function-and-arguments

Arguments

function-and-arguments⇓
A list.

Description

The function setup-atomic-funcall sets up a funcall using function-and-arguments, which will be executed atomically
with respect to any other calls which were also set up by setup-atomic-funcall.

Calling setup-atomic-funcall causes the execution of the form:

(apply (car function-and-arguments)
 (cdr function-and-arguments))

some time after the entry to setup-atomic-funcall. The call may happen before setup-atomic-funcall returns, and
it is expected that normally this is what will happen. However, it may be delayed for an indefinite period, but normally this
period is short (milliseconds). The execution occurs atomically with respect to other calls that were set up by
setup-atomic-funcall.

The call should be short, because otherwise it will delay all the other calls. If an error occurs during the call, the atomicity is
no longer guaranteed.

setup-atomic-funcall is useful when a process needs to atomically tell another process to do something, but does not
need to wait for it to finish.

setup-atomic-funcall causes less congestion than using a lock, and so is more efficient for locks that may cause
congestion. compare-and-swap and atomic-exchange operations will be faster.

See also

atomic-exchange
compare-and-swap

sg-default-size Variable

Summary

Default initial size of a stack group.

Package

system

Initial Value

See below.

47 The SYSTEM Package

1566

Description

The value of the variable *sg-default-size* is the initial size of a stack group, in 32 bit words (in 32-bit
implementations) or in 64 bit words (in 64-bit implementations).

sg-default-size can be bound around a call to a process creation function. Note that setting the global value of this
variable affects the size of all system processes too, so this is not recommended.

The initial value varies:

• In LispWorks (64-bit) for Solaris it is 20000.

• In LispWorks (64-bit) on ARM64 it is 18000.

• In all other implementations it is 16000.

Examples

To create a process with a stack of 32000 words:

(let ((sys:*sg-default-size* 32000))
 (mp:process-run-function "Larger stack" '()
 #'(lambda ()
 (print (hcl:current-stack-length)))))

See also

current-stack-length
stack-overflow-behaviour

simple-int32-vector Type

Summary

A type for simple vectors of int32 objects.

Package

system

Signature

simple-int32-vector

Description

The type simple-int32-vector provides simple vectors of int32 objects and can be used to generate optimal 32-bit
arithmetic code. Create a simple-int32-vector by calling make-simple-int32-vector.

See the section 28.2.2 Fast 32-bit arithmetic for more information.

See also

int32
int32-aref

47 The SYSTEM Package

1567

make-simple-int32-vector
simple-int32-vector-length
simple-int32-vector-p

simple-int32-vector-length Function

Summary

Return the length of a simple-int32-vector.

Package

system

Signature

simple-int32-vector-length vector => length

Arguments

vector⇓ A simple-int32-vector.

Values

length A non-negative fixnum.

Description

The function simple-int32-vector-length returns the length of vector.

See also

make-simple-int32-vector
simple-int32-vector

simple-int32-vector-p Function

Summary

A predicate for objects of type simple-int32-vector.

Package

system

Signature

simple-int32-vector-p object => result

47 The SYSTEM Package

1568

Arguments

object⇓ An object.

Values

result A boolean.

Description

The function simple-int32-vector-p returns true if object is a simple-int32-vector and false otherwise.

See also

make-simple-int32-vector
simple-int32-vector

simple-int64-vector Type

Summary

A type for simple vectors of int64 objects.

Package

system

Signature

simple-int64-vector

Description

The type simple-int64-vector provides simple vectors of int64 objects and can be used to generate optimal 64-bit
arithmetic code. Create a simple-int64-vector by calling make-simple-int64-vector.

See the section 28.2.3 Fast 64-bit arithmetic for more information.

See also

int64
int64-aref
make-simple-int64-vector
simple-int64-vector-length
simple-int64-vector-p

47 The SYSTEM Package

1569

simple-int64-vector-length Function

Summary

Return the length of a simple-int64-vector.

Package

system

Signature

simple-int64-vector-length vector => length

Arguments

vector⇓ A simple-int64-vector.

Values

length A non-negative fixnum.

Description

The function simple-int64-vector-length returns the length of vector.

See also

make-simple-int64-vector
simple-int64-vector

simple-int64-vector-p Function

Summary

A predicate for objects of type simple-int64-vector.

Package

system

Signature

simple-int64-vector-p object => result

Arguments

object⇓ An object.

47 The SYSTEM Package

1570

Values

result A boolean.

Description

The function simple-int64-vector-p returns true if object is a simple-int64-vector and false otherwise.

See also

make-simple-int64-vector
simple-int64-vector

sort-inspector-p Generic Function

Summary

Customizes the sort order of attributes/values in the LispWorks IDE Inspector tool.

Package

system

Signature

sort-inspector-p object mode => result

Arguments

object⇓ The object to be inspected.

mode⇓ Name of a mode, or nil. nil defines the default inspection format for object.

Values

result A boolean.

Description

The generic function sort-inspector-p allow you to customize the LispWorks IDE Inspector tool to control sorting of the
attributes and values.

sort-inspector-p determines whether to sort the list of displayed attributes/values of object for the mode mode. It is used
in conjunction with a definition of get-inspector-values.

The Inspector tool calls sort-inspector-p with the current object and mode the first time it displays this object in this
mode to determine whether to sort the list of attributes/values. If it returns non-nil, it sorts by item, otherwise it does not sort.

There are various methods on system-defined types to get the most useful behavior. You can add methods for your own types.

Notes

The sort type can be changed interactively in the Inspector tool by using the the Preferences... dialog.

47 The SYSTEM Package

1571

See also

get-inspector-values

specific-valid-file-encoding Function

Summary

Chooses an encoding from a list of specific encodings, if one is valid.

Package

system

Signature

specific-valid-file-encoding pathname ef-spec buffer length => new-ef-spec

Arguments

pathname⇓ Pathname identifying location of buffer.

ef-spec⇓ An external format spec.

buffer⇓ A buffer whose contents are examined.

length⇓ Length (an integer) up to which buffer should be examined.

Values

new-ef-spec Default external format spec created by merging ef-spec with the encoding that was found
to be valid.

Description

The function specific-valid-file-encoding tests each element of *specific-valid-file-encodings* to see if
it is valid for the contents of buffer, bounded by length. The first valid encoding is returned. For input files, buffer will
contain the start of the file, so it is assumed that it contains a representative sample. For output files, buffer will have length 0,
so the first element of *specific-valid-file-encodings* will always be returned.

pathname is ignored.

specific-valid-file-encoding is a member of the default value of *file-encoding-detection-algorithm*.

Notes

You need to set *specific-valid-file-encodings* for specific-valid-file-encoding to have any effect. The
default value of *specific-valid-file-encodings* is nil, which causes specific-valid-file-encoding to
return ef-spec unchanged.

See also

specific-valid-file-encodings
file-encoding-detection-algorithm

47 The SYSTEM Package

1572

specific-valid-file-encodings Variable

Summary

List of external formats to check for validity.

Package

system

Initial Value

nil

Description

The variable *specific-valid-file-encodings* is a list used by specific-valid-file-encoding, which tests
each element of *specific-valid-file-encodings* to see if it is valid for the contents of buffer, bounded by length,
and returns the first valid encoding.

Examples

For example, the following will cause LispWorks to use UTF-8 if the file begins with valid UTF-8 bytes:

(pushnew :utf-8 system:*specific-valid-file-encodings*)

See also

specific-valid-file-encoding
file-encoding-detection-algorithm

stack-overflow-behaviour Variable

Summary

Controls behavior when stack overflow is detected.

Package

system

Initial Value

:error

Description

The variable *stack-overflow-behaviour* controls behavior when stack overflow is detected.

When *stack-overflow-behaviour* is set to :error, LispWorks signals an error.

47 The SYSTEM Package

1573

When it is set to :warn, LispWorks increases the stack size automatically to accommodate the overflow, but prints a warning
message to signal that this has happened.

When it is set to nil, LispWorks increases stack size silently.

Notes

Stack overflow is only detected when code was compiled with optimize qualities safety >= 1 or interruptible > 0
(see 9.5 Compiler controll). Code compiled with safety = 0 and interruptible = 0 can cause an undetected stack
overflow that will crash LispWorks.

Compatibility notes

In LispWorks 4.4 and previous on Windows and Linux platforms, automatic stack extension is not implemented. This has
been fixed in LispWorks 5.0 and later.

See also

sg-default-size

staticp Function

Summary

Specifies whether a given object has been allocated in static memory.

Package

system

Signature

staticp obj => bool

Arguments

obj⇓ An object.

Values

bool t if the object is allocated in static memory; nil otherwise.

Description

The function staticp can be used to find out whether obj is allocated in static memory.

Foreign objects made by Lisp — for example in a Foreign Language Interface program — are made in static memory. The
Lisp representations of these alien objects are not, however. Therefore staticp applied to an alien returns nil even though
the alien instance itself is really allocated in static memory. To establish this, you can check the pointer to the alien instance
within its Lisp representation (a structure).

47 The SYSTEM Package

1574

storage-exhausted Class

Summary

A condition class for failures to map memory.

Package

system

Superclasses

storage-condition

Initargs

:gen-num The number of the generation in which the system was trying to allocate.

:size The size in bytes which the system was trying to allocate.

:type A string naming the allocation type the system was trying to allocate.

:static A boolean, true if the system was trying to allocate a static object, and false otherwise.

Accessors

storage-exhausted-gen-num
storage-exhausted-size
storage-exhausted-static
storage-exhausted-type

Description

The class storage-exhausted is a condition class used for reporting failures to map memory.

Allocation types are as described in set-maximum-segment-size.

See also

set-memory-exhausted-callback

sweep-gen-num-objects Function

Summary

Applies a function to all the live objects in a generation in 64-bit LispWorks.

Package

system

47 The SYSTEM Package

1575

http://www.lispworks.com/documentation/HyperSpec/Body/e_storag.htm

Signature

sweep-gen-num-objects gen-num function

Arguments

gen-num⇓ An integer in the inclusive range [0,7].

function⇓ A designator for a function of one argument, the object.

Description

The function sweep-gen-num-objects applies function to all the live objects in the generation gen-num.

function should take one argument, the object. It can allocate, but if it allocates heavily the sweeping becomes unreliable.
Small amounts of allocation will normally happen only in generation 0, and so will not affect sweeping of other generations.

Notes

sweep-gen-num-objects is not implemented in 32-bit LispWorks, where you can use sweep-all-objects instead.

sweep-gen-num-objects does not sweep cons objects in the Mobile GC.

See also

sweep-all-objects

typed-aref Accessor

Summary

Accesses a typed aref vector efficiently.

Package

system

Signature

typed-aref type vector byte-index => value

setf (typed-aref type vector byte-index) value => value

Arguments

type⇓ A type specifier.

vector⇓ A vector created by make-typed-aref-vector.

byte-index⇓ A non-negative fixnum.

value An object of type type.

Values

value An object of type type.

47 The SYSTEM Package

1576

http://www.lispworks.com/documentation/HyperSpec/Body/a_cons.htm

Description

The accessor typed-aref allows efficient access to a typed aref vector.

The following values of type are accepted:

• double-float

• float

• single-float

• int32

• (unsigned-byte 32)

• (signed-byte 32)

• (unsigned-byte 16)

• (signed-byte 16)

• (unsigned-byte 8)

• (signed-byte 8)

Additionally in 64-bit LispWorks only, the following values of type are also accepted:

• int64

• (unsigned-byte 64)

• (signed-byte 64)

vector must be an object returned by make-typed-aref-vector.

byte-index specifies the index in 8-bit bytes from the start of the data in the vector. It must be a non-negative fixnum which is
less than the byte-length argument passed to make-typed-aref-vector.

typed-aref and (setf typed-aref) will be inlined to code which is as efficient as possible when compiled with
(optimize (safety 0)) and a constant type. As usual, you need to add (optimize (float 0)) to remove boxing for
the float types.

Notes

Efficient access to foreign arrays is also available. See fli:foreign-typed-aref in the Foreign Language Interface User
Guide and Reference Manual.

Examples

(defun double-float-typed-aref-incf (x y z)
 (declare (optimize (float 0) (safety 0)))
 (incf (sys:typed-aref 'double-float x y)
 (the double-float z))
 x)

See also

make-typed-aref-vector
28.2 Optimized integer arithmetic and integer vector access

47 The SYSTEM Package

1577

http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm

wait-for-input-streams Function

Summary

Waits for input on a list of socket streams, returning those that are ready.

Package

system

Signature

wait-for-input-streams streams &key wait-function wait-reason timeout => result

Arguments

streams⇓ A list, each member of which is a socket-stream.

wait-function⇓ A function of no arguments.

wait-reason⇓ A string.

timeout⇓ A real number or nil.

Values

result A list of socket-streams or nil.

Description

The function wait-for-input-streams waits for any of the streams in the argument streams to be ready for input.
"Ready for input" typically means that some input is available from the stream, but can also means that the peer closed the
connection or there is an attempt to connect to the socket. Note that this function first checks the buffer for buffered streams.

When any of the streams is ready for input, wait-for-input-streams returns a list of all the streams that are ready, in the
same order that they appear in streams.

If timeout is non-nil it must be a real number, specifying a timeout in seconds. If timeout seconds pass and none of the
streams is ready, wait-for-input-streams returns nil.

If timeout is 0, wait-for-input-streams returns all of the streams that are ready immediately, without waiting at all.
That is, it behaves like listen on many streams.

If wait-function is supplied, it is called periodically with no arguments, and if it returns non-nil then
wait-for-input-streams returns nil. Note that, like the wait-function argument of process-wait, wait-function is
called often and on other threads, so need to be an inexpensive call and independent of dynamic context.

If wait-reason is supplied it is used as the &WAIT-REASON for the Lisp process that calls wait-for-input-streams
while it is waiting.

Notes

wait-for-input-streams may return the list streams that was passed to it as is, if all the streams are ready.

47 The SYSTEM Package

1578

http://www.lispworks.com/documentation/HyperSpec/Body/f_listen.htm

See also

wait-for-input-streams-returning-first

wait-for-input-streams-returning-first Function

Summary

Waits for input on a list of socket streams, returning the first stream that is ready.

Package

system

Signature

wait-for-input-streams-returning-first streams &key wait-function wait-reason timeout => result

Arguments

streams⇓ A list, each member of which is a socket-stream.

wait-function⇓ A function of no arguments.

wait-reason⇓ A string.

timeout⇓ A real number or nil.

Values

result A socket-stream or nil.

Description

The function wait-for-input-streams-returning-first behaves just like wait-for-input-streams except that
it returns the first stream in the list streams that is ready for input.

See wait-for-input-streams for details of how wait-function, wait-reason and timeout are used.

See also

wait-for-input-streams

with-modification-change Macro

Summary

Provides a way to check whether there was any "modification" during execution of a body of code.

Package

system

47 The SYSTEM Package

1579

Signature

with-modification-change modification-place &body body

Arguments

modification-place⇓ A place as defined in Common Lisp which can receive a fixnum.

body⇓ Lisp code.

Description

The macro with-modification-change, together with the macro with-modification-check-macro, provides a way
for a body of code body to execute and check whether there was any "modification" during this execution, where
modification is execution of some other piece of code.

modification-place must be initialized to the fixnum 0 before being used, and must not be modified by any code except
with-modification-change.

See 19.13.2 Aids for implementing modification checks for the full description and an example.

Notes

modification-place does not need to be one of the places defined for low level atomic operations.

See also

with-modification-check-macro

with-modification-check-macro Macro

Summary

Provides a way to check whether there was any "modification" during execution of a body of code.

Package

system

Signature

with-modification-check-macro macro-name modification-place &body body

Arguments

macro-name⇓ A symbol.

modification-place⇓ A place as defined in Common Lisp which can receive a fixnum.

body⇓ Lisp forms.

Description

The macro with-modification-check-macro, together with the macro with-modification-change, provides a way
for a body of code body to execute and check whether there was any "modification" during this execution, where

47 The SYSTEM Package

1580

modification is execution of some other piece of code.

with-modification-check-macro defines a lexical macro (by macrolet) with the name macro-name which takes no
arguments, and is used to check whether there was any change since entering the body.

modification-place must be initialized to the fixnum 0 before being used, and must not be modified by any code except
with-modification-change.

See 19.13.2 Aids for implementing modification checks for the full description and an example.

Notes

modification-place does not need to be one of the places defined for low level atomic operations.

See also

with-modification-change

with-other-threads-disabled Macro

Summary

A debugging macro which executes code with all other threads temporarily disabled.

Package

system

Signature

with-other-threads-disabled &body body => results

Arguments

body⇓ Code.

Values

results The results of evaluating body.

Description

The macro with-other-threads-disabled disables all the other threads (that is, the mp:process objects), executes
body and then enables the other threads. Thus it guarantees "single-thread execution" for the forms in body.

The point at which each of the other threads is stopped is not well-defined. It is always a GC safe point, but it can be inside
manipulating some data structure or while holding a lock. As a result, if the code in body accesses a data structure or tries to
lock a lock, it may see an inconsistent structure or get an error about calling process-wait when scheduling not is
allowed.

As a result, with-other-threads-disabled is safe only if the code in body does not do anything that accesses trees of
pointers and expects them to be in a consistent state and does not use locks. Any other code may, rarely but not never, get
some unexpected error.

47 The SYSTEM Package

1581

with-other-threads-disabled is useful for:

• the most accurate timing possible of specific operations.

• running sweep-all-objects reliably.

• "freezing" the program when something unexpected occurs and you want to debug it in the terminal.

Notes

with-other-threads-disabled cannot be guaranteed to be 100% safe in all cases, and therefore must not be used in end
-user applications. It is useful for debugging purposes.

The LispWorks IDE relies on multithreading and will not work while the code in body executes.

See also

sweep-all-objects
time

47 The SYSTEM Package

1582

48 Miscellaneous WIN32 symbols

This chapter describes miscellaneous symbols available in the WIN32 package.

The WIN32 package also includes 49 The Windows registry API, 50 The DDE client interface and 51 The DDE server
interface. These are documented in separate chapters in this manual.

Note: the WIN32 package is not a supported implementation of the Win32 API. You should not use symbols in the WIN32
package unless they are documented in this manual. Instead, define your own interfaces to Windows functions as you need -
see the Foreign Language Interface User Guide and Reference Manual for details.

Note: This chapter applies only to LispWorks for Windows.

canonicalize-sid-string Function

Summary

Returns the canonical format of a SID specifier string.

Package

win32

Signature

canonicalize-sid-string sid-string => result

Arguments

sid-string⇓ A string.

Values

result A string or nil.

Description

The function canonicalize-sid-string returns the canonical format of the SID specified by sid-string. If the string is
already canonical (in the S-1-.. format) it returns a string which is equal to it. When the string is an alias, it returns the
canonical form. The aliases are documented in the MSDN in the page titled "SID strings" (search for SDDL_ANONYMOUS).

canonicalize-sid-string returns nil for an unrecognized SID.

See also

wait-for-connection
security-description-string-for-open-named-pipe

1583

connect-to-named-pipe Function

Summary

Opens a stream connection to a named pipe.

Package

win32

Signature

connect-to-named-pipe name &key host errorp direction => stream, keyword, condition

Arguments

name⇓ A string.

host⇓ A string or nil.

errorp⇓ A boolean.

direction⇓ One of the keywords :io, :input and :output.

Values

stream⇓ A stream or nil.

keyword⇓ A keyword or nil.

condition⇓ An error condition or nil.

Description

The function connect-to-named-pipe opens a connection to a named pipe and returns a stream connected to it that can be
used like any other stream.

name is the pipe name. It can contain any character except #\\ (according to the MSDN). For successful connection another
process must have already created a pipe with that name, with the right input/output direction and permissions for the caller
of connect-to-named-pipe, and tried to connect to it but has not succeeded yet. In LispWorks this is done by
open-named-pipe-stream. The Windows function is ConnectNamedPipe.

host, if non-nil, specifies a host on which the named pipe was created. host nil means the current machine.

direction specifies the direction of input/output. It needs be allowed by the pipe (in inverse, that is if
connect-to-named-pipe gets direction :input then the pipe must have been opened for output, for example by calling
open-named-pipe-stream with direction :output or :io). The default value of direction is :io.

errorp specifies what to do in case of failure. If it is non-nil (the default), an error is signaled. If it is nil, then
connect-to-named-pipe returns stream nil, keyword is a descriptive keyword, and condition is an error condition.
keyword can be one of:

:does-not-exist There is no named pipe with this name.

:all-in-use There is at least one named pipe with this name, but all are already connected.

48 Miscellaneous WIN32 symbols

1584

:access-denied There is already a named pipe with this name, but it denies access. That may be either because
the permissions of the named pipe do not allow the connection, or because other security features
of the host system block the connection.

:error An unknown error.

On success connect-to-named-pipe returns a stream and the other two returned values are both nil.

See also

open-named-pipe-stream

dismiss-splash-screen Function

Summary

Makes a startup screen disappear.

Package

win32

Signature

dismiss-splash-screen &optional forcep

Arguments

forcep⇓ A generalized boolean.

Description

The function dismiss-splash-screen makes a startup screen (as specified via the :startup-bitmap-file delivery
keyword) disappear.

If forcep is nil then the startup screen is displayed for a minimum of 5 seconds before disappearing. If forcep is true then the
startup screen disappears when dismiss-splash-screen is called. The default value of forcep is nil.

If dismiss-splash-screen is not called, the startup screen appears for 30 seconds.

Note: the user can dismiss the startup screen by clicking on it.

For more information about specifying a startup screen in your application, see the entry for :startup-bitmap-file in
the Delivery User Guide.

impersonating-named-pipe-client Macro

Summary

Executes code while impersonating the client of the named pipe.

48 Miscellaneous WIN32 symbols

1585

Package

win32

Signature

impersonating-named-pipe-client (named-pipe-stream &key fail-form fail-no-read-form) &body body

Arguments

named-pipe-stream⇓ A named pipe stream.

fail-form⇓ A Lisp form.

fail-no-read-form⇓ A Lisp form.

body⇓ Lisp forms.

Description

The macro impersonating-named-pipe-client executes the code of body while impersonating the client of the named
pipe.

named-pipe-stream must be the result of open-named-pipe-stream.

For the impersonation to work, some input must have already been read from the pipe. If impersonation is used on a named
pipe from which nothing was read, it calls error unless fail-no-read-form is supplied, in which case it executes this form.
For all other kinds of failure fail-form is executed.

Apart from mechanism used to find the user to impersonate, impersonating-named-pipe-client behaves identically to
impersonating-user. See impersonating-user for further details.

Notes

The limitation that some input must have been read is an undocumented restriction in the underlying Microsoft Windows
functions.

See also

impersonating-user

impersonating-user Macro

Summary

Executes code while impersonating the user.

Package

win32

Signature

impersonating-user (user-name password &key domain logon-type fail-form) &body body

48 Miscellaneous WIN32 symbols

1586

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

Arguments

user-name⇓ A string, or t.

password⇓ A string.

domain⇓ A string or nil.

logon-type⇓ nil or one of the keywords :interactive, :batch, :network,
:network-cleartext, :service and :new-credentials.

fail-form⇓ A Lisp form.

body⇓ Lisp forms.

Description

The macro impersonating-user executes the code of body while impersonating a specified user.

user-name and password specify login credentials. In general, these are strings but the symbol t as user-name is treated
specially to mean the user that is currently interacting with the console of the computer (password is ignored in this case).

domain, if non-nil, must be a string specifying the domain or server where the account database to find the user is held. It can
be "." meaning the local database. domain nil means use the default domain or server, as defined by Windows.

The keywords in logon-type are mapped to the LOGON32_LOGON_* constants which are documented in the MSDN entry for
LogonUser. The default value nil of logon-type is treated as an alias for :interactive.

body is evaluated only if the impersonation is successful. If the impersonation is not successful for any reason, body is not
executed, and instead fail-form is evaluated.

On success, impersonating-user returns the result of the last form of body. On failure, it returns the result of fail-form.

Notes

Impersonation means that, in operations where the user identity makes a difference, the user identity is the impersonated user
rather than the user running the process. For example, when opening a file the system uses the credentials of the
impersonated user to check the access control list of the file. When creating a file, the impersonated user is also used as the
owner and creator of the file.

The process that tries to impersonate must have special privilege to do that. Processes do not normally have these privileges.
The processes that do are those that run with system credentials, for example services. Impersonation is used by these
processes to perform specific operations with the credentials of some user rather than the system user.

Impersonation can also be used when a service process wants to start a process to interact with the user. In that situation, the
new process must run as the user. To do that, you start process inside the scope of impersonating-user, for example by
calling call-system or open-pipe. Normally you will want to run as the user that is currently logged on the console (see
the special user-name value t above).

Examples

(example-edit-file "delivery/ntservice/testapp-lw.lisp")

See also

impersonating-named-pipe-client

48 Miscellaneous WIN32 symbols

1587

known-sid-integer-to-sid-string Function

Summary

Returns the sid string for a known SID type integer.

Package

win32

Signature

known-sid-integer-to-sid-string integer => sid-string

Arguments

integer⇓ An integer.

Values

sid-string A string or nil.

Description

The function known-sid-integer-to-sid-string returns the SID string for integer, which needs to be one of the
known integers, which are documented in the MSDN in the entry for WELL_KNOWN_SID_TYPE Enumeration.

known-sid-integer-to-sid-string returns nil for an unknown integer.

See also

wait-for-connection
security-description-string-for-open-named-pipe

latin-1-code-pages Variable

Summary

Windows Code Pages for which Latin-1 encoded files are used.

Package

win32

Initial Value

(1252 28591)

Description

The variable *latin-1-code-pages* contains a list of integers, which must be Windows code page identifiers. When the

48 Miscellaneous WIN32 symbols

1588

current Code Page is on this list, the default file encoding detection algorithm will cause
(:latin-1 :encoding-error-action 63) to be used for file I/O. Files will be written as Latin-1 with '?' replacing any
non-Latin-1 character. This is faster than converting to the code page.

If safe-locale-file-encoding is used for file encoding detection, then the :latin-1-safe external format will be
used.

Notes

The LispWorks editor binds *latin-1-code-pages* to nil when reading and writing files, in order to ensure that code
page characters outside of Latin-1 are handled regardless of the configuration of open.

See also

file-encoding-detection-algorithm

long-namestring Function

Summary

Returns the long form of a namestring.

Package

win32

Signature

long-namestring pathname => result

Arguments

pathname⇓ A pathname designator.

Values

result⇓ A string or nil.

Description

The function long-namestring first obtains the full namestring of pathname as if by cl:namestring, and then converts
this namestring to the long form (in the Microsoft Windows meaning of "Long" paths).

If the translation succeeds then result is a string in the Long form.

The translation may fail, in which case nil is returned.

See also

short-namestring

48 Miscellaneous WIN32 symbols

1589

http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm

monitor-directory-changes Function

Summary

Monitors a directory in the file system for changes.

Package

win32

Signature

monitor-directory-changes directory kinds change-callback &key monitor-subtree checker timeout

Arguments

directory⇓ A pathname designator naming a directory.

kinds⇓ A list of keywords.

change-callback⇓ A function designator.

monitor-subtree⇓ A generalized boolean.

checker⇓ nil or a function designator.

timeout⇓ nil or a positive real.

Description

The function monitor-directory-changes loops monitoring directory for changes in the file system.

kinds is a list of one or more of the keywords:

:file-name Monitor changes to files names.

:dir-name Monitor changes to directory names.

:attributes Monitor changes to attributes.

:size Monitor changes to file size.

:last-write Monitor changes to write time.

:last-access Monitor changes to last access times.

:creation Monitor changes to creation times.

:security Monitor changes to security-descriptors.

change-callback is called whenever any items specified by kinds change in directory (or in any subdirectories if monitor-
subtree is non-nil). change-callback is called with the pathname of the item that has changed and a keyword specifying the
change:

:added The file/directory was added.

:removed The file/directory was removed.

48 Miscellaneous WIN32 symbols

1590

:modified The file/directory was modified.

:renamed-old-name The file/directory was renamed from this old name.

:renamed-new-name The file/directory was renamed to this new name.

When checker is non-nil, it is called with no arguments every timeout seconds or when a change is detected. If checker
returns nil, then monitor-directory-changes itself returns nil immediately. Otherwise,
monitor-directory-changes never returns.

timeout is useful only when checker is non-nil. It defaults to 5 when checker is non-nil and otherwise it defauls to nil.

multibyte-code-page-ef Variable

Summary

Holds the external format corresponding to the current Windows multi-byte code page.

Package

win32

Initial Value

An external format that is specific to the current locale.

Description

The variable *multibyte-code-page-ef* holds the external format corresponding to the current Windows multi-byte
code page. It is automatically initialized to the correct value, when the image is started. If you change the code page (using
_setmbcp), you need to set this variable, too.

See also

locale-file-encoding

named-pipe-stream-name Function

Summary

Returns the name of a named pipe stream.

Package

win32

Signature

named-pipe-stream-name stream => name

48 Miscellaneous WIN32 symbols

1591

Arguments

stream⇓ A named pipe stream.

Values

name⇓ A string.

Description

The function named-pipe-stream-name returns the name of a named pipe stream.

stream must the result of a call to open-named-pipe-stream.

name is the name of the stream, that is, the argument to open-named-pipe-stream.

See also

wait-for-connection

open-named-pipe-stream Function

Summary

Creates a stream that writes and read through a named pipe.

Package

win32

Signature

open-named-pipe-stream name &key errorp allow-remote max-number wait-reason timeout wait-function direction
inherit-access-p access => stream, connectedp, condition

Arguments

name⇓ A string identifying the pipe.

errorp⇓ A boolean.

allow-remote⇓ A boolean.

max-number⇓ An integer in the inclusive range [1,254] or nil.

wait-reason⇓ A string or nil.

timeout⇓ A real number or nil.

wait-function⇓ A function of no arguments, or nil.

direction⇓ One of :io, :input, :output.

inherit-access-p⇓ A boolean.

access⇓ A list, keyword, integer or string.

48 Miscellaneous WIN32 symbols

1592

Values

stream⇓ A stream or nil.

connectedp⇓ A boolean.

condition⇓ An error condition or nil.

Description

The function open-named-pipe-stream creates a stream that communicates via a named pipe, and then tries to establish a
connection. For a connection to be established, another process (which can be a Lisp process in the same image, or another
process altogether) must connect to it. In LispWorks this is done by connect-to-named-pipe, other software does by the
underlying Windows function ConnectNamedPipe.

open-named-pipe-stream returns three values. stream is a stream on success, and nil if there is an error and errorp is
nil. If open-named-pipe-stream returns a stream and connectedp is non-nil, the stream is connected and is ready for
input/output operations like a normal stream. condition is an error condition if an error occurred and errorp is nil, otherwise
it is nil.

When open-named-pipe-stream returns a stream and connectedp is nil (which can happen when timeout is non-nil or
wait-function returns t), the stream is valid but is not ready for I/O and gives an error for any reading or writing calls. In this
case the function wait-for-connection must be used to establish the connection, and once it returns non-nil the stream is
ready for input/output operations.

Note that that if you stop using a stream before it is connected, it still must be closed (by cl:close) to get rid of the named
pipe.

The creation has two steps:

1. Creating the named pipe. This is controlled by name, max-number, direction, access, inherit-access-p, allow-remote and
errorp.

2. Waiting for connection. This is controlled by timeout, wait-reason, and wait-function.

name is the pipe name. It can contain any character except #\\ (according to the MSDN). open-named-pipe-stream
prepends to it the pipe prefix \\.\pipe\. It needs to be highly unique, because on the same machine it is visible to all
processes.

direction specifies the direction of I/O with the conventional meaning (as in Common Lisp file streams). The default value of
direction is :io. All simultaneous opened pipes with the same name on the same machine must be opened with the same
value of direction. If different direction values are used, it causes open-named-pipe-stream to give an error.

max-number specifies the maximum number of simultaneously existing pipes with the same name on the local machine. By
default it is unlimited. All simultaneous pipes with the same name on the same machine must have the same max-number,
though currently this is not enforced.

access specifies access permission, which controls who can connect to the pipe. If it is nil, the permissions of the current
thread are inherited and used (inherit-access-p is ignored in this case), and if access is :world the pipe is created with no
restrictions. Otherwise access has to be a keyword, a list, an integer or a string, and it is passed to
security-description-string-for-open-named-pipe. See the entry for
security-description-string-for-open-named-pipe for details. The result of
security-description-string-for-open-named-pipe, potentially with the inherited access appended, is passed to
the Windows function ConvertStringSecurityDescriptorToSecurityDescriptor to generate the descriptor that is
used when creating the pipe.

inherit-access-p controls whether the permissions of the current thread are inherited when access is not nil or :world or a
string. When it is not nil, the permissions of the current thread are appended to what is specified by access (which means
that the specification in access takes precedence). The default value of inherit-access-p is t.

48 Miscellaneous WIN32 symbols

1593

http://www.lispworks.com/documentation/HyperSpec/Body/f_close.htm

allow-remote controls whether the pipe can be connected from another machine. The default value of allow-remote is nil.

errorp controls what happens when there is a failure because of one of these possibilities:

1. security-description-string-for-open-named-pipe returns nil because access contains unknown entities
(for example a user name that does not exist on the local machine).

2. Converting the string that security-description-string-for-open-named-pipe returned to a security
descriptor failed. That can happen if access is a string in bad format or a list containing strings in bad format.

3. open-named-pipe-stream failed for some other reason, for example it reached the limit on the number of the pipes
with this name, or tried to open it with a different direction from the previous call.

When there has been a failure, if errorp is non-nil an error is signaled, and if errorp is nil then
open-named-pipe-stream returns stream nil and connectedp nil with the error condition returned as the third value
condition. The default value of errorp is t.

Once the pipe has been successfully created, open-named-pipe-stream uses wait-for-connection to establish the
connection, passing timeout, wait-reason and wait-function, and returns the stream as first value, the result of
wait-for-connection as the second value, and nil as the third value. See the description of wait-for-connection
for details.

To connect to the other side of the pipe from Lisp, use connect-to-named-pipe. The Microsoft Windows function is
ConnectNamedPipe.

See also

wait-for-connection
security-description-string-for-open-named-pipe
named-pipe-stream-name
connect-to-named-pipe
impersonating-named-pipe-client

record-message-in-windows-event-log Function

Summary

Records a message in the Windows event log.

Package

win32

Signature

record-message-in-windows-event-log type message &key source-name unc-server-name handle category event-id
user-sid data

Arguments

type⇓ A keyword.

message⇓ A string or list of strings.

source-name⇓ A string.

unc-server-name⇓ nil or a string.

48 Miscellaneous WIN32 symbols

1594

handle⇓ nil or an open event log handle.

category⇓ An integer.

event-id⇓ An integer.

user-sid⇓ nil or a foreign pointer to a SID object.

data⇓ nil or a string.

Description

The function record-message-in-windows-event-log records a message message in the Windows event log.

type must be one of the keywords :success, :error, :warning, :information, :audit-success or
:audit-failure, corresponding to the types of Window event log entry.

message is used as the string (or list of strings) recorded with the event.

If handle is nil, source-name is used as the name of the event source for recording events. If source-name is nil then the
name of the Lisp executable is used.

If handle is nil and unc-server-name is non-nil, then it specifies the UNC name of a server which records the events.

If handle is non-nil, then it must be an open event log handle, such as created by
with-windows-event-log-event-source. If handle is nil, then source-name is used to open an event log handle for
the duration of the call to record-message-in-windows-event-log.

category and event-id are recorded in the event log. They are only useful if you create and register an event source provider
DLL in Windows (see MSDN documentation for "Reporting Events").

If user-sid is non-nil, then it is used to record the user that logged the event.

If data is non-nil, then it is recorded as extra data associated with the event.

See also

with-windows-event-log-event-source

security-description-string-for-open-named-pipe Function

Summary

Interprets an access specification and generates a Security Descriptor String.

Package

win32

Signature

security-description-string-for-open-named-pipe access-spec => result, fail-type, fail-item

Arguments

access-spec⇓ A keyword, an integer, a string or a list.

48 Miscellaneous WIN32 symbols

1595

Values

result⇓ A string or nil.

fail-type⇓ Undefined, or a string.

fail-item⇓ Undefined, or a keyword, an integer, a string or a list.

Description

The function security-description-string-for-open-named-pipe interprets access-spec and generates from it a
Security Descriptor String as defined by Windows. See the MSDN for documentation of "Security Descriptor String Format".

security-description-string-for-open-named-pipe has quite limited capabilities, and the string that it generates
contains only the DACL part of the descriptor.

If access-spec is a keyword, then its symbol name specifies a SID (Security Identifier). This SID gets read/write permission.
The SID can be either standard representation (which looks like "S-1-..") or one of the aliases. The aliases are documented
in the MSDN in the page titled "SID strings" (search for SDDL_ANONYMOUS). In general they have two letters, for example
:au means authenticated users. The common standard strings are documented in the MSDN page titled "Well-known SIDs"
(search for SECURITY_WORLD_RID). For example, :s-1-15-11 means authentication users. Any standard strings is
acceptable, not only the documented ones, provided that it specifies a valid SID. For example, you can find the SID of a user
by user-name-to-sid-string, intern it in the keyword package and use this (but it is better to pass a list (:user) as
described below).

If access-spec is an integer, it must be one of the integers in the WELL_KNOWN_SID_TYPE Enumeration as documented in
the MSDN. For example, 17 means authenticated users. The corresponding SID gets read/write permission.

If access-spec is a string, it is returned as-is. In this case it is the responsibility of the programmer to ensure that the string is
valid. Note that if this string is used in open-named-pipe-stream, open-named-pipe-stream does not inherit the
access even if inherit-access-p is non-nil.

If access-spec is a list, then each element in the list must be one of:

A string The string must be a correct ACE (Access Control Entry) string, as described in the MSDN
(search for "ACE strings"). The string must contain the opening and closing brackets, and can
contain more than one ACE. security-description-string-for-open-named-pipe
does not check the syntax in the string, and if the ACE is wrong the result string would be
invalid.

A keyword This is interpreted as when access-spec is a keyword, and the corresponding SID gets read/write
permission.

An integer This is interpreted as when access-spec is an integer, and the corresponding SID gets read/write
permission.

A list of the form (keyword sid-spec &rest permissions)

The first element keyword specifies how to interpret sid-spec. The possible values for keyword
are :user, when sid-spec must be a string and should name a user on the local machine, and
:sid, when sid-spec must be a keyword, an integer or a string specifying the SID. Integers and
keywords are interpreted as above, and strings are interpreted in the same way as keywords. If
permissions are not supplied, they default to (:read :write). When permissions are supplied,
they are keywords specifying a permission. Currently supported keywords are (i) one of :read
or :disallow-read (ii) one of :write or :disallow-write, specifying the obvious
meaning. It is an error if a keyword is repeated or if an incompatible pair is passed.

security-description-string-for-open-named-pipe returns 3 values. When successful, result is the string and the

48 Miscellaneous WIN32 symbols

1596

other return values are undefined. When it fails, which can be because it is given an unrecognized SID specifier, result is
nil, fail-type is a short string giving the type of the item that fails, and fail-item is the item in the list that fails when access-
spec is a list.

Notes

1. When the argument is syntactically incorrect, security-description-string-for-open-named-pipe signals an
error. It fails and returns nil only when a SID specifier of an acceptable type does not specify a SID.

2. Except when given a string which is returned as-is, security-description-string-for-open-named-pipe
works by generating an ACE (Access Control Entry) string for each SID giving it the read and write permission, except
in the case when either :disallow-write or :disallow-read is used, when it generates an ACE string denying
permission. All the ACEs are then concatenated and "D:" is prepended, thus generating a Security Descriptor String
containing only the DACL.

3. Experimentally, you can connect to a named pipe only if you have both read and write permission, even when opening it
for only read or only write. Thus when this function is used from open-named-pipe-stream, the keywords
:disallow-read etc are not very useful. They are useful only when you want to deny access for a specific SID, by
using :disallow-read and :disallow-write.

4. The order of the items in the list is significant: earlier items override later items.

5. Disallowing permission, for example by using :disallow-read, is not the same as not allowing it, because in the latter
case a later ACE can give the SID the permission. Disallowing prevents later ACEs from giving permission.

6. Using a string or ACE strings in the list allows the user to generate a more elaborate string than
security-description-string-for-open-named-pipe knows how to generate. In this case the returned string
may be invalid. When this happens from open-named-pipe-stream, open-named-pipe-stream will get a failure
and signal or return an error according to errorp.

Examples

Any of these gives permissions to all authenticated users:

:AU
 17
 '(:AU)
'(17)
 '((:SID :AU))
 '((:SID "AU")
 '((:SID 17))

Also, all of the above with AU replaced by S-1-15-11 will give permission to all authenticated users.

This gives permissions to all authorized users except the user "exclude":

'((:use "exclude" :DISALLOW-READ :DISALLOW-WRITE) :AU)

See also

canonicalize-sid-string
named-pipe-stream-name
open-named-pipe-stream
sid-string-to-user-name
user-name-to-sid-string

48 Miscellaneous WIN32 symbols

1597

set-application-themed Function

Summary

Controls whether LispWorks should be themed.

Package

win32

Signature

set-application-themed on/off

Arguments

on/off⇓ A generalized boolean.

Description

The function set-application-themed controls whether a LispWorks application should be themed according to the
value of on/off.

On supported versions of Microsoft Windows, LispWorks is "themed", that is it uses the current theme of the desktop. You
can switch this off by calling:

(win32:set-application-themed nil)

On systems older than Windows XP (no longer supported), or when the application does not have Common Controls 6, this
call has no effect.

set-application-themed affects only windows that are created after it was called. Normally, it should be called before
any window is created, so all LispWorks windows will appear with the same theme. However, set-application-themed
can be called multiple times in the same run.

set-dpi-awareness Function

Summary

Sets the DPI awareness of the process when it starts a CAPI application.

Package

win32

Signature

set-dpi-awareness what

48 Miscellaneous WIN32 symbols

1598

Arguments

what⇓ :none, :system or :monitor. The default is :system.

Description

The function set-dpi-awareness arranges for the DPI awareness of the process to be set just before it starts a CAPI
application (or the LispWorks IDE) for the first time in the current invocation. This affects what happens when the process
runs on a monitor with scaling different from 100%.

The meaning of what is as follows:

:none The process is not aware of the DPI. Windows itself effectively causes all the drawing in the
process to go to an internal bitmap, and then Windows scales the bitmap as needed ("bitmap
scaling"). The result tends to be blurry and looks worse than proper scaling.

This corresponds to the Windows constant PROCESS_DPI_UNAWARE.

:system That means the process does proper scaling according to the system scaling at the time it starts
the CAPI. If the scaling changes later, either because the system scaling changes or a window of
the process is moved to another monitor with a difefrent scaling, then Windows performs a
bitmap scaling to the new scaling.

The result is that, as long as the scaling is fixed, the process's windows are scaled properly.
Windows Controls (for example, list panels, text input panes) are scaled properly. Fonts are also
scaled properly, which means that CAPI layouts that use constraints based on the number of
characters (for example :visible-min-width '(character 10)), are scaled properly too.
Images do not scale properly, and are drawn at their native size, which means that they will come
out too small for scaling that is larger than 100%.

You can check programmatically for scaling by using capi:screen-logical-resolution.
The result of this on Windows is 96 multiplied by the scaling. For example, with scaling of
150% it returns 144.

This corresponds to the Windows constant PROCESS_SYSTEM_DPI_AWARE.

:monitor On startup, this is the same as :system, but when the scaling changes, Windows does not
perform any bitmap scaling. This means that, if there is a change in the scaling after the process
starts the CAPI, then the size of its windows will change. In principle. the process itself is
responsible to change the size of its windows, but currently LispWorks does nothing.

This corresponds to the Windows constant PROCESS_PER_MONITOR_DPI_AWARE.

The call to set-dpi-awareness just sets an internal state. The first time the CAPI starts, before dislpaying anything,
LispWorks calls the Windows function SetProcessDpiAwareness with the appropriate constant. The internal state is
preserved over saving and restarting a Lisp image.

Notes

If you need to call set-dpi-awareness, then it has to be done before starting the CAPI. For the LispWorks IDE, the
normal way of doing that is to put a call to set-dpi-awareness in your initialization file (typically called .lispworks in
your home directory). If you build a standalone application, you can just call set-dpi-awareness in the delivery script.

Repeated calls to set-dpi-awareness just change the internal state. Thus the behaviour of the process is determined by
the last call before the CAPI starts.

The Windows function SetProcessDpiAwareness has no effect if the DPI awareness is already set in the current process.

48 Miscellaneous WIN32 symbols

1599

Therefore it is called only the first time the CAPI or the LispWorks IDE starts in a process, and it will not have any effect if
something already set the awareness.

If you call set-dpi-awareness after starting the LispWorks IDE, it will have no effect in the running image. If you then
save a session, it will still have no effect in the saving session, even though it stops and restarts the CAPI, but it will have an
effect on the saved session itself when that is started.

See also

capi:screen-logical-resolution

short-namestring Function

Summary

Returns the short form of a namestring.

Package

win32

Signature

short-namestring pathname => result

Arguments

pathname⇓ A pathname designator.

Values

result⇓ A string or nil.

Description

The function short-namestring first obtains the full namestring of pathname as if by cl:namestring, and then converts
this namestring to the short form (in the Microsoft Windows meaning of "Short" paths).

If the translation succeeds then result is a string in the short form.

The translation may fail, in which case nil is returned.

See also

long-namestring

48 Miscellaneous WIN32 symbols

1600

http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm

sid-string-to-user-name Function

Summary

Takes a standard SID (Security Identifier) string and locates the user.

Package

win32

Signature

sid-string-to-user-name sid-string => result

Arguments

sid-string⇓ A string.

Values

result A string or nil.

Description

The function sid-string-to-user-name takes a standard SID (Security Identifier) string and tries to locate the user. It
returns nil if sid-string is not the SID of a user.

See also

wait-for-connection
security-description-string-for-open-named-pipe

str
lpcstr
lpstr FLI Type Descriptors

Summary

Types converting to ANSI strings.

Package

win32

Syntax

str &key length

lpcstr &key max-length

48 Miscellaneous WIN32 symbols

1601

lpstr &key max-length

Arguments

length⇓ An positive integer.

max-length⇓ An positive integer.

Description

str is an ANSI string containing length elements.

lpcstr is a reference-pass pointer to an ANSI string containing at most max-length elements.

lpstr is a reference (in/out) pointer to an ANSI string containing at most max-length elements.

These types are ANSI only. Use these if you do not need the power of Unicode. Take care to interface to ANSI functions
named like FooBarA, with the A suffix.

See also

tstr

tstr
lpctstr
lptstr FLI Type Descriptors

Summary

Types which automatically switch between ANSI and Unicode strings.

Package

win32

Syntax

tstr &key length

lpctstr &key max-length

lptstr &key max-length

Arguments

length⇓ An positive integer.

max-length⇓ An positive integer.

Description

tstr is an ANSI/Unicode string containing length elements.

lpctstr is a reference-pass pointer to ANSI/Unicode string containing at most max-length elements.

48 Miscellaneous WIN32 symbols

1602

lptstr is a reference (in/out) pointer to an ANSI/Unicode string containing at most max-length elements.

Each of these three types automatically switch between ANSI and Unicode, which makes them ideal for use with the :dbcs
encoding option in fli:define-foreign-function.

Examples

This calls GetDriveTypeA on Windows ME, and GetDriveTypeW on supported versions of Windows.

The argument is passed as ANSI or Unicode respectively:

(fli:define-foreign-function (%get-drive-type "GetDriveType" :dbcs)
 ((lpRootPathName W:LPCTSTR))
 :result-type (:unsigned :int))

(defconstant +drive-types+
 #(:unknown :none :removable :fixed :remote :cdrom :ramdisk))

(defun get-drive-information (drive)
 (the drive-type (svref +drive-types+ (%get-drive-type drive))))

user-name-to-sid-string Function

Summary

Returns a standard SID (Security Identifier) associated with the user.

Package

win32

Signature

user-name-to-sid-string user-name => sid-string

Arguments

user-name⇓ A string.

Values

sid-string A string or nil.

Description

The function user-name-to-sid-string returns a standard SID (Security Identifier) associated with the user user-name
on the current machine. It returns nil if it failed to find the user.

See also

wait-for-connection
security-description-string-for-open-named-pipe

48 Miscellaneous WIN32 symbols

1603

wait-for-connection Function

Summary

Waits to establish a connection for a stream.

Package

win32

Signature

wait-for-connection stream &key timeout wait-reason wait-function => connectedp

Arguments

stream⇓ A named pipe stream.

timeout⇓ A non-negative real number, or nil.

wait-reason⇓ A string, or nil.

wait-function⇓ A function designator, or nil.

Values

connectedp A generalized boolean.

Description

The function wait-for-connection waits until it succeeds to establish a connection for the stream stream, or timeout
seconds passed or wait-function returns non-nil, and returns a value indicating whether the connection is established
successfully.

stream must be a stream of the right type. Currently the only supported stream is a named pipe stream (the result of
open-named-pipe-stream).

timeout can be nil or a real number specifying the time in seconds before wait-for-connection returns without
establishing a connection.

wait-reason, if non-nil, needs to be a string specifying the wait reason. It has the same semantics as the wait-reason argument
of process-wait.

wait-function, if non-nil, must be a function of no arguments. If it returns non-nil, wait-for-connection returns nil.

wait-for-connection can be repeatedly called on the same stream. If the stream has already established a connection, it
returns true immediately.

Notes

wait-function has the same limitations as the wait-function argument of process-wait.

See also

open-named-pipe-stream

48 Miscellaneous WIN32 symbols

1604

with-windows-event-log-event-source Macro

Summary

Provides an open event log handle for a body of code.

Package

win32

Signature

with-windows-event-log-event-source (handle source-name &optional unc-server-name) &body body =>
values

Arguments

handle⇓ A symbol.

source-name⇓ nil or a string.

unc-server-name⇓ nil or a string.

body⇓ Lisp forms.

Values

values The values returned by body.

Description

The macro with-windows-event-log-event-source provides an open event log handle for a body of code.

The macro with-windows-event-log-event-source binds handle to an open event log handle, evaluates the forms of
body and closes handle. The values of the last form in body are returned.

source-name is used as the name of the event source for recording events. If source-name is nil then the name of the Lisp
executable is used.

If unc-server-name is non-nil, then it specifies the UNC name of a server which records the events.

See also

record-message-in-windows-event-log

wstr
lpcwstr
lpwstr FLI Type Descriptors

Summary

Types converting to Unicode strings.

48 Miscellaneous WIN32 symbols

1605

Package

win32

Syntax

wstr &key length

lpcwstr &key max-length

lpwstr &key max-length

Arguments

length⇓ An positive integer.

max-length⇓ An positive integer.

Description

wstr is a Unicode string containing length elements.

lpcwstr is a reference-pass pointer to a Unicode string containing at most max-length elements.

lpwstr is a reference (in/out) pointer to a Unicode string containing at most max-length elements.

These three types are Unicode only.

See also

tstr

48 Miscellaneous WIN32 symbols

1606

49 The Windows registry API

This chapter describes the Microsoft Windows registry API, which is available in the WIN32 package.

The WIN32 package also includes 48 Miscellaneous WIN32 symbols, 50 The DDE client interface and 51 The DDE
server interface. These are documented in separate chapters in this manual.

Note: the WIN32 package is not a supported implementation of the Win32 API. You should not use symbols in the WIN32
package unless they are documented in this manual. Instead, define your own interfaces to Windows functions as you need -
see the Foreign Language Interface User Guide and Reference Manual for details.

Note: this chapter applies only to LispWorks for Windows.

close-registry-key Function

Summary

Closes a handle to an open registry key.

Package

win32

Signature

close-registry-key handle &key errorp => successp, error-code

Arguments

handle⇓ A handle to an open registry key.

errorp⇓ A generalized boolean.

Values

successp A boolean.

error-code⇓ An integer error code or nil.

Description

The function close-registry-key closes handle, which should be an open registry key handle.

The return value on success is t.

If an error occurs and errorp is true then an error is signaled. Otherwise, the return values are nil and the Windows error-
code. The default value of errorp is t.

1607

See also

create-registry-key
open-registry-key

collect-registry-subkeys Function

Summary

Returns names of the subkeys of a registry key.

Package

win32

Signature

collect-registry-subkeys subkey &key root max-name-size max-names errorp value-function => subsubkeys

Arguments

subkey⇓ A string specifying the name of the key.

root⇓ A keyword or handle.

max-name-size⇓ An integer.

max-names⇓ An integer.

errorp⇓ A boolean.

value-function⇓ A function designator or nil.

Values

subsubkeys⇓ A list.

Description

The function collect-registry-subkeys returns a list of names which are subsubkeys of subkey under the key root.

subkey and root are interpreted as described for create-registry-key. The default value of root is :user.

max-name-size specifies the maximum length of the returned name. If the name is longer than this, an error is signaled. The
default value of max-name-size is 256.

max-names specifies the maximum number of names returned. Names after this number are ignored. The default value of
max-names is most-positive-fixnum.

If value-function is non-nil, it should be a function with signature:

value-function handle subsubkey-name => name, collectp

value-function is funcalled for each subsubkey with the handle of subkey and the name of the subsubkey. If collectp is non-nil
then name is collected into the list subsubkeys to return from collect-registry-subkeys. Otherwise it is ignored.

If value-function is nil, then the returned subsubkeys is a list of strings naming all (subject to max-names) of the subsubkeys.

49 The Windows registry API

1608

http://www.lispworks.com/documentation/HyperSpec/Body/v_most_p.htm

The default value of value-function is nil.

If an error occurs opening subkey and errorp is true then an error is signaled. Otherwise, subsubkeys is returned as nil if
subkey could not be opened. The default value of errorp is t.

See also

collect-registry-values
create-registry-key

collect-registry-values Function

Summary

Returns the values of a registry key.

Package

win32

Signature

collect-registry-values subkey &key root max-name-size max-buffer-size expected-type errorp value-function =>
values-alist

Arguments

subkey⇓ A string specifying the name of the key.

root⇓ A keyword or handle.

max-name-size⇓ An integer.

max-buffer-size⇓ An integer.

expected-type⇓ A keyword or t.

errorp⇓ A boolean.

value-function⇓ A function or symbol.

Values

values-alist⇓ An alist.

Description

The function collect-registry-values returns an alist of all of the values of subkey under the key root.

subkey and root are interpreted as described for create-registry-key. The default value of root is :user.

max-name-size specifies the maximum length of the returned name. If the name is longer than this, an error is signaled. The
default value of max-name-size is 256.

max-buffer-size specifies the maximum length in bytes of the data. If the data is longer than this, an error is signaled. The
default value of max-buffer-size is 1024.

49 The Windows registry API

1609

If value-function is nil, the returned values-alist is an association list containing pairs (name . data) consisting of the
names and data of the values of subkey. expected-type controls how certain types are converted to Lisp objects as described
for enum-registry-value. The default value of expected-type is t.

If value-function is non-nil, it should be a function with signature:

value-function handle subsubkey-name-and-value => name-and-value, collectp

value-function is funcalled for each subsubkey with the handle of subkey and a cons of the name and value of the subsubkey.
If collectp is non-nil then name-and-value is collected into the alist values-alist to return from
collect-registry-values. Otherwise name-and-value is ignored.

If an error occurs and errorp is true, then an error is signaled. Otherwise, values-alist is returned as nil if subkey could not
be opened at all or contains nil for the data of any particular pair that cannot be read. The default value of errorp is t.

See also

collect-registry-subkeys
create-registry-key
enum-registry-value

create-registry-key Function

Summary

Creates a new registry key.

Package

win32

Signature

create-registry-key subkey &key class root access volatile errorp => handle, disposition, error-code

Arguments

subkey⇓ A string specifying the name of the key.

class⇓ A string.

root⇓ A keyword or handle.

access⇓ A keyword or an integer.

volatile⇓ A generalized boolean.

errorp⇓ A generalized boolean.

Values

handle The handle of the new key.

disposition A keyword, either :created-new-key or :opened-existing-key.

error-code⇓ An integer error code or nil.

49 The Windows registry API

1610

Description

The function create-registry-key creates a new registry key named subkey under the parent key root. If the key already
exists, it is opened and returned.

subkey is a string specifying a path from a root. Each component of the path is separated by a backslash. Use "" to denote
the null path (that is, the root).

class can be used to specify the class of the key if it is created.

root should be a handle to an open registry key (for example a key returned by create-registry-key or
open-registry-key) or one of the keywords :classes, :user, :local-machine and :users which represent the
standard top level roots in the registry. The default value of root is :user.

If access is :read, then the key is created with KEY_READ permissions. If access is :write, then the key is created with
KEY_WRITE permissions. If access is an integer, then the value access specifies the desired Win32 access rights. The default
value of access is :read.

The return values on success are the handle of the new key and a keyword :created-new-key or
:opened-existing-key indicating whether a new key was created or opened.

When volatile is true, the key is created with REG_OPTION_VOLATILE. volatile defaurs to false.

If an error occurs and errorp is true then an error is signaled. Otherwise, the return values are nil, nil and the Windows
error-code. The default value of errorp is t.

See also

delete-registry-key
open-registry-key

delete-registry-key Function

Summary

Deletes a registry key.

Package

win32

Signature

delete-registry-key subkey &key root errorp => successp, error-code

Arguments

subkey⇓ A string specifying the name of the key.

root⇓ A keyword or handle.

errorp⇓ A generalized boolean.

Values

successp A boolean.

49 The Windows registry API

1611

error-code⇓ An integer error code or nil.

Description

The function delete-registry-key deletes the registry key named subkey under the parent key root.

subkey and root are interpreted as described for create-registry-key. The default value of root is :user.

The value t is returned if the key is deleted successfully.

If an error occurs and errorp is true then an error is signaled. Otherwise, the return values are nil and the Windows error-
code. The default value of errorp is t.

See also

create-registry-key

enum-registry-value Function

Summary

Enumerates the values of a registry key.

Package

win32

Signature

enum-registry-value subkey index &key root max-name-size max-buffer-size expected-type errorp => name, data-
type, data, error-code

Arguments

subkey⇓ A string specifying the name of the key.

index⇓ An integer.

root⇓ A keyword or handle.

max-name-size⇓ An integer.

max-buffer-size⇓ An integer.

expected-type⇓ A keyword or t.

errorp⇓ A boolean.

Values

name A string.

data-type⇓ A keyword.

data A lisp object.

error-code⇓ An integer error code or nil.

49 The Windows registry API

1612

Description

The function enum-registry-value allows the values of subkey under the key root to be enumerated.

subkey and root are interpreted as described for create-registry-key. The default value of root is :user.

index specifies which value to return, with 0 being the first item.

max-name-size specifies the maximum length of the returned name. If the name is longer than this, an error is signaled. The
default value of max-name-size is 256.

max-buffer-size specifies the maximum length in bytes of the value. The value is longer than this, an error is signaled. The
default value of max-buffer-size is 1024.

