
LispWorks IDE User Guide
Version 8.0

1

Copyright and Trademarks
LispWorks IDE User Guide (Macintosh version)

Version 8.0

December 2021

Copyright © 2021 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in all copies and supporting documentation, and that the
name of M.I.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "as is"
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including all implied
warranties of merchantability and fitness. In no event shall M.I.T. be liable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright
and permission notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

2

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and
registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt III, as applicable. Rights reserved under the copyright laws of
the United States.

Address Telephone Fax

LispWorks Ltd
St. John's Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

From North America:
877 759 8839 (toll-free)

From elsewhere:
+44 1223 421860

From North America:
617 812 8283

From elsewhere:
+44 870 2206189

 www.lispworks.com

Copyright and Trademarks

3

www.lispworks.com

Contents

Preface 10

1 Introduction 14

1.1 Major tools 14

2 A Short Tutorial 17

2.1 Starting the environment 17

2.2 Creating a Listener 18

2.3 Using the Debugger 19

2.4 Viewing output 20

2.5 Inspecting objects using the Inspector 21

2.6 Examining classes in the Class Browser 23

2.7 Switching between windows 25

2.8 Summary 25

3 Common Features 26

3.1 Displaying tool windows 27

3.2 Setting preferences 31

3.3 Performing editing functions 40

3.4 The Break gesture 42

3.5 The history list 42

3.6 Operating on files 43

3.7 Displaying packages 43

3.8 Performing operations on selected objects 45

3.9 Using different views 47

3.10 Tracing symbols from tools 49

3.11 Linking tools together 49

3.12 Filtering information 50

3.13 Regexp matching 51

3.14 Completion 52

3.15 The Commands menu 55

3.16 Output and Input to/from the standard streams 57

3.17 Examining a window 58

3.18 Specifying the initial tools 58

3.19 System preferences affecting the IDE tools 58

4

4 Getting Help 59

4.1 Online manuals in HTML format 59

4.2 Online help for editor commands 61

4.3 Reporting bugs 61

4.4 Registering a new license key 61

4.5 Browsing manuals online using Adobe Reader 62

5 Session Saving 63

5.1 What session saving does 63

5.2 The default session 63

5.3 What is saved and what is not saved 63

5.4 Saving sessions 64

5.5 Redirecting images to a Saved Session image 67

5.6 Non-IDE interfaces and session saving 68

6 Manipulating Graphs 69

6.1 An overview of graphs 69

6.2 Searching graphs 70

6.3 Expanding and collapsing graphs 70

6.4 Moving nodes in graphs 71

6.5 Displaying plans of graphs 71

6.6 Preferences for graphs 72

6.7 Using graphs in your programs 75

7 The Class Browser 77

7.1 Simple use of the Class Browser 77

7.2 Examining slot information 82

7.3 Examining superclasses and subclasses 84

7.4 Examining classes graphically 86

7.5 Examining generic functions and methods 89

7.6 Examining initargs 91

7.7 Examining class precedences 93

8 The Object Clipboard 95

8.1 Placing objects on the Object Clipboard 95

8.2 Browsing clipped objects 97

8.3 Removing objects 98

8.4 Filtering 98

8.5 Using the Object Clipboard with a Listener 98

9 The Compilation Conditions Browser 101

9.1 Introduction 101

9.2 Examining conditions 101

Contents

5

9.3 Configuring the display 103

9.4 Access to other tools 104

10 The Debugger Tool 105

10.1 Description of the Debugger 106

10.2 What the Debugger tool does 109

10.3 Simple use of the Debugger tool 109

10.4 The stack in the Debugger 110

10.5 An example debugging session 110

10.6 Performing operations on the error condition 112

10.7 Performing operations on stack frames 112

10.8 Performing operations on frame variables 113

10.9 Configuring the debugger tool 113

10.10 The Notifier window 114

10.11 Handling of Cocoa Event Loop hanging 116

10.12 Errors in CAPI display callbacks 117

11 The Tracer 118

11.1 Introduction 118

11.2 Tracing and Untracing functions 118

11.3 Examining the output of tracing 119

11.4 Example 119

12 The Editor 122

12.1 Displaying and editing files 123

12.2 Displaying output messages in the Editor 125

12.3 Displaying and swapping between buffers 125

12.4 Displaying Common Lisp definitions 127

12.5 Changed definitions 128

12.6 Finding definitions 130

12.7 Setting Editor preferences 131

12.8 Basic Editor commands 135

12.9 Other essential commands 138

12.10 Cutting, copying and pasting using the clipboard 138

12.11 Cutting, copying and pasting using the kill ring 139

12.12 Searching and replacing text 141

12.13 Using Lisp-specific commands 144

12.14 Help with editing 149

13 The Code Coverage Browser 150

13.1 Starting the Code Coverage Browser 150

13.2 Displaying a Code Coverage data 151

13.3 Code Coverage Files List Context Menu 151

13.4 Traverse 152

Contents

6

13.5 Using the internal data 153

13.6 Creating new Data 153

14 The Function Call Browser 154

14.1 Introduction 154

14.2 Examining functions using the graph views 154

14.3 Examining functions using the text view 158

14.4 Configuring the function call browser 159

14.5 Configuring graph displays 159

14.6 Performing operations on functions 160

15 The Generic Function Browser 161

15.1 Examining information about methods 161

15.2 Examining information about combined methods 164

15.3 Configuring the Generic Function Browser 167

16 The Search Files tool 169

16.1 Introduction 169

16.2 Performing searches 170

16.3 Viewing the results 175

16.4 Modifying the matched lines 176

16.5 Configuring the Search Files tool 176

17 The Inspector 180

17.1 Inspecting the current object 180

17.2 Description of the Inspector tool 181

17.3 Filtering the display 181

17.4 Examining objects 182

17.5 Operating upon objects and items 183

17.6 Configuring the Inspector 187

17.7 Customizing the Inspector 189

17.8 Creating new inspection formats 189

18 The Symbol Browser 193

18.1 Introduction 193

18.2 Description of the Symbol Browser 193

18.3 Configuring the Symbol Browser 196

19 The Interface Builder 197

20 The Listener 198

20.1 The basic features of a Listener 198

20.2 Evaluating simple forms 199

Contents

7

20.3 Re-evaluating forms 200

20.4 The debugger prompt and debugger level 200

20.5 Interrupting evaluation 201

20.6 The History menu 201

20.7 The Expression menu 201

20.8 The Values menu 202

20.9 The Debug menu 202

20.10 Execute mode 203

20.11 Setting Listener preferences 205

20.12 Running Editor forms in the Listener 206

20.13 Switching to and from other tools 206

20.14 Help with editing in the Listener 206

21 The Output Browser 207

21.1 Interactive compilation messages 208

22 The Process Browser 210

22.1 The process list 211

22.2 Process control 211

22.3 Other ways of breaking processes 212

22.4 Updating the Process Browser 212

22.5 Process Browser Preferences 212

23 The Profiler 214

23.1 Introduction 214

23.2 Description of the Profiler 214

23.3 The Profiler menu and Profiler-specific toolbar buttons 219

23.4 Selecting what to profile 220

23.5 Format of the cumulative results 225

23.6 Interpreting the cumulative results 226

23.7 Configuring the Profiler 226

23.8 Profiling pitfalls 228

23.9 Some examples 229

24 The Shell and Remote Shell Tools 231

24.1 Introduction 231

24.2 The Shell tool 231

24.3 Command history in the shell 232

24.4 Configuring the shell to run 232

24.5 The Remote Shell tool 233

25 The Stepper 234

25.1 Introduction 234

25.2 Simple examples 236

Contents

8

25.3 The implementation of the Stepper 238

25.4 Stepper controls 239

25.5 Stepper restarts 241

25.6 Breakpoints 242

25.7 Stepping macro forms 246

25.8 Listener area 248

25.9 Configuring the Stepper 248

26 The System Browser 251

26.1 Introduction 251

26.2 A brief introduction to systems 251

26.3 The System Browser 252

26.4 A description of the System Browser 253

26.5 Examining the system tree 253

26.6 Examining systems in the text view 255

26.7 Generating and executing plans in the preview view 257

26.8 Examining output in the output view 259

26.9 ASDF Integration 260

26.10 Configuring the display 262

26.11 Setting options in the system browser 262

27 The Window Browser 264

27.1 Introduction 264

27.2 Configuring the Window Browser 265

27.3 Performing operations on windows 268

28 The Application Builder 269

28.1 Introduction 269

28.2 Preparing to build your application 270

28.3 Building your application 271

28.4 Editing the script 272

28.5 Troubleshooting 272

28.6 Running the saved application 273

28.7 Building universal binaries 274

28.8 Using the Application Builder to save a development image 274

28.9 Configuring the Application Builder 275

29 Remote Debugging 276

29.1 Remote Listeners 276

29.2 Menus in the Remote Debugger and Remote Listener tools 277

29.3 Editor commands for remote debugging 277

29.4 Configuring Remote Debugging 278

Index

Contents

9

Preface

Conventions used in this manual

This manual assumes that you have at least a basic knowledge of Common Lisp. Many source code examples are used
throughout the manual to illustrate important concepts, but only extensions to Common Lisp which are specific to the
environment are explained in detail.

This manual does provide a complete description of the windowed development environment available in your Lisp image.
This includes a description of the user interface itself, and a description of how the user interface interacts with Common
Lisp.

This manual refers to example files in the LispWorks library like this:

(example-edit-file "tools/demo-defsys")

These examples are Lisp source files in your LispWorks installation under lib/8-0-0-0/examples/. You can simply
evaluate the given form to view the example source file.

Example files contain instructions about how to use them at the start of the file.

The examples files are in a read-only directory and therefore you should compile them inside the IDE (by the Editor
command Compile Buffer or the toolbar button or by choosing Buffer > Compile from the context menu), so it does not try
to write a fasl file.

If you want to manipulate an example file or compile it on the disk rather than in the IDE, then you need first to copy the file
elsewhere (most easily by using the Editor command Write File or by choosing File > Save As from the context menu).

Using the mouse

Throughout this manual, actions that you perform using the mouse are described in terms of the gesture used, rather than the
combination of mouse buttons and keys that need to be used to perform the operation. This is because the buttons that are
used are highly dependent on the platform you are running your Lisp image on, the operating system you are using, and even
the type of mouse that you have attached to your computer. The mouse gestures available in the environment are described
below.

Select

This is by far the most common mouse gesture, and is used for nearly all mouse operations in the environment. Use the select
gesture to:

• display a menu,

• choose a command from a menu which is already displayed,

• select items from a list or graph,

• select or deselect a toggle switch,

• click on a button,

• position the mouse pointer in a piece of text.

10

Depending on the characteristics of your operating system, you may also need to use select in order to move the mouse focus
to another window.

If you are using a mouse with several buttons, you can nearly always select by clicking the left-most button, but you should
refer to the documentation for your operating system or window manager if you are unsure. This is particularly true if you are
using a mouse which has been set up for use by a left-handed person, since it is possible that the function of the mouse
buttons has been reversed.

Multiple select

Multiple selection is used in lists and graphs when you want to select more than one item. You can select several items from
any list or graph in the environment, and there are a large number of commands which can operate equally well on these
multiple selections.

There are a number of standard ways of making multiple selections in a list or graph, depending on your operating system or
window manager. Check the relevant documentation if you are unsure, or try any of the following:

• Holding down the Shift key while selecting an item.

• Holding down the Control key while selecting an item.

• The middle mouse button (if you have a three-button mouse).

Typically, in lists, holding down the Shift key lets you make a contiguous selection, and holding down the Control key
lets you make a discontiguous selection.

• To select a block of items from a list, select the first item, hold down the Shift key, and then select the last item; the
intervening items are also selected.

• To select several items which do not form a block, hold down the Control key while selecting each item individually.

This behavior is typical in a number of operating systems or window managers. You are probably familiar with it if you are
familiar with using a mouse.

Double-click

The double-click gesture consists of two select gestures, performed in rapid succession. In general, any item in a list, tree or
graph may be double-clicked.

Double-clicking in a choice is usually a shortcut for selecting an item and choosing a common menu command, and the
precise action that takes place depends on the context in which the double-click was performed. Double-clicking can only be
performed on single selections.

In the Editor double-click selects the current Lisp form. Double-clicking and then dragging without releasing the mouse
button increases the selection by forms, either forward or backward. It stops when it reaches the start or end of an enclosing
form.

Triple-click

The triple-click gesture consists of three select gestures, performed in rapid succession.

In the Editor this selects the line on GTK+ and Cocoa. Triple-clicking in the Editor (on GTK+ and Cocoa) and then dragging
without releasing the mouse button increases the selection by lines. The triple-click gesture is not currently supported in
LispWorks on Microsoft Windows.

Alternate select

This is a less common gesture, and is used almost exclusively within the LispWorks IDE to display a context menu
(sometimes referred to as the "context menu" or the "right button menu").

If you are using a mouse with several buttons, you should find that you can perform this gesture by clicking the right-most

Preface

11

mouse button. On a Macintosh with a single button mouse, the context menu is raised by holding down the Control key and
clicking the mouse button. Refer to the documentation for your window manager or operating system if you are unsure.

Choosing menu commands and other controls

Throughout this manual, menu command names and other text labels are shown in This Bold Font.

Submenus are indicated by use of the > character. Thus, for instance, the instruction:

"Choose File > Open"

means that you should select the File menu on a menu bar, and choose the Open command in the menu that appears.
Similarly:

"Choose Window > Tools > Editor"

means that you should display the Window menu by selecting it, select Tools from this menu to display a submenu, and
choose the Editor command from this submenu.

The sequence can include labels of other GUI elements such as tabs and list items. For example the instruction:

"Choose Preferences... > Environment > General > Use in-place completion"

means that you should select the Preferences... menu item, then select the Environment item in a list within the dialog that
appears, then select the General tab within that dialog, and lastly access the button labelled Use in-place completion.

Using the keyboard

Throughout this manual there are descriptions of commands that you can choose by typing at the keyboard. This is especially
true when discussing the built-in editor, which relies heavily on the use of keyboard commands, and the Common Lisp
listener, which uses many of the same commands.

Throughout this manual, keyboard input including the names of keys you press is shown in This Font.

Keyboard commands generally use a combination of ordinary keys together with the modifier keys Control, Shift,
Escape, Alt, Meta and Command (not all of these are available on each platform).

In all cases, the Control, Shift, Meta and Command keys should be held down concurrently with the specified letter. For
example:

Ctrl+S is read as "hold down the Control key and press S".

Ctrl+Shift+A is read as "hold down the Control and Shift keys and press A".

In the editor in Emacs emulation mode, instead using the Meta (Alt) modifier with a key, the Escape key can be pressed
and released before pressing the key. For example:

Esc E is read as "press and release the Escape key, then press E".

Alt+E is read as "hold down the Alt key and press E".

The two key inputs above are equivalent in Emacs emulation mode. This manual generally refers to Alt when referring to the
editor key strokes.

For more information on using keyboard commands in the built-in editor and the Listener, see 12.1.4 Using keyboard
commands.

Preface

12

Appearance of the graphical tools

The screenshots in this manual show toolbars that may have been customized (using the context menu) so you might see
some differences from your setup.

Your windows may differ in some respects from the illustrations given in this manual. This is because some details are
controlled by your window manager and/or operating system, not by LispWorks itself.

Preface

13

1 Introduction

This manual gives you a complete guide to the LispWorks IDE development environment. This environment comprises a
large number of window-based tools which have been designed with the Common Lisp developer in mind. The following are
among the features provided by the environment:

• A fully functional code Editor specifically designed to make writing Common Lisp source code as swift as possible,
emulating Emacs or macOS key styles.

• A Common Lisp Listener for evaluating Common Lisp forms interactively.

• A range of debugging tools including a graphical Debugger, source code Stepper, code Profiler, Tracer, and the
Inspector.

• A range of browsers for examining different objects in your Lisp image, such as the generic functions or CLOS classes
that have been defined.

• A tool for simplifying source code management; vital if you are involved in developing large applications.

• (Microsoft Windows, Linux, x86/x64 Solaris and FreeBSD platforms only) A tool for designing window-based
interfaces to your applications. A point-and-click interface is used to design the interface, and Lisp code is generated for
you.

• A Shell window that lets you run system utilities (DOS commands on Windows, shell commands on non-Windows
systems) inside LispWorks. Remote shells are also supported on non-Windows systems.

• A Search Files tool that allows you to find text matching a regular expression in files.

• An Object Clipboard that allows you to manage selected and copied objects.

• Saved sessions which can be restarted at a later date, allowing you to resume work after restarting your computer.

Because of the large number of tools available, consistency is a vital theme in the environment; each tool has a similar look
and feel so that you need only spend a minimum amount of time learning how to use the environment.

In addition, there is a high degree of integration between the tools available. This means that it is possible to transfer pieces
of information throughout the environment in a logical fashion; if you create an object in the Listener, you can examine it by
transferring it directly to the Inspector. The class of objects that it belongs to can be examined by transferring it to a Class
Browser, and from there, the generic functions which have methods defined on it can be browsed.

To reflect these themes of consistency and integration, the earlier chapters in this manual deal with the generic aspects of the
environment, while at the same time introducing you to the more important tools.

1.1 Major tools

The environment supports a wide range of tools which can help you to work on your Lisp source code more quickly and
efficiently. This section gives you a brief introduction to the most important tools.

You can create any of the tools described here by choosing the appropriate command from the Window > Tools menu or
clicking the button for that tool on the LispWorks toolbar (see Menus and toolbar in the LispWorks IDE).

For full details about any of these tools, see the relevant chapter. The second part of this manual covers each of the tools in
the order that they are found on the Tools menu.

14

1.1.1 The Listener

A Common Lisp Listener is provided to let you evaluate Common Lisp forms. This tool is invaluable as a method of testing
your code without necessitating compilation or evaluation of whole files of Common Lisp source code.

1.1.2 The Editor

A built-in editor is provided to allow you to develop Common Lisp code. It is based on Emacs, an editor which you may
already be familiar with. As an alternative to Emacs keys, the editor offers macOS editor emulation.

The built-in editor offers a wide range of functions specifically designed to help you develop Common Lisp code, and it is
fully integrated into the environment so that code being developed is immediately available for testing.

1.1.3 The Class Browser

This tool allows you to examine the Common Lisp classes that are defined in your environment. You can look at the
superclasses and subclasses of a given class and see the relationships between them, and you can examine the slots available
for each class.

In addition, you can examine the functions and methods defined on a given class, or the precedence list or initargs for the
class.

1.1.4 The Output Browser

The Output Browser collects and displays all output from the environment which may be of use. This includes warning and
error messages displayed during compilation and output generated by tracing or profiling functions. Many other tools in the
environment also provide you with an output view, which lets you see any output which is appropriate to that tool.

1.1.5 The Inspector

The Inspector lets you examine and destructively modify the contents of Common Lisp objects. It is an invaluable tool during
development, since it lets you inspect the state of any part of your data at any stage during execution. Thus, it is easy to see
the value of a slot and, if necessary, alter its value, so that you can test out the effects of such an alteration before you make
the changes necessary in the source code itself.

1.1.6 The Object Clipboard

The Object Clipboard is used to manage multiple Lisp objects. You can select any object in the Object Clipboard for use in
paste operations.

As an example of adding a Lisp object to the Object Clipboard, follow these steps:

1. Evaluate a Lisp expression in the Listener window. Its value is printed.

2. Choose the menu command Values > Clip.

The value from the Listener is now in the Object Clipboard.

If you have not already made an Object Clipboard visible, then do so now using the menu command Window > Tools >
Object Clipboard.

The Object Clipboard can be seen in Object Clipboard Tool.

1 Introduction

15

Object Clipboard Tool

You can use the left mouse button to select any item in the Object Clipboard, then use the context menu (usually invoked by
the right mouse button) to inspect, inspect class, open a Listener, or copy the object.

1 Introduction

16

2 A Short Tutorial

This chapter gives you a short tutorial illustrating simple use of some of the major tools in the environment, and attempts to
familiarize you with the way that tools can be used developing Common Lisp applications.

Note that some of the examples given in this chapter use symbols taken from the CAPI library. Do not worry if you are not
familiar with the CAPI (if, for instance, you have been using another library, such as CLIM, to develop your applications). It
is not essential that you fully understand the example code used in order to gain benefit from the tutorial. If you wish to learn
more about the CAPI, you should refer to the CAPI User Guide and Reference Manual which is supplied in electronic form
with your LispWorks software. The Help menu allows you to search all documentation from inside the LispWorks IDE.

To maintain continuity, try to work your way through the whole of this tutorial in one session.

2.1 Starting the environment

To start LispWorks on macOS, launch it by clicking the ringed "LW" icon in the dock, or use the Finder to locate LispWorks
and double click on it. You can add the "LW" icon to the dock if you did not add it when installing LispWorks.

You should see a splash screen, followed by the LispWorks menu bar and the LispWorks toolbar. The LispWorks menu bar
and toolbar is shown in The LispWorks menu bar and toolbar. A Listener window will also appear if your image is
configured to start one. Note that in this case the Listener menus will be added to the menu bar.

The LispWorks menu bar and toolbar

The LispWorks toolbar is automatically displayed whenever you start the LispWorks IDE, and it appears whenever
LispWorks is the active application. It disappears when LispWorks is not the active application.

Like many other applications, the menu bar contains File and Window menus. As well as a list of LispWorks windows, the
Window menu contains commands that apply to the current window and also contains menus that allow navigation between
tools in the LispWorks IDE.

The File menu allows you to open a file in an Editor, or print a file, regardless of which window is active. When the Editor or
Listener tool is active, the File menu contains other commands for miscellaneous operations on the file displayed. The
Window menu lists all the active LispWorks windows you have running. You can access all the LispWorks IDE tools via the
LispWorks toolbar or via the Window > Tools menu.

Note: If you wish to exit the Lisp image during this tutorial or at any other time, choose LispWorks > Quit LispWorks or
press Command+Q.

17

2.1.1 The Lisp Monitor in the deprecated Motif IDE

This section only applies when using the deprecated Motif IDE.

2.2 Creating a Listener

The Listener tool interactively evaluates the Lisp forms you enter. During a typical session, you evaluate a form in the
Listener, then examine the effects in other tools, returning to the Listener whenever you want to evaluate another form. The
structure of this tutorial reflects this two-stage approach.

A Listener is created when you start the LispWorks IDE. If you don't currently have a Listener (check the Window menu),
start one by choosing Window > Tools > Listener or clicking on in the LispWorks toolbar. This section of the tutorial
demonstrates some of its more useful features. A Listener window is shown in Listener below.

Listener

The Listener contains two views: the Listener view and the output view. At the bottom of the Listener is an echo area that is
visible in either view. The echo area is used to prompt you for information when performing editor commands such as
searching for text. You can switch between the two views by clicking the Listener and Output tabs respectively. You can
evaluate Lisp forms in the Listener view by typing the form, followed by Return. Any output that is produced is displayed
in the Listener view.

1. Type the following form into the Listener and press Return.

(+ 1 2)

The result of the evaluation, 3, appears in the Listener, and a new prompt is printed. Notice that the number in the
prompt has been incremented, indicating that a form has been evaluated.

Because you may want to enter a number of very similar forms, commands are provided which make this easy.

2. Press Meta+P.

The form that you just evaluated is printed at the new prompt. You can press Return to evaluate this form again, or,
more usefully, you can edit the form slightly before evaluating it.

2 A Short Tutorial

18

3. Press Ctrl+B to move the cursor back one space. Now press the Backspace key to delete the number 2, and type 3 in
its place.

You have edited the form (+ 1 2) to create a new form, (+ 1 3).

4. Press Return to evaluate the new form.

The result of the evaluation, 4, appears in the Listener, followed by another new prompt, with the prompt number
incremented once again.

2.3 Using the Debugger

A debugger tool is provided to help track down the cause of problems in your source code. This section introduces you to
some of the ways in which it can be used.

1. Enter the following definition in the Listener:

(defun test ()
 (let ((total 0))
 (loop for i below 100 do
 (incf total i) when (= i 50) do
 (break "We've reached fifty"))))

This function counts from 0 to 99, accumulating the total as it progresses, and forces entry into the debugger when the
count has reached 50.

2. Next, call the function by entering (test) into the Listener.

Initially, the command line debugger is entered. This is a debugger which can be used from within the Listener itself.
More details about what you can do in the command line debugger can be found by typing :? at the debugger prompt.

3. To enter the debugger tool at this point, choose the menu command Debug > Start GUI Debugger or press in the
Listener toolbar.

The debugger tool appears, as shown in Debugger tool.

2 A Short Tutorial

19

Debugger tool

The debugger tool gives a view of the backtrace (in the Backtrace: pane), showing the functions that are on the stack,
and their internal variables (including any arguments) at the point that the error occurred.

4. In the Backtrace: pane, notice that there is a right-pointing triangle to the left of the word TEST. This indicates an
expandable node. Click on this to open up the tree display, showing the local variables used in function test. Notice
that the value for i is 50, as you would expect.

There is a row of toolbar buttons at the top of the debugger which let you perform a number of different actions.

5. Choose Restarts > (continue) Return from break. or click on the Continue icon from the toolbar to exit the Debugger
and continue execution.

The debugger disappears from the screen, and the command line debugger in the Listener is exited, leaving you at the Lisp
prompt in the Listener.

2.4 Viewing output

There are many different ways to view output generated by the environment. In many tools, for example, output appears as
soon as it is generated - this happens, for instance, when you compile code in the built-in editor.

At other times, you can view output in a tool called the Output Browser. This tool collects together all the output generated
by the environment, and is particularly useful for viewing output generated by your own processes (which cannot be
displayed in any other environment tool). The Output Browser displays all the output sent to the default value of the variable

2 A Short Tutorial

20

standard-output.

1. Evaluate the following in the Listener.

(capi:contain
 (make-instance 'capi:push-button-panel
 :items '(:red :yellow :blue)
 :selection-callback
 #'(lambda (data interface)
 (format t
 "Pressed button in interface ~S~% data=~S~%"
 interface data))))

This is a piece of CAPI code that creates a window with three buttons, labeled RED, YELLOW and BLUE, as shown in
Example CAPI window. Pressing any of these buttons prints the value of the button pressed.

Example CAPI window

2. Click on the Output tab in the Listener.

3. Try clicking on any of the buttons in the window you just created, and look at the output generated.

4. Now try a second example by entering the form below into the Listener at the current prompt (remember to click the
Listener tab in the Listener first).

(capi:contain (make-instance
 'capi:text-input-pane
 :callback #'(lambda (text interface)
 (format t
 "You entered: ~S~%" text))
 :title "My Text Input Pane"))

The object that this code creates is going to demonstrate the Inspector tool. The code above creates a window containing
a text input pane. You can type text directly into a text input pane, and this can be passed, for instance, to other functions
for further processing.

5. Type the word hello into the text input pane and press Return. Look at the generated output in the output view.

2.5 Inspecting objects using the Inspector

The variables *, **, and *** hold the results of expressions which have been evaluated in the Listener. * always holds the
result of the last expression evaluated; ** holds the previous value of *, and *** holds the previous value of **. These
variables (* in particular) are not only useful in their own right; the environment uses them to pass values between different
tools.

1. Make sure the Listener tab is visible, and type *.

If you have followed this tutorial so far, the text input pane object that you created above is returned. This is because the
capi:contain function returns the object that is being contained. You can easily inspect this object more closely in the
Inspector tool.

2. Choose the menu command Values > Inspect.

2 A Short Tutorial

21

http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm

This creates an Inspector tool which displays the capi:text-input-pane object currently contained in *.

Examining a text input pane in the Inspector

The commands in the Values menu always act upon the current value of *. This enables you to pass a value easily from
one tool to another.

The main part of the Inspector is a list of all the slots in the object being inspected. This list shows both the name of each
slot and its current value. Above this list is a button labeled Filter with a text box to its right. This lets you filter the
information shown in the main list, which can be useful when you are inspecting objects with a large number of slots.
The name of the object being inspected appears immediately below the echo area.

3. Click in the Filter text box, type the word text.

This restricts the display in the Inspector to only those items which contain the string "text", either in the slot name or in
the slot value.

After using the filter, you can easily see that one of the available slots contains the word hello that you typed into the
text input pane.

The Inspector always displays the actual instantiation of a given object (as opposed to a copy of it), so that you can be
certain that any changes to the object itself are reflected in the Inspector.

4. Display the text input pane that you created earlier.

If you can no longer see it, choose Window > Container; this is a simple way to display any of the windows and tools
that you have created so far. (There are actually two windows with this name; if you choose the wrong one first of all,
then just choose the other one.)

5. Click in the text input pane and delete the word hello. Type goodbye and press Return.

6. Select the Inspector to make it the active window and choose Window > Refresh.

The description of the text slot now reflects the new value you specified.

7. Close the Inspector by Command+W or by choosing Window > Close Window.

2 A Short Tutorial

22

You can close any window in the environment in this way, although there are often other ways of closing windows.

2.6 Examining classes in the Class Browser

This section shows you how to use the Class Browser tool to examine information about the Common Lisp class of any given
object. The examples given use the text input pane object that you created earlier, and show you how you can change the
values of a slot programmatically.

1. In the Listener, type * once again.

Notice that the * variable still contains the value of the text input pane object. This means that it is easy to perform
several actions on that object. Notice further that the environment is aware that the object has been changed: the value
returned by * reflects the change to the text slot that you made in the last section.

2. From the Listener, choose Values > Class.

This creates a Class Browser, shown in Examining the class of an object using the Class Browser, which allows you
to examine the class of the object contained in *.

2 A Short Tutorial

23

Examining the class of an object using the Class Browser

Ensure that the Slots tab is selected, as in the illustration. In the Class: box, the name of the current Common Lisp class
is printed. The list below the Filter box displays the slots available to the current class, and list labeled Description:
displays the description of any selected slot. The filter works in the same way as the Inspector's filter. There is also a
checkbox labeled Include Inherited Slots. Selecting this checkbox lets you switch between displaying all the slots
defined on the current class and all its superclasses, and only those slots defined directly on the current class. By default,
slots defined on any superclasses (inherited slots) are shown in the main area.

3. Filter the display as you did for the Inspector; click in the Filter box, and this time type the word foreground.

Only those slots with the string "foreground" in their names are displayed.

4. Select the CAPI::FOREGROUND slot from the list. A description of the slot appears in the description area, including
information such as the initargs, readers, and writers of the slot.

Notice that the class text input pane has both a reader, capi:simple-pane-foreground, and a writer,
(setf capi:simple-pane-foreground). We can use this information to programmatically change the text shown

2 A Short Tutorial

24

in the text input pane.

5. Type this form into the Listener:

(setf (capi:simple-pane-foreground *) :red)

The text displayed in the text input pane is displayed in red to reflect the new value you have specified. Notice how you
were able to use the * variable to refer directly to the text input pane object itself.

2.7 Switching between windows

In the previous sections we have introduced several of the major tools in the LispWorks IDE. You will often want to view one
tool and then swiftly switch to another LispWorks window, and perhaps another. For instance many programmers edit and
evaluate their source code in the Editor tool, then run a test function in the Listener, and return to the Editor to further modify
their code, and so on.

The shortcut key to switch between LispWorks IDE windows on Cocoa is Command+~. This cycles through the windows in
the order they were created. To cycle through them in reverse order, use Command+Shift+~.

Note: There are accelerator keys for most of the tools as described in 3.1.5 Displaying tools using the keyboard.

Note: Use Command+Tab to switch between Macintosh applications.

2.8 Summary

In this introductory tutorial you have seen how to perform the following actions:

• Start the windowing environment.

• Evaluate and re-evaluate Common Lisp forms using the Listener.

• Invoke the Debugger, follow the backtrace that it produces, and return from the error which caused entry to the
Debugger.

• Collect and display data generated by your own code in the Output Browser.

• Use the Inspector to examine the current state of an object.

• Use the Class Browser to find out detailed information about a given class, so that you can make arbitrary programmatic
changes to an instance of that class.

The next two chapters describe elements of the environment which are common to all tools.

Other chapters in this manual describe the other tools available in the environment. Each chapter is intended to be reasonably
independent of the others, so you can look at them in any order you wish. You are advised to study the chapters on the basic
tools, such as the Inspector, the Class Browser and the Editor first, since a knowledge of these tools is vital if you want to get
the best out of the environment.

