
LispWorks Objective-C and Cocoa
Interface User Guide and Reference
Manual
Version 8.0

1

Copyright and Trademarks
LispWorks Objective-C and Cocoa Interface User Guide and Reference Manual

Version 8.0

December 2021

Copyright © 2021 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in all copies and supporting documentation, and that the
name of M.I.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "as is"
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including all implied
warranties of merchantability and fitness. In no event shall M.I.T. be liable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright
and permission notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

2

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and
registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt III, as applicable. Rights reserved under the copyright laws of
the United States.

Address Telephone Fax

LispWorks Ltd
St. John's Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

From North America:
877 759 8839 (toll-free)

From elsewhere:
+44 1223 421860

From North America:
617 812 8283

From elsewhere:
+44 870 2206189

 www.lispworks.com

Copyright and Trademarks

3

www.lispworks.com

Contents

1 Introduction to the Objective-C Interface 6

1.1 Introduction 6

1.2 Objective-C data types 6

1.3 Invoking Objective-C methods 7

1.4 Defining Objective-C classes and methods 12

2 Objective-C Reference 18

alloc-init-object 18

autorelease 18

can-invoke-p 19

coerce-to-objc-class 20

coerce-to-selector 21

current-super 21

define-objc-class 22

define-objc-class-method 24

define-objc-method 25

define-objc-protocol 28

define-objc-struct 29

description 30

ensure-objc-initialized 30

invoke 31

invoke-bool 33

invoke-into 34

make-autorelease-pool 36

objc-at-question-mark 36

objc-bool 37

objc-c++-bool 37

objc-class 38

objc-class-method-signature 38

objc-class-name 39

objc-c-string 40

objc-object-destroyed 40

objc-object-from-pointer 41

objc-object-pointer 42

objc-object-pointer 43

objc-object-var-value 43

objc-unknown 44

4

release 45

retain 45

retain-count 46

sel 46

selector-name 47

standard-objc-object 48

trace-invoke 49

untrace-invoke 49

with-autorelease-pool 50

3 The Cocoa Interface 51

3.1 Introduction 51

3.2 Types 51

3.3 Observers 51

3.4 How to run Cocoa on its own 51

4 Cocoa Reference 53

add-observer 53

ns-not-found 53

ns-point 54

ns-range 54

ns-rect 55

ns-size 55

remove-observer 56

set-ns-point* 56

set-ns-range* 57

set-ns-rect* 58

set-ns-size* 59

5 Self-contained examples 60

5.1 Example definitions 60

5.2 Displaying Cocoa classes in CAPI windows 60

5.3 nib file example 60

Index

Contents

5

1 Introduction to the Objective-C Interface

1.1 Introduction

Objective-C is a C-like object-oriented programming language that is used on macOS to implement the Cocoa API. The
LispWorks Objective-C interface is an extension to the interface described in the Foreign Language Interface User Guide and
Reference Manual to support calling Objective-C methods and also to provide defining forms for Objective-C classes and
methods implemented in Lisp. This manual assumes that you are familiar with the LispWorks FLI, the Objective-C language
and the Cocoa API where appropriate, and it uses the same notation and conventions as the Foreign Language Interface User
Guide and Reference Manual.

Note: the LispWorks Objective-C interface is only available on the Macintosh.

The remainder of this chapter describes the LispWorks Objective-C interface, which is generally used in conjunction with the
Cocoa API (see 3 The Cocoa Interface). Examples in this chapter assume that the current package uses the objc package.

1.1.1 Initialization

Before calling any of the Objective-C interface functions, the runtime system must be initialized. This is done by calling
ensure-objc-initialized, optionally passing a list of foreign modules to be loaded. For example, the following will
initialize and load Cocoa:

(objc:ensure-objc-initialized
 :modules
 '("/System/Library/Frameworks/Foundation.framework/Versions/C/Foundation"
 "/System/Library/Frameworks/Cocoa.framework/Versions/A/Cocoa"))

1.2 Objective-C data types

The Objective-C interface uses types in the same way as the LispWorks FLI, with a restricted set of FLI types being used to
describe method arguments and results. Some types perform special conversions to hide the FLI details (see 1.3.3 Special
argument and result conversion and 1.4.3.1 Special method argument and result conversion).

1.2.1 Objective-C pointers and pointer types

Objective-C defines its own memory management, so most interaction with its objects occurs using foreign pointers with the
FLI type descriptor objc-object-pointer. When an Objective-C object class is implemented in Lisp, there is an
additional object of type standard-objc-object which is associated with the foreign pointer (see 1.4 Defining Objective
-C classes and methods).

There are a few specific Objective-C pointer types that have a direct translation to FLI types:

6

Pointer types in Objective-C

Objective-C type FLI type descriptor

Class objc-class

SEL sel

id objc-object-pointer

char * objc-c-string

Other pointer types are represented using the :pointer FLI type descriptor as normal.

When using pointers to struct types, the type must be defined using define-objc-struct rather than
fli:define-c-struct.

1.2.2 Integer and boolean types

The various integer types in Objective-C have corresponding standard FLI types. In addition, the Objective-C type BOOL,
which is an integer type with values NO and YES, has a corresponding FLI type objc-bool with values nil and t.

1.2.3 Structure types

Structures in Objective-C are like structures in the FLI, but are restricted to using other Objective-C types for the slots. The
macro define-objc-struct must be used to define a structure type that is suitable for use as an Objective-C type.

1.3 Invoking Objective-C methods

Objective-C methods are associated with Objective-C objects or classes and are invoked by name with a specific set of
arguments.

1.3.1 Simple calls to instance and class methods

The function invoke is used to call most methods (but see 1.3.4 Invoking a method that returns a boolean, 1.3.5 Invoking
a method that returns a structure and 1.3.6 Invoking a method that returns a string or array for ways of calling more
complex methods). This function has two required arguments:

• the foreign pointer whose method should be invoked, and:

• the name of the method (see 1.3.2 Method naming).

The remaining arguments are passed to the method in the specified order. See 1.3.3 Special argument and result conversion
for information about how the arguments are converted to FLI values.

For example, a call in Objective-C such as:

[window close]

would be written using invoke as:

(invoke window "close")

In addition, invoke can be used to call class methods for specifically named classes. This is done by passing a string naming
the Objective-C class instead of the object.

1 Introduction to the Objective-C Interface

7

For example, a class method call in Objective-C such as:

[NSObject alloc]

would be written using invoke as:

(invoke "NSObject" "alloc")

1.3.2 Method naming

Methods in Objective-C have compound names that describe their main name and any arguments. Functions like invoke that
need a method name expect a string with all the name components concatenated together with no spaces.

For example, a call in Objective-C such as:

[box setWidth:10 height:20]

would be written using invoke as:

(invoke box "setWidth:height:" 10 20)

1.3.3 Special argument and result conversion

Since the LispWorks Objective-C interface is an extension of the FLI, most conversion of arguments and results is handled as
specified in the Foreign Language Interface User Guide and Reference Manual. There are a few exceptions to make it easier
to invoke methods with certain commonly used Objective-C classes and structures as shown in the Special argument and
result conversion for invoke. See the specification of invoke for full details.

Special argument and result conversion for invoke

Type Special argument behavior Special result behavior

NSRect Allows a vector to be passed. Converts to a vector.

NSPoint Allows a vector to be passed. Converts to a vector.

NSSize Allows a vector to be passed. Converts to a vector.

NSRange Allow a cons to be passed. Converts to a cons.

BOOL Allow nil or t to be passed. None. See 1.3.4 Invoking a method
that returns a boolean.

id Depending on the Objective-C class,
allows automatic conversion of
strings and arrays.

None. See 1.3.6 Invoking a method
that returns a string or array.

Class Allows a string to be passed. None.

char * Allows a string to be passed. Converts to a string.

1 Introduction to the Objective-C Interface

8

1.3.4 Invoking a method that returns a boolean

When a method has return type BOOL on a Macintosh with an Intel CPU, the value is converted to the integer 0 or 1 because
Objective-C cannot distinguish this type from the other integer types. Often it is more convenient to receive the value as a
Lisp boolean and this can be done by using the function invoke-bool, which returns nil or t.

For example, a call in Objective-C such as:

[box isSquare] ? 1 : 2

could be written using invoke-bool as:

(if (invoke-bool box "isSquare") 1 2)

1.3.5 Invoking a method that returns a structure

As mentioned in 1.3.3 Special argument and result conversion, when invoke is used with a method whose return type is
one of the structure types listed in Special argument and result conversion for invoke, such as NSRect, a vector or cons
containing the fields of the structure is returned. For other structure types defined with define-objc-struct, the function
invoke-into must be used to call the method. This takes the same arguments as invoke, except that there is an extra
initial argument, result, which should be a pointer to a foreign structure of the appropriate type for the method. When the
method returns, the value is copied into this structure.

For example, a call in Objective-C such as:

{
 NSRect rect = [box frame];
 ...
}

could be written using invoke-into as:

(fli:with-dynamic-foreign-objects ((rect cocoa:ns-rect))
 (objc:invoke-into rect box "frame")
 ...)

In addition, for the structure return types mentioned in Special argument and result conversion for invoke, an
appropriately sized vector or cons can be passed as result and this is filled with the field values.

For example, the above call could also be written using invoke-into as:

(let ((rect (make-array 4)))
 (objc:invoke-into rect box "frame")
 ...)

1.3.6 Invoking a method that returns a string or array

The Objective-C classes NSString and NSArray are used extensively in Cocoa to represent strings and arrays of various
objects. When a method that returns these types is called with invoke, the result is a foreign pointer of type objc-object-
pointer as for other classes.

In order to obtain a more useful Lisp value, invoke-into can be used by specifying a type as the extra initial argument. For
a method that returns NSString, the symbol string can be specified to cause the foreign object to be converted to a string.
For a method that returns NSArray, the symbol array can be specified and the foreign object is converted to an array of
foreign pointers. Alternatively a type such as (array string) can be specified and the foreign object is converted to an

1 Introduction to the Objective-C Interface

9

http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_array.htm

array of strings.

For example, the form:

(invoke object "description")

will return a foreign pointer, whereas the form:

(invoke-into 'string object "description")

will return a string.

1.3.7 Invoking a method that returns values by reference

Values are returned by reference in Objective-C by passing a pointer to memory where the result should be stored, just like in
the C language. The Objective-C interface in Lisp works similarly, using the standard FLI constructs for this.

For example, an Objective-C method declared as:

- (void)getValueInto:(int *)result;

might called from Objective-C like this:

int getResult(MyObject *object)
{
 int result;
 [object getValueInto:&result];
 return result;
}

The equivalent call from Lisp can be made like this:

(defun get-result (object)
 (fli:with-dynamic-foreign-objects ((result-value :int))
 (objc:invoke object "getValueInto:" result-value)
 (fli:dereference result-value)))

The same technique applies to in/out arguments, but adding code to initialize the dynamic foreign object before calling the
method.

1.3.8 Invoking a method that uses vector types

In order to invoke a method that uses vector types (see "Vector types" in the Foreign Language Interface User Guide and
Reference Manual), calls to invoke etc need to specify the argument and result types of the method. This is because vector
types are not compatible with the Objective-C Runtime type encoding API.

This is done by passing a list as the method argument. For example, yuo can invoke the following methods of
MDLTransform in the Model I/O API:

;; Call -(vector_float3)translationAtTime:(NSTimeInterval)time;
(invoke ptr '("translationAtTime:"
 (:double)
 :result-type fli:vector-float3)
 20d0)

;; -(void)setTranslation:(vector_float3)translation
;; forTime:(NSTimeInterval)time;

1 Introduction to the Objective-C Interface

10

(objc:invoke ptr '("setTranslation:forTime:"
 (fli:vector-float3 :double))
 #(22d0 32d0 42d0)
 20d0)

1.3.9 Determining whether a method exists

In some cases, an Objective-C class might have a method that is optionally implemented and invoke will signal an error if
the method is missing for a particular object. To determine whether a method is implemented, call the function
can-invoke-p with the foreign object pointer or class name and the name of the method.