If the value exists (that is, index is not too large), then the return values are the name, data type and data associated with the
value in the registry. The argument expected-type controls how certain data types are converted to Lisp objects as follows:

Conversion of registry values to Lisp objects

data-type expected-type Description of converted data

:string :lisp-object String made with
read-from-string

:string Not supplied String, exactly as in the registry

:environment-string :string String, exactly as in the registry

:environment-string Not supplied String, environment variables
expanded

:integer Not supplied Integer

:little-endian-integer Not supplied Integer

:binary Not supplied A newly allocated foreign object,
which must be freed by calling
fli:free-foreign-object when
you have finished with it

:binary :lisp-object Vector, element type
(unsigned-byte 8)

The default value of expected-type is t.

If an error occurs and errorp is true, then an error is signaled. Otherwise, the return values are nil, nil, nil and the
Windows error-code. The default value of errorp is t.

See also

create-registry-key

49 The Windows registry API

1613

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_fro.htm

open-registry-key Function

Summary

Opens a registry key.

Package

win32

Signature

open-registry-key subkey &key root access errorp => handle, error-code

Arguments

subkey⇓ A string specifying the name of the key.

root⇓ A keyword or handle.

access⇓ An integer or keyword.

errorp⇓ A generalized boolean.

Values

handle⇓ The handle of the key.

error-code⇓ An integer error code or nil.

Description

The function open-registry-key opens a registry key named subkey under the parent key root.

subkey and root are interpreted as described for create-registry-key. If subkey is an empty string, then the key for root
is returned. The default value of root is :user.

If access is :read, then it opens the key with KEY_READ permissions. If access is :write, then it opens the key with
KEY_WRITE permissions. If access is an integer, then the value access specifies the desired Win32 access rights. If access is
omitted and root is :user, then open-registry-key uses KEY_ALL_ACCESS. Otherwise it uses KEY_READ.

The return value handle on success is the handle of the opened key.

If an error occurs and errorp is true, then an error is signaled. Otherwise, the return values are nil and the Windows error-
code. The default value of errorp is t.

See also

create-registry-key

49 The Windows registry API

1614

query-registry-key-info Function

Summary

Returns information about an open registry key handle.

Package

win32

Signature

query-registry-key-info key => info, error-code

Arguments

key⇓ A handle.

Values

info⇓ A property list.

error-code An integer error code or nil.

Description

The function query-registry-key-info returns a plist of information about the open registry key handle key. The
elements of the plist info are:

:class A string naming the class of the key, if any.

:subkeys-count An integer giving the number of subkeys.

:subkey-max-len An integer giving the length of the longest subkey name.

:class-name-max-len

An integer giving the length of the longest class name.

:values-count An integer giving the number of values.

:value-max-len An integer giving the length of the longest value name.

:max-data-len An integer giving the length of the longest value data.

:security-len An integer giving the length of the security descriptor.

49 The Windows registry API

1615

query-registry-value Function

Summary

Returns a value stored in the registry.

Package

win32

Signature

query-registry-value subkey name &key root expected-type errorp => data, successp, error-code

Arguments

subkey⇓ A string specifying the name of the key.

name⇓ A string specifying the name of the value.

root⇓ A keyword or handle.

expected-type⇓ A keyword or t.

errorp⇓ A boolean.

Values

data⇓ A Lisp object.

successp A boolean.

error-code⇓ An integer error code or nil.

Description

The function query-registry-value returns the value associated with name in subkey under the key root.

subkey and root are interpreted as described for create-registry-key. If subkey is an empty string, then the key for root
is returned. The default value of root is :user.

If the value exists, then the return values are the data and true. expected-type controls how certain types are converted to the
Lisp object data as described for enum-registry-value. The default value of expected-type is t.

If an error occurs and errorp is true then an error is signaled. Otherwise, the return values are nil, nil and the Windows
error-code. The default value of errorp is t.

See also

create-registry-key
enum-registry-value

49 The Windows registry API

1616

registry-key-exists-p Function

Summary

The predicate for whether a registry key can be opened.

Package

win32

Signature

registry-key-exists-p subkey &key root access => existsp

Arguments

subkey⇓ A string specifying the name of the key.

root⇓ A keyword or handle.

access⇓ An integer or keyword.

Values

existsp A boolean.

Description

The function registry-key-exists-p checks whether the registry key named subkey can be opened under the parent key
root with the supplied access permissions.

subkey and root are interpreted as described for create-registry-key. The default value of root is :user.

If access is :read, then it opens the key with KEY_READ permissions. If access is :write, then it opens the key with
KEY_WRITE permissions. If access is an integer, then the value access specifies the desired Win32 access rights. If access is
omitted and root is :user, then registry-key-exists-p uses KEY_ALL_ACCESS. Otherwise it uses KEY_READ.

registry-key-exists-p closes the key before returning, but the return value is t if the key could actually be opened and
nil otherwise.

See also

create-registry-key

registry-value Accessor

Summary

Gets or sets a value in the registry.

49 The Windows registry API

1617

Package

win32

Signatures

registry-value subkey name &key root expected-type errorp => data, successp, error-code

setf (registry-value subkey name &key root expected-type errorp) data => data

Arguments

subkey⇓ A string specifying the name of the key.

name⇓ A string specifying the name of the value.

root⇓ A keyword or handle.

expected-type⇓ A keyword or t.

errorp⇓ A boolean.

data⇓ A Lisp object.

Values

data A Lisp object.

successp A boolean.

error-code⇓ An integer error code or nil.

Description

The accessor registry-value gets and sets the value associated with name in subkey under the key root.

subkey and root are interpreted as described for create-registry-key. The default value of root is :user.

If the value exists, then the return values are the data and true. expected-type controls how certain types are converted to Lisp
objects as described for enum-registry-value. The default value of expected-type is t.

If an error occurs and errorp is true then an error is signaled. Otherwise, the return values are nil, nil and the Windows
error-code. The default value of errorp is t.

The function (setf registry-value) sets data as the value associated with name in subkey under the key root, creating
the subkey if necessary. The default value of root is :user.

See also

set-registry-value

set-registry-value Function

Summary

Stores a value in the registry.

49 The Windows registry API

1618

Package

win32

Signature

set-registry-value data subkey name &key root expected-type errorp => error-code

Arguments

data⇓ A Lisp object.

subkey⇓ A string specifying the name of the key.

name⇓ A string specifying the name of the value.

root⇓ A keyword or handle.

expected-type⇓ A keyword or t.

errorp⇓ A boolean.

Values

error-code An integer error code or nil.

Description

The function set-registry-value sets the value associated with name in subkey under the key root.

subkey and root are interpreted as described for create-registry-key. The default value of root is :user.

The stored value is derived from data, converted according to expected-type as follows:

Conversion of Lisp objects to registry values

Lisp data expected-type Registry type

A string :string REG_SZ exactly as in data

Lisp value :lisp-object REG_SZ made with
prin1-to-string of data

An integer :integer REG_DWORD containing data

A foreign pointer :binary REG_BINARY containing bytes of one
element at the pointer

An array :binary REG_BINARY containing bytes from
the array

The default value of expected-type is t.

If an error occurs and errorp is true then an error is signaled. The default value of errorp is t.

See also

create-registry-key
registry-value

49 The Windows registry API

1619

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm

with-registry-key Macro

Summary

Runs code with an open registry key handle.

Package

win32

Signature

with-registry-key (handle subkey &key root access errorp) &body body => values

Arguments

handle⇓ A variable name.

subkey⇓ A string specifying the name of the key.

root⇓ A keyword or handle.

access⇓ An integer or keyword.

errorp⇓ A boolean.

body⇓ Lisp forms.

Values

values The values returned by body.

Description

The macro with-registry-key evaluates body with the variable handle bound to the registry key handle opened as if by
calling:

(open-registry-key subkey :root root
 :access access
 :errorp errorp)

subkey, root and access are interpreted as described for create-registry-key.

If errorp is nil and subkey cannot be opened then body is not evaluated.

See also

create-registry-key

49 The Windows registry API

1620

50 The DDE client interface

This chapter describes the Dynamic Data Exchange (DDE) client interface which is available in the WIN32 package. You
should use this chapter in conjunction with 22 Dynamic Data Exchange.

The WIN32 package also includes 48 Miscellaneous WIN32 symbols, 49 The Windows registry API and 51 The DDE
server interface. These are documented in separate chapters in this manual.

Note: the WIN32 package is not a supported implementation of the Win32 API. You should not use symbols in the WIN32
package unless they are documented in this manual. Instead, define your own interfaces to Windows functions as you need -
see the Foreign Language Interface User Guide and Reference Manual for details.

Note: this chapter applies only to LispWorks for Windows.

To use the DDE client interface, you need to require the module by:

(require "dde")

dde-advise-start Function

Summary

Sets up an advise loop on a specified data item for a conversation.

Package

win32

Signature

dde-advise-start conversation item &key key function format datap type errorp => result

Arguments

conversation⇓ A conversation object.

item⇓ A string or symbol.

key⇓ An object.

function⇓ A function name.

format⇓ A clipboard format specifier.

datap⇓ A boolean.

type⇓ A keyword.

errorp⇓ A boolean.

1621

Values

result⇓ A boolean.

Description

The function dde-advise-start sets up an advise loop for the data item specified by item on the specified conversation.

See 22.2.3 Advise loops for information about DDE advise loops.

format should be one of the following:

• A DDE format specifier, consisting of either a standard clipboard format or a registered clipboard format.

• A string containing either the name of a standard clipboard format (without the CF_ prefix), or the name of a registered
clipboard format.

• A symbol, in which case its print name is taken to specify the clipboard format.

• The keyword :text – the default value of format. The keyword :text is treated specially. If supported by the server it
uses the CF_UNICODETEXT clipboard format, otherwise it used the CF_TEXT format.

type specifies how the response data should be converted to a Lisp object. For text formats, the default value indicates that a
Lisp string should be created. The value :string-list may be specified to indicate that the return value should be taken as
a tab-separated list of strings; in this case the Lisp return value is a list of strings. The default conversation class only
supports text formats, unless type is specified as :foreign, which can be used with any clipboard format. It returns a
clipboard-item structure, containing a foreign pointer to the data, the data length, and the format identifier.

If datap is t (the default value), a hot link is established, where the new data is supplied whenever it changes. If datap is
nil, a warm link is established, where the data is not passed, and must be explicitly requested using dde-request.

key is used to identify this link. If specified as nil (the default value), it defaults to the conversation. Multiple links are
permitted on a conversation with the same item and format values, as long as their key values differ.

If the link is established, the return value result is t. If the link could not be established, the behavior depends on the value of
errorp. If errorp is t (the default value), LispWorks signals an error. If it is nil, the function returns nil to indicate failure.

If the link is established, the function function is called whenever the data changes. If function is nil (the default value), then
the generic function dde-client-advise-data will be called.

The function specified by function should have a lambda list similar to the following:

key item data &key conversation &allow-other-keys

key and item identify the link. data contains the new data for hot links; for warm links it is nil.

See also

dde-advise-start*
dde-advise-stop
dde-client-advise-data

50 The DDE client interface

1622

dde-advise-start* Function

Summary

Sets up an advise loop for a specified data item for an automatically managed conversation.

Package

win32

Signature

dde-advise-start* service topic item &key key function format datap type errorp connect-error-p new-conversation-p
=> result

Arguments

service⇓ A string or symbol.

topic⇓ A string or symbol.

item⇓ A string or symbol.

key⇓ An object.

function⇓ A function name.

format⇓ A clipboard format specifier.

datap⇓ A boolean.

type⇓ A keyword.

errorp⇓ A boolean.

connect-error-p⇓ A boolean.

new-conversation-p⇓ A boolean.

Values

result⇓ A boolean.

Description

The function dde-advise-start* is similar to the dde-advise-start, and sets up an advise loop for the data item
specified by item on a conversation with the server specified by service on a topic given by topic.

If connect-error-p is t (the default value) and a conversation cannot be established, then LispWorks signals an error. If
connect-error-p is nil, dde-advise-start* returns nil if a conversation cannot be established.

If new-conversation-p is t then a new conversation is always established for the advise loop.

See dde-advise-start for information on DDE advise loops and the used of format, type, and datap.

key is used to identify this link. If specified as nil (the default value), it defaults to the conversation. Multiple links are
permitted on a conversation with the same item and format values, as long as their key values differ.

50 The DDE client interface

1623

If the link is established, the return value result is t. If the link could not be established, the behavior depends on the value of
errorp. If errorp is t (the default value), LispWorks signals an error. If it is nil, the function returns nil to indicate failure.

If the link is established, the function function will be called whenever the data changes. If function is nil (the default value),
the generic function dde-client-advise-data will be called.

The function specified by function should have a lambda list similar to the following:

key item data &key conversation &allow-other-keys

key and item identify the link. data contains the new data for hot links; for warm links it is nil.

See also

dde-advise-start
dde-advise-stop
dde-advise-stop*
dde-client-advise-data

dde-advise-stop Function

Summary

Removes a link from a conversation specified by a given item and key.

Package

win32

Signature

dde-advise-stop conversation item &key key format errorp disconnectp no-advise-ok => result

Arguments

conversation⇓ A conversation object.

item⇓ A string or symbol.

key⇓ An object.

format⇓ A clipboard format specifier.

errorp⇓ A boolean.

disconnectp⇓ A boolean.

no-advise-ok⇓ A boolean.

Values

result A boolean.

Description

The function dde-advise-stop removes a particular link from conversation specified by item, format and key. If key is the

50 The DDE client interface

1624

last key for the pair of item and format, then the advise loop for the pair is terminated.

See 22.2.3 Advise loops for information about DDE advise loops.

If disconnectp is t, and the last advise loop for the conversation is terminated, the conversation is disconnected.

Attempting to remove a link that does not exist raises an error, unless no-advise-ok is t.

If this function succeeds, it returns t. If it fails, the behavior depends on the value of errorp. If errorp is t (the default value),
LispWorks signals an error. If errorp is nil, the function returns nil to indicate failure.

See also

dde-advise-start
dde-advise-start*
dde-advise-stop*
dde-client-advise-data

dde-advise-stop* Function

Summary

Removes a link from an automatically managed conversation specified by a given item and key.

Package

win32

Signature

dde-advise-stop* service topic item &key key format errorp disconnectp => result

Arguments

service⇓ A string or symbol.

topic⇓ A string or symbol.

item⇓ A string or symbol.

key⇓ An object.

format⇓ A clipboard format specifier.

errorp⇓ A boolean.

disconnectp⇓ A boolean.

Values

result A boolean.

Description

The function dde-advise-stop* is similar to the function dde-advise-stop, and removes a particular link indicated by
item, format and key from a conversation with the server specified by service on a topic given by topic. If key is the last key
for the pair of item and format, then the advise loop for the pair is terminated.

50 The DDE client interface

1625

See 22.2.3 Advise loops for information about DDE advise loops.

If disconnectp is t (the default value), and the last advise loop for the conversation is terminated, the conversation is
disconnected.

If this function succeeds, it returns t. If it fails, the behavior depends on the value of errorp. If errorp is t (the default value),
LispWorks signals an error. If errorp is nil, the function returns nil to indicate failure.

See also

dde-advise-start
dde-advise-start*
dde-advise-stop

dde-client-advise-data Generic Function

Summary

Called when data changes in an advise loop.

Package

win32

Signature

dde-client-advise-data key item data &key &allow-other-keys

Arguments

key⇓ An object.

item⇓ A string or symbol.

data⇓ A string.

Description

The generic function dde-client-advise-data is the default function called when an advise loop informs a client that the
data monitored by the loop has changed. By default it does nothing, but it may be specialized on the object used as the key in
dde-advise-start or dde-advise-start*, or on a client conversation class if the default key is used.

item specifies the item that has changed to data.

See 22.2.3 Advise loops for information about DDE advise loops.

See also

dde-advise-start
dde-advise-stop

50 The DDE client interface

1626

dde-connect Function

Summary

Attempts to create a conversation with a specified DDE server.

Package

win32

Signature

dde-connect service topic &key class errorp => object

Arguments

service⇓ A symbol or string.

topic⇓ A symbol or string.

class⇓ The class of the conversation object to create.

errorp⇓ A boolean.

Values

object A conversation object.

Description

The function dde-connect attempts to create a conversation with a DDE server. If service names a client service registered
with define-dde-client, the registered service name is used as the DDE service name. If service is any other symbol, the
print name of the symbol is used as the DDE service name. If service is a string, that string is used as the DDE service name.

topic specifies the DDE topic name to be used in the conversation. If it is a symbol, the symbol's print name is used. If it is a
string, the string is used.

class specifies the class of the conversation object to create. It must be a subclass of dde-client-conversation, or nil.
If it is nil (the default value), then a conversation of class dde-client-conversation is created, unless service names a
client service registered with define-dde-client, in which case the registered class (if any) is used.

On executing successfully, this function returns a conversation object. If unsuccessful, the behavior depends on the value of
errorp. If errorp is t (the default value), then an error is raised. If errorp is false, the function returns nil.

Note that conversation objects may only be used within the thread in which they were created.

See also

dde-disconnect

50 The DDE client interface

1627

dde-disconnect Function

Summary

Disconnects a conversation object.

Package

win32

Signature

dde-disconnect conversation => result

Arguments

conversation⇓ A conversation object.

Values

result A boolean.

Description

The function dde-disconnect disconnects conversation, which then cannot be used. If the conversation disconnects
successfully, t is returned.

See also

dde-connect

dde-execute Function

Summary

An alternative syntax for dde-execute-command.

Package

win32

Signature

dde-execute conversation command &rest {args}* => result

Arguments

conversation⇓ A conversation object.

command⇓ A string or symbol.

50 The DDE client interface

1628

args⇓ An argument.

Values

result A boolean.

Description

The function dde-execute provides an alternative syntax for dde-execute-command. Unlike dde-execute-command,
dde-execute takes the arguments for command as a sequence of args following &rest, and does not have an argument for
specifying how to handle an error. The command is sent to the conversation specified by conversation.

See also

dde-execute*
dde-execute-command*
dde-execute-string

dde-execute* Function

Summary

An alternative syntax for dde-execute-command*.

Package

win32

Signature

dde-execute* service topic command &rest {args}* => result

Arguments

service⇓ A string or symbol.

topic⇓ A string symbol.

command⇓ A string or symbol.

args⇓ An argument.

Values

result A boolean.

Description

The function dde-execute* provides an alternative syntax for dde-execute-command*. Unlike
dde-execute-command*, dde-execute* takes the arguments for command as a sequence of args following &rest, and
does not have any arguments for specifying how to handle errors. The command is sent to the server specified by service on a
topic given by topic.

50 The DDE client interface

1629

http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm

See also

dde-execute
dde-execute-command
dde-execute-string

dde-execute-command Function

Summary

Sends a command string to a specified conversation.

Package

win32

Signature

dde-execute-command conversation command arg-list &key errorp => result

Arguments

conversation⇓ A conversation object.

command⇓ A string or symbol.

arg-list⇓ A list of strings, integers, and floats.

errorp⇓ A boolean.

Values

result A boolean.

Description

The function dde-execute-command sends a command string to the conversation specified by conversation. The command
string consists of command and arg-list, which are combined using the appropriate argument-marshalling conventions. By
default, the syntax is:

[command(arg1,arg2,...)]

On success, this function returns a result of t. On failure, the behavior depends on errorp. If errorp is t (the default value),
LispWorks signals an error. If it is nil, the function returns nil to indicate failure.

See also

dde-execute
dde-execute-string

50 The DDE client interface

1630

dde-execute-command* Function

Summary

Sends a command string to a specified service on a given topic.

Package

win32

Signature

dde-execute-command* service topic command arg-list &key errorp connect-error-p new-conversation-p => result

Arguments

service⇓ A string or symbol.

topic⇓ A string or symbol.

command⇓ A string or symbol.

arg-list⇓ A list of strings, integers, and floats.

errorp⇓ A boolean.

connect-error-p⇓ A boolean.

new-conversation-p⇓ A boolean.

Values

result A boolean.

Description

The function dde-execute-command* is similar to dde-execute-command, and sends a command string to the server
specified by service on a topic given by topic. The command string consists of command and arg-list, which are combined
using the appropriate argument-marshalling conventions. By default, the syntax is:

[command(arg1,arg2,...)]

If service names a client service registered with define-dde-client, the registered service name is used as the DDE
service name. If service is any other symbol, the print name of the symbol is used as the DDE service name. If service is a
string, that string is used as the DDE service name.

topic specifies the DDE topic name to be used in the conversation. If it is a symbol, the symbol's print name is used. If it is a
string, the string is used.

If necessary, the function dde-execute-command* creates a conversation for the duration of the transaction, but if a
suitable conversation already exists, the transaction is executed over that conversation. Hence, if several transactions will be
made with the same service and topic, placing them inside a with-dde-conversation prevents a new conversation being
established for each transaction.

If new-conversation-p is set to t a new conversation is always established for the transaction. This new conversation is always
automatically disconnected when the transaction is completed.

50 The DDE client interface

1631

If connect-error-p is t (the default value) and a conversation cannot be established, then LispWorks signals an error. If it is
nil, dde-execute-command* returns nil if a conversation cannot be established. This allows the caller to distinguish
between the cases when the server is not running, and when the server is running but the transaction fails.

Upon success, this function returns a result of t. On failure, the behavior depends on errorp. If errorp is t (the default
value), LispWorks signals an error. If it is nil, the function returns nil to indicate failure.

See also

dde-execute
dde-execute-string
dde-execute-command

dde-execute-string Function

Summary

Issues an execute transaction consisting of a specified string.

Package

win32

Signature

dde-execute-string conversation command &key errorp => result

Arguments

conversation⇓ A conversation object.

command⇓ A string or symbol.

errorp⇓ A boolean.

Values

result A boolean.

Description

The function dde-execute-string issues an execute transaction on conversation consisting of the string command. This
string should be an appropriately formatted as described in 22.1.4 Execute transactions. No processing of the string is
performed.

On success, this function returns t. On failure, the behavior depends on errorp. If errorp is t (the default value), LispWorks
signals an error. If it is nil, the function returns nil to indicate failure.

See also

dde-execute
dde-execute-command
dde-execute-string*

50 The DDE client interface

1632

dde-execute-string* Function

Summary

Issues an execute transaction consisting of a specified string on an automatically managed conversation.

Package

win32

Signature

dde-execute-string* service topic command &key errorp connect-error-p new-conversation-p => result

Arguments

service⇓ A symbol or string.

topic⇓ A symbol or string.

command⇓ A string or symbol.

errorp⇓ A boolean.

connect-error-p⇓ A boolean.

new-conversation-p⇓ A boolean.

Values

result A boolean.

Description

The function dde-execute-string* is similar to dde-execute-string, in that it issues an execute transaction
consisting of the string command. However, the conversation across which command is issued is managed automatically. No
processing of the string is performed.

If service names a client service registered with define-dde-client, the registered service name is used as the DDE
service name. If service is any other symbol, the print name of the symbol is used as the DDE service name. If service is a
string, that string is used as the DDE service name.

topic specifies the DDE topic name to be used in the conversation. If it is a symbol, the symbol's print name is used. If it is a
string, the string is used.

If necessary, the function dde-execute-string* will create a conversation for the duration of the transaction, but if a
suitable conversation already exists, the transaction will be executed over that conversation. Hence, if several transactions
will be made with the same service and topic, placing them inside a with-dde-conversation prevents a new conversation
being established for each transaction.

If new-conversation-p is set to t a new conversation is always established for the transaction. This new conversation is always
automatically disconnected when the transaction is completed.

If connect-error-p is t (the default value), then LispWorks signals an error if a conversation cannot be established. If it is
nil, dde-execute-string* returns nil if a conversation cannot be established. This allows the caller to distinguish
between the cases when the server is not running, and when the server is running but the transaction fails.

50 The DDE client interface

1633

Upon success, the function returns t. On failure, the behavior depends on errorp. If errorp is t (the default value),
LispWorks signals an error. If it is nil, the function returns nil to indicate failure.

See also

dde-execute
dde-execute-command
dde-execute-string

dde-item Accessor

Summary

An accessor which can perform a request transaction or a poke transaction.

Package

win32

Signature

dde-item conversation item &key format type errorp => result

setf (dde-item conversation item &key format type errorp) result => result

Arguments

conversation⇓ A conversation object.

item⇓ A string or symbol.

format⇓ A clipboard format specifier.

type⇓ A keyword.

errorp⇓ A boolean.

result⇓ A boolean.

Values

result⇓ A boolean.

Description

The accessor dde-item performs a request transaction when read. It performs a poke transaction when set.

The transaction occurs on conversation, for the item item with format format and type type.

To illustrate, the following dde-request command:

(dde-request conversation item
 :format format
 :type type
 :errorp errorp)

50 The DDE client interface

1634

can also be issued using dde-item as follows:

(dde-item conversation item
 :format format
 :type type
 :errorp errorp)

Similarly, the following dde-poke command:

(dde-poke conversation item data
 :format format
 :type type
 :errorp errorp)

can be issued using dde-item as follows:

(setf (dde-item conversation item
 :format format
 :type type
 :errorp errorp)
 data)

except that the setf form always returns data.

Upon success, this function returns a result of t. On failure, the behavior depends on errorp. If errorp is t (the default
value), LispWorks signals an error. If it is nil, the function returns nil to indicate failure.

See also

dde-item*
dde-poke
dde-request

dde-item* Accessor

Summary

An accessor which can perform a request transaction or a poke transaction on an automatically managed conversation.

Package

win32

Signature

dde-item* service topic item &key format type errorp connect-error-p new-conversation-p => result

setf (dde-item* service topic item &key format type errorp connect-error-p new-conversation-p) result => result

Arguments

service⇓ A string or symbol.

topic⇓ A string or symbol.

item⇓ A string or symbol.

50 The DDE client interface

1635

format⇓ A clipboard format specifier.

type⇓ A keyword.

errorp⇓ A boolean.

connect-error-p⇓ A boolean.

new-conversation-p⇓ A boolean.

result A boolean.

Values

result A boolean.

Description

The accessor dde-item* is similar to dde-item, and performs a request transaction when read. It performs a poke
transaction when set.

The transaction is made for the item item with format format and type type.

To illustrate, the following dde-request* command:

(dde-request* service topic item
 :format format
 :type type
 :errorp errorp
 :connect-error-p connect-error-p
 :new-conversation-p new-conversation-p)

can also be issued using dde-item* as follows:

(dde-item* service topic item
 :format format
 :type type
 :errorp errorp
 :connect-error-p connect-error-p
 :new-conversation-p new-conversation-p)

Similarly, the following dde-poke* command:

(dde-poke* service topic item data
 :format format
 :type type
 :errorp errorp
 :connect-error-p connect-error-p
 :new-conversation-p new-conversation-p)

can be issued using dde-item* as follows:

(setf (dde-item* service topic item
 :format format
 :type type
 :errorp errorp
 :connect-error-p connect-error-p
 :new-conversation-p new-conversation-p)
 data)

50 The DDE client interface

1636

except that the setf form always returns data.

If necessary, the accessor dde-item* creates a conversation for the duration of the transaction, but if a suitable conversation
already exists, the transaction is executed over that conversation. If you need to make several transactions with the same
service and topic, placing them inside a with-dde-conversation prevents a new conversation being established for each
transaction.

If new-conversation-p is set to t a new conversation is always established for the transaction. This new conversation is always
automatically disconnected when the transaction is completed.

If connect-error-p is t (the default value), then LispWorks signals an error if a conversation cannot be established. If it is
nil, dde-item* returns nil if a conversation cannot be established. This allows the caller to distinguish between the cases
when the server is not running, and when the server is running but the transaction fails.

On success, the function returns t. On failure, the behavior depends on errorp. If errorp is t (the default value), LispWorks
signals an error. If it is nil, the function returns nil to indicate failure.

See also

dde-item
dde-poke
dde-request

dde-poke Function

Summary

Issues a poke transaction on a conversation, to set the value of a specified item.

Package

win32

Signature

dde-poke conversation item data &key format type errorp => result

Arguments

conversation⇓ A conversation object.

item⇓ A string or symbol.

data⇓ A string.

format⇓ A clipboard format specifier.

type⇓ A keyword.

errorp⇓ A boolean.

Values

result A boolean.

50 The DDE client interface

1637

Description

The function dde-poke issues a poke transaction on conversation to set the value of the item specified by item to the value
specified by data. item should be a string, or a symbol. If it is a symbol its print name is used.

format should be one of the following:

• A DDE format specifier, consisting of either a standard clipboard format or a registered clipboard format.

• A string containing either the name of a standard clipboard format (without the CF_ prefix), or the name of a registered
clipboard format.

• A symbol, in which case its print name is taken to specify the clipboard format.

• The keyword :text. This is the default value.

The keyword :text is treated specially. If supported by the server it uses the CF_UNICODETEXT clipboard format,
otherwise it used the CF_TEXT format.

For text transactions, the default value of type indicates that data is a Lisp string to be used. If type is :string-list, then
data is taken to be a list of strings, and is sent as a tab-separated string.

Alternatively, data can be a clipboard-item structure, containing a foreign pointer to the data to send and the length of the
data. In this case type is ignored.

On success, this function returns t. On failure, the behavior depends on errorp. If errorp is t (the default value), LispWorks
signals an error. If it is nil, the function returns nil to indicate failure.

See also

dde-item
dde-request

dde-poke* Function

Summary

Issues a poke transaction on an automatically managed conversation, to set the value of a specified item.

Package

win32

Signature

dde-poke* service topic item data &key format type errorp connect-error-p new-conversation-p => result

Arguments

service⇓ A symbol or string.

topic⇓ A symbol or string.

item⇓ A string or symbol.

data⇓ A string.

format⇓ A clipboard format specifier.

50 The DDE client interface

1638

type⇓ A keyword.

errorp⇓ A boolean.

connect-error-p⇓ A boolean.

new-conversation-p⇓ A boolean.

Values

result A boolean.

Description

The function dde-poke* is the same as dde-poke, except that conversations are managed automatically. The function
issues a poke transaction to set the value of the item specified by item to the value specified by data. item should be a string,
or a symbol. If it is a symbol its print name is used.

If service names a client service registered with define-dde-client, the registered service name is used as the DDE
service name. If service is any other symbol, the print name of the symbol is used as the DDE service name. If service is a
string, that string is used as the DDE service name.

topic specifies the DDE topic name to be used in the conversation. If it is a symbol, the symbol's print name is used. If it is a
string, the string is used.

For information on format, type, and errorp, see dde-poke.

If necessary, the function dde-poke* creates a conversation for the duration of the transaction, but if a suitable conversation
already exists, the transaction is executed over that conversation. Hence, if several transactions are made with the same
service and topic, placing them inside a with-dde-conversation prevents a new conversation being established for each
transaction.

If new-conversation-p is set to t a new conversation is always established for the transaction. This new conversation is always
automatically disconnected when the transaction is completed.

If connect-error-p is t (the default value), LispWorks signals an error if a conversation cannot be established. If it is nil,
dde-poke* returns nil if a conversation cannot be established. This allows the caller to distinguish between the cases when
the server is not running, and when the server is running but the transaction fails.

See also

dde-item
dde-request

dde-request Function

Summary

Issues a request transaction on a conversation for a specified item.

Package

win32

50 The DDE client interface

1639

Signature

dde-request conversation item &key format type errorp => result successp

Arguments

conversation⇓ A conversation object.

item⇓ A string or symbol.

format⇓ A clipboard format specifier.

type⇓ A keyword.

errorp⇓ A boolean.

Values

result⇓ The return value of the transaction.

successp⇓ A boolean.

Description

The function dde-request issues a request transaction on conversation for the specified item. item should be a string, or a
symbol. If it is a symbol its print name is used.

format should be one of the following:

• A DDE format specifier, consisting of either a standard clipboard format or a registered clipboard format.

• A string containing either the name of a standard clipboard format (without the CF_ prefix), or the name of a registered
clipboard format.

• A symbol, in which case its print name is taken to specify the clipboard format.

• The keyword :text. This is the default value.

The keyword :text is treated specially. If supported by the server it uses the CF_UNICODETEXT clipboard format, otherwise
it used the CF_TEXT format.

The default conversation class only supports text formats, unless type is specified as :foreign. type specifies how the
response data should be converted to a Lisp object. For text formats, the default value indicates that a Lisp string should be
created. The value :string-list may be specified for type to indicate that the return value should be taken as a tab-
separated list of strings; in this case the Lisp return value is a list of strings. The value :foreign can be used with any
clipboard format. It returns a clipboard-item structure, containing a foreign pointer to the data, the data length, and the
format identifier.

This function returns two values, result and successp. If successful, result is the return value of the transaction (which may be
nil in the case of :string-list), and successp is true to indicate success.

On failure, the result of the function depends on errorp. If errorp is t (the default), the function signals an error. If errorp is
nil, the function returns (values nil nil).

See also

dde-item
dde-poke
dde-request*

50 The DDE client interface

1640

http://www.lispworks.com/documentation/HyperSpec/Body/a_list.htm

dde-request* Function

Summary

Issues a request transaction on an automatically managed conversation for a specified item.

Package

win32

Signature

dde-request* service topic item &key format type errorp connect-error-p new-conversation-p => result successp

Arguments

service⇓ A symbol or string.

topic⇓ A symbol or string.

item⇓ A string or symbol.

format⇓ A clipboard format specifier.

type⇓ A keyword.

errorp⇓ A boolean.

connect-error-p⇓ A boolean.

new-conversation-p⇓ A boolean.

Values

result The return value of the transaction.

successp A boolean.

Description

The function dde-request* is similar to dde-request, except that conversations are managed automatically. The
function issues a request transaction for the specified item, which should be a string, or a symbol. If it is a symbol its print
name is used.

If service names a client service registered with define-dde-client, the registered service name is used as the DDE
service name. If service is any other symbol, the print name of the symbol is used as the DDE service name. If service is a
string, that string is used as the DDE service name.

topic specifies the DDE topic name to be used in the conversation. If it is a symbol, the symbol's print name is used. If it is a
string, the string is used.

For information on format, type, and errorp see dde-request.

If necessary, the function dde-request* will create a conversation for the duration of the transaction, but if a suitable
conversation already exists, the transaction will be executed over that conversation. Hence, if several transactions will be
made with the same service and topic, placing them inside a with-dde-conversation prevents a new conversation being
established for each transaction.

50 The DDE client interface

1641

If new-conversation-p is set to t a new conversation is always established for the transaction. This new conversation is always
automatically disconnected when the transaction is completed.

If connect-error-p is t (the default value), then LispWorks signals an error if a conversation cannot be established. If it is
nil, dde-request* returns nil if a conversation cannot be established. This allows the caller to distinguish between the
cases when the server is not running, and when the server is running but the transaction fails.

See also

dde-item
dde-poke
dde-request

define-dde-client Macro

Summary

Registers a client service.

Package

win32

Signature

define-dde-client name &key service class => name

Arguments

name⇓ A symbol.

service⇓ A string.

class⇓ A subclass of dde-client-conversation.

Values

name A symbol.

Description

The macro define-dde-client defines a mapping from the symbol name to the DDE service name with which to
establish a conversation, and the conversation class to use for this conversation.

service is a string which names the DDE service. It defaults to the print-name of name.

class is a subclass of dde-client-conversation which is used for all conversations with this service. It defaults to
dde-client-conversation. Specifying a subclass allows various aspects of the behavior of the conversation to be
specialized.

Note that it is generally not necessary to register client services unless a specialized conversation type is required. However,
it is sometimes convenient to register a client service in order to allow the service name to be changed in the future.

50 The DDE client interface

1642

See also

dde-connect
dde-disconnect
with-dde-conversation

with-dde-conversation Macro

Summary

Dynamically binds a conversation to a server across a given body of code.

Package

win32

Signature

with-dde-conversation (conv service topic &key errorp new-conversation-p) &body body => result

Arguments

conv⇓ A variable.

service⇓ A symbol or string.

topic⇓ A symbol or string.

errorp⇓ A boolean.

new-conversation-p⇓ A boolean.

body⇓ A list of Lisp forms.

Values

result A boolean.

Description

The macro with-dde-conversation dynamically binds a conversation with a server across the scope of a body of code
specified by body. conv is bound to a conversation with the server specified by service, and the topic specified by topic.

If service names a client service registered with define-dde-client, the registered service name is used as the DDE
service name. If service is any other symbol, the print name of the symbol is used as the DDE service name. If service is a
string, that string is used as the DDE service name.

topic specifies the DDE topic name to be used in the conversation. If it is a symbol, the symbol's print name is used. If it is a
string, the string is used.

An existing conversation may be used, if available, unless new-conversation-p is true, in which case a new conversation is
always created.

If a new conversation is created, it is disconnected after body has executed as an implicit program.

If a conversation cannot be established, the result returned by the function depends on errorp. If errorp is t (the default
value), then LispWorks signals an error. If errorp is nil, the body is not executed, and nil is returned.

50 The DDE client interface

1643

See also

define-dde-client

50 The DDE client interface

1644

51 The DDE server interface

This chapter describes the Dynamic Data Exchange (DDE) server interface which is available in the WIN32 package. You
should use this chapter in conjunction with 22 Dynamic Data Exchange.

The WIN32 package also includes 48 Miscellaneous WIN32 symbols, 49 The Windows registry API and 50 The DDE
client interface. These are documented in separate chapters in this manual.

Note: the WIN32 package is not a supported implementation of the Win32 API. You should not use symbols in the WIN32
package unless they are documented in this manual. Instead, define your own interfaces to Windows functions as you need -
see the Foreign Language Interface User Guide and Reference Manual for details.

Note: this chapter applies only to LispWorks for Windows.

To use the DDE server interface, you need to require the module by:

(require "dde")

dde-server-poke Generic Function

Summary

Called when a poke transaction is received.

Package

win32

Signature

dde-server-poke server topic item data &key format &allow-other-keys => successp

Arguments

server⇓ A server object.

topic⇓ A topic object.

item⇓ A string.

data⇓ A string.

format⇓ A keyword.

Values

successp A boolean.

1645

Description

The generic function dde-server-poke is called in response to a poke transaction. A method specializing on the classes of
server and topic should poke the data given by data into the item specified by item.

format indicates the format in which the item is being requested. By default, only text transfers are supported (and format
will have the value :text).

The set of supported formats may be extended in future releases, so applications should always check the value of the format
parameter and reject transactions which use formats not supported by the application.

If the poke transaction is successful, non-nil should be returned, and nil should be returned for failure.

See also

dde-poke
dde-request
dde-server-request

dde-server-request Generic Function

Summary

Called when a request transaction is received.

Package

win32

Signature

dde-server-request server topic item &key format &allow-other-keys => data

Arguments

server⇓ A server object.

topic⇓ A topic object.

item⇓ A string.

format⇓ A keyword.

Values

data The returned data.

Description

The generic function dde-server-request is called in response to a request transaction. A method specializing on the
classes of server and topic should return the data in item.

The expected format of the data is given by format, which defaults to :text. The set of supported formats may be extended
in future releases, so applications should always check the value of the format parameter and reject transactions which use
formats not supported by the application.

51 The DDE server interface

1646

If the request fails, nil should be returned.

See also

dde-poke
dde-request
dde-server-poke

dde-server-topic Generic Function

Summary

Called whenever a client attempts to connect to a server with a given topic.

Package

win32

Signature

dde-server-topic server topic-name => topic

Arguments

server⇓ A server.

topic-name⇓ A string.

Values

topic A topic.

Description

The generic function dde-server-topic is called whenever a client attempts to make a connection to a server server. The
argument topic-name is a string identifying a topic. If the server recognizes the topic, a method specializing on the server
should return an instance of one of the server's topic classes. If the server does not recognize the topic, the method should
return nil.

See also

dde-server-topics
dde-topic-items

dde-server-topics Generic Function

Summary

Returns a list of the available general topics on a given server.

51 The DDE server interface

1647

Package

win32

Signature

dde-server-topics server => topic-list

Arguments

server⇓ A server object.

Values

topic-list A list of strings.

Description

The generic function dde-server-topics returns a list of the available general topics on a given server. A suitable method
specializing on server should be defined. Dispatching topics (see define-dde-dispatch-topic) should not be returned,
as they are handled automatically by LispWorks. If you do not provide a dde-server-topics method, the default method
returns :unknown, which prevents the DDE server from responding to the topics request.

Generally only one canonical name should be returned for each topic, even though the server may recognize several
alternative forms of name for a topic. For example, if an application implements a topic for each open file, the topics foo,
foo.doc and c:\foo.doc may all be acceptable strings for referring to the same topic; however dde-server-topics
should return each topic once only.

The application must also provide a method on the dde-server-topic generic function.

See also

dde-server-topic
dde-topic-items

dde-system-topic Class

Summary

A built-in topic class for the :system topic.

Package

win32

Superclasses

dde-topic

Description

The class dde-system-topic is a built-in topic class for the :system topic.

See 22.3.3.3 The system topic for details of the items implemented by this topic.

51 The DDE server interface

1648

See also

dde-topic

dde-topic Class

Summary

The ancestor of all topic classes.

Package

win32

Superclasses

standard-object

Subclasses

dde-system-topic

Description

The class dde-topic is the superclass of all topic objects. You can define subclasses using defclass and return instances
of them by defining a method for the dde-server-topic generic function. This allows you to create topics with arbitrary
internal state that can be accessed via DDE.

Examples

(example-edit-file "dde/server-dispatching.lisp")

See also

dde-server-topic
dde-system-topic

dde-topic-items Generic Function

Summary

Returns the valid items in a topic.

Package

win32

Signature

dde-topic-items server topic => item-strings

51 The DDE server interface

1649

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm

Arguments

server⇓ A server object.

topic⇓ A topic object.

Values

item-strings A list of strings.

Description

The generic function dde-topic-items returns a list of strings corresponding to the valid items in the topic. A method
specializing server and topic should be defined.

If it is not practical to return a list of the items (for example, if the list is potentially infinite), the generic function returns
:unknown.

See also

dde-server-topic
dde-server-topics

define-dde-dispatch-topic Macro

Summary

Defines a dispatch topic.

Package

win32

Signature

define-dde-dispatch-topic name &key server topic-name => name

Arguments

name⇓ A symbol.

server⇓ A server class.

topic-name⇓ A string.

Values

name A symbol.

Description

The macro define-dde-dispatch-topic defines a dispatching topic. A dispatching topic is a topic which has a fixed
name and always exists. Dispatching topics provide dispatching capabilities, whereby appropriate application-supplied code
is executed for each supported transaction. Note that the server implementation also provides some dispatching capabilities.

51 The DDE server interface

1650

The name of the dispatching topic object is specified by name.

The topic is identified by the string topic-name.

The class of the server to attach the topic to is given by server.

The macro define-dde-dispatch-topic returns the name of the dispatching topic, name.

Use define-dde-server-function with the :topic option to define items for a dispatch topic.

Examples

(define-dde-dispatch-topic topic1 :server demo-server)

(define-dde-server-function (item1 :topic topic1)
 :request
 ()
 ..handle topic1.item1 request..)

See also

dde-server-topic
dde-server-topics
define-dde-server-function

define-dde-server Macro

Summary

Defines a class for a Lisp DDE server.

Package

win32

Signature

define-dde-server class-name service-spec-args => class-name

service-spec-args ::= service-name | superclasses slot-specs [[class-option]]

class-option ::= (:service service-name) | standard-class-option

Arguments

class-name⇓ A class name.

service-name⇓ A string.

superclasses⇓ A list of superclasses.

slot-specs⇓ The specifications for the slots.

standard-class-option⇓
A list.

51 The DDE server interface

1651

Values

class-name A class name.

Description

The macro define-dde-server defines a class for a Lisp DDE server. The class inherits from dde-server.

The long form of the macro is similar to defclass, but with one extra class option, :service, which is used to specify the
service name string to which this server will respond. If superclasses is nil, then the single superclass of class-name will be
dde-server. subclass of dde-server. If superclasses is non-nil, it should include subclass of dde-server. slot-specs
and standard-class-option are used as the slot specifications and class options of the new class.

The short form is provided to handle the common simple case; class-name is the name of the Lisp class to be defined, and
service-name is the service name string to which this server will respond.

Examples

The first example uses the short version of define-dde-server to define a class, called lisp-server, which has the
service name "LISP".

(define-dde-server lisp-server "LISP")

The second example shows how to use the long for of the macro to define the same class, and illustrates the use of
superclasses and a class-option.

(define-dde-server lisp-server (dde-server)
 ()
 (:service "LISP"))

See also

dde-server-topic
dde-server-topics
dde-topic-items

define-dde-server-function Macro

Summary

Defines a server function that is called when a specific transaction occurs.

Package

win32

Signature

define-dde-server-function name-and-options transaction (binding*) form* => name

name-and-options ::= name | (name [[option]])

transaction ::= :request | :poke | :execute

option ::= :server server | :topic-class topic-class | :topic topic | :item item | :format format |

51 The DDE server interface

1652

:command command | :result-type result-type | :advisep advisep

binding ::= var-binding | execute-arg-binding

var-binding ::= (var :server) | (var :topic) | (var :data [data-type]) | (var :format)

execute-arg-binding ::= var | (var type-spec)

Arguments

transaction A keyword.

form⇓ A Lisp form.

name⇓ A symbol.

server⇓ A server object.

topic-class⇓ A topic class.

topic⇓ A symbol naming a dispatch topic.

item⇓ A string.

format⇓ A keyword.

command⇓ A string.

result-type⇓ A data type.

advisep⇓ A boolean.

var⇓ A variable.

data-type⇓ A data type.

type-spec⇓ A data type.

Values

name A symbol.

Description

The macro define-dde-server-function is used to define a server function, called name, which causes form's to be
evaluated when a specific transaction occurs. The defined function may either be attached to a server class (using the
dispatching capabilities built into the server implementation) or to a named dispatch topic.

• To attach the definition to a server, :server server should be used to specify the server class. :topic-class topic-
class may be used to specify the topic-class for which this definition should be used. topic-class can be a symbol which
names a topic-class, or t (meaning All topics, this is the default for execute transactions), or:system (The System
topic), or :non-system (any topic except the System topic). In the case of execute transactions only, topic-class
defaults to t; in all other cases, it must be specified. Typically, execute transactions ignore the topic of the conversation.
Alternatively, you may choose to only support execute transactions in the system topic.

• A server function may instead be attached to a particular instance of dde-dispatch-topic, previously defined by
define-dde-dispatch-topic. This is the main use of dispatching topics. In this case :topic topic should be
provided, where topic is a symbol that names a dispatching topic. The function is installed on that topic, and only applies
to that topic.

In the case of a request or poke transaction, item is a string defining the item name for which this definition should be
invoked. It defaults to the capitalized print-name of name, with hyphens removed.

51 The DDE server interface

1653

For request transactions, the :format format option is used to specify the format understood. format defaults to :text. It
can be specified as :all, in which case the :format binding may be used to determine the actual format requested (see
below). In addition, if advisep is non-nil then the server will accept requests to start an advise loop.

In the case of an execute transaction, command is a string specifying the name of the command for which this definition
should be invoked. It defaults to the capitalized print-name of name, with hyphens removed.

The execute-arg-bindings are only used with execute transactions. They specify the arguments expected. type-spec should be
one of t, string, number, integer or float. If not specified, t is assumed.

The var-bindings may appear anywhere in the binding list, and in any order. Binding variables to :server and :topic is
useful with all transaction types. A :server binding causes the variable to be bound to the server object, whereas a :topic
binding causes the variable to be bound to the topic object. This allows the server and/or the topic to be referred to in the
body of the function.

A :format binding can only be used with request and poke transactions, where an option of :format :all has been
specified. It causes the variable specified by var to be bound to the format of data requested or supplied. The body of the
defined function should fail the transaction if it does not support the requested format.

A :data binding can only be used with poke transactions. It binds a variable to the data to be poked. For text transfers, the
data variable is normally bound to a string. However, if data-type is specified as :string-list, the data in the transaction
is interpreted as a tab-separated list of strings, and the data variable is bound to a list of strings.

For execute and poke transactions, the body of the defined function is expected to return t for success and nil for failure.

For request transactions, the body of the defined function is normally expected to return a result value, or nil for failure.

result-type may only be specified for request transactions. If it is specified as :string-list, then for text requests the body
is expected to return a list of strings, which are used to create a tab-separated list to be returned to the client.

Sometimes, it may be necessary to support returning nil to mean the empty list, rather than failure. In this case, result-type
can be specified as (:string-list t). The body is then expected to return two values: a list of strings, and a flag
indicating success.

In the case of execute transactions, the command name and arguments are unmarshalled by the default argument
unmarshalling. This is compatible with the default argument unmarshalling described under dde-execute-command. The
execute string is expected to be of the following syntax:

[command1(arg1,arg2,...)][command2(arg1,arg2,...)]...]

Note that multiple commands may be packed into a single execute transaction. However, dde-execute-command does not
currently generate such strings.

See also

dde-execute-command
define-dde-client
define-dde-dispatch-topic
define-dde-server

51 The DDE server interface

1654

http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_number.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm

start-dde-server Function

Summary

Creates and starts an instance of a DDE server.

Package

win32

Signature

start-dde-server name => server

Arguments

name⇓ A DDE server class.

Values

server A server object.

Description

The function start-dde-server creates an instance of a server of the class specified by name which then starts accepting
transactions. If successful the function returns the server, otherwise nil is returned.

You need to call start-dde-server in a thread that will process Windows messages. This can either be done by using
capi:execute-with-interface to run it in the thread of an application's main window (if there is one) or by running it
in a dedicated thread as in the example. DDE callbacks will happen in this thread.

Examples

(mp:process-run-function
 "DDE Server"
 ()
 #'(lambda ()
 (win32:start-dde-server 'lispworks-dde-server)
 (loop
 (mp:wait-processing-events
 nil
 :wait-reason "DDE Request Loop"))))

See also

define-dde-server

51 The DDE server interface

1655

52 Dynamic library C functions

This chapter describes the C functions available in a LispWorks dynamic library, that is a library created by passing dll-
exports or dll-added-files to save-image or deliver.

For an overview of this functionality with examples of use, see 14 LispWorks as a dynamic library.

Note: this chapter applies only to LispWorks on Microsoft Windows, Macintosh, Linux, x86/x64 Solaris and FreeBSD.

InitLispWorks C Function

Summary

Provides control over the initialization of a LispWorks dynamic library.

Signature

On Windows:

int __stdcall InitLispWorks (int MilliTimeOut, void *BaseAddress, size_t ReserveSize)

On Linux, Macintosh, x86/x64 Solaris and FreeBSD:

int InitLispWorks (int MilliTimeOut, void *BaseAddress, size_t ReserveSize)

Description

The C function InitLispWorks allows you to relocate a LispWorks dynamic library if this is necessary, and offers control
of the initialization process.

A LispWorks dynamic library is automatically initialized by any call to its exported symbols, so in most cases there is no
need to call InitLispWorks. It is however necessary when you need to relocate LispWorks or when you need finer control
over the initialization process.

For more information about relocating a LispWorks dynamic library, see 27.6 Startup relocation.

MilliTimeOut specifies the time in milliseconds to wait for LispWorks to finish initializing before returning.
InitLispWorks checks whether the library was initialized and if not initiates initialization. It then waits at most
MilliTimeOut milliseconds before returning.

BaseAddress specifies the base address for relocation. Can be 0.

ReserveSize specifies the reserve size for relocation. Can be 0.

BaseAddress and ReserveSize are interpreted as described in 27.6 Startup relocation.

Non-negative return values indicate success:

1 LispWorks was already initialized or in the process of initializing, and finished initializing by the
time InitLispWorks returned.

1656

0 InitLispWorks initialized LispWorks and the initialization finished successfully.

Values in the inclusive range [-1, -99] indicate a timeout:

-1 InitLispWorks started initialization and timed out before LispWorks finished mapping itself
from the file.

-2 LispWorks already started initialization, and InitLispWorks timed out before LispWorks
finished mapping itself from the file.

-3 InitLispWorks started initialization and timed out after LispWorks mapped itself from the file,
but before the initialization was complete.

-4 LispWorks already started initialization, and InitLispWorks timed out before after LispWorks
mapped itself from the file, but before the initialization was complete.

After InitLispWorks times out, the state of LispWorks can be queried by LispWorksState.

Lower values indicate failure, as follows:

-1000 Failure to start a thread to do the initialization.

-1401 The file seems to be corrupted.

-1402 Failure to map into memory.

-1403 Failure to read the LispWorks header from the file.

-1406 Bad base address.

-1408 Some failure in Lisp code during initialization. In LispWorks 8.0, this can be reported only on
Android.

-1409 LispWorks failed to open its own executable/dynamic library. This is done using dlopen to
allow LispWorks to find foreign symbols. In LispWorks 8.0, this can be reported only on
Android. This error means that the library was found and loaded by the runtime system, and it is
only the call to dlopen by LispWorks that failed.

Additionally, a value value in the inclusive range [-1400, -1001] on Linux, Macintosh, FreeBSD and x86/x64 Solaris
platforms indicates an error in a system call. Calculate the errno number by -1001 - value.

Note: If LispWorks is already initialized or in the process of being initialized, InitLispWorks does not initiate the process
of initialization. Therefore the arguments to InitLispWorks have no effect if LispWorks was already initialized when it is
called. On Microsoft Windows, the default behavior is to initialize a LispWorks dynamic library automatically during
loading, so this needs to be disabled to use InitLispWorks effectively. Disable automatic initialization of a library as
described for deliver and save-image.

Note: Once QuitLispWorks has returned 0, LispWorks can be initialized again. It is possible to quit and restart LispWorks
several times, at the same address or at a different address.

Note: On Linux, Macintosh, FreeBSD and x86/x64 Solaris you can create wrappers to the C functions described in this
chapter from your application by writing them in C and adding them to the dynamic library using dll-added-files in deliver

and save-image. Such wrappers can be used to add calls to InitLispWorks before actually calling into Lisp.

InitLispWorks is defined in each LispWorks dynamic library. For information about creating a LispWorks dynamic
library, see deliver and save-image. For an overview of LispWorks as a dynamic library, see 14 LispWorks as a
dynamic library.

52 Dynamic library C functions

1657

See also

deliver
LispWorksState
save-image
QuitLispWorks

LispWorksDlsym C Function

Summary

Returns the address of a foreign callable.

Signature

On Windows:

void __stdcall *LispWorksDlsym (const char * name)

On Linux, Macintosh, FreeBSD and x86/x64 Solaris:

void *LispWorksDlsym (const char * name)

Description

The C function LispWorksDlsym returns the address of a foreign callable name which is defined in Lisp using
fli:define-foreign-callable.

LispWorksDlsym first checks whether the LispWorks dynamic library finished initializing, and if not uses InitLispWorks
to initialize it (with MilliTimeOut 200). If this fails LispWorksDlsym returns NULL. When the LispWorks dynamic library
is initialized, LispWorksDlsym returns the address of name, or NULL if it is not defined.

LispWorksDlsym is defined in each LispWorks dynamic library. For information about creating a LispWorks dynamic
library, see deliver and save-image. For an overview of LispWorks as a dynamic library, see 14 LispWorks as a
dynamic library.

See also

InitLispWorks

LispWorksState C Function

Summary

Returns the state of a LispWorks dynamic library.

Signature

On Windows:

int __stdcall LispWorksState (int MilliTimeOut)

52 Dynamic library C functions

1658

On Linux, Macintosh, FreeBSD and x86/x64 Solaris:

int LispWorksState (int MilliTimeOut)

Description

The C function LispWorksState returns the state of a LispWorks dynamic library.

MilliTimeOut specifies the time to wait in milliseconds if LispWorks is in the process of initialization.

If LispWorks has not been initialized, or has been quit by QuitLispWorks, LispWorksState returns -100. Otherwise, it
returns the same values as InitLispWorks. In particular, if LispWorks is already properly initialized it returns 1, and if
LispWorks is still in the process of initialization it returns -2 or -4. Otherwise it returns a more negative number indicating an
error.

LispWorksState is defined in each LispWorks dynamic library. For information about creating a LispWorks dynamic
library, see deliver and save-image. For an overview of LispWorks as a dynamic library, see 14 LispWorks as a
dynamic library.

See also

InitLispWorks
QuitLispWorks

QuitLispWorks C Function

Summary

Allows a LispWorks dynamic library to be unloaded.

Signature

On Windows:

int __stdcall QuitLispWorks(int Force, int MilliTimeOut)

On Linux, Macintosh, FreeBSD and x86/x64 Solaris:

int QuitLispWorks(int Force, int MilliTimeOut)

Description

The C function QuitLispWorks allows a LispWorks dynamic library to be unloaded. You should make a LispWorks
dynamic library 'quit' by calling QuitLispWorks before unloading the library. This call causes LispWorks to cleanup
everything it uses, in particular the memory and threads.

In general, QuitLispWorks should be called only when the LispWorks dynamic library is idle. That is, when there is no
callback into the library that has not returned, and there are no processes that has started by a callback. All callbacks should
return, and any processes should be killed before calling QuitLispWorks.

Force should be 0 or 1. It specifies whether to force quitting even if LispWorks is still executing something.

MilliTimeOut specifies how long to wait for LispWorks to complete the cleanup.

52 Dynamic library C functions

1659

If LispWorks is idle, QuitLispWorks signals it to quit, and waits MilliTimeOut milliseconds for it to finish the cleanup. If
LispWorks finished cleanup, QuitLispWorks return 0 (SUCCESS). If the cleanup is not finished it returns -2 (TIMEOUT).

If LispWorks is not idle, that is there are still some active callbacks or there are processes that have started by a callback (even
if they are inside process-wait), QuitLispWorks checks the value of Force. If Force is 0, QuitLispWorks returns -1
(NOT_IDLE). If Force is 1, QuitLispWorks signals it to quit and behaves as if LispWorks is idle, described above.

QuitLispWorks can be called repeatedly to check whether LispWorks finished the cleanup.

When QuitLispWorks returns NOT_IDLE, it has done nothing, and the LispWorks dynamic library can be used for further
callbacks. Once QuitLispWorks returns any other value, callbacks into the dynamic library will result in undefined
behavior.

Once QuitLispWorks returns SUCCESS, it is safe to unload the dynamic library. Unloading it before QuitLispWorks
returns SUCCESS gives undefined results.

Once QuitLispWorks returns SUCCESS, LispWorks can be initialized again. Calling any exported function (supplied to
save-image or deliver in dll-exports) or any of InitLispWorks, SimpleInitLispWorks and LispWorksDlsym will
cause LispWorks to initialize again.

Note: On Linux, Macintosh, FreeBSD and x86/x64 Solaris it is possible to add calls to QuitLispWorks at the right places
via dll-added-files.

Note: A possible reason for failure to finish the cleanup is that a LispWorks process is stuck inside a foreign call. Dynamic
library applications that need to be unloaded should be careful to ensure that they do not get stuck in a foreign function call.

QuitLispWorks is defined in each LispWorks dynamic library. For information about creating a LispWorks dynamic
library, see deliver and save-image. For an overview of LispWorks as a dynamic library, see 14 LispWorks as a
dynamic library.

See also

deliver
dll-quit
save-image

SimpleInitLispWorks C Function

Summary

Initializes a LispWorks dynamic library.

Signature

On Windows:

int __stdcall SimpleInitLispWorks (void)

On Linux, Macintosh, FreeBSD and x86/x64 Solaris:

int SimpleInitLispWorks (void)

Description

The C function SimpleInitLispWorks calls InitLispWorks(0,0,0) and returns the value of that call.

