
Release Notes and Installation Guide
Version 8.0

1

Copyright and Trademarks
Release Notes and Installation Guide

Version 8.0

December 2021

Copyright © 2021 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in all copies and supporting documentation, and that the
name of M.I.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "as is"
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including all implied
warranties of merchantability and fitness. In no event shall M.I.T. be liable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright
and permission notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

2

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and
registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt III, as applicable. Rights reserved under the copyright laws of
the United States.

Address Telephone Fax

LispWorks Ltd
St. John's Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

From North America:
877 759 8839 (toll-free)

From elsewhere:
+44 1223 421860

From North America:
617 812 8283

From elsewhere:
+44 870 2206189

 www.lispworks.com

Copyright and Trademarks

3

www.lispworks.com

Contents

1 Introduction 8

1.1 LispWorks Editions 8

1.2 LispWorks for Mobile Runtime 9

1.3 Evaluation quick guide 9

1.4 Further details 10

1.5 About this Guide 10

2 Installation on macOS 12

2.1 Choosing the Graphical User Interface 12

2.2 Documentation 12

2.3 Software and hardware requirements 12

2.4 Installing LispWorks for Macintosh 13

2.5 Starting LispWorks for Macintosh 16

2.6 Uninstalling LispWorks for Macintosh 17

2.7 Upgrading the LispWorks Edition 17

3 Installation on Windows 18

3.1 Documentation 18

3.2 Installing LispWorks for Windows 18

3.3 Uninstalling LispWorks for Windows 20

3.4 Upgrading the LispWorks Edition 20

3.5 Upgrading to 64-bit LispWorks 20

4 Installation on Linux 21

4.1 Software and hardware requirements 21

4.2 License agreement 22

4.3 Software delivery and installer formats 22

4.4 Installing LispWorks for Linux 23

4.5 LispWorks looks for a license key 26

4.6 Running LispWorks 27

4.7 Configuring the image 28

4.8 Printable LispWorks documentation 28

4.9 Uninstalling LispWorks for Linux 28

4.10 Upgrading the LispWorks Edition 28

4.11 Upgrading to 64-bit LispWorks 28

4

5 Installation on x86/x64 Solaris 29

5.1 Software and hardware requirements 29

5.2 Software delivery and installer format 30

5.3 Installing LispWorks for x86/x64 Solaris 30

5.4 LispWorks looks for a license key 32

5.5 Running LispWorks 32

5.6 Configuring the image 32

5.7 Printable LispWorks documentation 33

5.8 Uninstalling LispWorks for x86/x64 Solaris 33

5.9 Upgrading the LispWorks Edition 33

5.10 Upgrading to 64-bit LispWorks 33

6 Installation on FreeBSD 34

6.1 Software and hardware requirements 34

6.2 License agreement 35

6.3 Software delivery and installer format 35

6.4 Installing LispWorks for FreeBSD 35

6.5 LispWorks looks for a license key 37

6.6 Running LispWorks 37

6.7 Configuring the image 38

6.8 Printable LispWorks documentation 38

6.9 Uninstalling LispWorks for FreeBSD 38

6.10 Upgrading the LispWorks Edition 38

6.11 Upgrading to 64-bit LispWorks 38

7 Installation of LispWorks for Mobile Runtime 39

7.1 Installing LispWorks for Android Runtime 39

7.2 Installing LispWorks for iOS Runtime 39

8 Configuration on macOS 40

8.1 Introduction 40

8.2 License keys 40

8.3 Configuring your LispWorks installation 40

8.4 Saving and testing the configured image 42

8.5 Initializing LispWorks 44

8.6 Loading CLIM 2.0 44

8.7 The Common SQL interface 45

8.8 Common Prolog and KnowledgeWorks 46

9 Configuration on Windows 47

9.1 Introduction 47

9.2 License keys 47

9.3 Configuring your LispWorks installation 47

Contents

5

9.4 Saving and testing the configured image 48

9.5 Initializing LispWorks 50

9.6 Loading CLIM 2.0 50

9.7 The Common SQL interface 51

9.8 Common Prolog and KnowledgeWorks 51

9.9 Runtime library requirement on Windows 52

10 Configuration on Linux, x86/x64 Solaris & FreeBSD 53

10.1 Introduction 53

10.2 License keys 53

10.3 Configuring your LispWorks installation 54

10.4 Saving and testing the configured image 55

10.5 Initializing LispWorks 56

10.6 Loading CLIM 2.0 56

10.7 The Common SQL interface 57

10.8 Common Prolog and KnowledgeWorks 58

10.9 Documentation on x86/x64 Solaris and FreeBSD 58

11 Troubleshooting, Patches and Reporting Bugs 59

11.1 Troubleshooting 59

11.2 Troubleshooting on Windows 61

11.3 Troubleshooting on macOS 61

11.4 Troubleshooting on Linux 61

11.5 Troubleshooting on x86/x64 Solaris 62

11.6 Troubleshooting on FreeBSD 63

11.7 Troubleshooting on X11/Motif 63

11.8 Updating with patches 64

11.9 Reporting bugs 66

11.10 Transferring LispWorks to a different machine 69

12 Release Notes 71

12.1 Keeping your old LispWorks installation 71

12.2 Updating your code for LispWorks 8.0 71

12.3 Platform support 71

12.4 GTK+ window system 73

12.5 New CAPI features 74

12.6 Other CAPI and Graphics Ports changes 76

12.7 More new features 76

12.8 IDE changes 83

12.9 Editor changes 85

12.10 Foreign Language interface changes 86

12.11 Objective-C changes 87

12.12 Common SQL changes 87

12.13 KnowledgeWorks changes 88

Contents

6

12.14 Application delivery changes 88

12.15 Other changes 89

12.16 Documentation changes 90

12.17 Known Problems 91

12.18 Binary Incompatibility 92

Index

Contents

7

1 Introduction

1.1 LispWorks Editions

LispWorks is available in several product editions on desktop platforms.

The main differences between the editions are outlined below. Further information can be found at:

www.lispworks.com/products

1.1.1 Personal Edition

LispWorks Personal Edition allows you to explore a fully-enabled Common Lisp programming environment and to develop
small- to medium-scale programs for personal and academic use. It includes:

• Native graphical IDE.

• Full Common Lisp compiler.

• COM/Automation API on Microsoft Windows.

LispWorks Personal Edition has several limitations. These are:

• A heap size limit

• A time limit of 5 hours for each session.

• The functions save-image, deliver, and load-all-patches are not available.

• Initialization files are not available.

• HobbyistDV, Professional and Enterprise Edition module loading is not included.

LispWorks Personal Edition has no license fee. Download it from:

www.lispworks.com/downloads

1.1.2 Hobbyist Edition

LispWorks 8.0 Hobbyist Edition is available to individual licensees for non-commercial and non-academic use. It is a fully-
functional Common Lisp IDE without most of the limitations of the Personal Edition:

• No heap size limit.

• No session time limit.

• The functions save-image and load-all-patches are available.

• Initialization files are available.

HobbyistDV, Professional and Enterprise Edition module loading is not included. In particular, the function deliver is
omitted so runtimes cannot be generated.

8

http://www.lispworks.com/products
http://www.lispworks.com/downloads

1.1.3 HobbyistDV Edition

LispWorks 8.0 HobbyistDV Edition is available to individual licensees for non-commercial and non-academic use. It has all
the features of the Hobbyist Edition plus:

• The function deliver allowing generation of non-commercial end-user applications and libraries.

1.1.4 Professional Edition

LispWorks 8.0 Professional Edition includes all the features of the HobbyistDV Edition plus:

• Fully supported commercial product.

• Delivery of commercial end-user applications and libraries.

• CLIM 2.0 on X11/Motif and Windows.

• 30-day free "Getting Started" technical support.

1.1.5 Enterprise Edition

LispWorks 8.0 Enterprise Edition provides further support for the software needs of the modern enterprise. It has all the
features of the Professional Edition plus:

• Database access through the Common SQL interface.

• Portable distributed computing through CORBA.

• Expert systems programming through KnowledgeWorks and embedded Prolog compiler.

On most platforms you can choose either the 32-bit or 64-bit implementation of LispWorks. These implementations are
licensed separately.

1.2 LispWorks for Mobile Runtime

LispWorks for Android Runtime and LispWorks for iOS Runtime are new products which you can use to build LispWorks
runtimes for inclusion in mobile apps.

1.3 Evaluation quick guide

If you are evaluating LispWorks, then the following notes might prove to be useful.

• LispWorks support (lisp-support@lispworks.com) will be happy to answer any issues you have.

• The LispWorks distribution contains various examples demonstrating various features of LispWorks. All the examples
are in the directory "examples" inside the LispWorks installation.

You can find this directory by evaluating the following in a LispWorks Listener:

(example-file "")

Each example contains comments that explain what it demonstrates.

In many cases it is convenient to copy the example and modify it to do what you want, rather than writing your own code
from scratch.

1 Introduction

9

• If you encounter an error that is not obviously a bug in your code, it is always best to produce a full bug report as
described in 11.9.3 Generate a bug report template. This will speed up the resolution of the issue.

• If you have performance issues, you should use room, extended-time and profile to narrow the problem. See the
LispWorks® User Guide and Reference Manual for details of these diagnostic functions and macros. You should also
report it to LispWorks support, as LispWorks is efficient in general and we do not expect performance problems.

1.4 Further details

For further information about LispWorks products visit:

www.lispworks.com

To purchase LispWorks please follow the instructions at:

www.lispworks.com/buy

1.5 About this Guide

This document is an installation guide and release notes for LispWorks 8.0 on macOS, Windows, Linux, x86/x64 Solaris,
FreeBSD platforms and LispWorks for Mobile Runtime. It also explains how to configure LispWorks to best suit your local
conditions and needs.

This guide provides instructions for installing and loading the modules included with each Edition or add-on product.

Unless explicitly mentioned, instructions in this manual refer to the Hobbyist, HobbyistDV, Professional and Enterprise
Editions, rather than the Personal Edition or LispWorks for Mobile Runtime which are distributed separately.

1.5.1 Installation and Configuration

Chapters 2 Installation on macOS -6 Installation on FreeBSD explain in brief and sufficient terms how to complete a
LispWorks installation on macOS, Windows, Linux, x86/x64 Solaris or FreeBSD. Choose the chapter for your platform: 2
Installation on macOS, 3 Installation on Windows, 4 Installation on Linux, 5 Installation on x86/x64 Solaris, or 6
Installation on FreeBSD.

Chapter 7 Installation of LispWorks for Mobile Runtime briefly mentions installation of LispWorks for Mobile Runtime.

Chapters 8 Configuration on macOS-10 Configuration on Linux, x86/x64 Solaris & FreeBSD explain in detail everything
necessary to configure, run, and test LispWorks 8.0. Choose the chapter for your platform: 8 Configuration on macOS. 9
Configuration on Windows, or 10 Configuration on Linux, x86/x64 Solaris & FreeBSD. This also includes sections on
initializing LispWorks and loading some of the modules. You should have no difficulty configuring, running, and testing
LispWorks using these instructions if you have a basic familiarity with your operating system and Common Lisp.

1.5.2 Troubleshooting

Chapter 11 Troubleshooting, Patches and Reporting Bugs discusses other issues that may arise when installing and
configuring LispWorks. It includes a section that provides answers to problems you may have encountered, sections on the
LispWorks patching system (used to allow bug fixes and private patch changes between releases of LispWorks), and details of
how to report any bugs you encounter.

1 Introduction

10

http://www.lispworks.com/documentation/HyperSpec/Body/f_room.htm
http://www.lispworks.com
http://www.lispworks.com/buy

1.5.3 Release Notes

Chapter 12 Release Notes highlights what is new in this release and special issues for your consideration.

1 Introduction

11

2 Installation on macOS

This chapter is an installation guide for LispWorks 8.0 (64-bit) for Macintosh. 8 Configuration on macOS discusses post-
installation and configuration in detail, but this chapter presents the instructions necessary to get LispWorks up and running
on your system.

2.1 Choosing the Graphical User Interface

LispWorks for Macintosh supports three different graphical interfaces. Most users choose the native macOS GUI, but you
can use the X11 GUI option instead, which supports both GTK+ and Motif. (Motif is deprecated, though.)

Different executables and supporting files are supplied for the two GUI options. You need to decide at installation time which
of these you will use, or you can install support for both. If you install just one GUI option and later decide to install the
other, you can simply run the installer again.

LispWorks for Macintosh Personal Edition supports only the native macOS GUI.

2.2 Documentation

The LispWorks documentation set is included in two electronic formats: HTML and PDF. You can chose whether to install it
as described in 2.4 Installing LispWorks for Macintosh.

The HTML format can be used from within the LispWorks IDE via the Help menu. You will need to have a suitable web
browser installed. You can also reach the HTML documentation via the alias
LispWorks 8.0/HTML Documentation.htm. If you choose not to install the documentation, you will not be able to
access the HTML Documentation from the LispWorks Help menu.

The PDF format is suitable for printing. Each manual in the documentation set is presented in a separate PDF file in the
LispWorks library under manual/offline/pdf. The simplest way to locate these PDF files is the alias
LispWorks 8.0/PDF Documentation. To view and print these files, you will need a PDF viewer such as Preview
(standard on macOS) or Adobe® Reader® (which can be downloaded from the Adobe website at www.adobe.com).

2.3 Software and hardware requirements

LispWorks 8.0 supports Macintosh computers containing Intel CPUs.

An overview of system requirements is provided in the table System requirements on macOS. The sections that follow
discuss any relevant details.

System requirements on macOS

12

http://www.adobe.com

Product Hardware Requirements Software Requirements

LispWorks (64-bit)
for Macintosh

Intel or Apple silicon processor.
338MB of disk space including
documentation

macOS version 10.6.x or higher for
Intel and 11.5.x or higher for Apple
silicon.
GTK+ 2 (version 2.4 or higher) if you
want to run the GTK+ GUI.
Open Motif 2.3 and Imlib2 1.4.9 if
you want to run the deprecated Motif
GUI.

2.4 Installing LispWorks for Macintosh

2.4.1 Main installation and patches

The LispWorks 8.0 installer contains each of the Editions. Additionally, there may be a patch installer which upgrades
LispWorks to version 8.0.x. You need to complete the main installation before adding patches.

2.4.2 Information for Beta testers

Users of LispWorks 8.0 Beta should completely uninstall it (including any patches added to the beta installation) before
installing LispWorks 8.0.

See 2.6 Uninstalling LispWorks for Macintosh for instructions.

2.4.3 Information for users of previous versions

You can install LispWorks 8.0 in the same location as LispWorks 7.1 or previous versions. If you always choose the default
install location, a new folder named LispWorks 8.0 (64-bit) will be created alongside the other versions.

2.4.4 Launch the LispWorks installer

The LispWorks installer is a pkg file, with the following name:

LispWorks80-64bit_Installer.pkg (64-bit Lispworks)

LispWorksPersonal80_Installer.pkg (LispWorks Personal Edition)

To install LispWorks, launch this file, which should run the macOS Installer application. If this does not happen, right-click
on th file and choose Open With > Installer.

The Introduction page should be displayed. Click Continue to go to the next step.

2.4.5 The Read Me

The Read Me presented next by the installer is a plain text version of this Release Notes and Installation Guide.

2 Installation on macOS

13

2.4.6 The License Agreement

Check the license agreement, then click Continue. You will be asked if you agree to the license terms. Click the Agree
button only if you accept the terms of the license. If you click Disagree, then the installer will not proceed.

2.4.7 Install Location

All the files installed with LispWorks are placed in the LispWorks folder, which is named LispWorks 8.0 (64-bit), or
LispWorks Personal 8.0 depending on which edition you are installing. The LispWorks folder is placed in the main
Applications folder for use by all users.

Note: The Applications folder may display in the Finder with a name localized for your language version of macOS.

2.4.8 Choose your installation type

The default Standard Install includes the native macOS GUI and the documentation, but you can also customize the install,
for examle to select the X11 GUI option.

Different executables and supporting files are supplied for the two GUI options. If you install just one of these and later
decide to install the other, you can simply run the installer again.

2.4.8.1 The native macOS GUI

If you simply want to install LispWorks for the native macOS GUI, and the documentation, click Install.

2.4.8.2 The X11 GTK+ and Motif GUIs

If you want to use LispWorks with either of the alternative X11 GUIs, click Customize and select the option LispWorks with
X11 IDE under Extra items.

The default X11 GUI is GTK+. Motif is also available, but is deprecated. You can select Motif at run time.

Note: to run LispWorks with an X11 GUI, you will need both of these installed:

• An X server such as Apple's X11.app, available at www.apple.com.

• One of GTK+ 2 (version 2.4 or higher) or Open Motif 2.3.

If you use Open Motif, you will also need Imlib2 version 1.4.9 or later.

None of these are required at the time you install LispWorks, however.

The X11 GUIs are not available for the Personal Edition.

2.4.8.3 The Documentation

If you use the Standard Install the documentation will be installed.

If you do not wish to install the documentation, click Customize and uncheck the LispWorks documentation option under
Standard items.

2 Installation on macOS

14

http://www.apple.com

2.4.9 Installing and entering license data

Now click Install.

You will be prompted for an administrator's name and password.

If you are not installing the LispWorks Personal Edition, then enter your serial number and license key when the installer asks
for these details.

Your license key will be supplied to you in email from Lisp Support or Lisp Sales.

If you have problems with your LispWorks license key, send it to lisp-keys@lispworks.com, showing the complete
output after you enter it, preferably with a screenshot.

2.4.10 LispWorks is added to the Dock

The installer adds LispWorks to the Dock.

2.4.11 Finishing up

You should now see a message confirming that installation of LispWorks was successful. Click the Close button.

Note: LispWorks needs to be able find its library at run time and therefore the LispWorks installation should not be moved
around piecemeal. If you must move it, move the entire LispWorks installation folder. If you simply want to run LispWorks
from somewhere more convenient, then consider adding an alias.

2.4.12 Installing Patches

After completing the main installation of LispWorks, ensure you install the latest patches which are available for download at
www.lispworks.com/downloads/patch-selection.html. Patch installation instructions are in the README file
accompanying the patch download.

2.4.13 Obtaining X11 GTK+

LispWorks does not provide GTK+ libraries, so you need to install third-party libraries, such as:

• the gtk+2 package from the Fink Project at www.finkproject.org, or:

• the gtk2 package from MacPorts at www.macports.org.

Note: you need the x11 gtk2 libraries, not GTK-OSX (Quartz).

2.4.14 Obtaining Open Motif and Imlib2

LispWorks 8.0 for Macintosh on X11/Motif requires Open Motif 2.3 and Imlib2 1.4.9.

The Open Motif library for LispWorks is /usr/local/lib/libXm.4.dylib.

Lisp Support can supply suitable Motif and Imlib2 libraries if you need them.

Note: The Motif GUI is deprecated. A GTK+ GUI is available.

2 Installation on macOS

15

http://www.lispworks.com/downloads/patch-selection.html#lwm
http://www.finkproject.org
http://www.macports.org

2.5 Starting LispWorks for Macintosh

2.5.1 Start the native macOS LispWorks GUI

Assuming you have installed this option, you can now start LispWorks with the native macOS GUI by double-clicking on the
LispWorks icon in the LispWorks folder.

Note: The LispWorks folder is described in 2.4.7 Install Location.

If you added LispWorks to the Dock during installation, you can also start LispWorks from the Dock. If you did not add
LispWorks to the Dock during installation, you can add it simply by dragging the LispWorks icon from the Finder to the
Dock.

If you want to create a LispWorks image that does not start the GUI automatically, then see 8.4.5 Saving a non-windowing
image (this option is not available in the Personal Edition).

See 8.3 Configuring your LispWorks installation for more information about configuring your LispWorks image for your
own needs.

Note: for the Personal Edition, the folder name and icon name are LispWorks Personal.

2.5.2 Start the GTK+ LispWorks GUI

Assuming you have installed the "LispWorks with X11 IDE" option, and that you have X11 running and GTK+ installed, you
can now start LispWorks with the GTK+ GUI.

Follow this session in the X11 terminal for 64-bit LispWorks (the filenames will be slightly different for 64-bit LispWorks):

bash-3.2$ cd "/Applications/LispWorks 8.0 (64-bit)"
bash-3.2$./lispworks-8-0-0-macos64-universal-gtk
; Loading text file /Applications/LispWorks 7.1 (64-bit)/Library/lib/8-0-0-0/private-patches/load.l
isp
LispWorks(R): The Common Lisp Programming Environment
Copyright (C) 1987-2021 LispWorks Ltd. All rights reserved.
Version 8.0.0
Saved by LispWorks as lispworks-8-0-0-amd64-darwin-gtk, at 02 Aug 2021 15:21
User lw on machine.lispworks.com
; Loading text file /Applications/LispWorks 8.0 (64-bit)/Library/lib/8-0-0-0/config/siteinit.lisp
; Loading text file /Applications/LispWorks 8.0 (64-bit)/Library/lib/8-0-0-0/private-patches/load.
lisp
; Loading text file /Users/lw/.lispworks

The LispWorks GTK+ IDE should appear.

See 8.3 Configuring your LispWorks installation for more information about configuring your LispWorks image for your
own needs.

2.5.3 Start the Motif LispWorks GUI

Assuming you have installed the "LispWorks with X11 IDE" option, and that you have X11 running and Motif and Imlib2
installed, you can use LispWorks with the Motif GUI.

You first must load the Motif GUI into the supplied lispworks-8-0-0-macos64-universal-gtk image, by:

(require "capi-motif")

This loads the necessary module and makes Motif the default library for CAPI.

2 Installation on macOS

16

Then you can start the LispWorks IDE by calling the function env:start-environment. You might want to save an image
with the "capi-motif" module pre-loaded: do this with a save-image script containing:

(require "capi-motif")

2.6 Uninstalling LispWorks for Macintosh

To uninstall LispWorks you should run the file uninstall.command in the LispWorks folder. This must be run as an
administrator user.

2.7 Upgrading the LispWorks Edition

Some LispWorks features such as Delivery, Common SQL and KnowledgeWorks are not available in all Editions. You can
add these features by upgrading.

After purchasing your upgrade from lisp-sales@lispworks.com, select Help > Register... and enter your new license key.

2 Installation on macOS

17

mailto:lisp-sales@lispworks.com

3 Installation on Windows

This chapter is an installation guide for LispWorks 8.0 (32-bit) for Windows and LispWorks 8.0 (64-bit) for Windows. 9
Configuration on Windows discusses post-installation and configuration in detail, but this chapter presents the instructions
necessary to get LispWorks up and running on your system.

3.1 Documentation

The LispWorks documentation set is available in two electronic forms: HTML and PDF. You can choose whether to install
either of these.

If you install the HTML documentation, then it can be used from within the the LispWorks IDE via the Help menu. It is also
available from the Windows 7 Start menu under Start > All Programs > LispWorks 8.0 > HTML Documentation or on the
Windows 8 start screen.

The PDF format is suitable for printing. Each manual in the documentation set is presented in a separate PDF file, available
from the Start menu under Start > All Programs > LispWorks 8.0 > PDF Documentation. To view and print these files, you
will need a PDF viewer such as Adobe® Reader®. If you do not already have this, it can be downloaded from the Adobe
website.

3.2 Installing LispWorks for Windows

3.2.1 Main installation and patches

The LispWorks 8.0 installer contains each of the Editions. Additionally, there may be a patch installer which upgrades
LispWorks to version 8.0.x. You need to complete the main installation before adding patches.

3.2.2 Visual Studio runtime components and Windows Installer

On systems where this is not present, installing LispWorks will automatically install a copy of the Microsoft.VC80.CRT
component, which contains the Microsoft Visual Studio runtime DLLs needed by LispWorks.

3.2.3 Installing over previous versions

You can install LispWorks 8.0 in the same location as LispWorks 7.1 or previous versions back to LispWorks 4.4.5. This is
the default installation location.

You can also install LispWorks 8.0 without uninstalling older versions such as Xanalys LispWorks 4.4 or Xanalys LispWorks
4.3 provided that the chosen installation directory is different.

3.2.4 Information for Beta testers

Users of LispWorks 8.0 Beta should completely uninstall it before installing LispWorks 8.0. Remember to remove any
patches added since the Beta release.

See 3.3 Uninstalling LispWorks for Windows for instructions.

18

3.2.5 To install LispWorks

To install LispWorks (32-bit) for Windows run LispWorks80-32bit.exe. You will have downloaded this from the
x86-win32 folder.

To install LispWorks (64-bit) for Windows run LispWorks80-64bit.exe. You will have downloaded this from the
x64-windows folder.

Follow the instructions on screen and read the remainder of this section.

3.2.5.1 Entering the License Data

Enter your serial number and license key when the installer asks for these details in the Customer Information screen.

Your license key will be supplied to you in email from Lisp Support or Lisp Sales.

If you have problems with your LispWorks license key, send it to lisp-keys@lispworks.com, describing what happens
after you enter it, preferably with a screenshot.

Note: the LispWorks Personal Edition installer does not ask you to enter license data.

3.2.5.2 Installation location

By default 32-bit LispWorks installs in All Users space in C:\Program Files (x86)\LispWorks\.

By default 64-bit LispWorks installs in All Users space in C:\Program Files\LispWorks\.

To install LispWorks in a non-default location (for example, to ensure it is accessible only by the licensed user on a multi-
user system such as a login server or remote desktop), select Custom setup in the Setup Type screen. Then click Change... in
the Custom Setup screen and choose the desired location in the Change Current Destination Folder dialog. Do not simply
move the LispWorks folder later, as this will break the installation.

3.2.5.3 Installing the Documentation

By default all the documentation is installed.

If you do not want to install the HTML Documentation, select Custom setup in the Setup Type screen and select This feature
will not be available in the HTML Documentation feature in the Custom Setup screen.

You can also choose not to install the PDF Documentation, in a similar way.

You can add the HTML Documentation and the PDF Documentation later, by re-running the installer. The documentation is
also available at www.lispworks.com/documentation.

3.2.5.4 Installing Patches

After completing the main installation of the Professional or Enterprise Edition, ensure you install the latest patches which
are available for download at www.lispworks.com/downloads/patch-selection.html.

Patch installation instructions are in the README file accompanying the patch download.

3 Installation on Windows

19

http://www.lispworks.com/documentation
http://www.lispworks.com/downloads/patch-selection.html#lww

3.2.5.5 Starting LispWorks

After installation LispWorks can be invoked from the Start menu or Start screen (on Windows 8).

Note: After installation you must not move or copy the LispWorks folder, since the system records the installation location.
Moreover LispWorks needs to be able find its library at run time and therefore the LispWorks installation should not be
moved around piecemeal. If you simply want to run LispWorks from somewhere more convenient, then consider adding a
shortcut.

3.3 Uninstalling LispWorks for Windows

To uninstall LispWorks:

1. Select Programs and Features in the Control Panel or App & features in Settings on Windows 10.

2. Select LispWorks 8.0 (32-bit) or LispWorks 8.0 (64-bit) and click Uninstall.

This will uninstall LispWorks along with any installed updates. It will not remove any private patches.

3.4 Upgrading the LispWorks Edition

Some LispWorks features such as Delivery, Common SQL and KnowledgeWorks are not available in all Editions. You can
add these features by upgrading.

After purchasing your upgrade from lisp-sales@lispworks.com, select Help > Register... and enter your new license key.

3.5 Upgrading to 64-bit LispWorks

To upgrade from 32-bit to 64-bit LispWorks, contact:

lisp-sales@lispworks.com

3 Installation on Windows

20

mailto:lisp-sales@lispworks.com
mailto:lisp-sales@lispworks.com

4 Installation on Linux

This chapter is an installation guide for LispWorks 8.0 (32-bit) for x86/x86_64 Linux, LispWorks 8.0 (64-bit) for x86_64
Linux, LispWorks 8.0 (32-bit) for ARM Linux and LispWorks 8.0 (64-bit) for ARM64 Linux. 10 Configuration on Linux,
x86/x64 Solaris & FreeBSD discusses post-installation and configuration in detail, but this chapter presents the instructions
necessary to get LispWorks up and running on your system.

4.1 Software and hardware requirements

An overview of system requirements is provided in System requirements on Linux. The sections that follow discuss any
relevant details.

