CAPI User Guide and Reference
Manual

Version 8.1

Copyright and Trademarks

CAPI User Guide and Reference Manual (Windows version)
Version 8.1

February 2025

Copyright © 2025 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and K nowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in al copies and supporting documentation, and that the
name of M.1.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "asis’
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including al implied
warranties of merchantability and fitness. In no event shall M.I.T. beliable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of |CU software obtained from http://source.icu-project.org and which bears the following copyright
and permission natice:

ICU License- ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.

Permission is hereby granted, free of charge, to any person abtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission naotice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "ASIS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THISNOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright and Trademarks

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and

registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights

The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt 111, as applicable. Rights reserved under the copyright laws of

the United States.

Address

Telephone

Fax

LispWorks Ltd

St. John's Innovation Centre
Cowley Road

Cambridge

CB4 0WS

England

From North America
877 759 8839 (toll-free)

From elsawhere;
+44 1223 421860

From North America
617 812 8283

From elsawhere:
+44 870 2206189

www.lispwor ks.com

http://www.lispworks.com

Contents

Preface 29

1 Introduction to the CAPI 33

1.1 What isthe CAPI? 33
1.2 The CAPI model 33
1.3 The history of the CAPI 34

2 Getting Started 35

2.1 Using the CAPI package 35
2.2 Creating a window 35
2.3 Linking code into CAPI elements 37

3 General Properties of CAPI Panes

3.1 Generic properties 38

3.2 Base classes 41

3.3 Specifying titles 41

3.4 Callbacks 43

3.5 Displaying and entering text 43
3.6 Displaying rich text 47

3.7 Hierarchy of panes 47

3.8 Accessing pane geometry 48
3.9 Specia kinds of windows 48
3.10 Button elements 50

3.11 Adding atoolbar to an interface 52
3.12 Tooltips 52

3.13 Screens 53

4 General Considerations 55

4.1 The correct thread for CAPI operations 55
4.2 Redisplay 56
4.3 Support for multiple monitors 56

5 Choices - panes with items 58

5.1 Items 58

5.2 Button panel classes 58
5.3 List panels 61

5.4 Trees 65

38

Contents

5.5 Stacked trees 65

5.6 Graph panes 66

5.7 Option panes 68

5.8 Text input choice 69

5.9 Menu components 69

5.10 General properties of choices 69

5.11 Operations on collections (choices) and their items

6 Laying Out CAPI Panes 73

6.1 Organizing panesin columns and rows 74

6.2 Other types of layout 77

6.3 Combining different layouts 78

6.4 Specifying geometry hints 79

6.5 Constraining the size of layouts 83
6.6 Other pane layouts 85

6.7 Changing layouts and panes within alayout

7 Programming with CAPI Windows

7.1 Thelifecycle of a CAPI object 91
7.2 Resizing and positioning 92

7.3 Geometric queries 93

7.4 Scrolling 93

7.5 Updating pane contents 95

7.6 Edit actions on the active element 96
7.7 Manipulating top-level windows 96

8 Creating Menus 99

8.1 Creating a menu 99

8.2 Presenting menus 100

8.3 Grouping menu items together 100
8.4 Creating individual menu items 102
8.5 The CAPI menu hierarchy 103

8.6 Mnemonics in menus 104

8.7 Acceleratorsin menus 105

8.8 Alternative menu items 105

8.9 Disabling menu items 106
8.10 Menus with images 107

8.11 The Edit menu on Cocoa 107
8.12 Popup menus for panes 107

8.13 Displaying menus programmatically 108

8.14 The Application menu 108

90

91

72

Contents

9 Adding Toolbars 110

9.1 Creating atoolbar button 110

9.2 Creating atoolbar with several buttons 111
9.3 Specifying the image for atoolbar button 112
9.4 Specifying toolbar callbacks 112

9.5 Specifying tooltips for toolbar buttons 113
9.6 Modifying toolbars 114

9.7 Advanced toolbar features 114

9.8 Disabling toolbar items 115

9.9 Non-standard toolbars 116

10 Dialogs: Prompting for Input 117

10.1 Some simple dialogs 117

10.2 Prompting for values 118

10.3 Window-modal Cocoa dialogs 123
10.4 Dialog Owners 124

10.5 Creating your own dialogs 124
10.6 In-place completion 127

11 Defining Interface Classes - top level windows 131

11.1 The define-interface macro 131

11.2 An example interface 132

11.3 Adapting the example 133

11.4 Connecting an interface to an application 137

11.5 Controlling the appearance of the top level window 138
11.6 Querying and modifying interface geometry 139

12 Creating Panes with Your Own Drawing and Input 141

12.1 Displaying graphics 141

12.2 Receiving input from the user 142

12.3 Creating graphical objects 148

12.4 output-pane scrolling 155

12.5 Transient display on output-pane and subclasses 158

13 Drawing - Graphics Ports 160

13.1 Introduction 160

13.2 Features 162

13.3 Graphics state 163

13.4 Drawing functions 164

13.5 How to draw to an on-screen port 165
13.6 Graphics state transforms 165

13.7 Combining source and target pixels 166
13.8 Pixmap graphics ports 167

Contents

13.9 Portable font descriptions 167
13.10 Working with images 168

14 Graphic Tools drawing objects 175

14.1 Lower level - drawing objects and objects displayers 175
14.2 Higher level - drawing graphs and bar charts 179

15 The Color System 181

15.1 Color specs 181

15.2 Color aiases 182

15.3 Color models 183

15.4 Loading the color database 184

15.5 Defining new color models 185
16 Printing from the CAPI - the Hardcopy API 187
16.1 Printers 187
16.2 Print jobs 187
16.3 Handling pages - page on demand printing 187

16.4 Handling pages - page sequential printing 188
16.5 Printing a page 188

16.6 Other printing functions 188

16.7 Printing on Motif 188

17 Drag and Drop 190

17.1 Overview of drag and drop 190

17.2 Dragging 190

17.3 Dropping 192

17.4 Limitations of CAPI drag and drop 194

18 Miscellaneous functionality 195

18.1 Development functions 195

18.2 Sounds 195

18.3 Modifier keys state 195

18.4 Restoring display while debugging 195

18.5 Object properties and name 196

18.6 Clipboard 196

18.7 Handles 196

18.8 Setting the font and colors for specific panesin specific interfaces. 196

19 Host Window System-specific issues 197

19.1 Microsoft Windows-specific issues 197
19.2 Cocoa-specific issues 197
19.3 GTK+-specific issues 198

Contents

19.4 Motif-specific issues 199
19.5 CAPI communication with host window system - libraries 200

20 Self-contained examples 202

20.1 Output pane examples 202

20.2 Graphics examples 203

20.3 Pinboard examples 204

20.4 Examples using timers to implement "animation” 205
20.5 Drag and Drop examples 205

20.6 Graph examples 206

20.7 Cocoa-specific examples 206

20.8 Examples of complete CAPI applications 206
20.9 Choice examples 207

20.10 Examples of dialogs and prompts 208

20.11 editor-pane examples 209

20.12 Menu examples 209

20.13 Miscellaneous examples 209

20.14 GTK+ specific examples 210

20.15 Motif specific examples 210

20.16 Layout examples 210

20.17 Tooltip examples 211

20.18 Examplesillustrating other pane classes 211
20.19 Printing examples 212

20.20 Graphic Tools examples 212

21 CAPI Reference Entries 214

abort-callback 214
abort-dialog 214

abort-exit-confirmer 216
accepts-focus-p 216
activate-pane 217
active-pane-copy 218
active-pane-copy-p 218
active-pane-cut 218
active-pane-cut-p 218
active-pane-desdl ect-all 218
active-pane-desel ect-all-p 218
active-pane-paste 218
active-pane-paste-p 218
active-pane-select-all 218
active-pane-select-all-p 218
active-pane-undo 218
active-pane-undo-p 218

append-items 220

Contents

apply-in-pane-process 220
apply-in-pane-process-if-alive 222
apply-in-pane-process-wait-multiple 222
apply-in-pane-process-wait-single 222
arrow-pinboard-object 223
attach-interface-for-callback 225
attach-simple-sink 225
attach-sink 226

beep-pane 227

browser-pane 228
browser-pane-available-p 232
browser-pane-busy 233
browser-pane-go-back 233
browser-pane-go-forward 233
browser-pane-navigate 233
browser-pane-property-get 234
browser-pane-property-put 234
browser-pane-refresh 233
browser-pane-set-content 233
browser-pane-stop 233

button 235

button-panel 239
calculate-constraints 242
calculate-layout 243

callbacks 244

call-editor 246
can-use-metafile-p 247
capi-object 248
capi-object-property 249
check-button 250
check-button-panel 251

choice 252
choice-selected-item 254
choice-selected-item-p 256
choice-selected-items 257
choice-update-item 258
clipboard 259

clipboard-empty 261

clone 261
cocoa-default-application-interface 262
cocoa-View-pane 264
cocoa-View-pane-view 266
collect-interfaces 266

collection 267

Contents

collection-find-next-string 271
collection-find-string 271
collection-item-edit 272
collection-item-get-editing-string 273
collection-item-set-editing-string 273
collection-last-search 274
collection-search 274

collector-pane 275

color-screen 276

column-layout 277

component-name 279
confirmer-pane 279

confirm-quit 280

confirm-yes-or-no 281

contain 282

convert-relative-position 284
convert-to-screen 285
count-collection-items 287
create-dummy-graphics-port 288
current-dialog-handle 288
current-document 289
current-pointer-position 290
current-popup 291

current-printer 291
default-editor-pane-line-wrap-marker 292
default-library 292

* default-non-focus-message-timeout* 293
* default-non-focus-message-timeout-extension* 294
define-command 294
define-interface 296

define-layout 301

define-menu 302
define-ole-control-component 303
destroy 304
destroy-dependent-object 305
detach-simple-sink 306

detach-sink 307

display 307

display-dialog 309

display-errors 311

display-message 311
display-message-for-pane 312
display-non-focus-message 313
display-pane 316

10

Contents

display-pane-sel ected-text 317
display-pane-selection 317
display-pane-selection-p 318
display-popup-menu 319
display-replacable-dialog 320
display-tooltip 321
docking-layout 322
docking-layout-pane-docked-p 324
docking-layout-pane-visible-p 324

document-contai ner 325

document-frame 326
double-headed-arrow-pinboard-object 327
double-list-panel 328

drag-pane-object 330

draw-metafile 331

draw-metafile-to-image 332
drawn-pinboard-object 333
draw-pinboard-layout-objects 335
draw-pinboard-object 336
draw-pinboard-object-highlighted 336
drop-object-allows-drop-effect-p 337
drop-object-collection-index 338
drop-object-collection-item 339
drop-object-drop-effect 340
drop-object-get-object 341
drop-object-pane-x 342

drop-object-pane-y 342
drop-object-provides-format 343
dummy-pane 344

* echo-area-cursor-inactive-style* 344
echo-area-pane 345

* editor-cursor-active-style* 345

* editor-cursor-color* 346

* editor-cursor-drag-style* 346
*editor-cursor-inactive-style 347
editor-pane 347
editor-pane-arglist-displayer-style 362
editor-pane-blink-rate 353
editor-pane-buffer 354

* editor-pane-composition-sel ected-range-face-plist* 355
editor-pane-default-composition-callback 355
* editor-pane-default-composition-face* 356
* editor-pane-default-line-numbers-background* 357
* editor-pane-default-line-numbers-font* 357

11

Contents

* editor-pane-default-line-numbers-foreground* 358

* editor-pane-default-line-numbers-highlight-background* 358
* editor-pane-default-line-numbers-highlight-foreground* 358
* editor-pane-default-line-numbers-right-gap* 359

* editor-pane-default-line-numbers-separator-col or* 359
* editor-pane-default-line-numbers-separator-dash* 359
* editor-pane-default-line-numbers-separator-thickness* 359
* editor-pane-default-line-numbers-width-string* 360

* editor-pane-default-line-numbers-wrapped-string* 360
editor-pane-eval uate-region-in-listener 360
editor-pane-in-place-style 362
editor-pane-native-blink-rate 363

editor-pane-sel ected-text 364

editor-pane-sel ected-text-p 364
editor-pane-set-line-numbers-appearance 365
editor-pane-stream 368

editor-window 368

element 369

element-container 372

element-interface-for-callback 373

element-screen 373

elipse 374

end-pane-drag-operation 747

ensure-area-visible 375

ensure-interface-screen 375

execute-with-interface 376
execute-with-interface-if-alive 377

exit-confirmer 378

exit-dialog 379

expandabl e-item-pinboard-object 380

extended-sel ection-tree-view 380

filtering-layout 381
filtering-layout-match-object-and-exclude-p 384
find-graph-edge 385

find-graph-node 385

find-interface 386

find-string-in-collection 387
force-dark-mode 388
force-screen-update 389
force-update-all-screens 390
foreign-owned-interface 390

form-layout 391
free-metdfile 392
free-sound 393

12

Contents

get-collection-item 393
get-constraints 394
get-horizontal-scroll-parameters
get-page-area 396
get-printer-metrics 397
get-scroll-position 398
get-vertical -scroll-parameters
graph-edge 398
graph-node 399
graph-node-children 400
graph-object 400
graph-pane 401
graph-pane-add-graph-node

395

395

404

graph-pane-del ete-obj ect 405

graph-pane-del ete-objects

406

graph-pane-del ete-sel ected-objects 406

graph-pane-direction 407
graph-pane-edges 408
graph-pane-nodes 408
graph-pane-object-at-position
graph-pane-sel ect-graph-nodes

409
410

graph-pane-update-moved-objects 410

grid-layout 411
grid-layout-get-sizes 414
hide-interface 415
hide-pane 416
highlight-pinboard-object
image-list 418
image-locator 419

image-pinboard-object 419

image-set 420
installed-libraries 421

417

install-postscript-printer 422

interactive-pane 423

interactive-pane-execute-command 425

interface 426

interface-being-created-p 438

interface-customize-toolbar
interface-display 436
interface-displayed-p 438
interface-display-title 439
interface-document-modified-p
interface-editor-pane 440
interface-extend-title 441

436

439

13

Contents

interface-fully-created-p 438
interface-fully-destroyed-p 438
interface-geometry 442
interface-iconified-p 442
interface-keys-style 443
interface-match-p 444
interface-menu-groups 445
interface-preserve-state 446
interface-preserving-state-p 447
interface-reuse-p 448
interface-tool bar-state 449
interface-visible-p 450
interpret-description 451
invalidate-pane-constraints 452
invoke-command 452
invoke-untranslated-command 453
item 454

itemp 455

item-pane-i nterface-copy-object 456
item-pinboard-object 457

|abell ed-arrow-pinboard-object 458
|abelled-line-pinboard-object 458
layout 460

line-pinboard-obj ect 461
line-pinboard-object-coordinates 462
listener-pane 463
listener-pane-insert-value 464
list-panel 464

list-panel-enabled 472
list-panel-filter-state 472

list-panel-items-and-filter 473
list-panel-search-with-function 475
list-panel-unfiltered-items 476
list-view 477

load-cursor 480

load-sound 482

locate-interface 483
lower-interface 484

make-container 485
make-docking-layout-controller 486
make-foreign-owned-interface 487
make-general-image-set 488
make-icon-resource-image-set 489
make-image-locator 490

14

Contents

make-menu-for-pane 490
make-pane-popup-menu 491
make-resource-image-set 493
make-scal ed-general-image-set 494
make-scal ed-image-set 495
make-sorting-description 496
manipul ate-pinboard 498
map-collection-items 500
map-pane-children 500
map-pane-descendant-children 502

map-typeout 503
* maxi mum-moving-objects-to-track-edges*
menu 504

menu-component 507
menu-item 509
menu-object 512
merge-menu-bars 515

message-pane 516

metafile-port 517
modify-editor-pane-buffer 517
modify-multi-column-list-panel-columns
modify-stacked-tree 519

mono-screen 520

move-line 520
multi-column-list-panel 521
multi-line-text-input-pane 525
non-focus-list-add-filter 525
non-focus-list-interface 526
non-focus-list-remove-filter 525
non-focus-list-toggle-enabl e-filter 527
non-focus-list-toggle-filter 525
non-focus-maybe-capture-gesture 527
non-focus-terminate 529
non-focus-update 529
ole-control-add-verbs 530
ole-control -close-abject 531
ole-control -component 531
ole-control-doc 533
ole-control-frame 533
ole-control-i-dispatch 534
ole-control -insert-object 535
ole-control -ol e-object 536
ole-control-pane 536
ole-control-pane-frame 538

503

518

15

Contents

ole-control-pane-simple-sink 539
ole-control -user-component 539
option-pane 540

output-pane 543
output-pane-cached-display-user-info 550
output-pane-cache-display 550
output-pane-draw-from-cached-display 551
output-pane-free-cached-display 552
output-pane-resize 553
output-pane-stop-composition 554
over-pinboard-object-p 555
page-setup-dialog 556

pane-adj usted-offset 557
pane-adjusted-position 558
pane-can-restore-display-p 559
pane-close-display 560
pane-descendant-child-with-focus 561
pane-drag-operation-update 747
pane-got-focus 561
pane-has-focus-p 562
pane-initial-focus 563
pane-interface-copy-object 564
pane-interface-copy-p 564
pane-interface-cut-object 564
pane-interface-cut-p 564
pane-interface-desel ect-all 564
pane-interface-deselect-all-p 564
pane-interface-paste-object 564
pane-interface-paste-p 564
pane-interface-select-all 564
pane-interface-select-all-p 564
pane-interface-undo 564
pane-interface-undo-p 564
pane-modifiers-state 565
pane-popup-menu-items 566
pane-restore-display 568

pane-scal e-factor 569
pane-screen-internal-geometry 570
pane-string 571
pane-supports-menus-with-images 572
parse-layout-descriptor 573
password-pane 574

pinboard-layout 575
pinboard-layout-display 577

16

Contents

pinboard-object 578
pinboard-obj ect-at-position 582
pinboard-object-graphics-arg 583
pinboard-object-highlighted-p 584
pinboard-object-overlap-p 584
pinboard-pane-position 585
pinboard-pane-size 586
play-sound 587
popup-confirmer 588
popup-menu-button 594
popup-menu-force-popdown 595
* ppd-directory* 596
print-capi-button 596
print-collection-item 597
print-dialog 508
print-editor-buffer 599
printer-configuration-dialog 600
printer-metrics 601

printer-port 602
printer-port-handle 603
printer-port-supports-p 603

* printer-search-path* 604
print-file 605
print-rich-text-pane 606
print-text 607
process-pending-messages 608
progress-bar 608
prompt-for-color 609
prompt-for-confirmation 610
prompt-for-directory 611
prompt-for-file 613
prompt-for-files 615

prompt-for-font 617
prompt-for-form 617
prompt-for-forms 619
prompt-for-integer 620
prompt-for-items-from-list 622
prompt-for-number 623
prompt-for-string 624
prompt-for-symbol 625

prompt-for-value 627
prompt-with-list 628
prompt-with-list-non-focus 631
prompt-with-message 634

17

Contents

push-button 635
push-button-panel 636

quit-all-contain-interfaces 637
quit-interface 638
radio-button 639
radio-button-panel 640
raise-interface 641
range-pane 642
range-set-sizes 643

read-sound-file 644
record-dependent-obj ect 644
rectangle 645
redisplay-collection-item 646
redisplay-element 647
redisplay-interface 648
redisplay-menu-bar 648
redraw-drawing-with-cached-display 649
redraw-pinboard-layout 650
redraw-pinboard-object 651
reinitialize-interface 651
remove-capi-object-property 652
remove-items 653

replace-dialog 654

replace-items 654
report-active-component-failure 655
reuse-interfaces-p 656
rich-text-pane 657
rich-text-pane-character-format 659
rich-text-pane-operation 660
rich-text-pane-paragraph-format 662
rich-text-version 663
right-angle-line-pinboard-object 664
row-layout 665

screen 666

screen-active-interface 668
screen-active-p 668
screen-display-type 669
screen-internal-geometries 670
screen-internal-geometry 671
screen-logical-resolution 672
screen-monitor-geometries 672
screens 673

screen-scale-factor 569

scroll 674

18

Contents

scroll-bar 675
scroll-if-not-visible-p 677
search-for-item 678

selection 679

selection-empty 680
set-application-interface 681
set-button-panel -enabled-items 682
set-clipboard 682

set-composition-placement 684
set-confirm-quit-flag 685
set-default-editor-pane-blink-rate 685
set-default-interface-prefix-suffix 686
set-default-use-native-i nput-method 687

set-display-pane-sel ection 688
set-drop-object-supported-formats 689
set-editor-parenthesis-colors 690
set-geometric-hint 691

set-hint-table 692
set-horizontal-scroll-parameters 692
set-interactive-break-gestures 694
set-interface-pane-name-appearance 694
set-interface-pane-type-appearance 694
set-layout-description-and-ratios 696
set-layout-ratios-keeping-fixed 697
set-list-panel-keyboard-search-reset-time 698
set-object-automatic-resize 699
set-pane-focus 702

set-printer-metrics 702
set-printer-options 703
set-rich-text-pane-character-format 705
set-rich-text-pane-paragraph-format 707
set-selection 709
set-text-input-pane-selection 710
set-top-level-interface-geometry 710
set-vertical -scroll-parameters 692
shell-pane 711

show-interface 713

show-pane 713

simple-layout 714
simple-network-pane 715

simple-pane 715

simpl e-pane-bl ock-mouse-wheel 722
simple-pane-handle 723
simple-pane-show-scroll-bars 724

19

Contents

simple-pane-visible-height 725
simple-pane-visible-size 725
simple-pane-visible-width 726
simple-pinboard-layout 727
simple-print-port 728

slider 729

sorted-object 732
sorted-object-sort-by 732
sorted-object-sorted-by 733
sort-object-items-by 734

stacked-tree 735
stacked-tree-decrease-font-height 739
stacked-tree-default-col or-function 740
stacked-tree-history-backward 741
stacked-tree-history-forward 741
stacked-tree-increase-font-height 739
stacked-tree-item-at-point 742
stacked-tree-width-ratio 743
stacked-tree-zoom-by-factor 743
start-drawing-with-cached-display 744
start-gc-monitor 746
start-pane-drag-operation 747
static-layout 748
static-layout-child-geometry 749
static-layout-child-position 750
static-layout-child-size 751
stop-gc-monitor 752

stop-sound 753

switchable-layout 753
switchable-layout-switchable-children 755
tab-layout 755

tab-layout-panes 758
tab-layout-visible-child 759
text-input-choice 759

text-input-pane 760
text-input-pane-append-recent-items 769
text-input-pane-compl ete-text 770
text-input-pane-copy 771
text-input-pane-cut 771
text-input-pane-delete 772
text-input-pane-del ete-recent-items 769
text-input-pane-in-place-complete 772
text-input-pane-in-place-style 362
text-input-pane-paste 773

20

Contents

text-input-pane-prepend-recent-items 769
text-input-pane-recent-items 774
text-input-pane-replace-recent-items 769
text-input-pane-sel ected-text 774
text-input-pane-selection 775
text-input-pane-selection-p 776
text-input-pane-set-recent-items 776
text-input-range 778

titled-menu-object 779

titled-object 780
titled-pinboard-object 782

title-pane 784

tool bar 785

tool bar-button 787
toolbar-component 790
toolbar-object 792
top-level-interface 793
top-level-interface-color-mode 793
top-level-interface-dark-mode-p 794
top-level-interface-display-state 795
top-level-interface-geometry 796
top-level-interface-geometry-key 798
top-level-interface-p 799
top-level-interface-save-geometry-p 800
tracking-pinboard-layout 800
tree-view 801
tree-view-ensure-visible 807
tree-view-expanded-p 808
tree-view-item-checkbox-status 809

tree-view-item-children-checkbox-status 809

tree-view-update-an-item 810
tree-view-update-item 811

undefine-menu 811
unhighlight-pinboard-object 812
uninstall-postscript-printer 813
unmap-typeout 813
unrecord-dependent-object 644
update-all-interface-titles 814
update-drawing-with-cached-display 815
update-drawing-with-cached-display-from-points

update-interface-title 816
update-internal-scroll-parameters 817
update-pinboard-object 818

* update-screen-interfaces-hooks* 819

815

21

Contents

update-screen-interface-titles 819
update-tool bar 820
virtual-screen-geometry 820
with-atomic-redisplay 821
with-busy-interface 822
with-dialog-results 823
with-document-pages 825
with-external-metafile 826

with-geometry 828
with-internal-metafile 830
with-output-to-printer 831

with-page 832
with-page-transform 833
with-print-job 834
with-random-typeout 835
wrap-text 836
wrap-text-for-pane 837
x-y-adjustable-layout 838

22 GRAPHICS-PORTS Reference Entries 840

2pi 840

analyze-external-image 840
apply-rotation 841
apply-rotation-around-point 842
apply-scale 843

apply-translation 844
augment-font-description 845
clear-external-image-conversions 845
clear-graphics-port 846
clear-graphics-port-state 847

clear-rectangle 847
compress-external-image 848
compute-char-extents 849
convert-external-image 849
convert-to-font-description 850

copy-area 851

copy-external-image 852

copy-pixels 853

copy-transform 854
create-pixmap-port 854

* default-image-trand ation-tabl e 856
define-font-alias 856
destroy-pixmap-port 857
dither-color-spec 857

22

Contents

draw-arc 858
draw-arcs 859
draw-character 860
draw-circle 860

draw-€llipse 861
draw-image 863
draw-line 865
draw-lines 865
draw-path 866
draw-point 869
draw-points 869
draw-polygon 870
draw-polygons 871

draw-rectangle 872
draw-rectangles 873
draw-string 874

ensure-gdiplus 875
external-image 876

external-image-color-table 877
externalize-and-write-image 878
externalize-image 879

f2pi 881

find-best-font 881
find-matching-fonts 882

font 883

font-description 884
font-description 884
font-description-attributes 885
font-description-attribute-value 886
font-dual-width-p 886
font-fixed-width-p 887
font-single-width-p 888

fpi 888

fpi-by-2 889

free-image 889

free-image-access 890
get-bounds 890
get-character-extent 891
get-char-ascent 892
get-char-descent 893
get-char-width 893
get-enclosing-rectangle 894
get-font-ascent 895

get-font-average-width 895

Contents

get-font-descent 896
get-font-height 896

get-font-width 897
get-graphics-state 898

get-origin 898

get-string-extent 899
get-transform-scale 900
graphics-port-background 901
graphics-port-font 901
graphics-port-foreground 901
graphics-port-mixin 902
graphics-port-transform 901
graphics-state 903

image 907

image-access-height 908
image-access-pixel 909
image-access-pixels-from-bgra 910
image-access-pixels-to-bgra 911
image-access-transfer-from-image 912
image-access-transfer-to-image 913
image-access-width 908
image-freed-p 914

image-loader 914

image-translation 915
initialize-dithers 916

inset-rectangle 916

inside-rectangle 917
invalidate-rectangle 918
invalidate-rectangle-from-points 919
invert-transform 920
list-all-font-names 920
list-known-image-formats 921

|oad-icon-image 922
load-image 923
make-dither 925
make-font-description 925
make-graphics-state 926
make-image 927
make-image-access 928
make-image-from-port 929
make-scal ed-sub-image 930
make-sub-image 931
make-transform 932
merge-font-descriptions 933

Contents

offset-rectangle 933

ordered-rectangle-union 934
pi-by-2 935
pixblt 935

pixmap-port 936
port-drawing-mode-quality-p 937
port-graphics-state 937
port-height 938

port-owner 939
port-string-height 939
port-string-width 940

port-width 941

postmultiply-transforms 941
premultiply-transforms 942
read-and-convert-external-image 942

read-external-image 943
rectangle-bind 944

rectangle-bottom 945
rectangle-height 946

rectangle-l eft 946

rectangle-right 947

rectangle-top 947
rectangle-union 948
rectangle-width 949

rect-bind 949
register-image-load-function 950
register-image-translation 951

reset-image-trand ation-table 952
separation 952
set-default-image-load-function 953
set-graphics-port-coordinates 953
set-graphics-state 954

transform 955
transform-area 956
transform-distance 956
transform-distances 957
transform-is-rotated 958
transform-point 958
transform-points 959
transform-rect 960
undefine-font-alias 961
union-rectangle 961
unit-transform 962
unit-transform-p 962

25

Contents

unless-empty-rect-bind 963
untransform-distance 964
untransform-distances 964
untransform-point 965
untransform-points 966

validate-rectangle 966

with-dither 967
with-graphics-mask 968
with-graphics-post-transation 969
with-graphics-rotation 970
with-graphics-scale 970
with-graphics-state 971
with-graphics-transform 973
with-graphics-transform-reset 974
with-graphics-trandation 970
with-inverse-graphics 975

without-relative-drawing 975
with-pixmap-graphics-port 976
with-transformed-area 977
with-transformed-point 978
with-transformed-points 979
with-transformed-rect 979
write-external-image 980

23 LW-GT Reference Entries 982

apply-drawing-object 982

basi c-graph-spec 983

basi c-graph-spec-p 1000
compound-drawing-object 984
compute-drawing-object-from-data 985
copy-basic-graph-spec 1000
drawing-object 986

fit-object 987

force-objects-redraw 990
generate-bar-chart 991
generate-graph-from-graph-spec 1000
generate-graph-from-pairs 993
generate-grid-lines 994
generate-labels 996

geometry-drawing-object 998
make-absol ute-drawing 987
make-absol ute-drawing* 987
make-a-drawing-call 998

make-basi c-graph-spec 1000

Contents

make-draw-arc 998
make-draw-circle 998
make-draw-€llipse 998
make-draw-line 998

make-draw-lines 998
make-draw-polygon 998
make-draw-rectangle 998
make-draw-string 1002

make-pinboard-objects-displayer 1003
objects-displayer 1004
pinboard-objects-displayer 1005

position-and-fit-object 987
position-object 987
recurse-compute-drawing-object 985
rotate-object 987
string-drawing-object 1006

24 COLOR Reference Entries 1008
apropos-color-alias-names 1008
apropos-color-names 1009
apropos-col or-spec-names 1010

color-apha 1011

color-blue 1011

* col or-database* 1013
color-from-premultiplied 1013
color-green 1011

color-hue 1011

color-level 1014

color-model 1015

color-red 1011

colors= 1016

color-saturation 1011
color-to-premultiplied 1017
color-value 1011
color-with-alpha 1018
convert-color 1018
create-light-dark-switchable-color 1019
define-color-alias 1021
define-color-models 1022

del ete-col or-translation 1023
ensure-color 1024
ensure-gray 1026

ensure-hsv 1026

ensure-model -color 1025

Contents

ensure-rgh 1026

get-all-color-names 1027
get-color-alias-trandation 1027
get-color-spec 1028
light-dark-switchable-col or-dark-col or 1019
light-dark-switchable-color-light-color 1019
light-dark-switchable-color-p 1019
light-dark-switchable-col or-set-colors 1019
|oad-col or-database 1029

make-gray 1030

make-hsv 1031

make-rgb 1032

read-color-db 1033

unconvert-color 1034

Index

Preface

This preface contains information you need when using the rest of the CAPI documentation. It discusses the purpose of this
manual, the typographical conventions used, and gives a brief description of the rest of the contents.

About this manual

This manual contains a user guide section (previously published separately as the CAPI User Guide) and a reference section
(previously the LispWorks CAPI Reference Manual).

Assumptions

The CAPI documentation assumes that you are familiar with:
» LispWorks.
e Common Lisp and CLOS, the Common Lisp Object System.
» The Microsoft Windows environment.

[llustrations in this manual show the CAPI running on Microsoft Windows X P with the default Windows XP theme, so if you
use a different Windows version or theme you should expect some variation from the figures depicted here.

Unless otherwise stated, examples given in this document assume that the current package has CAPI on its package-use-list.

Conventions used in the manual

Throughout this manual, certain typographical conventions have been adopted to aid readability.
1. Whenever an instruction is given, it is numbered and printed like this.

Text which you should enter explicitly isprinted | i ke this.

Exported symbols and example code are printed | i ke- t hi s. The package qualifier is often omitted, asif the current
packageiscapi (or gr aphi cs-ports orcol or.)

Variable arguments, sots and return values areitalicised. They look like-thisin the main text.

User Guide section

The user guide section of this manual forms an introductory course in devel oping applications using the CAPI. Please note
that, like the rest of the LispWorks documentation, it does assume knowledge of Common Lisp.

1 Introduction to the CAPI, introduces the principles behind the CAPI, some of its fundamental concepts, and what it sets
out to achieve.

2 Getting Started, presents a series of simple examples to familiarize you with some of the most important elements and
functions.

3 General Properties of CAPI Panes, introduces more of the fundamental CAPI elements and common themes. These
elements are explained in greater detail in the remainder of the manual.

29

Preface

4 General Considerations, covers some general issues that you should be aware of when using CAPI, including information
about multiple displays.

5 Choices - paneswith items, explains the key CAPI concept of the choice. A choice groups CLOS objects together and
provides the notion of there being a selected object amongst that group of objects. Button panels and list panels are examples
of choices.

6 Laying Out CAPI Panes introduces the idea of layouts. These let you combine different CAPI elementsinside asingle
window.

7 Programming with CAPI Windows, outlines basic techniques for modifying existing windows.

8 Creating Menus, shows you how to implement menus.

9 Adding Toolbars, shows you how to add toolbars to a window.

11 Defining I nterface Classes - top level windows, introduces the macro def i ne-i nt er f ace. This macro can be used to
define interface classes composed of CAPI elements, including the predefined elements described in this manual and also
elements which you define.

10 Dialogs: Prompting for Input, discusses the ways in which dialogs may be used to prompt the user for input.

12 Creating Paneswith Your Own Drawing and Input, shows you how you can define your own classes when the
elements provided by the CAPI are not sufficient for your needs.

13 Drawing - Graphics Ports, describes the Graphics Ports APl which provides a selection of drawing and image
transformation functions. Although not part of the CAPI package, and therefore not strictly part of the CAPI, the Graphics
Ports functions are used in conjunction with CAPI panes, and are therefore documented in this manual. See also 22
GRAPHICS-PORT S Reference Entries. o

14 Graphic Tools drawing objects, describes the Graphic Tools API which provides a way to create more complex
drawings, including graphs and bar charts. Graphic Tools are built with Graphics Ports and CAPI pinboards, and are
therefore documented in thismanual. See also 23 LW-GT Reference Entries.

15 The Color System, allows applications to use keyword symbols as aiases for colorsin Graphics Ports drawing functions.
They can also be used for backgrounds and foregrounds of windows and CAPI objects. See also 24 COL OR Reference
Entries.

16 Printing from the CAPI—the Hardcopy API, describes the programmatic printing of Graphics Ports.

17 Drag and Drop, describes how you can implement drag and drop in your CAPI application.

19 Host Window System-specific issues, describes how to configure the appearance of CAPI windows on the various
supported host window systems.

20 Self-contained examples, enumerates the CAPI example files available in the LispWorks library.

Reference section

The reference section contains reference entries for the symbolsinthe capi , gr aphi cs- ports, | w gt andcol or
packages.

Within each chapter, the symbols are organized alphabetically (ignoring non-a phanumeric characters that are common in
Lisp symbols, such as*). The typographical conventions used are similar to those used in Common Lisp: the Language (2nd
Edition). Further details on the conventions used are given below. The chapters are:

21 CAPI Reference Entries, describes the external symbols of the capi package.

22 GRAPHICS-PORTS Reference Entries, describes the external symbols of the gr aphi cs- por t s package.

30

Preface

23 LW-GT Reference Entries, describes the external symbols of thel w- gt package.

24 COL OR Reference Entries, describes the external symbols of the col or package.

Note: Although the gr aphi cs- ports and col or packages are not strictly part of the CAPI, they are included in this
manual because the functionality is usually called from CAPI elements such as output panes. | w- gt isalso included here
sinceit isbuilt ontop of gr aphi cs- ports and capi . 13 Drawing - Graphics Portsand 15 The Color System shows you
how to use the gr aphi cs- ports and col or packages respectively; the remainder of the User Guide section shows you how
to usethecapi package.

Conventions used for reference entries

Each entry is headed by the symbol name and type, followed by a number of fields providing further details. These fields
consist of asubset of the following: "Summary", "Package”, "Signature”, "Method signatures’, "Arguments’, "Values',
"Initial value", "Superclasses’, "Subclasses’, "Initargs’, "Accessors', "Readers’, "Description”, "Notes*, "Compatibility

notes', "Examples' and "See also".
Some symbols with closely-related functionality are coalesced into asingle reference entry.

Entrieswith along "Description™ section usually have astheir first field a short " Summary"” providing a quick overview of the
symbol's purpose.

The "Package" section shows the package from which the symbol is exported.

The "Signature" section shows the arguments and return values of functions and macros, and the parameters of types.
In a Generic Function entry there may be a"Method signatures' section showing system-defined method signatures.
The "Arguments’ and "Values' sections show types of the arguments and return values.

In aVariable entry, the "Initial value" section shows the initial value.

In aClass entry the "Subclasses' section of lists the external subclasses, though not subclasses of those, and the
"Superclasses” section lists the external superclasses, though not superclasses of those. The "Initargs’ section describes the
initialization arguments of the class, though note that initargs of superclasses are also valid. There may be an " Accessors"
section listing accessor functions which are both readers and writers, and/or a"Readers" section listing accessor functions
which are only readers. Accessor functions access the slot with matching name.

The "Description” section contains the detail of what the symbol does, how each argument is interpreted (and its default value
if applicable), and how each return value is derived. Moreincidental information may be shown in a"Notes" section.

A few entries have a"Compatibility notes" section describing changes in the symbol's functionality relative to other
LispWorks versions.

Examples are given under the "Examples' heading. Short examples are shown directly. Longer examples are supplied as
sourcefilesin your LispWorks installation directory under exanpl es/ capi / . The convenience function
| w. exanpl e-edi t-fil e alowsyou to open these filesin the LispWorks editor.

Note that the example code is written with explicit package qualifiers such ascapi : i nt er f ace, so that it can be run as-is,
regardless of the current package.

Finaly, the"See also" section provides links to other related symbols and user guide sections.

Viewing example files

This manual often refersto example filesin the LispWorks library viaa Lisp form like this:
(exanple-edit-file "capi/choice/drag-and-drop")

31

Preface

These examples are Lisp sourcefilesin your LispWorks installation under | i b/ 8- 1- 0- 0/ exanpl es/ . You can simply
evaluate the given form to view the example sourcefile.

Example files contain instructions about how to use them at the start of thefile.

The examplesfiles are in aread-only directory and therefore you should compile them inside the IDE (by the Editor
command Compile Buffer or the toolbar button or by choosing Buffer > Compile from the context menu), so it does not try
towrite afad file.

If you want to manipulate an example file or compile it on the disk rather than in the IDE, then you need first to copy thefile
elsewhere (most easily by using the Editor command Write File or by choosing File > Save As from the context menu).

The LispWorks manuals
The LispWorks manual set also includes the following books:

» The LispWorks® User Guide and Reference Manual describes the main language-level features and tools availablein
LispWorks, along with reference pages.

* The LispWorks IDE User Guide describes the LispWorks IDE, the user interface for LispWorks. Thisis a set of
windowing tools that help you to develop and test Common Lisp programs.

» The Editor User Guide describes the keyboard commands and programming interface to the LispWorks IDE editor tool.

» The Foreign Language Interface User Guide and Reference Manual explains how you can use C source codein
applications developed using LispWorks.

» The Delivery User Guide describes how you can deliver working, standalone versions of your LispWorks applications
for distribution to your customers.

» Developing Component Software with CORBA® describes how LispWorks can interoperate with other CORBA -
compliant systems.

» The COM/Automation User Guide and Reference Manual describes atoolkit for using Microsoft COM and Automation
in LispWorks for Windows.

» The LispWorks Objective-C and Cocoa I nterface User Guide and Reference Manual describes APIs for interfacing to
Objective-C and Cocoain LispWorks for Macintosh.

» The KnowledgeWbrks and Prolog User Guide describes the LispWorks toolkit for building knowledge-based systems.
Prolog is alogic programming system within Common Lisp.

» The Common Lisp Interface Manager 2.0 User's Guide describes the portable Lisp-based GUI toolkit.

» The Release Notes and Installation Guide which contains notes explaining how to install LispWorks and get it running.
It also contains a set of release notes which lists new features and any last minute issues that could not be included in the
main manual set.

These books are provided in both HTML and PDF formats, and may also be found at www.lispwor ks.com/documentation.

Commands in the Help menu of any of the LispWorks I DE tools give you direct access to your local copy of the HTML
format manuals. Details of how to use these commands can be found in the LispWorks IDE User Guide.

You can use Adobe® Reader® to browse the PDF documentation. Adobe Reader is available from Adobe's web site,
http://www.adobe.com/.

Please |et us know at lisp-support@lispwor ks.com if you find any mistakes in the LispWorks documentation, or if you have
any suggestions for improvements.

32

http://www.lispworks.com/documentation
http://www.adobe.com/
mailto:lisp-support@lispworks.com

1 Introduction to the CAPI

1.1 What is the CAPI?

The CAPI (Common Application Programmer's Interface) is alibrary for implementing portable window-based application
interfaces. It isaconceptualy simple, CLOS-based model of interface elements and their interaction. It provides a standard
set of these elements and their behaviors, aswell as giving you the opportunity to define elements of your own.

The CAPI's model of window-based user interfaces is an abstraction of the concepts that are shared between al contemporary
window systems, such that you do not need to consider the details of a particular system. These hidden details are taken care
of by aback end library written for that system alone.

An advantage of making this abstraction is that each of the system-specific libraries can be highly specialized, concentrating
on getting things right for that particular window system. Furthermore, because the implementation libraries and the CAPI
model are completely separate, libraries can be written for new window systems without affecting either the CAPI model or
the applications you have written with it.

The CAPI currently runs under X Window System with either GTK+ or Motif, Microsoft Windows and macOS. Using CAPI
with Matif is deprecated.

1.2 The CAPI model

The CAPI provides an abstract hierarchy of classes which represent different sorts of window interface elements, along with
functions for interacting with them. Instances of these classes represent window objects in an application, with their slots
representing different aspects of the object, such as the text on a button, or the items on amenu. These instances are not
actual window objects but provide a convenient representation of them for you. When you ask the CAPI to display your
object, it creates areal window system object to represent it. This meansthat if you display a CAPI button, area Windows
button is created for it when running on Microsoft Windows, areal GTK+ button when running on GTK+, and areal Cocoa
button when running on Cocoa.

The CAPI's approach makes the production of the screen objects the responsibility of the native window system, so it always
produces the correct look and feel. Furthermore, the CAPI's use of the real interface to the window system means that it does
not need to be upgraded to account for look and feel changes, and anything written with it is upwardly compatible, just like
any well-written application.

1.2.1 CAPI elements

There are five types of elementsin the CAPI model: interface, menu, pane, layout and pinboard-object.

Everything that the CAPI displays is contained within an interface (an instance of the classi nt er f ace). When an interface
is displayed a window appears containing all the menus and panes you have specified for it. Top level windowsin an
application are normally defined asani nt er f ace subclass, by using def i ne-i nterf ace.

An interface can contain a number of menus collected together on amenu bar, and context menus can also appear elsewhere.
Each menu can contain menu items or other menus (that is, submenus). Items can be grouped together visually and
functionally inside menu components. Menus, menu items, and menu components are, respectively, instances of the classes
menu, nenu-i t em and nenu- conponent .

Panes are window objects such as buttons and lists. They can be positioned anywhere in an interface. The CAPI provides

33

1 Introduction to the CAPI

many different kinds of pane class, among them push- but t on, | i st - panel , t ext - i nput - pane, edi t or - pane,
tree-vi ewand gr aph- pane.

The positions of panes are controlled by alayout, which allows objects to be collected together and positioned either
regularly (with instances of the classescol utm- | ayout , r ow | ayout or gri d- | ayout) or arbitrarily using a

pi nboar d- | ayout . Layouts themselves can be laid out by other layouts — for example, arow of buttons can be laid out
above alist by placing both ther ow | ayout andthelistinacol um- | ayout .

pi nboar d- obj ect sare lightweight elements that you can use to create complex display and user interaction. They must be
used inside api nboar d- | ayout .

Note that layouts and interfaces are actually panestoo (i nt er f ace and | ayout are subclasses of si npl e- pane), andin
most of the cases can be used where panes are used. They are listed separately because of their specia role in the layout of
windows.

1.3 The history of the CAPI

Window-based applications written with LispWorks 3 and previous used CL X2, CLUE, and the LispWorks Toolkit. Such
applications are restricted to running under X Windows. Because we and our customers wanted a way to write portable
window code, we developed a new system for this purpose: the CAPI.

Part of this portability exercise was undertaken before the development of the CAPI, for graphics ports, the generic graphics
library. Thisincludes the portable color, font, and image systemsin LispWorks. The CAPI is built on top of this technology,
and has been implemented for Motif, Microsoft Windows, Cocoaand GTK+.

All Lisp-based environment and application development in LispWorks Ltd now uses the CAPI. We recommend that you use
the CAPI for window-based application development in preference to the systems mentioned earlier.

2 Getting Started

This chapter introduces some of the most basic CAPI elements and functions. The intention is simply that you should
become familiar with the most useful elements available, before learning how you can use them constructively.

You should work through the examples in this chapter. For extended example code, see:
(exanmple-edit-file "capi/elenents/")

A CAPI application consists of ahierarchy of CAPI objects. CAPI objects are created using make- i nst ance, and although
they are standard CLOS abjects, CAPI slots should generally be accessed using the documented accessors, and not using the
CLOSsl ot - val ue function. You should not rely on sl ot - val ue because the implementation of the CAPI classes may
evolve.

Once an instance of a CAPI object has been created in an interface, it can be displayed on your screen using the function
di spl ay.

2.1 Using the CAPI package

All symbolsin this manual are exported from either the CAPI or COMMON-LISP packages unless explicitly stated
otherwise. To access CAPI symbals, you could qualify them all explicitly in your code, for example capi : out put - pane.

However it is more convenient to create a package which has CAPI on its package-use-list:
(def package " MY- PACKAGE"

(:add-use-defaults t)
(:use "CAPI"))

This creates a package in which al the CAPI symbols are accessible. To run the examplesin this guide, first evaluate:

(i n-package " MY- PACKAGE")

2.2 Creating a window

This section shows how easy it isto create a simple window, and how to include CAPI elements, such as panes, in your
window.

1. Enter the following in alistener:

(setqg interface
(make-instance 'interface
»visible-mn-wdth 200
‘title "My Interface"))

(display interface)

35

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm

2 Getting Started

Creating a simple window

" My Interface Q@E|

A small window appears on your screen, called "My Interface”. Thisisthe most simple type of window that can be created
with the CAPI.

Note: By default, if you do not use MDI mode, this window has a menu bar with the Works menu. The Works menu gives
you access to avariety of LispWorkstools, just like the Works menu of any window in the LispWorks IDE. It is
automatically provided by default for any interface you create. You can omit it by passing : aut o- menus ni | .

The usual way to display an instance of a CAPI window isdi spl ay. However, another function, cont ai n, is provided to
help you during the course of development.

Notice that the "My Interface" window cannot be made smaller than the minimum width specified. All CAPI geometry
values (window size and position) are integers and represent pixel values relative to the topmost/leftmost visible pixel of the
primary monitor.

Only atop level CAPI element is shown by di spl ay — that is, an instance of ani nt er f ace. To display other CAPI
elements (for example, buttons, editor panes, and so on), you must provide information about how they are to be arranged in
the window. Such an arrangement is called alayout — you will learn more about layoutsin 6 L aying Out CAPI Panes.

On the other hand, cont ai n automatically provides a default layout for any CAPI element you specify, and subsequently
displaysit. During development, it can be useful for displaying individual elements of interest on your screen, without having
to create an interface for them explicitly. However, cont ai n isonly provided as a development tool, and should not be used
for the final implementation of a CAPI element. See 11 Defining I nterface Classes - top level windows on how to display
CAPI elementsin an interface.

Note that a displayed CAPI element should only be accessed in its own thread. See 4.1 The correct thread for CAPI
oper ations for more information about this.

Thisis how you can create and display a button using cont ai n.

1. Enter the following into alistener:

(setqg button
(make-instance ' push-button
:data "Button"))

(contain button)

Creating a push-button interface

This creates an interface which contains a single push-button, with alabel specified by the: dat a keyword. Notice that you
could have performed the same example using di spl ay, but you would aso have had to create a layout so that the button
could have been placed in an interface and displayed.

You can click on the button, and it will respond in the way you would expect (it will depress). However, no code will be run
which performs an action associated with the button. How to link code to window itemsis the topic of the next section.

36

2 Getting Started

2.3 Linking code into CAPI elements

Getting a CAPI element to perform an action is done by specifying acallback. Thisis afunction which is performed
whenever you change the state of a CAPI element. It calls a piece of code whenever a choiceis made in awindow.

Note that the result of the callback function isignored, and that its usefulnessisin its side-effects.

1. Try thefollowing:

(setq push-button
(make-instance ' push-button
:data "Hell o"
: cal | back
(1 anmbda (& est args)
(di spl ay- nessage
"Hello World"))))
(contain push-button)

Specifying a callback

2. Click on the Hello button.
A diaog appears containing the message "Hello World".
A diaog displayed by a callback.

Container §|

\ll‘) Hella \Warld

Ik,

The CAPI provides the function di spl ay- nessage to allow you to pop up adialog box containing a message and a
Confirm button. Thisis one of many pre-defined facilities that the CAPI offers.

Note: When you develop CAPI applications, your application windows are run in the same Window system event loop as the
LispWorks IDE. This - and the fact that in Common Lisp user code exists in the same global namespace as the Common Lisp
implementation - means that a CAPI application running in the LispWorks IDE can modify the same values as you can
concurrently modify from one of the the LispWorks IDE programming tools.

For example, your CAPI application might have a button that, when pressed, setsadot in a particular object that you could
also set by hand in the Listener. Such introspection can be useful but can also lead to unexpected values and behavior while
testing your application code.

37

3 General Properties of CAPI Panes

This chapter contains information that does not belong in the more specific sections that follow, including functionality
common to several (or most) pane classes. It also introduces classes allowing you to create more common windowing
elements, beyond the few mentioned in 2 Getting Started.

Before trying out the examples in this chapter, define the functionst est - cal | back and hel | o inyour Listener. Thefirst
displaysthelist of argumentsit isgiven, and returnsni | . The second just displays a message.

(defun test-call back (data interface)
(di spl ay-nessage "Data ~S in interface ~S"
data interface))

(defun hello (data interface)
(declare (ignore data interface))
(di spl ay-nessage "Hello World"))

We will use these callbacksin the examples that follow.

3.1 Generic properties

Because CAPI elements are just like CLOS classes, many elements share a common set of properties. The remainder of this
section describes the properties that all the classes described in this chapter inherit.

3.1.1 Scroll bars

The CAPI lets you specify horizontal or vertical scroll bars for any subclass of the si npl e- pane element (including all of
the classes described in this chapter).

Horizontal and vertical scroll bars can be specified using the keywords : hori zont al -scrol | and: vertical -scrol |.
By default, both: vertical -scrol | and: hori zontal -scrol | arenil.

3.1.2 Background and foreground colors

All subclasses of the simple pane element can have different foreground and background colors, using the : backgr ound and
: f or egr ound initargs of si npl e- pane. For example, including:

: background : bl ue
:foreground :yell ow

inthe make- i nst ance of atext pane would result in a pane with a blue background and yellow text.

3.1.3 Fonts

The CAPI interface supports the use of other fonts for text in title panes and other CAPI objects, such as buttons, through the
use of the: f ont initarg of si npl e- pane.. If the CAPI cannot find the specified font it reverts to the default font. The

: f ont keyword appliesto datafollowing the : t ext keyword. The valueisagraphics portsf ont - descri pti on object
specifying various attributes of the font.

38

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

3 General Properties of CAPI Panes

On systems running X Windows, the xI sf ont s command can be used to list which fonts are available. The X logical font
descriptor can be explicitly passed as astring to the : f ont initarg, which will convert them.

Hereisan example of ati t | e- pane with an explicit font:

(contain
(make-instance 'title-pane
itext "Atitle pane"
:font (gp: make-font-description
cfamly "Times"”
:size 12
:wei ght : nedi um
:slant :roman)))

Hereisan example of using : f ont to produce atitle pane with larger lettering. Note that the CAPI automatically resized the
pane to fit around the text.

(contain
(make-instance 'title-pane
ttext "A large piece of text"
:font (gp: make-font-description
cfamily "Times”
:size 34
swei ght : nedi um
:slant :roman)))

An example of the use of font descriptions

“w Container
Works

A large piece of text

3.1.4 Mnemonics

This section appliesto Microsoft Windows and GTK+ only.

Underlined lettersin menus, titles and buttons are called mnemonics. The user can select the element by pressing the

corresponding key.

3.1.4.1 Controlling Mnemonics

For individual buttons, menus, menu items and title panes, you can use the : rmenoni ¢ initarg to control them. For example:
(capi:contain (make-instance 'capi: push-button

. data "FooBar"
:menoni ¢ #\ B))

For more information on mnemonics in buttons, see 3.10.4 M nemonicsin buttons.

For information on controlling mnemonics in button panels, see 5.2.4 Mnemonicsin button panels. For information on
controlling mnemonicsin menus, see 8.6 Mnemonicsin menus.

39

3 General Properties of CAPI Panes

Theinitarg : menoni c-ti tl e alowsyou to specify the mnemonic in the title for many pane classes including
| i st-panel,text-input-pane andoption-pane. Alsogri d-|ayout supports mnemonic-title when has-title-column-
pistrue. For the detailsseeti t | ed- obj ect .

3.1.4.2 Mnemonics on Microsoft Windows
On Microsoft Windows the user can make the mnemonics visible by holding down the Al t key.

Windows can hide mnemonics when the user is nhot using the keyboard. Thisis controlled in Windows 8 by:

Control Panel > Ease of Access > Ease of Access Center > Make the keyboard easier to use > Underline keyboard
shortcuts and access keys

and in Windows XP by:

Control Panel > Display > Appearance > Effects > Hide underlined letters...

3.1.5 Focus
The focus is where keyboard gestures are sent.

You can specify that a pane should or should not get the focus by using theinitarg : accept s- f ocus- p (defined for
el enent). By default interactive elements except menus accept focus, and non-interactive elements do not accept focus, so
normally you do not need to use: accept s- f ocus- p.

3.1.5.1 Initial focus

By default, when awindow first appears the focusis in the top-left pane that accepts focus. You can override this by using the
initarg:initial -focus or using the accessor pane-i ni ti al - f ocus oninterfaces and layouts, and using the initarg
;initial-focus-itemforchoices(check-button-panel for example).

3.1.5.2 Querying the focus

The function pane- descendant - chi | d- wi t h- f ocus can find a child pane that has the focus, when given as argument a
pane with children such asal ayout , ani nt er f ace, or certain choicesincluding abut t on- panel andt ool bar .

The function pane- has- f ocus- p can be used to determine if a specific pane has the focus.

3.1.5.3 Setting the focus dynamically

The function set - pane- f ocus can be used to set the focus to a pane inside an active window. If you need to ensure that the
window is active, you can use act i vat e- pane, which activates the window and sets the focus. For panes that have children
(as described in 3.1.5.2 Querying the focus) the actual pane that receives the focusisthe "initial focus', as described 3.1.5.1
Initial focus.

When set - pane- f ocus iscaled, just beforeit actualy setsthe focus, it calls the generic function pane- got - f ocus with
the interface and the pane. You can define your own method (specialized on your own interface class) to perform any
processing that may be required.

3.1.6 Mouse cursor

The mouse cursor of a pane can be specified by theinitarg : cur sor or accessor si npl e- pane- cur sor . The cursor to be
used needsto be aresult of acall tol oad- cur sor .

3 General Properties of CAPI Panes

It ispossibleto set an "override' cursor in an interface, which setsthe cursorsin all its panes. That istypically used to
temporarily set the cursor while the interface isin a different input state from the normal state. This feature does not work on
Cocoa.

3.2 Base classes

Most CAPI classesinherit from capi - obj ect , which hasaplist and aname. The subclasses of capi - obj ect are:

el enent The class of al elements that corresponding to an underlying window system element. el enment
defines geometry functionality including geometry hints (see 6.4 Specifying geometry hints),
and afew other basic properties. Note however that not all subclasses of el ement correspond to
an underlying element: some of them are a composition of several elements, and some of them
are layout elements.