2 A Short Tutorial

25

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

3 Common Features

The LispWorks IDE has been designed so that its features are consistent throughout, and tools have a uniform look and feel.
All tools have certain characteristics which look the same, and behave in a consistent manner. By making as many common
features as possible, learning how to use each tool is much simpler.

2 A Short Tutorial, introduced you to some of the major tools in the environment, demonstrating the commonality and high
integration between them, and showing how this can be used to good effect in the development process. This chapter
describes these common features in more detail.

Whenever LispWorks is the active application, the LispWorks menus can be used and, by default, the LispWorks Toolbar is
visible.

Initially the LispWorks Toolbar appears at top left of your screen as shown in Menus and toolbar in the LispWorks IDE,
although you may reposition it as you prefer by dragging it.

Menus and toolbar in the LispWorks IDE

The buttons in the LispWorks Toolbar access the Listener, Editor, Output Browser, Inspector, Class Browser, Generic
Function Browser, Symbol Browser, Object Clipboard, Function Call Browser, Code Coverage Browser, System Browser,
Compilation Conditions Browser, Grep Browser, Profiler, Tracer, Stepper, Window Browser, Process Browser, Shell and
Application Builder tools. Hold the mouse over one of these icons for a second to show the corresponding tool name as
floating help text.

You can hide the LispWorks Toolbar. To do this, choose LispWorks > Preferences... > Environment > General and deselect
the option Show the tools on a floating toolbar.

Most of the common features in the environment can be found under the File, Edit, History, Window and Help menus. Other
menus may also be available depending on the current tool. LispWorks for Macintosh also has the standard application menu
LispWorks. By default, the LispWorks IDE starts a Listener tool so you will see the menu bar for that tool. But, whatever
LispWorks tool is current, you will always have the LispWorks, File and Window menus. Using the commands available
under these menus you can:

• Move to any other tool.

• Cut, copy or paste via the clipboard and the Object Clipboard tool.

• Perform search and replace operations.

26

• Re-issue a previous command, or re-examine an object.

• Perform operations such as loading and saving files.

Each menu command operates on the window associated with the menu.

In addition, some other conventions have been adopted throughout the LispWorks IDE:

• Many tools have a number of different views: ways of displaying information. Each view is made available by clicking
on a different tab in the tool.

• Lists displayed in many tools can be filtered in order to hide redundant or uninteresting information.

These features are described in full in this chapter. Please note that subsequent descriptions of individual tools in the
environment do not include a description of these menus, unless a feature specific to the individual tool is described.

Online help is also available from the Help menu in any window. These facilities are described in 4 Getting Help.

Many tools allow you to display information in the form of a graph. These graph views behave consistently throughout the
environment, and a description of the graph features offered is given in 6 Manipulating Graphs.

3.1 Displaying tool windows

There are many tools available, and you can display them in a number of ways.

You can also control how tools are re-used within the environment. That is, whether an existing Listener window (for
example) is raised or a new one created, when you ask for a Listener tool. In this section we will discuss global and per-tool
control of reuse.

3.1.1 Displaying existing windows

Choose the Window menu. The bottom component of this menu contains a list of all the windows currently available in the
environment. Choosing any item from this list brings the window to the front of the display.

3.1.2 Iconifying existing windows

To iconify a window, click the amber minimize button near the left of its title bar, or choose the menu command Window >
Minimize Window.

3.1.3 Arranging windows in MDI mode

In LispWorks for Windows in "All windows contained within a single main window" (MDI) mode, use the commands near
the top of the Windows menu such as Cascade and Tile Horizontally to arrange your tool windows within the main window.

3.1.4 Displaying tools using the mouse

To display most tools:

1. Choose the Window > Tools menu.

Most tools in the environment are listed in this menu.

2. Choose the tool you require from the menu.

or:

3 Common Features

27

1. Click the appropriate button on the LispWorks toolbar.

For example, to display a Process Browser, click .

The tool is created (if necessary), and displayed. Using this method can be useful you may not remember immediately
whether you have an existing instance of a given tool or not.

3.1.5 Displaying tools using the keyboard

Accelerators are provided for the popular items on the Tools menu. Each tool accelerator is an alphanumeric key together
with platform-specific modifier keys as shown in 3.1.5.1 Tool accelerator keys. You cannot configure these pre-defined tool
accelerators.

You can also use these alphanumeric keys with the Invoke Tool editor command.

There is also a keystroke for switching between tool windows in a cyclical fashion, described in 2.7 Switching between
windows.

3.1.5.1 Tool accelerator keys

The accelerator keys for each tool are as shown in Tool accelerators:

Tool accelerators

Tool Name Accelerator

Listener Ctrl+Command+L

Editor Ctrl+Command+E

Output Browser Ctrl+Command+U

Inspector Ctrl+Command+I

Class Browser Ctrl+Command+C

Generic Function Browser Ctrl+Command+G

Symbol Browser Ctrl+Command+S

Object Clipboard Ctrl+Command+O

Function Call Browser Ctrl+Command+X

Code Coverage Browser Ctrl+Command+V

System Browser Ctrl+Command+Y

Compilation Conditions Browser Ctrl+Command+D

Search Files Ctrl+Command+F

Profiler None

Tracer Ctrl+Command+T

Stepper None

Window Browser Ctrl+Command+W

Process Browser Ctrl+Command+P

Shell None

Application Builder Ctrl+Command+A

3 Common Features

28

Debugger None

3.1.6 Re-using tool windows

3.1.6.1 Global control of re-use

By default, tools windows are re-used where possible. For example, suppose you already have a Listener window (potentially
iconified) but do not have an Inspector window. When you choose Window > Tools > Listener, the existing Listener is
displayed. When you choose Window > Tools > Inspector, an Inspector is created and displayed.

You can switch off re-use of tool windows. To do this, first raise the Preferences dialog as described in 3.2 Setting
preferences. In the Preferences dialog under Environment > General > Window Options uncheck the Reuse all tools box
and click OK. Now, when you choose Window > Tools > Listener a new Listener is created, regardless of whether one
already exists, and other tools behave in the same way.

The setting of Reuse all tools will be retained for your subsequent LispWorks sessions.

3.1.6.2 Per-window control of re-use

When the Reuse all tools option is on, tools windows are reusable by default. However, it is possible to specify that a
particular instance of a tool is not reusable. To make your Inspector not reusable, follow these steps:

1. Ensure that the Reuse all tools option is checked under LispWorks > Preferences... > Environment > General.

2. In the Inspector window, open the menu Window > Customize and deselect the Reusable option.

3. Now try Window > Tools > Inspector. A new Inspector window is created.

The Reuse all tools option is persistent, but the per-tool setting Reuse InspectorReusable applies only to the current
instance of the tool, and it does not affect future sessions.

3.1.7 Menu bar configurations in LispWorks for Windows

This section only applies to LispWorks for Windows.

3.1.8 Toolbar configurations

Most tools have toolbars offering one-click access to frequently-used commands. For example, the Editor has a toolbar for
operating on source code.

The Editor's source operations toolbar

You may prefer to remove such toolbars. You can control whether a tool displays its toolbars by the option Show Toolbar.

To hide toolbars for a particular type of tool:

1. Raise the Preferences dialog as described in 3.2 Setting preferences.

2. Select the tool in the list on the left side of the dialog.

3. Select the General tab on the right side of the dialog.

3 Common Features

29

4. Uncheck Show Toolbar and click OK to confirm the setting.

You can also customize the toolbar by removing rarely-used buttons, changing the image size, choosing whether an image or
text label (or both) is displayed, and adding or removing separators between groups of buttons. To do this on Cocoa, raise the
context menu on the toolbar, choose Customize Toolbar... and make your selections in the standard macOS way. You can
also use the toolbar's context menu directly to select whether this toolbar's buttons show an icon, or text, or both. To remove a
toolbar button on Cocoa, simply select Remove from the context menu.

Note: The functionality of each toolbar is available elsewhere. For example the Editor's source code operations are also
available on the Buffer, Definitions and Expression menus.

3.1.9 Copying windows

Choose Window > Clone in a given tool window to make a copy of that tool window. This is useful, for instance, if you wish
to have two different views on an object simultaneously, and allows you to have several copies of a tool without having to
change its re-use property using the Window > Customize menu.

3.1.10 Closing windows

Close any window in the environment using one of the following methods:

• Click the red close button at the top left of the window.

• Choose the menu command Window > Close Window.

• Enter Command+W.

3.1.11 Updating windows

To manually update any tool, choose Window > Refresh or click .

Updating a tool is a useful way of making a snapshot of an aspect of the environment that you are interested in. For instance,
imagine you want to compare a number of instances of a CLOS class against a known instance of the same class using the
Inspector. You can do this as follows:

1. Create an object to inspect, by entering in a Listener:

(make-instance 'capi:text-input-pane)

2. Choose Values > Inspect to view the object in the Inspector.

3. Make sure the Inspector is the active window, and choose Window > Clone to make a copy of it.

4. In the Listener, enter the same form again to create a second object.

Note: You can use Esc P in Emacs emulation or Ctrl+Up in Windows emulation to get the previous Listener
command.

5. View the new object in the Inspector as in Step 2. Compare it to the original instance that is still displayed in the clone.

3 Common Features

30

3.2 Setting preferences

Choose LispWorks > Preferences... or click or press Command+, (Command comma) to raise the Preferences dialog. This
dialog is used to specify:

• options affecting the development environment in general such as those described in 3.1.6 Re-using tool windows or the
name of your initialization file, and:

• options specific to each type of tool, such as the Editor tool, Inspector tool and so on.

The tool-specific options are described in the chapter relevant to each tool.

The remainder of this section describes the general environment options. To see these, ensure that Environment is selected in
the list on the left side of the Preferences dialog, and select the General, Emulation, Styles, and File Encodings tabs.

In all cases your setting is preserved for future use after you click OK to close the Preferences dialog.

3.2.1 General options

The first tab under Environment contains the General options.

3 Common Features

31

The Preferences dialog

3.2.1.1 The window options

Reuse all tools controls whether LispWorks uses an existing tool rather than starting up a new copy. For example if Reuse all
tools is checked, if an editor is already open, choosing File > Open and selecting a new file causes the file to be opened in
the existing editor.

Use separate Editor windows for each file controls whether LispWorks will open a separate Editor window for each file (or
editor buffer) that you have in memory. In addition, when Use separate Editor windows for each file is checked, closing an
Editor window will remove the underlying editor buffer from memory, possibly asking if you want to save it. The default
setting is unchecked.

Note: for information about Editor windows, editor buffers and files, see 12.3 Displaying and swapping between buffers.

By default a floating window offers access to the various IDE tools on Cocoa. If you do not want this, deselect the Show the
tools on a floating toolbar option.

3 Common Features

32

Check Use recent directory for opening files to make operations such as File > Open use the directory of the file most
recently edited as the default directory in the file dialog. Deselect this option to make the dialog's default directory be the
current working directory. Note that this option does not affect the Editor tool, for which the file dialog always uses the
directory of the currently visible file as the default directory.

Check Use quality drawing to make the LispWorks IDE use quality (anti-aliased) drawing for editor and graph panes. This is
the default setting.

3.2.1.2 Controlling completion behavior

In-place completion is enabled by default in the IDE. If you prefer the modal dialog style of completion familiar to users of
LispWorks 5.0 and previous versions, deselect the Use in-place completion option.

When using in-place completion to complete a filename, by default you must always select an item from the in-place
completion window. You can accelerate this interaction by checking the option Auto-insert on single file completion. Then,
if there is just one possible completion, it is automatically selected and appended to your input.

3.2.1.3 Quitting the environment

Choose LispWorks > Quit LispWorks or press Command+Q to exit LispWorks.

You can control whether LispWorks prompts for confirmation before exiting, using LispWorks > Preferences..., and then
select Environment in the list on the left side of the Preferences dialog. The Confirm Before Exiting preference has these
meanings:

Never LispWorks exits immediately.

When modified buffers If there are modified editor buffers, a dialog asks you whether these should be saved before
exiting.

Always A dialog asks you to confirm whether LispWorks should exit.

3.2.1.4 Automatic filters on dialogs

The option Add a filter to dialog lists longer than: affects modal dialogs containing long lists. When the list is longer than
the value of this option, the list has a filter, which you can use as described in 3.14.3.1 Filtering modal dialog completion.

3.2.1.5 Automatic use of Find Definitions view

The option Use Find Definitions list for more items than: affects the behavior of source location commands such as the
editor commands Find Source and Find Source for Dspec, and the menu command Expression > Find Source. When the
number of source location results exceeds the value of this option, then the results are immediately displayed in the Find
Definitions view of an Editor tool. This is particularly useful when you need to locate the definition of a particular CLOS
method from the generic function name.

The Find Definitions view is described in 12.6 Finding definitions.

3.2.1.6 Initialization file

By default LispWorks looks for a file .lispworks to be loaded automatically when LispWorks is started. You should create
an initialization file and add to it Lisp code to initialize the LispWorks image to suit your needs.

The Preferences dialog can be used to specify a different initialization file, in the Initialization File area. You can either enter
the path and filename directly into the text input box, or use the button to display a file selection dialog. Clicking on

3 Common Features

33

undoes any alterations entered.

Note: it is up to each user to create and maintain their own personal initialization file. A sample personal initialization file is
supplied with LispWorks - see the file Library/lib/8-0-0-0/config/a-dot-lispworks.lisp in the LispWorks
distribution.

3.2.2 Configuring the editor emulation

The second tab under Environment contains the Emulation options.

The Emulation tab of the Environment Preferences

Here you can configure the editor to behave according to one of two pre-defined editor input styles (emulations) which
determine how keyboard input is processed and other properties such as the shape of the input cursor. You can also set the
cursor blink rate and specify a key to use as an Emacs Meta key.

The choice of emulation affects the Editor and other LispWorks tools containing editors such as the Output Browser, Stepper
and Profiler.

3.2.2.1 Choosing the key input style

The Editor and other tools using capi:editor-pane offer two key input styles: Emacs emulation or macOS editor
emulation. By default, Emacs emulation is used. To choose an emulation, select Environment > Emulation in the Preferences
dialog as shown in 3.2.2 Configuring the editor emulation and select one of the Editor keys are like... options.

Note: In this and other manuals, the Emacs keys are generally given. For help with finding keys for editor commands, choose
Help > Editing > Command to Key. Also see the files config/key-binds.lisp and config/mac-key-binds.lisp

which contain the forms defining the keys for each input style.

3 Common Features

34

3.2.2.2 Specifying a Meta key in LispWorks for Macintosh

Many Emacs commands are accessed via key combinations such as Meta+X, yet the Macintosh keyboard does not have a
Meta key. Instead of key combinations with Meta, you can use the Esc key as described in Using the keyboard. If you do
not want to use the Esc key, you can specify a key to use as Meta. To specify a Meta key, select the Emulation tab of the
Editor Preferences dialog.

To specify Command as the Emacs Meta key, select The Command key acts as the Emacs Meta key.

Note: this setting prevents the Command key from performing most of its normal shortcuts. Commonly-used Macintosh key
commands now invoke Emacs commands. For instance, Command+X and Command+C no longer do cut and copy. Emacs cut
and copy commands are, of course, available.

To specify Alt as the Emacs Meta key, select The Alt key acts as the Emacs Meta key.

Note that this means some useful Macintosh key commands such as Alt+3 (which enters # on a UK Macintosh keyboard) are
not directly available. To use such a system-defined Alt key gesture, invoke the editor command Quoted Insert followed by
the gesture. For example, to enter #, type Control+Q Alt+3. This editor command makes only the next gesture be
interpreted in the system-defined way. Thereafter Alt again acts as the Emacs Meta key.

3.2.2.3 Effect of the specified Meta key

If you have specified Alt or Command as the Emacs Meta key, then it acts as Meta when the input focus is in any
capi:output-pane within any IDE tool. This includes the Text area of the Editor tool, the Listener area of the Listener
tool, the Output areas of several tools, the echo area seen near the bottom of all tool windows, and graphs such as the
Superclasses and Subclasses areas of the Class Browser.

3.2.2.4 Setting the cursor blink rate

By default the editor cursor blinks on and off at the usual rate for your computer.

To change the blink rate, select Specify in the Cursor Blink Rate area. Either scroll to choose the rate in Milliseconds, or
enter an integer between 100 and 2000.

To stop the editor cursor from blinking, select None in the Cursor Blink Rate area.

3.2.3 Setting the editor font, color and other style attributes

The third tab under Environment contains the Styles options.

3 Common Features

35

The Styles tab of the Environment Preferences

By default the editor uses a system default font. You can choose an alternative font and see a sample of it displayed in the
Editor Font area. Click in the Sample: area to raise a font chooser. After you select the font, the text "Click here to choose
the font" is displayed in your selected font.

To make the LispWorks editor actually use your alternative font, select Override the system default font.

This specifies the font used in Editor and Listener windows and all other tools based on the editor, such as the Shell, Stepper
and Profiler tools.

If you deselect Override the system default font the system remembers your choice of alternative font, but does not actually
use it for display.

3 Common Features

36

3.2.3.1 Changing the main colors of editor panes

You can modify the background and foreground of the Editor and Listener windows, and all other tools based on the editor,
using the Main Colors frame. Note, however, that this will override any customization done in the underlying window
system, which or may not be what you want.

First select the kind of editor that you want to modify in the Pane Kind list. Alternatively select Default to specify default
background and foreground, which apply to any editor of a kind for which the corresponding value is not set.

The specific kinds are:

Editor The main panes in the Editor tool, and other panes which are also just used for editing, for
example the Code To Profile tab in the Profiler and Source: in the Stepper.

Listener The Listener tool and other listener panes, including in the Debugger, the Inspector and the
Stepper.

Output Any pane that is used for output, including the pane in the Output tab of the Editor, Listener and
System Browser, and the output panes in the Tracer and Application Builder.

Shell The Shell tool.

Echo Echo areas on all tools.

The colors apply when the echo area is active. If Change the echo area color when not active is
checked, the echo area reverts to the interface colors when it is inactive.

For each kind of pane, check Use color: alongside Background or Foreground to specify the background and foreground
colors. If Use color: is unchecked, the value is not specified, and a large cross appears in the color area on the right. If Use
color: is checked, then the color is set and the color area on the right shows it. Click in the color area to change the color
using a Color chooser that is raised.

When the LispWorks IDE makes an editor pane, it uses the foreground and background for this kind of pane if they are
specified. If either the foreground or background is not specified (that is, Use color: is unchecked), then it uses the color
specified for the Default pane kind if that is set. Otherwise it uses the default of the window system.

The Change the echo area color when not active checkbox controls whether an echo area changes its colors when it is not
active. When it is checked and an echo area become inactive, the echo area changes its foreground and background to the
colors of the tool. In other cases, echo areas use the colors set under Echo in the Main Colors box of the Preferences dialog,
or in the window system.

3.2.3.2 Setting the text style attributes

By default the LispWorks IDE uses a variety of text styles to:

• Highlight selected text.

• Distinguish interactive input in the Listener and Shell tools.

• Distinguish compiler messages in the Output tab or Output Browser.

• Make Lisp code more easily readable with syntax coloring.

• Indicate matching parentheses, easing the writing of correct Lisp forms.

Note: The last two of these features operate only in Lisp mode.

To change the attributes of one or more text styles, first select Environment > Styles in the Preferences dialog as shown in
3.2.3 Setting the editor font, color and other style attributes.

3 Common Features

37

Then, to make Common Lisp symbols appear with red foreground rather than the default purple for example, first select Lisp
Keyword in the Style Name list. Then select Specified alongside Foreground and double-click on the color area to the right.
In the Color chooser that appears, choose the new color and click OK. Now click OK on the Preferences dialog and see the
change in the way your Lisp code is displayed. You may need to force the editor window to redisplay, for example by
scrolling, to see the change take effect.

For each named style, the Foreground and Background each have exactly one of the following values:

None No special formatting.

Default Platform-standard highlighting, as for selected text.

Specified The color specified is used.

Modified The system generates a color which is usable for highlighting.

A large cross appears in the Foreground (Background) color area when None, Modified or Default is selected. This indicates
that the color is not used for the Foreground (Background).

If you wish to turn off the highlighting of interactive input in the Listener and Shell tools, first select Interactive Input in the
Style Name list. Then uncheck all the attributes and click OK.

To restore all styles to those in LispWorks as shipped, click Restore Defaults.

Note: the foreground and background colors of windows are set via the system, not in LispWorks.

The text styles used in syntax coloring have these meanings and default appearance:

Syntax styles

Style Name Use Default appearance

Region Highlight The active region Native highlight

Show Point Matching parentheses :green background

Interactive Input Input in a Listener or Shell Bold

Marked Object 20.10.4 Highlighting of results Underlined

Highlight Editor help such as Describe
Bindings

Bold

Completion Dynamic and in-place completions.
Transient.

Modified background

Search Match The matching text during an
incremental search (as invoked by
Ctrl+S)

Inverse

Line Wrap Marker Displays the editor's line wrap
marker, where a line is wrapped or
truncated

:purple foreground, modified
background

Lisp Function Name Name in defun, defmacro,
defmethod and defgeneric forms

:blue foreground

Lisp Comment Comments and feature expressions :firebrick foreground

Lisp Type Name in deftype or other def...
form, or lambda list keyword such as
&optional

:forestgreen foreground

3 Common Features

38

http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmac.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defgen.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_deftp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm

Lisp Variable Name Name in defvar or defparameter
forms

:darkgoldenrod foreground

Lisp String A string literal :rosybrown foreground

Lisp Keyword defun, defmacro or other definer
named def...

:purple foreground

Lisp Builtin A keyword symbol :orchid foreground

Arglist Highlight The current argument in a Function
Arglist Displayer window

Inverse

Hidden Comment String Replacement string for hidden
comments in folded definitions.

:gray background

3.2.3.3 Controlling parenthesis coloring

You can control whether the editor colors parentheses in Lisp code. By default, pairs of matching parens are displayed in the
same color, with a different color for forms at different depths. You can switch off this coloring by deselecting the option
Color parenthesis in the Styles tab of the Environment preferences.

3.2.4 Setting the default encodings

The fourth tab under Environment contains the File Encodings options.

The Editor has defaults for the encodings used when opening and saving files. For many users these defaults will suffice. If
you need to change either, select the Environment > File Encodings tab of the Preferences dialog.

The File Encodings tab of the Preferences dialog

For example, to make the Editor save Carriage Return line-terminated files by default, select CR in the Line Termination
Options under Output.

3 Common Features

39

http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmac.htm

3.3 Performing editing functions

This section discusses commands available in the Edit menu . These commands fall into five areas:

• Undoing changes.

• Using the clipboard.

• Selecting text and objects.

• Searching for text.

• Substituting text.

3.3.1 Undoing changes

You can undo changes made in a tool using Edit > Undo. This facility is most useful in the Editor and Listener - see 12.9
Other essential commands for more details.

3.3.2 Using the clipboard

You can use the clipboard to transfer data between tools, or even between the LispWorks IDE and other applications that you
are running. There are three commands available, as follows:

• Choose Edit > Copy to put the selected item or text from the active pane onto the clipboard.

• Choose Edit > Cut to put the selected item or text from the active pane onto the clipboard and remove it from the active
pane.

• Choose Edit > Paste to replace the selected item or text in the active pane with the contents of the clipboard.

Use of Copy or Cut followed by Paste lets you transfer items between tools, or to different parts of the same tool.

Unlike the clipboard in many other applications, the LispWorks IDE clipboard can contain a Common Lisp object. This
makes the LispWorks IDE clipboard an exceptionally powerful tool, allowing you to pass objects between different tools in
the environment so that they can be examined in different ways.

If the clipboard contains a Lisp object and you use the Paste command on a pane that only accepts text, then the object's
printed representation will be pasted.

There are several ways to use these commands:

• In the Editor, you can Copy chunks of text and Paste them into different places, either within the same file or between
different files. If you have sections of code which are very similar, rather than typing each section out explicitly, just
Paste in the same section as many times as you need and change only the relevant parts. 12.11 Cutting, copying and
pasting using the kill ring describes a number of more sophisticated methods that can be used in the Editor.

• In the Class Browser's Hierarchy view (for example), you can Copy a selected class from the Superclasses pane to the
clipboard and then Paste it into another tool. Because the Common Lisp object itself is copied to the clipboard, it is
treated usefully according to the tool. For instance, if you paste it into an Inspector using Edit > Object > Paste Object,
then the class is inspected. If you paste it into an editor however, the class name is simply pasted as text.

As well as the menu commands, you can use the , and buttons in the toolbar, for Cut, Copy and Paste respectively.

Note: You can also transfer data within the environment using the standard actions commands described in 3.8 Performing
operations on selected objects.

3 Common Features

40

3.3.3 Using the Object operations with the clipboard

You can use the clipboard to transfer a tool's "primary object" between tools. There are three commands available, as follows:

• Choose Edit > Object > Copy Object to put the selection or "primary object" onto the clipboard.

• Choose Edit > Object > Cut Object to put the selection or "primary object" onto the clipboard and remove it from the tool
it was copied from.

• Choose Edit > Object > Paste Object to put the contents of the clipboard into the current tool.

Use of Copy Object or Cut Object followed by Paste Object lets you transfer items between tools, or to different parts of the
same tool. There are several ways to use these commands:

• In the Class Browser (for example) you can Copy Object the class to the clipboard and then Paste Object it into another
tool. Because the Common Lisp object itself is copied to the clipboard, it is treated usefully according to the tool. For
instance, if you paste it into an Inspector, it is inspected. If you paste it into an editor however, the class name is simply
pasted as text.

• Between any of the tools, you can Cut Object, Copy Object, and Paste Object Common Lisp objects. You can, for
instance, make an instance of a class in the Listener, inspect it by Values > Inspect, and then Copy Object it in the
Inspector, and then Paste Object it into a Class Browser to examine its class.

• If you have several Common Lisp objects which you want to keep track of, store them in the Object Clipboard. You can
do this by a Clip command in tools such as the Class Browser, or by Edit > Object > Paste Object in the Object
Clipboard tool. See 8 The Object Clipboard for more information about that tool.

Note: You can also transfer data within the environment using the standard actions commands described in 3.8 Performing
operations on selected objects.

the LispWorks IDE also interacts with the standard system clipboard, so that data can be transferred to or from applications
other than Lisp. To do this, the system and the LispWorks IDE clipboards are kept in synchronization all the time, as follows:

• Whenever a Common Lisp object is copied to the LispWorks IDE clipboard, its string representation is copied onto the
system clipboard.

• Whenever a string is copied to the system clipboard, it is copied onto the LispWorks IDE clipboard as a string.

3.3.4 Selecting text and objects

Choose Edit > Select All or Edit > Deselect All to select or deselect all the text in an Editor or Listener window, or all the
items in a list or graph. These commands are useful whenever there is too much information to be able to select items one at a
time.

These commands operate on the active pane of the current tool.

3.3.5 Searching for text and objects

You can search for and change text in most tools using Edit > Find..., Edit > Find Next, and Edit > Replace....

Choose Edit > Find... to find an item in the current tool (this might be a piece of text, or a fragment of Common Lisp, or an
object, depending on the tool). You must supply an item to find in the dialog that appears.

Choose Edit > Find Next if you want to search for the next occurrence of an item you have already found. This command
does not prompt you for an item to find, and so is only available if you have already found something.

Choose Edit > Replace... if you want to replace one string of text with another. A dialog box prompts you for a text string to
find, and a text string to replace it with. This command is only available in the Editor and the Listener, and is most useful in

3 Common Features

41

the Editor.

These commands operate on the active pane of the current tool.

3.4 The Break gesture

The keyboard Break gesture is Command+Ctrl+,.

This chooses a process that is useful to break, and breaks it.

The process to break is chosen as follows:

1. It checks for a busy processes that is essential for LispWorks to work correctly, or that interacts with the user (normally
that means that some CAPI interface uses it), or that is flagged as wanting interrupts (currently that means a REPL). If it
finds such a busy process, it breaks it.

2. Otherwise it activates or starts the Process Browser.

Note: This break gesture is supported only on macOS 10.4 and later.

3.5 The history list

The history list of a tool stores the most recent events which have been carried out in that tool, or the most recent objects
which have been browsed in it.

The History > Items submenu provides a list of these events (or objects), allowing you to repeat any of them (or browse them
again) by choosing them from the menu. This gives you an easy way of repeating forms in the Listener, inspecting objects or
browsing classes again, revisiting searches, and so on.

The menu lists the last ten unique items to have entered the history list of the active window. Because each entry is unique,
some items may have occurred more than ten events ago.

If the editor is the active window, the History > Items submenu lists the buffers currently open.

3.5.1 Repeating events from the history list

The easiest way of repeating an event from the history list is to choose it from the History > Items submenu. There may be
times, though, when this is inconvenient (the items on the list may be too long to be able to distinguish between them easily,
or you might want to repeat an item that occurred more than ten events ago). In such cases, there are three commands which
offer an alternative way of choosing items.

Choose History > Previous to perform the previous item in the history list of the tool. This is usually the most recent event
you have performed, but may not be (if, for instance, the last action was itself an event that was already on the history list).

Choose History > Next to perform the next item in the history list. This item is not usually available unless the last event you
performed involved an item already on the history list.

Note: You can also use the and buttons in the toolbar.

3.5.2 Editing the history list

Choose History > Modify to remove items from the History > Items menu. A dialog appears that contains all of the items in
the current History menu. Select the items you wish to retain, and click OK. Any items which were not selected in the dialog
are removed from the history list.

Note: another way to keep track of items that you're interested in (such as appear in the history lists of various tools) is to

3 Common Features

42

place them on the Object Clipboard. See 8 The Object Clipboard for more details.

3.6 Operating on files

The File menu allows you to perform operations on files stored on disk. Some commands are only available for tools which
need to interact with the files you have stored on disk, such as the Listener and Editor.

The default commands available in the File menu are described below. Note that in some tools, the File menu contains
additional commands specific to that tool. Please refer to the relevant chapters for each tool for a description of these
additional commands.

Choose File > New to open a new buffer in the built-in Editor. If an Editor window has not yet been created, this command
also creates one. The new buffer is unnamed.Alternatively, you can click the button in the toolbar. This toolbar button is
available on appropriate tools.

Choose File > Open to open an existing file in a new editor buffer. Where appropriate, a dialog appears, allowing you to
choose a filename. If an editor window has not yet been created, this command creates one. Alternatively, you can click the

button in the toolbar. This toolbar button is available on appropriate tools.

Choose File > Load to load a file of Lisp source code or a fasl (binary) file. Choose File > Compile to compile a file of Lisp
source code. Choose File > Compile and Load compile a source file and load the resulting fasl file. When appropriate, each
command displays a dialog, allowing you to choose the file you want to load or compile.

Choose File > Print to print a file. A dialog allows you to choose a file to print. The current printer can be changed or
configured by using the standard macOS Printers & Scanners preferences.

Choose File > Browse Parent System to view the parent system of the current file in the System Browser. This command is
only available if the system has already been defined. See 26 The System Browser for a complete description of the System
Browser.

Choose File > Recent Files to raise a submenu listing the last 10 files visited via the File > Open... and File > Save As...
commands. This allows speedy return to the files you are working on.

Note: As described above, the behavior of each command can vary slightly according to the tool in which the command is
chosen. For instance, choosing File > Print in the Editor prints out the displayed file, whereas choosing File > Print in the
Listener prompts you for a file to print.

3.7 Displaying packages

Symbols can be displayed either with their package information attached or not. In the LispWorks IDE, symbols are
displayed with the package name attached by default.

For example, suppose you have created a package foo which includes a symbol named bar and a symbol named baz.
Suppose further that you created a new package foo2, which used the foo package. This can be done as shown below:

(defpackage foo (:use "COMMON-LISP"))
(defpackage foo2 (:use "FOO" "COMMON-LISP"))

Note that in defining both packages, the common-lisp package has also been used. It is good practice to use this package, to
ensure that commonly-used symbols are available.

When creating packages which use other packages, exported symbols can be called without having to refer to the package
name.

To illustrate this, let us return to our example.

3 Common Features

43

Two example packages

We have two packages: foo1 and foo2. foo1 contains symbols bar and baz. The symbol bar has been exported, whereas
the symbol baz is not exported.

When the current package is foo2, you can refer to bar without using the package name. This is because foo2 uses foo1
and bar is exported. However to refer to baz you must still use the foo1 package name like this: foo1::baz. This is
because baz is not exported.