System requirements on Linux

Hardware Requirements Software Requirements

168MB of disk space for Enterprise Edition (32-bit) plus
documentation

Any distribution with glibc 2.6 or later for x86/x86_64
and 2.17 or later for ARM/ARM64

182MB of disk space for Enterprise Edition (64-bit) plus
documentation

GTK+ 2 (version 2.4 or higher) to run the GTK+ GUI.
Open Motif 2.2.x or 2.3.x and Imlib2 1.4.3 or later to run
the deprecated Motif GUI

Any modern machine is likely to have sufficient RAM to
run LispWorks as distributed.

Firefox or Opera web browser for viewing on-line
documentation

4.1.1 GUI libraries

LispWorks 8.0 for Linux requires that the X11 release 6 (or higher) is installed. It also requires that either GTK+ or Open
Motif with Imlib2 are installed.

The remainder of this section contains the details for each of these distinct GUI options.

4.1.1.1 GTK+

In order for the LispWorks IDE to run "out of the box", GTK+ must be installed on the target machine.

GTK+ 2 (version 2.4 or higher) is required.

4.1.1.2 Motif

Open Motif version 2.2 or 2.3 is required to run LispWorks with the Motif GUI.

Download and install Open Motif 2.2.x or 2.3.x from your Linux distribution or from www.motifzone.net. Your systems
administrator may be able to help if you do not know how to do this.

You will also need Imlib2 version 1.4.3 or later. Install this from your Linux distribution.

Note: You should be able to run the LispWorks 8.0 Motif GUI and LispWorks 7.x, LispWorks 6.x or LispWorks 5.x

21

http://www.motifzone.net/

simultaneously with Open Motif installed.

4.1.2 Disk requirements

To install without documentation and optional modules, 32-bit LispWorks requires about 45MB and 64-bit LispWorks
requires about 60MB. Installing the documentation adds about 110MB and the optional modules about 15MB. A full
installation of the 64-bit Enterprise Edition with all documentation and optional modules requires about 185MB.

The documentation includes printable PDF format manuals. You may delete any of these that you do not need. They are
available at www.lispworks.com/documentation in any case, and the same manuals are also available there in PostScript
format.

4.2 License agreement

Before installing, you must read and agree to the license terms.

To do this download the license script from the link we sent to you.

Now run:

sh lwl-license.sh

or, if you are installing the Personal Edition:

sh lwlper-license.sh

Note: You must run this script as the same user that later performs the installation. In particular, if you are going to install
LispWorks from the RPM file, you must run the license script while logged on as root.

Enter "yes" if you agree to the license terms.

4.3 Software delivery and installer formats

LispWorks 8.0 for Linux is supplied as a download. Two formats are provided:

• Red Hat Package Management (RPM) files for x86 and x86_64. RPM is a utility like tar, except it can actually install
products after unpacking them. See 4.4.4 Installation from the binary RPM file (x86 and x86_64 only) for more
information.

• tar files.

4.3.1 Contents of the LispWorks distribution

The supplied installers contain all of the relevant modules.

For RPM installations, the RPM package name is lispworks (or lispworks-personal for the Personal Edition).

The Professional and Enterprise Edition modules are in separately installable RPM packages. These are: CLIM 2.0,
KnowledgeWorks, LispWorks ORB, and Common SQL. 1.1 LispWorks Editions provides Edition details.

For the Professional Edition the separately installable packages are:

lispworks-clim

4 Installation on Linux

22

http://www.lispworks.com/documentation

and for the Enterprise Edition the separately installable packages are:

lispworks-clim
lispworks-kw
lispworks-corba
lispworks-sql

The installation instructions provide the names of the individual distribution files.

4.4 Installing LispWorks for Linux

4.4.1 Main installation and patches

The LispWorks 8.0 installer contains each of the Editions. Additionally, there may be a patch installer which upgrades
LispWorks to version 8.0.x. You need to complete the main installation before adding patches.

4.4.2 Installing over previous versions

You can install LispWorks 8.0 in the same location as LispWorks 7.1 or previous versions.

4.4.3 Information for Beta testers

Users of LispWorks 8.0 Beta should completely uninstall it (including any patches added to the beta installation) before
installing LispWorks 8.0.

See 4.9 Uninstalling LispWorks for Linux for instructions.

4.4.4 Installation from the binary RPM file (x86 and x86_64 only)

For installation on ARM and ARM64, see 4.4.5 Installation from the tar files.

We recommend that you use RPM 4.3 or later (however see below for problems with --prefix argument with some
versions of RPM). The distribution files are also provided in tar format in case you do not have a suitable version of RPM or
are using another distribution of Linux.

If you already have LispWorks 8.0 Beta installed, please uninstall it before installing this product. See 4.9 Uninstalling
LispWorks for Linux.

Some versions of RPM may cause problems (eg. RPM 3.0). If you get the following message when using the --prefix
argument:

rpm: only one of --prefix or --relocate may be used

try upgrading to RPM 3.0.2 or greater.

Installation of LispWorks for Linux from the RPM file must be done while you are logged on as root.

4.4.4.1 Installation directories

By default 32-bit LispWorks is installed in /usr/lib/LispWorks and a symbolic link to the executable is placed in
/usr/bin/lispworks-8-0-0-x86-linux. Similarly, 64-bit LispWorks is installed in /usr/lib64/LispWorks and a
symbolic link to the executable is placed in /usr/bin/lispworks-8-0-0-amd64-linux. However, the RPM is
relocatable, and the --prefix option can be used to allow the installation of LispWorks in a non-default directory. The

4 Installation on Linux

23

default prefix is /usr.

Note: RPM version 4.2 has a bug which can hinder secondary installations (CLIM, Common SQL, LispWorks ORB or
KnowledgeWorks) in a user-specified directory. See 11.4.2 RPM_INSTALL_PREFIX not set for a workaround.

Note: the Personal Edition installs by default in /usr/lib/LispWorksPersonal. Do not attempt to to install different
editions in the same location, since some filenames coincide and uninstallation may break.

4.4.4.2 Selecting the correct RPM files

The main RPM file in the LispWorks distribution is named using the following pattern:

lispworks-8.0-n.arch.rpm

The integer n denotes a build number and will be same in all files in your distribution. The string arch will be either i386 for
32-bit LispWorks or x86_64 for 64-bit LispWorks. The text below assumes 32-bit LispWorks.

Note: For the Personal Edition, use lispworks-personal-8.0-*.i386.rpm wherever lispworks-8.0-*.i386.rpm
is mentioned in this document. See 1.1.1 Personal Edition for more information specific to the Personal Edition.

4.4.4.3 Installing or upgrading LispWorks for Linux

To install or upgrade LispWorks from the RPM file, perform the following steps as root:

1. Follow the instructions under 4.2 License agreement.

2. Locate the RPM installation file lispworks-8.0-n.i386.rpm.

3. Install or upgrade LispWorks in the standard RPM way, for example:

rpm --install lispworks-8.0-n.i386.rpm

This command installs LispWorks in /usr/lib/LispWorks. A command line of the form:

rpm --install --prefix <directory> lispworks-8.0-n.i386.rpm

installs LispWorks in <directory>.

The directory name must be an absolute pathname. Relative pathnames and pathnames including shell-expanded characters
such as . and ~ do not work.

Note: LispWorks needs to be able find its library at run time and therefore the LispWorks installation should not be moved
around piecemeal. If you simply want to run LispWorks from somewhere more convenient, then consider adding a symbolic
link.

See 4.6 Running LispWorks for instructions on entering your license details.

4.4.4.4 Installing CLIM 2.0

The following module is packaged as a separate RPM file for installation after the main lispworks package. It is available
in LispWorks Professional and Enterprise Editions only.

4 Installation on Linux

24

File distributions for layered products in Professional and Enterprise Editions

File Distribution Layered Product

lispworks-clim-8.0-n.i386.rpm CLIM 2.0

Install this module if required by substituting the above filename into the same commands you used to install the main
lispworks package.

If you used a --prefix argument when installing LispWorks, then use the same prefix for this module.

4.4.4.5 Installing loadable Enterprise Edition modules

The following modules are packaged as separate RPM files for installation after the main lispworks package.

File distributions for layered products in the Enterprise Edition

File Distribution Layered Product

lispworks-clim-8.0-n.i386.rpm CLIM 2.0

lispworks-kw-8.0-n.i386.rpm KnowledgeWorks

lispworks-corba-8.0-n.i386.rpm LispWorks ORB

lispworks-sql-8.0-n.i386.rpm Common SQL

Install these modules as described in 4.4.4.4 Installing CLIM 2.0.

4.4.4.6 Documentation and saving space

Documentation in HTML and PDF format is provided with all editions. PostScript format is available to download. To obtain
copies of the printable manuals, see 4.8 Printable LispWorks documentation.

Documentation is installed by default in the lib/8-0-0-0/manual sub-directory of the LispWorks installation directory.

Using RPM, you can save space by choosing not to install the documentation. For example, use the following command (all
on one line):

rpm --install --excludedocs --prefix <directory> lispworks-8.0-n.i386.rpm

To install the documentation at a later stage, you need to use the --replacepkgs option:

rpm --install --prefix <directory> --replacepkgs lispworks-8.0-n.i386.rpm

4.4.4.7 Installing Patches

After completing the main RPM installation of LispWorks and any modules, ensure you install the latest patches from the
RPM file available for download at www.lispworks.com/downloads/patch-selection.html. Patch installation instructions are
in the README file accompanying the patch download.

4 Installation on Linux

25

http://www.lispworks.com/downloads/patch-selection.html#lwl

4.4.5 Installation from the tar files

The LispWorks distribution is also provided as tar files compressed using gzip for use if you do not have an appropriate
version of RPM to unpack the RPM binary file. The gzipped files for LispWorks are as follows:

Files for LispWorks

lw80-x86-linux.tar.gz 32-bit LispWorks x86 image, modules and examples

lw80-arm-linux.tar.gz 32-bit LispWorks ARM image, modules and examples

lw80-amd64-linux.tar.gz 64-bit LispWorks x86_64 image, modules and examples

lw80-arm64-linux.tar.gz 64-bit LispWorks ARM64 image, modules and examples

lwdoc80-x86-linux.tar.gz Documentation in HTML and PDF formats for all
architectures

Note: The gzipped files for the LispWorks Personal Edition have similar names.

To install from these files:

1. Follow the instructions under 4.2 License agreement.

2. Use cd to change directory to the location of the downloaded files before running the installation script.

3. Run the installation script lwl-install.sh (or lwlper-install.sh for the Personal Edition). as root if the
directory specified by the installation directory requires it (the default does).

This script takes --prefix and --excludedocs arguments like rpm to control the installation directory and amount of
documentation installed.

For example, to install the Personal Edition and documentation in the default location
(/usr/local/lib/LispWorksPersonal) would use:

sh lwlper-install.sh

Or, to install 32-bit LispWorks in /usr/lispworks, without documentation you would use:

sh lwl-install.sh --excludedocs --prefix /usr/lispworks

Note: the default location under /usr/local is appropriate for this unmanaged (non-RPM) installation.

See 4.6 Running LispWorks for how to enter your license details.

4.4.5.1 Installing Patches

After completing the main tar installation of LispWorks, ensure you install the latest patches from the tar archive available
for download at www.lispworks.com/downloads/patch-selection.html. Patch installation instructions are in the README
file accompanying the patch download.

4.5 LispWorks looks for a license key

If you try to run LispWorks without a valid key, it prints a message reporting that no valid key was found, and exits.

For instructions on entering your license key, see 4.6.1 Entering the license data below.

4 Installation on Linux

26

http://www.lispworks.com/downloads/patch-selection.html#lwl

For more information about license keys, see 10.2 License keys.

4.6 Running LispWorks

In a RPM installation, assuming the default prefix of /usr, the LispWorks executable is located in /usr/lib/LispWorks

or /usr/lib64/LispWorks or /usr/lib/LispWorksPersonal There is also a symbolic link from the /usr/bin
directory.

In a tar installation, assuming the default prefix of /usr/local, the LispWorks executable is located in
/usr/local/lib/LispWorks or /usr/local/lib64/LispWorks or /usr/local/lib/LispWorksPersonal.

In both cases, the LispWorks executable should not be moved without being resaved, because it needs to be able to locate the
corresponding library directory on startup.

The LispWorks executable is named as shown here:.

lispworks-personal-8-0-0-x86-linux Personal Edition

lispworks-8-0-0-x86-linux 32-bit LispWorks on x86

lispworks-8-0-0-amd64-linux 64-bit LispWorks on x86_64

lispworks-8-0-0-arm-linux 32-bit LispWorks on ARM

lispworks-8-0-0-arm64-linux 64-bit LispWorks on ARM64

When you run LispWorks, the splashscreen should appear, followed by the LispWorks Podium and a Listener. See 11.1
Troubleshooting for details if this does not happen.

4.6.1 Entering the license data

When you run LispWorks for the first time, you will need to enter your license details. This should be done as follows (all on
one line) using the appropriate LispWorks executable from the table above (32-bit LispWorks on x86 in this example):

lispworks-8-0-0-x86-linux --lwlicenseserial SERIALNUMBER --lwlicensekey LICENSEKEY

where SERIALNUMBER and LICENSEKEY are the strings supplied with LispWorks. A message:

LispWorks license installed successfully.

should be printed and thereafter you can run LispWorks without those command line arguments.

Your license key will be supplied to you in email from Lisp Support or Lisp Sales.

If you have problems with your LispWorks license key, send it to lisp-keys@lispworks.com, showing the complete
output after you enter it.

Note: the LispWorks Personal Edition does not ask you to enter license data.

4 Installation on Linux

27

4.7 Configuring the image

You can now configure your LispWorks image to suit your needs and load modules as necessary. For instructions, see 10
Configuration on Linux, x86/x64 Solaris & FreeBSD.

4.8 Printable LispWorks documentation

In a default installation, the lib/8-0-0-0/manual/offline directory contains PDF format versions of the manuals.

These files are also available from www.lispworks.com/documentation.

PostScript format versions of the manuals are also available for download.

4.9 Uninstalling LispWorks for Linux

A RPM installation of LispWorks can be uninstalled in the usual way, for example by executing this command, as root:

rpm --erase lispworks-8.0

If patches have been added via RPM, then you will first need to uninstall that package, which will be named
lispworks-patches8.0. The same applies to additional RPM packages such as lispworks-sql.

If patches have been added from a tar archive, you will need to remove them by hand.

If you installed LispWorks from the tar archives, simply do:

rm -rf /usr/local/lib/LispWorks

4.10 Upgrading the LispWorks Edition

Some LispWorks features such as Delivery, Common SQL and KnowledgeWorks are not available in all Editions. You can
add these features by upgrading.

After purchasing your upgrade from lisp-sales@lispworks.com, select Help > Register... and enter your new license key.

4.11 Upgrading to 64-bit LispWorks

To upgrade from 32-bit to 64-bit LispWorks, contact:

lisp-sales@lispworks.com

4 Installation on Linux

28

http://www.lispworks.com/documentation
mailto:lisp-sales@lispworks.com
mailto:lisp-sales@lispworks.com

5 Installation on x86/x64 Solaris

This chapter is an installation guide for LispWorks 8.0 (32-bit) for x86/x64 Solaris and LispWorks 8.0 (64-bit) for x86/x64
Solaris. 10 Configuration on Linux, x86/x64 Solaris & FreeBSD discusses post-installation and configuration in detail, but
this chapter presents the instructions necessary to get LispWorks up and running on your system.

5.1 Software and hardware requirements

An overview of system requirements is provided in System requirements on x86/x64 Solaris. The sections that follow
discuss any relevant details.

System requirements on x86/x64 Solaris

Hardware Requirements Software Requirements

For 32-bit LispWorks, 157MB of disk space Solaris 10 (release 5/08 or later), Solaris 11, or
OpenSolaris (release 2009.06 or later)

For 64-bit LispWorks, 171MB of disk space GTK+ 2 (version 2.4 or higher) to run the GTK+ GUI.
Motif 2.1 and Imlib to run the deprecated Motif GUI

Any modern machine is likely to have sufficient RAM to
run LispWorks as distributed.

Firefox or Opera web browser for viewing on-line
documentation

5.1.1 GUI libraries

LispWorks 8.0 for x86/x64 Solaris requires that the X11 release 6 (or higher) is installed. It also requires that either GTK+ or
Motif with Imlib are installed.

The remainder of this section contains the details for each of these distinct GUI options.

5.1.1.1 GTK+

In order for the LispWorks IDE to run "out of the box", GTK+ must be installed on the target machine.

GTK+ 2 (version 2.4 or higher) is required.

5.1.1.2 Motif

Motif 2.1 or higher is required to run LispWorks with the Motif GUI.

The Motif libraries are installed as part of the SUNWmfrun package. It is usually preinstalled on Solaris 10 and is available
for download from Sun for OpenSolaris.

You will also need Imlib (not Imlib2). Imlib version 1.9.13 or later is recommended. Contact Lisp Support if you need this.

29

5.1.2 Disk requirements

32-bit LispWorks requires about 130MB to install.

64-bit LispWorks requires about 140MB to install.

The installation includes about 70MB of documentation.

The documentation includes printable PDF format manuals. You may delete any of these that you do not need. They are
available at www.lispworks.com/documentation in any case, and the same manuals are also available there in PostScript
format.

5.2 Software delivery and installer format

LispWorks 8.0 for x86/x64 Solaris is supplied as a standard package file to download.

There are two variants, 32-bit LispWorks and 64-bit LispWorks, so be sure to download the one for which you have
purchased a license:

5.2.1 Contents of the LispWorks distribution

All of the LispWorks modules are contained in a single package file. Your license key will control which modules can be
used.

The package name for 32-bit LispWorks is LispWorks80-32bit.

The package name for 64-bit LispWorks is LispWorks80-64bit.

5.2.2 Personal Edition distribution

You can install the LispWorks Personal Edition by downloading it from www.lispworks.com/downloads.

The package for the Personal Edition is LispWorksPersonal80-32bit.

5.3 Installing LispWorks for x86/x64 Solaris

5.3.1 Main installation and patches

The LispWorks 8.0 installer contains each of the Editions. Additionally, there may be a patch installer which upgrades
LispWorks to version 8.0.x. You need to complete the main installation before adding patches.

5.3.2 Installing over previous versions

You can install LispWorks 8.0 in the same location as LispWorks 7.1 or previous versions.

5.3.3 Information for Beta testers

Users of LispWorks 8.0 Beta should completely uninstall it (including any patches added to the beta installation) before
installing LispWorks 8.0.

See 5.8 Uninstalling LispWorks for x86/x64 Solaris for instructions.

5 Installation on x86/x64 Solaris

30

http://www.lispworks.com/documentation
http://www.lispworks.com/downloads

5.3.4 Installation directories

32-bit LispWorks is installed by default in /opt/LispWorks/lib/LispWorks and a symbolic link to the executable is
placed in /opt/LispWorks/bin/lispworks-8-0-0-x86-solaris.

64-bit LispWorks is installed by default in /opt/LispWorks/lib/amd64/LispWorks and a symbolic link to the
executable is placed in /opt/LispWorks/bin/lispworks-8-0-0-amd64-solaris.

LispWorks Personal Edition is installed by default in /opt/LispWorks/lib/LispWorksPersonal and a symbolic link to
the executable is placed in /opt/LispWorks/bin/lispworks-personal-8-0-0-x86-solaris.

Note: LispWorks needs to be able find its library at run time and therefore the LispWorks installation should not be moved
around piecemeal. If you simply want to run LispWorks from somewhere more convenient, then consider adding a symbolic
link.

5.3.5 Selecting the correct software package file

The 32-bit LispWorks software package file is called LispWorks80-32bit.

The 64-bit LispWorks software package file is called LispWorks80-64bit.

The Personal Edition software package file is called LispWorksPersonal80-32bit.

Note: the software may be supplied in a compressed format with a .gz extension. Uncompress it using gunzip.

5.3.6 Installing the package file

To install LispWorks, perform the following steps as root:

1. Locate the software package file.

2. Install or upgrade LispWorks in the standard way, for example:

pkgadd -d LispWorks80-32bit all

for 32-bit LispWorks, or:

pkgadd -d LispWorks80-64bit all

for 64-bit LispWorks.

3. The license terms are presented. Enter "yes" if you agree to them.

See 5.5 Running LispWorks for instructions on entering your license serial number and key.

5.3.7 Installing Patches

After completing the main installation of LispWorks, ensure you install the latest patches from the package file available for
download at www.lispworks.com/downloads/patch-selection.html. Patch installation instructions are in the README file
accompanying the patch download.

5 Installation on x86/x64 Solaris

31

http://www.lispworks.com/downloads/patch-selection.html#lws

5.4 LispWorks looks for a license key

If you try to run LispWorks without a valid key, it prints a message reporting that no valid key was found, and exits.

For instructions on entering your license key, see 5.5.1 Entering the license data below.

For more information about license keys, see 10.2 License keys.

5.5 Running LispWorks

Run LispWorks (all variants) from the directory /opt/LispWorks/bin.

The LispWorks executable is named as shown here:

lispworks-personal-8-0-0-x86-solaris Personal Edition

lispworks-8-0-0-x86-solaris 32-bit LispWorks

lispworks-8-0-0-amd64-solaris 64-bit LispWorks

This executable should not be moved without being resaved because it needs to be able to locate the corresponding library
directory on startup.

When you run LispWorks, the splashscreen should appear, followed by the LispWorks Podium and a Listener. See 11.1
Troubleshooting for details if this does not happen.

5.5.1 Entering the license data

When you run LispWorks for the first time, you will need to enter your license details. This should be done as follows (all on
one line):

lispworks-8-0-0-x86-solaris --lwlicenseserial SERIALNUMBER --lwlicensekey LICENSEKEY

where SERIALNUMBER and LICENSEKEY are the strings supplied with LispWorks. A message:

LispWorks license installed successfully.

should be printed and thereafter you can run LispWorks without those command line arguments.

Your license key will be supplied to you in email from Lisp Support or Lisp Sales.

If you have problems with your LispWorks license key, send it to lisp-keys@lispworks.com, showing the complete
output after you enter it.

Note: the LispWorks Personal Edition does not ask you to enter license data.

5.6 Configuring the image

You can now configure your LispWorks image to suit your needs and load modules as necessary. For instructions, see 10
Configuration on Linux, x86/x64 Solaris & FreeBSD.

5 Installation on x86/x64 Solaris

32

5.7 Printable LispWorks documentation

In a default installation, the lib/8-0-0-0/manual/offline directory contains PDF format versions of the manuals.

These files are also available at www.lispworks.com/documentation/.

PostScript format versions of the manuals are also available for download.

5.8 Uninstalling LispWorks for x86/x64 Solaris

To uninstall LispWorks, perform the following steps as root:

1. If patches for LispWorks 8.0 have been installed then you will need to uninstall the patch package, by:

pkgrm -n LispWorksPatches80-32bit

or:

pkgrm -n LispWorksPatches80-64bit

2. Then uninstall the main software package containing LispWorks 8.0 by executing:

pkgrm -n LispWorks80-32bit

or:

pkgrm -n LispWorks80-64bit

5.9 Upgrading the LispWorks Edition

Some LispWorks features such as Delivery, Common SQL and KnowledgeWorks are not available in all Editions. You can
add these features by upgrading.

After purchasing your upgrade from lisp-sales@lispworks.com, select Help > Register... and enter your new license key.

5.10 Upgrading to 64-bit LispWorks

To upgrade from 32-bit to 64-bit LispWorks, contact:

lisp-sales@lispworks.com

5 Installation on x86/x64 Solaris

33

http://www.lispworks.com/documentation/
mailto:lisp-sales@lispworks.com
mailto:lisp-sales@lispworks.com

6 Installation on FreeBSD

This chapter is an installation guide for LispWorks 8.0 (32-bit) for FreeBSD and LispWorks 8.0 (64-bit) for FreeBSD. 10
Configuration on Linux, x86/x64 Solaris & FreeBSD discusses post-installation and configuration in detail, but this
chapter presents the instructions necessary to get LispWorks up and running on your system.

6.1 Software and hardware requirements

An overview of system requirements is provided in System requirements on FreeBSD. The sections that follow discuss any
relevant details.

System requirements on FreeBSD

Hardware Requirements Software Requirements

168MB of disk space for 32-bit LispWorks plus
documentation

FreeBSD 10.x, or later with compat10x
(if you want to run LispWorks on older versions of
FreeBSD, then please contact Lisp Support)

182MB of disk space for 64-bit LispWorks plus
documentation

GTK+ 2 (version 2.4 or higher) to run the GTK+ GUI.
Open Motif 2.3.x and Imlib2 1.4.9 or later to run the
deprecated Motif GUI

Any modern machine is likely to have sufficient RAM to
run LispWorks as distributed.

Firefox or Opera web browser for viewing on-line
documentation

6.1.1 GUI libraries

LispWorks 8.0 for FreeBSD requires that the X11 release 6 (or higher) is installed.

LispWorks 8.0 also requires that either GTK+ or Open Motif with Imlib2 are installed.

The remainder of this section contains the details for each of these distinct GUI options.

6.1.1.1 GTK+

In order for the LispWorks IDE to run "out of the box", GTK+ must be installed on the target machine.

GTK+ 2 (version 2.4 or higher) is required.

6.1.1.2 Motif

Open Motif version 2.3 is required to run LispWorks with the Motif GUI.

Install Open Motif 2.3.x from the FreeBSD distribution or ports tree. Your systems administrator may be able to help if you
do not know how to do this.

You will also need Imlib2 version 1.4.9 or later. Install this from the FreeBSD distribution or ports tree.

34

6.1.2 Disk requirements

32-bit LispWorks requires about 160MB to install, and 64-bit LispWorks needs 180MB. This includes 110MB of
documentation.

The documentation includes printable PDF format manuals. You may delete any of these that you do not need. They are
available at www.lispworks.com/documentation in any case, and the same manuals are also available there in PostScript
format.

6.2 License agreement

Before installing, you must read and agree to the license terms.

To do this download the license script from the link we sent to you.

Now run:

sh lwf-license.sh

or, if you are installing the Personal Edition:

sh lwfper-license.sh

Note: You must run this script as the same user that later performs the installation.

Enter "yes" if you agree to the license terms.

6.3 Software delivery and installer format

LispWorks 8.0 for FreeBSD is supplied as a standard package file, in pkg(8) format, to download.

6.3.1 Contents of the LispWorks distribution

All of the LispWorks modules are contained in a single package file. Your license key will control which modules can be
used.

The package name for 32-bit LispWorks is lispworks80-32bit.

The package name for 64-bit LispWorks is lispworks80-64bit.

6.3.2 Personal Edition distribution

You can install the LispWorks Personal Edition by downloading it from www.lispworks.com/downloads.

The package name for the Personal Edition is lispworks80-personal.

6.4 Installing LispWorks for FreeBSD

6.4.1 Main installation and patches

The LispWorks 8.0 installer contains each of the Editions. Additionally, there may be a patch installer which upgrades
LispWorks to version 8.0.x. You need to complete the main installation before adding patches.

6 Installation on FreeBSD

35

http://www.lispworks.com/documentation
http://www.lispworks.com/downloads

6.4.2 Installing over previous versions

You can install LispWorks 8.0 in the same location as LispWorks 7.1 or previous versions.

6.4.3 Information for Beta testers

Users of LispWorks 8.0 Beta should completely uninstall it (including any patches added to the beta installation) before
installing LispWorks 8.0.

See 6.9 Uninstalling LispWorks for FreeBSD for instructions.

6.4.4 Installation directories

By default LispWorks is installed in /usr/local/lib/LispWorks. A symbolic link to the 32-bit executable is placed in
/usr/local/bin/lispworks-8-0-0-x86-freebsd. A symbolic link to the 64-bit executable is placed in
/usr/bin/lispworks-8-0-0-amd64-freebsd.

Note: the Personal Edition by default installs in /usr/local/lib/LispWorksPersonal. Do not attempt to to install
different editions in the same location, since some filenames coincide and uninstallation may break.

6.4.5 Selecting the correct software package file

The 32-bit LispWorks software package file is called:

lispworks80-32bit-8.0.txz

The 64-bit LispWorks software package file is called:

lispworks80-64bit-8.0.txz

The Personal Edition software package file is called:

lispworks80-personal-8.0.txz

6.4.6 Installing LispWorks for FreeBSD

To install LispWorks, perform the following steps as root:

1. Follow the instructions under 6.2 License agreement.

2. Locate the software package file.

3. Install or upgrade LispWorks in the standard way, for example:

pkg add lispworks80-32bit-8.0.txz

This command installs LispWorks in /usr/local/lib/LispWorks.