For example, a call in Objective-C such as:

[foo respondsToSelector:@selector(frame)]

could be written using can-invoke-p as:

(can-invoke-p foo "frame")

1.3.10 Memory management

Objective-C uses reference counting for its memory management and also provides a mechanism for decrementing the
reference count of an object when control returns to the event loop or some other well-defined point.

The following functions are direct equivalents of the memory management methods in the NSObject class:

Helper functions for memory management

Function Method in NSObject

retain retain

retain-count retainCount

release release

autorelease autorelease

In addition, the function make-autorelease-pool and the macro with-autorelease-pool can be used to make
autorelease pools if the standard one in the event loop is not available.

1.3.11 Selectors

Some Objective-C methods have arguments or values of type SEL, which is a pointer type used to represent selectors. These
can be used in Lisp as foreign pointers of type sel, which can be obtained from a string by calling coerce-to-selector.
The function selector-name can be used to find the name of a selector.

For example, a call in Objective-C such as:

[foo respondsToSelector:@selector(frame)]

could be written using can-invoke-p as in 1.3.9 Determining whether a method exists or using selectors as follows:

(invoke foo "respondsToSelector:" (coerce-to-selector "frame"))

1 Introduction to the Objective-C Interface

11

If *selector* is bound to the result of calling:

(coerce-to-selector "frame")

then:

(selector-name *selector*)

will return the string "frame".

1.4 Defining Objective-C classes and methods

The preceding sections covered the use of existing Objective-C classes. This section describes how to implement Objective-C
classes in Lisp.

1.4.1 Objects and pointers

When an Objective-C class is implemented in Lisp, each Objective-C foreign object has an associated Lisp object that can
obtained by the function objc-object-from-pointer. Conversely, the function objc-object-pointer can be used to
obtain a pointer to the foreign object from its associated Lisp object.

There are two kinds of Objective-C foreign object, classes and instances, each of which is associated with a Lisp object of
some class as described in the following table:

Objective-C objects and associated Lisp objects

Objective-C type FLI type descriptor Class of associated Lisp object

Class objc-class standard-class

id objc-object-pointer subclass of
standard-objc-object

The implementation of an Objective-C class in Lisp consists of a subclass of standard-objc-object and method
definitions that become the Objective-C methods of the Objective-C class.

1.4.2 Defining an Objective-C class

An Objective-C class implemented in Lisp and its associated subclass of standard-objc-object should be defined using
the macro define-objc-class. This has a syntax similar to cl:defclass, with additional class options including
:objc-class-nameto specify the name of the Objective-C class.

If the superclass list is empty, then standard-objc-object is used as the default superclass, otherwise
standard-objc-object must be somewhere on class precedence list or included explicitly.

For example, the following form defines a Lisp class called my-object and an associated Objective-C class called
MyObject.

(define-objc-class my-object ()
 ((slot1 :initarg :slot1 :initform nil))
 (:objc-class-name "MyObject"))

The class my-object will inherit from standard-objc-object and the class MyObject will inherit from NSObject. See

1 Introduction to the Objective-C Interface

12

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

1.4.4 How inheritance works for more details on inheritance.

The class returned by (find-class 'my-object) is associated with the Objective-C class object for MyObject, so:

(objc-object-pointer (find-class 'my-object))

and:

(coerce-to-objc-class "MyObject")

will return a pointer to the same foreign object.

When an instance of my-object is made using make-instance, an associated foreign Objective-C object of the class
MyObject is allocated by calling the class's "alloc" method and initialized by calling the instance's "init" method. The
:init-function initarg can be used to call a different initialization method.

Conversely, if the "allocWithZone:" method is called for the class MyObject (or a method such as "alloc" that calls
"allocWithZone:"), then an associated object of type my-object is made.

Note: If you implement an Objective-C class in Lisp but its name is not referenced at run time, and you deliver a runtime
application, then you need to arrange for the Lisp class name to be retained during delivery. See define-objc-class for
examples of how to do this.

1.4.3 Defining Objective-C methods

A class defined with define-objc-class has no methods associated with it by default, other than those inherited from its
ancestor classes. New methods can be defined (or overridden) by using the macros define-objc-method for instance
methods and define-objc-class-method for class methods.

Note that the Lisp method definition form is separate from the class definition, unlike in Objective-C where it is embedded in
the @implementation block. Also, there is no Lisp equivalent of the @interface block: the methods of an Objective-C
class are just those whose defining forms have been evaluated.

When defining a method, various things must be specified:

• The method name, which is a string as described in 1.3.2 Method naming.

• The return type, which is an Objective-C FLI type.

• The Lisp class for which this method applies.

• Any extra arguments and their Objective-C FLI types.

For example, a method that would be implemented in an Objective-C class as follows:

@implementation MyObject
- (unsigned int)areaOfWidth:(unsigned int)width
 height:(unsigned int)height
{
 return width*height;
}
@end

could be defined in Lisp for instances of the MyObject class from 1.4.2 Defining an Objective-C class using the form:

(define-objc-method ("areaOfWidth:height:" (:unsigned :int))
 ((self my-object)
 (width (:unsigned :int))
 (height (:unsigned :int)))

1 Introduction to the Objective-C Interface

13

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

 (* width height))

The variable self is bound to a Lisp object of type my-object, and width and height are bound to non-negative integers.
The area is returned to the caller as a non-negative integer.

1.4.3.1 Special method argument and result conversion

For certain types of argument, there is more than one useful conversion from the FLI value to a Lisp value. To control this,
the argument specification can include an arg-style, which describes how the argument should be converted. If the arg-style
is specified as :foreign then the argument is converted using normal FLI rules, but by default certain types are converted
differently:

Special argument conversion for define-objc-method

Argument type Special argument behavior

cocoa:ns-rect The argument is a vector.

cocoa:ns-point The argument is a vector.

cocoa:ns-size The argument is a vector.

cocoa:ns-range The argument is a cons.

objc-bool The argument is nil or t.

objc-object-pointer Depending on the Objective-C class, allows automatic
conversion to a string or array.

objc-c-string The argument is a string.

Likewise, result conversion can be controlled by the result-style specification. If this is :foreign then the value is assumed
to be suitable for conversion to the result-type using the normal FLI rules, but if result-style is :lisp then additional
conversions are performed for specific values of result-type:

Special result conversion for define-objc-method

Result type Special result types supported

cocoa:ns-rect The result can be a vector.

cocoa:ns-point The result can be a vector.

cocoa:ns-size The result can be a vector.

cocoa:ns-range The result can be a cons.

objc-bool The result can be nil or t.

objc-object-pointer The result can be a string or an array. An autoreleased
NSString or NSArray is allocated.

objc-class The result can be a string naming a class.

1 Introduction to the Objective-C Interface

14

1.4.3.2 Defining a method that returns a structure

When a the return type of a method is a structure type such as cocoa:ns-rect then the conversion specified in Special
result conversion for define-objc-method can be used. Alternatively, and for any other structure defined with
define-objc-struct, the method can specify a variable as its result-style. This variable is bound to a pointer to a foreign
structure of the appropriate type and the method should set the slots in this structure to specify the result. For example, the
following definitions show a method that returns a structure:

(define-objc-struct (pair
 (:foreign-name "_Pair"))
 (:first :float)
 (:second :float))

(define-objc-method ("pair" (:struct pair) result-pair)
 ((this my-object))
 (setf (fli:foreign-slot-value result-pair :first) 1f0
 (fli:foreign-slot-value result-pair :second) 2f0))

1.4.4 How inheritance works

1.4.2 Defining an Objective-C class introduced the define-objc-class macro with the :objc-class-name class
option for naming the Objective-C class. Since this macro is like cl:defclass, it can specify any number of superclasses
from which the Lisp class will inherit and also provides a way for superclass of the Objective-C class to be chosen:

• If some of the Lisp classes in the class precedence list were defined with define-objc-class and given an associated
Objective-C class name, then the first such class name is used. It is an error for several such classes to be in the class
precedence list unless their associated Objective-C classes are also superclasses of each other in the same order as the
precedence list.

• If no superclasses have an associated Objective-C class, then the :objc-superclass-name class option can be used to
specify the superclass explicitly.

• Otherwise NSObject is used as the superclass.

For example, both of these definitions define an Objective-C class that inherits from MyObject, via my-object in the case
of my-special-object and explicitly for my-other-object:

(define-objc-class my-special-object (my-object)
 ()
 (:objc-class-name "MySpecialObject"))

(define-objc-class my-other-object ()
 ()
 (:objc-class-name "MyOtherObject")
 (:objc-superclass-name "MyObject"))

The set of methods available for a given Objective-C class consists of those defined on the class itself as well as those
inherited from its superclasses.

1.4.5 Invoking methods in the superclass

Within the body of a define-objc-method or define-objc-class-method form, the local macro current-super

can be used to obtain a special object which will make invoke call the method in the superclass of the defining class. This is
equivalent to using super in Objective-C.

For example, the Objective-C code:

1 Introduction to the Objective-C Interface

15

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

@implementation MySpecialObject
- (unsigned int)areaOfWidth:(unsigned int)width
 height:(unsigned int)height
{
 return 4*[super areaOfWidth:width height:height];
}
@end

could be written as follows in Lisp:

(define-objc-method ("areaOfWidth:height:" (:unsigned :int))
 ((self my-special-object)
 (width (:unsigned :int))
 (height (:unsigned :int)))
 (* 4 (invoke (current-super) "areaOfWidth:height:"
 width height)))

1.4.6 Abstract classes

An abstract class is a normal Lisp class without an associated Objective-C class. As well as defining named Objective-C
classes, define-objc-class can be used to define abstract classes by omitting the :objc-class-name class option.

The main purpose of abstract classes is to simulate multiple inheritance (Objective-C only supports single inheritance): when
a Lisp class inherits from an abstract class, all the methods defined in the abstract class become methods in the inheriting
class.

For example, the method "size" exists in both the Objective-C classes MyData and MyOtherData because the Lisp classes
inherit it from the abstract class my-size-mixin, even though there is no common Objective-C ancestor class:

(define-objc-class my-size-mixin ()
 ())

(define-objc-method ("size" (:unsigned :int))
 ((self my-size-mixin))
 42)

(define-objc-class my-data (my-size-mixin)
 ()
 (:objc-class-name "MyData"))

(define-objc-class my-other-data (my-size-mixin)
 ()
 (:objc-class-name "MyOtherData"))

1.4.7 Instance variables

In a few cases, for instance when using nib files created by Apple's Interface Builder, it is necessary to add Objective-C
instance variables to a class. This can be done using the :objc-instance-vars class option to define-objc-class.
For example, the following class contains two instance variables, each of which is a pointer to an Objective-C foreign object:

(define-objc-class my-controller ()
 ()
 (:objc-class-name "MyController")
 (:objc-instance-vars
 ("widthField" objc:objc-object-pointer)
 ("heightField" objc:objc-object-pointer)))

Given an instance of my-controller, the instance variables can be accessed using the accessor

1 Introduction to the Objective-C Interface

16

objc-object-var-value.

1.4.8 Memory management

Objective-C uses reference counting for its memory management, but the associated Lisp objects are managed by the Lisp
garbage collector. When an Objective-C object is allocated, the associated Lisp object is recorded in the runtime system and
cannot be removed by the garbage collector. When its reference count becomes zero, the object is removed from the runtime
system and the generic function objc-object-destroyed is called with the object to allow cleanup methods to be
implemented. After this point, the object can be removed by the garbage collector as normal.