Subclasses of el enent are menu for menus (chapter 8), and si npl e- pane for all other display
elements. The subclasses contain | ayout (6 Laying Out CAPI Panes), which is used to
arrange CAPI elements, andi nt er f ace (11 Defining Interface Classes - top level windows),
which represents awindow, and classes that correspond to specific display elementslike but t on
(3.10 Button elements).

cal | backs A mixin class for active elements that need to respond to user input, defining various callbacks
(3.4 Callbacks). i t em col | ecti on and nenu- obj ect (parent of nenu and
nenu- conponent) inherit fromcal | backs.

item A mixin class for elements that have a single piece of text like menu- i t emand but t on. It can
also be used as away of making individual itemsin collections/choices (5 Choices - paneswith
items) have their own callbacks and properties. i t eminheritsfromcal | backs.

pi nboar d- obj ect The superclass of pinboard objects, are lightweight graphical objects which are displayed inside
pi nboar d- | ayout (12.3 Creating graphical objects).

col | ecti on and subclasschoi ce

Choiceisthe mixin class for al elements that have items (5 Choices - panes with items).
col | ecti on (and hence choi ce) inheritsfrom cal | backs. The subclasses of choi ce that
can be displayed inherit from si npl e- pane too.

3.3 Specifying titles

It is possible to specify atitle for awindow, or part of awindow. Several of the examples that you have already seen have
used titles. There are two ways that you can create titles:

* Usetheti t| e- pane class.
» Specify atitle directly to any subclassof ti t | ed- obj ect .

3.3.1 Title panes

Atitl e-pane isablank paneinto which text can be placed in order to form atitle.
(setqg title (nake-instance 'title-pane

:visible-mn-width 200
ttext "Title"))

(contain title)

41

3 General Properties of CAPI Panes

A title pane

“w Container E“E' E'

3.3.2 Specifying titles directly

You can specify atitledirectly to all CAPI panes, using the: ti t | e keyword. Thisis much easier than using title-panes,
since it does not necessitate using alayout to group two elements together.

Any classthat isasubclassof ti t | ed- obj ect supportsthe: titl e keyword. All of the standard CAPI panes inherit from
thisclass. You can find all the subclassesof ti t | ed- obj ect by using the Class Browser tool in the LispWorks IDE.

3.3.2.1 Window titles

Specify atitle for a CAPI window by supplyingthe: tit e initarg for thei nt er f ace, and accessit with
interface-title.

Further control over thetitle of your application windows can be achieved by using
set-defaul t-interface-prefix-suffixand/orspeciaizingint erface-extend-title asillustratedin11.5.2
Controlling theinterfacettitle.

Youcancalinterface-display-titl e togetthestring that isactually displayed (or would be displayed if the interface
was displayed).

3.3.2.2 Titles for elements

The position of any title can be specified by using the: ti t | e- posi ti on keyword. Most panes default their title-position to
: t op, athough someuse: | eft.

You can place the titlein aframe (like a groupbox) around its element by specifying: ti t1 e-position :frane.
You may specify the font used in thetitle viathe keyword : ti t1 e-font.

Thetitleof ati t | ed- obj ect, and itsfont, may be changed interactively with the use of set f , if you wish.

1. Create a push button by evaluating the code below:

(setqg button (nmake-instance 'push-button
:text "Hello"
(title "Press: "
;title-position :left
:cal I back 'hello))

(contain button)

2. Now evaluate the following:

(appl! y-i n- pane- process
button # (setf titled-object-title) "Press here: " button)

As soon asthe form is evaluated, the title of the pane you just created changes.
3. Lastly evaluate the following:
42

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

3 General Properties of CAPI Panes

(appl y-i n- pane- process
button # (setf titled-object-title-font)
(gp: merge-font-descriptions
(gp: make-font-description :size 42)
(gp: convert-to-font-description
button
(titled-object-title-font button))) button)

Notice how the window automatically resizesin steps 2 and 3, to make allowance for the new size of thetitle.

3.4 Callbacks

Theclasscal | backs isthe superclass of al the CAPI objects that receive callback callsin response to user gestures,
excluding output panes. Thisincludes collections and choices, buttons, menus, menu components, menu items and
i t em pi nboar d- obj ect . The actual interaction depends on the specific class.

The arguments that callbacks are called with can be specified by theinitarg : cal | back-t ype. When the argument contain
the interface, the actua interface can be specified to be another interface by using at t ach-i nt er f ace- f or - cal | back.
Thefunction el enent -i nt er f ace- f or - cal | back can be used to find which interface is going to be used in a callback.

Callbacks can be aborted using abor t - cal | back.

There is more detail about the callbacks available in choicesin 5.10.3 Callbacksin choices.

Note: out put - pane and its subclasses implement callback calls by the input-model mechanism.

3.5 Displaying and entering text

There are avariety of waysin which an application can display text, accept text input or allow editing of text by the user:

Display panes Show non-editable text.
Text input panes Used for entering short pieces of text.
Editor panes Used for dealing with large amounts of text such asfiles. Also offer full configurable editor

functionality.

Rich text panes Support formatted text. Available on Cocoa and Microsoft Windows only.

3.5.1 Display panes

You can use adi spl ay- pane to display text messages on the screen. The text in these messages cannot be edited, so they
can be used by the application to present a message to the user. The: t ext initarg can be used to specify the message that is
to appear in the pane.

1. Create adisplay pane by evaluating the code bel ow:

(setqg display (make-instance 'display-pane
:text "This is a nmessage"))

(contai n display)

3 General Properties of CAPI Panes

A display pane

Works

Thiz iz a meszage

Note that the window title, which defaultsto "Container" for windows created by cont ai n, may appear truncated.

You can access the text (get and set) of adi spl ay- pane by the accessor di spl ay- pane-t ext . You can access the
selection by di spl ay- pane- sel ecti on-p, di spl ay- pane- sel ecti on, set - di spl ay- pane-sel ecti on and
di spl ay- pane- sel ect ed-text.

3.5.2 Text input panes

When you want the user to enter aline of text, such asasearch string, use at ext - i nput - pane.

(setqg text (make-instance 'text-input-pane
‘title "Search:
:cal I back 'test-call back))

(contain text)

A text input pane

“w Container

Notice that the default title position for text input panesis: | eft.

You can place text programmatically in the text input pane by supplying astring for the : t ext initarg, or later by calling
(setf text-input-pane-text) intheappropriate process.

You can useset -t ext - i nput - pane- sel ect i on to control the selection in the text input pane:

(setqg tip (make-instance 'capi:text-input-pane
:title "Search
:text "Foo Bar Baz"))

(capi: set-text-input-pane-sel ection
tip

(length "Foo ")

(+ (length "Foo ") (length "Bar")))

(capi:contain tip)
t ext - i nput - pane has many callbacks which allow the program to perform various tasks as the user changes the text, the

selection or the caret position, or enters/leaves the pane. It is possible to respond to specific keyboard gestures, characters or
otherwise (like Up arrow). t ext - i nput - pane has also options for performing completion on the user input.

You can add toolbar buttons for easier user input in at ext - i nput - pane viathe: but t ons initarg. This example allows the
user to enter the filename of an existing Lisp sourcefile, either directly or by selecting the file in adialog raised by the
Browse File button. Thereis also a Cancel button, but the default OK button is not displayed:

44

3 General Properties of CAPI Panes

(capi:contain
(make-i nstance
' capi : text-input-pane

:buttons
(list :cancel t
:ok nil

:browse-file
(list :operation :open
cfilter "*.LISP;*.LSP"))))

For alarger quantity of text userul ti -1 i ne-t ext-i nput - pane.

On Cocoa, t ext - i nput - pane can also be made to look like a search field, using the initarg : sear ch-fi el d and related
initargs.

For entering passwords use the subclass passwor d- pane, which does not display the actual characters that the user types.

3.5.3 Editor panes

An edi t or - pane isapane which displays text and allows the user to edit it. Thetext isheld and manipulated in a separate
module, the Editor, which isimplemented in the "EDITOR" package.

The Editor is optimized to deal with large amounts of text, whether that is because a single document contains large amount
of text or because the user wants to edit many texts at the same time. It has alarge set of commands that the user can invoke
to perform avariety of tasks, including many kinds of editing and search operations, integration with the LispWorks IDE, and
various other tasks. It also has a programmiatic interface to manipulate the text, which is exported from the package
"EDITOR". The user interface and the programmatic interface are both documented in the Editor User Guide, and the
LispWorks IDE uses edi t or - pane for editing.

The interaction of the Editor emulates either Emacs style or the native style of macOS, Microsoft Windows or KDE/Gnome
as appropriate. Thereisaglobal default setting (native on Windows, Emacs elsewhere), which can be set in aruntime image
by the Delivery keyword : edi t or - st yl e. In particular, you fix the style for edi t or - pane in your interfaces by defining
your method for i nt er f ace- keys- st yl e. Seethe chapter "Emulation” in the Editor User Guide for more detail about the
different styles.

From the CAPI side you can access the editor structures that hold the text by using edi t or - pane- buf f er , which returns an
edi t or: buf f er object which holdsthe text. You can then use the programmatic Editor interface to access and manipulate
the text.

For example, the following code insertsthe string " f 00" in the end of the editor pane (really in the end of the buffer):

(let ((buffer (capi:editor-pane-buffer editor-pane)))
(let ((point (editor:buffers-end buffer)))
(editor:insert-string point "foo")))

Above, poi nt isanedi t or: poi nt object.
Alternatively, editor commands can be executed by passing the name of an editor commandtocal | - edi t or.

Note that the editor objects can be accessed from any process (as opposed to the CAPI elements), because they use locks.
Programmers can use the locks to group several editor operations so that they happen "atomically”.

It is possible to specify that an edi t or - pane has an attached Echo Area which is where non-editing interactions (for
example entering a command name or filename) occur. To add an Echo Area, usethe: echo- ar ea initarg. Otherwise, a
special window pops up when such interaction needs to occur.

Thevariables*edi t or - cursor-acti ve-styl e*, *editor-cursor-col or*, *edi tor- cursor-drag-styl e* and
edi tor-cursor-inactive-styl e canbe used to control the appearance of the cursor. When adding an echo area, the

45

3 General Properties of CAPI Panes

inactive cursor style can be controlled separately by *edi t or - cur sor -i nacti ve- styl e*.

An edi t or - pane can have input callbacks (before and after) and a change callback. These are described in 3.5.3.1 Editor
pane callbacks.

On the CAPI side there are few additional functions that can be used on an edi t or - pane. These are described in 3.5.3.2
Additional editor-panefunctions.

3.5.3.1 Editor pane callbacks

You can use theinitarg : change- cal | back to specify afunction which is called whenever the editor buffer under the
edi t or - pane changes. The value change-callback can be set either by:

(make-instance 'capi:editor-pane :change-call back ...)

or:

(setf capi: editor-pane-change-cal | back)

The current value can be queried by the accessor edi t or - pane- change- cal | back.

The change-callback function must have signature:
change- cal | back pane point old-length new-length

paneisthe edi t or - pane itself.

pointisan edi t or : poi nt object where the modification to the underlying buffer starts. point is atemporary point, and is
not valid outside the scope of the change callback. For more information about edi t or : poi nt aobjects, see "Points’ in the
Editor User Guide.

old-length is the length of the affected text following point, prior to the modification.
new-length is the length of the affected text following point, after the modification has occurred.

Typical callsto the change-callback occur on insertion of text (when old-length is Q) and on deletion of text (when new-length
is0). There can be other combinations, for example, after executing the Upper case Region editor command, change-
callback be called with both old-length and new-length being the length of the region. The sameis true for changing editor
text properties.

The change-callback is always executed in the process of pane (asif by appl y- i n- pane- pr ocess).

The change-callback is permitted to modify the buffer of pane, and other editor buffers. The callback is disabled inside the
dynamic scope of the call, so there are no recursive calls to the change-callback of pane. However, changes done by the
callback may trigger change-callback calls on other edi t or - panes, whether in the same process or in another process.

There is an exampleillustrating the use of change-callback in:

(example-edit-file "capi/editor/change-call back")

You can use theinitargs: bef or e-i nput - cal | back and: af t er - i nput - cal | back to add input callbacks which are
called whencal | - edi t or iscaled. Note that the default input-model also generates callstocal | - edi t or, SO unlessyou
override the default input-model these input callbacks are called for all keyboard and mouse gestures (other than gestures that
are processed by a non-focus completer window).

In both cases (before-input-callback and after-input-callback) the argument is a function that takes two arguments: the editor
paneitself and the input gesture (the second argument to cal | - edi t or).

46

3 General Properties of CAPI Panes

cal | - edi t or may redirect gestures to another pane. For example, gestures to an edi t or - pane are redirected to the echo
areawhileit isused. In this case before-input-callback is called more than once for the same gesture, but after-input-callback
iscalled only once for each gesture, on the pane that actually processed the gesture.

3.5.3.2 Additional editor-pane functions

The contents of the buffer can be retrieved and set by the accessor edi t or - pane-t ext .

nmodi f y- edi t or - pane- buf f er can be used to change the text and the filling at the same time.

edi t or - pane- | i ne-w ap- mar ker, edi t or - pane- | i ne-w ap-f ace and
*def aul t - edi t or - pane- | i ne-wr ap- nar ker * control the appearance of the marker that indicates wrapping of lines that
are too long.

Thefunction edi t or - pane- sel ect ed- t ext returns the selected text (if any), and edi t or - pane- sel ect ed-text-p
checksif thereis a selection.

You can cal set - def aul t - edi t or - pane- bl i nk- r at e to set the default blink rate of the cursor on all editor panes. You
can specialize edi t or - pane- bl i nk- r at e to control the blink rate of specific panes, and use

edi t or - pane- nati ve- bl i nk-r at e to query the blink rate of the underlying GUI system. Note that the underlying
system will normally allow the user to change this value.

The function pri nt - edi t or - buf f er can be used to print the contents of the editor buffer.

Thefunction set - edi t or - par ent hesi s- col or s can be used to control parenthesis coloring in Lisp mode.

Editor panes support composition of characters using input methods (see composition-callback in out put - pane) by having a
default callback edi t or - pane- def aul t - conposi ti on- cal | back, which handlesit mostly right. You can specify your
own callback, which can also call edi t or - pane- def aul t - conposi ti on- cal | back to do the actual work.

The edi t or - pane is geared towards editing files, and in particular it tries to guard against loss of work by keeping backup
files and auto-save files, and asking the user before closing an unsaved buffer. When you use an edi t or - pane for other
purposes, and therefore do not need all of this functionality, you should use temporary buffers. Create atemporary buffer by
supplying theinitarg : buf f er - nane : t enp, or create your own temporary buffer explicitly by

(editor: make-buffer ... :tenporary t).

You can make an edi t or - pane be non-editable by users by supplying the initarg : enabl ed : r ead- onl y, or completely
disableit with: enabl ed ni | .
3.6 Displaying rich text

On Microsoft Windows and Cocoa, ri ch-t ext - pane alowsyou to display and edit rich text. It supports character
attributes such as font, size and color, and paragraph attributes such as alignment and tab-stops.

See this example:

(example-edit-file "capi/applications/rich-text-editor")

3.7 Hierarchy of panes

Every element that is displayed has a parent, which you can find by the el enent accessor el enent - par ent . The ultimate
ancestor isascr een, which you can find by el enent - scr een. The element isinside some window which is associated
with a CAPI interface instance (that is, an instance of subclass of i nt er f ace) which iscalled the "top level interface” and
can befound by by t op- | evel -i nt er f ace. Notethat inside MDI on Microsoft Windows the top level interfaceisthe one
inside the MDI, rather than the enclosing MDI window. You can test whether an object isatop level interface by

47

3 General Properties of CAPI Panes

top-level -interface-p. Thefunction el enent - cont ai ner returns the parent of the top level interface, that isthe
screen outside the M DI, but thedocunent - f r ane inside the MDI.

Some elements have children. You can operate on the children of an element by using map- pane- chi | dren or
map- pane- descendant - chi | dr en. These functions will work on any element, and they will do nothing for elements
without children.

The implementation of the panes you specify may internally involve generating more panes, and el enent - par ent ,

map- pane- chi | dr en and nap- pane- descendant - chi | dr en will find these. Thus when using these functions you
cannot assume that you know the hierarchy, and you need to check if the pane that you got isthe right one. For example, if
you create alayout like this:

(setqg | ayout
(make-instance 'capi:rowl ayout
:description
(list (make-instance 'capi:list-panel))))

then doing something like:

(capi : map- pane-children | ayout
(1l anbda (pane) (setf (capi:collection-itens pane) nil)

may not work, because the list panel may not be a direct child of the layout. In most casesit is best to record the actual panes
so you know where to access them (most commonly in aslot in the interface). Alternatively you can use
map- pane- descendant - chi | dr en with afunction that checks each child pane before operating on it.

Note that all these functions give useful results only for displayed elements.

3.8 Accessing pane geometry

The functions si npl e- pane- vi si bl e- hei ght, si npl e- pane- vi si bl e- wi dt h, and si npl e- pane- vi si bl e-si ze
can be used to read the visible geometry of a pane. Other geometrical properties of a pane can be accessed by
wi t h- georret r y, which binds variables to the various geometrical properties of the pane.

3.9 Special kinds of windows

3.9.1 Browser pane

On Microsoft Windows and Cocoa, br owser - pane implements embedding of a basic web browser. It allows you to display
HTML, navigate, refresh, handle errors, redirect to another URL, and so on.

3.9.2 OLE embedding and control

On Microsoft Windows ol e- cont r ol - pane implements embedding of OLE control components. You can also embed
CAPI windows inside other applicationsusing ol e- cont r ol - conponent . You define an OLE control component (an
Automation class that implements OLE Control protocols) using def i ne- ol e- cont r ol - conponent , and other (non-
LispWorks) applications can useit.

3.9.3 Cocoa views and application interfaces

On Cocoa, you can use cocoa- vi ew pane to display an arbitrary Cocoa View. You can specify the name of the Cocoa view
classto create, and afunction that is called to initialize it. The function cocoa- vi ew pane- vi ew can be used to access the

48

3 General Properties of CAPI Panes

Cocoa view after it has been created.

The classcocoa- def aul t - appl i cation-interface isaspecia classfor defining application interfaces, which gives
you control of application-wide properties which are not associated with specific windows. Thisincludesthe Application
menu and default menu bar items, Dock context menu, application message processing and display state of the whole
application.

3.9.4 Slider, Progress bar and Scroll bar

Theclassessl i der andscr ol | - bar implement panes that show the value of some quantity and allow the user to change it
interactively.

sl i der isintended to be used in general for any pseudo-continuous quantity that the user should be able to manipulate.

scrol | - bar isintended to be used for scrolling. Normally a scroll bar is specified simply by supplying the
:vertical -scroll or:horizontal -scroll initarg when making the pane that needs scrolling, but in some
circumstances an explicit scroll bar may be useful.

The class pr ogr ess- bar implements a pane that shows the value of some quantity and is used to indicate progressin
performing some task.

All of these classesinherit from r ange- pane, which defines the various values that are used and the orientation. In addition
to ther ange- pane accessors, thereis also the functionr ange- set - si zes which you can use to set several values at the
sametime.

3.9.5 Text input range

t ext - i nput - r ange isaspecia pane for entering numeric values, allowing the user to either type the number or use buttons
to adjust the value.

3.9.6 Stream panes

There are three subclasses of edi t or - pane which handle Common Lisp streams.

3.9.6.1 Collector panes

A col | ect or - pane displays anything printed to the stream associated with it. Background output windows, for instance,
are examples of collector panes.

(setqg collector
(make-instance 'coll ector-pane
:title "Exanple collector pane:"))

(contain collector)

(princ "abc" (collector-pane-streamcollector))

Thecol | ect or - pane has amechanism to temporarily make it the child of a parent swi t chabl e- | ayout , so the user can
see the output printed into it. The functions map- t ypeout and unmap- t ypeout do the switch, and the macro

wi t h-random t ypeout can be used to do both switches and to also bind a variable to the stream of thecol | ect or - pane.
This mechanism is used in the LispWorks IDE to show the output of Compile Buffer and other operations.

49

3 General Properties of CAPI Panes

3.9.6.2 Interactive panes

Aninteractive- pane isthebuilding block on which | i st ener - pane isbuilt.

(contain (nake-instance 'interactive-pane
:title "Interactive pane"))

You can simulate user input into ani nt er acti ve- pane by i nt eracti ve- pane- execut e- command.

Note: i nt er acti ve- pane is probably too difficult to use, due to the complexities involved with the interaction with the
Editor. However, for itssubclass| i st ener - pane, the system deals with all these issues.

3.9.6.3 Listener panes

Thel i st ener - pane classisasubclassof i nt er act i ve- pane, and alows you to create interactive Common Lisp
sessions. You may occasionally want to include alistener pane in atool (as, for instance, in the LispWorks IDE Debugger).

(contain (nake-instance 'listener-pane
:title "Listener"))

Thel i st ener - pane activity would normally be interacting with the user, but you can also emulate user interaction using
| i st ener-pane-insert-val ue. Notealso that sincel i st ener - pane isasubclassof edi t or - pane, you can use the
full power of the Editor on it.

3.9.7 Shell pane

non

shel | - pane isapane that runs a sub-process ("shell", "consol€") and allows the user to interact with it.

3.10 Button elements

Button classes inherit from the class but t on, which defines most of the attributes of buttons. but t on inherits from
si npl e- pane andi t em Button panels can be created, and are described in 5 Choices - paneswith items.

There are three classes of buttons:

push-button Never selected, just invokes the callback when clicked.
check-button Toggles between selected and unselected each timeit is clicked.
radi o- button When clicked is selected, and deselects all other buttons in the same panel.

A singler adi o- but t on does not really make sense and this class will normally be used only inside

r adi o- but t on- panel . check- but t on and push- but t on are used both inside check- but t on- panel or

push- but t on- panel and on their own. Note that when using a panel, you do not have to actually use but t on aobjects,
because the panel generates them automatically, and most of the functionality of but t ons can be specified in the

butt on- panel .

The text and the data that are associated with a button are defined by the the initargs and accessor inherited fromi t em
:data,:text,:print-function,itemdata,itemtext,itemprint-function. Thefunction
pri nt - capi - but t on can be used to find what string is displayed (or will be displayed) for a button.

The callbacks of but t on are inherited from cal | backs (viai t em). The: sel ecti on-cal | back (theinitarg: cal | back
can be used too) isthe main callback, and : r et r act - cal | back iscalled for deselection.

but t on has various initargs and accessors controlling which image(s) to display, whether it is selected and/or enabled, and

50

3 General Properties of CAPI Panes

whether it is a Cancel button or the default button.

3.10.1 Push buttons

The: enabl ed keyword can be used to specify whether or not the button should be selectable when it is displayed. Thiscan
be useful for disabling a button in certain situations.

The following code creates a push- but t on which cannot be selected.

(setqg offbutton (nake-instance 'push-button
:data "Button"
:enabled nil))

(contain of fbutton)

Theseset f expansions enable and disable the button:

(appl! y-i n- pane- process
of fbutton #' (setf button-enabled) t offbutton)

(appl! y-i n- pane- process
of fbutton #' (setf button-enabled) nil offbutton)

All subclasses of the but t on class can be disabled in this way.

3.10.2 Check buttons

Check buttons can be produced with the check- but t on element.

1. Enter thefollowing in a Listener:

(setqg check (nake-instance 'check-button
.sel ection-call back 'hello
:retract-call back 'test-call back
;text "Button"))

(contain check)

A check button

Noticetheuse of : ret ract - cal | back in the example above, to specify a callback when the element is desel ected.

Like push buttons, check buttons can be disabled by specifying : enabl ed ni | .

3.10.3 Radio buttons

Radio buttons can be created explicitly with ther adi o- but t on element, but they are usually part of a button panel as
described in 5 Choices - paneswith items. The: sel ect ed initarg is used to specify whether or not the button is selected,
and the: t ext initarg can be used to label the button.

(contain (nake-instance 'radio-button

51

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

3 General Properties of CAPI Panes

:text "Radio Button"
:selected t))

An explicitly created radio button

Although a single radio button is of limited use, having an explicit radio button class gives you greater flexibility, since
associated radio buttons need not be physically grouped together. Generally, the easiest way of creating a group of radio
buttons is by using a button panel, but doing so means that they will be geometrically, as well as semantically, connected.

3.10.4 Mnemonics in buttons
This section applies to Microsoft Windows and GTK+ only.
Theinitarg : menoni ¢ allows you to specify a mnemonic for a button.

Alternatively you can specify the button text and its mnemonic together with the initarg : rmenoni c- t ext , for example:

(contain
(make-instance 'radi o-button
> imenoni c- t ext
"Radi o Button with a &vhenonic"))

For all the details see but t on.

3.11 Adding atoolbar to an interface

A top level interface can have atoolbar, which istypically displayed at the top of the window and follows platform-standard
behavior. On Cocoa, thiswill be a standard foldable tool bar.

For the details see 9 Adding Toolbars.

3.12 Tooltips

A tooltip is atemporary window containing text which appears when the user positions the cursor over an element for a
period. The appearanceis dightly delayed and the text is usually short.

Tooltips are often used for brief help text and identification of GUI elements. For example the " X" button alongside the Filter
areain the Process Browser tool in the LispWorks IDE has atooltip "Clear filter". Tooltips can also be used to complete the
display of partially hidden text, for example in the Debugger tool Backtrace view where the display of long variable values
might be truncated.

You can implement tooltips for out put - panes, col | ecti ons, el enent s, nenu-i t ensandt ool bar - butt ons.

3.12.1 Tooltips for output panes

To implement tooltipsin an out put - pane, cal di spl ay-t ool ti p viaa: noti on gesture in the pane's input-model. The
tooltip text might depend on the cursor position or, in the case of api nboar d- | ayout , on the pinboard object under the
Cursor.

52

3 General Properties of CAPI Panes

See this example:

(exampl e-edit-file "capi/graphi cs/pinboard-hel p")

3.12.2 Tooltips for collections, elements and menu items

Supply the: hel p- cal | back initarginani nt er f ace, dong with asuitable : hel p- key initarg for each of its collections,
elements and menu-items that should have atooltip. help-callback should return a suitable string (which will be the tooltip
text) when passed type : t ool t i p and the help-key.

See the manual pagefor i nt er f ace for an example of atooltip on at ext - i nput - pane.

3.12.3 Tooltips for toolbar buttons

You can implement tooltips for at ool bar - but t on exactly asfor collections and so on as described in 3.12.2 Tooltips for
collections, elements and menu items. See the examplein 9.5 Specifying tooltips for toolbar buttons.

However, if your t ool bar - but t onsare grouped in at ool bar - conponent itissimpler to supply the: t ool ti ps initarg.
tooltips should be alist containing a string giving the tooltip text of each button in the component. See this example:

(exanmple-edit-file "capi/applications/sinple-synbol -browser")

3.13 Screens

A screen object (of classscr een or a subclass) represents what CAPI thinks is the screen that the user sees. In principleit
can beanono- scr een, but these daysit isalwayscol or - screen. scr een issubclass of capi - obj ect , but not

si npl e- pane.

You get a screen object by one of:

e Callingconvert -t o-screen.

» Caling el ement - scr een on adisplayed element.

e Cdlingscreens.

convert -t o- scr een can take screen specification in various forms. On X GUI systems (GTK+ and Maitif) this can be used
to select which display to use. On Microsoft Windows on any pane that is displayed inside MDI returns the MDI

docunent - cont ai ner , but otherwise there is only one screen. On Cocoathere is aways only one screen.

convert -t o-screen initiaizesthe screen if needed.

From adisplayed element you can find the screen by el enent - scr een. Note that this returns the actual screen, even for a
paneinside MDI.

The function scr eens returns alist of the currently active screens. Thislist is aways of length 1 on Cocoa and Microsoft
Windows, not including MDI.

A screen specification that convert -t 0- scr een accepts can also be used to specify the screen on which to display an
interfacein acall todi spl ay.

You can find the geometry of the screen by the readersscr een- wi dt h and scr een- hei ght , and its depth by

scr een- dept h. Some physical properties can be found by thereadersscreen-wi dth-in-millineters,

screen- hei ght-in-nillineters andthefunctionscreen-1ogical -resol ution. screen-nunber returnsthe
screen number for X11 interface (GTK+ and Matif).

53

3 General Properties of CAPI Panes

The areathat is actually used for display may be restricted by some parts of the screen being dedicated to global features, for
example menubar on Cocoa. The areathat can be used for displaying by the application is called "internal geometry”, which
can befound by scr een-i nt ernal - geonetry.

A screen may correspond to several monitors. In this case it hasa"virtual geometry”, which is arectangle containing al the
physical screens, which can be found by vi rt ual - scr een- geonet ry. The coordinates of top-level windows are with
respect to this rectangle. With multiple screens, scr een- i nt er nal - geonet ry returns the internal geometry of the first
(main) monitor. You can usescr een-i nt er nal - geonet ri es tofind theinternal geometries of all the monitors, and
screen- noni t or - geonet ri es to find all the full geometries. You can use pane- scr een-i nt er nal - geonet ry tofind
the internal geometry of the monitor on which the pane is displayed.

On the X interface the screen "dies" when the X connection gets broken for whatever reason. You can check for that by
caling scr een- act i ve- p, which returnstrue for "live" screens and false otherwise.

You can find the CAPI interfaces that are displayed on a specific screen by scr een-i nt er f aces, and the active interface
(asfar as CAPI isconcerned) by calling scr een- acti ve-i nt er f ace. Notethat this interface may be obscured by
windows of another application.

On Microsoft Windows using MDI, the CAPI interface are children of adocunent - cont ai ner, which isa"screen-like"
object. In particular, it can be used as the screen argument of di spl ay, theinternal geometry functions return the correct
values, and scr een-i nt er f aces returns the interfaces.

4 General Considerations

This chapter describes general issues relating to the use of CAPI. Subsequent chapters address issues specific to the host
window system, and then the use of particular CAPI elements.

4.1 The correct thread for CAPI operations

All operations on displayed CAPI elements need to be in the thread (that is, the np: pr ocess) that runstheir interface. On
some platforms, di spl ay and cont ai n make anew thread. On Cocoa, al interfaces run in asingle thread.

Specifying an owner (using the keyword : owner) inadiaog, for example by caling di spl ay- di al og or
popup- confi rner, isalso "an operation" on the owner. See 10.4 Dialog Owner s for discussion of dialog owners.

In most cases this issue does not arise, because CAPI callbacks are run in the correct thread. However, if your code needs to
communicate with a CAPI window from a random thread, it should useexecut e-wi t h-i nt erf ace,
execute-with-interface-if-alive, appl y-i n-pane-process orappl y-i n- pane-process-if-alivetosend
the function to the correct thread.

Thisiswhy the brief interactive examplesin this manual generally use execut e-wi t h-i nterface or

app! y-i n- pane- pr ocess when modifying a displayed CAPI element. In contrast, the demo example in 11.4 Connecting
an interface to an application is modified only by callbacks which run in the demo interface's own thread, and so thereis no
need to useexecut e-wi t h-i nterface or appl y-i n- pane- pr ocess.

Threads started by CAPI process events in the "standard" way, that isthey call np: gener al - handl e- event on objects that
are sent to them by np: pr ocess- send. In particular, if you want to "schedule" an event to happen in the current after the
current callback returns, you can use np: cur r ent - pr ocess- send. For example, if the display-callback of an

out put - pane sometimes needs to start another interface, it would be abad idea to do this inside the display-callback, so
instead of:

(capi : di spl ay new-interface)
yOu can use:
(mp: current-process-send " (capi: display , newinterface))

which will cause it to happen later.

On systems other than Cocoa, when you run something that is lengthy inside a CAPI process, you can process eventsin a
similar way to the way CAPI processes them by calling pr ocess- pendi ng- nessages, which processes all pending events
and returns. However that may not always work well, because the processing of the event can do arbitrary things, so you
should always consider running the lengthy computation in another process.

If your code needs to cause visible updates whilst continuing to do further computation, see 7.5.1 Updating windowsin real
time.

55

4 General Considerations

4.2 Redisplay

The setting of any CAPI property that should affect the display causes CAPI to redisplay the relevant elements. However,
when what is displayed depends on a state which is not a CAPI state, and this state changes, you may need to cause CAPI to

redisplay.

For example, you may have al i st - panel where the items are some objects, and the print-function generates a string for
each object, based on some property of the object (typically aslot value). If that property changes then the display also needs
to change, but there is no way for CAPI to know that so you need to tell CAPI explicitly.

A simpleway to achieve thisisto set a CAPI state which will cause redisplay. For example, doing:

(setf (capi:collection-itens my-pane) (capi:collection-itens my-pane))

leaves my-pane's items unchanged, but because the valueis set CAPI redisplays all of the items. This approach, however, is
both computationally expensive when done often with large number of items, and causes flickering on screen that can be
avoided.

Instead you can use one of the following functions.

» To update specificitemsinachoi ce, user edi spl ay-col |l ection-item

 To update menus and buttonsin awindow, user edi spl ay-i nterf ace.

» To update part of api nboar d-| ayout , user edr aw pi nboar d- | ayout .

To update specific pinboard objects, user edr aw pi nboar d- obj ect .

* Inatree-vi ew, youcanasousetree-vi ew updat e- i t emin cases when the update involves moving the child in its
parent or completely removing the child.

4.2.1 Atomic redisplay

Often you need severa distinct updates to the display to appear simultaneously. For example when you set the text in several
elements at the same time, or you set the text of an element and then also set the background. To ensure that multiple updates
appear together, wrap the macrowi t h- at oni c-r edi spl ay around the updates.

4.3 Support for multiple monitors

CAPI supports positioning (and querying the position of) windows on multiple monitors.

The function scr een- noni t or - geonet ri es supports the notion of monitor geometry. The monitor geometry includes
"system” areas such as the macOS menu bar and the Microsoft Windows task bar.

Thefunctionsscr een-i nt er nal - geonet ri es and pane- scr een-i nt er nal - geonet r y support the notion of internal
geometry. Theinternal geometry excludes the system areas.

Thereisa"primary monitor" which displays any system areas. The origin of the coordinate system (as returned by
top-level -interface-geonetry andscreen-internal - geonet ry) isthe topmost/leftmost visible pixel of the
primary monitor. Thus the origin may be in a system area such as the macOS menu bar.

Thefunctionvi rt ual - scr een- geonet r y returns arectangle just covering the full area of all the monitors associated with
ascreen.

Note that code which relies on the position of awindow should not assume that awindow is located where it has just been
programmatically displayed, but should query the current position. Thisis because the geometry includes system areas where
CAPI windows cannot be displayed. For more information about this see 7.2 Resizing and positioning.

56

4 General Considerations

Note also that CAPI does not currently support multiple desktops, which are called workspaces in Linux distros, and called
Spaces on macOS.

57

5 Choices - panes with items

Some elements of awindow interface contain collections of items, for example rows of buttons, lists of filenames, and groups
of menu items. Such elements are known in the CAPI as collections.

In most collections, items may be selected by the user — for example, arow of buttons. Collections whaose items can be
selected are known as choices. Each button in arow of buttonsis either checked or unchecked, showing something about the
application's state — perhaps that color graphics are switched on and sound is switched off. This selection state came about
as the result of a choice the user made when running the application, or default choices made by the application itsalf.

The CAPI provides a convenient way of producing groups of items from which collections and choices can be made. The
abstract classcol | ect i on provides ameans of specifying agroup of items. The subclass choi ce provides groups of
selectable items, where you may specify what initial state they are in, and what happens when the selection is changed.
Subclasses of col | ecti on and choi ce used for producing particular kinds of grouped elements are described in the
sections that follow.

All the choices described in this chapter can be given a print function viathe: pri nt - f uncti on keyword. Thisalowsyou
to control the way in which itemsin the element are displayed. For example, passing the argument

"string-capitalize to:print-function would capitalizetheinitia letters of all the words of text that an instance of
achoice displays. Thedefaultisprinc-to-string.

Collections and choices inherit from the abstract class cal | backs, which defines callbacks that are called in response to user
gestures.

Some of the examplesin this chapter require the callback function t est - cal | back and hel | o which were introduced in 3
General Properties of CAPI Panes.

5.1 Items

choi cesin general can take arbitrary Lisp objects as the items, and then the behavior of the items (how they are displayed,
callbacks) is determined by the properties of the choi ce. It ispossibleto giveindividua propertiesto individual items by
using objects of classi t em which encapsulates the properties of aniteminachoi ce. Theitemsof achoi ce canbea
mixture of arbitrary objects and i t eminstances.

i t emhas several subclasses which are intended for specific choi ce subclasses, and these are documented in the entries for
the specific choi ces. The predicatei t enp determines whether its argument is an instance of i t em

5.2 Button panel classes

This section discusses the immediate subclasses of choi ce which can be used to build button panels. If you have a group of
several buttons, you can use the appropriate but t on- panel element to specify them all as agroup, rather than using

push- but t on or check- but t on to specify each one separately. There are three such elements atogether:

push- but t on- panel , check- but t on- panel andr adi o- but t on- panel . The specifics of each are discussed below.

5.2.1 Push button panels

The arrangement of a number of push buttons into one group can be done with apush- but t on- panel . Sincethis provides
apanel of buttons which do not maintain a selection when the user clicks on them, push- but t on- panel isachoi ce that
does not allow a selection. When a button is activated it causesa: sel ecti on-cal | back, but the button does not maintain

58

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm

5 Choices - panes with items

the selected state.

Here is an example of a push button panel:

(set g push-button-panel
(make-instance ' push-button-pane
citems '(one two three four five)
:sel ection-call back 'test-call back
cprint-function 'string-capitalize))

(contain push-button-panel)

A push button panel

“w Container
Works

One | Two || Three || Four || Flve |

The layout of a button panel (for instance, whether items are listed vertically or horizontally) can be specified using the

: 1 ayout - cl ass keyword. This can take two values: ' col umm- | ayout if you wish buttonsto be listed vertically, and
"row | ayout if you wish them to be listed horizontally. The default valueis' r ow | ayout . If you define your own layout
classes, you can also usethese asvaluesto : | ayout - ¢l ass. Layouts, which apply to many other CAPI objects, are
discussed in detail in 6 Laying Out CAPI Panes.

5.2.2 Radio button panels

A group of radio buttons (a group of buttons of which only one at atime can be selected) is created with the
r adi o- but t on- panel class. Hereis an example of aradio button panel:

(setqg radi o (nake-instance 'radio-button-pane
citenms (list 1 2 3 45)
:sel ection-call back 'test-callback))

(contain radi o)

A radio button panel

“w Container E||E|E|

@i 02 O3 O4 OS5

5.2.3 Check button panels

A group of check buttons can be created with the check- but t on- panel class. Any number of check buttons can be
selected.

Here is an example of a check button panel:

(contain
(make-i nstance
' check- but t on- panel
citens ' ("Red" "Green" "Blue")))

59

5 Choices - panes with items

A check button panel

“w Contai... E|§|EI

[|iHed [|Green [|Ele

5.2.4 Mnemonics in button panels

On Windows and GTK+ you can specify the mnemonics (underlined letters) in a button panel with the : menoni c¢s initarg,
for example:

(contain

(make-instance ' push-button-pane
itenms ' (one two three many)
:menonics ' (#\O A\ T #\E : none)
sprint-function 'string-capitalize))

Notice that the value : none removes the mnemonic.

5.2.5 Programming button panels

The panels inherit the callbacks functionality from cal | backs, most importantly the selection-callback and retract-callback,
which are used as the default callbacks for the buttons.

The items functionality of button panel isinherited from col | ecti on. Typicaly you just usetheinitarg : i t ens to specify
the items, but in principle you can set the items dynamically. The other important functionality fromcol | ecti on isthe
print-function to define the strings that are displayed in the buttons.

Accessing the state of the buttonsin check- but t on- panel andr adi o- but t on- panel isdone by the selection
functionality that is defined on choi ce. For example, making acheck- but t on- panel with four buttons and the last is
selected, and after two seconds selecting the first and the third:

(progn
(setqg chp
(capi:contain
(make-i nstance ' capi: check-button-pane
citens ' (1 2 3 4)
:selected-item4)))
(sleep 2)
(capi : appl y-i n- pane- process
cbp
#' (l ambda ()
(setf (capi:choice-selected-itens chp)

"(1.3)))))

All the button panel classes inherit from but t on- panel , which defines al the functionality of button panels. Thisincludesa
mechanism for specifying the layout of the buttons, images for the buttons, mnemonics, and also default and Cancel button.
It dlso hasaninitarg : cal | backs to define an individual selection callback for each item.

The function set - but t on- panel - enabl ed-i t ens isused dynamically to enable/disable individual itemsin a panel.

For more control over individual buttons, some (or al) of the itemsin a panel may be buttons themselves (that is, instances of
asubclass of but t on). The behavior on anitem that is actually a button is controlled by accessing the button.

60

5 Choices - panes with items

5.3 List panels

Lists of selectable items can be created with thel i st - panel class. Hereisasimple example of alist panel:

(setq Iist
(make-instance 'list-panel
citems '(one two three four)
:visible-mn-height '(character 2)
cprint-function 'string-capitalize))

(contain list)

A list panel

% Container E' [El ['S__cl

Notice how the itemsin the list panel are passed as symbols, and a print-function is specified which controls how those items
are displayed on the screen.

Any item on the list can be selected by clicking on it with the mouse.

By default, list panels are single selection — that is, only oneitem in the list may be selected at once. You can use the
i nteracti on keyword to change this:

(setqg list-panel
(make-instance 'list-panel
citems (list "One" "Two" "Three" "Four")

cinteraction :nultiple-selection))

(contain |ist-panel)
You can add callbacks to any itemsin the list using the : sel ect i on- cal | back keyword.

(setq list-panel
(make-instance 'list-panel
items (list "One" "Two" "Three" "Four")
:sel ection-call back 'test-callback))

(contain |ist-panel)

5.3.1 List interaction

If you select different itemsin the list, only the last item you select remains highlighted. The way in which theitemsin alist
panel interact upon selection can be controlled with the : i nt er act i on keyword.

61

5 Choices - panes with items

The list produced in the example above is known as a single-selection list because only one item at atime may be selected.
List panels are single-selection by default.

There are also multiple-selection and extended-sel ection lists available. The possible interactions for list panels are:
* :singl e-sel ecti on — only oneitem may be selected.
e :mul tipl e-sel ecti on — morethan one item may be selected.

e :extended-sel ecti on — see5.3.2 Extended selection.

To get a particular interaction, supply one of the values aboveto the: i nt er act i on keyword, like this:

(contain

(make-instance
"list-panel
citens ' ("Red" "Green" "Blue")
sinteraction :nultiple-selection))

Note that : no- sel ect i on isnot asupported choice for list panels. To display alist of items with no selection possible you
should use adi spl ay- pane.

5.3.2 Extended selection

Application users often want to make single and multiple selections from alist. Some of the time they want a new selection
to deselect the previous one, so that only one selection remains— just like a: si ngl e- sel ecti on panel. On other
occasions, they want new selections to be added to the previous ones— just likea: mul ti pl e- sel ecti on pandl.

The: ext ended- sel ect i on interaction combines these two interactions. Here is an extended-selection list panel:

(contain

(make-i nstance
"list-panel
citens ' ("Itemt "Thing" "Object")
sinteraction :extended-sel ection))

Before continuing, here are the definitions of afew terms. The action you perform to select asingle item is called the
selection gesture. The action performed to select additional itemsis called the extension gesture. There are two extension
gestures. To add a single item to the selection, the extension gesture isaclick of the left button while holding down the
Cont r ol key. For selecting arange of items, it isaclick of the left button while holding down the Shi ft key.

5.3.3 Deselection, retraction, and actions

Aswell as selecting items, users often want to deselect them. Items in multiple-selection and extended-selection lists may be
desel ected.

In amultiple-selection list, deselection is done by clicking on the selected item again with either of the selection or extension
gestures.

In an extended-selection list, deselection is done by performing the extension gesture upon the selected item. (If thiswas
done using the selection gesture, the list would behave as asingle-selection list and all other selections would be lost.)

Just like a selection, a deselection — or retraction — can have a callback associated with it.
For amultiple-selection list panel, there may be the following callbacks:

e :sel ection-call back — caled when aselection is made.

62

5 Choices - panes with items

e :retract-cal | back — called when a selection is retracted.

Consider the following example. The function set - ti t | e changes thetitle of the interface to the value of the argument
passed to it. By using this asthe callback to the check- but t on- panel , thetitle of theinterface is set to the current
selection. The retract-callback function displays a message dialog with the name of the button retracted.

1. Display the example window:

(defun set-title (data interface)
(setf (interface-title interface)
(format nil "~A" (string-capitalize data))))

(setqg check-button- panel
(make-instance ' check-button-panel
items ' (one two three four five)
cprint-function 'string-capitalize
:sel ection-cal | back 'set-title
:retract-cal |l back 'test-call back))

(contai n check-button-panel)

The example check button panel before the callback.

“w Container

[Jidng [|Two [| Three [|Four []Five

2. Try selecting one of the check buttons. The window title will change:

The example check button panel after the callback.

Works

3. Now de-select the button. Notice that the retract-callback is called.
For an extended-selection list panel, there may be the following callbacks:

» :sel ection-cal | back — caled when a selection is made.

* :retract-cal | back — caled when a selection is retracted.

» : ext end-cal | back — called when a selection is extended.

Also available in extended-selection and single-selection lists is the action callback. Thisis called when you double-click on
an item.

e :action-cal | back — called when a double-click occurs.

5.3.4 Selections in a list

List panels— all choices, in fact — can have selections, and you can set them from within Lisp. You can specify default
settings and arrange for side-effects when a user selection is made. For the details see 5.10.2 Selections ..

63

5 Choices - panes with items

5.3.5 Images and appearance

A list panel can include images displayed on the left of each item. To include images supply theinitarg : i mage- f uncti on.
You can useimagesfrom ani mage- | i st viatheinitarg: i mage-1|i sts.

Additionally, state images are supported on Microsoft Windows, GTK+ and Matif, viatheinitarg
:state-image-functionand, if required, : i mage-1i sts.

A list panel can have an alternating background color on Cocoa and GTK+, when specified by theinitarg
:al ternati ng-background.

5.3.6 Filters
You can add afiltertoal i st - panel by passingthe: filter initarg.
List panel filters are used in the LispWorks IDE, for example in the Inspector tool.

When al i st - panel hasafilter, you can the state of thefilter by using | i st - panel -fi |l t er - st at e. The accessor

col l ection-itens onali st-panel withafilter returnsthe items after filtering. The function

li st-panel -unfiltered-itens canbeusedtoretrieveall theitems. (setf col |l ection-itens) resetsthefilter, and
(setf list-panel-unfiltered-itens) canbe used to set theitemswithout affecting the filter. The function

li st-panel-itens-and-filter canbe usedto get or set the unfiltered items and filter state together.

(setf list-panel-itenms-and-filter) isespecialy useful, because setting the items and the filters separately causes

thel i st - panel to redisplay twice.

5.3.7 Multi-column list panels

mul ti-colum-1ist-panel isasubclassof | i st-panel which hassevera columns. Eachlineina

mul ti-col um-1i st -panel displays severa strings corresponding to asingleitem. nul ti - col um- i st - panel takes
aninitarg:itemprint-functi ons which specifies how to generate the strings. Theinitarg : col urms specifies column
properties including width, alignment, and title.

The columns can have headers, which can be active (that is, they have callbacks). In particular, the headers can be made to
sort the items based on some key and comparison function, by supplying the header's selection-callback as: sort and
defining sort-descriptions (inherited from sor t ed- obj ect vial i st - panel) with types that match the titles of the
columns.

For an example see:

(exanple-edit-file "capi/choice/multi-colum-Iist-panels")

5.3.8 Double list panel

doubl e-1i st - panel isachoi ce that displaystheitemsintwo i st - panel sside-by-side, and allows the user to move
items between them. It isnot asubclassof | i st - panel .

The selection interface functions (choi ce- sel ect ed-i t ens, thechoi ce accessorchoi ce- sel ecti on, and so on) treat
the itemsin one sub-panel as the selected items and the itemsin the other sub-panel as the non-selected items.

doubl e-1i st - panel takes more space, but isvery convenient for the user when she needs to add or remove items from the
selection, especially when there are many items.

5 Choices - panes with items

5.3.9 Searching by keyboard input

| i st-panel hasaninitarg: keyboar d- sear ch- cal | back which allowsyou to define searchesinthel i st - panel in
response to user input. Thefunction | i st - panel - sear ch-wi t h-f uncti on isintended to simplify writing the callback.

The default search uses atimeout to decide whether to:
* add an input character to the previousinput to create the string to search, or:
« search for the character.

Thistimeout can be set by set - 1 i st - panel - keyboar d- search-reset -ti ne.

The keyboard-search-callback can actually be used to perform other tasks in response to user keyboard input.

For an example see:

(exanple-edit-file "capi/choice/list-panel -keyboard-search")

5.4 Trees

tree- vi ewisapanethat displays ahierarchical list of items. Each item may optionally have an image and a checkbox.

Callbacks can be specified as for other choice classes. Additionally you can control how the nodes of the tree are expanded,
and there is del ete-item-callback available for use when the user presses the Delete key.

Treeviews are used in the LispWorks IDE, for example in the Output Data view of the Tracer tool and the Backtrace area of
the Debugger and Stepper tools.

5.4.1 Tree interaction

t r ee- vi ewsupportsonly the: si ngl e- sel ect i on interaction but you can have : ext ended- sel ect i on functionality by
using the subclass ext ended- sel ecti on-tree-vi ew.

5.4.2 Images and appearance

t r ee- vi ewcan include images displayed on the left of each item. To include images supply theinitarg : i mage- f uncti on.
You can useimagesfrom ani mage- | i st viatheinitarg: i mage-1|i sts.

Additionally, state images are supported on Microsoft Windows, GTK+ and Matif, viatheinitarg
:state-image-functionand, if required, : i mage-1i sts.

A tree view can have an alternating background color on Cocoa and GTK+, when specified by theinitarg
:al ternati ng-background.

5.5 Stacked trees

st acked- t r ee isapanethat displays atree of itemsin a"stacked" drawing, where each item has an associated value and
child items that represent afraction of that value. Each item is displayed as a colored rectangle whose width corresponds to
the value. Child items are displayed below the item to make a stack of rectangles.

The Stacked Tree tab of the Profiler tool in the LispWorks IDE is a situation where a stacked treeis useful.

For an example see:

65

5 Choices - panes with items

(exanpl e-edit-file "capi/choicel/stacked-tree")

5.6 Graph panes

Another kind of choiceisthe gr aph- pane. Thisisaspecial pane that can draw graphs, whose nodes and edges can be
selected, and for which callbacks can be specified, as usual.

While gr aph- pane isasubclass of choi ce and hencecol | ect i on, the concept of collection itemsis not applicableto a
graph. Instead, theitemsin agr aph- pane are constructed from alist of "roots" (arbitrary objects) which are specified by the
initarg : r oot s and can be accessed later by gr aph- pane-r oot s, and a children-function. The roots define the initial

nodes, and when the user expands a node, the children-function is called to compute the children, whichisalist of more
items, which specify the children nodes of the expanded node. Thus the actual itemsin the graph are changed as nodes are
expanded or collapsed.

The concepts of selection, that is the functionschoi ce- sel ect ed- i t ens and so on, are applicable to gr aph- pane.

Here is asimple example of a graph pane. It draws a small rooted tree:

(contain

(make-instance

' gr aph- pane

:roots ' (1)

:children-function

#' (1l ambda (x)

(when (< x 8)
(Fist (* 2x) (1+ (* 2 x)))))))

A graph pane

" Container

The graph paneis supplied with a: chi | dr en- f uncti on which it usesto calculate the children of the root node, and from
those children it continues to calculate more children until the termination condition is reached. For more details of this, see

the manual page for gr aph- pane.

gr aph- pane provides a gesture which expands or collapses a node, depending on its current state. Click on the circle
aongside the node to expand or collapse it.

You can associate selection, retraction, extension, and action callbacks with any or all elements of agraph. Hereisasimple
graph pane that has an action callback on its nodes.

66

5 Choices - panes with items

First we need a pane which will display the callback messages. Executing the following form to create this pane:

(defvar *the-collector*
(contain (nake-instance 'collector-pane)))

Then, define the following four callback functions:

(defun test-action-callback (& est args)
(format (collector-pane-stream
the-col l ector) "Action"))

(defun test-sel ection-callback (& est args)
(format (collector-pane-stream *the-coll ector¥*)
"Sel ection"))

(defun test-extend-call back (& est args)
(format (collector-pane-stream *the-coll ector¥*)
"Extend"))

(defun test-retract-call back (& est args)
(format (collector-pane-stream *the-col | ector¥*)
"Retract"))

Now create an extended selection graph pane which uses each of these callbacks, the callback used depending on the action
taken:

(contain
(make-instance
' gr aph- pane
interaction :extended-sel ection
:roots ' (1)
:children-function
(1l anbda (x)
(when (< x 8)

(list (* 2x) (1+ (* 2 x)))))
;action-call back 'test-action-call back
:sel ection-call back 'test-sel ection-call back
:extend-cal | back 'test-extend-call back
:retract-call back 'test-retract-call back))

The selection callback function is called whenever any node in the graph is selected.

The extension callback function is called when the selection is extended by middle clicking on another node (thus selecting it
too).

The retract callback function is called whenever an already selected node is desel ected.

The action callback function is called whenever an action is performed on anode (that is, whenever it gets a double-click, or
Ret ur n is pressed while the node is sel ected).

5.6.1 Changing the graphics in the graph

gr aph- pane isactually asubclass of pi nboar d- | ayout , and displays the graph using elements (normally

pi nboar d- obj ect , but can also be si npl e- pane). You can specify the class of these elements, as well as afunction to
actually create the object for each node. This alows you to modify the appearance of the graph without affecting or accessing
the topol ogy of the graph.

You can aso access the element that displaysagr aph- obj ect by the reader gr aph- obj ect - el enent , and manipulate it
directly. Seefor example:

67

5 Choices - panes with items

(exanpl e-edit-file "capi/graphics/graph-col or-edges.|isp")

5.6.2 Controlling the layout

The roots of the graph are placed at one side of the panes and the graph grows into the pane. The side on which the roots are
placed is defined by the layout-function and accessor gr aph- pane- | ayout - f unct i on, which takes one of the keyword
values: l eft-right,:top-down, :right-left and: bottom up, wherethefirst word in akeyword is the side where
the roots are placed. There isalso an accessor gr aph- pane-di r ecti on, whichmaps: f or war d to/from: [ef t - ri ght
and:left-right,andmaps: backward to/from:right-1eft and: bot t om up, which makesit easier to set the
direction without changing the vertical/horizontal dimension.

5.6.3 Accessing the topology of the graph

The topology of the graph is represented by gr aph- node objects and gr aph- edge objects. Thelist of gr aph- nodesand
gr aph- edges of the gr aph- pane can be found by gr aph- pane- edges and gr aph- pane- nodes. Note, however, that
these are subject to change as the user interacts with the graph.

You can find the node associated with an item (if any) by using f i nd- gr aph- node. You can find the children of a supplied
node by gr aph- node- chi | dr en. You can find the edges from the node (that is, to its children) by the reader

gr aph- node- out - edges, and edgesin by gr aph- node- i n- edges. You can also search for an edge between a parent and
child by f i nd- gr aph- edge. From agr aph- edge, you can find the the parent and child that are connected by it by the
accessors gr aph- edge- f romand gr aph- edge- t o respectively. It ispossible to select specific nodes by

gr aph- pane- sel ect - gr aph- nodes, which takes a predicate that is applied to all the nodes.

You can find the geometry of anode, that isthe part of the pane occupied by the element that is associated with the node, by
thegr aph- node readers gr aph- node- x, gr aph- node-y, gr aph- node- hei ght and gr aph- node- wi dt h. You can find
whether a point in the pane is within the area of a graph object, either agr aph- node or gr aph- edge, by using

gr aph- pane- obj ect - at - posi ti on.

It is possible to modify the graph explicitly by gr aph- pane- del et e- obj ect, gr aph- pane- del et e- obj ect s,
gr aph- pane- del et e- sel ect ed- obj ect s and gr aph- pane- add- gr aph- node. However, that will be overridden next
time the gr aph- pane computes the layouit.

The user can interactively move nodes (and hence also edges) in the graph. If you need to know when that happens, you
make a subclass of gr aph- pane, and then specialize gr aph- pane- updat e- noved- obj ect s oniit.

gr aph- node and gr aph- edge are both subclasses of gr aph- obj ect, and inherit from it the readers
gr aph- obj ect - obj ect , which returns the graph item associated with the gr aph- obj ect , and
gr aph- obj ect - el enent , which returns the element that displaysit (normally pi nboar d- obj ect , but can also be

si npl e- pane).

5.7 Option panes

Option panes, created with the opt i on- pane class, display the current selection from asingle-selection list. When the user
clicks on the option pane, the list appears and the user can make ancther selection from it. Once the selectionis made, it is
displayed in the option pane. In contrast tot ext - i nput - choi ce, the user cannot edit the selection.