Note: LispWorks needs to be able find its library at run time and therefore the LispWorks installation should not be moved
around piecemeal. If you simply want to run LispWorks from somewhere more convenient, then consider adding a symbolic
link.

See 6.6 Running LispWorks for instructions on entering your license details.

6 Installation on FreeBSD

36

6.4.7 Installing Patches

After completing the main installation of LispWorks, ensure you install the latest patches from the package file available for
download at www.lispworks.com/downloads/patch-selection.html. Patch installation instructions are in the README file
accompanying the patch download.

6.5 LispWorks looks for a license key

If you try to run LispWorks without a valid key, it prints a message reporting that no valid key was found, and exits.

For instructions on entering your license key, see 6.6.1 Entering the license data below.

For more information about license keys, see 10.2 License keys.

6.6 Running LispWorks

The LispWorks executable is located in the /usr/local/lib/LispWorks or /usr/local/lib/LispWorksPersonal
directory of the installation (assuming the default prefix of /usr/local) and should not be moved without being resaved
because it needs to be able to locate the corresponding library directory on startup. There is also a symbolic link from the
/usr/local/bin directory.

The LispWorks executable is named as shown here:.

lispworks-personal-8-0-0-x86-freebsd Personal Edition

lispworks-8-0-0-x86-freebsd 32-bit LispWorks

lispworks-8-0-0-amd64-freebsd 64-bit LispWorks

When you run LispWorks, the splashscreen should appear, followed by the LispWorks Podium and a Listener. See 11.1
Troubleshooting for details if this does not happen.

6.6.1 Entering the license data

When you run LispWorks for the first time, you will need to enter your license details. This should be done as follows (all on
one line):

lispworks-8-0-0-x86-freebsd --lwlicenseserial SERIALNUMBER --lwlicensekey LICENSEKEY

where SERIALNUMBER and LICENSEKEY are the strings supplied with LispWorks. A message:

LispWorks license installed successfully.

should be printed and thereafter you can run LispWorks without those command line arguments.

Your license key will be supplied to you in email from Lisp Support or Lisp Sales.

If you have problems with your LispWorks license key, send it to lisp-keys@lispworks.com, showing the complete
output after you enter it.

Note: the LispWorks Personal Edition does not ask you to enter license data.

6 Installation on FreeBSD

37

http://www.lispworks.com/downloads/patch-selection.html#lwf

6.7 Configuring the image

You can now configure your LispWorks image to suit your needs and load modules as necessary. For instructions, see 10
Configuration on Linux, x86/x64 Solaris & FreeBSD.

6.8 Printable LispWorks documentation

In a default installation, the lib/8-0-0-0/manual/offline directory contains PDF format versions of the manuals.

These files are also available at www.lispworks.com/documentation/.

PostScript format versions of the manuals are also available for download.

6.9 Uninstalling LispWorks for FreeBSD

To uninstall LispWorks, perform the following steps as root:

1. If patches have been installed, then you will first need to uninstall that package:

pkg delete lispworks80-patches-32bit

or:

pkg delete lispworks80-patches-64bit

2. Then uninstall the main software package containing LispWorks 8.0:

pkg delete lispworks80-32bit

or:

pkg delete lispworks80-64bit

6.10 Upgrading the LispWorks Edition

Some LispWorks features such as Delivery, Common SQL and KnowledgeWorks are not available in all Editions. You can
add these features by upgrading.

After purchasing your upgrade from lisp-sales@lispworks.com, select Help > Register... and enter your new license key.

6.11 Upgrading to 64-bit LispWorks

To upgrade from 32-bit to 64-bit LispWorks, contact:

lisp-sales@lispworks.com

6 Installation on FreeBSD

38

http://www.lispworks.com/documentation/
mailto:lisp-sales@lispworks.com
mailto:lisp-sales@lispworks.com

7 Installation of LispWorks for Mobile
Runtime

This chapter describes installation of LispWorks 8.0 for Android Runtime and LispWorks 8.0 for iOS Runtime.

7.1 Installing LispWorks for Android Runtime

We will send you instructions when you get a license for LispWorks for Android Runtime.

Note: Normally you would first develop and debug your program using LispWorks on a desktop platform, for example
LispWorks for Linux. You will then build a runtime library using LispWorks for Android Runtime and incorporate it in an
Android project (see "Android interface" in the LispWorks® User Guide and Reference Manual) before testing it on an
Android device.

7.2 Installing LispWorks for iOS Runtime

We will send you instructions when you get a license for LispWorks for iOS Runtime.

Note: Normally you would first develop and debug your program using LispWorks for Macintosh. You will then build a
runtime library using LispWorks for iOS Runtime and incorporate it in an Xcode project (see "iOS interface" in the
LispWorks® User Guide and Reference Manual) before testing it on an iOS device or the iOS Simulator on macOS.

39

8 Configuration on macOS

8.1 Introduction

This chapter explains how to get LispWorks up and running, having already installed the files into an appropriate folder. If
you have not done this, refer to 2 Installation on macOS.

It is more useful to have an image customized to suit your particular environment and work needs. You can do this—setting
useful pathnames, loading libraries, and so on—and then save the image to create another that will be configured as you
require whenever you start it up.

This chapter covers the following topics:

• 8.2 License keys

• 8.3 Configuring your LispWorks installation

• 8.4 Saving and testing the configured image

• 8.5 Initializing LispWorks

• 8.6 Loading CLIM 2.0

• 8.7.1 Loading Common SQL

• 8.8 Common Prolog and KnowledgeWorks

8.2 License keys

LispWorks is protected against unauthorized copying and use by a simple key mechanism. LispWorks will not start up until it
finds a file containing a valid key.

The image looks for a file lwlicense in the following places, in order:

• In the current working directory (folder).

• In the directory containing the LispWorks executable.

• In the Library/lib/8-0-0-0/config subdirectory of the LispWorks installation directory.

When the file lwlicense is found, it must contain a valid key for the current machine. If you try to run LispWorks without a
valid key, a message will be printed to the console reporting that no valid key was found, and LispWorks will exit.

8.3 Configuring your LispWorks installation

Once you have successfully installed and run LispWorks, you can configure it to suit your local conditions and needs,
producing an image that is set up the way you want it to be every time you start it up.

40

8.3.1 Levels of configuration

There are two levels of configuration:

• Configuring and resaving the image, thereby creating a new image that is exactly as you want it at startup.

• Configuring certain aspects of LispWorks as it starts up.

These two levels are available for good reason: while some configuration details may be of use to all LispWorks users on
your machine (for instance, having a particular library built into the image where before it was only load-on-demand) others
may be a matter of personal preference (for instance how many editor windows are allowed on-screen, or the colors of tool
windows).

In the first case, you use edited copies of files in the config folder to achieve your aims.

In the second case, you make entries in your initialization file. This is a file read every time LispWorks starts up, and it can
contain any valid Common Lisp code. (Most of the configurable settings in LispWorks can be controlled from Common
Lisp.) By default the file is called .lispworks and is in your home directory. Your initialization file can be changed via
LispWorks > Preferences... from the LispWorks IDE.

8.3.2 Configuring images for the different GUIs

If you have installed both the LispWorks images, for native macOS and for GTK+, you will want to configure two images.

If necessary your Lisp configuration and initialization files can run code for one image or the other by conditionalization on
the feature :cocoa. The native macOS LispWorks image has :cocoa on *features* while the GTK+ LispWorks image
does not, and has :gtk.

8.3.3 Configuration files available

There are four sample configuration files in LispWorks library containing settings you can change in order to configure
images:

• config/configure.lisp

• config/siteinit.lisp

• private-patches/load.lisp

• config/a-dot-lispworks.lisp

config/configure.lisp is preloaded into the image before it is shipped. It contains settings governing fundamental
issues like where to find the LispWorks run time folder structure, and so on. You can override these settings in your saved
image or in your initialization file. You should read through configure.lisp .

config/siteinit.lisp contains any forms that are appropriate to the whole site but which are to be loaded afresh each
time the image is started. The sample siteinit.lisp file distributed with LispWorks contains only the form:

(load-all-patches)

On startup, the image loads siteinit.lisp and your initialization file, in that order. The command line options
-siteinit and -init can be used to specify loading of different files or to suppress them altogether. See the example in
8.4 Saving and testing the configured image, below, and 8.5 Initializing LispWorks for further details.

private-patches/load.lisp is loaded by load-all-patches, and should contain forms to load any private (named)
patches that Lisp Support might send you.

config/a-dot-lispworks.lisp is a sample personal initialization file. You might like to copy this into a file

8 Configuration on macOS

41

http://www.lispworks.com/documentation/HyperSpec/Body/v_featur.htm

~/.lispworks in your home directory and edit it to create your own initialization file.

Both configure.lisp and a-dot-lispworks.lisp are preloaded into the image before it is shipped, so if you are happy
with the settings in these files, you need not change them. See the example in 8.4 Saving and testing the configured image,
below, and 8.5 Initializing LispWorks for further details.

8.4 Saving and testing the configured image

It is not usually necessary to save an image merely to preload patches and your configuration, because these load very quickly
on modern machines.

However, if you want to save an image to reduce startup time for a complex configuration (such as large application code) or
to save a non-windowing image, then proceed as described in this section.

8.4.1 Create a configuration file

Make a copy of config/configure.lisp called /tmp/my-configuration.lisp. When you have made the desired
changes in my-configuration.lisp you can save a new LispWorks image as described in 8.4.2 Create and use a save-
image script.

8.4.2 Create and use a save-image script

1. Create a configuration and saving script /tmp/save-config.lisp containing:

(in-package "CL-USER")
(load-all-patches)
(load "/tmp/my-configuration.lisp")
#+:cocoa
(save-image-with-bundle "/Applications/My LispWorks/LW")
#-:cocoa
(save-image "my-lispworks-gtk")

2. Change directory to the directory containing the LispWorks image to configure. For the native macOS/Cocoa LispWorks
image:

% cd "/Applications/LispWorks 8.0 (64-bit)/LispWorks (64-bit).app/Contents/MacOS"

or for the X11/GTK+ LispWorks image:

% cd "/Applications/LispWorks 8.0 (64-bit)"

3. Start the supplied image passing the configuration script the build file. For example enter one of the following
commands (on one line of input):

% ./lispworks-8-0-0-macos64-universal -build /tmp/save-config.lisp

or:

% ./lispworks-8-0-0-macos64-universal-gtk -build /tmp/save-config.lisp

If the image will not run at this stage, it is probably not finding a valid key.

Saving the image takes some time.

You can now use the new My LispWorks/LW.app application bundle or the my-lispworks-gtk image by starting it just

8 Configuration on macOS

42

as you did the supplied LispWorks. The supplied LispWorks is not required after the configuration process has been
successfully completed.

Do not try to save a new image over an image that is currently running. Instead, save an image under a unique name, and
then, if necessary, replace the new image with the old one after the call to save-image has returned.

8.4.3 What to do if no image is saved

If no new image is saved, then there is some error while loading the build script. To see the error message, run the command
with output redirected to a file, for example:

% ./lispworks-8-0-0-macos64-universal -build /tmp/save-config.lisp > /tmp/output.txt

Look in the file /tmp/output.txt.

8.4.4 Testing the newly saved image

You should now test the new LispWorks image. To test a configured LispWorks, do the following:

1. If you are using an X11/GTK+ image, change directory to /tmp.

2. When using X11, verify that your DISPLAY environment variable is correctly set and that your machine has permission
to connect to the display.

3. Start up the new image, by entering the path of the X11/GTK+ executable or by double-clicking on the LispWorks icon
in the macOS Finder.

The window-based environment should now initialize—during initialization a window displaying a copyright notice will
appear on the screen.

You may wish to work through some of the examples in the LispWorks® User Guide and Reference Manual, to further
check that the configured image has been successfully built.

4. Test the load-on-demand system. In the Listener, type:

CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load the inspector from the load-on-demand
Library directory.

You can quit the inspector by typing :q.

8.4.5 Saving a non-windowing image

For some purposes such as scripting it is convenient to have a LispWorks image that does not start the graphical programming
environment.

To save an image which does not automatically start the GUI, use a script as described in 8.4.2 Create and use a save-image
script but pass the :environment argument to save-image. For example:

(save-image "my-tty-lispworks" :environment nil)

8 Configuration on macOS

43

8.5 Initializing LispWorks

When LispWorks starts up, it looks for an initialization file to load. The name of the file is held in *init-file-name*, and
is ~/.lispworks by default. The '~' denotes your home directory, indicated as Home in the Finder. The initialization file
may contain any valid Lisp code.

You can load a different initialization file using the option -init in the command line, for example:

% "/Applications/LispWorks 8.0 (64-bit)/LispWorks (64-bit).app/Contents/MacOS/lispworks-8-0-0-
macos64-universal" -init my-lisp-init

(where % denotes the Unix shell prompt) would make LispWorks load my-lisp-init.lisp as the initialization file instead
of that named by *init-file-name*.

The loading of the siteinit file (located by default at config/siteinit.lisp) is similarly controlled by the -siteinit
command line argument or *site-init-file-name*.

You can start an image without loading any personal or site initialization file by passing a hyphen to the -init and
-siteinit arguments instead of a filename:

% "/Applications/LispWorks 8.0 (64-bit)/LispWorks (64-bit).app/Contents/MacOS/lispworks-8-0-0-
macos64-universal" -init - -siteinit -

This starts the LispWorks image without loading any initialization file. It is often useful to start the image in this way when
trying to repeat a suspected bug. You should always start the image without the default initialization files if you are intending
to resave it.

In all cases, if the filename is present, and is not a hyphen, LispWorks tries to load it as a normal file by calling load. If the
load fails, LispWorks prints an error report.

8.6 Loading CLIM 2.0

CLIM 2.0 is supported on the X11/Motif GUI.

Load CLIM 2.0 into the "LispWorks for X11 IDE" image with:

(require "clim")

and the CLIM demos with:

(require "clim-demo")

A configuration file to save an image with CLIM 2.0 preloaded would look something like this:

(in-package "CL-USER")
(load-all-patches)
(require "clim")
(save-image "/path/to/clim-lispworks")

To run the demo software, enter the following in a listener:

(require "clim-demo")
(clim-demo:start-demo)

Note: CLIM is not supported by the LispWorks native macOS image and cannot be loaded into it.

8 Configuration on macOS

44

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

Note: CLIM is not supported under GTK+.

Note: Do not attempt to load CLIM via the clim loader files in the clim distribution. This will cause CLIM patches to not be
loaded. Use (require "clim").

8.7 The Common SQL interface

The Common SQL interface requires ODBC or one of the supported database types listed in section "Supported Databases"
of the LispWorks® User Guide and Reference Manual.

8.7.1 Loading Common SQL

To load Common SQL enter, for example:

(require "odbc")

or:

(require "oracle")

Initialize the database type at run time, for example:

(sql:initialize-database-type :database-type :odbc)

or:

(sql:initialize-database-type :database-type :oracle)

See the LispWorks® User Guide and Reference Manual for further information.

8.7.2 Supported databases

Common SQL on macOS has been tested with DBMS Postgres 7.2.1, MySQL 5.0.18, Oracle Instant Client 10.2.0.4, ODBC
driver PSQLODBC development code, and IODBC as supplied with macOS.

8.7.3 Special considerations when using Common SQL

8.7.3.1 Location of .odbc.ini

The current release of macOS comes with an ODBC driver manager from IODBC, including a GUI interface. IODBC
attempts to put the file .odbc.ini file in a non-standard location. This causes problems at least with the PSQLODBC driver
for PostgreSQL, because PSQLODBC expects to find .odbc.ini in either the users's home directory or the current
directory. There may be similar problems with other drivers. Therefore the file .odbc.ini should be placed in its standard
place ~/.odbc.ini. The IODBC driver manager looks there too, so it will work.

8.7.3.2 Errors using PSQLODBC

The PSQLODBC driver, when it does not find any of the Servername, Database or Username in .odbc.ini, returns the
wrong error code. This tells the calling function that the user cancelled the login dialog.

Therefore, if Common SQL reports that the user cancelled when trying to connect, you need to check that you have got

8 Configuration on macOS

45

Servername, Database and Username, with the correct case, in the section for the datasource in the .odbc.ini file.

Note: Username may alternatively be given in the connect string.

8.7.3.3 psqlODBC version

Common SQL was tested with the development version of psqlODBC (that is downloaded from CVS), with the version
changed to 3. Contact Lisp Support if you need help using Common SQL with psqlODBC.

8.7.3.4 Locating the Oracle, MySQL or PostgreSQL client libraries

For database-type :oracle, :mysql and :postgresql, if the client library is not installed in a standard place, its directory
must be added to the environment variable DYLD_LIBRARY_PATH (see the OS manual entry for dyld).

8.8 Common Prolog and KnowledgeWorks

Common Prolog is bundled with KnowledgeWorks rather than with LispWorks. KnowledgeWorks is loaded by using:

(require "kw")

See the KnowledgeWorks and Prolog User Guide for further instructions.

8 Configuration on macOS

46

9 Configuration on Windows

9.1 Introduction

This chapter explains how to get LispWorks up and running, having already installed it If you have not done this, refer to 3
Installation on Windows.

It is more useful to have an image customized to suit your particular environment and work needs. You can do this—setting
useful pathnames, loading libraries, and so on—and then save the image to create another that will be configured as you
require whenever you start it up.

This chapter covers the following topics:

• 9.2 License keys

• 9.3 Configuring your LispWorks installation

• 9.4 Saving and testing the configured image

• 9.5 Initializing LispWorks

• 9.6 Loading CLIM 2.0

• 9.7 The Common SQL interface

• 9.8 Common Prolog and KnowledgeWorks

9.2 License keys

LispWorks is protected against unauthorized copying and use by a simple key protection mechanism. LispWorks will not
start up until it finds a valid key.

The image looks for a valid license key in the Windows registry.

If you try to run LispWorks without a valid key, it will prompt for a serial number and key.

9.3 Configuring your LispWorks installation

Once you have successfully installed and run LispWorks, you can configure it to suit your local conditions and needs,
producing an image that is set up the way you want it to be every time you start it up.

9.3.1 Levels of configuration

There are two levels of configuration: configuring and resaving the image, thereby creating a new image that is exactly as
you want it at startup, and configuring certain aspects of LispWorks as it starts up.

These two levels are available for good reason: while some configuration details may be of use to all LispWorks users on
your site (for instance, having a particular library built in to the image where before it was only load-on-demand) others may
be a matter of personal preference (for instance how many editor windows are allowed on-screen, or the colors of tool
windows).

47

In the first case, you use edited copies of files in the config folder to achieve your aims.

In the second case, you make entries in your initialization file. This is a file read every time LispWorks starts up, and it can
contain any valid Common Lisp code. (Most of the configurable settings in LispWorks can be controlled from Common
Lisp.) Your initialization file can be changed via Tools > Preferences... in the LispWorks IDE.

9.3.2 Configuration files available

There are four sample configuration files in LispWorks library containing settings you can change in order to configure
images:

• config/configure.lisp

• config/siteinit.lisp

• private-patches/load.lisp

• config/a-dot-lispworks.lisp

config/configure.lisp is preloaded into the image before it is shipped. It contains settings governing fundamental
issues like where to find the LispWorks run time folder structure, and so on. You can override these settings in your saved
image or in your initialization file. You should read through configure.lisp .

config/siteinit.lisp contains any forms that are appropriate to the whole site but which are to be loaded afresh each
time the image is started. The sample siteinit.lisp file distributed with LispWorks contains only the form:

(load-all-patches)

On startup, the image loads siteinit.lisp and your initialization file, in that order. The command line options
-siteinit and -init can be used to specify loading of different files or to suppress them altogether. See the example in
9.4 Saving and testing the configured image, below, and 9.5 Initializing LispWorks for further details.

private-patches/load.lisp is loaded by load-all-patches, and should contain forms to load any private (named)
patches that Lisp Support might send you.

config/a-dot-lispworks.lisp is a sample personal initialization file. You might like to copy this somewhere
convenient and edit it to create your own initialization file.

Both configure.lisp and a-dot-lispworks.lisp are preloaded into the image before it is shipped, so if you are happy
with the settings in these files, you need not change them. See the example in 9.4 Saving and testing the configured image,
below, and 9.5 Initializing LispWorks for further details.

9.4 Saving and testing the configured image

It is not usually necessary to save an image merely to preload patches and your configuration, because these load very quickly
on modern machines.

However, if you want to save an image to reduce startup time for a complex configuration (such as large application code) or
to save a non-windowing image, then proceed as described in this section.

9.4.1 Create a configuration file

Make a copy of config\configure.lisp called C:\temp\my-configuration.lisp. When you have made any
desired changes in my-configuration.lisp you can save a new LispWorks image, as described in 9.4.2 Create and use
a save-image script.

9 Configuration on Windows

48

9.4.2 Create and use a save-image script

1. Create a configuration and saving script C:\temp\save-config.lisp, containing:

(in-package "CL-USER")
(load-all-patches)
(load "C:/temp/my-configuration.lisp")
(save-image "my-lispworks")

2. Change directory to the LispWorks installation directory, for example:

C:

cd %PROGRAMFILES%\LispWorks

3. Start the supplied image using the configuration script as the build file. For example:

C:\Program Files (x86)\LispWorks>lispworks-8-0-0-x86-win32.exe -build C:\temp\save-config.lisp

If the image will not run at this stage, it is probably not finding a valid key.

Saving the image takes some time.

You can now use the new my-lispworks.exe image from the Windows Explorer, or you may choose to add a shortcut. The
supplied image is not required after the configuration process has been successfully completed.

Do not try to save a new image over an image that is currently running. Instead, save an image under a unique name, and
then, if necessary, replace the new image with the old one after the call to save-image has returned.

9.4.3 What to do if no image is saved

If the LispWorks splash screen appears briefly but no image is saved, then there is some error while loading the build script.
To see the error message, run the command with output redirected to a file, for example:

C:\Program Files (x86)\LispWorks>lispworks-8-0-0-x86-win32.exe -build C:\temp\save-config.lisp >
C:\temp\output.txt

Look in the file c:\temp\output.txt.

9.4.4 Testing the newly saved image

You should now test the new LispWorks image. To test a configured version of LispWorks, do the following:

1. Start up the new image.

The window-based environment should now initialize—during initialization a window displaying a copyright notice will
appear on the screen.

You may wish to work through some of the examples in the LispWorks® User Guide and Reference Manual, to further
check that the configured image has been successfully built.

2. Test the load-on-demand system. In the Listener, type:

CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load the inspector from the load-on-demand

9 Configuration on Windows

49

directory.

You can quit the inspector by typing :q.

9.4.5 Saving a non-windowing image

For some purposes such as scripting it is convenient to have a LispWorks image that does not start the graphical programming
environment.

To save an image which does not automatically start the GUI, use a script as described in 9.4.2 Create and use a save-image
script but pass the :environment argument to save-image. For example:

(save-image "my-tty-lispworks" :environment nil)

9.5 Initializing LispWorks

When LispWorks starts up, it looks for an initialization file to load. The name of the file is held in *init-file-name*, and
is ~/.lispworks by default. You can use cl:parse-namestring to see the expansion of this path. The file may contain
any valid Lisp code.

You can load a different initialization file using the option -init in the command line, for example (all on one line):

C:\Program Files\LispWorks>lispworks-8-0-0-x86-win32.exe -init my-lisp-init

would make LispWorks load my-lisp-init.lisp as the initialization file instead of that named by *init-file-name*.

The loading of the siteinit file (located by default at config\siteinit.lisp) is similarly controlled by the -siteinit
command line argument or
site-init-file-name.

You can start an image without loading any personal or site initialization file by passing a hyphen to the -init and
-siteinit arguments instead of a filename:

C:\Program Files\LispWorks>lispworks-8-0-0-x86-win32.exe -init - -siteinit -

This starts the LispWorks image without loading any initialization file. It is often useful to start the image in this way when
trying to repeat a suspected bug. You should always start the image without the default initialization files if you are intending
to resave it.

In all cases, if the filename is present, and is not a hyphen, LispWorks tries to load it as a normal file by calling load. If the
load fails, LispWorks prints an error report.

9.6 Loading CLIM 2.0

Load CLIM 2.0 into LispWorks 8.0 with:

(require "clim")

and the CLIM demos with:

(require "clim-demo")

rather than the clim loader files in the clim distribution (which were the entry points in LispWorks 3).

9 Configuration on Windows

50

http://www.lispworks.com/documentation/HyperSpec/Body/f_pars_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

A configuration file to save an image with CLIM 2.0 preloaded would look something like this:

(in-package "CL-USER")
(load-all-patches)
(require "clim")
(save-image "C:\\path\\to\\clim-lispworks")

9.6.1 Running the CLIM demos

To run the demo software, enter the following in a listener:

(require "clim-demo")
(clim-demo:start-demo)

This displays a menu listing all the demos. Choose the demo you wish to see. More information about the demos is in section
"The CLIM demos" of the Common Lisp Interface Manager 2.0 User's Guide.

9.7 The Common SQL interface

The Common SQL interface requires ODBC or one of the supported database types listed in section "Supported databases" of
the LispWorks® User Guide and Reference Manual.

9.7.1 Loading the Common SQL interface

To load the Common SQL interface to use ODBC enter:

(require "odbc")

and at run time call:

(sql:initialize-database-type :database-type :odbc)

and then you can connect to any installed ODBC datasource.

To load the Common SQL interface to use MySQL, enter:

(require "mysql")

and at run time call:

(sql:initialize-database-type :database-type :mysql)

See the LispWorks® User Guide and Reference Manual for further information.

9.8 Common Prolog and KnowledgeWorks

Common Prolog is bundled with KnowledgeWorks rather than with LispWorks. KnowledgeWorks is loaded by using:

(require "kw")

See the KnowledgeWorks and Prolog User Guide for further instructions.

9 Configuration on Windows

51

9.9 Runtime library requirement on Windows

LispWorks for Windows requires the Microsoft Visual Studio runtime library msvcr80.dll. The LispWorks installer
installs this DLL if it is not present.

Applications you build with LispWorks for Windows also require this DLL, so you must ensure it is available on target
machines.

9 Configuration on Windows

52

10 Configuration on Linux, x86/x64 Solaris
& FreeBSD

10.1 Introduction

This chapter explains how to get LispWorks up and running on Linux, x86/x64 Solaris or FreeBSD, having already installed
it. If you have not done this, refer to 4 Installation on Linux, 5 Installation on x86/x64 Solaris, or 6 Installation on
FreeBSD.

It is more useful to have an image customized to suit your particular environment and work needs. You can do this—setting
useful pathnames, loading libraries, and so on—and then save the image to create another that will be configured as you
require whenever you start it up.

This chapter covers the following topics:

• 10.2 License keys

• 10.3 Configuring your LispWorks installation

• 10.4 Saving and testing the configured image

• 10.5 Initializing LispWorks

• 10.6 Loading CLIM 2.0

• 10.7 The Common SQL interface

• 10.8 Common Prolog and KnowledgeWorks

10.2 License keys

LispWorks is protected against unauthorized copying and use by a simple key protection mechanism. LispWorks will not
start up until it finds a file containing a valid key.

The image looks for a file lwlicense in the following places, in order:

• In the current working directory.

• In the directory containing the LispWorks executable.

• In the lib/8-0-0-0/config subdirectory of the LispWorks installation directory.

When the file lwlicense is found, it must contain a valid key for the current machine. If you try to run LispWorks without a
valid key, a message will be printed reporting that no valid key was found, and LispWorks will exit.

53

10.3 Configuring your LispWorks installation

Once you have successfully installed and run LispWorks, you can configure it to suit your local conditions and needs,
producing an image that is set up the way you want it to be every time you start it up.

10.3.1 Levels of configuration

There are two levels of configuration: configuring and resaving the image, thereby creating a new image that is exactly as
you want it at startup, and configuring certain aspects of LispWorks as it starts up.

These two levels are available for good reason: while some configuration details may be of use to all LispWorks users on
your site (for instance, having a particular library built in to the image where before it was only load-on-demand) others may
be a matter of personal preference (for instance how many editor windows are allowed on-screen, or the colors of tool
windows).

In the first case, you use edited copies of files in the config directory to achieve your aims.