Note also that when the current package is other than foo1 or foo2, you can refer to foo1:bar, but you can only refer to
baz as foo1::baz.

Package names are usually displayed alongside symbols in a list. Having a package entry on every line can be unhelpful,
especially if the majority of items listed are from the same package. To hide the package names for the symbols in a given
type of tool:

1. Raise the Preferences dialog as described in 3.2 Setting preferences.

2. Select the tool type in the list on the left side of the dialog.

3. Uncheck Show Package Names in the General tab.

4. Click OK to confirm your setting.

3.7.1 Specifying a package

If you are working in a particular package, you can adjust the tools to display symbols as you would refer to them from that
package - that is, as the package sees them. This can make listings clearer and, more importantly, can show you which
symbols have been exported from a package.

Doing this changes the process package of the tool. This means that both displayed symbols and symbols typed into the tool
are assumed to be in the package specified. This can be useful in a browser, for example, if you intend to browse a number of
different objects which come from the same package.

To change the process package for a given type of tool:

1. Raise the Preferences dialog as described in 3.2 Setting preferences.

2. Select the tool type in the list on the left side of the dialog.

3. Select the General tab on the right side of the dialog, if necessary.

4. Delete the package name in the Package box, and type in the name of the new package.

5. Click to confirm this new name.

6. Click OK to make the change.

Note: If you wish, you can partially type the package name and then click . This allows you to select from a list of all
package names which begin with the partial input you have entered. See 3.14 Completion for detailed instructions on using

3 Common Features

44

completion.

As an example, imagine you are looking at a list of symbols in the Inspector. You are working in the package foo, and some
of the symbols in the Inspector are in that package, while others are in another package. To change the current package of the
Inspector to foo, follow the instructions below:

1. Raise the Preferences dialog as described in 3.2 Setting preferences.

The Preferences dialog indicates that common-lisp-user is the current package in this window.

2. Select Inspector in the list on the left side of the dialog.

3. In the Package box on the right side of the dialog, delete common-lisp-user, and type foo.

4. Click OK to make the change.

In the Inspector all the symbols available from foo appear without the package prefix foo. Similarly, all exported symbols in
packages which foo uses appear without a package prefix, while all others have an appropriate package prefix.

3.8 Performing operations on selected objects

In any tool, there are a number of operations that you can always perform on the selected objects, irrespective of the type of
objects you have selected. This allows you to perform some powerful operations and also ensures a consistent feel to every
tool in the environment.

In this context the term "selected objects" is meant in the widest sense, and can refer to any items selected anywhere in a tool,
be it in a list of items, or a graph. It can also refer to the tool's current object: that is, the object which is currently being
examined.

These operations are available throughout the environment, and are referred to as standard action commands. As with other
commands that are specific to the active window, standard action commands are usually available from menus on the main
menu bar of the tool you are using. The objects which are operated on by a given standard action command depend on the
menu from which you chose the command.

As an example, consider examining the contents of Common Lisp objects using the Inspector.

The standard action commands for the Inspector are present in two places: the Object menu, and the Slots menu.

• Choose a standard action command from the Object menu to perform an operation on the Inspector's current object.

• Choose a standard action command from the Slots menu to perform an operation on the selected components of the
Common Lisp object.

Notice that in the first case, the object operated on is the tool's current object: you do not have to take any further action
before performing the operation.

In the second case, the objects examined represent more specific pieces of information: you need to select them before you
can perform the operation. This, therefore, examines more discrete pieces of information about the current object.

Many tools have one or more submenus like those described above. The first operates on the current object. What that object
is, and hence the name of the submenu in which the commands are to be found, depends on the tool you are using. For
instance, if you are examining classes, the commands can be found in a Classes menu. If you are examining methods, they
can be found in a Methods menu.

Some tools contain two or more such menus; precise details are given in the relevant chapters.

As a guide, if a menu has a plural for a name, the commands in that menu can be performed on multiple selections. If the
menu name is not pluralized, commands only affect a single selection.

3 Common Features

45

3.8.1 Operations available

The standard action commands available are described below. In these descriptions, the term "current object" refers to the
Lisp object that is being acted upon by the menu command. This depends on the tool being used and the menu in which the
command appears, but should be obvious from the context.

Choose Browse to browse the current object using an appropriate browser. A browser is a tool which lets you examine a
particular type of Common Lisp object, and there are a large number of them available in the environment. Some of the
browsers available are:

• The Class Browser, which lets you examine CLOS classes.

• The Generic Function browser, which lets you examine the generic functions in the environment, and the methods you
have defined on them.

See the appropriate chapters for a full description of each browser; there is a chapter of this manual devoted to each available
browser. The precise name of the Browse menu command reflects the type of browser that is used to examine the selected
object. Thus, if the command is Browse – Generic Function, a Generic Function Browser is used.

Choose Class to look at the class of the current object in a Class Browser. Alternatively, click on in the toolbar. See 7 The
Class Browser for full details about this tool.

Choose Clip to add the current object to the Object Clipboard. See 8 The Object Clipboard for full details about this tool.

Choose Copy to copy the current object to the clipboard, thus making it available for use elsewhere in the environment. Note
that performing this operation on the object currently being examined by the tool (for example, choosing the command from
the Object menu when an Inspector is the active window) has the same effect as choosing Edit > Copy, whereas choosing this
option from other menus (such as a Description menu) copies more discrete information to the clipboard.

Choose Documentation to display the Common Lisp documentation (that is, the result of the function documentation) for
the current object. It is printed in a help window.

Choose Find Source to search for the source code definition of the current object. Alternatively, click on in the toolbar. If
it is found, the file is displayed in the Editor: the cursor is placed at the start of the definition. See 12 The Editor for an
introduction to the Editor tool. You can find only the definitions of objects you have defined yourself (those for which you
have written source code) - not those provided by the environment or the Lisp implementation.

Choose Inspect to invoke an Inspector on the current object. Alternatively, click on in the toolbar. See 17 The Inspector,
for details about the Inspector. If you are ever in any doubt about which object is operated on by a standard action command,
choose this command.

Choose Listen to paste the current object into the Listener. Alternatively, click on in the toolbar. 20 The Listener
provides you with full details about this tool.

Choose Function Calls to describe the current object in a function call browser. See 14 The Function Call Browser for more
details.

Choose Generic Function to describe the current object (a generic function or a method) in a Generic Function Browser. If
the current object is a method, then its generic function is described in the Generic Function Browser and the method is
selected. See 15 The Generic Function Browser for more details.

Choose Browse Symbols Like to display symbols matching the current object in a Symbol Browser. See 18 The Symbol
Browser for more details.

3 Common Features

46

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

3.9 Using different views

Many tools in the LispWorks IDE have several different views, each of which can display information which is pertinent to
the task at hand. You can switch to any of the available views by clicking on the appropriate tab at the top of the tool. When
choosing a different view, the layout of the tool itself changes.

Click tabs to display different views of a tool

In tools which are browsers, different views allow you to display different pieces of information about the same objects; for
instance, in the Class Browser you can switch from a view which shows you information about the slots in a given Common
Lisp class to one which shows information about the initargs of the class.

In other tools, different views may show you completely different types of related information. For example, in the Listener
you can switch from the Listener view to a view that shows you any output that has been generated by the Listener.

All tools have a default view when you first start them. The default view is the one which you are most likely to make most
use of, or the one which you use first. When you first start the built-in Editor, the default view is the text view. When you
start a Class Browser, the default view shows you the slots available for the current class, as you have already seen.

3.9.1 Sorting items in views

You can sort the items displayed in the main area of any view using the Preferences for a given tool.

To specify the sorting for the Class Browser, for example:

1. Raise the Preferences dialog as described in 3.2 Setting preferences.

2. Select the tool (the Class Browser in this example) in the list on the left. Note that an image representing each tool is
shown alongside the tool names:

3 Common Features

47

Example General Preferences

Notice that tool Preferences, such as the one shown above, generally have several tabs. In these cases, the options
described in this section are always available in the General tab, so select this tab if necessary.

3. Choose one of the options in the Sort area to specify the sort order of items in Class Browser windows.

The options available vary according to the tool, but at least the following will be available:

By Name Sorts symbols in a list or graph according to the name of each item. The packages that the
symbols are resident in are ignored when this option is used; thus, the symbol vv:allocate
would be listed before aa:vectorize.

By Package Sorts symbols in a list or graph according to the package they are listed in. Thus, all symbols in
the aa package would be listed together, as would all symbols in the vv package. In addition, the
aa package would be listed before the vv package. Within a given package, objects are listed in
alphabetical order when using this option: thus, aa:carry-out-conditions would be listed
before aa:vectorize.

Unsorted Lists all symbols in a graph or list in the order in which they are occur naturally in the object
being examined. This can sometimes be a useful option in itself, and is always the quickest
option available. You may sometimes want to use this option if you are displaying a large
number of items and you are not filtering those items in any way.

The option you specify takes effect when you click OK in the Preferences dialog. Your setting affects existing tools and is
remembered for use when you create the same type of tool in the future.

Note: There are sometimes other options available in the Sort area of the Preferences dialog, depending on the nature of the
tool. These options are described in the chapter specific to each tool.

3 Common Features

48

Only those views whose main area consists of a list or a graph can be sorted. In particular, the default views of tools such as
the Listener or the Editor, which is an editor window which you can type directly into, cannot be sorted.

3.10 Tracing symbols from tools

For some tools, submenus under the relevant main menus (for example, the Expression menu on the Editor tool) contain a
Trace submenu that allows you to set tracing options for a function, method, macro, or generic function. This is a useful
shortcut to the trace macro, since it gives you some control over tracing in the environment without having to work directly
at the Common Lisp prompt.

Below, the current function means the currently selected function, method, macro or generic function, or in the case of the
Editor and Listener, the symbol under the cursor.

A Trace submenu generally has the following commands:

• Choose Trace to trace the current function.

• Choose Trace Inside to trace the current function within the current context. Choosing this command sets the :inside
option for trace.

• Choose Trace with Break to trace the current function, and enter the debugger on entry to it. Choosing this command
sets the :break option to t.

• Choose Untrace to turn off tracing on the current function.

• Choose Untrace All to turn off tracing on currently traced functions. Note that this does not turn off tracing in the
environment as a whole.

• Choose Show in Tracer to trace the current function and display in the Tracer tool. This offers you more control over
tracing. See 11 The Tracer for details.

• Choose Toggle Tracing to turn all tracing commands in the environment on or off. Choose Toggle Tracing again to
restore the previous tracing state.

3.11 Linking tools together

You can link together pairs of tools, so that changing the information displayed in one tool automatically updates the other.
This can be done for virtually any tool in the LispWorks IDE, and provides a simple way for you to browse information and
see how the state of the Lisp environment changes as you run your code. For instance, you can make between an Inspector
and a Listener so that every time you evaluate a form in the Listener, its value is automatically inspected.

You can also link two copies of the same tool. This can be a very useful way of seeing two views of a tool at once. For
instance, you could create a copy of the Class Browser by choosing Window > Clone, and then link them together. By
keeping one browser in the subclasses view, and the other in the slots view, you can automatically see both the subclasses and
the available slots for a given class.

Linked tools have a master-slave relationship. One tool (the slave) gets updated automatically, and the other tool (the master)
controls the linking process. To link together any two tools:

1. Select the tool that the link is to be established to. For example, to form a link from an Inspector to a Class Browser to
ensure that a class selected in the Class Browser is automatically inspected, you would use the Edit menu of the Class
Browser.

2. Choose Edit > Link > tool where tool is the title of the tool you wish to link from.

To break a link, select -- No Link -- instead of a specific tool.

3 Common Features

49

http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm

To view all the current links that have been established, choose Edit > Link from > Browse Links... Select any of the links
listed and click on Remove Link(s) to remove them.

3.12 Filtering information

Many tools have views which display information in a list. Items in these lists may be selected, and you can usually perform
operations on selected items (for instance, by means of the standard action commands, as described in 3.8 Performing
operations on selected objects).

Such lists are often long, including information which you are not interested in. For instance, Common Lisp objects may
contain a large number of slots, most of which are of no importance to your work.

Most such lists in the LispWorks IDE have a filter area which allows you to hide the uninteresting information. The filter area
is above the list, and consists of the Filter pane into which you can enter text, toolbar buttons, and the Matches pane. There
is also a filter modes dropdown menu, described in 3.12.2 Advanced Filtering.

3.12.1 Plain Filtering

This section describes how you can filter list items based on a substring match.

Filter area with plain match

To use the filter, simply enter text in the box to the right of the Filter modes menu button. The list is filtered automatically as
you type. Only those items that contain the specified string are displayed in the list - all the others are hidden from the
display. The number of items that are listed is printed in the Matches area to the right of the Filter box.

To display all the items in a list once again, delete the string in the Filter box or click the button.

3.12.2 Advanced Filtering

This section describes how you can filter list items by a regular expression match rather than a plain string match, make the
match case-sensitive, and how to invert the filter.

3 Common Features

50

To alter the way that the filter operates, select one or more options from the Filter dropdown menu to the left of the filter
pane. You can select this filter modes menu using the mouse, but is more convenient with a keyboard gesture. Each gesture
selects or deselects one filter mode. The keyboard gestures invoking advanced filter modes are shown in Advanced Filter
modes.

Advanced Filter modes

Keyboard gesture Filter mode Description

Ctrl+Shift+R Regexp Search Filters by regular expression
matching

Ctrl+Shift+E Exclude Matches Excludes items matching the filter

Ctrl+Shift+C Case Sensitive Filters by a case-sensitive comparison

The choice of items displayed changes according to the content of the filter pane and the selected filter options. The label on
the Filter dropdown changes to indicate your selected filter options.

In the example illustrated below, we have inspected the string "LispWorks", entered a regular expression which matches
uppercase characters, and pressed Ctrl+Shift+R Ctrl+Shift+C to select the Regexp Search and Case Sensitive filter
modes.

Filter area with regular expression match

Now press Ctrl+Shift+E to select the Exclude Matches filter option. Only the lowercase characters of the string
"LispWorks" are displayed in the list.

Note: For details of the regular expression syntax, see 28.7 Regular expression syntax in the LispWorks® User Guide and
Reference Manual.

Note: The three filter modes are mutually independent.

3.13 Regexp matching

Regular expressions (regexps) can be used when searching and filtering throughout the IDE. See 28.7 Regular expression
syntax in the LispWorks® User Guide and Reference Manual for a description for exactly how LispWorks regexp matching
operates.

3 Common Features

51

3.13.1 Regexp and plain string matching

Sometimes you need to select an option to use regexp matching, as the default behavior uses a plain string comparison. For
example, see 3.12.2 Advanced Filtering.

Other areas always use regexp matching, such as the search target in some modes of the 16 The Search Files tool, and editor
commands with names containing "Regexp".

3.14 Completion

Where there is a finite set of meaningful text inputs (symbol names, names of existing files or editor commands, and so on)
the IDE helps you to enter your text by offering completion. When you invoke completion, the system takes your partial input
and either:

• extends your partial input to an unambiguous longer (but possibly partial) input, or:

• presents a choice of the possible meaningful inputs.

When your input remains partial, you may repeat the completion gesture.

When you see a choice of the possible meaningful inputs, certain gestures allow you to narrow the choice and quickly select
the desired input, as described in 3.14.2 Selecting the completed input.

3.14.1 Invoking completion

When a command prompts for input in the echo area, the keys Tab, ? and Space can invoke completion, depending on the
context.

In the Editor tool, a variety of completion commands are available. For example, in Emacs emulation Tab invokes the
command Indent Selection or Complete Symbol. See the Editor User Guide for details of this and other editor commands.

In the Shell tool, Tab expands filenames.

In the Listener tool using Emacs emulation, Escape Tab expands filenames.

In many text input panes such as the Class: field of a Class Browser tool, Up and Down invoke in-place completion while
pressing the button raises a completion dialog.

Also, clicking the button to the right of a text input pane raises a modal completion dialog, as described in 3.14.3
Completion dialog.

3.14.2 Selecting the completed input

The IDE presents the choice of inputs in one of two ways, described in the next two sections. The option LispWorks >
Preferences..., and then select Environment in the list on the left side of the Preferences dialog. The General tab contains a
check box Use in-place completion controls that whether in-place completion is used.

3.14.2.1 In-place completion

In-place completion presents the choice of complete inputs in a special non-modal window. Example in-place completion
window below shows this in the context of the editor command Complete Symbol.

3 Common Features

52

Example in-place completion window

While this window is visible, most keyboard gestures such as unmodified alphanumeric and punctuation keys are processed
as ordinary input, adding to your partial input. This reduces the number of possible completions. Conversely, deleting part of
your input will increase the number of possible completions.

You can navigate the choice with Up and Down and you can select the desired completion at any time with Return or double-
click. To cancel the attempt to complete, press Escape.

3.14.2.2 Filtering in-place completion

You can reduce the number of displayed completions by adding a filter to the in-place completion window.

To add the filter, press Ctrl+Return. To use the filter, type a substring of the desired result. By default, filtering is by a
case-insensitive substring comparison.

3 Common Features

53

Example in-place completion window with filter

You can set filter modes to alter the way that the filter operates, just as described in 3.12.2 Advanced Filtering. Briefly, you
select options from the Filter dropdown menu or with the keyboard gestures Ctrl+Shift+R, Ctrl+Shift+E and
Ctrl+Shift+C. The choice of items displayed changes according to the content of the filter pane and the selected filter
options, and the label on the Filter dropdown changes to indicate your selected filter options.

3.14.3 Completion dialog

When the Use in-place completion option (see 3.14.2 Selecting the completed input) is off, all keyboard completion
gestures raise a modal dialog presenting a choice of completion options.

Also, clicking the button to the right of a text input pane raises a modal completion dialog.

You can navigate the choice with Up and Down and you can select the desired completion at any time with the Return key,
double-click, or click the OK button. To cancel the attempt to complete, press Escape.

3.14.3.1 Filtering modal dialog completion

A modal completion dialog automatically has a filter if the number of possible completions exceeds the value of the option
LispWorks > Preferences... > Environment > General > Add a filter to dialog lists longer than:. By default this option has
value 25.

The filter options described above are also available in a modal completion dialog, and are controlled by the same keyboard
gestures, for example Ctrl+Shift+R. See 3.12.2 Advanced Filtering for details.

3 Common Features

54

3.15 The Commands menu

The Commands menu is a menu that allows you to invoke the Editor commands that are shown on it, and also to raise the
Editor Commands List tool, which allows you to choose the commands that are shown (see 3.15.1 Editor Commands List).
Editor commands are documented in the Editor User Guide.

The Commands menu can invoked from the menu bar as Commands in the "editing" tools, including the Editor, Listener,
Debugger, Shell and Output Browser. It can be also invoked from the context menu in any editing pane.

The commands shown on the Commands menu are remembered between invocations of LispWorks.

Note: When the context menu is invoked by right-click, the execution of the command is invoked with the buffer point moved
to where the click occurred, and, unless the command moves the buffer point, it is moved back to its original position
afterwards. Therefore commands that use the buffer point may not behave in an obvious way. For example, the command
Forward Character will move the point to one character after the point where you clicked, rather than one character after
where the point was before you clicked.

There are several functions that allow to access the list of commands that are currently in the menu. These are useful when
you want to transfer the list of commands to a different computer or a different user. They may be also useful for switching
between different "modes of working" in which you want different commands in the menu.

• lw-tools:commands-menu-add-commands adds commands to the menu.

• lw-tools:commands-menu-remove-commands removes commands from the menu.

• lw-tools:commands-menu-get-commands returns the list of commands currently in the menu.

3.15.1 Editor Commands List

The Editor Commands List is a simple tool that allows you to browse the Editor commands that are defined, and to add or
remove commands from the Commands menu.

Open the Editor Commands List using Display Commands List... on the Commands menu.

3 Common Features

55

Editor Commands List

The main area of the Editor Commands List shows all the known Editor commands. If the command has a key binding, then
it is shown in the Key column. Below the main area, there is an area that displays the documentation for the currently
selected command.

The commands that are currently shown on the Commands menu are displayed with a * in the In menu column of the main
area. Double-clicking on a command adds or removes it from the Commands menu. When a command is added, it is added
at the top of the menu.

At the top of the main area, there is a filter that allows you to restrict which commands are shown. By default, the filter
searches the text in the panel, so matches both the command name or the key. For example, typing file matches all
commands that contain "file". Typing ctrl matches commands that are bound to a key sequence containing the Control key.
Typing -k matches both commands where the key k is used with a modifier (for example, Ctrl-k kill line) and the
commands which contain un-kill in their name.

The filter also has two additional check buttons. The first one, In Menu, causes the Editor Commands List to show only
commands that are currently in the Commands menu. This is particularly useful when the Commands menu becomes too
long and you want to decide which commands to remove from it. The second one With Keys causes the Editor Commands
List to show only commands that are bound to some key sequence.

You can also manipulate the list of commands in the Commands menu programmatically by using the following functions.

commands-menu-add-commands Function

lw-tools:commands-menu-add-commands commands

The function commands-menu-add-commands adds the commands named by commands to the Commands menu.
commands should be a list of strings, which are appended in front of the current list, after removing any matching
commands from the current list.

3 Common Features

56

commands-menu-remove-commands Function

lw-tools:commands-menu-remove-commands commands

The function commands-menu-remove-commands removes the commands named by commands from the Commands
menu. commands should be a list of strings, or :all which causes all commands to be removed.

commands-menu-get-commands Function

lw-tools:commands-menu-get-commands => commands

The function commands-menu-get-commands returns a list of strings naming the current commands in the Commands
menu. The list is new, and can be destructively modified.

The commands shown on the Commands menu is remembered between invocations of LispWorks, so you don't need these
functions if you have a fixed list of commands and always use the same computer.

If the list of commands is modifed before the the LispWorks IDE starts, typically by a call to
commands-menu-add-commands in an init file, then LispWorks ignores any commands that it remembered from a previous
run.

Here are some examples.

Sorting the commands in the Commands menu:

(lw-tools:commands-menu-add-commands
 (sort (lw-tools:commands-menu-get-commands)
 'string<))

Generate a form that you add to the Commands menu all the commands that are currently in the Commands menu:

(pprint `(lw-tools:commands-menu-add-commands
 ',(lw-tools:commands-menu-get-commands)))

You will typically put such a form in your init file on another computer, or give it to another user.

3.16 Output and Input to/from the standard streams

When the LispWorks IDE starts it sets the follow variables:

• hcl:*background-output* to mp:*background-standard-output*.

• hcl:*background-input* to a stream that always returns EOF.

• hcl:*background-query-io* to a stream that interacts with the user using CAPI prompters.

hcl:*background-output* is the default destination of cl:*standard-output*, cl:*trace-output* and
cl:*error-output*.

hcl:*background-input* is the default source cl:*standard-input*.

hcl:*background-query-io* is the default for cl:*query-io* and cl:*debug-io*.

The output sent to mp:*background-standard-output* can be viewed in the Output Browser tool and in the Output tab
of Editor and Listener tools. See the entry for hcl:*background-output* in the LispWorks® User Guide and Reference
Manual for more details.

3 Common Features

57

http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm

3.17 Examining a window

You can examine any tool window with the Window > Interface menu.

This menu contains the standard action commands described in 3.8 Performing operations on selected objects. Thus,
choose Window > Interface > Inspect to inspect the capi:interface object for the window.

Choose Window > Interface > Browse - Window to browse the structure of the window object. From here you can browse the
child windows.

For information about the tools mentioned, see 7 The Class Browser and 17 The Inspector and 27 The Window Browser.

3.18 Specifying the initial tools

By default the LispWorks IDE starts up with the Podium and a Listener.

If you want to see other tools each time you start the LispWorks IDE, then you can add action items in your personal
initialization file, or in a saved image.

For example, to start an Editor tool, define an action on the pre-defined "Initialize LispWorks tools" action-list:

(define-action "Initialize LispWorks tools"
 "Make an Editor Tool"
 #'(lambda (screen)
 (capi:find-interface 'lw-tools:editor
 :screen screen))
 :after "Create default the tools")

Note: the names of the various tools are exported in the LW-TOOLS package.

For more information about action lists, including an example which opens specific files in the Editor tool, see the
LispWorks® User Guide and Reference Manual.

3.19 System preferences affecting the IDE tools

Some of the macOS System Preferences affect the LispWorks IDE tools.

• 'Tabbing' between buttons.

On macOS, by default you cannot use the Tab key to move the focus from one dialog button to another. You can fix this
by selecting Apple Menu > System Preferences... Keyboard & Mouse > Keyboard Shortcuts > Full keyboard access: >
All controls.

This setting makes Tab switch between the buttons and also Space will select the Yes button in a dialog by default.

• Web browser for viewing documentation.

See 4.1.9 Configuring the browser used.

3 Common Features

58

4 Getting Help

All tools contain a Help menu that gives you access to a variety of forms of online help. This chapter describes how to use
this online help.

4.1 Online manuals in HTML format

A complete documentation set is provided with LispWorks in the form of HTML files. Assuming that you have installed the
documentation, these files are in the directory which is the result of evaluating this form:

(sys:lispworks-dir "manual/online/")

The Help menu links directly to these HTML files, allowing you to go straight to the most relevant documentation for the
current context.

No proprietary extensions to HTML have been used, so you can use any HTML browser to view the documents. The Help
menu drives the following browsers: Netscape, Firefox, Mozilla, Safari, Chrome, Microsoft Internet Explorer and Opera.

4.1.1 Getting help on the current symbol

Choose Help > On Symbol... to search for help on the symbol under the point (in an editor-based window) or the current
object of a tool. This option displays the Search dialog described in 4.1.3 Searching the online manuals, but with options
pre-selected to enable you to search for documentation on the current symbol. Click OK, and the results of the search are
displayed in your HTML browser.

4.1.2 Getting help on the current tool

Choose Help > On Tool... to get help on the current tool. This takes you to the appropriate online chapter of this manual.

4.1.3 Searching the online manuals

Choose Help > Search... to search the online documentation. The Search dialog, shown in Search dialog, appears.

59

Search dialog

This dialog lets you specify what you want to search for, and which manuals you want to search in.

Enter a string of text in the Search for area.

There are a number of additional options that you can set if you want:

• Select Whole Word if you want to confine your search to whole words only. Select Partial Search if you want to match
part of a word as well. By default, partial searches are performed. For example, if Whole Word is selected, searching for
"pane" only matches the word "pane". If Partial Search is selected, searching for "pane" also matches "panels".

• You can choose whether to search the index or the table of contents of any given manual; select Index or Contents as
appropriate. By default, indexes are searched, as these tend to produce the richest information.

Select the manuals you want to search in the Manuals list. If nothing is selected, all manuals are searched. You can select any
number of items in this list.

Select the packages you want to search from the Packages list. If nothing is selected (the default), all packages are searched.
You can select any number of items in this list.

Note that selections made in the Manuals and Packages lists reflect each other. If you choose one or more manuals, the
relevant packages are also selected, and if you choose one or more packages, the relevant manuals are selected.

Once you have specified the search options, click OK. The results of the search are displayed in your HTML browser.

4.1.4 Searching the example source files

Choose Help > Search Examples... to search the supplied example source files. Enter the text to search for in the dialog (not
shown here) and click OK.

The results are displayed in a Search Files tool. See 16 The Search Files tool for information about this tool.

4 Getting Help

60

4.1.5 Browsing manuals online

Choose Help > Manuals to select any of the available manuals from a submenu.

If you already have an HTML browser running, a link to the first page of the manual you choose is displayed in it. If you do
not have a browser running, one is started for you.

4.1.6 The Lisp Knowledgebase

Choose Help > Lisp Knowledgebase to visit the LispWorks knowledgebase at www.lispworks.com. Please search the
knowledgebase for solutions before reporting problems to Lisp Support.

4.1.7 LispWorks Patches

Choose Help > LispWorks Patches to visit the LispWorks patches page at www.lispworks.com where you can download the
latest public patches for LispWorks. You must run LispWorks with the latest patch release installed.

4.1.8 Installing private patches in LispWorks for Windows

This section only applies to LispWorks for Windows.

4.1.9 Configuring the browser used

The operating system has a default setting for which application to use to display HTML pages, and this is the application
that LispWorks uses. To change the web browser used, choose Apple Menu > System Preferences... > Internet & Network >
Internet > Web.

4.2 Online help for editor commands

You can display online help for any available editor command using the commands under Help > Editing. See 12.14 Help
with editing for details.

4.3 Reporting bugs

Choose Help > Report Bug to generate a template for reporting LispWorks bugs. Please complete this template and include it
when you contact Lisp Support.

Before sending a report, please check the instructions at
www.lispworks.com/support/bug-report.html.

4.4 Registering a new license key

Choose Help > Register... to install a new license key.

You might have a new license key after upgrading your LispWorks Edition, or if we have granted an extension to your time-
limited evaluation license.

4 Getting Help

61

http://www.lispworks.com
http://www.lispworks.com
http://www.lispworks.com/support/bug-report.html

4.5 Browsing manuals online using Adobe Reader

The LispWorks manuals are also available in PDF (Portable Document Format). These can be found in the LispWorks library
directory Library/lib/8-0-0-0/manual/offline/pdf which is accessible via an Alias in the
LispWorks 8.0 folder.

You can view these files and print them using Adobe Reader, which can be downloaded freely from the Adobe website at
www.adobe.com.

You may also download the PDF format manuals from the LispWorks website at www.lispworks.com/documentation/.

4 Getting Help

62

http://www.adobe.com
http://www.lispworks.com/documentation/

5 Session Saving

You can save a LispWorks IDE session, which can be restarted at a later date. This allows you to resume work after restarting
your computer.

This chapter describes what session saving does, and how you can configure and use it in the LispWorks IDE.

It is also possible to save a session programmatically, which is described in the LispWorks® User Guide and Reference
Manual, but saving sessions is primarily intended for users of the LispWorks IDE.

Note: saving sessions uses save-image and therefore it is not available in LispWorks Personal Edition.

5.1 What session saving does

When you save a session, LispWorks performs the following three steps:

1. Closing all windows and stopping multiprocessing.

2. Saving an image. On macOS this also creates an application bundle.

3. Restarting the LispWorks IDE and all of its windows.

If a saved session is run later, then it will redo the last step above, but see 5.3 What is saved and what is not saved for
restrictions.

Sessions are stored on disk as LispWorks images, by default within your personal application support folder (the exact
directory varies between operating systems).

5.2 The default session

There is always a default session, which is used when you run the supplied LispWorks image.

Initially the default session is the one named LispWorks Release.

When you run any other image directly, including a saved session or an image you created with save-image, it runs itself
(not the default session).

Saved sessions are platform- and version-specific. In particular, a 32-bit LispWorks saved session cannot be the default
session for 64-bit LispWorks, or vice-versa.

5.3 What is saved and what is not saved

All Lisp code and data that was loaded into the image or was created in it is saved. This includes all editor buffers, the
Listener history and its current package, and the values of cl:*, cl:** and cl:***.

All threads are killed before saving, so any data that is accessible only through a mp:process object, or by a dynamically
bound variable, is not accessible.

All windows are closed, so any data that is accessible only within the windowing system is not accessible after saving a
session.

63

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm

The windows are automatically re-opened after saving the session and all Lisp data within the CAPI panes is retained.

External connections (including open files, sockets and database connections) become invalid when the saved session is
restarted. In the image from which the session was saved, the connections are not explicitly affected but if these connections
are thread-specific, they will be affected because the thread is terminated. In particular, well written code will typically be
closing such connections by an unwind-protect form, which will be executed when the thread is terminated.

All debugging operations are aborted, which also includes stepping. Debugger and Stepper windows are not re-opened. A
Listener that is in the debugger aborts the debugger and returns to the top level loop. By default, before saving a session,
LispWorks checks for any debugging operations and raises a dialog to confirm that you want to save the session anyway (and
hence abort all these operations). This check can be switched off by unchecking Check for non-restartable interfaces in the
Save Session dialog.

Remote debugging is aborted when a session is saved and Remote Listener windows are not re-opened.

In recreated Shell tools, the command history is recovered but the side effects of those commands are not.

See 13.4.3 Saving a session programmatically in the LispWorks® User Guide and Reference Manual for interfaces allowing
you to control what happens when saving a session.

5.4 Saving sessions

This section describes how you can use the Saved Sessions window to save a session, schedule regular saving, and manage
your saved sessions.

Choose LispWorks > Saved Sessions... to raise the Saved Sessions window.