52 Dynamic library C functions

1660

SimpleInitLispWorks is defined in each LispWorks dynamic library. For information about creating a LispWorks
dynamic library, see deliver and save-image. For an overview of LispWorks as a dynamic library, see 14 LispWorks as
a dynamic library.

See also

InitLispWorks

52 Dynamic library C functions

1661

Index

A

:a debugger command 3.4.4 : Leaving the debugger 66

abort restart 3.2 : Simple use of the REPL debugger 61

abstract SSL context 25.9.3 : SSL abstract contexts 315

class ssl-abstract-context 499

creating create-ssl-server-context 440

resetting reset-ssl-abstract-context 478

using with :ssl-ctx 25.9.6 : Keyword arguments for use with SSL 316

accepting-handle type 386

accepting-handle-collection function 387

accepting-handle-local-port function 387

accepting-handle-name function 388

accepting-handle-socket function 389

accepting-handle-user-info function 389

accepts-n-syntax function 1271

accept-tcp-connections-creating-async-io-states function 390 25.8.1 : The wait-state-collection API 309, 25.8.2 :
The Async-I/O-State API 309, 25.8.4 : Asynchronous I/O and multiprocessing 311, 25.9.6 : Keyword arguments for use with
SSL 316

accessor generic functions

slot-value-using-class 379 18.1.1 : Instance Structure Protocol 209

accessor-method-slot-definition generic function 18.1.2 : Method Metaobjects 209

accessors

async-io-state-max-read 409

async-io-state-name 25.8.2 : The Async-I/O-State API 309, async-io-state 399

async-io-state-read-timeout async-io-state 399

async-io-state-user-info 25.8.2 : The Async-I/O-State API 309, async-io-state 399

async-io-state-write-timeout async-io-state 399

base-char-ref 1524

cdr-assoc 1446

code-coverage-data-name code-coverage-data 719

dde-item 1634 22.2.4 : Request and poke transactions 256

dde-item* 1635

environment-variable 931 27.4.2 : Accessing environment variables 340, 27.14.1 : Encoding of file names and strings in OS
interface functions 345

int32-aref 1487

int64-aref 1497

jaref 1046

1662

java-instance-jobject 15.8 : CLOS partial integration 187, standard-java-object 1097

jobject-field-value 1069 15.3.1 : Calling methods by name 177

jvref 1077

lob-stream-lob-locator 23.11.5 : Attaching a stream to a LOB locator 293, lob-stream 1312

long-site-name 560 27.2 : Site Name 337

octet-ref 1524

process-mailbox 1203

process-private-property 1208

process-property 1209 19.10 : Process properties 236

process-run-reasons 1213

product-registry-path 1535 27.13.1 : Location of persistent settings 344

registry-value 1617 27.17 : Accessing the Windows registry 347

ring-ref 826

sbchar 976

short-site-name 582 27.2 : Site Name 337

socket-stream-socket socket-stream 491

sql-error-database-message sql-database-error 1370

sql-error-error-id sql-database-error 1370

sql-error-secondary-error-id sql-database-error 1370

ssl-default-implementation 512 25.9.1 : SSL implementations 313

stchar 985

storage-exhausted-gen-num storage-exhausted 1575

storage-exhausted-size storage-exhausted 1575

storage-exhausted-static storage-exhausted 1575

storage-exhausted-type storage-exhausted 1575

stream-file-position 1411

stream-read-timeout socket-stream 491

stream-write-timeout socket-stream 491

symeval-in-process 1248 19.11.2 : Accessing symbol values across processes 237

timer-name 1250

tracing-enabled-p 678

tracing-state 679

typed-aref 1576

user-preference 1001 27.13.2 : Accessing persistent settings 344

action lists 8 : Action Lists 115

defining 8.1 : Defining action lists and actions 115

examples 8.5 : Examples 116

undefining 8.1 : Defining action lists and actions 115

active-finders variable 648

add-code-coverage-data function 692

Index

1663

adding actions to action lists 8.1 : Defining action lists and actions 115

addMessage Java method 1119

ADDMESSAGE_ADD java constant field com.lispworks.Manager.addMessage 1119

ADDMESSAGE_ADD_NO_SCROLL java constant field com.lispworks.Manager.addMessage 1119

ADDMESSAGE_APPEND java constant field com.lispworks.Manager.addMessage 1119

ADDMESSAGE_APPEND_NO_SCROLL java constant field com.lispworks.Manager.addMessage 1119

ADDMESSAGE_PREPEND java constant field com.lispworks.Manager.addMessage 1119

ADDMESSAGE_RESET java constant field com.lispworks.Manager.addMessage 1119

add-method generic function 18.1.6 : Generic Function Invocation Protocol 210

add-package-local-nickname function 693

address space

in 32-bit LispWorks 27.5.2 : Layout of memory 340, 27.6.2 : Startup relocation of 32-bit LispWorks 341

in 64-bit LispWorks 27.6.3 : Startup relocation of 64-bit LispWorks 341, 29.1 : Introduction 358

add-special-free-action function 695 11.6.6 : Special actions 154

add-sql-stream function 1272 23.7 : SQL I/O recording 286

add-symbol-profiler function 696

adjust-array function 19.3.2 : Mutable objects supporting atomic access 219

advice

after 6.2 : Combining the advice 95

around 6.2 : Combining the advice 95

before 6.2 : Combining the advice 95

example of use 6.6 : Examples 98

facility 6 : The Advice Facility 94

for macros 6.4 : Advice for macros and methods 96

for methods 6.4 : Advice for macros and methods 96

for subfunctions 6.5 : Advising subfunctions 97

main chapter 6 : The Advice Facility 94, 7 : Dspecs: Tools for Handling Definitions 101

removing 6.3 : Removing advice 95

:after trace keyword 5.2.1 : Evaluating forms on entry to and exit from a traced function 85

after advice 6.2 : Combining the advice 95

:all debugger command 3.4.3 : Miscellaneous commands 65

:all keyword 20.2.4 : DEFSYSTEM rules 245

allocated-in-its-own-segment-p function 1433

:allocation trace keyword 5.2.8 : Storing the memory allocation made during a function call 88

allocation-in-gen-num macro 696 11.3.2.2 : Allocation in different generations 139, 11.3.12.2 : Allocating in specific
generations 144

allocation of stacks 11.6.4 : Allocation of stacks 154, *default-stack-group-list-length* 1452

allowing-block-interrupts macro 1125 19.8.3 : Blocking interrupts 232

analyzing-special-variables-usage macro 697

Android interface

Java side 16 : Android interface 189, 41 : Android Java classes and methods 1111

Lisp side: Android-specific functions 16 : Android interface 189

Index

1664

Lisp side: Delivery 16 : Android interface 189

overview 16 : Android interface 189

android-build-value function 699

android-funcall-in-main-thread function 701

android-funcall-in-main-thread-list function 701

android-get-current-activity function 702

android-main-process-for-testing variable 703

android-main-thread-p function 703

Android runtimes

creating 16.1 : Delivering for Android 189

example 16.4 : The Othello demo for Android 194

ANSI

Common Lisp 18.1.9 : Inheritance Structure of Metaobject Classes 211, 23.3.1.5 : Iteration 272

SQL mode 23.1.2 : Supported databases 260, 23.9.4 : SQL mode 288

ANSI Common Lisp Standard

menu command 33 : The COMMON-LISP Package 530

ANSI_QUOTES

SQL mode 23.9.4 : SQL mode 288

any-capi-window-displayed-p function 704

any-other-process-non-internal-server-p function 1126

any SQL operator 23.5.1.3 : Symbolic expression of SQL operators 280

appendf macro 897

append-file function 897

apple-err-ssl-bad-cert constant 393

apple-err-ssl-bad-cipher-suite constant 393

apple-err-ssl-bad-configuration constant 394

apple-err-ssl-bad-record-mac constant 394

apple-err-ssl-buffer-overflow constant 393

apple-err-ssl-cert-expired constant 393

apple-err-ssl-cert-not-yet-valid constant 393

apple-err-ssl-client-cert-requested constant 394

apple-err-ssl-client-hello-received constant 394

apple-err-ssl-closed-abort constant 393

apple-err-ssl-closed-graceful constant 393

apple-err-ssl-closed-no-notify constant 393

apple-err-ssl-connection-refused constant 394

apple-err-ssl-crypto constant 393

apple-err-ssl-decryption-fail constant 394

apple-err-ssl-fatal-alert constant 393

apple-err-ssl-host-name-mismatch constant 394

apple-err-ssl-illegal-param constant 393

Index

1665

apple-err-ssl-internal constant 393

apple-err-ssl-module-attach constant 393

apple-err-ssl-negotiation constant 393

apple-err-ssl-no-root-cert constant 393

apple-err-ssl-peer-access-denied constant 393

apple-err-ssl-peer-auth-completed constant 394

apple-err-ssl-peer-bad-cert constant 393

apple-err-ssl-peer-bad-record-mac constant 393

apple-err-ssl-peer-cert-expired constant 393

apple-err-ssl-peer-cert-revoked constant 393

apple-err-ssl-peer-cert-unknown constant 393

apple-err-ssl-peer-decode-error constant 393

apple-err-ssl-peer-decompress-fail constant 393

apple-err-ssl-peer-decrypt-error constant 393

apple-err-ssl-peer-decryption-fail constant 393

apple-err-ssl-peer-export-restriction constant 394

apple-err-ssl-peer-handshake-fail constant 393

apple-err-ssl-peer-insufficient-security constant 394

apple-err-ssl-peer-internal-error constant 394

apple-err-ssl-peer-no-renegotiation constant 394

apple-err-ssl-peer-protocol-version constant 394

apple-err-ssl-peer-record-overflow constant 393

apple-err-ssl-peer-unexpected-msg constant 393

apple-err-ssl-peer-unknown-ca constant 393

apple-err-ssl-peer-unsupported-cert constant 393

apple-err-ssl-peer-user-cancelled constant 394

apple-err-ssl-protocol constant 393

apple-err-ssl-record-overflow constant 394

apple-err-ssl-session-not-found constant 393

apple-err-ssl-unexpected-record constant 394

apple-err-ssl-unknown-root-cert constant 393

apple-err-ssl-weak-peer-ephemeral-dh-key constant 394

apple-err-ssl-would-block constant 393

apple-err-ssl-x-cert-chain-invalid constant 393

apply-in-pane-process function 19.3.3 : Mutable objects not supporting atomic access 219

apply-in-wait-state-collection-process function 397 25.8.1 : The wait-state-collection API 309

apply-with-allocation-in-gen-num function 1434 11.4.2 : Segments and Allocation Types 145

approaching-memory-limit condition class 1435

apropos function 530

apropos-list function 531

Index

1666

argument list function-lambda-list 943

arguments

command line 27.4 : The Command Line 337, 27.4.1 : Command Line Arguments 338

lisp function function-lambda-list 943

arguments for traced functions 5.2.1 : Evaluating forms on entry to and exit from a traced function 84

around advice 6.2 : Combining the advice 95

array-dimension-limit constant 29.3 : Architectural constants 359

array-single-thread-p function 704

array-total-size-limit constant 29.3 : Architectural constants 359

array-weak-p function 705

ASCII 26.7.1 : External format names 331, 26.7.3.2 : Using complete external formats 334

:ascii external format 26.7.1 : External format names 331

:ascii-terminal external format 26.7.1 : External format names 332, 27.14.1 : Encoding of file names and strings in OS interface
functions 345, 27.16 : The console external format 347

ASDF 20.1 : Introduction 243, 20.3 : Using ASDF 246

ASDF2 20.3 : Using ASDF 246

async-io-ssl-failure-indicator-from-failure-args function 398 25.9.8 : Errors in SSL 319

async-io-state system class 399 25.8.2 : The Async-I/O-State API 309

async-io-state-abort function 400 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and multiprocessing 312

async-io-state-abort-and-close function 401 25.8.4 : Asynchronous I/O and multiprocessing 312

async-io-state-address function 402

async-io-state-attach-ssl function 402 25.9.6 : Keyword arguments for use with SSL 316, 25.9.7 : Attaching SSL to an existing
socket 318

async-io-state-buffered-data-length function 404 25.8.2 : The Async-I/O-State API 310

async-io-state-collection function async-io-state 399

async-io-state-ctx function 404 25.11.3 : Using SSL objects directly 323

async-io-state-detach-ssl function 405 25.9.7 : Attaching SSL to an existing socket 318

async-io-state-discard function 406 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and
multiprocessing 312

async-io-state-finish function 407 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and multiprocessing 312

async-io-state-get-buffered-data function 407 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and
multiprocessing 312

async-io-state-handshake function 408

async-io-state-max-read accessor 409

async-io-state-name accessor 25.8.2 : The Async-I/O-State API 309, async-io-state 399

async-io-state-object function async-io-state 399

async-io-state-old-length function 410

async-io-state-peer-address function 411

async-io-state-read-buffer function 411 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and
multiprocessing 311

async-io-state-read-status function 413

async-io-state-read-timeout accessor async-io-state 399

Index

1667

async-io-state-read-with-checking function 413 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and
multiprocessing 311

async-io-state-receive-message function 416 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and
multiprocessing 311

async-io-state-send-message function 417 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and
multiprocessing 312

async-io-state-send-message-to-address function 418 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O
and multiprocessing 312

async-io-state-shutdown function 420 25.8.2 : The Async-I/O-State API 310

async-io-state-ssl function 421 25.11.3 : Using SSL objects directly 323

async-io-state-ssl-side function 422 25.11.3 : Using SSL objects directly 323

async-io-state-user-info accessor 25.8.2 : The Async-I/O-State API 309, async-io-state 399

async-io-state-wait-for-input function 422

async-io-state-write-buffer function 423 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and
multiprocessing 312

async-io-state-write-status function 413

async-io-state-write-timeout accessor async-io-state 399

at-location macro 649

atomic-decf macro 1435

atomic-exchange macro 1436

atomic-fixnum-decf macro 1437

atomic-fixnum-incf macro 1437

atomic-incf macro 1435

atomicity and thread-safety

in CAPI 19.3.3 : Mutable objects not supporting atomic access 219

in the editor 19.3.2 : Mutable objects supporting atomic access 219

in the LispWorks implementation 19.3 : Atomicity and thread-safety of the LispWorks implementation 218

atomic-pop macro 1438

atomic-push macro 1438

attach-ssl function 424 25.9.4 : Creating a stream with SSL 315, 25.9.6 : Keyword arguments for use with SSL 316

attribute-type function 1273 23.3.2.1 : Querying the schema 274

augmented-string type 1439

augmented-string-p function 1440

augment-environment function 706

autoload-asdf-integration variable 898

avoid-gc function 707 11.3.12.4 : Controlling the garbage collector 144

B

:b debugger command 3.4.1 : Backtracing 63

background-input variable 708

background-output variable 708

background-query-io variable 708

backtrace 3.4.1 : Backtracing 62

quick backtrace 3.4.1 : Backtracing 63

Index

1668

verbose backtrace 3.4.1 : Backtracing 63

:backtrace trace keyword 5.2.3 : Using the debugger when tracing 86

barrier system class 1127

barrier-arriver-count function 1127

barrier-block-and-wait function 1128

barrier-change-count function 1130

barrier-count function 1131

barrier-disable function 1131 19.7.2 : Synchronization barriers 231

barrier-enable function 1132 19.7.2 : Synchronization barriers 231

barrier-name function 1133

barrier-pass-through function 1133

barrier-unblock function 1134

barrier-wait function 1135 19.7.2 : Synchronization barriers 231

base-char type 26.3.1 : Character types 326, base-character 899

base-character type 899

base-character-p function 899

base-char-code-limit constant 900

base-char-p function 900

base-char-ref accessor 1524

base slot 23.4.1 : Object oriented/relational model 275

base-string type 531 26.3.5 : String types 326

base-string-p function 901

:base-table class option def-view-class 1291

:before trace keyword 5.2.1 : Evaluating forms on entry to and exit from a traced function 84

before advice 6.2 : Combining the advice 95

binary files 9 : The Compiler 119

binary-file-type variable 1440 compile-file 538

binary-file-types variable 1441 compile-file 538

:bindings keyword *print-binding-frames* 621

binds-who function 709

block-promotion macro 710

:bmp external format 680 26.7.1 : External format names 332

bmp-char type 901 26.3.1 : Character types 326

bmp-char-p function 902

:bmp-native external format 680 26.7.2.3 : BMP 333

:bmp-reversed external format 680 26.7.2.3 : BMP 333

bmp-string type 903 26.3.5 : String types 327

bmp-string-p function 904

BOM 26.7.3.3 : Guessing the external format 334, 26.7.3.8 : Byte Order Mark 336

Bordeaux threads

APIs needed for process-join 1201

Index

1669

:bq debugger command 3.4.1 : Backtracing 63

:break trace keyword 5.2.3 : Using the debugger when tracing 85

break-new-instances-on-access function 363

break-on-access function 364

:break-on-exit trace keyword 5.2.3 : Using the debugger when tracing 86

browser *browser-location* 904

browser-location variable 904

browsing documentation *browser-location* 904

buffered-stream class 1402

:bug-form listener command 2.2.1 : Standard top-level loop commands 58

building-main-architecture-p function 711

building-universal-intermediate-p function 712

byte order

big-endian architectures dump-forms-to-file 758

little-endian architectures dump-forms-to-file 758

Byte Order Mark 26.7.3.3 : Guessing the external format 334, 26.7.3.8 : Byte Order Mark 336

C

:c debugger command 3.4.4 : Leaving the debugger 66

cache-table-queries function 1274 23.3.1.3 : Caching of table queries 271

cache-table-queries-default variable 1275 23.3.1.3 : Caching of table queries 271

callDoubleA Java method 1107

callDoubleV Java method 1107

calling AppleScript call-system 1442

callIntA Java method 1107

callIntV Java method 1107

call-java-method function 1008 15.3.1 : Calling methods by name 177

call-java-method-error condition class 1009

call-java-non-virtual-method function 1009

call-java-static-method function 1010 15.3.1 : Calling methods by name 177

call-next-advice function 905 6.2.2 : :around advice 95, 6.7 : Advice functions and macros 100

callObjectA Java method 1107

callObjectV Java method 1107

calls-who function 712

call-system function 1441 27.7 : Calling external programs 342, 27.14.1 : Encoding of file names and strings in OS interface
functions 345

call-system-showing-output function 1443 27.7 : Calling external programs 342, 27.14.1 : Encoding of file names and strings
in OS interface functions 345

call Unix functions from Lisp 27.7 : Calling external programs 342

callVoidA Java method 1107

callVoidV Java method 1107

Index

1670

call-wait-state-collection function 426 25.8.1 : The wait-state-collection API 308, 25.8.2 : The Async-I/O-State API 310

canonicalize-dspec function 649

canonicalize-sid-string function 1583

:catchers keyword *print-catch-frames* 623

catch frame, examining 3.3 : The stack in the debugger 62

catching-exceptions-bind macro 1011

catching-java-exceptions macro 1011

:caused-by keyword 20.2.4 : DEFSYSTEM rules 245

:cc debugger command 3.4.3 : Miscellaneous commands 65

cd macro 713

cdr-assoc accessor 1446

C functions

dlopen 14.1 : Introduction 171

dlsym 14.1 : Introduction 171

GetProcAddress 14.1 : Introduction 171

InitLispWorks 1656 14.3.2 : Initialization via InitLispWorks 173, 27.6.1 : How to relocate LispWorks 341

LispWorksDlsym 1658

LispWorksState 1658 14.3.1 : Automatic initialization 172

LoadLibrary 14.1 : Introduction 171

QuitLispWorks 1659 14.6 : Unloading a dynamic library 173

SimpleInitLispWorks 1660

change-class function 19.3.8.3 : Subclasses of standard-object locked while their class is being changed 225

change-directory function 714 13.9 : Specifying the initial working directory 169

change-process-priority function 1137 19.11.1.2 : Process priorities in non-SMP LispWorks 237

character type 26.3.1 : Character types 326

character types 26.3.1 : Character types 325

char-external-code function 681

checked-read-java-field function 1087 15.3.1 : Calling methods by name 177

check-fragmentation function 715 11.3.11 : Controlling Fragmentation 143, 11.3.12.4 : Controlling the garbage collector 144

check-java-field function 1087 15.3.1 : Calling methods by name 177

check-lisp-calls-initialized function 1012

checkLispSymbol Java method 1108

check-network-server variable 1447

choose-unicode-string-hash-function function 906

classes

buffered-stream 1402

dde-system-topic 1648

dde-topic 1649

eql-specializer 18.1.5 : EQL specializers 210

funcallable-standard-object 370

fundamental-binary-input-stream 1403

Index

1671

fundamental-binary-output-stream 1404

fundamental-binary-stream 1404

fundamental-character-input-stream 1405

fundamental-character-output-stream 1406

fundamental-character-stream 1406

fundamental-input-stream 1407

fundamental-output-stream 1408

fundamental-stream 1408

lob-stream 1312 23.11.1.1 : Retrieving LOB locators 291, 23.11.5 : Attaching a stream to a LOB locator 293, 23.11.9.5 : Direct
I/O 296

method-combination 18.1.7 : Method combinations 210

serial-port 1266

socket-stream 491 25.9 : Using SSL 313, 25.9.6 : Keyword arguments for use with SSL 316

standard-accessor-method 18.1.2 : Method Metaobjects 209

standard-db-object 1388 23.4 : Object oriented interface 274

standard-java-object 1097

standard-object 19.3.2 : Mutable objects supporting atomic access 219

standard-reader-method 18.1.2 : Method Metaobjects 209

standard-writer-method 18.1.2 : Method Metaobjects 209

storage-exhausted 1575

wait-state-collection 525 25.8.1 : The wait-state-collection API 308

class-extra-initargs generic function 365

class options

:base-table def-view-class 1291

:extra-initargs class-extra-initargs 365, compute-class-potential-initargs 367, defclass 543

:optimize-slot-access 18.1.1 : Instance Structure Protocol 209, 18.3.2 : Accessors not using structure instance
protocol 211, slot-value-using-class 380, defclass 543

parsing of process-a-class-option 371

clean-down function 716 11.3.1 : Generations 138, 11.6.2 : Reducing image size 154

clean-generation-0 function 717 11.3.12.3 : Controlling a specific generation 144

clearBugFormLogs Java method 1118

clear-code-coverage function 718

client-remote-debugging system class 628

close generic function 532

close-accepting-handle function 426

close-async-io-state function 427 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and multiprocessing 312

close-registry-key function 1607 27.17 : Accessing the Windows registry 347

close-remote-debugging-connection function 600 3.7.5.3 : Common (both IDE and client) connection functions 75

close-serial-port function 1262

close-socket-handle function 428

close-wait-state-collection function 429 25.8.1 : The wait-state-collection API 308

Index

1672

:clos-initarg-checking delivery keyword set-clos-initarg-checking 376

CLOS Metaobject Protocol

menu command 18 : The Metaobject Protocol 209

Cocoa application initialize-multiprocessing 1156

Cocoa application bundle

saving 13.3.2 : The save-image script 163

Cocoa event loop initialize-multiprocessing 1156

code coverage 10 : Code Coverage 130

HTML output code-coverage-data-generate-coloring-html 722

HTML output index file code-coverage-data-generate-coloring-html 722

Source files HTML coloring code-coverage-data-generate-coloring-html 722

Code Coverage Current Buffer editor command code-coverage-set-editor-default-data 728

code-coverage-data system class 719

code-coverage-data-create-time function code-coverage-data 719

code-coverage-data-generate-coloring-html function 720

code-coverage-data-generate-statistics function 723

code-coverage-data-name accessor code-coverage-data 719

Code Coverage File editor command code-coverage-set-editor-default-data 728

code-coverage-file-stats system class 724

code-coverage-file-stats-called function 724

code-coverage-file-stats-counters-count function 724

code-coverage-file-stats-counters-executed function 725

code-coverage-file-stats-counters-hidden function 725

code-coverage-file-stats-fully-covered function 724

code-coverage-file-stats-hidden-covered function 724

code-coverage-file-stats-lambdas-count function 724

code-coverage-file-stats-not-called function 724

code-coverage-file-stats-partially-covered function 724

code-coverage-file-stats-source-file function code-coverage-file-stats 724

code-coverage-set-editor-colors function 727

code-coverage-set-editor-default-data function 728

code-coverage-set-html-background-colors function 729

code-page external format 26.7.1 : External format names 331

code signing 13.3.6 : Code signing in saved images 164

entitlements 13.3.6.3 : Saving images and delivering on Apple silicon Macs 165, 13.3.6.4 : Saving images and delivering on Intel
Macs 166, 13.3.6.5 : Saving images and delivering a macOS universal binary 166

in saved image save-image 834

universal binaries 13.3.6.5 : Saving images and delivering a macOS universal binary 166

coerce function 533

coerce-to-gesture-spec function 1447

collect-generation-2 function 730 11.3.9 : Behavior of generation 2 143, 11.3.12.3 : Controlling a specific generation 144

Index

1673

collect-highest-generation function 731 11.3.12.3 : Controlling a specific generation 144

collect-registry-subkeys function 1608 27.17 : Accessing the Windows registry 347

collect-registry-values function 1609 27.17 : Accessing the Windows registry 347

com.lispworks.BugFormLogsList Java class 1111

com.lispworks.BugFormViewer Java class 1111

com.lispworks.LispCalls Java class 1107

com.lispworks.LispCalls.callDoubleA Java method 1107

com.lispworks.LispCalls.callDoubleV Java method 1107

com.lispworks.LispCalls.callIntA Java method 1107

com.lispworks.LispCalls.callIntV Java method 1107

com.lispworks.LispCalls.callObjectA Java method 1107

com.lispworks.LispCalls.callObjectV Java method 1107

com.lispworks.LispCalls.callVoidA Java method 1107

com.lispworks.LispCalls.callVoidV Java method 1107

com.lispworks.LispCalls.checkLispSymbol Java method 1108

com.lispworks.LispCalls.createLispProxy Java method 1109

com.lispworks.LispCalls.waitForInitialization Java method 1110

com.lispworks.Manager Java class 1111

com.lispworks.Manager.addMessage Java method 1119

com.lispworks.Manager.clearBugFormLogs Java method 1118

com.lispworks.Manager.getApplicationContext Java method 1121

com.lispworks.Manager.getClassLoader Java method 1121

com.lispworks.Manager.init Java method 1113

com.lispworks.Manager.init_result_code Java method 1114

com.lispworks.Manager.LispErrorReporter Java interface 1116

com.lispworks.Manager.LispGuiErrorReporter Java interface 1116

com.lispworks.Manager.loadLibrary Java method 1116

com.lispworks.Manager.MessageHandler Java interface 1120

com.lispworks.Manager.mInitErrorString Java field 1115

com.lispworks.Manager.mMaxErrorLogsNumber Java field 1118

com.lispworks.Manager.mMessagesMaxLength Java field 1119

com.lispworks.Manager.setClassLoader Java method 1123

com.lispworks.Manager.setCurrentActivity Java method 1122

com.lispworks.Manager.setErrorReporter Java method 1116

com.lispworks.Manager.setGuiErrorReporter Java method 1116

com.lispworks.Manager.setLispTempDir Java method 1123

com.lispworks.Manager.setMessageHandler Java method 1120

com.lispworks.Manager.setRuntimeLispHeapDir Java method 1122

com.lispworks.Manager.setTextView Java method 1121

com.lispworks.Manager.showBugFormLogs Java method 1118

Index

1674

com.lispworks.Manager.status Java method 1114

command line 27.4 : The Command Line 337, 27.4.1 : Command Line Arguments 338

command line arguments *line-arguments-list* 1503

-build 27.4.1 : Command Line Arguments 338

-display 27.4.1 : Command Line Arguments 338

-env 27.4.1 : Command Line Arguments 338

-environment 27.4.1 : Command Line Arguments 338

-eval 27.4.1 : Command Line Arguments 338

-IIOPhost 27.4.1 : Command Line Arguments 338

-IIOPnumeric 27.4.1 : Command Line Arguments 338

-init 27.4.1 : Command Line Arguments 339

-load 27.4.1 : Command Line Arguments 339

-lw-no-redirection 27.4.1 : Command Line Arguments 339

-multiprocessing 27.4.1 : Command Line Arguments 339

-no-restart-function 27.4.1 : Command Line Arguments 339

-ORBport 27.4.1 : Command Line Arguments 339

--relocate-image 27.4.1 : Command Line Arguments 339

--reserve-size 27.4.1 : Command Line Arguments 339

-siteinit 27.4.1 : Command Line Arguments 339

command line processing *line-arguments-list* 1504

commands

listener define-top-loop-command 1454

top level define-top-loop-command 1454

commit function 1275 23.3.1.2 : Modification 270, 23.3.1.4 : Transaction handling 272, 23.11.3 : Locking 292

Common Lisp

systems See system

Common SQL

[...]syntax 23.5.1 : The "[...]" Syntax 277

case of names 23.9.2 : Case of table names and database names 287

database connection 23.2.3 : General database connection and disconnection 263

database encoding 23.9.3 : Encoding (character sets in MySQL). 287

date fields 23.6 : Working with date fields 285, 23.9.9 : Types of values returned from queries 290

encoding 23.2.5 : Connecting to ODBC 264

errors 23.8 : Error handling in Common SQL 286

Functional DDL 23.3.2 : Functional Data Definition Language (FDDL) 274

Functional DML 23.3.1 : Functional Data Manipulation Language (FDML) 269

functional interface 23.3 : Functional interface 269

initialization 23.2 : Initialization 261

I/O recording 23.7 : SQL I/O recording 286

iteration 23.4.3.2 : Iteration 277

main chapter 23 : Common SQL 259

Index

1675

Object Oriented DDL 23.4.2 : Object-Oriented Data Definition Language (OODDL) 275

Object Oriented DML 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

object-oriented interface 23.4 : Object oriented interface 274

ODBC compliance 23.1.2 : Supported databases 260

programmatic interface 23.5.2 : Programmatic interface 283

result types 23.3.1.1 : Querying 269, 23.9.9 : Types of values returned from queries 289

supported databases 23.1.2 : Supported databases 260

symbolic syntax 23.5 : Symbolic SQL syntax 277

transaction handling 23.2.5 : Connecting to ODBC 264, 23.3.1.4 : Transaction handling 271, 23.9.8 : Rollback errors 289

utilities 23.5.3 : Utilities 284

Common SQL errors

sql-connection-error 23.8.1 : SQL condition classes 286

sql-database-data-error 23.8.1 : SQL condition classes 286

sql-database-error 23.8 : Error handling in Common SQL 286

sql-fatal-error 23.8.1 : SQL condition classes 286

sql-temporary-error 23.8.1 : SQL condition classes 286

sql-timeout-error 23.8.1 : SQL condition classes 286

sql-user-error 23.8 : Error handling in Common SQL 286

compare-and-swap macro 1449

compilation-speed 9.5 : Compiler control 121

compile function 534

Compile Buffer editor command 10.1.1 : Compiling the code to record code coverage information 130

Compile File editor command 10.1.1 : Compiling the code to record code coverage information 130

compile-file function 535

compile-file-if-needed function 731

compiler

comparison with interpreter 9 : The Compiler 119

control 9.5 : Compiler control 121

levels of safety 9.5 : Compiler control 121

main chapter 9 : The Compiler 119

optimization of 9.5 : Compiler control 121

workings of 9.4 : How the compiler works 120

compiler-break-on-error variable 733

compiler explanations 9.7.1 : Compiler optimization hints 125, declare 540

compiler help 9.7.1 : Compiler optimization hints 125, declare 540

compile-system function 907 20.2 : Defining a system 243

compiling

arbitrary forms 9.3 : Compiling a form 120

debugging errors 9.2.1 : Debugging errors from source file compilation 120

functions 9.1 : Compiling a function 119

source files 9.2 : Compiling a source file 120

Index

1676

compute-applicable-methods-using-classes generic function 18.1.6 : Generic Function Invocation Protocol 210

compute-class-potential-initargs generic function 366

compute-discriminating-function generic function 367 18.1.6 : Generic Function Invocation Protocol 210

compute-effective-method-function-from-classes generic function 368

concatenate function 538

concatenate* function 733

concatenate-system function 908

Conditionalization

LispWorks architectures *features* 556

LispWorks implementations *features* 554

LispWorks versions *features* 555

Conditionalization for LispWorks versions *features* 555

Conditionalization for the LispWorks architectures *features* 556

Conditionalization for the LispWorks implementations *features* 554

condition classes

approaching-memory-limit 1435

call-java-method-error 1009

create-java-object-error 1016

external-format-error 684

fasl-error 768

field-access-exception 1029

field-exception 1029

file-encoding-resolution-error 1463

java-array-error 1048

java-array-indices-error 1048

java-array-simple-error 1050

java-bad-jobject 1050

java-class-error 1051

java-definition-error 1051

java-exception 1052

java-field-error 1051

java-field-setting-error 1053

java-id-exception 1053

java-instance-without-jobject-error 1054

java-interface-error 1054

java-low-level-exception 1055

java-method-error 1051

java-method-exception 1055

java-normal-exception 1056

java-not-a-java-object-error 1057

java-not-an-array-error 1057

Index

1677

java-out-of-bounds-error 1060

java-program-error 1061

java-serious-exception 1061

java-storing-wrong-type-error 1060

jobject-call-method-error 1066

socket-connect-error 486

socket-create-error 488

socket-error 489

socket-io-error 491

sql-connection-error 1369

sql-database-data-error 1369

sql-database-error 1370

sql-failed-to-connect-error 1373

sql-fatal-error 1374

sql-temporary-error 1386

sql-timeout-error 1387

sql-user-error 1387 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-blob) 300, 23.13.5 :
Values in Insert and Update. 301, sqlite-open-blob 1378, sqlite-raw-blob-p 1381

ssl-closed 501 25.9.8 : Errors in SSL 319

ssl-condition 501 25.9.8 : Errors in SSL 319

ssl-error 513 25.9.8 : Errors in SSL 319

ssl-failure 513 25.9.8 : Errors in SSL 319

ssl-handshake-timeout 514 25.9.8 : Errors in SSL 319

ssl-verification-failure 516 25.9.8 : Errors in SSL 319

ssl-version-or-cipher-mismatch 516

ssl-x509-lookup 517 25.9.8 : Errors in SSL 319

condition-variable system class 1138

condition-variable-broadcast function 1138 19.7.1 : Condition variables 230

Condition variables 19.7.1 : Condition variables 230

condition-variable-signal function 1139 19.7.1 : Condition variables 230

condition-variable-wait function 1140 19.7.1 : Condition variables 230

condition-variable-wait-count function 1141 19.7.1 : Condition variables 231

configure-remote-debugging-spec function 601 3.7.1.1 : Using the IDE as the TCP server 70, 3.7.2 : The client side of remote
debugging 71, 3.7.5.1 : Client side connection management 74, 3.7.7 : Using SSL for remote debugging 76

configuring the printer 13.12 : Configuring the printer 170

connect function 1276 23.1.2 : Supported databases 260, 23.2.1 : Initialization steps 262, 23.2.4 : Connecting to
Oracle 263, 23.2.5 : Connecting to ODBC 263, 23.2.6 : Connecting to MySQL 264, 23.9.1 : Connection specification 287

connected-databases function 1281 23.2.3 : General database connection and disconnection 263

connect-if-exists variable 1282 connect 1278

connecting to a database

MySQL 23.2.6 : Connecting to MySQL 264

ODBC 23.2.5 : Connecting to ODBC 263

Oracle 23.2.4 : Connecting to Oracle 263

Index

1678

PostgreSQL 23.2.7 : Connecting to PostgreSQL 266

Connect Remote Debugging editor command ide-connect-remote-debugging 613

connect-to-named-pipe function 1584

connect-to-tcp-server function 430

console save-image 833

console application save-image 833

console encoding 27.16 : The console external format 347

Constants

apple-err-ssl-bad-cert 393

apple-err-ssl-bad-cipher-suite 393

apple-err-ssl-bad-configuration 394

apple-err-ssl-bad-record-mac 394

apple-err-ssl-buffer-overflow 393

apple-err-ssl-cert-expired 393

apple-err-ssl-cert-not-yet-valid 393

apple-err-ssl-client-cert-requested 394

apple-err-ssl-client-hello-received 394

apple-err-ssl-closed-abort 393

apple-err-ssl-closed-graceful 393

apple-err-ssl-closed-no-notify 393

apple-err-ssl-connection-refused 394

apple-err-ssl-crypto 393

apple-err-ssl-decryption-fail 394

apple-err-ssl-fatal-alert 393

apple-err-ssl-host-name-mismatch 394

apple-err-ssl-illegal-param 393

apple-err-ssl-internal 393

apple-err-ssl-module-attach 393

apple-err-ssl-negotiation 393

apple-err-ssl-no-root-cert 393

apple-err-ssl-peer-access-denied 393

apple-err-ssl-peer-auth-completed 394

apple-err-ssl-peer-bad-cert 393

apple-err-ssl-peer-bad-record-mac 393

apple-err-ssl-peer-cert-expired 393

apple-err-ssl-peer-cert-revoked 393

apple-err-ssl-peer-cert-unknown 393

apple-err-ssl-peer-decode-error 393

apple-err-ssl-peer-decompress-fail 393

apple-err-ssl-peer-decrypt-error 393

apple-err-ssl-peer-decryption-fail 393

Index

1679

apple-err-ssl-peer-export-restriction 394

apple-err-ssl-peer-handshake-fail 393

apple-err-ssl-peer-insufficient-security 394

apple-err-ssl-peer-internal-error 394

apple-err-ssl-peer-no-renegotiation 394

apple-err-ssl-peer-protocol-version 394

apple-err-ssl-peer-record-overflow 393

apple-err-ssl-peer-unexpected-msg 393

apple-err-ssl-peer-unknown-ca 393

apple-err-ssl-peer-unsupported-cert 393

apple-err-ssl-peer-user-cancelled 394

apple-err-ssl-protocol 393

apple-err-ssl-record-overflow 394

apple-err-ssl-session-not-found 393

apple-err-ssl-unexpected-record 394

apple-err-ssl-unknown-root-cert 393

apple-err-ssl-weak-peer-ephemeral-dh-key 394

apple-err-ssl-would-block 393

apple-err-ssl-x-cert-chain-invalid 393

array-dimension-limit 29.3 : Architectural constants 359

array-total-size-limit 29.3 : Architectural constants 359

base-char-code-limit 900

gesture-spec-accelerator-bit 1470

gesture-spec-caps-lock-bit 1470

gesture-spec-control-bit 1470

gesture-spec-hyper-bit 1470

gesture-spec-meta-bit 1470

gesture-spec-shift-bit 1470

gesture-spec-super-bit 1470

java-null 1058

most-positive-fixnum 29.3 : Architectural constants 359

SZDDESYS_ITEM_FORMATS 22.3.3.3 : The system topic 258

SZDDESYS_ITEM_SYSITEMS 22.3.3.3 : The system topic 258

SZDDESYS_ITEM_TOPICS 22.3.3.3 : The system topic 258

continue restart 3.2 : Simple use of the REPL debugger 61

copy-code-coverage-data function 734

copy-current-code-coverage function 734

copy-file function 909

copy-from-sqlite-raw-blob function 1379 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-
blob) 300

Index

1680

copy-preferences-from-older-version function 1449

copy-standard-object function 369

copy-to-weak-simple-vector function 736 11.6.8 : Freeing of objects by the GC 155

count-gen-num-allocation function 1450 11.4.5 : Tuning the garbage collector 146

Counting semaphores 19.7.3 : Counting semaphores 232

count-regexp-occurrences function 910

create-and-run-wait-state-collection function 431 25.8.1 : The wait-state-collection API 309

create-async-io-state function 433 25.8.2 : The Async-I/O-State API 309, 25.8.4 : Asynchronous I/O and multiprocessing 311

create-async-io-state-and-connected-tcp-socket function 434 25.8.2 : The Async-I/O-State API 309, 25.9.6 : Keyword
arguments for use with SSL 316

create-async-io-state-and-connected-udp-socket function 437 25.8.2 : The Async-I/O-State API 309

create-async-io-state-and-udp-socket function 438 25.8.2 : The Async-I/O-State API 309

create-client-remote-debugging-connection function 603 3.7.2 : The client side of remote debugging 71

create-ide-remote-debugging-connection function 603

create-index function 1282 23.3.2.3 : Modification 274

create-instance-from-jobject function 1013

create-instance-jobject function 1014

create-instance-jobject-list function 1014

create-java-object function 1015 15.3.1 : Calling methods by name 177

create-java-object-error condition class 1016

createLispProxy Java method 1109

create-macos-application-bundle function 736

create-registry-key function 1610 27.17 : Accessing the Windows registry 347

create-ssl-client-context function 440 25.9.3 : SSL abstract contexts 315

create-ssl-server-context function 440 25.9.3 : SSL abstract contexts 315

create-ssl-socket-stream function 445 25.9.4 : Creating a stream with SSL 315, 25.9.6 : Keyword arguments for use with
SSL 316

create-table function 1283 23.3.2.3 : Modification 274

create-temp-file function 738 27.15.3 : Temporary files 346

create-universal-binary function 740

create-view function 1284 23.3.2.3 : Modification 274

create-view-from-class function 1285 23.4.2 : Object-Oriented Data Definition Language (OODDL) 275

creation of process 19.1 : Introduction to processes 216

cross-referencing binds-who 709, calls-who 712, toggle-source-debugging 865, who-binds 881, who-
calls 882

:ctx-configure-callback initarg socket-stream 491

current frame 3.4.2 : Moving around the stack 63

current-function-name function 741

current-pathname function 912

current process 19.1 : Introduction to processes 216

current-process variable 1141 19.1 : Introduction to processes 216

Index

1681

current-process-block-interrupts function 1142 19.8.3 : Blocking interrupts 232

current-process-in-cleanup-p function 1143

current-process-kill function 1143

current-process-pause function 1144

current-process-send function 1146

current-process-set-terminate-method function 1146

current-process-unblock-interrupts function 1147 19.8.3 : Blocking interrupts 232

current-stack-length function 742

customization

main chapter 13.2.1 : Configuration files 162

of editor 13.6 : Customizing the editor 168

:cv inspector command 4.2 : Inspect 78

D

:d inspector command 4.2 : Inspect 78

database

connection in Common SQL 23.2.3 : General database connection and disconnection 263

encoding in Common SQL 23.9.3 : Encoding (character sets in MySQL). 287

table names 23.9.2 : Case of table names and database names 287

database-name function 1286 23.2.3 : General database connection and disconnection 263

databases

supported 23.1.2 : Supported databases 260

dates

in Common SQL 23.6 : Working with date fields 285, 23.9.9 : Types of values returned from queries 290

date-string function 743

dde-advise-start function 1621 22.2.3 : Advise loops 255

dde-advise-start* function 1623 22.2.3 : Advise loops 255

dde-advise-stop function 1624 22.2.3.1 : Example advise loop 255

dde-advise-stop* function 1625 22.2.3.1 : Example advise loop 255

dde-client-advise-data generic function 1626 22.2.3 : Advise loops 255

dde-connect function 1627 22.2.1 : Opening and closing conversations 254

dde-disconnect function 1628 22.2.1 : Opening and closing conversations 254

dde-execute function 1628

dde-execute* function 1629

dde-execute-command function 1630 22.2.5 : Execute transactions 256

dde-execute-command* function 1631 22.2.5 : Execute transactions 256

dde-execute-string function 1632 22.2.5 : Execute transactions 256

dde-execute-string* function 1633 22.2.5 : Execute transactions 256

dde-item accessor 1634 22.2.4 : Request and poke transactions 256

dde-item* accessor 1635

dde-poke function 1637 22.2.4 : Request and poke transactions 256

Index

1682

dde-poke* function 1638

dde-request function 1639 22.2.4 : Request and poke transactions 256

dde-request* function 1641

dde-server-poke generic function 1645 22.3.2 : Handling poke and request transactions 257

dde-server-request generic function 1646 22.3.2 : Handling poke and request transactions 257

dde-server-topic generic function 1647

dde-server-topics generic function 1647 22.3.3.1 : General topics 257

dde-system-topic class 1648

dde-topic class 1649

dde-topic-items generic function 1649

DDL 23.3.2 : Functional Data Definition Language (FDDL) 274, 23.4.2 : Object-Oriented Data Definition Language (OODDL) 275

debug 9.5 : Compiler control 121

debugger

break gesture 3.1 : Entering the REPL debugger 60

commands 3.4 : REPL debugger commands 62

commands not recognized 3.5 : Debugger troubleshooting 68

control variables 3.6 : Debugger control variables 68

invoking from the tracer 5.2.3 : Using the debugger when tracing 85

keyboard interrupt 3.1 : Entering the REPL debugger 60

main chapter 3 : The Debugger 60

remote 3.7 : Remote debugging 69

troubleshooting 3.5 : Debugger troubleshooting 68

Debugger commands

:< 3.4.2 : Moving around the stack 63

:> 3.4.2 : Moving around the stack 63

:a 3.4.4 : Leaving the debugger 66

:all 3.4.3 : Miscellaneous commands 65

:b 3.4.1 : Backtracing 63

:bq 3.4.1 : Backtracing 63

:c 3.4.4 : Leaving the debugger 66

:cc 3.4.3 : Miscellaneous commands 65

:ed 3.4.3 : Miscellaneous commands 65

:error 3.4.3 : Miscellaneous commands 64

:func 3.4.3 : Miscellaneous commands 65

:l 3.4.3 : Miscellaneous commands 64

:lambda 3.4.3 : Miscellaneous commands 65

:lf 3.4.3 : Miscellaneous commands 65

:n 3.4.2 : Moving around the stack 63

:p 3.4.2 : Moving around the stack 63

:res 3.4.4 : Leaving the debugger 66

:ret 3.4.4 : Leaving the debugger 66

Index

1683

:top 3.4.4 : Leaving the debugger 66

:v 3.4.3 : Miscellaneous commands 64

debug-initialization-errors-in-snap-shot variable 1451

debug-io variable 585 3.6 : Debugger control variables 68

debug-other-process function 1148

debug-print-length variable 605 3.6 : Debugger control variables 68

debug-print-level variable 606 3.6 : Debugger control variables 68

declaim macro 539 9.5 : Compiler control 121, 9.6 : Declare, proclaim, and declaim 124

declaration

alias declare 540

:explain declare 540

invisible-frame declare 540

lambda-list declare 540

special-dynamic 9.7.6 : Usage of special variables 127

special-fast-access 9.7.6 : Usage of special variables 127

special-global 9.7.6 : Usage of special variables 127

values declare 540

declaration-information function 743

declare special form 540 9.5 : Compiler control 121, 9.6 : Declare, proclaim, and declaim 124

declare :explain 9.7.1 : Compiler optimization hints 125, declare 540

decode-external-string function 682 26.7.5 : External Formats and vectors of integers 336

decode-to-db-standard-date function 1287

decode-to-db-standard-timestamp function 1287

def macro 650

defadvice macro 913 6.4 : Advice for macros and methods 96, 6.7 : Advice functions and macros 100

default-action-list-sort-time variable 915 8.3 : Other variables 116

default-character-element-type parameter 915 26.3.5 : String types 327, 26.3.5.1 : String types at run time 327, 26.6 :
String Construction 329, 26.6.2 : String construction with known type 330, 26.6.3 : Controlling string construction 330, 26.7.3.6
: External formats and stream-element-type 335

default-client-remote-debugging-server-port variable 607 3.7.1.2 : Using the client as the TCP server 70

default-constructor-arguments generic function 1016

default-database variable 1288 23.2.1 : Initialization steps 262

default-database-type variable 1288

default directory get-working-directory 789

default-eol-style function 1452

default file directory get-working-directory 789

default-ide-remote-debugging-server-port variable 607 3.7.1.1 : Using the IDE as the TCP server 70

default-name-constructor function 1017

default-package-use-list variable 744

:default-pathname keyword 20.2.2 : DEFSYSTEM options 244

Index

1684

default-process-priority variable 1149

default-profiler-collapse variable 745

default-profiler-cutoff variable 745

default-profiler-limit variable 746

default-profiler-sort variable 746

default-stack-group-list-length variable 1452 11.6.4 : Allocation of stacks 154

default-update-objects-max-len variable 1289

defclass macro 543

defglobal-parameter macro 747

defglobal-variable macro 747

define-action macro 916 8.1 : Defining action lists and actions 115

define-action-list macro 917 8.1 : Defining action lists and actions 115

define-atomic-modify-macro macro 1453

define-dde-client macro 1642 22.2.3.1 : Example advise loop 255

define-dde-dispatch-topic macro 1650 22.3.3.2 : Dispatching topics 258

define-dde-server macro 1651 22.3.1 : Starting a DDE server 256

define-dde-server-function macro 1652 22.3.1 : Starting a DDE server 257

define-declaration macro 748

define-dspec-alias macro 651

define-dspec-class macro 652

define-field-accessor macro 1018

define-foreign-callable macro 19.12 : Native threads and foreign code 238

define-form-parser macro 654 7.9.1 : Finding definitions in the LispWorks editor 111

define-java-caller macro 1019

define-java-callers macro 1021

define-java-constructor macro 1019

define-lisp-proxy macro 1022

define-top-loop-command macro 1454

definition specs 5.4 : Tracing methods 90

defpackage macro 545

defparameter macro defglobal-parameter 747

defparser macro 1260 21.2 : Grammar rules 248

error handling with 21.4 : Error handling 250

functions defined by 21.3 : Functions defined by defparser 249

defrule

compiling a rule dynamically 9.3 : Compiling a form 120

defstruct macro 13.11 : Structure printing 170

defstruct-generates-print-object-method variable 13.11 : Structure printing 170

defsystem macro 919 20.1 : Introduction 243

examples of use 20.2.5 : Examples 245

Index

1685

defsystem-verbose variable 922

defvar macro defglobal-variable 748

def-view-class macro 1289 23.1.1 : Overview 260, 23.4 : Object oriented interface 274, 23.4.2 : Object-Oriented Data
Definition Language (OODDL) 275

delete-advice macro 750 6.3 : Removing advice 95, 6.7 : Advice functions and macros 100

delete-directory function 923

delete-duplicates function 9.7.9 : Built-in optimization of remove-duplicates and delete-duplicates 129

delete-instance-records function 1294 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

delete-records function 1294 23.3.1.2 : Modification 271

delete-registry-key function 1611 27.17 : Accessing the Windows registry 347

delete-sql-stream function 1295 23.7 : SQL I/O recording 286

deliver function 924 14.1 : Introduction 171, 27.3 : The Lisp Image 337, 27.6.1 : How to relocate LispWorks 341

deliverable

filename 27.3 : The Lisp Image 337, lisp-image-name 953

pathname 27.3 : The Lisp Image 337, lisp-image-name 953

delivered-image-p function 751

delivering a DLL 14 : LispWorks as a dynamic library 171

delivering a dynamic library 14 : LispWorks as a dynamic library 171

deliver-to-android-project function 751

delivery keywords

:clos-initarg-checking set-clos-initarg-checking 376

:multiprocessing 19.2.3.2 : Multiprocessing on startup 217

:quit-when-no-windows set-quit-when-no-windows 980

:startup-bitmap-file dismiss-splash-screen 1585

describe function 547 4.1 : Describe 77

describe-length variable 924 4.2 : Inspect 78

describe-level variable 925 4.1 : Describe 77

describe-object generic function 4.1 : Describe 77

describe-print-length variable 926 4.1 : Describe 77

describe-print-level variable 927

destroy-prepared-statement function 1296 23.3.1.8 : Prepared statements 274

destroy-ssl function 447 25.11.3 : Using SSL objects directly 323

destroy-ssl-ctx function 447 25.11.3 : Using SSL objects directly 323

destructive-add-code-coverage-data function 692

destructive-merge-code-coverage-data function 802

destructive-reverse-subtract-code-coverage-data function 692

destructive-subtract-code-coverage-data function 692

detach-ssl function 448 25.9.7 : Attaching SSL to an existing socket 318

detect-eol-style function 1456

detect-japanese-encoding-in-file function 1457

Index

1686

detect-unicode-bom function 1458

detect-utf32-bom function 1458

detect-utf8-bom function 1458

diagnostic utilities

for action lists 8.4 : Diagnostic utilities 116

:direction initarg socket-stream 491, lob-stream 1312, buffered-stream 1402

directory function 548

directory-link-transparency variable 1459 directory 549

disable-sql-reader-syntax function 1296 23.5.3 : Utilities 284

disable-trace variable 754

disassemble function 551

discard-source-info function 656

disconnect function 1297 23.2.1 : Initialization steps 262, 23.2.3 : General database connection and disconnection 263

dismiss-splash-screen function 1585

DLL 14 : LispWorks as a dynamic library 171

filename 27.3 : The Lisp Image 337, lisp-image-name 953

pathname 27.3 : The Lisp Image 337, lisp-image-name 953

dll-quit function 927 14.6 : Unloading a dynamic library 173

dlopen C function 14.1 : Introduction 171

dlsym C function 14.1 : Introduction 171

:dm inspector command 4.2 : Inspect 78

DML 23.3.1 : Functional Data Manipulation Language (FDML) 269, 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

DNS get-host-entry 456

documentation generic function 552

domain get-host-entry 456

do-nothing function 929

:dont-know keyword 3.4.3 : Miscellaneous commands 64

do-profiling function 755 12.3 : Running the profiler 157

do-query macro 1298 23.3.1.5 : Iteration 272, 23.11.2 : Retrieving Lob Locators 291

do-rand-seed function 449

DOS command

call-system call-system 1442

call-system-showing-output call-system-showing-output 1443

open-pipe open-pipe 1526

DOS window

controlling, in call-system call-system 1442

dotted-list-length function 929

dotted-list-p function 930

double-float type 553

:dr inspector command 4.2 : Inspect 78

Index

1687

drop-index function 1299 23.3.2.3 : Modification 274

drop-table function 1299 23.3.2.3 : Modification 274

drop-view function 1300 23.3.2.3 : Modification 274

drop-view-from-class function 1301 23.4.2 : Object-Oriented Data Definition Language (OODDL) 275

dspec-class function 657

dspec-classes variable 658

dspec-defined-p function 658

dspec-definition-locations function 659

dspec-equal function 660

dspec-name function 660

dspec-primary-name function 661

dspec-progenitor function 662

dspecs

aggregate 7.4.3 : Distributed definitions 106

canonical 7.2.1 : Canonical dspecs 101

displaying definitions 7.9 : Users of location information 110

examples 7.1 : Dspecs 101

finding definitions 7.8 : Finding locations 110

for subfunctions 7.6 : Subfunction dspecs 108

grouping definitions 7.4.2 : Grouping subdefinitions together 105

new defining forms 7.3.2 : Dspec aliases 104

parts 7.4.3 : Distributed definitions 106

recording definitions 7.7 : Tracking definitions 109

dspec-subclass-p function 662

dspec-undefiner function 663

dump-form function 756

dump-forms-to-file function 757

dylib 14 : LispWorks as a dynamic library 171

dynamic libraries 14 : LispWorks as a dynamic library 171, 27.6 : Startup relocation 340

dynamic library 14 : LispWorks as a dynamic library 171

memory clash 14.4 : Relocation 173

relocation 14.4 : Relocation 173

E

:ed debugger command 3.4.3 : Miscellaneous commands 65

editor

customizing 13.6 : Customizing the editor 168

editor-color-code-coverage function 759

editor source code 13.7 : Finding source code 169

ef-spec 26.7 : External Formats to translate Lisp characters from/to external encodings 331

:ef-spec initarg file-encoding-resolution-error 1463

Index

1688

:element-type initarg socket-stream 491, buffered-stream 1402

Emacs 1.4 : Using LispWorks with SLIME 55

enable-sql-reader-syntax function 1301 23.3.1.1 : Querying 269, 23.5.3 : Utilities 284

encode-db-standard-date function 1302

encode-db-standard-timestamp function 1302

encode-lisp-string function 683 26.7.5 : External Formats and vectors of integers 336

encoding

changing default for files 26.7.3.4 : Example of using UTF-8 by default 334

of file names 27.14.1 : Encoding of file names and strings in OS interface functions 345

of the console 27.16 : The console external format 347

enlarge-generation function 761 11.3.10 : Forcing expansion 143, 11.3.12.4 : Controlling the garbage collector 144

enlarge-static function 762

ensure-hash-entry function 763

ensure-is-jobject function 1036

ensure-lisp-classes-from-tree function 1026

ensure-loads-after-loads function 1459 19.3.5.1 : An example to consider the issues 222

ensure-memory-after-store function 1460

ensure-objc-initialized function 17.3 : Using Objective-C from Lisp 205

ensure-process-cleanup function 1149

ensure-remote-debugging-connection function 608 3.7.5.3 : Common (both IDE and client) connection functions 75

ensure-ssl function 449 25.11.4 : Initialization 324

ensure-stores-after-memory function 1460

ensure-stores-after-stores function 1461 19.3.4.1 : Ways to guarantee the visibility of stores 221, 19.3.5.4 : An alternative
solution using ensure-stores-after-stores 223, 19.3.5.6 : Miscellaneous notes 224

ensure-supers-contain-java.lang.object function 1028

enter-debugger-directly variable 931

entitlements

code signing 13.3.6.3 : Saving images and delivering on Apple silicon Macs 165, 13.3.6.4 : Saving images and delivering on Intel
Macs 166, 13.3.6.5 : Saving images and delivering a macOS universal binary 166

com.apple.security.cs.allow-jit 13.3.6.3 : Saving images and delivering on Apple silicon Macs 165

com.apple.security.cs.disable-library-validation 13.3.6.3 : Saving images and delivering on Apple silicon
Macs 165

:entrycond trace keyword 5.2.5 : Configuring function entry and exit information 86

enum-registry-value function 1612 27.17 : Accessing the Windows registry 347

environment access API augment-environment 707, declaration-information 744, function-
information 779, variable-information 881

environment-variable accessor 931 27.4.2 : Accessing environment variables 340, 27.14.1 : Encoding of file names and strings in
OS interface functions 345

environment variables

LANG 27.14.1 : Encoding of file names and strings in OS interface functions 345, 27.16 : The console external format 347, call-
system-showing-output 1445, open-pipe 1526

LC_ALL 27.14.1 : Encoding of file names and strings in OS interface functions 345, 27.16 : The console external format 347, call-
system-showing-output 1445, open-pipe 1526

LC_CTYPE 27.14.1 : Encoding of file names and strings in OS interface functions 345, 27.16 : The console external format 347, call