In the second case, you make entries in your initialization file. This is a file read every time LispWorks starts up, and it can
contain any valid Common Lisp code. (Most of the configurable settings in LispWorks can be controlled from Common
Lisp.) By default the file is called .lispworks and is in your home directory. Your initialization file can be changed via
Tools > Preferences... in the LispWorks IDE.

10.3.2 Configuration files available

There are four sample configuration files in LispWorks library containing settings you can change in order to configure
images:

• config/configure.lisp

• config/siteinit.lisp

• private-patches/load.lisp

• config/a-dot-lispworks.lisp

config/configure.lisp is preloaded into the image before it is shipped. It contains settings governing fundamental
issues like where to find the LispWorks run time folder structure, and so on. You can override these settings in your saved
image or in your initialization file. You should read through configure.lisp .

config/siteinit.lisp contains any forms that are appropriate to the whole site but which are to be loaded afresh each
time the image is started. The sample siteinit.lisp file distributed with LispWorks contains only the form:

(load-all-patches)

On startup, the image loads siteinit.lisp and your initialization file, in that order. The command line options
-siteinit and -init can be used to specify loading of different files or to suppress them altogether. See the example in
10.4 Saving and testing the configured image, below, and 10.5 Initializing LispWorks for further details.

private-patches/load.lisp is loaded by load-all-patches, and should contain forms to load any private (named)
patches that Lisp Support might send you.

config/a-dot-lispworks.lisp is a sample personal initialization file. You might like to copy this into a file
~/.lispworks in your home directory and edit it to create your own initialization file.

Both configure.lisp and a-dot-lispworks.lisp are preloaded into the image before it is shipped, so if you are happy
with the settings in these files, you need not change them. See the example in 10.4 Saving and testing the configured
image, below, and 10.5 Initializing LispWorks for further details.

10 Configuration on Linux, x86/x64 Solaris & FreeBSD

54

10.4 Saving and testing the configured image

It is not usually necessary to save an image merely to preload patches and your configuration, because these load very quickly
on modern machines.

However, if you want to save an image to reduce startup time for a complex configuration (such as large application code) or
to save a non-windowing image, then proceed as described in this section.

10.4.1 Create a configuration file

Make a copy of config/configure.lisp called /tmp/my-configuration.lisp. When you have made any desired
changes in my-configuration.lisp you can save a new LispWorks image, as described in 10.4.2 Create and use a save-
image script.

10.4.2 Create and use a save-image script

1. Create a configuration and saving script /tmp/save-config.lisp, containing:

(in-package "CL-USER")
(load-all-patches)
(load "/tmp/my-configuration.lisp")
(save-image "my-lispworks")

2. Change directory to the LispWorks installation directory, for example:

% cd /usr/local/lib/LispWorks

3. Start the supplied image using the configuration script as the build file. For example:

% lispworks-8-0-0-x86-linux -build /tmp/save-config.lisp

If the image will not run at this stage, it is probably not finding a valid key.

Saving the image takes some time.

You can now use the new my-lispworks image by starting it just as you did the supplied image. The supplied image is not
required after the configuration process has been successfully completed.

Do not try to save a new image over an image that is currently running. Instead, save an image under a unique name, and
then, if necessary, replace the new image with the old one after the call to save-image has returned.

10.4.3 Testing the newly saved image

You should now test the new LispWorks image. To test a configured version of LispWorks, do the following:

1. Change directory to /tmp.

2. Verify that your DISPLAY environment variable is correctly set and that your machine has permission to connect to the
display.

3. Start up the new image.

The window-based environment should now initialize—during initialization a window displaying a copyright notice will
appear on the screen.

You may wish to work through some of the examples in the LispWorks® User Guide and Reference Manual, to further

10 Configuration on Linux, x86/x64 Solaris & FreeBSD

55

check that the configured image has been successfully built.

4. Test the load-on-demand system. In the Listener, type:

CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load the inspector from the load-on-demand
directory.

You can quit the inspector by typing :q.

10.4.4 Saving a non-windowing image

For some purposes such as scripting it is convenient to have a LispWorks image that does not start the graphical programming
environment.

To save an image which does not automatically start the GUI, use a script as described in 10.4.2 Create and use a save-
image script but pass the :environment argument to save-image. For example:

(save-image "my-tty-lispworks" :environment nil)

10.5 Initializing LispWorks

When LispWorks starts up, it looks for an initialization file to load. The name of the file is held in *init-file-name*, and
is ~/.lispworks by default. ~ denotes your home directory. The file may contain any valid Lisp code.

You can load a different initialization file using the option -init in the command line, for example:

% lispworks-8-0-0-x86-linux -init my-lisp-init

would make LispWorks load my-lisp-init.lisp as the initialization file instead of that named by *init-file-name*.

The loading of the siteinit file (located by default at config/siteinit.lisp) is similarly controlled by the -siteinit
command line argument or
site-init-file-name.

You can start an image without loading any personal or site initialization file by passing a hyphen to the -init and
-siteinit arguments instead of a filename:

% lispworks-8-0-0-x86-linux -init - -siteinit -

This starts the LispWorks image without loading any initialization file. It is often useful to start the image in this way when
trying to repeat a suspected bug. You should always start the image without the default initialization files if you are intending
to resave it.

In all cases, if the filename is present, and is not a hyphen, LispWorks tries to load it as a normal file by calling load. If the
load fails, LispWorks prints an error report.

10.6 Loading CLIM 2.0

Load CLIM 2.0 into LispWorks 8.0 with:

(require "clim")

10 Configuration on Linux, x86/x64 Solaris & FreeBSD

56

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

and the CLIM demos with:

(require "clim-demo")

rather than the clim loader files in the clim distribution (which were the entry points in LispWorks 3).

A configuration file to save an image with CLIM 2.0 preloaded would look something like this:

(in-package "CL-USER")
(load-all-patches)
(require "clim")
(save-image "/path/to/clim-lispworks")

10.6.1 Running the CLIM demos

To run the demo software, enter the following in a listener:

(require "clim-demo")
(clim-demo:start-demo)

This displays a menu listing all the demos. Choose the demo you wish to see. More information about the demos is in section
"The CLIM demos" of the Common Lisp Interface Manager 2.0 User's Guide.

10.7 The Common SQL interface

The Common SQL interface requires ODBC or one of the supported database types listed in section "Supported databases" of
the LispWorks® User Guide and Reference Manual.

10.7.1 Loading the Common SQL interface

To load the Common SQL interface to use ODBC enter:

(require "odbc")

and at run time call:

(sql:initialize-database-type :database-type :odbc)

and then you can connect to any installed ODBC datasource.

To load the Common SQL interface to use MySQL, enter:

(require "mysql")

and at run time call:

(sql:initialize-database-type :database-type :mysql)

See the LispWorks® User Guide and Reference Manual for further information.

10 Configuration on Linux, x86/x64 Solaris & FreeBSD

57

10.8 Common Prolog and KnowledgeWorks

Common Prolog is bundled with KnowledgeWorks rather than with LispWorks. KnowledgeWorks is loaded by using:

(require "kw")

See the KnowledgeWorks and Prolog User Guide for further instructions.

10.9 Documentation on x86/x64 Solaris and FreeBSD

Except where explicitly mentioned, information stated as specific to LispWorks for Linux also applies to LispWorks for
x86/x64 Solaris and LispWorks for FreeBSD.

10 Configuration on Linux, x86/x64 Solaris & FreeBSD

58

11 Troubleshooting, Patches and Reporting
Bugs

This chapter discusses other issues that arise when installing and configuring LispWorks. It provides solutions for possible
problems you may encounter, and it discusses the patch mechanism and the procedure for reporting bugs.

11.1 Troubleshooting

This section describes some of the most common problems that can occur on any platform during installation or
configuration.

11.1.1 License key errors

LispWorks looks for a valid license key when it is started up. If a problem occurs at this point, LispWorks exits.

These are the possible problems:

• LispWorks cannot find or read the key.

• The key is incorrect.

• Your license has expired, making the key no longer valid.

On Linux, x86/x64 Solaris and FreeBSD, this is also a possible cause of the problem:

• The machine name has changed since LispWorks was installed.

On macOS, Linux, x86/x64 Solaris and FreeBSD, the key is expected to be stored in a keyfile, and an appropriate error
message is printed at the terminal for each case. If this message does not help you to resolve the problem, report it to Lisp
Support and include the terminal output.

On Windows, the key is expected to be stored in the Windows registry. If you cannot resolve the problem, export your
HKEY_LOCAL_MACHINE\SOFTWARE\LispWorks registry tree and include this with your report to Lisp Support.

11.1.2 Failure of the load-on-demand system

Module files are in the modules directory lib/8-0-0-0/load-on-demand under *lispworks-directory*.

If loading files on demand fails to work correctly, check that the modules directory is present. If it is not, perhaps your
LispWorks installation is corrupted.

Do not remove any files from the modules directory unless you are really certain they will never be required.

The supplied image contains a trigger which causes *lispworks-directory* to be set on startup and hence you should
not need to change its value. Subsequently saved images do not have this trigger.

59

11.1.3 Build phase (delivery-time) errors

A common cause of errors seen while building (delivering) an application is running part of the application's run time
initialization, or something else that assumes the application is already running.

One error sometimes seen is "Not yet multiprocessing." and other likely build phase errors include those arising from
code that assumes something about the run time environment.

Such initializations should be done at the start of the run time phase, as described in "Separate run time initializations from
the build phase" in the Delivery User Guide.

11.1.4 Memory requirements

To run the full LispWorks system, with its GUI, you will need around 30MB of swap space for the image and whatever else
is necessary to accommodate your application.

We recommend that you routinely check the size of your image using cl:room, whether you see warning messages or not.

When running a large image, you may occasionally see:

<**> Failed to enlarge memory

printed to the standard output.

The message means that the LispWorks image is close to the limit: it attempted to expand one of the GC generations, but
there was not enough swap space to accommodate the resulting growth in image size. When this happens, the garbage
collector is invoked. It will usually manage to free the required space, but if it cannot then crashes may result. Therefore you
should take action to reduce allocation or increase available memory when you see this message.

Check the size of the image, both by cl:room and by OS facilities (such as ps or top on *nix, Task Manager on Windows)
to see if all the sizes are as expected. If there are large discrepancies, check them.

Occasionally, however, continued demand for additional memory will end up exhausting resources. You will then see the
message above repeatedly, and there will be little or no other activity apparent in the image. At this point you should restart
the image, or increase swap space. In cases where external libraries are mapped above LispWorks and inhibit its growth, you
may be able to relocate LispWorks, as described under "Startup relocation" in the LispWorks® User Guide and Reference
Manual.

11.1.5 Corrupted LispWorks executable

Programs which attempt to clean up your machine by automatically removing data they identify as unnecessary may
accidentally corrupt your LispWorks executable, because they do not understand its format. This will prevent LispWorks
from starting.

Examples are the prelink cron job on Linux and CleanMyMac on Macintosh. These particular programs should no longer
affect LispWorks, but there may be similar utilities in use.

If corruption occurs check if it has been caused by a clean-up utility. If this is the case, firstly configure your clean-up utility
to ignore LispWorks, and then reinstall LispWorks.

11 Troubleshooting, Patches and Reporting Bugs

60

http://www.lispworks.com/documentation/HyperSpec/Body/f_room.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_room.htm

11.2 Troubleshooting on Windows

This section describes some of the most common problems that can occur during installation or configuration of LispWorks
for Windows.

11.2.1 Private patches not loaded on Windows 7, 8 & 10

Modify private-patches\load.lisp only via the menu command Help > Install Private Patches... to avoid problems
with redirected files.

If your LispWorks installation is in the %ProgramFiles% folder and you edit private-patches\load.lisp directly,
then Windows starts to use a redirected private copy of load.lisp. Help > Install Private Patches... will not update this
copy, and thus your new patches will not be loaded.

If this occurs, the solution is to delete the redirected copy of load.lisp from your user profile space. On Windows 8 the
location is like this:

C:\Users\lw\AppData\Local\VirtualStore\Program Files (x86)\LispWorks\lib\8-0-0-0\private-patches\

11.3 Troubleshooting on macOS

This section describes some of the most common problems that can occur during installation or configuration of LispWorks
for Macintosh.

If you're using the LispWorks image with the X11/Motif GUI, see also 11.7 Troubleshooting on X11/Motif below for issues
specific to X11/Motif.

11.3.1 Uninstall requires administrator on macOS

You must be logged on an as administrator in order to run uninstall.command to uninstall LispWorks. This is because it
uses the sudo command.

11.4 Troubleshooting on Linux

This section describes some of the most common problems that can occur during installation or configuration of LispWorks
for Linux.

See also 11.7 Troubleshooting on X11/Motif below for issues specific to X11/Motif.

11.4.1 Processes hanging

Some versions of Linux have a broken pthreads library. To workaround this set the environment variable
LD_ASSUME_KERNEL=2.4.19 before running LispWorks. LD_ASSUME_KERNEL allows using older versions of
pthreads, some of which do not work.

LispWorks 8.0 supports any Linux distribution with glibc 2.6 or later.

11.4.2 RPM_INSTALL_PREFIX not set

On Linux, during installation of CLIM, Common SQL, LispWorks ORB or KnowledgeWorks from a secondary rpm file you
may see a message similar to this:

11 Troubleshooting, Patches and Reporting Bugs

61

rpm --install tmp/lispworks-clim-8.0-1.i386.rpm
Environment variable RPM_INSTALL_PREFIX not set, setting it to /usr
LispWorks installation not found in /usr.
error: %pre(lispworks-clim-8.0-1) scriptlet failed, exit status 1
error: install: %pre scriptlet failed (2), skipping lispworks-clim-8.0-1
#

This is only a problem when LispWorks itself was installed in a non-default location (that is, using the --prefix RPM
option). You would then want to supply that same --prefix value when installing the secondary rpm. A bug in RPM means
that a required environment variable RPM_INSTALL_PREFIX is not set automatically to the supplied value. We have seen
this bug in RPM version 4.2, as distributed with Red Hat 8 and 9.

The workaround is to set this environment variable explicitly before installing the secondary rpm. For example, if LispWorks
was installed like this:

rpm --install --prefix /usr/lisp lispworks-8.0-1.i386.rpm

then you would add CLIM like this (in C shell):

setenv RPM_INSTALL_PREFIX /usr/lisp
rpm --install --prefix /usr/lisp lispworks-clim-8.0-1.i386.rpm

11.4.3 Using multiple versions of Motif on Linux

The version of Open Motif required by LispWorks 8.0 with the Motif GUI may not be compatible with other applications
(including LispWorks 4.2). It is however compatible with LispWorks 7.1, LispWorks 6.x, LispWorks 5.x, LispWorks 4.4 and
4.3, so you for example you should be able to run LispWorks 8.0 and LispWorks 7.1 simultaneously with either Open Motif
installed.

While it is not supported for LispWorks 5.1 and later versions, you can still use Lesstif for LispWorks 5.0 and earlier - see the
Installation Guide for that version for details.

You may wish to maintain multiple versions of the Motif/Lesstif libraries in order to run various applications simultaneously.
However, because the filenames of the libraries can conflict, this can only be done by installing libraries in non-standard
locations.

When a library has been installed in a non-standard location, you can set the environment variable LD_LIBRARY_PATH to
allow an application to find that library. Specifically, if <motiflibdir> denotes the directory containing the Motif 2.2 or 2.3
file libXm.so then set LD_LIBRARY_PATH to include <motiflibdir>.

Note: to find out which version of libXm your LispWorks 8.0 image is actually using, look in the bug form. See 11.9.3
Generate a bug report template for instructions on generating the bug form.

11.5 Troubleshooting on x86/x64 Solaris

This section describes some of the most common problems that can occur during installation or configuration of LispWorks
for x86/x64 Solaris.

See also 12.17.1 Problems with CAPI on GTK+ and 11.7 Troubleshooting on X11/Motif.

11.5.1 GTK+ version

GTK+ 2 (version 2.4 or higher) is required to run the LispWorks image as distributed.

11 Troubleshooting, Patches and Reporting Bugs

62

11.6 Troubleshooting on FreeBSD

This section describes some of the most common problems that can occur during installation or configuration of LispWorks
for FreeBSD.

See also 11.7 Troubleshooting on X11/Motif below for issues specific to X11/Motif.

11.7 Troubleshooting on X11/Motif

This section describes some of the most common problems that can occur using the LispWorks X11/Motif GUI, which is
available on Linux, FreeBSD and macOS.

11.7.1 Problems with the X server

Running under X11/Motif, LispWorks may print a message saying that it is unable to connect to the X server. Check that the
server is running, and that the machine the image is running on is authorized to connect to it. (See the manual entry for
command xhost(1).)

On macOS, if you attempt to start the LispWorks X11/Motif GUI in Terminal.app, an error message
Failed to open display NIL is printed. Instead, run LispWorks in X11.app.

11.7.2 Problems with fonts on Motif

LispWorks may print a message saying that it is unable to open a font and is using a default instead. The environment will
still run but it may not always use the right font.

LispWorks comes configured with the fonts most commonly found with the target machine type. However the fonts supplied
vary between implementations and installations. The fonts available on a particular server can be determined by using the
xlsfonts(1) command. Fonts are chosen based on the X11 resources. See 11.7.6 X11/Motif resources for more
information.

It may be necessary to change the fonts used by LispWorks.

11.7.3 Problems with colors

Running under X11, on starting up the environment, or any tool within it, LispWorks may print a message saying that a
particular color could not be allocated.

This problem can occur if your X color map is full. If this is the case, LispWorks cannot allocate all the colors that are
specified in the X11 resources.

This may happen if you have many different colors on your screen, for instance when displaying a picture in the root window
of your display.

Colors are chosen based on the X11 resources. See 11.7.6 X11/Motif resources for more information.

To remove the problem, you can then change the resources (for example, by editing the file mentioned in 11.7.6 X11/Motif
resources) to reduce the number of colors LispWorks allocates.

11.7.4 Motif mnemonics and Alt

Mnemonic processing on Motif always uses mod1, so we disable mnemonics if that is Lisp's Meta modifier to allow the
Emacs-style editor to work. (The accelerator code uses the same keyboard mapping check as the mnemonics so Alt

accelerators would also get disabled if you had them.)

11 Troubleshooting, Patches and Reporting Bugs

63

11.7.5 Non-standard X11/Motif key bindings

On X11/Motif, if you want Emacs-style keys Ctrl-n, Ctrl-p in LispWorks list panels such as the Editor's buffers view,
add the following to the X11 resources (see 11.7.6 X11/Motif resources):

!
! Enable Ctrl-n, Ctrl-p in list panels
Lispworks*XmList.translations: #override\n\
 Ctrl<Key>p : ListPrevItem()\n\
 Ctrl<Key>n : ListNextItem()
!

11.7.6 X11/Motif resources

When using X11/Motif, LispWorks reads X11 resources in the normal way, using the application class Lispworks. The file
app-defaults/Lispworks is used to supply fallback resources. You can copy parts of this file to ~/Lispworks or some
other configuration-specific location if you wish to change these defaults, and similarly for app-defaults/GcMonitor.

11.7.7 Motif installation on macOS

When attempting to starting the LispWorks X11/Motif GUI when the required version of Motif is not installed, LispWorks
prints the error message:

Error: Could not register handle for external module X-UTILITIES::CAPIX11:
dyld: /Applications/LispWorks 8.0/lispworks-8-0-0-macos64-universal-gtk can't open library: /usr/lo
cal/lib/libXm.4.dylib (No such file or directory, errno = 2)
.

Ensure you install Motif as described in 2.4.8.2 The X11 GTK+ and Motif GUIs. Restart X11.app and LispWorks after
installation of Motif.

11.8 Updating with patches

We sometimes issue patches for LispWorks by email or download.

11.8.1 Extracting simple patches

Save the email attachment to your disk.

See 11.8.3.2 Private patches below about location of your private patches.

11.8.2 If you cannot receive email

If your site has neither email nor ftp access, and you want to receive patches, you should contact Lisp Support to discuss a
suitable medium for their transmission.

11.8.3 Different types of patch

There are two types of patch sent out by Lisp Support, and they must be dealt with in different ways.

11 Troubleshooting, Patches and Reporting Bugs

64

11.8.3.1 Public patches

Public patches are general patches made available to all LispWorks customers. These are typically released in bundles of
multiple different patch files; each file has a number as its name. For example:

patches\system\0001\0001.ofasl (for x86 Windows)
patches/system/0001/0001.ufasl (for x86 Linux)
patches/system/0001/0001.sfasl (for x86 Solaris)
patches/system/0001/0001.ffasl (for x86 FreeBSD)
patches/system/0001/0001.rfasl (for 32-bit ARM Linux and Android)
patches/system\0001\0001.64ofasl (for x64 Windows)
patches/system/0001/0001.64ufasl (for amd64 Linux)
patches/system/0001/0001.64xfasl (for Intel Macintosh)
patches/system/0001/0001.64yfasl (for Apple silicon Macintosh and iOS Simulator)
patches/system/0001/0001.64sfasl (for amd64 Solaris)
patches/system/0001/0001.64ffasl (for amd64 FreeBSD)
patches/system/0001/0001.64rfasl (for 64-bit ARM Linux and iOS)
patches/system/0001/0001.64xcfasl (for 64-bit iOS Simulator)

On receipt of a new patch bundle your system manager should update each local installation according to the installation
instructions supplied with the patch bundle. This will add files to the patches subdirectory and increment the version number
displayed by LispWorks.

You should consider saving a new image with the latest patches pre-loaded, as described in 8.4 Saving and testing the
configured image (macOS), 9.4 Saving and testing the configured image (Windows) or 10.4 Saving and testing the
configured image (Linux, x86/x64 Solaris or FreeBSD).

11.8.3.2 Private patches

LispWorks patches are generally released in cumulative bundles. Occasionally Lisp Support may send you individual patch
binaries named for example my-patch to address a problem or implement a new feature in advance of bundled ('public')
patch releases. Such patches have real names, rather than numbers, and must be loaded once they have been saved to disk.
You will need to ensure that LispWorks will load your private patches on startup, after public patches have been loaded.

Private patch loading is controlled by the file:

lib/8-0-0-0/private-patches/load.lisp

private-patches/ is the default location for private patches, and patch loading instructions sent to you will assume this
location. Therefore, on receipt of a private patch my-patch.ufasl, the simplest approach is to place it here. For example,
on macOS:

<install>/LispWorks 8.0 (64-bit)/Library/lib/8-0-0-0/private-patches/my-patch.64xfasl

On Windows (but see note below about the Install Private Patches... command):

<install>lib\8-0-0-0\private-patches\my-patch.ofasl

On Linux:

<install>/lib/8-0-0-0/private-patches/my-patch.ufasl

You will receive a Lisp form needed to load such a patch, such as:

(LOAD-ONE-PRIVATE-PATCH "my-patch" :SYSTEM)

11 Troubleshooting, Patches and Reporting Bugs

65

This form should be added to the flet form in the file:

private-patches/load.lisp

immediately after the commented example there. load-all-patches loads this file, and hence all the private patches listed
therein.

You may choose to save a reconfigured image with the new patch loaded - for details see the instructions in 8.4 Saving and
testing the configured image (macOS), 9.4 Saving and testing the configured image (Windows), or 10.4 Saving and
testing the configured image (Linux, x86/x64 Solaris or FreeBSD). You can alternatively choose to load the patch file on
startup. The option you choose will depend on how many people at your site will need access to the new patch, and how
many will need access to an image without the patch loaded.

Note: On Windows, the correct way to install private patches is using the menu item Help > Install Private Patches.... Select
the private patch file with the Add button and edit the private-patches/load.lisp in the lower pane to include the
loading form supplied by Lisp Support immediately after the commented example there. Then click Save Changes, which
will run a helper application that interacts with the Windows User Access Control mechanism to allow you to write the files
into the protected Program Files folder.

11.9 Reporting bugs

If you discover a bug, in either the software or the documentation, you can submit a bug report by any of the following
routes.

• email

• fax

• paper mail (post)

• telephone

The addresses are listed in 11.9.8 Send the bug report. Please note that we much prefer email.

11.9.1 Check for existing fixes

Before reporting a bug, please ensure that you have the latest patches installed and loaded. Visit
www.lispworks.com/downloads/patch-selection.html for the latest patch release.

If the bug persists, check the Lisp Knowledgebase at www.lispworks.com/support/ for information about the problem - we
may already have fixed it or found workarounds.

If you need informal advice or tips, try joining the LispWorks users' mailing list. Details are at
www.lispworks.com/support/lisp-hug.html.

11.9.2 Performance Issues

If the problem is poor performance, you should use room, extended-time and profile to check what actually happens.
See the LispWorks® User Guide and Reference Manual for details of these diagnostic functions and macros.

If this does not help you to resolve the problem, submit a report to Lisp Support (see next section) and attach the output of the
diagnostics.

11 Troubleshooting, Patches and Reporting Bugs

66

http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm
http://www.lispworks.com/downloads/patch-selection.html
http://www.lispworks.com/support/
http://www.lispworks.com/support/lisp-hug.html
http://www.lispworks.com/documentation/HyperSpec/Body/f_room.htm

11.9.3 Generate a bug report template

Whatever method you want to use to contact us, choose Help > Report Bug from any tool, or use the command
Meta+X Report Bug, or at a Lisp prompt, use :bug-form, for example:

:bug-form "foo is broken" :filename "bug-report-about-foo.txt"

All three methods produce a report template you can fill in. In the GUI environment we prefer you use the Report Bug
command - do this from within the debugger if an error has been signalled.

The bug report template captures details of the Operating System and Lisp you are running, as well as a stack backtrace if
your Lisp is in the debugger. There may be delays if you do not provide this essential information.

If the issue you are reporting does not signal an error, or for some other reason you are not able to supply a backtrace, we still
want to see the bug report template generated from the relevant LispWorks image.

11.9.4 Add details to your bug report

Under 'Urgency' tell us how urgent the issue is for you. We classify reports as follows:

ASAP A bug or missing feature that is stopping progress. Probably needs a private patch, possibly
under a support contract, unless a workaround can be found.

Current Release Either a fix in the next patch bundle or as a private patch, possibly under a support contract.

Next Release A fix would be nice in the next minor release.

Future Release An item for our wishlist.

None Probably not a bug or feature request.

Tell us if the bug is repeatable. Add instructions on how to reproduce it to the 'Description' field of the bug report form.

Include any other information you think might be relevant. This might be your code which triggers the bug. In this case,
please send us a self-contained piece of code which demonstrates the problem (this is much more useful than code
fragments).

Include the output of the Lisp image. In general it is not useful to edit the output, so please send it as-is. Where output files
are very large (> 2MB) and repetitive, the first and last 200 lines might be adequate.

If the problem depends on a source or resource file, please include that file with the bug report.

If the bug report falls into one of the categories below, please also include the results of a backtrace after carrying out the
extra steps requested:

• If the problem seems to be compiler-related, set *compiler-break-on-error* to t, and try again.

• If the problem seems to be related to error or conditions or related functionality, trace error and
conditions:coerce-to-condition, and try again.

• If the problem is in the LispWorks IDE, and you are receiving too many notifiers, set
dbg:*full-windowing-debugging* to nil and try again. This will cause the console version of debugger to be
used instead.

• If the problem occurs when compiling or loading a large system, call (toggle-source-debugging nil) and try
again.

• If you ever receive any unexpected terminal output starting with the characters <**>, please send all of the
output—however much there is of it.

11 Troubleshooting, Patches and Reporting Bugs

67

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

Note: terminal output is that written to *terminal-io*. Normally this is not visible when running the macOS native
GUI or the Windows GUI, though it is displayed in a Terminal.app or MS-DOS window if necessary.

11.9.5 Reporting crashes

Very occasionally, there are circumstances where it is not possible to generate a bug report form from the running Lisp which
has the bug. For example, a delivered image may lack the debugger, or the bug may cause lisp to crash completely. In such
circumstances:

1. It is still useful for us to see a bug report form from your lisp image so that we can see your system details. Generate the
form before your code is loaded or a broken call is made, and attach it to your report.

2. Create a file init.lisp which loads your code that leads to the crash.

3. Run LispWorks with init.lisp as the initialization file and with output redirected to a file. For example, on macOS:

% "/Applications/LispWorks 8.0 (64-bit)/LispWorks (64-bit).app/Contents/MacOS/lispworks-8-0-0-
macos64-universal" -init init.lisp > lw.out

where % denotes a Unix shell prompt.