The Saved Sessions window

5 Session Saving

64

In the Saved Sessions tab is a list of known saved sessions. The default session is marked with *. If you select a session
(other than LispWorks Release) in the list, you can see details of when and where it was saved in the Details: area.

To save a session from the running image, click the Save Now button, which raises the Save Session dialog (see 5.4.2 The
Save Session dialog and actual saving).

To launch a session, select it in the list and click the Launch button. This invokes the saved session.

To delete a session, select it in the list and click the Delete button. Note that this does not merely remove it from the list but
permanently deletes the session, deleting the actual file (and application bundle on macOS) from the disk.

To make a session be the default saved session, select it in the list and click the Set As Default button. This causes LispWorks
images to redirect to this session when they start (see 5.5 Redirecting images to a Saved Session image).

5.4.1 Scheduling automatic session saving

You can set up automatic periodic session saving using the Scheduled tab of the Saved Sessions controller window.

The Scheduled tab of the Saved Sessions window

Select or deselect Save session using this schedule to switch automatic saving on or off.

You can select days in the week and a time of the day to do the saving.

When the saving time is reached, the system raises the Save Session dialog and waits for some period of time to allow you to
change the settings, cancel the saving, or confirm it. If the period of time passes without you cancelling, the system proceeds
to do the saving. The period of time to wait is set by the Allow cancellation option.

Click the Defaults... button to raise the Save Session dialog which allows you to set the parameters for the saving. When you

5 Session Saving

65

confirm, it does not save the session, but remembers the settings and uses them when doing the automatic saving.

5.4.2 The Save Session dialog and actual saving

Click the Defaults... button in the Scheduled tab of the Saved Sessions controller window to raise the Save Session dialog.

Setting the defaults for scheduled session saving

Enter a name for the session in the Session name: box. This name will be displayed in the list of sessions in the Saved
Sessions tab of the Saved Sessions controller window.

Under File name: you can define the filename in which to save the image (on non-macOS platforms) or the name of the
application bundle (on macOS). The name is constructed by a prefix, optionally followed by one or more of the Version (of
LispWorks), the Weekday, the Date or the Time. The full name that would be used is displayed after Sample:. Note that:

1. The name does not contain the file type. On Cocoa it adds ".app" automatically.

5 Session Saving

66

2. The Weekday, Date and Time are derived from the moment when the Save Session dialog was raised. They are not
updated.

Under Options: there are additional options:

1. You can change the directory in which to save the application bundle in the Save application bundle in directory: box.

2. You can specify that the saved session is the default session by selecting Use as default session. This means that
LispWorks images will redirect to it (see 5.5 Redirecting images to a Saved Session image).

3. The saving process can be made to overwrite an existing application bundle if it exists by selecting Overwrite existing
application bundle. If this is not checked the saving process refuses to save on top of an existing application bundle.

4. You can specify that the saved session will reload the initialization files when it restarts, by selecting Re-load init files
when starting session.

5. You can switch off checking for non-restatable interfaces and Listeners in the debugger (see 5.3 What is saved and what
is not saved) by unchecking Check for non-restartable interfaces.

By default, the settings in the dialog are remembered as the default settings for future saving sessions. If you want the
settings to apply only to the current saving session, you can uncheck Remember these settings at the bottom of the dialog.

When you click OK to confirm the dialog, the session saving is scheduled.

5.4.3 Saving a session interactively

If you invoked the Save Session dialog from the Save Now button, it appears as described in 5.4.1 Scheduling automatic
session saving except that a default Session name: is provided and there is also an option Remember these settings. If this
is selected, then when you confirm the saving the settings are remembered and used the next time this dialog appears.

Once you click OK to confirm, the saving starts. First all the IDE interfaces are destroyed in a way that makes it possible to
resurrect them. Then multiprocessing is stopped. It then saves the LispWorks image, including an application bundle on
Cocoa. While it is saving it prints messages to the console. Once it finished saving it restarts the IDE and all its interfaces.
The pathname of the saved application bundle is printed to the background output as well.

If there is an error during the saving, you can interact with it via the console. There is a restart "Abort saving and restart the
IDE" to allow you to return to the IDE.

5.5 Redirecting images to a Saved Session image

Redirecting an image means that when the image starts it actually causes another image to start. The idea is that you save
your sessions and redirect the release image, so that starting LispWorks from the Dock icon or other shortcut will actually
start the saved session.

Only the installation image redirects, or images that were saved from it by using save-image with the -build command
line argument. Images that were re-saved using the -init command line argument do not redirect.

Redirection occurs automatically when the default saved session is not the LispWorks Release. The default saved session can
be set by LispWorks > Saved Sessions... > Saved Sessions > Set As Default. It is marked by * in the list. It is possible to
make the process of saving a session set the default saved session to the newly saved session by selecting it under Options: in
the Save Session dialog, described in 5.4.2 The Save Session dialog and actual saving.

When the redirection switch is on, when the installation image starts it redirects to the default saved session. It does it after
processing the command line arguments (including -build, -load and -eval), but before loading any initialization file
(whether the default or those that are passed by -siteinit or -init). It passes all the command line arguments to the
saved session, followed by few other arguments. Note that this means that if you start a redirected image with command line
arguments, it will process the arguments, redirect and then the redirected image will process the arguments too.

5 Session Saving

67

Passing the command line argument -lw-no-redirection prevents the redirection.

5.6 Non-IDE interfaces and session saving

If there are CAPI interfaces on the screen (other than the LispWorks IDE) when session saving is invoked, these interfaces are
destroyed and then displayed again. Note that the display will occur in a different thread than the one running the interface
before the saving (which was killed when the interface was destroyed).

If an interface (or any of its children) contains information that is normally destroyed (in some sense) in the destroy-callback,
this information can be preserved. For the details see capi:interface-preserving-state-p and
capi:interface-preserve-state in the CAPI User Guide and Reference Manual.

5 Session Saving

68

6 Manipulating Graphs

Views that use graphs are provided in the Class Browser, Function Call Browser, and Window Browser. These views let you,
for instance, produce a graph of all the subclasses or superclasses of a given class, or the layouts of a given CAPI interface.

In the Class Browser, the subclasses and superclasses views use graphs. The Function Call Browser uses graph views for its
Called By and Calls Into views. There is only one view in the Window Browser, and that uses a graph.

All graphs in the LispWorks IDE can be manipulated in the same way. This chapter gives you a complete description of the
features available.

All graphs have an associated graph layout menu, available by displaying a context menu over the graph itself by using the
alternate select gesture. This menu contains all the commands that are directly relevant to graphs.

6.1 An overview of graphs

An example graph is shown in Example graph pane below. All graphs are laid out by the LispWorks IDE, so that their
elements are displayed in an intuitive and easily visible hierarchy. A graph consists of a number of nodes, linked together by
branches. By default, graphs in the environment are plotted from left to right: for any given node, the node to which it is
linked on the left is known as its parent, and the nodes to which it is linked on the right are known as its children. The
originating node of the graph (on the far left) is referred to as the root node, and the outermost nodes of the graph (towards
the right) are referred to as leaf nodes. The root node does not have a parent, and leaf nodes do not have any children.

Example graph pane

You can select nodes in a graph pane in exactly the same way that you select items in a list. Selected nodes are highlighted,
as shown in Example graph pane.

Similarly, you can copy nodes from a graph onto the clipboard in a manner consistent with use of the clipboard in the rest of
the environment. When you copy any selected node onto the clipboard, the Lisp object itself is copied onto the clipboard, so
that it can be transferred into other tools in the LispWorks IDE.

The string representation of the Lisp object is copied into the system clipboard, so that it can be transferred to other
applications.

69

6.2 Searching graphs

Sometimes graphs can be too large to fit onto the screen at once. In this case, it is useful to be able to search the graph for any
nodes you are interested in. There are two commands which let you do this.

Choose Edit > Find... to find any node in the graph whose name contains a given string. Choose Edit > Find Next to find the
next node in the graph that contains that string. Whenever a matching node is found, it is selected in the graph. If necessary,
the window scrolls so that the selected node is visible.

Note that you do not have to specify a complete node name: to find all nodes that include the word "debug" in their name,
just type debug into the dialog. All searches are case insensitive.

A full description of these commands can be found in 3.3.5 Searching for text and objects.

6.3 Expanding and collapsing graphs

You may often find that you are only interested in certain nodes of a graph. Other nodes may be of no interest and it is useful,
especially in large graphs, to be able to remove their children from the display.

Notice that some nodes have a small circle drawn alongside them, as shown in Expanded and expandable nodes. The circle
indicates that the node is not a leaf node, that is, it has children. Moreover, the circle is filled black if the node is currently
expanded, and is unfilled if the node is currently expandable (also referred to as collapsed).

6.3.1 Expanding and collapsing by clicking

To collapse or expand any node with children in a graph, click on the circle alongside it. Thus, click on the unfilled circle of
an expandable node to display its children, and click on the filled circle of an expanded node to hide its children.

Expanded and expandable nodes

For instance, in Expanded and expandable nodes, click on the unfilled circle alongside CAPI:TOOLBAR-COMPONENT
to display its subclasses. Click on the filled circle to hide them.

6.3.2 Expanding and collapsing by menu commands

You can also collapse or expand nodes using the context menu:

• Choose Expand Nodes to expand the selected node.

6 Manipulating Graphs

70

http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm

• Choose Collapse Nodes to collapse the selected node.

6.4 Moving nodes in graphs

Although the layout of any graph is calculated automatically, you can move any node in a graph manually. This can be useful
if the information in the graph is dense enough that some nodes are overlapping others.

To move the selected node, hold down the Shift key and select and drag the node to the desired location.

Moving a node in a graph

At any time, you can choose Reset Graph Layout from the context menu to restore the nodes to their original positions.

6.5 Displaying plans of graphs

Many graphs are too large to be able to display in their entirety on the screen. As with any other window, you can use the
scroll bars to display hidden parts of the graph. However, you can also display a plan view of the entire graph.

To display the plan view of any graph, hold down the Control key and select the graph, or choose Enter Plan Mode from the
context menu. The graph is replaced by its plan view, similar to the one shown in Example plan view.

6 Manipulating Graphs

71

Example plan view

Each node in the original graph is represented by a rectangle in the plan view. The currently selected node is shown as a filled
rectangle, and all other nodes are clear. You can select nodes in the plan view, just as you can in the normal view.

A dotted grid is drawn over the plan view; you can use this grid to alter the section of the graph that is shown in the normal
view. The size and position of the grid represents the portion of the graph that is currently displayed in the normal view.

• To move the grid, so that a different part of the graph is shown in the normal view, hold down Shift and select and drag
the innermost rectangle of the grid. The entire grid moves with the mouse pointer.

• To resize the grid, so that a different proportion of the graph is shown, hold down Shift and select and drag the
outermost rectangle of the grid. The entire grid will resize. You can select any part of the grid except the innermost
rectangle to perform this action.

To return to the normal view, hold down Control and select the graph again, or choose Exit Plan Mode from the context
menu. The part of the graph indicated by the grid in the plan view is displayed.

6.6 Preferences for graphs

A number of graph layout preferences can be set for any tool that uses graphs. You can control settings in the Preferences
dialog. To do this:

1. Display the Preferences dialog either by choosing Graph > Preferences... from the graph layout context menu or by one
of the methods described in 3.2 Setting preferences.

2. Select the relevant tool in the left side of the Preferences dialog, and select a graph layout tab on the right.

For example, the graph layout preferences for subclasses in the Class Browser are shown in Layout Preferences for the
Subclass Graph.

6 Manipulating Graphs

72

Layout Preferences for the Subclass Graph

This section describes the options available in the graph layout tabs of the Preference dialogs for any tool that uses graphs.

6.6.1 Altering the depth and breadth of graphs

For large graphs, you may find that you want to alter the maximum depth and breadth in order to simplify the information
shown. Each graph pane has its own depth and breadth setting, which is used for all graphs drawn in it. These are available in
the Max Expansion panel of the graph layout tabs in the Preferences dialog.

The depth and breadth of a graph are depicted in Depth and breadth of graphs.

Depth and breadth of graphs

Choose a number from the Depth list to change the maximum depth of graphs in a given tool. The depth of a graph is the
number of generations of node which are displayed. Most graphs have a default initial depth of 2, which means that you must
expand any nodes you want to investigate by expanding them yourself. The default value is 2.

Note that the maximum depth setting is ignored for nodes which you have expanded or collapsed. See 6.3 Expanding and
collapsing graphs.

Choose a number from the Breadth list to change the maximum breadth of a given tool. The breadth of a graph is the number
of child nodes which are displayed for each parent. If there are more children than can be displayed (the maximum breadth
setting is less than the number of children for a given node) an extra node is visible. This node is labeled "…", followed by
the number of nodes that are still not displayed. Nonetheless you can expand this node by the Expand Nodes command
allowing you to display the additional children without having to alter the maximum breadth setting for the whole graph. By
default, the maximum breadth is set to None, so that all the children for a node are displayed, no matter how many there are.
An example of this feature is shown in Displaying children hidden by the maximum breadth setting below, where the
maximum breadth has been set to 3.

6 Manipulating Graphs

73

Displaying children hidden by the maximum breadth setting

To ensure that all available information is graphed in a given tool, set both the maximum depth and maximum breadth to
None.

6.6.2 Displaying different graph layouts

As already mentioned, graphs are laid out from left to right by default, but they can be laid out in other orientations. This can
be configured in the Layout panel of the graph layout tab in the Preferences dialog.

Click "Left to Right" to layout a graph from the left of the screen to the right, as shown in Left to right layout. This is the
default orientation for every graph in the environment.

Left to right layout

Click "Right to Left" to layout a graph from the right of the screen to the left, as shown in Right to left layout.

Right to left layout

Click "Top Down" to layout a graph from the top of the screen to the bottom, as shown in Top down layout.

6 Manipulating Graphs

74

Top down layout

Click "Bottom Up" to layout a graph from the bottom of the screen to the top, as shown in Bottom up layout.

Bottom up layout

6.7 Using graphs in your programs

You can read about the CAPI class graph-pane in the CAPI User Guide and Reference Manual for detailed API information
for using graphs in your own programs. We will also look at a short example in this section. The following code listing
defines a callback function and creates a graph-pane object:

(defun node-children (node)
 (if (equal node 'pets)
 (list 'dog 'parrot)
 (if (equal node 'dog)
 (list 'Kito 'Otis 'Sammy 'Teddy)
 (if (equal node 'parrot)
 (list 'Brady)))))

(setq test-graph
 (capi:contain
 (make-instance 'capi:graph-pane
 :roots '(pets)
 :children-function
 'node-children)
 :best-width 300
 :best-height 400))

The children function node-children should return nil for a leaf node in the graph or a list of child nodes for a non-leaf
node. Sample Graph from a User Program shows the generated graph-pane.

6 Manipulating Graphs

75

Sample Graph from a User Program

6 Manipulating Graphs

76

7 The Class Browser

The Class Browser allows you to examine Common Lisp classes. It contains seven views, allowing you to view class
information in a number of different ways. You can display each view by clicking the appropriate tab. The available views
are as follows:

• The slots view is used to look at the slots available to the class browsed. This view is rich in information, showing you
details about items such as the readers and writers of the selected slot.

• The subclasses view produces a graph of the subclasses of the current class, giving you an easy way to see the
relationship between different classes in the environment.

• The superclasses view produces a graph of the superclasses of the current class, giving you an easy way to see the
relationship between different classes in the environment.

• The hierarchy view lets you see the immediate superclasses and the immediate subclasses of the current class, using a
text-based interface.

• The initargs view allows you to see the initargs of the current class together with information about each initarg. See 7.6
Examining initargs for more details on how you can use this view.

• The functions view allows you to see information about the CLOS methods that have been defined on the current class.
See 7.5 Examining generic functions and methods for details on using the information in this view.

• The precedence view is used to show the class precedence list for the current class. See 7.7 Examining class
precedences for more details on how you can use this information.

To create a Class Browser, choose Window > Tools > Class Browser or click . Alternatively, to invoke a Class Browser on
a Lisp object use Esc X Describe Class in an Editor, or choose Class from any submenu that provides the standard
action commands to invoke a Class Browser on the Lisp object referred to by that submenu, or click . This automatically
browses the class of the Lisp object. For more information on how the standard action commands refer to objects in the
environment, see 3.8 Performing operations on selected objects.

7.1 Simple use of the Class Browser

This section describes some of the basic ways in which you can use the Class Browser by giving some examples. If you wish,
you can skip this section and look at the descriptions of each individual view: these start with 7.2 Examining slot
information.

When examining a class, the slot names of the class are displayed by default.

To examine a class, follow the instructions below:

1. Create a push button panel by entering the following in the Listener:

(capi:contain
 (make-instance 'capi:push-button-panel
 :title "Test Buttons"
 :items '(:one :two :three)))

The push button panel appears on your screen.

2. With the Listener as the active window, choose Values > Class.

77

This invokes the Class Browser on the button panel. The class capi:push-button-panel is described in the Class
Browser.

Examining classes in the Class Browser

Notice that, although you invoked the browser on an object that is an instance of a class, the class itself is described in the
Class Browser. Similarly, if you had pasted the object into an Inspector, the instance of that object would be inspected. Using
the environment, it is very easy to pass Common Lisp objects between different tools in this intelligent fashion. This
behavior is achieved using the LispWorks IDE clipboard; see 3.3.3 Using the Object operations with the clipboard for
details.

See 3.8 Performing operations on selected objects for a full description of the standard action commands available.

7 The Class Browser

78

7.1.1 Examining slots

A list of the slots in the current class is printed in the Slots area. By selecting any slot, you can examine it in more detail in
the Description area.

While still examining the capi:push-button-panel class, select any slot in the Slots area.

Description of a slot

A description of the slot is given in the Description area. For details about the information contained in this description, see
7.2.4 Description list.

7.1.2 Examining inherited slots

By default, inherited slots (those slots which are defined in a superclass of the current class, rather than the current class
itself) are listed in the Slots area along with the slots defined in the current class.

1. Deselect the Include Inherited Slots button just above the Filter box to inhibit this listing.

2. While still examining the capi:push-button-panel class, click Include Inherited Slots to deselect this option.

No slots are displayed in the Slots area. This is because all the slots available to the capi:push-button-panel class
are inherited from its superclasses. No slots are defined explicitly on the capi:push-button-panel class.

3. Select Include Inherited Slots again, and then select a few slots in the Slot area in turn.

Notice that the slot description for each slot tells you which superclass the slot is defined on.

7.1.3 Filtering slot information

The Filter box can be used to filter out information about slots you are not interested in. This is especially useful if you are
examining classes which contain a large number of slots.

The example below shows you how to create an instance of a CAPI object, and then limit the display in the Class Browser so
that the only slots displayed are those you are interested in:

1. In a Listener, create a button object by typing the following:

(capi:contain (make-instance 'capi:list-panel
 :items '("Apple" "Orange" "Pear")))

This creates a list panel object and displays it on your screen. The list panel object is the current value in the Listener.

7 The Class Browser

79

2. Make the Listener window active and choose Values > Class to examine the class of the object in the Class Browser.

3. Click the Slots tab in the Class Browser to switch to the Slots view.

Suppose you are only interested in seeing the callbacks that can be defined in a list panel.

4. Type callback in the Filter box.

Using filters to limit the display in the Class Browser

You can immediately see the types of callback that are available to CAPI list panel objects. See the CAPI User Guide and
Reference Manual for details about these callbacks.

For more information about using filters, see 3.12 Filtering information.

7 The Class Browser

80

7.1.4 Examining other classes

There are two ways that you can examine other classes. The first is to type the name of the class you wish to see into the
Class text box at the top of the browser. For long class names, you might find it useful to type just a few characters and then
press Up or Down to invoke in-place completion. Press Return or click and the named class is described.

1. While still examining class capi:list-panel, type capi:push-button-panel into the Class area.

The class capi:push-button-panel is described.

Because some class names may be potentially quite long, you can use completion to reduce typing. This allows you to select
from a list of all class names which begin with the partial input you have entered. See 3.14 Completion for detailed
instructions. When you have entered the complete class name, click on to make this the class being described.

The second way to examine other classes is by using the Superclasses and Subclasses lists available in the hierarchy view.
Click on the Hierarchy tab to display the hierarchy view.

The main part of the hierarchy view consists of two lists:

• The Superclasses list shows all the superclasses of the current class.

• The Subclasses list shows all the subclasses of the current class.

Double-click on any superclass or subclass of the current class to examine it.

1. Double-click on CAPI:BUTTON-PANEL in the Superclasses list.

The capi:button-panel class is described.

2. Double-click on CAPI:PUSH-BUTTON-PANEL in the Subclasses list.

The capi:push-button-panel class is described again.

So, using the Hierarchy tab, you can easily look through the related classes in a system.

7.1.5 Sorting information

As with many of the other tools in the LispWorks IDE, you can sort the items in any of the lists or graphs of the Class
Browser using the Preferences dialog. Raise this dialog as described in 3.2 Setting preferences, and then select Class
Browser in the list on the left side.

Setting Class Browser preferences

Under the General tab, there are three options for sorting items, listed in the Sort panel.

7 The Class Browser

81

Unsorted Displays items in the order they are defined in.

By Name Sorts items alphabetically by name. This is the default setting.

By Package Sorts items alphabetically by package name.

For more information on sorting items, see 3.9.1 Sorting items in views.

7.2 Examining slot information

When the Class Browser is first invoked, the default view is the slots view. You can also click the Slots tab to swap to it from
another view. The slots view is shown in Examining slots in the Class Browser.

Examining slots in the Class Browser

7.1 Simple use of the Class Browser introduced you to the slots view in the Class Browser. This section gives a complete

7 The Class Browser

82

description of this view. For completeness, some information may be repeated.

The areas available in the slots view are described below.

7.2.1 Class box

You enter the name of the class you want to browse in the Class text box. You can type in a class name explicitly, or you can
transfer a class to the Class Browser using the Class standard action command in another tool, or by pasting a class in
explicitly.

Note: You can use Edit > Paste to paste a class name into this area, even if the clipboard currently contains the string
representation of the class name, rather than a class object itself. This lets you copy class names from other applications
directly into the Class Browser. See 3.3.3 Using the Object operations with the clipboard for a complete description of the
way the LispWorks IDE clipboard operates, and how it interacts with the system clipboard.

7.2.2 Filter area

The Filter area lets you restrict the information displayed in the Slots list. See 3.12 Filtering information for a description of
how to use the Filter area in any tool, and 7.1.3 Filtering slot information for an example of how to use it in the Class
Browser.

7.2.3 Slots list

The main section of the slots view lists the slot names of the current class. Selecting a slot in this list displays a description of
it in the Description list, and you can operate on any number of selected slots using the commands in the Slots menu.

The number of items listed in the Slots area is printed in the Matches box.

If Include Inherited Slots is selected, slots inherited from the superclasses of the current class are listed as well as those
explicitly defined on the current class. Deselect this button to see only those slots defined on the current class. You can also
configure the default setting of this option. To do this raise the Preferences dialog as described in 3.2 Setting preferences,
then select Class Browser in the list on the left side of the Preferences dialog, and then select the Slots/Functions tab to see
the Include Inherited Slots option.

7.2.4 Description list

This list displays a description of the selected slot. The following information is printed:

From Classes The classes that this slot is defined in.

Slot Name The name of the slot.

Type The slot type.

Initargs The initargs, if any, which can be used to refer to the slot.

Initform The initform, or initial value, of the slot.

Readers The readers of the slot. These are the names of any functions which can be used to read the
current value of the slot.

Writers The writers of the slot. These are the setf methods which may be used to change the slot value.

Allocation The allocation of the slot.

To operate on any of the items displayed in this area, select them and choose a command from the Description menu. This

7 The Class Browser

83

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

menu contains the standard action commands described in 3.8 Performing operations on selected objects. You can operate
on more than one item at once by making multiple selections in this area.

7.2.5 Performing operations on the current class

You can operate on the current class using the commands in the Classes menu. The standard action commands described in
3.8 Performing operations on selected objects are available in this submenu.

Choose Classes > Browse Metaclass to select, and describe in the normal way, the class of the current class.

7.3 Examining superclasses and subclasses

The hierarchy view of the Class Browser lists the immediate superclasses and subclasses of the current class. This view can
be useful for navigating the class hierarchy if you want to be able to see both superclasses and subclasses at the same time.

Click on the Hierarchy tab to browse classes with the hierarchy view. The hierarchy view shown in Viewing superclass and
subclass information in the Class Browser appears.

7 The Class Browser

84

Viewing superclass and subclass information in the Class Browser

The areas available in the hierarchy view are described below.

7.3.1 Class box

As with other views in the Class Browser, the name of the class being browsed is given here. See 7.2.1 Class box for more
details.

7.3.2 Superclasses list

This list displays the immediate superclasses of the current class. Double-clicking on any class makes it the current class.

Selecting a class in this list displays its description in the Description list.

7 The Class Browser

85

7.3.3 Subclasses list

This list displays the immediate subclasses of the current class. Double-clicking on any class makes it the current class.

Selecting a class in this list displays its description in the Description list.

7.3.4 Description list

This list displays a description of the first class selected in either the Superclasses or Subclasses lists, or the current class if
there is no selection in either of these lists. The following information is printed:

Package The name of the package that the selected class is defined in.

Name The name of the selected class.

Metaclass The class of the selected class. The metaclass is the class of Lisp object that the current class
belongs to.

Accessibility The accessibility of the selected class - whether the symbol is external or internal, as returned by
find-symbol.

To operate on any of the items displayed in this area, select them and choose a command from the Description menu. This
menu contains the standard actions commands described in 3.8 Performing operations on selected objects. You can operate
on more than one item at once by making a multiple selection in this area.

7.3.5 Performing operations on the selected classes or the current class

You can use the Classes menu to perform operations on any number of items selected in either the Subclasses area or the
Superclasses area. If no items are selected, then the current class is operated on by the commands in this submenu. The
standard actions commands described in 3.8 Performing operations on selected objects are available in this submenu.

Choose Classes > Browse Metaclass to select, and describe in the normal way, the class of the selected classes, or the
current class.

Note: If more than one item is selected, and the command chosen from the Classes menu invokes a tool which can only
display one item at a time, then the extra items are added to the History > Items submenu of the tool, so that you can easily
display them.

7.4 Examining classes graphically

As already mentioned, you can view class relationships graphically using either the superclasses or subclasses views. This
gives an immediate impression of the class hierarchy, but contains no details about information such as slots, readers and
writers.

Click on the Subclasses tab to browse subclasses in a graph, and click on the Superclasses tab to view superclasses in a
graph. Except for the type of information shown, these two views are visually identical. The subclasses view is shown in
Viewing subclasses graphically in the Class Browser.

7 The Class Browser

86

http://www.lispworks.com/documentation/HyperSpec/Body/f_find_s.htm

Viewing subclasses graphically in the Class Browser

The areas available in the subclasses and superclasses views are described below.

7.4.1 Class box

As with other views in the Class Browser, the name of the class being browsed is shown here. See 7.2.1 Class box for details.

7.4.2 Subclasses and superclasses graphs

The main area of these views is a graph showing either the subclasses or the superclasses of the current class, depending on
the view you have chosen. The generic facilities available to all graph views throughout the environment are available here:
see 6 Manipulating Graphs for details.

Selecting a node in this displays a description of the class it represents in the Description list.

7 The Class Browser

87

7.4.3 Description list

This list displays a description of the first class selected in the graph. This gives the same information as the Description list
in the hierarchy and precedence views. See 7.3.4 Description list for details.

7.4.4 Performing operations on the selected classes or the current class

You can operate on the selected node in the graph using the commands in the Classes menu. If no node is selected, then the
current class is operated on by the commands in this menu. The standard actions commands described in 3.8 Performing
operations on selected objects are available in this menu.

Choose Classes > Browse Metaclass to select, and describe in the normal way, the class of the selected classes, or the
current class.

7.4.5 An example

1. Examine the class capi:choice by typing capi:choice into the Class area of the Class Browser and pressing
Return or clicking on .

The class is described in the current view.

2. Click on the Subclasses tab in the Class Browser.

The relationships between capi:choice and its subclasses are shown in a graph, as in Relationship between
capi:choice class and its subclasses.

Relationship between capi:choice class and its subclasses

By default, the subclasses of the current class are shown in the graph. To expand a non-leaf node in the graph, click on
the circle to its right.

3. Expand the CAPI:BUTTON-PANEL node to see the subclasses of this class.

The classes of button panel object available are displayed in the graph, including the push button panel class that you saw
in the examples in 7.1 Simple use of the Class Browser.

4. To graph the superclasses, click the Superclasses tab.

The relationships between capi:choice and its superclasses are shown in a graph, as in Relationship between
capi:choice class and its superclasses.

Relationship between capi:choice class and its superclasses

7 The Class Browser

88

7.5 Examining generic functions and methods

Click the Functions tab to examine information about the generic functions and methods defined on the current class. The
functions view shown in Displaying function information in the Class Browser appears.

Displaying function information in the Class Browser

This view can be especially useful when used in conjunction with the Generic Function Browser. The areas available are
described below.

7.5.1 Class box

As with other views in the Class Browser, the name of the class being browsed is given here. See 7.2.1 Class box for more
details.

7.5.2 Filter box

The Filter box lets you restrict the information displayed in the list of functions or methods. See 3.12 Filtering information
for a description of how to use the Filter box in any tool, and 7.1.3 Filtering slot information for an example of how to use it
in the Class Browser.

7 The Class Browser

89

7.5.3 List of functions or methods

This lists either the generic functions with applicable methods for the current class, or the applicable methods for the current
class. Items selected in this list can be operated on via the Methods menu, as described in 7.5.6 Operations specific to the
current function or method. Double-clicking on a function or method displays its source code definition in the Editor, if
possible.

Select Methods or Generic Functions from the drop-down list box to choose which type of information to list.

If Include Inherited is checked, generic functions or methods inherited from the superclasses of the current class are
displayed.

If Include Accessors is checked, accessor methods/functions are displayed. When Include Accessors is not checked,
methods/functions defined by the :readers, :writers and :accessors slot options in defclass are omitted from the
display.

You can configure the default settings of these options in the Preferences dialog. To do this raise the dialog as described in
3.2 Setting preferences, then select Class Browser in the list on the left side and then select the Slots/Functions tab to see
the default settings that you can configure.

7.5.4 Description list

The list at the bottom of the tool gives a description of the function or method selected in the main list. The following
information is shown:

Name The name of the selected generic function or method.

Function The function which the selected function or method relates to.

Lambda List The lambda list of the selected generic function or method.

Documentation The Common Lisp documentation for the selected function or method, if any exists.

Source Files The source files for the selected generic function or method.

To operate on any of the items displayed in this area, select them and choose a command from the Description menu. This
submenu contains the standard actions commands described in 3.8 Performing operations on selected objects. You can
operate on more than one item at once by making a multiple selection in this area.

7.5.5 Performing operations on the current class

You can operate on the current class using the commands in the Classes menu. The standard action commands described in
3.8 Performing operations on selected objects are available from this submenu.

Choose Classes > Browse Metaclass to select and describe the class of the current class.

7.5.6 Operations specific to the current function or method

In addition to the commands described above, the following commands are available when using the functions view.

The standard action commands described in 3.8 Performing operations on selected objects are available from the Methods
menu.

Choose Methods > Undefine... to remove the selected functions or methods from the LispWorks image. You are prompted
before the functions or methods are removed.

Warning: Do not remove system functions and methods, such as those defined for CAPI classes used as examples in this

7 The Class Browser

90

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

chapter.

Choose Methods > Trace to display the Trace submenu available from several tools. This submenu lets you trace the selected
methods or generic functions. A full description of the commands in this submenu is given in 3.10 Tracing symbols from
tools.

7.6 Examining initargs

Click the Initargs tab to examine information about the initargs of the current class. The initargs view shown in Displaying
initarg information in the Class Browser appears.

Displaying initarg information in the Class Browser

The areas available are described below.

7 The Class Browser

91

7.6.1 Class box

This area gives the name of the class being browsed. See 7.2.1 Class box for details.

7.6.2 Filter box

The Filter box lets you restrict the information displayed in the initargs list. See 3.12 Filtering information for a description
of how to use the Filter box in any tool, and 7.1.3 Filtering slot information for an example of how to use it in the Class
Browser.