The appearance of the opt i on- pane list varies between platforms: adrop-down list box on Microsoft Windows; a combo
box on GTK+ or Motif, and a popup list on Cocoa.

Here is an example option pane, which shows the choice of one of five numbers. Theinitial selection is controlled with
:selected-item

(contain
(make-instance

68

5 Choices - panes with items

' opti on- pane

citens '(1 2 3 4 5)
:selected-item 3
:title "One of Five:"))

An option pane

“w Container

5.7.1 Option panes with images

You can add images to option pane items. Supply the: i nage- f unct i on initarg when creating the opt i on- pane, as
illustrated in:

(example-edit-file "capi/choice/option-pane-wth-inmges")

5.8 Text input choice

Thet ext - i nput - choi ce classallows arbitrary text input augmented with a choice like an opt i on- pane. The user can
edit the text after selecting it from thelist.

See this example:

(example-edit-file "capi/el enents/text-input-choice")

5.9 Menu components

Menus (covered in 8 Creating M enus) can have components that are also choices. These components are groups of items
that have an interaction upon selection just like other choices. The: i nt er act i on keyword is used to associate radio or
check buttons with the group — with the values: si ngl e- sel ecti on and: nul ti pl e- sel ect i on respectively. By
default, amenu component has an interaction of : no- sel ecti on.

See 8.3 Grouping menu itemstogether for more details.

5.10 General properties of choices

This section summarizes the general properties of choices.

5.10.1 Interaction

All choices have an interaction style, controlled by the: i nt er acti on initarg. Ther adi o- but t on- panel and
check- but t on- panel aresimply but t on- panel swith their interactions set appropriately. The possible values for
interaction are listed below.

:single-selection Onlyoneitem may be selected at atime: selecting an item deselects any other selected item.

:mul tiple-selection

69

5 Choices - panes with items

A multiple selection choice allows the user to select as many items as she wants. A selected item
may be deselected by clicking on it again.

. ext ended- sel ecti on

An extended selection choice is a combination of the previous two: only one item may be
selected, but the selection may be extended to more than one item.

:no-sel ection Forces no interaction. Note that this option is not available for list panels. To display alist of
items with no selection you should use a display pane instead.

Specifying an interaction style that isinvalid for a particular choice causes an error.

The accessor choi ce-i nt er acti on isprovided for accessing the interaction of achoi ce.

5.10.2 Selections

All choices have aselection. Thisis a state representing the items currently selected. The selection is represented as alist of
indexesinto the list of the choice'sitems, unlessit is a single-selection choice, in which caseit isjust represented as an index.
The indexes in the selection can be used to access the actual itemsusing get - col | ecti on-item

Theinitial selection is controlled with theinitarg : sel ecti on. Thechoi ce accessor choi ce- sel ecti on isprovided, and
youcanasouse(setf choice-sel ection).

Generally, it iseasier to refer to the selection in terms of the items selected, rather than by indexes, so the CAPI provides the
notion of a selected item and the selected items. The first of these is the selected item in asingle-selection choice. The second
isalist of the selected itemsin any choice.

The accessorschoi ce- sel ect ed-i t emand choi ce- sel ect ed-i t ens provide access to these conceptual slots, and you
can also supply the values at make- i nst ance timeviatheinitargs: sel ect ed-i temand: sel ect ed-i t ens.

5.10.3 Callbacks in choices

All choices can have callbacks associated with them. Callbacks are invoked both by mouse button presses and keyboard
gestures that change the selection or are "Action Gestures' such as Ret ur n. Different sorts of gesture can have different sorts
of callback associated with them.

Thefollowing callbacks are available: : sel ecti on-cal | back, : retract-cal | back (called when adeselection is
made), : ext end- cal | back, : acti on-cal | back (called when a double-click occurs) and

;al ternative-action-cal | back (called when amodified double-click occurs). What makes one choice different from
another is that they permit different combinations of these callbacks. Thisis aconsegquence of the differing interactions. For
example, you cannot have an : ext end- cal | back in aradio button panel, because you cannot extend selection in one.

Callbacks pass data to the function they call. There are default arguments for each type of callback. Using the

: cal | back-t ype keyword allows you to change these defaults. Example values of callback-type are: i nt er f ace (which
causes the interface to be passed as an argument to the callback function), : dat a (the value of the selected data is passed),

: el ement (the element containing the callback is passed) and : none (no arguments are passed). Also thereisavariety of
composite: cal | back-t ype values, such as: dat a-i nt er f ace (which causes two arguments, the data and the interface,
to be passed). For acomplete description of : cal | back-t ype values, seethe manual page for cal | backs.

The following example uses a push button and a callback function to display the argumentsiit receives.

(defun show cal | back-args (argl arg2)
(di spl ay-nessage "The arguments were ~S and ~S" argl arg2))

(setqg exanpl e-button

70

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

5 Choices - panes with items

(make-instance ' push-button
;text "Push Me"
. cal I back ' show-cal |l back-args
:data "Here is sone data"
:cal | back-type :data-interface))

(contai n exanpl e- button)

Try changing the: cal | back-t ype to other values.

If you do not usethe: cal | back-t ype argument and you do not know what the default is, you can define your callback
function with lambdalist (& est ar gs) to account for al the arguments that might be passed.

Specifying a callback that isinvalid for a particular choice causes an error.

5.10.4 image-list, image-set and image-locator

Choices that need images for displaying items generally have an slot image-function which holds a function that returns the
image to use for an item. The return value ultimately needsto evaluate to an i mage to display, but there are various ways to
specify it. Theseinclude all the specifications that | oad- i nage understands. In addition, they can aso be an integer which
isanindex intoani nage-|i st orani nage-| ocat or .

Tousei mage-1i st inachoi ce you need to specify thei mage- | i st by the appropriate initarg, for example
:image-lists fortree-vi ew. Seetheentry for each specific class. Oncethechoi ce hasi mage- | i st s, the image-
function can return an index into the relevant list.

Animage- | i st isan object that specifies an ordered set of images with a common width and common height. Theimages
inthei mage- 1 i st canbei mage objects, image identifiers (pathname or symbol, which are automatically loaded by

| oad- i mage), or i mage- set objects. You need to supply these objects when you make thei mage- | i st by

cl : make-i nst ance.

Ani mage- | i st object can be used repeatedly in several panes. It isuseful because it simplifies the handling of the images.

Example:
(exanple-edit-file "capi/choicel/tree-view')

Ani mage- set represents agroup of images of the same size that are derived from a single object. For example, six images
of 16x16 pixels each can be derived from a single image of 16x96 pixels. Thisis an example of the "general” i mage- set
which is created by make- gener al - i mage- set . In addition, you can create a scaled image set by either

make- scal ed- gener al -i nage- set or make- scal ed-i nage- set . On Microsoft Windows, you can also create

i mage- set sfrom resourcesin aDLL, either abitmap resource by neke- r esour ce- i mage- set, or icon resource by
nmake-i con-resource-i mage- set.

i mage- set sare useful because it is often convenient to hold a group of images as a combined larger image, which reduces
the number of objects that needed to be dealt with. i mage- set sareused insidei mage- | i st S, and sometimes can be used
directly, for exampleint ool bar . i mage- set canasobeusedini mage- | ocators.

Examples:

(exanple-edit-file "capi/choicel/tree-view')
(exanple-edit-file "capi/el ements/tool bar")

(exampl e-edit-file "capi/choice/multi-colum-I|ist-panels")

71

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

5 Choices - panes with items

Ani mage- | ocat or specifiesoneimage out of ani mage- set, and it is created by make- i mage- | ocat or . It can be used
instead of an image in various places, most usefully as aresult of the various image-functions.

Example:
(exanple-edit-file "capi/choice/multi-colum-Iist-panels")

For choi cesliketree- vi ewor | i st - panel , you can include a sub-set from ani mage- set either by using image
locators, or by including thei nage- set inani mage- | i st and usethei mage-|i st inthechoi ce. Thelatter techniqueis
normally more convenient when all thei nage- set isused, but in other situationsusing i mage- | ocat or smay be more
convenient.

5.11 Operations on collections (choices) and their items

This section describes how you can access the items of a collection. In practice you will perform these operations on
instances of subclasses of choi ce.

5.11.1 Accessing items

Given acollection and an index, you can retrieve the actual itemsin the collection by get - col | ecti on-i t em Find the
number of itemsin acollection at any point by count - col | ecti on-itens. map-col | ecti on-itens can be used to map
afunction over the collection items. pri nt - col | ecti on-i t emcan be used to "print" an item, that is generate the same
string that will be displayed for thisitem. Thecol | ecti on accessor col | ecti on-i t ens returnsalist of theitemsin the
collection, and can be used with set f to set theitems.

5.11.2 Efficient manipulation of collection items

It is always possible to modify all the items of a collection by using set f withcol | ecti on-it ens onit. However that can
be expensive when called often with large numbers of items, and can cause flickering on screen. For typical choices (when
items-get-function issvr ef), it is possible to modify the items of the choice more efficiently by using one of

repl ace-itens, renove-itens or append-itens.

Note: gr aph- pane andt r ee- vi ewarenot "typical" (their items-get-function is not svr ef) and therefore these functions
cannot be used on these panes.

5.11.3 Searching in a collection

The function sear ch-f or - i t emcan be used to find an item in a collection.

find-string-in-collection canbeusedtofind astring in the printed items (that is, in the result of calling the print
function). Thereisalsocol | ecti on-fi nd- st ri ng which prompts the user for the string and then searches, and

col | ecti on-fi nd- next - st ri ng to continue the search from the previous match. col | ecti on- | ast - sear ch can be
used to retrieve the last search string, if any.

5.11.4 In-place editing of items in a collection

Theinitarg : edi ti ng- cal | back for theclasscol | ecti on alowsin-place editing of itemsin at r ee- vi ewor
li st-panel .

Thefunctionscol | ection-itemget-editing-string,collection-itemset-editing-stringgetandsetthe
current in-place editing string.

Thefunctioncol | ecti on-item edit startsan in-place editing operation.

72

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_svref.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_svref.htm

6 Laying Out CAPI Panes

The CAPI provides various layout classes which alow you to combine multiple window elementsin asingle window. This
chapter provides an introduction to the different classes of layout available and the ways in which each can be used.

Layouts are created just like any other CAPI element, by calling make- i nst ance. Each layout needs to have a description
whichisalist of the CAPI elementsit contains. The description can be supplied viathe: descri pti on initarg. It can aso
be supplied or modified later by calling (setf | ayout-descri ption) inthelayout's process. The descriptionis
interpreted by i nt er pr et - descri pti on as specifying alist of elements which are the "children" of the layout. The layout
groups its children on the screen and specifies their geometry (x and y coordinates of top-left corner, width and height).

Only CAPI elements can be layout children. In this chapter "children” or "child" refers only to elements of these types.
* Instances of si npl e- pane and its subclasses.

* Instances of pi nboar d- obj ect and its subclasses (discussed in 12 Creating Paneswith Your Own Drawing and
Input).

For example, to put elements one above the other you make an instance of class col umm- | ayout with the elements asits
description:

(defun put-in-a-colum (Iist-of-elenents)
(make-instance 'col um-1| ayout
:description list-of-elenments))

Sincetheresultisal ayout , you canputitinani nt er f ace and display it:

(defun display-in-a-colum (Ilist-of-elenents)
(di spl ay
(make-instance 'interface
:layout (put-in-a-colum list-of-elements))))

(di spl ay-i n-a-col um
(list (make-instance 'text-input-pane
itext "Text input pane")
(make-instance ' push-button
:data "Button")))

(di spl ay-in-a-col um
(loop for x bel ow 10
col | ect
(make-instance ' push-button
:data (format nil "Button No. ~d" x))))

Layout themselves are subclasses of si npl e- pane, and hence can be children of other layouts, creating a hierarchical "tree"
of layouts with other types of children asthe "leaves’. Thisisthe normal way of laying out al the elementsinside an
interface. i nt er f ace isalso asubclass of si npl e- pane and can appear in the hierarchy, though usually i nt er f ace is
used only for the top-level window.

In general, the layouts need to know their childrens geometrical requirements. These requirements are referred to as
"constraints' and include the minimum and maximum width and height. Some of the child classes have default constraints,
for examplet ext - i nput - pane by default has both minimum and maximum height which alows showing one line, taking
into account the height of the font. Most child classes do not have default constraints, and in effect have a minimum
dimension of 0 and no maximum. Quite often that is good enough, but not always.

73

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

6 Laying Out CAPI Panes

You can override the default constraints of an element by specifying geometrical "hints' (the word "constraint” is sometimes
used to refer to the hint). Hints can be specified in many ways, for example the minimum width can be specified as enough to
display 30 characters. Geometrical hints are typically specified by initargs when making a pane, but you can also set them
dynamically. See 6.4 Specifying geometry hintsfor details. In most cases, specifying the hintsis sufficient (once you
specify the hierarchy of layouts).

The function get - const r ai nt s computes the constraints in pixels based on the hints or the defaults, and returns the
min/max of the width and height. Note that the result of get - const r ai nt s is dependent both on the hints themselves and
other factors. For example, if the minimum width of an element is specified as "30 characters’, changing the font of the
element will cause get - const r ai nt s to return adifferent value. For more complex computations, it is also possible to
defineacal cul at e- const r ai nt s method, but in most cases the geometry hints are enough.

The layoutsin general use get - const r ai nt s to get the constraints of their children, and take them into account when
calculating the geometry of the elements and its own implicit constraints. For example, ar ow- | ayout puts elements side-by
-side, and if it has two children with minimum width and height of 100, it will have an implicit minimum width of 200 and
implicit minimum height of 100. The implicit constraints are used by get - const r ai nt s on the layout itself (by its parent),
unless they are overridden by geometry hintsor cal cul at e- const r ai nt s on the layout.

The process of laying out starts at the top of the hierarchy, with the outer layout calling get - const r ai nt s onits children.
If any of the children isalayout itself, it callsget - const r ai nt s of itschildren. Thustheget - const rai nt s call is
propagated down the hierarchy to all the tree, and the results are propagated back. Then the top layout lays out its children,
that isit tells them their geometry, and again thisis propagated down by each child which isalayout itself.

When alayout lays out its children, its uses its own geometry, the children's constraints and a layout-specific algorithm,
which isimplemented by cal cul at e- | ayout . Thus when the documentation describes alayout of some class as "laying
out its children in some way" it really means that this is what the applicable method of cal cul at e- | ayout triesto achieve.
Notethat cal cul at e- | ayout does not necessarily obey the constraints, and even the methods that intend to obey the
constraints may fail to do so. For example, ar ow | ayout with two children each of minimum width 100 whichis given a
width of 150 pixelswill give only 50 to the second child. Conversely, when the layout has more space that the minimum
required it usually distributes space between the elements that are not constrained by a maximum.

cal cul at e- | ayout recordsthe layout that it computed by setting the x y width and height in the geometries of the children
(using wi t h- geonet ry). The system then displays the children with the new geometry.

The hierarchy of layoutsislaid out from the top layout of the top level interface when the interface is being displayed. After
that, whenever the program makes a change to any element which may change its constraints, the system goes up the
hierarchy until it finds alayout that it can tell is not going to need to change its constraints, and then lays out the children of
that layout, as described above.

You can tell CAPI that the constraints of a pane may have changed and need to be recomputed (and hence maybe part of the
hierarchy needs re-layout) by callingi nval i dat e- pane- constraints.

Once again, you should make sure you have defined thet est - cal | back function before attempting any of the examplesin
this chapter. Its definition is repeated here for convenience.

(defun test-call back (data interface)
(di splay-nessage "Data ~S in interface ~S"
data interface))

6.1 Organizing panes in columns and rows

You will frequently need to organize a number of different elementsin rows and columns. The col um- | ayout and
r ow | ayout elements are provided to make this easy.

The following is a simple example showing the use of col um- | ayout .

74

6 Laying Out CAPI Panes

(contain (meke-instance
' col um- 1 ayout
:description (list
(make-instance 'text-input-pane)
(make-instance 'list-panel
titems '(1 2 3 45)))))

An example of using col um- | ayout

-+ Container

1. Define the following elements:

(setqg buttonl (neke-instance 'push-button
:data "Button 1"
:call back 'test-callback))

(setqg button2 (nake-instance 'push-button
:data "Button 2"
:call back 'test-callback))

(setqg editor (make-instance 'editor-pane
:text "An editor pane"))

(setg nessage (nmke-instance 'display-pane
:text "A display pane"))

(setqg text (make-instance 'text-input-pane
(title "Text: "
:title-position :left
:cal I back 'test-call back))

These will be used in the examples throughout the rest of this chapter.

To arrange any number of elementsin a column, create alayout using col umm- | ayout , listing the elements you wish to use.
For instance, todisplay ti t| e, followed by t ext and but t on1, enter the following into a Listener:

(contain (nake-instance 'col um-I ayout
:description
(list text buttonl)))

75

6 Laying Out CAPI Panes

A number of elements displayed in acolumn

“w Container

Button 1

To arrange the same elementsin arow, smply replace col umm- | ayout in the example above with r ow | ayout . If you run
this example, close the column layout window first: each CAPI element can only be on the screen once at any time.

Layouts can be given horizontal and vertical scroll bars, if desired; the keywords: hori zont al -scrol | and
:vertical -scroll canbesettot ornil, asnecessary.

When creating panes which can be resized (for instance, list panels, editor panes and so on) you can specify the size of each
pane relative to the others by listing the proportions of each. This can be done viaeither the: y-r ati os keyword (for
column layouts) or the: x-r at i os keyword (for row layouts).

(contain (nake-instance
' col um- 1 ayout
:description (list
(make-instance ' displ ay- pane)
(make-instance 'editor-pane)
(make-instance 'listener-pane))
ty-ratios '(1 5 3)))

You may need to resize this window in order to see the size of each pane.

Note that the heights of the three panes are in the proportions specified. The: x-r at i os initarg will adjust the width of
panesin arow layout in asimilar way.

It is also possible to specify that some panes are fixed at their minimum size while others in the same row or column adjust
proportionately when the interface is resized:

(contain
(make-instance
' col um- | ayout
:description
(list
(make-instance ' out put - pane
: background :red
:visible-mn-height '(:character 1))
(make-instance ' out put - pane
: background : bl ue
:visible-mn-height '(:character 1))
(make-instance ' out put - pane
: background :red
:visible-mn-height '(:character 3)))
ty-ratios '(1 nil 3)
:title "Resize this window vertically: the red panes maintain ratio 1:3, while the blue pane is f
i xed."))

To arrange panesin your row or column layout with constant gaps between them, usethe : gap initarg:

(contain

(make-i nstance
' col um- 1 ayout
:description (list

76

6 Laying Out CAPI Panes

(make-i nstance ' out put - pane
: background :red)
(make-i nstance ' out put - pane
: background :white)
(make-i nstance ' out put - pane
: background : bl ue))
cgap 20
:title "Try resizing this w ndow vertically"
: background :gray))

To create resi zabl e spaces between panesin your row or column layout, use the special value ni | in the layout description:

(contain (nake-instance
' col um- 1| ayout
:description (list
(make-instance ' out put - pane
: background :red)
ni
(make-i nstance ' out put - pane
: background :white)
ni
(make- i nstance ' out put - pane
: background : bl ue))
;y-ratios '(1 14 11)
:title "Try resizing this wi ndow vertically"
- background :gray))

6.2 Other types of layout

Row and column layouts are the most basic type of layout class available in the CAPI, and will be sufficient for many things
you want to do. A variety of other layouts are available as well, as described in this section.

6.2.1 Grid layouts

Row and column layouts only allow you to position a pane horizontally or vertically (depending on which class you use), but
grid layouts let you specify both thus allowing you to create a complete grid of different CAPI panes.

grid- | ayout supportsatitle column, asillustrated in:
(exanple-edit-file "capi/layouts/titles-in-grid")

and it supports cells spanning multiple columns or rows, asillustrated in:
(exanmple-edit-file "capi/layouts/extend")

grid-1ayout (anditssubclassescol um- | ayout androw | ayout) isasubclassof x- y- adj ust abl e- | ayout , which
allows you to specify adjustments when you position the pane using the initargs : x- adj ust and : y- adj ust .

6.2.2 Simple layouts

A si npl e- 1 ayout hasonly one child. Where possible, the child isresized to fit the layout. Simple layouts are sometimes
useful when you need to encapsulate a pane.

77

6 Laying Out CAPI Panes

6.2.3 Pinboard layouts

Pinboard layouts allow you to position a pane anywhere within awindow, by specifying the x and y integer coordinates of the
pane precisely. They are ameans of letting you achieve any effect which you cannot create using the other available layouts,
although their use can be correspondingly more complex. They are discussed in more detail in 12 Creating Panes with Your
Own Drawing and I nput.

6.3 Combining different layouts

You will not always want to arrange al your elementsin asingle row or column. You can include other layoutsin the list of
elements used in any layout, thus enabling you to specify precisely how panesin awindow should be arranged.

For instance, suppose you want to arrange the elements in your window as shown in A sample layout. The two buttons are
shown on the right, with the text input pane and a message on the left. Immediately below thisis the editor pane.

A sample layout

Message Butiom

Texi Bufionz

Editor

Thelayout in A sample layout can be achieved by creating two row layouts: one containing the display pane and a button,
and one containing the text input pane and the other button, and then creating a column layout which uses these two row
layouts and the editor.

(setg rowl (rmake-instance 'row |l ayout
:description (list nessage buttonl)))

(setg row2 (make-instance 'row | ayout
sdescription (list text button2)))

(contain (nake-instance 'col um-1I ayout
:description (list rowl row2 editor)))

An instantiation of the sample layout

-% Container

&, dizplay pane

T ext:

An editor pane

Asyou can see, creating avariety of different layoutsis simple. Thismeansthat it is easy to experiment with different

78

6 Laying Out CAPI Panes

layouts, allowing you to concentrate on the interface design, rather than its code.

However, remember that each instance of a CAPI element must not be used in more than one place at the same time.

6.4 Specifying geometry hints
If you do not specify any hints, the CAPI uses the default constraints. In many cases that gives useful geometry already.

When you do need to specify the constraints, the normal way isto specify the hints for the element(s) when making them by
passing the appropriate keywords. The available keywords and their meanings are explained in 6.4.1 Width and height
hints, and the potential values are explained in 6.4.2 Hint values for mats.

It also possibleto set the hints later, either by set - geonet ri c- hi nt to setasingle hint or set - hi nt - t abl e to set all of
them.

It is also possible to specify initial constraints, which are applicable during the creation of the window, but not |ater.
Typically that is used to force theinitial window to be large enough, but later allowing the user to reduce the size.

6.4.1 Width and height hints
In CAPI, there are three kinds of geometry dimensions. external, visible and internal.

External and visible dimensions are two different ways to specify the dimensions of an element on the screen. The external
dimension specifies the size of the element including its borders, while the visible dimension specifies the size of the pane
inside its borders. Thus:

vi sible-width + borders-wi dth
vi si bl e- hei ght + borders- hei ght

external -wi dth
ext ernal - hei ght

For a non-scrolling pane, internal dimensions mean the same as visible. For a scrolling pane, internal dimensions specify the
size that the pane would need to display all of itsdata. For example, al i st - panel with 100 items of which exactly 30
items are fully visible and each lineis 15 pixels high hasinternal height of 100 x 15 = 1500 pixels and visible height of 30 x
15 =450 pixels.

To get the right layout on the screen, you typically need to specify constraints on the width and height on the screen, which
you do by specifying either the external constraints or visible constraints. Thisisthe main way of using constraints.

The internal dimensions are needed only to compute the size of the scrollbars. Most elements implicitly compute their own
internal dimensions. You should specify the minimum internal dimensionsby : scrol | - hei ght and: scrol | -wi dth
when you have an out put - pane with scrollbar(s) which does ordinary scrolling (the default), so the pane can compute the
size of the scrollbars. However, you can useset - hori zont al - scrol | - paranet er s and

set-vertical -scroll - paranet ers instead.

The following keywords are used to specify geometrical constraints.
External constraints control the size that the pane takes up in its parent:
sexternal -m n-w dth

The minimum width of the child in its parent.
s external - max-w dth

The maximum width of the child in its parent.
: ext ernal - m n- hei ght

The minimum height of the child in its parent.

79

6 Laying Out CAPI Panes

. ext er nal - max- hei ght

The maximum height of the child in its parent.
Visible constraints control the size of the part of the pane that you can see:
:visible-mn-width Theminimum visible width of the child.
:vi si bl e-max-wi dth The maximum visible width of the child.
: vi si bl e-mi n-hei ght

The minimum visible height of the child.
. vi si bl e- max- hei ght

The maximum visible height of the child.

If the visible-max-width is the same as the visible-min-width, then the element is not horizontally resizable. If the visible-max
-height is the same as the visible-min-height, then the element is not vertically resizable.

Internal constraints control the size of region used to display the contents of the pane: These are all deprecated.
sinternal -mn-wdth
The minimum width of the display region.
sinternal - max-w dth
The maximum width of the display region.
tinternal - m n-hei ght
The minimum height of the display region.
i nternal - max- hei ght
The maximum height of the display region.

In addition, methods for the generic function cal cul at e- const r ai nt s can be defined on your pane classes to compute the
internal geometries. Note that when scrolling the: i nt er nal - max-wi dt h and: i nt er nal - max- hei ght are not
meaningful and are ignored.

For ascrolling pane, the internal constraints control the size of region over which you can scroll and the visible constraints
control the size of the viewport. Hereis an illustration of the external, interna and visible sizesin a scrolling list panel with 8
items, 4 of which arefully visibleand 1 is partially visible:

80

6 Laying Out CAPI Panes

External, visible and internal sizes:

viewport virtual region

— internal
LiFe

external skl
BiTe visible

BifE

Initargs: mi n-wi dt h, : max- wi dt h, : mi n- hei ght and: max- hei ght are deprecated. They are synonyms for the visible
constraints: vi si bl e- i n-wi dt h and so on.

It is often wrong to constrain CAPI elements to fixed pixel sizes, as these constraints may lead to poorer layoutsin some
configurations.

6.4.1.1 Priority of constraints

The order of priority isthe order in 6.4.1 Width and height hints. That is, for anon-scrolling pane when there is only one
independent constraint the preference order is:

External > Visible > Internal > cal cul at e- const rai nt s.

For a scrolling pane where there are two independent constraints the preference order for the external constraint is:
External > Visible.
and the preference order for the internal constraint is:

Internal > cal cul at e-constraints.

6.4.2 Hint values formats

The possible values for the hints listed in 6.4.1 Width and height hints are asfollows:

integer Thesizein pixels.
t For : vi si bl e- max-wi dt h, t means use thevalueof : vi si bl e- m n-wi dt h.

For : vi si bl e- max- hei ght , t means usethevalueof : vi si bl e- mi n- hei ght .

itext-width The width of any text in the element.
. t ext - hei ght The height of any text in the element.
:screen-w dth The width of the screen.
: screen- hei ght The height of the screen.

8l

6 Laying Out CAPI Panes

A list starting with any of the following operators, followed by one or more hints:
max — the maximum size of the hints.
nmi_n — the minimum size of the hints.
+ — the sum of the hints.
- — the subtraction of hints from the first.
* — the multiplication of the hints.

| — the division of hints from the first.

A two element list specifying the size of a certain amount of text when drawn in the el ement:
(:character integer) — thesize of integer characters.
(char act er integer) — the size of integer characters.
(:string string) — the size of string.
(string string) — thesize of string.

A two-element list starting with synbol - val ue, and containing one other symbol:

(synbol - val ue foo) — thesize of thesynbol - val ue of foo.

A list starting with appl y or f uncal | , followed by a symbol and arguments:

(apply function argl arg2 ...) — theresult of applying the function function to the
arguments.

(funcal | function argl arg2 ...) — theresult of calling the function function with the
arguments.

6.4.3 Initial constraints

You can usetheinitarg: i niti al - constrai nt s to specify constraints that apply during creation of the element'sinterface,
but not after the interface is displayed.

initial-constraints must be aplist of constraints, where the keywords are geometry hints as described above.

For example, this creates awindow that starts at least 600 pixels high, but can be made shorter by the user, because that
initial constraint istransient. However, the permanent height constraints on the two output panes remain in effect:

(contain
(make-instance ' col um-1| ayout
:description
(l'ist (make-instance 'output-pane
:vi si bl e-m n-height 100
: background :red)
(make-instance ' out put - pane
: vi si bl e-m n-hei ght 200
: background : bl ue))
cinitial-constraints ' (:visible-mn-height 600)))

82

http://www.lispworks.com/documentation/HyperSpec/Body/f_max_m.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_max_m.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_5.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_5.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_apply.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_funcal.htm

6 Laying Out CAPI Panes

6.5 Constraining the size of layouts

The size of alayout (often referred to as its geometry) is calculated automatically on the basis of the size of each of its
children. The algorithm used takes account of hints provided by the children, and from the description of the layout itself.
Hints are specified via the panes initargs when they are created. The various pane classes have useful default values for these
initargs.

6.5.1 Default Constraints

If you do not specify any hints, the CAPI calculates the on-screen geometry based on its default constraints. With this
geometry the various elements are displayed with adequate space in the window.

Thisis designed to work regardless of variable factors such as the user's configuration, for example specifying large font
sizes. It is often wrong to constrain CAPI elements to fixed pixel sizes, asthese constraints may lead to poorer layoutsin
some configurations.

For information about the effect of constraints on scrolling, see 6.4.1 Width and height hints.

6.5.2 Constraint Formats

Hints can take arguments in a number of formats, which are described in full under 6.4.2 Hint values formats. When given a
number, this should be an integer and the layout is constrained to that number of pixels. A constraint can also be specified in
terms of character widths or heights, as shown in the next section.

6.5.2.1 Character constraints

In 6.3 Combining different layouts, you created a window with five panes, by combining row and column layouts. Now
consider changing the definition of the editor pane so that it is required to have a minimum size. Thiswould be a sensible
change to make, because editor panes need to be large enough to work with comfortably.

(setq editor2
(make-instance 'editor-pane
:text "An editor pane with nininmum size"
:visible-min-width ' (:character 30)
:visible-mn-height '(:character 10)))

Now display awindow similar to the last example, but with the edi t or 2 editor pane. Note that it is only the description of
the top-level column layout which differs. Before entering the following into the listener, you should close al the windows
created in this chapter in order to free up the instances of but t on1, but t on2 and so forth.

(contain (nake-instance 'col um-I ayout
s description
(list rowl row2 editor2)))

You will not be able to resize the window any smaller than this:

83

6 Laying Out CAPI Panes

The result of resizing the sample layout

-% Container

&, dizplay pane

An editor pane with minimum size

6.5.2.2 String constraints

To make a pane that is wide enough to accommodate a given string, usethe: vi si bl e- mi n-wi dt h hint with a
(:string string) constraint.

In this example we also supply : vi si bl e- max-wi dt h t, which fixes the maximum visible width to be the same as the
minimum visible width. Hence the pane is wide enough, but no wider:

(defvar *text* "Exactly this w de")

(capi:contain
(make-instance 'capi:text-input-pane
text *text*
cvisible-min-width “(:string ,*text?*)
:visible-max-width t
:font (gp: make-font-description
:size (+ 6 (random 30)))))

Note that the width constraint works regardless of the font used.

6.5.3 Changing the constraints

If you need to ater the constraints on an existing element, use the function set - hi nt - t abl e. See how theinterfacein
6.5.2.1 Character constraintsresizes after this cal:

(appl y-i n- pane-process editor2
"set-hint-table editor2 '(:visible-mn-width (:character 100)))

If you define your own pi nboar d- obj ect class, ensure that its hint table matches the visible geometry and is kept
synchronized after any movement of the object, otherwise redrawing may be incorrect.

Similarly if you draw pinboard objects under at r ansf or m call set - hi nt - t abl e with the transformed geometry to ensure
correct redrawing.

6 Laying Out CAPI Panes

6.6 Other pane layouts

The example below uses three predefined panes, which need to be defined as follows:

(setqg red-pane (nmake-instance 'output-pane
s background :red))

(setqg green-pane (nmake-instance 'output-pane
: background : green))

(setqg bl ue-pane (nake-instance 'output-pane
: background : bl ue))

6.6.1 Switchable layouts

A switchable layout allows you to place CAPI objects on top of one another and determine which object is displayed on top
through Lisp code, possibly linked to a button or menu option through a callback. Switchable layouts are set up using a

swi t chabl e- | ayout elementinanake-i nstance. Aswith the other layouts, such ascol um- | ayout and

r ow | ayout , the elementsto be organized are listed in the description slot, initialized in this example by the

: descri pti on initarg:

(setqg swi tchi ng- panes (nmake-instance
' swi t chabl e- | ayout
:description (list red-pane green-pane)))

(contain switching-panes)

Note that the default pane to be displayed is the red pane, which was the first pane in the description list. The two panes can
now be switched between using swi t chabl e- | ayout - vi si bl e-chi | d:

(appl y-i n- pane- process
swi t chi ng- panes #' (setf switchabl e-1ayout-visible-child)
gr een- pane swit chi ng- panes)

(appl y-i n- pane- process
swi t chi ng- panes #' (setf switchabl e-1ayout-visible-child)
red- pane swi t chi ng- panes)

6.6.2 Tab layouts
At ab- | ayout displays several tabs, and a single pane which contains the main contents.

Inits simplest mode, at ab- | ayout issimilar to a switchable layout, except that each pane is provided with alabelled tab,
like the tabs on filing cabinet folders or address books. If the tab is clicked on by the user, the paneit is attached to is pulled
to the front. Remember to close the switchable layout window created in the last example before displaying this:

(setqg tab-Iayout
(make-instance 'tab-layout
citens (list (list "one" red-pane)
(list "two" green-pane)
(l'ist "three" blue-pane))
cprint-function 'car
:visible-child-function 'second))

(contain tab-layout)

85

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

6 Laying Out CAPI Panes

A tab layout

“w Container
Warks

ane |tw::| || three |

The example needsthe: pri nt-functi on tobecar, or else the tabswill be labelled with the object numbers of the panes
aswell asthetitle provided in the list.

However, atab layout can also be used in a non-switchable manner, with each tab responding with a callback to alter the
appearance of only one pane. Inthismodethe: descri pti on keyword is used to describe the main layout of the tab pane.
In the following example the tabs alter the choice of starting node for one graph pane, by using a callback to the

gr aph- pane-r oot s accessor:

(defun tab-graph (itens)
(let* ((gp (neke-instance 'graph-pane))
(tl (rmake-instance
'tab-1 ayout
:description (list gp)
citens itens
:visible-child-function nil
cprint-function (lanbda (x) (format nil "~R' x))
:cal | back-type :data
:sel ection-cal |l back #' (Il anmbda (data)
(setf (graph-pane-roots gp)

(list data))))))
(contain tl)))

(tab-graph '(1 2 45 7))

You can access the pane that is currently displayed inthet ab- | ayout byt ab- 1 ayout - vi si bl e- chi | d, and you can
obtain alist of the panes that have been displayed by calling t ab- | ayout - panes.

86

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

6 Laying Out CAPI Panes

6.6.3 Dividers and separators

If you need adjacent panesin arow or column to have a narrow user-movable divider between them, supply the specia value
: di vi der inthe description. The divider allows the user to resize one pane into the space of the other. To seethisin the
column layout below, grab the divider between the two panes and then drag it vertically to resize both panes:

(contain (nake-instance 'col um-1I ayout
:description (list green-pane
: di vi der
red- pane)))

The arrow keys can also be used to move the divider.

To include a narrow visible element between adjacent panes which cannot be moved (dragged) by the user, supply the special
value: separ at or in the description.

If you also specify ratios, the ratio for each occurrence of either of these special values should beni | to specify that the
narrow element isfixed at its minimum size:

(contain (nake-instance
' col um- | ayout
sdescription (list
(make-instance ' output - pane
: background :red)
:di vi der
(make-instance ' output - pane
: background : white)
: separ at or
(make-instance ' output - pane
: background : bl ue))
cy-ratios '(1 nil 4 nil 1)
:title "You can drag the divider, but not the separator"”
s background :gray))

Dividers and separators can also be placed between panesin ar ow- | ayout or even combinations of row and column
layouts.

6.6.4 Static layout

st ati c-1 ayout isalayout that simply places each of its children where the geometry specifies (x, y, visible-min-width and
visible-min-height). The children can be moved and resized by (setf static-1ayout-child-position) and
(setf static-layout-child-size).

An important subclass of st atii c- 1 ayout ispi nboar d- | ayout , which is documented in 12.3 Creating graphical
objects. pi nboar d- | ayout isused to create your own kind of panes.

6.6.5 Interface toolbars

Your interface can have atoolbar which the user can configure by selecting and rearranging the buttons to display. To
implement this, specify an interface toolbar as described in 9 Adding Toolbars.

6.6.6 Docking layout

docki ng- | ayout alows docking/undocking of panes, which means interactively moving the panes between placesin the
interface (docking) and into standalone floating windows (undocking). The full functionality is available only on Microsoft
Windows, while GTK+ gives very limited functionality. On Cocoa it is completely static. Docking layouts are especially
useful for toolbars, but can contain other panes.

87

6 Laying Out CAPI Panes

To alow moving a pane between different placesin the interface, you need to group several docki ng- | ayout s. Thisdone
by using make- docki ng- | ayout - cont r ol | er to create a controller object, and then passing the controller when making
the docki ng- | ayout withtheinitarg: control | er. You then place each docki ng- | ayout inadifferent placein the
interface, by including it in the layout hierarchy of the interface in the usual way, and then it is possible to interactively move
panes between all the docki ng- | ayout sthat share the controller.

If you merely want to allow undocking, you do not need a controller.

The function docki ng- | ayout - pane- docked- p can be used to test whether a pane is docked in a specific
docki ng- | ayout , and can be used with cl : set f to programmatically dock a panein a specific docki ng- | ayout or to
undock it (to do this, dock it toni I).

The function docki ng- | ayout - pane- vi si bl e- p can be used to test whether a pane is docked in one of the

docki ng- | ayout sinthe group of adocki ng- | ayout (that is, layouts with the same controller) or is undocked, and the
docki ng- | ayout or thefloating window isvisible. It can be used with cl : set f to change the visibility of the

docki ng- | ayout (if the paneis docked) or the floating window (undocked).

Thereisan examplein:

(exampl e-edit-file "capi/layouts/docking-I|ayout")

6.6.7 Multiple-Document Interface (MDI)

In LispWorks for Windows, the CAPI supports MDI through the classdocunent - f r ame. MDI is not supported on other
platforms.

To use MDI in the CAPI, define an interface class that inherits from docunent - f r anme, and use the two special slots
capi : cont ai ner and capi : Wi ndows- menu as described below.

In your interface's layouts, use the symbol capi : cont ai ner in the description to denote the pane inside the MDI interface
in which child interfaces are added.

docunent - f r ame- cont ai ner isareader which returns the docunent - cont ai ner of thedocunent - fr ane.

Interfaces of any type other than subclasses of docunent - f r ane may be added as children. To add a child interface in your
MDI interface, call di spl ay on the child interface and pass the MDI interface as the screen argument. Thiswill display the
child interface inside the container pane. To obtain alist of the child interfaces, call the scr een reader function
screen-interfaces, passing the framesdocunent - cont ai ner asthe screen argument.

You can use most of the normal CAPI window operations such ast op- | evel -i nterface- geonet ry and
act i vat e- pane on windows displayed as children of adocunent - f r ane.

The dlot capi : wi ndows- nenu contains the Windows Menu, which allows the user to manipulate child interfaces. The
standard functionality of the Windows Menu is handled by the system and normally you will not need to modify it. However,
you will want to specify its position in the menu bar. Do this by adding the symbol capi : wi ndows- nenu in the

: menu- bar option of your def i ne-i nt er f ace form.

By default the menu bar is made by effectively appending the menu bar of the docunent - f r ame interface with the menu bar
of the current child. You can customize this behavior with ner ge- nenu- bar s.

6.6.7.1 MDI example

This example uses docunent - f r ane to create aprimitivecl : apr opos browser.

Firstly we define an interface that lists symbols. Thereis nothing specia about thisin itself.

88

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_apropo.htm

6 Laying Out CAPI Panes

(capi:define-interface synmbols-listing ()
((synbols :initarg :synbols))
(: panes
(synbol s-pane capi:|list-panel
citens synbols
cprint-function
' synbol - nane))
(:default-initargs
:best-width ' (character 40)
. best-height '(character 10)))

Next we define the MDI interface. Note:

1. It inherits from docunent - f r ane.

2. capi : cont ai ner isused in the layout description.
3. capi : wi ndows- nenu isinthe: menu- bar list.

4. When the interface showing the symbols is being displayed, the MDI interface is passed as the screen argument to
di spl ay.

Otherwise, this example uses standard Common Lisp and CAPI functionality.
(capi: define-interface ny-apropos-browser

(capi : docunent - f r ane)
((string :initarg :string))

(: panes
(package-1i st

capi: list-panel

litemns

(l oop for package in (list-all-packages)

when
(let ((al (apropos-list string package)))
(when al

(cons (package-nane package) al)))
collect it)
sprint-function 'car
:action-cal |l back
(lanmbda (ndi-interface name-and-synbol s)
(capi: displ ay
(make-instance
' synbol s-1isting
:synbol s (cdr name-and-synbol s)
:title (car nane-and-synbol s))
:screen ndi -interface))
:cal | back-type :interface-data)
)
(: menu-bar capi: wi ndows- nenu)
(:layouts
(rmai n
capi : row | ayout
' (package-list :divider capi:container)
sratios '(1 nil 4)))
(:default-initargs
:vi si bl e-m n-height ' (character 20)
tvisible-min-width ' (character 100)))

To browse apropos of a specific string:

(capi: displ ay
(make-instance ' ny-apropos- browser
:string "ED TOR"))

89

6 Laying Out CAPI Panes

6.7 Changing layouts and panes within a layout
To change to another layout, use (setf pane-| ayout):

(setf |ayout
(capi:contain
(make-instance 'row | ayout
:description
(list (make-instance 'title-pane :text "One")
(make-instance 'title-pane :text "Two"))
:vi si bl e-mi n-hei ght 100)))

(appl y-i n- pane- process
| ayout #' (setf pane-Ilayout)
(make-instance ' col um-1| ayout
:description
(list (make-instance 'title-pane :text "Three")
(rmake-instance 'title-pane :text "Four")))
(element-interface | ayout))

To change the panes within alayout, use (set f | ayout - descri pti on):

(setf layout
(capi:contain
(make-instance 'row-| ayout
:description
(l'ist (nmake-instance 'title-pane :text "One")
(make-instance 'title-pane :text "Two"))
:vi si bl e-mi n-hei ght 100)))

(appl y-i n- pane- process

| ayout #' (setf |ayout-description)

(list (make-instance '"title-pane :text "Three")
(make-instance 'title-pane :text "Four")
(make-instance 'title-pane :text "Five"))

| ayout)

Note: A CAPI layout must not reuse panes that are already displayed in another layout.

90

/ Programming with CAPI Windows

Aninterface or its children can be altered programmatically in many ways. This chapter describes APIs for the most common
of these.

Note: By default, each CAPI interface runsin its process. It isimportant to understand that an on-screen interface and its
elements must be accessed only in the process of that interface. In most circumstances the user alters the interface by a
callback inside the interface, which will automatically happen in the correct process. However, calls from other processes
(including other CAPI interfaces) should useexecut e-wi t h-interface, execute-with-interface-if-alive,
appl y-i n- pane- process orappl y-i n- pane-process-if-alive.

7.1 The lifecycle of a CAPI object

Since many CAPI objects interact with an end user on a screen, their lifetimes are controlled more carefully than those of
normal Lisp objects.

Each CAPI object goes through the following stages.

1. CLOS object initialization.

In the first stage, the object is created by acall to make- i nst ance. The normal CLOS initialization mechanisms such
asinitialize-instance areused toinitialize the object. During this stage, the object is known only to Lisp and can
be garbage collected if the next stage is not reached.

2. Connection to a screen.

At some point, a CAPI object might be connected to a screen. This causes window system resources to be allocated for
the connection and prevents the object from being garbage collected. Functions such asdi spl ay and

di spl ay- di al og connect atop level i nt er f ace to ascreen. Paneswithin atop level interface are also connected to
the same screen as the interface and new panes can be connected by setting the pane- | ayout or

| ayout - descri pti on of aconnected pane to include them.

3. Interaction with an end user.

After the object is connected to a screen, it may become visible to an end user who can interact with the object. Some
interactions (for example, clicking a button) cause callbacks to be called, allowing your code to respond to the
interaction.

4. Disconnection from a screen.

A CAPI object might become disconnected from a screen if the end user closes atop level interface or if you call
dest r oy. Paneswithin atop level interface can also be disconnected by setting the pane- | ayout or
| ayout - descri pti on of aconnected pane to remove them.

After this stage, the object is again known only to Lisp and can be garbage collected.

5. Garbage collection.

Thefinal stage of a CAPI object'slifecycle isthe normal Lisp garbage collection process, which removes the object from
memory when there are no more references to it.

Thefunctionsi nt er f ace- di spl ayed-p,interface-fully-created-p,interface-bei ng-created-pand
i nterface-fully-destroyed-p canbeusedto detect which stageatop level i nt er f ace isat.

91

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm

7 Programming with CAPI Windows

If necessary you can run code just before or just after your interface's windows are displayed on screen.

You can do this by defining a: bef or e or : af t er method on the generic functioni nt er f ace- di spl ay. Your method will
run just before or just after your interface is displayed on screen.

For example:

(defun make-text (self createdp)
(rmul tipl e-value-bind (s mh dd nm yy)
(decode-uni versal -tine (get-universal-tinme))
(format nil "Wndow ~S ~:[displ ayed~; created~] at ~2,'0D:~2,'0D: ~2,"' 0D"
self createdp h ms)))

(capi:define-interface dd () () (:panes (dp capi:display-pane)))
(def met hod capi:interface-display :before ((self dd))
(with-slots (dp) self
(setf (capi:display-pane-text dp)
(rmake-text self t))))
(capi:contain (rmake-instance 'dd))

Sometimes initialization code can be put in the create-callback of your interface, though adding it in suitable methods for
initialize-instance orinterface-display isusualy better.

7.2 Resizing and positioning

Programmatic resizing can be done using the function set -t op- | evel -i nt er f ace- geonet ry. For example, to double
the width of an interface about its center:

(setf interface (contain (make-instance 'interface)))

Use the mouse or window manager-specific gesture to resize the interface, then evaluate:

(execute-with-interface
interface
(lanbda ()
(mul tiple-value-bind (x y w h)
(top-level -interface-geonetry interface)
(set-top-level-interface-geonetry

interface

:x (round (- x (* 0.5 w))
Yy

cwidth (* 2w

“height h))))

All resize operations are subject to the constraints. The constraints can be altered programmatically as described in 6.5.3
Changing the constraints.

Resize operations are al so subject to automatic modification by the system in cases where the new window geometry
coincides with a system area such as the macOS menu bar or the Microsoft Windows taskbar, as described in 7.2.1
Positioning CAPI windows.

When displaying with GTK+ on Wayland, the desktop does not allow the application to access or control the position of top
level windows, but the size can still be accessed or controlled.

92

http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm

7 Programming with CAPI Windows

7.2.1 Positioning CAPI windows

You should not assume that awindow is located where it has just been programmatically positioned. Instead you should
query the current position by t op- | evel -i nterf ace- geonetry.

So if you wish to display CAPI interface windows W1 and W2 relative to each other. You should:
1. Display W1 (by di spl ay), then:
2. Query position of W1, then:

3. Arrange for W2 to have the desired relative position, for examplein its nrake- i nst ance or later by set - hi nt -t abl e,
then:

4. Display W2.

The reason for thisis that the window system may disallow certain positions (for example on the macOS menu bar) therefore
you cannot be certain of the position of W1.

7.3 Geometric queries

Thevisible size of a pane can be found by si npl e- pane- vi si bl e- hei ght and si npl e- pane-vi si bl e-wi dt h, or
si npl e- pane- vi si bl e-si ze (which returns two values, width and height). Other geometric values can be accessed using
wi t h- geonet ry. See6.4.1 Width and height hints for the meaning of visible, external and internal size.

Thefunctionconvert -rel ati ve- posi ti on can be used to convert coordinates between one pane or screen to another
pane or screen.

Insideast ati c-1 ayout (including pi nboar d- | ayout) thefunction st ati c- 1 ayout - chi | d- posi ti on and
static-layout-chil d-si ze can beused to find (and set) the coordinates of a child.

Setting coordinates of panes (other thaninsideast at i c- | ayout) isdone by the layout mechanism which is described in 6
Laying Out CAPI Panes. In most cases, you use geometric hints or set the scroll parameters, as described in 6.4 Specifying
geometry hints.

7.4 Scrolling

7.4.1 Programmatic scrolling

Programmatic scrolling isimplemented with the generic function scr ol | . This example shows vertical scrollingin a
li st-panel:

(setf |ist-pane
(contain
(make-instance 'list-panel
citens (loop for i below 100 collect i)
svertical-scroll t)))

(appl! y-i n- pane- process
list-panel 'scroll list-panel :vertical :nmove 50)

11 Defining Inter face Classes - top level windows shows how an edi t or - pane can be scrolled using editor commands.

An out put - pane can be made to scroll - see 12.4 output-pane scrolling.

You can also usethe functionsset - hori zont al -scrol | - paraneters andset -vertical -scrol | -paraneters to
affect scrolling operations.

93

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

7 Programming with CAPI Windows

The current scroll position can be found by using get - scrol | - posi ti on. Usingit laterinacall toscrol | with: nove
scrolls the pane back to the same position.

7.4.2 Scroll values and initialization keywords

Thesix: scrol | -* si npl e- pane initargs for each dimension correspond to the six keyword arguments of
set - hori zontal -scrol | - paranet ers/get - hori zontal -scrol | - paraneters and
set-vertical -scroll-paraneters/get-vertical -scroll-paraneters asfollows:

Specifying scroll parameters: the correspondence between si npl e- pane initargs and keyword arguments

si npl e- pane initargs keyword argument
:scroll-horizontal -slug-size : sl ug-size
:scroll-vertical -slug-size

:scroll-start-x > m n-range
:scroll-start-y

:scroll-wdth . max-range
:scroll -hei ght

:scroll-initial-x : sl ug-position
:scroll-initial-y

:scroll-horizontal -step-size . step-size

:scroll-vertical -step-size

:scrol |l -horizontal - page-si ze . page-si ze
:scroll-vertical - page-si ze

The valuesfor al of these parameters should be real numbers. The set of values supplied for each dimension is treated
independently from the other set.

The difference between the max-range and min-range specifies the range of scrolling. When applied to the scrollbar display,
all the values are scaled by the ratio between the height/width of the scrollbar and the range, for example:

sl ug-si ze-in-pi xel s = dug-size * scrol | bar-hei ght-in-pixels / (maxrange - min-range)

The dug-position is aso trandated by the min-range:

sl ug- posi tion-in-pixels = (dug-position - min-range) * scrol |l bar-hei ght-in-pixels / (maxrange - min-range)

The scrolling position of the pane is the slug-position (translated by the min-range) scaled by the ratio between the pane
dimension (width or height) and the slug-size, that is:

pane-scrol | i ng-position = (dug-position - min-range) * pane-di mensi on / sug-size

When dug-sizeis not supplied or isni | , it is set to track the dimension of the pane, so the scaling factor aboveis 1, and all
the other numbers can be considered asif specified in pixelsin theinternal coordinates of the pane. If slug-sizeis supplied, it
isin effect creating a scaling factor between the values and the coordinates in the pane.

The min-range initial value defaultsto O, the max-range initial value defaults to either the width/height in pixels of the datain
the pane if thisis deducible, otherwise to the height of the pane. The latter is not useful, and typically the max-rangeis the
one value that you have to specify. In many casesit is the only value you need to specify.

Theinitia sug-position defaultsto 0.

94

7 Programming with CAPI Windows

The step-size defines the amount to scroll for a gesture that means step (typically clicking on the arrows at the ends of the
scrollbar). It initially defaults to the dimension of a character in the panein pixels. Note that thisis normally useful only if
dug-sizeis not set, otherwise it is scaled by pane- di nensi on / dug-size. If you set the slug-size, you probably want to set
the step-size too.

page-size defines the amount to scroll for page gestures (typically clicking on the scroll bar outside the scroll slug). Itinitially
defaultsto slug-size - step-size, which is normally the useful value.

7.4.3 Automatic scrolling

Automatic scrolling of the parent to show the focus pane can be specified by using scrol | -i f- not - vi si bl e- p.

For out put - pane with "internal" scrolling (see 12.4 output-pane scrolling), you can force some areato become visible,
that is scroll as needed, by using ensur e- ar ea- vi si bl e.

7.5 Updating pane contents

Use only the documented functions such as the accessors (set f edi t or - pane-text) and(setf collection-itens)
and so on to set the datain a pane. For details, see the manua pages for the particular pane class and its superclassesin 21
CAPI Reference Entries.

7.5.1 Updating windows in real time

If your code needs to cause visible updates while continuing to do further computation, then you should run your
computation in a separate thread which is not directly associated with the CAPI window.

Consider the following example where real work is represented by callsto sl eep:

1. Evauate this code:

(defun change-text (win text)
(setf (title-pane-text wn)
text))

(defun ny-cal |l back (win)
(change-text win "Go")

(1 oop
for i fromO to 20 do
(change-text win (format nil "~D' i))

(sleep 0.1)))

(defun test ()
(let* ((pl (rmeke-instance '"title-pane
ttext "init"))
(p2 (nmake-instance

"button :text "Go"

:cal | back-type :none

:cal I back # (lanmbda ()
(nmy-cal |l back pl)))))

(contain
(make-instance 'row | ayout :description (list pl nil p2))
:wi dth 200 : hei ght 200)))

2. Run (t est) and note that the updates do not appear until ny- cal | back returns. Thisisbecause it usesonly one
thread.

3. Now try thismodified callback which uses aworker thread to perform the calculations:

95

http://www.lispworks.com/documentation/HyperSpec/Body/f_sleep.htm

7 Programming with CAPI Windows

(defun ny-work-function ()
(let ((mbox (np:ensure-process-nmail box)))
;7 This should really have an error handl er
(loop (let ((event (np:process-read-event nmbox
"Waiting for events")))
(cond ((consp event)

(apply (car event) (cdr event)))
((functionp event)
(funcall event)))))))

(setf *worker*
(nmp: process-run-function "Wrker process" ()
"my-wor k-function))
(defun change-text (win text)
(appl y-i n- pane- process wn
(setf title-pane-text)

text win))
(defun ny-call back (win)
(np: process-send
*wor ker *
#' (1 ambda ()
(change-text win "Go")
(1 oop
for i fromO to 20 do
(change-text win (format nil "~D' i))

(sleep 0.1)))))

4. Run (t est) again: you should see the updates appear immediately.
A real application might also display an Abort button during the computation, with a callback that aborts the worker process.

Also see this example:

(exanple-edit-file "capi/el enents/progress-bar-from background-thread")

7.6 Edit actions on the active element

It is possible to perform standard edit actions like copy and paste on the current active element, which is not necessarily a
CAPI pane, using the functions act i ve- pane- edit-function, for example act i ve- pane- copy.

These functions find the active element and try to perform the operation on it. The active element can potentially not
correspond to a CAPI pane, for example when prompting for afile the active element is somewherein the dialog, whichisa
standard dialog of the windowing system rather than being a CAPI interface.

It is also possible to define what edit operations do when they are called on apane in an interface class which you have
defined, by specializing the pane- i nt er f ace- * methods such aspane-i nt er f ace- copy- obj ect . For choices, thereis
alsoitem pane-interface-copy- obj ect. Typically these methods will need to access the system clipboard, using

set - cl i pboardandcli pboar d (see 18.6 Clipboard).

7.7 Manipulating top-level windows

7.7.1 Visibility and focus

To bring atop level window to the front (on top of other windows) call r ai se-i nt er f ace, and to put it behind other
windowscall | ower -i nterf ace.

96

7 Programming with CAPI Windows

To hide awindow call hi de-i nt er f ace, and to unhideit call show-i nt er f ace.

To raise an interface and give the input focusto apaneinsideit, call act i vat e- pane. For more information about the input
focus, see 3.1.5 Focus.

You can test whether the interface in which apane is contained isvisible by callingi nt er f ace- vi si bl e- p.

7.7.2 Iconifying and restoring windows

You can iconify an interface window as follows:

(setf (top-level-interface-display-state interface) :iconic)

You can also make it be hidden, maximized or restore it to normal, and you have the option to create it in one of these states
initially. For the detailsseet op- | evel -i nt er f ace-di spl ay- st at e.

You can test whether an interface isiconified by callingi nt er f ace-i coni fi ed- p.