On Windows:

C:\> "Program Files\LispWorks\lispworks-8-0-0-x86-win32.exe" -init init.lisp > lw.out

where C:\> denotes the prompt in a MS-DOS command window.

On Linux:

% /usr/bin/lispworks-8-0-0-x86-linux -init init.lisp > lw.out

where % denotes a Unix shell prompt.

4. Attach the lw.out file to your report. In general it is not useful to edit the output of your Lisp image, so please send it
as-is. Where output files are very large (> 2MB) and repetitive, the first and last 200 lines might be adequate.

11.9.6 Log Files

If your application writes a log file, add this to your report. If your application does not write a log file, consider adding it,
since a log is always useful. The log should record what the program is doing, and include the output of (room) periodically,
say every five minutes.

You can make the application write a bug form to a log file automatically by making your error handlers call
dbg:log-bug-form.

11.9.7 Reporting bugs in delivered images

Some delivered executables lack the debugger. It is still useful for us to see a bug report template from your Lisp image that
was used to build the delivered executable. If possible, load your code and call (require "delivery") then generate the
template.

For bugs in delivered LispWorks images, the best approach is to start with a very simple call to deliver, at level 0 and with
the minimum of delivery keywords (:interface :capi and :multiprocessing t at most). Then deliver at increasingly
severe levels. Add delivery keywords to address specific problems you find (see the Delivery User Guide.for details.
However, please note that you are not expected to need to add more than 6 or so delivery keywords: do contact us if you are
adding more than this.)

11 Troubleshooting, Patches and Reporting Bugs

68

http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

11.9.8 Send the bug report

Email is usually the best way. Send your report to:

lisp-support@lispworks.com

When we receive a bug report, we will send an automated acknowledgment, and the bug will be entered into the LispWorks
bug management system. The automated reply has a subject line containing for example:

(Lisp Support Call #12345)

Please be sure to include that cookie in the subject line of all subsequent messages concerning your report, to allow Lisp
Support to track it.

If you cannot use email, please either:

• Fax to +44 870 2206189.

• Post to Lisp Support, LispWorks Ltd, St John's Innovation Centre, Cowley Road, Cambridge, CB4 0WS, England.

• Telephone: +44 1223 421860.

Note: It is very important that you include a stack backtrace in your bug report wherever applicable. See 11.9.3 Generate a
bug report template for details. You can always get a backtrace from within the debugger by entering :bb at the debugger
prompt.

11.9.9 Sending large files

Note: Please check with Lisp Support in advance if you are intending to send very large (> 2MB) files via email.

11.9.10 Information for Personal Edition users

We appreciate feedback from users of LispWorks Personal Edition, and often we are able to provide advice or workarounds if
you run into problems. However please bear in mind that this free product is unsupported. For informal advice and tips, try
joining the LispWorks users mailing list. Details are at www.lispworks.com/support/lisp-hug.html.

11.10 Transferring LispWorks to a different machine

This section lists the steps necessary to transfer LispWorks license to another machine.

1. Install LispWorks on your new machine.

2. Add latest patch bundle.

3. If you received private patches (named patch files, in the lib/8-0-0-0/private-patches directory) for this version
of LispWorks, move them and your private-patches/load.lisp file to the corresponding location in the new
installation.

4. Test the new installation by running LispWorks and check the patch banner in the output of Help > Report Bug. It should
be identical to the original installation. If it differs, check that the public patches have been installed and that you private
patches have been moved to the new private-patches folder along with the load.lisp file.

Please note that the LispWorks EULA restricts multiple installations so you may need to remove the original installation.
Check your license agreement if you are unsure: the text of the shrinkwrap agreement is in the file
lib/8-0-0-0/license.txt.

11 Troubleshooting, Patches and Reporting Bugs

69

http://www.lispworks.com/support/lisp-hug.html

Instructions for uninstalling LispWorks are in the per-platform chapters of this manual:

• 2.6 Uninstalling LispWorks for Macintosh

• 3.3 Uninstalling LispWorks for Windows

• 4.9 Uninstalling LispWorks for Linux

• 5.8 Uninstalling LispWorks for x86/x64 Solaris

• 6.9 Uninstalling LispWorks for FreeBSD

Some operating systems provide ways to copy software to another machine. A copied LispWorks installation will not run.
Please contact Lisp Support if you want to install your license to a copied installation of LispWorks.

11 Troubleshooting, Patches and Reporting Bugs

70

12 Release Notes

12.1 Keeping your old LispWorks installation

You can install LispWorks 8.0 in the same directory as previous versions such as LispWorks 7.1. This is because most of the
8.0 files are stored in a subdirectory called lib/8-0-0-0.

Binaries produced by cl:compile-file in previous versions of LispWorks do not load into a LispWorks 8.0 image. You
must recompile all your code with the LispWorks 8.0 compiler.

12.2 Updating your code for LispWorks 8.0

Check through these release notes for things you need to update in code that already works in LispWorks 7.1.

If you are updating code that works only in versions earlier than LispWorks 7.1, then you should also consult earlier release
notes, which are available at www.lispworks.com/documentation.

12.2.1 Conditionalizing code for different versions of LispWorks

When conditionalizing code for different versions of LispWorks, make your code work in the latest version and then
conditionalize with feature expressions if necessary, depending on which previous versions of LispWorks you want to
support.

For example, use #-lispworks7 rather than #+lispworks8. This makes it more likely that the code will work without
changes when LispWorks 9 is released in future.

Use only documented features. For an example see "Conditionalization for LispWorks versions" in the entry for *features* in
the LispWorks® User Guide and Reference Manual.

12.3 Platform support

12.3.1 LispWorks for Macintosh supports Apple silicon Macs natively

LispWorks for Macintosh now supports Apple silicon based Macs natively using the arm64 architecture. The supplied images
are now universal binaries.

12.3.2 LispWorks for Macintosh is always 64-bit

LispWorks for Macintosh is only released as a 64-bit application now because Apple have dropped support for 32-bit
applications since macOS, 10.15 Catalina.

12.3.3 Runtimes for Android

LispWorks for Android Runtime supports 64-bit ARM devices now (the arm64-v8a ABI), as well as x86 and x86_64
devices (designed mainly for the Android Emulator when running on a computer with an Intel CPU).

71

http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm
http://www.lispworks.com/documentation

The example script run-lw-android.sh now builds 4 images: 32-bit and 64-bit for each of ARM and x86.

Support for Android SDK 23 "text relocations" has been added.

The function hcl:deliver-to-android-project now supports Android Studio 3 and no longer supports Eclipse. The
:using-ndk keyword has been removed.

The classes in the com.lispworks Java package are now provided by the lispworks.aar file that distributed with
LispWorks. In previous releases, they were provided by the file lispworks.jar.

12.3.4 Runtimes for iOS

LispWorks for iOS Runtime now only supports 64-bit devices, because that is what Apple supports.

You can now create iOS Simulator and iOS device runtimes from an Apple silicon Mac (and without needing to use QEMU).

The way that you include the Lisp runtime in an XCode project has changed slightly (see 17 iOS interface in the LispWorks®
User Guide and Reference Manual for details).

12.3.5 FreeBSD 12.x support

LispWorks 8.0 supports FreeBSD 12.x and later and is supplied as a standard package file, in pkg(8) format. Older versions
of FreeBSD are not supported.

12.3.6 SPARC Solaris and AIX no longer supported

LispWorks 8.0 is not supported on SPARC Solaris or AIX.

12.3.7 Running on 64-bit machines

As far as we know each of the 32-bit LispWorks implementations runs correctly in the 32-bit subsystem of the corresponding
64-bit platform.

12.3.8 Code signing LispWorks images

12.3.8.1 Signing of the distributed executable

On macOS, the LispWorks application bundle is signed in the name of LispWorks Ltd.

On Microsoft Windows, the LispWorks Personal Edition executable is signed in the name of LispWorks Ltd.

Other LispWorks editions are not signed, because of the complications around image saving and delivery that this would lead
to.

12.3.8.2 Signing your development image

On Microsoft Windows and macOS you can sign a development image saved using hcl:save-image with the :split
argument. On macOS, the :split argument should have value :resources.

12 Release Notes

72

12.3.8.3 Signing your runtime application

On Microsoft Windows and macOS you can sign a runtime executable or dynamic library which was saved using
lispworks:deliver with the :split argument.

12.3.8.4 Required runtime entitlements on Apple silicon Macs

LispWorks for Macintosh requires certain runtime entitlements to run on Apple silicon Macs. See 13.3.7 Saving images and
delivering on Apple silicon Macs in the LispWorks® User Guide and Reference Manual for details.

12.3.9 macOS universal binaries are supported again

The supplied LispWorks (64-bit) for Macintosh images are now universal binaries, which run the correct native architecture
on arm64 (Apple silicon) and x86_64 (Intel) Macintosh computers by default.

A running Lisp image only supports one architecture, chosen when the image was started. On a x86_64 based Macintosh,
this is always the x86_64 architecture. On an arm64 Macintosh, a running LispWorks image can be either the native arm64
architecture or the x86_64 architecture (using Rosetta 2).

Functions such as save-image and deliver create an image containing only the running architecture and functions that
operate on fasl files such as compile-file and load only support the running architecture.

To build a universal binary application from LispWorks 8.0 for Macintosh, you will need to install LispWorks on an arm64
(Apple silicon) Macintosh computer.

The functions hcl:save-universal-from-script, hcl:create-universal-binary,
hcl:building-main-architecture-p and hcl:building-universal-intermediate-p are either new or non
longer deprecated and can be used to control building a universal binary.

12.3.10 macOS images are now split into two files by default

The supplied LispWorks (64-bit) for Macintosh images are now split, which means that the Lisp heap is split into a separate
file, named by adding .lwheap to the name of the executable. In the appliction bundle, this is stored in the Resources
directory.

In addition, the split argument to save-image and deliver now defaults to :default, which causes the new image to be
split by default on macOS.

12.4 GTK+ window system

LispWorks uses GTK+ as the default window system for CAPI and the LispWorks IDE on Linux, FreeBSD and x86/x64
Solaris. GTK+ is also supported on macOS as an alternative to Cocoa. LispWorks requires GTK+ 2 (version 2.4 or higher).

A few known problems are documented on 12.17.1 Problems with CAPI on GTK+.

12.4.1 Using Motif instead of GTK+

Use of Motif with LispWorks on Linux, FreeBSD, x86/x64 Solaris and macOS is deprecated, but it is available by:

(require "capi-motif")

To use LispWorks 8.0 with Motif you also need Imlib2 (on Linux, FreeBSD and macOS) or Imlib (on Solaris) installed, as
described earlier in this manual.

12 Release Notes

73

http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

12.4.2 X11/Motif requires Imlib2 except on Solaris

LispWorks 8.0 requires Imlib2 1.4.3 or later to use the Motif GUI on Linux, FreeBSD and macOS. Some older versions of
LispWorks required Imlib, which is a different library and is still required on Solaris.

12.5 New CAPI features

See the CAPI User Guide and Reference Manual for more details of these, unless directed otherwise. This section is not
relevant to LispWorks for Mobile Runtime.

12.5.1 New thread-safe function to force a redisplay part of an capi:output-pane

The new function capi:redisplay-element can be used to force part of an capi:output-pane to be redisplayed. It's
first argument can be an capi:output-pane or a capi:pinboard-object and it is equivalent to calling
gp:invalidate-rectangle, except that it can be called from any thread.

12.5.2 Row and column separators in list panels

The classes capi:list-panel and capi:multi-column-list-panel now support visible separators between rows or
columns by the new :separators initarg, with value nil (the default), :both, t, :horizontal or :vertical.

12.5.3 Support for reorderable columns in capi:multi-column-list-panel on GTK

The class capi:multi-column-list-panel supports reorderable columns on GTK by the new initarg
:reorderable-columns and the :reorderable keyword in the column specification. Reorderable columns can be
reordered by dragging their header.

12.5.4 New :x-adjust initarg for capi:multi-column-list-panel

The class capi:multi-column-list-panel has a new initarg :x-adjust, which provides the default value of the
:adjust keyword in the column specifications. Its value must be a list of the same length as the :columns initarg.

12.5.5 Specifying the initial selection in capi:prompt-with-list

To specify the initial selection in capi:prompt-with-list, you can supply the keyword arguments :selection,
:selected-item or :selected-items. These keywords were present in previous releases but not documented.

12.5.6 Menus can now display with both images and text on Microsoft Windows

The class capi:menu now supports display of both images and text on Microsoft Windows, like it did in previous releases
for GTK+ and Cocoa.

12.5.7 Support for dark themes in capi:interface

The class capi:interface has new initargs :color-mode and :color-mode-callback and accessors
capi:top-level-interface-color-mode and capi:top-level-interface-color-mode-callback to support
dark themes and application-defined changes based on the theme.

The new function capi:top-level-interface-dark-mode-p can be used to detect when an interface is using a dark
themes.

12 Release Notes

74

12.5.8 Support for dark themes in capi:set-editor-parenthesis-colors

The function capi:set-editor-parenthesis-colors now has a keyword argument :dark-background-colors,
which is a list of colors to use for parentheses when the background is dark.

12.5.9 Support for dark themes in capi:stacked-tree

The default colors used by the class capi:stacked-tree change when a dark theme is used. If specify colors or color-
function, then you may need to take special action.

12.5.10 New capi:rich-text-pane callback on Windows called when the user clicks a link

The class capi:rich-text-pane has a new initarg :link-callback, which is a function to be called if the text contains
a hyperlink and the user click on it. This is only implemented on Windows.

12.5.11 Adding additional filters in capi:list-panel and capi:filtering-layout

The class capi:list-panel has a new initarg :filter-added-filters, which adds additional filters that apply to the
items of the panel.

The class capi:filtering-layout has a new initarg :added-filters that does the same thing.

The function capi:filtering-layout-match-object-and-exclude-p returns an extra value, which is a list of the
added filters that have been selected by the user.

12.5.12 Coordinates for keyboard events in the input model take account of scrolling

The callbacks in the input-model of a capi:output-pane are called with the coordinates of the pointer. In previous
releases, the coordinates that are passed to callbacks of characters and keys did not take into account scrolling on some
platforms. On the other hand, callbacks associated with mouse events (button clicks and motion) always took scrolling into
account. In LispWorks 8.0, the coordinates that are passed to callbacks of characters and keys always take into account of
scrolling the same way as mouse event callbacks.

That means that, by default (when :pane-can-scroll is nil in an capi:output-pane), the coordinates that the
callbacks get when the pointer is on some graphic element match the coordinates that were used to draw the element
(assuming there is no graphics transform).

12.5.13 capi:current-pointer-position always takes account of scrolling in capi:output-
pane

The coordinates that the function capi:current-pointer-position returns when called with a capi:output-pane
now take account of scrolling on all platforms. In previous releases, some platforms did not take account of scrolling.

12.5.14 Forcing scroll bars to be visible on macOS

The class capi:output-pane has a new initarg :scroll-bar-type that allows you to force the scroll bars to be visible
on macOS regardless of the setting in the System Preferences.

12 Release Notes

75

12.6 Other CAPI and Graphics Ports changes

This section is not relevant to LispWorks for Mobile Runtime.

12.6.1 Drawing to an output-pane outside the display-callback

Code that draws to an capi:output-pane should only be called from within the pane's :display-callback. On some
platforms, notably macOS Big Sur and later, drawing from other contexts will not work.

12.7 More new features

For details of these, see the documentation in the LispWorks® User Guide and Reference Manual, unless a manual is
referenced explicitly.

12.7.1 Package-local nicknames

LispWorks now supports package-local nicknames, with the same interface as other Common Lisp implementations. This
includes the new functions hcl:add-package-local-nickname, hcl:package-local-nicknames,
hcl:package-locally-nicknamed-by-list, hcl:remove-package-local-nickname and the defpackage option
:local-nicknames.

12.7.2 Support for pinning objects while in foreign code

The new macro hcl:with-pinned-objects can be used to prevent certain types of object from being moved by the
garbage collector while in foreign code.

The value of the allocation keyword argument to cl:make-array can be :pinnable to make an array that can be pinned
using hcl:with-pinned-objects.

The function system:make-typed-aref-vector takes a new keyword argument allocation which gives you control of
where the new vector is allocated.

12.7.3 Specialized complex number array representations

LispWorks now supports a specialized array representation for (complex single-float) and
(complex double-float).

12.7.4 Double-float complex number optimization in the compiler

The compiler now optimizes arithmetic for values of type (complex double-float).

12.7.5 The console now supports external formats on non-Windows platforms

Characters read and written via the console (*terminal-io*) are now encoded in an external format that is determined by
the operating environment. See 27.16 The console external format in the LispWorks® User Guide and Reference Manual.

The new function hcl:set-console-external-format can be used to override this.

12 Release Notes

76

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

12.7.6 Encoding file names on non-Windows platforms based on locale

LispWorks now checks the POSIX locale variables to determine the external format in which file names should be encoded.
See 27.14.1 Encoding of file names and strings in OS interface functions in the LispWorks® User Guide and Reference
Manual for details.

12.7.7 Operating system interfaces on non-Windows based on locale

The values in the function lispworks:environment-variable and the command line arguments and environment
variables in the functions system:call-system, system:call-system-showing-output, system:open-pipe and
system:run-shell-command are now encoded using the same external format as file names, as described in 27.14.1
Encoding of file names and strings in OS interface functions in the LispWorks® User Guide and Reference Manual.

The command line arguments of LispWorks (see 27.4 The Command Line in the LispWorks® User Guide and Reference
Manual) are decoded using the same external format.

This change should not affect arguments and values that contain only ASCII characters.

12.7.8 system:open-pipe and system:run-shell-command work with external formats

The functions system:open-pipe and system:run-shell-command have a new keyword argument, external-format,
which is the external format to use. On non-Windows platforms, when neither the external-format nor the element-type are
supplied, the external format defaults to the format specified by the POSIX environemnt variables LC_ALL, LC_CTYPE or
LANG. If you use system:open-pipe in previous versions of LispWorks without supplying element-type and you want it to
continue to not process the data using an external format, then supply element-type with base-char if you want code to
work on all versions of LispWorks.

12.7.9 Specifying a timeout for system:pipe-exit-status

The function system:pipe-exit-status has a new keyword argument, timeout, which gives the maximum time to wait
for the exit status. This overrides the wait argument, which is deprecated now.

12.7.10 system:run-shell-command can now return a signal number

On non-Windows platforms, the function system:run-shell-command with non-nil value for wait now returns a second
value indicating the signal number that terminated the command if any.

12.7.11 Support for the GB18030 character encoding

LispWorks now supports the GB18030 character encoding with by the :gb18030 external-format. See 26.6 External Formats
to translate Lisp characters from/to external encodings in the LispWorks® User Guide and Reference Manual.

12.7.12 Configurable named services for remote debugging

The ports used for remote debugging can now be controlled by registering named service. See 3.7.6 TCP port usage in
remote debugging in the LispWorks® User Guide and Reference Manual for more details.

12.7.13 Error handling and callbacks when starting remote debugging

The functions dbg:start-ide-remote-debugging-server and dbg:start-client-remote-debugging-server

now have keyword arguments announce and error like comm:start-up-server.

12 Release Notes

77

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

The function dbg:start-ide-remote-debugging-server also has a connection-callback which is called with
arguments to indicate if the connection was successful.

12.7.14 Using SSL for remote debugging

The functions dbg:ide-connect-remote-debugging, dbg:start-ide-remote-debugging-server,
dbg:configure-remote-debugging-spec and dbg:start-client-remote-debugging-server and the macro
dbg:with-remote-debugging-spec now have a :ssl keyword that allows SSL to be used for remote debugging
connections.

12.7.15 Using IPv6 for remote debugging

The functions dbg:ide-connect-remote-debugging, dbg:start-ide-remote-debugging-server,
dbg:configure-remote-debugging-spec and dbg:start-client-remote-debugging-server and the macro
dbg:with-remote-debugging-spec now have a :ipv6 keyword that allows IPv6 to be used for remote debugging
connections.

12.7.16 Identifying object allocation in the profiler

The new function hcl:profiler-tree-to-allocation-functions prints a tree of function calls where the roots are
allocation functions, making it easier to see where allocation happens.

12.7.17 Ignoring time in the garbage collector during profiling

The gc argument to the function hcl:set-up-profiler has new value :exclude which causes the profiler to ignore
samples that are taken GC operation is in progress.

12.7.18 Version checking in compile-file-if-needed

hcl:compile-file-if-needed now checks that the version of the fasl file matches the version of the image and
recompile if it does not match.

12.7.19 OpenSSL version defaults to 1.1 on Windows

The default OpenSSL DLL names in LispWorks for Windows are now those from OpenSSL 1.1.

12.7.20 Support for SSL using Apple Security Framework

LispWorks now supports (and defaults to) using the Apple Security Framework to implement SSL on macOS and iOS.

To allow the choice of SSL implementation to be made at run time and to allow code to specify configuration options that
work with either implementation, a new concept called SSL Abtract Contexts has been added. The new system class
comm:ssl-abstract-context represents these contexts, which can be created by the new functions
comm:create-ssl-server-context and comm:create-ssl-client-context. The new function
reset-ssl-abstract-context can be used to clear any cached information in a comm:ssl-abstract-context.

The new accessor comm:ssl-default-implementation can be used to control which SSL implementation is used and
the new function comm:ssl-implementation-available-p can be used to check if an implementation is available.

The function comm:ensure-ssl can been extended to take an :implementation keyword, which specifies the
implementation to initialize.

12 Release Notes

78

The functions comm:open-tcp-stream, comm:attach-ssl,
comm:create-async-io-state-and-connected-tcp-socket, comm:socket-stream and
comm:accept-tcp-connections-creating-async-io-states have been extended to take a
comm:ssl-abstract-context as the :ssl-ctx argument.

The new FLI type comm:ssl-context-ref represents Apple Security Framework contexts.

The function comm:set-verification-mode has been extended to take a comm:ssl-context-ref as the ssl-ctx
argument.

12.7.21 Specifying and accessing SSL certificates

The new function comm:ssl-connection-read-certificates specifies certificates for a SSL conection (a
comm:socket-stream or a comm:async-io-state) by reading them from a file.

The new function comm:ssl-connection-get-peer-certificates-data can be used to get data about the certificate
from a SSL connection.

The new functions comm:ssl-connection-copy-peer-certificates, comm:release-certificates-vector,
comm:release-certificate, comm:get-certificate-data, comm:get-certificate-common-name and
comm:get-certificate-serial-number can be used by experts to access certificates directly. These certificates are
foreign pointers of type comm:sec-certificate-ref in the Apple Security Framework and comm:x509-pointer in
OpenSSL.

12.7.22 SSL certificate generalized time API

The new type comm:generalized-time and new functions comm:generalized-time-p,
comm:make-generalized-time, comm:generalized-time-pprint, comm:generalized-time-string and
comm:parse-printed-generalized-time can be used to manipulate generalized times, as used in SSL certificates.

12.7.23 Reading DH parameters from a file

The new function comm:ssl-connection-read-dh-params-file reads a DH parameters file.

12.7.24 Detecting the SSL protocol version

The new function comm:ssl-connection-protocol-version returns the SSL protocol version that is being used by a
connection.

12.7.25 comm:open-tcp-stream now returns information about errors

When the function comm:open-tcp-stream returns nil due to an error making the TCP connection, it now also returns a
second value, which is a condition that gives information about the error.

12.7.26 Listen on the same port with more than one socket

The functions comm:start-up-server and comm:accept-tcp-connections-creating-async-io-states have a
new keyword reuseport, which allows you to listen on the same port by multiple sockets, by using the socket option
SO_REUSEPORT.

12 Release Notes

79

http://www.lispworks.com/documentation/HyperSpec/Body/e_cnd.htm

12.7.27 New function to close a socket handle

The new function comm:close-socket-handle can be used to close a native socket handle.

12.7.28 Newly documented customization for socket I/O error signaling

The function comm:socket-error existed in previous versions of LispWorks but is now documented. You can implement
methods specialized on your own subclasses comm:socket-stream to customize signalling for socket I/O errors.

12.7.29 New condition classes in the socket interface

Errors relating to certain problems when using sockets are now signaled with the new condition classes
comm:socket-io-error, comm:socket-create-error, comm:ssl-verification-failure and
comm:ssl-handshake-timeout.

12.7.30 New condition classes in the Java interface

The Java interface can now signal two new condition classes lw-ji:jobject-call-method-error and
lw-ji:java-program-error.

12.7.31 Calling static or non-static methods in the Java interface

The new function lw-ji:jobject-call-method can be used to call a non-static Java method and the new function
lw-ji:call-java-static-method can be used to call a static Java method. These functions are useful when a static and
non-static method with the same name exist in a class, because lw-ji:call-java-method (which also calls the non-static
method in this case) would be ambiguous.

The macro lw-ji:define-java-caller and the function lw-ji:setup-java-caller have a new keyword argument
static-p that controls the same thing.

12.7.32 Making a non-virtual call to a method in the Java interface

The macro lw-ji:define-java-caller and the function lw-ji:setup-java-caller have a new keyword argument
non-virtual-p that makes the call non-virtual. Note that this is not normal Java behaviour, and may lead to surprising effects.

The new function lw-ji:call-java-non-virtual-method can also be used for this.

12.7.33 lw-ji:define-java-caller and lw-ji:setup-java-caller can now return lw-ji:jobject

The macro lw-ji:define-java-caller and the function lw-ji:setup-java-caller have a new keyword argument
return-jobject that controls whether to return a Lisp object or a lw-ji:jobject when the method signature return value
type is java.lang.String or java.lang.Object.

12.7.34 Specifying a Java class loader for Lisp proxy objects

The functions lw-ji:make-lisp-proxy and lw-ji:make-lisp-proxy-with-overrides have a new keyword
argument class-loader to override the ClassLoader to pass as the first argument to the Java method
Proxy.newProxyInstance when making the Lisp proxy.

12 Release Notes

80

12.7.35 Access to JNI jvalue objects

The new FLI type descriptor lw-ji:jvalue corresponds to the JNI C type jvalue. The new functions
lw-ji:jvalue-store-jboolean, lw-ji:jvalue-store-jbyte, lw-ji:jvalue-store-jchar,
lw-ji:jvalue-store-jshort, lw-ji:jvalue-store-jint, lw-ji:jvalue-store-jlong,
lw-ji:jvalue-store-jfloat, lw-ji:jvalue-store-jdouble and lw-ji:jvalue-store-jobject can be used to
set values in a lw-ji:jvalue. In typical usage of the Java interface, you will not need to use lw-ji:jvalue at all.

12.7.36 Getting a backtrace from a Java throwable object

The new function lw-ji:get-throwable-backtrace-strings can be used to get the backtrace from a Java
throwable object.

12.7.37 lw-ji:create-instance-jobject-list is now exported from lw-ji

The function lw-ji:create-instance-jobject-list that was documented in previous releases is now exported from
the lw-ji package. It was missing due to a bug.

12.7.38 Controlling aspects of LispWorks initialization on Android

The new Java methods com.lispworks.Manager.setRuntimeLispHeapDir,
com.lispworks.Manager.setLispTempDir and com.lispworks.Manager.setClassLoader can be used to control
aspects of how LispWorks initializes on Android. You should consult LispWorks support if you believe you need to use
these.

12.7.39 New error codes from the InitLispWorks C function

The C function InitLispWorks has two new error codes, -1408 and -1409.

12.7.40 Stricter meaning of the :link-transparency argument to cl:directory

In LispWorks 8.0 and newer, if the file-namestring of its pathname argument is a symbolic link pointing to a directory
and its link-transparency argument is nil, then directory returns it as a file. In previous versions of LispWorks, it was
returned as a directory. Calling file-directory-p on such a link still returns true, so if you need to check if it is a
directory or not, then you need to check first. The simplest way is to check that file-namestring returns nil.

12.7.41 Checking whether a file is a symbolic link

The new function hcl:file-link-p can be used to check whether a file is a symbolic link.

12.7.42 Reading a file into an array of bytes

The new function hcl:file-binary-bytes can be used to create an array of bytes from the contents a file.

12.7.43 cl:read-sequence and cl:write-sequence now depend on cl:stream-element-type

The Common Lisp function cl:read-sequence and cl:write-sequence now use cl:stream-element-type to
detect character and binary streams. Prior to LispWorks 8.0, there was specialized behaviour for
fundamental-character-output-stream and fundamental-binary-output-stream that was used to choose
between character and binary I/O.