Index

1689

system-showing-output 1445, open-pipe 1526

eql-specializer class 18.1.5 : EQL specializers 210

eql-specializer-object function 18.1.5 : EQL specializers 210

errno-value function 932

:error debugger command 3.4.3 : Miscellaneous commands 64

error handlers

in applications output-backtrace 620

error handling

in parser generator 21.4 : Error handling 250

error output make-stderr-stream 1515

error-output variable 585

errors in Common SQL 23.8 : Error handling in Common SQL 286

error-situation-forms macro 764

EUC-JP 26.7.1 : External format names 332

:euc-jp external format 26.7.1 : External format names 332

:eval-after trace keyword 5.2.2 : Evaluating forms without printing results 85

:eval-before trace keyword 5.2.2 : Evaluating forms without printing results 85

evaluating

forms during tracing 5.2.1 : Evaluating forms on entry to and exit from a traced function 84, 5.2.2 : Evaluating forms without printing
results 85

example-compile-file function 933

example-edit-file function 934

example-file function 935

example-load-binary-file function 935

exception handlers

in applications output-backtrace 620

exception handling

for action lists 8.2 : Exception handling variables 115

exceptions

handling output-backtrace 620

executable 27.3 : The Lisp Image 337

filename 27.3 : The Lisp Image 337, lisp-image-name 953

pathname 27.3 : The Lisp Image 337, lisp-image-name 953

executable-log-file function 609

execute-actions macro 936

execute-command function 1303 23.3.1.6 : Specifying SQL directly 273

execute-with-interface function 19.3.3 : Mutable objects not supporting atomic access 219

execution functions 8 : Action Lists 115

execution profiling 12 : The Profiler 156

execution stack

examining 3.3 : The stack in the debugger 61

Index

1690

:exitcond trace keyword 5.2.5 : Configuring function entry and exit information 86

expand-generation-1 function 765 11.3.12.3 : Controlling a specific generation 144

extend-current-stack function 766

extended-character type 937

extended-character-p function 938

extended-char-p function 938

extended-spaces variable 1462 whitespace-char-p 1004

extended-time macro 766 11.4.5 : Tuning the garbage collector 146, 11.6.1 : Timing the garbage collector 154, 12.6 : Profiling
and garbage collection 160

external format

changing default for files 26.7.3.4 : Example of using UTF-8 by default 334

for pipes open-pipe 1526

external-format-error condition class 684

external-format-foreign-type function 684

external formats 26.7 : External Formats to translate Lisp characters from/to external encodings 331

:ascii 26.7.1 : External format names 331

:ascii-terminal 26.7.1 : External format names 332, 27.14.1 : Encoding of file names and strings in OS interface
functions 345, 27.16 : The console external format 347

:bmp 680 26.7.1 : External format names 332

:bmp-native 680 26.7.2.3 : BMP 333

:bmp-reversed 680 26.7.2.3 : BMP 333

code-page 26.7.1 : External format names 331

:euc-jp 26.7.1 : External format names 332

:gb18030 26.7.1 : External format names 332

:gbk 26.7.1 : External format names 332

:jis 26.7.1 : External format names 332

:koi-8 26.7.1 : External format names 332

:latin-1 26.7.1 : External format names 331

:latin-1-safe 26.7.1 : External format names 331

:latin-1-terminal 26.7.1 : External format names 331, 27.14.1 : Encoding of file names and strings in OS interface
functions 345, 27.16 : The console external format 347, 27.16 : The console external format 347

:macos-roman 26.7.1 : External format names 331

:sjis 26.7.1 : External format names 332

:unicode 687 26.7.1 : External format names 332

:us-ascii 26.7.1 : External format names 332

:utf-16 688 26.7.1 : External format names 332

:utf-16be 688 26.7.2.2 : UTF-16 333

:utf-16le 688 26.7.2.2 : UTF-16 333

:utf-16-native 688 26.7.2.2 : UTF-16 333

:utf-16-reversed 688 26.7.2.2 : UTF-16 333

:utf-32 689 26.7.1 : External format names 332

:utf-32be 689

Index

1691

:utf-32le 689

:utf-32-native 689

:utf-32-reversed 689

:utf-8 26.7.1 : External format names 332, 27.14.1 : Encoding of file names and strings in OS interface functions 345

:windows-cp936 26.7.1 : External format names 332

external-formats variable 939

external format specification 26.7 : External Formats to translate Lisp characters from/to external encodings 331

external-format-type function 685

external programs

calling from Lisp 27.7 : Calling external programs 342

:extra-initargs class option class-extra-initargs 365, compute-class-potential-
initargs 367, defclass 543

F

false function 940

fasl-error condition class 768

fasl (fast load)

description 9 : The Compiler 119

fast-directory-files function 769

FDDL 23.3.2 : Functional Data Definition Language (FDDL) 274

fdf-handle-directory-p function 769

fdf-handle-directory-string function 769

fdf-handle-last-access function 769

fdf-handle-last-modify function 769

fdf-handle-link-p function 769

fdf-handle-size function 769

fdf-handle-writable-p function 769

FDML 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

features variable 553

field-access-exception condition class 1029

field-access-exception-set-p function field-access-exception 1029

field-exception condition class 1029

field-exception-class-name function field-exception 1029

field-exception-field-name function field-exception 1029

file-binary-bytes function 771

file descriptor, of socket-stream socket-stream 491

file descriptor, on non-Windows platforms notice-fd 1190, get-file-stat 1473

file-directory-p function 940

file-encoding-detection-algorithm variable 1462 26.7.3.3 : Guessing the external format 334

file-encoding-resolution-error condition class 1463

file-eol-style-detection-algorithm variable 1464 26.7.3.3 : Guessing the external format 334

Index

1692

file-link-p function 771

file name encoding 27.14.1 : Encoding of file names and strings in OS interface functions 345

filename of deliverable 27.3 : The Lisp Image 337, lisp-image-name 953

filename of DLL 27.3 : The Lisp Image 337, lisp-image-name 953

filename of dynamic library lisp-image-name 953

filename of executable 27.3 : The Lisp Image 337, lisp-image-name 953

filename of lisp image 27.3 : The Lisp Image 337, lisp-image-name 953

filename-pattern-encoding-matches variable 1465

files

load-on-demand 13.10.1 : Preloading selected modules 170

file-stat-blocks function get-file-stat 1474

file-stat-device function get-file-stat 1474

file-stat-device-type function get-file-stat 1474

file-stat-group-id function get-file-stat 1474

file-stat-inode function get-file-stat 1474

file-stat-last-access function get-file-stat 1474

file-stat-last-change function get-file-stat 1474

file-stat-last-modify function get-file-stat 1474

file-stat-links function get-file-stat 1474

file-stat-mode function get-file-stat 1474

file-stat-owner-id function get-file-stat 1474

file-stat-size function get-file-stat 1474

file-string function 772

file-writable-p function 773

fill-pointer

setf 19.3.2 : Mutable objects supporting atomic access 219

filter-code-coverage-data function 773

find-database function 1303 23.2.3 : General database connection and disconnection 263

find-dspec-locations function 664

find-encoding-option function 1465

find-external-char function 686

find-filename-pattern-encoding-match function 1466

find-java-class function 1030

find-name-locations function 665

find-object-size function 774 11.3.12.1 : Determining memory usage 144

find-process-from-name function 1151

find-regexp-in-string function 941

Find Source

menu command define-dspec-class 653

Find Source editor command 13.7 : Finding source code 169, define-java-caller 1020

Index

1693

Find Source For Dspec editor command object-dspec 671

find-ssl-connection-from-ssl-ref function 450

find-throw-tag function 775

finish-heavy-allocation function 776

fixnum type 29.1 : Introduction 358

fixnum-safety 9.5 : Compiler control 121

flag-not-special-free-action function 777 11.6.6 : Special actions 154

flag-special-free-action function 777 11.6.6 : Special actions 154

FLI type descriptors

java-vm-poi 1063

jboolean 1063

jbyte 1063

jchar 1063

jdouble 1063

jfloat 1063

jint 1063

jlong 1063

jni-env-poi 1064

jobject 1065

jshort 1064

jvalue 1073

:lisp-array with-pinned-objects 890

:lisp-simple-1d-array with-pinned-objects 890

lpcstr 1601

lpctstr 1602

lpcwstr 1605

lpstr 1601

lptstr 1602

lpwstr 1605

p-oci-env 1353 23.11.6 : Interactions with foreign calls 294

p-oci-file 1353 23.11.6 : Interactions with foreign calls 294

p-oci-lob-locator 1354 23.11.6 : Interactions with foreign calls 294

p-oci-lob-or-file 1354

p-oci-svc-ctx 1355 23.11.6 : Interactions with foreign calls 294

sec-certificate-ref 479

ssl-abstract-context 25.9.6 : Keyword arguments for use with SSL 316

ssl-cipher-pointer 500 25.11.2 : Direct calls to OpenSSL 321

ssl-cipher-pointer-stack 500

ssl-context-ref 510

ssl-ctx-pointer 511 25.11.2 : Direct calls to OpenSSL 321

ssl-pointer 515 25.11.2 : Direct calls to OpenSSL 321

Index

1694

str 1601

tstr 1602

wstr 1605

x509-pointer 528

float 9.5 : Compiler control 121

float calculations, optimizing 9.7.3 : Floating point optimization 126

force-using-select-for-io function 1467

foreign callbacks 19.12 : Native threads and foreign code 238, 19.12.1 : Foreign callbacks on threads not created by Lisp 238

foreign-slot-value function 9.7.8 : Inlining foreign slot access 129

format-to-java-host function 1031

format-to-system-log function 893

forms

evaluating when tracing 5.2.1 : Evaluating forms on entry to and exit from a traced function 84, 5.2.2 : Evaluating forms without printing
results 85

frame, examining 3.3 : The stack in the debugger 62

:free-lob-locator-on-close initarg lob-stream 1312

:func debugger command 3.4.3 : Miscellaneous commands 65

funcallable-standard-class class 18.1.8 : Compatible metaclasses 210

funcallable-standard-instance-access function 18.1.1 : Instance Structure Protocol 209

funcallable-standard-object class 370 18.1.9 : Inheritance Structure of Metaobject Classes 210

funcall-async function 1151

funcall-async-list function 1151

function 23.3.1.2 : Modification 271

Functional DDL 23.3.2 : Functional Data Definition Language (FDDL) 274

Functional DML 23.3.1 : Functional Data Manipulation Language (FDML) 269

functional interface in Common SQL 23.3 : Functional interface 269

function, altering with advice 6 : The Advice Facility 94

function dspecs 7.5.1 : Function dspecs 107

function-information function 778

function-lambda-list function 943

functions

accepting-handle-collection 387

accepting-handle-local-port 387

accepting-handle-name 388

accepting-handle-socket 389

accepting-handle-user-info 389

accepts-n-syntax 1271

accept-tcp-connections-creating-async-io-states 390 25.8.1 : The wait-state-collection API 309, 25.8.2 : The Async-
I/O-State API 309, 25.8.4 : Asynchronous I/O and multiprocessing 311, 25.9.6 : Keyword arguments for use with SSL 316

add-code-coverage-data 692

add-package-local-nickname 693

add-special-free-action 695 11.6.6 : Special actions 154

Index

1695

add-sql-stream 1272 23.7 : SQL I/O recording 286

add-symbol-profiler 696

adjust-array 19.3.2 : Mutable objects supporting atomic access 219

allocated-in-its-own-segment-p 1433

android-build-value 699

android-funcall-in-main-thread 701

android-funcall-in-main-thread-list 701

android-get-current-activity 702

android-main-thread-p 703

any-capi-window-displayed-p 704

any-other-process-non-internal-server-p 1126

append-file 897

apply-in-pane-process 19.3.3 : Mutable objects not supporting atomic access 219

apply-in-wait-state-collection-process 397 25.8.1 : The wait-state-collection API 309

apply-with-allocation-in-gen-num 1434 11.4.2 : Segments and Allocation Types 145

apropos 530

apropos-list 531

array-single-thread-p 704

array-weak-p 705

async-io-ssl-failure-indicator-from-failure-args 398 25.9.8 : Errors in SSL 319

async-io-state-abort 400 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and multiprocessing 312

async-io-state-abort-and-close 401 25.8.4 : Asynchronous I/O and multiprocessing 312

async-io-state-address 402

async-io-state-attach-ssl 402 25.9.6 : Keyword arguments for use with SSL 316, 25.9.7 : Attaching SSL to an existing
socket 318

async-io-state-buffered-data-length 404 25.8.2 : The Async-I/O-State API 310

async-io-state-collection async-io-state 399

async-io-state-ctx 404 25.11.3 : Using SSL objects directly 323

async-io-state-detach-ssl 405 25.9.7 : Attaching SSL to an existing socket 318

async-io-state-discard 406 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and multiprocessing 312

async-io-state-finish 407 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and multiprocessing 312

async-io-state-get-buffered-data 407 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and
multiprocessing 312

async-io-state-handshake 408

async-io-state-object async-io-state 399

async-io-state-old-length 410

async-io-state-peer-address 411

async-io-state-read-buffer 411 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and multiprocessing 311

async-io-state-read-status 413

async-io-state-read-with-checking 413 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and
multiprocessing 311

async-io-state-receive-message 416 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and
multiprocessing 311

Index

1696

async-io-state-send-message 417 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and multiprocessing 312

async-io-state-send-message-to-address 418 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and
multiprocessing 312

async-io-state-shutdown 420 25.8.2 : The Async-I/O-State API 310

async-io-state-ssl 421 25.11.3 : Using SSL objects directly 323

async-io-state-ssl-side 422 25.11.3 : Using SSL objects directly 323

async-io-state-wait-for-input 422

async-io-state-write-buffer 423 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and multiprocessing 312

async-io-state-write-status 413

attach-ssl 424 25.9.4 : Creating a stream with SSL 315, 25.9.6 : Keyword arguments for use with SSL 316

attribute-type 1273 23.3.2.1 : Querying the schema 274

augmented-string-p 1440

augment-environment 706

avoid-gc 707 11.3.12.4 : Controlling the garbage collector 144

barrier-arriver-count 1127

barrier-block-and-wait 1128

barrier-change-count 1130

barrier-count 1131

barrier-disable 1131 19.7.2 : Synchronization barriers 231

barrier-enable 1132 19.7.2 : Synchronization barriers 231

barrier-name 1133

barrier-pass-through 1133

barrier-unblock 1134

barrier-wait 1135 19.7.2 : Synchronization barriers 231

base-character-p 899

base-char-p 900

base-string-p 901

binds-who 709

bmp-char-p 902

bmp-string-p 904

break-new-instances-on-access 363

break-on-access 364

building-main-architecture-p 711

building-universal-intermediate-p 712

cache-table-queries 1274 23.3.1.3 : Caching of table queries 271

call-java-method 1008 15.3.1 : Calling methods by name 177

call-java-non-virtual-method 1009

call-java-static-method 1010 15.3.1 : Calling methods by name 177

call-next-advice 905 6.2.2 : :around advice 95, 6.7 : Advice functions and macros 100

calls-who 712

call-system 1441 27.7 : Calling external programs 342, 27.14.1 : Encoding of file names and strings in OS interface functions 345

call-system-showing-output 1443 27.7 : Calling external programs 342, 27.14.1 : Encoding of file names and strings in OS

Index

1697

interface functions 345

call-wait-state-collection 426 25.8.1 : The wait-state-collection API 308, 25.8.2 : The Async-I/O-State API 310

canonicalize-dspec 649

canonicalize-sid-string 1583

change-class 19.3.8.3 : Subclasses of standard-object locked while their class is being changed 225

change-directory 714 13.9 : Specifying the initial working directory 169

change-process-priority 1137 19.11.1.2 : Process priorities in non-SMP LispWorks 237

char-external-code 681

checked-read-java-field 1087 15.3.1 : Calling methods by name 177

check-fragmentation 715 11.3.11 : Controlling Fragmentation 143, 11.3.12.4 : Controlling the garbage collector 144

check-java-field 1087 15.3.1 : Calling methods by name 177

check-lisp-calls-initialized 1012

choose-unicode-string-hash-function 906

clean-down 716 11.3.1 : Generations 138, 11.6.2 : Reducing image size 154

clean-generation-0 717 11.3.12.3 : Controlling a specific generation 144

clear-code-coverage 718

close-accepting-handle 426

close-async-io-state 427 25.8.2 : The Async-I/O-State API 310, 25.8.4 : Asynchronous I/O and multiprocessing 312

close-registry-key 1607 27.17 : Accessing the Windows registry 347

close-remote-debugging-connection 600 3.7.5.3 : Common (both IDE and client) connection functions 75

close-serial-port 1262

close-socket-handle 428

close-wait-state-collection 429 25.8.1 : The wait-state-collection API 308

code-coverage-data-create-time code-coverage-data 719

code-coverage-data-generate-coloring-html 720

code-coverage-data-generate-statistics 723

code-coverage-file-stats-called 724

code-coverage-file-stats-counters-count 724

code-coverage-file-stats-counters-executed 725

code-coverage-file-stats-counters-hidden 725

code-coverage-file-stats-fully-covered 724

code-coverage-file-stats-hidden-covered 724

code-coverage-file-stats-lambdas-count 724

code-coverage-file-stats-not-called 724

code-coverage-file-stats-partially-covered 724

code-coverage-file-stats-source-file code-coverage-file-stats 724

code-coverage-set-editor-colors 727

code-coverage-set-editor-default-data 728

code-coverage-set-html-background-colors 729

coerce 533

coerce-to-gesture-spec 1447

Index

1698

collect-generation-2 730 11.3.9 : Behavior of generation 2 143, 11.3.12.3 : Controlling a specific generation 144

collect-highest-generation 731 11.3.12.3 : Controlling a specific generation 144

collect-registry-subkeys 1608 27.17 : Accessing the Windows registry 347

collect-registry-values 1609 27.17 : Accessing the Windows registry 347

commit 1275 23.3.1.2 : Modification 270, 23.3.1.4 : Transaction handling 272, 23.11.3 : Locking 292

compile 534

compile-file 535

compile-file-if-needed 731

compile-system 907 20.2 : Defining a system 243

concatenate 538

concatenate* 733

concatenate-system 908

condition-variable-broadcast 1138 19.7.1 : Condition variables 230

condition-variable-signal 1139 19.7.1 : Condition variables 230

condition-variable-wait 1140 19.7.1 : Condition variables 230

condition-variable-wait-count 1141 19.7.1 : Condition variables 231

configure-remote-debugging-spec 601 3.7.1.1 : Using the IDE as the TCP server 70, 3.7.2 : The client side of remote
debugging 71, 3.7.5.1 : Client side connection management 74, 3.7.7 : Using SSL for remote debugging 76

connect 1276 23.1.2 : Supported databases 260, 23.2.1 : Initialization steps 262, 23.2.4 : Connecting to Oracle 263, 23.2.5 :
Connecting to ODBC 263, 23.2.6 : Connecting to MySQL 264, 23.9.1 : Connection specification 287

connected-databases 1281 23.2.3 : General database connection and disconnection 263

connect-to-named-pipe 1584

connect-to-tcp-server 430

copy-code-coverage-data 734

copy-current-code-coverage 734

copy-file 909

copy-from-sqlite-raw-blob 1379 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-
blob) 300

copy-preferences-from-older-version 1449

copy-standard-object 369

copy-to-weak-simple-vector 736 11.6.8 : Freeing of objects by the GC 155

count-gen-num-allocation 1450 11.4.5 : Tuning the garbage collector 146

count-regexp-occurrences 910

create-and-run-wait-state-collection 431 25.8.1 : The wait-state-collection API 309

create-async-io-state 433 25.8.2 : The Async-I/O-State API 309, 25.8.4 : Asynchronous I/O and multiprocessing 311

create-async-io-state-and-connected-tcp-socket 434 25.8.2 : The Async-I/O-State API 309, 25.9.6 : Keyword
arguments for use with SSL 316

create-async-io-state-and-connected-udp-socket 437 25.8.2 : The Async-I/O-State API 309

create-async-io-state-and-udp-socket 438 25.8.2 : The Async-I/O-State API 309

create-client-remote-debugging-connection 603 3.7.2 : The client side of remote debugging 71

create-ide-remote-debugging-connection 603

create-index 1282 23.3.2.3 : Modification 274

create-instance-from-jobject 1013

Index

1699

create-instance-jobject 1014

create-instance-jobject-list 1014

create-java-object 1015 15.3.1 : Calling methods by name 177

create-macos-application-bundle 736

create-registry-key 1610 27.17 : Accessing the Windows registry 347

create-ssl-client-context 440 25.9.3 : SSL abstract contexts 315

create-ssl-server-context 440 25.9.3 : SSL abstract contexts 315

create-ssl-socket-stream 445 25.9.4 : Creating a stream with SSL 315, 25.9.6 : Keyword arguments for use with SSL 316

create-table 1283 23.3.2.3 : Modification 274

create-temp-file 738 27.15.3 : Temporary files 346

create-universal-binary 740

create-view 1284 23.3.2.3 : Modification 274

create-view-from-class 1285 23.4.2 : Object-Oriented Data Definition Language (OODDL) 275

current-function-name 741

current-pathname 912

current-process-block-interrupts 1142 19.8.3 : Blocking interrupts 232

current-process-in-cleanup-p 1143

current-process-kill 1143

current-process-pause 1144

current-process-send 1146

current-process-set-terminate-method 1146

current-process-unblock-interrupts 1147 19.8.3 : Blocking interrupts 232

current-stack-length 742

database-name 1286 23.2.3 : General database connection and disconnection 263

date-string 743

dde-advise-start 1621 22.2.3 : Advise loops 255

dde-advise-start* 1623 22.2.3 : Advise loops 255

dde-advise-stop 1624 22.2.3.1 : Example advise loop 255

dde-advise-stop* 1625 22.2.3.1 : Example advise loop 255

dde-connect 1627 22.2.1 : Opening and closing conversations 254

dde-disconnect 1628 22.2.1 : Opening and closing conversations 254

dde-execute 1628

dde-execute* 1629

dde-execute-command 1630 22.2.5 : Execute transactions 256

dde-execute-command* 1631 22.2.5 : Execute transactions 256

dde-execute-string 1632 22.2.5 : Execute transactions 256

dde-execute-string* 1633 22.2.5 : Execute transactions 256

dde-poke 1637 22.2.4 : Request and poke transactions 256

dde-poke* 1638

dde-request 1639 22.2.4 : Request and poke transactions 256

dde-request* 1641

Index

1700

debug-other-process 1148

declaration-information 743

decode-external-string 682 26.7.5 : External Formats and vectors of integers 336

decode-to-db-standard-date 1287

decode-to-db-standard-timestamp 1287

default-eol-style 1452

default-name-constructor 1017

delete-directory 923

delete-duplicates 9.7.9 : Built-in optimization of remove-duplicates and delete-duplicates 129

delete-instance-records 1294 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

delete-records 1294 23.3.1.2 : Modification 271

delete-registry-key 1611 27.17 : Accessing the Windows registry 347

delete-sql-stream 1295 23.7 : SQL I/O recording 286

deliver 924 14.1 : Introduction 171, 27.3 : The Lisp Image 337, 27.6.1 : How to relocate LispWorks 341

delivered-image-p 751

deliver-to-android-project 751

describe 547 4.1 : Describe 77

destroy-prepared-statement 1296 23.3.1.8 : Prepared statements 274

destroy-ssl 447 25.11.3 : Using SSL objects directly 323

destroy-ssl-ctx 447 25.11.3 : Using SSL objects directly 323

destructive-add-code-coverage-data 692

destructive-merge-code-coverage-data 802

destructive-reverse-subtract-code-coverage-data 692

destructive-subtract-code-coverage-data 692

detach-ssl 448 25.9.7 : Attaching SSL to an existing socket 318

detect-eol-style 1456

detect-japanese-encoding-in-file 1457

detect-unicode-bom 1458

detect-utf32-bom 1458

detect-utf8-bom 1458

directory 548

disable-sql-reader-syntax 1296 23.5.3 : Utilities 284

disassemble 551

discard-source-info 656

disconnect 1297 23.2.1 : Initialization steps 262, 23.2.3 : General database connection and disconnection 263

dismiss-splash-screen 1585

dll-quit 927 14.6 : Unloading a dynamic library 173

do-nothing 929

do-profiling 755 12.3 : Running the profiler 157

do-rand-seed 449

dotted-list-length 929

Index

1701

dotted-list-p 930

drop-index 1299 23.3.2.3 : Modification 274

drop-table 1299 23.3.2.3 : Modification 274

drop-view 1300 23.3.2.3 : Modification 274

drop-view-from-class 1301 23.4.2 : Object-Oriented Data Definition Language (OODDL) 275

dspec-class 657

dspec-defined-p 658

dspec-definition-locations 659

dspec-equal 660

dspec-name 660

dspec-primary-name 661

dspec-progenitor 662

dspec-subclass-p 662

dspec-undefiner 663

dump-form 756

dump-forms-to-file 757

editor-color-code-coverage 759

enable-sql-reader-syntax 1301 23.3.1.1 : Querying 269, 23.5.3 : Utilities 284

encode-db-standard-date 1302

encode-db-standard-timestamp 1302

encode-lisp-string 683 26.7.5 : External Formats and vectors of integers 336

enlarge-generation 761 11.3.10 : Forcing expansion 143, 11.3.12.4 : Controlling the garbage collector 144

enlarge-static 762

ensure-hash-entry 763

ensure-is-jobject 1036

ensure-lisp-classes-from-tree 1026

ensure-loads-after-loads 1459 19.3.5.1 : An example to consider the issues 222

ensure-memory-after-store 1460

ensure-objc-initialized 17.3 : Using Objective-C from Lisp 205

ensure-process-cleanup 1149

ensure-remote-debugging-connection 608 3.7.5.3 : Common (both IDE and client) connection functions 75

ensure-ssl 449 25.11.4 : Initialization 324

ensure-stores-after-memory 1460

ensure-stores-after-stores 1461 19.3.4.1 : Ways to guarantee the visibility of stores 221, 19.3.5.4 : An alternative solution
using ensure-stores-after-stores 223, 19.3.5.6 : Miscellaneous notes 224

ensure-supers-contain-java.lang.object 1028

enum-registry-value 1612 27.17 : Accessing the Windows registry 347

eql-specializer-object 18.1.5 : EQL specializers 210

errno-value 932

example-compile-file 933

example-edit-file 934

example-file 935

Index

1702

example-load-binary-file 935

executable-log-file 609

execute-command 1303 23.3.1.6 : Specifying SQL directly 273

execute-with-interface 19.3.3 : Mutable objects not supporting atomic access 219

expand-generation-1 765 11.3.12.3 : Controlling a specific generation 144

extend-current-stack 766

extended-character-p 938

extended-char-p 938

external-format-foreign-type 684

external-format-type 685

false 940

fast-directory-files 769

fdf-handle-directory-p 769

fdf-handle-directory-string 769

fdf-handle-last-access 769

fdf-handle-last-modify 769

fdf-handle-link-p 769

fdf-handle-size 769

fdf-handle-writable-p 769

field-access-exception-set-p field-access-exception 1029

field-exception-class-name field-exception 1029

field-exception-field-name field-exception 1029

file-binary-bytes 771

file-directory-p 940

file-link-p 771

file-stat-blocks get-file-stat 1474

file-stat-device get-file-stat 1474

file-stat-device-type get-file-stat 1474

file-stat-group-id get-file-stat 1474

file-stat-inode get-file-stat 1474

file-stat-last-access get-file-stat 1474

file-stat-last-change get-file-stat 1474

file-stat-last-modify get-file-stat 1474

file-stat-links get-file-stat 1474

file-stat-mode get-file-stat 1474

file-stat-owner-id get-file-stat 1474

file-stat-size get-file-stat 1474

file-string 772

file-writable-p 773

filter-code-coverage-data 773

find-database 1303 23.2.3 : General database connection and disconnection 263

Index

1703

find-dspec-locations 664

find-encoding-option 1465

find-external-char 686

find-filename-pattern-encoding-match 1466

find-java-class 1030

find-name-locations 665

find-object-size 774 11.3.12.1 : Determining memory usage 144

find-process-from-name 1151

find-regexp-in-string 941

find-ssl-connection-from-ssl-ref 450

find-throw-tag 775

finish-heavy-allocation 776

flag-not-special-free-action 777 11.6.6 : Special actions 154

flag-special-free-action 777 11.6.6 : Special actions 154

force-using-select-for-io 1467

foreign-slot-value 9.7.8 : Inlining foreign slot access 129

format-to-java-host 1031

format-to-system-log 893

funcallable-standard-instance-access 18.1.1 : Instance Structure Protocol 209

funcall-async 1151

funcall-async-list 1151

function-information 778

function-lambda-list 943

gc-generation 779 11.3.1 : Generations 138, 11.3.3 : GC operations 140, 11.3.12.4 : Controlling the garbage
collector 144, 11.4.5 : Tuning the garbage collector 146, 11.4.5.1 : Interface for tuning the GC 147

gc-if-needed 782 11.3.12.4 : Controlling the garbage collector 144

generalized-time-gmtoffset generalized-time 451

generalized-time-microseconds generalized-time 451

generalized-time-p 451

generalized-time-pprint 451

generalized-time-string 451

generalized-time-universal-time generalized-time 451

generate-code-coverage 782

generate-java-class-definitions 1032

generation-number 1467 11.3.11 : Controlling Fragmentation 143

gen-num-segments-fragmentation-state 1468 11.4.5 : Tuning the garbage collector 146

gensym 11.6.3 : Allocation of interned symbols and packages 154

gesture-spec-data gesture-spec 1469

gesture-spec-modifiers gesture-spec 1469

gesture-spec-p 1472

gesture-spec-to-character 1472

Index

1704

get-certificate-common-name 453

get-certificate-data 453

get-certificate-serial-number 453

get-code-coverage-delta 784

get-current-process 1153 19.1 : Introduction to processes 216, 19.2.2 : Finding out about processes 217

get-default-generation 785 11.3.12.2 : Allocating in specific generations 144

get-default-local-ipv6-address 455

get-file-stat 1473

get-folder-path 1475 27.15.2 : Special Folders 346

get-form-parser 665 7.9.2 : Using pre-defined form parsers 111

get-gc-parameters 786 11.3.12.4 : Controlling the garbage collector 144

get-gc-timing 856

gethash-ensuring 787

get-host-entry 456

get-host-java-virtual-machine 1035

get-ip-default-zone-id 458

get-java-virtual-machine 1036

get-jobject 1036

get-maximum-allocated-in-generation-2-after-gc 1477

get-primitive-array-region 1037

get-process 1154 19.2.2 : Finding out about processes 217

get-process-private-property 1155

get-serial-port-state 1262

get-service-entry 459

get-socket-address 460

get-socket-peer-address 461

get-superclass-and-interfaces-tree 1038

get-temp-directory 788

get-throwable-backtrace-strings 1039

get-unix-error 945

get-user-profile-directory 1478 27.15.2 : Special Folders 346

get-verification-mode 461

get-working-directory 789

guess-external-format 1480 26.7.3.3 : Guessing the external format 334

hardcopy-system 951

hash-table-weak-kind 791

ide-attach-remote-output-stream 611 3.7.3.2 : Controlling the client side from the IDE side 72

ide-connect-remote-debugging 612 3.7.1.2 : Using the client as the TCP server 70, 3.7.2 : The client side of remote
debugging 71, 3.7.3 : The IDE side of remote debugging 71, 3.7.7 : Using SSL for remote debugging 76

ide-eval-form-in-remote 613 3.7.3.1 : Accessing client side objects on the IDE side 72, 3.7.3.2 : Controlling the client side from
the IDE side 72

ide-find-remote-debugging-connection 615 3.7.5.2 : IDE side connection management 75

Index

1705

ide-funcall-in-remote 613 3.7.3.1 : Accessing client side objects on the IDE side 72, 3.7.3.2 : Controlling the client side from the
IDE side 72

ide-list-remote-debugging-connections 615 3.7.5.2 : IDE side connection management 75

ide-open-a-listener 617 3.7 : Remote debugging 69, 3.7.3 : The IDE side of remote debugging 71

ide-set-default-remote-debugging-connection 615 3.7.5.2 : IDE side connection management 75

ide-set-remote-symbol-value 613 3.7.3.2 : Controlling the client side from the IDE side 72

immediatep 1481

initialize-database-type 1304 23.2.1 : Initialization steps 261

initialize-multiprocessing 1156 19.2.3 : Multiprocessing 217

init-java-interface 1042

insert-records 1305 23.3.1.2 : Modification 270, 23.11.1.3 : Inserting empty LOBs 291

inspect 4.2 : Inspect 78

int32* 1483

int32+ 1483 28.2.2.1 : Optimized and unoptimized INT32 code 354

int32- 1483 28.2.2.1 : Optimized and unoptimized INT32 code 354

int32/ 1483

int32/= 1484

int32-1+ 1486

int32-1- 1486

int32< 1484

int32<< 1486

int32<= 1484

int32= 1484

int32> 1484

int32>= 1484

int32>> 1486

int32-logand 1488

int32-logandc1 1488

int32-logandc2 1488

int32-logbitp 1488

int32-logeqv 1488

int32-logior 1488

int32-lognand 1488

int32-lognor 1488

int32-lognot 1488

int32-logorc1 1488

int32-logorc2 1488

int32-logtest 1488

int32-logxor 1488

int32-minusp 1490

int32-plusp 1490

int32-to-int64 1491

Index

1706

int32-to-integer 1491

int32-zerop 1490

int64* 1493

int64+ 1493 28.2.3.1 : Optimized and unoptimized INT64 code 355

int64- 1493 28.2.3.1 : Optimized and unoptimized INT64 code 355

int64/ 1493

int64/= 1494

int64-1+ 1496

int64-1- 1496

int64< 1494

int64<< 1496

int64<= 1494

int64= 1494

int64> 1494

int64>= 1494

int64>> 1496

int64-logand 1498

int64-logandc1 1498

int64-logandc2 1498

int64-logbitp 1498

int64-logeqv 1498

int64-logior 1498

int64-lognand 1498

int64-lognor 1498

int64-lognot 1498

int64-logorc1 1498

int64-logorc2 1498

int64-logtest 1498

int64-logxor 1498

int64-minusp 1500

int64-plusp 1500

int64-to-int32 1501

int64-to-integer 1501

int64-zerop 1500

integer-to-int32 1502

integer-to-int64 1503

intern-and-export-list 1045

intern-eql-specializer 18.1.5 : EQL specializers 210

ip-address-string 462

ipv6-address-p 464

ipv6-address-scope-id 464

Index

1707

ipv6-address-string 465

java-array-element-type 1047

java-array-error-array java-array-error 1048

java-array-error-caller java-array-error 1048

java-array-indices-error-indices java-array-indices-error 1048

java-array-indices-error-rank java-array-indices-error 1048

java-array-length 1049

java-bad-jobject-caller java-bad-jobject 1050

java-bad-jobject-object java-bad-jobject 1050

java-definition-error-class-name java-definition-error 1051

java-definition-error-name java-definition-error 1051

java-exception-exception-name java-exception 1052

java-exception-java-backtrace java-exception 1052

java-exception-string java-exception 1052

java-field-class-name-for-setting 1087 15.3.1 : Calling methods by name 177

java-field-error-field-name java-definition-error 1051

java-field-error-static-p java-definition-error 1051

java-field-setting-error-class-name java-field-setting-error 1053

java-field-setting-error-class-name-for-setting java-field-setting-error 1053

java-field-setting-error-field-name java-field-setting-error 1053

java-field-setting-error-new-value java-field-setting-error 1053

java-method-error-args-num java-definition-error 1051

java-method-error-method-name java-definition-error 1051

java-method-exception-args java-method-exception 1055

java-method-exception-class-name java-method-exception 1055

java-method-exception-method-name java-method-exception 1055

java-method-exception-name java-method-exception 1055

java-object-array-element-type 1058

java-objects-eq 1059

java-primitive-array-element-type 1060

java-type-to-lisp-array-type 1062

jobject-call-method 1065 15.3.1 : Calling methods by name 177

jobject-class-name 1067

jobject-ensure-global 1068

jobject-of-class-p 1070

jobject-p 1070

jobject-pretty-class-name 1071

jobject-string 1072

jobject-to-lisp 1072

jvalue-store-jboolean 1074

Index

1708

jvalue-store-jbyte 1074

jvalue-store-jchar 1074

jvalue-store-jdouble 1075

jvalue-store-jfloat 1075

jvalue-store-jint 1074

jvalue-store-jlong 1074

jvalue-store-jobject 1076

jvalue-store-jshort 1074

known-sid-integer-to-sid-string 1588

last-callback-on-thread 1157

lisp-array-to-primitive-array 1085

lisp-array-type-to-java-type 1062

lisp-image-name 953 27.3 : The Lisp Image 337

lisp-java-instance-p 1078

lisp-to-jobject 1079

list-all-processes 1158 19.2.2 : Finding out about processes 217

list-attributes 1307 23.3.2.1 : Querying the schema 274

list-attribute-types 1308 23.3.2.1 : Querying the schema 274

list-classes 1309 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

list-sql-streams 1310 23.7 : SQL I/O recording 286

list-tables 1311 23.3.2.1 : Querying the schema 274

load-all-patches 954

load-code-coverage-data 734

load-data-file 792

load-logical-pathname-translations 559

load-system 955

local-dspec-p 666

locale-file-encoding 1504

locally-disable-sql-reader-syntax 1313 23.5.3 : Utilities 284

locally-enable-sql-reader-syntax 1313 23.5.3 : Utilities 284

lock-and-condition-variable-broadcast 1159

lock-and-condition-variable-signal 1160

lock-and-condition-variable-wait 1162

lock-locked-p 1163

lock-name 1164 19.4 : Locks 225

lock-owned-by-current-process-p 1165

lock-owner 1165 19.4 : Locks 225

lock-recursively-locked-p 1166

lock-recursive-p 1167

log-bug-form 618

logs-directory 619

Index

1709

long-namestring 1589 27.3 : The Lisp Image 337

loop-processing-wait-state-collection 466 25.8.1 : The wait-state-collection API 308, 25.8.2 : The Async-I/O-State
API 310

low-level-atomic-place-p 1505

mailbox-count 1168

mailbox-empty-p 1169

mailbox-full-p 1170

mailbox-not-empty-p 1171

mailbox-peek 1171

mailbox-read 1172

mailbox-reader-process 1173

mailbox-send 1174

mailbox-send-limited 1175

mailbox-size 1176

mailbox-wait 1177

mailbox-wait-for-event 1178

make-array 562 11.6.8 : Freeing of objects by the GC 155, 19.3.7 : Single-thread context arrays and hash-tables 224

make-barrier 1180 19.7.2 : Synchronization barriers 231

make-condition-variable 1181

make-current-allocation-permanent 1505

make-generalized-time 451

make-gesture-spec 1507

make-hash-table 564 11.6.8 : Freeing of objects by the GC 155, 19.3.7 : Single-thread context arrays and hash-tables 224

make-java-array 1080

make-java-instance 1080

make-lisp-proxy 1081

make-lisp-proxy-with-overrides 1081

make-lock 1182

make-mailbox 1183

make-mt-random-state 956

make-named-timer 1184

make-object-permanent 1511

make-pathname 566

make-permanent-simple-vector 1512

make-ring 795

make-semaphore 1185 19.7.3 : Counting semaphores 232

make-sequence 567

make-simple-int32-vector 1513

make-simple-int64-vector 1514

make-ssl-ctx 467

make-stderr-stream 1515

make-string 568

Index

1710

make-string-output-stream 569

make-symbol 11.6.3 : Allocation of interned symbols and packages 154

make-timer 1186 19.9 : Timers 235

make-typed-aref-vector 1515

make-unlocked-queue 796

make-unregistered-action-list 957

make-wait-state-collection 467 25.8.1 : The wait-state-collection API 308

map 569

map-all-processes 1187

map-all-processes-backtrace 1188

map-code-coverage-data 798

map-environment 1516

maphash 19.3.8.1 : hash tables locked while iterating 225

map-java-object-array 1083

map-process-backtrace 1188

map-processes 1189

map-query 1314 23.3.1.5 : Iteration 272, 23.11.2 : Retrieving Lob Locators 291

map-ring 799

mark-and-sweep 799

marking-gc 1518 11.4.5 : Tuning the garbage collector 146, 11.4.5.1 : Interface for tuning the GC 147

memory-growth-margin 1519 11.3.12.1 : Determining memory usage 144

merge 570

merge-code-coverage-data 802

merge-ef-specs 1520

merge-pathnames 571

mobile-gc-p 1520

mobile-gc-sweep-objects 1521

modify-hash 803 19.3.2 : Mutable objects supporting atomic access 219, 19.3.3 : Mutable objects not supporting atomic access 219

monitor-directory-changes 1590

mt-random 958

mt-random-state-p 960

name-defined-dspecs 668

name-definition-locations 668

named-pipe-stream-name 1591

name-only-form-parser 669 7.9.2 : Using pre-defined form parsers 111

normal-gc 804 11.3.12.4 : Controlling the garbage collector 144

notice-fd 1190

nstring-capitalize 26.4.1 : How Common Lisp functions handle characters with case 328

nstring-upcase 26.4.1 : How Common Lisp functions handle characters with case 328

object-address 1522

object-dspec 670

Index

1711

object-pointer 1523

open 572

open-named-pipe-stream 1592

open-pipe 1525 27.7 : Calling external programs 342, 27.7.1 : Interpreting the exit status 342, 27.14.1 : Encoding of file names
and strings in OS interface functions 345

open-registry-key 1614 27.17 : Accessing the Windows registry 347

open-serial-port 1263

openssl-version 468

open-tcp-stream 469 25.9.4 : Creating a stream with SSL 315, 25.9.6 : Keyword arguments for use with SSL 316

open-tcp-stream-using-java 472

open-temp-file 738 27.15.3 : Temporary files 346

open-url 1528

ora-lob-append 1317 23.11.9.3 : Modifying LOBs 296

ora-lob-assign 1318 23.11.9.2 : LOB management functions 295

ora-lob-char-set-form 1319 23.11.7 : Determining the type of a LOB 294

ora-lob-char-set-id 1320

ora-lob-close 1320 23.11.9.3 : Modifying LOBs 296

ora-lob-copy 1321 23.11.9.3 : Modifying LOBs 296

ora-lob-create-empty 1322 23.11.1.3 : Inserting empty LOBs 291, 23.11.9.2 : LOB management functions 295

ora-lob-create-temporary 1323 23.11.9.6 : Temporary LOBs 297

ora-lob-disable-buffering 1324 23.11.9.7 : Control of buffering 297

ora-lob-element-type 1325 23.11.7 : Determining the type of a LOB 294

ora-lob-enable-buffering 1325 23.11.9.7 : Control of buffering 297

ora-lob-env-handle 1326 23.11.6 : Interactions with foreign calls 294

ora-lob-erase 1327 23.11.9.3 : Modifying LOBs 296

ora-lob-file-close 1328 23.11.9.4 : File operations 296

ora-lob-file-close-all 1329 23.11.9.4 : File operations 296

ora-lob-file-exists 1329

ora-lob-file-get-name 1330

ora-lob-file-is-open 1331

ora-lob-file-open 1332 23.11.9.4 : File operations 296

ora-lob-file-set-name 1332 23.11.9.4 : File operations 296

ora-lob-flush-buffer 1333 23.11.9.7 : Control of buffering 297

ora-lob-free 1334 23.11.9.2 : LOB management functions 295

ora-lob-free-temporary 1335 23.11.9.6 : Temporary LOBs 297

ora-lob-get-buffer 1335 23.11.6 : Interactions with foreign calls 294, 23.11.9.5 : Direct I/O 296

ora-lob-get-chunk-size 1337 23.11.9.1 : Querying functions 295

ora-lob-get-length 1338 23.11.9.1 : Querying functions 295

ora-lob-internal-lob-p 1339 23.11.7 : Determining the type of a LOB 294, 23.11.9.1 : Querying functions 295

ora-lob-is-equal 1339 23.11.9.1 : Querying functions 295

ora-lob-is-open 1340 23.11.9.1 : Querying functions 295

ora-lob-is-temporary 1341 23.11.9.1 : Querying functions 295, 23.11.9.6 : Temporary LOBs 297

Index

1712

ora-lob-load-from-file 1342 23.11.9.3 : Modifying LOBs 296

ora-lob-lob-locator 1343 23.11.6 : Interactions with foreign calls 294

ora-lob-locator-is-init 1343 23.11.9.1 : Querying functions 295

ora-lob-open 1344 23.11.9.3 : Modifying LOBs 296

ora-lob-read-buffer 1345 23.11.8 : Reading and writing from and to LOBs 295, 23.11.9.5 : Direct I/O 296

ora-lob-read-foreign-buffer 1346 23.11.6 : Interactions with foreign calls 294, 23.11.8 : Reading and writing from and to
LOBs 295, 23.11.9.5 : Direct I/O 296

ora-lob-read-into-plain-file 1347 23.11.9.5 : Direct I/O 296

ora-lob-svc-ctx-handle 1348 23.11.6 : Interactions with foreign calls 294

ora-lob-trim 1349 23.11.9.3 : Modifying LOBs 296

ora-lob-write-buffer 1350 23.11.8 : Reading and writing from and to LOBs 295, 23.11.9.5 : Direct I/O 296

ora-lob-write-foreign-buffer 1351 23.11.6 : Interactions with foreign calls 294, 23.11.8 : Reading and writing from and to
LOBs 295, 23.11.9.5 : Direct I/O 296

ora-lob-write-from-plain-file 1352 23.11.9.5 : Direct I/O 296

output-backtrace 620

package-flagged-p 1529

package-locally-nicknamed-by-list 805

package-local-nicknames 805

parse-float 807

parse-form-dspec 671

parse-ipv6-address 474

parse-namestring 575

parse-printed-generalized-time 451

pathname-location 961

pem-read 475 25.11.1 : OpenSSL interface 320

pipe-close-connection 1530

pipe-exit-status 1530 27.7.1 : Interpreting the exit status 342

pipe-kill-process 1531

pointer-from-address 1533

position-in-ring 808

position-in-ring-forward 808

precompiled-regexp-p 962

precompile-regexp 963

prepared-statement-set-and-execute 1355 23.3.1.8 : Prepared statements 274

prepared-statement-set-and-execute* 1355 23.3.1.8 : Prepared statements 274

prepared-statement-set-and-query 1355 23.3.1.8 : Prepared statements 274

prepared-statement-set-and-query* 1355 23.3.1.8 : Prepared statements 274

prepare-statement 1357 23.3.1.8 : Prepared statements 274

primitive-array-to-lisp-array 1085

print-action-lists 964 8.4 : Diagnostic utilities 116

print-actions 964 8.4 : Diagnostic utilities 116

print-pretty-gesture-spec 1534

Index

1713

print-profile-list 810 12.4 : Profiler output 158

print-query 1358 23.3.1.1 : Querying 270

process-alive-p 1190

process-all-events 1191

process-allow-scheduling 1192 19.1 : Introduction to processes 216

process-arrest-reasons 1192

process-break 1193

process-continue 1193

processes-count 1194 19.2.2 : Finding out about processes 217

process-exclusive-lock 1194

process-exclusive-unlock 1195

process-idle-time 1196

process-internal-server-p 1198

process-interrupt 1199 19.8.4 : Old interrupt blocking APIs removed 233

process-interrupt-list 1200

process-join 1200

process-kill 1201

process-lock 1202 19.4 : Locks 225

process-name 1204 19.2.2 : Finding out about processes 217

process-p 1204

process-plist 1205 19.10 : Process properties 236

process-poke 1205

process-priority 1207 19.11.1.2 : Process priorities in non-SMP LispWorks 237

process-reset 1210

process-run-function 1211 19.1 : Introduction to processes 216, 19.2.1 : Creating a process 217

process-run-time 1213

process-send 1214

process-sharing-lock 1216

process-sharing-unlock 1217

process-stop 1217 19.11.3 : Stopping and unstopping processes 237

process-stopped-p 1218 19.11.3 : Stopping and unstopping processes 237

process-terminate 1219

process-unlock 1220 19.4 : Locks 225

process-unstop 1221 19.11.3 : Stopping and unstopping processes 237

process-wait 1222 19.7 : Synchronization between threads 230

process-wait-for-event 1222

process-wait-function 1223

process-wait-local 1224

process-wait-local-with-periodic-checks 1225

process-wait-local-with-timeout 1227

process-wait-local-with-timeout-and-periodic-checks 1228

Index

1714

process-wait-with-timeout 1228 19.6.2 : Generic Process Wait functions 228, 19.7 : Synchronization between threads 230

process-whostate 1229

proclaim 575 9.6 : Declare, proclaim, and declaim 124

profiler-tree-from-function 815 12.4.2 : Displaying parts of the tree 159

profiler-tree-to-allocation-functions 815 12.4.2 : Displaying parts of the tree 159

profiler-tree-to-function 816 12.4.2 : Displaying parts of the tree 159

ps 1230 19.2.2 : Finding out about processes 217

pushnew-to-process-private-property 1231 19.10 : Process properties 236

pushnew-to-process-property 1232 19.10 : Process properties 236

query 1360 23.3.1.6 : Specifying SQL directly 273, 23.11.1.1 : Retrieving LOB locators 291

query-registry-key-info 1615 27.17 : Accessing the Windows registry 347

query-registry-value 1616 27.17 : Accessing the Windows registry 347

quit 968 1.5 : Quitting LispWorks 56, 27.10 : Exit status 343

read-dhparams 476 25.11.1 : OpenSSL interface 320

read-java-field 1087 15.3.1 : Calling methods by name 177

read-sequence 577

read-serial-port-char 1265

read-serial-port-string 1265

reconnect 1361 23.2.3 : General database connection and disconnection 263

record-definition 672 7.7.2 : Recording definitions and redefinition checking 109

record-java-class-lisp-symbol 1089

record-message-in-windows-event-log 1594

reduce-memory 817 11.6.2 : Reducing image size 154

references-who 819

regexp-find-symbols 970

registry-key-exists-p 1617 27.17 : Accessing the Windows registry 347

release-certificate 502

release-certificates-vector 502

remote-debugging-connection-add-close-cleanup 628 3.7.5.3 : Common (both IDE and client) connection functions 75

remote-debugging-connection-name 629 3.7.5.3 : Common (both IDE and client) connection functions 75

remote-debugging-connection-peer-address 630 3.7.5.3 : Common (both IDE and client) connection functions 75

remote-debugging-connection-remove-close-cleanup 628 3.7.5.3 : Common (both IDE and client) connection functions 75

remote-inspect 632 3.7 : Remote debugging 69, 3.7.1.1 : Using the IDE as the TCP server 70, 3.7.1.2 : Using the client as the
TCP server 70, 3.7.2 : The client side of remote debugging 71, 3.7.3 : The IDE side of remote debugging 71, 3.7.5.1 : Client side
connection management 75

remote-object-connection 633 3.7.3.1 : Accessing client side objects on the IDE side 71, 3.7.5.2 : IDE side connection
management 75

remote-object-p 633 3.7.3.1 : Accessing client side objects on the IDE side 71

remove-advice 971 6.3 : Removing advice 95, 6.7 : Advice functions and macros 100

remove-duplicates 9.7.9 : Built-in optimization of remove-duplicates and delete-duplicates 129

remove-from-process-private-property 1233 19.10 : Process properties 236

remove-from-process-property 1233 19.10 : Process properties 236

Index

1715

remove-package-local-nickname 819

remove-process-private-property 1234 19.10 : Process properties 236

remove-process-property 1235 19.10 : Process properties 236

remove-special-free-action 820 11.6.6 : Special actions 154

remove-symbol-profiler 821

remove-user-preference 973 27.13.2 : Accessing persistent settings 344

replace-from-sqlite-blob 1376 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-
blob) 300

replace-from-sqlite-raw-blob 1379 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-
blob) 300

replace-into-sqlite-blob 1376 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-
blob) 300

replace-socket-stream-socket 477

replace-standard-object 374

report-error-to-java-host 1089

reset-code-coverage 718

reset-code-coverage-snapshot 784

reset-java-interface-for-new-jvm 1090

reset-profiler 821

reset-ring 822

reset-ssl-abstract-context 478

restore-code-coverage-data 718

restore-sql-reader-syntax-state 1362 23.5.3 : Utilities 284

results for traced 5.2.1 : Evaluating forms on entry to and exit from a traced function 85

reverse-subtract-code-coverage-data 692

ring-length 823

ring-name 823

ringp 824

ring-pop 825

ring-push 826

rollback 1362 23.3.1.2 : Modification 270, 23.3.1.4 : Transaction handling 272, 23.11.3 : Locking 292

room 579 11.3.12.1 : Determining memory usage 144, 11.3.12.4 : Controlling the garbage collector 144, 11.4.5 : Tuning the
garbage collector 146, 27.5.3 : Reporting current allocation 340

room-values 1538 27.5.3 : Reporting current allocation 340

rotate-byte 974

rotate-ring 827

round-to-single-precision 975

run-shell-command 1539 27.7 : Calling external programs 342, 27.7.1 : Interpreting the exit status 342, 27.14.1 : Encoding of
file names and strings in OS interface functions 345

safe-format-to-limited-string 828

safe-format-to-string 828

safe-locale-file-encoding 1543

safe-prin1-to-string 828

Index

1716

safe-princ-to-string 828

save-argument-real-p 829

save-code-coverage-data 734

save-current-code-coverage 734

save-current-profiler-tree 830 12.7 : Profiler tree file format 160

save-current-session 831

save-image 832 13.3.2 : The save-image script 163, 14.1 : Introduction 171, 27.3 : The Lisp Image 337, 27.6.1 : How to
relocate LispWorks 341, 27.11 : Creating a new executable with code preloaded 343

save-image-with-bundle 837

save-tags-database 675

save-universal-from-script 838

schedule-timer 1236 19.9 : Timers 235

schedule-timer-milliseconds 1237

schedule-timer-relative 1239

schedule-timer-relative-milliseconds 1240

security-description-string-for-open-named-pipe 1595

select 1363 23.3.1.1 : Querying 269, 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

semaphore-acquire 1242 19.7.3 : Counting semaphores 232

semaphore-count 1243 19.7.3 : Counting semaphores 232

semaphore-name 1244 19.7.3 : Counting semaphores 232

semaphore-release 1244 19.7.3 : Counting semaphores 232

semaphore-wait-count 1245 19.7.3 : Counting semaphores 232

send-message-to-java-host 1091

sequencep 976

serial-port-input-available-p 1267

server-terminate 480

set-application-themed 1598

set-approaching-memory-limit-callback 1544

set-array-single-thread-p 840

set-array-weak 840 11.6.8 : Freeing of objects by the GC 155, 19.3.2 : Mutable objects supporting atomic access 219

set-automatic-gc-callback 1544 11.4.5 : Tuning the garbage collector 146

set-blocking-gen-num 1545 11.4.5.1 : Interface for tuning the GC 146

set-clos-initarg-checking 375

set-code-coverage-snapshot 784

set-compile-file-proclaim-handling 977

set-console-external-format 841 27.16 : The console external format 347

set-debugger-options 634

set-default-character-element-type 979 26.3.5 : String types 327, 26.6.3 : Controlling string construction 331, 26.6.4 :
String construction on Windows systems 331

set-default-generation 842 11.3.2.2 : Allocation in different generations 139, 11.3.12.2 : Allocating in specific
generations 144

set-default-remote-debugging-connection 635 3.7.5.1 : Client side connection management 74

Index

1717

set-default-segment-size 1547 11.4.5.1 : Interface for tuning the GC 147

set-delay-promotion 1548 11.4.5.1 : Interface for tuning the GC 147

set-dpi-awareness 1598

set-expected-allocation-in-generation-2-after-gc 1549

set-file-dates 1551

set-funcall-async-limit 1246

set-gc-parameters 843 11.3.4 : Garbage collection strategy 140, 11.3.12.4 : Controlling the garbage collector 144

set-generation-2-gc-options 1552

set-gen-num-gc-threshold 1554 11.4.5.1 : Interface for tuning the GC 146

set-hash-table-weak 845 11.6.8 : Freeing of objects by the GC 155

set-java-field 1087 15.3.1 : Calling methods by name 177

set-make-instance-argument-checking 377

set-maximum-memory 1555 11.3.12.1 : Determining memory usage 144

set-maximum-segment-size 1556 11.4.2 : Segments and Allocation Types 145, 11.4.5.1 : Interface for tuning the GC 146

set-memory-check 1557

set-memory-exhausted-callback 1558

set-minimum-free-space 846 11.3.4 : Garbage collection strategy 140, 11.3.12.3 : Controlling a specific generation 144

set-prepared-statement-variables 1366 23.3.1.8 : Prepared statements 274

set-primitive-array-region 1037

set-process-profiling 847 12.3 : Running the profiler 157, 12.3.2 : Programmatic control of profiling 157

set-profiler-threshold 849

set-promote-generation-1 1559

set-promotion-count 849

set-quit-when-no-windows 980

set-registry-value 1618 27.17 : Accessing the Windows registry 347

set-remote-debugging-connection 636 3.7.5.1 : Client side connection management 74

set-reserved-memory-policy 1560

set-serial-port-state 1267

set-signal-handler 1561

set-spare-keeping-policy 1562 11.4.5.1 : Interface for tuning the GC 147

set-split-promotion 1563

set-ssl-ctx-dh 481 25.11.1 : OpenSSL interface 320

set-ssl-ctx-options 482 25.11.1 : OpenSSL interface 320

set-ssl-ctx-password-callback 484 25.11.1 : OpenSSL interface 320

set-ssl-library-path 484 25.9.2.2 : How LispWorks locates the OpenSSL libraries 314

set-static-segment-size 1564

sets-who 851

set-system-message-log 851

set-temp-directory 1565 27.15.3 : Temporary files 347

setup-atomic-funcall 1565

setup-deliver-dynamic-library-for-java 1092 15.7 : Loading a LispWorks dynamic library into Java 186

Index

1718

setup-field-accessor 1094

setup-java-caller 1095

setup-java-constructor 1095

setup-java-interface-callbacks 1042

setup-lisp-proxy 1096

set-up-profiler 853 12.2 : Setting up the profiler 156

set-verification-mode 485

short-namestring 1600 27.3 : The Lisp Image 337

sid-string-to-user-name 1601

simple-augmented-string-p 1440

simple-base-string-p 901

simple-bmp-string-p 904

simple-char-p 981

simple-int32-vector-length 1568

simple-int32-vector-p 1568

simple-int64-vector-length 1570

simple-int64-vector-p 1570

simple-lock-and-condition-variable-wait 1247

simple-text-string-p 989

single-form-form-parser 676 7.9.2 : Using pre-defined form parsers 111

single-form-with-options-form-parser 676 7.9.2 : Using pre-defined form parsers 111

socket-connection-peer-address 487

socket-connection-socket 488

socket-error-code socket-error 489

socket-error-connection socket-error 489

socket-stream-address 494

socket-stream-ctx 495 25.11.3 : Using SSL objects directly 323

socket-stream-handshake 495

socket-stream-peer-address 496

socket-stream-shutdown 497

socket-stream-ssl 498 25.11.3 : Using SSL objects directly 323

socket-stream-ssl-side 498 25.11.3 : Using SSL objects directly 323

software-type 583 27.1 : The Operating System 337

software-version 584 27.1 : The Operating System 337

source-debugging-on-p 855

specific-valid-file-encoding 1572

split-sequence 981

split-sequence-if 983

split-sequence-if-not 983

sql 1368 23.5.2 : Programmatic interface 283

sql-expression 1371 23.5.2 : Programmatic interface 283

Index

1719

sqlite-blob-length 1376

sqlite-blob-p 1376

sqlite-close-blob 1376 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-blob) 300

sqlite-last-insert-rowid 1375

sqlite-open-blob 1376 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-blob) 300

sqlite-raw-blob-length 1379 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-blob) 300

sqlite-raw-blob-p 1379

sqlite-raw-blob-ref 1379 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-blob) 300

sqlite-raw-blob-valid-p 1379 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-blob) 300

sqlite-reopen-blob 1376

sql-operation 1382 23.5.2 : Programmatic interface 283

sql-operator 1384 23.5.2 : Programmatic interface 283

sql-recording-p 1385 23.7 : SQL I/O recording 286

sql-stream 1385 23.7 : SQL I/O recording 286

ssl-abstract-context-name ssl-abstract-context 499

ssl-add-client-ca 25.11.2 : Direct calls to OpenSSL 321

ssl-cipher-get-bits 25.11.2 : Direct calls to OpenSSL 321

ssl-cipher-get-name 25.11.2 : Direct calls to OpenSSL 321

ssl-cipher-get-version 25.11.2 : Direct calls to OpenSSL 321

ssl-clear-num-renegotiations 25.11.2 : Direct calls to OpenSSL 321

ssl-condition-ssl-code ssl-condition 501

ssl-connection-copy-peer-certificates 502

ssl-connection-get-peer-certificates-data 504

ssl-connection-implementation 505

ssl-connection-protocol-version 506

ssl-connection-read-certificates 506

ssl-connection-read-dh-params-file 507

ssl-connection-ssl-ref 508

ssl-connection-verify 509

ssl-ctrl 25.11.2 : Direct calls to OpenSSL 321

ssl-ctx-add-client-ca 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-add-extra-chain-cert 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-ctrl 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-get-max-cert-list 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-get-mode 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-get-options 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-get-read-ahead 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-get-verify-mode 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-load-verify-locations 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-need-tmp-rsa 25.11.2 : Direct calls to OpenSSL 322