7.7.3 Closing windows
To close a CAPI interface window unconditionally, call the generic function dest r oy.

To close a CAPI interface window such that its confirm-destroy-function is called first to allow the user to confirm, call
gui t-interface. Youmust cal it in the window's process, for example in the callback of amenu item.

7.7.4 Finding interfaces

You can use the function | ocat e-i nt er f ace to find an interface of a specified classwhich is currently displayed. It uses
the method i nt er f ace- mat ch- p to decideif thereis any "matching" interface, in which case that is ssimply returned,
otherwise it usesi nt er f ace- r euse- p to decide if any instance of the class can be reused, in which caseit reinitializes it
usingreinitialize-interface andreturnsit.

find-interface usesl ocate-interface tofindaninterface, and if succeedsit activatesit, otherwise it creates a new
interface. fi nd-i nt er f ace isused by the LispWorks IDE when starting the tools.

Youcancal col | ect-interfaces toaobtainalist of displayed interfaces of a specific class.

It is possible to switch off locating of interfaces by calling (setf reuse-interfaces-p). Thiscauses
| ocat e-i nterfacetoawaysreturnni |, and hencefi nd-i nt er f ace will always create new interface. Note: The IDE
uses a different switch for its own interfaces, which can be set from the Preferences... dialog.

7.7.5 Quitting applications
To make an application quit when one of its CAPI windows is closed, make that window's destroy-function call qui t .

To arrange for adelivered CAPI application to quit automatically when all of its CAPI windows are closed, call del i ver
with: qui t - when- no-wi ndows t.

7.7.6 Preserving information when saving an IDE session

You can save a session in the LispWorks IDE, either programmatically by hcl : save- current - sessi on or interactively
from the Tools menu. If you integrate your own interfaces with the LispWorks I DE and want associated information to be
preserved over session saving, you can definei nt er f ace- pr eser ve- st at e methods on your own interfaces. You can also
usei nt er f ace- preservi ng- st at e- p inthe destroy-callback and i nt er f ace- di spl ay methods to check for any

97

7 Programming with CAPI Windows

destroying/displaying that is performed as part of session saving (as opposed to the normal di spl ay/dest r oy cycle).

98

8 Creating Menus

You can create menus for an application using the menu class. For more control you can also use menu- conponent and
nmenu-item

menu, nenu- conponent and menu- i t emall inherit from the cal | backs class, which defines callbacks that are called
when the user selects an item in the menu. They also inherit from the menu- obj ect class, which adds some menu-specific
callback functionality, title and enabling.

You should make sure you have defined thet est - cal | back and hel | o functions before attempting any of the examplesin
this chapter. Their definitions are repeated here for convenience.

(defun test-call back (data interface)
(di spl ay-nessage "Data ~S in interface ~S"
data interface))

(defun hello (data interface)
(declare (ignore data interface))
(di spl ay-nessage "Hello World"))

The menus in the menu bar of awindow are defined by the : menu- bar of theinterface. Seedefi ne-i nterf ace, the

i nterface initarg: nenu- bar-itens, and 11.3.1 Adding menus. The macrodef i ne-i nt er f ace allowsyou to define
menus by specifying the arguments that you would passto cl : make- i nst ance if you made them explicitly. The actual
menus in the menu bar have the properties described in this chapter.

8.1 Creating a menu

A menu can be created in much the same way as any of the CAPI classes you have already met.

Enter the following into a Listener:

(setqg nenu
(make-instance ' nmenu
:title "Foo"
citems ' ("One" "Two" "Three" "Four")
:cal I back 'test-call back))

(setq interface
(make-instance 'interface
:menu-bar-itens (list nenu)))
(display interface)

This creates a CAPI interface with amenu, Foo, which contains four items. Choosing any of these items displays its
arguments. Each item has the callback specified by the: cal | back keyword.
A submenu can be created simply by specifying a menu as one of the items of the top-level menu.

Enter the following into a Listener:

(setqg subnenu
(make-instance ' nmenu
;title "Bar"
citens ' ("One" "Two" "Three" "Four")

99

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

8 Creating Menus

:cal I back 'test-callback))
(setqg nenu
(make-instance ' nmenu
‘title "Baz"
citens (list 1 2 subnmenu 4 5)
:cal I back 'test-callback))
(contai n nenu)

This creates an interface which has a menu, called Baz, which itself contains five items. The third item is another menu, Bar,
which contains four items. Once again, selecting any item returns its arguments.

Menus can be nested as deeply as required using this method.

Note: In general you must not use a CAPI menu object in multiple different places in menu bar(s) at the sametime. Thisis
because menu bar menus are created when the interface is displayed, and (like any other CAPI pane) cannot be used
elsewhere at the sametime. Supply distinct instances instead. The one exception is popup menus, which are actually created
only when they are on the screen, so they can be used repeatedly and in different places.

8.2 Presenting menus

The most common way of presenting menusisin the menu bar. Thisis done by putting the menus in the menu bar of an
interface, typically by using : menu- bar indefi ne-interface. Itisaso possible to set the menu bar dynamically using
(setf interface-nmenu-bar-itens).

On Cocoa, you may want to define the application menu, the menus that are shown when no interface is active, and maybe a
Dock context menu. For these, you will need to define your own subclass of cocoa- def aul t - appl i cati on-i nterf ace,
and useset - appli cati on-i nt er f ace on aninstance of thisclass. See entry for

cocoa-defaul t-application-interface.

Pane-specific menus are invoked automatically by the system for the appropriate user gesture. See 8.12 Popup menus for
panesfor afull discussion of the mechanism that finds the menu to raise.

Thereisalso aspecia pane popup- menu- but t on, which raises a menu when clicked.

In addition, you can raise amenu programmatically by calling di spl ay- popup- nenu.

8.3 Grouping menu items together

The menu- conponent classlets you group related items together in amenu. This allows similar menu items to share
properties, such as callbacks, and to be visually separated from other items in the menus. Menu components are actually
choices.

Here is a simple example of a menu component. This creates amenu called items, which has four items. Menu 1 and Menu 2
are ordinary menu items, but Item 1 and Item 2 are created from a menu component, and are therefore grouped together in
the menu.

(setqg conponent (nake-instance 'mnenu-conponent
Citens '("item 1" "item 2")
cprint-function 'string-capitalize
:cal | back 'test-call back))

(contain (nmake-instance 'nmenu
ititle "ltens”
items (list "nenu 1" component "nenu 2")
cprint-function 'string-capitalize
:cal I back ' hell 0)
:width 150
: hei ght 0)

100

8 Creating Menus

A menu

% Container E”E|E|

Menu 1

Item 2

Menu 2

Menu components allow you to specify, viathe: i nt er act i on keyword, selectable menu items — either as multiple-
selection or single-selection items. Thisislike having radio buttons or check boxes as itemsin amenu, and is a popular
technique among many GUI applications.

The following example shows you how to include a panel of radio buttonsin a menu.

(setqg radi o (nake-instance ' nenu-conponent
:interaction :single-selection
items ' ("This" "That")
:cal l back 'hello))
(setg comands (nake-instance 'nenu
‘title "Commands"
titems
(list "Command 1" radio "Conmand 2")
:cal | back 'test-call back))

(contai n comrands)

Radio buttons included in amenu

" Container [Z”E”E'

Cammands

Zommand 1

v That

Command 2

The menu items This and That are radio buttons, only one of which may be selected at atime. The other menu items are just
ordinary commands, as you saw in the previous examples. Note that the CAPI automatically groups the items which are parts
of amenu component so that they are separated from other items in the menu.

This example aso illustrates the use of more than one callback in a menu, which of course is the usual case when you are
developing real applications. Choosing either of the radio buttons displays one message on the screen, and choosing either
Command1 or Command2 returns the arguments of the callback.

Checked menu items can be created by specifying : mul ti pl e- sel ecti ontothe: i nteracti on keyword, asillustrated
below.

101

8 Creating Menus

(setq letters (nmmke-instance 'nmenu-conponent
cinteraction :nultiple-selection
itenms (list "Al pha" "Beta")))

(contain (nmake-instance 'nenu
ititle "G eek”
citens (list letters)
:cal I back 'test-call back))

An example of checked menu items

Note how the items in the menu component inherit the callback given to the parent, eliminating the need to specify a separate
callback for each item or component in the menu.

Within a menu or component, you can specify alternatives for amain menu item that are invoked by modifier keys. See 8.8
Alternative menu items for more information.

8.4 Creating individual menu items

Thenmenu- i t emclass lets you create individual menu items. These items can be passed to menu-components or menus via
the: i t ens keyword. Using this class, you can assign different callbacks to different menu items.

(setqg test (make-instance 'nenu-item
‘title "Test"
:cal I back 'test-call back))

(setqg hello (nake-instance 'nenu-item
(title "Hello"
:call back 'hello))

(setqg group (nake-instance 'nenu-conponent
items (list test hello)))

(contain group)

Individual menu items

“w Container |Z||E|E|

Remember that each instance of a menu item must not be used in more than one place at atime.

102

8 Creating Menus

8.5 The CAPI menu hierarchy

The combination of menu items, menu components and menus can create a hierarchical structure as shown schematically in
A schematic example of a menu hierarchy and graphically in An example of a menu hierarchy. This menu has five
elements, one of which isitself amenu (with three menu items) and the remainder are menu components and menu items.
Items in a menu inherit values from their parent, allowing similar elements to share relevant properties whenever possible.

(defun menu-item nanme (data)
(format nil "Menu lItem ~D' data))

(defun subnenu-item nanme (data)

(format nil "Submenu Item ~D' data))
(contain
(make-instance
"menu
titems
(list
(make-instance ' menu-conponent
titems ' (1 2)
sprint-function 'menu-item nane
)
(make-instance ' menu-conponent
titems
(list 3
(make-i nstance
' menu

(title "Submenu"
citems ' (1 2 3)
sprint-function
" subnenu-item nane))
sprint-function 'menu-item nane)
(make-instance 'nenu-item
:data 42))
sprint-function 'nmenu-item nane))

A schematic example of a menu hierarchy

103

8 Creating Menus

An example of amenu hierarchy

“w Container

Menu Ikem 1
Menu Ikem &

Menu Ikem 3

y Therm 42 Subrenu Ikem 2
=T e Submenu Ikem 3

8.6 Mnemonics in menus

On Microsoft Windows and GTK+ you can control the mnemonics in menu titles and menu items using the initargs
: menoni ¢, : menoni c-title (andif necessary : menoni c- escape).

This example illustrates the various ways you can specify the mnemonicsin amenu:

(contain
(make-instance

"'menu

:menonic-title "Mnenonics"

Citens

(list

(make-instance 'nenu-item
:data "Menu Item 1"
:menoni c #\ 1)

(make-instance 'nenu-item
:data "Menu |Item 2"
:menoni ¢ 10)

(make-instance 'nenu-item
:menonic-title "Menu Item &3")

(make-instance 'nenu-item
:menonic-title "Menu Item!4"
: Mmenoni c- escape #\!)

(make-instance 'nenu-item
:data "Menu | tem 5"
:menoni ¢ :defaul t)

(make-instance 'nenu-item
:data "Menu I tem 6"
:menoni ¢ :none))))

On Microsoft Windows you may need to press Al t to make the underlines appear.

This example shows two ways to specify menu title mnemonics within the : menus option of adef i ne-i nt er f ace form.
Thefirst way, using : rmenoni c, isthe most natural:

(capi:define-interface menu-bar-menonics ()
0
(: panes (panel capi:text-input-pane
:visible-mn-width 200))
(:layouts (main-Iayout
capi : col um-| ayout ' (panel)))
(: menus

104

8 Creating Menus

(menul "Menu One"
(("Foo"))
:menonic #\ 0

(menu2 nil

(("Bar"))

:menonic-title "Menu &Two"))
(: menu-bar menul nenu2))

(capi: di splay (nmeke-instance 'nmenu-bar-nmmenonics))

8.7 Accelerators in menus

To define an accelerator key for a menu command, supply the initarg accelerator to the nenu-i t em Seenenu-i t emfor the
details.

8.7.1 Standard default accelerators

On Microsoft Windows and GTK+, by default a standard accelerator is added to amenu item if its title matches a standard
menu command. The standard accelerators are:

Edit > Copy Crl+C
Edit > Cut Crl+X
Edit > Find... Crl+F
Edit > Paste crl+Vv
Edit > Redo Crl+y
Edit > Replace... Crl+H
Edit > Select All Crl+A
Edit > Undo Crl+z
File > Close Crl+W
File > Exit Crl+Q
File > New Crl+N
File > Open... crl+0
File > Print... Crl+P
File > Save Crl+S
Works > Refresh F5

8.8 Alternative menu items

Menus can include "dternative" items, which are invoked if some modifiers are held while selecting the "main” item. The
modifiers are defined by the: accel er at or initarg of the item, which also allows the item to be invoked by a keyboard
accelerator key if specified. On Cocoa, the title and accelerator of the alternative item appear when the appropriate
modifier(s) are pressed.

A menu item becomes an alternative to an immediately previous item when it is made with initargs: al t er nati ve t. Each
alternative item must have the same parent asits previousitem. That is, they are within the same menu and menu component,

105

8 Creating Menus

as described in 8.3 Grouping menu itemstogether. More than one alternative item can be supplied for a given main item by
putting them consecutively in the menu. The main item is the item preceding the first alternative item.

The main item and its alternative items forms a group of items. The accelerators of al itemsin the group must consist of the
same key, but with different modifiers. If there isno need for an accelerator key, the main item should not have an accelerator
and the alternative items should have accelerators with Nul | asthe key, for example™ Shi ft - Nul | .

When the menu is displayed, only one item from the group will be shown. On Windows, GTK+ and Motif the main item is
always displayed. Cocoa displays the item with the least number of modifiersinitialy, so to get a consistent cross-platform

behavior, the main item should have the least number of modifiers. On Cocoa, pressing modifier keys that match alternative
items changes the title and accel erators displayed for the item.

When the user selects an item with the modifiers pressed, the appropriate alternative item is sel ected.

To makeanenu- i t eman aternative item, passtheinitarg : al t er nat i ve t and asuitable value for the initarg
:accel erator.

There is an example illustrating alternative menu itemsin:

(exanple-edit-file "capi/el enents/accel erators")

Note: Accelerators of alternative items do not work on Motif.

8.9 Disabling menu items

A function can be specified viathe : enabl ed- f uncti on initarg (inherited from menu- obj ect), that determines whether or
not the menu, menu item, or menu component is enabled. By default, a menu object is always enabled.

Consider the following example:

(defvar *on* nil)

(contain
(make-instance ' nenu
Citens
(list
(make-i nstance
"menu-item
:title "Foo"
: enabl ed-function
(lanbda (nenu) *on*))
(make-i nstance
"menu-item
ititle "Bar"))))

A menu with a disabled menu item

Menu

Changing the value of *on* betweent and ni | inthe Listener, using set g, resultsin the menu item changing between the

106

http://www.lispworks.com/documentation/HyperSpec/Body/s_setq.htm

8 Creating Menus

enabled and disabled states.

8.9.1 Dialogs and disabled menu items

By default, items in the menu bar menus and sub-menus are disabled while a dialog is on the screen on top of the active
window. You can override this by passing a suitable value for the nenu- i t eminitarg : enabl ed- f uncti on-f or - di al og.

8.10 Menus with images
You can add images to menu items. Supply the: i mage- f unct i on initarg when creating the menu, asillustrated in:
(exampl e-edit-file "capi/el ements/ nenu-w th-innages")

Note: on some platforms support for images in menusis limited to menu items without text and/or images without
transparency. If pane- support s- menus- wi t h-i nages returnstrue, then images are fully supported in menus.

8.11 The Edit menu on Cocoa

This section is only applicable to LispWorks for Macintosh.

LispWorks for Macintosh adds aminimal Edit menu to all CAPI interfaces when running in the LispWorks IDE, which
makes the edit gestures Command+V, Command+C and Cormand+X work in every interface displayed in the LispWorks IDE.

However, to implement these gestures in your CAPI/Cocoa runtime application, you must include an Edit menu explicitly in
your interface definition, as described in 11.3.1 Adding menus.

Hereisaminimal example of an Edit menu:

(edit-nenu
"Edit"
(("Cut" :callback 'capi:active-pane-cut
:enabl ed-function 'capi:active-pane-cut-p)
(" Copy" :callback 'capi:active-pane-copy
: enabl ed-function 'capi:active-pane-copy-p)
("Paste" :callback 'capi:active-pane-paste
: enabl ed-function 'capi:active-pane-paste-p))
:cal |l back-type :interface)

To remove the automatic menu when running your program in the LispWorks IDE, passtheinitarg : aut o- menus ni | when
making the interface.

Note that, in the presence of an application interface (see cocoa- def aul t - appl i cati on-i nt erf ace), aCAPI interface
with no menus of its own and with : aut o- menus ni | usesthe menu bar from the application interface.

8.12 Popup menus for panes

The CAPI triesto display a popup menu for a pane when the : post - nenu gesture is entered by the user (mouse-right-click
or Shi f t +F10 on Microsoft Windows, GTK+ or Motif, control-click on Cocoa). See below for the special case of

out put - pane.

It first triesto get amenu for the pane. There are two mechanisms by which it can get amenu: which istried depends on the
value of pane-menu.

107

8 Creating Menus

1. If the pan€'sinitarg pane-menuisnot : def aul t inthecall to make-i nst ance, thenitsvalueisused. If thevalueisa
function or afbound symboal, it is called with four arguments. the pane, data (thisisthe selected object if thereisa
selection), x, y. It should return amenu. If it is not afunction or afbound symboal, it should be a menu, which is used
directly. The: pane- menu mechanism is useful when the menu needs to be dependent on the location of the mouse
inside the pane, or when each pane requires a unique menu. In other cases, the other mechanism is more useful.

2. If pane-menu is: def aul t (thisisthe default value), CAPI calls the generic function nake- pane- popup- menu with
two arguments. the pane and itsinterface. The result should be a menu.

If the chosen mechanism does not produce a menu, the CAPI does not do anything in response to : post - nenu.

The system definition of make- pane- popup- menu calls pane- popup- nenu- i t ens with the pane and the interface, and if
this returns anon-nil list, it calls make- menu- f or - pane to make the menu. You can define nake- pane- popup- nenu
methods that specialize on your pane or interface classes, but in most cases it is more useful to add methods to

pane- popup- menu-i t ens. nake- menu- f or - pane isused to generate the menu, and it makes the menu such that by
default al setup callbacks are done on the pane itself, rather than on the interface. make- pane- popup- menu is useful when
the application needs a menu with the same items as the items on the popup menu, typically to add it to the menu bar.

In out put - pane, you control the input behavior using the input-model. By default, the system assigns: post - menu and
: keyboar d- post - menu (Shi f t +F10) to a callback that raises a menu as described above, but your code can override this
in the input-model.

Note: Accelerators areignored in a pane-menu.

8.13 Displaying menus programmatically

You can programmatically display a menu by using di spl ay- popup- nenu (which isused internally to raise the context
menu). The menu that di spl ay- popup- menu displays can be any properly constructed nenu object, for example:

(defun popup-ani nal -nenu (ani mal interface)
(let* ((items (list (string-append
"Get a picture of a " aninal)
(string-append
"Send a postcard to " animal)))
(menu (maeke-instance 'capi:nenu :itens itens)))
(capi : di spl ay- popup-nenu menu :owner interface)))

(capi:contain (nmake-instance 'capi:|list-panel
Citens
1l (Ilzebr aII Ildogll " parrot II)
:sel ection-cal | back
' popup- ani mal - nrenu))

Click on an item to see the menu.

You can use popup- nenu- f or ce- popdown to force a popup menu down (that is, make it disappear). Thisis useful for
writing scripts that emulate user interactions.

8.14 The Application menu

This section is only applicable to LispWorks for Macintosh.

The CAPI includes an interface to the Application menu supporting standard macOS behaviorsin your delivered LispWorks
for Macintosh applications.

See these examples:

108

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

8 Creating Menus

(exanple-edit-file "capi/applications/cocoa-application")
(example-edit-file "delivery/ macos/ singl e-w ndow application")
(example-edit-file "delivery/ macos/ nultiple-w ndow application")

and the manual entries in the reference section, starting with cocoa- def aul t - appl i cati on-i nterface.

109

9 Adding Toolbars

You can add atoolbar for an interface using thei nt er f ace initarg : t ool bar - i t ens. Thiscreates atoolbar which is
automatically positioned correctly in the window, which the user can customize, and which has platform-standard behavior
such as folding on Cocoa. Such atoolbar isreferred to as an interface toolbar.

You can also create toolbars using the t ool bar class explicitly, and arrange them using layouts in the same way as other
elements. This approach is used to implement buttons on at ext - i nput - pane as seen in various toolsin the LispWorks
IDE such as the Class Browser, but you should note that it has some disadvantages. For more information see 9.9 Non-
standard toolbars.

Toolbar buttons typically have images. The examplesin this chapter use three standard image identifiers. To run the example
code that follows, first evaluate this form:

(setqg file-images (list :std-file-new
:std-file-open
:std-file-save))

You al so should define these callback functions before attempting any of the examplesin this chapter:

(defun test-callback (data interface)
(di spl ay-nessage "Data ~S in interface ~S"
data interface))

(defun print-callback (data interface)
(declare (ignore data interface))
(di spl ay-nessage "Print Sonething"))

(defun hello (data interface)
(declare (ignore data interface))
(di spl ay-nessage "Hello World"))

9.1 Creating a toolbar button
To create atoolbar button you can do:

(setf print-button
(make-instance 'tool bar-button
:image :std-print
:text "Print Sonething"
> name :print-sonething))

You should supply image, text and name. Thisis because the user can customize the toolbar such that one (or all) of these
appear, as described in 9.6 M odifying toolbars.

A t ool bar - but t on cannot be displayed directly. To includeit in an interface toolbar, do:

(di spl ay
(make-instance
"interface
:toolbar-itenms (list print-button)))

110

9 Adding Toolbars

9.2 Creating a toolbar with several buttons
L et us create three more buttons;

(setf file-buttons
(loop for image in file-inmages

col | ect

(make-instance 'tool bar-button
i mage i nage
:nanme i nmage
text

(string-capitalize
(substitute #\ Space #\-
(string image))))))

and then include them along with the print button defined in 9.1 Creating a toolbar button:

(di spl ay
(make-instance
"interface
:tool bar-itens (append file-buttons (list print-button))))

Remember that each instance of atoolbar button must not be used in more than one place at atime.

It is possible to include to include toolbar buttons which are not initially displayed, but which are available for the user to
add. For the details, see 9.6 M odifying toolbars.

9.2.1 Grouping toolbar buttons

Thet ool bar - conponent class lets you group related buttons together in atoolbar. This allows similar buttons to:

* Share properties such as callbacks.
» Bevisually separated from other buttonsin the toolbar.
* On Microsoft Windows, form a separately dockable group of items.
Toolbar components are actually choices similar to button panels. By default, their interactionis: si ngl e- sel ecti on.

We can amend our example using toolbar components to group the file buttons separately from the print button:

(di spl ay
(make-instance
"interface
:tool bar-items (Ilist
(make-instance 'tool bar-conmponent
sitens file-buttons)
(make-instance 'tool bar-conmponent
sitens (list print-button)))
2visible-mn-width 200))

9.2.2 Implicitly-created buttons

A t ool bar - conponent may contain arbitrary Lisp objects asitems. For each such object, atoolbar button is automatically
created, using the appropriate elements of the component's images, hames, texts and tooltips lists.

(di spl ay
(make-instance
"interface

111

9 Adding Toolbars

:tool bar-itens
(list (make-instance 'tool bar-conponent
citens file-inmges
cimages file-imges
:nanes file-inmges
‘texts
(mapcar 'string-capitalize file-inmages)
;tooltips
(mapcar 'string-downcase fil e-inmages)
:sel ection-cal | back
(l ambda (data interface)
(di spl ay- nessage "cal |l back data ~S" data))

))))

Rather than selection-callback above, you could supply callbacks to specify callback functions for each button.

9.3 Specifying the image for a toolbar button

There are severa ways to supply the image for atoolbar button, including direct specification of ani nage object. The
simplest approach isto use a symbol which isregistered as an image identifier, including the pre-registered standard images,
asin the preceding examples. For details of this and the other way to supply images, seet ool bar - but t on.

You can, if desired, supply an aternative image which is displayed while the button isselected ina: nul ti pl e- sel ecti on
component (see 9.7 Advanced toolbar features), using the initarg selected-image.

9.3.1 Specifying images for a group of toolbar buttons

Inat ool bar - conmponent it is possible to specify images for the buttons by supplying ani nage- set as the default-image-
set, along with integers in the images initarg specifying the index for the image of each button:

(di spl ay
(make-instance
"interface
:tool bar-itens
(list
(make-instance
' t ool bar - component
items ' (1 2) :nanes '(1 2) :texts '("One" "Two")
images ' (0 1)
:def aul t-i mage- set
(make- general -i mage- set
i mage-count 5
id
(gp: read- ext ernal -i mage
(example-file
"capi/ el enent s/ i mages/t ool bar-radi o-i mages. bmp")
:transparent-color-index 7))))))

9.4 Specifying toolbar callbacks
Supply the selection-callback initarg to specify a callback for atoolbar button:

(setf print-button
(make-instance 'tool bar-button
cimage :std-print
ctext "Print File"
:sel ection-call back 'print-call back))

112

9 Adding Toolbars

You can aso supply selection-callback for at ool bar - conponent . This specifies the same callback function for each
button in the component.

To specify different callback functions for each button in at ool bar - conponent , either make the buttons explicitly as
above, or supply the callbacks initarg.

9.4.1 Sharing toolbar callbacks with menu items
Where you want atoolbar button to perform the same command as a menu item, usethe: r emapped initarg.

remapped should match (by cl : equal p) the name of the mrenu-i t ent

(di spl ay
(make-instance
"interface
> menu-bar-itens
(list
(make-instance ' nenu
itens
(list

(make-instance 'nenu-item
:nane 'say-hello
:data "Hello"
: cal | back
"test-call back))))
:tool bar-itens
(list
(make-instance 'tool bar-button
simage :std-file-new
:remapped 'say-hello))))

9.4.2 Other types of callback for a toolbar button

You can, if desired, supply aretract-callback which is called when the button isdeselected ina: nul ti pl e- sel ecti on
component. You can also make a button display a dropdown menu nearby. See 9.7 Advanced toolbar featuresfor the
details.

9.5 Specifying tooltips for toolbar buttons

There are two ways to implement tooltipsin an interface toolbar:

» Group the buttonsin at ool bar - conponent and supply the: t ool ti ps initarg. tooltips should be alist containing a
string for each button in the component. For an example of this see:

(exanpl e-edit-file "capi/applications/sinple-synbol -browser")

 Alternatively you can implement atooltip for each t ool bar - but t on exactly asfor collections and so on as described in
3.12.2 Tooltipsfor collections, elements and menu items. Supply help-key for thet ool bar - but t on and help-
callback for thei nt er f ace, asfollows:

(setf print-button
(make-instance 'tool bar-button
;image :std-print
:text "Print Sonething"
: hel p-key 'fo0))

(defun do-help (interface pane type hel p-key)

113

http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm

9 Adding Toolbars

(when (eq type :tooltip)
(when (eq hel p-key ' foo)
"Tool tip help")))

(di spl ay
(make-i nstance
"interface
:tool bar-itens
(list print-button)
- hel p-cal | back ' do-hel p))

9.6 Modifying toolbars

An interface toolbar can be customized by the user. It can aso be manipulated programmatically.

9.6.1 User-customization of toolbars

The user can change toolbar state, that isthe set of visible toolbar items, their order and their appearance. The user doesthis
viathe context menu on the toolbar. This menu includes commands to display the button images or titles (or both), and a
Customize command to alter the set of items, including separators and spaces, and the order in which the items appear.

The toolbar context menu

_ustorize

Image

Title

Image And Title

Image And Title Horizonkal
v Defaulk

To raise the customization dialog programmatically, call i nt er f ace- cust omi ze-t ool bar.

You can supply a default toolbar state in the initarg default-toolbar-states. Thisis used when the user presses the Default
button in the Customize Toolbar dialog. You can read thisvalue withi nt er f ace- def aul t - t ool bar - st at es.

You can control the initial toolbar state by supplying the initarg toolbar-states.

9.6.2 Changing an interface toolbar programmatically
You can read and change the tool bar-states slot programmatically. Its value should be atoolbar state plist.

Be aware that toolbar-states may not be the same each time you read it, because the user may have changed it as described in
9.6.1 User -customization of toolbars.

For the details, see the accessor i nt er f ace-t ool bar - st at e.

9.7 Advanced toolbar features

114

9 Adding Toolbars

9.7.1 Toolbar items other than buttons with images

A t ool bar - conponent , at ool bar or theinterface toolbar may also contain CAPI panes as items, which will appear
within the toolbar. Thisistypically used witht ext - i nput - pane, opt i on- pane, andt ext - i nput - choi ce. Each pane
should have toolbar-title (see si npl e- pane) specified, to provide the text that is shown for the toolbar item:

(di spl ay
(make-instance
"interface
:toolbar-items (Ilist

(make-instance 'tool bar-conmponent
citens (list print-button))

(make-instance 'text-input-pane
stext "Text |nput Pane"
cvisible-min-width :text-width
:toolbar-title "Text Input Pane")

(make-instance 'text-input-choice
citemns
(list "Text Input Choicel"

"Text Input Choice2")

cvisible-min-width :text-width
:toolbar-title "Text |nput Choice")

(make-instance 'option-pane
citemns
(list "Option Panel"

"Option Pane2")

cvisible-min-width :text-width
:toolbar-title "Option Pane")

)
:visible-mn-wdth 500))
Note: Some platforms may not recommend placing text input panes and so on in atoolbar. You may wish to consult the
appropriate user interface guidelines before adding such atoolbar in your application.

Note: Eacht ool bar - but t on or si npl e- pane in thetoolbar-items list (including those within at ool bar - conponent)
should have anamethat isnot cl : egl to any other item in the list. These names are needed to support : i t ens in
i nterface-tool bar-stateandthe:tool bar- st at es initarg.

Toolbar buttons can display text, which should be in the data or text slot inherited fromi t em You can specify whether text
and/or imageisdisplayed, using : di spl ay inthe toolbar-statesinitarg ori nt er f ace-t ool bar - st at e.

9.7.2 Alternative interaction in a toolbar

You can make at ool bar - conponent with interaction: mul ti pl e- sel ect i on and then each of its buttons may have a
retract-callback which is called when the user clicks a selected button to deselect it.

9.7.3 Toolbar buttons with menus

You can add a menu to atoolbar button, which is displayed via a separate smaller button next to the main button. To do this,
supply dropdown-menu or dropdown-menu-function. Seet ool bar - but t on for the details.

9.8 Disabling toolbar items

To disable atoolbar button you can set its enabled slot to ni | . Alternatively supply it with a suitable enabled-function. For
more information about this, seet ool bar - obj ect .

You can disable and enable at ool bar - conponent in the same way.

115

http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm

9 Adding Toolbars

9.9 Non-standard toolbars

You can create toolbars using thet ool bar class explicitly, and arrange them like other elements, using layouts. This
approach differs from using an interface toolbar as described in the preceding sections of this chapter. Note that, while it
alows you some flexibility this approach can produce non-standard appearance, does hot support user-customization, and
does not support folding on Cocoa. Other than this, non-standard toolbars support all the features described in the preceding
sections of this chapter, and additionally:

* You can disable and enable at ool bar using its enabled or enabled-function dot.

» There are two further options for a button with a dropdown menu.

It can be merged with the separate smaller button such that it displays only the menu and does not respond to its selection
-callback.

Alternatively, it can display the menu only after being pressed down for awhile, and respond to the selection-callback
when pressed only briefly. In this case the smaller button does not appear.

Seet ool bar - but t on for the details.

* You can make atoolbar button which displaysani nt er f ace (and does not respond to its sel ection-callback) by
supplying popup-interface.

Thereisan example here:

(exampl e-edit-file "capi/el ements/tool bar")

9.9.1 Changing a non-standard toolbar dynamically

The best way to change a non-standard toolbar isto use aswi t chabl e- | ayout . Includeat ool bar instance in each of two
or more child layouts, of which only oneisvisible at atime.

There is an example here:

(exanple-edit-file "capi/layouts/switchable")

116

10 Dialogs. Prompting for Input

A dialog isawindow that is displayed transiently to interact with the user. While adialog ison screeniit is placed in front of
other windows and user input is directed to it. Dialogs are used for interactions that are relatively rare, and so do not deserve
a permanent place on the screen, and for alerting the user about something that they need to be aware of. For example, when
an application needs to know where to save afile, it typically prompts with afile dialog. If there is aproblem during saving
thefile, it would normally aert the user by some other dialog.

Dialogs can aso be cancelled, meaning that the application should cancel the current operation. In order to let you know
whether or not the dialog was cancelled, CAPI dialog functions always return two values. Thefirst value is the return value
itself, and the second valueist if the dialog returned normally and ni | if the dialog was cancelled.

On Caocoa you can control whether a CAPI dialog is application-modal or window-modal. In the latter case the user can
interact with the application's other windows while the dialog is on screen.

The CAPI provides both alarge set of predefined dial ogs and the means to create your own. This chapter takes you through
some example uses of the predefined dialogs, and then shows you how to create custom built dialogs.

The last section briefly describes away to get input for completions via a special non-modal window.

10.1 Some simple dialogs

The simplest form of dialog is a message dialog, which is used to inform the user of some event, typically the end of along
operation. You can usedi spl ay- nessage for this.

(di spl ay- nessage
"Fini shed conputing the answer to everything: ~a" 41.97)

A message dialog

LispWorks 7.0.0 H

o Finished computing the answer to everything: 41.97

..

When you want to ensure that the messages dialog is associated with (that is, owned by) a specific pane, you can use
di spl ay- nessage- f or - pane. Thereisaso pr onpt - wi t h- nessage, which can be used for displaying the messagein a
window-modal sheet on Cocoa.

(di spl ay- nessage
"This function is ~S"
' di spl ay- nessage)

117

10 Dialogs: Prompting for Input

A second message dialog

o This function is DISPLAY-MESSAGE

Another smple dialog asks the user a question and returnst or ni | depending on whether the user has chosen yes or no.
Thisfunctionisconfirmyes-or-no.

(confirmyes-or-no
"Do you own a pet?")

A message dialog prompting for confirmation

For more control over such adialog, use the function pr onpt - f or - confi r mati on.

10.2 Prompting for values

The CAPI provides a number of different dialogs for accepting values from the user, ranging from accepting strings to
accepting whole Lisp formsto be evaluated.

10.2.1 Prompting for strings

The simplest of the CAPI prompting dialogsis pr onpt - f or - st r i ng which returns the string you enter into the dialog.

(prompt-for-string
"Enter a string:")

118

10 Dialogs: Prompting for Input

A dialog prompting for astring

¥ LispWorks 7.... El

Enter a string:

QK Cancel

Aninitial value can be placed in the dialog by specifying the keyword argument : i ni ti al - val ue.

10.2.2 Prompting for numbers

The CAPI also provides a number of more specific dialogs that allow you to enter other types of data. For example, to enter
an integer, use the function pr onpt - f or - i nt eger . Only integers are accepted as valid input for this function.

(pronpt-for-integer
"Enter an integer:")

There are a number of extra options which allow you to specify more strictly which integers are acceptable. Firstly, there are
two arguments: i n and : max which specify the minimum and maximum acceptable integers.

(pronpt-for-integer
"Enter an integer in the inclusive range [10,20]:"
:mn 10 :max 20)

If this does not provide enough flexibility you can specify a function that validates the result with the keyword argument
: ok- check. Thisfunction is passed the current value and must return non-nil if itisavalid result.

(pronpt-for-integer
"Enter an odd integer:"
: ok- check ' oddp)

Try aso the function pr onpt - f or - nunber .

10.2.3 Prompting for an item in a list

If you would like the user to select an item from alist of items, the function pr onpt - wi t h-1i st should handle the majority
of cases. The simplest form just passes a list to the function and expects a single item to be returned.

(prompt-with-1list
"(:red :yellow :blue)
"Select a color:")

119

10 Dialogs: Prompting for Input

A dialog prompting for a selection from alist

Select a color:

RED
YELLOW
BLUE

You can also specify the interaction style that you would like for your dialog, which can be any of the interactions accepted
by achoice. The specification of the interaction style to this choice is made using the keyword argument : i nt er act i on:

(pronpt-with-1list

"(:red :yellow :blue)

"Select a color:"

cinteraction :nultiple-selection)

By default, thedialog is created using al i st - panel to display theitems, but the keyword argument : choi ce- cl ass can
be specified with any choice pane. Thus, for instance, you can present alist of buttons.

(pronmpt-with-1list

"(:red :yellow :blue)

"Sel ect a color:"

interaction :nultiple-selection
:choi ce-cl ass ' button-panel)

Selection from a button panel

Select a color:
RED [|YELLOW [|ELUE

Finally, as with any of the prompting functions, you can specify additional arguments to the pane that has been created in the
dialog. Thusto create a column of buttons instead of the default row, use:

(pronpt-with-1Iist
"(:red :yellow :blue)

120

10 Dialogs: Prompting for Input

"Select a color:"

sinteraction :nultiple-selection
:choi ce-cl ass ' button-panel

: pane- args

"(:layout-class colum-1Iayout))

Selection from a column of buttons

Select a color:
RED

] YELLOW
[_]BLUE

oK

Thereis amore complex examplein:

(exanpl e-edit-file "capi/choicel/ pronpt-wth-buttons")

10.2.4 Prompting for files

To prompt for afile, use the function pronpt -for-file:

(prompt-for-file
"Enter a file:")

You can also specify a starting pathname:

(prompt-for-file
"Enter a filenane:"
:pathnane (get-tenp-directory))

121

10 Dialogs: Prompting for Input

Selection of afile

Enter a filename:

3 All Users WINDOWS

Ty ntuser.dak, LoG
ﬁ ntuser.dat
My Recent application Daka
D acuments IC5)Skart Menu
)Desktop
|01 5hared Documents
DRM
Templates

IC)Favorites

by Documents

File name:

Py Metwark, Files of type: Al Files 7.7

Try aso thefunction pronpt -for-directory.

10.2.5 Prompting for fonts

To obtain agp: f ont object from the user call pr onpt - f or - f ont .

10.2.6 Prompting for colors

To obtain a color specification from the user call pr onpt - f or - col or.

10.2.7 Prompting for Lisp objects

The CAPI provides a number of dialogs specifically designed for creating Lisp aware applications. The smplest isthe
function pr onpt - f or - f or mwhich accepts an arbitrary Lisp form and optionally evaluatesit.

(prompt-for-form
"Enter a formto evaluate:"
revaluate t)

122

10 Dialogs: Prompting for Input

(pronpt-for-form
"Enter a form (not evaluated):"
;evaluate nil)

Another useful function ispr onpt - f or - synbol which prompts the user for an existing symbol. The simplest usage accepts
any symbol, as follows:

(pronpt -for-synbo
"Enter a synbol:")

If you have alist of symbols from which to choose, then you can pass pr onpt - f or - synbol thislist with the keyword
argument : synbol s.

Finally, using : ok- check you can accept only certain symbols. For example, to only accept a symbol which names a class,
use:

(prompt -for-synbo
"Enter a class-nane synbol :"
: ok-check #' (lanbda (synbol)
(find-class synmbol nil)))

Cocoa programmers will notice that the dialog sheet displayed by this form prevents input to other LispWorks windows while
itisdisplayed. For information about creating dial og sheets which are not application-modal, see 10.3 Window-modal
Cocoa dialogs.

10.3 Window-modal Cocoa dialogs

By default, CAPI dialogs on Cocoa use sheets which are application-modal. This means that the application does not allow
the user to interact with its other windows until the sheet is dismissed.

This section describes how to create CAPI dialogs which are window-modal on Cocoa. Thisis done with portable code, so
Windows, GTK+ and Motif programmers may wish to code their CAPI dialogs as described in this section, which would ease
afuture port to the Cocoa GUI.

10.3.1 The :continuation argument

All CAPI dialog functions take a keyword argument continuation. Thisisafunction which is called with the results of the
dialog.

You do not need to construct the continuation argument yourself, but rather call the dialog function inside
wi th-di al og-results.

10.3.2 A dialog which is window-modal on Cocoa

To create adialog which is window-modal on Cocoa, call the dialog function inside the macrowi t h- di al og-resul ts asin
this example:

(with-dialog-results (synbol okp)
(pronpt-for-synbo
"Enter a class-nane synbol:"
: ok-check #' (1 anbda (synbol)
(find-class synbol nil)))
(when okp
(di spl ay- nessage "synbol is ~S" synbol)))

123

10 Dialogs: Prompting for Input

On Microsoft Windows, GTK+ and Motif this displaysthe dialog, callsdi spl ay- nessage when the user clicks OK, and
then returns. The effect is no different to what you saw in 10.2.7 Prompting for Lisp objects.

On Cocoa, this creates a sheet and returns. di spl ay- message is called when the user clicks OK. The sheet is window-
modal, unlike the sheet you saw in 10.2.7 Prompting for Lisp objects.

For more details, see the manual page for wi t h-di al og-resul ts.

10.4 Dialog Owners

When adialog appears, it should be "owned" by some window. The main effect of this"ownership" isthat the dialog is
aways in front of the owner window. When either the dialog or the owner is raised, the other follows.

All CAPI functions which display a dialog allow you to specify the owner.

10.4.1 The default owner

When adialog is displayed and the owner is not supplied or isgiven asni | , the CAPI triesto identify the appropriate owner.
In particular, in the case where adialog pops up in aprocess in which a CAPI interfaceis displayed, by default the CAPI uses
this interface as the owner window. This case covers most situations.

10.4.2 Specifying the owner

If the default is not appropriate, then the programmer needs to supply the owner. This owner argument can be any CAPI pane
that is currently displayed, and the top level interface of the pane is used as the actual owner. A CAPI pane owner must be
running in the current thread (see the process argument to di spl ay). Creating cross-thread ownership can lead to deadlocks.

The owner can also beascr een object, which tells the system on which screen to put the dialog, but none of the windows
will be the dialog's owner.

The owner can be supplied by the keyword argument : owner in functions such asdi spl ay- di al og and pri nt - di al og.
Other functions such as pr onpt - f or - st ri ng and pronpt - f or - fi | e can be supplied an owner in the: popup- ar gs list
asapair : owner owner.

10.5 Creating your own dialogs

The CAPI provides a number of built-in dialogs which should cover the mgjority of most programmers' needs. However,
there is aways the occasional need to create custom built dialogs, and the CAPI makes this very simple, using the function
popup- conf i r mer which displays any CAPI interface as adialog, and the functionsexi t - conf i r ner to return from such
adialog.

10.5.1 Using popup-confirmer

The function popup- conf i r ner isahigher level function provided to add the standard buttons to dialogs. In order to create
adialog using popup- confi r mer, al you need to do isto supply a pane to be placed inside the dialog along with the
buttons and the title. The function also expects atitle, like all of the prompter functions described earlier.

(popup-confirner
(make-instance
'text-input-pane
:cal | back-type :data
:cal I back 'exit-dialog)
"Enter a string")

124

10 Dialogs: Prompting for Input

Since interfaces and layouts are panes too, the pane argument to popup- conf i r mer can be alayout or an interface, and
oftenitis. Layouts are used for simple combinations of panes, and interfaces are used for complex dialogs. All the dialogsin
the LispWorks IDE which are not either native, just a message or asking for a single item of input are interfaces displayed by
popup- confi r mer . Asan example, you can load the Othello examplefile:

(exampl e-edit-file "capi/applications/othello")

which defines an interface ot hel | o- boar d. You can then run thisas adialog:

(capi : popup-confirner
(make-instance 'othello-board) "Play Othello")

Note that it works as usual, except that the menubar is not displayed.

Here isasimple example using a layout to ask the user for five strings:

(let* ((panes
(1 oop repeat 5
col | ect
(make-instance 'capi:text-input-pane)))
(layout (nmake-instance 'capi:col um-1|ayout
:description panes)))
(rmul tipl e-val ue-bind (res okp)
(capi : popup-confirmer |ayout
"Enter sone strings")
(declare (ignore res))
(when okp
(l oop for pane in panes
col | ect
(capi:text-input-pane-text pane)))))

An interface intended for display by popup- conf i r mer can also be displayed by di spl ay (not at the same time), in which
caseit isjust another window. That is especially useful during development of your dialog code, because you can then work
on the callbacks while the interface is displayed.

A common thing to want to do with adialog is to get the return value from some state in the pane specified. For instance, in
order to create adialog that prompts for an integer the string entered into the t ext - i nput - pane would need to be converted
into an integer. It is possible to do this once the dialog has returned, but popup- confi r mer has a more convenient
mechanism. The function provides a keyword argument, : val ue- f unct i on, which gets passed the pane, and this function
should return the value to return from the dialog. It can also indicate that the dialog cannot return by returning a second value
which is non-nil.

In order to do this conversion, popup- conf i r mer provides an alternative exit function to the usual exi t - di al og. Thisis
caledexit-confirner, andit doesal of the necessary work on exiting.

You now have enough information to write a primitive version of pr onpt - f or - i nt eger .

(defun text-input-pane-integer (pane)
(let* ((text
(text-input-pane-text pane))
(i nteger
(parse-integer
t ext
cjunk-allowed t)))
(or (and (integerp integer) integer)
(values nil t))))

(popup-confirner

(make-instance
"text-input-pane

125

10 Dialogs: Prompting for Input

:cal I back "exit-confirner)
"Enter an integer:"
:val ue-function 'text-input-pane-integer)

A example using popup- confi r nmer

% LispWorks 7.... El

Enter an integer:

oK Cancel

Note that the dialog's OK button never becomes activated, yet pressing Ret ur n once you have entered a valid integer will
return the correct value. Thisis because the OK button is not being dynamically updated on each keystroke in the

t ext - i nput - pane so that it activates when the pane contains avalid integer. The activation of the OK button is recal culated
by the functionr edi spl ay-i nt er f ace, and the CAPI provides astandard callback, : r edi spl ay-i nt er f ace, which

callsthis as appropriate.

Thus, to have an OK button that becomes activated and deactivated dynamically, you need to specify the change-callback for
thet ext -i nput - pane tobe: redi spl ay-i nterface.

(popup-confirner
(make-i nstance
'text-input-pane
: change-cal | back :redisplay-interface
:cal I back "exit-confirner)
"Enter an integer:"
:val ue-function 'text-input-pane-integer)

Note that the OK button now changes dynamically so that it is only ever active when thetext inthet ext - i nput - pane isa
valid integer.

Note that the Escape key activates the Cancel button - this too was set up by popup- confi rmer.

The next thing that you might want to do with your integer prompter isto make it accept only certain values. For instance,
you may only want to accept negative numbers. This can be specified to popup- confi r ner by providing avalidation
function with the keyword argument : ok- check. This function receives the potential return value (the value returned by the
value function) and it must return non-nil if that value is valid. Thus to accept only negative numbers we could pass mi nusp

asthe: ok- check.

(popup-confirner

(make-instance
'text-input-pane
: change-cal | back :redisplay-interface
:cal I back '"exit-confirner)

"Enter an integer:"

:val ue-function 'text-input-pane-integer
: ok-check ' mi nusp)

10.5.2 Using display-dialog

popup- confi r mer creates an interface (of an internal class) around the pane that you give it which displays the pane and
the buttons it adds, and then callsdi spl ay- di al og to actually display it. If you have an interface and do not want any of

the buttons, you can call di spl ay- di al og directly.

126

http://www.lispworks.com/documentation/HyperSpec/Body/f_minusp.htm

10 Dialogs: Prompting for Input

di spl ay- di al og takes an interface (unlike popup- confi r ner , which can take any pane) and displaysit asadialog. The
keyword arguments can be used to control the exact behavior. You can useexi t - di al og and abor t - di al og to dismissthe
dialog programmatically.

10.5.3 Modal and non-modal dialogs

By default popup- confi rner and di spl ay-di al og create modal dialog windows which prevent input to other application
windows until they are dismissed by the user clicking on a button or another appropriate gesture. You can change this
behavior by passing the modal keyword argument.

10.5.4 Getting the current dialog

The function cur r ent - popup can be used to find the current popup pane, if thereisany, and is useful inside callbacks.

The function cur r ent - di al og- handl e returnsthe "handle" of the dialog in the underlying GUI system, which may be
useful in some circumstances.

10.6 In-place completion

'In-place completion' allows the user to select from alist of possible completions displayed in a special non-modal window
which appearsin front of an input pane (such asan edi t or - pane or at ext - i nput - pane) but does not grab the input
focus.

To raise this special window and select a completion from it, the user invokes certain keyboard gestures including Up, Down
and Ret ur n. Thefull set of keysfor operations on an in-place completion window are described 10.6.1 In-place completion
user interface. The user can also continue typing her input in which case the list of possible completionsis updated to
reflect the text in the input pane.

10.6.1 In-place completion user interface
This section describes the user interface of in-place completion.

In-place completion is available in the LispWorks IDE, in the Editor tool and also in tools that ask for a named object such as
the Class Browser and the Generic Function Browser. Set the Preferences... Environment > General > Use in-place
completion option to use in-place completion in the LispWorks IDE, and see LispWorks IDE User Guide for further details.

In-place completion is also available to you to use in your CAPI applications. You may wish to adapt the remainder of this
section for your end-user documentation. See 10.6.2 Programmatic control of in-place completion for information on how
to implement it.

10.6.1.1 Invoking in-place completion in text-input-pane and editor-pane

Inat ext - i nput - pane that supports in-place completion, any of the gestures Up, Down, PageUp, and PageDown invokes
the in-place completion unlessit is already displayed.

Inan edi t or - pane, completion commands invoke in-place completion by default, though you can make them use dialogs
instead by setting edi t or: *use-i n- pl ace-conpl etion* tonil .

There are several Editor commands that invoke in-place completion unconditionally:

Abbrevi ated i n-place Conpl ete Synbol
Completes the symbol before the point, taking the string as abbreviation.

127

10 Dialogs: Prompting for Input

I n-Place Conpl ete Synbol
Completes the symbol before the point.

I n-Place Conpl ete I nput

Echo Area: Complete the input in the echo area. For fileinput, does file completion.

I n-Place Expand File Nanme

Expand the file name at the current point.

I n-Place Expand File Name w th space

Expand the file name at the current point, allowing spaces.

See the Editor User Guide for information on binding these commands to keyboard gestures. Seecal | - edi t or for
information on calling them from CAPI.

10.6.1.2 Keyboard input handling while the in-place window is displayed

Keyboard input while the in-place window is displayed goes to the input pane, but some of the input gestures are redirected to
the in-place window. By default, the following gestures are redirected:

Up, Down, PageUp, PageDown

Change the selection in the list of completions in the obvious way.

Return Perform the completion using the current selected item in the list. In non-file-completion, or in
file-completion when the item is not a directory, the in-place window disappears. Infile-
completion when the selected item is a directory, the in-place window changes to display the list
of filesin the completed directory.

Escape Causes the in-place window to disappear, without doing anything else. Note that if the text in the
input pane was edited while the in-place window was displayed, these edits are not undone.

Control +Ret urn Toggles thefilter.

Contr ol +Shi ft +Ret urn

Toggles redirection of charactersto thefilter. A filter isat ext - i nput - pane which filtersthe
list of completions based on its contents. While the filter is on, the list of completions shows
only the completions that match the filter.

While thefilter isvisible and enabled, all character input plus Backspace are redirected to the
filter. Thefilter can be disabled by Cont r ol +Shi f t +Ret ur n, which meansit till filters, but
characters go to the the input pane.

The functionality of the in-place completion filter is the same as the standard filter for
|i st-panel . Forafull description of the pattern matching see "Regular expression searching”
in the Editor User Guide.

Cont r ol +Shi ft +R, Contr ol +Shi ft +E, Contr ol +Shi ft +C

Change the setting in the filter.

Other keyboard input goes to the input pane.

128

10 Dialogs: Prompting for Input

While thefilter is off (the default), or when the filter is on and disabled, plain characters go to the input pane, and hence
changethetextinit.

When the filter is on and is enabled, plain characters go to thefilter.

10.6.1.3 Performing a completion

Inat ext -i nput - pane, performing a completion means replacing part of the text in the pane by the selected completion. In
afile-completion, only the last part of the text (from the last directory separator) is replaced.

If at ext - i nput - pane was made with complete-do-action true, once the completion was performed, if it isnot file-
completion and the completion is adirectory, the callback of the paneisinvoked.

Inan edi t or - pane, while the in-place window is displayed, the editor highlights the part of the text that will be replaced.
In non-file-completion it is the beginning of the "symbol", as seen by the editor, and the end of the "symbol™. In afile-
completion it is the part of the filename after the last directory separator.

Performing the completion in an edi t or - pane means replacing the highlighted text by the selected completion. The
replacement is done as a single separate operation (for example Undo will undo the replacement separately from any previous
changes).

10.6.1.4 Interaction while the in-place window is displayed

Any operation that affects the text between the start of the relevant text (thisisthe start in at ext - i nput - pane, and the
highlighted areain an edi t or - pane) and the current cursor causes the in-place window to recompute the possible
completions and display the new list. These operations include not only actual changes to the text, but also cursor movement.

Inanedi t or - pane, if the insertion point moves out of the highlighted area then the in-place window goes away.

If the input pane loses the focus, the in-place window goes away, except on Motif.

10.6.2 Programmatic control of in-place completion

You can add in-place completion to your application as described in this section.

10.6.2.1 Text input panes

At ext - i nput - pane will do in-place completion if you pass either of these initargs:

:file-conpletionwithvauet or apathname designator, or:
;i n-place-conpl eti on-functi on with value a suitable function designator.

You can add afilter to the in-place window by passing theinitarg : i n- pl ace-fil t er. Additionally you can control the
functionality for file completion by passing : di rectori es-only and: i gnore-fil e-suffices. Thekeyword
arguments: conpl et e- do- acti on and: gest ur e- cal | backs aso interact with in-place completion.

The in-place completion can be invoked explicitly for at ext - i nput - pane by calling
t ext -i nput - pane-i n-pl ace- conpl et e.

See the manual page for t ext - i nput - pane for details.

129

10 Dialogs: Prompting for Input

10.6.2.2 Editor panes

An edi t or - pane does in-place completion when your code calls the function edi t or : conpl et e-i n- pl ace.

10.6.2.3 Other CAPI panes

You can also implement in-place completion on arbitrary CAPI panes by caling pr onpt - wi t h-1i st - non-f ocus.

130

11 Defining Interface Classes - top level
windows

Interface classes (subclasses of i nt er f ace) are (mainly) used to define top level windows and the components inside them.
Normally, each kind of awindow in an application is specified by a different interface class. Complex dialogs are also
typically presented using an interface class.

An interface class can also be used to create a component made of several elements. Thisis especialy useful when these
elements need to interact, because the syntax of def i ne-i nt er f ace makesit easier to refer to elementsin theinterface. To
distinguish between this usage and the more typical case where an interface instance corresponds to awindow, the latter case
isreferred to asa"top level interface” (also "top level window"). The parent of atop level interfaceisascr een (or
docurent - cont ai ner inside MDI on Microsoft Windows) rather than another pane.

Aninterface classis defined by the macro def i ne-i nt er f ace (normally, cl : def cl ass inheriting from an interface class
workstoo). def i ne-i nt erface isanextension of cl : def cl ass with additional options for specifying display elements.
After an interface classis defined it can be used to display awindow or adialog by calling di spl ay or di spl ay- di al og on
an instance of it. For example:

(capi:define-interface ny-interface ()

0
(: panes (ny-display-pane capi:display-pane :text "Sonme text"))
(:default-initargs :title "My title"))

(capi:display (make-instance 'ny-interface))

11.1 The define-interface macro

Themacro def i ne-i nt er f ace isused to define subclasses of i nt er f ace, the superclass of all CAPI interface classes.

It isan extension to def cl ass, which provides the functionality of that macro as well as the specification of the panes,
layouts, and menus from which an interface is composed. It takes the same arguments as def cl ass, and supports the
additional options: panes, : | ayout s, : menus, and : menu- bar .

If you specify : panes but no: | ayout s, then on creating your interface the CAPI will createacol umm- | ayout and
arrange the panesin it in the order they are defined. For real applications you will need some control over how the panes are
laid out, and thisis supplied viathe: | ayout s option.

Each component of the interface is named in the code, and a slot of that name is added to the class created. When an instance
of the classis made, each component is created automatically and placed in its slot.

To access a pane, layout or menu in an instance of your interface class you can define an accessor, likethevi ewer panein
11.3 Adapting the example, or simply usewi t h- sl ot s.

When defining a component, you can use other components within the definition simply by giving its name. You can refer to
the interface itself by the special namecapi ;i nterf ace.