12 Release Notes

81

http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_dir.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_seq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_seq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stm_el.htm

12.7.44 Specializing cl:read-sequence and cl:write-sequence is now documented

The stream:stream-read-sequence and stream:stream-write-sequence are now documented as the methods
called by cl:read-sequence and cl:write-sequence respectively. These methods existed prior to LispWorks 8.0 but
were not documented and the supplied methods have changed as described in 12.7.43 cl:read-sequence and cl:write-
sequence now depend on cl:stream-element-type.

12.7.45 New functions to compare strings without checking the length

The new function hcl:string=-limited and hcl:string-equal-limited simplify comparison of strings where you
do not know the length of them.

12.7.46 Newly documented macro if-let

The macro lispworks:if-let if like cl:if but also binds a variable to the value of the test form. It is newly documented
in LispWorks 8.0, but has been available since LispWorks 6.0.

12.7.47 Scheduling a repeating timer relative to the current time

If one of the functions mp:schedule-timer, mp:schedule-timer-relative, mp:schedule-timer-milliseconds
and mp:schedule-timer-relative-milliseconds is called with a timer that is not scheduled or has already expired
and the absolute-expiration-time or relative-expiration-time argument is nil and the repeat-time argument is non-nil, then the
timer is scheduled to the current time plus repeat-time. In previous versions, this would have signaled an error.

12.7.48 hcl:get-temp-directory no longer returns a truename

The function hcl:get-temp-directory now returns a pathname with the name and type components set to nil. In
previous releases, it returned a truename, with these components set to :unspecific.

12.7.49 Source location for macros that group other definition

The macro dspec:define-form-parser can now be used to define a form parser for a macro that acts like an implicit
progn. Such macros (for example, eval-when) are used in a source file to wrap other definitions in the file, but do not have
a name themselves.

12.7.50 The precompiled-regexp system class

The system class lispworks:precompiled-regexp and its predicate lispworks:precompiled-regexp-p have been
added.

Instances of lispworks:precompiled-regexp represent a precompiled regular expression. They are produced by the
function lispworks:precompile-regexp, and are used by the functions lispworks:find-regexp-in-string,
lispworks:regexp-find-symbols, lispworks:count-regexp-occurrences and
editor:regular-expression-search.

12.7.51 "Lax whitespace" regexp searching

The functions lispworks:find-regexp-in-string, lispworks:count-regexp-occurrences and
lispworks:precompile-regexp takes a new keyword argument space-string.

When space-string is non-nil, then a "Lax whitespace" search is performed. That means that any sequence of space
characters in the pattern are effectively replaced by the regexp specified by space-string. See the documentation for

12 Release Notes

82

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_seq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_seq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_if.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_eval_w.htm

lispworks:find-regexp-in-string for more details.

12.7.52 New arguments to the parser function defined by defparser

The parser function defined by parsergen:defparser now takes two keyword arguments:

• message-stream specifies a stream for outputting messages that are produced during the parsing.

• return-match-tree-p allows the function to return a match tree describing the matches during the parsing.

See 21.3 Functions defined by defparser in the LispWorks® User Guide and Reference Manual for details.

12.7.53 New system class gesture-spec

The new system class system:gesture-spec has been added. The concept of gesture specs existed prior to LispWorks
8.0, but system:gesture-spec was an internal undocumented symbol.

12.7.54 Limiting the number of splits in split-sequence

The functions lispworks:split-sequence, lispworks:split-sequence-if and
lispworks:split-sequence-if-not have a new :count keyword which limits the number of times that the sequence is
split.

12.7.55 Writing messages to system log files

The new functions hcl:write-to-system-log and hcl:format-to-system-log can be used to write messages to the
operating system log files.

12.8 IDE changes

This section describes new features and other changes in the LispWorks Integrated Development Environment (IDE).

See the LispWorks IDE User Guide for details of the features mentioned. This section is not relevant to LispWorks for Mobile
Runtime.

12.8.1 Support for Dark mode on macOS

the LispWorks IDE now supports Dark mode in the default Cocoa interface on macOS.

12.8.2 Configurable external format for the Shell tool

On non-Windows platforms, the external format that is used for communicating with the shell in the Shell tool can be set in
the preferences dialog. By default, the external format defaults to the format specified by the POSIX environemnt variables
LC_ALL, LC_CTYPE or LANG.

Note that the above affect only Shell windows which are created after any change is made. Existing windows are not affected.

12.8.3 A Commands menu has been added

There is a now a Commands menu, both in the menu bar of editing interfaces (or the Works menu on Windows) and in the
context menu of editing panes. You can use the Commands menu to invoke Editor commands of your choice, thus making
commands that you frequently find useful available by mouse clicks. You can control which commands appear on the menu

12 Release Notes

83

by choosing Commands > Display Command List....

12.8.4 Showing IDE interfaces in the Windows Browser

There is now a checkbox on the Components tab of the preferences for the Window Browser that controls whether to show
IDE interfaces or not. Deselecting it makes it easier to find your interfaces in the graph.

12.8.5 The Works menu when displaying user-defined interfaces on Windows

On non-Windows platforms, when you display one your own interfaces while running the LispWorks IDE, it gets an extra
menu called Works, which allows you to perform development operations. This menu is not added in delivered applications.

On Windows, the addition of the menu was inconsistent. In LispWorks 8.0, the Works menu is added to your interfaces on
Windows as well, except when the LispWorks IDE is set to Separate windows sharing a menu bar in the preferences or for
interfaces inside an MDI window.

Note that you can stop the addition of the Works menu in the LispWorks IDE by passing :auto-menus nil when creating
the interface.

12.8.6 Identifying object allocation in the Profiler tool

The Profiler tool has a new menu item Show calls to allocation functions [inverted] in the context menu of the Call Tree and
Stacked Tree tabs to show an inverted tree where the allocation functions are the roots, making it easier to see where
allocation happens.

12.8.7 The Profiler automatically displays the results after profiling

The Profiler tool now switches automatically to the Stacked Tree tab after profiling finishes. This can be controled by the
new When Code To Profile finishes profiling: option in the Profiler tool's preferences.

12.8.8 New operations in the Cumulative tab of the Profiler

The context menu in the Cumulative tab of the Profiler now allows you to show the selected function as the root of a tree or
show the calls to the function as an inverted tree. The tree is shown in the Call Tree or Stacked Tree tabs according to the set
of When setting a root in the Cumulative tab: in the Preferences dialog.

12.8.9 Building universal binaries on macOS with the Application Builder

You can build a universal binary on an arm64 (Apple silicon) Macintosh computer, using the same script as was used to build
a normal ("thin") image.

12.8.10 Customizing the string used for hidden comments in folded definitions

The string used for hidden comments in folded definitions can be customized in the Editor Options tab of the Editor's
Preferences dialog. See 4.14 Definition folding in the Editor User Guide for an explanation of defintion folding.

The style of the replacement string for hidden comments can be changed via Preferences... > Environment > Styles > Styles
Colors And Attributes.

12 Release Notes

84

12.8.11 Operating on previous results in the Listener

The results of expression evaluation in the Listener are output as marked objects (except for trivial objects). That means they
have a special style, and you can operate on them by using the context menu and choosing items from the Marked Object
submenu.

The style used to display marked objects is called Marked Object and can be changed via Preferences... > Environment >
Styles > Styles Colors And Attributes.

12.9 Editor changes

This section describes new features and other changes in the LispWorks editor, which is used in the Editor tool of the
LispWorks IDE.

See the Editor User Guide for details of these changes. This section is not relevant to LispWorks for Mobile Runtime.

12.9.1 Lax whitespace matches

Search commands in the Editor can now be configured to search for whitespace in a "lax" way like in GNU Emacs. This
means that any sequence of spaces in the search string will match any consecutive whitespace in the text.

The new editor variables editor:isearch-lax-whitespace, editor:isearch-regexp-lax-whitespace,
editor:replace-lax-whitespace and editor:replace-regexp-lax-whitespace control the default state of lax
whitespace matching in various operations.

For incremental searches, you can toggle between lax and exact whitespace matching for the current operation by typing
Meta-s #\Space.

The new editor variable editor:search-whitespace-regexp contains the regexp used to match whitespace in lax mode.

12.9.2 Unique buffer names based on the directory of the file

When you open more than one file with a given name but in different directories, the editor has to ensure that the buffers have
unique names. In previous releases, the first buffer was named after the file and subsequent buffers were named after the file
with an additional suffix <n>, where n was 2, 3, 4 etc.

In LispWorks 8.0, the editor still uses the name of the file is that is unique and otherwise renames all buffer with conflicting
names to be unique. By default, the unique buffer name has a suffix <dirs> where dirs includes enough of the directory name
to make it unique.

The new function editor:set-buffer-name-directory-delimiters can be used to control how the buffer name is
adjusted for files that have the same name, or switch back to the numerical suffix used in previous releases.

12.9.3 Definition folding

The editor now supports "definition folding", which means making the body of a definition invisible, as well as the preceding
lines up to the previous definition, Currently the implementation applies only to Lisp definitions. A line starting with an
open bracket is regarded as the begining of a Lisp definition, and the matching closing bracket is its end. The folding only
affects the way the text in the buffer is displayed on the screen, and have no effect on the buffer contents.

The new editor commands The new editor commands Fold Buffer Definitions, , Unfold Buffer Definitions and and Toggle
Current Definition Folding change the definition folding of the current buffer.

12 Release Notes

85

12.9.4 Indentation of loop

Uses of the extended loop form are now indented by the Editor based on the clause structure. For example:

(loop for index below 10
 when (foo index)
 do (print index))

12.9.5 Control how files are loaded

The new function editor:set-pathname-load-function allows you to set a specific function that will be called when
loading files with a given type using the Editor command allows you to set a specific function that will be called when
loading files with a given type using the Editor command Load File and the File > Load menu item in the LispWorks IDE.

12.9.6 Reverting a buffer with a different external format

Sometimes the editor uses the wrong external format when you open a file. The new editor command Sometimes the editor
uses the wrong external format when you open a file. The new editor command Revert Buffer With External Format
allows you to reopen the file after selecting a specific external format.

12.9.7 Toggling between the main and Output tabs in a Listener or Editor

The editor command The editor command Invoke Tool can now be used to toggle between the main and Output tabs in a
Listener or Editor by using the character for the tool itself (l or e respectively).

12.9.8 Editor Ctrl+[and Ctrl+] key bindings in Windows emulation mode

When Editor key are like Microsoft Windows, menu bar via Alt key is checked in the Environment > Emulation preferences,
the keyboard shortcuts Ctrl+[and Ctrl+] now perform Beginning of Defun and End of Defun respectively.

12.10 Foreign Language interface changes

See the Foreign Language Interface User Guide and Reference Manual for details of these changes.

12.10.1 :allow-null now defaults to nil for foreign strings as documented

The function fli:convert-from-foreign-string now gives an error when the pointer is a null pointer and the allow-
null argument is true. In previous releases, a null pointer was always converted to nil. Pass :allow-null t if you want
the previous behavior.

The functions fli:convert-to-foreign-string and fli:convert-to-dynamic-foreign-string now give an
error when the string is nil and the allow-null argument is false. In previous releases, nil converted to a foreign string with
length 0. Pass a Lisp string with length 0 if you want the previous behavior.

12.10.2 Checking for a valid foreign type

The function fli:valid-foreign-type-p has been added as a predicate to check if its argument is a valid foreign type.

12 Release Notes

86

http://www.lispworks.com/documentation/HyperSpec/Body/m_loop.htm

12.10.3 fli:incf-pointer and fli:decf-pointer signal an error for types of size 0

The functions fli:incf-pointer and fli:decf-pointer now signal an error if the type pointed to by the argument has
size 0 (for example, a void type).

12.10.4 Support for the C99 _Bool type (stdbool.h)

The foreign type :boolean now supports the C99 _Bool by using the form (:boolean :standard).

12.10.5 Control of when fli:install-embedded-module deletes it temporary file

The function fli:install-embedded-module now has a keyword argument delay-delete that controls the time of
deletion of the temporary file that is created for the module. A new variable
fli:*install-embedded-module-delay-delete* is used as the default value for the keyword.

12.10.6 Use of dlopen on macOS

LispWorks now uses dlopen to load foreign modules on macOS, like on other non-Windows platforms. The default value of
the :dlopen-flags argument to the function fli:register-module is now t on all platforms.

12.11 Objective-C changes

This section applies only to Macintosh and iOS platforms. See the LispWorks Objective-C and Cocoa Interface User Guide
and Reference Manual for details.

12.11.1 objc:can-invoke-p can now be used with the result of current-super

The function objc:can-invoke-p can now be called with the result of objc:current-super in an Objective-C method
implementation to see if the superclass implements a method.

12.11.2 objc:objc-bool on Macs based on Apple silicon

On Macs based on Apple silicon, the Objective-C BOOL type is the C99 _Bool type, whereas on Intel-based Macs it is a
signed byte. The effect of this change is limited, but you may need to add extra Foreign Language Interface templates to your
application if you have any that use the FLI type objc:objc-bool. See 10.6.1 Foreign Language Interface templates in the
Delivery User Guide for details of how to do this.

12.11.3 The :darwin-lw-objc foreign module has been removed

If you call objc:ensure-objc-initialized explicitly when initializing your application, then you should not include
:darwin-lw-objc in the list supplied to the :modules argument in LispWorks 8.0. Previous releases needed this foreign
module in applications that use the CAPI, but the module has been removed and written in Lisp.

12.12 Common SQL changes

12 Release Notes

87

12.12.1 New helper functions and macro for prepared statements

The new functions sql:prepared-statement-set-and-execute,
sql:prepared-statement-set-and-execute*, sql:prepared-statement-set-and-query and
sql:prepared-statement-set-and-query* can be used to set the variables of a sql:prepared-statement and
then execute or query using it.

The new macro sql:with-prepared-statement execute codes with a variable bound to a new prepared-statement

and destroys it afterwards.

12.12.2 Calling connect with :if-exists and without :name

An error is signaled now if the name argument to the function sql:connect is not supplied and the if-exists argument is
supplied with any value except :new. This is because there is no way to find an existing connection unless name is supplied.

12.12.3 New condition class signaled by connect

The new condition class sql:sql-failed-to-connect-error can be signaled by sql:connect for a failure to connect
to a SQL database server. It typically indicates an incorrect connection specification such as a bad user name.

12.12.4 Some missing LOB functions are now exported

The functions sql:ora-lob-get-chunk-size and sql:ora-lob-file-set-name are now exported. They have been
documented since LispWorks 5.0, but the symbols were not exported.

They were missing due to a bug.

12.13 KnowledgeWorks changes

This section applies only when you have a license to run KnowledgeWorks. See the KnowledgeWorks and Prolog User Guide
for details, unless a manual is referenced explicitly.

12.13.1 New phrase predicate

A phrase predicate has been added to Common Prolog, which is the standard Prolog way to call a rule defined with
defgrammer.

12.14 Application delivery changes

See the Delivery User Guide for more details of the changes mentioned in this section.

12.14.1 New values for the :interrupt-function keyword

Additional values :quit, :ignore and :break have been added to the :interrupt-function lispworks:deliver keyword.

12 Release Notes

88

12.15 Other changes

12.15.1 Changes in *features*

:lispworks8.0 amd :lispworks8 are present, :lispworks7.1 and :lispworks7 are not.

For a full description including information about the features used to distinguish new LispWorks implementations and
platforms, see the entry for cl:*features* in the LispWorks® User Guide and Reference Manual.

12.15.2 ASDF version

The supplied ASDF is now version 3.3.5.

Note that this version of ASDF no longer exports uiop:defun* and uiop:defgeneric*. If you are using an older
version of the serapeum library (from Quicklisp or github) that uses uiop:defun* then will need to update your copy.

12.15.3 The loop macro no longer allows "finally do" or "finally return"

The loop macro no longer allows the return or do loop keywords to be part of the finally clause. Previous releases of
LispWorks supported this as an undocumented extension to ANSI Common Lisp.

To be compliant with all versions of LispWorks, change:

(loop ... finally do (form))
(loop ... finally return (form))
(loop named foo ... finally return (form))

to:

(loop ... finally (form))
(loop ... finally (return (form)))
(loop named foo ... finally (return-from foo (form)))

12.15.4 The loop macro now allows "of-type" with any atomic type

For compatibility with other implementations of the loop macro, you can now use any atomic type specifier after the
of-type clause. Previous releases only allowed the types fixnum, float, t and nil as defined by ANSI Common Lisp.

12.15.5 Compiler macros are no longer expanded by the setf macro

When compiling a form like:

(setf (foo) value)

any compiler macro for foo is now ignored. If the setf form expands to a call to (setf foo) then any compiler macro for
(setf foo) will be used. Compiler macros are defined using define-compiler-macro. This change does not affect
macros defined by defmacro.

In previous releases, the compiler macro for foo would be used and any compiler macro for (setf foo) would be ignored.

12 Release Notes

89

http://www.lispworks.com/documentation/HyperSpec/Body/v_featur.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_loop.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_loop.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_define.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmac.htm

12.15.6 hcl:fast-directory-files for a non-wild pathname

When the function hcl:fast-directory-files is called with a pathname whose name and type are both not wild, it now
calls the callback with the file that matches that name and type. In previous releases, it called the callback for all files in the
same directory, which was a bug.

12.15.7 cl:type-of now returns more specific types

The function type-of now returns more specific types for integers, characters, functions, keywords and the symbol t.

12.15.8 Loading old data files

Binary files created with hcl:dump-forms-to-file or hcl:with-output-to-fasl-file in LispWorks 7.1,
LispWorks 7.0, LispWorks 6.1, LispWorks 6.0, LispWorks 5.x, LispWorks 4.4 or LispWorks 4.3 can be loaded into
LispWorks 8.0 using system:load-data-file.

12.16 Documentation changes

12.16.1 Hyperlinks between manuals

The HTML documentation now has hyperlinks between manuals.

12.16.2 The HTML documentation directory

The HTML documentation is now in a directory named html-m, html-w or html-u according to which LispWorks platform
you have installed. In older versions of LispWorks, this directory was named online.

12.16.3 Regular expression syntax

The documentation for the LispWorks regular expression syntax has been moved to the LispWorks® User Guide and
Reference Manual.

12.16.4 Physical pathnames in LispWorks

Some details of how physical pathnames are parsed and printed in LispWorks are now documented in 27.18 Physical
pathnames in LispWorks in the LispWorks® User Guide and Reference Manual.

12.16.5 New self-contained examples

These examples are entirely new:

(example-edit-file "capi/applications/interface-color-mode.lisp")
(example-edit-file "capi/applications/simple-othello.lisp")
(example-edit-file "capi/choice/filter-added-filters.lisp")
(example-edit-file "capi/choice/list-panel-keyboard-search.lisp")
(example-edit-file "capi/choice/stacked-tree.lisp")
(example-edit-file "capi/choice/tree-view-with-state.lisp")
(example-edit-file "capi/output-panes/modifier-change.lisp")
(example-edit-file "compiler/float-optimization.lisp")
(example-edit-file "editor/advanced/isearch-open-invisible.lisp")
(example-edit-file "editor/advanced/overlay-strings.lisp")
(example-edit-file "ssl/openssl-certificates.lisp")

12 Release Notes

90

http://www.lispworks.com/documentation/HyperSpec/Body/f_tp_of.htm

(example-edit-file "ssl/openssl-server.lisp")

The Android Othello demo has been converted to an Android Studio project. Use with Eclipse is no longer supported.

12.16.6 Removed self-contained examples

The capi/graphics/plot-directly and capi/output-panes/scroll-test.lisp examples have been removed
because they relied on drawing outside the :display-callback, which is no longer supported.

The capi/graphics/ruler.lisp example has been removed because it did not document anything useful.

The example files editor/syntax-coloring/defsys.lisp and editor/syntax-coloring/pkg.lisp have been
removed because editor/syntax-coloring/syntax-coloring.lisp is self-contained.

12.17 Known Problems

12.17.1 Problems with CAPI on GTK+

The capi:interface-override-cursor is ignored by capi:text-input-pane which always displays its usual I-
beam cursor. This is due to a limitation in the way that text-input-pane is implemented by GTK.

The normal navigation gesture (Tab) is treated as an editor command in capi:editor-pane and IDE tools based on this.
Instead, use Ctrl+Tab to navigate from an editor pane in GTK+.

In GTK+ versions older than 2.12, the value of capi:option-pane enabled-positions has no effect on the visible
representation of the items. In later versions of GTK+, the disabled items are grayed out.

In GTK+ versions older than 2.12, capi:display-tooltip does not work. In version 2.12 and later, the :x and :y

keyword arguments of capi:display-tooltip might not be handled.

12.17.2 Problems with LispWorks for Macintosh

The Motif GUI does not work "out of the box" with Fink because LispWorks does not look for libXm etc in /sw/lib/.

12.17.3 Problems with the LispWorks IDE on Cocoa

Multithreading in the CAPI is different from other platforms. In particular, all windows run in a single thread, whereas on
other platforms there is a thread per window.

The debugger currently does not work for errors in Cocoa Event Loop or Editor Command Loop threads. However, there is a
Get Backtrace button so you can obtain a backtrace and also a Debug Snapshot button which aborts from the error but
displays a debugger with a copy (snapshot) of the stack where the error occurred.

The online documentation interface currently starts a new browser window each time.

Setting *enter-debugger-directly* to t can allow the undebuggable processes to enter the debugger, resulting in the
UI freezing.

Inspecting a long list (for example, 1000 items) via the Listener's Inspect Star editor command prompts you about truncation
in a random window. If you cancel, the Inspector is still displayed.

The Definitions > Compile and Definitions > Evaluate menu options cause multiple "Press space to continue" messages to be
displayed and happen interleaved rather than sequentially.

The Buffers > Compile and Buffers > Evaluate menu options cause multiple "Press space to continue" messages to be

12 Release Notes

91

displayed and happen interleaved rather than sequentially.

12.17.4 Problems with CAPI and Graphics Ports on Cocoa

The capi:interface-override-cursor is ignored.

Some graphics state parameters are ignored, in particular operation, stipple, pattern and fill-style.

LispWorks ignores the System Preferences setting for the smallest font size to smooth.

There is no support for state images or checkboxes in capi:tree-view.

capi:with-page does not work, because Cocoa tries to control page printing.

The :help-callback initarg is only implemented for the :tooltip value of the type argument.

The :visible-border initarg only works for scrolling panes.

Caret movement and selection setting in capi:text-input-pane is implemented, but note that it works only for the
focussed pane.

capi:docking-layout does not support (un)docking.

There is no meta key in the input-model of capi:output-pane. Note that, in the editor when using Emacs emulation, the
Escape key can be used as a prefix.

There has been no testing with 256 color displays.

Some pinboard code uses :operation boole-xor which is not implemented.

The default menu bar is visible when the current window has no menu bar.

capi:tree-view is slow for a large number (thousands) of items.

The editor displays decomposed characters as separate glyphs.

The :gap option is not supported for the columns of capi:multi-column-list-panel.

capi:display-dialog ignores the specified :x and :y coordinates of the dialog (for drop-down sheets the coordinates are
not relevant, and for dialogs which are separate windows Cocoa forces the window to be in the top-center of the screen).

12.18 Binary Incompatibility

If you have binaries (fasl files) which were compiled using LispWorks 7.1 or previous versions, please note that these are not
compatible with this release. Please recompile all your code with LispWorks 8.0.

12 Release Notes

92

Index

A

accept-tcp-connections-creating-async-io-states function 12.7.20 : Support for SSL using Apple Security
Framework 79, 12.7.26 : Listen on the same port with more than one socket 79

accessors

interface-override-cursor 12.17.1 : Problems with CAPI on GTK+ 91, 12.17.4 : Problems with CAPI and Graphics Ports on
Cocoa 92

top-level-interface-color-mode 12.5.7 : Support for dark themes in capi:interface 74

top-level-interface-color-mode-callback 12.5.7 : Support for dark themes in capi:interface 74

add-package-local-nickname function 12.7.1 : Package-local nicknames 76

attach-ssl function 12.7.20 : Support for SSL using Apple Security Framework 79

B

:boolean FLI type descriptor 12.10.4 : Support for the C99 _Bool type (stdbool.h) 87

building-main-architecture-p function 12.3.9 : macOS universal binaries are supported again 73

building-universal-intermediate-p function 12.3.9 : macOS universal binaries are supported again 73

C

call-java-method function 12.7.31 : Calling static or non-static methods in the Java interface 80

call-java-non-virtual-method function 12.7.32 : Making a non-virtual call to a method in the Java interface 80

call-java-static-method function 12.7.31 : Calling static or non-static methods in the Java interface 80

call-system function 12.7.7 : Operating system interfaces on non-Windows based on locale 77

call-system-showing-output function 12.7.7 : Operating system interfaces on non-Windows based on locale 77

can-invoke-p function 12.11.1 : objc:can-invoke-p can now be used with the result of current-super 87

C functions

InitLispWorks 12.7.39 : New error codes from the InitLispWorks C function 81

classes

docking-layout 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 92

editor-pane 12.17.1 : Problems with CAPI on GTK+ 91

filtering-layout 12.5.11 : Adding additional filters in capi:list-panel and capi:filtering-layout 75

interface 12.5.7 : Support for dark themes in capi:interface 74

list-panel 12.5.2 : Row and column separators in list panels 74, 12.5.11 : Adding additional filters in capi:list-panel and capi:filtering-
layout 75

menu 12.5.6 : Menus can now display with both images and text on Microsoft Windows 74

multi-column-list-panel 12.5.2 : Row and column separators in list panels 74, 12.5.3 : Support for reorderable columns in
capi:multi-column-list-panel on GTK 74, 12.5.4 : New :x-adjust initarg for capi:multi-column-list-panel 74, 12.17.4 : Problems with
CAPI and Graphics Ports on Cocoa 92

option-pane 12.17.1 : Problems with CAPI on GTK+ 91

output-pane 12.5.12 : Coordinates for keyboard events in the input model take account of scrolling 75, 12.5.14 : Forcing scroll bars to

93

be visible on macOS 75, 12.6.1 : Drawing to an output-pane outside the display-callback 76, 12.17.4 : Problems with CAPI and
Graphics Ports on Cocoa 92

rich-text-pane 12.5.10 : New capi:rich-text-pane callback on Windows called when the user clicks a link 75

stacked-tree 12.5.9 : Support for dark themes in capi:stacked-tree 75

text-input-pane 12.17.1 : Problems with CAPI on GTK+ 91, 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 92

tree-view 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 92, 12.17.4 : Problems with CAPI and Graphics Ports on
Cocoa 92

close-socket-handle function 12.7.27 : New function to close a socket handle 80

com.lispworks.Manager.setClassLoader Java method 12.7.38 : Controlling aspects of LispWorks initialization on Android 81

com.lispworks.Manager.setLispTempDir Java method 12.7.38 : Controlling aspects of LispWorks initialization on Android 81

com.lispworks.Manager.setRuntimeLispHeapDir Java method 12.7.38 : Controlling aspects of LispWorks initialization on
Android 81

command line arguments

-init 11.9.5 : Reporting crashes 68

-init on Linux 10.3.2 : Configuration files available 54, 10.5 : Initializing LispWorks 56

-init on macOS 8.3.3 : Configuration files available 41, 8.5 : Initializing LispWorks 44

-init on Windows 9.3.2 : Configuration files available 48, 9.5 : Initializing LispWorks 50

-siteinit on Linux 10.3.2 : Configuration files available 54

-siteinit on macOS 8.3.3 : Configuration files available 41

-siteinit on Windows 9.3.2 : Configuration files available 48

compile-file-if-needed function 12.7.18 : Version checking in compile-file-if-needed 78

condition classes

java-program-error 12.7.30 : New condition classes in the Java interface 80

jobject-call-method-error 12.7.30 : New condition classes in the Java interface 80

socket-create-error 12.7.29 : New condition classes in the socket interface 80

socket-io-error 12.7.29 : New condition classes in the socket interface 80

sql-failed-to-connect-error 12.12.3 : New condition class signaled by connect 88

ssl-handshake-timeout 12.7.29 : New condition classes in the socket interface 80

ssl-verification-failure 12.7.29 : New condition classes in the socket interface 80

configure-remote-debugging-spec function 12.7.14 : Using SSL for remote debugging 78, 12.7.15 : Using IPv6 for remote
debugging 78

connect function 12.12.2 : Calling connect with :if-exists and without :name 88, 12.12.3 : New condition class signaled by connect 88

convert-from-foreign-string function 12.10.1 : :allow-null now defaults to nil for foreign strings as documented 86

convert-to-dynamic-foreign-string function 12.10.1 : :allow-null now defaults to nil for foreign strings as documented 86

convert-to-foreign-string function 12.10.1 : :allow-null now defaults to nil for foreign strings as documented 86

corrupted executable 11.1.5 : Corrupted LispWorks executable 60

count-regexp-occurrences function 12.7.51 : "Lax whitespace" regexp searching 82

create-async-io-state-and-connected-tcp-socket function 12.7.20 : Support for SSL using Apple Security
Framework 79

create-instance-jobject-list function 12.7.37 : lw-ji:create-instance-jobject-list is now exported from lw-ji 81

create-ssl-client-context function 12.7.20 : Support for SSL using Apple Security Framework 78