Index

1720

ssl-ctx-sess-get-cache-mode 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-sess-get-cache-size 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-sess-set-cache-mode 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-sess-set-cache-size 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-set-client-ca-list 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-set-max-cert-list 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-set-mode 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-set-options 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-set-read-ahead 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-set-tmp-dh 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-set-tmp-rsa 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-use-certificate-chain-file 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-use-certificate-file 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-use-privatekey-file 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-use-rsaprivatekey-file 25.11.2 : Direct calls to OpenSSL 322

ssl-get-current-cipher 25.11.2 : Direct calls to OpenSSL 322

ssl-get-max-cert-list 25.11.2 : Direct calls to OpenSSL 322

ssl-get-mode 25.11.2 : Direct calls to OpenSSL 322

ssl-get-options 25.11.2 : Direct calls to OpenSSL 322

ssl-get-verify-mode 25.11.2 : Direct calls to OpenSSL 322

ssl-get-version 25.11.2 : Direct calls to OpenSSL 322

ssl-implementation-available-p 514 25.9.1 : SSL implementations 313

ssl-load-client-ca-file 25.11.2 : Direct calls to OpenSSL 322

ssl-need-tmp-rsa 25.11.2 : Direct calls to OpenSSL 322

ssl-new 515 25.11.3 : Using SSL objects directly 323

ssl-num-renegotiations 25.11.2 : Direct calls to OpenSSL 322

ssl-session-reused 25.11.2 : Direct calls to OpenSSL 322

ssl-set-accept-state 25.9.6 : Keyword arguments for use with SSL 318, 25.11.2 : Direct calls to OpenSSL 322

ssl-set-client-ca-list 25.11.2 : Direct calls to OpenSSL 322

ssl-set-connect-state 25.9.6 : Keyword arguments for use with SSL 318, 25.11.2 : Direct calls to OpenSSL 322

ssl-set-max-cert-list 25.11.2 : Direct calls to OpenSSL 322

ssl-set-mode 25.11.2 : Direct calls to OpenSSL 323

ssl-set-options 25.11.2 : Direct calls to OpenSSL 323

ssl-set-tmp-dh 25.11.2 : Direct calls to OpenSSL 323

ssl-set-tmp-rsa 25.11.2 : Direct calls to OpenSSL 323

ssl-total-renegotiations 25.11.2 : Direct calls to OpenSSL 323

ssl-use-certificate-file 25.11.2 : Direct calls to OpenSSL 323

ssl-use-privatekey-file 25.11.2 : Direct calls to OpenSSL 323

ssl-use-rsaprivatekey-file 25.11.2 : Direct calls to OpenSSL 323

Index

1721

standard-instance-access 18.1.1 : Instance Structure Protocol 209

start-client-remote-debugging-server 637 3.7.1.2 : Using the client as the TCP server 70, 3.7.2 : The client side of remote
debugging 71, 3.7.5.1 : Client side connection management 74, 3.7.7 : Using SSL for remote debugging 76

start-dde-server 1655 22.3.1 : Starting a DDE server 257

start-gc-timing 856

start-ide-remote-debugging-server 639 3.7.1.1 : Using the IDE as the TCP server 70, 3.7.2 : The client side of remote
debugging 71, 3.7.7 : Using SSL for remote debugging 76

start-profiling 857 12.3 : Running the profiler 157, 12.3.2 : Programmatic control of profiling 157

start-remote-listener 640 3.7 : Remote debugging 69, 3.7.1.1 : Using the IDE as the TCP server 70, 3.7.1.2 : Using the
client as the TCP server 70, 3.7.2 : The client side of remote debugging 71, 3.7.3 : The IDE side of remote debugging 71, 3.7.5.1 :
Client side connection management 75

start-sql-recording 1388 23.7 : SQL I/O recording 286

start-tty-listener 984

start-up-server 518

start-up-server-and-mp 522

staticp 1574

status 1389 23.2.3 : General database connection and disconnection 263

stop-gc-timing 856

stop-profiling 859 12.3 : Running the profiler 157, 12.3.2 : Programmatic control of profiling 157

stop-sql-recording 1389 23.7 : SQL I/O recording 286

string=-limited 860

string-append 985

string-append* 986

string-capitalize 26.4.1 : How Common Lisp functions handle characters with case 328

string-equal-limited 860

string-ip-address 523

string-needs-n-prefix 1390

string-prefix-with-n-if-needed 1391

string-trim-whitespace 861

string-upcase 26.4.1 : How Common Lisp functions handle characters with case 328

structurep 987

subtract-code-coverage-data 692

sweep-all-objects 861 11.6.5 : Mapping across all objects 154

sweep-gen-num-objects 1575

switch-open-tcp-stream-with-ssl-to-java 524

switch-static-allocation 862 11.3.1 : Generations 139, 11.3.2.1 : Allocation of static objects 139

symbol-dynamically-bound-p 863

table-exists-p 1392

text-string-p 989

throw-an-exception 1098

timer-expired-p 1249

toggle-source-debugging 865 9.8 : Compiler parameters affecting LispWorks 129

total-allocation 866 11.3.12.1 : Determining memory usage 144

Index

1722

traceable-dspec-p 677

trace-new-instances-on-access 380

trace-on-access 381

true 990

truename 595

try-compact-in-generation 874 11.3.11 : Controlling Fragmentation 143, 11.3.12.4 : Controlling the garbage collector 144

try-move-in-generation 875 11.3.11 : Controlling Fragmentation 143, 11.3.12.4 : Controlling the garbage collector 144

unbreak-new-instances-on-access 383

unbreak-on-access 384

undefine-declaration 877

unicode-alpha-char-p 992 26.4.2.3 : Unicode character predicates 329

unicode-alphanumericp 992 26.4.2.3 : Unicode character predicates 329

unicode-both-case-p 993 26.4.2.3 : Unicode character predicates 329

unicode-char-equal 994 26.4.2.1 : Unicode case insensitive character comparison 329

unicode-char-greaterp 995 26.4.2.1 : Unicode case insensitive character comparison 329

unicode-char-lessp 995 26.4.2.1 : Unicode case insensitive character comparison 329

unicode-char-not-equal 994 26.4.2.1 : Unicode case insensitive character comparison 329

unicode-char-not-greaterp 996 26.4.2.1 : Unicode case insensitive character comparison 329

unicode-char-not-lessp 996 26.4.2.1 : Unicode case insensitive character comparison 329

unicode-lower-case-p 996 26.4.2.3 : Unicode character predicates 329

unicode-string-equal 997 26.4.2.2 : Unicode case insensitive string comparison 329

unicode-string-greaterp 998 26.4.2.2 : Unicode case insensitive string comparison 329

unicode-string-lessp 998 26.4.2.2 : Unicode case insensitive string comparison 329

unicode-string-not-equal 997 26.4.2.2 : Unicode case insensitive string comparison 329

unicode-string-not-greaterp 999 26.4.2.2 : Unicode case insensitive string comparison 329

unicode-string-not-lessp 999 26.4.2.2 : Unicode case insensitive string comparison 329

unicode-upper-case-p 1000 26.4.2.3 : Unicode character predicates 329

unlocked-queue-count 796

unlocked-queue-peek 796

unlocked-queue-read 796

unlocked-queue-ready 796

unlocked-queue-send 796

unlocked-queue-size 796

unnotice-fd 1251

unschedule-timer 1252

untrace-new-instances-on-access 384

untrace-on-access 385

update-objects-joins 1393

update-records 1395 23.11.1.3 : Inserting empty LOBs 291

user-homedir-pathname 16.2 : Directories on Android 194, 27.15.1 : The home directory 345, get-folder-path 1476

user-name-to-sid-string 1603

Index

1723

valid-external-format-p 690

variable-information 880

vector-pop 19.3.2 : Mutable objects supporting atomic access 219, 19.3.7 : Single-thread context arrays and hash-tables 224

vector-push 19.3.2 : Mutable objects supporting atomic access 219, 19.3.7 : Single-thread context arrays and hash-tables 224

vector-push-extend 19.3.2 : Mutable objects supporting atomic access 219, 19.3.7 : Single-thread context arrays and hash-
tables 224

verify-java-caller 1100

verify-java-callers 1101

verify-lisp-proxies 1103

verify-lisp-proxy 1103

wait-for-connection 1604

wait-for-input-streams 1578

wait-for-input-streams-returning-first 1579

wait-for-wait-state-collection 525 25.8.1 : The wait-state-collection API 308

wait-processing-events 1253

wait-serial-port-state 1268

wait-state-collection-alive-p 526

wait-state-collection-stop-loop 527 25.8.1 : The wait-state-collection API 309, 25.8.4 : Asynchronous I/O and
multiprocessing 311

whitespace-char-p 1004

who-binds 881

who-calls 882

who-references 883

who-sets 883

write-java-class-definitions-to-file 1104

write-java-class-definitions-to-stream 1104

write-sequence 577

write-serial-port-char 1269

write-serial-port-string 1269

write-string-with-properties 891

write-to-system-log 893

yield 1259

fundamental-binary-input-stream class 1403

fundamental-binary-output-stream class 1404

fundamental-binary-stream class 1404

fundamental-character-input-stream class 1405 24.2.1 : Defining a new stream class 302

fundamental-character-output-stream class 1406 24.2.1 : Defining a new stream class 302

fundamental-character-stream class 1406

fundamental-input-stream class 1407

fundamental-output-stream class 1408

fundamental-stream class 1408

Index

1724

G

garbage collection See memory management: main chapter

GB18030 26.7.1 : External format names 332

:gb18030 external format 26.7.1 : External format names 332

GBK 26.7.1 : External format names 332

:gbk external format 26.7.1 : External format names 332

gc-generation function 779 11.3.1 : Generations 138, 11.3.3 : GC operations 140, 11.3.12.4 : Controlling the garbage
collector 144, 11.4.5 : Tuning the garbage collector 146, 11.4.5.1 : Interface for tuning the GC 147

gc-if-needed function 782 11.3.12.4 : Controlling the garbage collector 144

general-handle-event generic function 1153

generalized-time system class 451

generalized-time-gmtoffset function generalized-time 451

generalized-time-microseconds function generalized-time 451

generalized-time-p function 451

generalized-time-pprint function 451

generalized-time-string function 451

generalized-time-universal-time function generalized-time 451

generate-code-coverage function 782

generate-java-class-definitions function 1032

generation

definition 11.1 : Introduction 135

generation 2 11.3.9 : Behavior of generation 2 143

generation-number function 1467 11.3.11 : Controlling Fragmentation 143

generic functions

accessor-method-slot-definition 18.1.2 : Method Metaobjects 209

add-method 18.1.6 : Generic Function Invocation Protocol 210

class-extra-initargs 365

close 532

compute-applicable-methods-using-classes 18.1.6 : Generic Function Invocation Protocol 210

compute-class-potential-initargs 366

compute-discriminating-function 367 18.1.6 : Generic Function Invocation Protocol 210

compute-effective-method-function-from-classes 368

dde-client-advise-data 1626 22.2.3 : Advise loops 255

dde-server-poke 1645 22.3.2 : Handling poke and request transactions 257

dde-server-request 1646 22.3.2 : Handling poke and request transactions 257

dde-server-topic 1647

dde-server-topics 1647 22.3.3.1 : General topics 257

dde-topic-items 1649

default-constructor-arguments 1016

describe-object 4.1 : Describe 77

documentation 552

Index

1725

general-handle-event 1153

get-inspector-values 944

input-stream-p 558

instance-refreshed 1307 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

interactive-stream-p 558

make-instance 565

make-method-lambda 18.1.3 : Method Lambdas 209

open-stream-p 573

output-stream-p 574

print-object 13.11 : Structure printing 170

process-a-class-option 371

process-a-slot-option 373

remote-debugging-stream-peer-address 631

slot-boundp-using-class 377 18.1.1 : Instance Structure Protocol 209

slot-makunbound-using-class 378 18.1.1 : Instance Structure Protocol 209

socket-error 490

sort-inspector-p 1571

stream-advance-to-column 1409

stream-check-eof-no-hang 1410

stream-clear-input 1410 24.2.4 : Stream input 303

stream-clear-output 1411 24.2.5 : Stream output 304

stream-element-type 588 24.2.2 : Recognizing the stream element type 302

stream-fill-buffer 1412

stream-finish-output 1413 24.2.5 : Stream output 304

stream-flush-buffer 1414

stream-force-output 1414 24.2.5 : Stream output 304

stream-fresh-line 1415

stream-line-column 1416 24.2.5 : Stream output 304

stream-listen 1416 24.2.4 : Stream input 303

stream-output-width 1417

stream-peek-char 1418

stream-read-buffer 1418

stream-read-byte 1419

stream-read-char 1420 24.2.4 : Stream input 303

stream-read-char-no-hang 1421

stream-read-line 1421

stream-read-sequence 1422

stream-start-line-p 1423 24.2.5 : Stream output 304

stream-terpri 1424

stream-unread-char 1425 24.2.4 : Stream input 303

stream-write-buffer 1425

Index

1726

stream-write-byte 1426

stream-write-char 1427 24.2.5 : Stream output 304

stream-write-sequence 1427

stream-write-string 1429

update-instance-for-different-class 597

update-instance-for-redefined-class 597

update-instance-from-records 1393 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

update-record-from-slot 1394 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

update-records-from-instance 1396 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

update-slot-from-record 1397 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

:gen-num initarg storage-exhausted 1575

gen-num-segments-fragmentation-state function 1468 11.4.5 : Tuning the garbage collector 146

gensym function 11.6.3 : Allocation of interned symbols and packages 154

gesture-spec system class 1469

gesture-spec-accelerator-bit constant 1470

gesture-spec-caps-lock-bit constant 1470

gesture-spec-control-bit constant 1470

gesture-spec-data function gesture-spec 1469

gesture-spec-hyper-bit constant 1470

gesture-spec-meta-bit constant 1470

gesture-spec-modifiers function gesture-spec 1469

gesture-spec-p function 1472

gesture-spec-shift-bit constant 1470

gesture-spec-super-bit constant 1470

gesture-spec-to-character function 1472

:get listener command 2.2.1 : Standard top-level loop commands 58

getApplicationContext Java method 1121

get-certificate-common-name function 453

get-certificate-data function 453

get-certificate-serial-number function 453

getClassLoader Java method 1121

get-code-coverage-delta function 784

get-current-process function 1153 19.1 : Introduction to processes 216, 19.2.2 : Finding out about processes 217

get-default-generation function 785 11.3.12.2 : Allocating in specific generations 144

get-default-local-ipv6-address function 455

get-file-stat function 1473

get-folder-path function 1475 27.15.2 : Special Folders 346

get-form-parser function 665 7.9.2 : Using pre-defined form parsers 111

get-gc-parameters function 786 11.3.12.4 : Controlling the garbage collector 144

get-gc-timing function 856

Index

1727

gethash-ensuring function 787

get-host-entry function 456

get-host-java-virtual-machine function 1035

get-inspector-values generic function 944

get-ip-default-zone-id function 458

get-java-virtual-machine function 1036

get-jobject function 1036

get-maximum-allocated-in-generation-2-after-gc function 1477

get-primitive-array-region function 1037

GetProcAddress C function 14.1 : Introduction 171

get-process function 1154 19.2.2 : Finding out about processes 217

get-process-private-property function 1155

get-serial-port-state function 1262

get-service-entry function 459

get-socket-address function 460

get-socket-peer-address function 461

get-superclass-and-interfaces-tree function 1038

get-temp-directory function 788

get-throwable-backtrace-strings function 1039

get-unix-error function 945

get-user-profile-directory function 1478 27.15.2 : Special Folders 346

get-verification-mode function 461

get-working-directory function 789

globally-accessible macro 1479 19.3.4.1 : Ways to guarantee the visibility of stores 220, 19.3.4.2 : Special care for macros and
accessors that may themselves allocate 221, 19.3.5.3 : An alternative solution using globally-accessible 222, 19.3.5.5 : Destructive
macros and accessors that allocate internally 223

grammar

non-terminal 21.2 : Grammar rules 248

resolving ambiguities 21.2.3 : Resolving ambiguities 249

rules 21.2 : Grammar rules 248

graphics ports preface 50

grep-command variable 946

grep-command-format variable 947

grep-fixed-args variable 947

guess-external-format function 1480 26.7.3.3 : Guessing the external format 334

GUI application save-image 833

H

:h inspector command 4.2 : Inspect 78

handle-existing-action-in-action-list variable 948 8.2 : Exception handling variables 115

handle-existing-action-list variable 948 8.2 : Exception handling variables 115

handle-existing-defpackage variable 789

Index

1728

handle-missing-action-in-action-list variable 949 8.2 : Exception handling variables 116

handle-missing-action-list variable 949 8.2 : Exception handling variables 115

handle-old-in-package variable 790

handle-old-in-package-used-as-make-package variable 791

:handler keyword *print-handler-frames* 624

handler-bind macro log-bug-form 619, output-backtrace 620

handler-case macro log-bug-form 619, output-backtrace 620

handler frame, examining 3.3 : The stack in the debugger 62

handle-warn-on-redefinition variable 950 7.7.2.2 : Protecting packages 110

:handshake-timeout initarg socket-stream 491

hardcopy-system function 951

hash tables

weak make-hash-table 564

hash-table-weak-kind function 791

heap size

in 32-bit LispWorks 27.6.2 : Startup relocation of 32-bit LispWorks 341, 29.2 : Heap size 358

in 64-bit LispWorks 27.6.3 : Startup relocation of 64-bit LispWorks 341, 29.2 : Heap size 358

:help listener command 2.2.1 : Standard top-level loop commands 58

HFS+ filesystem 27.18.7.1 : Pathname comparison on macOS 352

:hidden keyword *hidden-packages* 610

hidden-packages variable 609 3.6 : Debugger control variables 68

:his listener command 2.2.1 : Standard top-level loop commands 58

hook functions 8 : Action Lists 115

host get-host-entry 456

hostname get-host-entry 456

host name get-host-entry 456

I

i18n 26 : Internationalization: characters, strings and encodings 325

:i inspector command 4.2 : Inspect 78

ide-attach-remote-output-stream function 611 3.7.3.2 : Controlling the client side from the IDE side 72

ide-connect-remote-debugging function 612 3.7.1.2 : Using the client as the TCP server 70, 3.7.2 : The client side of remote
debugging 71, 3.7.3 : The IDE side of remote debugging 71, 3.7.7 : Using SSL for remote debugging 76

ide-eval-form-in-remote function 613 3.7.3.1 : Accessing client side objects on the IDE side 72, 3.7.3.2 : Controlling the client
side from the IDE side 72

ide-find-remote-debugging-connection function 615 3.7.5.2 : IDE side connection management 75

ide-funcall-in-remote function 613 3.7.3.1 : Accessing client side objects on the IDE side 72, 3.7.3.2 : Controlling the client side
from the IDE side 72

ide-list-remote-debugging-connections function 615 3.7.5.2 : IDE side connection management 75

ide-open-a-listener function 617 3.7 : Remote debugging 69, 3.7.3 : The IDE side of remote debugging 71

ide-remote-debugging system class 628

ide-set-default-remote-debugging-connection function 615 3.7.5.2 : IDE side connection management 75

Index

1729

ide-set-remote-symbol-value function 613 3.7.3.2 : Controlling the client side from the IDE side 72

if-let macro 1002

ignore-errors macro log-bug-form 619, output-backtrace 620

image

saving 13.3.2 : The save-image script 163

image size 27.4.1 : Command Line Arguments 339

immediatep function 1481

impersonating-named-pipe-client macro 1585

impersonating-user macro 1586

import-java-class-definitions macro 1040

incf macro 19.3.3 : Mutable objects not supporting atomic access 219

init Java method 1113

INIT_ERROR_FAIL_HEAP java constant field com.lispworks.Manager.init_result_code 1114

INIT_ERROR_NO_ASSET java constant field com.lispworks.Manager.init_result_code 1114

INIT_ERROR_NO_LIBRARY java constant field com.lispworks.Manager.init_result_code 1114

init file *init-file-name* 952

init-file-name variable 952

initialization

of Common SQL 23.2 : Initialization 261

of the Java virtual machine 15.1 : Initialization of the Java interface 174

initialization file *init-file-name* 952

initialize-database-type function 1304 23.2.1 : Initialization steps 261

initialized-database-types variable 1305

initialize-multiprocessing function 1156 19.2.3 : Multiprocessing 217

initial-processes variable 1157 14.5 : Multiprocessing in a dynamic library 173, 19.2.2 : Finding out about
processes 217, 19.2.3.1 : Starting multiprocessing interactively 217

init-java-interface function 1042

InitLispWorks C function 1656 14.3.2 : Initialization via InitLispWorks 173, 27.6.1 : How to relocate LispWorks 341

init_result_code Java method 1114

in-package macro 557

input-stream-p generic function 558

insert-records function 1305 23.3.1.2 : Modification 270, 23.11.1.3 : Inserting empty LOBs 291

:inside trace keyword 5.2.9 : Tracing functions from inside other functions 88

inspect function 4.2 : Inspect 78

inspector

main chapter 4 : The REPL Inspector 77

REPL 4 : The REPL Inspector 77

teletype 4 : The REPL Inspector 77

inspector commands

:cv 4.2 : Inspect 78

:d 4.2 : Inspect 78

:dm 4.2 : Inspect 78

Index

1730

:dr 4.2 : Inspect 78

:h 4.2 : Inspect 78

:i 4.2 : Inspect 78

:m 4.2 : Inspect 78, 4.3 : Inspection modes 79

:q 4.2 : Inspect 78

:s 4.2 : Inspect 78

:sh 4.2 : Inspect 78

:u 4.2 : Inspect 78

:ud 4.2 : Inspect 78

inspect-print-length variable 4.2 : Inspect 78

inspect-print-level variable 4.2 : Inspect 78

inspect-through-gui variable 952

instance-refreshed generic function 1307 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

in-static-area macro 1481 11.3.2.1 : Allocation of static objects 139

int32 type 1482 28.2.2 : Fast 32-bit arithmetic 354

int32* function 1483

int32+ function 1483 28.2.2.1 : Optimized and unoptimized INT32 code 354

int32- function 1483 28.2.2.1 : Optimized and unoptimized INT32 code 354

int32/ function 1483

int32/= function 1484

+int32-0+ symbol macro 1485

+int32-1+ symbol macro 1485

int32-1+ function 1486

int32-1- function 1486

int32< function 1484

int32<< function 1486

int32<= function 1484

int32= function 1484

int32> function 1484

int32>= function 1484

int32>> function 1486

int32-aref accessor 1487

int32-logand function 1488

int32-logandc1 function 1488

int32-logandc2 function 1488

int32-logbitp function 1488

int32-logeqv function 1488

int32-logior function 1488

int32-lognand function 1488

int32-lognor function 1488

Index

1731

int32-lognot function 1488

int32-logorc1 function 1488

int32-logorc2 function 1488

int32-logtest function 1488

int32-logxor function 1488

int32-minusp function 1490

int32-plusp function 1490

int32-to-int64 function 1491

int32-to-integer function 1491

int32-zerop function 1490

int64 type 1492 28.2.3 : Fast 64-bit arithmetic 355

int64* function 1493

int64+ function 1493 28.2.3.1 : Optimized and unoptimized INT64 code 355

int64- function 1493 28.2.3.1 : Optimized and unoptimized INT64 code 355

int64/ function 1493

int64/= function 1494

+int64-0+ symbol macro 1495

+int64-1+ symbol macro 1495

int64-1+ function 1496

int64-1- function 1496

int64< function 1494

int64<< function 1496

int64<= function 1494

int64= function 1494

int64> function 1494

int64>= function 1494

int64>> function 1496

int64-aref accessor 1497

int64-logand function 1498

int64-logandc1 function 1498

int64-logandc2 function 1498

int64-logbitp function 1498

int64-logeqv function 1498

int64-logior function 1498

int64-lognand function 1498

int64-lognor function 1498

int64-lognot function 1498

int64-logorc1 function 1498

int64-logorc2 function 1498

int64-logtest function 1498

Index

1732

int64-logxor function 1498

int64-minusp function 1500

int64-plusp function 1500

int64-to-int32 function 1501

int64-to-integer function 1501

int64-zerop function 1500

integer-to-int32 function 1502

integer-to-int64 function 1503

interactive-stream-p generic function 558

interface

between parser generator and lexical analyzer 21.5 : Interface to the lexical analyzer 251

Common SQL initialization 23.2 : Initialization 261

intern-and-export-list function 1045

Internationalization 26 : Internationalization: characters, strings and encodings 325

intern-eql-specializer function 18.1.5 : EQL specializers 210

interpreter

differences from compiler 9 : The Compiler 119

interruptable 9.5 : Compiler control 121

invalid superclass 18.3.1 : Inheritance across metaclasses 211

:invisible keyword *print-invisible-frames* 625

iOS interface

overview 17 : iOS interface 204

iOS runtimes

creating 17.1 : Delivering for iOS 204

example 17.5 : The Othello demo for iOS 205

IP Address get-host-entry 456

ip-address-string function 462

IPv4 get-host-entry 456

IPv6 25.7 : Special considerations 308, get-host-entry 456

on Windows 25.7.1 : IPv6 on Windows XP 308

ipv6-address type 463

ipv6-address-p function 464

ipv6-address-scope-id function 464

ipv6-address-string function 465

IPv6 support ip-address-string 462, parse-ipv6-address 474

ISO8859-1 26.7.1 : External format names 331

J

jaref accessor 1046

Java interface

initialization 15.1 : Initialization of the Java interface 174

Java side 40 : Java classes and methods 1107

Index

1733

Lisp side 15 : Java interface 174

java-array-element-type function 1047

java-array-error condition class 1048

java-array-error-array function java-array-error 1048

java-array-error-caller function java-array-error 1048

java-array-indices-error condition class 1048

java-array-indices-error-indices function java-array-indices-error 1048

java-array-indices-error-rank function java-array-indices-error 1048

java-array-length function 1049

java-array-simple-error condition class 1050

java-bad-jobject condition class 1050

java-bad-jobject-caller function java-bad-jobject 1050

java-bad-jobject-object function java-bad-jobject 1050

java-class-error condition class 1051

Java Classes

com.lispworks.BugFormLogsList 1111

com.lispworks.BugFormViewer 1111

com.lispworks.LispCalls 1107

com.lispworks.Manager 1111

Java constant field

ADDMESSAGE_ADD com.lispworks.Manager.addMessage 1119

ADDMESSAGE_ADD_NO_SCROLL com.lispworks.Manager.addMessage 1119

ADDMESSAGE_APPEND com.lispworks.Manager.addMessage 1119

ADDMESSAGE_APPEND_NO_SCROLL com.lispworks.Manager.addMessage 1119

ADDMESSAGE_PREPEND com.lispworks.Manager.addMessage 1119

ADDMESSAGE_RESET com.lispworks.Manager.addMessage 1119

INIT_ERROR_FAIL_HEAP com.lispworks.Manager.init_result_code 1114

INIT_ERROR_NO_ASSET com.lispworks.Manager.init_result_code 1114

INIT_ERROR_NO_LIBRARY com.lispworks.Manager.init_result_code 1114

STATUS_ERROR com.lispworks.Manager.status 1114

STATUS_INITIALIZING com.lispworks.Manager.status 1114

STATUS_NOT_INITIALIZED com.lispworks.Manager.status 1114

STATUS_READY com.lispworks.Manager.status 1114

java-definition-error condition class 1051

java-definition-error-class-name function java-definition-error 1051

java-definition-error-name function java-definition-error 1051

java-exception condition class 1052

java-exception-exception-name function java-exception 1052

java-exception-java-backtrace function java-exception 1052

Index

1734

java-exception-string function java-exception 1052

java-field-class-name-for-setting function 1087 15.3.1 : Calling methods by name 177

java-field-error condition class 1051

java-field-error-field-name function java-definition-error 1051

java-field-error-static-p function java-definition-error 1051

Java fields

com.lispworks.Manager.mInitErrorString 1115

com.lispworks.Manager.mMaxErrorLogsNumber 1118

com.lispworks.Manager.mMessagesMaxLength 1119

java-field-setting-error condition class 1053

java-field-setting-error-class-name function java-field-setting-error 1053

java-field-setting-error-class-name-for-setting function java-field-setting-error 1053

java-field-setting-error-field-name function java-field-setting-error 1053

java-field-setting-error-new-value function java-field-setting-error 1053

java-id-exception condition class 1053

java-instance-jobject accessor 15.8 : CLOS partial integration 187, standard-java-object 1097

java-instance-without-jobject-error condition class 1054

java-interface-error condition class 1054

Java interfaces

com.lispworks.Manager.LispErrorReporter 1116

com.lispworks.Manager.LispGuiErrorReporter 1116

com.lispworks.Manager.MessageHandler 1120

java-low-level-exception condition class 1055

java-method-error condition class 1051

java-method-error-args-num function java-definition-error 1051

java-method-error-method-name function java-definition-error 1051

java-method-exception condition class 1055

java-method-exception-args function java-method-exception 1055

java-method-exception-class-name function java-method-exception 1055

java-method-exception-method-name function java-method-exception 1055

java-method-exception-name function java-method-exception 1055

Java methods

com.lispworks.LispCalls.callDoubleA 1107

com.lispworks.LispCalls.callDoubleV 1107

com.lispworks.LispCalls.callIntA 1107

com.lispworks.LispCalls.callIntV 1107

com.lispworks.LispCalls.callObjectA 1107

com.lispworks.LispCalls.callObjectV 1107

com.lispworks.LispCalls.callVoidA 1107

com.lispworks.LispCalls.callVoidV 1107

com.lispworks.LispCalls.checkLispSymbol 1108

Index

1735

com.lispworks.LispCalls.createLispProxy 1109

com.lispworks.LispCalls.waitForInitialization 1110

com.lispworks.Manager.addMessage 1119

com.lispworks.Manager.clearBugFormLogs 1118

com.lispworks.Manager.getApplicationContext 1121

com.lispworks.Manager.getClassLoader 1121

com.lispworks.Manager.init 1113

com.lispworks.Manager.init_result_code 1114

com.lispworks.Manager.loadLibrary 1116

com.lispworks.Manager.setClassLoader 1123

com.lispworks.Manager.setCurrentActivity 1122

com.lispworks.Manager.setErrorReporter 1116

com.lispworks.Manager.setGuiErrorReporter 1116

com.lispworks.Manager.setLispTempDir 1123

com.lispworks.Manager.setMessageHandler 1120

com.lispworks.Manager.setRuntimeLispHeapDir 1122

com.lispworks.Manager.setTextView 1121

com.lispworks.Manager.showBugFormLogs 1118

com.lispworks.Manager.status 1114

java-normal-exception condition class 1056

java-not-a-java-object-error condition class 1057

java-not-an-array-error condition class 1057

java-null constant 1058

java-object-array-element-type function 1058

java-objects-eq function 1059

java-out-of-bounds-error condition class 1060

java-primitive-array-element-type function 1060

java-program-error condition class 1061

java-serious-exception condition class 1061

java-storing-wrong-type-error condition class 1060

java-type-to-lisp-array-type function 1062

Java virtual machine 15.3.2 : Importing classes 177

initialization 15.1 : Initialization of the Java interface 174

java-vm-poi FLI type descriptor 1063

jboolean FLI type descriptor 1063

jbyte FLI type descriptor 1063

jchar FLI type descriptor 1063

jdouble FLI type descriptor 1063

jfloat FLI type descriptor 1063

jint FLI type descriptor 1063

Index

1736

JIS 26.7.1 : External format names 332

:jis external format 26.7.1 : External format names 332

jlong FLI type descriptor 1063

JNI_CreateJavaVM init-java-interface 1043, init-java-interface 1044

jni-env-poi FLI type descriptor 1064

JNI_GetCreatedJavaVMs get-java-virtual-machine 1036

JNI_OnLoad init-java-interface 1044

jobject FLI type descriptor 1065

:jobject initarg standard-java-object 1097

jobject-call-method function 1065 15.3.1 : Calling methods by name 177

jobject-call-method-error condition class 1066

jobject-class-name function 1067

jobject-ensure-global function 1068

jobject-field-value accessor 1069 15.3.1 : Calling methods by name 177

jobject-of-class-p function 1070

jobject-p function 1070

jobject-pretty-class-name function 1071

jobject-string function 1072

jobject-to-lisp function 1072

join slot 23.4.1 : Object oriented/relational model 275

jshort FLI type descriptor 1064

jvalue FLI type descriptor 1073

jvalue-store-jboolean function 1074

jvalue-store-jbyte function 1074

jvalue-store-jchar function 1074

jvalue-store-jdouble function 1075

jvalue-store-jfloat function 1075

jvalue-store-jint function 1074

jvalue-store-jlong function 1074

jvalue-store-jobject function 1076

jvalue-store-jshort function 1074

JVM 15.3.2 : Importing classes 177

jvref accessor 1077

K

keywords

:all 20.2.4 : DEFSYSTEM rules 245

:bindings *print-binding-frames* 621

:catchers *print-catch-frames* 623

:caused-by 20.2.4 : DEFSYSTEM rules 245

:default-pathname 20.2.2 : DEFSYSTEM options 244

Index

1737

:dont-know 3.4.3 : Miscellaneous commands 64

:handler *print-handler-frames* 624

:hidden *hidden-packages* 610

:invisible *print-invisible-frames* 625

:maximum-overflow 11.3.7 : Overflow 142

:members 20.2.3 : DEFSYSTEM members 244

:minimum-for-sweep 11.3.4 : Garbage collection strategy 140, 11.3.7 : Overflow 142

:minimum-overflow 11.3.7 : Overflow 142

:new-generation-size 11.3.8 : Behavior of generation 1 142

:package 20.2.2 : DEFSYSTEM options 244

:previous 20.2.4 : DEFSYSTEM rules 245

:requires 20.2.4 : DEFSYSTEM rules 245

:restarts *print-restart-frames* 627

:rules 20.2.4 : DEFSYSTEM rules 245

:source-only 20.2.3 : DEFSYSTEM members 244

KnowledgeWorks rules

compiling dynamically 9.3 : Compiling a form 120

known-sid-integer-to-sid-string function 1588

KOI8 26.7.1 : External format names 332

:koi-8 external format 26.7.1 : External format names 332

KOI8-R 26.7.1 : External format names 332

L

:l debugger command 3.4.3 : Miscellaneous commands 64

:lambda debugger command 3.4.3 : Miscellaneous commands 65

LANG environment variable 27.14.1 : Encoding of file names and strings in OS interface functions 345, 27.16 : The console external
format 347, call-system-showing-output 1445, open-pipe 1526

last-callback-on-thread function 1157

Latin-1 26.7.1 : External format names 331

:latin-1 external format 26.7.1 : External format names 331

latin-1-code-pages variable 1588

:latin-1-safe external format 26.7.1 : External format names 331

:latin-1-terminal external format 26.7.1 : External format names 331, 27.14.1 : Encoding of file names and strings in OS interface
functions 345, 27.16 : The console external format 347, 27.16 : The console external format 347

LC_ALL environment variable 27.14.1 : Encoding of file names and strings in OS interface functions 345, 27.16 : The console external
format 347, call-system-showing-output 1445, open-pipe 1526

LC_CTYPE environment variable 27.14.1 : Encoding of file names and strings in OS interface functions 345, 27.16 : The console external
format 347, call-system-showing-output 1445, open-pipe 1526

levels of safety See compiler: levels of safety

:lf debugger command 3.4.3 : Miscellaneous commands 65

libcrypto-1_1.dll OpenSSL DLL 25.9.2.2 : How LispWorks locates the OpenSSL libraries 314

Index

1738

libcrypto-1_1-x64.dll OpenSSL DLL 25.9.2.2 : How LispWorks locates the OpenSSL libraries 314

libssl-1_1.dll OpenSSL DLL 25.9.2.2 : How LispWorks locates the OpenSSL libraries 314

libssl-1_1-x64.dll OpenSSL DLL 25.9.2.2 : How LispWorks locates the OpenSSL libraries 314

line-arguments-list variable 1503 27.4 : The Command Line 337, 27.14.1 : Encoding of file names and strings in OS interface
functions 345

:lisp-array FLI type descriptor with-pinned-objects 890

lisp-array-to-primitive-array function 1085

lisp-array-type-to-java-type function 1062

LispErrorReporter Java interface 1116

LispGuiErrorReporter Java interface 1116

lisp image

filename 27.3 : The Lisp Image 337, lisp-image-name 953

pathname 27.3 : The Lisp Image 337, lisp-image-name 953

lisp-image-name function 953 27.3 : The Lisp Image 337

lisp-java-instance-p function 1078

:lisp-simple-1d-array FLI type descriptor with-pinned-objects 890

lisp-to-jobject function 1079

LispWorks

customizing 13.2.1 : Configuration files 162

processes 19.1 : Introduction to processes 216

quitting 1.5 : Quitting LispWorks 56, 8.6 : Standard Action Lists 117

saving 1.2.1 : Saving a new image 54

starting 1.1 : The usual way to start LispWorks 54, 8.6 : Standard Action Lists 117

threads in 19 : Multiprocessing 216

LispWorks as a DLL 14 : LispWorks as a dynamic library 171

LispWorks as a dynamic library 14 : LispWorks as a dynamic library 171

LispWorks as a shared library 14 : LispWorks as a dynamic library 171

lispworks-directory variable 953

LispWorksDlsym C function 1658

LispWorks IDE

Debugger tool *enter-debugger-directly* 931

Help menu preface 53, 18 : The Metaobject Protocol 209, 33 : The COMMON-LISP Package 530

Inspector tool *inspect-through-gui* 952

Notifier window *enter-debugger-directly* 931

Profiler tool save-current-profiler-tree 831

LispWorksState C function 1658 14.3.1 : Automatic initialization 172

list-all-processes function 1158 19.2.2 : Finding out about processes 217

list-attributes function 1307 23.3.2.1 : Querying the schema 274

list-attribute-types function 1308 23.3.2.1 : Querying the schema 274

List Callees editor command calls-who 713

List Callers editor command who-calls 882

Index

1739

list-classes function 1309 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

listener start-tty-listener 984

main chapter 2 : The Listener 57

top level commands define-top-loop-command 1454

Listener commands

:? 2.2.1 : Standard top-level loop commands 58

:bug-form 2.2.1 : Standard top-level loop commands 58

:get 2.2.1 : Standard top-level loop commands 58

:help 2.2.1 : Standard top-level loop commands 58

:his 2.2.1 : Standard top-level loop commands 58

:redo 2.2.1 : Standard top-level loop commands 58

:use 2.2.1 : Standard top-level loop commands 58

listener process *initial-processes* 1157

listener prompt *prompt* 966

list-sql-streams function 1310 23.7 : SQL I/O recording 286

list-tables function 1311 23.3.2.1 : Querying the schema 274

load-all-patches function 954

load-code-coverage-data function 734

load-data-file function 792

load-fasl-or-lisp-file variable 794

Load File editor command 10.1.2 : Loading the code 130

LoadLibrary C function 14.1 : Introduction 171

loadLibrary Java method 1116

load-logical-pathname-translations function 559

load-on-demand 13.10.1 : Preloading selected modules 170

load-source-if-newer load-system 956

load-system function 955

:lob-locator initarg lob-stream 1312

lob-stream class 1312 23.11.1.1 : Retrieving LOB locators 291, 23.11.5 : Attaching a stream to a LOB locator 293, 23.11.9.5 :
Direct I/O 296

lob-stream-lob-locator accessor 23.11.5 : Attaching a stream to a LOB locator 293, lob-stream 1312

local-dspec-p function 666

locale 27.14.1 : Encoding of file names and strings in OS interface functions 345, 27.16 : The console external format 347

locale-file-encoding function 1504

locally-disable-sql-reader-syntax function 1313 23.5.3 : Utilities 284

locally-enable-sql-reader-syntax function 1313 23.5.3 : Utilities 284

location macro 667

lock system class 1159

lock-and-condition-variable-broadcast function 1159

lock-and-condition-variable-signal function 1160

Index

1740

lock-and-condition-variable-wait function 1162

lock-locked-p function 1163

lock-name function 1164 19.4 : Locks 225

lock-owned-by-current-process-p function 1165

lock-owner function 1165 19.4 : Locks 225

lock-recursively-locked-p function 1166

lock-recursive-p function 1167

locks 19.4 : Locks 225

log-bug-form function 618

logs-directory function 619

long-float type 560

long-namestring function 1589 27.3 : The Lisp Image 337

long-site-name accessor 560 27.2 : Site Name 337

loop macro 561 19.3.8.1 : hash tables locked while iterating 225, 23.3 : Functional interface 269, 23.3.1.5 :
Iteration 272, 23.4.3.2 : Iteration 277

extensions in Common SQL 23.3.1.5 : Iteration 272, 23.4.3.2 : Iteration 277

loop-processing-wait-state-collection function 466 25.8.1 : The wait-state-collection API 308, 25.8.2 : The Async-I/O-
State API 310

Low level atomic operations 19.13.1 : Low level atomic operations 238

low-level-atomic-place-p function 1505

lpcstr FLI type descriptor 1601

lpctstr FLI type descriptor 1602

lpcwstr FLI type descriptor 1605

lpstr FLI type descriptor 1601

lptstr FLI type descriptor 1602

lpwstr FLI type descriptor 1605

M

:m inspector command 4.2 : Inspect 78, 4.3 : Inspection modes 79

Mach-O bundle save-image 834

Mach-O dynamically linked shared library save-image 833

:macos-roman external format 26.7.1 : External format names 331

macros

advice 6.4 : Advice for macros and methods 96

allocation-in-gen-num 696 11.3.2.2 : Allocation in different generations 139, 11.3.12.2 : Allocating in specific generations 144

allowing-block-interrupts 1125 19.8.3 : Blocking interrupts 232

analyzing-special-variables-usage 697

appendf 897

at-location 649

atomic-decf 1435

atomic-exchange 1436

atomic-fixnum-decf 1437

atomic-fixnum-incf 1437

Index

1741

atomic-incf 1435

atomic-pop 1438

atomic-push 1438

block-promotion 710

catching-exceptions-bind 1011

catching-java-exceptions 1011

cd 713

compare-and-swap 1449

declaim 539 9.5 : Compiler control 121, 9.6 : Declare, proclaim, and declaim 124

def 650

defadvice 913 6.4 : Advice for macros and methods 96, 6.7 : Advice functions and macros 100

defclass 543

defglobal-parameter 747

defglobal-variable 747

define-action 916 8.1 : Defining action lists and actions 115

define-action-list 917 8.1 : Defining action lists and actions 115

define-atomic-modify-macro 1453

define-dde-client 1642 22.2.3.1 : Example advise loop 255

define-dde-dispatch-topic 1650 22.3.3.2 : Dispatching topics 258

define-dde-server 1651 22.3.1 : Starting a DDE server 256

define-dde-server-function 1652 22.3.1 : Starting a DDE server 257

define-declaration 748

define-dspec-alias 651

define-dspec-class 652

define-field-accessor 1018

define-foreign-callable 19.12 : Native threads and foreign code 238

define-form-parser 654 7.9.1 : Finding definitions in the LispWorks editor 111

define-java-caller 1019

define-java-callers 1021

define-java-constructor 1019

define-lisp-proxy 1022

define-top-loop-command 1454

defpackage 545

defparameter defglobal-parameter 747

defparser 1260 21.2 : Grammar rules 248

defstruct 13.11 : Structure printing 170

defsystem 919 20.1 : Introduction 243

defvar defglobal-variable 748

def-view-class 1289 23.1.1 : Overview 260, 23.4 : Object oriented interface 274, 23.4.2 : Object-Oriented Data Definition
Language (OODDL) 275

delete-advice 750 6.3 : Removing advice 95, 6.7 : Advice functions and macros 100

Index

1742

do-query 1298 23.3.1.5 : Iteration 272, 23.11.2 : Retrieving Lob Locators 291

error-situation-forms 764

execute-actions 936

extended-time 766 11.4.5 : Tuning the garbage collector 146, 11.6.1 : Timing the garbage collector 154, 12.6 : Profiling and
garbage collection 160

globally-accessible 1479 19.3.4.1 : Ways to guarantee the visibility of stores 220, 19.3.4.2 : Special care for macros and
accessors that may themselves allocate 221, 19.3.5.3 : An alternative solution using globally-accessible 222, 19.3.5.5 : Destructive
macros and accessors that allocate internally 223

handler-bind log-bug-form 619, output-backtrace 620

handler-case log-bug-form 619, output-backtrace 620

if-let 1002

ignore-errors log-bug-form 619, output-backtrace 620

impersonating-named-pipe-client 1585

impersonating-user 1586

import-java-class-definitions 1040

incf 19.3.3 : Mutable objects not supporting atomic access 219

in-package 557

in-static-area 1481 11.3.2.1 : Allocation of static objects 139

location 667

loop 561 19.3.8.1 : hash tables locked while iterating 225, 23.3 : Functional interface 269, 23.3.1.5 : Iteration 272, 23.4.3.2 :
Iteration 277

profile 813 12.3 : Running the profiler 157

push 19.3.3 : Mutable objects not supporting atomic access 219

push-end 967

push-end-new 967

rebinding 969

release-object-and-nullify 1537

removef 972

replacement-source-form 674

restart-case 578

simple-do-query 1367 23.3.1.5 : Iteration 272, 23.11.2 : Retrieving Lob Locators 291

step 586

throw-if-tag-found 864

time 589

trace 590

undefine-action 990 8.1 : Defining action lists and actions 115

undefine-action-list 991 8.1 : Defining action lists and actions 115

untrace 595

unwind-protect-blocking-interrupts 878 19.8.3 : Blocking interrupts 232

unwind-protect-blocking-interrupts-in-cleanups 879 19.8.3 : Blocking interrupts 233

when-let 1002

when-let* 1002

with-action-item-error-handling 1005

Index

1743

with-action-list-mapping 1006

with-code-coverage-generation 884

with-dde-conversation 1643 22.2.1 : Opening and closing conversations 254

with-debugger-wrapper 643

with-ensuring-gethash 885

with-exclusive-lock 1254 19.4 : Locks 226

with-hash-table-iterator 19.3.8.1 : hash tables locked while iterating 225

with-hash-table-locked 886 19.3.2 : Mutable objects supporting atomic access 219, 19.3.3 : Mutable objects not supporting
atomic access 219

with-heavy-allocation 887 11.3.12.4 : Controlling the garbage collector 144

with-interrupts-blocked 1255 19.8.3 : Blocking interrupts 232

with-lock 1255 19.4 : Locks 225

with-modification-change 1579

with-modification-check-macro 1580

with-noticed-socket-stream 527

with-other-threads-disabled 1581 19.8.3 : Blocking interrupts 233

without-code-coverage 888

without-interrupts 1256 19.8.3 : Blocking interrupts 233, 19.8.4 : Old interrupt blocking APIs removed 233

without-preemption 1257 19.8.3 : Blocking interrupts 233, 19.8.4 : Old interrupt blocking APIs removed 233

with-output-to-fasl-file 889

with-output-to-string 598

with-pinned-objects 890

with-prepared-statement 1398 23.3.1.8 : Prepared statements 274

with-registry-key 1620 27.17 : Accessing the Windows registry 347

with-remote-debugging-connection 645 3.7.5.1 : Client side connection management 74

with-remote-debugging-spec 646 3.7.7 : Using SSL for remote debugging 76

with-ring-locked 891

with-sharing-lock 1258 19.4 : Locks 226

with-sqlite-blob 1399 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-blob) 300

with-stream-input-buffer 1430

with-stream-output-buffer 1431

with-transaction 1400 23.3.1.2 : Modification 270, 23.3.1.4 : Transaction handling 271

with-unique-names 1007

with-windows-event-log-event-source 1605

mailbox system class 1168

mailbox-count function 1168

mailbox-empty-p function 1169

mailbox-full-p function 1170

mailbox-not-empty-p function 1171

mailbox-peek function 1171

mailbox-read function 1172

Index

1744

mailbox-reader-process function 1173

mailbox-send function 1174

mailbox-send-limited function 1175

mailbox-size function 1176

mailbox-wait function 1177

mailbox-wait-for-event function 1178

main-process variable 1179

make-array function 562 11.6.8 : Freeing of objects by the GC 155, 19.3.7 : Single-thread context arrays and hash-tables 224

make-barrier function 1180 19.7.2 : Synchronization barriers 231

make-condition-variable function 1181

make-current-allocation-permanent function 1505

make-generalized-time function 451

make-gesture-spec function 1507

make-hash-table function 564 11.6.8 : Freeing of objects by the GC 155, 19.3.7 : Single-thread context arrays and hash-tables 224

make-instance generic function 565

make-java-array function 1080

make-java-instance function 1080

make-lisp-proxy function 1081

make-lisp-proxy-with-overrides function 1081

make-lock function 1182

make-mailbox function 1183

make-method-lambda generic function 18.1.3 : Method Lambdas 209

make-mt-random-state function 956

make-named-timer function 1184

make-object-permanent function 1511

make-pathname function 566

make-permanent-simple-vector function 1512

make-ring function 795

make-semaphore function 1185 19.7.3 : Counting semaphores 232

make-sequence function 567

make-simple-int32-vector function 1513

make-simple-int64-vector function 1514

make-ssl-ctx function 467

make-stderr-stream function 1515

make-string function 568

make-string-output-stream function 569

make-symbol function 11.6.3 : Allocation of interned symbols and packages 154

make-timer function 1186 19.9 : Timers 235

make-typed-aref-vector function 1515

make-unlocked-queue function 796

Index

1745

make-unregistered-action-list function 957

make-wait-state-collection function 467 25.8.1 : The wait-state-collection API 308

map function 569

map-all-processes function 1187

map-all-processes-backtrace function 1188

map-code-coverage-data function 798

map-environment function 1516

maphash function 19.3.8.1 : hash tables locked while iterating 225

map-java-object-array function 1083

map-process-backtrace function 1188

map-processes function 1189

map-query function 1314 23.3.1.5 : Iteration 272, 23.11.2 : Retrieving Lob Locators 291

map-ring function 799

mark

and sweep 11.3.3 : GC operations 140

mark-and-sweep function 799

marking-gc function 1518 11.4.5 : Tuning the garbage collector 146, 11.4.5.1 : Interface for tuning the GC 147

maximum-ordinary-windows variable 13.6.2 : Specifying the number of editor windows 168

:maximum-overflow keyword 11.3.7 : Overflow 142

max-trace-indent variable 801 5.6 : Trace variables 91

:members keyword 20.2.3 : DEFSYSTEM members 244

memory allocation during tracing 5.2.8 : Storing the memory allocation made during a function call 88

memory clashes 14.4 : Relocation 173

avoiding 27.6 : Startup relocation 340

memory-growth-margin function 1519 11.3.12.1 : Determining memory usage 144

memory management

common features 11.6 : Common Memory Management Features 153

garbage collection strategy in 32-bit LispWorks 11.3.4 : Garbage collection strategy 140

image reduction 11.6.2 : Reducing image size 154

image relocation 27.4.1 : Command Line Arguments 339

in 32-bit LispWorks 11.3 : Memory Management in 32-bit LispWorks 138

in 64-bit LispWorks 11.4 : Memory Management in 64-bit LispWorks 144

main chapter 11 : Memory Management 135

mark and sweep 11.3.3 : GC operations 140

overflow 11.3.7 : Overflow 142

relocating the image 27.4.1 : Command Line Arguments 339

timing in 11.2.3 : Long-lived data 137, 11.4.5 : Tuning the garbage collector 146, 11.6.1 : Timing the garbage collector 154

merge function 570

merge-code-coverage-data function 802

merge-ef-specs function 1520

merge-pathnames function 571

Index

1746

Mersenne Twister mt-random 958

MessageHandler Java interface 1120

Metaobject Protocol 18 : The Metaobject Protocol 209

class options process-a-class-option 371

slot options process-a-slot-option 373

method

advice 6.4 : Advice for macros and methods 96

method-combination class 18.1.7 : Method combinations 210

methods

tracing 5.4 : Tracing methods 90

:minimum-for-sweep keyword 11.3.4 : Garbage collection strategy 140, 11.3.7 : Overflow 142

:minimum-overflow keyword 11.3.7 : Overflow 142

mInitErrorString Java field 1115

mMaxErrorLogsNumber Java field 1118

mMessagesMaxLength Java field 1119

mobile-gc-p function 1520

mobile-gc-sweep-objects function 1521

mod 2^32 arithmetic 28.2.2 : Fast 32-bit arithmetic 353

mod 2^64 arithmetic 28.2.3 : Fast 64-bit arithmetic 354

modify-hash function 803 19.3.2 : Mutable objects supporting atomic access 219, 19.3.3 : Mutable objects not supporting atomic
access 219

modifying a database 23.3.1.2 : Modification 270

monitor-directory-changes function 1590

MOP

AMOP compatibility 18 : The Metaobject Protocol 209

class options process-a-class-option 371

slot options process-a-slot-option 373

most-positive-fixnum constant 29.3 : Architectural constants 359

mt-random function 958

mt-random-state variable 959

mt-random-state type 959

mt-random-state-p function 960

multibyte-code-page-ef variable 1591 23.12.3 : External format for ODBC strings 298

multiprocessing

locks 19.4 : Locks 225

multi-processing

locks 19.4 : Locks 225

:multiprocessing delivery keyword 19.2.3.2 : Multiprocessing on startup 217

MySQL

connecting 23.2.6 : Connecting to MySQL 264

MySQL client library 23.2.6.3 : Locating the MySQL client library 265

macOS 23.2.6.4 : Special instructions for MySQL on macOS 266

Index

1747

mysql-library-directories variable 1315 23.2.6.3 : Locating the MySQL client library 265, 23.2.6.4 : Special instructions for
MySQL on macOS 266

mysql-library-path variable 1316 23.2.6.3 : Locating the MySQL client library 265, 23.2.6.4 : Special instructions for MySQL
on macOS 266

mysql-library-sub-directories variable 1317 23.2.6.3 : Locating the MySQL client library 265