There are examples using def i ne-i nt erf ace in:

(exanpl e-edit-file "capi/applications/pong")

131

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_slts.htm

11 Defining Interface Classes - top level windows

(exanple-edit-file "capi/applications/othello")

11.2 An example interface

Here is asimple example of interface definition done with defi ne-i nter f ace:

(define-interface demo ()

0
(: panes
(page- up push-button
:text "Page Up")

(page- down push-button

:text "Page Down")
(open-file push-button

itext "Open File"))
(:layouts
(row of -buttons row | ayout

' (page-up page-down open-file)))

(:default-initargs :title "Denp"))

Aninstance of thisinterface can be displayed as follows:

(display (make-instance 'denp))

At the moment the buttons do nothing, but they will eventually do the following:

» Open File will bring up afile prompter and alow you to select afilename from adirectory. Later on, we will add an
editor pane to display the chosen file's contents.

» Page Down will scroll downwards so that you can view the lower parts of the file that cannot be seen initialy.

* Page Up will scroll upwards so that you can return to parts of the file seen before.

A demonstration of a CAPI interface

|| Fage Do || Open File |

Later on, we will specify callbacks for these buttons to provide this functionality.

The (:default-initargs :title "Denp") part a theend isnecessary to give the interface atitle. If notitleis given,
the default nameis "Untitled CAPI Interface”.

Note: thedef i ne-i nt er f ace form could be generated by the Interface Builder tool in the LispWorks IDE. Seethe
LispWorks IDE User Guide for details. Asthe interface becomes more complex, you will find it more convenient to edit the
definition by hand.

11.2.1 How the example works

Examinethedef i ne-i nt er f ace form to see how thisinterface was built. Thefirst part of thisform is shown below:

(define-interface demo ()

0

132

11 Defining Interface Classes - top level windows

This part of the macro isidentical to def cl ass — you provide:
» The name of the interface class being defined.
» The superclasses of the interface (defaulting toi nt er f ace).
» The dot descriptions.

The interesting part of the def i ne- i nt er f ace form occurs after these def cl ass-like preliminaries, whereit lists the
elements that define the interface's appearance. Hereisthe : panes part of the definition:

(: panes
(page- up push-button
:text "Page Up")
(page- down push-button
:text "Page Down")
(open-file push-button
itext "Open File"))

Two arguments — the name and the class — are required to produce a pane. You can supply slot values as you would for any
CLOS object.

The: panes list specifies panes that are made when the interface is made. However it does not specify which panes are
displayed: that is controlled dynamically by the interface's layout which may contain all, some or none of the panesin the
: panes list. Theinterface may aso display other panes that are made explicitly, though thisis less common.

Hereisthe: | ayout s part of the definition:

(:layouts
(row of -buttons row | ayout
' (page- up page-down open-file)))

Three arguments — the name, the class, and any child layouts — are required to produce alayout. Notice how the children
of the layout are specified by using their component names.

The interface information supplied in this section is a series of specifications for panes and layouts. It could also specify
menus and amenu bar. In this case, three buttons are defined. The layout chosen is arow layout, which displays the buttons
side by side at the top of the pane.

11.3 Adapting the example

The: panes and: | ayout s keywords can take a number of panes and layouts, each specified one after the other. By listing
several panes, menus, and so on, complicated interfaces can be constructed quickly.

To see how simply thisis done, let us add an editor pane to our interface. We need this to display the text contained in thefile
chosen with the Open File button.

The editor pane needs alayout. It could be added to ther ow- | ayout already built, or another layout could be made for it.
Then, the two layouts would have to be put inside a third to contain them (see 6 L aying Out CAPI Panes).

The first thing to do is add the editor pane to the panes description. The old panes description read:

(: panes
(page-up push-button
:text "Page Up")
(page-down push-button
:text "Page Down")
(open-file push-button
:text "Open File"))

133

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

11 Defining Interface Classes - top level windows

The new one includes an editor pane named vi ewer .

(: panes
(page- up push-button
:text "Page Up")
(page-down push-button
:text "Page Down")
(open-file push-button
ttext "Open File")
(viewer editor-pane
‘title "File:"
ttext "No file selected.”
:visible-mn-height '(:character 8)
:reader viewer-pane))

This specifies the editor pane, with a stipulation that it must be at least 8 characters high. This allows you to see aworthwhile
amount of the file being viewed in the pane.

Note the use of : r eader , which defines areader method for the interface which returns the editor pane. Similarly, you can
also specify writers or accessors. If you omit accessor methods, it is still possible to access panes and other elementsin an
interface instance usingwi t h- sl ot s.

The interface also needs alayout containing the editor pane along with the buttons. The old layouts description read:

(:layouts
(row of -buttons row | ayout
' (page- up page-down open-file)))

The new one reads:

(:layouts
(mai n-1 ayout col um-1I ayout
"(row of -buttons viewer))
(row of -buttons row | ayout
' (page-up page-down open-file))
)

This encapsulates the new panevi ewer intoacol utm- | ayout called nai n-1 ayout . Thisisused as the default layout,
specified by setting the: | ayout initarg to mai n- 1 ayout inthe: def aul t-i ni t ar gs section. If thereis no default layout
specified, usesthefirst one listed.

By putting the layout of buttons and the editor pane in a column layout, their relative position has been controlled: the
buttons appear in arow above the editor pane.

The code for the new interface is now as follows:

(define-interface denp ()
0
(: panes
(page-up push-button
:text "Page Up")
(page- down push-button
:text "Page Down")
(open-file push-button
itext "Open File")
(viewer editor-pane
(title "File:"
:text "No file selected."
:visible-mn-height '(:character 8)
:reader viewer-pane))
(:layouts

134

http://www.lispworks.com/documentation/HyperSpec/Body/m_w_slts.htm

11 Defining Interface Classes - top level windows

(mai n-1 ayout col um-1I ayout
"(row of -buttons viewer))
(row of -buttons row | ayout
' (page- up page-down open-file)))
(:default-initargs :title "Denp"))

Displaying an instance of the interface by entering the line of code below produces the window in A CAPI interface with
editor pane:

(di splay (nake-instance 'denp))

A CAPI interface with editor pane

| | Open File

Ho file selected.

11.3.1 Adding menus

To add menus to your interface you must first specify the menus themselves, and then amenu bar of which they will be a
part.

Let us add some menus that duplicate the proposed functionality for the buttons. We will add:
* A File menu with aOpen option, to do the same thing as Open File.
» A Page menu with Page Up and Page Down options, to do the same things as the buttons with those names.

The extra code needed inthedef i ne-i nt er f ace cdl isthis:

(: menus
(file-nenu "File"
(" Open”))
(page- nenu "Page"
("Page Up" "Page Down")))
(:menu-bar file-nenu page-nenu)

Menu definitions give a slot name for the menu, followed by thetitle of the menu, alist of menu item descriptions, and then,
optionally, alist of keyword arguments for the menu.

In thisinstance the menu item descriptions are just strings naming each item, but you may wish to supply initialization
arguments for an item — in which case you would enclose the name and those argumentsin alist.

135

11 Defining Interface Classes - top level windows

The menu bar definition simply names all the menus that will be on the bar, in the order that they will appear. By default, of
course, the environment may add menus of its own to an interface — for example the Works menu in the LispWorks IDE in
multiple menu bar mode.

The code for the new interfaceis:

(define-interface denp ()
()
(: panes
(page-up push-button
:text "Page Up")
(page-down push-button
:text "Page Down")
(open-file push-button
:text "Open File")
(vi ewer editor-pane
(title "File:"
ctext "No file selected."
:visible-mn-height '(:character 8)
:reader viewer-pane))
(:layouts
(mai n- 1 ayout col umm-1| ayout
"(row of -buttons viewer))
(row of - buttons row | ayout
' (page-up page-down open-file)))
(: menus
(file-menu "File"
(" Open”))
(page- nenu "Page"
("Page Up" "Page Down")))
(:nmenu-bar file-nenu page-nmenu)
(:default-initargs :title "Denp"))

A CAPI interface with menu items

The menus contain the items specified — try it out to be sure.

136

11 Defining Interface Classes - top level windows

11.4 Connecting an interface to an application

Having defined an interface in this way, you can connect it up to your program using callbacks, as described in earlier
chapters. Here we define some functions to perform the operations we required for the buttons and menus, and then hook
them up to the buttons and menus as callbacks.

The functions to perform the page scrolling operations are given below:

(defun scroll-up (data interface)
(call-editor (viewer-pane interface)
"Scroll Wndow Up"))

(defun scroll-down (data interface)
(call -editor (viewer-pane interface)
"Scroll W ndow Down"))

The functions use the generic function cal | - edi t or which calls an editor command (given as a string) on an instance of an
edi t or - pane. The editor commands Scroll Window Up and Scroll Window Down perform the necessary operations for
Page Up and Page Down respectively.

The function to perform the file-opening operation is given below:

(defun file-choice (data interface)
(let ((file (prompt-for-file "Select a File:")))
(when file
(setf (titled-object-title (viewer-pane interface))
(format nil "File: ~S" file))
(setf (editor-pane-text (viewer-pane interface))
(file-string file)))))

This function prompts for a filename and then displays the file in the editor pane.

The function first produces afile prompter through which afile may be selected. Then, the selected file nameis shown in the
title of the editor pane (usingti t | ed- obj ect -ti t1 e). Finaly, thefile nameis used to get the contents of the file and
display them in the editor pane (using edi t or - pane-t ext).

The correct callback information for the buttons is specified as shown below:

(: panes
(page-up push-button
:text "Page Up"
:sel ection-call back 'scroll-up)
(page- down push-button
:text "Page Down"
:sel ection-call back 'scroll-down)
(open-file push-button
:text "Open File"
:sel ection-call back 'file-choice)
(viewer editor-pane
(title "File:"
:text "No file selected.”
:visible-mn-height '(:character 8)
:reader viewer-pane))

All the buttons and menu items operate on the editor pane vi ewer . A reader is set up to allow accesstoit.

The correct callback information for the menusiis specified as shown below:

(: menus
(file-nmenu "File"

137

11 Defining Interface Classes - top level windows

(("Open"))
:sel ection-call back 'file-choice)
(page- nenu " Page"
(("Page Up"
:sel ection-call back 'scroll-up)
(" Page Down"
:sel ection-call back 'scroll-down)))

In this case, each item in the menu has a different callback. The complete code for the interfaceis listed below — try it out.

(capi:define-interface denmo ()
()
(: panes
(page-up capi: push-button
:text "Page Up"
:sel ection-call back 'scroll-up)
(page-down capi : push-button
:text "Page Down"
:sel ection-call back 'scroll-down)
(open-file capi: push-button
;text "Open File"
:sel ection-call back 'file-choice)
(viewer capi:editor-pane
(title "File:"
:text "No file selected.”
:visible-mn-height '(:character 8)
:reader viewer-pane))
(:layouts
(rmai n-1 ayout capi: col um-1 ayout
"(row of -buttons viewer))
(row of -buttons capi:rowl ayout
' (page- up page-down open-file)))
(: nmenus
(file-nenu "File"
(("Open"))
:sel ection-callback 'file-choice)
(page- nenu "Page"
(("Page Up"
:sel ection-call back 'scroll-up)
(" Page Down"
:sel ection-call back 'scroll-down))))
(: menu-bar file-nenu page-nenu)
(:default-initargs :title "Denp"))

11.5 Controlling the appearance of the top level window

This section describes ways to control the appearance and behavior of the top level window displaying our CAPI interface.

11.5.1 Window styles

Thei nt er f ace initarg window-styles allows you to control a wide range of visible properties of the top level window
including borders, shadows and so on.

window-styles also allows you to specify that the window can be moved by dragging on its background, or cannot be
minimized, or acts asawindoid, or isvisible only when it is active, and so on.

Many of these properties are specific to the windowing system and are therefore not supported on al platforms. See
i nt er f ace for the details.

138

11 Defining Interface Classes - top level windows

11.5.2 Controlling the interface title

A top level interface has atitle, which normally appears at the top. Thistitle is used by the Window Browser tool in the
LispWorks IDE and also by system tools that deal with windows. Thetitleis set either by thei nt erface initarg: titl e or
theaccessorinterface-title.

In addition, you can specify a prefix and/or suffix that is added to the titles of all the interfaces in an application, by using
set-default-interface-prefix-suffix.

Thetitle string is constructed by the generic functioni nt er f ace- ext end-ti t | e. The default method constructsit from
the title of the interface and the prefix/suffix, if any. For finer control, you can definei nt er f ace- extend-title
method(s) for specific interface class(es).

When you change something that may cause the title to change, that is somevaluethat i nt er f ace- ext end-ti t | e uses,
you can useone of updat e-i nterface-title,update-screen-interface-titlesor
update-all -interface-titl es tocausethetitlesto be recomputed.

11.5.3 Indicating a changed document

Some windowing systems support a visible indication that a displayed document has been edited, helping usersto see that it
needs saving. To implement thisin a CAPI interface, seti nt er f ace- docunent - nodi fi ed- p at suitable times.

You can extend the definition of the viewer panein our example like this:

(viewer capi:editor-pane
(title "File:"
:text "No file selected.”
:visible-mn-height '(:character 8)
: reader vi ewer-pane
: change- cal | back ' check-vi ewer-nodi fi ed)

and define the change-callback as follows:

(defun check-vi ewer-nodified (viewer point old-1ength newlength)
(decl are (ignore point old-length newlength))
(setf (capi:interface-docunment-nodified-p
(capi:elenment-interface viewer))
(editor:buffer-nodified
(capi: editor-pane-buffer viewer))))

Note: Currently i nt er f ace- docunent - nodi f i ed- p has an effect only on Cocoa.

11.6 Querying and modifying interface geometry

Thefunctionsscr een- noni t or - geonet ri es, screen-i nt er nal - geonetri es and
pane- screen-i nt er nal - geonet r y support the notions of monitor geometry (which includes "system" areas such as the
macOS menu bar and the Microsoft Windows task bar) and internal geometry (which excludes the system areas).

Note that code which relies on the position of awindow should not assume that awindow is located where it has just been
programmatically displayed, but should query the current position by t op- | evel -i nt er f ace- geonet ry. Thisisbecause
the geometry includes system areas where CAPI windows cannot be displayed.

139

11 Defining Interface Classes - top level windows

11.6.1 Support for multiple monitors

CAPI supports multiple monitors by providing functions such asscr een-i nt er nal - geonet ri es to query "screen
rectangles’ representing the area of each monitor. The functionvi rt ual - scr een- geonet r y returns arectangle just
enclosing al the screen rectangles.

Thereisa"primary monitor" which displays any system areas. The origin of the coordinate system (as returned by
top-level -interface-geonetry andscreen-internal - geonet ry) isthe topmost/leftmost visible pixel of the
primary monitor. Thus (0,0) may be in a system area such as the macOS menu bar.

Note also that CAPI does not currently support multiple desktops, which are called workspacesin Linux distros, and called
Spaces on macOS.

11.6.2 Saving and restoring top-level geometry

You can specify that that the geometry of atop level interface should be saved when the interface is closed and be used to
define the geometry of the interface when it is opened again (potentially in adifferent invocation of the application). You
need to define amethod of t op- | evel -i nt er f ace- save- geonet r y- p that returns true for the interface class. You
normally also need to specify where to save the geometry, usingt op- | evel -i nt erf ace- geonet ry- key.

140

12 Creating Panes with Your Own Drawing
and Input

The CAPI provides awide range of built-in panes, but it is still fairly common to need to create panes of your own. In order
to do this, you need to specify both the input behavior of the pane (how it reacts to keyboard and mouse events) and its output
behavior (how it displaysitself). The classout put - pane is provided for this purpose.

An out put - pane isafully functional graphics port. Thisallowsit to use al of the graphics ports functionality to creste
graphics, and it also has a powerful input model which allowsit to receive mouse and keyboard inpuit.

out put - pane has asubclass pi nboar d- | ayout , to which you can add graphic objects, which makesit easier to organize
the interaction when it becomes complex. pi nboar d- | ayout is probably the more useful class.

12.1 Displaying graphics

In order to display your own drawings, you need to provide afunction to the out put - pane that is called to redraw sections
of the pane when they are exposed. Thisfunction is called the display-callback, and it is automatically called in the correct
process. When the CAPI needs to redisplay aregion of an out put - pane, it calls that output pane's display-callback
function, passing it the pane and the region in question.

For example, to create a pane that has a circle drawn inside it, do the following:

(defun drawa-circle (pane x y width height)
(gp:drawcircle pane 100 100 50))

(contain
(make-instance
' out put - pane
:di spl ay-cal | back 'drawa-circle)
: best-wi dt h 300
: best - hei ght 300)

Notice that the callback in this example ignores the region that needs redrawing and just redraws everything. Thisis possible
because the CAPI clips the drawing to the region that needs redisplaying, and hence only the needed part of the drawing gets
done. For maximum efficiency, it would be better to only draw the minimum area necessary.

The arguments: best - wi dt h and : best - hei ght specify theinitial width and height of the interface. More detail can be
found in the manual pagefori nt erf ace.

Now that we can create output panes with our own display functions, we can create a new class of window by using
def cl ass asfollows.

(defcl ass circl e-pane (output-pane)

0
(:default-initargs
:di spl ay-cal | back 'drawa-circle))

(contain (nake-instance 'circle-pane))

Compatibility Note: you must ensure that all drawing occurs only during the dynamic extent of the call to the display-
callback from LispWorks. In previous versions of LispWorks, we documented examples where drawing was done outside the

141

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

12 Creating Panes with Your Own Drawing and Input

display-callback, but thiswas always a bad idea because it was not coordinated updates triggered by the window system. On
macOS Big Sur and later, drawing outside the display-callback will not work and may cause errors.

12.2 Receiving input from the user

The CAPI supports receiving input from the user through the use of an input model, which is a mapping of eventsto the
callbacks that should be run when they occur. The input model is specified by theinitarg : i nput - nodel .

When the event callback is called, it gets passed the out put - pane and the x and y integer coordinates of the mouse pointer
at the time of the event. A few events also pass additional information as necessary; for example, keyboard events also pass
the key that was pressed.

For example, we can create avery simple input pane by adding a callback to display a message whenever the left button is
clicked over the pane. Thisisdone using the function di spl ay- nessage- f or - pane asfollows:

(defun displ ay-a- nessage (pane x Yy)
(di spl ay- nessage-for-pane pane "clicked at ~d/~d" x y))

(contain (nmake-instance 'output-pane

sinput-nodel ' (((:button-1 :press)
di spl ay- a- message))))

The input model above seems quite complicated, but it isjust alist of event to callback mappings, where each one of these

mappingsis alist containing an event specification and a callback. An event specification is also alist containing keywords
specifying the type of event required.

Thereis an example input model in:

(exanpl e-edit-file "capi/graphics/pinboard-test")

and more examples are listed in 20.1 Output pane examples.

For the full input-model syntax, see 12.2.1 Detailed description of theinput model.

12.2.1 Detailed description of the input model

The input model provides ameans to get callbacks on mouse, keyboard and touch gesturesin an out put - pane. Aninput-
model isalist of mappings from gesture to callback, where each mapping isalist:

(gesture callback . extra-callback-args)

gesture specifies the type of gesture, which can be Gesture Spec, character, button, modifier change, key, command, cursor
motion or multi-touch. These are described in the following sections. User input is processed as described in 12.2.1.10
Processing user input.

Note: it is recommended you follow the style guidelines and conventions of the platform you are targeting when mapping
gestures to callbacks.

12.2.1.1 Gesture Spec mappings

In a Gesture Spec mapping, gesture can be simply the keyword : gest ur e- spec, which matches any keyboard input. For
specific mappings, gestureisalist:

(: gesture-spec data [modifier] *)

142

12 Creating Panes with Your Own Drawing and Input

in which data is a character object or an integer between 0 and char - code- | i mi t (interpreted as the character object
obtained by code- char), or akeyword naming afunction key, and each modifier is one of the keywords: shi ft,
:control and: net a. Note that the modifier : met a isreceived only when the keys styleis: emacs (see

i nterface-keys-style).

Also data can be a string which isinterpreted as a Gesture Spec asif by sys: coer ce-t o- gest ur e- spec. Seethe
LispWorks® User Guide and Reference Manual for a description of this and other functions for manipulating Gesture Spec
objects.

Note: on Cocoa you cannot receive Conmand key gestures via Gesture Spec mapping in input-model. To receive Command
key gestures you should add corresponding menu items with accelerators. See nenu- i t emfor information about
accelerators.

12.2.1.2 Character mappings

In a character mapping, gesture can be simply the keyword : char act er , which matches any character input. For specific
mappings, gesture can be alist containing a single character object char, or alist:

(char)

Note: where input would match both a Gesture Spec mapping and a character mapping, the Gesture Spec mapping takes
precedence.

Note: in LispWorks 7.0 and later versionsthecl : char act er type does not support the bits attribute. To represent keyboard
input with modifier keys, see 12.2.1.1 Gesture Spec mappings.

12.2.1.3 Button mappings

In a button mapping, gesture should belist:

(‘button action [modifiers] *)

where buttonisone of : but t on- 1, : but t on- 2 or : but t on- 3 denoting the mouse buttons. actionisone of : press,
:rel ease, : second-press, :third-press,:nth-press and: noti on, and each modifier is one of the keywords
:shift,:control,:metaand: hyper. The: met a modifier will bethe Al t key on most keyboards. On Cocoa, the

: hyper modifier isinterpreted as the Command key for button and motion gestures. On Windows, the : hyper modifier is
currently never generated, so gesture mappings using it will never be invoked.: t hi r d- pr ess and: nt h- pr ess are
supported only on Cocoa and Motif.

Button mappings with action : nt h- pr ess are matched on the nth button click made in quick succession, but only when
thereis not a more specific match with : pr ess, : second- press or: t hi rd- press. Thecallback for : nt h- press
receives an extra argument which is the count of clicks.

12.2.1.4 Modifier change mappings

In amodifier change mapping, gestureis: nodi fi er - change, which generates a callback whenever the state of a modifier
(Control, Shift and Met a key, Conmand on Cocoa, and Caps Lock) changes.

The callback is called with the output pane, x and y, an integer mods, followed by extra-callback-argsif any. modsis
calculated asal ogi or of bitsas specified by the following constants:

e sys: gesture-spec-shift-bit

* sys: gesture-spec-control-bit

143

http://www.lispworks.com/documentation/HyperSpec/Body/v_char_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_code_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_logand.htm

12 Creating Panes with Your Own Drawing and Input

e sys: gesture-spec-neta-bit
e sys: gesture-spec-hyper-bit
e sys: gesture-spec-caps-|ock-bit
Note that sys: gest ur e- spec- hyper - bi t isset when Cormand is pressed.

Note that for Caps Lock, the callback is generated when the state of the Caps Lock changes, not when the Caps Lock key is
pressed or released.

The pane gets the callback only when it has the focus. If the pane receives the focus and the state of the modifiersis different
from what it was the last time the pane had the focus, a callback is generated at that time. That means that tracking the state
using the callback is reliable while the pane has the focus, but not while the pane does not have the focus.

For an example, see:

(exampl e-edit-file "capi/output-panes/nodifier-change")

12.2.1.5 Key mappings

Key mappings are intended for detecting low-level keyboard input. 1n akey mapping, gesture should be alist:
(: key [keyname] action [modifiers] *)

where the optional keyname is a character naming a key (no modifiers) or one of the valid Gesture Spec keywords
documented in the entry for sys: nake- gest ur e- spec, actionisoneof : press or: r el ease and each modifier is one of
the keywords: shi ft, : control and: met a. The callback will receive asys: gest ur e- spec, with its data set to an
integer ASCII code or akeyword representing the primary item on the key and its modifiers representing the set of modifiers
pressed. The: met a modifier will bethe Al t key on most keyboards. On Cocoa, the: hyper modifier isinterpreted as the
Conmand key for : key input.

12.2.1.6 Motion mappings

In a motion mapping, gesture can either be defined in terms of dragging a button (in which case it is defined as a button
gesture with action : not i on), or it can be defined for motions while no button is down by just specifying the keyword
: ot i on with no additional arguments.

12.2.1.7 Command mappings

In acommand mapping, gesture should be acommand which is defined using def i ne- cormand, and provides an diasfor a
gesture. The following commands are predefined:

. post - menu (: button-3 :rel ease) on Microsoft Windows.
(:button-3 :press) onMoatif.

(:button-1 :press :control) onmacOS.
:control -post-nmenu (:button-3 :press :control) onMicrosoft Windows, Motif and macOS.

: keyboar d- post - nenu

(:gesture-spec :f10 :shift) onMicrosoft Windows, Motif and macOS.

144

12 Creating Panes with Your Own Drawing and Input

12.2.1.8 Touch mappings

On Cocoa and Windows input-model can contain mappings for multi-touch gestures from devices that can generate them
(trackpad or touchscreen). These include zoom, rotate, pan, swipe (Cocoa only), two finger tap (Windows only), press and
tap (Windows only), and beginning and end of sequences of gestures.

In atouch mapping gesture should be of the form:

(: touch multi-touch-keyword)

where multi-touch-keyword specifies the type of gesture aslisted below. For all multi-touch gestures the callback receives as
arguments the pane, and the x and y of the event. There are also an additional one or two arguments for each specific gesture.
The extra arguments are always rel ative to the previous state, so each event can be interpreted on each own. Use extra-
callback-argsif any are added in the end.

multi-touch-keyword should be one of:

:zoom The callback receives an extra argument which is the zoom factor.

‘rotate The callback receives an extra argument which is the angle to rotate, anti-clockwise in radians.

: pan The callback receives two extra arguments, the delta-x and delta-y, which are the amount to
scroll in the x and y directions.

: Swi pe The callback receives an extra argument which is one of the keywords: | ef t, : ri ght, : up or
: down.

: swi pe issupported only on Cocoa.

:two-finger-tap The callback receives an extra argument which is the distance between the fingers.
:two-finger -t ap issupported only on Windows.

. press-and-tap The callback receives two extra arguments, which are the delta-x and delta-y of the tapping
finger from the resting finger.

: press-and- t ap issupported only on Windows.

: begi n-end The callback receives an extra argument begin-p which isaboolean, t for beginning of a
sequence of eventsand ni | for end. The beginning and end of sequences are determined by the
underlying device implementation, which triesto identify what the user regards asa single
operation.

12.2.1.9 Notes about touch mappings

Because the callbacks receive relative values, you do not need the : begi n- end eventsto interpret them. These events are
useful when you want to do things which correspond to user operations, for example recording a state for undo or committing
achange.

They are also useful if you want to restrict the type of events that are processed inside each operation. For example, your
pane may have aflag that the callbacks check and set which is used to alow only one kind of gesture to have an effect in each
sequence.

The x and y coordinates are the coordinates which should be used as the center of operation. On Windows, you can track the
xandyin:zoomand: r ot at e events, and do panning while rotating or zooming.

On Cocoa, a sequence of events (starting and ending with : begi n- end events) can contain either : zoomand : r ot at e
eventsor : pan events, but not amixture of : pan and: r ot at e or : zoom On Windows all these three types of events can be

145

12 Creating Panes with Your Own Drawing and Input

mixed in principle.

: swi pe events (Cocoa only) are three finger brushing. : swi pe events are always on their own, and are not enclosed in pairs
of : begi n- end callbacks.

On Cocoa, pan should generally act as a scrolling gesture, so normally you should not need to useit.
Windows touch events are described in the MSDN in:
Dev Center - Desktop > Design > Guidelines > Guidelines > Interaction > Touch

http://msdn.micr osoft.com/en-ug/libr ar y/windows/desktop/dn742468(v=vs.85).aspX.

Note that on Windows the Cont r ol +Mousewheel gesture generates: zoomevents and Shi f t +Mousewheel generates
‘rotate.

The entriesin the input-model 1ook like this:

((:touch :zoom ny-zoom call back)

((:touch :pan) ny-pan-call back)

((:touch :rotate) my-rotate-callback)
((:touch :begin-end) ny-begin-end-call back)

#+macosx
((:touch :sw pe) ny-sw pe-call back))

#+mswi ndows
((:touch :two-finger-tap) my-two-finger-tap-callback)

#+mswi ndows
((:touch :press-and-tap) ny-press-and-tap-call back)

The corresponding callbacks have these signatures:
my-zoom cal | back pane x y zoom-factor

my- pan- cal | back pane x y delta-x delta-y
my-rotate-call back pane x y &del t a- angl e
nmy- begi n- end- cal | back pane x y begin-p

my- swi pe- cal | back pane x y direction-keyword
my-two-finger-tap-call back pane x y distance

my- press- and-t ap- cal | back pane x y distance-x distance-y

12.2.1.10 Processing user input

When user input matches a gesture gesture, the callback is called with the gesture callback arguments followed by any user-
supplied extra-callback-args.

The gesture callback arguments contain three standard arguments, and for some gestures there is afourth argument. The

146

http://msdn.microsoft.com/en-us/library/windows/desktop/dn742468(v=vs.85).aspx

12 Creating Panes with Your Own Drawing and Input

standard three arguments are:

output-pane X y

where (X, y) isthe cursor position.

The following gestures have a fourth argument:
: gesture-spec or: key

A sys: gest ur e- spec representing the user input.

: character orcharact er

A character representing the user input.

:modi fi er-change An integer specifying the modifiersasal ogi or of the constants
sys: gesture-spec-shift-bit etc.

Button with : nt h- press

An integer which is the number of clicks.

Note: mouse gestureswith : pr ess, : second- press, : t hi rd- press and: nt h- pr ess actions can each be expected to be
followed by a: r el ease action.

Note: In some circumstances : not i on events can be received even when the out put - pane does not have the input focus.
Seewindow style: not i on- event s- wi t hout - f ocus under i nt er f ace for details.

input-model can be set before the paneis displayed, but changes after that are ignored.

Inparticular, cl :initialize-instance isthe natural place for subclasses to modify the existing input-model, using the
out put - pane accessor out put - pane- i nput - nodel . Note that since the mappings are processed in order, prepending to
an existing input-model overrides it when there are clashes, while appending affects only gestures for which the original input
-model did not have a match.

12.2.2 Commands - aliases

It is possible to define aliases for gestures (called "commands"), which is mapping between a gesture and a command (a
unigue Lisp object, typically a keyword). The command then can be used as the gesture in an input-model. That allows
changing the actual user gesture to invoke the callbacks that are associated with the command in input models of many panes,
without having to change the actual input model specifications.

A command is defined using def i ne- command, which defines the mapping, and can also specify on which library itis
applicable and atrandator to change the arguments that are passed to the callback.

Commands that are defined by def i ne- command can be programmatically invoked (asif the user entered the gesture) by
i nvoke- command or i nvoke- untransl at ed- command.

12.2.3 Native input method

The input that CAPI sees may be pre-processed by a native input method. Native input methods are part of the underlying
GUI system which allow the user to enter characters that do not appear on the keyboard. On GTK+ you can control whether
the native input method is used by the out put - pane initarg : use- nati ve-i nput - net hod, and you can specify the
default by set - def aul t - use- nati ve-i nput - net hod.

147

http://www.lispworks.com/documentation/HyperSpec/Body/f_logand.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm

12 Creating Panes with Your Own Drawing and Input

12.2.4 Composition of characters

Composition of charactersis done by the underlying window system, which combines several keystrokes to one character (or
more rarely, to several characters) , and is used to input characters that are not available on the keyboard. out put - pane has
acalback, : conposi ti on-cal | back, which is caled when composition starts and ends, and also if the pane is supposed
to display theinput, it iscalled to tell it what to display.

Inside the callback call for starting composition, the function set - conposi ti on- pl acenent where relative to the
composition should, which tells the system where to put any window that it popups to interact the user. For example,
edi t or - pane uses this to set the placement at the position of the cursor.

12.3 Creating graphical objects

A common feature needed by an application is to have a number of objects displayed in awindow and to make events affect
the object underneath the cursor. The CAPI provides the ability to create graphical objects, to place them into awindow at a
specified size and position, and to display them as necessary. Also afunction is provided to determine which object is under
any given point so that events can be dispatched correctly.

These graphical objects are called pinboard objects, as they can only be displayed if they are contained within a
pi nboar d-1 ayout .

Like simple panes, you display api nboar d- obj ect by putting it in the description of al ayout , but in the case of a

pi nboar d- obj ect thelayout must be either api nboar d- | ayout or alayout that is a descendant of api nboar d- | ayout
(to any depth). Adding or removing pi nboar d- obj ect s can be done using the standard mechanism of the: descri pti on
initargand (set f | ayout -descri ption), but normally it should be done by mani pul at e- pi nboar d. Thisis much
more efficient and causes much less flickering, which is important when there are many objects.

CAPI provides built-in pinboard object classes for several simple casesincludingi t em pi nboar d- obj ect for displaying
text, | i ne- pi nboar d- obj ect, rectangl e, el | i pse and ar r ow pi nboar d- obj ect for simple shapes, and

i mage- pi nboar d- obj ect for displaying an image. To display more complex drawing, you can use

dr awn- pi nboar d- obj ect , which takes a display-callback which actually does the drawing. For greater control, you can
subclass pi nboar d- obj ect , and define the method dr aw pi nboar d- obj ect to do the drawing, and if needed also

dr aw pi nboar d- obj ect - hi ghl i ght ed. You can also subclass any of the specialized pi nboar d- obj ect subclassesif it
isuseful.

pi nboar d- obj ect s have geometry likesi npl e- pane, that isx, y, width and height. These can be specified initially by the
initargs: x and : y and geometry hints (see 6.4 Specifying geometry hints), and can be read and set later by
static-layout-child-positionandstatic-layout-child-size. They canaso beread by using the binding
insidewi t h- geonet ry, but setting should bedone only by (setf static-Iayout-chil d-position) and

(setf static-layout-child-size).

For | i ne- pi nboar d- obj ect and its subclasses, you would normally specify the start and end points, rather than the
rectangle that encloses it (which would require computations taking into account the line width and the position of any label).
Thisis done when making the object using theinitargs: start-x, : start-y, : end-x and: end- y, and later by the
function nove- | i ne. Thefunction| i ne- pi nboar d- obj ect - coor di nat es can be used to find the start and end points of
an object.

The graphics args that are used to draw the objects in built-in subclasses of pi nboar d- obj ect can be specified by
supplying theinitarg : gr aphi cs- ar gs, and modified dynamically by (set f pi nboar d- obj ect - gr aphi cs-args) and
(setf pinboard-obj ect-graphics-arg). For example, the following code displays aline and after 2 seconds changes
itscolor:

(progn
(setqg po
(capi:contain
(make-instance 'capi:|ine-pinboard-object
:start-x 50 :end-x 250

148

12 Creating Panes with Your Own Drawing and Input

:start-y 50 :end-y 50
: graphi cs-args
"(:thickness 10 :foreground :red))))

(sleep 2)

(capi : appl y-i n- pane- process

po
#' (1 ambda ()
(setf (capi: pinboard-object-graphics-arg po :foreground)
:blue))))

For pinboard object classes which you define, the drawing functions that you call need to do the drawing using the Graphics
Ports drawing functions (see 13.4 Drawing functions). They take their coordinates with respect to the pi nboar d- | ayout
(not the object), so you need to use the x and y to compute the arguments for the drawing functions. Thisis how the
specialized classes mentioned above know where to draw. You need to keep the drawing inside the geometry (that isinside
the rectangle defined by X, y, width and height), because the pi nboar d- | ayout decides which objects need redrawing using
these values.

pi nboar d- obj ect scan be highlighted. You need to use the functions hi ghl i ght - pi nboar d- obj ect and

unhi ghl i ght - pi nboar d- obj ect to switch the highlight state of objects. The function

pi nboar d- obj ect - hi ghl i ght ed- p can be used to check whether an object isin the highlighted state. By default, CAPI
callsdr aw pi nboar d- obj ect - hi ghl i ght ed to add the highlight after drawing the object. In many cases, it is better to
do the highlight in the drawing function (either the method of dr aw- pi nboar d- obj ect or the display-callback for

dr awn- pi nboar d- obj ect) rather than separately. Usetheinitarg : no- hi ghl i ght with valuet when making the

pi nboar d- obj ect, and pi nboar d- obj ect - hi ghl i ght ed- p inside the drawing function to check whether it needsto
highlight. These examples both use this technique:

(exampl e-edit-file "capi/graphics/circl ed-graph-nodes")

(exanple-edit-file "capi/graphics/tracking-pi nboard-1ayout")

It is possible to set an element such that its geometry changes automatically when the pi nboar d- | ayout isresized, by
using either theinitarg : aut omat i c-resi ze or calling set - obj ect - aut omati c-resi ze. See:

(example-edit-file "capi/layouts/automatic-resize")

Note: pi nboar d- obj ect sareimplemented as graphics on a native window. Compare thiswith si npl e- pane and its
subclasses, where each instance isitself a native window. A consequence of thisisthat si npl e- panes do not work well
within api nboar d- | ayout , since they always appear above the pi nboar d- obj ect s. For example, to put labelson a
pinboard, usei t em pi nboar d- obj ect rather than di spl ay- pane ortitl e- pane.

Note: Thepi nboar d- | ayout displays the pinboard objects viaits own display-callback function

pi nboar d- | ayout - di spl ay. If youwant do other drawing too, see the entry for pi nboar d- | ayout - di spl ay. Itisaso
possible to draw the pinboard objects of api nboar d- | ayout to another graphics port (for example, a pixmap) using

dr aw pi nboar d- | ayout - obj ect s.

Here is an example of the built-in pinboard object classi t em pi nboar d- obj ect which displaysitstext likea

titl e- pane. Notethat the function cont ai n always creates api nboar d- | ayout as part of the wrapper for the object to
be contained, and so it is possible to test the display of pi nboar d- obj ect sin just the same way as you can test other
classes of CAPI object.

(contain
CONTAI N makes a pi nboard-1ayout if needed, so we don't
need one explicitly in this exanple.
;7 You will need an explicit pinboard-layout if you define
;; your own interface class.
(make-instance
"item pi nboar d- obj ect

149

12 Creating Panes with Your Own Drawing and Input

;text "Hello world"))

A pinboard object

Here is another exampleillustrating i t em pi nboar d- obj ect :

(exampl e-edit-file "capi/graphi cs/pinboard-object-text-pane")

12.3.1 Buffered drawing

Where the display of an out put - pane is complex you may see flickering on screen on some platforms. Typically this
occursin api nboar d- | ayout with many pinboard objects, or some other characteristic that makes the display complex.

The flickering can be avoided by passing the draw-with-buffer initarg which causes the drawing to go to an off-screen pixmap
buffer. The screen isthen updated from the buffer.

Note: GTK+ and Cocoa aways buffer, so the draw-with-buffer initarg is ignored on these platforms.

12.3.2 Finding pinboard objects from coordinates

To find the top pi nboar d- obj ect at asupplied position (X, y), which istypically needed when processing user input, use

pi nboar d- obj ect - at - posi ti on. To decide whether a pinboard object is at a position,

pi nboar d- obj ect - at - posi ti on usesthe generic function over - pi nboar d- obj ect - p. over - pi nboar d- obj ect - p
has a default method that return true when the position isin the rectangle of the object, and a method for line object
(subclasses of | i ne- pi nboar d- obj ect) that return true if the position is close to the line. You add methods to

over - pi nboar d- obj ect - p for your own classes. For example, if your pinboard object displays athunder picture, you may
want an over - pi nboar d- obj ect - p method that computes whether the position is inside the thunder drawing.

Thereis also the generic function pi nboar d- obj ect - over | ap- p, with adefault method that determines whether the
rectangle of the object overlaps the rectangle specified by the other arguments.

12.3.3 The implementation of graph panes

One of the major uses the CAPI itself makes of pinboard objectsis to implement graph panes. The gr aph- pane itself isa
pi nboar d- | ayout and it isbuilt using pi nboar d- obj ect sfor the nodes and edges. Thisis because each node (and
sometimes each edge) of the graph needsto react individually to the user. For instance, when an event is received by the
gr aph- pane, itistold which pinboard object was under the pointer at the time, and it can then use this information to
change the selection.

Create the following gr aph- pane and notice that every node in the graph is made from ani t em pi nboar d- obj ect as
described in the previous section and that each edge is made from al i ne- pi nboar d- obj ect.

(defun node-children (node)
(when (< node 16)
(list (* node 2)

(1+ (* node 2)))))

(contain
(make-i nstance

150

12 Creating Panes with Your Own Drawing and Input

' gr aph- pane

:roots ' (1)

:children-function 'node-children)
:best-wi dth 300 : best-hei ght 400)

A graph pane with pinboard object nodes

“w Container

As mentioned before, pi nboar d- | ayout scan just as easily display ordinary panes inside themselves, and so the
gr aph- pane provides the ability to specify the class used to represent the nodes. As an example, hereisagr aph- pane
with the nodes made from push- but t ons.

(contain
(make-instance
' graph- pane
:roots ' (1)
:children-function 'node-children
: node- pi nboar d- cl ass ' push-button)
:best-wi dth 300 : best-hei ght 400)

151

12 Creating Panes with Your Own Drawing and Input

A graph pane with push-button nodes

“w Container

12.3.4 An example pinboard object

To create your own pinboard objects, the class dr awn- pi nboar d- obj ect isprovided, which isapi nboar d- obj ect that
accepts a display-callback to display itself. The following example creates a new subclass of dr awn- pi nboar d- obj ect

that displays an ellipse.

(defun drawellipse-pane (gp pane
Xy
wi dt h hei ght)
(with-geonetry pane
(let ((x-radius
(1- (floor 9% dth% 2)))
(y-radius
(1- (floor %eight%2))))
(gp:drawellipse

ap

(1+ (+ %% x-radius))
(1+ (+ W% y-radius))
x-radi us y-radius

152

12 Creating Panes with Your Own Drawing and Input

cfilled t

:foreground

(if (> x-radius y-radius)
:red

tyellow))))

(defcl ass el lipse-pane
(dr awn- pi nboar d- obj ect)
()
(:default-initargs
. di splay-cal | back 'draw el li pse-pane
2 visible-mn-width 50
:vi si bl e-m n-hei ght 50))

(contain

(make-instance 'ellipse-pane)
:best-width 200

: best - hei ght 100)

An ellipse-pane class

“w Container (=] ey
Works

Thewi t h- geonet ry macro is used to set the size and position, or geometry, of the ellipse drawn by the
draw- el | i pse- pane function. Thefill color depends on the radii of the ellipse - try resizing the window to see this. For
more details of see the manual page for dr awn- pi nboar d- obj ect .

Now that you have anew ellipse-pane class, you can create instances of them and place them inside layouts. For instance, the
example below creates nine ellipse panes and places them in athree by three grid.

(contain
(make-instance
‘grid-Ilayout

:description
(loop for i below 9
col | ect
(make-instance 'ellipse-pane))
:colums 3)
:best-width 300
: best - hei ght 400)

153

12 Creating Panes with Your Own Drawing and Input

Nine ellipse-pane instances in a layout

“w Container
Warks

12.3.5 Simple pinboard layout

si npl e- pi nboar d- | ayout isasubclass of pi nboar d- | ayout with only one child (apane or api nboar d- obj ect). It
adopts the size constraints of its child. si npl e- pi nboar d- | ayout isuseful when you want to arrange

pi nboar d- obj ect susing al ayout pane (or ahierarchy of | ayout S). pi nboar d- obj ect sneed api nboar d- | ayout
somewherein the parent hierarchy, but using pi nboar d- | ayout would mean that the constraints computed by | ayout (top
| ayout if itisahierarchy) would not be automatically propagated to the next level. si npl e- pi nboar d- | ayout solvesthis
problem. An exampleisthe gr aph- pane, which is actually asubclass of si npl e- pi nboar d- | ayout , and asachild hasa
| ayout (of internal type) with a specia algorithm that lays out the graph and displaysit using pi nboar d- obj ect s.

12.3.6 Tracking pinboard layout

t racki ng- pi nboar d- | ayout isasubclass of pi nboar d- | ayout which tracks the motion of the mouse cursor, by
highlighting the object underneath it (if any). Otherwise it behaves the same as pi nboar d- | ayout . It savesyou from
implementing the tracking when it isis desired.

154

12 Creating Panes with Your Own Drawing and Input

(exanpl e-edit-file "capi/graphics/tracki ng-pi nboard-1ayout")

12.4 output-pane scrolling

An out put - pane or an instance of any of its subclasses can be made to scroll by passing the: verti cal - scrol | and/or
hori zontal -scrol | initargswhich areinherited from si npl e- pane.

12.4.1 Ordinary scrolling

By default, the scrolling iswhat is called ordinary scrolling. In this case you just need to specify that you want scrolling by
:vertical -scrol | and/or: horizontal -scrol |, and maybe also specify the internal scroll dimension(s) (see below).

In ordinary scrolling, all the interactions are done asif the pane has an "interna canvas' with dimensions (the "internal
dimensions') which are different from the visible dimensions on the screen, and typically larger. The coordinates of input
gestures and drawing in the pane are al with respect to thisinternal canvas. Only part of the canvasis displayed at any one
time, depending on the position of the scroll slugs. The effect of scrolling isto change what part of the paneisvisible, which
causes a display-callback to draw any newly visible areas. However, the call to the display-callback is an ordinary call like
any call (for example, like acall asresult of part of the window being exposed), and the display-callback does not need to
know anything about scrolling.

If you need to know when scrolling happened, rather than just display what is needed to display, you can use the
:scrol | -cal |l back initarg to specify acallback that is called before the display-callback. However, thisis not required for
ordinary scrolling to work.

The internal dimensions of the pane can be specified by the initargs: scrol | - hei ght and: scrol | -wi dt h, and can aso
be set dynamically set by set - verti cal -scrol | - paranet ers andset - hori zont al - scrol | - paranet ers. Some
subclasses can compute their internal dimensions, for example gr aph- pane computesitsinternal dimensions to show all the
graph, and st ati c- | ayout and its subclass pi nboar d- | ayout by default compute the internal dimensionsto fit their
children (unlessfit-size-to-childrenisni I).

For example, create an out put - pane with vertical scroll and internal height of 600 pixels, minimum visible height of 300
pixels, and a display-callback that prints the y coordinate and the height and displays a green square at (0,100) of size 10x10
and a blue square at (0,400) of size 10x10:

(defun ny-di spl ay-cal | back (pane x y w dth height)
(declare (ignore x w dth))
(format t "y = ~d, height = ~d~% vy height)
(gp:drawrectangl e pane 0 100 10 10
:foreground :green :filled t)
(gp:drawrectangl e pane 0 400 10 10
:foreground :blue :filled t))

(setqg out put - pane
(make-instance ' capi: out put - pane
svertical-scroll t
:scroll -hei ght 600
2 vi si bl e-mi n-hei ght 300
- di spl ay-cal | back ' my-displ ay-cal | back))

Then display it:

(capi: contai n out put - pane)
When it appears on the screen its height is 300 pixels, the scrollbar is half the height. You receive adisplay callback with y
being 0 and height 300. You see the green square 100 pixels down from the top. The blue squareisinvisible, becauseitis

drawn at y = 400, which is not inside the visible area.

155

12 Creating Panes with Your Own Drawing and Input

Now if you scroll to the bottom, you will receive a callback with y = 300 and height still 300 (possibly after several callbacks
with intermediate y values). Now you see the blue square 100 pixels from the top, and the green squareisinvisible.

Note that the display callback knows nothing about the scrolling. It just draws. A rea display callback may be made faster by
avoiding the drawings which are not going to be visible, for example:

(defun ny-display-call back-1 (pane x y w dth height)
(declare (ignore x w dth))
(format t " y = ~d, height = ~d~% y height)
(unless (or (> y 110) (< (+ Y height) 100) (> x 10))
(gp:drawrectangl e pane 0 100 10 10
:foreground :green :filled t))
(unless (or (> y 410) (< (+ Y height) 400) (> x 10))
(gp: drawrectangl e pane 0 400 10 10
:foreground :blue :filled t)))

but thisisjust optimization. It does not affect what is shown on the screen.

12.4.2 Internal scrolling

The other type of scrolling is called internal scrolling (sometimes "pane scrolling”), and it is set up by passing the
out put - pane initarg : coor di nat e- ori gi n with either : fi xed or : f i xed- gr aphi cs. In general, internal scrolling is
more complex to use, but allows more flexible scrolling.

When using internal scrolling with coordinate-origin : f i xed, drawing coordinates are relative to the visible area, and the
coordinates arguments to callbacks are also relative to the visible area. Thus drawing arectangle at 0,100 as my-display-
callback above does will always show it at 0,100 on the screen, ignoring any scrolling.

For example, evaluate the following (which requires the definition of my-display-callback):

(capi:contain (make-instance
' capi : out put - pane
:vertical-scroll t
:scrol | -height 600
: vi si bl e-mi n-hei ght 300
:di spl ay-cal | back ' ny-di spl ay-cal | back
:coordinate-origin :fixed ; <<

)

:title "Wth :coordinate-origin :fixed")

Scroll it and you will seethat it is"fixed": the green rectangle does not move, and the y coordinate that is passed to my-
display-callback is always O.

When using internal scrolling with coordinate-origin : f i xed- gr aphi cs, the drawing coordinate are relative to the visible
pane, but CAPI coordinates (that is the arguments to callbacks such as display-callback, scroll-callback and input-model and
incalstodi spl ay- popup- menu) are offset by the scroll position of the pane like in ordinary scrolling. The scroll position
can be obtained by calling get - hori zont al - scrol | - paranet ers andget - vertical -scrol | - par anet er s with
sl ug- posi tion, or from%scrol | - x%and %scrol | - y%insidewi t h-geonetry.

For example, evaluate this:

(capi:contain (make-instance
' capi : out put - pane
svertical-scroll t
:scrol | -height 600
: vi si bl e-mi n-hei ght 300
:di spl ay-cal | back ' ny-di spl ay-cal | back
:coordi nate-origin :fixed-graphics ;<<
)

:title "Wth :coordinate-origin :fixed-graphics")

156

12 Creating Panes with Your Own Drawing and Input

Scroll it and you will see that the graphics are "fixed" (the green rectangle does not move) but the coordinates "scroll” (they
coordinate increases as you scroll). In practice, this meansthat to get the effect of scrolling, the display-callback needsto
subtract the scroll position before drawing, or use Graphics Ports transformations, for example:

(gp:w th-graphics-translation (pane (- scroll-x) (- scroll-y))
(do-al | -the-draw ng))

If you do not supply scroll-callback (inherited from si npl e- pane) in a pane that does internal scrolling, then LispWorks
callsupdat e-i nt ernal - scrol | - par anet er s in response to scrolling gestures to update the internal parameters (that
updates the scroll bars themselves if needed), and then callsi nval i dat e- r ect angl e, which will cause the display-
callback to be called for the whole visible area of the pane. In many cases, that is what you need, but not always.

In some cases, redisplaying the whole of the pane every time it scrolls may not be required or may be too slow, and in other
cases you will want to do other things. In these situations, performs the scrolling yourself by supplying a scroll-callback.
When you supply a scroll-callback, your function is responsible for doing anything that needs to be done to make "scrolling"
happen (which is not necessarily proper scrolling).

In general, your scroll-callback will have to call updat e-i nt er nal - scrol | - par anet er s (and maybe

set-vertical -scroll-paraneters orset-horizontal -scroll -paranet er s) to update the scroll parameters, and
get-vertical -scroll-paraneters andget-horizontal -scrol | -paranet ers to get the scroll values. Some of
these values may be initialized by the: scrol | -. . . initargsof out put - pane. scroll-callback may also need to do other
computations.

Once the scroll-callback has adjusted the internal scrolling state of the application, it needs to ensure that the paneis
redisplayed, by callingi nval i dat e-r ect angl e on the area (or on each of multiple areas) that need(s) to be redisplayed.
This will then cause the display-callback of the out put - pane to be called on those areas. The display-callback needs to
know how to draw the pane taking into account the internal scrolling state. It can do that by calling

get-vertical -scroll-paraneters andget-horizontal -scrol | -paraneters (orusingthe%scrol I -...%
variablesinsidewi t h- geonet ry), or by using some internal scrolling state that scroll-callback has set up.

For examples of internal scrolling that do alittle unconventional scrolling see:
(exanpl e-edit-file "capi/output-panes/coordi nate-origin-fixed")

For an example of internal scrolling that does something different altogether (rotating) see:
(exanpl e-edit-file "capi/output-panes/fixed-origin-scrolling")

Ordinary scrolling is not only easier to use, but is also normally more efficient, because the underlying window system
handles scrolling. In particular, areas that move on the screen are just copied, without a need to redraw what is displayed.

Internal scrolling is useful in situations where what is displayed changes according to the scroll position, other than just
scrolling. With ordinary scrolling, the underlying window system calls the display-callback when scrolling happens, but only
for areas that become visible by the scroll operation. Other areas are normally just copied to their new locations, so the
program cannot change them. For example, the display callback below triesto keep a string with ayellow background at a
fixed position 100 pixels down from the top left of the pane:

(defun a-display-cal |l back (pane x y w dth height)
(let* ((scroll-y
(capi:get-vertical-scroll-paraneters pane
:slug-position)))
(gp:drawstring pane "A string" O (+ scroll-y 100)
> background :yellow :block t)))

(capi:contain

(make-instance ' capi: out put - pane
svertical-scroll t
:scroll -hei ght 900

157

12 Creating Panes with Your Own Drawing and Input

:vi si bl e- max- hei ght 600
. di spl ay-cal | back 'a-display-call back))

However, once you display it and try to scroll, it should be obvious that it does not work because the window system moves
the string an the display callback is not called for the area 100 pixels down from the top left of the pane.

One way of working around this kind of issue is add a scroll-callback that fixes the display, for example by calling
i nval i dat e-rect angl e, but that can become quite complex. The other way is to use internal scrolling.

Apart from the display-callback, the scroll-callback and any code that needs to know about scrolling because of the logic of
the application, the rest of your code should not need to worry about scrolling. Thus it does not actually add must complexity
to your code.

Another situation when you may prefer internal scrolling is when your code precomputes what to display based on the scroll
position, and the display-callback does minimal computation that is not substantially more expensive than the copying the
system would do. That will mean that the display-callback does not need to know about scrolling, but all your callbacks will
either have to add the scroll position to the their arguments, or work with respect to the precomputed information rather than
the whole pane. The latter iswhat edi t or - pane does.

12.5 Transient display on output-pane and subclasses

It is quite often that you want to transiently add some drawing on top of the permanent drawing of an out put - pane. Most
typically, you want to allow the user to select an area by dragging the mouse while pressing a button, and you want to include
some transient graphics to indicate what they are going to select. This could ssimply be arectangle, but you may want
something more compl ex.

Ideally, the display-callback of the pane would be fast enough to handle this, in which case you simply need to make the
display-callback draw the transient graphics. For example, in the case of api nboar d- | ayout , it can be done by adding a
transient pi nboar d- obj ect above the other objects. Thisis demonstrated by the "outliner" example:

(exanpl e-edit-file "capi/graphics/pinboard-test")

Note that in this case the outliner's drawing is simple, but it could draw much more complex graphics if required.

However, that solution does not work well if the display-callback is not fast enough for these situations. The Cached Display
functionality isintended to be used in this case. There are two ways to use the Cached Display interface:

1. Useout put - pane- cache- di spl ay to cache the display, and then out put - pane- dr aw- f r om cached- di spl ay to
draw from the cache. In this case you have to ensure that the display-callback knows when to use
out put - pane-dr aw f r om cached- di spl ay, either by replacing the display-callback for the duration of the Cached
Display operation or by keeping aflag that the display-callback checks, for example:

(i f (draw ng-by-cached-display-p pane)
(progn
(out put - pane-draw from cached-di spl ay pane x y w dth height)
(do-sone-transi ent-draw ng pane))
(real -di splay-cal | back pane x y width height))

2. Usestart-draw ng-w t h- cached- di spl ay, which replaces the display-callback, and then use
updat e- drawi ng- wi t h- cached- di spl ay or updat e- dr awi ng-wi t h- cached-di spl ay-from poi nts to
update the display. Thistechniqueisillustrated in:

(exampl e-edit-file "capi/output-panes/cached-displ ay")

In both cases you finish using the cached display by calling out put - pane- f r ee- cached- di spl ay. Thefunction
out put - pane- cached- di spl ay- user - i nf o can be used to hold temporary data during the operation.

158

12 Creating Panes with Your Own Drawing and Input

159

13 Drawing - Graphics Ports

13.1 Introduction

Graphics Ports allow you to write source-compatible applications which draw text, lines, shapes and images, for different
host window systems. Graphics Ports are the destinations for the drawing primitives. They are implemented with a generic
host-independent part and a small host-specific part.

All Graphics Ports symbols are exported from the gr aphi cs- port s package, nicknamed gp.