1.4.9 Using and declaring formal protocols

Classes defined by define-objc-class can be made to support Objective-C formal protocols by specifying the
:objc-protocols class option. All the standard formal protocols from macOS 10.4 are predefined.

Note: It is not possible to define new protocols entirely in Lisp on macOS 10.5 and later, but existing protocols can be
declared using the define-objc-protocol macro.

1 Introduction to the Objective-C Interface

17

2 Objective-C Reference

alloc-init-object Function

Summary

Allocates and initializes a foreign Objective-C object.

Package

objc

Signature

alloc-init-object class => pointer

Arguments

class⇓ A string or Objective-C class pointer.

Values

pointer⇓ A foreign pointer to new Objective-C object.

Description

The function alloc-init-object calls the Objective-C "alloc" class method for class and then calls the "init"
instance method to return pointer. This is equivalent to doing:

(invoke (invoke class "alloc") "init")

See also

invoke

autorelease Function

Summary

Invokes the Objective-C "autorelease" method.

Package

objc

18

Signature

autorelease pointer => pointer

Arguments

pointer⇓ A pointer to an Objective-C foreign object.

Values

pointer The argument pointer.

Description

The function autorelease calls the Objective-C "autorelease" instance method of pointer to register it with the current
autorelease pool. The pointer is returned.

See also

release
retain
make-autorelease-pool
with-autorelease-pool

can-invoke-p Function

Summary

Checks whether a given Objective-C method can be invoked.

Package

objc

Signature

can-invoke-p class-or-object-pointer method => flag

Arguments

class-or-object-pointer⇓
A string naming an Objective-C class, a pointer to an Objective-C foreign object or the
result of calling current-super.

method⇓ A string naming the method to invoke.

Values

flag⇓ A boolean.

Description

The function can-invoke-p is used to check whether an Objective-C instance or class method can be invoked (is defined)

2 Objective-C Reference

19

for a given class or object.

If class-or-object-pointer is a string, then it must name an Objective-C class and the class method named method in that class
is checked. If class-or-object-pointer is the result of calling current-super then the instance method named method is
checked for the superclass of the current method. Otherwise class-or-object-pointer should a foreign pointer to an Objective-
C object or class and the appropriate instance or class method named method is checked. The value of method should be a
concatenation of the message name and its argument names, including the colons, for example "setWidth:height:".

The return value flag is nil if the method cannot be invoked and t otherwise.

See also

invoke

coerce-to-objc-class Function

Summary

Coerces its argument to an Objective-C class pointer.

Package

objc

Signature

coerce-to-objc-class class => class-pointer

Arguments

class⇓ A string or Objective-C class pointer.

Values

class-pointer An Objective-C class pointer.

Description

The function coerce-to-objc-class returns the Objective-C class pointer for the class specified by class. If class is a
string, then the registered Objective-C class pointer is found. Otherwise class should be a foreign pointer of type
objc-class and is returned unchanged.

This is the opposite operation to the function objc-class-name.

See also

objc-class
objc-class-name

2 Objective-C Reference

20

coerce-to-selector Function

Summary

Coerces its argument to an Objective-C method selector.

Package

objc

Signature

coerce-to-selector method => selector

Arguments

method⇓ A string or selector.

Values

selector A selector.

Description

The function coerce-to-selector returns the selector named by method. If method is a string, then the registered selector
is found or a new one is registered. Otherwise method should be a foreign pointer of type sel and is returned unchanged.

This is the opposite operation to the function selector-name.

See also

sel
selector-name

current-super Local Macro

Summary

Allows Objective-C methods to invoke their superclass's methods.

Package

objc

Signature

current-super => super-value

Values

2 Objective-C Reference

21

super-value⇓ An opaque value.

Description

The local macro current-super returns a value which can be passed to invoke to call a method in the superclass of the
current method definition (like super in Objective-C). current-super can also be passed to can-invoke-p. When used
within a define-objc-method form, instance methods in the superclass are invoked and when used within a
define-objc-class-method form, class methods are invoked. super-value has dynamic extent and it is an error to use
current-super in any other contexts.

Examples

See 1.4.5 Invoking methods in the superclass.

See also

define-objc-method
define-objc-class-method
invoke
can-invoke-p

define-objc-class Macro

Summary

Defines a class and an Objective-C class.

Package

objc

Signature

define-objc-class name (superclass-name*) (slot-specifier*) class-option* => name

Arguments

name⇓ A symbol naming the class to define.

superclass-name⇓ A symbol naming a superclass.

slot-specifier⇓ A slot description as used by cl:defclass.

class-option⇓ A class option as used by cl:defclass.

Values

name A symbol naming the class to define.

Description

The macro define-objc-class defines a standard-class called name which is used to implement an Objective-C
class. Normal cl:defclass inheritance rules apply for slots and Lisp methods.

2 Objective-C Reference

22

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

Each superclass-name argument specifies a direct superclass of the new class, which can be another Objective-C
implementation class or any other standard-class, provided that standard-objc-object is included somewhere in the
overall class precedence list. The class standard-objc-object is the default superclass if no others are specified.

slot-specifiers are standard cl:defclass slot definitions.

class-options are standard cl:defclass class options. In addition the following options are recognized:

(:objc-class-name objc-class-name)

This option makes the Objective-C class name used for instances of name be the string objc-class
-name. If none of the classes in the class precedence list of name have a :objc-class-name
option then no Objective-C object is created.

(:objc-superclass-name objc-superclass-name)

This option makes the Objective-C superclass name of the Objective-C class defined by the
:objc-class-name option be the string objc-superclass-name. If omitted, the objc-superclass-
name defaults to the objc-class-name of the first class in the class precedence list that specifies
such a name or to "NSObject" if no such class is found. It is an error to specify a objc-
superclass-name which is different from the one that would be inherited from a superclass.

(:objc-instance-vars var-spec*)

This options allows Objective-C instance variables to be defined for this class. Each var-spec
should be a list of the form:

(ivar-name ivar-type)

where ivar-name is a string naming the instance variable and ivar-type is an Objective-C FLI
type. The class will automatically contain all the instance variables specified by its superclasses.

(:objc-protocols protocol-name*)

This option allows Objective-C formal protocols to be registered as being implemented by the
class. Each protocol-name should be a string naming a previously defined formal protocol (see
define-objc-protocol). The class will automatically implement all protocols specified by
its superclasses.

Notes

If name is not referenced at run time and you deliver an application relying on your class, then you need to arrange for name
to be retained during delivery. This can be achieved with the Delivery keyword :keep-symbols (see the Delivery User
Guide), but a more modular approach is shown in the example below.

Examples

Suppose your application relies on a class defined like this:

(objc:define-objc-class foo ()
 ()
 (:objc-class-name "Foo"))

If your Lisp code does not actually reference foo at run time then you must take care to retain your class during Delivery.
The best way to achieve this is to keep its name on the plist of some other symbol like this:

(setf (get 'make-a-foo 'owner-class) 'foo)

2 Objective-C Reference

23

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

Here make-a-foo is the only code that makes the Foo Objective-C object, so it is the best place to retain the Lisp class foo
(that is, only if make-a-foo is retained).

See also

standard-objc-object
define-objc-method
define-objc-class-method
define-objc-protocol
1.4.2 Defining an Objective-C class

define-objc-class-method Macro

Summary

Defines an Objective-C class method for a specified class.

Package

objc

Signature

define-objc-class-method (name result-type &optional result-style) (object-argspec {argspec}*) {form}*

object-argspec ::= (object-var class-name [pointer-var])

argspec ::= (arg-var arg-type [arg-style])

Arguments

name⇓ A string naming the method to define.

result-type⇓ An Objective-C FLI type.

result-style⇓ An optional keyword specifying the result conversion style, either :lisp or :foreign.

form⇓ A form.

object-var⇓ A symbol naming a variable.

class-name⇓ A symbol naming a class defined with define-objc-class.

pointer-var⇓ An optional symbol naming a variable.

arg-var⇓ A symbol naming a variable.

arg-type⇓ An Objective-C FLI type.

arg-style⇓ An optional symbol or list specifying the argument conversion style.

Description

The macro define-objc-class-method defines the Objective-C class method name for the Objective-C classes
associated with class-name. name should be a concatenation of the message name and its argument names, including the
colons, for example "setWidth:height:".

If the define-objc-class definition of class-name specifies the (:objc-class-name objc-class-name) option, then the

2 Objective-C Reference

24

method is added to the Objective-C class objc-class-name. Otherwise, the method is added to the Objective-C class of every
subclass of class-name that specifies the :objc-class-name option, allowing a mixin class to define methods that become
part of the implementation of its subclasses (see 1.4.6 Abstract classes).

When the method is invoked, each form is evaluated in sequence with object-var bound to the (sub)class of class-name,
pointer-var (if specified) bound to the receiver foreign pointer to the Objective-C class and each arg-var bound to the
corresponding method argument.

See define-objc-method for details of the argument and result conversion (using arg-type, arg-style, result-type and
result-style).

forms can use functions such as invoke to invoke other class methods on pointer-var. The macro current-super can be
used to obtain an object that allows class methods in the superclass to be invoked (like super in Objective-C).

See also

define-objc-class
define-objc-method
current-super

define-objc-method Macro

Summary

Defines an Objective-C instance method for a specified class.

Package

objc

Signature

define-objc-method (name result-type &optional result-style)(object-argspec {argspec}*) {form}*

object-argspec ::= (object-var class-name [pointer-var])

argspec ::= (arg-var arg-type [arg-style])

Arguments

name⇓ A string naming the method to define.

result-type⇓ An Objective-C FLI type.

result-style⇓ An optional keyword specifying the result conversion style, either :lisp or :foreign,
or a symbol naming a variable.

form⇓ A form.

object-var⇓ A symbol naming a variable.

class-name⇓ A symbol naming a class defined with define-objc-class.

pointer-var⇓ An optional symbol naming a variable.

arg-var⇓ A symbol naming a variable.

arg-type⇓ An Objective-C FLI type.

2 Objective-C Reference

25

arg-style⇓ An optional symbol or list specifying the argument conversion style.

Description

The macro define-objc-method defines the Objective-C instance method name for the Objective-C classes associated
with class-name. name should be a concatenation of the message name and its argument names, including the colons, for
example "setWidth:height:".

If the define-objc-class definition of class-name specifies the (:objc-class-name objc-class-name) option, then the
method is added to the Objective-C class objc-class-name. Otherwise, the method is added to the Objective-C class of every
subclass of class-name that specifies the :objc-class-name option, allowing a mixin class to define methods that become
part of the implementation of its subclasses (see 1.4.6 Abstract classes).

When the method is invoked, each form is evaluated in sequence with object-var bound to the object of type class-name
associated with the receiver, pointer-var (if specified) bound to the receiver foreign pointer and each arg-var bound to the
corresponding method argument.

Each argument has an arg-type (its Objective-C FLI type) and an optional arg-style, which specifies how the FLI value is
converted to a Lisp value. If arg-style is :foreign, then arg-var is bound to the FLI value of the argument (typically an
integer or foreign pointer). Otherwise, arg-var is bound to a value converted according to arg-type:

cocoa:ns-rect If arg-style is omitted or :lisp then the rectangle is converted to a vector of four elements of the
form #(x y width height). Otherwise the argument is a foreign pointer to a cocoa:ns-rect
object.

cocoa:ns-size If arg-style is omitted or :lisp then the size is converted to a vector of two elements of the form
#(width height). Otherwise the argument is a foreign pointer to a cocoa:ns-size object.

cocoa:ns-point If arg-style is omitted or :lisp then the point is converted to a vector of two elements of the
form #(x y). Otherwise the argument is a foreign pointer to a cocoa:ns-point object.

cocoa:ns-range If arg-style is omitted or :lisp then the range is converted to a cons of the form
(location . length). Otherwise the argument is a foreign pointer to a cocoa:ns-range object.

objc-object-pointer If arg-style is the symbol string then the argument is assumed to be a pointer to an Objective-C
NSString object and is converted to a Lisp string or nil for a null pointer.