N

:n debugger command 3.4.2 : Moving around the stack 63

:name initarg external-format-error 684

name-defined-dspecs function 668

name-definition-locations function 668

named-pipe-stream-name function 1591

name-only-form-parser function 669 7.9.2 : Using pre-defined form parsers 111

naming subfunctions declare 541

:new-generation-size keyword 11.3.8 : Behavior of generation 1 142

New in LispWorks 7.0

accepting-handle type 386

accepting-handle-collection function 387

accepting-handle-local-port function 387

accepting-handle-name function 388

accepting-handle-socket function 389

accepting-handle-user-info function 389

accept-tcp-connections-creating-async-io-states function 390

add-code-coverage-data function 692

:android-delivery feature *features* 554

android-funcall-in-main-thread function 701

android-funcall-in-main-thread-list function 701

android-get-current-activity function 702

android-main-process-for-testing variable 703

android-main-thread-p function 703

apply-in-wait-state-collection-process function 397

approaching-memory-limit condition class 1435

:arm feature *features* 554

ARM Linux/32-bit LispWorks compile-file 538

Asynchronous I/O 25.8 : Asynchronous I/O 308

async-io-state system class 399

async-io-state-abort function 400

async-io-state-abort-and-close function 401

async-io-state-address function 402

async-io-state-buffered-data-length function 404

async-io-state-discard function 406

async-io-state-finish function 407

Index

1748

async-io-state-get-buffered-data function 407

async-io-state-peer-address function 411

async-io-state-read-buffer function 411

async-io-state-read-with-checking function 413

async-io-state-receive-message function 416

async-io-state-send-message function 417

async-io-state-send-message-to-address function 418

async-io-state-write-buffer function 423

background-input variable 708

background-output variable 708

background-query-io variable 708

backlog argument to start-up-server start-up-server 518

base-char-ref accessor 1524

:bmp external format 680

bmp-char type 901

bmp-char-p function 902

:bmp-native external format 680

:bmp-reversed external format 680

bmp-string type 903

bmp-string-p function 904

brackets-limits argument to find-regexp-in-string find-regexp-in-string 941

call-java-method function 1008

call-java-method-error condition class 1009

call-java-non-virtual-method function 1009

call-wait-state-collection function 426

catching-exceptions-bind macro 1011

catching-java-exceptions macro 1011

checked-read-java-field function 1087

check-java-field function 1087

check-lisp-calls-initialized function 1012

clear-code-coverage function 718

close-accepting-handle function 426

close-async-io-state function 427

close-wait-state-collection function 429

code-coverage-data system class 719

code-coverage-data-generate-coloring-html function 720

code-coverage-data-generate-statistics function 723

code-coverage-file-stats system class 724

code-coverage-file-stats-called function 724

code-coverage-file-stats-counters-count function 724

code-coverage-file-stats-counters-executed function 725

Index

1749

code-coverage-file-stats-counters-hidden function 725

code-coverage-file-stats-fully-covered function 724

code-coverage-file-stats-hidden-covered function 724

code-coverage-file-stats-lambdas-count function 724

code-coverage-file-stats-not-called function 724

code-coverage-file-stats-partially-covered function 724

code-coverage-set-editor-colors function 727

code-coverage-set-editor-default-data function 728

code-coverage-set-html-background-colors function 729

com.lispworks.BugFormLogsList Java class 1111

com.lispworks.BugFormViewer Java class 1111

com.lispworks.LispCalls Java class 1107

com.lispworks.LispCalls.callDoubleA Java method 1107

com.lispworks.LispCalls.callDoubleV Java method 1107

com.lispworks.LispCalls.callIntA Java method 1107

com.lispworks.LispCalls.callIntV Java method 1107

com.lispworks.LispCalls.callObjectA Java method 1107

com.lispworks.LispCalls.callObjectV Java method 1107

com.lispworks.LispCalls.callVoidA Java method 1107

com.lispworks.LispCalls.callVoidV Java method 1107

com.lispworks.LispCalls.checkLispSymbol Java method 1108

com.lispworks.LispCalls.createLispProxy Java method 1109

com.lispworks.LispCalls.waitForInitialization Java method 1110

com.lispworks.Manager Java class 1111

com.lispworks.Manager.addMessage Java method 1119

com.lispworks.Manager.clearBugFormLogs Java method 1118

com.lispworks.Manager.getApplicationContext Java method 1121

com.lispworks.Manager.getClassLoader Java method 1121

com.lispworks.Manager.init Java method 1113

com.lispworks.Manager.init_result_code Java method 1114

com.lispworks.Manager.LispErrorReporter Java interface 1116

com.lispworks.Manager.LispGuiErrorReporter Java interface 1116

com.lispworks.Manager.loadLibrary Java method 1116

com.lispworks.Manager.MessageHandler Java interface 1120

com.lispworks.Manager.mInitErrorString Java field 1115

com.lispworks.Manager.mMaxErrorLogsNumber Java field 1118

com.lispworks.Manager.mMessagesMaxLength Java field 1119

com.lispworks.Manager.setClassLoader Java method 1123

com.lispworks.Manager.setCurrentActivity Java method 1122

com.lispworks.Manager.setErrorReporter Java method 1116

com.lispworks.Manager.setGuiErrorReporter Java method 1116

Index

1750

com.lispworks.Manager.setLispTempDir Java method 1123

com.lispworks.Manager.setMessageHandler Java method 1120

com.lispworks.Manager.setRuntimeLispHeapDir Java method 1122

com.lispworks.Manager.setTextView Java method 1121

com.lispworks.Manager.showBugFormLogs Java method 1118

com.lispworks.Manager.status Java method 1114

Conditional throw and checking for catch in the dynamic environment 28.5 : Conditional throw and checking for catch in the dynamic
environment 356

copy-code-coverage-data function 734

copy-current-code-coverage function 734

copy-standard-object function 369

create-and-run-wait-state-collection function 431

create-async-io-state function 433

create-async-io-state-and-connected-tcp-socket function 434

create-async-io-state-and-connected-udp-socket function 437

create-async-io-state-and-udp-socket function 438

create-instance-from-jobject function 1013

create-instance-jobject function 1014

create-instance-jobject-list function 1014

create-java-object function 1015

create-java-object-error condition class 1016

current-process-kill function 1143

current-process-send function 1146

current-process-set-terminate-method function 1146

decode-to-db-standard-date function 1287

decode-to-db-standard-timestamp function 1287

default-constructor-arguments generic function 1016

default-name-constructor function 1017

define-field-accessor macro 1018

define-java-caller macro 1019

define-java-callers macro 1021

define-java-constructor macro 1019

define-lisp-proxy macro 1022

delivered-image-p function 751

deliver-to-android-project function 751

destructive-add-code-coverage-data function 692

destructive-merge-code-coverage-data function 802

destructive-reverse-subtract-code-coverage-data function 692

destructive-subtract-code-coverage-data function 692

detect-unicode-bom function 1458

detect-utf32-bom function 1458

detect-utf8-bom function 1458

Index

1751

dump-form function 756

dump-forms-to-file function 757

editor-color-code-coverage function 759

:embedded-module member option for defsystem :type :c-file defsystem 921

encode-db-standard-date function 1302

encode-db-standard-timestamp function 1302

ensure-hash-entry function 763

ensure-is-jobject function 1036

ensure-lisp-classes-from-tree function 1026

ensure-supers-contain-java.lang.object function 1028

errorp argument to gesture-spec-to-character gesture-spec-to-character 1472

error-situation-forms macro 764

example-edit-file function 934

fasl-error condition class 768

fast-directory-files function 769

fdf-handle-directory-p function 769

fdf-handle-directory-string function 769

fdf-handle-last-access function 769

fdf-handle-last-modify function 769

fdf-handle-link-p function 769

fdf-handle-size function 769

fdf-handle-writable-p function 769

field-access-exception condition class 1029

field-exception condition class 1029

filter-code-coverage-data function 773

find-encoding-option supports GNU Emacs coding option find-encoding-option 1466

find-java-class function 1030

find-throw-tag function 775

format-to-java-host function 1031

funcall-async function 1151

funcall-async-list function 1151

generate-code-coverage function 782

generate-java-class-definitions function 1032

gesture-spec-accelerator-bit constant 1470

gesture-spec-caps-lock-bit constant 1470

gesture-spec-control-bit constant 1470

gesture-spec-hyper-bit constant 1470

gesture-spec-meta-bit constant 1470

gesture-spec-shift-bit constant 1470

gesture-spec-super-bit constant 1470

getApplicationContext Java method com.lispworks.Manager.getApplicationContext 1121

Index

1752

getClassLoader Java method com.lispworks.Manager.getClassLoader 1121

get-code-coverage-delta function 784

get-default-local-ipv6-address function 455

get-folder-path is now available on all platforms get-folder-path 1475

get-gc-timing function 856

gethash-ensuring function 787

get-ip-default-zone-id function 458

get-java-virtual-machine function 1036

get-jobject function 1036

get-primitive-array-region function 1037

get-service-entry function 459

get-superclass-and-interfaces-tree function 1038

immediatep function 1481

import-java-class-definitions macro 1040

init_result_code Java method com.lispworks.Manager.init_result_code 1114

int32-to-int64 function 1491

int64 type 1492

int64* function 1493

int64+ function 1493

int64- function 1493

int64/ function 1493

int64/= function 1494

+int64-0+ symbol macro 1495

+int64-1+ symbol macro 1495

int64-1+ function 1496

int64-1- function 1496

int64< function 1494

int64<< function 1496

int64<= function 1494

int64= function 1494

int64> function 1494

int64>= function 1494

int64>> function 1496

int64-aref accessor 1497

int64-logand function 1498

int64-logandc1 function 1498

int64-logandc2 function 1498

int64-logbitp function 1498

int64-logeqv function 1498

int64-logior function 1498

int64-lognand function 1498

Index

1753

int64-lognor function 1498

int64-lognot function 1498

int64-logorc1 function 1498

int64-logorc2 function 1498

int64-logtest function 1498

int64-logxor function 1498

int64-minusp function 1500

int64-plusp function 1500

int64-to-int32 function 1501

int64-to-integer function 1501

int64-zerop function 1500

integer-to-int64 function 1503

intern-and-export-list function 1045

:ios-delivery feature *features* 554

jaref accessor 1046

java-array-element-type function 1047

java-array-error condition class 1048

java-array-indices-error condition class 1048

java-array-length function 1049

java-array-simple-error condition class 1050

java-bad-jobject condition class 1050

java-class-error condition class 1051

java-definition-error condition class 1051

java-exception condition class 1052

java-field-class-name-for-setting function 1087

java-field-error condition class 1051

java-field-setting-error condition class 1053

java-id-exception condition class 1053

java-instance-without-jobject-error condition class 1054

java-interface-error condition class 1054

java-low-level-exception condition class 1055

java-method-error condition class 1051

java-method-exception condition class 1055

java-normal-exception condition class 1056

java-not-a-java-object-error condition class 1057

java-not-an-array-error condition class 1057

java-object-array-element-type function 1058

java-objects-eq function 1059

java-out-of-bounds-error condition class 1060

java-primitive-array-element-type function 1060

java-serious-exception condition class 1061

Index

1754

java-storing-wrong-type-error condition class 1060

java-type-to-lisp-array-type function 1062

java-vm-poi FLI type descriptor 1063

jboolean FLI type descriptor 1063

jbyte FLI type descriptor 1063

jchar FLI type descriptor 1063

jdouble FLI type descriptor 1063

jfloat FLI type descriptor 1063

jint FLI type descriptor 1063

jlong FLI type descriptor 1063

jni-env-poi FLI type descriptor 1064

jobject FLI type descriptor 1065

jobject-class-name function 1067

jobject-ensure-global function 1068

jobject-of-class-p function 1070

jobject-p function 1070

jobject-pretty-class-name function 1071

jobject-string function 1072

jobject-to-lisp function 1072

jshort FLI type descriptor 1064

jvref accessor 1077

KOI8-R external format 26.7.1 : External format names 332

lisp-array-to-primitive-array function 1085

lisp-array-type-to-java-type function 1062

LispErrorReporter Java interface com.lispworks.Manager.LispErrorReporter 1116

LispGuiErrorReporter Java interface com.lispworks.Manager.LispGuiErrorReporter 1116

lisp-java-instance-p function 1078

lisp-to-jobject function 1079

LispWorks for Android Runtime on 32-bit ARM compile-file 538

load-code-coverage-data function 734

load-data-file function 792

loadLibrary Java method com.lispworks.Manager.loadLibrary 1116

loop-processing-wait-state-collection function 466

mailbox-wait function 1177

make-java-array function 1080

make-java-instance function 1080

make-lisp-proxy function 1081

make-lisp-proxy-with-overrides function 1081

make-ring function 795

make-simple-int64-vector function 1514

make-wait-state-collection function 467

Index

1755

map-code-coverage-data function 798

map-java-object-array function 1083

map-ring function 799

merge-code-coverage-data function 802

object-pointer function 1523

octet-ref accessor 1524

open-tcp-stream-using-java function 472

package-flagged-p function 1529

pipe-exit-status function 1530

position-in-ring function 808

position-in-ring-forward function 808

primitive-array-to-lisp-array function 1085

process-interrupt-list function 1200

process-terminate function 1219

read-java-field function 1087

record-java-class-lisp-symbol function 1089

record-message-in-windows-event-log function 1594

replacement-source-form macro 674

replace-socket-stream-socket function 477

replace-standard-object function 374

report-error-to-java-host function 1089

reset-code-coverage function 718

reset-code-coverage-snapshot function 784

reset-java-interface-for-new-jvm function 1090

reset-ring function 822

restore-code-coverage-data function 718

reverse-subtract-code-coverage-data function 692

ring-length function 823

ring-name function 823

ringp function 824

ring-pop function 825

ring-push function 826

ring-ref accessor 826

rotate-ring function 827

run-shell-command is implemented on Windows run-shell-command 1539

save-code-coverage-data function 734

save-current-code-coverage function 734

save-exit-status argument to open-pipe open-pipe 1525

send-message-to-java-host function 1091

sequencep function 976

set-approaching-memory-limit-callback function 1544

Index

1756

set-code-coverage-snapshot function 784

setErrorReporter Java method com.lispworks.Manager.setErrorReporter 1116

set-funcall-async-limit function 1246

setGuiErrorReporter Java method com.lispworks.Manager.setGuiErrorReporter 1116

set-java-field function 1087

set-primitive-array-region function 1037

setup-field-accessor function 1094

setup-java-caller function 1095

setup-java-constructor function 1095

setup-lisp-proxy function 1096

simple-bmp-string type 903

simple-bmp-string-p function 904

simple-int64-vector type 1569

socket-stream-shutdown function 497

standard-java-object class 1097

start-gc-timing function 856

status Java method com.lispworks.Manager.status 1114

stop-gc-timing function 856

string-append* function 986

structurep function 987

subtract-code-coverage-data function 692

suspend argument to stop-profiling stop-profiling 859

switch-open-tcp-stream-with-ssl-to-java function 524

symbol-dynamically-bound-p function 863

Test for dynamic bindings 28.6 : Checking for a dynamic binding 356

The HTML version of the CLOS Metaobject protocol is available via the Help menu. 18 : The Metaobject Protocol 209

throw-an-exception function 1098

throw-if-tag-found macro 864

unlocked-queue type 877

User Guide chapter "Code Coverage" 10 : Code Coverage 130

User Guide section "Code signing in saved images" 13.3.6 : Code signing in saved images 164

User Guide section "Specifying the target for connecting and binding a socket" 25.4 : Specifying the target for connecting and binding a
socket 307

value :delete for keyword argument :load of compile-file compile-file 536

value :none for direction argument to open-pipe open-pipe 1525

verify-java-caller function 1100

verify-java-callers function 1101

verify-lisp-proxies function 1103

verify-lisp-proxy function 1103

wait-for-wait-state-collection function 525

wait-state-collection class 525

wait-state-collection-stop-loop function 527

Index

1757

with-code-coverage-generation macro 884

with-ensuring-gethash macro 885

without-code-coverage macro 888

with-output-to-fasl-file macro 889

with-ring-locked macro 891

with-windows-event-log-event-source macro 1605

write-java-class-definitions-to-file function 1104

write-java-class-definitions-to-stream function 1104

New in LispWorks 7.1

accepts-n-syntax function 1271

allocated-in-its-own-segment-p function 1433

android-build-value function 699

:arm64 feature *features* 554

ARM Linux/64-bit LispWorks compile-file 538

async-io-state-attach-ssl function 402

async-io-state-ctx function 404

async-io-state-detach-ssl function 405

async-io-state-handshake function 408

async-io-state-ssl function 421

async-io-state-ssl-side function 422

client-remote-debugging system class 628

close-remote-debugging-connection function 600

configure-remote-debugging-spec function 601

copy-from-sqlite-raw-blob function 1379

count-regexp-occurrences function 910

create-client-remote-debugging-connection function 603

create-ide-remote-debugging-connection function 603

current-function-name function 741

default-client-remote-debugging-server-port variable 607

default-ide-remote-debugging-server-port variable 607

define-declaration macro 748

ensure-remote-debugging-connection function 608

get-host-java-virtual-machine function 1035

get-maximum-allocated-in-generation-2-after-gc function 1477

globally-accessible macro 1479

ide-attach-remote-output-stream function 611

ide-connect-remote-debugging function 612

ide-eval-form-in-remote function 613

ide-find-remote-debugging-connection function 615

ide-funcall-in-remote function 613

ide-list-remote-debugging-connections function 615

Index

1758

ide-open-a-listener function 617

ide-remote-debugging system class 628

ide-set-default-remote-debugging-connection function 615

ide-set-remote-symbol-value function 613

init-java-interface function 1042

java-null constant 1058

mailbox-full-p function 1170

mailbox-send-limited function 1175

mailbox-size function 1176

make-current-allocation-permanent function 1505

make-object-permanent function 1511

make-permanent-simple-vector function 1512

make-unlocked-queue function 796

mobile-gc-p function 1520

mobile-gc-sweep-objects function 1521

object-dspec function 670

pipe-close-connection function 1530

release-object-and-nullify macro 1537

remote-debugging-connection system class 628

remote-debugging-connection-add-close-cleanup function 628

remote-debugging-connection-name function 629

remote-debugging-connection-peer-address function 630

remote-debugging-connection-remove-close-cleanup function 628

remote-debugging-stream-peer-address generic function 631

remote-inspect function 632

remote-object-connection function 633

remote-object-p function 633

replace-from-sqlite-blob function 1376

replace-from-sqlite-raw-blob function 1379

replace-into-sqlite-blob function 1376

rotate-byte function 974

safe-format-to-limited-string function 828

safe-format-to-string function 828

safe-prin1-to-string function 828

safe-princ-to-string function 828

save-current-profiler-tree function 830

set-default-remote-debugging-connection function 635

set-expected-allocation-in-generation-2-after-gc function 1549

set-generation-2-gc-options function 1552

set-process-profiling processes value :new set-process-profiling 848

set-promote-generation-1 function 1559

Index

1759

set-remote-debugging-connection function 636

set-reserved-memory-policy function 1560

set-split-promotion function 1563

set-static-segment-size function 1564

setup-deliver-dynamic-library-for-java function 1092

setup-java-interface-callbacks function 1042

simple-int32-vector-length function 1568

simple-int32-vector-p function 1568

simple-int64-vector-length function 1570

simple-int64-vector-p function 1570

socket-stream-handshake function 495

software-version detects Windows 10 correctly software-version 584

specific-valid-file-encoding function 1572

specific-valid-file-encodings variable 1573

sql-expression-object system class 1373

sqlite-blob system class 1374

sqlite-blob-length function 1376

sqlite-blob-p function 1376

sqlite-close-blob function 1376

sqlite-last-insert-rowid function 1375

sqlite-open-blob function 1376

sqlite-raw-blob system class 1378

sqlite-raw-blob-length function 1379

sqlite-raw-blob-p function 1379

sqlite-raw-blob-ref function 1379

sqlite-raw-blob-valid-p function 1379

sqlite-reopen-blob function 1376

start-client-remote-debugging-server function 637

start-ide-remote-debugging-server function 639

start-remote-listener function 640

string-needs-n-prefix function 1390

string-prefix-with-n-if-needed function 1391

string-trim-whitespace function 861

to-java-host-stream variable 1099

to-java-host-stream-no-scroll variable 1100

undefine-declaration function 877

unlocked-queue-count function 796

unlocked-queue-peek function 796

unlocked-queue-read function 796

unlocked-queue-ready function 796

unlocked-queue-send function 796

Index

1760

unlocked-queue-size function 796

use-n-syntax-for-non-ascii-strings variable 1397

Using Asynchronous I/O with SSL 25.9.5 : Using Asynchronous I/O with SSL 315, 25.9.7 : Attaching SSL to an existing socket 318

with-remote-debugging-connection macro 645

with-remote-debugging-spec macro 646

with-sqlite-blob macro 1399

write-string-with-properties function 891

New in LispWorks 8.0

add-package-local-nickname function 693

allocation argument to make-typed-aref-vector make-typed-aref-vector 1516

Apple silicon Macintosh/64-bit LispWorks compile-file 538

async-io-ssl-failure-indicator-from-failure-args function 398

building-main-architecture-p function 711

building-universal-intermediate-p function 712

call-java-static-method function 1010

close-socket-handle function 428

count argument to split-sequence split-sequence 982

count argument to split-sequence-if and split-sequence-if-not split-sequence-if 983

create-ssl-client-context function 440

create-ssl-server-context function 440

create-ssl-socket-stream function 445

create-universal-binary function is no longer deprecated create-universal-binary 740

:exclude value for gc argument to set-up-profiler set-up-profiler 853

external-format argument to open-pipe open-pipe 1525

external-format argument to run-shell-command run-shell-command 1540

file-binary-bytes function 771

file-link-p function 771

find-ssl-connection-from-ssl-ref function 450

force-using-select-for-io function 1467

format-to-system-log function 893

generalized-time system class 451

generalized-time-p function 451

generalized-time-pprint function 451

generalized-time-string function 451

gesture-spec system class 1469

get-certificate-common-name function 453

get-certificate-data function 453

get-certificate-serial-number function 453

get-throwable-backtrace-strings function 1039

if-exists argument to connect must be :new if name is not supplied connect 1278

implementation argument to ensure-ssl ensure-ssl 449

Index

1761

ipv6 argument to configure-remote-debugging-spec configure-remote-debugging-spec 601

ipv6 argument to ide-connect-remote-debugging ide-connect-remote-debugging 612

ipv6 argument to start-client-remote-debugging-server start-client-remote-debugging-server 637

ipv6 argument to start-ide-remote-debugging-server start-ide-remote-debugging-server 639

ipv6 argument to with-remote-debugging-spec with-remote-debugging-spec 646

java-program-error condition class 1061

jobject-call-method function 1065

jobject-call-method-error condition class 1066

jvalue FLI type descriptor 1073

jvalue-store-jboolean function 1074

jvalue-store-jbyte function 1074

jvalue-store-jchar function 1074

jvalue-store-jdouble function 1075

jvalue-store-jfloat function 1075

jvalue-store-jint function 1074

jvalue-store-jlong function 1074

jvalue-store-jobject function 1076

jvalue-store-jshort function 1074

LispWorks for Android Runtime on 32-bit x86 compile-file 538

LispWorks for Android Runtime on 64-bit ARM compile-file 538

LispWorks for Android Runtime on 64-bit x86_64 compile-file 538

Locale-based encoding of file names and strings in OS interface functions 27.14.1 : Encoding of file names and strings in OS interface
functions 345

Locale-based encoding of the console 27.16 : The console external format 347

:local-nicknames option to defpackage defpackage 546

make-generalized-time function 451

non-virtual-p argument to define-java-caller define-java-caller 1019, setup-java-caller 1096

package-locally-nicknamed-by-list function 805

package-local-nicknames function 805

:package-local-nicknames feature *features* 554

parse-printed-generalized-time function 451

precompiled-regexp system class 961

precompiled-regexp-p function 962

prepared-statement-set-and-execute function 1355

prepared-statement-set-and-execute* function 1355

prepared-statement-set-and-query function 1355

prepared-statement-set-and-query* function 1355

profiler-tree-to-allocation-functions function 815

release-certificate function 502

release-certificates-vector function 502

remove-package-local-nickname function 819

Index

1762

reset-ssl-abstract-context function 478

return-jobject argument to define-java-caller define-java-caller 1019

return-jobject argument to setup-java-caller setup-java-caller 1096

return-match-tree-p argument to parser functions defined by defparser 21.3 : Functions defined by defparser 250

save-universal-from-script function is no longer deprecated save-universal-from-script 838

sec-certificate-ref FLI type descriptor 479

set-console-external-format function 841

socket-connect-error condition class 486

socket-connection-peer-address function 487

socket-connection-socket function 488

socket-create-error condition class 488

socket-io-error condition class 491

source location for macros that group other definition define-form-parser 655

space-string argument to count-regexp-occurrences count-regexp-occurrences 911

space-string argument to find-regexp-in-string find-regexp-in-string 941

space-string argument to precompile-regexp precompile-regexp 963

sql-failed-to-connect-error condition class 1373

ssl-abstract-context system class 499

ssl argument to configure-remote-debugging-spec configure-remote-debugging-spec 601

ssl argument to ide-connect-remote-debugging ide-connect-remote-debugging 612

ssl argument to start-client-remote-debugging-server start-client-remote-debugging-server 637

ssl argument to start-ide-remote-debugging-server start-ide-remote-debugging-server 639

ssl argument to with-remote-debugging-spec with-remote-debugging-spec 646

ssl-connection-copy-peer-certificates function 502

ssl-connection-get-peer-certificates-data function 504

ssl-connection-protocol-version function 506

ssl-connection-read-certificates function 506

ssl-connection-read-dh-params-file function 507

ssl-connection-ssl-ref function 508

ssl-connection-verify function 509

ssl-context-ref FLI type descriptor 510

ssl-default-implementation accessor 512

ssl-handshake-timeout condition class 514

ssl-implementation-available-p function 514

ssl-verification-failure condition class 516

static-p argument to define-java-caller define-java-caller 1019

static-p argument to setup-java-caller setup-java-caller 1096

string=-limited function 860

string-equal-limited function 860

support for (complex single-float) and (complex double-float) specialized array representations make-array 562

support for package-local nicknames defpackage 546, *features* 554, add-package-local-nickname 693, package

Index

1763

locally-nicknamed-by-list 805, package-local-nicknames 805, remove-package-local-nickname 819

support for the GB18030 external format 26.7.1 : External format names 332

timeout argument to pipe-exit-status pipe-exit-status 1531

with-pinned-objects macro 890

with-prepared-statement macro 1398

write-to-system-log function 893

x509-pointer FLI type descriptor 528

New in LispWorks 8.1

apple-err-ssl-bad-cert constant 393

apple-err-ssl-bad-cipher-suite constant 393

apple-err-ssl-bad-configuration constant 394

apple-err-ssl-bad-record-mac constant 394

apple-err-ssl-buffer-overflow constant 393

apple-err-ssl-cert-expired constant 393

apple-err-ssl-cert-not-yet-valid constant 393

apple-err-ssl-client-cert-requested constant 394

apple-err-ssl-client-hello-received constant 394

apple-err-ssl-closed-abort constant 393

apple-err-ssl-closed-graceful constant 393

apple-err-ssl-closed-no-notify constant 393

apple-err-ssl-connection-refused constant 394

apple-err-ssl-crypto constant 393

apple-err-ssl-decryption-fail constant 394

apple-err-ssl-fatal-alert constant 393

apple-err-ssl-host-name-mismatch constant 394

apple-err-ssl-illegal-param constant 393

apple-err-ssl-internal constant 393

apple-err-ssl-module-attach constant 393

apple-err-ssl-negotiation constant 393

apple-err-ssl-no-root-cert constant 393

apple-err-ssl-peer-access-denied constant 393

apple-err-ssl-peer-auth-completed constant 394

apple-err-ssl-peer-bad-cert constant 393

apple-err-ssl-peer-bad-record-mac constant 393

apple-err-ssl-peer-cert-expired constant 393

apple-err-ssl-peer-cert-revoked constant 393

apple-err-ssl-peer-cert-unknown constant 393

apple-err-ssl-peer-decode-error constant 393

apple-err-ssl-peer-decompress-fail constant 393

apple-err-ssl-peer-decrypt-error constant 393

apple-err-ssl-peer-decryption-fail constant 393

Index

1764

apple-err-ssl-peer-export-restriction constant 394

apple-err-ssl-peer-handshake-fail constant 393

apple-err-ssl-peer-insufficient-security constant 394

apple-err-ssl-peer-internal-error constant 394

apple-err-ssl-peer-no-renegotiation constant 394

apple-err-ssl-peer-protocol-version constant 394

apple-err-ssl-peer-record-overflow constant 393

apple-err-ssl-peer-unexpected-msg constant 393

apple-err-ssl-peer-unknown-ca constant 393

apple-err-ssl-peer-unsupported-cert constant 393

apple-err-ssl-peer-user-cancelled constant 394

apple-err-ssl-protocol constant 393

apple-err-ssl-record-overflow constant 394

apple-err-ssl-session-not-found constant 393

apple-err-ssl-unexpected-record constant 394

apple-err-ssl-unknown-root-cert constant 393

apple-err-ssl-weak-peer-ephemeral-dh-key constant 394

apple-err-ssl-would-block constant 393

apple-err-ssl-x-cert-chain-invalid constant 393

async-io-state-shutdown function 420

concatenate* function 733

copy-permissions-p argument to copy-file copy-file 910

copy-times-p argument to copy-file copy-file 910

current-directory argument to call-system on non-Windows platforms call-system 1442, call-system-showing-
output 1444

current-directory argument to open-pipe open-pipe 1525

current-directory argument to run-shell-command run-shell-command 1540

decoding bytes returned by a function with decode-external-string decode-external-string 682

external-format argument to call-system-showing-output call-system-showing-output 1444

handling of characters with case that are not base-char 26.4.1 : How Common Lisp functions handle characters with case 328

image-type argument to create-universal-binary create-universal-binary 740

into argument to decode-external-string decode-external-string 682

into argument to encode-lisp-string encode-lisp-string 683

jobject-field-value accessor 1069

monitor-directory-changes function 1590

output-stream argument to create-universal-binary create-universal-binary 740

print-escape-potential-numbers variable 809

remove-user-preference function 973

set-compile-file-proclaim-handling function 977

set-dpi-awareness function 1598

ssl-connection-implementation function 505

Index

1765

ssl-version-or-cipher-mismatch condition class 516

:static-buffers initarg for buffered-stream buffered-stream 1402

wait-state-collection-alive-p function 526

Newly documented in LispWorks 7.0

sort-inspector-p generic function sort-inspector-p 1571

Newly documented in LispWorks 7.1

prepared-statement type prepared-statement 1355

push-end macro push-end 967

push-end-new macro push-end 967

return value :stop for timer functions make-timer 1186

Newly documented in LispWorks 8.0

if-let macro when-let 1002

message-stream argument to parser functions defined by defparser 21.3 : Functions defined by defparser 250

right-paren-whitespace variable *right-paren-whitespace* 1538

socket-error generic function socket-error 490

stream-read-sequence generic function stream-read-sequence 1422

stream-write-sequence generic function stream-write-sequence 1427

non-terminal in grammar 21.2 : Grammar rules 248

normal-gc function 804 11.3.12.4 : Controlling the garbage collector 144

notice-fd function 1190

nstring-capitalize function 26.4.1 : How Common Lisp functions handle characters with case 328

nstring-upcase function 26.4.1 : How Common Lisp functions handle characters with case 328

O

object

object-oriented interface in Common SQL 23.4 : Object oriented interface 274

static 11.3.2.1 : Allocation of static objects 139

object-address function 1522

object-dspec function 670

object finalization 11.6.6 : Special actions 154

Object Oriented DDL in Common SQL 23.4.2 : Object-Oriented Data Definition Language (OODDL) 275

Object Oriented DML in Common SQL 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

object-pointer function 1523

octet-ref accessor 1524

ODBC

connecting 23.2.5 : Connecting to ODBC 263

OODDL 23.4.2 : Object-Oriented Data Definition Language (OODDL) 275

OODML 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

open function 572

opening a URL open-url 1528

open-named-pipe-stream function 1592

Index

1766

open-pipe function 1525 27.7 : Calling external programs 342, 27.7.1 : Interpreting the exit status 342, 27.14.1 : Encoding of file
names and strings in OS interface functions 345

open-registry-key function 1614 27.17 : Accessing the Windows registry 347

open-serial-port function 1263

OpenSSL 25.9 : Using SSL 313

OpenSSL DLLs

libcrypto-1_1.dll 25.9.2.2 : How LispWorks locates the OpenSSL libraries 314

libcrypto-1_1-x64.dll 25.9.2.2 : How LispWorks locates the OpenSSL libraries 314

libssl-1_1.dll 25.9.2.2 : How LispWorks locates the OpenSSL libraries 314

libssl-1_1-x64.dll 25.9.2.2 : How LispWorks locates the OpenSSL libraries 314

openssl-version function 468

open-stream-p generic function 573

open-tcp-stream function 469 25.9.4 : Creating a stream with SSL 315, 25.9.6 : Keyword arguments for use with SSL 316

open-tcp-stream-using-java function 472

open-temp-file function 738 27.15.3 : Temporary files 346

open-url function 1528

operating system 27.1 : The Operating System 337

optimization

complex numbers 9.7.4 : Double-float complex number optimization 126

fast 32-bit arithmetic 28.2.2 : Fast 32-bit arithmetic 353

fast 64-bit arithmetic 28.2.3 : Fast 64-bit arithmetic 354

floating point 9.7.3 : Floating point optimization 126

foreign slot access 9.7.8 : Inlining foreign slot access 129

of compiler 9.5 : Compiler control 121

tail call 9.7.5 : Tail call optimization 127, 12.5 : Profiling pitfalls 159

optimization declarations 9.5 : Compiler control 121

optimization hints 9.7.1 : Compiler optimization hints 125, declare 540

optimize 9.5 : Compiler control 121

optimize qualities 9.5 : Compiler control 121

:optimize-slot-access class option 18.1.1 : Instance Structure Protocol 209, 18.3.2 : Accessors not using structure instance
protocol 211, slot-value-using-class 380, defclass 543

Oracle

connecting 23.2.4 : Connecting to Oracle 263

Oracle Call interface

in Common SQL 23.2.4 : Connecting to Oracle 263

Oracle large objects 23.11 : Oracle LOB interface 291

Oracle LOB interface 23.11 : Oracle LOB interface 291

Oracle locator objects 23.11 : Oracle LOB interface 291

ora-lob-append function 1317 23.11.9.3 : Modifying LOBs 296

ora-lob-assign function 1318 23.11.9.2 : LOB management functions 295

ora-lob-char-set-form function 1319 23.11.7 : Determining the type of a LOB 294

Index

1767

ora-lob-char-set-id function 1320

ora-lob-close function 1320 23.11.9.3 : Modifying LOBs 296

ora-lob-copy function 1321 23.11.9.3 : Modifying LOBs 296

ora-lob-create-empty function 1322 23.11.1.3 : Inserting empty LOBs 291, 23.11.9.2 : LOB management functions 295

ora-lob-create-temporary function 1323 23.11.9.6 : Temporary LOBs 297

ora-lob-disable-buffering function 1324 23.11.9.7 : Control of buffering 297

ora-lob-element-type function 1325 23.11.7 : Determining the type of a LOB 294

ora-lob-enable-buffering function 1325 23.11.9.7 : Control of buffering 297

ora-lob-env-handle function 1326 23.11.6 : Interactions with foreign calls 294

ora-lob-erase function 1327 23.11.9.3 : Modifying LOBs 296

ora-lob-file-close function 1328 23.11.9.4 : File operations 296

ora-lob-file-close-all function 1329 23.11.9.4 : File operations 296

ora-lob-file-exists function 1329

ora-lob-file-get-name function 1330

ora-lob-file-is-open function 1331

ora-lob-file-open function 1332 23.11.9.4 : File operations 296

ora-lob-file-set-name function 1332 23.11.9.4 : File operations 296

ora-lob-flush-buffer function 1333 23.11.9.7 : Control of buffering 297

ora-lob-free function 1334 23.11.9.2 : LOB management functions 295

ora-lob-free-temporary function 1335 23.11.9.6 : Temporary LOBs 297

ora-lob-get-buffer function 1335 23.11.6 : Interactions with foreign calls 294, 23.11.9.5 : Direct I/O 296

ora-lob-get-chunk-size function 1337 23.11.9.1 : Querying functions 295

ora-lob-get-length function 1338 23.11.9.1 : Querying functions 295

ora-lob-internal-lob-p function 1339 23.11.7 : Determining the type of a LOB 294, 23.11.9.1 : Querying functions 295

ora-lob-is-equal function 1339 23.11.9.1 : Querying functions 295

ora-lob-is-open function 1340 23.11.9.1 : Querying functions 295

ora-lob-is-temporary function 1341 23.11.9.1 : Querying functions 295, 23.11.9.6 : Temporary LOBs 297

ora-lob-load-from-file function 1342 23.11.9.3 : Modifying LOBs 296

ora-lob-lob-locator function 1343 23.11.6 : Interactions with foreign calls 294

ora-lob-locator-is-init function 1343 23.11.9.1 : Querying functions 295

ora-lob-open function 1344 23.11.9.3 : Modifying LOBs 296

ora-lob-read-buffer function 1345 23.11.8 : Reading and writing from and to LOBs 295, 23.11.9.5 : Direct I/O 296

ora-lob-read-foreign-buffer function 1346 23.11.6 : Interactions with foreign calls 294, 23.11.8 : Reading and writing from
and to LOBs 295, 23.11.9.5 : Direct I/O 296

ora-lob-read-into-plain-file function 1347 23.11.9.5 : Direct I/O 296

ora-lob-svc-ctx-handle function 1348 23.11.6 : Interactions with foreign calls 294

ora-lob-trim function 1349 23.11.9.3 : Modifying LOBs 296

ora-lob-write-buffer function 1350 23.11.8 : Reading and writing from and to LOBs 295, 23.11.9.5 : Direct I/O 296

ora-lob-write-foreign-buffer function 1351 23.11.6 : Interactions with foreign calls 294, 23.11.8 : Reading and writing from
and to LOBs 295, 23.11.9.5 : Direct I/O 296

ora-lob-write-from-plain-file function 1352 23.11.9.5 : Direct I/O 296

Index

1768

output

trace 5.2.6 : Directing trace output 87

output-backtrace function 620

output-stream-p generic function 574

P

:p debugger command 3.4.2 : Moving around the stack 63

:package keyword 20.2.2 : DEFSYSTEM options 244

package-flagged-p function 1529

package-locally-nicknamed-by-list function 805

package-local nicknames defpackage 546, *features* 554, add-package-local-nickname 693, package-locally-
nicknamed-by-list 805, package-local-nicknames 805, remove-package-local-nickname 819

package-local-nicknames function 805

packages

adding local nicknames add-package-local-nickname 693

allocation of 11.6.3 : Allocation of interned symbols and packages 154

hiding 3.6 : Debugger control variables 68

removing local nicknames remove-package-local-nickname 819

packages-for-warn-on-redefinition variable 806 7.7.2.2 : Protecting packages 110

parameters

command line 27.4 : The Command Line 337

default-character-element-type 915 26.3.5 : String types 327, 26.3.5.1 : String types at run time 327, 26.6 : String
Construction 329, 26.6.2 : String construction with known type 330, 26.6.3 : Controlling string construction 330, 26.7.3.6 :
External formats and stream-element-type 335

parse-float function 807

parse-form-dspec function 671

parse-ipv6-address function 474

parse-namestring function 575

parse-printed-generalized-time function 451

parser generator error handling 21.4 : Error handling 250

parser generator main chapter 21 : The Parser Generator 248

passing run time parameters 27.4 : The Command Line 337

patches

saving an image with 1.5 : Quitting LispWorks 56

pathname comparison 27.18.7 : Pathname comparison 352

case-sensitivity on macOS 27.18.7.1 : Pathname comparison on macOS 352

pathname-location function 961

pathname of deliverable 27.3 : The Lisp Image 337, lisp-image-name 953

pathname of DLL 27.3 : The Lisp Image 337, lisp-image-name 953

pathname of dynamic library lisp-image-name 953

pathname of executable 27.3 : The Lisp Image 337, lisp-image-name 953

pathname of lisp image 27.3 : The Lisp Image 337, lisp-image-name 953

Index

1769

pem-read function 475 25.11.1 : OpenSSL interface 320

pipe

open open-pipe 1526

pipe-close-connection function 1530

pipe-exit-status function 1530 27.7.1 : Interpreting the exit status 342

pipe-kill-process function 1531

platform 27.1 : The Operating System 337

software-type software-type 583

software-version software-version 584

PL/SQL execute-command 1303

p-oci-env FLI type descriptor 1353 23.11.6 : Interactions with foreign calls 294

p-oci-file FLI type descriptor 1353 23.11.6 : Interactions with foreign calls 294

p-oci-lob-locator FLI type descriptor 1354 23.11.6 : Interactions with foreign calls 294

p-oci-lob-or-file FLI type descriptor 1354

p-oci-svc-ctx FLI type descriptor 1355 23.11.6 : Interactions with foreign calls 294

pointer-from-address function 1533

pointers

weak set-array-weak 840

position-in-ring function 808

position-in-ring-forward function 808

PostgreSQL

connecting 23.2.7 : Connecting to PostgreSQL 266

PostScript Printer Description files 13.12 : Configuring the printer 170

PPD files 13.12.1 : PPD file details 170

precompiled-regexp system class 961

precompiled-regexp-p function 962

precompile-regexp function 963

prepared-statement system class 1355 23.3.1.8 : Prepared statements 274

prepared-statement-set-and-execute function 1355 23.3.1.8 : Prepared statements 274

prepared-statement-set-and-execute* function 1355 23.3.1.8 : Prepared statements 274

prepared-statement-set-and-query function 1355 23.3.1.8 : Prepared statements 274

prepared-statement-set-and-query* function 1355 23.3.1.8 : Prepared statements 274

prepare-statement function 1357 23.3.1.8 : Prepared statements 274

:previous keyword 20.2.4 : DEFSYSTEM rules 245

primitive-array-to-lisp-array function 1085

print-action-lists function 964 8.4 : Diagnostic utilities 116

print-actions function 964 8.4 : Diagnostic utilities 116

print-binding-frames variable 621 3.6 : Debugger control variables 68

print-catch-frames variable 622 3.6 : Debugger control variables 68

print-command variable 965

Index

1770

printer

configuring 13.12 : Configuring the printer 170

print-escape-potential-numbers variable 809

print-handler-frames variable 624 3.6 : Debugger control variables 68

print-invisible-frames variable 625 3.6 : Debugger control variables 68

print-nickname variable 965

print-object generic function 13.11 : Structure printing 170

print-open-frames variable 626

print-pretty-gesture-spec function 1534

print-profile-list function 810 12.4 : Profiler output 158

print-query function 1358 23.3.1.1 : Querying 270

print-restart-frames variable 626 3.6 : Debugger control variables 69

print-string variable 813

print-symbols-using-bars variable 1535

process

creation 19.1 : Introduction to processes 216

current 19.1 : Introduction to processes 216

in LispWorks 19.1 : Introduction to processes 216

scheduling 19.11.1.2 : Process priorities in non-SMP LispWorks 236

:process trace keyword 5.2.7 : Restricting tracing 88

process-a-class-option generic function 371

process-alive-p function 1190

process-all-events function 1191

process-allow-scheduling function 1192 19.1 : Introduction to processes 216

process-arrest-reasons function 1192

process-a-slot-option generic function 373

process-break function 1193

process-continue function 1193

processes

allocation of 11.6.4 : Allocation of stacks 154

processes-count function 1194 19.2.2 : Finding out about processes 217

process-exclusive-lock function 1194

process-exclusive-unlock function 1195

process exit status 27.10 : Exit status 343

process-idle-time function 1196

process-initial-bindings variable 1197 19.2.2 : Finding out about processes 217

process-internal-server-p function 1198

process-interrupt function 1199 19.8.4 : Old interrupt blocking APIs removed 233

process-interrupt-list function 1200

process-join function 1200

process-kill function 1201

Index

1771

process-lock function 1202 19.4 : Locks 225

process-mailbox accessor 1203

process-name function 1204 19.2.2 : Finding out about processes 217

process-p function 1204

process plist 19.10 : Process properties 236

process-plist function 1205 19.10 : Process properties 236

process-poke function 1205

process-priority function 1207 19.11.1.2 : Process priorities in non-SMP LispWorks 237

process-private-property accessor 1208

process properties 19.10 : Process properties 236

process-property accessor 1209 19.10 : Process properties 236

process-reset function 1210

process-run-function function 1211 19.1 : Introduction to processes 216, 19.2.1 : Creating a process 217

process-run-reasons accessor 1213

process-run-time function 1213

process-send function 1214

process-sharing-lock function 1216

process-sharing-unlock function 1217

process-stop function 1217 19.11.3 : Stopping and unstopping processes 237

process-stopped-p function 1218 19.11.3 : Stopping and unstopping processes 237

process-terminate function 1219

process-unlock function 1220 19.4 : Locks 225

process-unstop function 1221 19.11.3 : Stopping and unstopping processes 237

process-wait function 1222 19.7 : Synchronization between threads 230

process-wait-for-event function 1222

process-wait-function function 1223

process waiting 19.6 : Process Waiting and communication between processes 227

process-wait-local function 1224

process-wait-local-with-periodic-checks function 1225

process-wait-local-with-timeout function 1227

process-wait-local-with-timeout-and-periodic-checks function 1228

process-wait-with-timeout function 1228 19.6.2 : Generic Process Wait functions 228, 19.7 : Synchronization between
threads 230

process-whostate function 1229

proclaim function 575 9.6 : Declare, proclaim, and declaim 124

product-registry-path accessor 1535 27.13.1 : Location of persistent settings 344

profile macro 813 12.3 : Running the profiler 157

profiler

displaying parts of the tree 12.4.2 : Displaying parts of the tree 159

interpretation of results 12.4.1 : Interpretation of profiling results 158

main chapter 12 : The Profiler 156

pitfalls 12.5 : Profiling pitfalls 159

Index

1772

setting up 12.2 : Setting up the profiler 156

profiler-print-out-all variable print-profile-list 812

profiler-threshold variable 814

profiler-tree-from-function function 815 12.4.2 : Displaying parts of the tree 159

profiler-tree-to-allocation-functions function 815 12.4.2 : Displaying parts of the tree 159

profiler-tree-to-function function 816 12.4.2 : Displaying parts of the tree 159

profile-symbol-list variable 817

profile time 12.2 : Setting up the profiler 157

profiling

execution 12 : The Profiler 156

KnowledgeWorks set-up-profiler 854

program 12 : The Profiler 156

program profiling 12 : The Profiler 156

promotion 11.3.3 : GC operations 140

prompt

in listener *prompt* 966

prompt variable 966 2.3 : The listener prompt 59

ps function 1230 19.2.2 : Finding out about processes 217

push macro 19.3.3 : Mutable objects not supporting atomic access 219

push-end macro 967

push-end-new macro 967

pushnew-to-process-private-property function 1231 19.10 : Process properties 236

pushnew-to-process-property function 1232 19.10 : Process properties 236

Q

:q inspector command 4.2 : Inspect 78

query function 1360 23.3.1.6 : Specifying SQL directly 273, 23.11.1.1 : Retrieving LOB locators 291

query-io variable 585

query-registry-key-info function 1615 27.17 : Accessing the Windows registry 347

query-registry-value function 1616 27.17 : Accessing the Windows registry 347

quick backtrace 3.4.1 : Backtracing 63

quit function 968 1.5 : Quitting LispWorks 56, 27.10 : Exit status 343

QuitLispWorks C function 1659 14.6 : Unloading a dynamic library 173

quitting LispWorks 1.5 : Quitting LispWorks 56, 8.6 : Standard Action Lists 117

:quit-when-no-windows delivery keyword set-quit-when-no-windows 980

R

raw 32-bit arithmetic 28.2.2 : Fast 32-bit arithmetic 353

raw 64-bit arithmetic 28.2.3 : Fast 64-bit arithmetic 354

read-dhparams function 476 25.11.1 : OpenSSL interface 320

read-eval-print loop 2 : The Listener 57, start-tty-listener 984

Index

1773

read-java-field function 1087 15.3.1 : Calling methods by name 177

read-sequence function 577

read-serial-port-char function 1265

read-serial-port-string function 1265

:read-timeout initarg socket-stream 491

real time 12.2 : Setting up the profiler 157

rebinding macro 969

reconnect function 1361 23.2.3 : General database connection and disconnection 263

record-definition function 672 7.7.2 : Recording definitions and redefinition checking 109

record-java-class-lisp-symbol function 1089

record-message-in-windows-event-log function 1594

record-source-files variable 673

redefinition-action variable 673 7.7.2 : Recording definitions and redefinition checking 109, 13.8 : Controlling redefinition
warnings 169

:redo listener command 2.2.1 : Standard top-level loop commands 58

reduce-memory function 817 11.6.2 : Reducing image size 154

references-who function 819

regexp find-regexp-in-string 941, regexp-find-symbols 970

syntax 28.7 : Regular expression syntax 356

regexp-find-symbols function 970

registry

API on Windows 27.17 : Accessing the Windows registry 347, 49 : The Windows registry API 1607

registry-key-exists-p function 1617 27.17 : Accessing the Windows registry 347

registry-value accessor 1617 27.17 : Accessing the Windows registry 347

regular expression find-regexp-in-string 941, regexp-find-symbols 970

regular expression matching find-regexp-in-string 941, regexp-find-symbols 970

regular expressions

syntax 28.7 : Regular expression syntax 356

release-certificate function 502

release-certificates-vector function 502

release-object-and-nullify macro 1537

relocating 27.6 : Startup relocation 340

remote debugging 3.7 : Remote debugging 69

client side 3.7.2 : The client side of remote debugging 71

IDE side 3.7.3 : The IDE side of remote debugging 71

port usage 3.7.6 : TCP port usage in remote debugging 76

simple usage 3.7.1 : Simple usage 70

SSL 3.7.7 : Using SSL for remote debugging 76

troubleshooting 3.7.4 : Troubleshooting 72

remote-debugging-connection system class 628

remote-debugging-connection-add-close-cleanup function 628 3.7.5.3 : Common (both IDE and client) connection
functions 75

Index

1774

remote-debugging-connection-name function 629 3.7.5.3 : Common (both IDE and client) connection functions 75

remote-debugging-connection-peer-address function 630 3.7.5.3 : Common (both IDE and client) connection functions 75

remote-debugging-connection-remove-close-cleanup function 628 3.7.5.3 : Common (both IDE and client) connection
functions 75

remote-debugging-stream-peer-address generic function 631

remote-inspect function 632 3.7 : Remote debugging 69, 3.7.1.1 : Using the IDE as the TCP server 70, 3.7.1.2 : Using the client
as the TCP server 70, 3.7.2 : The client side of remote debugging 71, 3.7.3 : The IDE side of remote debugging 71, 3.7.5.1 :
Client side connection management 75

remote-object-connection function 633 3.7.3.1 : Accessing client side objects on the IDE side 71, 3.7.5.2 : IDE side connection
management 75

remote-object-p function 633 3.7.3.1 : Accessing client side objects on the IDE side 71

remove-advice function 971 6.3 : Removing advice 95, 6.7 : Advice functions and macros 100

remove-duplicates function 9.7.9 : Built-in optimization of remove-duplicates and delete-duplicates 129

removef macro 972

remove-from-process-private-property function 1233 19.10 : Process properties 236

remove-from-process-property function 1233 19.10 : Process properties 236

remove-package-local-nickname function 819

remove-process-private-property function 1234 19.10 : Process properties 236

remove-process-property function 1235 19.10 : Process properties 236

remove-special-free-action function 820 11.6.6 : Special actions 154

remove-symbol-profiler function 821

remove-user-preference function 973 27.13.2 : Accessing persistent settings 344

REPL 2 : The Listener 57, start-tty-listener 984

replace-from-sqlite-blob function 1376 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-
blob) 300

replace-from-sqlite-raw-blob function 1379 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs
(sqlite-blob) 300

replace-into-sqlite-blob function 1376 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-
blob) 300

replacement-source-form macro 674

replace-socket-stream-socket function 477

replace-standard-object function 374

REPL inspector 4 : The REPL Inspector 77

report-error-to-java-host function 1089

:requires keyword 20.2.4 : DEFSYSTEM rules 245

require-verbose variable 973

:res debugger command 3.4.4 : Leaving the debugger 66

reserved words *packages-for-warn-on-redefinition* 806

reset-code-coverage function 718

reset-code-coverage-snapshot function 784

reset-java-interface-for-new-jvm function 1090

reset-profiler function 821

reset-ring function 822

Index

1775

reset-ssl-abstract-context function 478

restart 3.2 : Simple use of the REPL debugger 61

restart-case macro 578

restart frame, examining 3.3 : The stack in the debugger 62

:restarts keyword *print-restart-frames* 627

restore-code-coverage-data function 718

restore-sql-reader-syntax-state function 1362 23.5.3 : Utilities 284

:ret debugger command 3.4.4 : Leaving the debugger 66

reverse-subtract-code-coverage-data function 692

right-paren-whitespace variable 1538

ring-length function 823

ring-name function 823

ringp function 824

ring-pop function 825

ring-push function 826

ring-ref accessor 826

rollback function 1362 23.3.1.2 : Modification 270, 23.3.1.4 : Transaction handling 272, 23.11.3 : Locking 292

room function 579 11.3.12.1 : Determining memory usage 144, 11.3.12.4 : Controlling the garbage collector 144, 11.4.5 : Tuning
the garbage collector 146, 27.5.3 : Reporting current allocation 340

room-values function 1538 27.5.3 : Reporting current allocation 340

Rotate Active Finders editor command *active-finders* 648

rotate-byte function 974

rotate-ring function 827

round-to-single-precision function 975

rules

grammar 21.2 : Grammar rules 248

:rules keyword 20.2.4 : DEFSYSTEM rules 245

run-shell-command function 1539 27.7 : Calling external programs 342, 27.7.1 : Interpreting the exit status 342, 27.14.1 :
Encoding of file names and strings in OS interface functions 345

run time parameters 27.4 : The Command Line 337

S

:s inspector command 4.2 : Inspect 78

safe-format-to-limited-string function 828

safe-format-to-string function 828

safe-locale-file-encoding function 1543

safe-prin1-to-string function 828

safe-princ-to-string function 828

safety 9.5 : Compiler control 121

save-argument-real-p function 829

save-code-coverage-data function 734

Index

1776

save-current-code-coverage function 734

save-current-profiler-tree function 830 12.7 : Profiler tree file format 160

save-current-session function 831

save-image function 832 13.3.2 : The save-image script 163, 14.1 : Introduction 171, 27.3 : The Lisp Image 337, 27.6.1 :
How to relocate LispWorks 341, 27.11 : Creating a new executable with code preloaded 343

save-image-with-bundle function 837

save-tags-database function 675

save-universal-from-script function 838

saving images 13.3.2 : The save-image script 163

sbchar accessor 976 26.5 : String accessors 329

schar accessor 26.5 : String accessors 329

schedule-timer function 1236 19.9 : Timers 235

schedule-timer-milliseconds function 1237

schedule-timer-relative function 1239

schedule-timer-relative-milliseconds function 1240

scheduling of processes 19.11.1.2 : Process priorities in non-SMP LispWorks 236

sec-certificate-ref FLI type descriptor 479

security-description-string-for-open-named-pipe function 1595

segmentation violation in compiled code 9.5 : Compiler control 123

select function 1363 23.3.1.1 : Querying 269, 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

select SQL operator 23.5.1.3 : Symbolic expression of SQL operators 280

Self-contained examples

Asynchronous I/O 30.1.2 : Asynchronous I/O examples 361

COMM package 30.1 : COMM examples 361

DDE 30.3 : DDE examples 362

miscellaneous examples 30.6 : Miscellaneous examples 362

parser generator 30.4 : Parser generator examples 362

save-image in a macOS application bundle 30.5 : Examples for save-image in a macOS application bundle 362

socket streams 30.1 : COMM examples 361

SSL 30.1.1 : SSL examples 361

streams 30.2 : Streams examples 362

TCP sockets 30.1 : COMM examples 361

semaphore system class 1241

semaphore-acquire function 1242 19.7.3 : Counting semaphores 232

semaphore-count function 1243 19.7.3 : Counting semaphores 232

semaphore-name function 1244 19.7.3 : Counting semaphores 232

semaphore-release function 1244 19.7.3 : Counting semaphores 232

semaphore-wait-count function 1245 19.7.3 : Counting semaphores 232

send-message-to-java-host function 1091

sequencep function 976

serial-port class 1266

Index

1777

serial-port-input-available-p function 1267

server-terminate function 480

set-application-themed function 1598

set-approaching-memory-limit-callback function 1544

set-array-single-thread-p function 840

set-array-weak function 840 11.6.8 : Freeing of objects by the GC 155, 19.3.2 : Mutable objects supporting atomic access 219

set-automatic-gc-callback function 1544 11.4.5 : Tuning the garbage collector 146

set-blocking-gen-num function 1545 11.4.5.1 : Interface for tuning the GC 146

setClassLoader Java method 1123

set-clos-initarg-checking function 375

set-code-coverage-snapshot function 784

set-compile-file-proclaim-handling function 977

set-console-external-format function 841 27.16 : The console external format 347

setCurrentActivity Java method 1122

set-debugger-options function 634

set-default-character-element-type function 979 26.3.5 : String types 327, 26.6.3 : Controlling string
construction 331, 26.6.4 : String construction on Windows systems 331

set-default-generation function 842 11.3.2.2 : Allocation in different generations 139, 11.3.12.2 : Allocating in specific
generations 144

Set Default Remote Debugging editor command ide-find-remote-debugging-connection 616

set-default-remote-debugging-connection function 635 3.7.5.1 : Client side connection management 74

set-default-segment-size function 1547 11.4.5.1 : Interface for tuning the GC 147

set-delay-promotion function 1548 11.4.5.1 : Interface for tuning the GC 147

set-dpi-awareness function 1598

setErrorReporter Java method 1116

set-expected-allocation-in-generation-2-after-gc function 1549

set-file-dates function 1551

set-funcall-async-limit function 1246

set-gc-parameters function 843 11.3.4 : Garbage collection strategy 140, 11.3.12.4 : Controlling the garbage collector 144

set-generation-2-gc-options function 1552

set-gen-num-gc-threshold function 1554 11.4.5.1 : Interface for tuning the GC 146

setGuiErrorReporter Java method 1116

set-hash-table-weak function 845 11.6.8 : Freeing of objects by the GC 155

set-java-field function 1087 15.3.1 : Calling methods by name 177

setLispTempDir Java method 1123

set-make-instance-argument-checking function 377

set-maximum-memory function 1555 11.3.12.1 : Determining memory usage 144

set-maximum-segment-size function 1556 11.4.2 : Segments and Allocation Types 145, 11.4.5.1 : Interface for tuning the
GC 146

set-memory-check function 1557

set-memory-exhausted-callback function 1558

Index

1778

setMessageHandler Java method 1120

set-minimum-free-space function 846 11.3.4 : Garbage collection strategy 140, 11.3.12.3 : Controlling a specific
generation 144

set-prepared-statement-variables function 1366 23.3.1.8 : Prepared statements 274

set-primitive-array-region function 1037

set-process-profiling function 847 12.3 : Running the profiler 157, 12.3.2 : Programmatic control of profiling 157

set-profiler-threshold function 849

set-promote-generation-1 function 1559

set-promotion-count function 849

set-quit-when-no-windows function 980

set-registry-value function 1618 27.17 : Accessing the Windows registry 347

set-remote-debugging-connection function 636 3.7.5.1 : Client side connection management 74

set-reserved-memory-policy function 1560

setRuntimeLispHeapDir Java method 1122

set-serial-port-state function 1267

set-signal-handler function 1561

set-spare-keeping-policy function 1562 11.4.5.1 : Interface for tuning the GC 147

set-split-promotion function 1563

set-ssl-ctx-dh function 481 25.11.1 : OpenSSL interface 320

set-ssl-ctx-options function 482 25.11.1 : OpenSSL interface 320

set-ssl-ctx-password-callback function 484 25.11.1 : OpenSSL interface 320

set-ssl-library-path function 484 25.9.2.2 : How LispWorks locates the OpenSSL libraries 314

set-static-segment-size function 1564

sets-who function 851

set-system-message-log function 851

set-temp-directory function 1565 27.15.3 : Temporary files 347

setTextView Java method 1121

setup-atomic-funcall function 1565

setup-deliver-dynamic-library-for-java function 1092 15.7 : Loading a LispWorks dynamic library into Java 186

setup-field-accessor function 1094

setup-java-caller function 1095

setup-java-constructor function 1095

setup-java-interface-callbacks function 1042

setup-lisp-proxy function 1096

set-up-profiler function 853 12.2 : Setting up the profiler 156

set-verification-mode function 485

sg-default-size variable 1566

:sh inspector command 4.2 : Inspect 78

shared libraries 14 : LispWorks as a dynamic library 171, 27.6 : Startup relocation 340

shared library 14 : LispWorks as a dynamic library 171

shared object file 14 : LispWorks as a dynamic library 171

Index

1779

Shift JIS 26.7.1 : External format names 332

short-float type 581 29.7 : Float types 359

short-namestring function 1600 27.3 : The Lisp Image 337

short-site-name accessor 582 27.2 : Site Name 337

showBugFormLogs Java method 1118

Show Paths From editor command 9.8 : Compiler parameters affecting LispWorks 129, calls-who 713

Show Paths To editor command who-calls 882

shutdown 8.6 : Standard Action Lists 117

sid-string-to-user-name function 1601

simple-augmented-string type 1439

simple-augmented-string-p function 1440

simple-base-string type 531 26.3.5 : String types 327, 26.3.5.1 : String types at run time 327

simple-base-string-p function 901

simple-bmp-string type 903 26.3.5 : String types 327

simple-bmp-string-p function 904

simple-char type 980

simple-char-p function 981

simple-do-query macro 1367 23.3.1.5 : Iteration 272, 23.11.2 : Retrieving Lob Locators 291