Graphics Ports implement a set of drawing functions and a mechanism for specifying the graphics state to be used in each
drawing function call. There are four categories of graphics ports:

On-screen ports These correspond to visible windows. They are instances of out put - pane or asubclass, and are
integral part of the CAPI panes system. The functionality of out put - pane (other than drawing)
isdiscussed in 12 Creating Panes with Your Own Drawing and Input. All drawing to an
out put - pane must be done during the dynamic extent of the call the pane's display-callback
from LispWorks.

Pixmap ports These are solely for off-screen drawing. Once the drawing is completed they can be copied to
another port (typically an on-screen port, with copy- ar ea), or converted to an image. For the
details see 13.1.2 Pixmaps and M etafiles.

Printer ports These are used for drawing to a printer. Printing is described in 16 Printing from the
CAPI—the Hardcopy API.

Metafile ports These are used for recording drawing operations so that the drawing can be realized later or
exported to afile that can read by other applications. For the details see 13.1.2 Pixmaps and
M etafiles.

13.1.1 Creating instances

Graphics ports instances are created or temporarily redirected by any of these interfaces:

On-screen ports make- i nst ance with out put - pane or any subclass (including edi t or - pane,
pi nboar d- | ayout and gr aph- pane).

Pixmap ports creat e- pi xnmap- port andwi t h- pi xmap- gr aphi cs-port.

Metefile ports with-internal -netafileandwith-external -netafile.

Printer ports with-print-jobandsinple-print-port.

For the details, see the manual pages for the various CAPI and GRAPHICS-PORTS classes listed above.

13.1.2 Pixmaps and Metafiles

Pixmaps are graphics ports for doing off-screen drawing. You create a pixmap with wi t h- pi xmap- gr aphi cs-port or
creat e- pi xmap- port, and draw on it using the drawing functions. You draw the contents of the pixmap on another port
(any kind of port) by copying it (using copy- ar ea), or create an image from it using make- i mage-from port. The
drawing into and the using of a pixmap can be interleaved (but not in parallel), and each time you use the pixmap you get the

160

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

13 Drawing - Graphics Ports

result of all the drawing operations on it until this point. If the pixmap is created by wi t h- pi xnap- gr aphi cs- port itis
destroyed on exiting the scope of wi t h- pi xmap- gr aphi cs- port, otherwise you will need to destroy the pixmap when you
finish with it (using dest r oy- pi xmap- port).

Pixmaps are used for efficiency. In general copy- ar ea would be much faster than doing the drawing operations again for
any significant number of drawing operations. It is especialy useful for drawing when LispWorks calls the display-callback
of an out put - pane, which happens whenever part of the output pane needs redrawing, and needs to be fast to look good.

Pixmaps are also useful way of creating your own images for exporting with ext er nal i ze- and-wri t e-i mage.

Examples of using pixmaps:

(exanple-edit-file "capi/graphi cs/conpositing-node-sinple")
(exanmpl e-edit-file "capi/graphics/conpositing-node")
(example-edit-file "capi/graphics/inmage-scaling")

(exampl e-edit-file "capi/graphics/inmges-w th-al pha")
(exanpl e-edit-file "capi/graphics/pixmap-port")
(example-edit-file "capi/graphics/plot-offline")

Metefiles are graphics ports that record drawing operations to them. They are used for two purposes:
» Grouping drawing operations together.

The operations can then be drawn by one call, and on Cocoa and Windows can also be put in on the clipboard so that
another process can accessiit.

 Exporting the drawing to afile.
Thefileisin aformat that other applications can also use.

You can group operations by drawing to ametafileinsidewi t h-i nt er nal - net af i | e which returns a metafile object, and
later drawing the metafile by using dr aw net af i | e. You can also convert it directly to an image by
draw net afi | e-t o-i mage. Once you have finished with it you need to free the metafile by f r ee- net afi | e.

It is possible to perform the same task by drawing the operations to a pixmap and then drawing the pixmap, as described
above. However, a metafile gives much better results when it is transformed, because it does the drawing with the
transformation, while with a pixmap the transformation transforms the pixels. Metafiles also give better results when the
drawing is not completely opague.

Theresult of wi t h-i nternal - met afi | e can also be put on the clipboard for other processes, by using set - cl i pboar d
witha:plist (list :netafile metafile). LispWorks can aso read a metafile from the clipboard by passing
:netafil eastheformattocl i pboard.

You can export the drawing to afile by drawing to a metafileinside using wi t h- ext er nal - et af i | e, which createsthe
filewhen it exits.

On Microsoft Windows it creates a Windows enhanced metéfile (there are several possible formats). On Cocoaand GTK+ it
creates a PDF file.

Compared to exporting images (using wi t h- pi xmap- gr aphi cs- port, nake-i nmage-from port, and
ext ernal i ze-and- wri t e-i nage), the exported metafiles (PDF or Windows metafile) behave much better in
transformation and combination with other drawings. They are also smpler to use.

161

13 Drawing - Graphics Ports

LispWorks itself can read the file that was created by wi t h- ext er nal - net af i | e using the functions that read images
(I oad-i nage, r ead- ext er nal -i mage).

Metafile functionality is not available on version of GTK+ before 2.8, and on Motif. The function can- use- net afile-p
can be used to check whether the GUI system associated with a screen supports metafile functionality.

Examples of metédfiles:

(exampl e-edit-file "capi/graphics/netafile")

(exanmple-edit-file "capi/graphics/netafile-rotation")

13.2 Features

The main features of graphics ports are:

1. Each port has a "graphics state”" which holds all the information about drawing parameters such as color, line thickness,
fill pattern, line-end-style and so on. A graphics state object can also be created independently of any particular graphics
port.

2. The graphics state contents can either be enumerated in each drawing function call, bound to values for the entirety of a
set of calls, or permanently changed.

3. Thegraphics state includes at r ansf or mwhich implements generalized coordinate transformations on the port's
coordinates.

4. Off-screen ports can compute the horizontal and vertical bounds of the results of a set of drawing function calls, thus
facilitating image or pixmap generation.

13.2.1 The drawing mode and anti-aliasing

Graphics ports has two drawing modes:

:conpati bl e Compatible with LispWorks 6.0 and earlier versions.

squality Introduced in LispWorks 6.1, allowing high quality drawing.

The main visible effect is that with drawing-mode : qual i ty, all drawings are transformed properly.

With drawing-mode : conpat i bl e, strings and images are not scaled or rotated at all, and ellipses are not rotated correctly.
Other shapes are transformed "at the front", that is they are drawn as if the drawing function was called with transformed
coordinates. The target of copy- pi xel s isalso transformed "at the front”, that is the rectangle can be translated, but not
scaled or rotated.

With drawing-mode : qual i ty, al drawings are fully transformed correctly. Shapes are transformed "at the back”, that is
they are drawn and then the result of the drawing is transformed. Notethat cl ear - r ect angl e and pi xbl t are not drawing
functions in this sense, and do not take transforms into account.

Another differenceisthat drawing-mode: qual i t y supports anti-aliasing on Windows, and on GTK+ it adds control over
anti-aliasing. See shape-mode and text-mode on the page for gr aphi cs- st at e.

With drawing-mode : qual i t y the operation valuein the gr aphi cs- st at e isnot supported and isignored. Thisis because
operations do not combine sensibly with anti-aliasing and colors with a pha components. Instead, there is now compositing-
mode. For more information see the page for gr aphi cs- st ate.

On Microsoft Windows with drawing-mode : qual i t y only Truetype fonts are supported.

162

13 Drawing - Graphics Ports

The drawing-mode of all graphics portsis: qual i ty by default, except when a graphics port is made in association with
another graphics ports (for example, by cr eat e- pi xmap- por t), in which case the drawing-mode is inherited from the
"parent” graphics port.

All the interfaces that create graphics ports, or modify a graphics port to draw to another place, take keyword argument
: dr awi ng- node. Itsvalue drawing--mode can be: qual i ty, : conpati bl e, or ni | whichisinterpreted as use the default
(either inherited or the global default : qual i ty). Theseinterfacesarelisted in 13.1.1 Creating instances.

These examples demonstrate features that are available only with drawing-mode : qual i ty:
Rotating a string:
(exanpl e-edit-file "capi/graphics/catherine-wheel")
Using compositing-mode.
(exanmpl e-edit-file "capi/graphi cs/conpositing-node-sinple")
Using compositing-mode.
(exampl e-edit-file "capi/graphics/compositing-node")
Using compositing-mode, transforming an image.

(exampl e-edit-file "capi/graphics/inmges-wth-al pha")

13.3 Graphics state

Thegr aphi cs- st at e object associated with each port holds values for parameters such as foreground, background,
operation, thickness, scale-thickness, mask and font which affect graphics ports drawing to that port.

The full set of parametersis described under gr aphi cs- st at e.

13.3.1 Setting the graphics state
The graphics state values associated with adrawing function call are set by one of three mechanisms.

1. Enumeration in the drawing function call. For example:

(draw-line port 1 1 100 100
:thi ckness 10
: scal e-t hi ckness ni
:foreground :red)

2. Bound using macros such aswi t h- gr aphi cs- st at e. For example:

(wi th-graphics-state (port :thickness 10
: scal e-t hi ckness ni
:foreground :red)
(drawline port 1 1 100 100)
(drawrectangle port 2 2 40 50 :filled t))

For common cases of locally changing the transform in the graphics state, there are specific macros:

e wi t h- graphi cs-t ransf or mjust changes the transform like wi t h- gr aphi cs- st at e with: t ransf orm

163

13 Drawing - Graphics Ports

e wi th-graphi cs-transformreset allowsyou to ignore surrounding transformations.

* Wi th-graphics-transl ation,w th-graphi cs-post-translation,wth-graphics-scal eand
Wi t h- gr aphi cs-r ot ati on perform commonly-used transformations.

e wi t h- graphi cs- mask affects specifically the masking dots.

3. Set by theset - gr aphi cs- st at e function. For example:

(set-graphics-state port :thickness 10
: scal e-t hi ckness ni |
:foreground :red)

The first two mechanisms change the graphics state temporarily. The last one changesit permanently in port, effectively
atering the "default" state.

13.4 Drawing functions

The section describes the various shapes and so on that you can draw with graphics ports, and lists the relevant drawing
functions. The graphics state foreground parameter is used for the drawing color.

All drawing functions must be called in the same process as the pane. You will need to arrange for that explicitly in contexts
other than callbacks on that pane. To call afunction explicitly in the pane's process, use appl y- i n- pane- pr ocess,
appl y-i n-pane-process-if-alive,execute-with-interfaceorexecute-with-interface-if-alive.

Note: Unlike images, the foreground and background colors used when drawing shapes described in this section are not pre-
multiplied. Displaying imagesis described in 13.10 Working with images.

Note: Thefull set of graphics state parametersis described under gr aphi cs- st at e.

13.4.1 Text

You can draw text with the functionsdr aw st ri ng and dr aw char act er .

To control the font used, see 13.9 Portable font descriptions.

13.4.2 Simple lines

You can draw straight lines with the functionsdr aw | i ne and dr aw- | i nes.

You can draw arcs of an elipse with the functionsdr aw ar ¢ and dr aw ar cs.

13.4.3 Simple shapes

You can draw ellipses and polygons with the functionsdr aw- el | i pse, dr aw r ect angl e, dr aw r ect angl es,
dr aw pol ygon and dr aw pol ygons.

You can specify whether a shape isdrawn in outline or isfilled (with the graphics state foreground color) by the argument
filled.

For example, to clear arectangular region of an output pane, do:

(drawrectangl e pane x y width height
cfilled t
: foreground color
: conposi ti ng-node : copy

164

13 Drawing - Graphics Ports

: shape- node : pl ai n)

: conposi ti ng- node : copy isneeded only when the color has apha, and : f or egr ound color isneeded only if itis
different from the foreground in pane's gr aphi cs- st at e.

13.4.4 Paths

A graphics path is aseries of lines, arcs and Bézier curves that together specify one or more disconnected figuresto be drawn.
You can draw a path with the function dr aw- pat h.

A path can be drawn in outline or can befilled. A path can also be used as the clipping mask.

13.5 How to draw to an on-screen port

Drawing on an out put - pane should be done only during the dynamic extent of the call to the display-callback that
LispWorks makes whenever part of the pane needs redrawing, See out put - pane for more information about thisinitarg.

For other situations where you want to redraw the pane, you should call i nval i dat e-r ect angl e or
r edi spl ay- el enent , which will cause the display-callback to be called.

13.6 Graphics state transforms

Coordinate systems for windows generally have the origin (0,0) positioned at the upper left corner of the window with X
positive to theright and Y positive downwards. Thisisthe "window coordinates’ system. Generalized coordinates are
implemented using scaling, rotation and transl ation operations such that any Cartesian coordinates can be used within a
window. The Graphics Ports system uses at r ansf or mobject to achieve this.

13.6.1 Generalized points

An (x, y) coordinate pair can be transformed to another coordinate system by scaling, rotation and translation. The first two
can be implemented using 2 x 2 matrices to hold the coefficients:

If the point Pis (X, y) and it istransformed to the point Q (X', Y):
PO Qor(x,y)d (X,y),i.e
X =pxX+ry,y =0gx+sy.

Q= PM, where M = Poq

r s

Trandation can beincluded in thisif the points P and Q are regarded as 3-vectors instead of 2-vectors, with the 3rd element
being unity:

Q=PM
=(xy1l) |pqg¥®a
rs 0
el

The coefficients u and v specify the trandation.

165

13 Drawing - Graphics Ports

So, the six elements (p, q, 1, S, u, and v) of the 3 x 3 matrix contain al the transformation information. These elements are
stored in alist (of typet r ansf or m) inthe gr aphi cs- st at e slot transform.

Transforms can be combined by matrix multiplication to effect successions of translation, scaling and rotation operations.

Functions are provided in Graphics Ports which apply trandation, scaling and rotation to a transform, combine transforms by
pre- or post-multiplication, invert atransform, perform some operations while ignoring an established transform, and so on.
The macroswi t h- gr aphi cs-rotati on, wi t h- graphi cs-scal e andwi t h- gr aphi cs-transl ati on premultiply a
supplied transform while a body of code is executed.

13.6.2 Drawing on screen

Drawing functions such asdr aw | i ne and dr aw- el | i pse modify pixels, but you cannot assume that they have exactly the
same effect on all platforms. Some platforms might put pixels below and to the right of integer coordinates (x y) while others
may center the pixel at (X y).

This appliesto all the drawing functions which are documented in 22 GRAPHICS-PORT S Reference Entries - see the
entries for functions with names beginning dr aw- .

13.7 Combining source and target pixels

This section describes how new drawings are combined with the existing pixel valuesin the target of the drawing to generate
the result, according to graphics state parameters compositing-mode or operation.

Note: The full set of graphics state parameters is described under gr aphi cs- st at e.

13.7.1 Combining pixels with :compatible drawing

When the port's drawing-mode is: conpat i bl e the graphics state parameter operation determines how the colors are
combined, and compositing-mode is ignored.

The allowed values of operation are the values of the Common Lisp constants bool e- 1, bool e- and and so on. These are
the allowed values of the first argument to the Common Lisp function bool e. See the specification of bool e inthe ANSI
Common Lisp standard for the full list of operations.

The color combination corresponds to the logical operation defined there, as if by calling:

(bool e operation new-pixel screen-pixel)

For example, passing : oper at i on bool e- andc2 providesagr aphi cs- st at e where graphics ports drawing functions
draw with the bitwise AND of the foreground color and the complement of the existing color of each pixel.

Note: Graphics State operation is not supported by Cocoa/Core Graphics so this parameter is ignored on Cocoa.

13.7.2 Combining pixels with :quality drawing

When the port's drawing-mode is: qual i t y the graphics state parameter compositing-mode determines how the colors are
combined, and operation isignored.

compositing-mode : over means draw over the existing values, blending apha valuesif they exist.

compositing-mode : copy means that the source is written to the destination ignoring the existing values. If the source has
aphaand the target does not, that has the effect of converting semi-transparent source to solid. : copy is especialy useful for
creating transparent and semi-transparent pixmap ports, which can be displayed directly or converted to images by

nmake-i nage-from port.

166

http://www.lispworks.com/documentation/HyperSpec/Body/v_b_1_b.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_b_1_b.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_boole.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_boole.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_b_1_b.htm

13 Drawing - Graphics Ports

Further compositing-mode val ues are supported on later versions of Cocoaand GTK+.

13.8 Pixmap graphics ports

Pixmap graphics ports are drawing destinations which exist only as pixel arrays whose contents are not directly accessible.
They can be drawn to using the dr aw thing functions (for example dr aw- st ri ng), they can be used as the port for loading
images using | oad- i mage, and their contents can be copied onto other graphics ports. However this copying can be
meaningless unless the conversion of colors uses the same color device on both ports. Because color devices are associated
with regular graphics ports (windows) rather than pixmap graphics ports, you have to connect a pixmap graphics port to a
regular graphics port for color conversion. Thisisthe main role of the port argument of wi t h- pi xmap- gr aphi cs- port
and cr eat e- pi xmap- por t . The conversion of colorsto color representations is done in the same way as for regular
graphics ports, but the pixmap graphics port's owner is used to find a color device. You can draw to pixmap graphics ports
using pre-converted colors to avoid color conversion altogether, in which case anull color owner is OK for a pixmap graphics
port.

13.8.1 Relative drawing in pixmap graphics ports

Many of the drawing functions have arelative argument. If non-nil, it specifies that when drawing functions draw to the
pixmap, the extremes of the pixel coordinates reached are accumulated. If the drawing strays beyond any edge of the pixmap
port (into negative coordinates or beyond its width or height), then the drawing origin is shifted so that it all fits on the port. If
the drawing extremes exceed the total size available, some are inevitably lost. If relativeisni | , any part of the drawing
which extends beyond the edges of the pixmap islost. If relativeisni | and collect non-nil, the drawing bounds are collected
for later reading, but no relative shifting of the drawing is performed. The collected bounds are useful when you need to
know the graphics motion a series of drawing calls causes. The rest args are host-dependent. They usually include a: wi dt h
and : hei ght pair.

13.9 Portable font descriptions

Portable font descriptions are designed to solve the following problems:
* Specify enough information to uniquely determine areal font.
* Query which real fonts match a partial specification.
» Allow font specification to be recorded and reused in alater run.
All the functions described below are exported from the gp package.

You can obtain the names of all the fonts which are available for agiven pane by callingl i st - al | - f ont - nanmes, which
returns alist of partially-specified font descriptions.

Portable font descriptions are used only for lookup of real fonts and for storing the parameters to specify when doing afont
lookup operation. To draw text in a specified font using the Graphics Ports drawing functions, supply in the graphics state a
font object asreturned by f i nd- mat chi ng-f ont s andfi nd- best -font .

13.9.1 Font attributes and font descriptions

Font attributes are properties of afont, which can be combined to uniquely specify afont on a given platform. There are
some portabl e attributes which can be used on all platforms; other attributes are platform-specific and will be ignored or
signal errors when used on the wrong platform.

Font descriptions are externalizable objects which contain a set of font attributes. When using afont description in afont
lookup operation, missing attributes are treated as wildcards (as are those with value : wi | d) and invalid attributes signal
errors. Theresult of afont lookup contains all the attributes needed to uniquely specify afont on that platform.

167

13 Drawing - Graphics Ports

The: st ock font attribute is special: it can be used to reliably look up asystem font on all platforms.

Font descriptions can be manipulated using the functions ner ge- f ont - descri pti ons and
augnent - f ont - descri pti on.

These are the current set of portable font attributes and their portable types.

Set of portable font attributes

Attribute Possible values Comments

cfamly string Values are not portable.

S wei ght (menmber :normal :bold)

: sl ant (menber :roman :italic)

size (or (eql :any) (integer 0 *)|:any meansascaablefont
)

:stock (menmber :systemfont :system| Stock fonts are guaranteed to exist.
-fixed-font)

: char set keyword

13.9.2 Fonts

Fonts are the objects which are actually used in drawing operations. They are made by afont lookup operation on a pane,
using afont description as a pattern.

Examples of font lookup operations aref i nd- best - f ont andfi nd- mat chi ng-fonts.

Once afont object is resolved you can read its properties such as height, width and average width. The functions

get - f ont - hei ght, get - f ont - wi dt h and get - f ont - aver age- wi dt h and so on need a pane that has been created. In
general, you need to call these functionswithini nt er f ace- di spl ay, or adisplay-callback or possibly a create-callback.
See the manual page for i nt er f ace for more information about these initargs.

13.9.3 Font aliases

You can define font aliases, which map a keyword symbol to some font or font description, using def i ne-f ont - al i as.
You can then use this the keyword as the font for CAPI panes.

13.10 Working with images

Graphics Ports supports drawing images, and a so reading/writing them from/to file viayour code. A wide range of image
typesis supported. Also, severa CAPI classes support the same image types.

To draw an image with Graphics Ports, you need an i mage object which is associated with an instance of out put - pane (or
asubclass of this). You can create ani nage object from:

* A file of recognized image type.
» A registered image identifier (see 13.10.4 Registering images).

* Anexternal -i mage object.

» A graphics port.

168

13 Drawing - Graphics Ports

Draw the image to the pane by calling dr aw- i mage. Certain images ("Plain Images") can be manipulated via the Image
Access API. Theimage should be freed by calling f r ee- i nege when you are done with it.

The CAPI classesi mage- pi nboar d- obj ect, button, | i st-panel,list-viewtree-view,toolbar,
t ool bar - but t on and t ool bar - conponent all support images. Thereisalso limited support for imagesin nenu. These
classes handle the drawing and freeing for you.

13.10.1 Image formats supported for reading from disk and drawing

This table lists the formats supported at the time of writing:

Operating system and supported image types

0s Supported Image Types

Microsoft Windows BMP, DIB, GIF, JPEG, PNG, TIFF, EMF, ICO

macOS BMP, DIB, GIF, JPEG, TIFF, PICT and many others.
Also EPS (prior to macOS 13 Ventura) and PDF.

GTK+ BMP, DIB, GIF, JPEG, PNG, TIFF and many others.

X11/Motif BMP, DIB, GIF, JPEG, PNG, TIFF, XPM, PGM, PPM

Functions which load images from afile attempt to identify the image type from the file type.

Call thefunction | i st - known- i mage- f or mat s to list the formats that the current platform supports for reading and
drawing.

Note: On X11/Motif, LispWorks uses the freewarei m i b2 library on Linux, FreeBSD and macOS, andi nl i b on Solaris.

Note: On Microsoft Windows, 1CO images are supported for certain situations such as buttons and drawing images. See
but t on and dr aw- i nage for details.

Note: On Microsoft Windows, LispWorks additionally supports Windows Icon files with scaling - seel oad- i con-i nage
for details.

Note: On Microsoft Windows, only bitmaps with maximum 24 bits per pixel are supported.

Note: LispWorks 4.3 and previous versions supported only Bitmap images.

13.10.2 Image formats supported for writing to disk

Graphic images can be written to filesin several formats, using ext er nal i ze- and-wri t e-i mage.

All platforms can write at least BMP, JPG, PNG and TIFF files. Call the function| i st - known- i mage- f or mat s with
optional argument for-writing-toot to list the formats that the current platform supports for writing.

On Microsoft Windows and Cocoa you can also write GIF files, while on GTK+ you can also write ICO and CUR (cursor)
files. The cursor files that are written with GTK+ can be used on Windows and Cocoa, although on Cocoait does not
recognize the hot-spot in a CUR file.

Thereis asimple example of writing a PNG image here:

(exanmple-edit-file "capi/graphics/inages-wth-al pha")

169

13 Drawing - Graphics Ports

13.10.3 External images

An External Image is an intermediate object. It isarepresentation of agraphic but is not associated with a port and cannot be
used directly for drawing. It isaLisp object which can be loaded into Lisp and saved in a LispWorks image created by
save-i mage or del i ver.

An object of type ext er nal - i mage iscreated by reading an image from afile, or by externalizing an i mage object, or by
copying an existing ext er nal -i mage. Or, if you have the image bitmap data, you can create one directly using
make- i nst ance asin this example:

(exampl e-edit-file "capi/buttons/buttons")

Theext er nal -i mage contains the bitmap data, potentially compressed. You can copy ext er nal - i mage objects, or write
them to file, or compress the data.

You cannot query the size of theimage in an ext er nal - i mage object directly. To get the dimensions without actually
drawing it on screen see 13.8 Pixmap graphics ports.

Anext er nal -i mage can bewrittento afileusingwr i t e- ext er nal - i mage. If you create ani mage and want to
externalize it to writeit to file, follow this example:

(let ((inmage (gp:nmake-i mage-from port pane 10 10 200 200)))
(unwi nd- prot ect
(gp: externalize-and-wite-inage pane i mage filename)
(gp: free-i nage pane i mage)))

13.10.3.1 Converting an external image

Convert an ext er nal - i rage to an object of typei mage ready for drawing to a port in several ways as described in 13.10.5
Making an image that is suitable for drawing. Such conversions are cached but you can remove the caches by
cl ear-external -i nage-conver si ons.

You can also convert ani mage to an ext er nal - i mage by calling ext er nal i ze-i nage.

13.10.3.2 Transparency and the alpha channel
Graphics ports images support an alpha channel, aslong as the image format does.

An External Image representing an image in aformat with a color table but with no alpha channel (such as 8-hit BMP) can
simulate transparency by specifying an index to represent the transparent color. When converted this color is replaced by the
background color of the port (which is documented in si npl e- pane).

You can specify the transparent color by:

(gp: read-external -i nage file : transparent-col or-i ndex 42)
or by:
(setf

(gp: external -i mage-transparent-col or-i ndex
external-image) 42)

You can use an image tool such as Gimp (www.gimp.org) to figure out the transparent color index.

On platforms other than Motif you can actually make the background of such an image format truly transparent when
displayed. To do this, supply transparent-color-index asacons(index . :transparent).

170

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.gimp.org

13 Drawing - Graphics Ports

Note: transparent-color-index works only for images with a color map - those with 256 colors or less.

13.10.4 Registering images
Oneway toload ani mage isviaaregistered image identifier.

Registering an externa image is the way to pre-load images while building an application. To do this, establish a registered
image identifier by callingr egi st er-i nage-transl ati on at build time:

(gp:register-imge-translation
"info-inmge
(gp: read-external -i nage "i nfo. bnp"
:transparent-col or-i ndex 7))

Then at run time obtain thei mage object by:

(gp: | oad-i mage port 'info-imge)

13.10.5 Making an image that is suitable for drawing

To create ani mage object suitable for drawing on a given pane, use one of conver t - ext er nal - i mage,
r ead- and- convert - ext er nal -i mage, | oad-i nage, nake-i nage-from port, nake- sub-i nage,
make- scal ed- sub-i mage or (on Microsoft Windows) | oad-i con-i mage.

Images need to be freed after use. When the pane that an image was created for is destroyed, the image is freed automatically.
However if you want to remove the image before the pane is destroyed, you must make an explicit call f r ee- i mage. If the
image is not freed, then amemory leak will occur.

Another way to create an i mage object isto supply aregistered image identifier in a CAPI class that supports images. For
example you can specify animage in ani mage- pi nboar d- obj ect . Then, ani nage object is created implicitly when the
pinboard object is displayed and freed implicitly when the pinboard object is destroyed.

In all cases, the functions that create thei mage object require the pane to be aready created. So if you are displaying the
image when first displaying your window, take care to create thei nage object late enough, for examplein the: bef or e
method of i nt er f ace- di spl ay on thewindow's interface class, or in thefirst : di spl ay- cal | back of the pane.

13.10.6 Querying image dimensions

To obtain the pixel dimensions of an image, load the image using | oad- i mage and then use the readersi mage- wi dt h and
i mage- hei ght . Thefirst argument to | oad- i mage must be apane in adisplayed interface.

To query the dimensions before displaying anything you can create and "display” an interface made with the
:di spl ay-state : hidden initarg. Call | oad- i mage with this hidden interface and your ext er nal - i mage object, and
then use the readersi nage- wi dt h and i nage- hei ght .

13.10.7 Drawing images
The function to draw an imageisdr aw- i nage.

Aswith the other drawing functions, this must be called in the same process as the pane, as outlined in 13.4 Drawing
functions.

171

13 Drawing - Graphics Ports

13.10.8 Image access

You can read and write pixel valuesin ani mage viaan Image Access object, but only if theimageisaPlain Image. You can
ensure you have a Plain Image by using the result of:

(1 oad-i mage pane image : force-plain t)

To read and/or write pixel values, follow these steps:

1. Start with a Graphics Port (for example an out put - pane) and ani nage object associated with it, which isaPlain
Image. See above for how to create ani mage object.

2. Construct an Image Access object by calling make- i mage- access.

3. Toread pixels from theimage, first call i rage- access-transfer-fromi mage onthe Image Access object. This
notionally transfers all the pixel datafrom the window system into the access object. It might do nothing if the window
system allows fast access to the pixel data directly. Then call i mage- access- pi xel with the coordinates of each pixel
(or usei mage- access- pi xel s-t o- bgr a). The values are color representations like those returned from
convert - col or and can be converted to RGB using unconvert - col or if required.

4. To write pixels to the image, you must have already caled i rage- access-transfer-fromi mage. Then call
(setf immage-access-pi xel) with the coordinates of each pixel (or usei nage- access- pi xel s-from bgr a) to
write pre-multiplied pixel RGB values and then call i rage- access-transf er-t o-i nage on the Image Access
object. Thisnotionally transfers all the pixel data back to the window system from the access abject. It might do nothing
if the window system allows fast access to the pixel data directly.

5. Free theimage access abject by calling f r ee- i mage- access onit.

It isalso possibleto get al the pixelsinto a single vector, where each color is represented by four elements, using

i mage- access- pi xel s-from bgr a, and to change all the pixelsin theimage to values from a vector using

i mage- access- pi xel s-t o- bgr a. When accessing many pixels, using these functions and accessing the vector is much
faster than using the single pixel access.

There is an example that demonstrates the uses of Image Access objects, including those colors that have an alpha component
and BGRA data:

(example-edit-file "capi/graphics/inage-access-al pha")

13.10.8.1 Pre-multiplied pixel values in images

The color values that are received and set using Image Access are premultiplied, which means that the value of each of the
three components (Red, Green and Blue) are already multiplied by the value of the alpha. Thisis different from the way
colors are represented elsewhere. The functionscol or-to-prenul tipliedandcol or-from prenul tipliedcanbe
used the convert between premultiplied colors and ordinary colors, although they lose some precision in the process.

For example, the form below creates an image from a pixmap filled with a color that has alpha 0.5. When accessing the
image using Image Access, the values in the color that it returned are half of the valuesin the original color.

(let* ((initial-color (color:nmake-rgbh 0.8 0.6 0.4 0.5))
(i mage- pi xel
(let ((pane (capi: editor-pane
(capi:find-interface 'Ilwtools:listener))))
Make a tenmporary pixmap filled with the
initial-color and create a gp:inmage fromit
(let ((image (gp:w th-pixmap-graphi cs-port
(pi xmap pane 10 10
: background initial-color
:clear t)

172

13 Drawing - Graphics Ports

(gp: make-i mage-from port pixmap))))
Create a gp:inage-access, read
a pi xel and unconvert it
(let ((inmage-access (gp: nake-i mage-access
pane inmage)))
(gp: i mage- access-transfer-fromimge
i mage- access)
(let ((pixel (color:unconvert-col or
pane
(gp: i mage- access- pi xe
i mage-access 0 0))))
(gp: free-i nage-access i mage- access)
(gp: free-i nage pane i nage)
pixel))))))
(flet ((output-color (string color)
(format t
"~%-a~28t: Red ~4,2f, Geen ~4,2f, Blue ~4,2f"
string
(color:color-red col or)
(col or:color-green color)
(color:color-blue color))))
(out put-color "Initial-color"
initial-color)
(out put-color "prenultiplied"
(color:color-to-premultiplied initial-color))
(out put-color "In the i mage"
i mage- pi xel)
(out put-color "Pixel un-prenultiplied"
(color:color-fromprenultiplied inmage-pixel))))

13.10.9 Creating external images from Graphics Ports operations

To create an ext er nal - i mage object from graphics ports operations, usewi t h- pi xmap- gr aphi cs- port, andin the
scope of it do the drawing and then use neke- i mage-from port to create ani nage object. You can then use
external i ze-i mage or external i ze-and-w it e-i mage to externalize the image.

(defun record-picture (output-pane)
(gp: w t h- pi xmap- gr aphi cs- port
(port out put-pane
400 400
iclear t
- background :red)
(gp:drawrectangle port 0 0 200 200
filled t
: foreground : bl ue)
(let ((image (gp: nake-image-from port port)))
(gp: externalize-inmage port inage))))

Here output-pane must be a displayed instance of out put - pane (or asubclass). The code does not affect the displayed pane.

If you do not already display a suitable output pane, you can create an invisible one like this:

(defun record-picture-1 ()
(let* ((pl (rmake-instance 'capi: pinboard-|ayout))
(win (capi:display
(make-instance 'capi:interface
:di splay-state : hidden
:layout pl))))
(progl (capi:apply-in-pane-process-wait-single pl 5 'record-picture pl)
(capi: appl y-i n-pane-process win 'capi:destroy win))))

Note: Thereis no reason to create and destroy the invisible interface each time a new picture is recorded, so for efficiency

173

13 Drawing - Graphics Ports

you could cache the interface object and use it repeatedly.

Note: Theuse of capi : appl y-i n- pane- process-wai t-si ngl e and capi : appl y-i n- pane- pr ocess to call the
CAPI and GP functions are needed to alow r ecor d- pi ct ur e- 1 to be called from a process that is not running the invisible
interface.

174

14 Graphic Tools drawing objects

The drawing objects of Graphic Tools add a mechanism to creates a hierarchy of drawing, when a"drawing"” is (typically) a
simple Graphics Ports drawing operation. The hierarchy specifies the geometry of each node in the hierarchy, so the whole
group of drawings can be manipulated as a single object.

The lower level interface allows you to create drawing objects and manipulate them. The higher level interface allows you to
generate graphs of functions or bar charts, where "generate" means create a hierarchy of drawing objects. The higher level
functions are useful on their own, but they also give examples of how to create high-level objects from drawing objects. You
can look at their output to get a better idea how to write your own Graphic Tools code.

The Graphic Tools interface is defined in the package LW-GT. To useit, you need to load the "graphic-tools’ module:

(require "graphic-tools")

14.1 Lower level - drawing objects and objects displayers

The drawing objects are instances of subclasses of dr awi ng- obj ect . The term "drawing-object-spec” refersto either a
dr awi ng- obj ect or alist of "drawing-object-specs’. The drawing objects hierarchy is made of "drawing-object-specs”.

The leaf nodesin the hierarchy are dr awi ng- obj ect swhich actually do the drawing, typically by calling a Graphics Ports
drawing function (for example dr aw- | i ne). You generate such adr awi ng- obj ect by using any of the

| w gt : make- dr aw ...functions, for example make- dr aw | i ne. You can also have adr awi ng- obj ect that callsan
arbitrary function by using nake- a- dr awi ng-cal | .

The non-leaf nodes in the hierarchy are made by instances of conpound- dr awi ng- obj ect . conpound- dr awi ng- obj ect

has a sub-object dot, which contains a " drawing-object-spec” (either alist of "drawing-object-specs” or a
dr awi ng- obj ect). Since the elementsin lists are themselves "drawing-object-specs’, that is can aso be lists, part of the
hierarchy can be donein lists of lists.

The main function of conpound- dr awi ng- obj ect isto define the geometry of the drawing. The actual objects are
instances of geonet r y- dr awi ng- obj ect which isasubclass of conpound- dr awi ng- obj ect . These objects define the
geometry, by rebinding the Graphics Ports transform, and then drawing their sub-object in this context. The width and height
of the conpound- dr awi ng- obj ect are also passed down, so geonet r y- dr awi ng- obj ect sinside the sub-object can use
it when computing their own geometry.

You create ageonet r y- dr awi ng- obj ect by using one of:

posi ti on-obj ect Defines the rectangle for drawing the sub-object.
fit-object Scales its sub-object.

position-and-fit-object

Both positions and scales.

r ot at e- obj ect Rotates its sub-object.

make- absol ut e- dr awi ng* and nake- absol ut e- dr awi ng

Draw their sub-object in the trandlated position, but without scaling or rotation.

175

14 Graphic Tools drawing objects

Listsjust draw their elements in the same geometry as their "parent”.

To actually be drawn, the root of the hierarchy must be stored in the drawing-object slot of an "objects displayer”, whichis
either an obj ect s- di spl ayer (subclass of pi nboar d- | ayout), or pi nboar d- obj ect s-di spl ayer (subclass of

pi nboar d- obj ect). Theobj ect s- di spl ayer or pi nboar d- obj ect s- di spl ayer displaysthe hierarchy starting from
the object in their drawing-object slot, passing its own geometry. The object in the drawing-object slot will typically be alist
(which then draws its elements) or aconpound- dr awi ng- obj ect (which then draws its sub-object with modified
geometry). This process recurses and draws the entire hierarchy.

By default, both obj ect s- di spl ayer and pi nboar d- obj ect s- di spl ayer use aninternal metafile as away to cache
the drawing and also to improve resizing.

dr awi ng- obj ect sdo not have a permanent notion of "parent”, and can appear concurrently as "children” of many
"parents’, and the same appliesto alist in the hierarchy. The abjects do not have any specific thread information and drawing
does not modify anything in the objects. Therefore "drawing-object-specs' can appear concurrently in many places, whether
inside the same hierarchy or in different hierarchies.

For example, the following do- obj ect function takes an object, and positionsit at the bottom (with no positioning), middie
and top. It then groups these three occurrencesin alist ("drawing-object-spec”). It then uses "drawing-object-spec” twice,
onceinside pi nboar d- obj ect s- di spl ayer, and oncein an obj ect s- di spl ayer that also displaysthe

pi nboar d- obj ect s-di spl ayer . Thusthe object is displayed six times. bottom, middle and top of the

pi nboar d- obj ect s-di spl ayer, and bottom, middle and top of obj ect s- di spl ayer.

(defun do-object (the-object height)
(let* ((bottomone the-object)
(m ddl e- one
(I'wgt:position-object the-object
“bottomratio 0.5
:bottommargin (/ height -2)))
(top-one
(I'wgt:position-object the-object
:bottomratio 1
:bottommargin (- height)))
(draw ng- obj ect - spec
(l'ist bottom one niddl e-one top-one))
(pi nboar d- obj ect
(1w gt: make- pi nboar d- obj ect s-di spl ayer
dr awi ng- obj ect - spec
:x 80
'y 40
swidth 100
:height 200)))
(capi:contain
(make-instance '| w gt: objects-displayer
:description (list pinboard-object)
:drawi ng- obj ect draw ng- obj ect-spec))))

We then use do- obj ect to display ared rectangle:

(do-obj ect
(lwgt: make-drawrectangle 0 0 40 20 :filled t :foreground :red)
20)

You see that there are six rectangles. When you resize the pane, the three rectangles on the left, which are the rectanglesin
the drawing-object dot of the obj ect s- di spl ayer, resizetoo. That is because the metafile of the obj ect s- di spl ayer
resizes. The three rectangles of the pi nboar d- obj ect s- di spl ayer do not resize, because the

pi nboar d- obj ect s- di spl ayer doesnot changeitssize.

The function can be used for more complex objects:

176

14 Graphic Tools drawing objects

(do- obj ect
(list
(I'wgt: make-drawrectangle 0 0 40 20

:filled t :foreground :red)
(I'wgt: make-drawel lipse 20 10 20 10

:filled t :foreground : bl ue)
(I'wgt:make-drawline 0 10 40 10

:filled t :foreground :green))
20)

The next example usesr ot at e- obj ect . Thisfirst shifts the object to the right and down by using posi ti on- obj ect ,
rotates the objects six times, rotating pi/3 each time, around a point which isin the middle of the height of the object, and
distance of height to itsleft. Note that consequently the actual position of the copiesis quite different from where

posi ti on- obj ect put them, which isadightly counter-intuitive feature of r ot at e- obj ect when using arotating point
which is not the center of the object:

(defun do-rotating (the-object height)
(let ((shifted
(I wgt: position-object the-object
:left-margin hei ght
cbottommargin (- (/ height 2)))))
(let* ((rotated-copies
(1 oop repeat 6
for angle fromO by (/ pi 3)
collect (Iwgt:rotate-object shifted angle)))
position the result in the nmddle of the pane
(posi tioned-draw ng
(I'wgt:position-object rotated-copies
:bottomratio 0.5
cleft-ratio 0.5)))
(capi:contain
(make-instance '| w gt: objects-displayer
:drawi ng-obj ect positioned-drawing)))))

and rotate the same object that we used above:

(do-rotating
(list (Iwgt:nmake-drawrectangle 0 0 40 20

:filled t :foreground :red)
(I'wgt: make-drawel lipse 20 10 20 10

:filled t :foreground : bl ue)
(I'wgt: make-drawline 0 10 40 10

:filled t :foreground :green))
20)

A sub-hierarchy inside a hierarchy can be modified destructively by setting the sub-object slot of

conpound- dr awi ng- obj ect sinthe hierarchy. For example, we use the function do- obj ect above to display rectangles,
and then make it switch between rectangles and ellipses:

(let ((rect
(I'wgt: make-drawrectangle 0 0 40 20

:filled t :foreground :red))
(ellipse

(1w gt: make-drawel li pse 20 10 20 10

:filled t :foreground :blue)))
(let ((my-object

;; Use lwgt:position-object to create a
;; compound- drawi ng- obj ect, without actual positioning
(I'wgt:position-object rect)))
(let ((the-pane (do-object ny-object 20)))
(dotimes (x 20)
(sleep 0.5)

177

14 Graphic Tools drawing objects

nodi fy the hierarchy
(setf (I w gt:conpound-draw ng-obj ect-sub-obj ect ny-object)
(if (evenp x) ellipse rect))
make it redraw
(Iwgt:force-objects-redraw t he-pane)))))

In principle you can also modify the hierarchy by setting thecl : car of aconsin alist inside the hierarchy, though that will
make your code less clear. Do not set thecl : cdr of consesin these lists.

As the example above shows, you do not need to do modifications in the pane thread (in contrast to operations on CAPI
objects). If you modify the hierarchy whileit is being drawn, the drawing in this drawing operation may be mixed up.
However, normally you will want to forceit to redraw using f or ce- obj ect s- r edr aw, which will draw correctly.

To make it easier to modify objects in the hierarchy, the functions that generate conpound- dr awi ng- obj ect sall take
keyword arguments data and function, which then are used to update the object automatically by callsto

conput e- dr awi ng- obj ect - f rom dat a or r ecur se- conput e- dr awi ng- obj ect . For example, the switch example
above can be written using this mechanism, without having to remember my-object:

(defun ny-updating-function (data)
(car data))

(let ((data (list nil)))
(let ((rect
(lwgt: make-drawrectangle 0 0 40 20 :filled t :foreground :red))
(ellipse
(lwgt:make-drawellipse 20 10 20 10 :filled t :foreground :blue)))
(let ((my-object
;; Use position-object to create a conpound-draw ng-obj ect,
wi t hout actual positioning, but with updating infornation
(I wgt:position-object rect
:function 'ny-updating-function
:data data)))
(let ((the-pane (do-object ny-object 20)))
(dotimes (x 20)
(sleep 0.5)
(setf (car data) (if (evenp x) ellipse rect))
(I'wgt:recurse-conput e-draw ng-object the-pane))))))

Because dr awi ng- obj ect sdo not actually know which hierarchy they are in, they cannot tell their containing pane to
redraw. We used f or ce- obj ect s- r edr awin the first example above, and in the last example above we rely the fact that

r ecur se- conput e- dr awi ng- obj ect , when called on a pane, doesthisitself. In general, to actually get the pane redrawn,
you will have to have a call of some function (f or ce- obj ect s- r edr awor afunction that callsit) on either the pane or on
api nboar d- obj ect s- di spl ayer.

Note that just invalidating the pane (by i nval i dat e- r ect angl e) does not cause redrawing of the dr awi ng- obj ect s
when ametafile is used (the default case). That isintentional, to make exposure and resize fast.

Modifying the hierarchy is thread-safe, in that threads modifying the hierarchy in parallel, and even parallel to it being drawn,
will not cause a problem on its own. However there is no guard against different threads making conflicting changes. For
example, if thread A setsthe sub-object of aconpound- dr awi ng- obj ect , and at the same time thread B sets something
inside the sub-abject, then the change that thread B made will not be visible in the hierarchy. You will have to guard against
such conflicts.

Thedr awi ng- obj ect code cannot cope with acircular hierarchy.

178

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

14 Graphic Tools drawing objects

14.2 Higher level - drawing graphs and bar charts

The higher level Graphic Tools functions all generate a"drawing-object-spec” (adr awi ng- obj ect or alist) which can then
be displayed by inclusion in the hierarchy under an obj ect s- di spl ayer (potentially viaa
pi nboar d- obj ect s-di spl ayer).

The functions are geared towards producing graphs of (mathematical) functions and bar charts. The function
gener at e- gri d- 1 i nes isused to generate grid of lines. The function gener at e- | abel s isused to generate labels, with
the intention that these labels will match the grid lines.

The functionsgener at e- gr aph- f r om pai r s and gener at e- gr aph- f r om gr aph- spec are used to generate the actual
graph. The graphis actually a sequence of straight lines connecting consecutive points (neighbouring pointsin the x
dimension), but by giving it enough points the graph can be made to ook smooth. Currently there is no smoothing option.

gener at e- gr aph-f rom pai r s receivesthe pointsas alist of lists (x y). gener at e- gr aph-f r om gr aph- spec takesa
basi c- gr aph- spec which you make by calling make- basi c- gr aph- spec. The graph spec contains a function which
computes the y value corresponding to the supplied x value, and information (start, step and range) which specifies the x
valuesto use. Thebasi c- gr aph- spec isintended to simplify writing code that repeatedly draws graphs with similar
attributes.

gener at e- bar - chart generates the bars of abar chart, with an optional title for each bar.

To show something useful, you will normally combine the results of gener at e- gri d- 1 i nes, gener at e- | abel s and one
of gener at e- gr aph-fr om pai r s, gener at e- gr aph-f r om gr aph- spec or gener at e- bar - chart (typically by just
using cl : | i st), and then position and scale the result using the geometry functions (posi ti on- obj ect, fit - obj ect,
posi tion-and-fit-object), andthe result of thiswill be put into a hierarchy under an obj ect s- di spl ayer or

pi nboar d- obj ect s-di spl ayer.

Note that when you scale (using fi t - obj ect or posi ti on-and-fit-obj ect), you effectively change the units of
drawing inside the scaled object. You can therefore generate the graph in its natural coordinates, and then put in the correct
dimensions on the screen. The example below generates a graph with size of 18x9, and then usesfi t - obj ect with the same
width and height, which scales the graph to fit the full areathat it is supplied. We aso give it some margin using

posi ti on-obj ect.

We then use the result (fitted-graph-with-margin) both as the drawing-object of api nboar d- obj ect s- di spl ayer and the
drawing-object of an obj ect s- di spl ayer which aso contains the pi nboar d- obj ect s- di spl ayer. Inthe

pi nboar d- obj ect s-di spl ayer we also add ared rectangle to show the area of the pi nboar d- obj ect s- di spl ayer.
The result is that the the same graph is displayed twice: once inside pi nboar d- obj ect s- di spl ayer and once inside the
whole obj ect s- di spl ayer . If you resize the window, you see that the outer graph resizes, while the inner graph stays the
same (because the pi nboar d- obj ect s- di spl ayer doesnot change size).

(let* ((graph
(Iwgt:generate-grid-lines :horizontal -count 18
svertical -count 9
:right-thickness 3
:maj or-x-step 4
:major-y-step 3
:thickness 1
:maj or -t hi ckness 2
:maj or - col or :blue
:color :green))
(fitted-graph (lwgt:fit-object graph 18 9))
(fitted-graph-with-margin
(Iwgt:position-object fitted-graph
cleft-margin 10
cright-margin 10
:top-margin 10
:bottom margi n 10))
(red-rectangl e
(lwgt:fit-object

179

http://www.lispworks.com/documentation/HyperSpec/Body/a_list.htm

14 Graphic Tools drawing objects

(lwgt: make-drawrectangle 0 0 1 1
:foreground :red
:thickness 2
:scal e-thickness nil)
11))
(pi nboar d- obj ect (I w gt: nake- pi nboar d- obj ect s-di spl ayer
(list red-rectangle fitted-graph-w th-margin)
:X 45 :y 45 :width 400 : hei ght 400)))
(setqg *pane* (capi:contain (nake-instance '|wgt::objects-displayer
:description (list pinboard-object)
:drawi ng-object fitted-graph-with-margin

)
:best-wi dth 500 : best-hei ght 500)))

For the pi nboar d- obj ect to resize, you need to resize it explicitly.

The following function moves the first pinboard object:

(defun nove-first-pinboard-object (pane x y w dth height)
(capi : appl y-i n- pane- process
pane
(lambda (pane x y w dth height)
(let ((po (car (capi:layout-description pane))))
(setf (capi:static-layout-child-geonetry po)
(values x y width height))))
pane x y width height))

Now this moves the pinboard object, and resizes the grid inside it (as well as the red rectangle):

(rmove-first-pinboard-object *pane* 20 60 420 300)

More extended are examples are in:

(exanpl e-edit-file "graphic-tool s/ bar-chart-exanple")

(example-edit-file "graphic-tool s/ graph-exanple")

180

15 The Color System

The LispWorks Color System allows you to manipulate colors, which are used as the color values in Graphics Ports and
CAPI functions. For example, to draw astring in red, you call:

(gp:drawstring pane string x y :foreground :red)

Thevalueof : f or egr ound (: r ed above) must be a color specification that is recognized by the Color System (: red is
recognized because it is part of the color database that is pre-loaded)..

In the LispWorks Color System, colors can be represented in two ways:

1. A color spec, which specifies a color model (for example RGB) and the values of the parameters in this model (for
example the parameters in RGB would be the values of the red, green and blue components, and optionally the alpha
value).

2. A symbol, normally a keyword. For a symbol to be used a color, it must be associated with a color spec, either directly
or viaanother symbol. Symbolsthat are used as colors are looked up in a color database. The LispWorksimageis
supplied with alarge color database aready loaded (approximately 660 entries), and you can add your own entries using
defi ne-col or-al i as or by loading your own color database.

The LispWorks Color System allows you to:

» Make your own color specsin RGB, HSV or GRAY color models, and access components of color specs. See 15.1
Color specs.

 Define new association between symbols and colors, query which association exist, and find the color spec associated
with asymbol. See 15.2 Color aliases.

» Convert color specs between color models. See 15.3 Color models.

 Load acolor database from afile of color descriptions. See 15.4 L oading the color database.

» Define new color models. See 15.5 Defining new color models.

The Color System symbols are exported from the COLOR package, and all symbols mentioned in this chapter are assumed to
be external to this package unless otherwise stated.

15.1 Color specs
A color spec is an object which numerically defines a color in some color-model. For example the object returned by the call:

(color:make-rgh 0.0 1.0 0.0) =>
#(:RG 0.0 1.0 0.0)

defines the color green in the RGB color model. Generally short-floats are used; this resultsin the most efficient color
conversion process. However, any float type can be used.

To find out what color-spec is associated with a color name, use the function get - col or - spec. It returns the color-spec
associated with a symbol. If there is no color-spec associated with color-name, this function returnsni | . If color-nameisthe
name of acolor dlias, the color aliasis dereferenced until a color-spec is found.

181

15 The Color System

Color-specs are made using standard functions nake- r gb, nake- hsv and make- gr ay. For example:

(rmake-rgb 0.0s0 1.0s0 0.0s0)
(make-hsv 1.2s0 0.5s0 0.9s0)
(rmake-gray 0.66667s0)

To create a color spec with an alpha component using the above constructors, pass an extra optional argument. For example
this specifies green with 40% transparency:

(rmake-rgb 0.0s0 1.0s0 0.0s0 0. 6s0)

You can also make a transparent color using col or - wi t h- al pha:

(col or-with-al pha color-spec 0. 8s0)

Note that the alpha component is not supported on Motif.
The function col or - nodel returnsthe model in which a color-spec object has been defined.

The components of color specs can be accessed using the following functions:

RGB mode col or-red, col or-green, col or - bl ue.
HSV model col or - hue, col or-sat urati on, col or - val ue.
Gray model col or-1evel .

When these readers are supplied a color spec of their model, they just return the corresponding component. If they are
supplied a color spec of another model, they compute the component.

The function col or - al pha can be used to access the alpha value of a color (its opacity). If the color does not have an alpha,
col or - al pha returns 1.0.
15.2 Color aliases

You can enter a color aliasin the color database using the function def i ne- col or - al i as. You can remove an entry in the
color database using del et e- col or-transl ati on.

defi ne-col or-al i as makesan entry in the color database under a name, which should be asymbol. LispWorks by
convention uses keyword symbols. The hame pointsto either a color-spec or another color name (symbol):

(define-color-alias :wre-color :darksl ategray)

Attempting to replace an existing color-spec in the color database resultsin an error. By default, replacement of existing
aliasesis allowed but there is an option to control this (see the manual page for def i ne- col or - al i as).

del et e-col or -t ransl ati on removes an entry from the color-database. Both original entries and aliases can be removed:

(del ete-color-translation :wre-col or)

Asdescribed in 15.1 Color specs, the function get - col or - spec returns the color-spec associated with acolor alias. The
function get - col or - al i as-transl ati on returns the ultimate color name for an alias:

(define-color-alias :lispworks-blue
(make-rgb 0.70s0 0.90s0 0.99s0))
(define-color-alias :color-background
:1'i spwor ks- bl ue)

182

15 The Color System

(define-color-alias :listener-background
: col or - backgr ound)

(get-color-alias-translation :1istener-background)
=> :|ispworks-blue
(get-color-alias-translation :col or-background)
=> :|ispworks-blue

Thereisasystem-defined color dias: t r anspar ent which isuseful when specified as the background of apane. Itis
currently supported only on Cocoa. For example:

(capi : popup-confirmer
(make-instance 'capi:di spl ay- pane
Dtext
(format nil "The background of this pane~%s transparent”)
: background :transparent)

")

To find out what colors are defined in the color database, use the function apr opos- col or - nanes. For example:

(apropos-col or-nanes "RED') =>
(: ORANGERED3 : ORANGEREDL : | NDI ANRED3 : | NDI ANRED1

. PALEVI OLETRED : RED : | NDI ANRED : | NDI ANRED2
: 1 NDI ANRED4 : ORANGERED : MEDI UWI OLETRED
: VI OLETRED : ORANGERED2 : ORANGERED4 : RED1 : RED2 : RED3
: RED4 : PALEVI OLETRED1 : PALEVI OLETRED2 : PALEVI OLETRED3
. PALEVI OLETRED4 : VI OLETRED3 : VI OLETRED1 : VI OLETRED2
: VI OLETRED4)

For information about only aliases or only original entries, use apr opos- col or - al i as- nanes or
apr opos- col or - spec- nanmes respectively.

To get alist of al color namesin the color database, call get - al | - col or - nanes.

15.3 Color models

Three color models are defined by default: RGB, HSV and GRAY. RGB and HSV allow specification of any color within
conventional color space using three orthogonal coordinate axes, while gray restricts colors to one hue between white and
black. All color models contain an optional apha component, though thisis used only on Cocoa and Windows.

Color models defined by default

Model Name Component: Range

RGB Red Green Blue RED (0.0 to 1.0)
GREEN (0.0t 1.0)
BLUE (0.0to 1.0)
ALPHA (0.0to 1.0)

HSV Hue Saturation Value HUE (0.0 to 5.99999)
SATURATION (0.0 to 1.0)
VALUE (0.0to 1.0)
ALPHA (0.0t0 1.0)

GRAY Gray GRAY (0.0t0 1.0)
ALPHA (0.0t0 1.0)

183

15 The Color System

The Hue valuein HSV is mathematically in the open interval [0.0 6.0). All values must be specified in floating point values.

You can convert color-specs between models using the available ensur e- <model> functions. For example:

(setf green (nake-rgb 0.0 1.0 0.0))
=> #(:RGB 0.0 1.0 0.0)
(eq green (ensure-rgb green)) => T

(ensure-hsv green) => #(:HSV 2.0 0.0 1.0)
(eq green (ensure-hsv green)) => NL

(ensure-rgb (ensure-hsv green)) => #(:RG 0.0 1.0 0.0)
(eq green (ensure-rgb (ensure-hsv green))) => NL

Of course, information can be lost when converting to GRAY:

(make-rgb 0.3 0.4 0.5) => #(:RG 0.3 0.4 0.5)
(ensure-gray (make-rgb 0.3 0.4 0.5))
=> #(: GRAY 0. 39999965)
(ensure-rgb (ensure-gray
(make-rgb 0.3 0.4 0.5)))
=> #(: RGB 0.39999965 0.39999965 0.39999965)

Thereisalso ensur e- col or which takes two color-spec arguments. It converts if necessary the first argument to the same
model as the second. For example:

(ensure-color (nmake-gray 0.3) green)
=> #(:RGB 0.3 0.3 0.3)

ensur e- nodel - col or takesamodel asthe second argument. For example:

(ensur e-nodel -col or (nmake-gray 0.3) :hsv)
=> #(:HSV 0 1.0 0.3)

The function col or s= compares two color-spec abjects for color equality.