7.6.3 List of initargs

This lists the slots in the current class for which initargs have been defined. Selecting an item in this list displays information
in the Description list. Any items selected can also be operated on via the Slots menu.

7.6.4 Description list

This area gives a description of the initarg selected in the Initargs area. The following items of information are displayed:

Initarg The name of the selected initarg.

Default Initarg The default value for the selected initarg, if defined with :default-initargs.

Default From Class The class providing the default for the initarg.

From Classes The class from which the selected initarg is inherited.

Slot Name The name of the slot to which this initarg relates.

Type The type of the selected initarg.

Initargs All initargs applicable to the same slot.

Initform The initform for the slot to which this initarg relates.

Readers The readers for the slot to which this initarg relates.

Writers The writers for the slot to which this initarg relates.

Allocation The allocation for slot to which this initarg relates. See CLOS in the ANSI Common Lisp
specification for details.

Items selected in this list can be operated on via the Description menu.

7.6.5 Performing operations on the current class

You can operate on the current class using commands in the Classes menu. The standard action commands described in 3.8
Performing operations on selected objects are available in this submenu.

Choose Classes > Browse Metaclass to select, and describe in the normal way, the class of the current class.

7 The Class Browser

92

7.7 Examining class precedences

Click the Precedence tag to examine information about the precedence list of the current class. The precedence view shown
in Displaying precedence information in the Class Browser appears.

The precedence list is used to generate the method combinations for a class, and thus can be used to tell you which method
applies in a given case.

See 15 The Generic Function Browser for details on examining information about methods.

Displaying precedence information in the Class Browser

The areas available are described below.

7.7.1 Class box

As with all other views in the Class Browser, the current class is printed in this area. See 7.2.1 Class box for full details of its
use.

7 The Class Browser

93

7.7.2 Filter box

The Filter box lets you restrict the information displayed in the list of precedences. See 3.12 Filtering information for a
description of how to use the Filter box in any tool, and 7.1.3 Filtering slot information for an example of how to use it in
the Class Browser.

7.7.3 List of precedences

This list is the class precedence list of the current class. Precedences are listed highest first. Double-clicking on an item in
this list describes that class in the Class Browser.

7.7.4 Description list

This gives the same class description available in the superclasses, subclasses, and hierarchy views. See 7.3.4 Description
list for details.

7.7.5 Performing operations on the selected classes or the current class

You can operate on any number of selected items in the list of precedences using the commands in the Classes menu. If no
items are selected, then the current class is operated on by the commands in this submenu. The standard actions commands
described in 3.8 Performing operations on selected objects are available in this submenu.

Choose Classes > Browse Metaclass to select, and describe in the normal way, the class of the selected classes, or the
current class.

Note: If more than one item is selected, and the command chosen from the Classes menu invokes a tool which can only
display one item at a time, then the extra items are added to the History > Items submenu of the tool, so that you can easily
display them.

7 The Class Browser

94

8 The Object Clipboard

The Object Clipboard is a utility that allows you to keep track of multiple Lisp objects as you examine and manipulate them
with the LispWorks IDE tools.

Recall that a Lisp object which is viewed in some tool can be temporarily stored and then pasted into another tool. See the
descriptions of the Copy, Cut and Paste commands in 3.3.3 Using the Object operations with the clipboard and 3.8.1
Operations available.

The Object Clipboard, and its associated Clip command provides a more powerful mechanism whereby multiple Lisp objects
can be stored ("clipped") and later retrieved.

Note: the Clip command retains a pointer to the clipped object even if you do not have an Object Clipboard tool visible.
When you create the tool, the clipped objects are visible in it.

To create an Object Clipboard tool, choose Window > Tools > Object Clipboard or click in the LispWorks toolbar.

The Object Clipboard

The Object Clipboard creates a name for the clipped object based on its type, and shows the object itself in the Value column.

8.1 Placing objects on the Object Clipboard

You can place an object on the Object Clipboard by using the menu command Clip, available in most tools as described
below..

8.1.1 The Listener

To place the current object of a Listener on the Object Clipboard (that is, the value of the variable cl:*), choose Values >
Clip in the Listener.

If your Listener is in the debugger, you can clip the condition object by Debug > Condition > Clip.

95

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

8.1.2 The Class Browser

To place a class from the Class Browser on the Object Clipboard, select the class name in the Hierarchy, Superclasses,
Subclasses or Precedence tab, and choose Classes > Clip.

To place a slot definition object from the Class Browser on the Object Clipboard, select the slot name in the Slots tab, and
choose Slots > Clip.

To place a method or generic function object from the Class Browser on the Object Clipboard, select it in the Functions tab,
and choose Methods > Clip.

8.1.3 The Inspector

To place the currently inspected object in the Inspector on the Object Clipboard, choose Object > Clip.

To place the value in a slot of the currently inspected object, select the slot in the Inspector, and choose Slots > Clip.

8.1.4 The Function Call Browser

To place the current function on the Object Clipboard, choose Function > Clip. If you have selected a function name in the
Function Call Browser, that function is clipped instead.

8.1.5 The Generic Function Browser

To place a method from the Generic Function Browser on the Object Clipboard, select the method and choose Methods >
Clip. For the generic function object itself, choose Function > Clip.

8.1.6 The Debugger

To place the condition object from the Debugger tool on the Object Clipboard, choose Condition > Clip.

To place the value of a variable in the Debugger's backtrace area on the Object Clipboard, select the variable and choose
Variables > Clip.

8.1.7 The Stepper

To place the value of a variable in the Stepper's Backtrace tab onto the Object Clipboard, select the variable and choose
Variables > Clip.

8.1.8 The System Browser

To place the system object from the System Browser onto the Object Clipboard, choose Systems > Clip.

8.1.9 General clipping

To place any CAPI top level window itself on the Object Clipboard, choose Window > Interface > Clip.

To place data from a Description panel, such as in the Class Browser or in the Tree tab of the Compilation Conditions
Browser, select the desired parts of the Description and choose Description > Clip.

8 The Object Clipboard

96

8.2 Browsing clipped objects

For each object in the Object Clipboard, you can can browse it in various tools as described below. First, select the object you
want to browse and note that the Object menu is enabled:

An object selected in the Object Clipboard

8.2.1 The Inspector

To inspect any object that is on the Object Clipboard, select it and choose Object > Inspect.

8.2.2 The Class Browser

To browse the class of any object that is on the Object Clipboard, select it and choose Object > Class.

8.2.3 The Listener

To paste an object from the Object Clipboard into the Listener, choose Object > Listen.

8.2.4 General browsing

To browse an object that is on the Object Clipboard, select it and choose the Browse command from the Object menu. For
example, if the object is a generic function, the menu command is Object > Browse - Generic Function.

8.2.5 Pasting of clipped objects

This is another way to view a clipped object in another tool.

Paste an object from the Object Clipboard into another tool by:

1. Select the object in the Object Clipboard window.

2. Choose Edit > Copy.

3. Make the other tool window active.

4. Choose Edit > Paste.

8 The Object Clipboard

97

8.3 Removing objects

To remove an object from the Object Clipboard, select it and choose Edit > Object > Cut Object.

To empty the Object Clipboard, first remove any filter. Then choose Edit > Select All followed by Edit > Object > Cut Object.

Note: if you close the Object Clipboard window, the objects in it are not removed from the Object Clipboard. They are
preserved and displayed in a subsequently created Object Clipboard windows.

8.4 Filtering

You can use the Filter box of the Object Clipboard in the standard way to reduce the number of clipped objects displayed.

For example to see only the method objects in the Object Clipboard, enter "method" in the Filter box.

.Use of the Filter box in the Object Clipboard

For more information about filtering, see 3.12 Filtering information.

8.5 Using the Object Clipboard with a Listener

Here we place several objects on the Object Clipboard. Then we link the Object Clipboard with a Listener tool, giving a
convenient way to manipulate these objects in turn.

In the Listener:

1. Enter:

(capi:contain
 (make-instance 'capi:display-pane
 :text "Display Pane"
 :background :green))

A green display pane is displayed.

8 The Object Clipboard

98

2. Ensure that the Listener window is active, so that the Values menu is enabled. Choose Values > Clip to place the display
pane on the Object Clipboard.

3. Enter:

(capi:contain
 (make-instance 'capi:editor-pane
 :text "Editor Pane"
 :background :yellow))

A yellow editor pane is displayed.

4. Return to the Listener and choose Values > Clip to place the editor pane on the Object Clipboard.

5. Enter:

(capi:contain
 (make-instance 'capi:graph-pane))

A graph pane is displayed.

6. Return to the Listener and choose Values > Clip to place the graph pane on the Object Clipboard.

Now choose Window > Tools > Object Clipboard or click in the LispWorks toolbar. Notice that this creates an Object
Clipboard tool if you do not already have one. The Object Clipboard shows the objects you just clipped, and the most
recently clipped object appears at the top. It should look like CAPI panes in the Object Clipboard.

CAPI panes in the Object Clipboard

In the Listener choose Edit > Link from and select the Object Clipboard in the submenu. Now, whenever you select an object
in the Object Clipboard, it is also pasted into the Listener - that is, it becomes the value of *. We use this link to manipulate
the CAPI pane objects in the Listener.

1. In the Object Clipboard select DISPLAY-PANE-1. This raises the linked Listener window and pastes the display pane
object.

2. Enter in the Listener:

(capi:apply-in-pane-process

8 The Object Clipboard

99

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

 * #'(setf capi:simple-pane-background) :red *)

The display pane background becomes red.

3. In the Object Clipboard select EDITOR-PANE-1. This raises the linked Listener window and pastes the editor pane
object.

4. In the Listener choose History > Previous or use Esc P, and press Return, to enter the same command again:

(capi:apply-in-pane-process
 * #'(setf capi:simple-pane-background) :red *)

The editor pane background also becomes red.

5. In the Object Clipboard select GRAPH-PANE-1. This raises the linked Listener window and pastes the graph pane
object.

6. Enter in the Listener:

(capi:apply-in-pane-process
 * #'(setf capi:graph-pane-roots) '(2 3) *)

The graph pane is altered.

Notice how linking the Listener with the Object Clipboard allows you to manipulate the clipped objects in turn via the value
of *.

8 The Object Clipboard

100

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

9 The Compilation Conditions Browser

9.1 Introduction

The Compilation Conditions Browser gives you an interface to the warning and error conditions you are likely to encounter
when compiling your source code. It allows you to see the relationship between different errors or warnings encountered
during compilation, and gives you immediate access to the source code which produced them.

You can use it to view the conditions signaled during compilation of files from any part of the environment: whether you are
compiling files using the System Browser or the Editor, any ensuing conditions can be displayed in the Compilation
Conditions Browser. The Compilation Conditions Browser requires the source code to come from a file.

The Compilation Conditions Browser has three views.

• The All Conditions view, which shows all conditions grouped by file name.

• The Errors view, which shows all errors grouped by file name.

• The Output view, which can be used to display the output messages in the environment.

To create a Compilation Conditions Browser, you can choose Window > Tools > Compilation Conditions Browser or click
in the LispWorks toolbar.

A more common way to create a Compilation Conditions Browser is to press Return when the Output tab (of any tool)
reports compilation conditions. See 12.13.4.1 Compiling in memory for details.

9.2 Examining conditions

The All Conditions view is visible when the Compilation Conditions Browser is first invoked. The tool appears as shown in
The Compilation Conditions Browser.

101

The Compilation Conditions Browser

There are three tabs. These show the same information, in different ways:

• All Conditions - default view that shows all conditions in a tree representation, grouped by filename. Each item in the
tree can be expanded to show the conditions that were generated during compilation of that file. Selecting a compilation
message in the tree view causes the data for the selected message to be shown in the Description area. Double-clicking
on an item (or using Find Source on the context menu, as illustrated above) shows the source code of the condition in an
Editor, highlighting the nearest subform to where the condition occurred. After doing this, Ctrl+X ` (backquote) can
be used to find the source of the next condition shown in the browser.

• Errors - shows all errors in a tree representation, grouped by filename. You can perform the same operations in this view
as in All Conditions.

• Output - shows the raw compilation output. You will see this same output in the tool that performed the compilation.

The description area in the All Conditions and Errors views of the Compilation Conditions Browser shows a description of
any item selected in the conditions area. The description contains details of the selected condition. The following information
is shown:

Condition The error condition for the selected item in the message area.

Class The class of the selected condition.

9 The Compilation Conditions Browser

102

Definition The name of the form in which the condition was signaled.

File The name of the file that contains the Lisp source code that caused the selected condition.

Items selected in this area may be examined using the Description menu which allows a variety of LispWorks tools to be
invoked on the selected item in the description area.

9.3 Configuring the display

The manner in which the Compilation Conditions Browser displays information can be customized using the Preferences
dialog. To do this, raise the dialog as described in 3.2 Setting preferences and then select Compilation Conditions in the list
on the left side of the Preferences dialog. The General tab is shown:

The Compilation Conditions Browser General preferences

Here you can select or deselect Show Package Names to toggle display of packages in all references to symbols, and you can
use the Package box to specify the current package when displaying symbols.

Setting a suitable package and turning off display of package names can greatly simplify a complicated list.

Select of deselect Show Toolbar to control whether Compilation Condition Browser tools have a toolbar.

9.3.1 Display preferences

The Display tab of the Compilation Conditions Browser preferences appears as in The Compilation Conditions Browser
Display preferences.

The Compilation Conditions Browser Display preferences

This tab includes the pathnames selection area, which has two radio buttons.

9 The Compilation Conditions Browser

103

Check Show Full Pathname to show the full pathname of all files displayed. This is the default setting.

Check Show Leaf Pathname to show just the filename of all files displayed, and omit the full pathname.

9.4 Access to other tools

The Compilation Conditions Browser is integrated with the other tools allowing intuitive interaction.

You can easily find the source the generated a condition, as described in 9.2 Examining conditions.

Items selected in the Description area may be examined using the Description menu. See 3.8.1 Operations available for
more information on the operations available from this menu. Additionally, double-clicking on part of the description
displays it in an Inspector or Class Browser, as appropriate.

9 The Compilation Conditions Browser

104

10 The Debugger Tool

When developing source code, mistakes may prevent your programs from working properly, or even at all. Sometimes you
can see what is causing a bug in a program immediately, and correcting it is trivial. For example, you might make a spelling
mistake while typing, which you may instantly notice and correct.

More often, however, you need to spend time studying the program and the errors it signalled before you can debug it. This is
especially likely when you are developing large or complex programs.

A Debugger tool is provided to make this process easier. This tool is a graphical front-end to the command line debugger
which is supplied with your Lisp image. In order to get the best use from the Debugger tool, it is helpful if you are familiar
with the command line debugger supplied. See the LispWorks® User Guide and Reference Manual for a description of the
command line debugger.

The Debugger tool can be used to inspect programs which behave in unexpected ways, or which contain Common Lisp forms
which are syntactically incorrect.

There are two ways that you can invoke the Debugger tool:

• If you evaluate code that signals an error in a Listener, the command line debugger is entered automatically. At this
point, choose Debug > Start GUI Debugger or click the button in the Listener toolbar to invoke the Debugger tool.

• If you run code that signals an error from another source (for example, as a result of running a windowed application, or
compiling code in a file of source code), by default a Notifier window appears. Click on the Debug button or the Debug
Snapshot button in the Notifier window to invoke the Debugger tool.

For more information about the Notifier window, including the way to bypass it, see 10.10 The Notifier window.

Here is a short example introducing the Debugger tool:

1. Define the following function in the Listener.

(defun thing (number)
 (/ number 0))

This function which attempts to divide a number given as an argument by zero.

2. Now call this function as follows:

(thing 12)

The call to thing invokes the command line debugger.

3. Choose Debug > Start GUI Debugger or click the button to invoke the Debugger tool. Notice that the window title
contains the name of the process being debugged.

4. For now, click the Abort button in the Debugger toolbar to return to the top level loop in the Listener.

The command line debugger can be entered by signaling an error in interpretation or execution of a Common Lisp form. For
each error signaled, a further level of the debugger is entered. Thus, if, while in the debugger, you execute code which
signals an error, a lower level of the debugger is entered. The number in the debugger prompt is incremented to reflect this.

Note that you can also invoke the command line debugger by tracing a function and forcing a break on entry to or exit from
that function. See the tutorial chapter (2.3 Using the Debugger) for the example code used in Debugger tool and Debugger

105

tool.

10.1 Description of the Debugger

By default the debugger tool appears as shown in Debugger tool below.

Debugger tool

The debugger tool has two areas, and a toolbar. These are described below. If you invoke the debugger tool by clicking
Debug or Debug Snapshot in a notifier window, the tool also contains a listener pane. This provides you with a useful way
of evaluating Common Lisp forms interactively in the context of the error.

10.1.1 Condition box

This area displays the error condition which caused entry to the debugger. You cannot edit the text in this box.

The error condition can be operated on by commands in the Condition menu. See 10.6 Performing operations on the error
condition for details.

10.1.2 Backtrace area

The backtrace area displays the function calls on the execution stack. Each tree root or list item in the backtrace area
represents a stack frame associated with a function call.

Double-clicking on any stack frame finds and displays the source code definition for that function in the Editor, if this is
known. Any frame selected in this area can be operated on using the commands in the Frame menu, which is also available
as the context menu. See 10.7 Performing operations on stack frames for details.

10 The Debugger Tool

106

The backtrace is displayed either in a tree or a list, with the behaviors described below.

You can choose which type of display it uses by the Frames and Arguments preference, described in 10.9 Configuring the
debugger tool.

10.1.2.1 Frames and Variables in a tree

When the Frames and Arguments preference has the value Tree-view, the Debugger appears as shown in Variables in the
Debugger tree view below.

Each expandable root node in the Backtrace: tree represents a stack frame associated with a function call. You can operate on
the frame as described in 10.1.2 Backtrace area.

Expanding a stack frame node displays any variables associated with that function call. You can double click on any variable
to inspect it using the Inspector tool. Any items selected in this area can be operated on using the commands in the Variables
menu: see 10.8 Performing operations on frame variables for details.

Variables in the Debugger tree view

Each call frame is a root in the tree with a icon and has several kinds of subnode:

• A subnode with a yellow disc icon represents a normal lexical variable.

• A subnode with a red disc icon represents a closure variable (either from an outer scope or used by an inner scope).

• A subnode with a purple disc icon represents a special variable.

• A subnode with a cyan disc icon represents some other frame.

10 The Debugger Tool

107

Double-click on a icon to show the source of that function, if available, in the Editor. Double-click on any of the disc
icons to show that variable in the Inspector.

10.1.2.2 Frames and Variables in two lists

When the Frames and Arguments preference has the value Two list-panels, the Debugger appears as shown in below.

Debugger tool with two list-panels

Each item in the Backtrace: list represents a stack frame associated with a function call. You can operate on the frame as
described in 10.1.2 Backtrace area.

A second list titled Local variables: shows the local variables of the frame which is selected in the Backtrace: list. You can
operate on the variables similarly to the backtrace tree - double click on a variable to inspect it or use the commands in the
Variables menu, which is also available as the context menu.

Note: with Two list-panels, only the local variables of the current frame are displayed.

10.1.3 Toolbar buttons

At the top of the debugger tool is a row of buttons, as described below. Click:

• to break the current execution.

• to return from the debugger and invoke the continue restart.

10 The Debugger Tool

108

• to return from the debugger and invoke the abort restart.

• to select the previous stack frame in the backtrace area.

• to select the next stack frame in the backtrace area.

• to print the backtrace in the Listener.

• to print the variable bindings of the current frame in the Listener.

• to find the source code for the current stack frame.

If you hold the mouse cursor stationary over any button for about one second, then help text appears that identifies the button.

10.1.4 Bypassing the Notifier window

If you prefer a Debugger tool to appear immediately, without the intermediate Notifier window, set
enter-debugger-directly to a true value.

10.2 What the Debugger tool does

The Debugger tool provides a number of important facilities for inspecting programs.

Common Lisp, like most programming languages, uses a stack to store data about programs during execution. The Debugger
tool allows you to inspect and change this stack to help get your programs working properly.

You can use it to trace backwards through the history of function calls on the stack, to see if the program behaves as expected,
and locate points at which things have gone wrong.

You can also inspect variables within those functions, again to verify that the program is doing what is expected of it.

The Debugger tool also allows you to change variables on the stack. This is useful when testing possible solutions to the
problems caused by a bug. You can run a bugged program, and then test fixes within the Debugger tool by altering values of
variables, and then resume execution of the program.

10.3 Simple use of the Debugger tool

When you enter the Debugger tool, the Condition area displays a message describing the error. The Restarts menu lists a
number of restart options, which offer you different ways to continue execution.

1. For example, type the name of a variable which you know is unbound (say fubar) at the Listener prompt.

2. Click in the Listener toolbar or choose Debug > Start GUI Debugger to enter the Debugger tool.

3. Select the Restarts menu to display the options available.

A number of restarts are displayed that offer you different ways in which to proceed. These are the same options as those
displayed at the command line debugger before you invoked the debugger tool.

Two special restarts can be chosen: the abort and continue restarts. These are indicated by the prefixes (abort) and
(continue) respectively. As a shortcut, you can use the Abort or Continue toolbar buttons to invoke them, instead
of choosing the appropriate menu command.

In the case of the continue restart, different operations are performed in different circumstances. In this example, you can
evaluate the form again. If you first set the variable to some value, and then invoke the continue restart, the debugger is
exited.

4. In the Listener, set the value of fubar as follows:

10 The Debugger Tool

109

(setq fubar 12)

5. Click Continue in the debugger tool.

The debugger tool disappears, and the command line debugger is exited in the Listener, and the value 12 is returned; the
correct result if the variable had been bound in the first place.

You can also click Abort to invoke the abort restart. This restart always exits the current level of the debugger and returns
to the previous one, ignoring the error which caused the present invocation of the debugger.

In general, you should use the continue restart if you have fixed the problem and want to continue execution, and the abort
restart if you want to ignore the problem completely and stop execution.

10.4 The stack in the Debugger

As already mentioned, the debugger tool allows you to examine the state of the execution stack, which is shown in the
Backtrace area. This area consists of a sequence of stack frames. A stack frame is a description of some part of a program, or
something relating to the program, which is packaged into a block of memory and placed on the stack during program
execution. These frames are not directly readable without the aid of the debugger.

There can be frames on the stack representing active function invocations, special variable bindings, restarts, and system-
related code. In particular, the execution stack has a call frame for each active function call. That is, it stores information
describing calls of functions which have been entered but not yet exited. This includes information such as the arguments
with which the functions were called. By default, only call frames for active function calls are displayed in the Backtrace
area. See 10.9 Configuring the debugger tool for details of how to display other types of call frame.

The top of the stack contains the most recently-created frames (and so the innermost calls), and the bottom of the stack
contains the oldest frames (and so the outermost calls). You can examine a call frame to find the name of a function, and the
names and values of its arguments, and local variables.

10.5 An example debugging session

To better understand how you can make use of the debugger, try working through the following example session. In this
example, you define the factorial function, save the definition to a file on disk, compile that file and then call the function
erroneously.

1. Choose File > New or click on .

A new file is created and displayed in the Editor. If you have not already invoked the Editor, it is started for you
automatically.

2. In the new file, define the function fac to calculate factorial numbers.

(defun fac (n)
 (if (= n 1) 1
 (* n (fac (- n 1)))))

3. Choose File > Save or click on and enter a filename when prompted.

4. Choose File > Compile and Load to compile the file and load the resulting fasl file.

The Editor switches to the output view while compilation takes place. When prompted, press Space to return to the text
view. The fac function is now defined and available for you to use.

5. In the Listener, call fac erroneously with a string argument.

(fac "turtle")

10 The Debugger Tool

110

LispWorks notices the error: The arguments of = should be numbers, and one of them is not.

6. Choose Debug > Start GUI Debugger or click to invoke the Debugger tool.

Take a moment to examine the backtrace that is printed in the Backtrace area.

7. Starting from the selected frame, expand or select the next three frames in the Backtrace area in turn to examine the state
of the variables which were passed to the functions in each call frame. Pay particular attention to the fac function.

The error displayed in the Condition box informs you that the = function is called with two arguments: the integer 1 and
the string "turtle". Clearly, one of the arguments was not the correct type for =, and this has caused entry into the
debugger. However, the arguments were passed to = by fac, and so the real problem lies in the fac function.

In this case, the solution is to ensure that fac generates an appropriate error if it is given an argument which is not an
integer.

8. Double-click on the line FAC in the Backtrace area of the debugger tool.

The Editor appears. The subform within the definition of fac which actually caused the error is highlighted. Double-
clicking on a line in the Backtrace area is a shortcut for choosing Frame > Find Source or using the button. If the
Debugger can find the erroneous subform, this is highlighted, otherwise the definition itself is highlighted if it can be
found.

9. Edit the definition of the fac function so that an extra if statement is placed around the main clause of the function. The
definition of fac now reads as follows:

(defun fac (n)
 (if (integerp n)
 (if (= n 1) 1
 (* n (fac (- n 1))))
 (print "Error: argument must be an integer")))

The function now checks that the argument it has been passed is an integer, before proceeding to evaluate the factorial. If
an integer has not been passed, an appropriate error message is generated.

10
.

Choose File > Save and File > Compile and Load again, to save, recompile and load the new definition.

11
.

Click on the Abort button in the debugger tool, to destroy the tool and return the Listener to the top level loop.

12
.

In the Listener, type another call to fac, once again specifying a string as an argument. Note that the correct error
message is generated. You will see it twice, because fac prints the message and then the Listener prints the return value
of fac.

This next part of the example shows you how you can use the various restarts which are listed as commands in the Restarts
menu.

1. Call fac again with a new argument, but this time type the word length incorrectly.

(fac (legnth "turtle"))

2. Choose Debug > Start GUI Debugger or click to invoke the debugger tool.

You can spot immediately what has gone wrong here, so the simplest strategy is to return a value to use.

3. Choose Restarts > Return some values from the form (LEGNTH "turtle").

You are prompted for a form to be evaluated.

10 The Debugger Tool

111

http://www.lispworks.com/documentation/HyperSpec/Body/s_if.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_length.htm

4. Enter 6 in the dialog and click OK. This is the value that would have been returned from the correct call to
(length "turtle").

Having returned the correct value from (length "turtle"), fac is called with the correct argument and returns the value
720.

10.6 Performing operations on the error condition

You can perform operations on the error condition that caused entry into the debugger using the commands available in the
Condition menu.

The standard action commands are available in the Condition menu. For more details about these commands, see 3.8
Performing operations on selected objects.

Choose Condition > Report Bug to generate a bug report template.

10.7 Performing operations on stack frames

Any frame in the Backtrace list can be operated on using commands in the Frame menu. This menu is also available as a
popup from the backtrace area itself. The commands available allow you to operate on the function displayed in the selected
frame.

10.7.1 Source location, documentation, inspect and method combination for the current
frame

Choose Frame > Find Source to search for the source code definition of the object pointed to by the current frame. If it is
found, the file is displayed in the Editor: the cursor is placed at the start of the definition or at the subform which cause the
error, if known. The form is highlighted. See 12 The Editor for an introduction to the Editor.

Choose Frame > Documentation to display the Common Lisp documentation for the object pointed to by the current frame,
if any exists. Note that this is the result of the Common Lisp function documentation, not the supplied manuals. It is
printed in a special Output Browser window.

Choose Frame > Inspect Function to display an Inspector tool showing the selected frame's function.

Choose Frame > Method Combination to display a Generic Function Browser tool in the Method Combinations view for the
arguments in the selected frame. This command is only available when the selected frame is a call to a standard method. See
15.2 Examining information about combined methods for information about using the Method Combinations view.

10.7.2 Restarts and returning from the frame

Choose Frame > Restart Frame to continue execution from the selected restart frame. The action that is taken when choosing
this command is printed with each restart frame in the Backtrace area. Note that restart frames must be listed for this
command to be available: see 10.9.1 Configuring the call frames displayed for details.

Choose Frame > Restart Frame Stepping to step through execution from the selected restart frame. This frame becomes the
active frame in a Stepper tool. See 25 The Stepper for information about using the Stepper tool.

Choose Frame > Return from Frame to resume execution from the selected frame. A dialog prompts for a value to return
from the selected frame. Previously entered values are available via a dropdown in this dialog. This option allows you to
continue execution smoothly after you have corrected the error which caused entry into the debugger.

Choose Frame > Break On Return from Frame to trap execution when it returns from the selected frame. This command
prints a message telling you that the trap has been set, and when Lisp returns from the frame it calls break, allowing you to

10 The Debugger Tool

112

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_break.htm

enter the debugger again.

10.7.3 Tracing the function in the frame

Choose Frame > Trace to display the standard Trace menu. This lets you trace the function in the selected frame in a variety
of ways: see 3.10 Tracing symbols from tools for details.

10.8 Performing operations on frame variables

You can perform operations on a variable selected in the Variables area by the standard action commands which are available
in the Variables menu or from the context menu on the variables list itself. For more details about these commands, see 3.8
Performing operations on selected objects.

Choose Variables > Set... to set the value of a variable selected in the Variables area. A dialog prompts you to enter a form
which is evaluated to yield the new value for the variable. Previously entered forms are available via a dropdown in this
dialog. The Common Lisp variable * is bound to the current value of the variable in the frame.

10.9 Configuring the debugger tool

You can control the behavior and appearance of the debugger using the Preferences dialog.

To do this, raise the Preferences dialog by one of the methods described in 3.2 Setting preferences and select Debugger in
the list on the left side of the dialog.

Debugger Preferences

10.9.1 Configuring the call frames displayed

By default, the call frame for each active function call in the backtrace is listed in the Backtrace area. There are a number of
other types of call frame which are hidden by default. Display call frames of these types by selecting them in the View Frame
panel of the debugger Preferences:

10 The Debugger Tool

113

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

Bindings Displays all the binding frames in the Backtrace list.

Catchers Lists the catch frames in the Backtrace list.

Handlers Lists the handler frames in the Backtrace list.

Hidden Symbols Lists any hidden symbols in the Backtrace list.

Restarts Lists all the restart frames in the Backtrace list. Each restart frame is listed, with the restart
action to be taken given in brackets. To restart execution at any restart frame, select the frame,
and choose Debug > Frame > Restart Frame.

Invisible Functions Lists all invisible frames (such as the call to the error function itself) in the Backtrace list.

Note that all these commands can be toggled: choosing any command switches the display option on or off, depending on its
current state. By default, all the options are off when the debugger is first invoked.

10.9.2 Displaying package information

As with other tools, you can configure the way package names are displayed in the debugger tool in the Package box of the
Debugger Preferences.

Check Show Package Names to turn the display of package names in the Backtrace and Variables lists on and off.

Specify a package name in the text box to change the process package of the debugger tool. You can use completion to reduce
typing: click on to which allows you to select from a list of all package names which begin with the partial input you have
entered. See 3.14 Completion for detailed instructions.

By default, the current package is the same as the package from which the error was generated.

10.9.3 Behavior on closing the Debugger

By default, when you close the Debugger window it attempts to abort, that is to call the abort restart.

Uncheck the Abort When Closed option only if you want to turn off this behavior.

10.9.4 Frames and variables display

To choose to view frames and variables in two lists rather than one tree, select the value Two list-panels in the Frames and
Variables option.

10.9.5 Remote debugging options

The Remote tab is described in 29.4 Configuring Remote Debugging.

10.10 The Notifier window

When an error is signalled in processes other than the Listener REPL, by default a Notifier window appears. This shows the
error message, and allows you to choose how to proceed by offering the restarts and other options.

10 The Debugger Tool

114

The Notifier window

The Notifier window has three main areas.

The Message: area displays the error message.

The Restarts: area contains a list of available restarts. To invoke a restart, select it in the list and click OK, or double-click on
it in the list.

The row of buttons at the bottom of the Notifier window operate as follows:

Report Bug Prompts for basic information about the bug and then creates an Editor tool containing a template
bug form with a stack backtrace and other information. Use this if you believe you have found a
bug and wish to report it to Lisp Support. Visit www.lispworks.com/support/bug-report.html
for more information about reporting bugs.

Debug Raises a Debugger tool, as described earlier in this chapter.

Abort Invokes the abort restart.

OK Invokes the restart which is selected in the Restarts: list.