If arg-style is the symbol array then the argument is assumed to be a pointer to an Objective-C
NSArray object and is converted to a Lisp vector or nil for a null pointer.

If arg-style is the a list of the form (array elt-arg-style) then the argument is assumed to be a
pointer to an Objective-C NSArray object and is recursively converted to a Lisp vector using elt-
arg-style for the elements or nil for a null pointer.

Otherwise, the argument remains as a foreign pointer to the Objective-C object.

objc-c-string If arg-style is the symbol string then the argument is assumed to be a pointer to a foreign string
and is converted to a Lisp string or nil for a null pointer.

After the last form has been evaluated, its value is converted to result-type according to result-style and becomes the result of
the method.

If result-style is a non-keyword symbol and result-type is a foreign structure type defined with define-objc-struct then
the variable named by result-style is bound to a pointer to a foreign object of type result-type while forms are evaluated.
forms must set the slots in this foreign object to specify the result.

If result-style is :foreign then the value is assumed to be suitable for conversion to result-type using the normal FLI rules.

2 Objective-C Reference

26

http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_array.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm

If result-style is :lisp then additional conversions are performed for specific values of result-type:

cocoa:ns-rect If the value is a vector of four elements of the form #(x y width height), the x, y, width and
height are used to form the returned rectangle. Otherwise it is assumed to be a foreign pointer to
a cocoa:ns-rect and is copied.

cocoa:ns-size If the value is a vector of two elements of the form #(width height), the width and height are
used to form the returned size. Otherwise it is assumed to be a foreign pointer to a
cocoa:ns-size and is copied.

cocoa:ns-point If the value is a vector of two elements of the form #(x y), the x and y are used to form the
returned point. Otherwise it is assumed to be a foreign pointer to a cocoa:ns-point and is
copied.

cocoa:ns-range If the value is a cons of the form (location . length), the location and length are used to form
the returned range. Otherwise it is assumed to be a foreign pointer to a cocoa:ns-range object
and is copied.

(:signed :char) or (:unsigned :char)

If the value is nil then NO is returned.If the value is t then YES is returned. Otherwise the value
must be an appropriate integer for result-type.

objc-object-pointer If the value is a string then it is converted to a newly allocated Objective-C NSString object
which the caller is expected to release.

If the value is a vector then it is recursively converted to a newly allocated Objective-C NSArray

object which the caller is expected to release.

If the value is nil then a null pointer is returned.

Otherwise the value should be a foreign pointer to an Objective-C object of the appropriate class.

objc-class The value is coerced to a Objective-C class pointer as if by coerce-to-objc-class. In
particular, this allows strings to be returned.

forms can use functions such as invoke to invoke other methods on pointer-var. The macro current-super can be used to
obtain an object that allows methods in the superclass to be invoked (like super in Objective-C).

Examples

See 1.4.3 Defining Objective-C methods.
See 1.4.5 Invoking methods in the superclass.
See 1.4.6 Abstract classes.

See also

define-objc-class
define-objc-class-method
current-super
define-objc-struct

2 Objective-C Reference

27

define-objc-protocol Macro

Summary

Defines an Objective-C formal protocol.

Package

objc

Signature

define-objc-protocol name &key incorporated-protocols instance-methods class-methods

Arguments

name⇓ A string naming the protocol to define.

incorporated-protocols⇓
A list of protocol names.

instance-methods⇓ A list of instance method specifications.

class-methods⇓ A list of class method specifications.

Description

The macro define-objc-protocol defines an Objective-C formal protocol named by name for use in the
:objc-class-protocols option of define-objc-class.

If incorporated-protocols is specified, it should be a list of already defined formal protocol names. These protocols are
registered as being incorporated within name. The default is for no protocols to be incorporated.

If instance-methods or class-methods are specified, they define the instance and class methods respectively in the protocol.
Each should give a list of method specifications, which are lists of the form:

(name result-type arg-type*)

with components:

name A string naming the method. name should be a concatenation of the message name and its
argument names, including the colons, for example "setWidth:height:".

result-type The Objective-C FLI type that the method returns.

arg-type The Objective-C FLI type of the corresponding argument of the method.

The receiver and selector arguments should not be specified by the arg-types. All the standard Cocoa Foundation and
Application Kit protocols from the macOS 10.4 SDK are predefined by LispWorks.

Notes

It is not possible to define new protocols entirely in Lisp on macOS 10.5 and later, but define-objc-protocol can be
used to declare existing protocols.

2 Objective-C Reference

28

See also

define-objc-class

define-objc-struct Macro

Summary

Defines a foreign structure for use with Objective-C.

Package

objc

Signature

define-objc-struct (name {option}*) {slot}*

option ::= (:foreign-name foreign-name) | (:typedef-name typedef-name)

slot ::= (slot-name slot-type)

Arguments

name⇓ A symbol naming the foreign structure type.

foreign-name⇓ A string giving the foreign structure name.

typedef-name⇓ A symbol naming a foreign structure type alias.

slot-name⇓ A symbol naming the foreign slot.

slot-type⇓ An FLI type descriptor for the foreign slot.

Description

The macro define-objc-struct defines a foreign structure type named name with the slots specified by each slot-name
and slot-type. In addition, (:struct name) becomes an Objective-C type that can be used with invoke, invoke-into
and define-objc-method or define-objc-class-method.

foreign-name must be specified to allow the Objective-C runtime system to identify the type.

If typedef-name is specified,it allows that symbol to be used in place of (:struct name) when using the type in a
define-objc-method or define-objc-class-method form.

See also

invoke-into
define-objc-method
define-objc-class-method

2 Objective-C Reference

29

description Function

Summary

Calls the Objective-C "description" instance method.

Package

objc

Signature

description pointer => string

Arguments

pointer⇓ A pointer to an Objective-C foreign object.

Values

string A string.

Description

The function description calls the Objective-C "description" instance method of pointer and returns the description as
a string.

ensure-objc-initialized Function

Summary

Initializes the Objective-C system if required.

Package

objc

Signature

ensure-objc-initialized &key modules

Arguments

modules⇓ A list of strings.

Description

The function ensure-objc-initialized must be called before any other functions in the objc package to initialize the
Objective-C system. It is safe to use the defining macros such as define-objc-class and define-objc-method before
calling ensure-objc-initialized.

2 Objective-C Reference

30

modules can be a list of strings specifying foreign modules to load. Typically, this needs to be the paths to the Cocoa .dylib
files to make Objective-C work. See fli:register-module.

Note: Do not call ensure-objc-initialized in a LispWorks for iOS Runtime application, because this has already been
done by LispWorks when the application starts.

invoke Function

Summary

Invokes an Objective-C method.

Package

objc

Signature

invoke class-or-object-pointer method &rest args => value

Arguments

class-or-object-pointer⇓
A string naming an Objective-C class, a pointer to an Objective-C foreign object or the
result of calling current-super.

method⇓ A string naming the method to invoke or a list as specified below.

args⇓ Arguments to the method.

Values

value The value returned by the method.

Description

The function invoke is used to call Objective-C instance and class methods.

If class-or-object-pointer is a string, then it must name an Objective-C class and the class method named method in that class
is called. If class-or-object-pointer is the result of calling current-super then the instance method named method is
invoked for the superclass of the current method. Otherwise class-or-object-pointer should be a foreign pointer to an
Objective-C object or class and the appropriate instance or class method named method is invoked.

If method is a string then it should be a concatenation of the message name and its argument names, including the colons, for
example "setWidth:height:".

Otherwise method must be a list in one of two forms:

• (method-name arg-types)

• (method-name arg-types :result-type result-type)

method-name must be a string, as described when method is a string above. arg-types must be a list of FLI argument types,
each one matching the corresponding argument to the method. result-type must be the FLI result type of the method, which
defaults to :void if omitted. This is primarily intended for invoking methods using vector types, which are not compatible

2 Objective-C Reference

31

with the Objective-C Runtime type encoding API. See 1.3.8 Invoking a method that uses vector types.

Each argument in args is converted to an appropriate FLI Objective-C value and is passed in order to the method. This
conversion is done based on the signature of the method as follows:

NSRect If the argument is a vector of four elements of the form #(x y width height), the x, y, width and
height are used to form the rectangle. Otherwise it is assumed to be a foreign pointer to a
cocoa:ns-rect nd is copied.

NSSize If the argument is a vector of two elements of the form #(width height), the width and height are
used to form the size. Otherwise it is assumed to be a foreign pointer to a cocoa:ns-size and
is copied.

NSPoint If the argument is a vector of two elements of the form #(x y), the x and y are used to form the
point. Otherwise it is assumed to be a foreign pointer to a cocoa:ns-point and is copied.

NSRange If the argument is a cons of the form (location . length), the location and length are used to
form the range. Otherwise it is assumed to be a foreign pointer to a cocoa:ns-range object
and is copied.

other structures The argument should be a foreign pointer to the appropriate struct object and is copied.

BOOL If the argument is nil then NO is passed, if the argument is t then YES is passed. Otherwise the
argument must be an integer (due to a limitation in the Objective-C type system, this case cannot
be distinguished from the signed char type).

id If the argument is a string then it is converted to a newly allocated Objective-C NSString object
which is released when the function returns.

If the argument is a vector then it is recursively converted to a newly allocated Objective-C
NSArray object which is released when the function returns.

If the argument is nil then a null pointer is passed.

Otherwise the argument should be a foreign pointer to an Objective-C object of the appropriate
class.

Class The argument is coerced to an Objective-C class pointer as if by coerce-to-objc-class. In
particular, this allows strings to be passed as class arguments.

char * If the argument is a string then it is converted to a newly allocated foreign string which is freed
when the function returns.

Otherwise the argument should be a foreign pointer.

struct structname * The argument should be a foreign pointer to a struct whose type is defined by
define-objc-struct with :foreign-name structname.

other integer and pointer types

All other integer and pointer types are converted using the normal FLI rules.

When the method returns, its value is converted according to its type:

NSRect A vector of four elements of the form #(x y width height) is created containing the rectangle.

NSSize A vector of two elements of the form #(width height) is created containing the size.

2 Objective-C Reference

32

NSPoint A vector of two elements of the form #(x y) is created containing the point.

NSRange A cons of the form (location . length) is created containing the range.

other structures Other structures cannot be returned by value using invoke. See invoke-into for how to
handle these types.

BOOL If the value is NO then 0 is returned, otherwise 1 is returned. See also invoke-bool.

id An object of type objc-object-pointer is returned.

char * The value is converted to a string and returned.

other integer and pointer types

All other integer and pointer types are converted using the normal FLI rules.

See also

invoke-bool
invoke-into
can-invoke-p

invoke-bool Function

Summary

Invokes an Objective-C method that returns a BOOL.

Package

objc

Signature

invoke-bool class-or-object-pointer method &rest args => value

Arguments

class-or-object-pointer⇓
A string naming an Objective-C class, a pointer to an Objective-C foreign object or the
result of calling current-super.

method⇓ A string naming the method to invoke or a list as specified by invoke.

args⇓ Arguments to the method.

Values

value The value returned by the method.

2 Objective-C Reference

33

Description

The function invoke-bool is used to call Objective-C instance and class methods that return the type BOOL. It behaves
identically to invoke, except that if the return value is NO then nil is returned, otherwise t is returned. The meaning of
class-or-object-pointer, method and args is identical to invoke.

See also

invoke
invoke-into

invoke-into Function

Summary

Invokes an Objective-C method that returns a specific type or fills a specific object.