Thefunctioncol or - | evel returnsthe gray level of a color-spec, and the functionscol or - bl ue, col or - gr een,
col or-red, col or- hue, col or-saturationandcol or - val ue return the associated components.

The color models above represent the color in a portable (and externalizable) way. To actually useit, the system needs to
convert to the representation used by the underlying display system. The user can do the conversion using convert - col or.
Theresult is called a"converted color” or "color representation” or "color-rep”, and is more efficient to use in drawing
functions, because it saves the system from doing the conversion each time it uses the color.

15.4 Loading the color database

You can load new color definitions into the color database using r ead- col or - db and | oad- col or - dat abase.

Given acolor definition filemy- col or s. db of lineslike these:

#(: RGB 1.0s0 0.980391s0 0.980391s0) snow
#(: RGB 0.972548s0 0.972548s0 1. 0s0) CGhost Wi te

cal:

(1 oad- col or - dat abase (read-color-db "my-colors. db"))

184

15 The Color System

The color database is stored in the variable * col or - dat abase* . To clear the database use the form:

(setf *col or-database* (nake-col or-db))

Note: You should do this before starting the LispWorks IDE (that is, beforeenv: st art - envi r onnment is called) or before
your application's GUI starts. Be sure to load new color definitions for all the colors used in the GUI. The initial colors were
obtained from theconfi g\ col ors. db file.

You can remove a color database entry with del et e- col or-transl ati on.

15.5 Defining new color models
Before using the definition described here, you should evaluate the form:

(require "col or-defnodel ")

The macro def i ne- col or - nodel s can be used to define new color models for use in the color system.

The default color models are defined by the following form:

(define-color-nodels ((:rgb (red 0.0 1.0)
(green 0.0 1.0)
(blue 0.0 1.0))
(:hsv (hue 0.0 5.99999)
(saturation 0.0 1.0)
(value 0.0 1.0))
(:gray (level 0.0 1.0))))

For example, to define a new color model YMC and keep the existing RGB, HSV and GRAY models:

(define-color-nmodels ((:rgb (red 0.0 1.0)

(green 0.0 1.0)
(blue 0.0 1.0))

(:hsv (hue 0.0 5.99999)
(saturation 0.0 1.0)
(value 0.0 1.0))

(:gray (level 0.0 1.0))

(:ync (yellow 0.0 1.0)
(rmagenta 0.0 1.0)
(cyan 0.0 1.0))))

You must then define some functions to convert Y MC color-specs to other color-specs. In this example, those functions are
named:

make-ync-fromrgb
make- yntc-from hsv
make-yntc-from gray

and:

make-rgb-fromync
make- hsv-from ynt
make- gray-fromynt

You can make this easier, of course, by defining the functions:

make-yntc-from hsv
make-ync-from gray

185

15 The Color System

make- hsv-fromynt
make- gray-fromynt

in terms of make- ync-from rgb and make-rgb-fromync.

If you never convert between YMC and any other model, you need only define the function make- r gb- f rom ynt.

186

16 Printing from the CAPl—the Hardcopy
API

The CAPI hardcopy API isamechanism for printing a Graphics Port (and hence a CAPI out put - pane) to aprinter. Itis
arranged in a hierarchy of concepts. printers, print jobs, pagination and outputting.

Printers correspond to the hardware accessible to the OS. Print jobs control connection to a printer and any printer-specific
initialization. Pagination controls the number of pages and which output appears on which page. Outputting is the operation
of drawing to a page. Thisis accomplished using the standard Graphics Ports drawing functions discussed in 13 Drawing -
Graphics Ports.

Printing is done by using the macro wi t h- pri nt - j ob to define ajob. Inside its body you specify pages to print by either

wi t h- docunent - pages ("page on demand printing") or wi t h- page ("page sequential printing"). Inside the body of

wi t h- docunent - pages or wi t h- page you use normal drawing functions on the variable bound by wi t h-pri nt-j ob to
draw the page. You normally also usewi t h- page- t r ansf or mto specify the transformation to the page area. There are dso
several functions for simple printing jobs.

16.1 Printers

You can aobtain the current printer, or ask the user to select one, by using cur r ent - pri nt er . You can ask the user about
configuration by using the functions page- set up- di al og and pri nt - di al og which display the standard Page Setup and
Print dialogs.

You can pass the printer object (asreturned by cur r ent - pri nt er or pri nt - di al og) to APIswith aprinter argument,
suchaswi t h-print -j ob, page- set up-di al og and pri nt - di al og. The printer abject itself is opaque but you can
modify the configuration programmatically using set - pri nt er - opt i ons.

16.1.1 Standard shortcut keys in printer dialogs

On Cocoa by default the standard shortcuts Command+P and Conmand+Shi f t +P invoke Print... and Page Setup... menu
commands respectively.

In Microsoft Windows editor emulation by default the standard shortcut Ct r | +P invokes a Print... menu command.

16.2 Print jobs

A Print job is contained within a use of the macro wi t h- pri nt - j ob, which handles connection to the printer and sets up a
graphics port for drawing to the printer.

16.3 Handling pages—page on demand printing

In Page on Demand Printing, the application provides code to output an arbitrary page. The application should be prepared to
print pages in any order. Thisisthe preferred means of implementing printing. Page on Demand printing uses the
wi t h- docunent - pages macro, which executes the code for each page to be printed, in an unspecified order.

187

16 Printing from the CAPl—the Hardcopy API

16.4 Handling pages—page sequential printing

Page Sequential Printing may be used when it isinconvenient for the application to implement Page on Demand printing. In
Page Sequential Printing, the application outputs each page of the document in order. Page Sequential printing is done by
using the wi t h- page macro, with each invocation of wi t h- page contributing a new page to the document.

Note: wi t h- page does not work on Cocoa.

16.5 Printing a page

In either mode of printing, the way in which apageis printed is the same. A suitable transformation must be established
between the coordinate system of the out put - pane or pri nt er - port object and the physical page being printed. The page
isthen drawn using normal Graphics Ports operations, which are described in 13 Drawing - Graphics Ports.

16.5.1 Establishing a page transform

Thewi t h- page- t r ansf or mmacro can be used to establish a page transform which controls scaling by mapping a
rectangular region of the document to the printable area of the page. The scale matches the screen by default. By specifying a
large rectangle, you can get finer granularity in the drawing. Any number of invocations of wi t h- page- t r ansf or mmay
occur during the printing of a page. For instance, it may be convenient to use a different page transform when printing
headers and footers to the page from that used when printing the main body of the page.

A helper function, get - page- ar ea, is provided to simplify the calculation of suitable rectangles for use with
wi t h- page-transf or m It calculates the width and height of the rectangle in the user's coordinate space that correspond to
one printable page, based on the logical resolution of the user's coordinate spacein dpi.

For more specific control over the page transform, the printer metrics can be queried using get - pri nt er - net ri cs and the
variousprinter-netrics accessorssuch asprinter-netrics-hei ght.

Margins and the printable area can be set using set - printer-netrics.

Thereisan examplein:

(example-edit-file "capi/printing/fit-to-page")

16.6 Other printing functions

To add, remove and configure printers on platforms other than Motif use the system configuration utility. On Microsoft
Windows thisis the Printer Control Panel. On Cocoa printers are configured via the System Preferences.

A simple printing APl isavailable viasi npl e- pri nt - por t , which prints the contents of an out put - pane to aprinter.

The Hardcopy API also allows you to print plain text to a printer. To do this, use the functionsprint-text,print-file
and print - edi t or - buf f er, andthe macrowi t h- out put -t o- pri nter.

16.7 Printing on Motif

This section applies only to X11/Motif, where the hardcopy API uses Postscript rather than native printing.

188

16 Printing from the CAPl—the Hardcopy API

16.7.1 Printer definition files

On Motif, CAPI usesits own printer definition filesto keep information about printers. These files contain afew
configuration settings, and the name of the PPD file if applicable (see 16.7.2 PPD files for information about PPD files).
When a user saves a printer configuration, the system writes such afile. Note that because the printer definition file contains
the name of the PPD file, it must only be moved between machines with care: the PPD file must exist in the same path.

Printer definition files are loaded from directories in the value of * pri nt er - sear ch- pat h*.

16.7.2 PPD files

To fully use the functionality of a Postscript printer on Motif, the system needs a Postscript Printer Description (PPD) file,
which isafilein astandard format defined by Adobe. It describes the options the printer has and how to control them.

When a print dialog is presented to the user (either by an explicit call to pri nt - di al og, or by printing), the system uses the
PPD file to find what additional optionsto present, and how to communicate them to the printer.

A PPD file should be supplied by the manufacturer with the printer itself. Otherwise, it is normally possible to obtain the
PPD file from the website of the manufacturer. The name of a PPD file should be printername.ppd.

When the user configures anew printer, the first thing the system does is to show the user all the PPD filesthat it can find
under the * ppd- di r ect or y* (directly, or one level of directories below it). The application should set this variable to the
appropriate directory.

If the value of * ppd- di r ect or y* isni | , the system looks at the directory obtained by evaluating
(sys:lispworks-dir "postscript/ppd").

If the printer does not have a PPD file, the user can still useit by selecting the default button in the print dialog. This means
that the system will let the user change only the basic properties of the printer, without using its more complex features.

16.7.3 Adding and removing printers

On Motif, printers can be added, removed and configured interactively viapri nt er - confi gur ati on-di al og. Printers
can be added and removed programmatically withi nst al | - post scri pt-pri nter and
uni nstal |l - postscript-printer.

189

17 Drag and Drop

This chapter discusses how to implement drag and drop functionality in your CAPI application. The example code in this
chapter forms a complete example allowing the user to drag an item from at r ee- vi ewtoal i st - panel .

17.1 Overview of drag and drop

A drag and drop operation occurs when the user clicks and holds the mouse button in a pane supporting dragging, then drags
to a pane supporting dropping, and releases the mouse button.

Visual feedback may be provided indicating that dragging is happening, whether a drop operation is possible at the current
mouse position, and what operation will occur when the user drops. Usually the operation is the transfer of data.

You need to decide which CAPI pane(s) and interfaces will support dragging and then implement it for each, and similarly for
dropping. You will implement drag and drop for one or more specified data formats.

17.1.1 Drag and drop with other applications

Certain predefined data formats can be dragged from a CAPI application to another application such as the Windows
Explorer or the macOS Finder, and vice versa.

17.1.2 Drag and drop within a CAPI application

When both the drag and the drop phases are within the same CAPI image, you can specify private data formats, in addition to
the predefined data formats.

17.2 Dragging

First you should decide which CAPI pane(s) and interfaces will support dragging, and which data formats they will support.
Dataformats are arbitrary keywords that must be interpreted by the pane where the user can drop.

17.2.1 Dragging values from a choice

Toimplement dragging inl i st - panel ortree-vi ewsupply the: dr ag- cal | back initarg. When the user drags, drag-
callback receives alist of indices of the choice items being dragged.

The drag-callback should return a property list whose keys are the dataformats (such as: stri ng or : i mage) to be dragged,
along with the values associated with each format.

17.2.1.1 Example: dragging from atree

This example returns string datafor at r ee- vi ew defined below:

(defun tree-drag-call back (pane indices)
(list :string
(string (elt (capi:collection-itens pane)
(first indices)))))

190

17 Drag and Drop

(defun fruits (x)
(case x
(:fruits (list :apple :orange))
(:apple (list :cox :bramey))
(:orange (list :blood-orange :seville))

(t nil)))

(capi:contain
(make-instance 'capi:tree-view
ctitle "Fruit tree”
:roots ' (:fruits)
:children-function '"fruits
:drag-cal | back 'tree-drag-call back))

There isafurther example showing dragging from | i st - panel sin:

(exanpl e-edit-file "capi/choice/drag-and-drop")

17.2.2 Dragging within an output-pane

To implement dragging items around within asingle out put - pane, include suitable callbacks on these gestures in its input-
model:

(:button-1 :press)
(:button-1 :notion)

In this caseit is not necessary to call dr ag- pane- obj ect and you can implement dropping in the same pane by a suitable
callback for:

(:button-1 :rel ease)

See this example:

(exampl e-edit-file "capi/applications/balloons")

17.2.3 Dragging values from an output-pane

To implement dragging from an out put - pane include an appropriate callback onthe (: button-1 : press) gestureinthe
pane'sinput-model. This callback should call dr ag- pane- obj ect with arguments which provide the data formats and
values associated with each format. You will also specify drop-callback in the destination pane(s), as described in 17.3
Dropping.

See the examplefilein:

(exanpl e-edit-file "capi/output-panes/drag-and-drop")

17.2.3.1 Dragging editor-pane text

To implement dragging of text in an edi t or - pane, use EDITOR functions such asedi t or : poi nt s-t o- st ri ng to obtain
the valuefor the: st ri ng format.

191

17 Drag and Drop

17.2.4 Data formats

istring Receives a string, potentially from another application. Is also understood by some other panes
that expect text.
i mage Receives an image on Cocoaand GTK+. The value passed should be ani nage object. See

13.10 Wor king with images for more information about images.

When supplying an image for dragging (that is, including : i mage image in the plist argument of
dr ag- pane- obj ect orintheplist that is returned from the drop-callback), the dragging
mechanism frees theimage (as by f r ee- i mage) when it finishes with it (which will be at some
indeterminate time later). If you need to pass an image which you want to use later, you should
make a copy of it by make- sub-i nage.

When receiving an image (by calling dr op- obj ect - get - obj ect with: i nage), the received
image should aso be freed when you finish with it. However, it will be freed automatically when
the pane supplied to dr op- obj ect - get - obj ect isdestroyed, so you do not need to freeit
explicitly if freeing can wait (which is probably true in most cases).

See this example:

(exanple-edit-file "capi/choice/list-panel -drag-i nages")

:filename-1ist Receivesalist of files. Isunderstood by other applications such as the macOS Finder and
Windows Explorer.

You can also use private formats, named by arbitrary keywords, which will work only in the same Lisp image.

17.2.5 Dragging a Cocoa title bar image

On Cocoa, if thereisadragimageinani nt er f ace title bar, then dragging this image will by default return alist containing
thei nt erf ace pathnameas: fil ename- | i st data. You could override this by providing a drag-callback for the interface.

17.3 Dropping

First you should decide which CAPI pane(s) and interfaces will support dropping, where exactly dropping should be allowed,
and what should occur on dropping for each data format that is made available.

17.3.1 The drop callback

To implement dropping in| i st - panel ortree-vi ew or out put - pane, supply the: dr op- cal | back initarg.

You can also supply : dr op- cal | back for ani nt er f ace. When the user drags an object over awindow, the system first
triesto call the drop-callback of any pane under the mouse and otherwise calls the drop-callback of the top-level interface, if
supplied.

The drop-callback receives as arguments a drop-object which is used to communicate information about the dropping
operation and stage which is akeyword. The drop-callback is called at several stages. when the pane is displayed; when the
user drags over the pane; and when the user drops over the pane. Various functions are provided which you can use to query
the drop-object and set attributes appropriately.

You will useset - dr op- obj ect - support ed- f or mat s to specify the dataformats that it wants to receive. The: stri ng
format can be used to receive a string from another application and the: fi | ename-1i st format can be used to receive alist
of filenames from another application such as the Macintosh Finder or the Windows Explorer. Any other keyword in formats
is assumed to be a private format that can only be used to receive abjects from within the same Lisp image.

192

17 Drag and Drop

You can use dr op- obj ect - provi des- f or mat to query whether a given data format is actually available, and then you can
cal (setf drop-object-drop-effect) tomodify the effect of the dropping operation .

Finally, at the: dr op stage, you will use dr op- obj ect - get - obj ect toretrieve (for each data format) the object which was
returned by the drag-callback, and then do something with this object, typically copying or moving it to the pane in some

way.

17.3.2 Dropping in a choice

Additionally within the drop-callback of al i st - panel ortree-vi ewyou canusedr op- obj ect - col | ecti on-i ndex
(or dr op- obj ect -col | ecti on-i t en) to query theindex (or item) where the object would currently be dropped.

17.3.2.1 Example: dropping in alist
This drop-callback simply appends the dropped string at the end of the list:

(defun list-drop-call back (pane drop-object stage)
(format t "list drop callback ~S ~S ~S" pane drop-object stage)
(case stage
(:fornats
(set-drop-obj ect-supported-formats drop-object
(list :string)))
((:enter :drag)
(when (and (drop-object-provides-format drop-object
:string)
(drop-object-all ows-drop-effect-p drop-object
1copy))
(setf (drop-object-drop-effect drop-object) :copy)))
(:drop
(when (and (drop-object-provides-format drop-object
:string)
(drop-object-all ows-drop-effect-p drop-object
1copy))
(setf (drop-object-drop-effect drop-object) :copy)
(add-list-item pane drop-object)))))

(defun add-list-item (pane drop-object)
(append-itens
pane
(list (string-capitalize
(drop-obj ect - get -obj ect drop-object
pane :string)))))

(contain

(make-instance 'list-panel
:title "Shopping Iist"
citems (list "Tea" "Bread")
:drop-cal l back 'Iist-drop-call back))

Try dragging an item from thet r ee- vi ewcreated in 17.2.1.1 Example: dragging from a tree.

Below is amore sophisticated version of add- | i st - i t emwhich inserts the item at the expected position within the list.
This position is obtained using dr op- obj ect - col | ecti on-i ndex:

(defun add-list-item (pane drop-object)
(rmul ti pl e-val ue-bind (i ndex placenent)
(drop-obj ect-collection-index drop-object)
(list-panel -add-item pane
(string-capitalize
(drop- obj ect - get - obj ect
dr op- obj ect pane :string))

193

17 Drag and Drop

i ndex pl acenent)))

(defun |ist-panel -add-item (pane itemindex placenent)
(let ((itemcount (count-collection-itens pane)))
(let ((adjusted-index (if (eq placenent :above)
i ndex
(1+ index)))
(current-itenms (collection-itens pane)))
(setf (collection-itens pane)
(concat enate ' sinpl e-vector
(subseq current-itenms 0 adjusted-index)
(vector item
(subseq current-itens adjusted-index
itemcount))))))

17.3.3 Dropping text in an editor-pane

Supply the special drop-callback : def aul t to implement dropping text in an edi t or - pane.

17.3.4 Dropping in an output-pane

Additionally within the drop-callback of an out put - pane, you can use dr op- obj ect - pane- x and
dr op- obj ect - pane- y to query the coordinates in the pane that the object is being dropped over.

17.4 Limitations of CAPI drag and drop

: i mage format currently works fully only on Cocoaand GTK+. On Microsoft Windowsthe : i mage format works only
when dragging between panes in the same process.

Drag and drop is not implemented in CAPI on Motif.

Not all pane classes support drag and drop.

194

18 Miscellaneous functionality

This chapter discusses miscellaneous functionality available for use during development and in your CAPI application.

18.1 Development functions

The following functions are intended as aids during development. In general they are not suitable for usein real applications,
though they are fully supported.

The function cont ai n takes an element argument and displaysit. The element can be any pane, menu or a part of amenu, or
apinboard-object. Since displaying always requires an interface, cont ai n creates an interface (unless the element isan

i nt erface itsef). cont ai n takes various keyword arguments that tell it how to display, and can also display the element as
adialog.

To create the interface, cont ai n uses make- cont ai ner, which can also be called directly.

18.2 Sounds

18.2.1 Sound API

This section applies to Cocoa and Microsoft Windows only.

On Cocoa and Microsoft Windows, CAPI provides asimple interface to play sound from sound files. The host system
determines which formats of sound filesit can play.

Usel oad- sound to create a sound object from either afile or the result of r ead- sound-fi | e, thenpl ay- sound to play
it, and st op- sound to stop playing. f r ee- sound can be used to freeit.

r ead- sound-fi | e can be used to load a sound file as data into the Lisp image, which then can be used by | oad- sound
without accessing afile. Thisis useful in delivered applications.

18.2.2 Beep
The function beep- pane triesto make a beep sound.

18.3 Modifier keys state

You can query the state of the modifier keys (Cont r ol , Shi ft, Met a, Conmand (Hyper) and Caps Lock) by calling
pane-nodifiers-state.

18.4 Restoring display while debugging

Some error handlers may disable display of a paneif there is an error during the display. You can check if apaneisin this
state by calling pane- can-r est or e- di spl ay- p, and if so you can use pane- r est or e- di spl ay to restore the display.
That assumes that the code was fixed, so is useful only while debugging.

The Window Browser tool in the LispWorks IDE allows you to restore the display interactively using these functions.

195

18 Miscellaneous functionality

18.5 Object properties and name

All CAPI elements (panes and pi nboar d- obj ect) inherit from capi - obj ect . Thisincludesaplist, which can be
accessed by capi - obj ect - property, (setf capi-object-property) andrenpve-capi - obj ect - property.
Thereisalso the accessor capi - obj ect - pli st.

CAPI object property is avery convenient mechanism to add slot-like behavior without having to define your own class. For
example, it is used for caching the imagesiin:

(exampl e-edit-file "capi/choicel/list-panel -drag-i nages")

A capi - obj ect also hasaname, which can be used to give it aunique identifier. You can set name by the initarg : nane,
and accessit by capi - obj ect - nane.

18.6 Clipboard

You can access the system clipboard, which allows passing and receiving values from other processes, by the functions

cli pboard andset - cl i pboar d. These can deal with strings and images, and metafiles on Cocoa and Microsoft Windows.
When used inside the same Lisp process, they can also be used to pass Lisp values. Usecl i pboar d- enpt y to check if
thereis anything in the clipboard. See also 7.6 Edit actions on the active element.

Similarly, the primary selection of the GUI system can accessed by the function sel ecti on, set - sel ecti on and
sel ection-enpty.

18.7 Handles

The function si npl e- pane- handl e can be used to retrieve the "handle" of adisplayed pane. Similarly
cur r ent - di al og- handl e returns the handle of the current dialog, if thereis one.

The handle is the representation in the underlying GUI system, and may be useful in some situations for performing
operations for which thereis no CAPI interface.

18.8 Setting the font and colors for specific panes in specific interfaces.

Thefunctionsset - i nt er f ace- pane- nane- appear ance and set -i nt er f ace- pane-t ype- appear ance can be used
to tell LispWorks to set some attributes (font, foreground, background) in specific panes (specified by name or type) inside
specific interfaces (specified by type). They can be used to customize the appearance of the panes without changing the code
that created them. For example, it can be used to customize the LispWorks IDE.

196

19 Host Window System-specific issues

This chapter describes how the host window system affects the appearance and behavior of CAPI windows, and how to
configure this.

19.1 Microsoft Windows-specific issues

19.1.1 Using Windows themes

On Microsoft Windows Vista, Windows 7, Windows 8 and Windows 10 LispWorksisthemed. That is, it usesthe current
theme of the desktop.

It is possible to switch this off by calling the function wi n32: set - appl i cati on-t hemed with argument ni | .

wi n32: set - appl i cati on-t hened affects only windows that are created after it was called. Normally, it should be called
before any window is created, so that all LispWorks windows will have a consistent appearance.

19.1.2 The break gesture

If a CAPI/Windows window is busy and unresponsive you can use the break gesture Ct r | +Br eak to regain control.
19.2 Cocoa-specific issues

19.2.1 The break gesture

If a CAPI/Cocoawindow is busy and unresponsive you can use the break gesture Conmand+Ct r | +, (comma) to regain
control.

19.2.2 The Cocoa application interface

You can useset - appl i cati on-i nt er f ace on aninstance of a subclass of
cocoa- def aul t - appl i cati on-i nt erf ace to get the following functionality:

* Define the application menu (leftmost menu in the menu bar).

» Define the menu bar items that are displayed when no interface is on the screen.
* Define the Dock context menu, which is raised from the Dock icon.

» Control and callbacks about the lifecycle of the interface.

A proper Cocoa application islikely to use this mechanism. Note that the call to set - appl i cati on-i nt erface needsto
happen before any display or attempt to access the screen. Seecocoa- def aul t - appl i cati on-i nterface for more
details.

197

19 Host Window System-specific issues

19.3 GTK+-specific issues

19.3.1 The version of GTK+ that LispWorks uses

By default, LispWorks uses GTK+ 3if it canload al i bgt k- 3 shared library and otherwise uses GTK+ 2 if it can load a

l'i bgt k-x11-2. 0 shared library. You can control which version is used by setting the LI SPWORKS_GTK_VERSI ON
environment variabl e before connecting to the screen, either from the shell where LispWorks is started or by using

(setf environnment-vari abl e). The value should be a comma separated list of the numbers 2 and/or 3, which are used
in the order they appear to try to use GTK+ 2 and GTK+ 3 respectively. For example, setting LI SPWORKS GTK_VERSI ONto
2 forces LispWorksto use GTK+ 2. If LI SPWORKS_GTK_VERSI ONisnot set, then its default valueis 3, 2.

19.3.2 The break gesture
If aCAPI/GTK+ window is busy and unresponsive you can use the break gesture Met a+Ct r | +Cto regain control.

On GTK+ you can use the function set - i nt er acti ve- br eak- gest ur es both to find and to set the keys that are used
interactively as break gestures. When the system detects a break gesture it tries to interrupt any running process, to alow the
user to deal with runaway processes.

19.3.3 Matching resources for GTK+

You can configure the LispWorks I DE and your application to use resources on GTK+. The applicable resources determine
the default fonts, colors and certain other properties used in CAPI elements.

Theel enent initarg: wi dget - nane is used to match resources. CAPI gives a name for the main widget that it creates for
each element that has arepresentation in the library. This name isthen included in the "path" that GTK+ usesto match
resources for each widget.

19.3.3.1 Resources on GTK+

By default, the name of the widget is the name of the class of the element, downcased (except top level interfaces, see next
paragraph). You can override the name by either passing widget-name when making the element, or by setting the
el enent - wi dget - nane before displaying the element.

To make it easier to define resources specific to the application, the CAPI GTK+ library, when using the default name,
prepends the application-class (see convert - t o- scr een) followed by adot. So for aninterface of classny-i nt er f ace
which isdisplayed in a screen with application-class" nmy- appl i cat i on", the default widget-nameis:

my-application. nmy-interface

Example GTK+ resource files are in your LispWorks installation directory under exanpl es/ gt k/ :

gt kr c- br eak- gestures
gt krc-font
gt krc-parameters

gtkrc-styles

198

19 Host Window System-specific issues

19.3.3.2 Resources for CAPI/GTK+ applications

Delivered applications which need fallback resources should passthe: appl i cati on-cl ass and: f al | back-r esour ces
keys described in the manual pagefor convert -t o-screen.

This example shows how to make a CAPI GUI configurable by GTK+ resources.

(example-edit-file "capi/el ements/gtk-resources")

To construct custom resources for your CAPI/GTK+ application, see the example resource filesin your LispWorks
installation directory under exanpl es/ gt k/ .

19.3.3.3 X resources for in-place completion windows

The special window described in 10.6 | n-place completion has interface with name" non- f ocus- 1 i st - pronpt er". This
name can be used to define resources specific to the in-place completion window. The completion listisal i st - panel and
thefilterisat ext - i nput - pane.

19.4 Motif-specific issues

19.4.1 Using Motif
The Matif backend is deprecated and the GTK+ backend is preferred.

This section describes how to use the Motif window system on supported platforms.

19.4.1.1 Using Motif on Linux, FreeBSD and x86/x64 Solaris
Use of Motif with LispWorks is deprecated on these platforms, but you can till useit.

LispWorks uses GTK+ as the default window system for CAPI and the LispWorks IDE on Linux, FreeBSD and x86/x64
Solaris.

To use Matif instead you need to load it explicitly, by:
(require "capi-notif")

Requiring the " capi - ot i f " module makes CAPI use Matif asits default library.

You can override the default library by specifying the appropriate CAPI screen (see 19.5 CAPI communication with host
window system - libraries and the screen argument to di spl ay and convert -t o- screen).

19.4.1.2 Using Motif on Macintosh
Use of Motif with LispWorks is deprecated on the Macintosh, but you can still useit.

LispWorks is supplied as two images. One uses Cocoa as the default window system for CAPI and the LispWorks IDE, the
other uses GTK+ asits default window system. Only this latter image can use the aternative Motif window system.

To use Motif you need to load it into the GTK+ LispWorks image, by:

(require "capi-notif")

199

19 Host Window System-specific issues

Requiring the" capi - mot i f " module makes CAPI use Motif asits default library.

You can override the default library by specifying the appropriate CAPI screen (see 19.5 CAPI communication with host
window system - libraries and the screen argument to di spl ay and convert -t o-screen).

Note: you cannot load Motif into the Cocoaimage.

Note: the GTK+ LispWorks image isinstalled on Macintosh when you select the X11 GUI option at install time. See the
Release Notes and Installation Guide for further information on installing this option.

19.4.2 The break gesture
If a CAPI/Motif window is busy and unresponsive you can use the break gesture Met a+Ct r | +C to regain control.

On Motif you can usethefunction set - i nt er acti ve- br eak- gest ur es both to find and to set the keys that are used
interactively as break gestures. When the system detects a break gesture it triesto interrupt any running process, to alow the
user to deal with runaway processes.

19.4.3 Matching resources for X11/Motif

On Motif, you can configure the LispWorks IDE and your application to use resources similarly to GTK+ (see 19.3.3
Matching resourcesfor GTK+).

19.4.3.1 Resources on X11/Motif

widget-name is used as described for GTK+ in 19.3.3.1 Resources on GTK +, except that the default widget-name for atop
level interface does include the prepended application-class.

Thefileapp- def aul t s/ Li spwor ks, supplied in the LispWorks library for relevant platforms, contains the application
fallback resources for LispWorks 8.1 and illustrates resources you may wish to change.

Thefileapp- def aul t s/ GcMoni t or contains the application fallback resources for the Lisp Monitor window.
Thefilesapp- def aul t s/ *- cl assi ¢ contain the fallback resources that were supplied with LispWorks 4.4.

For further information about X resources, consult documentation for the X Window system.

19.4.3.2 Resources for CAPI/Motif applications

To construct custom X resources for your CAPI/Motif application, consult app- def aul t s/ Li spwor ks which illustrates
resources you may wish to change in your application.

19.5 CAPI communication with host window system - libraries

CAPI communicates with the host window system via backends called libraries. In most cases you need not worry about the
library, and just use generic CAPI.

Currently there are four libraries, named by keywords as follows:

twi n32 The only library for Microsoft Windows.

: cocoa The default library for macOS.

tgtk The default library for Linux, FreeBSD and x86/x64 Solaris, also available on macOS.
:noti f Deprecated but available on non-Windows platforms.

200

19 Host Window System-specific issues

Thefunction def aul t - 1 i br ary returnsthe default library for the current platform.

Note: On platforms that support GTK+ and Motif, def aul t -1 i br ary normally returns: gt k, but after loading Motif using
(require "capi-notif") itreturns: notif.

A library nameisavalid argument to convert - t o- scr een, and can be used in places when a screen specification is
required, most importantly as argument to di spl ay. Normally, however, you will be using the default screen of the default
library, so you will not have to worry about it.

def aul t-1i brary isused when a program that is designed to run on various platforms wants to do different thingsin
different GUI systems. Notethat def aul t - | i br ar y isavailable before displaying anything, and can be used at load-time.

Thefunctionsi nstal | ed-1i brari es returnsalist of theinstalled librariesin the current image. Normally itisjust alist
of the default library, but loading Motif adds it into the list.

201

20 Self-contained examples

This chapter enumerates the set of CAPI examplesin the LispWorks library. Each example contains complete, self-contained
code and detailed comments, which include one or more entry points near the start of the file which you can run to start the
program.

To run the example code:

1. Open thefilein the Editor tool in the LispWorks IDE. Evaluating the call to exanpl e-edi t-fi | e shown below will
achieve this.

2. Compile the example code, by Ct r | +Shi f t +B.
3. Place the cursor at the end of the entry point formand pressCtr | +X Ctrl +Etorunit.

4. Read the comment at the top of the file, which may contain further instructions on how to interact with the example.

20.1 Output pane examples

This section lists the example filesillustrating input, drawing, scrolling, tooltips, dragging and imagesin an out put - pane.
These are adlso applicableto st ati c- | ayout and pi nboar d- | ayout .

Processing input with the input-model:

(exampl e-edit-file "capi/output-panes/input-nodel 1")
(exampl e-edit-file "capi/output-panes/input-nodel")
(exanpl e-edit-file "capi/output-panes/draw ng")

(exampl e-edit-file "capi/output-panes/spirograph")
(exanmple-edit-file "capi/output-panes/input-nodel -touch")
(exanpl e-edit-file "capi/output-panes/nodifier-change")

Defining acommand (that is, an alias to an input gesture):

(exanmple-edit-file "capi/output-panes/ comrands")

Drawing to an output pane:

See the following section 20.2 Graphics examples.

Temporary drawing on top of the normal drawing, for example when the user drags:
(exanmple-edit-file "capi/output-panes/cached-display")
(exanpl e-edit-file "capi/graphics/pinboard-test")

202

20 Self-contained examples

(exanple-edit-file "capi/graphics/ pi xmap-port")
Simple scrolling without a scroll bar:
(exanpl e-edit-file "capi/output-panes/scrolling-wthout-bar")
Using scroll-callback:
(exanple-edit-file "capi/graphics/scrolling-test")
Using fixed coordinate-origin scrolling:
(exanmple-edit-file "capi/output-panes/coordi nate-origin-fixed")
(exanpl e-edit-file "capi/output-panes/fixed-origin-scrolling")
Displaying tooltips:
(exanple-edit-file "capi/graphics/pinboard-hel p")
Dragging from/to an output pane:
(exanmple-edit-file "capi/output-panes/drag-and-drop")
Copying and pasting images in an output pane:
(exampl e-edit-file "capi/output-panes/draw ng")
Indicate selection of objectsin response to mouse movement:

(exampl e-edit-file "capi/graphics/highlight-rectangle")

20.2 Graphics examples
This section lists the example filesillustrating graphics transforms, transparency in images and pixmaps ports, combining

existing and new pixels when drawing, drawings dependent on dynamic computations, editing an image, scaling an image,
metafiles and paths.

Drawing an image read from afile:
(exanple-edit-file "capi/graphics/inmges")

Transforms and appl y- r ot at i on- ar ound- poi nt :

(exanpl e-edit-file "capi/graphics/rotation-around-point")
(exampl e-edit-file "capi/output-panes/cached-display")

Creating transparent and semi-transparent areas in a pixmap:

(exanpl e-edit-file "capi/graphi cs/conpositing-node-sinple")

203

20 Self-contained examples

Simple example of compositing-mode:

(exampl e-edit-file "capi/graphi cs/ conmpositing-node-sinple")
Complex example of compositing-mode:

(exanpl e-edit-file "capi/graphi cs/conpositing-node")
Simple example of scaling an image:

(exanpl e-edit-file "capi/graphics/inage-scaling")
Draw something that is computed dynamically and slowly without hanging the GUI:

(exanmple-edit-file "capi/graphics/plot-offline")
Pixel-by-pixel editing of an image with an Image Access object including use of alpha and of BGRA color data:

(example-edit-file "capi/graphics/inage-access-al pha")
Handling the alpha channel (transparency) of images:

(example-edit-file "capi/graphics/inmages-wth-al pha")
Creating and using a metafile:

(exampl e-edit-file "capi/graphics/netafile-rotation")
Clipboard access with a metéfile:

(exanpl e-edit-file "capi/graphics/netafile")
Drawing paths using dr aw- pat h:

(exanpl e-edit-file "capi/graphics/paths")
Drawing a chart of prices:

(exanple-edit-file "capi/applications/price-charting")
Effects of drawing-mode:

(exanmple-edit-file "capi/graphics/catherine-wheel ")

20.3 Pinboard examples

Simple manipulation of pi nboar d- obj ect s

(exanpl e-edit-file "capi/graphi cs/ pinboard-novenent")

(exampl e-edit-file "capi/graphics/pinboard-test")

204

20 Self-contained examples

(exanple-edit-file "capi/layouts/w apping-|ayout")
Simple manipulation with animation:
(exanple-edit-file "capi/applications/balloons")

Laying out objectsinside pi nboar d- | ayout using child layouts:

(exanple-edit-file "capi/graphi cs/pinboard-object-text-pane")

Specialized drawing using dr awn- pi nboar d- obj ect :

(exanmple-edit-file "capi/graphics/pinboard-test")
(exanple-edit-file "capi/applications/othello")

Specialized drawing using your own pinboard objects:

(exanmple-edit-file "capi/applications/balloons")

Automatic resizing of pinboard objects:

(example-edit-file "capi/layouts/automatic-resize")

Indicate selection of pinboard objects in response to mouse movement:

(example-edit-file "capi/graphics/highlight-rectangl e-pi nboard")

20.4 Examples using timers to implement "animation"

(exampl e-edit-file "capi/graphics/rotation-around-point")
(exanmple-edit-file "capi/graphics/netafile-rotation")
(exanple-edit-file "capi/applications/balloons")

(exampl e-edit-file "capi/applications/pong")

20.5 Drag and Drop examples

From and to output panes:

(exanmple-edit-file "capi/output-panes/drag-and-drop")
From and to list panels:

(exampl e-edit-file "capi/choice/drag-and-drop")

Images from and to list panels:

205

20 Self-contained examples

(exanpl e-edit-file "capi/choicel/list-panel -drag-i nages")
GTK+ specific:

(exanple-edit-file "capi/elenents/gtk-filenanme-1ist-and-uris")
Minimal drag-and-drop code:

(exanmple-edit-file "capi/el enents/sinple-dragndrop")

20.6 Graph examples
Simple examples:
(exanpl e-edit-file "capi/graphi cs/ graph-pane")

(exampl e-edit-file "capi/choicel/sinple-graph-pane")

Customizing gr aph- pane:

(exampl e-edit-file "capi/graphics/circl ed-graph-nodes")
(exanmple-edit-file "capi/graphics/|abell ed-graph-edges")
(exanpl e-edit-file "capi/graphi cs/wiggly-1Iine-graph")
(exampl e-edit-file "capi/choicel/sinple-graph-pane")

Changing the appearance of edges:

(exanpl e-edit-file "capi/graphics/graph-col or-edges")

20.7 Cocoa-specific examples
Control over the macOS application menu:

(example-edit-file "capi/applications/cocoa-application-single-w ndow")

(exanple-edit-file "capi/applications/cocoa-application")

20.8 Examples of complete CAPI applications
Simple applications:
(exanple-edit-file "capi/applications/hangnan")

(example-edit-file "capi/applications/maze")

(exanple-edit-file "capi/applications/maze-multi")

206

20 Self-contained examples

(exanple-edit-file "capi/applications/othello")
(example-edit-file "capi/applications/sinple-othello")
(exanple-edit-file "capi/applications/pong")
(exanple-edit-file "capi/applications/rich-text-editor")
Complete interface, including toolbar, option pane, and multi-column list panel:
(exanpl e-edit-file "capi/applications/sinple-synbol -browser")

Incorporating CPU-intensive work with responsive GUI:

(exanple-edit-file "capi/applications/nmulti-threadi ng")

20.9 Choice examples
Different kinds of interaction:

(exanpl e-edit-file "capi/choicel/doubl e-1ist-panels")

(exampl e-edit-file "capi/choice/list-panels")
Using print-function and data-function:
(exampl e-edit-file "capi/choice/list-panels")
Using (setf capi:collection-itens) and print-functioninalist panel:
(exanpl e-edit-file "capi/choice/expanding-list")
Adding images:
(exanpl e-edit-file "capi/choicel/doubl e-1ist-panel s")
Drag and drop in alist panel:
(exanpl e-edit-file "capi/choice/drag-and-drop")
(exanpl e-edit-file "capi/choicel/list-panel -drag-i nages")
Simpletr ee- vi ewwithimages:
(exanple-edit-file "capi/choicel/tree-view')
(exampl e-edit-file "capi/choicel/ extended-sel ection-tree-view')

Tree-view images and checkboxes:
(exanpl e-edit-file "capi/choicel/ extended-sel ecti on-tree-view')

207

20 Self-contained examples

t r ee- vi ewcombined with an XML parser to display an RSSfile:

(exampl e-edit-file "capi/applications/rss-reader")

An example of using st acked-tr ee:

(exanpl e-edit-file "capi/choicel/stacked-tree")
I nteraction between context menu and sel ection:

(exanpl e-edit-file "capi/choice/list-panel -pane-nenu")
Multi column list panel:

(exanple-edit-file "capi/choice/multi-colum-Iist-panels")
Sorting al i st - panel for aspecific column:

(exanmple-edit-file "capi/choice/multi-colum-Iist-panels")
Using keyboard-search-callbackinal i st - panel :

(exampl e-edit-file "capi/choicel/list-panel -keyboard-search")
Adding images to opt i on- pane:

(exampl e-edit-file "capi/choice/option-pane-wth-inmges")
Disablingitemsin opt i on- pane:

(exanpl e-edit-file "capi/choice/option-pane-wth-inages")

(exampl e-edit-file "capi/choice/option-pane")
Alternative action callback (that is, a callback when modifier key is pressed):

(exampl e-edit-file "capi/choicel/alternative-action-callback")

20.10 Examples of dialogs and prompts
Simplediaog:
(example-edit-file "capi/dial ogs/sinple-dial og")
(exanple-edit-file "capi/dial ogs/ nutating-dial og")

Customizing pr onpt -wi t h-1i st :

(exanple-edit-file "capi/choice/pronpt-wth-buttons")

208

20 Self-contained examples

20.11 editor-pane examples
Simple editor pane:

(exanpl e-edit-file "capi/editor/editor-pane")
change-callback, text property and editor face:

(exanpl e-edit-file "capi/editor/change-cal | back")
Callbacks before and after input:

(exanmple-edit-file "capi/editor/input-call back")

20.12 Menu examples
Adding images to menus:

(exanple-edit-file "capi/el ements/nenu-w th-inages")
Defining accelerator keys:

(example-edit-file "capi/el enents/accel erators")
Dynamically defining the itemsin the context menu:

(example-edit-file "capi/el enents/pane-popup-nenu-itens")
Button with a drop-down menu:

(exampl e-edit-file "capi/el enents/popup-menu-button")
Menus with a popup-callback:

(exanpl e-edit-file "capi/el enents/ popup-nmenu-button")
(exanple-edit-file "capi/applications/rich-text-editor")

20.13 Miscellaneous examples

A prototype grid implementation, and an example using it:
(example-edit-file "capi/el ements/grid")
(exanmple-edit-file "capi/elenments/grid-inmpl")

Converting coordinates between a pane and its ancestors or the screen:
(exanmple-edit-file "capi/el ements/convert-rel ative-position")

Changing the mouse cursor:

(example-edit-file "capi/el ements/cursor")

209

20 Self-contained examples

Passing initargs to a pane inside an interface using : make- i nst ance- ext r a- appl y-ar gs:
(exampl e-edit-file "capi/applications/argunent-passing")

Server and client for asimple line-based textual chat program:
(exanpl e-edit-file "capi/applications/chat")
(example-edit-file "capi/applications/chat-client")

Server and client for asimple textual remote debugger:

(example-edit-file "capi/applications/renote-debugger")

(example-edit-file "capi/applications/renote-debugger-client")

20.14 GTK+ specific examples
Defining and using GTK + resources:

(exanple-edit-file "capi/el ements/gtk-resources")
Dragging URIs:

(exanple-edit-file "capi/elenents/gtk-filename-1ist-and-uris")

20.15 Motif specific examples
Defining and using Motif resources:

(exanple-edit-file "capi/el enents/w dget-nanme")

20.16 Layout examples
Simplegri d-1 ayout:

(example-edit-file "capi/layouts/titles-in-grid")
Extending cellsingri d- 1 ayout :

(example-edit-file "capi/layouts/extend")
Dynamic resizing of layouts:

(exanple-edit-file "capi/layouts/resize-1layout")
Fixed size elementsin agrid layout with ratios:

(exanple-edit-file "capi/layouts/set-|ayout-ratios-keepi ng-fixed")

210

20 Self-contained examples

Define alayout which aligns its children top/bottom and also displays oversized children nicely:

(exampl e-edit-file "capi/layouts/buffer-1Iayout")

A gr aph- pane with a custom layouit:

(exanple-edit-file "capi/graphics/sinple-layout-definition")

20.17 Tooltip examples
General tooltips:

(example-edit-file "capi/el enents/hel p")

Displaying tooltipsin an out put - pane:

(exampl e-edit-file "capi/graphi cs/pinboard-hel p")

20.18 Examples illustrating other pane classes
Simple standalone scroll bar:

(exanpl e-edit-file "capi/el ements/scroll-bar")
Non-linear integer valuesin asl i der :

(exanpl e-edit-file "capi/el ements/slider-print-function")
Simple use of progress bars:

(exanpl e-edit-file "capi/el ements/ progress-bar")
Updating a progress bar from another thread:

(exanpl e-edit-file "capi/el enents/progress-bar-from background-thread")

t ext - i nput - choi ce basic functionality:

(exanple-edit-file "capi/el enents/text-input-choice")

t ext - i nput - pane basic functionality:

(exanple-edit-file "capi/el enents/text-input-pane")

t ext - i nput - r ange basic functionality:

(exanmple-edit-file "capi/el ements/text-input-range")
Toolbar examples:

(example-edit-file "capi/el ements/tool bar")

211

20 Self-contained examples

Docking layout:

(example-edit-file "capi/layouts/docking-|ayout")
Switchable layout:

(exanple-edit-file "capi/layouts/switchable")
Rich Text pane:

(exanple-edit-file "capi/applications/rich-text-editor")
Various buttons:

(exanmple-edit-file "capi/buttons/buttons")
Simple layout in button panel:

(exanmple-edit-file "capi/buttons/button-panel -l ayout")

t racki ng- pi nboar d- | ayout example:

(exampl e-edit-file "capi/graphics/tracking-pi nboard-1ayout")

si npl e- net wor k- pane example with labeling of graph edges:

(exampl e-edit-file "capi/graphi cs/ network")

20.19 Printing examples
Simple printing:

(exanpl e-edit-file "capi/printing/sinple-print-port")
Fitting drawing to a page:

(exanpl e-edit-file "capi/printing/fit-to-page")
Printing a drawing on multiple pages.

(exampl e-edit-file "capi/printing/ nulti-page")

(exanmple-edit-file "capi/printing/page-on-demand")

20.20 Graphic Tools examples

Using the higher level Graphic Tools to draw bar charts and graphs:
(exanpl e-edit-file "graphic-tool s/ bar-chart-exanple")
(exampl e-edit-file "graphic-tool s/ graph-exanple")

212

20 Self-contained examples

Drawing a chart of prices:

(exampl e-edit-file "capi/applications/price-charting-gt")

213

21 CAPI Reference Entries

The following chapter documents symbols exported from the capi package.

abort-callback

Summary

Aborts out of the context of the current callback.

Package

capi

Signature

abort-cal | back &optional always-abort

Arguments

always-abort[] A generalized boolean.

Description

Function

The function abor t - cal | back aborts out of the context of the current callback, returning ni | when it isrelevant (for

exampleinani nt er f ace confirm-destroy-callback).

If called outside the context of a callback, if always-abortist then abort-callback calls(abort), otherwiseit just returns.

The default value of always-abort ist .

See also

cal | backs
interface
3.4 Callbacks

abort-dialog

Summary

Aborts the current dialog.

Package

capi

214

Function

21 CAPI Reference Entries

Signature

abort -di al og &rest ignored-args

Arguments

ignored-args(] Lisp objects.

Description

The function abor t - di al og abortsthe current dialog. For example, it can be made a selection callback from a Cancel
button so that pressing the button aborts the dialog. In a similar manner the complementary function exi t - di al og can be
used as a callback for an OK button.

The arguments in ignored-args are all ignored.

If thereis no current dialog then abor t - di al og does nothing and returnsni | . If thereisacurrent dialog then
abort - di al og either returns non-nil or does a non-local exit. Therefore code that depends on abor t - di al og returning
must be written carefully. Constructs like this can be useful:

(unl ess (capi:abort-dial og)

(foo))
Above, foo will be called only if thereis no current dialog.
It is not useful to do either:

(when (capi: abort-dial og)
(fo0))

or:

(progn
(capi : abort -di al og)
(foo))

asin both cases it is not well-defined whether foo will be called if thereisacurrent diaog.

Examples

(capi : di spl ay-di al og
(capi : make- cont ai ner
(make-instance 'capi: push-button
:text "Cancel"
:cal | back 'capi: abort-dial og)
;title "Test Dialog"))

Also see these examples:

(exanple-edit-file "capi/dialogs/")

See also

exi t-dial og
di spl ay-di al og
popup- confirner

215

21 CAPI Reference Entries

i nterface
10 Dialogs:. Prompting for Input

abort-exit-confirmer

Summary

Aborts the exiting of adialog.

Package

capi

Signature

abort-exit-confirnmer

Description

Function

Thefunction abor t - exi t - conf i r mer can be used to abort the exiting of a confirmer. It can be used in the ok-function of a

confirmer, to abort the exit and return to the dialog.

If abort-exit-confirner iscaled outside the exiting of a confirmer, it does nothing.

Examples

This example asks the user for astring. If the string islonger than 20 characters, it confirms with the user that they really

want such along string, and if they do not it returns to the dial og.

(capi : popup-confirner
(make-instance 'capi:text-input-pane)
"New Nane"
:val ue-function 'capi:text-input-pane-text
:ok-function
#' (|l anbda (val ue)
(when (and (> (length val ue) 20)
(not (capi:pronpt-for-confirnation
"Nane is very long. Use it?")))
(capi:abort-exit-confirnmer))
val ue))

See also

popup- confirner

accepts-focus-p

Summary

Determines if an element accepts the focus.

216

Generic Function

21 CAPI Reference Entries

Package

capi

Signature

accept s-focus-p element => result

Arguments

Values

result A boolean.
Description

The generic function accept s- f ocus- p determinesif the element element accepts the focus for user input, and controls
tabstops.

The method on el enent uses the value of the accepts-focus-p slot, but methods on some subclasses override this.

accept s- f ocus- p also influences whether a pane is atabstop. On Microsoft Windows a pane acts as atabstop if and only
if the function accept s- f ocus- p returnstrue and the el enent accepts-focus-p initarg valueis: f or ce. On Motif and
Cocoa, apane acts as atabstop if and only if the function accept s- f ocus- p returnstrue.

See also

el ement

pane- has-f ocus-p
set - pane- f ocus
3.1.5 Focus

activate-pane Function

Summary

Gives a pane the input focus and rai ses the window containing it.

Package
capi
Signature

activat e- pane pane

Arguments

panel] An el enent or api nboar d- obj ect or at ool bar - obj ect .

217

21 CAPI Reference Entries

Description

The function act i vat e- pane gives the focus to the pane pane and brings the window containing pane to the front.

If pane cannot accept the focusthen act i vat e- pane chooses a sensible alternative inside the same interface.

Examples

This example demonstrates how to swap the focus from one window to another.

(setqg text-input-pane

(capi:contain (make-instance
' capi:text-input-pane)))

(setqg button

(capi:contain (make-instance
' capi : push-button
‘text "Press Me")))

(capi: activate-pane text-input-pane)

(capi: activat e- pane button)

See also

hi de-interface

rai se-interface

set - pane- f ocus

showi nterface
quit-interface

si npl e- pane

7.7 Manipulating top-level windows

active-pane-copy
active-pane-copy-p
active-pane-cut
active-pane-cut-p
active-pane-deselect-all
active-pane-deselect-all-p
active-pane-paste
active-pane-paste-p
active-pane-select-all
active-pane-select-all-p
active-pane-undo
active-pane-undo-p

Summary

Perform, or check applicability of, an "edit/select operation” on the active pane.

Functions

21 CAPI Reference Entries

Package

capi

Signatures

active- pane-copy &optional pane

active- pane-copy-p &optional pane
active-pane-cut &optional pane
active-pane-cut-p &optional pane
active-pane-desel ect-all &optional pane
active-pane-desel ect-all-p &optional pane
active- pane-paste &optional pane
active-pane-paste-p &optional pane
active-pane-sel ect-all &optional pane
active-pane-select-all-p &optional pane
active-pane-undo &optional pane

active- pane-undo-p &optional pane

Arguments

pane|:| A si | e- pane.

Description
These functions perform an "edit/select operation” on the active pane, or check if this operation is currently applicable.

The active pane will be the one on the same screen as pane if pane is non-nil, or otherwise the same screen as the default
interface.

These functions find the active pane, that is the pane where keyboard input currently goes. Note that thisis not necessarily a
pane that is recognized by CAPI. The predicates (those with names ending - p) return true if the operation is currently
applicable. The other functions tell the active pane to do the operation.

The edit/select operations are implemented by the pane-i nt er f ace- * generic functions such as
pane-i nterface-copy-obj ect.

It is not an error to do the operation even if the predicate returnsfalse. 1t will just do nothing useful.

Examples

(example-edit-file "capi/applications/rich-text-editor")

See also

pane-i nterface-copy-obj ect
7.6 Edit actions on the active element

219

21 CAPI Reference Entries

append-items

Summary
Addsto the itemsin a collection.
Package

capi

Signature

append-i tens collection new-items

Arguments
collectiond A collection.
new-items] A sequence.
Description

The generic function append- i t ens addstheitemsin new-itemsto thecol | ect i on collection.

Generic Function

Thisislogically equivalent to recalculating the collection itemsand calling (set f col | ecti on-itens). However,

append- i t enms ismore efficient and causes less flickering on screen.

append- it enms can only be used when the col | ect i on hasthe default items-get-function svr ef .

Notes

append- it ens cannot be used agr aph- pane or atr ee- vi ew.

See also

col l ection
renove-itens
replace-itens

5 Choices - paneswith items

apply-in-pane-process

Summary

Applies afunction in the process associated with a pane.

Package

capi

220

Function

http://www.lispworks.com/documentation/HyperSpec/Body/f_svref.htm

21 CAPI Reference Entries

Signature

appl y-i n- pane- process pane function & est args => nil

Arguments

panel] Anel enent orapi nboar d- obj ect or at ool bar - obj ect .
functiond A function designator.

argsl] Lisp objects.

Description

The function appl y- i n- pane- pr ocess applies function to argsin the process that is associated with pane. Thisisrequired
when function modifies pane or changes how it is displayed. If pane has not been displayed yet or
appl y-i n- pane- process iscalled in the process associated with pane, then function is called immediately.

Notes

1. All accesses (reads as well as writes) on a pane should be performed in the pane's process. Within a callback on the
pane's interface this happens automatically, but appl y- i n- pane- pr ocess isauseful utility in other circumstances.

2. appl y-i n- pane- pr ocess callsfunction on the current process if the pane's interface does not have a process.
3. If the pane's process is ho longer active then appl y- i n- pane- pr ocess applies function directly.

4. appl y-i n- pane- process-i f - al i ve isanother way to call function in the CAPI process appropriate for pane.
However it only does thisif paneisalive so in particular, if pane does not have a process, it does not call function.

Examples

Editor commands must be called in the correct process:

(setqg editor
(capi:contain
(make-instance 'capi: editor-pane
:text "Once upon a tine...")))

(capi : appl y-i n- pane- process
editor 'capi:call-editor editor "End O Buffer")

(capi : appl y-i n- pane- process
editor 'capi:call-editor editor "Beginning O Buffer")

See also

appl y-i n-pane-process-if-alive
execute-with-interface
4.1 The correct thread for CAPI operations

7 Programming with CAPI Windows

221

21 CAPI Reference Entries

apply-in-pane-process-if-alive

apply-in-pane-process-wait-single

apply-in-pane-process-wait-multiple Functions
Summary

Applies afunction in the process associated with a pane, and optionally waits for and returns its values.

Package

capi

Signatures
appl y-i n- pane-process-if-alive pane function & est args => alivep
appl y-i n- pane- process-wai t - si ngl e pane timeout function & est args => result, status

appl y-i n- pane-process-wai t-nultiple pane timeout function & est args => results, status

Arguments

panel] A CAPI element or pinboard object.
functiond A function or an fbound symbol.
argsl] Any Lisp objects.

timeout] A non-negative real (number of seconds) or ni | .
Values

alivepl] A boolean.

result] Any Lisp object.

status[] nil,tor:timeout.

results’] A list of Lisp objects.