Some processes cannot be debugged in the LispWorks IDE. Errors in these processes are handled slightly differently in the
Notifier window which has these two buttons:

Debug Snapshot Creates a snapshot Debugger. This contains a copy of the stack backtrace which you can examine
as described in this chapter. However it is less interactive in that you cannot take any restart or
return from a frame. For more information see "Snapshot debugging of startup errors" in the
LispWorks® User Guide and Reference Manual.

Get Backtrace Creates an Editor tool containing the stack backtrace.

In this case there is no Debug button.

10 The Debugger Tool

115

http://www.lispworks.com/support/bug-report.html

On Cocoa there is a process named "Cocoa Event Loop". When there is an error in this process, the Notifier has an additional
pane called Error handling in Cocoa event loop.

The Error handling in Cocoa event loop allows you to control the behavior of the Cocoa Event Loop process. This is useful
when you get in a situation where something causes repeated errors in the Cocoa Event Loop, which makes it very difficult to
find what the problem is. In general, you should change these settings only when you are in this kind of situation, enter the
snapshot Debugger and debug the problem, and when you exit the snapshot Debugger the settings are automatically reset to
the normal settings.

If you change the settings, and either did not enter the snapshot Debugger or unchecked the Restore normal error processing
when snapshot debugger exits button, you should restart LispWorks once you figured out what the problem is.

Buttons at the top of the Error handling in Cocoa event loop pane give you three options:

Process errors normally

This is the normal setting.

Ignore errors in explicit events

"explicit events" means events that are generated inside Lisp, normally when another process
wants to tell the event loop to do something. A typical example are calls to
capi:apply-in-pane-process and related functions. This option allows you to ignore such
errors.

Ignore all errors Ignore all errors in the Cocoa Event Loop.

By default, if you enter the snapshot Debugger, once you exit the normal error handling is restored. Note that the automatic
restoration does not happen if you do not enter the snapshot Debugger. The Restore normal error processing when
snapshot debugger exits button allows you to override this default. You should not unset the button unless it is really
needed.

Note: in some cases there will be a restart which can be used to block the repeated errors. The most common example is
errors inside a display-callback, which will include a restart that removes the display-callback. If there is such a restart, it is
better to use it than setting the Cocoa Event Loop error handling.

10.11 Handling of Cocoa Event Loop hanging

This section applies to LispWorks for Macintosh only.

The Cocoa GUI is handled in one process (the "Cocoa Event Loop") and therefore code that makes this process wait (for
example mp:process-wait, cl:sleep, mp:mailbox-read) causes the entire GUI to hang. In general, such functions
should not be used on the Cocoa Event Loop (which includes callbacks), unless the wait is very short.

The situation is especially bad if the Cocoa Event Loop is waiting for another process, and then that other process gets an
error. In this case, the other process will try to display a notifier window, and wait for the Cocoa Event Loop to do it, and
there is a deadlock.

To avoid this problem, the LispWorks IDE has a mechanism that uses a timer and checks for just hanging. The mechanism
checks, and if it looks like the main process hangs, it interrupts it. That causes a notifier window to appear, the GUI to
update, and you can then check what went wrong.

In general, you should fix your code to avoid hanging of the Cocoa Event Loop.

This mechanism is in force only in the LispWorks IDE. Delivered applications need to avoid such hanging.

The mechanism is controlled by two parameters:

10 The Debugger Tool

116

http://www.lispworks.com/documentation/HyperSpec/Body/f_sleep.htm

Notifier break interval

If a notifier tries to display and the Cocoa Event Loop did not respond in this interval, the Cocoa
Event Loop is interrupted. That causes two notifiers to appear: first a notifier for the Cocoa
Event Loop stating that it was interrupted because it hangs and there was an error on another
process, and then the notifier that initially tried to display. You can then deal with the situation.

Check interval The check to determine the above happens each check interval.

10.12 Errors in CAPI display callbacks

Errors in CAPI display callbacks are problematic for the Debugger tool, because they can be invoked repeatedly. In order to
handle this situation, the display of a CAPI pane where an error occurs in a display-callback (a "broken" pane) is normally
disabled until the Debugger tool exits. Therefore while debugging such errors some panes will not be displayed correctly.

This issue can also occur with focus related callbacks, such as editing-callback in capi:text-input-pane.

If it is not easy to fix the problem, exiting the Debugger tool allows the error to happen again. To prevent this, in some cases
there is a restart to disable the display of the broken pane permanently. Once this happens, the pane is not displayed correctly.

Once you fix the error, you can restore the display by capi:pane-restore-display, or by finding it in the Window
Browser tool, and selecting the menu command Windows > Enable Display.

10 The Debugger Tool

117

11 The Tracer

11.1 Introduction

The Tracer tool is a debugging aid which gives you an interface to the LispWorks trace facilities. These allow you to follow
the execution of particular functions and help you identify where errors occur during execution.

To create a Tracer, choose Window > Tools > Tracer or click in the LispWorks toolbar. Alternatively, a tracer can be
created or displayed from within many other tools by choosing the command Trace > Show in Tracer in any menu whose
commands operate on a traceable symbol.

The Tracer has three views:

• The Trace State view allows you to trace and untrace functions and change trace options for each function.

• The Output Data view records all tracing events in a tree structure and allows you to examine the arguments and results
of each function call.

• The Output Text view shows all tracing events in textual format.

11.2 Tracing and Untracing functions

The Trace State view has a Trace pane where you can enter a function name. Press Return or click the button to trace that
function.

The Traced Functions pane shows the list of functions that are currently traced. When some functions are selected, the
Function menu contains the standard commands described in 3.8 Performing operations on selected objects. As with other
tools, choose Edit > Select All and Edit > Deselect All to select and deselect all the functions listed in the Traced Functions
area.

The Selected Options area shows the trace options for a function selected in the Traced Functions pane. The trace options
allow you to restrict or expand upon the information printed during a trace and can be modified by double-clicking on the
item in the Traced Functions pane which raises the Trace Options dialog. For information about the trace options, see the
section "Tracing options" in the LispWorks® User Guide and Reference Manual. Note that the options only apply to the first
selected function. Each traced function has its own, independent, set of options.

The Tracing Enabled button can be used to turn all tracing off, while retaining the tracing state, and switch it back on again.

The Untrace button untraces the functions selected in the Traced Functions pane.

The Untrace All button untraces all functions.

In addition, the Tracer tool will track changes to the set of traced functions that are made from other tools, for example calls
to the macros trace and untrace or the Trace submenu described in 3.10 Tracing symbols from tools.

11.2.1 Tracing methods

You can trace methods (primary and auxiliary) within a generic function by entering the method dspec. For example, enter:

(method my-function :before (integer))

118

http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm

in the Trace pane to trace the :before method of the generic function my-function that specializes on the class integer.

11.3 Examining the output of tracing

When you call a function that is traced, LispWorks collects information about the arguments it was called with and the values
that it returned. This information is printed to the trace output stream, which might be the Listener or the Background
Output. In addition, if a Tracer tool is on the screen, the information is shown in its Output Text view and collected in its
Output Data view in a tree format.

11.3.1 The Output Data view

Each call is a node in the tree with a icon. Double-click on it to show the source of that function, if available, in the Editor.

A call node has several kinds of subnode:

• The subnode with a icon shows the arguments passed to the function. Double-click on it to show the arguments in the
Inspector. Expanding this node shows each argument with its name (if known) as a subnode with a yellow icon.
Double-clicking on one of the arguments shows that argument in the Inspector.

• The subnode with a icon shows the value or values returned from the function. Double-click on it to show the values
in the Inspector. Expanding this node shows each value as a subnode with a icon. Double-clicking on one of the
values shows that value in the Inspector.

• Any subnodes with a icon show calls to traced functions within the parent function.

• Subnodes marked with a represent folded data. These are older calls which are hidden automatically to reduce clutter.
Expand this node to reveal the folder data.

• A subnode with a icon represents an uncaught throw (control transfer) along with the catch tag. Expanding this node
shows each thrown value as a subnode with a icon.

You can collapse the tree by clicking on the toolbar button.

You can clear the trace output data from the display by clicking on the toolbar button.

You can restore the last cleared output data by clicking on the toolbar button.

11.3.2 The Output Text view

This simply displays the textual trace output.

11.4 Example

This section shows an example of tracing two functions and examining the output.

Define the following functions:

(defun foo (x y) (bar y x))

(defun bar (x y) (values (vector x y) (list y x)))

in a Listener and start the Tracer tool. The trace these functions by entering foo into the Trace pane of the Tracer and
pressing Return or clicking the button. Notice that the symbol name appears in the Traced Functions: area.

Do the same for bar.

11 The Tracer

119

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm

For longer function names, you might find it useful to type just a few characters and then press Up or Down to invoke in-place
completion.

The Trace State view showing bar and foo

Then call:

(foo 100 200)

in the Listener. You will see output something like this printed in the Listener.

CL-USER 1 > foo 100 200
0 FOO > ...
 >> X : 100
 >> Y : 200
 1 BAR > ...
 >> X : 200
 >> Y : 100
 1 BAR < ...
 << VALUE-0 : #(200 100)
 << VALUE-1 : (100 200)
0 FOO < ...
 << VALUE-0 : #(200 100)
 << VALUE-1 : (100 200)
#(200 100)
(100 200)

CL-USER 2 >

Note: the format of the output is affected by the value of *trace-verbose*.

11 The Tracer

120

Now switch to the Output Text view of the Tracer and you will similar output.

The Output Text view

Now switch to the Output Data view of the Tracer, which will looks like this:

The Output Data view

The node that is labeled Arguments 100 200 contains the arguments to the function foo. Double-click on this node to show
those arguments in an Inspector.

The first node that is labeled Values #(200 100) (100 200) contains the values returned by bar. Expand this node to reveal the
two values. Double-click on one of the values nodes to inspect it. You can also see that these values were in turn returned by
foo, as shown by the second node that is labeled Values #(200 100) (100 200).

11 The Tracer

121

12 The Editor

The environment has a text editor which is designed specifically to make writing Lisp source code easier. By default it
emulates the GNU Emacs text editor, and you should refer to the Editor User Guide supplied with your software, for a full
description of the extensive range of functions and commands available. It can also emulate a macOS style text editor.

The Editor features a comprehensive set of menus, as well as a number of different views, and its interface is consistent with
the other tools in the environment. This chapter gives a complete description of these aspects of the Editor, as well as giving
you a general overview of how the Editor is used. If you have not used Emacs before, this chapter tells you all you need to
know to get started.

The Editor is integrated with the other tools and offers a wide range of operations. The most commonly used of these can
accessed using menu commands. The full range of editor commands is accessed via the keyboard commands described in
more detail in the Editor User Guide. These operations range from simple tasks such as navigating around a file, to more
complex actions which have been specifically designed to ease the task of writing Lisp code.

By becoming familiar with the menu commands available, you can learn to use the Editor effectively in a very short space of
time, before moving on to more advanced operations.

Like many other tools, the Editor offers a number of different views, which you can switch between using the tabs at the top
of the Editor window. Unlike other tools, one view in particular is used more often than any other.

• The Text view is the most commonly used view in the Editor. This lets you read and edit text files which are stored in
your filesystem.

• The Output view shows output messages. Compiler messages are highlighted and you can easily locate the source code
that generated them.

• You can edit many different files at once in the same Editor. The Buffers view provides a quick way of navigating
between different files that you have open.

• The Definitions view is a convenient way of seeing the classes, functions, macros, variables and so on that are defined in
the current file.

• Files may contain many definitions. The Find Definitions view lets you search for particular definitions of interest across
many files.

You can create an Editor using any of the following methods:

• Choose Window > Tools > Editor. Notice that you are not actually editing a file immediately when you create an Editor
like this.

• Click in the LispWorks toolbar.

• Choose File > Open..., or click on in the toolbar, and choose a filename in the dialog that appears.

• Choose File > Recent Files and choose a filename from the submenu that appears.

• Make the Listener the active window, and press Ctrl+X Ctrl+F. Type in the name of a file that you want to edit. If the
file is not in the current directory, enter the full pathname. This invokes the Wfind File editor command.

• Choose the command Find Source (available on various menus, for example Frame in the Debugger tool), or click on
or to display source code in an Editor tool.

• Use the keyboard accelerator described in 3.1.5 Displaying tools using the keyboard.

122

Note: the keystroke sequence Ctrl+X Ctrl+F is a standard EMACS command. If you use macOS editor emulation, many
EMACS keys (those which do not coincide with standard macOS commands) are still available to you, though you will find it
more natural to use standard macOS keys - in this case, the keystroke Command+O.

You can always discover which key to use for a particular editor command, or conversely which command is invoked by a
particular key. See 12.14 Help with editing for details.

A further way to edit a file is to drag it (using the mouse) from another drag and drop enabled application such as the Finder,
and drop it into the an Editor tool.

12.1 Displaying and editing files

The Text view is the default view in the Editor, and is the one which you will become most familiar with. In this view, a
buffer containing the text of the current file is displayed, and you can move around it and change its contents as you wish,
then save it back to the original file (assuming that you have permission to write to it). The Text view is automatically
displayed when you first invoked the Editor, and you can click on the Text tab to switch back to it from any other view. Text
view in the Editor below shows an Editor in the Text view with a file open.

Text view in the Editor

The Text view has three areas, described below.

12.1.1 The toolbar

The Editor toolbar offers easy access to commands which operate on source code. In the Text view it allows you to set
breakpoints, and macroexpand, compile or evaluate code.

The Editor toolbar also contains the standard history toolbar. This is enabled in every view of the Editor tool.

12.1.2 The editor window

The editor window is the main part of the Editor. The text of the current file is shown in this area. A block cursor denotes the
current position in the files in Emacs emulation. In macOS editor emulation, a vertical line cursor appears in the active editor
window. Text is entered into the file at this position when you type or paste.

12 The Editor

123

To move the cursor to a particular point in the file, you can use any combination of the following methods:

• Position the cursor by moving the mouse pointer and selecting the point at which you want to place the cursor.

• If the file is too large to display all of it in the editor window, use the scroll bars to move up and down the file.

• Use any of the numerous keyboard commands that are available for navigating within a file.

If you are unfamiliar with the Editor, you can use the first two methods to begin with. As you become more familiar, you will
find it is often quicker to use the keyboard commands described in the Editor User Guide. Some of the most basic
commands are also described in this chapter, in 12.8 Basic Editor commands.

12.1.3 The echo area

Underneath the editor window is an echo area, identical to the echo area in the other tools. This is used by the Editor to
display status messages, and to request more information from you when necessary. The echo area is contained in every view
in the Editor.

Whenever you invoke a command which requires further input (for instance, if you search a file for a piece of text, in which
case you need to specify the text you want to search for), you are prompted for that input in the echo area. Type any
information that is needed by the Editor, and the characters you type are displayed ("echoed") in the echo area.

For many commands, you can save time by using completion. When you have partially specified input in the echo area, you
can press a key (usually Tab, ? or Space, depending on the command) and the Editor attempts to complete what you have
typed. If it cannot complete your partial input uniquely, a window appears which lists all the possible alternatives and allows
you to select the desired completion. See 3.14 Completion for detailed instructions.

For example, suppose you have three files in the current directory, test1.lisp, test2.lisp and test3.lisp, and you
want to edit test2.lisp using keyboard commands. Type Ctrl+X Ctrl+F, then type test and press Tab. A list appears
which shows all three files. To edit test2.lisp, double-click on the item marked test2.lisp in this list. For longer lists,
the completion GUI helps you to quickly reduce the choice. See 3.14 Completion for details.

To see when completion is appropriate and when it is not, experiment by pressing the Tab key when typing in the echo area.
As a rule, if there are a finite number of things you could meaningfully enter, then completion is appropriate. Thus, when
opening a file already on disk, completion is appropriate (there is a finite number of files in the current directory). When
specifying a string to search for, however, completion is not appropriate (you could enter any string).

12.1.4 Using keyboard commands

A full description of the keyboard commands available in the Editor is beyond the scope of this manual, and you are advised
to study the Editor User Guide to gain a full appreciation of the capabilities of the Editor. However, of necessity, certain
basic keyboard commands are discussed in this chapter. See 12.8 Basic Editor commands of this manual for a brief
introduction to some of the most important ones. The menu commands available are described throughout the rest of this
chapter.

As with other keyboard commands used in the environment, the keyboard commands used in the Editor are invoked by using
a combination of the modifier keys Control, Shift, Escape, Alt and Command (not all of these are available on each
platform), in conjunction with ordinary keys. Some of the commands available perform the same, or a similar task as a menu
command.

Each keyboard command in the editor is actually a shortcut for an extended editor command. You can invoke any extended
command by typing its command name in full, preceded by the keyboard command Alt+X. Thus, to invoke the extended
command Visit Tags File, type Alt+X visit tags file followed by Return. Case is not significant in these commands,
and completion (described in 3.14 Completion) may be used to avoid the need to type long command names out in full.
This method is often useful if you are not certain what the keyboard shortcut is, and there are many extended commands
which do not have keyboard shortcuts at all.

12 The Editor

124

Many of the keyboard commands described in this chapter and in the Editor User Guide also work in the Listener. Feel free
to experiment in the Listener with any of the keyboard commands that are described.

12.2 Displaying output messages in the Editor

As with several other tools, the Editor provides an Output view which can be used to examine any output messages which
have been generated by the environment. Click on the Output tab to switch to this view. See 21 The Output Browser, for
more information about this view.

12.3 Displaying and swapping between buffers

The contents of the editor window is the buffer. Technically speaking, when you edit a file, for example by File > Open..., its
contents are copied into a buffer which is then displayed in the window. You actually edit the contents of the buffer, and
never the file. When you save the buffer, for example by File > Save, its contents are copied back to the actual file on disk.
Working in this way ensures that there is always a copy of the file on disk - if you make a mistake, or if your computer
crashes, the last saved version of the file is always on disk, ensuring that you do not lose it completely.

Because of this distinction, the term buffer is used throughout, when referring to the text in the window.

An Editor can only have one editor window, although there can be many buffers open at once. This means that you can edit
more than one file at once, although only one buffer can be displayed at a time in the window - any others remain hidden.

When you close a buffer, for example with the menu command File > Close or the key Ctrl+X K, the buffer is removed.
This is different to the command Window > Close Window which closes the window and does not affect the buffer.

The diagram below shows the distinctions between the window, buffers and files on disk.

Distinctions between the window, buffers, and files on disk

The Buffers view allows you to display a list of all the buffers that are currently open in the Editor, and allows you to navigate
between them. Click on the Buffers tab to switch to this view, or press Ctrl+X Ctrl+B. The Editor appears as shown in
Listing buffers in the Editor below.

12 The Editor

125

Listing buffers in the Editor

The Buffers view has two areas, described below.

12.3.1 Filter area

You can use this area to restrict the number of buffers displayed in the Buffers area. For example you could display just the
Lisp source files (that is, those with file type lisp) by entering .lisp as shown in Filtering the buffers list in the Editor.

Filtering the buffers list in the Editor

12 The Editor

126

You can filter by regular expression matching, and you can exclude matches and make the filtering case-insensitive. See 3.12
Filtering information for the details.

12.3.2 Buffers area

Each item in the Buffers area list represents an editor buffer. Properties of the buffer such as its size (in bytes) and its mode
are displayed. See the Editor User Guide for information about editor modes.

Double-click on any buffer to display it in the Editor's Text view.

Buffers selected in the Buffers area can be operated on by commands in the Buffers menu, which is also available as the
context menu. The associated files can be operated on by commands in the File menu. For example, to save multiple buffers,
select them the Buffers area and choose File > Save. See 12.13 Using Lisp-specific commands for more details.

12.3.3 Editor tool solely as buffers list

You can use a particular Editor tool solely as a buffers list.

To do this, set an Editor tool to be non-reusable by switching off the option Window > Customize > Reusable. Then select
the Buffers tab or press Ctrl+X Ctrl+B.

This Editor tool will continue to display the buffers list and will not be re-used by operations which want to display a buffer,
or list definitions, and so on. Other Editor tools will be used, and created as necessary, for those operations.

Note: You can also set an option to display a buffers list (like a cut-down version of the Buffers view) in the Text view. See
12.7.2.2 Buffers list option.

12.4 Displaying Common Lisp definitions

The Definitions view lists all the Common Lisp definitions which can be found in the current buffer. Open a file containing
several defining forms, such as the Othello game example in examples/capi/applications/othello.lisp. and then
click on the Definitions tab. The Editor appears as shown in Examining Common Lisp definitions in the Editor below.

12 The Editor

127

Examining Common Lisp definitions in the Editor

The Definitions view has two areas, described below.

12.4.1 Filter box

You can use this area to restrict the number of definitions displayed in the definitions area. See 3.12 Filtering information
for details about how to use the Filter box in a tool.

12.4.2 Definitions area

Double-click on any definition in this area to display its source code in the Editor's Text view. Definitions selected in this area
can be operated on using commands in the Editor's Definitions menu, which is also available as the context menu. See
12.13.10 Other facilities for complete details of the commands available.

12.5 Changed definitions

The Changed Definitions view allows you to see which definitions have been edited in the current session.

Edit some of the definitions in the Othello game example in examples/capi/applications/othello.lisp and then
click on the Changed Definitions tab. The Editor appears as shown in The Changed Definitions view in the Editor below.

12 The Editor

128

The Changed Definitions view in the Editor

Notice that the Changed Definitions view is similar to the Definitions view. The Editor's Definitions menu, and the filter
box, can be used on definitions listed here in the same way as in the Definitions view.

12.5.1 Setting the reference point for changed definitions

The Changed Definitions view has an additional area labelled Show definitions changed since:. This allows you to change
the reference point against which the current buffer is compared when computing the changes.

The reference point can be:

First Edit The state of the buffer just before you first edited it in the current LispWorks session. This is the
initial reference point.

Last Save The state of the buffer when you last saved it to file.

Last Compile The state of the buffer when you last compiled it.

Select from the Show definitions changed since: popup list to change the reference point.

12 The Editor

129

Setting the reference point in the Changed Definitions view.

When you alter the reference point, the list of changed definitions is recomputed.

The list of changed definitions is computed using the editor command Buffer Changed Definitions. See the Editor User
Guide for more information about this and related commands.

12.6 Finding definitions

Use the Find Definitions view to locate definitions recorded by the system with a given name. Firstly click on to ensure
you have compiled the buffer displaying the Othello example. Then enter the name of the definition you are searching for in
the name box and press Return or click on to display a list of matches together with their locations. Double-click on a
match to display the source.

12 The Editor

130

Displaying matches in the Find Definitions view

In addition, after using the editor command Find Source (bound to Alt+.) or other source location commands, you can
invoke the Find Definitions view to display a complete list of the matches with the editor command Alt+X View Source
Search.

Further, the option Use Find Definitions list for more items than: controls automatic use of this view, as described in 3.2.1.5
Automatic use of Find Definitions view.

12.7 Setting Editor preferences

You can configure several aspects of the Editor tool, including:

• How items are listed in Buffers and Definitions views.

• Whether a list of buffers is displayed in the Text view.

• Whether the Editor toolbar is displayed.

These editor-specific options are described in 12.7.2 Controlling options specific to the Editor.

12 The Editor

131

12.7.1 Controlling other aspects of the Editor

Other configuration options affect the Editor but also apply to other tools in the LispWorks IDE which are based on
capi:editor-pane. These options control:

• The choice of Emacs or macOS editor editor key input.

• The cursor style and blink rate.

• The font.

• The text styles used for selected text and Lisp syntax coloring.

• Automatic use of the Find Definitions view by the source location commands.

• The default encodings used when opening and saving files.

• Whether parentheses are colored in Lisp code.

You set these options via LispWorks > Preferences... > Environment. These Environment options are described in 3.2
Setting preferences, which you should read for a full appreciation of the options affecting your Editor tools.

12.7.2 Controlling options specific to the Editor

This section describes options affecting only the Editor tool.

To configure these choose LispWorks > Preferences... and select Editor in the list on the left side of the Preferences dialog.
This displays these options in the General tab:

12 The Editor

132

Editor Preferences General tab

Any changes you make are applied and saved for future use when you choose OK to dismiss the Preferences dialog.

12.7.2.1 Controlling toolbar display

You can control whether Editor tools display toolbars such as the source operations and history toolbars by the option Show
Toolbar, as described in 3.1.8 Toolbar configurations.

12.7.2.2 Buffers list option

Control whether Editor windows display a list of buffers in the Text view by the option Display a list of buffers in every
Editor window.

The buffers list facilitates speedy switching between buffers while editing. You can filter the buffers list in the usual way if
needed.

12 The Editor

133

12.7.2.3 Sorting items in lists

By default, items in the buffers and various definitions views are sorted alphabetically according to their name. The options
in the Sort panel in the Editor Preferences allow you to change this, as follows:

Unsorted Leaves items in these lists unsorted. For views which list definitions, choosing this option lists
definitions in the order in which they appear in the source code.

By Name Sort according to the item name. This is the default setting.

By Package Sort according to the buffer package or the package of the definition's name.

By Type Sorts items according to the type of the definition, or the attributes of the buffer.

12.7.2.4 Displaying package information

As with many other tools, you can configure the way package names are displayed in the Editor. Because of the nature of this
tool, you need to be a little more aware of the precise nature of these commands in order to avoid confusion. This
information can be configured using the Package box of the Editor Preferences shown in Editor Preferences General tab.

Click Show Package Names to toggle display of package names in the main areas of the buffers and various definitions
views.

Type a package name into the text field to change the current package in the Editor. You can use completion to reduce typing,
by clicking which allows you to select from a list of all package names which begin with the partial input you have
entered. See 3.14 Completion for detailed instructions. When you have entered the complete name, click the button to
confirm the package name.

Note that this does not change the package currently displayed; it merely changes the Editor's notion of "where" it is in the
environment, and this in turn affects the way symbols are printed in the buffers and various definitions views.

By default, the current package is CL-USER.

12.7.3 Other Editor options

The Editor Options tab contains miscellaneous options for the Editor:

Editor Preferences Editor Options tab

Use Color Expanded Form to control whether expanded forms that are printed by the commands Macroexpand Form and
Walk Form are colored. Use Expanded Form Case to control the case of these forms.

12 The Editor

134

Use Hidden Comment String to set the replacement string for hidden comments in folded definitions. See 4.14 Definition
folding in the Editor User Guide for an explanation of defintion folding. If Hidden Comment String is empty, then there is no
replacement string. The style of the replacement string for hidden comment can be changed via Preferences... >
Environment > Styles > Styles Colors And Attributes.

Use the buttons following Query replace file save buffer to control whether the Editor's query replace commands
automatically save the modified editor buffers to disk at the end (Yes), ask you whether to save them (Confirm) or leave them
in memory (No). To save the buffers in memory, see 12.8.1 Opening, saving and printing files.

12.8 Basic Editor commands

This section deals with some of the most basic commands available in the Editor. It describes how to perform simple file
management, how to move around a buffer, and tells you about some other more general commands available.

12.8.1 Opening, saving and printing files

When you first start up the Editor, the first thing you must do is open a file.

Use file extensions .lisp or .lsp for Common Lisp files. The Editor recognizes these extensions and places the buffer in
Lisp mode. Lisp mode provides special features for use in Lisp editing, as described in 12.13.1 Lisp mode.

You can create a new Lisp buffer by choosing File > New or clicking on . The new file is automatically in Lisp mode, and
the buffer is called "Unnamed". When you try to save this buffer, the Editor prompts you for a filename.

As you have already seen, you can open an existing file by choosing File > Open... or clicking on . A dialog appears from
which you can select a file to edit.

To save a file, choose File > Save or click on . If the file has not been saved before (that is, if you created the file by
choosing File > New and this is the first time you have saved the file), you are prompted for a directory and a filename.

You can also save a file by using the keyboard command Command+S or Ctrl+X Ctrl+S.

If you want to make a copy of the file (save the file under a different name) choose File > Save As... and specify a name in the
dialog that appears.

Choose File > Revert to Saved to revert back to the last saved version of the file. This replaces the contents of the current
buffer with the version of that file which was last saved on disk. This command is useful if you make a number of
experimental changes which you want to abandon.

As well as saving whole files to disk, you can save any part of a file to disk under a different filename. To do this:

1. Select a region of text by clicking and holding down the select mouse button, and dragging the pointer across the region
of text you want to save. The text is highlighted as you drag the pointer across it.

2. With the text still highlighted, choose File > Save Region As....

3. In the echo area, specify the name of a file to save the selected text to.

Note that the selected text is copied into the new file, rather than moved; it is still available in the original buffer.

To find out more about selecting regions of text, see 12.11.1 Marking the region. To find out more about operating on
regions of text, see 12.13 Using Lisp-specific commands.

To print the file in the current buffer to your default printer, choose File > Print.... The printer can be changed or configured
by using the standard macOS Printers & Scanners preferences.

12 The Editor

135

12.8.2 Moving around files

This section describes how you can move the cursor around the buffer. There are a variety of commands, allowing you to
move sideways, up, or down by one character, or by a number of characters.

To move directly to any point in the buffer, position the pointer and click the left mouse button. If necessary, use the scroll
bars to reveal sections of the buffer which are not visible in the window.

You can either use the arrow keys, or the keyboard commands shown below to move the cursor in any direction by one
character.

Moving the cursor by one character

The keyboard commands below move to the beginning or end of the line, or the top or bottom of the buffer.

Keyboard commands for basic movement within an editor buffer

Press Ctrl+V or the Page Down key to scroll down one screenful of text.

Press Esc V or Alt+V or the Page Up key to scroll up one screenful of text. Note that Page Up is accessed by pressing the
fn key together with the Up arrow key.

You should ensure that you learn the keyboard commands described above, since they make navigation in a buffer much
easier.

12.8.3 Inserting and deleting text

The editor provides a sophisticated range of commands for cutting text which are described in 12.11 Cutting, copying and
pasting using the kill ring. However, the two basic commands for deleting text which you should remember are as follows:

• To erase the previous character, use the Backspace key.

• To erase the next character, use Ctrl+D or the Delete key if available.

You can insert text into a buffer by typing characters, or by pasting (see 12.11 Cutting, copying and pasting using the kill

12 The Editor

136

ring) or by inserting the contents of a file.

By default, when typing in a buffer, any characters to the right of the cursor are moved further to the right. If you wish to
overwrite these characters, rather than preserve them, press the Insert key. To return to the default behavior, just press the
Insert key once more.

To insert the contents of one file into another, choose File > Insert.... A dialog appears so that you can choose a file to insert,
and this is then inserted into the current buffer, starting from the current position of the cursor.

12.8.4 Using several buffers

As mentioned above, you can have as many buffers open at once as you like. Repeated use of File > Open... or
Ctrl+X Ctrl+F just creates extra buffers.

Because the Editor can only display one buffer at a time, you can use either menu commands or keyboard commands to swap
between buffers.

Each item in the History > Items submenu is an open buffer. To swap to a given buffer, choose it from the menu, and it is
displayed in the editor window.

Alternatively, click on the Buffers tab to swap to the Buffers view; see 12.3 Displaying and swapping between buffers for
details.

To use the keyboard, type Ctrl+X B. You are prompted for the name of the buffer you wish to display. The last buffer you
displayed is chosen by default, and is listed in the echo area in brackets, as shown below.

Select Buffer: (test.lisp):

To swap to the buffer shown in brackets, just press Return. To swap to another buffer, type in the name of that buffer.
Remember that completion (press Tab) can help.

To close the buffer that is currently displayed, choose File > Close, or type Ctrl+X K.

• If you use File > Close, the current buffer is closed.

• If you use Ctrl+X K, you can close any buffer, not just the current one. Type a buffer name in the echo area, or press
Return to close the current buffer.

Note: If you attempt to close any buffer which you have changed but not yet saved, a dialog appears, giving you the
opportunity to cancel the operation.

To save all the buffers in the Editor, choose File > Save All.... A dialog appears which lists each modified buffer. By default,
each buffer is selected, indicating that it is to be saved. If there are any buffers that you do not want to save, deselect them by
clicking on them. The dialog has four buttons, as follows:

• Click Yes to save the selected buffers.

• Click All to save all the listed buffers.

• Click No to save none of the listed buffers.

• Click Cancel to cancel the operation.

This dialog is also displayed if there are any unsaved files when you exit the environment.

Sometimes you may find that being able to display only one buffer in the window simply does not give you enough
flexibility. For instance, you may have several buffers open, and you may want to look at two different buffers at once. Or
you may have a very large buffer, and want to look at the beginning and end of it at the same time.