SimpleInitLispWorks C function 1660

simple-int32-vector type 1567 28.2.2.2 : The INT32 API 354

simple-int32-vector-length function 1568

simple-int32-vector-p function 1568

simple-int64-vector type 1569 28.2.3.2 : The INT64 API 355

simple-int64-vector-length function 1570

simple-int64-vector-p function 1570

simple-lock-and-condition-variable-wait function 1247

simple-string type 26.3.5 : String types 327, 26.3.5.1 : String types at run time 327, 26.3.5.2 : String types at compile time 328

simple-text-string type 988 26.3.5 : String types 327, 26.3.5.1 : String types at run time 327

simple-text-string-p function 989

single-float type 583 29.7 : Float types 359

single-form-form-parser function 676 7.9.2 : Using pre-defined form parsers 111

single-form-with-options-form-parser function 676 7.9.2 : Using pre-defined form parsers 111

single-threaded

arrays 19.3.7 : Single-thread context arrays and hash-tables 224

hash tables 19.3.7 : Single-thread context arrays and hash-tables 224

:size initarg storage-exhausted 1575

:sjis external format 26.7.1 : External format names 332

SLIME 1.4 : Using LispWorks with SLIME 55

slot-boundp-using-class generic function 377 18.1.1 : Instance Structure Protocol 209

slot-makunbound-using-class generic function 378 18.1.1 : Instance Structure Protocol 209

Index

1780

slot-value

atomic operations 19.13.1 : Low level atomic operations 239

slot-value-using-class accessor generic function 379 18.1.1 : Instance Structure Protocol 209

:socket initarg socket-stream 491

socket-connect-error condition class 486

socket-connection-peer-address function 487

socket-connection-socket function 488

socket-create-error condition class 488

socket-error condition class 489

socket-error generic function 490

socket-error-code function socket-error 489

socket-error-connection function socket-error 489

socket-io-error condition class 491

socket-stream class 491 25.9 : Using SSL 313, 25.9.6 : Keyword arguments for use with SSL 316

socket-stream-address function 494

socket-stream-ctx function 495 25.11.3 : Using SSL objects directly 323

socket-stream-handshake function 495

socket-stream-peer-address function 496

socket-stream-shutdown function 497

socket-stream-socket accessor socket-stream 491

socket-stream-ssl function 498 25.11.3 : Using SSL objects directly 323

socket-stream-ssl-side function 498 25.11.3 : Using SSL objects directly 323

software-type function 583 27.1 : The Operating System 337

software-version function 584 27.1 : The Operating System 337

sort-inspector-p generic function 1571

source-debugging-on-p function 855

source-found-action variable 13.6.1 : Controlling appearance of found definitions 168

source level debugging 7.7.3 : Source level debugging and stepping 110, 9.8 : Compiler parameters affecting LispWorks 129, toggle-
source-debugging 865

:source-only keyword 20.2.3 : DEFSYSTEM members 244

space 9.5 : Compiler control 121

special actions 11.6.6 : Special actions 154

special forms

declare 540 9.5 : Compiler control 121, 9.6 : Declare, proclaim, and declaim 124

specific-valid-file-encoding function 1572

specific-valid-file-encodings variable 1573 26.7.3.5 : Example of using UTF-8 if possible 335

speed 9.5 : Compiler control 121

splash screen dismiss-splash-screen 1585

split-sequence function 981

split-sequence-if function 983

split-sequence-if-not function 983

Index

1781

SQL

database functions 23.5.1.4 : Calling database functions 282

database operators 23.5.1.4 : Calling database functions 282

direct specification 23.3.1.6 : Specifying SQL directly 273

mode 23.9.4 : SQL mode 288

stored procedure 23.3.1.6 : Specifying SQL directly 273, execute-command 1303

sql function 1368 23.5.2 : Programmatic interface 283

sql-boolean-operator SQL pseudo operator 23.5.1.4 : Calling database functions 282, 23.5.2 : Programmatic
interface 283, sql-operation 1383

sql-connection-error condition class 1369

sql-connection-error error 23.8.1 : SQL condition classes 286

sql-database-data-error condition class 1369

sql-database-data-error error 23.8.1 : SQL condition classes 286

sql-database-error condition class 1370

sql-database-error error 23.8 : Error handling in Common SQL 286

sql-enlarge-static variable 1371

sql-error-database-message accessor sql-database-error 1370

sql-error-error-id accessor sql-database-error 1370

sql-error-secondary-error-id accessor sql-database-error 1370

sql-expression function 1371 23.5.2 : Programmatic interface 283

sql-expression-object system class 1373

sql-failed-to-connect-error condition class 1373

sql-fatal-error condition class 1374

sql-fatal-error error 23.8.1 : SQL condition classes 286

sql-function SQL pseudo operator 23.5.1.4 : Calling database functions 282, 23.5.2 : Programmatic interface 283, sql-
operation 1383

sqlite-blob system class 1374 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-blob) 300

sqlite-blob-length function 1376

sqlite-blob-p function 1376

sqlite-close-blob function 1376 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-blob) 300

sqlite-last-insert-rowid function 1375

sqlite-open-blob function 1376 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-blob) 300

sqlite-raw-blob system class 1378 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-
blob) 300

sqlite-raw-blob-length function 1379 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-
blob) 300

sqlite-raw-blob-p function 1379

sqlite-raw-blob-ref function 1379 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-
blob) 300

sqlite-raw-blob-valid-p function 1379 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-
blob) 300

sqlite-reopen-blob function 1376

Index

1782

sql-libraries variable 1381 23.2.2 : Database libraries 263

sql-loading-verbose variable 1382 23.2.2 : Database libraries 263

sql-operation function 1382 23.5.2 : Programmatic interface 283

sql-operator function 1384 23.5.2 : Programmatic interface 283

sql-operator SQL pseudo operator 23.5.1.4 : Calling database functions 282, 23.5.2 : Programmatic interface 283, sql-
operation 1383

SQL operators 23.5.1.3 : Symbolic expression of SQL operators 281

SQL pseudo operators

sql-boolean-operator 23.5.1.4 : Calling database functions 282, 23.5.2 : Programmatic interface 283, sql-
operation 1383

sql-function 23.5.1.4 : Calling database functions 282, 23.5.2 : Programmatic interface 283, sql-operation 1383

sql-operator 23.5.1.4 : Calling database functions 282, 23.5.2 : Programmatic interface 283, sql-operation 1383

sql-recording-p function 1385 23.7 : SQL I/O recording 286

sql-stream function 1385 23.7 : SQL I/O recording 286

sql-temporary-error condition class 1386

sql-temporary-error error 23.8.1 : SQL condition classes 286

sql-timeout-error condition class 1387

sql-timeout-error error 23.8.1 : SQL condition classes 286

sql-user-error condition class 1387 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-
blob) 300, 23.13.5 : Values in Insert and Update. 301, sqlite-open-blob 1378, sqlite-raw-blob-p 1381

sql-user-error error 23.8 : Error handling in Common SQL 286

square bracket syntax 23.5.1 : The "[...]" Syntax 277

SSL abstract context See abstract SSL context

ssl-abstract-context FLI type descriptor 25.9.6 : Keyword arguments for use with SSL 316

ssl-abstract-context system class 499

ssl-abstract-context-name function ssl-abstract-context 499

ssl-add-client-ca function 25.11.2 : Direct calls to OpenSSL 321

ssl-cipher-get-bits function 25.11.2 : Direct calls to OpenSSL 321

ssl-cipher-get-name function 25.11.2 : Direct calls to OpenSSL 321

ssl-cipher-get-version function 25.11.2 : Direct calls to OpenSSL 321

ssl-cipher-pointer FLI type descriptor 500 25.11.2 : Direct calls to OpenSSL 321

ssl-cipher-pointer-stack FLI type descriptor 500

ssl-clear-num-renegotiations function 25.11.2 : Direct calls to OpenSSL 321

ssl-closed condition class 501 25.9.8 : Errors in SSL 319

ssl-condition condition class 501 25.9.8 : Errors in SSL 319

ssl-condition-ssl-code function ssl-condition 501

:ssl-configure-callback initarg socket-stream 491

ssl-connection-copy-peer-certificates function 502

ssl-connection-get-peer-certificates-data function 504

ssl-connection-implementation function 505

ssl-connection-protocol-version function 506

Index

1783

ssl-connection-read-certificates function 506

ssl-connection-read-dh-params-file function 507

ssl-connection-ssl-ref function 508

ssl-connection-verify function 509

ssl-context-ref FLI type descriptor 510

ssl-ctrl function 25.11.2 : Direct calls to OpenSSL 321

:ssl-ctx initarg socket-stream 491

ssl-ctx-add-client-ca function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-add-extra-chain-cert function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-ctrl function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-get-max-cert-list function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-get-mode function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-get-options function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-get-read-ahead function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-get-verify-mode function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-load-verify-locations function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-need-tmp-rsa function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-pointer FLI type descriptor 511 25.11.2 : Direct calls to OpenSSL 321

ssl-ctx-sess-get-cache-mode function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-sess-get-cache-size function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-sess-set-cache-mode function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-sess-set-cache-size function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-set-client-ca-list function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-set-max-cert-list function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-set-mode function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-set-options function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-set-read-ahead function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-set-tmp-dh function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-set-tmp-rsa function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-use-certificate-chain-file function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-use-certificate-file function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-use-privatekey-file function 25.11.2 : Direct calls to OpenSSL 322

ssl-ctx-use-rsaprivatekey-file function 25.11.2 : Direct calls to OpenSSL 322

ssl-default-implementation accessor 512 25.9.1 : SSL implementations 313

ssl-error condition class 513 25.9.8 : Errors in SSL 319

ssl-failure condition class 513 25.9.8 : Errors in SSL 319

ssl-get-current-cipher function 25.11.2 : Direct calls to OpenSSL 322

ssl-get-max-cert-list function 25.11.2 : Direct calls to OpenSSL 322

ssl-get-mode function 25.11.2 : Direct calls to OpenSSL 322

Index

1784

ssl-get-options function 25.11.2 : Direct calls to OpenSSL 322

ssl-get-verify-mode function 25.11.2 : Direct calls to OpenSSL 322

ssl-get-version function 25.11.2 : Direct calls to OpenSSL 322

ssl-handshake-timeout condition class 514 25.9.8 : Errors in SSL 319

ssl-implementation-available-p function 514 25.9.1 : SSL implementations 313

ssl-load-client-ca-file function 25.11.2 : Direct calls to OpenSSL 322

ssl-need-tmp-rsa function 25.11.2 : Direct calls to OpenSSL 322

ssl-new function 515 25.11.3 : Using SSL objects directly 323

ssl-num-renegotiations function 25.11.2 : Direct calls to OpenSSL 322

ssl-pointer FLI type descriptor 515 25.11.2 : Direct calls to OpenSSL 321

ssl-session-reused function 25.11.2 : Direct calls to OpenSSL 322

ssl-set-accept-state function 25.9.6 : Keyword arguments for use with SSL 318, 25.11.2 : Direct calls to OpenSSL 322

ssl-set-client-ca-list function 25.11.2 : Direct calls to OpenSSL 322

ssl-set-connect-state function 25.9.6 : Keyword arguments for use with SSL 318, 25.11.2 : Direct calls to OpenSSL 322

ssl-set-max-cert-list function 25.11.2 : Direct calls to OpenSSL 322

ssl-set-mode function 25.11.2 : Direct calls to OpenSSL 323

ssl-set-options function 25.11.2 : Direct calls to OpenSSL 323

ssl-set-tmp-dh function 25.11.2 : Direct calls to OpenSSL 323

ssl-set-tmp-rsa function 25.11.2 : Direct calls to OpenSSL 323

:ssl-side initarg socket-stream 491

ssl-total-renegotiations function 25.11.2 : Direct calls to OpenSSL 323

ssl-use-certificate-file function 25.11.2 : Direct calls to OpenSSL 323

ssl-use-privatekey-file function 25.11.2 : Direct calls to OpenSSL 323

ssl-use-rsaprivatekey-file function 25.11.2 : Direct calls to OpenSSL 323

ssl-verification-failure condition class 516 25.9.8 : Errors in SSL 319

ssl-version-or-cipher-mismatch condition class 516

ssl-x509-lookup condition class 517 25.9.8 : Errors in SSL 319

stack

examining 3.3 : The stack in the debugger 61

extension extend-current-stack 766

stack-overflow-behaviour variable 1573

stacks

allocation of 11.6.4 : Allocation of stacks 154

stack size 11.6.4 : Allocation of stacks 154, current-stack-length 742, *default-stack-group-list-
length* 1452, *sg-default-size* 1566

standard-accessor-method class 18.1.2 : Method Metaobjects 209

standard-class class 18.1.8 : Compatible metaclasses 210

standard-db-object class 1388 23.4 : Object oriented interface 274

standard-input variable 585

standard-instance-access function 18.1.1 : Instance Structure Protocol 209

Index

1785

standard-java-object class 1097

standard-object class 19.3.2 : Mutable objects supporting atomic access 219

standard-output variable 585

standard-reader-method class 18.1.2 : Method Metaobjects 209

standard-writer-method class 18.1.2 : Method Metaobjects 209

start 8.6 : Standard Action Lists 117

start-client-remote-debugging-server function 637 3.7.1.2 : Using the client as the TCP server 70, 3.7.2 : The client side
of remote debugging 71, 3.7.5.1 : Client side connection management 74, 3.7.7 : Using SSL for remote debugging 76

start-dde-server function 1655 22.3.1 : Starting a DDE server 257

start-gc-timing function 856

start-ide-remote-debugging-server function 639 3.7.1.1 : Using the IDE as the TCP server 70, 3.7.2 : The client side of
remote debugging 71, 3.7.7 : Using SSL for remote debugging 76

starting LispWorks 1.1 : The usual way to start LispWorks 54, 8.6 : Standard Action Lists 117

start LispWorks 1.1 : The usual way to start LispWorks 54

start-profiling function 857 12.3 : Running the profiler 157, 12.3.2 : Programmatic control of profiling 157

start-remote-listener function 640 3.7 : Remote debugging 69, 3.7.1.1 : Using the IDE as the TCP server 70, 3.7.1.2 :
Using the client as the TCP server 70, 3.7.2 : The client side of remote debugging 71, 3.7.3 : The IDE side of remote
debugging 71, 3.7.5.1 : Client side connection management 75

start-sql-recording function 1388 23.7 : SQL I/O recording 286

start-tty-listener function 984

startup 8.6 : Standard Action Lists 117

:startup-bitmap-file delivery keyword dismiss-splash-screen 1585

startup image dismiss-splash-screen 1585

startup relocation 27.6 : Startup relocation 340

startup screen dismiss-splash-screen 1585

start-up-server function 518

start-up-server-and-mp function 522

startup window dismiss-splash-screen 1585

:static initarg storage-exhausted 1575

:static-buffers initarg buffered-stream 1402

static object

allocation in memory management 11.3.2.1 : Allocation of static objects 139

staticp function 1574

status function 1389 23.2.3 : General database connection and disconnection 263

status Java method 1114

STATUS_ERROR java constant field com.lispworks.Manager.status 1114

STATUS_INITIALIZING java constant field com.lispworks.Manager.status 1114

STATUS_NOT_INITIALIZED java constant field com.lispworks.Manager.status 1114

STATUS_READY java constant field com.lispworks.Manager.status 1114

stchar accessor 985 26.5 : String accessors 329

stderr make-stderr-stream 1515

step macro 586

Index

1786

:step trace keyword 5.2.4 : Entering stepping mode 86

step-compiled variable step 588

step-filter variable step 588

stepper, entering when tracing 5.2.4 : Entering stepping mode 86

step-print-env variable step 588

stop-gc-timing function 856

stop-profiling function 859 12.3 : Running the profiler 157, 12.3.2 : Programmatic control of profiling 157

stop-sql-recording function 1389 23.7 : SQL I/O recording 286

storage-exhausted class 1575

storage-exhausted-gen-num accessor storage-exhausted 1575

storage-exhausted-size accessor storage-exhausted 1575

storage-exhausted-static accessor storage-exhausted 1575

storage-exhausted-type accessor storage-exhausted 1575

str FLI type descriptor 1601

stream-advance-to-column generic function 1409

stream-check-eof-no-hang generic function 1410

stream-clear-input generic function 1410 24.2.4 : Stream input 303

stream-clear-output generic function 1411 24.2.5 : Stream output 304

stream-element-type generic function 588 24.2.2 : Recognizing the stream element type 302

stream-file-position accessor 1411

stream-fill-buffer generic function 1412

stream-finish-output generic function 1413 24.2.5 : Stream output 304

stream-flush-buffer generic function 1414

stream-force-output generic function 1414 24.2.5 : Stream output 304

stream-fresh-line generic function 1415

stream-line-column generic function 1416 24.2.5 : Stream output 304

stream-listen generic function 1416 24.2.4 : Stream input 303

stream-output-width generic function 1417

stream-peek-char generic function 1418

stream-read-buffer generic function 1418

stream-read-byte generic function 1419

stream-read-char generic function 1420 24.2.4 : Stream input 303

stream-read-char-no-hang generic function 1421

stream-read-line generic function 1421

stream-read-sequence generic function 1422

stream-read-timeout accessor socket-stream 491

streams

defining new 24.2.1 : Defining a new stream class 302

directionality 24.2.3 : Stream directionality 303

example 24.2.1 : Defining a new stream class 302

input 24.2.4 : Stream input 303

Index

1787

instantiating 24.2.6 : Instantiating the stream 305

output 24.2.5 : Stream output 304

user defined 24 : User Defined Streams 302

stream-start-line-p generic function 1423 24.2.5 : Stream output 304

stream-terpri generic function 1424

stream-unread-char generic function 1425 24.2.4 : Stream input 303

stream-write-buffer generic function 1425

stream-write-byte generic function 1426

stream-write-char generic function 1427 24.2.5 : Stream output 304

stream-write-sequence generic function 1427

stream-write-string generic function 1429

stream-write-timeout accessor socket-stream 491

string type 26.3.5 : String types 327, 26.3.5.1 : String types at run time 327

string=-limited function 860

string-append function 985

string-append* function 986

string-capitalize function 26.4.1 : How Common Lisp functions handle characters with case 328

string construction 26.6 : String Construction 329

string-equal-limited function 860

string-ip-address function 523

string-needs-n-prefix function 1390

string-prefix-with-n-if-needed function 1391

string-trim-whitespace function 861

string types 26.3.5 : String types 326

string-upcase function 26.4.1 : How Common Lisp functions handle characters with case 328

structurep function 987

subfunction

advice 6.5 : Advising subfunctions 97

dspecs 7.6 : Subfunction dspecs 108

naming declare 541

tracing 5.5 : Tracing subfunctions 90

subtract-code-coverage-data function 692

superclass

invalid 18.3.1 : Inheritance across metaclasses 211

sweep 11.3.3 : GC operations 140

sweep-all-objects function 861 11.6.5 : Mapping across all objects 154

sweep-gen-num-objects function 1575

switch-open-tcp-stream-with-ssl-to-java function 524

switch-static-allocation function 862 11.3.1 : Generations 139, 11.3.2.1 : Allocation of static objects 139

symbol-alloc-gen-num variable 863 11.3.12.2 : Allocating in specific generations 144, 11.6.3 : Allocation of interned symbols
and packages 154

Index

1788

symbol-dynamically-bound-p function 863

symbolic query syntax 23.5 : Symbolic SQL syntax 277

symbolic syntax in Common SQL 23.5 : Symbolic SQL syntax 277

symbol macros

+int32-0+ 1485

+int32-1+ 1485

+int64-0+ 1495

+int64-1+ 1495

symbols

allocation of 11.6.3 : Allocation of interned symbols and packages 154

symeval-in-process accessor 1248 19.11.2 : Accessing symbol values across processes 237

Synchronization barriers 19.7.2 : Synchronization barriers 231

syntax, in Common SQL 23.5 : Symbolic SQL syntax 277

system

compile compile-system 907

defining 20.2 : Defining a system 243

introduction to 20.1 : Introduction 243

load load-system 955

members of 20.2.3 : DEFSYSTEM members 244

plan 20.2.4 : DEFSYSTEM rules 245

print hardcopy-system 951

rules 20.2.4 : DEFSYSTEM rules 244

system classes

async-io-state 399 25.8.2 : The Async-I/O-State API 309

barrier 1127

client-remote-debugging 628

code-coverage-data 719

code-coverage-file-stats 724

condition-variable 1138

generalized-time 451

gesture-spec 1469

ide-remote-debugging 628

lock 1159

mailbox 1168

precompiled-regexp 961

prepared-statement 1355 23.3.1.8 : Prepared statements 274

remote-debugging-connection 628

semaphore 1241

sql-expression-object 1373

sqlite-blob 1374 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-blob) 300

sqlite-raw-blob 1378 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-blob) 300

ssl-abstract-context 499

Index

1789

system commands

running directly call-system 1442

running via a shell call-system 1442

SZDDESYS_ITEM_FORMATS constant 22.3.3.3 : The system topic 258

SZDDESYS_ITEM_SYSITEMS constant 22.3.3.3 : The system topic 258

SZDDESYS_ITEM_TOPICS constant 22.3.3.3 : The system topic 258

T

table-exists-p function 1392

tail call 9.7.5 : Tail call optimization 127

tail-call 9.7.5 : Tail call optimization 127

tail call merging 9.7.5 : Tail call optimization 127

tail call optimization 9.7.5 : Tail call optimization 127

tail merge 9.7.5 : Tail call optimization 127

tail recursion 9.7.5 : Tail call optimization 127

TCP/IP socket

client side 25.2 : Connecting to a server 306

server side 25.1 : Running a server that accepts connections 306

SSL interface 25.9 : Using SSL 313

teletype inspector 4 : The REPL Inspector 77

temp files 27.15.3 : Temporary files 346

temporary files 27.15.3 : Temporary files 346

terminal-debugger-block-multiprocessing variable 642

text-string type 988 26.3.5 : String types 327

text-string-p function 989

threads 19 : Multiprocessing 216

allocation of 11.6.4 : Allocation of stacks 154

throw-an-exception function 1098

throw-if-tag-found macro 864

time macro 589

timer-expired-p function 1249

timer-name accessor 1250

timers 19.9 : Timers 235

input and output 19.9.2 : Input and output for timer functions 236

I/O 19.9.2 : Input and output for timer functions 236

multiprocessing 19.9.1 : Timers and multiprocessing 235

process 19.9.1 : Timers and multiprocessing 235

threading issues 19.9.1 : Timers and multiprocessing 235

:tlsext-host-name initarg socket-stream 491

toggle-source-debugging function 865 9.8 : Compiler parameters affecting LispWorks 129

to-java-host-stream variable 1099

Index

1790

to-java-host-stream-no-scroll variable 1100

tools

inspector 4 : The REPL Inspector 77

:top debugger command 3.4.4 : Leaving the debugger 66

top-level loop 2 : The Listener 57

total-allocation function 866 11.3.12.1 : Determining memory usage 144

trace

excessive output 5.7 : Troubleshooting tracing 92

main chapter 5 : The Trace Facility 83

missing output 5.7 : Troubleshooting tracing 92

not working 5.7 : Troubleshooting tracing 92

troubleshooting 5.7 : Troubleshooting tracing 92

trace macro 590

traceable-dspec-p function 677

traced-arglist variable 866 5.2.1 : Evaluating forms on entry to and exit from a traced function 84, 5.6 : Trace variables 91

traced functions

arguments 5.2.1 : Evaluating forms on entry to and exit from a traced function 84

traced-results variable 867 5.2.1 : Evaluating forms on entry to and exit from a traced function 85, 5.6 : Trace variables 91

trace-indent-width variable 868 5.6 : Trace variables 91

Trace keywords

:after 5.2.1 : Evaluating forms on entry to and exit from a traced function 85

:allocation 5.2.8 : Storing the memory allocation made during a function call 88

:backtrace 5.2.3 : Using the debugger when tracing 86

:before 5.2.1 : Evaluating forms on entry to and exit from a traced function 84

:break 5.2.3 : Using the debugger when tracing 85

:break-on-exit 5.2.3 : Using the debugger when tracing 86

:entrycond 5.2.5 : Configuring function entry and exit information 86

:eval-after 5.2.2 : Evaluating forms without printing results 85

:eval-before 5.2.2 : Evaluating forms without printing results 85

:exitcond 5.2.5 : Configuring function entry and exit information 86

:inside 5.2.9 : Tracing functions from inside other functions 88

:process 5.2.7 : Restricting tracing 88

:step 5.2.4 : Entering stepping mode 86

:trace-output 5.2.6 : Directing trace output 87

:when 5.2.7 : Restricting tracing 88

trace-level variable 869 5.6 : Trace variables 91

trace-new-instances-on-access function 380

trace-on-access function 381

trace-output variable 585 5.6 : Trace variables 91

:trace-output trace keyword 5.2.6 : Directing trace output 87

Index

1791

trace-print-circle variable 870 5.6 : Trace variables 91

trace-print-length variable 871 4.1 : Describe 77, 5.6 : Trace variables 91

trace-print-level variable 872 4.1 : Describe 77, 5.6 : Trace variables 92

trace-print-pretty variable 873 5.6 : Trace variables 92

tracer

:after option 5.2.1 : Evaluating forms on entry to and exit from a traced function 85

:allocation option 5.2.8 : Storing the memory allocation made during a function call 88

:before option 5.2.1 : Evaluating forms on entry to and exit from a traced function 84

:break-on-exit option 5.2.3 : Using the debugger when tracing 86

:break option 5.2.3 : Using the debugger when tracing 85

commands available 5.2 : Tracing options 84

definition specs 5.4 : Tracing methods 90

directing output 5.2.6 : Directing trace output 87

entering the stepper 5.2.4 : Entering stepping mode 86

:entrycond option 5.2.5 : Configuring function entry and exit information 86

:eval-after option 5.2.2 : Evaluating forms without printing results 85

:eval-before option 5.2.2 : Evaluating forms without printing results 85

evaluating forms 5.2.1 : Evaluating forms on entry to and exit from a traced function 84, 5.2.2 : Evaluating forms without printing
results 85

example of use 5.1 : Simple tracing 83

:exitcond option 5.2.5 : Configuring function entry and exit information 86

functions, tracing inside 5.2.9 : Tracing functions from inside other functions 88

information displayed 5.1 : Simple tracing 83

:inside option 5.2.9 : Tracing functions from inside other functions 88

invoking the debugger 5.2.3 : Using the debugger when tracing 85

memory allocation 5.2.8 : Storing the memory allocation made during a function call 88

methods, tracing 5.4 : Tracing methods 90

:process option 5.2.7 : Restricting tracing 88

restricting to a process 5.2.7 : Restricting tracing 88

:step option 5.2.4 : Entering stepping mode 86

traced function, arguments for 5.2.1 : Evaluating forms on entry to and exit from a traced function 84

traced functions, results for 5.2.1 : Evaluating forms on entry to and exit from a traced function 85

:trace-output option 5.2.6 : Directing trace output 87

trace-verbose variable 874

tracing-enabled-p accessor 678

tracing functions

inside other functions 5.2.9 : Tracing functions from inside other functions 88

tracing-state accessor 679

tracing subfunctions 5.5 : Tracing subfunctions 90

transaction handling

in Common SQL 23.2.5 : Connecting to ODBC 264, 23.3.1.4 : Transaction handling 271, 23.9.8 : Rollback errors 289

Index

1792

true function 990

truename function 595

try-compact-in-generation function 874 11.3.11 : Controlling Fragmentation 143, 11.3.12.4 : Controlling the garbage
collector 144

try-move-in-generation function 875 11.3.11 : Controlling Fragmentation 143, 11.3.12.4 : Controlling the garbage
collector 144

tstr FLI type descriptor 1602

tty save-image 833

:type initarg storage-exhausted 1575

typed-aref accessor 1576

types

16-bit-string 896

8-bit-string 896

accepting-handle 386

augmented-string 1439

base-char 26.3.1 : Character types 326, base-character 899

base-character 899

base-string 531 26.3.5 : String types 326

bmp-char 901 26.3.1 : Character types 326

bmp-string 903 26.3.5 : String types 327

character 26.3.1 : Character types 326

double-float 553

extended-character 937

fixnum 29.1 : Introduction 358

int32 1482 28.2.2 : Fast 32-bit arithmetic 354

int64 1492 28.2.3 : Fast 64-bit arithmetic 355

ipv6-address 463

long-float 560

mt-random-state 959

short-float 581 29.7 : Float types 359

simple-augmented-string 1439

simple-base-string 531 26.3.5 : String types 327, 26.3.5.1 : String types at run time 327

simple-bmp-string 903 26.3.5 : String types 327

simple-char 980

simple-int32-vector 1567 28.2.2.2 : The INT32 API 354

simple-int64-vector 1569 28.2.3.2 : The INT64 API 355

simple-string 26.3.5 : String types 327, 26.3.5.1 : String types at run time 327, 26.3.5.2 : String types at compile time 328

simple-text-string 988 26.3.5 : String types 327, 26.3.5.1 : String types at run time 327

single-float 583 29.7 : Float types 359

string 26.3.5 : String types 327, 26.3.5.1 : String types at run time 327

text-string 988 26.3.5 : String types 327

unlocked-queue 877

Index

1793

U

:u inspector command 4.2 : Inspect 78

:ud inspector command 4.2 : Inspect 78

unbreak-new-instances-on-access function 383

unbreak-on-access function 384

undefine-action macro 990 8.1 : Defining action lists and actions 115

undefine-action-list macro 991 8.1 : Defining action lists and actions 115

undefine-declaration function 877

Unicode 26.1 : Introduction 325

:unicode external format 687 26.7.1 : External format names 332

unicode-alpha-char-p function 992 26.4.2.3 : Unicode character predicates 329

unicode-alphanumericp function 992 26.4.2.3 : Unicode character predicates 329

unicode-both-case-p function 993 26.4.2.3 : Unicode character predicates 329

unicode-char-equal function 994 26.4.2.1 : Unicode case insensitive character comparison 329

unicode-char-greaterp function 995 26.4.2.1 : Unicode case insensitive character comparison 329

unicode-char-lessp function 995 26.4.2.1 : Unicode case insensitive character comparison 329

unicode-char-not-equal function 994 26.4.2.1 : Unicode case insensitive character comparison 329

unicode-char-not-greaterp function 996 26.4.2.1 : Unicode case insensitive character comparison 329

unicode-char-not-lessp function 996 26.4.2.1 : Unicode case insensitive character comparison 329

unicode-lower-case-p function 996 26.4.2.3 : Unicode character predicates 329

unicode-string-equal function 997 26.4.2.2 : Unicode case insensitive string comparison 329

unicode-string-greaterp function 998 26.4.2.2 : Unicode case insensitive string comparison 329

unicode-string-lessp function 998 26.4.2.2 : Unicode case insensitive string comparison 329

unicode-string-not-equal function 997 26.4.2.2 : Unicode case insensitive string comparison 329

unicode-string-not-greaterp function 999 26.4.2.2 : Unicode case insensitive string comparison 329

unicode-string-not-lessp function 999 26.4.2.2 : Unicode case insensitive string comparison 329

unicode-upper-case-p function 1000 26.4.2.3 : Unicode character predicates 329

universal binaries 27.12 : Universal binaries on macOS 343

code signing 13.3.6.5 : Saving images and delivering a macOS universal binary 166

helper functions building-main-architecture-p 711, building-universal-intermediate-p 712, save-argument
-real-p 829

saving: advanced create-universal-binary 740

saving: simply save-universal-from-script 838

UNIX command

call-system call-system 1442

call-system-showing-output call-system-showing-output 1443

open-pipe open-pipe 1526

run-shell-command run-shell-command 1540

Unix commands

calling from Lisp 27.7 : Calling external programs 342

Index

1794

Unix functions

calling from Lisp 27.7 : Calling external programs 342

unixODBC 23.12 : Using ODBC 297

unlocked-queue type 877

unlocked-queue-count function 796

unlocked-queue-peek function 796

unlocked-queue-read function 796

unlocked-queue-ready function 796

unlocked-queue-send function 796

unlocked-queue-size function 796

unnotice-fd function 1251

unschedule-timer function 1252

untrace macro 595

untrace-new-instances-on-access function 384

untrace-on-access function 385

unwind-protect-blocking-interrupts macro 878 19.8.3 : Blocking interrupts 232

unwind-protect-blocking-interrupts-in-cleanups macro 879 19.8.3 : Blocking interrupts 233

update-instance-for-different-class generic function 597

update-instance-for-redefined-class generic function 597

update-instance-from-records generic function 1393 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

update-objects-joins function 1393

update-record-from-slot generic function 1394 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

update-records function 1395 23.11.1.3 : Inserting empty LOBs 291

update-records-from-instance generic function 1396 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

update-slot-from-record generic function 1397 23.4.3 : Object-Oriented Data Manipulation Language (OODML) 276

URL

opening open-url 1528

US-ASCII 26.7.1 : External format names 332

:us-ascii external format 26.7.1 : External format names 332

:use listener command 2.2.1 : Standard top-level loop commands 58

use-n-syntax-for-non-ascii-strings variable 1397

user defined stream 24 : User Defined Streams 302

user-homedir-pathname function 16.2 : Directories on Android 194, 27.15.1 : The home directory 345, get-folder-
path 1476

user-name-to-sid-string function 1603

user-preference accessor 1001 27.13.2 : Accessing persistent settings 344

UTF-16 26.7.1 : External format names 332

:utf-16 external format 688 26.7.1 : External format names 332

:utf-16be external format 688 26.7.2.2 : UTF-16 333

:utf-16le external format 688 26.7.2.2 : UTF-16 333

:utf-16-native external format 688 26.7.2.2 : UTF-16 333

Index

1795

:utf-16-reversed external format 688 26.7.2.2 : UTF-16 333

UTF-32 26.7.1 : External format names 332

:utf-32 external format 689 26.7.1 : External format names 332

:utf-32be external format 689

:utf-32le external format 689

:utf-32-native external format 689

:utf-32-reversed external format 689

UTF-8 26.7.1 : External format names 332, 26.7.3.4 : Example of using UTF-8 by default 334

:utf-8 external format 26.7.1 : External format names 332, 27.14.1 : Encoding of file names and strings in OS interface functions 345

utilities in Common SQL 23.5.3 : Utilities 284

V

:v debugger command 3.4.3 : Miscellaneous commands 64

validate-superclass generic function 18.1.8 : Compatible metaclasses 210, 18.3.1 : Inheritance across metaclasses 211

valid-external-format-p function 690

variable-information function 880

variables

$ 4.2 : Inspect 78

$$ 4.2 : Inspect 78

$$$ 4.2 : Inspect 78

* 4.1 : Describe 77

active-finders 648

android-main-process-for-testing 703

autoload-asdf-integration 898

background-input 708

background-output 708

background-query-io 708

binary-file-type 1440 compile-file 538

binary-file-types 1441 compile-file 538

browser-location 904

cache-table-queries-default 1275 23.3.1.3 : Caching of table queries 271

check-network-server 1447

compiler-break-on-error 733

connect-if-exists 1282 connect 1278

current-process 1141 19.1 : Introduction to processes 216

debug-initialization-errors-in-snap-shot 1451

debug-io 585 3.6 : Debugger control variables 68

debug-print-length 605 3.6 : Debugger control variables 68

debug-print-level 606 3.6 : Debugger control variables 68

default-action-list-sort-time 915 8.3 : Other variables 116

default-client-remote-debugging-server-port 607 3.7.1.2 : Using the client as the TCP server 70

default-database 1288 23.2.1 : Initialization steps 262

Index

1796

default-database-type 1288

default-ide-remote-debugging-server-port 607 3.7.1.1 : Using the IDE as the TCP server 70

default-package-use-list 744

default-process-priority 1149

default-profiler-collapse 745

default-profiler-cutoff 745

default-profiler-limit 746

default-profiler-sort 746

default-stack-group-list-length 1452 11.6.4 : Allocation of stacks 154

default-update-objects-max-len 1289

defstruct-generates-print-object-method 13.11 : Structure printing 170

defsystem-verbose 922

describe-length 924 4.2 : Inspect 78

describe-level 925 4.1 : Describe 77

describe-print-length 926 4.1 : Describe 77

describe-print-level 927

directory-link-transparency 1459 directory 549

disable-trace 754

dspec-classes 658

enter-debugger-directly 931

error-output 585

extended-spaces 1462 whitespace-char-p 1004

external-formats 939

features 553

file-encoding-detection-algorithm 1462 26.7.3.3 : Guessing the external format 334

file-eol-style-detection-algorithm 1464 26.7.3.3 : Guessing the external format 334

filename-pattern-encoding-matches 1465

grep-command 946

grep-command-format 947

grep-fixed-args 947

handle-existing-action-in-action-list 948 8.2 : Exception handling variables 115

handle-existing-action-list 948 8.2 : Exception handling variables 115

handle-existing-defpackage 789

handle-missing-action-in-action-list 949 8.2 : Exception handling variables 116

handle-missing-action-list 949 8.2 : Exception handling variables 115

handle-old-in-package 790

handle-old-in-package-used-as-make-package 791

handle-warn-on-redefinition 950 7.7.2.2 : Protecting packages 110

hidden-packages 609 3.6 : Debugger control variables 68

init-file-name 952

initialized-database-types 1305

Index

1797

initial-processes 1157 14.5 : Multiprocessing in a dynamic library 173, 19.2.2 : Finding out about processes 217, 19.2.3.1
: Starting multiprocessing interactively 217

inspect-print-length 4.2 : Inspect 78

inspect-print-level 4.2 : Inspect 78

inspect-through-gui 952

latin-1-code-pages 1588

line-arguments-list 1503 27.4 : The Command Line 337, 27.14.1 : Encoding of file names and strings in OS interface
functions 345

lispworks-directory 953

load-fasl-or-lisp-file 794

main-process 1179

maximum-ordinary-windows 13.6.2 : Specifying the number of editor windows 168

max-trace-indent 801 5.6 : Trace variables 91

mt-random-state 959

multibyte-code-page-ef 1591 23.12.3 : External format for ODBC strings 298

mysql-library-directories 1315 23.2.6.3 : Locating the MySQL client library 265, 23.2.6.4 : Special instructions for MySQL
on macOS 266

mysql-library-path 1316 23.2.6.3 : Locating the MySQL client library 265, 23.2.6.4 : Special instructions for MySQL on
macOS 266

mysql-library-sub-directories 1317 23.2.6.3 : Locating the MySQL client library 265

packages-for-warn-on-redefinition 806 7.7.2.2 : Protecting packages 110

print-binding-frames 621 3.6 : Debugger control variables 68

print-catch-frames 622 3.6 : Debugger control variables 68

print-command 965

print-escape-potential-numbers 809

print-handler-frames 624 3.6 : Debugger control variables 68

print-invisible-frames 625 3.6 : Debugger control variables 68

print-nickname 965

print-open-frames 626

print-restart-frames 626 3.6 : Debugger control variables 69

print-string 813

print-symbols-using-bars 1535

process-initial-bindings 1197 19.2.2 : Finding out about processes 217

profiler-print-out-all print-profile-list 812

profiler-threshold 814

profile-symbol-list 817

prompt 966 2.3 : The listener prompt 59

query-io 585

record-source-files 673

redefinition-action 673 7.7.2 : Recording definitions and redefinition checking 109, 13.8 : Controlling redefinition
warnings 169

require-verbose 973

right-paren-whitespace 1538

Index

1798

sg-default-size 1566

source-found-action 13.6.1 : Controlling appearance of found definitions 168

specific-valid-file-encodings 1573 26.7.3.5 : Example of using UTF-8 if possible 335

sql-enlarge-static 1371

sql-libraries 1381 23.2.2 : Database libraries 263

sql-loading-verbose 1382 23.2.2 : Database libraries 263

stack-overflow-behaviour 1573

standard-input 585

standard-output 585

step-compiled step 588

step-filter step 588

step-print-env step 588

symbol-alloc-gen-num 863 11.3.12.2 : Allocating in specific generations 144, 11.6.3 : Allocation of interned symbols and
packages 154

terminal-debugger-block-multiprocessing 642

to-java-host-stream 1099

to-java-host-stream-no-scroll 1100

traced-arglist 866 5.2.1 : Evaluating forms on entry to and exit from a traced function 84, 5.6 : Trace variables 91

traced-results 867 5.2.1 : Evaluating forms on entry to and exit from a traced function 85, 5.6 : Trace variables 91

trace-indent-width 868 5.6 : Trace variables 91

trace-level 869 5.6 : Trace variables 91

trace-output 585 5.6 : Trace variables 91

trace-print-circle 870 5.6 : Trace variables 91

trace-print-length 871 4.1 : Describe 77, 5.6 : Trace variables 91

trace-print-level 872 4.1 : Describe 77, 5.6 : Trace variables 92

trace-print-pretty 873 5.6 : Trace variables 92

trace-verbose 874

use-n-syntax-for-non-ascii-strings 1397

vector-pop function 19.3.2 : Mutable objects supporting atomic access 219, 19.3.7 : Single-thread context arrays and hash-tables 224

vector-push function 19.3.2 : Mutable objects supporting atomic access 219, 19.3.7 : Single-thread context arrays and hash-
tables 224

vector-push-extend function 19.3.2 : Mutable objects supporting atomic access 219, 19.3.7 : Single-thread context arrays and hash
-tables 224

verbose backtrace 3.4.1 : Backtracing 63

verify-java-caller function 1100

verify-java-callers function 1101

verify-lisp-proxies function 1103

verify-lisp-proxy function 1103

virtual (ordinary) slots 23.4.2 : Object-Oriented Data Definition Language (OODDL) 275

virtual time 12.2 : Setting up the profiler 157

Visit Tags File editor command *active-finders* 648

Index

1799

W

wait-for-connection function 1604

waitForInitialization Java method 1110

wait-for-input-streams function 1578

wait-for-input-streams-returning-first function 1579

wait-for-wait-state-collection function 525 25.8.1 : The wait-state-collection API 308

wait-processing-events function 1253

wait-serial-port-state function 1268

wait-state-collection class 525 25.8.1 : The wait-state-collection API 308

wait-state-collection-alive-p function 526

wait-state-collection-stop-loop function 527 25.8.1 : The wait-state-collection API 309, 25.8.4 : Asynchronous I/O and
multiprocessing 311

weak

arrays set-array-weak 840

hash tables make-hash-table 564

weak hash tables make-hash-table 564

weak pointers set-array-weak 840

web browser open-url 1528

:when trace keyword 5.2.7 : Restricting tracing 88

when-let macro 1002

when-let* macro 1002

whitespace-char-p function 1004

who-binds function 881

who-calls function 882

who-references function 883

who-sets function 883

Windows code page 936 26.7.1 : External format names 332

windows-cp936 26.7.1 : External format names 332

:windows-cp936 external format 26.7.1 : External format names 332

Windows event log record-message-in-windows-event-log 1594

Windows registry

API 27.17 : Accessing the Windows registry 347, 49 : The Windows registry API 1607

Windows themes set-application-themed 1598

with-action-item-error-handling macro 1005

with-action-list-mapping macro 1006

with-code-coverage-generation macro 884

with-dde-conversation macro 1643 22.2.1 : Opening and closing conversations 254

with-debugger-wrapper macro 643 3.5 : Debugger troubleshooting 68

with-ensuring-gethash macro 885

with-exclusive-lock macro 1254 19.4 : Locks 226

with-hash-table-iterator macro 19.3.8.1 : hash tables locked while iterating 225

Index

1800

with-hash-table-locked macro 886 19.3.2 : Mutable objects supporting atomic access 219, 19.3.3 : Mutable objects not
supporting atomic access 219

with-heavy-allocation macro 887 11.3.12.4 : Controlling the garbage collector 144

with-interrupts-blocked macro 1255 19.8.3 : Blocking interrupts 232

with-lock macro 1255 19.4 : Locks 225

with-modification-change macro 1579

with-modification-check-macro macro 1580

with-noticed-socket-stream macro 527

with-other-threads-disabled macro 1581 19.8.3 : Blocking interrupts 233

without-code-coverage macro 888

without-interrupts macro 1256 19.8.3 : Blocking interrupts 233, 19.8.4 : Old interrupt blocking APIs removed 233

without-preemption macro 1257 19.8.3 : Blocking interrupts 233, 19.8.4 : Old interrupt blocking APIs removed 233

with-output-to-fasl-file macro 889

with-output-to-string macro 598

with-pinned-objects macro 890

with-prepared-statement macro 1398 23.3.1.8 : Prepared statements 274

with-registry-key macro 1620 27.17 : Accessing the Windows registry 347

with-remote-debugging-connection macro 645 3.7.5.1 : Client side connection management 74

with-remote-debugging-spec macro 646 3.7.7 : Using SSL for remote debugging 76

with-ring-locked macro 891

with-sharing-lock macro 1258 19.4 : Locks 226

with-sqlite-blob macro 1399 23.13.4 : Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-blob) 300

with-stream-input-buffer macro 1430

with-stream-output-buffer macro 1431

with-transaction macro 1400 23.3.1.2 : Modification 270, 23.3.1.4 : Transaction handling 271

with-unique-names macro 1007

with-windows-event-log-event-source macro 1605

write-java-class-definitions-to-file function 1104

write-java-class-definitions-to-stream function 1104

write-sequence function 577

write-serial-port-char function 1269

write-serial-port-string function 1269

write-string-with-properties function 891

:write-timeout initarg socket-stream 491

write-to-system-log function 893

wstr FLI type descriptor 1605

X

x509-pointer FLI type descriptor 528

xrefs binds-who 709, calls-who 712, toggle-source-debugging 865, who-binds 881, who-calls 882

Index

1801

Y

yellow pages get-host-entry 456

yield function 1259

Numerics

16-bit-string type 896

8-bit-string type 896

Non-alaphanumerics

$ variable 4.2 : Inspect 78

$$ variable 4.2 : Inspect 78

$$$ variable 4.2 : Inspect 78

* variable 4.1 : Describe 77

:< debugger command 3.4.2 : Moving around the stack 63

:> debugger command 3.4.2 : Moving around the stack 63

:? listener command 2.2.1 : Standard top-level loop commands 58

[...] syntax in Common SQL 23.5.1 : The "[...]" Syntax 277

Index

1802

	LispWorks® User Guide and Reference Manual
	Copyrights and Trademarks
	Contents
	Preface
	1 Starting LispWorks
	1.1 The usual way to start LispWorks
	1.2 Passing arguments to LispWorks
	1.2.1 Saving a new image
	1.2.2 Saving a console mode image
	1.2.3 Bypassing initialization files
	1.2.4 Other command line options

	1.3 Starting the LispWorks Graphical IDE
	1.4 Using LispWorks with SLIME
	1.4.1 Using the Professional/Enterprise Editions with SLIME
	1.4.2 Using the Personal Edition with SLIME

	1.5 Quitting LispWorks

	2 The Listener
	2.1 First use of the listener
	2.2 Standard listener commands
	2.2.1 Standard top-level loop commands
	2.2.2 Examples

	2.3 The listener prompt

	3 The Debugger
	3.1 Entering the REPL debugger
	3.2 Simple use of the REPL debugger
	3.3 The stack in the debugger
	3.4 REPL debugger commands
	3.4.1 Backtracing
	3.4.2 Moving around the stack
	3.4.3 Miscellaneous commands
	3.4.4 Leaving the debugger
	3.4.5 Example debugging session

	3.5 Debugger troubleshooting
	3.6 Debugger control variables
	3.7 Remote debugging
	3.7.1 Simple usage
	3.7.1.1 Using the IDE as the TCP server
	3.7.1.2 Using the client as the TCP server

	3.7.2 The client side of remote debugging
	3.7.3 The IDE side of remote debugging
	3.7.3.1 Accessing client side objects on the IDE side
	3.7.3.2 Controlling the client side from the IDE side

	3.7.4 Troubleshooting
	3.7.4.1 Failing to open connections
	3.7.4.2 The Inspector does not show slots in a remote object

	3.7.5 Advanced usage - multiple connections
	3.7.5.1 Client side connection management
	3.7.5.2 IDE side connection management
	3.7.5.3 Common (both IDE and client) connection functions

	3.7.6 TCP port usage in remote debugging
	3.7.7 Using SSL for remote debugging

	4 The REPL Inspector
	4.1 Describe
	4.2 Inspect
	4.3 Inspection modes
	4.3.1 Hash table inspection modes

	5 The Trace Facility
	5.1 Simple tracing
	5.2 Tracing options
	5.2.1 Evaluating forms on entry to and exit from a traced function
	5.2.2 Evaluating forms without printing results
	5.2.3 Using the debugger when tracing
	5.2.4 Entering stepping mode
	5.2.5 Configuring function entry and exit information
	5.2.6 Directing trace output
	5.2.7 Restricting tracing
	5.2.8 Storing the memory allocation made during a function call
	5.2.9 Tracing functions from inside other functions

	5.3 Example
	5.4 Tracing methods
	5.5 Tracing subfunctions
	5.5.1 Notes on subfunction names

	5.6 Trace variables
	5.7 Troubleshooting tracing
	5.7.1 Excessive output
	5.7.2 Missing output
	5.7.2.1 Compiled code may not call the functions you expect
	5.7.2.2 trace works on function names, not function objects

	6 The Advice Facility
	6.1 Defining advice
	6.2 Combining the advice
	6.2.1 :before and :after advice
	6.2.2 :around advice

	6.3 Removing advice
	6.4 Advice for macros and methods
	6.5 Advising subfunctions
	6.5.1 Notes on subfunction names

	6.6 Examples
	6.7 Advice functions and macros

	7 Dspecs: Tools for Handling Definitions
	7.1 Dspecs
	7.2 Forms of dspecs
	7.2.1 Canonical dspecs

	7.3 Dspec namespaces
	7.3.1 Dspec classes
	7.3.1.1 Complete example of a top-level dspec class
	7.3.1.2 Example of subclassing

	7.3.2 Dspec aliases

	7.4 Types of relations between definitions
	7.4.1 Functionally equivalent definers
	7.4.2 Grouping subdefinitions together
	7.4.3 Distributed definitions

	7.5 Details of built-in dspec classes and aliases
	7.5.1 Function dspecs
	7.5.2 CLOS dspec classes
	7.5.3 Part Classes
	7.5.4 Foreign callable dspecs

	7.6 Subfunction dspecs
	7.7 Tracking definitions
	7.7.1 Locations
	7.7.2 Recording definitions and redefinition checking
	7.7.2.1 Use of record-definition
	7.7.2.2 Protecting packages

	7.7.3 Source level debugging and stepping

	7.8 Finding locations
	7.9 Users of location information
	7.9.1 Finding definitions in the LispWorks editor
	7.9.2 Using pre-defined form parsers
	7.9.3 The editor's implicit form parser
	7.9.4 Reusing form parsers
	7.9.5 Example: defcondition
	7.9.6 Example: my-defmethod

	8 Action Lists
	8.1 Defining action lists and actions
	8.2 Exception handling variables
	8.3 Other variables
	8.4 Diagnostic utilities
	8.5 Examples
	8.6 Standard Action Lists

	9 The Compiler
	9.1 Compiling a function
	9.2 Compiling a source file
	9.2.1 Debugging errors from source file compilation

	9.3 Compiling a form
	9.4 How the compiler works
	9.5 Compiler control
	9.5.1 Examples of compiler control

	9.6 Declare, proclaim, and declaim
	9.6.1 Naming conventions

	9.7 Optimizing your code
	9.7.1 Compiler optimization hints
	9.7.2 Fast integer arithmetic
	9.7.3 Floating point optimization
	9.7.4 Double-float complex number optimization
	9.7.5 Tail call optimization
	9.7.6 Usage of special variables
	9.7.6.1 Finding symbols to declare
	9.7.6.2 Coalesce multiple special bindings

	9.7.7 Stack allocation of objects with dynamic extent
	9.7.8 Inlining foreign slot access
	9.7.9 Built-in optimization of remove-duplicates and delete-duplicates

	9.8 Compiler parameters affecting LispWorks

	10 Code Coverage
	10.1 Using Code Coverage
	10.1.1 Compiling the code to record code coverage information
	10.1.2 Loading the code
	10.1.3 Exercising the code
	10.1.4 Displaying the results

	10.2 Manipulating code coverage data
	10.3 Preventing code generation for some forms
	10.4 Code coverage and multithreading
	10.5 Counting overflow
	10.6 Memory usage and code speed
	10.7 Understanding the code coverage output
	10.7.1 Eliminated forms
	10.7.2 Displaying counters
	10.7.3 Function forms where the function is not actually called
	10.7.4 Partially hidden

	10.8 Coloring code that has changed

	11 Memory Management
	11.1 Introduction
	11.2 Guidance for control of the memory management system
	11.2.1 General guidance
	11.2.2 Short-lived data
	11.2.3 Long-lived data
	11.2.4 Permanent data

	11.3 Memory Management in 32-bit LispWorks
	11.3.1 Generations
	11.3.2 Allocation of objects
	11.3.2.1 Allocation of static objects
	11.3.2.2 Allocation in different generations

	11.3.3 GC operations
	11.3.4 Garbage collection strategy
	11.3.5 Memory layout
	11.3.5.1 Linux
	11.3.5.2 FreeBSD
	11.3.5.3 x86/x64 Solaris
	11.3.5.4 Windows

	11.3.6 Approaching the memory limit
	11.3.7 Overflow
	11.3.8 Behavior of generation 1
	11.3.9 Behavior of generation 2
	11.3.10 Forcing expansion
	11.3.11 Controlling Fragmentation
	11.3.12 Summary of garbage collection symbols
	11.3.12.1 Determining memory usage
	11.3.12.2 Allocating in specific generations
	11.3.12.3 Controlling a specific generation
	11.3.12.4 Controlling the garbage collector

	11.4 Memory Management in 64-bit LispWorks
	11.4.1 General organization of memory
	11.4.2 Segments and Allocation Types
	11.4.3 Garbage Collection Operations
	11.4.4 Generation Management
	11.4.5 Tuning the garbage collector
	11.4.5.1 Interface for tuning the GC

	11.5 The Mobile GC
	11.5.1 Mobile GC changes to common functions and macros
	11.5.2 Mobile GC technical details
	11.5.2.1 Objects alive at delivery time
	11.5.2.2 Objects allocated at run time
	11.5.2.3 Special considerations for the Mobile GC

	11.5.3 Tuning memory management in the Mobile GC
	11.5.3.1 Response to low memory
	11.5.3.2 Preventing/reducing GC of generation 2

	11.6 Common Memory Management Features
	11.6.1 Timing the garbage collector
	11.6.2 Reducing image size
	11.6.3 Allocation of interned symbols and packages
	11.6.4 Allocation of stacks
	11.6.5 Mapping across all objects
	11.6.6 Special actions
	11.6.7 Garbage collection of foreign objects
	11.6.8 Freeing of objects by the GC
	11.6.9 Assisting the garbage collector
	11.6.9.1 Breaking pointers from older objects

	12 The Profiler
	12.1 What the profiler does
	12.2 Setting up the profiler
	12.3 Running the profiler
	12.3.1 Using the macro profile
	12.3.2 Programmatic control of profiling

	12.4 Profiler output
	12.4.1 Interpretation of profiling results
	12.4.2 Displaying parts of the tree

	12.5 Profiling pitfalls
	12.6 Profiling and garbage collection
	12.7 Profiler tree file format
	12.7.1 Parsing the file
	12.7.2 Viewing the file as text

	13 Customization of LispWorks
	13.1 Introduction
	13.1.1 Pre-loading code
	13.1.2 Loading code at start up
	13.1.3 Specific customizations

	13.2 Configuration and initialization files
	13.2.1 Configuration files
	13.2.2 Initialization files

	13.3 Saving a LispWorks image
	13.3.1 The configuration file
	13.3.2 The save-image script
	13.3.3 Save your new image
	13.3.4 Use your new image
	13.3.5 Saving a non-GUI image with multiprocessing enabled
	13.3.6 Code signing in saved images
	13.3.6.1 Signing in the distributed LispWorks executable
	13.3.6.2 Saving images and delivering on Microsoft Windows
	13.3.6.3 Saving images and delivering on Apple silicon Macs
	13.3.6.4 Saving images and delivering on Intel Macs
	13.3.6.5 Saving images and delivering a macOS universal binary

	13.4 Saved sessions
	13.4.1 The default session
	13.4.2 What is saved and what is not saved
	13.4.3 Saving a session programmatically
	13.4.3.1 Save Session actions
	13.4.3.2 Non-IDE interfaces

	13.4.4 Saving a session using the IDE

	13.5 Load and open your files on startup
	13.6 Customizing the editor
	13.6.1 Controlling appearance of found definitions
	13.6.2 Specifying the number of editor windows
	13.6.3 Binding commands to keystrokes

	13.7 Finding source code
	13.8 Controlling redefinition warnings
	13.9 Specifying the initial working directory
	13.10 Customizing LispWorks for use with your own code
	13.10.1 Preloading selected modules
	13.10.2 Creating packages

	13.11 Structure printing
	13.12 Configuring the printer
	13.12.1 PPD file details

	14 LispWorks as a dynamic library
	14.1 Introduction
	14.2 Creating a dynamic library
	14.2.1 C functions provided by the system
	14.2.2 C functions provided by the application
	14.2.3 Example

	14.3 Initialization of the dynamic library
	14.3.1 Automatic initialization
	14.3.2 Initialization via InitLispWorks

	14.4 Relocation
	14.5 Multiprocessing in a dynamic library
	14.6 Unloading a dynamic library

	15 Java interface
	15.1 Initialization of the Java interface
	15.2 Types and conversion between Lisp and Java
	15.2.1 Mapping of Java primitive types to and from Lisp types
	15.2.2 java.lang.String
	15.2.3 Java non-primitive objects

	15.3 Calling from Lisp to Java
	15.3.1 Calling methods by name
	15.3.2 Importing classes
	15.3.3 Defining specific callers
	15.3.4 Verifying callers
	15.3.5 Actual Java call

	15.4 Calling from Java to Lisp
	15.4.1 Direct calls
	15.4.2 Using proxies

	15.5 Working with Java arrays
	15.5.1 Accessing a single element
	15.5.2 Making Java arrays
	15.5.3 Multiple access functions

	15.6 Utilities and administration
	15.7 Loading a LispWorks dynamic library into Java
	15.8 CLOS partial integration
	15.9 Java interface performance issues

	16 Android interface
	16.1 Delivering for Android
	16.1.1 Configuration for Separate APKs for different architectures
	16.1.2 ABI splitting using flavors in the OthelloDemo

	16.2 Directories on Android
	16.3 Writing debugging messages
	16.4 The Othello demo for Android
	16.4.1 Creating an Android Studio project
	16.4.2 Delivering LispWorks to the project
	16.4.3 Running the application
	16.4.3.1 The Lisp Panel screen
	16.4.3.2 Prepared forms

	16.4.4 Lisp interface usage in the Java code
	16.4.4.1 Class Othello
	16.4.4.2 Class LispPanel
	16.4.4.3 Class MyApplication
	16.4.4.4 Class LispWorksRuntimeDemo
	16.4.4.5 Class History
	16.4.4.6 Class SquareLayout

	16.4.5 Java and Android interface in the Lisp code

	17 iOS interface
	17.1 Delivering for iOS
	17.2 Initializing LispWorks
	17.3 Using Objective-C from Lisp
	17.4 Limitations of the iOS Runtime
	17.5 The Othello demo for iOS
	17.5.1 Notes about the Xcode project
	17.5.2 The Othello game
	17.5.3 The Lisp evaluation pane
	17.5.4 Notes about the Lisp code