Description

Thefunction appl y-i n- pane- process-i f - al i ve appliesfunction to argsin the process that is associated with pane, if
paneis"dive". Thisislikeappl y-i n- pane- pr ocess except that function is called only if paneisalive. The meaning of
"alive" and the value of alivep are as defined for execut e-wi t h-i nterface-if-alive. If

appl y-i n- pane- process-if-alive iscaled inthe process associated with pane, then function is called immediately.

If pane does not have a process, then function is not called.
Thereturn value of appl y-i n- pane- process-if-alive, alivep, istrueif the paneis"aive" and false otherwise.

appl y-i n- pane- process-wai t - si ngl e appliesfunction to argslike appl y-i n- pane- process-i f-al i ve, and then
waits for function to return. If the call returns successfully, result is the first return value of the call to function, and statusis
t. If paneisnot "aive", result and status are ni | . If timeout is non-nil and the call did not return within timeout seconds,
thenresultisni | and statusis: ti neout .

222

21 CAPI Reference Entries

appl y-i n- pane- process-wai t-nul ti pl e isthesameasappl y-i n- pane- process-wai t - si ngl e except for the
returned values. If the call to function returns successfully, resultsis alist of the values that function returned and statusist .
If paneisnot "alive", result and statusare ni | . If timeout is non-nil and the call did not return within timeout seconds, then
resultisni | and statusis: ti neout .

Notes

Evenif appl y-i n- pane- process-i f-al i ve returnstrue for alivep, function is not guaranteed to be called. For example,
the process of pane might be killed or hang.

After timeout has expired in appl y- i n- pane- process-wai t-mul ti pl e or appl y-i n- pane- process-wai t - si ngl e,
function may or may not have been called.

appl y-i n- pane- process-wai t-mul ti pl e and appl y- i n- pane- process- wai t - si ngl e work by creating a

np: mai | box, applying (in the same way that appl y- i n- pane- process-i f - al i ve does) alambdathat puts the result(s)
of function in the mailbox, and then wait for the mailbox. It is quite easy to write your own version of thisif you need
additional features (for example, error handling).

See also

app! y-i n- pane- process
execute-with-interface-if-alive

4.1 The correct thread for CAPI operations
7 Programming with CAPI Windows

arrow-pinboard-object Class

Summary

A pi nboar d- obj ect that drawsitself asan arrow.

Package

capi

Superclasses

| i ne- pi nboar d- obj ect

Subclasses

doubl e- headed- ar r ow pi nboar d- obj ect
| abel | ed- arr ow pi nboar d- obj ect

Initargs

: head A keyword specifying the paosition of the arrowhead on the line.
:head-direction A keyword specifying the direction of the arrowhead.

: head- 1 ength The length of the arrowhead.

: head- breadt h The breadth of the arrowhead, or ni | .

: head- gr aphi cs-args
A graphics args plist.

223

21 CAPI Reference Entries

Description

Aninstance of the classar r ow pi nboar d- obj ect isapi nboar d- obj ect that drawsitself as an arrow.

head must be: end, : mi ddl e or: st art . Thedefaultis: end.
head-direction must be: f or war ds, : backwar ds or : bot h. Thedefaultis: f or war ds.
head-length is the length of the arrowhead in pixels. It defaultsto 12.

head-breadth is the breadth of the arrowhead in pixels, or ni | which means that the breadth is half of head-length. The
default isni | .

head-graphics-argsisaplist of graphics state parameters and values used when drawing the arrow head. For information
about the graphics state, seegr aphi cs- st at e.

Examples

(capi:contain
(make-instance
' capi : pi nboar d-1 ayout
:description
(list
(make-instance 'capi: arrow pi nboar d- obj ect
:start-x 5 :start-y 10
:end-x 105 :end-y 60)
(make-instance 'capi: arrow pi nboar d- obj ect
;start-x 5 :start-y 110
:end-x 105 :end-y 160
:head : mddle)
(make-instance 'capi: arrow pi nboar d- obj ect
istart-x 5 :start-y 210
:end-x 105 :end-y 260
:head-direction :both)
(make-instance ' capi: arrow pi nboar d- obj ect
.start-x 5 :start-y 310
:end-x 105 :end-y 360
: head- gr aphi cs-args
"(:foreground : pink)
- head-1 ength 30)
(make-instance ' capi: arrow pi nboar d- obj ect
;start-x 5 :start-y 410
:end-x 105 :end-y 460
:head-1ength 30 : head-breadth 5)
(make-instance 'capi: arrow pi nboar d- obj ect
:start-x 5 :start-y 510
:end-x 105 :end-y 560
: head- breadth 10
:head-direction : backwards))
:visible-mn-width 120
:vi si bl e-m n-hei ght 620))

See also

graphi cs-state
12.3 Creating graphical objects

224

21 CAPI Reference Entries

attach-interface-for-callback

Summary

Changes the interface that is passed when a callback is made.

Package

capi

Signature

attach-interface-for-call back eement interface

Arguments

element] Anel enent.
interface Aninterface.
Description

Function

Thefunction att ach-i nt erface-f or - cal | back changesthe interface that is passed when a callback is made. Callbacks

for element get passed interface instead of the parent interface of element.

See also

cal | backs

el ement

el enent-interface-for-call back
interface

3.4 Callbacks

attach-simple-sink

Summary

Attaches a sink to the active component in an ol e- cont r ol - pane.

Package

capi

Signature

att ach- si npl e- si nk invoke-callback pane interface-name &key sink-class => sink

Arguments

invoke-callback] A function designator.

Function

21 CAPI Reference Entries

panel] Anol e-contraol - pane.
interface-name] A refguid or the symbol : def aul t .
sink-classl] A symbol naming aclass.

Values

sink The sink object.

Description

Thefunction at t ach- si npl e- si nk make asink object and attaches it to the active component in pane.

When an event callback istriggered for the source interface named by interface-name, the sink object will call invoke-
callback with four arguments: pane (see sink-class below), the source method name as a string, the source method type
(either : met hod, : get or: put) and avector of the remaining callback arguments.

interface-name is either a string naming a source interface that the component in pane supportsor : def aul t to connect to
the default source interface.

sink-class can be used to control the class of the sink object. This defaultsto ol e- cont r ol - pane- si npl e- si nk, but can
be a subclass of this classto alow the first argument of invoke-callback to be chosen by a method on the generic function
com si npl e-i -di spat ch-cal | back- obj ect.

Attached sinks are automatically disconnected when the object is closed or can be manually disconnected by calling
det ach- si npl e- si nk.

Notes

This function is implemented only in LispWorks for Windows. Load the functionality by (requi re "enbed").

See also

det ach- si npl e-si nk
ol e-control - pane
ol e-control - pane-si npl e-si nk

attach-sink Function

Summary

Attaches a sink to the active component in an ol e- cont r ol - pane.

Package

capi

Signature

attach-si nk sink pane interface-name

Arguments

226

21 CAPI Reference Entries

sinkd A classinstance.

panel] Anol e-contraol - pane.
interface-namel] A refguid or the symbol : def aul t .
Description

The function at t ach- si nk attaches a sink to the active component in the the ol e- cont r ol - pane pane.

sink is an instance of a class that implements the source interface interface-name.

paneisan ol e- cont r ol - pane which is the pane where the component is.

interface-name is either a string naming a source interface that the component in pane supportsor : def aul t to connect to
the default source interface.

Attached sinks are automatically disconnected when the object is closed or can be manually disconnected by calling
det ach-si nk

Notes

This function isimplemented only in LispWorks for Windows. Load the functionality by (requi re "enbed").

See also

attach- si npl e-si nk
det ach- si nk
ol e-control - pane

beep-pane Function

Summary

Sounds a beep.

Package
capi
Signature

beep- pane &optional pane

Arguments

pa_ne|:| A si | e- pane.

Description
The function beep- pane sounds a beep on the screen associated with pane or on the current screen if paneisni | .
Examples

(capi : beep- pane)

227

21 CAPI Reference Entries

See also

si npl e- pane
screen
18.2 Sounds

browser-pane Class

Summary

Embeds a pane that can display HTML. Implemented only on Microsoft Windows and Cocoa.

Package

capi

Superclasses

si npl e- pane

Initargs

: bef or e- navi gat e- cal | back

A function that is called before navigating, or ni | .
:navi gat e- conpl et e- cal | back

A function that is called when navigation completes, or ni | .
:new wi ndow- cal | back

A function that is called before opening a new window, or ni | .
: status-text-change-cal |l back

A function that is called when thereisanew statustext or ni | .
: docunent - conpl et e- cal | back

A function that is called when a document is complete, or ni | .
:title-change-call back

A function that is called when the title changes, or ni | .
: updat e- commands- cal | back

A function that is called when the enabled status of commands related to the pane may
need to change, or ni | .

“internet-explorer-call back

Microsoft Windows specific: A function that is whenever there is an event from the
underlying IWebBrowser2, or ni | .

: havi gat e-error-cal | back

A function that is called when the pane failsto navigate, or ni | .
. progress-cal | back
: debug A boolean specifying whether debugging modeis on or not.
curl A string specifying theinitial URL.

228

21 CAPI Reference Entries

Accessors

br owser - pane- navi gat e- conpl et e- cal | back
br owser - pane- new wi ndow- cal | back

br owser - pane- st at us- t ext - change- cal | back
br owser - pane- docunent - conpl et e- cal | back
browser - pane-titl e-change-cal | back

br owser - pane- updat e- cormands- cal | back

br owser - pane-i nt er net - expl orer -cal | back
br owser - pane- bef or e- navi gat e- cal | back

br owser - pane- navi gat e- error - cal | back

br owser - pane- debug

Readers

br owser - pane- ur |
br owser - pane- successful -p
browser - pane-title

Description

An instance of the class br owser - pane is apane that embeds a pane that can display HTML. Navigation in the pane
happens either by the user clicking on hyperlinks, or by the application using br owser - pane- navi gat e. The various
callbacks gives the program information on what happens in the window and can be used to control (for example, to block or
redirect pages).

br owser - pane isimplemented only on Microsoft Windows (where it embeds an IWebBrowser2) and Cocoa (where it uses
WebKit).

Theinitarg : ur| specifiestheinitial URL. After being created, the pane automatically navigatesto this URL.

When before-navigate-callback is non-nil, it is called before any navigation (whether programmeatic or by the user), and gives
the application control over whether to perform the navigation. The callback must have this signature:

bef or e- navi gat e- cal | back pane url &ey sub-frame-p frame-name &al | ow ot her - keys => do-it

paneisthe pane that navigates, and url is a string to which it wants to navigate. sub-frame-p is true when the navigation isfor
asub-frame inside the current URL, otherwise sub-frame-pisni | . frame-nameiseither ni | or the name of a sub-frame
when the navigation is to a sub-frame.

If before-navigate-callback returnsni | , the navigation is canceled.

Note: To perform aredirection, just call br owser - pane- navi gat e to therequired URL, and return ni | from before-
navigate-callback.

If new-window-callback is non-nil, it is called before the pane tries to open anew window. It must have this signature:
new wi ndow- cal | back pane url &key context flags &al | ow ot her - keys => do-it-p

paneis the pane that wants to open a new window, and url is a string containing the URL that the new window will navigate
to. context is a string containing the URL of the page from which the request comes.

flags is implementation-specific flags. On Cocoa flagsis aways 0. On Microsoft Windows flags contains bits from the
NWMF enumeration.

If new-window-callback returns ni | , the opening of the new window is canceled. If new-window-callback returnst or isnot
supplied, it launches a browser using the OS settings.

On Microsoft Windows, new-window-callback isinvoked from the "NewWindow3" event (or "NewWindow?2" for old
versions) of the sink of the underlying IWebBrowser2. If not canceled, the pane opens anew normal Internet Explorer

229

21 CAPI Reference Entries

window.

If document-complete-callback is non-nil, it is called when the new document in the pane is complete. It must be afunction
with signature:

docunent - conpl et e- cal | back pane url title =>

url istheloaded URL, and may beni | inthe case of failure. titleisastring that is associated with the URL url (or the
previous URL if the latest cal failed).

document-complete-callback is called when, as far as the system is concerned, all the data for the URL has been loaded and is
displayed in the pane. Thereisonly one call to document-complete-callback for each navigation of the pane.

If navigate-complete-callback is non-nil, it is called whenever a navigation completes. navigate-complete-callback can be
called several times for each navigation of the pane. It must be a function with the signature:

navi gat e- conpl et e- cal | back pane url sub-frame-p =>

paneisthe panethat is navigated. url isastring to which it navigated, unless the navigation failed, in which case url isni | .
sub-frame-p is true when the navigation was in a sub-frame.

Notes. For most purposes the document-complete-callback is more useful than navigate-complete-callback. When navigate-
complete-callback getsani | url, the value of the URL in the pane (that is, what the accessor br owser - pane- ur| returns)
isstill set to the actual URL. The success flag (which you can read with br owser - pane- successful -p)issettonil.

url can be non-nil even if there was an error in the navigation, if the server supplied another URL. In this case, on Microsoft
Windows only, the successflagissetto: redi rect ed. You can read it with br owser - pane- successf ul - p.

If navigate-error-callback is non-nil, it is called when navigation fails for some reason. It should have this signature:

navi gate-error-cal | back pane url &ey http-code error-symbol implementation-error-code message frame-name sub-
frame-p fatal &al | ow ot her - keys => canced

pane is the navigating pane, and url isthe URL that got the error.

If the failure is server-side failure, then http-code contains the http-code in the response of the server, otherwise (that is, when
it failed to connect to aserver) itisni | .

error-symbol is akeyword uniquely identifying the error. For an http error it is of the form : HTTP_STATUS*, and for
requests with bad syntax error-symbol is: bad- r equest .

On Microsoft Windows implementation-error-code is the code in the "NavigateError" event. If http-code is non-nil then
implementation-error-code and http-code will be the same. On Cocoa implementation-error-code will be the same as http-
code in the case of server-side failure, otherwiseit is one of the NSURLEr r or * constants.

fatal isaboolean. A true value means that nothing is going to be displayed in the pane to tell the user about the error.

message is a message saying what the error is. sub-frame-pist when the navigation isfor a sub-frame, otherwiseni | . frame
-name is the name of the frame.

The return value cancel of navigate-error-callback should beoneof ni | , t, or : st op, with these interpretations.

ni | On Microsoft Windows this means displaying either the substitution page from the server if there
isone, or displaying automatically generated (by the underlying IWebBrowser2) error page.

t Cancel. On Microsoft Windows this means not displaying the automatically generated error
page, but displaying server substitution if thereis any.

:stop Stop the navigation immediately.

Note that the effect of the returned value cancel is only on the specific navigation, so it possible for a sub-frame to be

230

21 CAPI Reference Entries

stopped, while the main page and maybe other sub-frames complete.

On Cocoathereis no automatically generated error page, so the return value of cancel ni | meansthe sameast , and both
display whatever the server returned.

Note: To redirect on error, navigate-error-callback should just call br owser - pane- navi gat e with the new page and return
: stop.

If title-change-callback is non-nil, it is called when the title of the pane should change. It should have this signature:
title-change-call back pane new-title

new-title is a string, which the application should use as the title of the pane.

Note: In most cases, using the title argument of the document-complete-callback is more useful.

If status-text-change-callback is non-nil, it is called when the status text of the pane should change. It has this signature:
st at us-t ext - change- cal | back pane new-status-text

new-status-text is a string, which the application should use as the status text for the pane.

If update-commands-callback is non-nil, it is called when other panes (typically buttons or menu items) that are used to
perform commands on the pane need to update. The callback has this signature:

updat e- commands- cal | back pane what enabled-p

Currently what can be one of:

:forward Other panes that are used to go forward in the pane should be enabled or disabled.

: backwar d Other panes that are used to go backward in the pane should be enabled or disabled.
Additionally on Microsoft Windows only, what can be:

t Other panes that may try to anything with the pane may need updating. Note that this callback is
called quite often with what =t , so make sure it usually does not do much work in this case.

enabled-p specifies whether the other panes should be enabled or disabled.
On Windows only, if internet-explorer-callback is non-nil, it is called for each event for the pane. It has the signature:
i nt ernet-expl orer-call back pane event-name args

event-name is a string specifying the event. argsis avector containing the argumentsin order. The callback is called before
any code that is used to implement the callbacks, which is called afterwards with the same argument vector. That means that
the callback should not set anything in the vector, except when debugging.

internet-explorer-callback is intended to add functionality that is not given by the callbacks, and for debugging (but see also
: debug). If you need more control, you probably want to define your pane directly: for the basics see:

(exanple-edit-file "confol e/ htm -viewer")

debug specifies that the pane should be in debugging mode. Currently, on Microsoft Windows this means that it prints each
event and the arguments that it receives. Whenever an event is sent to the sink associated with the embedded browser, the
method name (which is the same as the event name in this case) and the argument are printed to * st andar d- out put *. On
Cocoait prints some diagnosticsto * st andar d- out put *.

br owser - pane- ur | returnsthe current url of the pane. Initially the value isthe keyword : ur | , but once the browser
completed navigation to some URL it is changed to this. Note that the url changes even if the navigation was not successful,
aslong asit was not stopped or canceled and there was no substitution page.

231

http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm

21 CAPI Reference Entries

br owser - pane-titl e returnsthetitle of the current document. Note that during navigation br owser - pane-titl e and
br owser - pane- ur I may not be synchronized. They are synchronized when document-complete-callback is called, until the
next before-navigate-callback call.

br owser - pane- successf ul - p tests whether the navigation to the current URL completed successfully, returning ni | for
failureand t for success. On Microsoft Windows only it can also return : subst i t ut ed, which meansthat the server
returned an error but also supplied a substitution page. On Cocoa, br owser - pane- successf ul - p returnsonlyt orni | .

Notes

br owser - pane and related APIs are implemented on Microsoft Windows and Cocoaonly. You can test whether itis
available by br owser - pane- avai | abl e- p.

See also

br owser - pane-avail abl e-p
br owser - pane- busy

br owser - pane-go-forward

br owser - pane- go- back

br owser - pane- navi gat e

br owser - pane-refresh

br owser - pane- set - cont ent
br owser - pane- st op

3.6 Displaying rich text

browser-pane-available-p Function

Summary

The predicate for whether br owser - pane can be used on a specified screen.

Package

capi

Signature

browser - pane- avai |l abl e-p &opti onal screen-spec => result

Arguments

g:reen-specm A CAPI object, aplist, ornil,.
Values

result A boolean.

Description

The function br owser - pane- avai | abl e- p returnstrueif thereisabr owser - pane implementation for the library
associated with screen-spec.

If screen-spec is not supplied, the default library is used.

232

21 CAPI Reference Entries

If screen-spec is supplied, it must be avalid argument to convert -t o- scr een.

See also

br owser - pane
convert-to-screen

browser-pane-navigate

browser-pane-busy

browser-pane-go-back

browser-pane-go-forward

browser-pane-set-content

browser-pane-stop

browser-pane-refresh Functions

Summary

Controlsabr owser - pane.

Package

capi

Signatures

br owser - pane- navi gat e pane url => result
br owser - pane- busy pane => result

br owser - pane- go- back pane

br owser - pane- go-f orward pane

br owser - pane- set - cont ent pane string

br owser - pane- st op pane

br owser - pane-refresh pane &opti onal level

Arguments

panel] A browser - pane.

urld A string.

stringd A string.

level[One of the keywords: nor mal and: conpl et el y.
Values

resultd A boolean.

233

21 CAPI Reference Entries

Description

These functions are used to control an instance of br owser - pane.

br owser - pane- navi gat e navigatesto url, that is it gets and displays the contents of url. Note that if thereis any
redirection, it isthe redirected URL that is displayed.

br owser - pane- navi gat e does the navigation asynchronously, so when the function returns the navigation has just started.
If result is true then the navigation started, and if result isni | then some error in the URL has aready been detected. If the
pane has an error callback, it already has been called in this case.

If br owser - pane- navi gat e is called while pane is not displayed, it setsthe initial URL of it.

Note: br owser - pane- navi gat e can be used to effect aredirection from inside the error before navigation and new-
window callbacks.

br owser - pane- busy tests whether the browser is currently navigating, returning trueif it is.

br owser - pane- go- f or war d and br owser - pane- go- back navigate forward and back in the history, like the buttons on
most web browsers.

br owser - pane- set - cont ent sets the contents of paneto string. It has same effect asif pane navigated to a URL whose
contentsisstring. br owser - pane- set - cont ent creates atemporary file containing string and uses the pathname as the
URL for pane. Thefileis deleted when paneis destroyed.

br owser - pane- st op stops the current navigation.

br owser - pane-r ef r esh refreshes the pane, which means re-reading the URL. level can be one of:

: nor nal Asksthe server for the contents again. Thisis the default value of level.
:conpl etely Asks the server for the contents again without looking at any cache.
Notes

br owser - pane and related APIs are implemented on Microsoft Windows and Cocoa only.

Compatibility note

In LispWorks 6.1 these functions were documented as generic functions, however it is not intended that you should define
methods.

See also

br owser - pane

browser-pane-property-get
browser-pane-property-put Generic Functions

Summary

Get or set value of a specified Windows property of the underlying browser.

234

21 CAPI Reference Entries

Package

capi

Signatures
br owser - pane- property-get pane property-name => value

br owser - pane- property-put pane property-name value

Arguments

panel] A browser - pane.

property-namel] A string.

valueld A Lisp value of appropriate type for the property property-name.
Values

value A Lisp value of appropriate type for the property property-name.
Description

The functions br owser - pane- property-get andbr owser - pane- property- put get or set the value of a specified
Windows property of the underlying browser of pane.

property-name has to be one of the properties listed in the Properties section of the documentation of 1WebBrowser2 in the
MSDN and value should be of the appropriate type for that property when setting it.

Notes
1. br owser - pane- property-get andbr owser - pane- property- put areimplemented on Microsoft Windows only.

2. br owser - pane- property-get andbr owser - pane- property- put do not correspond to the methods
"GetProperty" and "PutProperty” of IWebBrowser2.

See also

br owser - pane

button Class

Summary

A class of pane that displays either a piece of text or an image, and that performs an action when pressed. Certain types of
buttons can a so be selected and desel ected.

Package
capi

Superclasses
si npl e- pane

235

21 CAPI Reference Entries

item

Subclasses

push-button
radi o- button

check-button

Initargs

sinteraction The interaction style for the button.

:sel ected For radio button and check button styles, if sel ect ed issettot, the buttonisinitially
selected.

: cal | back Specifies the callback to use when the button is selected.

i mage An image for the button (or ni I).

: sel ect ed-i mage The image used when the button is selected.

: enabl ed If ni | the button cannot be selected.

:cancel -p If true the button is the "Cancel" button, that is, the button selected by the Escape key.

cdefault-p If true the button is the default button, that is, the button selected by the Ret ur n key.

: di sabl ed-i mage The image for the button when disabled (or ni |), only implemented on Motif and

Microsoft Windows.
. sel ect ed- di sabl ed-i mage

The image used when the button is selected and disabled, only implemented on Motif and
Microsoft Windows.

: ar med- i mage The image used when the button is pressed and interaction is: no- sel ecti on.

: rmenoni ¢ A character, integer or symbol specifying a mnemonic for the button, only implemented
on Microsoft Windows and GTK+.

: menoni c- t ext A string specifying the text and a mnemonic, only implemented on Microsoft Windows
and GTK+.

.)menoni c- escape A character specifying the mnemonic escape. The default value is#\ &, only implemented

on Microsoft Windows and GTK+.

Accessors

button-sel ect ed

butt on-i mage

butt on- ar med- i mage

butt on- sel ect ed-i mage

but t on- di sabl ed-i mage

butt on- sel ect ed- di sabl ed-i mage
but t on- enabl ed

butt on- cancel - p
button-default-p

Description

Theclassbut t on isthe classthat push- but t on, r adi o- but t on, and check- but t on are built on. It can be displayed
either with text or an image, and a callback is called when the button is clicked. It inherits all of its textual behavior from
i t em including the slot text which is the text that appears in the button.

Rather than creating direct instances of but t on, you usually create instances of its subclasses, each of which has a specific

236

21 CAPI Reference Entries

interaction style. Occasionally it may be easier to instantiate but t on directly with the appropriate value of interaction (for
instance, when the interaction style is only known at run-time) but you may not use such abutton asan itemina
but t on- panel .

The values allowed for interaction are as follows:
:no-sel ection A push button.

:single-selection A radio button.

:mul tiple-selection

A check button.

Both radio buttons and check buttons can have a selection which can be set using the initarg : sel ect ed and the accessor
button-sel ect ed.

The button's callback gets called when the user clicks on the button, and by default gets passed the datain the button and the
interface. This can be changed by specifying a callback type as described in the description of callbacks. The following
callbacks are accepted by buttons:

:sel ection-cal | back

Called when the button is selected.

: cal | back For buttonsthisisasynonym of : sel ecti on-cal | back.

sretract-cal |l back Called when the button is desel ected.

By default, image and disabled-image are ni | , meaning that the button is atext button, but if image is provided then the
button displays an image instead of the text. The image can be an ext er nal - i nage or any object accepted by

| oad- i mage, including a.ico file on Microsoft Windows. The disabled image is the image that is shown when the button is
disabled (or ni | , meaning that it isleft for the window system to decide how to display the image as disabled). On some
platforms the system computes the disabled image and so disabled-image is ignored.

The button's actions can be enabled and disabled with the enabled slot, and its associated accessor but t on- enabl ed. This
means that when the button is disabled, pressing on it does not call any callbacks or change its selection.

Note that the classbut t on- panel provides functionality to group buttons together, and should normally be used in
preference to creating individual buttons yourself. For instance, ar adi o- but t on- panel makes a number of radio buttons
and also controls them such that only one button is ever selected at atime.

A mnemonic is an underlined character within the button text or the printed representation of the button data which can be
entered to select the button. The value mnemonic is interpreted as described for menu.

An aternative way to specify a mnemonic is to pass mnemonic-text. Thisisa string which provides the text for the button and
also specifies the mnemonic character. mnemonic-text and mnemonic-escape are interpreted in just the same way as the
mnemonic-title and mnemonic-escape of menu.

Notes
1. Thesi npl e- pane initarg foreground is not supported for buttons on Windows and Cocoa.

2. The disabled-image, armed-image and sel ected-disabl ed-image will work on Microsoft Windows provided you are
running with the themed look-and-feel (which isthe default). See 19.1.1 Using Windows themes.

Examples
In the following example a button is created. Using the but t on- enabl ed accessor the button is then enabled and disabled.

237

21 CAPI Reference Entries

(setqg button
(capi:contain (nmake-instance
' capi : push-button
itext "Press Me")))

(capi : appl y-i n- pane- process
button # (setf capi:button-enabled) nil button)

(capi : appl y-i n- pane- process
button # (setf capi:button-enabled) t button)

In the next example a button with an image instead of text is created.

(setqg button
(capi:contain
(make-instance
' capi : push-button
;i mage
(exanmple-file
"capi/applications/imges/info.bnp"))))

The following examples illustrate mnemonics:

(defun egg (& est ignore)
(decl are (ignore ignore))
(capi : di spl ay-message "Egg"))

(capi:contain
(make-instance 'capi: push-button
:sel ection-cal |l back 'egg
:menoni c-text "Chicken & Rice"))

(capi:contain

(make-instance 'capi: push-button
:data " Chi cken"
:sel ection-cal |l back 'egg
:menoni ¢ #\k))

Compare this with the previous example: the #\ k does not appear and the #\ e becomes the mnemonic:

(capi:contain
(make-instance ' capi: push-button
:sel ection-cal |l back 'egg
> menoni c- escape #\k
> menoni c-text " Chi cken"))

Also see these examples:

(example-edit-file "capi/buttons/")

See also

but t on- panel
cal | backs
3.10 Button elements

13.10 Working with images

238

21 CAPI Reference Entries

button-panel Class

Summary

Theclassbut t on- panel isapane containing a number of buttons that are laid out in a particular style, and that have group
behavior.

Package

capi

Superclasses

choi ce
titl ed-object

si npl e- pane

Subclasses

push- butt on- panel
radi o- butt on- panel
check- but t on- panel

Initargs

:layout - cl ass Thetype of layout for the buttons.

:l ayout - ar gs Initialization arguments for the layout.
: cal | backs The selection callbacks for each button.
:button-cl ass The class of the buttons.

i mages A list.

: di sabl ed-i nages A list.

: armed- i mages A list.

: sel ect ed-i mages A list.

: sel ect ed- di sabl ed-i mages

A list.
: hel p- keys A list.
:def aul t-button Specifies the default button.
: cancel -button Specifies the cancel button.
: Mmenoni cs A list specifying mnemonics for the buttons, only implemented on Microsoft Windows.
: rmenoni c-i t ens A list of strings, each specifying the text and a mnemonics, only implemented on

Microsoft Windows.

:)menoni c- escape A character specifying the mnemonic escape. The default value is#\ &s, only
implemented on Microsoft Windows.

:menonic-title A string specifying the title and a mnemonics, only implemented on Microsoft Windows.

239

21 CAPI Reference Entries

Accessors

pane- | ayout

Description

Theclassbut t on- panel inherits most of its behavior from choi ce, which is an abstract class providing support for
handling items and selections. By default, a button panel has single selection interaction style (meaning that only one of the
buttons can be selected at any one time), but this can be changed by specifying an interaction.

The subclasses push- but t on- panel , r adi o- but t on- panel and check- but t on- panel are provided as convenience
classes, but they are just button panels with different interactions (: no- sel ecti on, : si ngl e- sel ecti on and
:mul tiple-sel ection respectively).

The layout of the buttonsis controlled by alayout of class layout-class (which defaultsto r ow- | ayout) but this can be
changed to be any other CAPI layout. When the layout is created, the list of initargs layout-args is passed to
nmake-i nst ance.

Each button uses the callbacks specified for the button panel itself, unless the argument callbacks is specified. callbacks
should be alist (one element per button). Each element of callbacks, if non-nil, will be used as the selection callback of the
corresponding button.

button-class, if supplied, determines the class used for each of the buttons. This should be the class appropriate for the
interaction, or asubclass of it. The default behavior is to create buttons of the class appropriate for the interaction.

Each of images, disabled-images, armed-images, selected-images, sel ected-disabled-images and help-keys, if supplied,
should be alist of the same length asitems. The values are passed to the corresponding item, and interpreted as described for
but t on. Thebutt on- panel imagesvalues map to but t on image arguments, and so on.

For but t on- panel and its subclasses, the items supplied to the: i t ens initargand (setf col | ecti on-itens) function
can contain button objects. In this case, the button is used directly in the button panel rather than a button being created by
the CAPI.

This allows button size and spacing to be controlled explicitly. Note that the button must be of the appropriate type for the
subclass of but t on- panel being used, as shown in the following table:

Button and panel classes

Button panel class Button class

push- butt on- panel push-button

radi o- but t on- panel radi o- button

check- but t on- panel check-button
For example:

(let ((buttonl (nake-instance 'capi: push-button
:text "buttonl"
sinternal -border 20
:visible-mn-width 200))
(button2 (nake-instance 'capi: push-button
:text "button2"
sinternal - border 20
:visible-mn-width 200)))
(capi:contain (nmake-instance 'capi: push-button-panel
citens (list buttonl button2)
:layout-args '(:x-gap 30))))

240

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

21 CAPI Reference Entries

default-button specifies which button is the default (selected by pressing Ret ur n). It should be equal to a member of items
when compared by test-function. If the items are non-immediate objects such as strings or but t on objects, you must ensure
either that the same (eq) object is passed in items as in default-button, or that a suitable test-function is supplied.

cancel-button specifies which button is selected by pressing Escape. The comparison with members of itemsis as for default
-button.

mnemonicsisalist of the same length as items. Each element is a character, integer or symbol specifying the mnemonic for
the corresponding button in the same way as described for nenu.

mnemonic-items is an alternate way to specify the mnemonicsin abutton panel. Itisalist of the same length asitems. Each
element isa string which isinterpreted for the corresponding but t on as its mnemonic-text initarg.

mnemonic-title and mnemonic-escape are interpreted as for menu. mnemonic-escape specifies the escape character for
mnemonics both in the buttons and in the pane'stitle.

Compatibility note

Button panels now default to having a maximum size constrained to their minimum size as thisis useful when attempting to
layout button panelsinto arbitrary spaces without them changing size. To get the old behavior, specify
:vi si bl e-max-wi dth nil inthenmake-i nstance.

Examples

(capi:contain (nmake-instance
' capi : button-pane
citens '(:red :green :blue)
cprint-function '"string-capitalize))

(setqg buttons
(capi:contain
(make-instance
' capi : butt on- pane
citenms '(:red :green :blue)
cprint-function 'string-capitalize
sinteraction :nultiple-selection)))

(capi : appl y-i n- pane- process
buttons #' (setf capi:choice-sel ected-itens)
"(:red :green) buttons)

(capi:contain (nmake-instance
' capi : but t on- pane
citems '(1 234567 809)
:layout-cl ass 'capi:grid-Ilayout
:layout-args '(:colums 3)))

This exampleillustrates use of default-button and test-function:

(capi:contain

(make-instance ' capi: push-button-panel
ditems ' ("one" "two" "three")
sdefaul t-button "two"
:test-function 'equal p
:sel ection-cal | back
' capi : di spl ay- nessage))

Also see these exampl e files:

241

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

21 CAPI Reference Entries

(exanple-edit-file "capi/buttons/buttons")

(exampl e-edit-file "capi/buttons/button-panel -l ayout")

See also

radi o- button

check- button

push-button

set - button- panel - enabl ed-itens
5 Choices - paneswith items

calculate-constraints Generic Function

Summary

Calculates the internal constraints of a pane.

Package

capi

Signature

cal cul at e-constrai nts pane

Arguments

panel] A CAPI pane or layout.

Description

The generic function cal cul at e- const r ai nt s calculates the internal constraints for pane according to the sizes of its
children, and sets these values into its geometry cache. It can also store other information about the constraints for later use
by cal cul at e-1 ayout .

When the pane does not scroll in the relevant dimension, all the geometry hints (: ext er nal - mi n-wi dt h,
: vi si bl e- max- hei ght and so on) override the values that are computed by cal cul at e- constrai nt s.

When the pane does scroll in the relevant dimension, : i nt er nal - i n-wi dt h and: i nt er nal - ni n- hei ght override the
values that are computed by cal cul at e-constraints. (: i nternal - max-w dt h and: i nt er nal - max- hei ght are
ignored when scrolling.)

See 6.4.1 Width and height hints for adescription of internal and external constraints.

The CAPI calscal cul at e- const r ai nt s for each pane and layout that it displays.

When creating your own layout, you should define amethod for cal cul at e- const r ai nt s that sets the values of the
following geometry slots based on the constraints of its children.

% n-wi dt h% The minimum width of pane.
%rax- wi dt h% The maximum width of pane.
% n- hei ght % The minimum height of pane.

242

21 CAPI Reference Entries

%rex- hei ght % The maximum height of pane.

Seewi t h- geonet ry for more details of these dots.

The constraints of any CAPI element can be found by calling get - const r ai nt s.

Note: Unlessyour layout isadirect subclass of | ayout , you must ensure that the cal cul at e- const r ai nt s methods from
the superclasses are called. You can do thisby calling cal | - next - net hod or defining your cal cul at e- constraints
method asan : af t er method.

See also

cal cul at e-1 ayout

define-Il ayout

get-constraints

el ement

| ayout

Wi t h-geonetry

7 Programming with CAPI Windows

calculate-layout Generic Function

Summary

Provides a method for laying out the children of anew layout.

Package

capi

Signature

cal cul ate-l ayout layout x y width height

Arguments
|ayout|:| Al ayout .
X[, yO, width[, height[

Integers.
Description

The generic function cal cul at e- | ayout iscalled by the CAPI to set the position and size of the children of layout.
X, ¥, width and height are the position and size of arectangle that should contain the children.

When defining a new subclass of | ayout using def i ne- | ayout, acal cul at e-1 ayout method must be provided that sets
the position and size of each of the layout's children. This method must try to obey the constraints specified by its children
(its minimum and maximum size) and should only break them when it becomes impossible to fit the constraints of all of the
children. Usex, y, width and height to calculate a suitable position and size for each of the children and set them using the
macrowi t h- geonet ry, whichworksinasimilar way towi t h-sl ot s.

243

http://www.lispworks.com/documentation/HyperSpec/Body/f_call_n.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_slts.htm

21 CAPI Reference Entries

Examples

(exampl e-edit-file "capi/layouts/buffer-Iayout")

(exanple-edit-file "capi/layouts/w apping-I|ayout")

See also

get-constraints

W t h-geonetry

i nterpret-description
6 Laying Out CAPI Panes

callbacks Class

Summary

Theclasscal | backs isused asamixin by classes that provide callbacks.

Package

capi
Superclasses
capi - obj ect

Subclasses

col l ection
item
nmenu- obj ect

Initargs

: cal | back-type The type of arguments for the callbacks.

:sel ection-cal |l back
The callback for selecting an item.

: ext end- cal | back The callback for extending the selection.
‘retract-cal |l back The callback for deselecting an item.
;action-cal | back The callback for an action.

:alternative-action-call back
The callback for an alternative action in choi ce and its subclasses.

Accessors

cal | backs-cal | back-type

cal | backs-sel ecti on-cal | back
cal | backs- ext end-cal | back
cal | backs-retract-cal | back
cal | backs-action-cal | back

244

21 CAPI Reference Entries

Description

Each callback function can be one of the following:
function Call the function.

list Apply the head of thelist to the tail.

:redisplay-interface

Cdll r edi spl ay-i nt er f ace on thetop-level interface.

: redi spl ay- nenu- bar

Cdl r edi spl ay- nenu- bar onthetop-level interface.

The dot value callback-type determines which arguments get passed to each of the callbacks. It can be any of the following

values, and passes the corresponding data to the callback function:
:collection-data (collection data)

:data (item-data)

: dat a- el enent
:data-interface
el enent

el enent -dat a
celenent-item
cinterface-data
citem

(i tem el enent
citeminterface

interface-item

(item-data element)
(item-data interface)
(element)

(element item-data)
(element item)
(interface item-data)
(item)

(item element)
(item interface)

(interface item)

;interface (interface)

cfull (item-data item interface)

: focus The pane with the current input focus.
: none @)

callback-type can aso be alist containing any of : f ocus, : data, : el ement, :interface,:collection,:item

The item-data variable is the item's data if theitem is of typei t em otherwise it istheitem itself, asfor item. Theitem
variable means the item itself. Theinterfaceistheel enment -i nt er f ace of the element. collection isthe e ement's
col | ecti on, if thereis one. The element variable means the element containing the callback itself.

When looking for a callback function and callback-type in an object of typei t em menu-i t emort ool bar - but t on,
LispWorks uses the corresponding value from the object if it is non-nil and otherwise looks for a non-nil value in its ancestor
objects (up to themenu, t ool bar or theitem'scol | ecti on). That allows you specify a callback and typein a

col | ecti on, menu, nenu- conponent , t ool bar ort ool bar - conponent to be used for al its children. For an example,
see the mminterface in the documentation for nenu-i t em

245

21 CAPI Reference Entries

If no non-nil callback-typeisfound then: dat a- i nt er f ace is used unless documented differently by the class (for example
t ext -i nput - r ange).

Inachoi ce, the alternative-action-callback is invoked by a gesture which is the action-callback gesture modified by the
Shi f t key on Microsoft Windows and GTK+, and modified by the Conrmand key on Cocoa.

alternative-action-callback is applicable only to choi ce and its subclasses.

Apart from being invoked with a different gesture, the alter native-action-callback has exactly the same semantics as action-
callback.

Examples

(exampl e-edit-file "capi/choicel/alternative-action-callback")

See also

abort-cal | back

choi ce
attach-interface-for-call back
3.4 Callbacks

5.10.3 Callbacksin choices
8 Creating Menus

call-editor Generic Function

Summary

Executes an editor command in an edi t or - pane.

Package

capi

Signature

cal | - edi tor editor-pane command

Arguments

editor-panel] Anedi tor - pane.
command] A string.
Description

The generic function cal | - edi t or executes the editor command command in the current buffer in editor-pane.

It can be used directly in acallback for an interface that contains editor-pane. See 11.4 Connecting an interface to an
application. In other cases, take care to modify displayed CAPI interfaces only in their own process:
execute-wi th-interface andappl y-i n- pane- process are useful for this.

The before-input-callback and after-input-callback of the edi t or - pane are called when cal | - edi t or iscalled.

246

21 CAPI Reference Entries

Examples

(setqg editor (capi:contain

(make-instance 'capi: editor-pane

(capi : appl y-i n- pane- process

editor 'capi:call-editor editor "End O Buffer")

Also see this example:

(exanpl e-edit-file "capi/editor/editor-pane")

See also

appl y-i n- pane- process
edi t or - pane
execute-with-interface
10.6 I n-place completion

can-use-metafile-p

Summary

Queries whether metafiles can be used.

Package

capi

Signature

can-use-netafile-p &optional

Arguments

screent] A scr een, or any argument accepted by convert -t o- screen.
Values

result A boolean.

Description

screen => result

Function

The function can- use- net af i | e- p isthe predicate for whether the default library (if no argument is passed) or a specified

scr een (if an argument is passed) can use metafiles.

If the argument screen is supplied, it isconvertedto ascr een by convert -t o- scr een.

Examples

(example-edit-file "capi/graphics/netafile")

247

21 CAPI Reference Entries

See also

convert-to-screen
default-library

capi-object

Summary

The classcapi - obj ect isthe superclass of all CAPI classes.
Package

capi

Superclasses

st andar d- obj ect

Subclasses

item

cal | backs

el enent
interface

pi nboar d- obj ect

Initargs

: nane The name of the object.

cplist A property list for storing miscellaneous information.
Accessors

capi - obj ect - nane
capi - obj ect - pli st

Description

Theclasscapi - obj ect providesaname and a property list for genera purposes, along with the accessors
capi - obj ect - nanme and capi - obj ect - pl i st respectively. The name of acapi - obj ect isdefaulted by
defi ne-i nt erf ace to be the name of the slot into which the object is put.

Examples

(setqg object (make-instance 'capi: capi-object
“hame 'test))

(capi : capi - obj ect -nane obj ect)

(setf (capi:capi-object-plist object)
"(:red 1 :green 2 :blue 3))

(capi : capi -obj ect-property object :green)

248

Class

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm

21 CAPI Reference Entries

See also

capi - obj ect - property
18.5 Object propertiesand name

capi-object-property Accessor
Summary

Accesses propertiesin the property list of acapi - obj ect .

Package

capi

Signature
capi - obj ect - property object property => value

setf (capi-object-property object property) value => value

Arguments

objectl] A capi - obj ect .
valuell A LISp Ob] ect.
Values

valuell A LISp Obj ect.
Description

The accessor capi - obj ect - propert y gets and sets the property named property in the property list of object. value can be
any Lisp object.

All CAPI objects contain a property list, similar to the plist of asymbol. The recommended ways of accessing properties are
capi - obj ect-property and(setf capi-object-property). Toremoveaproperty, use the function
renove- capi - obj ect - property.

Examples
In thisexample alist panel is created, and atest property is set and examined using capi - obj ect - property.

(setqg pane (meke-instance 'capi:|list-pane
items ' (1 2 3)))

(capi: capi -obj ect-property pane 'test-property)

(setf (capi:capi-object-property pane 'test-property)
"Test™")

(capi: capi -obj ect-property pane 'test-property)

(capi : renove- capi - obj ect-property pane 'test-property)

249

21 CAPI Reference Entries

(capi : capi -obj ect-property pane 'test-property)

See also

capi - obj ect
r enpve- capi - obj ect - property
18.5 Object propertiesand name

check-button Class

Summary

A check button is a button that can be either selected or deselected, and its selection is independent of the selections of any
other buttons.

Package

capi

Superclasses

button
titl ed-object

Description

The class check- but t on inherits most of its behavior from the classbut t on. Notethat it is normally best to use a
check- but t on- panel rather than make the individua buttons yourself, as the button panel provides functionality for
handling groups of buttons. However, check- but t on can be used if you need to have more control over the button's
behavior.

Examples

The following code creates a check button.

(setqg button (capi:contain
(make-instance 'capi:check-button
itext "Press Me")))

The button can be selected and desel ected using this code.

(capi : appl y-i n- pane- process
button # (setf capi:button-selected) t button)

(capi : appl y-i n- pane- process
button # (setf capi:button-selected) nil button)

The following code disables and enables the button.

(capi : appl y-i n- pane- process
button # (setf capi:button-enabled) nil button)

(capi : appl y-i n- pane- process
button # (setf capi:button-enabled) t button)

250

21 CAPI Reference Entries

See also

push-button
r adi o- butt on

but t on- panel
3.10 Button elements

check-button-panel Class

Summary

A class of panes containing a group of buttons each of which can be selected or desel ected.

Package

capi

Superclasses

but t on- panel

Description

Theclasscheck- but t on- panel inheritsall of its behavior from but t on- panel , which itself inherits most of its behavior
from choi ce. Thus, thecheck- but t on- panel can accept items, callbacks, and so on.

Examples

(capi:contain (make-instance
' capi : check- but t on- pane
:title "Sel ect some packages”
citems ' ("CAPI" "LISPWORKS" "CL-USER")))

(setqg buttons (capi:contain
(make-instance
' capi : check- butt on- pane
:title "Sel ect sone packages"
citenms ' ("CAPI" "LI SPWORKS" "CL- USER")
:layout-class 'capi:colum-1|ayout)))

(capi: choi ce-sel ected-itens buttons)

Also see this example:

(example-edit-file "capi/buttons/buttons")

See also

check-butt on

push- but t on- panel

r adi o- but t on- panel

5 Choices - paneswith items

251

21 CAPI Reference Entries

choice

Summary

An abstract class that collects together a group of items, and provides functionality for displaying and selecting them.

Package

capi

Superclasses

col I ection

Subclasses

but t on- panel
doubl e- i st - panel

gr aph- pane
|i st-panel
list-view
nenu- conponent

opt i on- pane
st acked-tree

t ab- | ayout
t ext-i nput-choice
t ool bar - conponent

tree-view

Initargs

sinteraction The interaction style of the choice.

:sel ection The indexes of the choice's selected items.

:sel ected-item The selected item for a single selection choice.
:sel ected-itens A list of the selected items.

: keep-sel ection-p If t, retains any selection when the items change.

sinitial-focus-item
If supplied, this should be an item in the choice.

Accessors

choi ce-sel ecti on

Readers

choice-interaction
choice-initial-focus-item

Description

The class choi ce inherits most of its behavior from col | ect i on, and then provides the selection facilitiesitself. The

252

21 CAPI Reference Entries

classesli st - panel , butt on- panel , opti on- pane, menu- conponent and gr aph- pane inherit from it, and so it plays
akey rolein CAPI applications.

A choi ce can have one of four different interaction styles, and these control how it behaves when an item is selected by the
user. interaction can be one of:

:no-sel ection The choice behaves just as a collection.

:single-selection Thechoicecan have only one selected item.

:mul tiple-selection

The choice can have multiple selected items, except on macOS.

: ext ended- sel ecti on

An dternativeto nul ti pl e- sel ecti on.

With interaction : no- sel ect i on, the choice cannot have a selection, and so behaves just as a collection would.

Withinteraction : si ngl e- sel ect i on, the choice can only have one item selected at atime. When anew selection is made,
the old selection is cleared and its selection-callback is called. The selection-callback is also called when the user invokes
the selection gesture on the selected item.

With interaction : mul ti pl e- sel ect i on, the choice can have any number of items selected, and selecting an item toggles
its selection status. The selection-callback is called when an item becomes selected, and the retract-callback is called when
anitemisdeselected. : mul ti pl e- sel ecti on isnot supported for lists on macOS.

With interaction : ext ended- sel ect i on, the choice can have any number of items selected as with

:mul tipl e-sel ecti on interaction, but the usual selection gesture removes the old selection. However, there is awindow
system-specific means of extending the selection. When an item is selected the selection-callback is called, when the
selection is extended the extend-callback is called, and when an item is deselected the retract-callback is called.

On macOS, the selection gesture is mouse (left button) click. Deselection and discontinuous selections are made by
Command+d i ck, and a continuous selection is made by Shi ft +0 i ck, regardless of whether if interactionis
cmul tipl e-sel ectionor: extended-sel ection.

The choice's selection stores the indices of the currently selected item, and is a single number for single selection choices and
alist for al other interactions. Therefore when calling (setf choi ce-sel ecti on) you must passan integer or ni | if
interactionis: si ngl e- sel ect i on, and you must pass alist of integersif interactionis: mul ti pl e- sel ecti on or

: ext ended- sel ecti on.Thefunctionschoi ce- sel ect ed-i t emand choi ce- sel ect ed-i t ens treat the selectionin
terms of the items themselves as opposed to their indices.

Usually when a choice'sitems are changed using (set f col | ecti on-itemns) theselectionislost.
However, if the choice was created with : keep- sel ecti on- p t, then the selection is preserved over the change.

initial-focus-item, if supplied, specifies the item which has the input focus when the choice isfirst displayed.

Notes

When calling (setf choi ce-sel ecti on) you must pass an integer or ni | when interactionis: si ngl e- sel ecti on.
You must pass alist for other values of interaction.

Compatibility note

In LispWorks 5.0 and earlier versions, for interaction : si ngl e- sel ect i on the selection-callback is called only after anew
selection is made.

253

21 CAPI Reference Entries

Examples

The following example defines a choice with three possible selections.

(setqg choice (nmake-instance 'capi: choice
itens ' ("One" "Two" "Three")
:selection 0))

(capi: displ ay- nessage "Sel ection: ~S"
(capi: choi ce-sel ection choice))

(capi : choi ce-sel ected-item choi ce)

The selection is changed using the following code.

(setf (capi:choice-selection choice) 1)

(capi : choi ce-sel ected-item choi ce)

Also see these examples:

(exampl e-edit-file "capi/choicel")

(exanple-edit-file "capi/graphics/graph-pane")

See also

choi ce-sel ected-item

choi ce-selected-itemp
choi ce-sel ected-itens

choi ce-update-item

redi splay-collection-item
renove-itens
replace-itens

5 Choices - paneswith items

choice-selected-item

Summary

Returns the currently selected item in a single selection choice.

Package

capi

Signature
choi ce-sel ect ed-item choice => item

(setf choice-sel ected-iten) item choice => item

Arguments

254

Accessor

21 CAPI Reference Entries

choicel A choi ce.
item A Lisp object.
Values

item A Lisp object.
Description

The accessor choi ce- sel ect ed- i t emaccesses the currently selected item in asingle selection choice. A set f method is
provided as a means of setting the selection. Note that the items are compared by the test-function of choice - see
col | ect i on or the example below.

It isan error to call this function on choices with different interactions— in that case, you should use
choi ce-sel ected-itens.

Examples

This example illustrates setting the selection. First we set up a single selection choice — inthiscase, al i st - panel .

(setqg list (capi:contain
(make-instance 'capi:|list-panel
citens '(a b c de)
:selection 2)))

The following code line returns the selection of the list panel.
(capi:choice-selected-itemlist)
The selection can be changed, and the change viewed, using the following code.

(capi : appl y-i n- pane- process
list # (setf capi:choice-selected-item) 'e |ist)

(capi:choice-selected-itemlist)
This example illustrates the effect of the test-function. Make a choice with test-function cl : eq:

(setf *list*
(capi:contain
(make-instance 'capi:|list-panel
titems (list "a" "b" "c")
:selection O
:visible-mn-height :text-height)))

Thiscall losesthe selection since(eq "b" "b") fails

(capi : appl y-i n- pane- process
list # (setf capi:choice-selected-item
"b" *list*)

Change the test function:

(capi : appl y-i n- pane- process
[ist # (setf capi:collection-test-function)
"equal *list¥*)

255

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm

21 CAPI Reference Entries

Thiscall setsthe selection since (equal "b" "b") succeeds.

(capi : appl y-i n- pane- process
list # (setf capi:choice-selected-item
"b" *list*)

See also

choi ce

choi ce-selected-itemp
choi ce-sel ected-itens
col l ection

5 Choices - paneswith items

choice-selected-item-p Function

Summary

Checksif anitemiscurrently selected in a choice.

Package

capi

Signature

choi ce-sel ected-item p choice item => result

Arguments

choicell A choi ce.
item An item.
Values

result A boolean.
Description

Thefunction choi ce- sel ect ed- i t em p isthe predicate for whether an item item of the choice choiceis selected.

Note that the items are compared by the test-function of choice - seecol | ecti on for details.

Examples
(setqg Iist
(capi:contain
(make-instance 'capi:|list-panel

items '(a b c d)

:selection 2

2 vi si bl e-mi n- hei ght
"(:character 4))))

(capi:choice-selected-itemp list 'c)

256

21 CAPI Reference Entries

=>

Now click on another item.

(capi:choice-selected-itemp list 'c)
=>
nil

See also

choi ce
col l ection

choice-selected-items Accessor

Summary

Returns the currently selected itemsin a choice asalist of the items.
Package
capi

Signature
choi ce-sel ected-itens choice => items

(setf choice-sel ected-itens) items choice => items

Arguments

choicel A choi ce.
items A list of items.
Values

items A list of items.
Description

The accessor choi ce- sel ect ed- i t ens accesses the currently selected itemsin achoice asalist of theitems. A set f
method is provided as a means of setting the currently selected items. Note that the items are compared by the test-function of
choice - seecol | ecti on for details.

Inthe case of : si ngl e- sel ecti on choices, it isusually easier to use the complementary function
choi ce- sel ect ed- i t em which returns the selected item as its result.

Examples

Firstwesetupa: nul ti pl e-sel ecti on choice— inthiscase, alist pandl.

(setqg list (capi:contain

257

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

21 CAPI Reference Entries

(make-i nstance
‘capi:list-pane
citens '(a b c de)
:visible-mn-height '(:character 5)
cinteraction :nultiple-selection
:selection '(1 3))))

The following code line returns the selections of thelist.
(capi: choice-selected-itens |ist)
The selections of the list panel can be changed and redisplayed using the following code.

(capi : appl y-i n- pane- process
list # (setf capi:choice-sel ected-itens)
"(ace) list)

(capi:choice-selected-itens |ist)
Note that interaction : mul ti pl e- sel ecti on isnot supported for lists on macOS.

See also

choi ce

choi ce-sel ected-item
choi ce-selected-itemp
choi ce-sel ected-itens
col l ection

5 Choices - paneswith items

choice-update-item Function

Summary

Updates an item in a choice.

Package

capi

Signature

choi ce- updat e-i t em choice item

Arguments

choicel A choi ce.
item An item.
Description

The function choi ce- updat e- i t emupdates the display of the item itemin the choice choice. It should be called if the
display of item (that is, the string returned by the print-function) changes.

258

21 CAPI Reference Entries

Examples

Create alist panel that displays the status of something:

(defun ny-print-an-item (iten
(format nil "~a: ~a
(substitute-if-not #\ space

"al phanureri cp

(synbol -nane item)

(synbol -value item))

(defvar *status-one* :on)
(defvar *status-two* :off)

(setq Iist

(capi:contain

(make-instance
‘capi:list-panel
itenms ' (*status-one* *status-two*)
sprint-function 'nmy-print-an-item
2 vi si bl e-mi n-hei ght :text-height
cvisible-min-width :text-width)))

Setting the status variables does not change the display:
(setqg *status-one* :error)

Update the item to change the display:
(capi:choice-update-itemlist '*status-one*)

This example also demonstrates choi ce- updat e-i t em

(exanpl e-edit-file "capi/choicel/alternative-action-callback")

See also

choi ce

clipboard

Summary

Returns the contents of the system clipboard.

Package

capi

Signature

clipboard sdf &optional format => result, emptyp

259

Function

21 CAPI Reference Entries

Arguments

selfd A displayed CAPI pane or interface.
formatd A keyword.

Values

result A string, ani mage, aLisp object, orni | .
emptypd A boolean.

Description

Thefunction cl i pboar d returns the contents of the system clipboard as a string, or ni | if the clipboard is empty. The
second return value emptyp istrue if the clipboard is empty and false otherwise.

format controls what kind of object isread. The following values of format are recognized:

:string The object isastring. Thisisthe default value.

. i mage The object is of typei mage, converted from whatever format the platform supports.
:val ue The object isthe Lisp value.

cmetafile The object is a metdfile.

When format is: i mage, theimage returned by cl i pboar d is associated with self, so you can free it explicitly with
free-i mage oritwill befreed automatically when the pane is destroyed.

When format is: met af i | e the object is a metafile which should be freed using f r ee- net af i | e when no longer needed.
Seeadsodraw netafileanddraw netafil e-to-image. format: net afi | e isnot supported on GTK+ or X11/Motif.

The Microsoft Windows clipboard is usually set by the user withthe Ct r I +Cand Ct r | +X gestures. Note that the LispWorks
editor uses these gestures when in Windows emulation mode.

On X11/Matif, various gestures may set the clipboar