12 The Editor

137

You can do any of these by creating a new Editor window. Choose Window > Clone or press Ctrl+X 2 or click the
button. This creates a copy of your original Editor. The new Editor displays the same buffer as the original one.

• If you want to look at two different sections of this buffer at once, simply move to the section that you want to look at in
one of the Editors.

• If you want to look at a different buffer, use the History > Items submenu or the keyboard commands described above to
switch buffers.

Changes made to a buffer are automatically reflected across all editor windows - the buffer may be displayed in two different
windows, but there is still only one buffer. This means that it is impossible to save two different versions of the same file on
disk.

12.9 Other essential commands

Finally, there are three basic functions which you should add to your stock of familiar commands.

12.9.1 Aborting commands

To abort any command which requires you to type information at the echo area, type Ctrl+G at any point up to where you
would normally press Return. For instance, if you type Ctrl+X Ctrl+F in order to open a file, and then decide against it,
type Ctrl+G instead of specifying a filename.

If you are using macOS editor emulation, press Esc to abort a command.

12.9.2 Undoing commands

If you choose Edit > Undo the last editor action performed is undone. Successive use of Edit > Undo revokes more actions
(rather than undoing the last Undo command, as is the case with many other editors).

When using Emacs emulation you can undo via the Emacs keystroke Ctrl+_. Thus, to undo the last five words typed, press
Ctrl+_ five times.

On macOS you can undo via the keystroke Command+Z.

12.9.3 Repeating commands

To perform the same command n times, type Ctrl+U n followed by the command you want to perform.

For instance, to move forward 10 characters, type Ctrl+U 10 Ctrl+F.

12.10 Cutting, copying and pasting using the clipboard

The Editor provides the standard methods of cutting, copying and pasting text using the clipboard. To select a region of text,
click and hold down the select button, and drag the pointer across the region you want to select: the text is highlighted using
the Region Highlight text style as you select it.

Choose Edit > Select All or Command+A to select all the text in the buffer, and Edit > Deselect All if you want to deselect it.

Once you have selected a region use either of the following commands:

• Choose Edit > Copy or Command+C to copy the region to the clipboard. This leaves the selected region unchanged in the
editor buffer.

12 The Editor

138

• Choose Edit > Cut or Command+X to delete the region from the current buffer, and place it in the LispWorks IDE
clipboard. This removes the selected region from the buffer.

Choose Edit > Paste or Command+V to copy text from the clipboard into the current buffer. The text is placed at the current
cursor position.

These commands are also available from the context menu in the editor window, which is usually invoked by clicking the
right mouse button.

The Editor also provides a much more sophisticated system for cutting, copying and pasting text, as described below.

12.11 Cutting, copying and pasting using the kill ring

The Editor provides a sophisticated range of commands for cutting or copying text onto a special kind of clipboard, known as
the kill ring, and then pasting that text back into your Editor later on. There are three steps in the process, as follows:

• Marking a region of text.

• Cutting or copying the text in that region to place it in the kill ring.

• Pasting the text from the kill ring back into a buffer.

12.11.1 Marking the region

First of all, you need to mark a region of text in the current buffer which you want to transfer into the kill ring. There are two
ways that you can do this:

• Select the text you want to copy or cut using the mouse. Click and hold down the Select mouse button, and drag the
pointer across the region you want to mark.

The selected text is highlighted using the Region Highlight text style.

• Using keyboard commands.

To mark the region with the keyboard, place the cursor at the beginning of the text you want to mark, press
Ctrl+Space, and move the cursor to the end of the region you want to mark, using keyboard commands to do so.
Unlike marking with the mouse, this does not highlight the region.

Because the Editor does not highlight the marked region when you use keyboard commands, a useful Emacs key to remember
is Ctrl+X Ctrl+X. Pressing this exchanges the current cursor position with the start of the marked region and highlights
the region. Press Ctrl+X Ctrl+X a second time to return the cursor to its original position and leave the region marked.

Press Ctrl+G (or Esc in macOS editor emulation) to remove the highlighting in a region.

12.11.2 Cutting or copying text

Once you have marked the region, you need to transfer the text to the kill ring by either cutting or copying it.

Cutting text moves it from the current buffer into the kill ring, and deletes it from the current buffer, whereas copying just
places a copy of the text in the kill ring.

• Choose Edit > Cut or press Ctrl+W or Command+X to cut the text.

• Choose Edit > Copy or press Alt+W or Esc W or Command+C to copy the text.

Notice that these commands transfer the selected text to the LispWorks IDE clipboard as well as the kill ring. This is so that
the selected text can be transferred into other tools, or even into other applications.

12 The Editor

139

The selected text is also transferred to the system clipboard.

12.11.3 Pasting text

Once you have an item in the kill ring, you can paste it back into a buffer as many times as you like.

• Press Ctrl+Y to paste the text in the kill ring back into the buffer.

Note that you must use the keyboard command if you wish to paste the item that is in the kill ring (as opposed to the item
in the LispWorks IDE clipboard).

With many editors you can only do this with one item at a time. The clipboard is only able to contain one item, and so it is
the only one available for pasting back into the text.

However, the kill ring allows you to keep many items. Any of these items can be pasted back into your document at any time.
Every time you cut or copy something, it is added to the kill ring, so you accumulate more items in the kill ring as your
session progresses.

Consider the following example. In Kill ring with three items, the kill ring contains three items; the words factorial,
function and macro respectively.

Kill ring with three items

First, the word factorial was cut from the current buffer (this would remove it from the buffer). Next, the word function

was copied (which would leave it in the buffer but add a copy of it to the kill ring), and lastly, the word macro was cut.

Note the concept of the kill ring rotating (this is why it is known as a ring). Every time a new item is added (at the top, in
these figures), the others are all shunted around in a counter-clockwise direction.

Whenever you perform a paste, the current item in the kill ring - the word macro in this case - is copied back into the buffer
wherever the cursor currently is. Note that the current item is not removed from the kill ring.

Pasting from the kill ring

What you have seen so far does exactly the same thing as the standard clipboard. True, all three items have been kept in the
kill ring, but they are of no use if you cannot actually get at them.

The Emacs key to do this is Alt+Y or Esc Y. This rotates the kill ring in the opposite direction - thus making the previous
item the current one - and pastes it into the buffer in place of the item just pasted. In Pasting from the kill ring, the word
macro would be replaced with the word function.

You can use Alt+Y as many times as you like. For instance, if you actually wanted to paste the word factorial in the
document, pressing Alt+Y would replace the word function with the word factorial.

12 The Editor

140

http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm

Rotating the kill ring

If you pressed Alt+Y a third time, the kill ring would have rotated completely, and macro would have been the current item
once again.

Note: You can never use Alt+Y without having used Ctrl+Y immediately beforehand.

Here is a summary of the way Ctrl+Y and Alt+Y work:

• Ctrl+Y pastes the current item in the kill ring into the buffer.

• Alt+Y rotates the kill ring back one place, and then pastes the current item into the buffer, replacing the previously
pasted item.

12.12 Searching and replacing text

The Editor provides a wide range of facilities to search for and replace text. The examples below introduce you to the basic
principles; please refer to the Editor User Guide for a complete description of the facilities available.

12.12.1 Searching for text

The simplest way of searching for text in a buffer is to use the commands available in the menu bar:

1. Choose Edit > Find... to search for text in the current buffer.

2. Type a string to search for in the dialog that appears.

3. Click the Find Next button.

12 The Editor

141

Use of the Find dialog in the Editor

The cursor is placed immediately after the next occurrence in the current buffer of the string you specified. To search the
buffer from the start, rather than the current point, check From Top and click Find Next. To search upwards, select Up in the
Direction panel and click Find Next. To search again for a string that you previously searched for, select the string from the
Find what list and click Find Next.

To dismiss the Find dialog, click Cancel.

After you have used the Find dialog, you can use Edit > Find Next or Command+G to find the next occurrence of the last string
for which you searched using the dialog, without raising the dialog again.

12 The Editor

142

12.12.2 Incremental searches

Press Ctrl+S to perform an incremental search (in which every character you type further refines the search). A prompt
appears in the echo area, asking you to type a string to search for. As soon as you start typing, the search commences.

Consider the following example: open the file examples/capi/applications/othello.lisp. You want to search for
the word "defmethod" in the buffer.

1. Press Ctrl+S.

The following prompt appears in the echo area.

I-Search:

2. Type the letter d.

The prompt in the echo area changes to:

I-Search: d

The cursor moves to the first occurrence of "d" after its current position.

3. Type the letter e.

The prompt in the echo area changes to:

I-Search: de

The cursor moves to the first occurrence of "de".

4. Type the letter f.

The prompt in the echo area changes to:

I-Search: def

The cursor moves to the first occurrence of "def".

This continues until you stop typing, or until the Editor fails to find the string you have typed in the current buffer. If at any
point this does occur, the prompt in the echo area changes to reflect this. For instance, if your file contains the word "defun"
but no word beginning "defm", the prompt changes to:

Failing I-Search: defm

as soon as you type m.

12.12.3 Replacing text

You can search for text and replace it with other text using the Edit > Replace... menu item. Type a string to search for and a
string to replace it with in the Replace dialog that appears, and click Find Next. The cursor is placed immediately after the
next occurrence in the current buffer of the string you specified. To replace this occurrence and locate the next one, click
Replace. To leave this occurrence as it is and locate the next one, click Find Next. Note that this type of searching is not
incremental.

For instance, assume you wanted to replace every occurrence of "equal" to "equalp".

1. Choose Edit > Replace....

The Replace dialog appears.

12 The Editor

143

2. Type equal in the Find what box:

3. Type equalp in the Replace with box and click Find Next.

The search will stop at every occurrence of "equal" after the current cursor position:

• If you want to replace this occurrence, click Replace.

• If you do not want to replace this occurrence, click Find Next.

• If you want to replace this occurrences and all later occurrences, click Replace All.

• If you want to abandon the operation altogether, click Cancel.

Note: Both Edit > Find... and Edit > Replace... start searching from the current position in the buffer. When the end of the
buffer is reached, you are asked whether to start again at the beginning. To start from the top of the buffer initially, check the
From Top option before searching.

12.13 Using Lisp-specific commands

One of the main benefits of using the built-in editor is the large number of keyboard and menu commands available which can
work directly on Lisp code. As well as editing facilities which work intelligently in a buffer containing Lisp code, there are
easily-accessible commands which load, evaluate or compile, and run your code in any part of a buffer.

Other tools in the LispWorks IDE are integrated with the Editor. So for example you can find the source code definition of an
object being examined in a browser, or set breakpoints in your code, or flag symbols in editor buffers for specific actions
such as tracing or lambda list printing.

This section provides an introduction to the Lisp-specific facilities that are available using menu commands. For a full
description of the extended editor commands, please refer to the Editor User Guide.

All of the commands described below are available in the Editor's Buffers, Definitions, and Expression menus. They operate
on the current buffers, definitions, or expression, the choice of which is affected by the current view.

12.13.1 Lisp mode

Some aspects of the LispWorks editor behave differently depending on which "mode" the buffer is using (see the Editor User
Guide for information about editor modes). These include syntax coloring and parenthesis matching. which operate only in
Lisp mode and are described in 3.2.3.2 Setting the text style attributes. Also, certain commands such as those for
indentation operate specially in Lisp mode.

To make a new buffer suitable for Lisp code, you can use the New Buffer command or the File > New menu item, both of
which start the buffer in Lisp mode.

If your Lisp source files are saved with an extension .lisp or .lsp, then the editor will automatically open them in a Lisp
mode buffer.

12.13.2 Current buffers, definitions and expression

In the Text view, the current buffer is the currently visible buffer, and the Buffers menu acts on this. The current expression is
the symbol over which the cursor is positioned, or the one immediately before the cursor if it is not on a symbol. The current
definition is the definition in which that current symbol occurs. For example:

(defun test ()
 (test2))

12 The Editor

144

http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm

In the function shown above, if the cursor were placed on the letter "e" of test2, the current expression would be the symbol
test2, and the current definition would be test.

In the Buffers view, the current buffer(s) are all the selected buffers. The Definitions and Expression menus are not available.

In the Definitions, Changed Definitions and Find Definitions views, the current definitions are all the selected definitions.
The Buffers and Expression menus are not available.

In each view, the Buffers, Definitions and Expression menu commands act on the current buffer(s), definition(s) or
expression.

12.13.3 Evaluating code

When you are editing Lisp code, you may want to evaluate part or all of the buffer in order to test the code. The easiest way
to do this is using menu commands, although there are keyboard commands which allow you to evaluate Lisp in the Editor as
well.

There are three menu commands which allow you to evaluate Lisp in the current buffer.

Choose Buffers > Evaluate to evaluate all the code in the current buffer. If you are in the Buffers view, then this command
evaluates the code in all the selected buffers.

Choose Expression > Evaluate Region to evaluate the Lisp code in the current region. You must make sure you have marked
a region before choosing this command; see 12.11.1 Marking the region. Whether you use the mouse or keyboard
commands to mark a region does not matter. If you have a few Lisp forms that you want to evaluate, but do not want to
evaluate the whole buffer, you should use this command.

Choose Definitions > Evaluate or click in the toolbar to evaluate the current definition. In the Text view this is a little like
evaluating the marked region, except that only the current definition is evaluated, whereas working with a marked region lets
you evaluate several. This command is useful if you have a single function in the current buffer which you want to test
without taking the time to evaluate the whole buffer or mark a region.

In the various definitions views, this command evaluates the code for all the selected definitions.

To load the file associated with the current buffer, choose File > Load. To load multiple files associated with buffers, select
them in the Buffers view and choose File > Load. If there is not a current buffer, the menu command File > Load... is
available, which prompts for a file to load.

12.13.4 Compiling code

You can also compile Lisp code in an editor buffer in much the same way that you can evaluate it. Code can be compiled in
memory or to a file.

12.13.4.1 Compiling in memory

Choose Buffers > Compile or click in the toolbar to compile all the code in the current buffer.

Choose Expression > Compile Region to compile the Lisp code in the current region.

Choose Definitions > Compile or click in the toolbar to compile the current definition.

During compilation, the Editor tool temporarily displays compiler output in the Output tab. Once compilation has finished,
you can press Space to display the current buffer once again.

Additionally, if any conditions were signalled during the compilation, you can view these in the Compilation Conditions
Browser by pressing Return. You can also locate the source code that generated a message via the context menu, as
described in 21.1 Interactive compilation messages.

12 The Editor

145

You can review the output at any time by clicking the Output tab of the Editor.

12.13.4.2 Compiling to a file

To compile the file associated with the current buffer, choose File > Compile. To compile multiple files associated with
buffers, select them in the Buffers view and choose File > Compile. If there is not a current buffer, the menu command File >
Compile... is available, which prompts for a file to compile.

Note: this command calls the Common Lisp function compile-file; it creates the fasl file but does not load it. You can
use File > Load to later load the fasl.

To compile a file (or files) and load the resulting fasl file(s) with a single command, choose File > Compile and Load. If there
is not a current buffer, the menu command File > Compile and Load... is available.

12.13.5 Argument list information

Press Ctrl+` to show information about the operator in the current form, in a displayer window on top of the Editor. The
displayer shows the operator and its arguments, and tries to highlight the argument at the cursor position using the style
"Arglist Highlight" .

While the displayer is visible:

• Ctrl+/ controls whether the documentation string of the operator is also shown.

• Ctrl++ moves the displayer up.

• Ctrl+- moves the displayer down.

12.13.6 Breakpoints

A breakpoint causes execution of Lisp code to stop when it is reached, and the LispWorks IDE displays the stack and the
source code in a Stepper Tool. See 25.6 Breakpoints for information about using breakpoints with the Stepper Tool.

A breakpoint can be at the start, function call or return point of a form.

12.13.6.1 Setting breakpoints

To set a breakpoint, for example at the call to + in one of your functions:

1. Open the file containing the call in an Editor tool.

2. Ensure the definition is indented. You can use the Lisp mode command Indent Form (Meta+Ctrl+Q in Emacs
emulation).

3. Ensure the definition is compiled.

4. Position the cursor on the symbol +.

5. Choose the menu command Expression > Toggle Breakpoint, or click in the Editor toolbar, or run the editor
command Toggle Breakpoint. The symbol + is highlighted red indicating that a breakpoint is set.

When the breakpoint is reached, a Stepper tool is invoked, allowing you to step through the code, add further breakpoints,
and so on. See 25 The Stepper for more information about the Stepper tool.

12 The Editor

146

http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm

12.13.6.2 Editing breakpoints

To edit the Conditional or Printing properties of a breakpoint, choose the menu command Expression > Edit Breakpoints and
proceed as described in 25.6.4 Editing breakpoints.

To visit the source code where a breakpoint was set, choose the menu command Expression > Edit Breakpoints, select a
breakpoint and press the Goto Source button. This cancels the dialog and then displays the source containing the breakpoint.

12.13.6.3 Removing breakpoints

To remove a breakpoint under the cursor, click in the toolbar. Equivalently choose the menu command Expression >
Toggle Breakpoint or run the editor command Toggle Breakpoint.

Where you wish to remove one or more breakpoints without finding them in the source, choose Expression > Edit
Breakpoints, select a breakpoint or breakpoints in the Breakpoints list, and click Remove.

12.13.6.4 Reloading code with breakpoints

A message like this:

Retain 1 breakpoint from loaded file...

means that a breakpoint is set in a buffer while you have loaded that buffer's underlying file from disk, for example by menu
commands File > Load or File > Compile And Load. Loading the file re-evaluates all of its forms, but the IDE does not have a
way to reset the breakpoints in these forms automatically. Therefore it asks you what to do.

Answer Yes to add breakpoints to the newly loaded definitions. Answer No to remove the breakpoints.

12.13.7 Tracing symbols and functions

A wide variety of tracing operations are available in the Buffers, Definitions and Expression menus. The scope of each
operation depends on which menu the command is chosen from.

Choose Trace from either the Buffers, Definitions or Expression menus to display a menu of trace commands that you can
apply to the current region or expression, or the currently selected buffers or definitions, as appropriate. Note that you can
select several items in the buffers and definitions views.

See 3.10 Tracing symbols from tools for full details of the tracing facilities available in the Editor.

12.13.8 Packages

It is important to understand how the current package (that is, the value of the Common Lisp variable *package*) is
determined when running Lisp operations such as evaluation or compilation commands in a buffer. Usually it is obvious:
most Lisp source files have a single in-package form. The Editor uses the specified package as the current package when
you evaluate or compile code in that buffer, or perform some other operation that depends on the current package.

However it is possible for a source file to contain multiple in-package forms, or none at all. In this case, the Editor uses a
suitable binding for the current package depending on the location in the buffer, as described below. This means that you do
not have to worry about setting the package explicitly before evaluating part of a buffer, and that operations within a buffer
use the expected current package.

12 The Editor

147

http://www.lispworks.com/documentation/HyperSpec/Body/v_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm

12.13.8.1 The primary package

Each buffer has a package associated with it, known as the primary package. This is set when the buffer is created, and is
displayed in the message area at the bottom of the Editor window. The primary package provides a default, used when the
current package cannot be determined by other means.

If the buffer is created by opening a file containing an in-package form, that package is the primary package. If there are
multiple in-package forms, the primary package is taken from the first of these forms. If there is no in-package form,
the primary package is CL-USER.

You can set the primary package if needed with the editor command Set Buffer Package. See the Editor User Guide for
details.

12.13.8.2 The current package for Lisp operations

When evaluating or compiling an entire buffer, the Editor uses in-package forms as they appear in the code. For any code
that precedes the first in-package form, or when there is no in-package form, the code is evaluated or compiled in the
primary package.

When evaluating or compiling a region of the current buffer (as opposed to all of it), the Editor uses in-package forms as
they appear in the region. For any code that precedes the first in-package form of the region, or when there is no
in-package form in the region at all, the Editor searches for the previous in-package form in the buffer. If this is found,
it determines the current package, otherwise the primary package is used.

When evaluating or compiling a definition, and for operations such as symbol completion at the cursor point, the Editor
searches for the previous in-package form in the buffer. If this is found, it determines the current package, otherwise the
primary package is used.

12.13.9 Indentation of forms

The Editor provides facilities for indenting your code to help you see its structure. These facilities are available only in Lisp
mode. The Emacs key Alt+Ctrl+Q indents the current Lisp form, and the Tab key indents a single line.

You can customize Lisp mode indentation by using the Defindent command, see the Editor User Guide for details.

See 12.13.1 Lisp mode for more information about Lisp mode.

12.13.10 Other facilities

A number of other Lisp-specific facilities are available using the menus in the Editor.

If the current buffer is associated with a file that is part of a system as defined by defsystem, choose File > Browse Parent
System to browse the system it is part of in the System Browser. See 26 The System Browser for more information about
this tool.

Choose Definitions > Undefine... to remove the current definitions from your Lisp image. Similarly, choose Buffers >
Undefine... to remove the definitions in the current buffer or selected buffers. By selecting items in the Buffers view, or the
various definitions views, you can control over the definitions which can be removed with one command. Both of these
commands prompt you for confirmation with a second chance to modify the list of definitions to remove.

Choose Definitions > Generic Function to describe the current definition in a Generic Function Browser. See 15 The
Generic Function Browser for more details.

Standard action commands can be found on the Expression menu, allowing you to perform a number of operations on the
current expression. See 3.8 Performing operations on selected objects for full details.

12 The Editor

148

http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm

Choose Expression > Arguments to print the lambda list of the current expression in the echo area, if it is a function, generic
function or method. This is the same as using the Emacs key command Alt+=, except that the current expression is
automatically used.

Choose Expression > Value to display the value of the current expression in the echo area.

Choose Expression > Macroexpand or click in the toolbar to macroexpand the current form. The macroexpansion is
printed in the Output tab, in the same way that compilation output is shown. Note how an in-package form containing the
current package is printed with the macroexpansion, meaning that you can preform a further macroexpansion. Press Space
when the cursor is at the end of the output window to return to the Text tab.

Choose Expression > Walk to recursively macroexpand the current form.

12.14 Help with editing

Two help commands are available which are specific to the Editor and any tools which use editor windows.

Choose Help > Editing > Key to Command and type a key sequence to display a description of the function it is bound to, if
any.

Choose Help > Editing > Command to Key and supply an editor command name to see the key sequence it is bound to, if any.

12 The Editor

149

http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm

13 The Code Coverage Browser

The Code Coverage Browser helps you to work on a large number of source files from which you have collected code
coverage information. See the LispWorks® User Guide and Reference Manual for the steps to generate this data.

The tool displays a list of the files in the data with some code coverage statistics, and allows you to open the files in the
Editor with or without code coverage coloring.

To facilitate working on many files, the tool allows you to save copies of the data which contain only a subset of the files. For
example, you may decide that you have finished with some of the files, save a subset excluding these files and start next time
using this new subset. Another possible use is when a team works on the data: you can create subsets of the files for each
person to work on.

The tool also allows you to traverse (examine) all occurrences of a specific state, for example all occurrences of uncovered
code.

13.1 Starting the Code Coverage Browser

To start the tool choose Window > Tools > Code Coverage Browser or click in the LispWorks toolbar. If the LispWorks
image has internal code coverage data (that is, some files compiled with code coverage were loaded), the tool initially
displays this data. You can load and display saved code coverage data by using Code Coverage > Load Data.... This menu
command raises a file dialog, in which you need to select a file containing code coverage data, which was created by either
hcl:save-current-code-coverage or hcl:save-code-coverage-data.

Note: the tool does not merge code coverage data. It displays the latest data that was selected.

The Code Coverage Browser retains a history of code coverage data that it has displayed. You can revisit these using the
and toolbar buttons or the History menu (see 3.5 The history list). If you intend to do that be sure to give each code
coverage data a useful name, so you can easily select the one that you want.

The Code Coverage Browser displaying internal data

150

13.2 Displaying a Code Coverage data

The Code Coverage Browser displays the data as a list, where each line corresponds to a file. Each line starts with a relative
path, which is currently always the cl:file-namestring of the file, followed by columns showing statistics about code
coverage in this file, and ends with the full cl:truename of the file as recorded in the data. You can configure which
columns are actually displayed via LispWorks > Preferences... > Code Coverage Browser > Files List.

The statistics columns are divided into "Run Time" and "All" columns, which correspond to the information returned when
using the keyword :runtime or :all when accessing hcl:code-coverage-file-stats. In general "Run Time"
excludes code that is normally executed only at compile time or load time. The numbers in the statistics columns are numbers
of "lambdas" (pieces of code). See the entry for hcl:code-coverage-file-stats in the LispWorks® User Guide and
Reference Manual for more details. By default, only the "Run Time" columns are displayed.

For each of "Run Time" or "All", there are 4 columns:

Number Number of lambdas.

Not Called Number and percentage of lambdas that have never been called.

Not Covered Number and percentage of lambdas that have been called, but not completely covered.

Called Number and percentage of lambdas that have been called.

By default, only the Run Time Not Called and Run Time Not Covered columns are displayed, based on the assumption that
these are the most useful ones.

For columns that display both number and percentage, the number is the number of lambdas, and the percentage is this
number as a percentage of the total number of lambdas. You can configure which of the number or percentage is the
"leading" value via LispWorks > Preferences... > Code Coverage Browser > Files List > Sort By, by selecting Percent or
Number. This also affects the sorting. You can also configure it to display only one of the percentage or the number by
deselecting Display Both Percent And Number in the Files List tab.

By default, the tool displays all the files in the specified code coverage data. You can restrict which files are displayed by
several mechanisms:

• The list has a standard filter above it, which allows filtering on the displayed text. Since the default display contains the
truename, this gives you an easy way of filtering by filenames or directories. For example, if you want to see only the
files in directory dir-a, just type /dir-a/ in the filter. Note that the filter also supports regular expressions. See 3.12
Filtering information for full details of using the standard filter.

• You can explicitly hide files by using the context menu (see 13.3 Code Coverage Files List Context Menu). This is
useful when you are no longer interested in code coverage for a specific source file.

• In LispWorks > Preferences... > Code Coverage Browser > Files List, you can select a filter such as Run Time
Uncovered. Only files containing lambdas matching the filter are shown.

13.3 Code Coverage Files List Context Menu

The first items in the context menu allow you to open the first selected file, using the Editor tool. There are three ways to
open the file:

Open With Color Open the file for editing as usual, and add Code Coverage coloring. This corresponds to calling
hcl:editor-color-code-coverage with :for-editing t. You can then edit the file as
usual.

Open Open the file in the usual way without any code coverage information.

13 The Code Coverage Browser

151

http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_tn.htm

Open With Counters Open a special buffer (with a different name from the filename) with the code of the file, add
code coverage coloring and also counters. This corresponds to calling
hcl:editor-color-code-coverage with :for-editing nil. The buffer is made read-
only initially. Adding counters means that the buffer contains extra characters, and it is therefore
not useful to edit it, though you can make it writable and/or save it if this is useful. Note that the
buffer name is constructed by appending "-code-coverage" to the filename, and this will be
the default filename when you save it. Note that if this file is opened again with
:for-editing nil, either from the tool or other call to
hcl:editor-color-code-coverage, the previous special buffer is automatically deleted (see
hcl:editor-color-code-coverage).

You can configure the coloring via LispWorks > Preferences... > Code Coverage Browser > Coloring. The four check
buttons correspond to the :color-covered, :color-uncovered, :runtime-only and :comment-counters keyword
arguments in hcl:editor-color-code-coverage, and setting them sets the default values for these keywords.

By default, opening the file opens the file matching the truename that is recorded in the code coverage data and is displayed
by default in the last column. You can change that by creating pathname mapping, which maps some root pathname to
another one. You do that via LispWorks > Preferences... > Code Coverage Browser > Pathname Mapping. If both of the
Map from: and To: strings are not empty, the tool finds the pathname to use by first computing a relative pathname of
truename relative to the Map From: pathname map-from, and then merging it with the To: pathname to, that is:

(merge-pathnames (enough-namestring truename map-from) to)

The next 4 items in the context menu operate on all of the selected files:

Mark Done Mark the selected files as Done. Marking changes the color in which the line for the file is
displayed, and can be hidden by Hide Done, but otherwise has no effect.

Mark Not Done Mark the selected files as Not Done.

Hide Selected Hide (remove from the list) the selected files.

The remaining items in the context menu operate on the list of files as a whole:

Hide Done Hide the files that are marked as Done.

Unhide Others Show all the hidden files.

Traverse Implements the traverse operation. See 13.4 Traverse.

13.4 Traverse

Traversing allows you to examine all the occurrences of some state in the currently displayed list of files, starting from the
first selected file. You start traversing choosing an item from the Code Coverage > Traverse menu with the state you want to
traverse. This menu is also available on the context menu.

The first form with the state that you selected is displayed in an Editor. You can traverse to the next such form by using the
editor command Code Coverage Goto Next, which by default is bound to Ctrl+X #. You can skip the remaining forms
in the current file by giving a prefix argument to Code Coverage Goto Next, for example by the key sequence
Ctrl+U Ctrl+X #.

A message is displayed when there is no further matching forms. If you try again, it restarts the traverse from the beginning.

Forms are displayed in the same way as the Open With Color context menu item. Note that even though code coverage is by
"lambdas" (pieces of code), the traverse is by top level forms. Hence going to the first/next form means going to the first/next
top level form whose compiled code produced a lambda that matches the state.

13 The Code Coverage Browser

152

The traverse state is global, and there is only one state at any one time. Starting a new traverse forgets the previous state. The
traverse state is independent of the tool once it started, except that the coloring parameters can be changed by using
LispWorks > Preferences... > Code Coverage Browser > Coloring.

13.5 Using the internal data

When started, the Code Coverage Browser uses the internal code coverage data (that is, the data for files that have been
loaded with code coverage) if there is such data. You can revert to using this at any time by using the menu command Code
Coverage > Use Internal Data.

The statistics that are displayed when using the internal data are computed once and are not updated as the data changes. If
more statistics have been collected, update the data using the Refresh toolbar button or Window > Refresh.

When opening a file from the list, the tool updates from the current counts, and then opens the file, so both the tool and the
coloring correspond to the state at the time you open the file.

13.6 Creating new Data

You can create (and optionally save) code coverage data containing a subset of the files currently listed by using Code
Coverage > Copy To New Data.... This menu command raises a dialog where you enter the name of the new data, select the
criterion for including a file, and specify whether the new data becomes the current data, whether it is added to the history,
and whether it is saved.

The criterion for including files can be Only selected files, Only displayed files, or All files. The list of displayed files differs
from the list of all files when your filter excludes some of them, as described in 13.2 Displaying a Code Coverage data.

Clicking OK creates the new data containing a copy of the information for the included files. The new data is independent of
the old data and does not share any of its structure. Depending on your selections in the dialog, the new data may be made
the current data, added to history and saved. If you selected to save, you are prompted for a filename to save it in. The saving
is done by using hcl:save-code-coverage-data.

13 The Code Coverage Browser

153

14 The Function Call Browser

14.1 Introduction

The Function Call Browser gives you a way to view a user-defined function in the Lisp image together with the functions that
call it or the functions it calls.

It has three views.

• The Called By view allows you to examine a graph of the functions which call the function being browsed. This is the
default view.

• The Calls Into view allows you to examine a graph of the functions which are called by the function being browsed.

• The Text view lets you see immediate callers and callees of the browsed function using lists rather than a graph.

To create a Function Call Browser, choose Window > Tools > Function Call Browser or click in the LispWorks toolbar.
Alternatively, select a function in another tool, and choose Function Calls from the appropriate actions menu to browse the
selected function in the Function Call Browser. Finally, in an editor executing Alt+X List Callers or
Alt+X List Callees calls up a Function Call Browser on the current function.

Note: the cross references between function calls are generated by the compiler, hence you can use the Function Call
Browser only for compiled code. Moreover, the compiler setting to generate cross references must be on when you compile
your code. Switch it on by evaluating:

(toggle-source-debugging t)

When cross referencing is on, this line appears in the output of the compiler:

;;; Cross referencing is on

14.2 Examining functions using the graph views

There are two graph views in the Function Call Browser. The Called By view is the default view. The Function Call Browser
appears as in Viewing functions using the "Called By" view.

154

Viewing functions using the "Called By" view

In this view, the Function Call Browser has five areas.

14.2.1 Function area

The Function area displays the name of the function being examined, and here you can enter the name of another function to
examine. You can use completion to reduce typing. This allows you to select from a list of all functions in the current
package whose names begin with the partial input you have entered. Invoke completion by Up, Down or click the button.
See 3.14 Completion for detailed instructions. When you have entered the complete function name, click to confirm your
choice.