Package

objc

Signature

invoke-into result class-or-object-pointer method &rest args => value

Arguments

result⇓ A symbol or list naming the return type or an object to contain the returned value.

class-or-object-pointer⇓
A string naming an Objective-C class, a pointer to an Objective-C foreign object or the
result of calling current-super.

method⇓ A string naming the method to invoke or a list as specified by invoke.

args⇓ Arguments to the method.

Values

value The value returned by the method.

Description

The function invoke-into is used to call Objective-C instance and class methods that return specific types which are not
supported directly by invoke or for methods that return values of some foreign structure type where an existing object
should be filled with the value. The meaning of class-or-object-pointer, method and args is identical to invoke.

The value of result controls how the value of the method is converted and returned as follows:

the symbol string If the result type of the method is id, then the value is assumed to be an Objective-C object of
class NSString and is converted a string and returned. Otherwise no special conversion is
performed.

2 Objective-C Reference

34

http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm

the symbol array If the result type of the method is id, then the value is assumed to be an Objective-C object of
class NSArray and is converted a vector and returned. Otherwise no special conversion is
performed.

a list of the form (array elt-type)

If the result type of the method is id, then the value is assumed to be an Objective-C object of
class NSArray and is recursively converted a vector and returned. The component elt-type
should be either string, array or another list of the form (array sub-elt-type) and is used to
control the conversion of the elements.

Otherwise no special conversion is performed.

the symbol :pointer If the result type of the method is unsigned char *, then the value is returned as a pointer of
type objc-c-string.

Otherwise no special conversion is performed.

a list of the form (:pointer elt-type)

If the result type of the method is unsigned char *, then the value is returned as a pointer
with element type elt-type.

Otherwise no special conversion is performed.

a pointer to a foreign structure

If the result type of the method is a foreign structure type defined with define-objc-struct

or a built-in structure type such as NSRect, the value is copied into the structure pointed to by
result and the pointer is returned. Otherwise no special conversion is performed.

an object of type vector

If the result type of the method is id, then the value is assumed to be an Objective-C object of
class NSArray and is converted to fill the vector, which must be at least as long as the NSArray.
The vector is returned.

If the result type of the method is NSRect, NSSize or NSPoint then the first 4, 2 or 2 elements
respectively of the vector are set to the corresponding components of the result. The vector is
returned.

Otherwise no special conversion is performed.

an object of type cons

If the result type of the method is NSRange then the car of the cons is set to the location of the
range and the cdr of the cons is set to the length of the range. The cons is returned.

Otherwise no special conversion is performed.

See also

invoke
invoke-bool
define-objc-struct

2 Objective-C Reference

35

http://www.lispworks.com/documentation/HyperSpec/Body/t_array.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_array.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_vector.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_cons.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

make-autorelease-pool Function

Summary

Makes an autorelease pool for the current thread.

Package

objc

Signature

make-autorelease-pool => pool

Values

pool A foreign pointer to an autorelease pool object.

Description

The function make-autorelease-pool returns a new Objective-C autorelease pool for the current thread. An autorelease
pool is provided automatically for the main thread when running CAPI with Cocoa, but other threads need to allocate one if
they call Objective-C methods that use autorelease.

See also

autorelease
with-autorelease-pool

objc-at-question-mark FLI Type Descriptor

Summary

A foreign type corresponding to '@?' character pair in the type encoding of a method.

Package

objc

Syntax

objc-at-question-mark

Description

The FLI type objc-at-question-mark is corresponds to the '@?' character pair in the type encoding of a method.

According to the documentation this is an illegal combination, but experimentally it is used by Apple. It seems to be used
when the argument should be a pointer to a (Clang) block, which is the foreign type fli:foreign-block-pointer in
LispWorks. Since this is not documented, it cannot be relied on.

2 Objective-C Reference

36

Notes

At the time of writing objc-at-question-mark is an alias for the FLI type :pointer.

See also

objc-class-method-signature

objc-bool FLI Type Descriptor

Summary

A foreign type for the Objective-C type BOOL.

Package

objc

Syntax

objc-bool

Description

The FLI type objc-bool is a boolean type for use as the Objective-C type BOOL. It converts between nil and NO and
between non-nil and YES.

See also

invoke-bool

objc-c++-bool FLI Type Descriptor

Summary

A foreign type corresponding to the C++ bool or the C99 _Bool type.

Package

objc

Syntax

objc-c++-bool

Description

The FLI type objc-c++-bool corresponds to the C++ bool or C99 _Bool types (the 'B' character in the type encoding
defined by the Type Encodings section of Apple's Objective-C Runtime Programming Guide). Note that most boolean values
are specified using the Objective-C BOOL type (objc-bool in LispWorks), so objc-c++-bool is not commonly used.
However, on Macs based on Apple silicon, the Objective-C BOOL type is the C99 _Bool type, so you may see

2 Objective-C Reference

37

objc-c++-bool in error messages or foreign template definitions.

Notes

At the time of writing objc-c++-bool is an alias for the FLI type (:boolean :standard).

See also

objc-class-method-signature

objc-class FLI Type Descriptor

Summary

A foreign type for pointers to Objective-C class objects.

Package

objc

Syntax

objc-class

Description

The FLI type objc-class is a pointer type that is used to represent pointers to Objective-C class objects. This is like the
Class type in Objective-C.

See also

objc-object-pointer

objc-class-method-signature Function

Summary

Tries to find the relevant method, and returns its signature.

Package

objc

Signature

objc-class-method-signature class-spec method-name => arg-types, result-type, type-encoding

Arguments

class-spec⇓ A string, an objc-object-pointer or an objc-class pointer.

method-name⇓ A string.

2 Objective-C Reference

38

Values

arg-types⇓ A list.

result-type A foreign type descriptor.

type-encoding A string.

Description

The function objc-class-method-signature tries to find the relevant method, and returns its signature.

class-spec needs to be a string naming a class, an objc-object-pointer foreign pointer (which specifies its class), or an
objc-class pointer.

method-name specifies the method name. It can be either a class method or an instance method.

The first return value is a list of the argument types (that is, foreign types). Note that the first and second arguments of all
Objective-C methods are the object/class and the method selector (name). These are are typed as objc-object-pointer
and sel, so arg-types always starts with these two symbols.

The second return value is the result type of the method.

The third return value is a string which is the type encoding of the signature of the method, as stored internally by the
Objective-C runtime system.

If objc-class-method-signature fails to locate the method, it returns nil.

See also

objc-class
objc-object-pointer
sel

objc-class-name Function

Summary

Returns the name of an Objective-C class.

Package

objc

Signature

objc-class-name class => name

Arguments

class⇓ A pointer to an Objective-C class.

Values

name A string.

2 Objective-C Reference

39

Description

The function objc-class-name returns the name of the Objective-C class class as a string.

This is the opposite operation to the function coerce-to-objc-class.

See also

objc-class
coerce-to-objc-class

objc-c-string FLI Type Descriptor

Summary

A foreign type for the Objective-C type char *.

Package

objc

Syntax

objc-c-string

Description

The FLI type objc-c-string is a pointer type for use where the Objective-C type char * occurs as the argument in a
method definition. It converts the argument to a string within the body of the method.

See also

define-objc-method

objc-object-destroyed Generic Function

Summary

Called when an Objective-C is destroyed.

Package

objc

Signature

objc-object-destroyed object

Method signatures

objc-object-destroyed (object standard-objc-object)

2 Objective-C Reference

40

Arguments

object⇓ An object of type standard-objc-object.

Description

When an Objective-C foreign object is destroyed (when the reference count becomes zero) and its class was defined by
define-objc-class, the runtime system calls the generic function objc-object-destroyed with object being the
associated object of type standard-objc-object to allow cleanups to be done.

The built-in primary method specializing object on standard-objc-object does nothing, but typically :after methods
are defined to handle class-specific cleanups. This function should not be called directly.

Defining a method for objc-object-destroyed is similar to implementing "dealloc" in Objective-C code.

See also

release
standard-objc-object

objc-object-from-pointer Function

Summary

Finds the Lisp object associated with a given Objective-C foreign pointer.

Package

objc

Signature

objc-object-from-pointer pointer => object

Arguments

pointer⇓ A pointer to an Objective-C foreign object.

Values

object⇓ The Lisp object associated with pointer.

Description

The function objc-object-from-pointer returns the Lisp object object associated with the Objective-C foreign object
referenced by pointer. For an Objective-C instance, object is of type standard-objc-object and for an Objective-C class
it is the standard-class that was defined by define-objc-class.

Note that for a given returned object, the value of the form:

(objc-object-pointer object)

has the same address as pointer.

2 Objective-C Reference

41

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm

See also

define-objc-class
standard-objc-object
objc-object-pointer

objc-object-pointer Function

Summary

Returns the Objective-C foreign pointer associated with a given Lisp object.

Package

objc

Signature

objc-object-pointer object-or-class => pointer

Arguments

object-or-class⇓ An instance of standard-objc-object or a class defined by define-objc-class.

Values

pointer⇓ A pointer to an Objective-C foreign object or class.

Description

The function objc-object-pointer returns the Objective-C foreign pointer associated with a given Lisp object. If object
is an instance of standard-objc-object then pointer will have foreign type objc-object-pointer. Otherwise, object
should be a class defined by define-objc-class and the associated Objective-C class object is returned as a foreign
pointer of type objc-class.

Note that for a given returned pointer, the value of the form:

(objc-object-from-pointer pointer)

is object-or-class.

See also

standard-objc-object
define-objc-class
objc-object-pointer
objc-class
objc-object-from-pointer

2 Objective-C Reference

42

objc-object-pointer FLI Type Descriptor

Summary

A foreign type for pointers to Objective-C foreign objects.

Package

objc

Syntax

objc-object-pointer

Description

The FLI type objc-object-pointer a pointer type that is used to represent pointers to Objective-C foreign objects. This
is like the id type in Objective-C.

See also

objc-object-from-pointer
objc-class

objc-object-var-value Accessor

Summary

Accesses an Objective-C instance variable.

Package

objc

Signature

objc-object-var-value object var-name &key result-pointer => value

(setf objc-object-var-value) value object var-name &key result-pointer => value

Arguments

object⇓ A object of type standard-objc-object.

var-name⇓ A string.

result-pointer⇓ A foreign pointer or nil.

value⇓ A value.

2 Objective-C Reference

43

Values

value⇓ A value.

Description

The accessor objc-object-var-value gets or gets the value of the instance variable var-name in the Objective-C foreign
object associated with object. The type of value depends on the declared type of the instance variable. If this type is a foreign
structure type, then result-pointer should be supplied to the reader, giving a pointer to a foreign object of the correct type that
is filled with the value.

Note that it is only possible to access instance variables that are defined in Lisp by define-objc-class, not those inherited
from superclasses implemented in Objective-C.

See also

standard-objc-object
define-objc-class

objc-unknown FLI Type Descriptor

Summary

A foreign type corresponding to '?' character in the type encoding of a method.

Package

objc

Syntax

objc-unknown

Description

The FLI type objc-unknown corresponds to '?' character in the type encoding of a method.

In general, you do not need to use this, but you may see it in the result of objc-class-method-signature.

Notes

At the time of writing objc-unknown is an alias for the FLI type :void.

See also

objc-class-method-signature

2 Objective-C Reference

44

release Function

Summary

Invokes the Objective-C "release" method.

Package

objc

Signature

release pointer

Arguments

pointer⇓ A pointer to an Objective-C foreign object.

Description

The function release calls the Objective-C "release" instance method of pointer to decrement its retain count.

See also

retain
autorelease
retain-count

retain Function

Summary

Invokes the Objective-C "retain" method.

Package

objc

Signature

retain pointer => pointer

Arguments

pointer⇓ A pointer to an Objective-C foreign object.

Values

pointer An argument pointer.

2 Objective-C Reference

45

Description

The function retain calls the Objective-C "retain" instance method of pointer to decrement its retain count. pointer is
returned.