Index

94

create-ssl-server-context function 12.7.20 : Support for SSL using Apple Security Framework 78

create-universal-binary function 12.3.9 : macOS universal binaries are supported again 73

current-pointer-position function 12.5.13 : capi:current-pointer-position always takes account of scrolling in capi:output-
pane 75

current-super function 12.11.1 : objc:can-invoke-p can now be used with the result of current-super 87

D

:darwin-lw-objc foreign module removed 12.11.3 : The :darwin-lw-objc foreign module has been removed 87

decf-pointer function 12.10.3 : fli:incf-pointer and fli:decf-pointer signal an error for types of size 0 87

define-compiler-macro macro 12.15.5 : Compiler macros are no longer expanded by the setf macro 89

define-form-parser macro 12.7.49 : Source location for macros that group other definition 82

define-java-caller macro 12.7.31 : Calling static or non-static methods in the Java interface 80, 12.7.32 : Making a non-virtual
call to a method in the Java interface 80, 12.7.33 : lw-ji:define-java-caller and lw-ji:setup-java-caller can now return lw-ji:jobject 80

defparser macro 12.7.52 : New arguments to the parser function defined by defparser 83

deliver function 12.3.9 : macOS universal binaries are supported again 73, 12.3.10 : macOS images are now split into two files by
default 73

deliver-to-android-project function 12.3.3 : Runtimes for Android 72

directory function 12.7.40 : Stricter meaning of the :link-transparency argument to cl:directory 81

display-dialog function 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 92

display-tooltip function 12.17.1 : Problems with CAPI on GTK+ 91

docking-layout class 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 92

dump-forms-to-file function 12.15.8 : Loading old data files 90

E

editor commands

Fold Buffer Definitions 12.9.3 : Definition folding 85

Invoke Tool 12.9.7 : Toggling between the main and Output tabs in a Listener or Editor 86

Load File 12.9.5 : Control how files are loaded 86

Revert Buffer With External Format 12.9.6 : Reverting a buffer with a different external format 86

Toggle Current Definition Folding 12.9.3 : Definition folding 85

Unfold Buffer Definitions 12.9.3 : Definition folding 85

editor-pane class 12.17.1 : Problems with CAPI on GTK+ 91

editor variables

isearch-lax-whitespace 12.9.1 : Lax whitespace matches 85

isearch-regexp-lax-whitespace 12.9.1 : Lax whitespace matches 85

replace-lax-whitespace 12.9.1 : Lax whitespace matches 85

replace-regexp-lax-whitespace 12.9.1 : Lax whitespace matches 85

search-whitespace-regexp 12.9.1 : Lax whitespace matches 85

ensure-objc-initialized function 12.11.3 : The :darwin-lw-objc foreign module has been removed 87

ensure-ssl function 12.7.20 : Support for SSL using Apple Security Framework 78

enter-debugger-directly variable 12.17.3 : Problems with the LispWorks IDE on Cocoa 91

Index

95

environment-variable function 12.7.7 : Operating system interfaces on non-Windows based on locale 77

errors while building application 11.1.3 : Build phase (delivery-time) errors 60

errors while delivering application 11.1.3 : Build phase (delivery-time) errors 60

extended-time macro 11.9.2 : Performance Issues 66

F

Failed to enlarge memory 11.1.4 : Memory requirements 60

fast-directory-files function 12.15.6 : hcl:fast-directory-files for a non-wild pathname 90

features variable 12.2.1 : Conditionalizing code for different versions of LispWorks 71, 12.15.1 : Changes in *features* 89

file-binary-bytes function 12.7.42 : Reading a file into an array of bytes 81

file-link-p function 12.7.41 : Checking whether a file is a symbolic link 81

fill-style graphics state parameter 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 92

filtering-layout class 12.5.11 : Adding additional filters in capi:list-panel and capi:filtering-layout 75

filtering-layout-match-object-and-exclude-p function 12.5.11 : Adding additional filters in capi:list-panel and
capi:filtering-layout 75

finally clause in the loop macro no longer allows do or return 12.15.3 : The loop macro no longer allows "finally do" or "finally
return" 89

find-regexp-in-string function 12.7.51 : "Lax whitespace" regexp searching 82

FLI type descriptors

:boolean 12.10.4 : Support for the C99 _Bool type (stdbool.h) 87

jvalue 12.7.35 : Access to JNI jvalue objects 81

objc-bool 12.11.2 : objc:objc-bool on Macs based on Apple silicon 87

sec-certificate-ref 12.7.21 : Specifying and accessing SSL certificates 79

ssl-context-ref 12.7.20 : Support for SSL using Apple Security Framework 79

x509-pointer 12.7.21 : Specifying and accessing SSL certificates 79

Fold Buffer Definitions editor command 12.9.3 : Definition folding 85

format-to-system-log function 12.7.55 : Writing messages to system log files 83

functions

accept-tcp-connections-creating-async-io-states 12.7.20 : Support for SSL using Apple Security
Framework 79, 12.7.26 : Listen on the same port with more than one socket 79

add-package-local-nickname 12.7.1 : Package-local nicknames 76

attach-ssl 12.7.20 : Support for SSL using Apple Security Framework 79

building-main-architecture-p 12.3.9 : macOS universal binaries are supported again 73

building-universal-intermediate-p 12.3.9 : macOS universal binaries are supported again 73

call-java-method 12.7.31 : Calling static or non-static methods in the Java interface 80

call-java-non-virtual-method 12.7.32 : Making a non-virtual call to a method in the Java interface 80

call-java-static-method 12.7.31 : Calling static or non-static methods in the Java interface 80

call-system 12.7.7 : Operating system interfaces on non-Windows based on locale 77

call-system-showing-output 12.7.7 : Operating system interfaces on non-Windows based on locale 77

can-invoke-p 12.11.1 : objc:can-invoke-p can now be used with the result of current-super 87

close-socket-handle 12.7.27 : New function to close a socket handle 80

compile-file-if-needed 12.7.18 : Version checking in compile-file-if-needed 78

Index

96

configure-remote-debugging-spec 12.7.14 : Using SSL for remote debugging 78, 12.7.15 : Using IPv6 for remote
debugging 78

connect 12.12.2 : Calling connect with :if-exists and without :name 88, 12.12.3 : New condition class signaled by connect 88

convert-from-foreign-string 12.10.1 : :allow-null now defaults to nil for foreign strings as documented 86

convert-to-dynamic-foreign-string 12.10.1 : :allow-null now defaults to nil for foreign strings as documented 86

convert-to-foreign-string 12.10.1 : :allow-null now defaults to nil for foreign strings as documented 86

count-regexp-occurrences 12.7.51 : "Lax whitespace" regexp searching 82

create-async-io-state-and-connected-tcp-socket 12.7.20 : Support for SSL using Apple Security Framework 79

create-instance-jobject-list 12.7.37 : lw-ji:create-instance-jobject-list is now exported from lw-ji 81

create-ssl-client-context 12.7.20 : Support for SSL using Apple Security Framework 78

create-ssl-server-context 12.7.20 : Support for SSL using Apple Security Framework 78

create-universal-binary 12.3.9 : macOS universal binaries are supported again 73

current-pointer-position 12.5.13 : capi:current-pointer-position always takes account of scrolling in capi:output-pane 75

current-super 12.11.1 : objc:can-invoke-p can now be used with the result of current-super 87

decf-pointer 12.10.3 : fli:incf-pointer and fli:decf-pointer signal an error for types of size 0 87

deliver 12.3.9 : macOS universal binaries are supported again 73, 12.3.10 : macOS images are now split into two files by default 73

deliver-to-android-project 12.3.3 : Runtimes for Android 72

directory 12.7.40 : Stricter meaning of the :link-transparency argument to cl:directory 81

display-dialog 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 92

display-tooltip 12.17.1 : Problems with CAPI on GTK+ 91

dump-forms-to-file 12.15.8 : Loading old data files 90

ensure-objc-initialized 12.11.3 : The :darwin-lw-objc foreign module has been removed 87

ensure-ssl 12.7.20 : Support for SSL using Apple Security Framework 78

environment-variable 12.7.7 : Operating system interfaces on non-Windows based on locale 77

fast-directory-files 12.15.6 : hcl:fast-directory-files for a non-wild pathname 90

file-binary-bytes 12.7.42 : Reading a file into an array of bytes 81

file-link-p 12.7.41 : Checking whether a file is a symbolic link 81

filtering-layout-match-object-and-exclude-p 12.5.11 : Adding additional filters in capi:list-panel and capi:filtering-
layout 75

find-regexp-in-string 12.7.51 : "Lax whitespace" regexp searching 82

format-to-system-log 12.7.55 : Writing messages to system log files 83

generalized-time-p 12.7.22 : SSL certificate generalized time API 79

generalized-time-pprint 12.7.22 : SSL certificate generalized time API 79

generalized-time-string 12.7.22 : SSL certificate generalized time API 79

get-certificate-common-name 12.7.21 : Specifying and accessing SSL certificates 79

get-certificate-data 12.7.21 : Specifying and accessing SSL certificates 79

get-certificate-serial-number 12.7.21 : Specifying and accessing SSL certificates 79

get-temp-directory 12.7.48 : hcl:get-temp-directory no longer returns a truename 82

get-throwable-backtrace-strings 12.7.36 : Getting a backtrace from a Java throwable object 81

ide-connect-remote-debugging 12.7.14 : Using SSL for remote debugging 78, 12.7.15 : Using IPv6 for remote debugging 78

Index

97

incf-pointer 12.10.3 : fli:incf-pointer and fli:decf-pointer signal an error for types of size 0 87

install-embedded-module 12.10.5 : Control of when fli:install-embedded-module deletes it temporary file 87

invalidate-rectangle 12.5.1 : New thread-safe function to force a redisplay part of an capi:output-pane 74

jobject-call-method 12.7.31 : Calling static or non-static methods in the Java interface 80

jvalue-store-jboolean 12.7.35 : Access to JNI jvalue objects 81

jvalue-store-jbyte 12.7.35 : Access to JNI jvalue objects 81

jvalue-store-jchar 12.7.35 : Access to JNI jvalue objects 81

jvalue-store-jdouble 12.7.35 : Access to JNI jvalue objects 81

jvalue-store-jfloat 12.7.35 : Access to JNI jvalue objects 81

jvalue-store-jint 12.7.35 : Access to JNI jvalue objects 81

jvalue-store-jlong 12.7.35 : Access to JNI jvalue objects 81

jvalue-store-jobject 12.7.35 : Access to JNI jvalue objects 81

jvalue-store-jshort 12.7.35 : Access to JNI jvalue objects 81

load-data-file 12.15.8 : Loading old data files 90

log-bug-form 11.9.6 : Log Files 68

make-array 12.7.2 : Support for pinning objects while in foreign code 76

make-generalized-time 12.7.22 : SSL certificate generalized time API 79

make-lisp-proxy 12.7.34 : Specifying a Java class loader for Lisp proxy objects 80

make-lisp-proxy-with-overrides 12.7.34 : Specifying a Java class loader for Lisp proxy objects 80

make-typed-aref-vector 12.7.2 : Support for pinning objects while in foreign code 76

open-pipe 12.7.7 : Operating system interfaces on non-Windows based on locale 77, 12.7.8 : system:open-pipe and system:run-shell-
command work with external formats 77

open-tcp-stream 12.7.20 : Support for SSL using Apple Security Framework 79, 12.7.25 : comm:open-tcp-stream now returns
information about errors 79

ora-lob-file-set-name 12.12.4 : Some missing LOB functions are now exported 88

ora-lob-get-chunk-size 12.12.4 : Some missing LOB functions are now exported 88

package-locally-nicknamed-by-list 12.7.1 : Package-local nicknames 76

package-local-nicknames 12.7.1 : Package-local nicknames 76

parse-printed-generalized-time 12.7.22 : SSL certificate generalized time API 79

pipe-exit-status 12.7.9 : Specifying a timeout for system:pipe-exit-status 77

precompiled-regexp-p 12.7.50 : The precompiled-regexp system class 82

precompile-regexp 12.7.51 : "Lax whitespace" regexp searching 82

prepared-statement-set-and-execute 12.12.1 : New helper functions and macro for prepared statements 88

prepared-statement-set-and-execute* 12.12.1 : New helper functions and macro for prepared statements 88

prepared-statement-set-and-query 12.12.1 : New helper functions and macro for prepared statements 88

prepared-statement-set-and-query* 12.12.1 : New helper functions and macro for prepared statements 88

profiler-tree-to-allocation-functions 12.7.16 : Identifying object allocation in the profiler 78

prompt-with-list 12.5.5 : Specifying the initial selection in capi:prompt-with-list 74

read-sequence 12.7.43 : cl:read-sequence and cl:write-sequence now depend on cl:stream-element-type 81, 12.7.44 : Specializing
cl:read-sequence and cl:write-sequence is now documented 82

redisplay-element 12.5.1 : New thread-safe function to force a redisplay part of an capi:output-pane 74

Index

98

register-module 12.10.6 : Use of dlopen on macOS 87

release-certificate 12.7.21 : Specifying and accessing SSL certificates 79

release-certificates-vector 12.7.21 : Specifying and accessing SSL certificates 79

remove-package-local-nickname 12.7.1 : Package-local nicknames 76

reset-ssl-abstract-context 12.7.20 : Support for SSL using Apple Security Framework 78

room 11.9.2 : Performance Issues 66

run-shell-command 12.7.7 : Operating system interfaces on non-Windows based on locale 77, 12.7.8 : system:open-pipe and
system:run-shell-command work with external formats 77, 12.7.10 : system:run-shell-command can now return a signal number 77

save-image 12.3.9 : macOS universal binaries are supported again 73, 12.3.10 : macOS images are now split into two files by
default 73

save-universal-from-script 12.3.9 : macOS universal binaries are supported again 73

schedule-timer 12.7.47 : Scheduling a repeating timer relative to the current time 82

schedule-timer-milliseconds 12.7.47 : Scheduling a repeating timer relative to the current time 82

schedule-timer-relative 12.7.47 : Scheduling a repeating timer relative to the current time 82

schedule-timer-relative-milliseconds 12.7.47 : Scheduling a repeating timer relative to the current time 82

set-buffer-name-directory-delimiters 12.9.2 : Unique buffer names based on the directory of the file 85

set-console-external-format 12.7.5 : The console now supports external formats on non-Windows platforms 76

set-editor-parenthesis-colors 12.5.8 : Support for dark themes in capi:set-editor-parenthesis-colors 75

set-pathname-load-function 12.9.5 : Control how files are loaded 86

setup-java-caller 12.7.31 : Calling static or non-static methods in the Java interface 80, 12.7.32 : Making a non-virtual call to a
method in the Java interface 80, 12.7.33 : lw-ji:define-java-caller and lw-ji:setup-java-caller can now return lw-ji:jobject 80

set-up-profiler 12.7.17 : Ignoring time in the garbage collector during profiling 78

set-verification-mode 12.7.20 : Support for SSL using Apple Security Framework 79

socket-error 12.7.28 : Newly documented customization for socket I/O error signaling 80

socket-stream 12.7.20 : Support for SSL using Apple Security Framework 79

split-sequence 12.7.54 : Limiting the number of splits in split-sequence 83

split-sequence-if 12.7.54 : Limiting the number of splits in split-sequence 83

split-sequence-if-not 12.7.54 : Limiting the number of splits in split-sequence 83

ssl-connection-copy-peer-certificates 12.7.21 : Specifying and accessing SSL certificates 79

ssl-connection-get-peer-certificates-data 12.7.21 : Specifying and accessing SSL certificates 79

ssl-connection-protocol-version 12.7.24 : Detecting the SSL protocol version 79

ssl-connection-read-certificates 12.7.21 : Specifying and accessing SSL certificates 79

ssl-connection-read-dh-params-file 12.7.23 : Reading DH parameters from a file 79

ssl-default-implementation 12.7.20 : Support for SSL using Apple Security Framework 78

ssl-implementation-available-p 12.7.20 : Support for SSL using Apple Security Framework 78

start-client-remote-debugging-server 12.7.13 : Error handling and callbacks when starting remote
debugging 77, 12.7.14 : Using SSL for remote debugging 78, 12.7.15 : Using IPv6 for remote debugging 78

start-environment 2.5.3 : Start the Motif LispWorks GUI 17

start-ide-remote-debugging-server 12.7.13 : Error handling and callbacks when starting remote debugging 77, 12.7.13 :
Error handling and callbacks when starting remote debugging 78, 12.7.14 : Using SSL for remote debugging 78, 12.7.15 : Using IPv6
for remote debugging 78

start-up-server 12.7.26 : Listen on the same port with more than one socket 79

Index

99

string=-limited 12.7.45 : New functions to compare strings without checking the length 82

string-equal-limited 12.7.45 : New functions to compare strings without checking the length 82

top-level-interface-dark-mode-p 12.5.7 : Support for dark themes in capi:interface 74

type-of 12.15.7 : cl:type-of now returns more specific types 90

valid-foreign-type-p 12.10.2 : Checking for a valid foreign type 86

write-sequence 12.7.43 : cl:read-sequence and cl:write-sequence now depend on cl:stream-element-type 81, 12.7.44 : Specializing
cl:read-sequence and cl:write-sequence is now documented 82

write-to-system-log 12.7.55 : Writing messages to system log files 83

G

Garbage Collector message 11.1.4 : Memory requirements 60

Garbage Collector output 11.1.4 : Memory requirements 60

GC message 11.1.4 : Memory requirements 60

GC output 11.1.4 : Memory requirements 60

generalized-time type 12.7.22 : SSL certificate generalized time API 79

generalized-time-p function 12.7.22 : SSL certificate generalized time API 79

generalized-time-pprint function 12.7.22 : SSL certificate generalized time API 79

generalized-time-string function 12.7.22 : SSL certificate generalized time API 79

generic functions

stream-read-sequence 12.7.44 : Specializing cl:read-sequence and cl:write-sequence is now documented 82

stream-write-sequence 12.7.44 : Specializing cl:read-sequence and cl:write-sequence is now documented 82

gesture-spec system class 12.7.53 : New system class gesture-spec 83

get-certificate-common-name function 12.7.21 : Specifying and accessing SSL certificates 79

get-certificate-data function 12.7.21 : Specifying and accessing SSL certificates 79

get-certificate-serial-number function 12.7.21 : Specifying and accessing SSL certificates 79

get-temp-directory function 12.7.48 : hcl:get-temp-directory no longer returns a truename 82

get-throwable-backtrace-strings function 12.7.36 : Getting a backtrace from a Java throwable object 81

GTK 12.4 : GTK+ window system 73

GTK+ 12.4 : GTK+ window system 73

H

:help-callback initarg 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 92

I

IDE 12.8 : IDE changes 83

ide-connect-remote-debugging function 12.7.14 : Using SSL for remote debugging 78, 12.7.15 : Using IPv6 for remote
debugging 78

if-let macro 12.7.46 : Newly documented macro if-let 82

incf-pointer function 12.10.3 : fli:incf-pointer and fli:decf-pointer signal an error for types of size 0 87

InitLispWorks C function 12.7.39 : New error codes from the InitLispWorks C function 81

install-embedded-module function 12.10.5 : Control of when fli:install-embedded-module deletes it temporary file 87

install-embedded-module-delay-delete variable 12.10.5 : Control of when fli:install-embedded-module deletes it temporary
file 87

Index

100

Install Private Patches... menu command 11.2.1 : Private patches not loaded on Windows 7, 8 & 10 61, 11.8.3.2 : Private patches 66

Integrated Development Environment 12.8 : IDE changes 83

interface class 12.5.7 : Support for dark themes in capi:interface 74

interface-override-cursor accessor 12.17.1 : Problems with CAPI on GTK+ 91, 12.17.4 : Problems with CAPI and Graphics
Ports on Cocoa 92

invalidate-rectangle function 12.5.1 : New thread-safe function to force a redisplay part of an capi:output-pane 74

Invoke Tool editor command 12.9.7 : Toggling between the main and Output tabs in a Listener or Editor 86

isearch-lax-whitespace editor variable 12.9.1 : Lax whitespace matches 85

isearch-regexp-lax-whitespace editor variable 12.9.1 : Lax whitespace matches 85

J

Java methods

com.lispworks.Manager.setClassLoader 12.7.38 : Controlling aspects of LispWorks initialization on Android 81

com.lispworks.Manager.setLispTempDir 12.7.38 : Controlling aspects of LispWorks initialization on Android 81

com.lispworks.Manager.setRuntimeLispHeapDir 12.7.38 : Controlling aspects of LispWorks initialization on Android 81

java-program-error condition class 12.7.30 : New condition classes in the Java interface 80

jobject-call-method function 12.7.31 : Calling static or non-static methods in the Java interface 80

jobject-call-method-error condition class 12.7.30 : New condition classes in the Java interface 80

jvalue FLI type descriptor 12.7.35 : Access to JNI jvalue objects 81

jvalue-store-jboolean function 12.7.35 : Access to JNI jvalue objects 81

jvalue-store-jbyte function 12.7.35 : Access to JNI jvalue objects 81

jvalue-store-jchar function 12.7.35 : Access to JNI jvalue objects 81

jvalue-store-jdouble function 12.7.35 : Access to JNI jvalue objects 81

jvalue-store-jfloat function 12.7.35 : Access to JNI jvalue objects 81

jvalue-store-jint function 12.7.35 : Access to JNI jvalue objects 81

jvalue-store-jlong function 12.7.35 : Access to JNI jvalue objects 81

jvalue-store-jobject function 12.7.35 : Access to JNI jvalue objects 81

jvalue-store-jshort function 12.7.35 : Access to JNI jvalue objects 81

L

LispWorks fails to start 11.1.5 : Corrupted LispWorks executable 60

LispWorks for Android Runtime 7.1 : Installing LispWorks for Android Runtime 39

LispWorks for iOS Runtime 7.2 : Installing LispWorks for iOS Runtime 39

LispWorks for Mobile Runtime 7 : Installation of LispWorks for Mobile Runtime 39

LispWorks IDE tools

Editor 12.9 : Editor changes 85

list-panel class 12.5.2 : Row and column separators in list panels 74, 12.5.11 : Adding additional filters in capi:list-panel and
capi:filtering-layout 75

load-data-file function 12.15.8 : Loading old data files 90

Load File editor command 12.9.5 : Control how files are loaded 86

log-bug-form function 11.9.6 : Log Files 68

Index

101

loop macro 12.15.3 : The loop macro no longer allows "finally do" or "finally return" 89, 12.15.4 : The loop macro now allows "of-type"
with any atomic type 89

M

macros

define-compiler-macro 12.15.5 : Compiler macros are no longer expanded by the setf macro 89

define-form-parser 12.7.49 : Source location for macros that group other definition 82

define-java-caller 12.7.31 : Calling static or non-static methods in the Java interface 80, 12.7.32 : Making a non-virtual call to a
method in the Java interface 80, 12.7.33 : lw-ji:define-java-caller and lw-ji:setup-java-caller can now return lw-ji:jobject 80

defparser 12.7.52 : New arguments to the parser function defined by defparser 83

extended-time 11.9.2 : Performance Issues 66

if-let 12.7.46 : Newly documented macro if-let 82

loop 12.15.3 : The loop macro no longer allows "finally do" or "finally return" 89, 12.15.4 : The loop macro now allows "of-type" with any
atomic type 89

profile 11.9.2 : Performance Issues 66

with-output-to-fasl-file 12.15.8 : Loading old data files 90

with-page 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 92

with-pinned-objects 12.7.2 : Support for pinning objects while in foreign code 76

with-prepared-statement 12.12.1 : New helper functions and macro for prepared statements 88

with-remote-debugging-spec 12.7.14 : Using SSL for remote debugging 78, 12.7.15 : Using IPv6 for remote debugging 78

make-array function 12.7.2 : Support for pinning objects while in foreign code 76

make-generalized-time function 12.7.22 : SSL certificate generalized time API 79

make-lisp-proxy function 12.7.34 : Specifying a Java class loader for Lisp proxy objects 80

make-lisp-proxy-with-overrides function 12.7.34 : Specifying a Java class loader for Lisp proxy objects 80

make-typed-aref-vector function 12.7.2 : Support for pinning objects while in foreign code 76

menu class 12.5.6 : Menus can now display with both images and text on Microsoft Windows 74

Motif 12.4 : GTK+ window system 73

move LispWorks to another computer 11.10 : Transferring LispWorks to a different machine 69

moving LispWorks to another computer 11.10 : Transferring LispWorks to a different machine 69

multi-column-list-panel class 12.5.2 : Row and column separators in list panels 74, 12.5.3 : Support for reorderable columns in
capi:multi-column-list-panel on GTK 74, 12.5.4 : New :x-adjust initarg for capi:multi-column-list-panel 74, 12.17.4 : Problems with
CAPI and Graphics Ports on Cocoa 92

O

objc-bool FLI type descriptor 12.11.2 : objc:objc-bool on Macs based on Apple silicon 87

of-type clause in the loop macro now allows any atomic type 12.15.4 : The loop macro now allows "of-type" with any atomic type 89

open-pipe function 12.7.7 : Operating system interfaces on non-Windows based on locale 77, 12.7.8 : system:open-pipe and system:run-
shell-command work with external formats 77

open-tcp-stream function 12.7.20 : Support for SSL using Apple Security Framework 79, 12.7.25 : comm:open-tcp-stream now
returns information about errors 79

operation graphics state parameter 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 92

option-pane class 12.17.1 : Problems with CAPI on GTK+ 91

ora-lob-file-set-name function 12.12.4 : Some missing LOB functions are now exported 88

Index

102

ora-lob-get-chunk-size function 12.12.4 : Some missing LOB functions are now exported 88

output-pane class 12.5.12 : Coordinates for keyboard events in the input model take account of scrolling 75, 12.5.14 : Forcing scroll
bars to be visible on macOS 75, 12.6.1 : Drawing to an output-pane outside the display-callback 76, 12.17.4 : Problems with CAPI
and Graphics Ports on Cocoa 92

P

package-locally-nicknamed-by-list function 12.7.1 : Package-local nicknames 76

package-local-nicknames function 12.7.1 : Package-local nicknames 76

parse-printed-generalized-time function 12.7.22 : SSL certificate generalized time API 79

pattern graphics state parameter 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 92

phrase predicate 12.13.1 : New phrase predicate 88

pipe-exit-status function 12.7.9 : Specifying a timeout for system:pipe-exit-status 77

poor performance 11.9.2 : Performance Issues 66

precompiled-regexp system class 12.7.50 : The precompiled-regexp system class 82

precompiled-regexp-p function 12.7.50 : The precompiled-regexp system class 82

precompile-regexp function 12.7.51 : "Lax whitespace" regexp searching 82

prepared-statement system class 12.12.1 : New helper functions and macro for prepared statements 88

prepared-statement-set-and-execute function 12.12.1 : New helper functions and macro for prepared statements 88

prepared-statement-set-and-execute* function 12.12.1 : New helper functions and macro for prepared statements 88

prepared-statement-set-and-query function 12.12.1 : New helper functions and macro for prepared statements 88

prepared-statement-set-and-query* function 12.12.1 : New helper functions and macro for prepared statements 88

private patches

not loaded on Windows 11.2.1 : Private patches not loaded on Windows 7, 8 & 10 61

profile macro 11.9.2 : Performance Issues 66

profiler-tree-to-allocation-functions function 12.7.16 : Identifying object allocation in the profiler 78

prompt-with-list function 12.5.5 : Specifying the initial selection in capi:prompt-with-list 74