	17.6 The Mobile GC

	18 The Metaobject Protocol
	18.1 Metaobject features incompatible with AMOP
	18.1.1 Instance Structure Protocol
	18.1.2 Method Metaobjects
	18.1.3 Method Lambdas
	18.1.4 Method Functions
	18.1.5 EQL specializers
	18.1.6 Generic Function Invocation Protocol
	18.1.7 Method combinations
	18.1.8 Compatible metaclasses
	18.1.9 Inheritance Structure of Metaobject Classes

	18.2 Metaobject features additional to AMOP
	18.2.1 Computing the effective method function

	18.3 Common problems when using the MOP
	18.3.1 Inheritance across metaclasses
	18.3.2 Accessors not using structure instance protocol
	18.3.3 The MOP in delivered images

	18.4 Implementation of virtual slots

	19 Multiprocessing
	19.1 Introduction to processes
	19.2 Processes basics
	19.2.1 Creating a process
	19.2.2 Finding out about processes
	19.2.3 Multiprocessing
	19.2.3.1 Starting multiprocessing interactively
	19.2.3.2 Multiprocessing on startup
	19.2.3.3 Running your own processes on startup

	19.3 Atomicity and thread-safety of the LispWorks implementation
	19.3.1 Immutable objects
	19.3.2 Mutable objects supporting atomic access
	19.3.3 Mutable objects not supporting atomic access
	19.3.4 Making an object's contents accessible to other threads
	19.3.4.1 Ways to guarantee the visibility of stores
	19.3.4.2 Special care for macros and accessors that may themselves allocate

	19.3.5 Ensuring stores are visible to other threads
	19.3.5.1 An example to consider the issues
	19.3.5.2 The general solution using a lock or another synchronization object
	19.3.5.3 An alternative solution using globally-accessible
	19.3.5.4 An alternative solution using ensure-stores-after-stores
	19.3.5.5 Destructive macros and accessors that allocate internally
	19.3.5.6 Miscellaneous notes

	19.3.6 Issues with order of memory accesses
	19.3.7 Single-thread context arrays and hash-tables
	19.3.8 Implicit locks in the LispWorks implementation
	19.3.8.1 hash tables locked while iterating
	19.3.8.2 Subclasses of standard-object locked while their class is being redefined
	19.3.8.3 Subclasses of standard-object locked while their class is being changed

	19.4 Locks
	19.4.1 Recursive and sharing locks
	19.4.2 Querying locks
	19.4.3 Guarantees and limitations when locking and unlocking

	19.5 Modifying a hash table with multiprocessing
	19.6 Process Waiting and communication between processes
	19.6.1 Specific Process Wait functions
	19.6.2 Generic Process Wait functions
	19.6.3 Communication between processes and synchronization
	19.6.4 Synchronization

	19.7 Synchronization between threads
	19.7.1 Condition variables
	19.7.2 Synchronization barriers
	19.7.3 Counting semaphores

	19.8 Killing a process, interrupts and blocking interrupts
	19.8.1 Killing a process
	19.8.2 Interrupting a process
	19.8.3 Blocking interrupts
	19.8.4 Old interrupt blocking APIs removed
	19.8.4.1 Atomic increment
	19.8.4.2 Atomic push/pop
	19.8.4.3 Atomic push/delete
	19.8.4.4 Atomic plist update
	19.8.4.5 Atomic update of a data structure
	19.8.4.6 Atomic access to a cache in a hash table

	19.9 Timers
	19.9.1 Timers and multiprocessing
	19.9.2 Input and output for timer functions

	19.10 Process properties
	19.11 Other processes functions
	19.11.1 Process Priorities
	19.11.1.1 Process priorities in SMP LispWorks
	19.11.1.2 Process priorities in non-SMP LispWorks

	19.11.2 Accessing symbol values across processes
	19.11.3 Stopping and unstopping processes

	19.12 Native threads and foreign code
	19.12.1 Foreign callbacks on threads not created by Lisp
	19.12.1.1 Performance considerations for foreign threads

	19.13 Low level operations
	19.13.1 Low level atomic operations
	19.13.2 Aids for implementing modification checks
	19.13.2.1 Example modification check

	19.13.3 Ensuring order of memory between operations in different threads
	19.13.3.1 Example of ensuring order of memory

	19.14 Some mistakes to avoid with multithreading
	19.14.1 Closures
	19.14.2 Use of with-slots

	20 Common Defsystem and ASDF
	20.1 Introduction
	20.2 Defining a system
	20.2.1 DEFSYSTEM syntax
	20.2.2 DEFSYSTEM options
	20.2.3 DEFSYSTEM members
	20.2.4 DEFSYSTEM rules
	20.2.5 Examples

	20.3 Using ASDF
	20.3.1 Bypassing the supplied version of ASDF
	20.3.2 Using ASDF in the LispWorks IDE

	21 The Parser Generator
	21.1 Introduction
	21.2 Grammar rules
	21.2.1 Example
	21.2.2 Combined rules
	21.2.3 Resolving ambiguities

	21.3 Functions defined by defparser
	21.4 Error handling
	21.5 Interface to the lexical analyzer
	21.6 Example

	22 Dynamic Data Exchange
	22.1 Introduction
	22.1.1 Types of transaction
	22.1.2 Conversations, servers, topics, and items
	22.1.3 Advise loops
	22.1.4 Execute transactions

	22.2 Client interface
	22.2.1 Opening and closing conversations
	22.2.2 Automatically managed conversations
	22.2.3 Advise loops
	22.2.3.1 Example advise loop

	22.2.4 Request and poke transactions
	22.2.5 Execute transactions

	22.3 Server interface
	22.3.1 Starting a DDE server
	22.3.2 Handling poke and request transactions
	22.3.3 Topics
	22.3.3.1 General topics
	22.3.3.2 Dispatching topics
	22.3.3.3 The system topic

	23 Common SQL
	23.1 Introduction
	23.1.1 Overview
	23.1.2 Supported databases

	23.2 Initialization
	23.2.1 Initialization steps
	23.2.2 Database libraries
	23.2.3 General database connection and disconnection
	23.2.3.1 Connection example

	23.2.4 Connecting to Oracle
	23.2.5 Connecting to ODBC
	23.2.5.1 Connecting to ODBC using a string
	23.2.5.2 Connecting to ODBC using a plist
	23.2.5.3 ODBC keywords

	23.2.6 Connecting to MySQL
	23.2.6.1 Connecting to MySQL using a string
	23.2.6.2 Connecting to MySQL using a plist
	23.2.6.3 Locating the MySQL client library
	23.2.6.4 Special instructions for MySQL on macOS

	23.2.7 Connecting to PostgreSQL
	23.2.7.1 Connecting to PostgreSQL using a string
	23.2.7.2 Connecting to PostgreSQL using a plist
	23.2.7.3 Escaping and standard_conforming_strings
	23.2.7.4 Special instructions for PostgreSQL on macOS

	23.2.8 Connecting to SQLite.
	23.2.8.1 Locating the SQLite client library
	23.2.8.2 SQLite string encoding
	23.2.8.3 SQLite connection keywords

	23.3 Functional interface
	23.3.1 Functional Data Manipulation Language (FDML)
	23.3.1.1 Querying
	23.3.1.2 Modification
	23.3.1.3 Caching of table queries
	23.3.1.4 Transaction handling
	23.3.1.5 Iteration
	23.3.1.6 Specifying SQL directly
	23.3.1.7 Building vendor-specific SQL
	23.3.1.8 Prepared statements

	23.3.2 Functional Data Definition Language (FDDL)
	23.3.2.1 Querying the schema
	23.3.2.2 FDDL Querying example
	23.3.2.3 Modification

	23.4 Object oriented interface
	23.4.1 Object oriented/relational model
	23.4.1.1 Inheritance for View Classes

	23.4.2 Object-Oriented Data Definition Language (OODDL)
	23.4.2.1 Example View Class definition

	23.4.3 Object-Oriented Data Manipulation Language (OODML)
	23.4.3.1 Examples
	23.4.3.2 Iteration
	23.4.3.3 Garbage collection of view instances

	23.5 Symbolic SQL syntax
	23.5.1 The "[...]" Syntax
	23.5.1.1 Enclosing database identifiers
	23.5.1.2 Specifying the type of retrieved values.
	23.5.1.3 Symbolic expression of SQL operators
	23.5.1.4 Calling database functions
	23.5.1.5 Enclosing a SQL expression directly
	23.5.1.6 SQL string literals

	23.5.2 Programmatic interface
	23.5.2.1 Examples

	23.5.3 Utilities

	23.6 Working with date fields
	23.6.1 Testing date values
	23.6.2 DATE returned as universal time
	23.6.2.1 Timezone of returned DATEs

	23.6.3 DATE returned as string
	23.6.4 Using universal time format

	23.7 SQL I/O recording
	23.8 Error handling in Common SQL
	23.8.1 SQL condition classes
	23.8.2 Database error accessors

	23.9 Using MySQL
	23.9.1 Connection specification
	23.9.2 Case of table names and database names
	23.9.3 Encoding (character sets in MySQL).
	23.9.4 SQL mode
	23.9.5 Meaning of the :owner argument to select
	23.9.6 Special considerations for iteration functions and macros
	23.9.6.1 Fetching multiple records
	23.9.6.2 Aborting queries which fetch many records

	23.9.7 Table types
	23.9.8 Rollback errors
	23.9.9 Types of values returned from queries
	23.9.10 Autocommit

	23.10 Using Oracle
	23.10.1 Connection specification
	23.10.2 Setting connection parameters

	23.11 Oracle LOB interface
	23.11.1 Introduction
	23.11.1.1 Retrieving LOB locators
	23.11.1.2 Operating on LOB locators
	23.11.1.3 Inserting empty LOBs

	23.11.2 Retrieving Lob Locators
	23.11.3 Locking
	23.11.4 Retrieving LOB Locators as streams
	23.11.5 Attaching a stream to a LOB locator
	23.11.6 Interactions with foreign calls
	23.11.7 Determining the type of a LOB
	23.11.8 Reading and writing from and to LOBs
	23.11.9 The LOB functions
	23.11.9.1 Querying functions
	23.11.9.2 LOB management functions
	23.11.9.3 Modifying LOBs
	23.11.9.4 File operations
	23.11.9.5 Direct I/O
	23.11.9.6 Temporary LOBs
	23.11.9.7 Control of buffering

	23.11.10 Fetching the contents of the LOBs directly

	23.12 Using ODBC
	23.12.1 Configuring unixODBC
	23.12.2 Loading unixODBC
	23.12.3 External format for ODBC strings
	23.12.4 Using non-ASCII strings on Microsoft SQL Server

	23.13 Using SQLite
	23.13.1 Connecting to SQLite
	23.13.2 Types of retrieved fields in queries
	23.13.3 Tables containing a uniform type per column
	23.13.4 Reading from blobs using a handle (sqlite-raw-blob) and modifying blobs (sqlite-blob)
	23.13.5 Values in Insert and Update.
	23.13.6 Accessing ATTACHed databases

	24 User Defined Streams
	24.1 Introduction
	24.2 An illustrative example of user defined streams
	24.2.1 Defining a new stream class
	24.2.2 Recognizing the stream element type
	24.2.3 Stream directionality
	24.2.4 Stream input
	24.2.5 Stream output
	24.2.6 Instantiating the stream

	25 TCP and UDP socket communication and SSL
	25.1 Running a server that accepts connections
	25.2 Connecting to a server
	25.3 Examples of running and connecting to a server
	25.4 Specifying the target for connecting and binding a socket
	25.5 Information about IP addresses
	25.6 Waiting on a socket stream
	25.7 Special considerations
	25.7.1 IPv6 on Windows XP

	25.8 Asynchronous I/O
	25.8.1 The wait-state-collection API
	25.8.2 The Async-I/O-State API
	25.8.3 Writing callbacks in Asynchronous I/O operations
	25.8.4 Asynchronous I/O and multiprocessing

	25.9 Using SSL
	25.9.1 SSL implementations
	25.9.2 Obtaining and installing the OpenSSL library
	25.9.2.1 Installing the OpenSSL library on Solaris
	25.9.2.2 How LispWorks locates the OpenSSL libraries

	25.9.3 SSL abstract contexts
	25.9.4 Creating a stream with SSL
	25.9.5 Using Asynchronous I/O with SSL
	25.9.6 Keyword arguments for use with SSL
	25.9.7 Attaching SSL to an existing socket
	25.9.8 Errors in SSL
	25.9.9 Examples of using the socket stream SSL interface

	25.10 Socket streams with Java sockets and SSL on Android
	25.10.1 Android-specific points

	25.11 Advanced OpenSSL-specific issues
	25.11.1 OpenSSL interface
	25.11.1.1 OpenSSL constants
	25.11.1.2 Naming conventions for direct OpenSSL calls
	25.11.1.3 Mapping C names to Lisp names
	25.11.1.4 Mapping Lisp names to C names

	25.11.2 Direct calls to OpenSSL
	25.11.3 Using SSL objects directly
	25.11.4 Initialization

	26 Internationalization: characters, strings and encodings
	26.1 Introduction
	26.2 Unicode support
	26.3 Character and String types
	26.3.1 Character types
	26.3.2 Compatibility notes
	26.3.3 Character Syntax
	26.3.4 Compatibility notes
	26.3.5 String types
	26.3.5.1 String types at run time
	26.3.5.2 String types at compile time

	26.4 Characters with case
	26.4.1 How Common Lisp functions handle characters with case
	26.4.2 Functions to handle characters with case using Unicode rules
	26.4.2.1 Unicode case insensitive character comparison
	26.4.2.2 Unicode case insensitive string comparison
	26.4.2.3 Unicode character predicates

	26.5 String accessors
	26.6 String Construction
	26.6.1 Default string construction
	26.6.2 String construction with known type
	26.6.3 Controlling string construction
	26.6.4 String construction on Windows systems

	26.7 External Formats to translate Lisp characters from/to external encodings
	26.7.1 External format names
	26.7.2 16-bit External formats guide
	26.7.2.1 Unicode
	26.7.2.2 UTF-16
	26.7.2.3 BMP

	26.7.3 External Formats and File Streams
	26.7.3.1 Complete external format ef-specs
	26.7.3.2 Using complete external formats
	26.7.3.3 Guessing the external format
	26.7.3.4 Example of using UTF-8 by default
	26.7.3.5 Example of using UTF-8 if possible
	26.7.3.6 External formats and stream-element-type
	26.7.3.7 External formats and the LispWorks Editor
	26.7.3.8 Byte Order Mark

	26.7.4 External Formats and the Foreign Language Interface
	26.7.5 External Formats and vectors of integers

	27 LispWorks' Operating Environment
	27.1 The Operating System
	27.2 Site Name
	27.3 The Lisp Image
	27.4 The Command Line
	27.4.1 Command Line Arguments
	27.4.2 Accessing environment variables

	27.5 Address Space and Image Size
	27.5.1 Size of real memory
	27.5.2 Layout of memory
	27.5.3 Reporting current allocation

	27.6 Startup relocation
	27.6.1 How to relocate LispWorks
	27.6.2 Startup relocation of 32-bit LispWorks
	27.6.3 Startup relocation of 64-bit LispWorks
	27.6.3.1 Linux
	27.6.3.2 Windows and Macintosh

	27.7 Calling external programs
	27.7.1 Interpreting the exit status

	27.8 Snapshot debugging of startup errors
	27.9 System message log
	27.10 Exit status
	27.11 Creating a new executable with code preloaded
	27.12 Universal binaries on macOS
	27.13 User Preferences
	27.13.1 Location of persistent settings
	27.13.2 Accessing persistent settings
	27.13.3 Example using user preferences

	27.14 File system interface
	27.14.1 Encoding of file names and strings in OS interface functions
	27.14.2 Fast access to files in a directory

	27.15 Special locations in the file system
	27.15.1 The home directory
	27.15.2 Special Folders
	27.15.3 Temporary files

	27.16 The console external format
	27.17 Accessing the Windows registry
	27.18 Physical pathnames in LispWorks
	27.18.1 Parsing physical namestrings in LispWorks
	27.18.1.1 Detailed description of the parsing of namestrings

	27.18.2 Namestrings of pathnames
	27.18.3 Creating pathnames with make-pathname
	27.18.4 Backslashes in pathnames on non-Windows platforms
	27.18.5 Windows UNC pathnames (Windows only)
	27.18.6 Wildcards in pathname components
	27.18.7 Pathname comparison
	27.18.7.1 Pathname comparison on macOS

	28 Miscellaneous Utilities
	28.1 Object addresses and memory
	28.2 Optimized integer arithmetic and integer vector access
	28.2.1 Typed aref vectors
	28.2.2 Fast 32-bit arithmetic
	28.2.2.1 Optimized and unoptimized INT32 code
	28.2.2.2 The INT32 API
	28.2.2.3 INT32 Optimization

	28.2.3 Fast 64-bit arithmetic
	28.2.3.1 Optimized and unoptimized INT64 code
	28.2.3.2 The INT64 API
	28.2.3.3 INT64 Optimization

	28.2.4 Integer vector access

	28.3 Transferring large amounts of data
	28.4 Rings
	28.5 Conditional throw and checking for catch in the dynamic environment
	28.6 Checking for a dynamic binding
	28.7 Regular expression syntax

	29 64-bit LispWorks
	29.1 Introduction
	29.2 Heap size
	29.3 Architectural constants
	29.4 Speed
	29.5 Memory Management and cl:room
	29.6 Greater allocation expected in 64-bit LispWorks
	29.7 Float types
	29.8 External libraries

	30 Self-contained examples
	30.1 COMM examples
	30.1.1 SSL examples
	30.1.2 Asynchronous I/O examples

	30.2 Streams examples
	30.3 DDE examples
	30.4 Parser generator examples
	30.5 Examples for save-image in a macOS application bundle
	30.6 Miscellaneous examples

	31 The CLOS Package
	break-new-instances-on-access
	break-on-access
	class-extra-initargs
	compute-class-potential-initargs
	compute-discriminating-function
	compute-effective-method-function-from-classes
	copy-standard-object
	funcallable-standard-object
	process-a-class-option
	process-a-slot-option
	replace-standard-object
	set-clos-initarg-checking
	set-make-instance-argument-checking
	slot-boundp-using-class
	slot-makunbound-using-class
	slot-value-using-class
	trace-new-instances-on-access
	trace-on-access
	unbreak-new-instances-on-access
	unbreak-on-access
	untrace-new-instances-on-access
	untrace-on-access

	32 The COMM Package
	accepting-handle
	accepting-handle-collection
	accepting-handle-local-port
	accepting-handle-name
	accepting-handle-socket
	accepting-handle-user-info
	accept-tcp-connections-creating-async-io-states
	apple-err-ssl-bad-cert
	apple-err-ssl-bad-cipher-suite
	apple-err-ssl-bad-configuration
	apple-err-ssl-bad-record-mac
	apple-err-ssl-buffer-overflow
	apple-err-ssl-cert-expired
	apple-err-ssl-cert-not-yet-valid
	apple-err-ssl-client-cert-requested
	apple-err-ssl-client-hello-received
	apple-err-ssl-closed-abort
	apple-err-ssl-closed-graceful
	apple-err-ssl-closed-no-notify
	apple-err-ssl-connection-refused
	apple-err-ssl-crypto
	apple-err-ssl-decryption-fail
	apple-err-ssl-fatal-alert
	apple-err-ssl-host-name-mismatch
	apple-err-ssl-illegal-param
	apple-err-ssl-internal
	apple-err-ssl-module-attach
	apple-err-ssl-negotiation
	apple-err-ssl-no-root-cert
	apple-err-ssl-peer-access-denied
	apple-err-ssl-peer-auth-completed
	apple-err-ssl-peer-bad-cert
	apple-err-ssl-peer-bad-record-mac
	apple-err-ssl-peer-cert-expired
	apple-err-ssl-peer-cert-revoked
	apple-err-ssl-peer-cert-unknown
	apple-err-ssl-peer-decode-error
	apple-err-ssl-peer-decompress-fail
	apple-err-ssl-peer-decrypt-error
	apple-err-ssl-peer-decryption-fail
	apple-err-ssl-peer-export-restriction
	apple-err-ssl-peer-handshake-fail
	apple-err-ssl-peer-insufficient-security
	apple-err-ssl-peer-internal-error
	apple-err-ssl-peer-no-renegotiation
	apple-err-ssl-peer-protocol-version
	apple-err-ssl-peer-record-overflow
	apple-err-ssl-peer-unexpected-msg
	apple-err-ssl-peer-unknown-ca
	apple-err-ssl-peer-unsupported-cert
	apple-err-ssl-peer-user-cancelled
	apple-err-ssl-protocol
	apple-err-ssl-record-overflow
	apple-err-ssl-session-not-found
	apple-err-ssl-unexpected-record
	apple-err-ssl-unknown-root-cert
	apple-err-ssl-weak-peer-ephemeral-dh-key
	apple-err-ssl-would-block
	apple-err-ssl-x-cert-chain-invalid
	apply-in-wait-state-collection-process
	async-io-ssl-failure-indicator-from-failure-args
	async-io-state
	async-io-state-abort
	async-io-state-abort-and-close
	async-io-state-address
	async-io-state-attach-ssl
	async-io-state-buffered-data-length
	async-io-state-ctx
	async-io-state-detach-ssl
	async-io-state-discard
	async-io-state-finish
	async-io-state-get-buffered-data
	async-io-state-handshake
	async-io-state-max-read
	async-io-state-old-length
	async-io-state-peer-address
	async-io-state-read-buffer
	async-io-state-read-status
	async-io-state-read-with-checking
	async-io-state-receive-message
	async-io-state-send-message
	async-io-state-send-message-to-address
	async-io-state-shutdown
	async-io-state-ssl
	async-io-state-ssl-side
	async-io-state-wait-for-input
	async-io-state-write-buffer
	async-io-state-write-status
	attach-ssl
	call-wait-state-collection
	close-accepting-handle
	close-async-io-state
	close-socket-handle
	close-wait-state-collection
	connect-to-tcp-server
	create-and-run-wait-state-collection
	create-async-io-state
	create-async-io-state-and-connected-tcp-socket
	create-async-io-state-and-connected-udp-socket
	create-async-io-state-and-udp-socket
	create-ssl-client-context
	create-ssl-server-context
	create-ssl-socket-stream
	destroy-ssl
	destroy-ssl-ctx
	detach-ssl
	do-rand-seed
	ensure-ssl
	find-ssl-connection-from-ssl-ref
	generalized-time
	generalized-time-p
	generalized-time-pprint
	generalized-time-string
	get-certificate-common-name
	get-certificate-data
	get-certificate-serial-number
	get-default-local-ipv6-address
	get-host-entry
	get-ip-default-zone-id
	get-service-entry
	get-socket-address
	get-socket-peer-address
	get-verification-mode
	ip-address-string
	ipv6-address
	ipv6-address-p
	ipv6-address-scope-id
	ipv6-address-string
	loop-processing-wait-state-collection
	make-generalized-time
	make-ssl-ctx
	make-wait-state-collection
	openssl-version
	open-tcp-stream
	open-tcp-stream-using-java
	parse-ipv6-address
	parse-printed-generalized-time
	pem-read
	read-dhparams
	release-certificate
	release-certificates-vector
	replace-socket-stream-socket
	reset-ssl-abstract-context
	sec-certificate-ref
	server-terminate
	set-ssl-ctx-dh
	set-ssl-ctx-options
	set-ssl-ctx-password-callback
	set-ssl-library-path
	set-verification-mode
	socket-connect-error
	socket-connection-peer-address
	socket-connection-socket
	socket-create-error
	socket-error
	socket-error
	socket-io-error
	socket-stream
	socket-stream-address
	socket-stream-ctx
	socket-stream-handshake
	socket-stream-peer-address
	socket-stream-shutdown
	socket-stream-ssl
	socket-stream-ssl-side
	ssl-abstract-context
	ssl-cipher-pointer
	ssl-cipher-pointer-stack
	ssl-closed
	ssl-condition
	ssl-connection-copy-peer-certificates
	ssl-connection-get-peer-certificates-data
	ssl-connection-implementation
	ssl-connection-protocol-version
	ssl-connection-read-certificates
	ssl-connection-read-dh-params-file
	ssl-connection-ssl-ref
	ssl-connection-verify
	ssl-context-ref
	ssl-ctx-pointer
	ssl-default-implementation
	ssl-error
	ssl-failure
	ssl-handshake-timeout
	ssl-implementation-available-p
	ssl-new
	ssl-pointer
	ssl-verification-failure
	ssl-version-or-cipher-mismatch
	ssl-x509-lookup
	start-up-server
	start-up-server-and-mp
	string-ip-address
	switch-open-tcp-stream-with-ssl-to-java
	wait-for-wait-state-collection
	wait-state-collection
	wait-state-collection-alive-p
	wait-state-collection-stop-loop
	with-noticed-socket-stream
	x509-pointer

	33 The COMMON-LISP Package
	apropos
	apropos-list
	base-string
	close
	coerce
	compile
	compile-file
	concatenate
	debug-io
	declaim
	declare
	defclass
	defpackage
	describe
	directory
	disassemble
	documentation
	double-float
	error-output
	features
	in-package
	input-stream-p
	interactive-stream-p
	load-logical-pathname-translations
	long-float
	long-site-name
	loop
	make-array
	make-hash-table
	make-instance
	make-pathname
	make-sequence
	make-string
	make-string-output-stream
	map
	merge
	merge-pathnames
	open
	open-stream-p
	output-stream-p
	parse-namestring
	proclaim
	query-io
	read-sequence
	restart-case
	room
	short-float
	short-site-name
	simple-base-string
	single-float
	software-type
	software-version
	standard-input
	standard-output
	step
	stream-element-type
	time
	trace
	trace-output
	truename
	untrace
	update-instance-for-different-class
	update-instance-for-redefined-class
	with-output-to-string
	write-sequence

	34 The DBG Package
	client-remote-debugging
	close-remote-debugging-connection
	configure-remote-debugging-spec
	create-client-remote-debugging-connection
	create-ide-remote-debugging-connection
	debug-print-length
	debug-print-level
	default-client-remote-debugging-server-port
	default-ide-remote-debugging-server-port
	ensure-remote-debugging-connection
	executable-log-file
	hidden-packages
	ide-attach-remote-output-stream
	ide-connect-remote-debugging
	ide-eval-form-in-remote
	ide-find-remote-debugging-connection
	ide-funcall-in-remote
	ide-list-remote-debugging-connections
	ide-open-a-listener
	ide-remote-debugging
	ide-set-default-remote-debugging-connection
	ide-set-remote-symbol-value
	log-bug-form
	logs-directory
	output-backtrace
	print-binding-frames
	print-catch-frames
	print-handler-frames
	print-invisible-frames
	print-open-frames
	print-restart-frames
	remote-debugging-connection
	remote-debugging-connection-add-close-cleanup
	remote-debugging-connection-name
	remote-debugging-connection-peer-address
	remote-debugging-connection-remove-close-cleanup
	remote-debugging-stream-peer-address
	remote-inspect
	remote-object-connection
	remote-object-p
	set-debugger-options
	set-default-remote-debugging-connection
	set-remote-debugging-connection
	start-client-remote-debugging-server
	start-ide-remote-debugging-server
	start-remote-listener
	terminal-debugger-block-multiprocessing
	with-debugger-wrapper
	with-remote-debugging-connection
	with-remote-debugging-spec

	35 The DSPEC Package
	active-finders
	at-location
	canonicalize-dspec
	def
	define-dspec-alias
	define-dspec-class
	define-form-parser
	discard-source-info
	dspec-class
	dspec-classes
	dspec-defined-p
	dspec-definition-locations
	dspec-equal
	dspec-name
	dspec-primary-name
	dspec-progenitor
	dspec-subclass-p
	dspec-undefiner
	find-dspec-locations
	find-name-locations
	get-form-parser
	local-dspec-p
	location
	name-defined-dspecs
	name-definition-locations
	name-only-form-parser
	object-dspec
	parse-form-dspec
	record-definition
	record-source-files
	redefinition-action
	replacement-source-form
	save-tags-database
	single-form-form-parser
	single-form-with-options-form-parser
	traceable-dspec-p
	tracing-enabled-p
	tracing-state

	36 The EXTERNAL-FORMAT Package
	:bmp
	:bmp-native
	:bmp-reversed
	char-external-code
	decode-external-string
	encode-lisp-string
	external-format-error
	external-format-foreign-type
	external-format-type
	find-external-char
	:unicode
	:utf-16
	:utf-16be
	:utf-16le
	:utf-16-native
	:utf-16-reversed
	:utf-32
	:utf-32be
	:utf-32le
	:utf-32-native
	:utf-32-reversed
	valid-external-format-p

	37 The HCL Package
	add-code-coverage-data
	add-package-local-nickname
	add-special-free-action
	add-symbol-profiler
	allocation-in-gen-num
	analyzing-special-variables-usage
	android-build-value
	android-funcall-in-main-thread
	android-funcall-in-main-thread-list
	android-get-current-activity
	android-main-process-for-testing
	android-main-thread-p
	any-capi-window-displayed-p
	array-single-thread-p
	array-weak-p
	augment-environment
	avoid-gc
	background-input
	background-output
	background-query-io
	binds-who
	block-promotion
	building-main-architecture-p
	building-universal-intermediate-p
	calls-who
	cd
	change-directory
	check-fragmentation
	clean-down
	clean-generation-0
	clear-code-coverage
	code-coverage-data
	code-coverage-data-generate-coloring-html
	code-coverage-data-generate-statistics
	code-coverage-file-stats
	code-coverage-file-stats-called
	code-coverage-file-stats-counters-count
	code-coverage-file-stats-counters-executed
	code-coverage-file-stats-counters-hidden
	code-coverage-file-stats-fully-covered
	code-coverage-file-stats-hidden-covered
	code-coverage-file-stats-lambdas-count
	code-coverage-file-stats-not-called
	code-coverage-file-stats-partially-covered
	code-coverage-set-editor-colors
	code-coverage-set-editor-default-data
	code-coverage-set-html-background-colors
	collect-generation-2
	collect-highest-generation
	compile-file-if-needed
	compiler-break-on-error
	concatenate*
	copy-code-coverage-data
	copy-current-code-coverage
	copy-to-weak-simple-vector
	create-macos-application-bundle
	create-temp-file
	create-universal-binary
	current-function-name
	current-stack-length
	date-string
	declaration-information
	default-package-use-list
	default-profiler-collapse
	default-profiler-cutoff
	default-profiler-limit
	default-profiler-sort
	defglobal-parameter
	defglobal-variable
	define-declaration
	delete-advice
	delivered-image-p
	deliver-to-android-project
	destructive-add-code-coverage-data
	destructive-merge-code-coverage-data
	destructive-reverse-subtract-code-coverage-data
	destructive-subtract-code-coverage-data
	disable-trace
	do-profiling
	dump-form
	dump-forms-to-file
	editor-color-code-coverage
	enlarge-generation
	enlarge-static
	ensure-hash-entry
	error-situation-forms
	expand-generation-1
	extend-current-stack
	extended-time
	fasl-error
	fast-directory-files
	fdf-handle-directory-p
	fdf-handle-directory-string
	fdf-handle-last-access
	fdf-handle-last-modify
	fdf-handle-link-p
	fdf-handle-size
	fdf-handle-writable-p
	file-binary-bytes
	file-link-p
	file-string
	file-writable-p
	filter-code-coverage-data
	find-object-size
	find-throw-tag
	finish-heavy-allocation
	flag-not-special-free-action
	flag-special-free-action
	format-to-system-log
	function-information
	gc-generation
	gc-if-needed
	generate-code-coverage
	get-code-coverage-delta
	get-default-generation
	get-gc-parameters
	get-gc-timing
	gethash-ensuring
	get-temp-directory
	get-working-directory
	handle-existing-defpackage
	handle-old-in-package
	handle-old-in-package-used-as-make-package
	hash-table-weak-kind
	load-code-coverage-data
	load-data-file
	load-fasl-or-lisp-file
	make-ring
	make-unlocked-queue
	map-code-coverage-data
	map-ring
	mark-and-sweep
	max-trace-indent
	merge-code-coverage-data
	modify-hash
	normal-gc
	open-temp-file
	package-locally-nicknamed-by-list
	package-local-nicknames
	packages-for-warn-on-redefinition
	parse-float
	position-in-ring
	position-in-ring-forward
	print-escape-potential-numbers
	print-profile-list
	print-string
	profile
	profiler-threshold
	profiler-tree-from-function
	profiler-tree-to-allocation-functions
	profiler-tree-to-function
	profile-symbol-list
	reduce-memory
	references-who
	remove-package-local-nickname
	remove-special-free-action
	remove-symbol-profiler
	reset-code-coverage
	reset-code-coverage-snapshot
	reset-profiler
	reset-ring
	restore-code-coverage-data
	reverse-subtract-code-coverage-data
	ring-length
	ring-name
	ringp
	ring-pop
	ring-push
	ring-ref
	rotate-ring
	safe-format-to-limited-string
	safe-format-to-string
	safe-prin1-to-string
	safe-princ-to-string
	save-argument-real-p
	save-code-coverage-data
	save-current-code-coverage
	save-current-profiler-tree
	save-current-session
	save-image
	save-image-with-bundle
	save-universal-from-script
	set-array-single-thread-p
	set-array-weak
	set-code-coverage-snapshot
	set-console-external-format
	set-default-generation
	set-gc-parameters
	set-hash-table-weak
	set-minimum-free-space
	set-process-profiling
	set-profiler-threshold
	set-promotion-count
	sets-who
	set-system-message-log
	set-up-profiler
	source-debugging-on-p
	start-gc-timing
	start-profiling
	stop-gc-timing
	stop-profiling
	string=-limited
	string-equal-limited
	string-trim-whitespace
	subtract-code-coverage-data
	sweep-all-objects
	switch-static-allocation
	symbol-alloc-gen-num
	symbol-dynamically-bound-p
	throw-if-tag-found
	toggle-source-debugging
	total-allocation
	traced-arglist
	traced-results
	trace-indent-width
	trace-level
	trace-print-circle
	trace-print-length
	trace-print-level
	trace-print-pretty
	trace-verbose
	try-compact-in-generation
	try-move-in-generation
	undefine-declaration
	unlocked-queue
	unlocked-queue-count
	unlocked-queue-peek
	unlocked-queue-read
	unlocked-queue-ready
	unlocked-queue-send
	unlocked-queue-size
	unwind-protect-blocking-interrupts
	unwind-protect-blocking-interrupts-in-cleanups
	variable-information
	who-binds
	who-calls
	who-references
	who-sets
	with-code-coverage-generation
	with-ensuring-gethash
	with-hash-table-locked
	with-heavy-allocation
	without-code-coverage
	with-output-to-fasl-file
	with-pinned-objects
	with-ring-locked
	write-string-with-properties
	write-to-system-log

	38 The LISPWORKS Package
	16-bit-string
	8-bit-string
	appendf
	append-file
	autoload-asdf-integration
	base-character
	base-character-p
	base-char-code-limit
	base-char-p
	base-string-p
	bmp-char
	bmp-char-p
	bmp-string
	bmp-string-p
	browser-location
	call-next-advice
	choose-unicode-string-hash-function
	compile-system
	concatenate-system
	copy-file
	count-regexp-occurrences
	current-pathname
	defadvice
	default-action-list-sort-time
	default-character-element-type
	define-action
	define-action-list
	defsystem
	defsystem-verbose
	delete-directory
	deliver
	describe-length
	describe-level
	describe-print-length
	describe-print-level
	dll-quit
	do-nothing
	dotted-list-length
	dotted-list-p
	enter-debugger-directly
	environment-variable
	errno-value
	example-compile-file
	example-edit-file
	example-file
	example-load-binary-file
	execute-actions
	extended-character
	extended-character-p
	extended-char-p
	external-formats
	false
	file-directory-p
	find-regexp-in-string
	function-lambda-list
	get-inspector-values
	get-unix-error
	grep-command
	grep-command-format
	grep-fixed-args
	handle-existing-action-in-action-list
	handle-existing-action-list
	handle-missing-action-in-action-list
	handle-missing-action-list
	handle-warn-on-redefinition
	hardcopy-system
	if-let
	init-file-name
	inspect-through-gui
	lisp-image-name
	lispworks-directory
	load-all-patches
	load-system
	make-mt-random-state
	make-unregistered-action-list
	mt-random
	mt-random-state
	mt-random-state
	mt-random-state-p
	pathname-location
	precompiled-regexp
	precompiled-regexp-p
	precompile-regexp
	print-action-lists
	print-actions
	print-command
	print-nickname
	prompt
	push-end
	push-end-new
	quit
	rebinding
	regexp-find-symbols
	remove-advice
	removef
	remove-user-preference
	require-verbose
	rotate-byte
	round-to-single-precision
	sbchar
	sequencep
	set-compile-file-proclaim-handling
	set-default-character-element-type
	set-quit-when-no-windows
	simple-base-string-p
	simple-bmp-string
	simple-bmp-string-p
	simple-char
	simple-char-p
	simple-text-string
	simple-text-string-p
	split-sequence
	split-sequence-if
	split-sequence-if-not
	start-tty-listener
	stchar
	string-append
	string-append*
	structurep
	text-string
	text-string-p
	true
	undefine-action
	undefine-action-list
	unicode-alpha-char-p
	unicode-alphanumericp
	unicode-both-case-p
	unicode-char-equal
	unicode-char-greaterp
	unicode-char-lessp
	unicode-char-not-equal
	unicode-char-not-greaterp
	unicode-char-not-lessp
	unicode-lower-case-p
	unicode-string-equal
	unicode-string-greaterp
	unicode-string-lessp
	unicode-string-not-equal
	unicode-string-not-greaterp
	unicode-string-not-lessp
	unicode-upper-case-p
	user-preference
	when-let
	when-let*
	whitespace-char-p
	with-action-item-error-handling
	with-action-list-mapping
	with-unique-names

	39 The LW-JI Package
	call-java-method
	call-java-method-error
	call-java-non-virtual-method
	call-java-static-method
	catching-exceptions-bind
	catching-java-exceptions
	checked-read-java-field
	check-java-field
	check-lisp-calls-initialized
	create-instance-from-jobject
	create-instance-jobject
	create-instance-jobject-list
	create-java-object
	create-java-object-error
	default-constructor-arguments
	default-name-constructor
	define-field-accessor
	define-java-caller
	define-java-callers
	define-java-constructor
	define-lisp-proxy
	ensure-is-jobject
	ensure-lisp-classes-from-tree
	ensure-supers-contain-java.lang.object
	field-access-exception
	field-exception
	find-java-class
	format-to-java-host
	generate-java-class-definitions
	get-host-java-virtual-machine
	get-java-virtual-machine
	get-jobject
	get-primitive-array-region
	get-superclass-and-interfaces-tree
	get-throwable-backtrace-strings
	import-java-class-definitions
	init-java-interface
	intern-and-export-list
	jaref
	java-array-element-type
	java-array-error
	java-array-indices-error
	java-array-length
	java-array-simple-error
	java-bad-jobject
	java-class-error
	java-definition-error
	java-exception
	java-field-class-name-for-setting
	java-field-error
	java-field-setting-error
	java-id-exception
	java-instance-without-jobject-error
	java-interface-error
	java-low-level-exception
	java-method-error
	java-method-exception
	java-normal-exception
	java-not-a-java-object-error
	java-not-an-array-error
	java-null
	java-object-array-element-type
	java-objects-eq
	java-out-of-bounds-error
	java-primitive-array-element-type
	java-program-error
	java-serious-exception
	java-storing-wrong-type-error
	java-type-to-lisp-array-type
	java-vm-poi
	jboolean
	jbyte
	jchar
	jdouble
	jfloat
	jint
	jlong
	jni-env-poi
	jobject
	jobject-call-method
	jobject-call-method-error
	jobject-class-name
	jobject-ensure-global
	jobject-field-value
	jobject-of-class-p
	jobject-p
	jobject-pretty-class-name
	jobject-string
	jobject-to-lisp
	jshort
	jvalue
	jvalue-store-jboolean
	jvalue-store-jbyte
	jvalue-store-jchar
	jvalue-store-jdouble
	jvalue-store-jfloat
	jvalue-store-jint
	jvalue-store-jlong
	jvalue-store-jobject
	jvalue-store-jshort
	jvref
	lisp-array-to-primitive-array
	lisp-array-type-to-java-type
	lisp-java-instance-p
	lisp-to-jobject
	make-java-array
	make-java-instance
	make-lisp-proxy
	make-lisp-proxy-with-overrides
	map-java-object-array
	primitive-array-to-lisp-array
	read-java-field
	record-java-class-lisp-symbol
	report-error-to-java-host
	reset-java-interface-for-new-jvm
	send-message-to-java-host
	set-java-field
	set-primitive-array-region
	setup-deliver-dynamic-library-for-java
	setup-field-accessor
	setup-java-caller
	setup-java-constructor
	setup-java-interface-callbacks
	setup-lisp-proxy
	standard-java-object
	throw-an-exception
	to-java-host-stream
	to-java-host-stream-no-scroll
	verify-java-caller
	verify-java-callers
	verify-lisp-proxies
	verify-lisp-proxy
	write-java-class-definitions-to-file
	write-java-class-definitions-to-stream

	40 Java classes and methods
	com.lispworks.LispCalls
	com.lispworks.LispCalls.callDoubleA
	com.lispworks.LispCalls.callDoubleV
	com.lispworks.LispCalls.callIntA
	com.lispworks.LispCalls.callIntV
	com.lispworks.LispCalls.callObjectA
	com.lispworks.LispCalls.callObjectV
	com.lispworks.LispCalls.callVoidA
	com.lispworks.LispCalls.callVoidV
	com.lispworks.LispCalls.checkLispSymbol
	com.lispworks.LispCalls.createLispProxy
	com.lispworks.LispCalls.waitForInitialization

	41 Android Java classes and methods
	com.lispworks.BugFormLogsList
	com.lispworks.BugFormViewer
	com.lispworks.Manager
	com.lispworks.Manager.LispErrorReporter
	com.lispworks.Manager.LispGuiErrorReporter
	com.lispworks.Manager.MessageHandler
	com.lispworks.Manager.addMessage
	com.lispworks.Manager.clearBugFormLogs
	com.lispworks.Manager.getApplicationContext
	com.lispworks.Manager.getClassLoader
	com.lispworks.Manager.init
	com.lispworks.Manager.init_result_code
	com.lispworks.Manager.loadLibrary
	com.lispworks.Manager.mInitErrorString
	com.lispworks.Manager.mMaxErrorLogsNumber
	com.lispworks.Manager.mMessagesMaxLength
	com.lispworks.Manager.setClassLoader
	com.lispworks.Manager.setCurrentActivity
	com.lispworks.Manager.setErrorReporter
	com.lispworks.Manager.setGuiErrorReporter
	com.lispworks.Manager.setLispTempDir
	com.lispworks.Manager.setMessageHandler
	com.lispworks.Manager.setRuntimeLispHeapDir
	com.lispworks.Manager.setTextView
	com.lispworks.Manager.showBugFormLogs
	com.lispworks.Manager.status

	42 The MP Package
	allowing-block-interrupts
	any-other-process-non-internal-server-p
	barrier
	barrier-arriver-count
	barrier-block-and-wait
	barrier-change-count
	barrier-count
	barrier-disable
	barrier-enable
	barrier-name
	barrier-pass-through
	barrier-unblock
	barrier-wait
	change-process-priority
	condition-variable
	condition-variable-broadcast
	condition-variable-signal
	condition-variable-wait
	condition-variable-wait-count
	current-process
	current-process-block-interrupts
	current-process-in-cleanup-p
	current-process-kill
	current-process-pause
	current-process-send
	current-process-set-terminate-method
	current-process-unblock-interrupts
	debug-other-process
	default-process-priority
	ensure-process-cleanup
	find-process-from-name
	funcall-async
	funcall-async-list
	general-handle-event
	get-current-process
	get-process
	get-process-private-property
	initialize-multiprocessing
	initial-processes
	last-callback-on-thread
	list-all-processes
	lock
	lock-and-condition-variable-broadcast
	lock-and-condition-variable-signal
	lock-and-condition-variable-wait
	lock-locked-p
	lock-name
	lock-owned-by-current-process-p
	lock-owner
	lock-recursively-locked-p
	lock-recursive-p
	mailbox
	mailbox-count
	mailbox-empty-p
	mailbox-full-p
	mailbox-not-empty-p
	mailbox-peek
	mailbox-read
	mailbox-reader-process
	mailbox-send
	mailbox-send-limited
	mailbox-size
	mailbox-wait
	mailbox-wait-for-event
	main-process
	make-barrier
	make-condition-variable
	make-lock
	make-mailbox
	make-named-timer
	make-semaphore
	make-timer
	map-all-processes
	map-all-processes-backtrace
	map-process-backtrace
	map-processes
	notice-fd
	process-alive-p
	process-all-events
	process-allow-scheduling
	process-arrest-reasons
	process-break
	process-continue
	processes-count
	process-exclusive-lock
	process-exclusive-unlock
	process-idle-time
	process-initial-bindings
	process-internal-server-p
	process-interrupt
	process-interrupt-list
	process-join
	process-kill
	process-lock
	process-mailbox
	process-name
	process-p
	process-plist
	process-poke
	process-priority
	process-private-property
	process-property
	process-reset
	process-run-function
	process-run-reasons
	process-run-time
	process-send
	process-sharing-lock
	process-sharing-unlock
	process-stop
	process-stopped-p
	process-terminate
	process-unlock
	process-unstop
	process-wait
	process-wait-for-event
	process-wait-function
	process-wait-local
	process-wait-local-with-periodic-checks
	process-wait-local-with-timeout
	process-wait-local-with-timeout-and-periodic-checks
	process-wait-with-timeout
	process-whostate
	ps
	pushnew-to-process-private-property
	pushnew-to-process-property
	remove-from-process-private-property
	remove-from-process-property
	remove-process-private-property
	remove-process-property
	schedule-timer
	schedule-timer-milliseconds
	schedule-timer-relative
	schedule-timer-relative-milliseconds
	semaphore
	semaphore-acquire
	semaphore-count
	semaphore-name
	semaphore-release
	semaphore-wait-count
	set-funcall-async-limit
	simple-lock-and-condition-variable-wait
	symeval-in-process
	timer-expired-p
	timer-name
	unnotice-fd
	unschedule-timer
	wait-processing-events
	with-exclusive-lock
	with-interrupts-blocked
	with-lock
	without-interrupts
	without-preemption
	with-sharing-lock
	yield

	43 The PARSERGEN Package
	defparser

	44 The SERIAL-PORT Package
	close-serial-port
	get-serial-port-state
	open-serial-port
	read-serial-port-char
	read-serial-port-string
	serial-port
	serial-port-input-available-p
	set-serial-port-state
	wait-serial-port-state
	write-serial-port-char
	write-serial-port-string

	45 The SQL Package
	accepts-n-syntax
	add-sql-stream
	attribute-type
	cache-table-queries
	cache-table-queries-default
	commit
	connect
	connected-databases
	connect-if-exists
	copy-from-sqlite-raw-blob
	create-index
	create-table
	create-view
	create-view-from-class
	database-name
	decode-to-db-standard-date
	decode-to-db-standard-timestamp
	default-database
	default-database-type
	default-update-objects-max-len
	def-view-class
	delete-instance-records
	delete-records
	delete-sql-stream
	destroy-prepared-statement
	disable-sql-reader-syntax
	disconnect
	do-query
	drop-index
	drop-table
	drop-view
	drop-view-from-class
	enable-sql-reader-syntax
	encode-db-standard-date
	encode-db-standard-timestamp
	execute-command
	find-database
	initialize-database-type
	initialized-database-types
	insert-records
	instance-refreshed
	list-attributes
	list-attribute-types
	list-classes
	list-sql-streams
	list-tables
	lob-stream
	locally-disable-sql-reader-syntax
	locally-enable-sql-reader-syntax
	map-query
	mysql-library-directories
	mysql-library-path
	mysql-library-sub-directories
	ora-lob-append
	ora-lob-assign
	ora-lob-char-set-form
	ora-lob-char-set-id
	ora-lob-close
	ora-lob-copy
	ora-lob-create-empty
	ora-lob-create-temporary
	ora-lob-disable-buffering
	ora-lob-element-type
	ora-lob-enable-buffering
	ora-lob-env-handle
	ora-lob-erase
	ora-lob-file-close
	ora-lob-file-close-all
	ora-lob-file-exists
	ora-lob-file-get-name
	ora-lob-file-is-open
	ora-lob-file-open
	ora-lob-file-set-name
	ora-lob-flush-buffer
	ora-lob-free
	ora-lob-free-temporary
	ora-lob-get-buffer
	ora-lob-get-chunk-size
	ora-lob-get-length
	ora-lob-internal-lob-p
	ora-lob-is-equal
	ora-lob-is-open
	ora-lob-is-temporary
	ora-lob-load-from-file
	ora-lob-lob-locator
	ora-lob-locator-is-init
	ora-lob-open
	ora-lob-read-buffer
	ora-lob-read-foreign-buffer
	ora-lob-read-into-plain-file
	ora-lob-svc-ctx-handle
	ora-lob-trim
	ora-lob-write-buffer
	ora-lob-write-foreign-buffer
	ora-lob-write-from-plain-file
	p-oci-env
	p-oci-file
	p-oci-lob-locator
	p-oci-lob-or-file
	p-oci-svc-ctx
	prepared-statement
	prepared-statement-set-and-execute
	prepared-statement-set-and-execute*
	prepared-statement-set-and-query
	prepared-statement-set-and-query*
	prepare-statement
	print-query
	query
	reconnect
	replace-from-sqlite-blob
	replace-from-sqlite-raw-blob
	replace-into-sqlite-blob
	restore-sql-reader-syntax-state
	rollback
	select
	set-prepared-statement-variables
	simple-do-query
	sql
	sql-connection-error
	sql-database-data-error
	sql-database-error
	sql-enlarge-static
	sql-expression
	sql-expression-object
	sql-failed-to-connect-error
	sql-fatal-error
	sqlite-blob
	sqlite-blob-length
	sqlite-blob-p
	sqlite-close-blob
	sqlite-last-insert-rowid
	sqlite-open-blob
	sqlite-raw-blob
	sqlite-raw-blob-length
	sqlite-raw-blob-p
	sqlite-raw-blob-ref
	sqlite-raw-blob-valid-p
	sqlite-reopen-blob
	sql-libraries
	sql-loading-verbose
	sql-operation
	sql-operator
	sql-recording-p
	sql-stream
	sql-temporary-error
	sql-timeout-error
	sql-user-error
	standard-db-object
	start-sql-recording
	status
	stop-sql-recording
	string-needs-n-prefix
	string-prefix-with-n-if-needed
	table-exists-p
	update-instance-from-records
	update-objects-joins
	update-record-from-slot
	update-records
	update-records-from-instance
	update-slot-from-record
	use-n-syntax-for-non-ascii-strings
	with-prepared-statement
	with-sqlite-blob
	with-transaction

	46 The STREAM Package
	buffered-stream
	fundamental-binary-input-stream
	fundamental-binary-output-stream
	fundamental-binary-stream
	fundamental-character-input-stream
	fundamental-character-output-stream
	fundamental-character-stream
	fundamental-input-stream
	fundamental-output-stream
	fundamental-stream
	stream-advance-to-column
	stream-check-eof-no-hang
	stream-clear-input
	stream-clear-output
	stream-file-position
	stream-fill-buffer
	stream-finish-output
	stream-flush-buffer
	stream-force-output
	stream-fresh-line
	stream-line-column
	stream-listen
	stream-output-width
	stream-peek-char
	stream-read-buffer
	stream-read-byte
	stream-read-char
	stream-read-char-no-hang
	stream-read-line
	stream-read-sequence
	stream-start-line-p
	stream-terpri
	stream-unread-char
	stream-write-buffer
	stream-write-byte
	stream-write-char
	stream-write-sequence
	stream-write-string
	with-stream-input-buffer
	with-stream-output-buffer

	47 The SYSTEM Package
	allocated-in-its-own-segment-p
	apply-with-allocation-in-gen-num
	approaching-memory-limit
	atomic-decf
	atomic-exchange
	atomic-fixnum-decf
	atomic-fixnum-incf
	atomic-incf
	atomic-pop
	atomic-push
	augmented-string
	augmented-string-p
	base-char-ref
	binary-file-type
	binary-file-types
	call-system
	call-system-showing-output
	cdr-assoc
	check-network-server
	coerce-to-gesture-spec
	compare-and-swap
	copy-preferences-from-older-version
	count-gen-num-allocation
	debug-initialization-errors-in-snap-shot
	default-eol-style
	default-stack-group-list-length
	define-atomic-modify-macro
	define-top-loop-command
	detect-eol-style
	detect-japanese-encoding-in-file
	detect-unicode-bom
	detect-utf32-bom
	detect-utf8-bom
	directory-link-transparency
	ensure-loads-after-loads
	ensure-memory-after-store
	ensure-stores-after-memory
	ensure-stores-after-stores
	extended-spaces
	file-encoding-detection-algorithm
	file-encoding-resolution-error
	file-eol-style-detection-algorithm
	filename-pattern-encoding-matches
	find-encoding-option
	find-filename-pattern-encoding-match
	force-using-select-for-io
	generation-number
	gen-num-segments-fragmentation-state
	gesture-spec
	gesture-spec-accelerator-bit
	gesture-spec-caps-lock-bit
	gesture-spec-control-bit
	gesture-spec-hyper-bit
	gesture-spec-meta-bit
	gesture-spec-p
	gesture-spec-shift-bit
	gesture-spec-super-bit
	gesture-spec-to-character
	get-file-stat
	get-folder-path
	get-maximum-allocated-in-generation-2-after-gc
	get-user-profile-directory
	globally-accessible
	guess-external-format
	immediatep
	in-static-area
	int32
	int32*
	int32+
	int32-
	int32/
	int32/=
	+int32-0+
	+int32-1+
	int32-1+
	int32-1-
	int32<
	int32<<
	int32<=
	int32=
	int32>
	int32>=
	int32>>
	int32-aref
	int32-logand
	int32-logandc1
	int32-logandc2
	int32-logbitp
	int32-logeqv
	int32-logior
	int32-lognand
	int32-lognor
	int32-lognot
	int32-logorc1
	int32-logorc2
	int32-logtest
	int32-logxor
	int32-minusp
	int32-plusp
	int32-to-int64
	int32-to-integer
	int32-zerop
	int64
	int64*
	int64+
	int64-
	int64/
	int64/=
	+int64-0+
	+int64-1+
	int64-1+
	int64-1-
	int64<
	int64<<
	int64<=
	int64=
	int64>
	int64>=
	int64>>
	int64-aref
	int64-logand
	int64-logandc1
	int64-logandc2
	int64-logbitp
	int64-logeqv
	int64-logior
	int64-lognand
	int64-lognor
	int64-lognot
	int64-logorc1
	int64-logorc2
	int64-logtest
	int64-logxor
	int64-minusp
	int64-plusp
	int64-to-int32
	int64-to-integer
	int64-zerop
	integer-to-int32
	integer-to-int64
	line-arguments-list
	locale-file-encoding
	low-level-atomic-place-p
	make-current-allocation-permanent
	make-gesture-spec
	make-object-permanent
	make-permanent-simple-vector
	make-simple-int32-vector
	make-simple-int64-vector
	make-stderr-stream
	make-typed-aref-vector
	map-environment
	marking-gc
	memory-growth-margin
	merge-ef-specs
	mobile-gc-p
	mobile-gc-sweep-objects
	object-address
	object-pointer
	octet-ref
	open-pipe
	open-url
	package-flagged-p
	pipe-close-connection
	pipe-exit-status
	pipe-kill-process
	pointer-from-address
	print-pretty-gesture-spec
	print-symbols-using-bars
	product-registry-path
	release-object-and-nullify
	right-paren-whitespace
	room-values
	run-shell-command
	safe-locale-file-encoding
	set-approaching-memory-limit-callback
	set-automatic-gc-callback
	set-blocking-gen-num
	set-default-segment-size
	set-delay-promotion
	set-expected-allocation-in-generation-2-after-gc
	set-file-dates
	set-generation-2-gc-options
	set-gen-num-gc-threshold
	set-maximum-memory
	set-maximum-segment-size
	set-memory-check
	set-memory-exhausted-callback
	set-promote-generation-1
	set-reserved-memory-policy
	set-signal-handler
	set-spare-keeping-policy
	set-split-promotion
	set-static-segment-size
	set-temp-directory
	setup-atomic-funcall
	sg-default-size
	simple-augmented-string
	simple-augmented-string-p
	simple-int32-vector
	simple-int32-vector-length
	simple-int32-vector-p
	simple-int64-vector
	simple-int64-vector-length
	simple-int64-vector-p
	sort-inspector-p
	specific-valid-file-encoding
	specific-valid-file-encodings
	stack-overflow-behaviour
	staticp
	storage-exhausted
	sweep-gen-num-objects
	typed-aref
	wait-for-input-streams
	wait-for-input-streams-returning-first
	with-modification-change
	with-modification-check-macro
	with-other-threads-disabled

	48 Miscellaneous WIN32 symbols
	canonicalize-sid-string
	connect-to-named-pipe
	dismiss-splash-screen
	impersonating-named-pipe-client
	impersonating-user
	known-sid-integer-to-sid-string
	latin-1-code-pages
	long-namestring
	lpcstr
	lpctstr
	lpcwstr
	lpstr
	lptstr
	lpwstr
	monitor-directory-changes
	multibyte-code-page-ef
	named-pipe-stream-name
	open-named-pipe-stream
	record-message-in-windows-event-log
	security-description-string-for-open-named-pipe
	set-application-themed
	set-dpi-awareness
	short-namestring
	sid-string-to-user-name
	str
	tstr
	user-name-to-sid-string
	wait-for-connection
	with-windows-event-log-event-source
	wstr

	49 The Windows registry API
	close-registry-key
	collect-registry-subkeys
	collect-registry-values
	create-registry-key
	delete-registry-key
	enum-registry-value
	open-registry-key
	query-registry-key-info
	query-registry-value
	registry-key-exists-p
	registry-value
	set-registry-value
	with-registry-key

	50 The DDE client interface
	dde-advise-start
	dde-advise-start*
	dde-advise-stop
	dde-advise-stop*
	dde-client-advise-data
	dde-connect
	dde-disconnect
	dde-execute
	dde-execute*
	dde-execute-command
	dde-execute-command*
	dde-execute-string
	dde-execute-string*
	dde-item
	dde-item*
	dde-poke
	dde-poke*
	dde-request
	dde-request*
	define-dde-client
	with-dde-conversation

	51 The DDE server interface
	dde-server-poke
	dde-server-request
	dde-server-topic
	dde-server-topics
	dde-system-topic
	dde-topic
	dde-topic-items
	define-dde-dispatch-topic
	define-dde-server
	define-dde-server-function
	start-dde-server

	52 Dynamic library C functions
	InitLispWorks
	LispWorksDlsym
	LispWorksState
	QuitLispWorks
	SimpleInitLispWorks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Numerics
	Non-alaphanumerics