See also

release
autorelease
retain-count

retain-count Function

Summary

Invokes the Objective-C "retainCount" method.

Package

objc

Signature

retain-count pointer => retain-count

Arguments

pointer⇓ A pointer to an Objective-C foreign object.

Values

retain-count An integer.

Description

The function retain-count calls the Objective-C "retainCount" instance method of pointer to return its retain count.

See also

retain
release

sel FLI Type Descriptor

Summary

A foreign type for Objective-C method selectors.

Package

objc

2 Objective-C Reference

46

Syntax

sel

Description

The FLI type sel is an opaque type used to represent method selectors. This is like the SEL type in Objective-C.

A selector can be obtained from a string by calling the function coerce-to-selector.

See also

coerce-to-selector
define-objc-method

selector-name Function

Summary

Returns the name of a method selector.

Package

objc

Signature

selector-name selector => name

Arguments

selector⇓ A string or selector.

Values

name A string.

Description

The function selector-name returns the name of the method selector selector. If selector is a string then it is returned
unchanged, otherwise it should be a foreign sel pointer and its name is returned.

This is the opposite operation to the function coerce-to-selector.

See also

sel
coerce-to-selector

2 Objective-C Reference

47

standard-objc-object Abstract Class

Summary

The class from which all classes that implement an Objective-C class should inherit.

Package

objc

Superclasses

standard-object

Initargs

:init-function An optional function that is called to initialize the Objective-C foreign object.

:pointer An optional Objective-C foreign object pointer for the object.

Readers

objc-object-pointer

Description

The abstract class standard-objc-object provides the framework for subclasses to implement an Objective-C class.
Subclasses are typically defined using define-objc-class, which allows the Objective-C class name to be specified.
Instances of such a subclass have an associated Objective-C foreign object whose pointer can be retrieved using the
objc-object-pointer accessor. The function objc-object-from-pointer can be used to obtain the object again
from the Objective-C foreign pointer.

There are two ways that subclasses of standard-objc-object can be made:

• Via make-instance. In this case, the Objective-C object is allocated automatically by calling the Objective-C class's
"alloc" method. If the init-function initarg is not specified, the object is initialized by calling its "init" method. If
the init-function initarg is specified, it is called during initialization with the newly allocated object and it should call the
appropriate initialization method for that object and return its result. This allows a specific initialization method, such as
"initWithFrame:", to be called if required.

• Via the Objective-C class's "allocWithZone:" method (or a method such as "alloc" that calls
"allocWithZone:"). In this case, an instance of the subclass of standard-objc-object is made with the value of
the pointer initarg being a pointer to the newly allocated Objective-C foreign object.

See also

define-objc-class
objc-object-destroyed
objc-object-from-pointer
objc-object-pointer

2 Objective-C Reference

48

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

trace-invoke Function

Summary

Traces the invocation of an Objective-C method.

Package

objc

Signature

trace-invoke method

Arguments

method⇓ A string.

Description

The function trace-invoke sets up a trace on invoke for calls to the Objective-C method named method. Use
untrace-invoke to remove any such tracing.

See also

invoke
untrace-invoke

untrace-invoke Function

Summary

Removes traces of the invocation of an Objective-C method.

Package

objc

Signature

untrace-invoke method

Arguments

method⇓ A string.

Description

The function untrace-invoke removes any tracing on invoke for calls to the Objective-C method named method.

2 Objective-C Reference

49

See also

invoke
trace-invoke

with-autorelease-pool Macro

Summary

Evaluates forms in the scope of a temporary autorelease pool.

Package

objc

Signature

with-autorelease-pool (option*) form* => values

Arguments

option⇓ There are currently no options.

form⇓ A form.

Values

values The values returned by the last form.

Description

The macro with-autorelease-pool creates a new autorelease pool and evaluates each form in sequence. The pool is
released at the end, even if a non-local exit is performed by forms. An autorelease pool is provided automatically for the main
thread when running CAPI with Cocoa, but other threads need to allocate one if they call Objective-C methods that use
autorelease.

option must be empty.

Examples

The "description" method returns an autoreleased NSString, so to make this function safe for use anywhere, the
with-autorelease-pool macro is used:

(defun object-description (object)
 (with-autorelease-pool ()
 (invoke-into 'string object "description")))

See also

autorelease
make-autorelease-pool

2 Objective-C Reference

50

3 The Cocoa Interface

3.1 Introduction

Cocoa is an extensive macOS API for access to a variety of operating system services, mostly through Objective-C classes
and methods. These can be used via the Objective-C interface described in the preceding chapters, but there are a few foreign
structure types and helper functions defined in the cocoa package that are useful.

3.2 Types

There are four commonly used structure types in Cocoa that have equivalents in the Objective-C interface. In addition, each
one has a helper function that will set its slots.

Cocoa structure types and helper functions

Objective-C type FLI type descriptor Helper function to set the slots

NSRect cocoa:ns-rect cocoa:set-ns-rect*

NSPoint cocoa:ns-point cocoa:set-ns-point*

NSSize cocoa:ns-size cocoa:set-ns-size*

NSRange cocoa:ns-range cocoa:set-ns-range*

3.3 Observers

Cocoa provides a mechanism called notification centers to register observers for particular events. The helper functions
cocoa:add-observer and cocoa:remove-observer can be used to add and remove observers.

3.4 How to run Cocoa on its own

This section describes how you can run LispWorks as a Cocoa application, either by saving a LispWorks development image
with a suitable restart function, or by delivering a LispWorks application which uses a nib file generated by Apple's Interface
Builder.

3.4.1 LispWorks as a Cocoa application

The following startup function can be used to make LispWorks run as a Cocoa application. Typically, before calling "run"

you would create an application delegate with a method on applicationDidFinishLaunching: to initialize the
application's windows.

(defun init-function ()
 (mp:initialize-multiprocessing
 "main thread"
 '()
 #'(lambda ()
 (objc:ensure-objc-initialized

51

 :modules
 '("/System/Library/Frameworks/Foundation.framework/Versions/C/Foundation"
 "/System/Library/Frameworks/Cocoa.framework/Versions/A/Cocoa"))
 (objc:with-autorelease-pool ()
 (let ((app (objc:invoke "NSApplication"
 "sharedApplication")))
 (objc:invoke app "run"))))))

To use this, a bundle must be created, calling init-function on startup. For example, the following build script will create
lw-cocoa-app.app:

(in-package "CL-USER")
(load-all-patches)
(example-compile-file
 "configuration/macos-application-bundle.lisp" :load t)
(save-image (when (save-argument-real-p)
 (write-macos-application-bundle "lw-cocoa-app"))
 :restart-function 'init-function)

See "Saving a LispWorks image" in the LispWorks® User Guide and Reference Manual for information on using a build
script to create a new LispWorks image.

3.4.2 Using a nib file in a LispWorks application

For a complete example demonstrating how to build a standalone Cocoa application which uses a nib file, see these two files:

(example-edit-file "objc/area-calculator/area-calculator")

(example-edit-file "objc/area-calculator/deliver")

The area calculator example connects the nib file generated by Apple's Interface Builder to a Lisp implementation of an
Objective-C class which acts as the MVC controller.

3 The Cocoa Interface

52

4 Cocoa Reference

add-observer Function

Summary

Adds an observer to a notification center.

Package

cocoa

Signature

add-observer target selector &key name object center

Arguments

target⇓ A pointer to an Objective-C foreign object.

selector⇓ A selector of type sel.

name⇓ A string or nil.

object⇓ A pointer to an Objective-C foreign object or nil.

center⇓ A notification center.

Description

The function add-observer calls the Objective-C instance method "addObserver:selector:name:object:" of
center to add target as an observer for selector with the given name and object, which both default to nil.

If center is omitted then it defaults to the default notification center.

See also

remove-observer

ns-not-found Constant

Summary

A constant similar to the Cocoa constant NSNotFound.

Package

cocoa

53

Description

The constant ns-not-found has the same value as the Cocoa Foundation constant NSNotFound.

ns-point FLI Type Descriptor

Summary

A foreign type for the Objective-C structure type NSPoint.

Package

cocoa

Syntax

ns-point

Description

The FLI type ns-point is a structure type for use as the Objective-C type NSPoint. The structure has two slots, :x and :y,
both of foreign type :float.

When used directly in method definition or invocation, it allows automatic conversion to/from a vector of two elements of the
form #(x y).

See also

ns-rect
set-ns-point*

ns-range FLI Type Descriptor

Summary

A foreign type for the Objective-C structure type NSRange.

Package

cocoa

Syntax

ns-range

Description

The FLI type ns-range is a structure type for use as the Objective-C type NSRange. The structure has two slots,
:location and :length, both of foreign type (:unsigned :int).

When used directly in method definition or invocation, it allows automatic conversion to/from a cons of the form
(location . length).

4 Cocoa Reference

54

See also

set-ns-range*

ns-rect FLI Type Descriptor

Summary

A foreign type for the Objective-C structure type NSRect.

Package

cocoa

Syntax

ns-rect

Description

The FLI type ns-rect is a structure type for use as the Objective-C type NSRect. The structure has two slots, :origin of
foreign type ns-point and :size of foreign type ns-size.

When used directly in method definition or invocation, it allows automatic conversion to/from a vector of four elements of the
form #(x y width height).

See also

ns-point
ns-size
set-ns-rect*

ns-size FLI Type Descriptor

Summary

A foreign type for the Objective-C structure type NSSize.

Package

cocoa

Syntax

ns-size

Description

The FLI type ns-size is a structure type for use as the Objective-C type NSSize. The structure has two slots, :width and
:height, both of foreign type :float.

When used directly in method definition or invocation, it allows automatic conversion to/from a vector of two elements of the

4 Cocoa Reference

55

form #(width height).

See also

ns-rect
set-ns-size*

remove-observer Function

Summary

Removes an observer from a notification center.

Package

cocoa

Signature

remove-observer target &key name object center

Arguments

target⇓ A pointer to an Objective-C foreign object.

name⇓ A string or nil.

object⇓ A pointer to an Objective-C foreign object or nil.

center⇓ A notification center.

Description

The function remove-observer calls the Objective-C instance method "removeObserver:name:object:" of center to
remove target as an observer with the given name and object, which both default to nil.

If center is omitted then it defaults to the default notification center.

See also

add-observer

set-ns-point* Function

Summary

Set the slots in a ns-point structure.

Package

cocoa

4 Cocoa Reference

56

Signature

set-ns-point* point x y => point

Arguments

point⇓ A pointer to a foreign object of type ns-point.

x⇓ A real.

y⇓ A real.

Values

point A pointer to a foreign object of type ns-point.

Description

The function set-ns-point* sets the slots of the foreign ns-point structure pointed to by point to the values of x and y.
point is returned.

See also

ns-point
set-ns-rect*

set-ns-range* Function

Summary

Set the slots in a ns-range structure.

Package

cocoa

Signature

set-ns-range* range location length => range

Arguments

range⇓ A pointer to a foreign object of type ns-range.

location⇓ A positive integer.

length⇓ A positive integer.

Values

range A pointer to a foreign object of type ns-range.

Description

The function set-ns-range* sets the slots of the foreign ns-range structure pointed to by range to the values of location

4 Cocoa Reference

57

and length. range is returned.

See also

ns-range

set-ns-rect* Function

Summary

Set the slots in a ns-rect structure.

Package

cocoa

Signature

set-ns-rect* rect x y width height => rect

Arguments

rect⇓ A pointer to a foreign object of type ns-rect.

x⇓ A real.

y⇓ A real.

width⇓ A real.

height⇓ A real.

Values

rect A pointer to a foreign object of type ns-rect.

Description

The function set-ns-rect* sets the slots of the foreign ns-rect structure pointed to by rect to the values of x, y, width
and height. rect is returned.