R

read-sequence function 12.7.43 : cl:read-sequence and cl:write-sequence now depend on cl:stream-element-type 81, 12.7.44 :
Specializing cl:read-sequence and cl:write-sequence is now documented 82

redisplay-element function 12.5.1 : New thread-safe function to force a redisplay part of an capi:output-pane 74

Register... menu command 2.7 : Upgrading the LispWorks Edition 17, 3.4 : Upgrading the LispWorks Edition 20, 4.10 : Upgrading the
LispWorks Edition 28, 5.9 : Upgrading the LispWorks Edition 33, 6.10 : Upgrading the LispWorks Edition 38

register-module function 12.10.6 : Use of dlopen on macOS 87

release-certificate function 12.7.21 : Specifying and accessing SSL certificates 79

release-certificates-vector function 12.7.21 : Specifying and accessing SSL certificates 79

remove-package-local-nickname function 12.7.1 : Package-local nicknames 76

replace-lax-whitespace editor variable 12.9.1 : Lax whitespace matches 85

replace-regexp-lax-whitespace editor variable 12.9.1 : Lax whitespace matches 85

reset-ssl-abstract-context function 12.7.20 : Support for SSL using Apple Security Framework 78

Revert Buffer With External Format editor command 12.9.6 : Reverting a buffer with a different external format 86

rich-text-pane class 12.5.10 : New capi:rich-text-pane callback on Windows called when the user clicks a link 75

Index

103

room function 11.9.2 : Performance Issues 66

run-shell-command function 12.7.7 : Operating system interfaces on non-Windows based on locale 77, 12.7.8 : system:open-pipe and
system:run-shell-command work with external formats 77, 12.7.10 : system:run-shell-command can now return a signal number 77

S

save-image function 12.3.9 : macOS universal binaries are supported again 73, 12.3.10 : macOS images are now split into two files by
default 73

save-universal-from-script function 12.3.9 : macOS universal binaries are supported again 73

schedule-timer function 12.7.47 : Scheduling a repeating timer relative to the current time 82

schedule-timer-milliseconds function 12.7.47 : Scheduling a repeating timer relative to the current time 82

schedule-timer-relative function 12.7.47 : Scheduling a repeating timer relative to the current time 82

schedule-timer-relative-milliseconds function 12.7.47 : Scheduling a repeating timer relative to the current time 82

search-whitespace-regexp editor variable 12.9.1 : Lax whitespace matches 85

sec-certificate-ref FLI type descriptor 12.7.21 : Specifying and accessing SSL certificates 79

set-buffer-name-directory-delimiters function 12.9.2 : Unique buffer names based on the directory of the file 85

set-console-external-format function 12.7.5 : The console now supports external formats on non-Windows platforms 76

set-editor-parenthesis-colors function 12.5.8 : Support for dark themes in capi:set-editor-parenthesis-colors 75

set-pathname-load-function function 12.9.5 : Control how files are loaded 86

setup-java-caller function 12.7.31 : Calling static or non-static methods in the Java interface 80, 12.7.32 : Making a non-virtual
call to a method in the Java interface 80, 12.7.33 : lw-ji:define-java-caller and lw-ji:setup-java-caller can now return lw-ji:jobject 80

set-up-profiler function 12.7.17 : Ignoring time in the garbage collector during profiling 78

set-verification-mode function 12.7.20 : Support for SSL using Apple Security Framework 79

socket-create-error condition class 12.7.29 : New condition classes in the socket interface 80

socket-error function 12.7.28 : Newly documented customization for socket I/O error signaling 80

socket-io-error condition class 12.7.29 : New condition classes in the socket interface 80

socket-stream function 12.7.20 : Support for SSL using Apple Security Framework 79

split-sequence function 12.7.54 : Limiting the number of splits in split-sequence 83

split-sequence-if function 12.7.54 : Limiting the number of splits in split-sequence 83

split-sequence-if-not function 12.7.54 : Limiting the number of splits in split-sequence 83

sql-failed-to-connect-error condition class 12.12.3 : New condition class signaled by connect 88

ssl-abstract-context system class 12.7.20 : Support for SSL using Apple Security Framework 78

ssl-connection-copy-peer-certificates function 12.7.21 : Specifying and accessing SSL certificates 79

ssl-connection-get-peer-certificates-data function 12.7.21 : Specifying and accessing SSL certificates 79

ssl-connection-protocol-version function 12.7.24 : Detecting the SSL protocol version 79

ssl-connection-read-certificates function 12.7.21 : Specifying and accessing SSL certificates 79

ssl-connection-read-dh-params-file function 12.7.23 : Reading DH parameters from a file 79

ssl-context-ref FLI type descriptor 12.7.20 : Support for SSL using Apple Security Framework 79

ssl-default-implementation function 12.7.20 : Support for SSL using Apple Security Framework 78

ssl-handshake-timeout condition class 12.7.29 : New condition classes in the socket interface 80

ssl-implementation-available-p function 12.7.20 : Support for SSL using Apple Security Framework 78

Index

104

ssl-verification-failure condition class 12.7.29 : New condition classes in the socket interface 80

stacked-tree class 12.5.9 : Support for dark themes in capi:stacked-tree 75

start-client-remote-debugging-server function 12.7.13 : Error handling and callbacks when starting remote
debugging 77, 12.7.14 : Using SSL for remote debugging 78, 12.7.15 : Using IPv6 for remote debugging 78

start-environment function 2.5.3 : Start the Motif LispWorks GUI 17

start-ide-remote-debugging-server function 12.7.13 : Error handling and callbacks when starting remote
debugging 77, 12.7.13 : Error handling and callbacks when starting remote debugging 78, 12.7.14 : Using SSL for remote
debugging 78, 12.7.15 : Using IPv6 for remote debugging 78

start-up-server function 12.7.26 : Listen on the same port with more than one socket 79

stipple graphics state parameter 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 92

stream-read-sequence generic function 12.7.44 : Specializing cl:read-sequence and cl:write-sequence is now documented 82

stream-write-sequence generic function 12.7.44 : Specializing cl:read-sequence and cl:write-sequence is now documented 82

string=-limited function 12.7.45 : New functions to compare strings without checking the length 82

string-equal-limited function 12.7.45 : New functions to compare strings without checking the length 82

system classes

gesture-spec 12.7.53 : New system class gesture-spec 83

precompiled-regexp 12.7.50 : The precompiled-regexp system class 82

prepared-statement 12.12.1 : New helper functions and macro for prepared statements 88

ssl-abstract-context 12.7.20 : Support for SSL using Apple Security Framework 78

T

text-input-pane class 12.17.1 : Problems with CAPI on GTK+ 91, 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 92

Toggle Current Definition Folding editor command 12.9.3 : Definition folding 85

top-level-interface-color-mode accessor 12.5.7 : Support for dark themes in capi:interface 74

top-level-interface-color-mode-callback accessor 12.5.7 : Support for dark themes in capi:interface 74

top-level-interface-dark-mode-p function 12.5.7 : Support for dark themes in capi:interface 74

transfer LispWorks to another computer 11.10 : Transferring LispWorks to a different machine 69

transferring LispWorks to another computer 11.10 : Transferring LispWorks to a different machine 69

tree-view class 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 92, 12.17.4 : Problems with CAPI and Graphics Ports on
Cocoa 92

type-of function 12.15.7 : cl:type-of now returns more specific types 90

types

generalized-time 12.7.22 : SSL certificate generalized time API 79

U

uiop:defgeneric* removed from ASDF 12.15.2 : ASDF version 89

uiop:defun* removed from ASDF 12.15.2 : ASDF version 89

Unfold Buffer Definitions editor command 12.9.3 : Definition folding 85

uninstalling LispWorks

on FreeBSD 6.9 : Uninstalling LispWorks for FreeBSD 38

on Linux 4.9 : Uninstalling LispWorks for Linux 28

on Macintosh 2.6 : Uninstalling LispWorks for Macintosh 17

on Windows 3.3 : Uninstalling LispWorks for Windows 20

Index

105

on x86/x64 Solaris 5.8 : Uninstalling LispWorks for x86/x64 Solaris 33

universal binaries

supported 12.3.9 : macOS universal binaries are supported again 73

universal binary

supported 12.3.9 : macOS universal binaries are supported again 73

V

valid-foreign-type-p function 12.10.2 : Checking for a valid foreign type 86

variables

enter-debugger-directly 12.17.3 : Problems with the LispWorks IDE on Cocoa 91

features 12.2.1 : Conditionalizing code for different versions of LispWorks 71, 12.15.1 : Changes in *features* 89

install-embedded-module-delay-delete 12.10.5 : Control of when fli:install-embedded-module deletes it temporary
file 87

:visible-border initarg 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 92

W

window system 12.4 : GTK+ window system 73

with-output-to-fasl-file macro 12.15.8 : Loading old data files 90

with-page macro 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 92

with-pinned-objects macro 12.7.2 : Support for pinning objects while in foreign code 76

with-prepared-statement macro 12.12.1 : New helper functions and macro for prepared statements 88

with-remote-debugging-spec macro 12.7.14 : Using SSL for remote debugging 78, 12.7.15 : Using IPv6 for remote
debugging 78

write-sequence function 12.7.43 : cl:read-sequence and cl:write-sequence now depend on cl:stream-element-type 81, 12.7.44 :
Specializing cl:read-sequence and cl:write-sequence is now documented 82

write-to-system-log function 12.7.55 : Writing messages to system log files 83

X

x509-pointer FLI type descriptor 12.7.21 : Specifying and accessing SSL certificates 79

Non-alaphanumerics

"Not yet multiprocessing." error 11.1.3 : Build phase (delivery-time) errors 60

Index

106

	Release Notes and Installation Guide
	Copyrights and Trademarks
	Contents
	1 Introduction
	1.1 LispWorks Editions
	1.1.1 Personal Edition
	1.1.2 Hobbyist Edition
	1.1.3 HobbyistDV Edition
	1.1.4 Professional Edition
	1.1.5 Enterprise Edition

	1.2 LispWorks for Mobile Runtime
	1.3 Evaluation quick guide
	1.4 Further details
	1.5 About this Guide
	1.5.1 Installation and Configuration
	1.5.2 Troubleshooting
	1.5.3 Release Notes

	2 Installation on macOS
	2.1 Choosing the Graphical User Interface
	2.2 Documentation
	2.3 Software and hardware requirements
	2.4 Installing LispWorks for Macintosh
	2.4.1 Main installation and patches
	2.4.2 Information for Beta testers
	2.4.3 Information for users of previous versions
	2.4.4 Launch the LispWorks installer
	2.4.5 The Read Me
	2.4.6 The License Agreement
	2.4.7 Install Location
	2.4.8 Choose your installation type
	2.4.8.1 The native macOS GUI
	2.4.8.2 The X11 GTK+ and Motif GUIs
	2.4.8.3 The Documentation

	2.4.9 Installing and entering license data
	2.4.10 LispWorks is added to the Dock
	2.4.11 Finishing up
	2.4.12 Installing Patches
	2.4.13 Obtaining X11 GTK+
	2.4.14 Obtaining Open Motif and Imlib2

	2.5 Starting LispWorks for Macintosh
	2.5.1 Start the native macOS LispWorks GUI
	2.5.2 Start the GTK+ LispWorks GUI
	2.5.3 Start the Motif LispWorks GUI

	2.6 Uninstalling LispWorks for Macintosh
	2.7 Upgrading the LispWorks Edition

	3 Installation on Windows
	3.1 Documentation
	3.2 Installing LispWorks for Windows
	3.2.1 Main installation and patches
	3.2.2 Visual Studio runtime components and Windows Installer
	3.2.3 Installing over previous versions
	3.2.4 Information for Beta testers
	3.2.5 To install LispWorks
	3.2.5.1 Entering the License Data
	3.2.5.2 Installation location
	3.2.5.3 Installing the Documentation
	3.2.5.4 Installing Patches
	3.2.5.5 Starting LispWorks

	3.3 Uninstalling LispWorks for Windows
	3.4 Upgrading the LispWorks Edition
	3.5 Upgrading to 64-bit LispWorks

	4 Installation on Linux
	4.1 Software and hardware requirements
	4.1.1 GUI libraries
	4.1.1.1 GTK+
	4.1.1.2 Motif

	4.1.2 Disk requirements

	4.2 License agreement
	4.3 Software delivery and installer formats
	4.3.1 Contents of the LispWorks distribution

	4.4 Installing LispWorks for Linux
	4.4.1 Main installation and patches
	4.4.2 Installing over previous versions
	4.4.3 Information for Beta testers
	4.4.4 Installation from the binary RPM file (x86 and x86_64 only)
	4.4.4.1 Installation directories
	4.4.4.2 Selecting the correct RPM files
	4.4.4.3 Installing or upgrading LispWorks for Linux
	4.4.4.4 Installing CLIM 2.0
	4.4.4.5 Installing loadable Enterprise Edition modules
	4.4.4.6 Documentation and saving space
	4.4.4.7 Installing Patches

	4.4.5 Installation from the tar files
	4.4.5.1 Installing Patches

	4.5 LispWorks looks for a license key
	4.6 Running LispWorks
	4.6.1 Entering the license data

	4.7 Configuring the image
	4.8 Printable LispWorks documentation
	4.9 Uninstalling LispWorks for Linux
	4.10 Upgrading the LispWorks Edition
	4.11 Upgrading to 64-bit LispWorks

	5 Installation on x86/x64 Solaris
	5.1 Software and hardware requirements
	5.1.1 GUI libraries
	5.1.1.1 GTK+
	5.1.1.2 Motif

	5.1.2 Disk requirements

	5.2 Software delivery and installer format
	5.2.1 Contents of the LispWorks distribution
	5.2.2 Personal Edition distribution

	5.3 Installing LispWorks for x86/x64 Solaris
	5.3.1 Main installation and patches
	5.3.2 Installing over previous versions
	5.3.3 Information for Beta testers
	5.3.4 Installation directories
	5.3.5 Selecting the correct software package file
	5.3.6 Installing the package file
	5.3.7 Installing Patches

	5.4 LispWorks looks for a license key
	5.5 Running LispWorks
	5.5.1 Entering the license data

	5.6 Configuring the image
	5.7 Printable LispWorks documentation
	5.8 Uninstalling LispWorks for x86/x64 Solaris
	5.9 Upgrading the LispWorks Edition
	5.10 Upgrading to 64-bit LispWorks

	6 Installation on FreeBSD
	6.1 Software and hardware requirements
	6.1.1 GUI libraries
	6.1.1.1 GTK+
	6.1.1.2 Motif

	6.1.2 Disk requirements

	6.2 License agreement
	6.3 Software delivery and installer format
	6.3.1 Contents of the LispWorks distribution
	6.3.2 Personal Edition distribution

	6.4 Installing LispWorks for FreeBSD
	6.4.1 Main installation and patches
	6.4.2 Installing over previous versions
	6.4.3 Information for Beta testers
	6.4.4 Installation directories
	6.4.5 Selecting the correct software package file
	6.4.6 Installing LispWorks for FreeBSD
	6.4.7 Installing Patches

	6.5 LispWorks looks for a license key
	6.6 Running LispWorks
	6.6.1 Entering the license data

	6.7 Configuring the image
	6.8 Printable LispWorks documentation
	6.9 Uninstalling LispWorks for FreeBSD
	6.10 Upgrading the LispWorks Edition
	6.11 Upgrading to 64-bit LispWorks

	7 Installation of LispWorks for Mobile Runtime
	7.1 Installing LispWorks for Android Runtime
	7.2 Installing LispWorks for iOS Runtime

	8 Configuration on macOS
	8.1 Introduction
	8.2 License keys
	8.3 Configuring your LispWorks installation
	8.3.1 Levels of configuration
	8.3.2 Configuring images for the different GUIs
	8.3.3 Configuration files available

	8.4 Saving and testing the configured image
	8.4.1 Create a configuration file
	8.4.2 Create and use a save-image script
	8.4.3 What to do if no image is saved
	8.4.4 Testing the newly saved image
	8.4.5 Saving a non-windowing image

	8.5 Initializing LispWorks
	8.6 Loading CLIM 2.0
	8.7 The Common SQL interface
	8.7.1 Loading Common SQL
	8.7.2 Supported databases
	8.7.3 Special considerations when using Common SQL
	8.7.3.1 Location of .odbc.ini
	8.7.3.2 Errors using PSQLODBC
	8.7.3.3 psqlODBC version
	8.7.3.4 Locating the Oracle, MySQL or PostgreSQL client libraries

	8.8 Common Prolog and KnowledgeWorks

	9 Configuration on Windows
	9.1 Introduction
	9.2 License keys
	9.3 Configuring your LispWorks installation
	9.3.1 Levels of configuration
	9.3.2 Configuration files available

	9.4 Saving and testing the configured image
	9.4.1 Create a configuration file
	9.4.2 Create and use a save-image script
	9.4.3 What to do if no image is saved
	9.4.4 Testing the newly saved image
	9.4.5 Saving a non-windowing image

	9.5 Initializing LispWorks
	9.6 Loading CLIM 2.0
	9.6.1 Running the CLIM demos

	9.7 The Common SQL interface
	9.7.1 Loading the Common SQL interface

	9.8 Common Prolog and KnowledgeWorks
	9.9 Runtime library requirement on Windows

	10 Configuration on Linux, x86/x64 Solaris & FreeBSD
	10.1 Introduction
	10.2 License keys
	10.3 Configuring your LispWorks installation
	10.3.1 Levels of configuration
	10.3.2 Configuration files available

	10.4 Saving and testing the configured image
	10.4.1 Create a configuration file
	10.4.2 Create and use a save-image script
	10.4.3 Testing the newly saved image
	10.4.4 Saving a non-windowing image

	10.5 Initializing LispWorks
	10.6 Loading CLIM 2.0
	10.6.1 Running the CLIM demos

	10.7 The Common SQL interface
	10.7.1 Loading the Common SQL interface

	10.8 Common Prolog and KnowledgeWorks
	10.9 Documentation on x86/x64 Solaris and FreeBSD

	11 Troubleshooting, Patches and Reporting Bugs
	11.1 Troubleshooting
	11.1.1 License key errors
	11.1.2 Failure of the load-on-demand system
	11.1.3 Build phase (delivery-time) errors
	11.1.4 Memory requirements
	11.1.5 Corrupted LispWorks executable

	11.2 Troubleshooting on Windows
	11.2.1 Private patches not loaded on Windows 7, 8 & 10

	11.3 Troubleshooting on macOS
	11.3.1 Uninstall requires administrator on macOS

	11.4 Troubleshooting on Linux
	11.4.1 Processes hanging
	11.4.2 RPM_INSTALL_PREFIX not set
	11.4.3 Using multiple versions of Motif on Linux

	11.5 Troubleshooting on x86/x64 Solaris
	11.5.1 GTK+ version

	11.6 Troubleshooting on FreeBSD
	11.7 Troubleshooting on X11/Motif
	11.7.1 Problems with the X server
	11.7.2 Problems with fonts on Motif
	11.7.3 Problems with colors
	11.7.4 Motif mnemonics and Alt
	11.7.5 Non-standard X11/Motif key bindings
	11.7.6 X11/Motif resources
	11.7.7 Motif installation on macOS

	11.8 Updating with patches
	11.8.1 Extracting simple patches
	11.8.2 If you cannot receive email
	11.8.3 Different types of patch
	11.8.3.1 Public patches
	11.8.3.2 Private patches

	11.9 Reporting bugs
	11.9.1 Check for existing fixes
	11.9.2 Performance Issues
	11.9.3 Generate a bug report template
	11.9.4 Add details to your bug report
	11.9.5 Reporting crashes
	11.9.6 Log Files
	11.9.7 Reporting bugs in delivered images
	11.9.8 Send the bug report
	11.9.9 Sending large files
	11.9.10 Information for Personal Edition users

	11.10 Transferring LispWorks to a different machine

	12 Release Notes
	12.1 Keeping your old LispWorks installation
	12.2 Updating your code for LispWorks 8.0
	12.2.1 Conditionalizing code for different versions of LispWorks

	12.3 Platform support
	12.3.1 LispWorks for Macintosh supports Apple silicon Macs natively
	12.3.2 LispWorks for Macintosh is always 64-bit
	12.3.3 Runtimes for Android
	12.3.4 Runtimes for iOS
	12.3.5 FreeBSD 12.x support
	12.3.6 SPARC Solaris and AIX no longer supported
	12.3.7 Running on 64-bit machines
	12.3.8 Code signing LispWorks images
	12.3.8.1 Signing of the distributed executable
	12.3.8.2 Signing your development image
	12.3.8.3 Signing your runtime application
	12.3.8.4 Required runtime entitlements on Apple silicon Macs

	12.3.9 macOS universal binaries are supported again
	12.3.10 macOS images are now split into two files by default

	12.4 GTK+ window system
	12.4.1 Using Motif instead of GTK+
	12.4.2 X11/Motif requires Imlib2 except on Solaris

	12.5 New CAPI features
	12.5.1 New thread-safe function to force a redisplay part of an capi:output-pane
	12.5.2 Row and column separators in list panels
	12.5.3 Support for reorderable columns in capi:multi-column-list-panel on GTK
	12.5.4 New :x-adjust initarg for capi:multi-column-list-panel
	12.5.5 Specifying the initial selection in capi:prompt-with-list
	12.5.6 Menus can now display with both images and text on Microsoft Windows
	12.5.7 Support for dark themes in capi:interface
	12.5.8 Support for dark themes in capi:set-editor-parenthesis-colors
	12.5.9 Support for dark themes in capi:stacked-tree
	12.5.10 New capi:rich-text-pane callback on Windows called when the user clicks a link
	12.5.11 Adding additional filters in capi:list-panel and capi:filtering-layout
	12.5.12 Coordinates for keyboard events in the input model take account of scrolling
	12.5.13 capi:current-pointer-position always takes account of scrolling in capi:output-pane
	12.5.14 Forcing scroll bars to be visible on macOS

	12.6 Other CAPI and Graphics Ports changes
	12.6.1 Drawing to an output-pane outside the display-callback

	12.7 More new features
	12.7.1 Package-local nicknames
	12.7.2 Support for pinning objects while in foreign code
	12.7.3 Specialized complex number array representations
	12.7.4 Double-float complex number optimization in the compiler
	12.7.5 The console now supports external formats on non-Windows platforms
	12.7.6 Encoding file names on non-Windows platforms based on locale
	12.7.7 Operating system interfaces on non-Windows based on locale
	12.7.8 system:open-pipe and system:run-shell-command work with external formats
	12.7.9 Specifying a timeout for system:pipe-exit-status
	12.7.10 system:run-shell-command can now return a signal number
	12.7.11 Support for the GB18030 character encoding
	12.7.12 Configurable named services for remote debugging
	12.7.13 Error handling and callbacks when starting remote debugging
	12.7.14 Using SSL for remote debugging
	12.7.15 Using IPv6 for remote debugging
	12.7.16 Identifying object allocation in the profiler
	12.7.17 Ignoring time in the garbage collector during profiling
	12.7.18 Version checking in compile-file-if-needed
	12.7.19 OpenSSL version defaults to 1.1 on Windows
	12.7.20 Support for SSL using Apple Security Framework
	12.7.21 Specifying and accessing SSL certificates
	12.7.22 SSL certificate generalized time API
	12.7.23 Reading DH parameters from a file
	12.7.24 Detecting the SSL protocol version
	12.7.25 comm:open-tcp-stream now returns information about errors
	12.7.26 Listen on the same port with more than one socket
	12.7.27 New function to close a socket handle
	12.7.28 Newly documented customization for socket I/O error signaling
	12.7.29 New condition classes in the socket interface
	12.7.30 New condition classes in the Java interface
	12.7.31 Calling static or non-static methods in the Java interface
	12.7.32 Making a non-virtual call to a method in the Java interface
	12.7.33 lw-ji:define-java-caller and lw-ji:setup-java-caller can now return lw-ji:jobject
	12.7.34 Specifying a Java class loader for Lisp proxy objects
	12.7.35 Access to JNI jvalue objects
	12.7.36 Getting a backtrace from a Java throwable object
	12.7.37 lw-ji:create-instance-jobject-list is now exported from lw-ji
	12.7.38 Controlling aspects of LispWorks initialization on Android
	12.7.39 New error codes from the InitLispWorks C function
	12.7.40 Stricter meaning of the :link-transparency argument to cl:directory
	12.7.41 Checking whether a file is a symbolic link
	12.7.42 Reading a file into an array of bytes
	12.7.43 cl:read-sequence and cl:write-sequence now depend on cl:stream-element-type
	12.7.44 Specializing cl:read-sequence and cl:write-sequence is now documented
	12.7.45 New functions to compare strings without checking the length
	12.7.46 Newly documented macro if-let
	12.7.47 Scheduling a repeating timer relative to the current time
	12.7.48 hcl:get-temp-directory no longer returns a truename
	12.7.49 Source location for macros that group other definition
	12.7.50 The precompiled-regexp system class
	12.7.51 "Lax whitespace" regexp searching
	12.7.52 New arguments to the parser function defined by defparser
	12.7.53 New system class gesture-spec
	12.7.54 Limiting the number of splits in split-sequence
	12.7.55 Writing messages to system log files

	12.8 IDE changes
	12.8.1 Support for Dark mode on macOS
	12.8.2 Configurable external format for the Shell tool
	12.8.3 A Commands menu has been added
	12.8.4 Showing IDE interfaces in the Windows Browser
	12.8.5 The Works menu when displaying user-defined interfaces on Windows
	12.8.6 Identifying object allocation in the Profiler tool
	12.8.7 The Profiler automatically displays the results after profiling
	12.8.8 New operations in the Cumulative tab of the Profiler
	12.8.9 Building universal binaries on macOS with the Application Builder
	12.8.10 Customizing the string used for hidden comments in folded definitions
	12.8.11 Operating on previous results in the Listener

	12.9 Editor changes
	12.9.1 Lax whitespace matches
	12.9.2 Unique buffer names based on the directory of the file
	12.9.3 Definition folding
	12.9.4 Indentation of loop
	12.9.5 Control how files are loaded
	12.9.6 Reverting a buffer with a different external format
	12.9.7 Toggling between the main and Output tabs in a Listener or Editor
	12.9.8 Editor Ctrl+[and Ctrl+] key bindings in Windows emulation mode

	12.10 Foreign Language interface changes
	12.10.1 :allow-null now defaults to nil for foreign strings as documented
	12.10.2 Checking for a valid foreign type
	12.10.3 fli:incf-pointer and fli:decf-pointer signal an error for types of size 0
	12.10.4 Support for the C99 _Bool type (stdbool.h)
	12.10.5 Control of when fli:install-embedded-module deletes it temporary file
	12.10.6 Use of dlopen on macOS

	12.11 Objective-C changes
	12.11.1 objc:can-invoke-p can now be used with the result of current-super
	12.11.2 objc:objc-bool on Macs based on Apple silicon
	12.11.3 The :darwin-lw-objc foreign module has been removed

	12.12 Common SQL changes
	12.12.1 New helper functions and macro for prepared statements
	12.12.2 Calling connect with :if-exists and without :name
	12.12.3 New condition class signaled by connect
	12.12.4 Some missing LOB functions are now exported

	12.13 KnowledgeWorks changes
	12.13.1 New phrase predicate

	12.14 Application delivery changes
	12.14.1 New values for the :interrupt-function keyword

	12.15 Other changes
	12.15.1 Changes in *features*
	12.15.2 ASDF version
	12.15.3 The loop macro no longer allows "finally do" or "finally return"
	12.15.4 The loop macro now allows "of-type" with any atomic type
	12.15.5 Compiler macros are no longer expanded by the setf macro
	12.15.6 hcl:fast-directory-files for a non-wild pathname
	12.15.7 cl:type-of now returns more specific types
	12.15.8 Loading old data files

	12.16 Documentation changes
	12.16.1 Hyperlinks between manuals
	12.16.2 The HTML documentation directory
	12.16.3 Regular expression syntax
	12.16.4 Physical pathnames in LispWorks
	12.16.5 New self-contained examples
	12.16.6 Removed self-contained examples

	12.17 Known Problems
	12.17.1 Problems with CAPI on GTK+
	12.17.2 Problems with LispWorks for Macintosh
	12.17.3 Problems with the LispWorks IDE on Cocoa
	12.17.4 Problems with CAPI and Graphics Ports on Cocoa

	12.18 Binary Incompatibility

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Non-alaphanumerics