See also

ns-rect
set-ns-point*
set-ns-size*

4 Cocoa Reference

58

set-ns-size* Function

Summary

Set the slots in a ns-size structure.

Package

cocoa

Signature

set-ns-size* size width height => size

Arguments

size⇓ A pointer to a foreign object of type ns-size.

width⇓ A real.

height⇓ A real.

Values

size A pointer to a foreign object of type ns-size.

Description

The function set-ns-size* sets the slots of the foreign ns-size structure pointed to by size to the values of width and
height. size is returned.

See also

ns-size
set-ns-rect*

4 Cocoa Reference

59

5 Self-contained examples

This chapter enumerates the set of examples in the LispWorks library relevant to the content of this manual. Each example
file contains complete, self-contained code and detailed comments, which include one or more entry points near the start of
the file which you can run to start the program.

To run the example code:

1. Open the file in the Editor tool in the LispWorks IDE. Evaluating the call to example-edit-file shown below will
achieve this.

2. Compile the example code, by Ctrl+Shift+B.

3. Place the cursor at the end of the entry point form and press Ctrl+X Ctrl+E to run it.

4. Read the comment at the top of the file, which may contain further instructions on how to interact with the example.

5.1 Example definitions

This file contains various example definitions used in this manual:

(example-edit-file "objc/manual")

5.2 Displaying Cocoa classes in CAPI windows

5.2.1 Using Web Kit to display HTML

This example demonstrates the use of capi:cocoa-view-pane containing a WebView from Apple's Web Kit and allowing
an HTML page to be viewed:

(example-edit-file "objc/web-kit")

5.2.2 Showing a movie using NSMovieView

This example demonstrates the use of capi:cocoa-view-pane containing a NSMovieView and allowing a movie file to be
opened and played:

(example-edit-file "objc/movie-view")

5.3 nib file example

This example connects a nib file (as generated by Apple's Interface Builder) to a Lisp implementation of an Objective-C class
which acts as the MVC controller:

(example-edit-file "objc/area-calculator/area-calculator")

60

Use this script to build it as a standalone Cocoa application:

(example-edit-file "objc/area-calculator/deliver")

5 Self-contained examples

61

Index

A

abstract classes 1.4.6 : Abstract classes 16

standard-objc-object 48 1.2.1 : Objective-C pointers and pointer types 6, 1.4.1 : Objects and pointers 12, 1.4.2 : Defining an
Objective-C class 12, define-objc-class 23

accessors

objc-object-var-value 43 1.4.7 : Instance variables 17

add-observer function 53

addObserver:selector:name:object: Objective-C method add-observer 53

alloc-init-object function 18

alloc Objective-C method 1.4.2 : Defining an Objective-C class 13, alloc-init-object 18, standard-objc-object 48

allocWithZone: Objective-C method 1.4.2 : Defining an Objective-C class 13, standard-objc-object 48

Apple Interface Builder 3.4.2 : Using a nib file in a LispWorks application 52

argument conversion 1.3.3 : Special argument and result conversion 8, 1.4.3.1 : Special method argument and result conversion 14

array return type 1.3.6 : Invoking a method that returns a string or array 9

associated objects 1.4.1 : Objects and pointers 12, 1.4.2 : Defining an Objective-C class 13, 1.4.2 : Defining an Objective-C
class 13, 1.4.2 : Defining an Objective-C class 13, 1.4.4 : How inheritance works 15, 1.4.8 : Memory management 17

autorelease function 18 1.3.10 : Memory management 11

autorelease Objective-C method 1.3.10 : Memory management 11

autorelease pools 1.3.10 : Memory management 11

B

boolean return type 1.3.4 : Invoking a method that returns a boolean 9

boolean type 1.2.2 : Integer and boolean types 7

C

can-invoke-p function 19 1.3.9 : Determining whether a method exists 11, 1.3.11 : Selectors 11

classes

abstract 1.4.6 : Abstract classes 16

cocoa-view-pane 5.2.1 : Using Web Kit to display HTML 60, 5.2.2 : Showing a movie using NSMovieView 60

defining 1.4.2 : Defining an Objective-C class 12

class methods 1.3.1 : Simple calls to instance and class methods 7

class options

:objc-class-name 1.4.2 : Defining an Objective-C class 12, define-objc-class 23

:objc-instance-vars 1.4.7 : Instance variables 16, define-objc-class 23

:objc-protocols 1.4.9 : Using and declaring formal protocols 17, define-objc-class 23

:objc-superclass-name 1.4.4 : How inheritance works 15, define-objc-class 23

62

Cocoa application 3.4 : How to run Cocoa on its own 51

cocoa-view-pane class 5.2.1 : Using Web Kit to display HTML 60, 5.2.2 : Showing a movie using NSMovieView 60

coerce-to-objc-class function 20 1.4.2 : Defining an Objective-C class 13

coerce-to-selector function 21 1.3.11 : Selectors 11

constants

ns-not-found 53

conversion

argument and result 1.3.3 : Special argument and result conversion 8, 1.4.3.1 : Special method argument and result conversion 14

current-super local macro 21 1.4.5 : Invoking methods in the superclass 15

D

data types 1.2 : Objective-C data types 6

define-c-struct macro 1.2.1 : Objective-C pointers and pointer types 7

define-objc-class macro 22 1.4.2 : Defining an Objective-C class 12, 1.4.4 : How inheritance works 15, 1.4.6 : Abstract
classes 16

define-objc-class-method macro 24 1.4.3 : Defining Objective-C methods 13, 1.4.5 : Invoking methods in the superclass 15

define-objc-method macro 25 1.4.3 : Defining Objective-C methods 13, 1.4.5 : Invoking methods in the superclass 15

define-objc-protocol macro 28 1.4.9 : Using and declaring formal protocols 17

define-objc-struct macro 29 1.2.1 : Objective-C pointers and pointer types 7, 1.2.3 : Structure types 7, 1.3.5 : Invoking a
method that returns a structure 9, 1.4.3.2 : Defining a method that returns a structure 15

defining

classes 1.4.2 : Defining an Objective-C class 12

methods 1.4.3 : Defining Objective-C methods 13

protocols 1.4.9 : Using and declaring formal protocols 17

structures 1.2.3 : Structure types 7

description function 30

E

ensure-objc-initialized function 30 1.1.1 : Initialization 6

F

FLI type descriptors

ns-point 54 1.4.3.1 : Special method argument and result conversion 14, 1.4.3.1 : Special method argument and result
conversion 14, 3.2 : Types 51

ns-range 54 1.4.3.1 : Special method argument and result conversion 14, 1.4.3.1 : Special method argument and result
conversion 14, 3.2 : Types 51

ns-rect 55 1.3.5 : Invoking a method that returns a structure 9, 1.4.3.1 : Special method argument and result conversion 14, 1.4.3.1
: Special method argument and result conversion 14, 3.2 : Types 51

ns-size 55 1.4.3.1 : Special method argument and result conversion 14, 1.4.3.1 : Special method argument and result
conversion 14, 3.2 : Types 51

objc-at-question-mark 36

objc-bool 37 1.2.2 : Integer and boolean types 7, 1.4.3.1 : Special method argument and result conversion 14, 1.4.3.1 : Special
method argument and result conversion 14

objc-c++-bool 37

objc-class 38 1.2.1 : Objective-C pointers and pointer types 7, 1.4.1 : Objects and pointers 12, 1.4.3.1 : Special method
argument and result conversion 14

Index

63

objc-c-string 40 1.2.1 : Objective-C pointers and pointer types 7, 1.4.3.1 : Special method argument and result conversion 14

objc-object-pointer 43 1.2.1 : Objective-C pointers and pointer types 6, 1.2.1 : Objective-C pointers and pointer
types 7, 1.3.6 : Invoking a method that returns a string or array 9, 1.4.1 : Objects and pointers 12, 1.4.3.1 : Special method
argument and result conversion 14, 1.4.3.1 : Special method argument and result conversion 14

objc-unknown 44

sel 46 1.2.1 : Objective-C pointers and pointer types 7, 1.3.11 : Selectors 11

functions

add-observer 53

alloc-init-object 18

autorelease 18 1.3.10 : Memory management 11

can-invoke-p 19 1.3.9 : Determining whether a method exists 11, 1.3.11 : Selectors 11

coerce-to-objc-class 20 1.4.2 : Defining an Objective-C class 13

coerce-to-selector 21 1.3.11 : Selectors 11

description 30

ensure-objc-initialized 30 1.1.1 : Initialization 6

invoke 31 1.3.1 : Simple calls to instance and class methods 7, 1.3.2 : Method naming 8, 1.3.5 : Invoking a method that returns a
structure 9, 1.3.6 : Invoking a method that returns a string or array 9, 1.3.9 : Determining whether a method exists 11, 1.4.5 :
Invoking methods in the superclass 15

invoke-bool 33 1.3.4 : Invoking a method that returns a boolean 9

invoke-into 34 1.3.5 : Invoking a method that returns a structure 9, 1.3.6 : Invoking a method that returns a string or array 9

make-autorelease-pool 36 1.3.10 : Memory management 11

objc-class-method-signature 38

objc-class-name 39

objc-object-from-pointer 41 1.4.1 : Objects and pointers 12

objc-object-pointer 42 1.4.1 : Objects and pointers 12, 1.4.2 : Defining an Objective-C class 13, standard-objc-
object 48

release 45 1.3.10 : Memory management 11

remove-observer 56

retain 45 1.3.10 : Memory management 11

retain-count 46 1.3.10 : Memory management 11

selector-name 47 1.3.11 : Selectors 11

set-ns-point* 56 3.2 : Types 51

set-ns-range* 57 3.2 : Types 51

set-ns-rect* 58 3.2 : Types 51

set-ns-size* 59 3.2 : Types 51

trace-invoke 49

untrace-invoke 49

G

generic functions

objc-object-destroyed 40 1.4.8 : Memory management 17

Index

64

I

inheritance 1.4.4 : How inheritance works 15

:init-function initarg 1.4.2 : Defining an Objective-C class 13, standard-objc-object 48

initialization 1.1.1 : Initialization 6

init Objective-C method 1.4.2 : Defining an Objective-C class 13, alloc-init-object 18, standard-objc-object 48

instance methods 1.3.1 : Simple calls to instance and class methods 7

instance variables 1.4.7 : Instance variables 16, objc-object-var-value 44

integer types 1.2.2 : Integer and boolean types 7

invoke function 31 1.3.1 : Simple calls to instance and class methods 7, 1.3.2 : Method naming 8, 1.3.5 : Invoking a method that
returns a structure 9, 1.3.6 : Invoking a method that returns a string or array 9, 1.3.9 : Determining whether a method
exists 11, 1.4.5 : Invoking methods in the superclass 15

invoke-bool function 33 1.3.4 : Invoking a method that returns a boolean 9

invoke-into function 34 1.3.5 : Invoking a method that returns a structure 9, 1.3.6 : Invoking a method that returns a string or
array 9

invoking methods 1.3 : Invoking Objective-C methods 7

L

local macros

current-super 21 1.4.5 : Invoking methods in the superclass 15

M

macros

define-c-struct 1.2.1 : Objective-C pointers and pointer types 7

define-objc-class 22 1.4.2 : Defining an Objective-C class 12, 1.4.4 : How inheritance works 15, 1.4.6 : Abstract
classes 16

define-objc-class-method 24 1.4.3 : Defining Objective-C methods 13, 1.4.5 : Invoking methods in the superclass 15

define-objc-method 25 1.4.3 : Defining Objective-C methods 13, 1.4.5 : Invoking methods in the superclass 15

define-objc-protocol 28 1.4.9 : Using and declaring formal protocols 17

define-objc-struct 29 1.2.1 : Objective-C pointers and pointer types 7, 1.2.3 : Structure types 7, 1.3.5 : Invoking a method
that returns a structure 9, 1.4.3.2 : Defining a method that returns a structure 15

with-autorelease-pool 50 1.3.10 : Memory management 11

make-autorelease-pool function 36 1.3.10 : Memory management 11

memory management

foreign objects 1.3.10 : Memory management 11

Lisp objects 1.4.8 : Memory management 17

methods

check for existence 1.3.9 : Determining whether a method exists 11

defining 1.4.3 : Defining Objective-C methods 13

inheritance 1.4.4 : How inheritance works 15

instance and class 1.3.1 : Simple calls to instance and class methods 7

invoking 1.3 : Invoking Objective-C methods 7

naming 1.3.2 : Method naming 8, 1.4.3 : Defining Objective-C methods 13

multiple inheritance 1.4.6 : Abstract classes 16

Index

65

N

New in LispWorks 7.1

vector types 1.3.8 : Invoking a method that uses vector types 10

nib file 3.4.2 : Using a nib file in a LispWorks application 52

NSArray Objective-C class 1.3.6 : Invoking a method that returns a string or array 9, 1.4.3.1 : Special method argument and result
conversion 14, define-objc-method 26, define-objc-method 26, define-objc-
method 27, invoke 32, invoke-into 35, invoke-into 35, invoke-into 35

ns-not-found constant 53

NSObject Objective-C class 1.3.10 : Memory management 11, 1.4.2 : Defining an Objective-C class 12, 1.4.4 : How inheritance
works 15, define-objc-class 23

ns-point FLI type descriptor 54 1.4.3.1 : Special method argument and result conversion 14, 1.4.3.1 : Special method argument and
result conversion 14, 3.2 : Types 51

ns-range FLI type descriptor 54 1.4.3.1 : Special method argument and result conversion 14, 1.4.3.1 : Special method argument and
result conversion 14, 3.2 : Types 51

ns-rect FLI type descriptor 55 1.3.5 : Invoking a method that returns a structure 9, 1.4.3.1 : Special method argument and result
conversion 14, 1.4.3.1 : Special method argument and result conversion 14, 3.2 : Types 51

ns-size FLI type descriptor 55 1.4.3.1 : Special method argument and result conversion 14, 1.4.3.1 : Special method argument and
result conversion 14, 3.2 : Types 51

NSString Objective-C class 1.3.6 : Invoking a method that returns a string or array 9, 1.4.3.1 : Special method argument and result
conversion 14, define-objc-method 26, define-objc-method 27, invoke 32, invoke-into 34

O

objc-at-question-mark FLI type descriptor 36

objc-bool FLI type descriptor 37 1.2.2 : Integer and boolean types 7, 1.4.3.1 : Special method argument and result
conversion 14, 1.4.3.1 : Special method argument and result conversion 14

objc-c++-bool FLI type descriptor 37

objc-class FLI type descriptor 38 1.2.1 : Objective-C pointers and pointer types 7, 1.4.1 : Objects and pointers 12, 1.4.3.1 :
Special method argument and result conversion 14

objc-class-method-signature function 38

objc-class-name function 39

:objc-class-name class option 1.4.2 : Defining an Objective-C class 12, define-objc-class 23

objc-c-string FLI type descriptor 40 1.2.1 : Objective-C pointers and pointer types 7, 1.4.3.1 : Special method argument and result
conversion 14

:objc-instance-vars class option 1.4.7 : Instance variables 16, define-objc-class 23

objc-object-destroyed generic function 40 1.4.8 : Memory management 17

objc-object-from-pointer function 41 1.4.1 : Objects and pointers 12

objc-object-pointer FLI type descriptor 43 1.2.1 : Objective-C pointers and pointer types 6, 1.2.1 : Objective-C pointers and
pointer types 7, 1.3.6 : Invoking a method that returns a string or array 9, 1.4.1 : Objects and pointers 12, 1.4.3.1 : Special
method argument and result conversion 14, 1.4.3.1 : Special method argument and result conversion 14

objc-object-pointer function 42 1.4.1 : Objects and pointers 12, 1.4.2 : Defining an Objective-C class 13, standard-objc
-object 48

objc-object-var-value accessor 43 1.4.7 : Instance variables 17

:objc-protocols class option 1.4.9 : Using and declaring formal protocols 17, define-objc-class 23

:objc-superclass-name class option 1.4.4 : How inheritance works 15, define-objc-class 23

objc-unknown FLI type descriptor 44

Objective-C classes

NSArray 1.3.6 : Invoking a method that returns a string or array 9, 1.4.3.1 : Special method argument and result

Index

66

conversion 14, define-objc-method 26, define-objc-method 26, define-objc-
method 27, invoke 32, invoke-into 35, invoke-into 35, invoke-into 35

NSObject 1.3.10 : Memory management 11, 1.4.2 : Defining an Objective-C class 12, 1.4.4 : How inheritance
works 15, define-objc-class 23

NSString 1.3.6 : Invoking a method that returns a string or array 9, 1.4.3.1 : Special method argument and result
conversion 14, define-objc-method 26, define-objc-method 27, invoke 32, invoke-into 34

Objective-C methods

addObserver:selector:name:object: add-observer 53

alloc 1.4.2 : Defining an Objective-C class 13, alloc-init-object 18, standard-objc-object 48

allocWithZone: 1.4.2 : Defining an Objective-C class 13, standard-objc-object 48

autorelease 1.3.10 : Memory management 11

init 1.4.2 : Defining an Objective-C class 13, alloc-init-object 18, standard-objc-object 48

release 1.3.10 : Memory management 11

removeObserver:name:object: remove-observer 56

respondsToSelector: 1.3.9 : Determining whether a method exists 11, 1.3.11 : Selectors 11

retain 1.3.10 : Memory management 11

retainCount 1.3.10 : Memory management 11

objects and pointers 1.4.1 : Objects and pointers 12

P

:pointer initarg standard-objc-object 48

pointers and objects 1.4.1 : Objects and pointers 12

pointer types 1.2.1 : Objective-C pointers and pointer types 6

protocols 1.4.9 : Using and declaring formal protocols 17

R

reference count 1.3.10 : Memory management 11, 1.4.8 : Memory management 17

release function 45 1.3.10 : Memory management 11

release Objective-C method 1.3.10 : Memory management 11

remove-observer function 56

removeObserver:name:object: Objective-C method remove-observer 56

respondsToSelector: Objective-C method 1.3.9 : Determining whether a method exists 11, 1.3.11 : Selectors 11

result conversion 1.3.3 : Special argument and result conversion 8, 1.4.3.1 : Special method argument and result conversion 14

retain function 45 1.3.10 : Memory management 11

retain-count function 46 1.3.10 : Memory management 11

retainCount Objective-C method 1.3.10 : Memory management 11

retain Objective-C method 1.3.10 : Memory management 11

return types

array 1.3.6 : Invoking a method that returns a string or array 9

boolean 1.3.4 : Invoking a method that returns a boolean 9

string 1.3.6 : Invoking a method that returns a string or array 9

structure 1.3.5 : Invoking a method that returns a structure 9, 1.4.3.2 : Defining a method that returns a structure 15, invoke-
into 35

Index

67

unsigned char * invoke-into 35

S

sel FLI type descriptor 46 1.2.1 : Objective-C pointers and pointer types 7, 1.3.11 : Selectors 11

selector-name function 47 1.3.11 : Selectors 11

selectors 1.3.11 : Selectors 11

Self-contained examples

Cocoa and CAPI 5.2 : Displaying Cocoa classes in CAPI windows 60

Cocoa classes 5.2 : Displaying Cocoa classes in CAPI windows 60

definitions 5.1 : Example definitions 60

nib files 5.3 : nib file example 60

set-ns-point* function 56 3.2 : Types 51

set-ns-range* function 57 3.2 : Types 51

set-ns-rect* function 58 3.2 : Types 51

set-ns-size* function 59 3.2 : Types 51

standard-objc-object abstract class 48 1.2.1 : Objective-C pointers and pointer types 6, 1.4.1 : Objects and pointers 12, 1.4.2
: Defining an Objective-C class 12, define-objc-class 23

string return type 1.3.6 : Invoking a method that returns a string or array 9

strings 1.3.3 : Special argument and result conversion 8, 1.3.6 : Invoking a method that returns a string or array 9

structure return type 1.3.5 : Invoking a method that returns a structure 9, 1.4.3.2 : Defining a method that returns a structure 15, invoke-
into 35

structure types 1.2.3 : Structure types 7

super 1.4.5 : Invoking methods in the superclass 15

T

trace-invoke function 49

U

unsigned char *

return type invoke-into 35

untrace-invoke function 49

W

with-autorelease-pool macro 50 1.3.10 : Memory management 11

Non-alaphanumerics

@implementation 1.4.3 : Defining Objective-C methods 13

@interface 1.4.3 : Defining Objective-C methods 13

Index

68

	LispWorks Objective-C and Cocoa Interface User Guide and Reference Manual
	Copyrights and Trademarks
	Contents
	1 Introduction to the Objective-C Interface
	1.1 Introduction
	1.1.1 Initialization

	1.2 Objective-C data types
	1.2.1 Objective-C pointers and pointer types
	1.2.2 Integer and boolean types
	1.2.3 Structure types

	1.3 Invoking Objective-C methods
	1.3.1 Simple calls to instance and class methods
	1.3.2 Method naming
	1.3.3 Special argument and result conversion
	1.3.4 Invoking a method that returns a boolean
	1.3.5 Invoking a method that returns a structure
	1.3.6 Invoking a method that returns a string or array
	1.3.7 Invoking a method that returns values by reference
	1.3.8 Invoking a method that uses vector types
	1.3.9 Determining whether a method exists
	1.3.10 Memory management
	1.3.11 Selectors

	1.4 Defining Objective-C classes and methods
	1.4.1 Objects and pointers
	1.4.2 Defining an Objective-C class
	1.4.3 Defining Objective-C methods
	1.4.3.1 Special method argument and result conversion
	1.4.3.2 Defining a method that returns a structure

	1.4.4 How inheritance works
	1.4.5 Invoking methods in the superclass
	1.4.6 Abstract classes
	1.4.7 Instance variables
	1.4.8 Memory management
	1.4.9 Using and declaring formal protocols

	2 Objective-C Reference
	alloc-init-object
	autorelease
	can-invoke-p
	coerce-to-objc-class
	coerce-to-selector
	current-super
	define-objc-class
	define-objc-class-method
	define-objc-method
	define-objc-protocol
	define-objc-struct
	description
	ensure-objc-initialized
	invoke
	invoke-bool
	invoke-into
	make-autorelease-pool
	objc-at-question-mark
	objc-bool
	objc-c++-bool
	objc-class
	objc-class-method-signature
	objc-class-name
	objc-c-string
	objc-object-destroyed
	objc-object-from-pointer
	objc-object-pointer
	objc-object-pointer
	objc-object-var-value
	objc-unknown
	release
	retain
	retain-count
	sel
	selector-name
	standard-objc-object
	trace-invoke
	untrace-invoke
	with-autorelease-pool

	3 The Cocoa Interface
	3.1 Introduction
	3.2 Types
	3.3 Observers
	3.4 How to run Cocoa on its own
	3.4.1 LispWorks as a Cocoa application
	3.4.2 Using a nib file in a LispWorks application

	4 Cocoa Reference
	add-observer
	ns-not-found
	ns-point
	ns-range
	ns-rect
	ns-size
	remove-observer
	set-ns-point*
	set-ns-range*
	set-ns-rect*
	set-ns-size*

	5 Self-contained examples
	5.1 Example definitions
	5.2 Displaying Cocoa classes in CAPI windows
	5.2.1 Using Web Kit to display HTML
	5.2.2 Showing a movie using NSMovieView

	5.3 nib file example

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	Non-alaphanumerics