14.2.2 Show functions control

The popup list Show functions from packages allows you to restrict the functions displayed based on their package. It
affects the display in all views. Below, the current package means the symbol-package of the function currently being
examined in the Function Call Browser. The options are:

All Display all the functions known to the compiler.

Current and Used Display only those functions in the current package or packages on the package use list of the
current package.

Current and Standard Display only those functions in the current package or the standard packages COMMON-LISP,
HCL and LISPWORKS.

Current Display only functions in the current package.

14 The Function Call Browser

155

http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_3.htm

14.2.3 Graph area

A graph of all the callers of the function is displayed in a graph in the Called By view. The graph area of the Calls Into view
is similar, but the graph displayed is of the functions called by the function being browsed.

Note that if source level debugging is off, or the function was not compiled, there is no information to display here. To turn
on source level debugging, call:

(toggle-source-debugging t)

The generic facilities available to all graph views in the LispWorks IDE are available here; see 6 Manipulating Graphs for
details.

14.2.4 Echo area

The echo area of the Function Call Browser is similar to the echo area of the podium. It displays messages concerning the
Function Call Browser.

14.2.5 The function description button

Clicking on Function Description >> changes the view of the Function Call Browser to include more information on the
function being browsed. The browser appears as in The Function Call Browser in function description mode.

14 The Function Call Browser

156

The Function Call Browser in function description mode

Two further panes appear. Note that the function description button has now changed to Function Description << and that
clicking on it restores the view of the Function Call Browser.

The extra panes are a function description area, and a documentation area.

14.2.5.1 Function description area

The Function Description area gives a description of the function selected in the main area, or, if nothing is selected, the
current function (as displayed in the Function area). The following items of information are displayed:

Name The name of the function.

Function The function object.

Lambda List The lambda list of the function.

Source Files The source file in which the function is defined, if any.

You can operate on any of the items in this area using the commands in the Description menu, which is also available as the

14 The Function Call Browser

157

context menu. This contains the standard actions described in 3.8 Performing operations on selected objects.

14.2.5.2 Documentation area

The Documentation area shows the documentation for the function selected in the main area as returned by the Common Lisp
function documentation. If no function is selected, the documentation for the current function is shown.

14.3 Examining functions using the text view

Click on the Text tab to see a textual display of the callees and callers of a function. This view has the advantage that both
callees and callers can be seen simultaneously. It is very similar to the text view in the Class Browser, as described in 7.1.4
Examining other classes. When in the text view, the Function Call Browser appears as shown in Viewing functions using
the text view.

Viewing functions using the text view

The function area, show functions from packages area, function description area and echo area are as in the graph views.

14.3.1 Called By area

The Called By area lists those functions which the current function calls.

To make any function in this list be the current function, double-click on it.

14 The Function Call Browser

158

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

14.3.2 Calls Into area

The Calls Into area lists those functions which call the current function.

To make any function in this list be the current function, double-click on it.

14.4 Configuring the function call browser

The Function Call Browser can be configured using the preferences dialog. Select LispWorks > Preferences... or click to
display the dialog, and select Function Call Browser in the list on the left side of the dialog which appears. This displays
these options:

The function call browser preferences

14.4.1 Sorting entries

The functions displayed in each tab of the Function Call Browser can be sorted in a number of ways.

Choose By Name to sort entries according to the function name. This is the default setting.

Choose By Package to sort functions according to their package.

Choose Unsorted to leave functions unsorted.

14.4.2 Displaying package information

As with other tools, you can configure the way package names are displayed in the Function Call Browser.

Choose Show Package Names to turn on and off the display of package names in the Text, Called By, Calls Into and
Description areas.

See 3.7 Displaying packages for more information about using Show Package Names.

14.5 Configuring graph displays

The preferences can also be used to configure how the Function Call Browser displays graphical information in the Called By
and Calls Into views. Click on the Called By Layout tab or the Calls Into Layout tab in the Preferences. Both views perform
the same operations on the relevant Function Call Browser view.

14 The Function Call Browser

159

A layout view in the Function Call Browser preferences

14.5.1 Graph layout settings

The layout radio buttons are used to set the direction in which the graph is displayed. The default setting is Left to Right.

14.5.2 Graph expansion settings

The Max. Expansion settings determine how much of the graph to display. The default depth value is 2 - this ensures that
only functions that directly call (or are directly called by) are shown in the graph. If this value were set to 3, for example,
then functions that call a function that calls the function being browsed would also be displayed.

The breadth value has a default value of 40, and sets how many functions are displayed at each level of the graph.

14.5.3 Plan mode settings

The Rotation checkbox determines whether the graph layout can be rotated when in plan mode. By default it is unchecked.

You can enter plan mode when displaying a graph by selecting Enter Plan Mode from the context menu. If rotation is enabled
and the plan is smaller than the graph, you can rotate the plan by holding down the Shift key and moving the mouse left or
right.

14.6 Performing operations on functions

A number of operations can be performed on functions selected in the Text area (when in the Text view) or in the Called By
or Calls Into areas, or on the current function (when there are no functions selected elsewhere).

The Function menu gives you access to the standard actions described in 3.8 Performing operations on selected objects.

The Function > Trace submenu gives you the ability to trace and untrace the functions selected in the Text, Called By and
Calls Into views.

14 The Function Call Browser

160

15 The Generic Function Browser

The Generic Function Browser allows you to examine the generic functions in the Lisp image, together with any methods that
have been defined on them. It has two views which allow you to browse different types of information:

• The methods view, which shows you a description of the generic function and the methods defined on it. This is the
default view.

• The method combinations view, which lets you examine the list of method combinations for any generic function.

To create a Generic Function Browser, choose Window > Tools > Generic Function Browser or click in the LispWorks
toolbar.

Other ways to create a Generic Function Browser are:

• If the current object in a tool is a generic function or method, choose the Generic Function standard action command
from the appropriate menu.

• Use the editor command Alt+X Describe Generic Function.

• If there is a method on the debugger stack, you can display the Method Combination via the Frame menu of a Debugger
tool.

15.1 Examining information about methods

When the Generic Function Browser is first displayed, the default view is the methods view. You can also choose it explicitly
by clicking on the Methods tab of the Generic Function Browser.

The methods view is shown in Generic function browser below.

161

Generic function browser

The methods view has four main sections, described below.

15.1.1 Function area

The Function: box shows the name of the generic function you are examining. To browse a generic function, you can enter
its name directly into the Function: box. You can also paste the generic function from another tool in one of two ways:

• Choose Edit > Copy or the standard action command Copy in another tool to copy the generic function to the clipboard,
then choose Edit > Paste in the Generic Function Browser to transfer the generic function in.

• Choose the standard action command Generic Function in the other tool to display the generic function in the Generic
Function Browser in one action.

When entering the name of a function, you can use completion to reduce typing. This allows you to select from a list of all
generic functions whose names are accessible in the current package and begin with the partial input you have entered.
Invoke completion by pressing Up or Down, or by clicking the button. The methods are listed immediately. See 3.14
Completion for more information about completion. If you enter the generic function name directly without using
completion, click to confirm the name.

Note: You can use Edit > Paste to paste in a generic function, even if the LispWorks IDE clipboard currently contains the

15 The Generic Function Browser

162

string representation of the function, rather than the function itself. This lets you copy in generic functions from other
applications, as well as from the environment. See 3.3.3 Using the Object operations with the clipboard for a complete
description of the way the LispWorks IDE clipboard operates, and how it interacts with the system clipboard.

You can operate on the current generic function using the commands in the Generic Function Browser's Function menu. See
15.1.5 Performing operations on the current function or selected methods for details.

15.1.2 Filter area

The Filter lets you restrict the list of methods displayed. See 3.12 Filtering information for details about how to use the
Filter area.

15.1.3 Methods list

This area displays the methods defined on the generic function.

• Selecting a method in this list displays its description in the Description list.

• Double-clicking on a method displays its source code definition in the editor, if it is available.

The number of items listed in the list of methods is printed in the Matches box.

You can operate on any number of selected methods in this area using the commands in the Generic Function Browser's
Methods menu. See 15.1.5 Performing operations on the current function or selected methods for details.

15.1.4 Description list

The Description list shows a description of the method selected in the list of methods, or of the generic function itself if no
method is selected.

The following information is listed:

Method The method object that is selected in the list of methods.

Lambda List The lambda list of the generic function.

Combination The class of method combination for the generic function.

To operate on any of the items displayed in this area, select them and choose a command from the Description menu. This
menu contains the standard action commands described in 3.8 Performing operations on selected objects. You can operate
on more than one item at once by making a multiple selection in this area.

15.1.5 Performing operations on the current function or selected methods

You can use the Function and Methods menus to access commands that operate on the current generic function or the
selected methods. These commands are similar to commands available in other tools, and so you should find them familiar.

The following commands are available from either the Function or Methods menus:

• The standard action commands let you perform a number of operations on the selected methods or the current function.
For details on the commands available, see 3.8 Performing operations on selected objects.

• Choose Undefine... to undefine the current generic function or the selected methods so that they are no longer available
in the Lisp image. Choosing Undefine... on a method undefines the method function and removes it from the methods of
the generic function. However, the generic function can still be called with its different method selection.

15 The Generic Function Browser

163

• The Trace submenu gives you the ability to trace and untrace the current generic function or the selected methods. See
3.10 Tracing symbols from tools for details about the commands available in this submenu.

15.2 Examining information about combined methods

The method combinations view lets you examine information about the combined methods of the current generic function.
You supply a signature and Generic Function Browser displays the combined methods of the generic function together with
the arguments that match that method combination point.

Method combinations show you the calling order of methods. They use the class precedence lists of the classes on which the
methods of a generic function operate. Being able to view these combinations gives you a simple way of seeing how before,
after, and around methods are used in a particular generic function.

You can display this view by clicking the Method Combinations tab of a Generic Function Browser, or from the Debugger
tool by choosing Frame > Method Combination in a frame containing a standard method. The method combinations view is
shown in Generic function browser displaying method combinations below.

Generic function browser displaying method combinations

15 The Generic Function Browser

164

The method combinations view has a number of main sections, described below.

15.2.1 Function box

As with the methods view, the name of the generic function being browsed is shown here. See 15.1.1 Function area for
details.

15.2.2 Signatures button

Click Signatures... to display the Method Signatures dialog shown in Method Signatures dialog. This dialog lists the
signatures for the methods defined on the current generic function. The signature of a method shows the types of the
arguments.

Method Signatures dialog

To list the method combinations of any defined method in the Generic Function Browser, select its signature from the list in
the Signatures panel of the Method Signatures dialog and click OK.

You can restrict the signatures displayed using Filter box in the usual way.

You can also restrict the display with the Restricted Class box. See 15.2.6 Restricting displayed signatures by class for
details.

15 The Generic Function Browser

165

15.2.3 Arguments types box

The Arguments Types: box is used to specify a signature, in order to see the method combinations. You can specify a
signature here by either:

• Choosing a signature using the Method Signatures dialog, as described in 15.2.2 Signatures button.

• Typing the signature list directly and clicking .

The method combinations for the relevant method are displayed in the list of method combinations.

15.2.4 List of method combinations

The main list in the method combinations view shows method combinations for the signature specified in the Arguments
Types: box.

• Selecting any method in the list displays its description in the Description: list.

• Double-clicking on any method in the list displays its source code definition in the editor, if it is available.

You can operate on any number of selected methods in this area using the commands in the Methods menu. See 15.1.5
Performing operations on the current function or selected methods for details.

15.2.5 Description list

The Description list displays a description of any method selected in the list of method combinations. The same items of
information are shown as in the methods view; see 15.1.4 Description list.

To operate on any of the items displayed in this area, select them and choose a command from the Description menu. This
menu contains the standard commands described in 3.8 Performing operations on selected objects. You can operate on
more than one item at once by making a multiple selection.

15.2.6 Restricting displayed signatures by class

The Method Signatures dialog was introduced in 15.2.2 Signatures button. You can display this dialog by clicking
Signatures... in the Generic Function Browser.

By default, the Method Signatures dialog displays the signatures of all methods defined on the generic function. When there
are many methods, or when the distinction between different classes is not clear, this can be confusing.

To simplify the display, you can restrict the signatures displayed to a chosen class and its superclasses. To do this, enter the
name of the chosen class into the Restricted Class box. You can click which allows you to select from a list of all class
names which begin with the partial input you have entered. See 3.14 Completion for detailed instructions. As with similar
text input panes in the IDE, click to confirm your choice, to cancel the current setting.

15 The Generic Function Browser

166

Restricting the signatures by class

Once you have made a choice, only those signatures that contain the specified class or one of its superclasses are listed in the
Signatures restricted to... panel of the dialog. This simplified display is useful when there are a large number of complicated
signatures.

Be aware of the difference between this approach and the use of the Argument box in the Signatures panel. Restricting
signatures confines the signatures offered in the dialog by means of the class of the signatures.

Click to display the signatures for all methods defined once again.

15.3 Configuring the Generic Function Browser

Choose LispWorks > Preferences... or click , and then select Generic Function Browser in the list on the left side of the
Preferences dialog.

Using the options in the Sort panel, you can sort the items in the Generic Function Browser as you can in many of the other
tools in the LispWorks IDE.

Unsorted Displays items in the order they are defined in.

By Method Qualifier Sorts items by the CLOS qualifier of the method. This groups together any :before, :after,
and :around methods.

By Name Sorts items alphabetically by name. This is the default setting.

By Package Sorts items alphabetically by package name.

15 The Generic Function Browser

167

For more information on sorting items, see 3.9.1 Sorting items in views.

You can also set the process package of the Generic Function Browser, and choose to hide package names in the display,
using the Package box. See 3.7 Displaying packages for full details.

You can also control whether the Generic Function Browser displays the history toolbar by the option Show Toolbar, as
described in 3.1.8 Toolbar configurations.

15 The Generic Function Browser

168

16 The Search Files tool

16.1 Introduction

The Search Files tool gives you a convenient way of performing searches on directories, individual files or systems. You can
create a Search Files tool by choosing Window > Tools > Search Files or clicking in the LispWorks toolbar or use the
keyboard accelerator described in 3.1.5 Displaying tools using the keyboard. You can also start context-dependent searches,
for example by choosing Edit > Search Files... or Systems > Search Files..., or from editor command such as
Esc X Search Files.

Out of necessity, this chapter makes some references to other tools in the environment which you may not yet be familiar
with. However, this chapter does not assume any prior knowledge of these tools.

The Search Files tool

The Search Files tool has the following areas:

• The toolbar contains a dropdown list that chooses the kind of search to perform (Plain Directory was used in the
screenshot above). There are also buttons to start and stop a search, and to perform a query replace operation on the
matched lines.

169

• The Search Specifications area lets you specify what to search for and where to search. This area is filled in or partly
filled in automatically when you start a context-dependent search. You can also enter suitable values directly, or modify
the existing values.

• The filter area lets you restrict the search results displayed in the main area.

• The main area displays the results of the last search in a tree. You can expand each file to showed the matched lines
within it.

16.2 Performing searches

You can use the Search Files tool in two different ways.

• You can enter details of where to search and what to search for directly into the tool and click the button. This is
described in more detail in 16.2.1 Entering Search Specifications directly.

• You can use an Editor command or menu command that starts a context-dependent search. This is described in more
detail in 16.2.2 Using context-dependent searches.

All kinds of search other than Grep use a LispWorks regular expression (regexp). For details of the syntax of LispWorks
regular expressions see "Regular expression searching" in the Editor User Guide.

All kinds of search other than Grep actually operate on editor buffers (see 12.3 Displaying and swapping between buffers)
rather than files. The Search Files tool creates buffers when needed, which involves some overhead. Therefore if you are
searching a large number of files (or a number of large files) which are not already opened in the Editor, a Grep search is best
because it operates directly on the files.

While the tool is searching, you can examine the results but you cannot change the search specifications. To stop a search,
click the button in the toolbar.

16.2.1 Entering Search Specifications directly

To enter the search specifications directly, decide which kind of search to perform from the dropdown list in the toolbar and
then fill in the boxes in the Search Specifications area. The different search kinds are described below. You can also hide the
search specifications by choosing Hide Search Area from the dropdown list in the toolbar.

16.2.1.1 Plain Directory searches

A Plain Directory search is used to search for a particular regexp in all files whose names match a particular pattern. Enter
the regexp in the Regexp Search String box and enter a set of filename patterns in the Filenames pattern box. You can press
Up or Down in the Filenames pattern box to complete physical directory components, as described in 3.14 Completion.

The filename pattern should be a complete filename and can use the following syntax to make it match more than one file:

• Use * within the pattern to match any sequence of characters in a directory or file name.

• Use ** within the directory part of the pattern to match any number of subdirectories.

Here are some examples of filename patterns:

. Matches all files in the root directory.

subdir/*.txt Matches all txt files in root/subdir.

examples/**/*.lisp Matches all lisp files in root/examples and its subdirectories. This is similar to the pattern
shown in The Search Files tool.

16 The Search Files tool

170

http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm

**/*zork*/*.bmp Matches all bmp files in any directory under the root directory that contains zork in its name.

See also the Match flat file-namestring option in 16.5.1 Search Parameters for additional information.

If a filename pattern is a directory then all files in that directory are searched.

Check Case sensitive to make the search match only the case of letters exactly as entered.

Check All files to ignore any list of File Types in the Preferences.

16.2.1.2 Root and Patterns searches

A Root and Patterns search is used to search for a particular regexp in all files whose names match one or more patterns
within a directory. Enter the regexp in the Regexp Search String box, the starting directory in the Root Directory box, and a
set of filename patterns in the Pattern List box.

You can press Up or Down in the Root Directory box to complete physical directory components, as described in 3.14
Completion.

A Roots and Patterns search

You can search subdirectories by including directory components (including wild components) in the Pattern List box.

Multiple filename patterns can be entered, separated by semicolons. Spaces before and after each pattern are ignored. Each
filename pattern should be a complete filename and can use the following syntax to make it match multiple files:

• Use * within the pattern to match any sequence of characters in a directory or file name.

16 The Search Files tool

171

• Use ** within the directory part of the pattern to match any number of subdirectories.

• Use {name1,name2,...} to match any one of name1, name2 and so on. Spaces before and after each name are
ignored.

Here are some examples of pattern lists:

images/*.* ; icons/*.*

{images,icons}/*.*

Both of these patterns match all files in the root/images and the root/icons directories.

**/{images,icons}/sunrise.{bmp,jpg,jpeg}

**/images/sunrise.{bmp,jpg,jpeg} ; **/icons/sunrise.{bmp,jpg,jpeg}

Both of these patterns match all files with the name sunrise.bmp, sunrise.jpg or sunrise.jpeg in a directory named
icons or images, anywhere in the root directory.

{maj,min}or-events/{*-name,date}/*.txt

major-events/{*-name,date}/.txt ; minor-events/{*-name,date}/.txt

{maj,min}or-events/date/*.txt ; {maj,min}or-events/*-name/*.txt

Each of these three patterns matches all .txt files which are in a directory date or a directory that ends with -name in the
major-events or minor-events directories.

See also the Match flat file-namestring option in 16.5.1 Search Parameters for additional information.

If a filename pattern is a directory then all files in that directory are searched.

Check Case sensitive to make the search match only the case of letters exactly as entered, as illustrated above.

Check All files to ignore any list of File Types in the Preferences.

16.2.1.3 System Search

A System Search is used to search for a particular regexp in all the files referenced by a LispWorks defsystem definition.
Enter the regexp in the Regexp Search String box and the system names in the System Names box. Multiple system names
can be entered, separated by semicolons.

Check Case sensitive to make the search match only the case of letters exactly as entered.

You can also do a System Search in a "system" defined by another source code manager such as ASDF, if you have
configured LispWorks appropriately. See 26.9 ASDF Integration for the details.

16.2.1.4 Known Definitions searches

You can use the Search Files tool to search in all files known to contain definitions. To do this, select Known Definitions in
the dropdown list in the toolbar. Then complete your other search specifications and click the button.

16 The Search Files tool

172

http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm

A Known Definitions search

A file is known to contain definitions in one of two ways:

• A file was loaded and executed a defining form which was recorded by the source location system. The associated source
files are searched when the list value of the variable dspec:*active-finders* contains the keyword :internal.

• The file is recorded as a location in a tags database. Such files are searched when the list value of the variable
dspec:*active-finders* contains the path of the tags database.

See "Dspecs: Tools for Handling Definitions" in the LispWorks® User Guide and Reference Manual for more information
about definition recording and tags databases.

16.2.1.5 Searching editor buffers

You can use the Search Files tool to search in all currently open editor buffers. To do this, select Opened Buffers in the
dropdown list in the toolbar. Then complete your other search specifications and click the button.

16.2.1.6 Grep searches

A Grep search is used to run an external program to search files and show the results in the tool. Enter the working directory
for the external program in the Root Directory box and the complete command line of the external program in the Grep
Command box.

16 The Search Files tool

173

A Grep search

The external program is typically grep, but other programs can be used as long as they print the matched lines in this format:

filename:line-number line-text

When using grep you generally need to pass the -n option and the filename argument /dev/null to force it to print the file
and line number in all cases. This is done automatically when you invoke the Search Files tool by the Editor command Grep.

16.2.2 Using context-dependent searches

Context dependent searches take some information from the current window and invoke the Search Files tool to perform the
search. There are various Editor commands and menu commands that start a context-dependent search, as described below.

16.2.2.1 Context-dependent searches using Editor commands

Search Files Prompts for a search string and directory pattern and then performs a Plain Directory or Root
and Patterns search. If an existing Search Files tool is reused by this command and was last
doing a Root and Patterns search, then the directory pattern is split to fill the boxes. Otherwise,
a Plain Directory search is performed using the directory pattern. If the directory pattern ends in
a slash, then the default pattern is added to the end (see 16.5.1 Search Parameters).

Search Files Matching Patterns

16 The Search Files tool

174

Prompts for a search string, root directory and set of filename patterns and then performs a Root
and Patterns search.

Search System Prompts for a search string and system name and then performs a System Search.

Grep Prompts for command line arguments to pass to grep and then performs a Grep search. The grep
command is created from these arguments, with a -n option and the filename argument
/dev/null as mentioned in 16.2.1.6 Grep searches.

16.2.2.2 Context-dependent searches using menu commands

Edit > Search Files...

Opens a Search Files tool in for a Plain Directory or Root and Patterns search, using the
directory associated with the current tool (in particular, the directory of the buffer displayed in an
Editor tool).

If an existing Search Files tool is reused by this command and was last doing a Root and
Patterns search, then the directory is placed in the Root Directory box. Otherwise, the directory
is placed in the Filename Patterns box for a Plain Directory search with the default pattern added
to the end (see 16.5.1 Search Parameters).

Systems > Search Files...

Prompts for a regexp and performs a System Search in the currently selected system.

16.2.2.3 Search History

The Search Files tool keeps a history of previous searches and their results. You can revisit these searches using the and
buttons as described in 3.5 The history list.

16.3 Viewing the results

The results of a search are displayed in the main area of the tool, grouped by file. The file name, the number of matches in
that file and the directory are shown. Select a file and expand it to see the line number and text of each line of that file that
matches. You can configure the tool to expand the items as they are added as shown in 16.5.2 Display.

When there are no matches to display, the Search Files tool displays a message which mentions the number of files searched.

16.3.1 Displaying in an Editor

Double-click on the filename to open an Editor tool showing that file and show the first match in that file. Similarly, double-
click on the line number to show that line in the Editor. Items that have been edited are shown with a different icon. You can
change an item to show as edited or not edited using the Mark Edited and Mark Not Edited commands on the context menu.

The Editor command Next Search Match can be used to move to the next item in the last Search Files tool that you used.

16.3.2 Linking to an Editor

You can arrange for an Editor tool to immediately display one of the search matches when you select it. To do this, choose
Link to Editor from the context menu in the main area of the Search Files tool. To remove the link, choose Link to Editor
from the context menu again.

16 The Search Files tool

175

Note: this is equivalent to using Edit > Link from > Search Files 1 in the Editor tool.

16.3.3 Filtering the results

Use the Filter area to restrict the displayed results by a plain string match or a regular expression match, as described in 3.12
Filtering information.

The filter applies to the text in the match, not to the line number or file names.

16.3.4 Hiding certain results

When there are many results it can be useful to hide some which you know to be uninteresting. Select the lines you wish to
hide, raise the context menu and choose Hide (or press the Delete key).

To restore hidden lines to the display, choose Unhide Others from the context menu.

16.4 Modifying the matched lines

After a search you might want to perform a replace operation within the matches, for example to rename a function or add a
missing package prefix throughout your source code.

To do this, click or choose Query Replace... from the context menu in the results area to raise the Query replace in
matched lines dialog.

The Query replace in matched lines dialog

Enter a regular expression to replace in the Regexp to replace: box. Enter the replacement text in the Replace by: box, and
click OK.

For each of the matched lines that also matches the regular expression, an Editor tool displays the file with a prompt in the
Echo Area. Type 'y' or 'n' to make the replacement or not, for each match in turn.

The Save buffers buttons choose whether to automatically save the modified editor buffers to disk at the end (Yes), ask you
whether to save them (Confirm) or leave them in memory (No). To save the buffers in memory, see 12.8.1 Opening, saving
and printing files.

16.5 Configuring the Search Files tool

Various aspects of the Search Files tool's behavior and display can be configured. To do this, select LispWorks >
Preferences... and then select Search Files in the list on the left side of the Preferences dialog.

16 The Search Files tool

176

16.5.1 Search Parameters

In the Search Parameters view of the Search Files preferences you can configure some aspects of searching operations.

Setting Search Parameter Preferences

Enter a file name pattern to add when invoking the tool from an Editor command in the Pattern to add when no file name is
specified box.

Check Match flat file-namestring if you want the tool to match filename component of patterns as a flat string, rather than a
name and type. If this option is not selected, then any text after the final . in the filename is treated as the type and is only
matched by similar text after the . in the pattern. For example, when Match flat file-namestring is not selected, the pattern
dir/*p matches interp.exe, where the name interp ends with p but does not match file.lisp, where the name file
ends with e. Conversely, when Match flat file-namestring is selected, dir/*p matches file.lisp, where the file-namestring
file.lisp ends with p, but does not match interp.exe, where the file-namestring interp.exe ends with e.

You can specify a limit on the size of files to search in the Maximum file size to search box. This limit represents the
maximum file size in bytes, and typical values can be selected from the dropdown list. If larger files are found during a
search, they are skipped and a message ...files skipped because they are bigger than... appears at the top
of the results in the main area.

You can specify a limit on the number of matches displayed by the tool in the Maximum number of matches box. Typical
values can be selected from the dropdown list. If more matches are found during a search, you are asked whether to stop
searching.

16.5.2 Display

You can configure the display of search results using the Display view.

16 The Search Files tool

177

Setting Display Preferences

Choose a color to display the text of unedited lines that show a match in a file.

Choose a color to display the text of edited lines that show a match in a file.

Check Display a filter to display a box that can be used to restrict which results are displayed. This shown by default.

Check Expand items to list the matches as they are found to cause the items grouped under each file to be expanded while
the search is running. The default is to leave them collapsed, allowing you to expand them yourself.

Under Files shown: you can choose how the name of each matching file is displayed in the main results area. The values are:

With separate filename and directory

Displays the filename at the start and the complete directory name at the end.

As complete names Displays the full name of the file.

Relative to the search root

Displays the name of the file relative to the root directory specified in the search parameters.

16 The Search Files tool

178

16.5.3 File Types

You can add specify which file types to search in the File Types view.

Setting File Types Preferences

Check Use exclude list if you want to exclude certain file types even though they match the pattern in the Search
Specifications boxes. Enter the patterns to exclude in the Exclude box, with multiple patterns separated by whitespace.

Check Use include list if you want to only include certain file types, even if the pattern in the Search Specifications should
allow other types. Enter the patterns to include in the Include box, with multiple patterns separated by whitespace.

You cannot choose both of these options simultaneously.

16.5.4 The External Grep Program

By default, for Grep searches the tool runs grep on non-Windows platforms and a specific supplied grep.exe on Microsoft
Windows. The actual searching utility used can be configured with the variable lw:*grep-command*.

The arguments passed to the searching utility are constructed using the values of lw:*grep-fixed-args* and
lw:*grep-command-format*. It is not be necessary to alter the default values unless you use a non-default value of
lw:*grep-command* or have a non-standard grep installed.

See the LispWorks® User Guide and Reference Manual for details of these Search Files tool configuration variables.

16 The Search Files tool

179

17 The Inspector

The Inspector is a tool for examining objects in your Lisp image. You can also use the Inspector to modify the contents of
objects, where this is possible.

To raise an Inspector window, choose Window > Tools > Inspector or click in the LispWorks toolbar.

17.1 Inspecting the current object

It is sometimes more natural to invoke an Inspector on some object you are analysing. You can do this in several ways,
including using the Inspect menu command.

1. To create an example object, in the Listener, evaluate:

(make-instance 'capi:list-panel :items '(1 2 3 4))

2. Choose Values > Inspect from the Listener's menu bar to see the Inspector tool window illustrated in Inspector.

Note that you have not displayed the list-panel on screen yet. You will do that in a few minutes.

Another way to inspect the current object (that is, the value of cl:*) in the Listener is the keystroke Ctrl+C Ctrl+I.

A general way to inspect the current object in most of the LispWorks tools is to click the button.

Inspector

180

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

17.2 Description of the Inspector tool

The Inspector has the following areas:

• At the top of the Inspector, the tab of the main view shows the type of the object being inspected. There may be other
views depending on the type of this object. For class instances, there is a Local Slots view.

• A Filter area provides a way of filtering out those parts of an object that you are not interested in.

• A list of attributes and values shows the contents of the object.

17.2.1 Adding a Listener to the Inspector

A small listener pane can be added to the Inspector tool, allowing you to evaluate Common Lisp forms in context, without
having to switch back to the main Listener tool itself. To add the listener pane to the Inspector, choose Show Listener from
the context menu in the attributes and values area.

17.3 Filtering the display

Sometimes an object may contain so many items that the list is confusing. If this happens, use the Filter box to limit the
display to only those items you are interested in.

This example below (continued from 17.1 Inspecting the current object) shows you how to filter the attributes list so that
the only slots displayed are those you are interested in.

Type rep in the Filter box.

Using filters to limit the display in the Inspector

17 The Inspector

181

You can immediately see the slots with names that include "rep". The names of the slots, together with their slot values for
the object being inspected, are displayed in the attributes list. For example, the representation slot currently contains nil.

17.3.1 Updating the display

In some circumstances your object might get modified while you are inspecting it, so you should be aware that the inspector
display might need to be refreshed. To see this in the example continued from 17.3 Filtering the display:

1. In the Listener tool call (capi:contain *), where the value of * should be the list-panel instance that you are
inspecting.

2. In the Inspector choose the command Window > Refresh or click the button. The Inspector should now appear as in
The filtered inspector display, refreshed below.

The filtered inspector display, refreshed

Notice that the representation slot no longer has value nil. The list-panel instance has been modified by calling
capi:contain, and the Inspector has been updated to show the new slot value.

17.4 Examining objects

The attributes and values list is the most interesting part of the Inspector. Each item in this list describes an attribute of the
inspected object by displaying its name (the first field in each entry) and the printed representation of its value (the second
field). For example, the inspection of a CLOS object yields a list of its slots and their values. The description is called an
inspection.

When inspecting instances of CLOS classes, you can choose to display only those slots which are local to the class. By
default, all slots are displayed, including those inherited from superclasses of the class of the inspected object.

17 The Inspector

182

Continuing from the example 17.3.1 Updating the display:

1. Click to remove the filter.

2. Select the Local Slots tab.

Several slots defined locally for a list-panel are listed.

Inspector showing local slots of a CLOS instance

As well as CLOS instances, other objects including lists and hash tables have multiple views available in the Inspector. For
example, a list can be viewed as a plist, alist, cons or list if it has the appropriate structure.

17.5 Operating upon objects and items

The Object and Slots submenus allow you to perform the standard action commands on either the object being inspected, or
the slot values selected in the main list. The commands available are largely identical in both menus, and so are described
together in this section.

17.5.1 Examination operations

The standard action commands are available in both the Object and Slots menus, allowing you to perform a variety of
operations on the current object or any items selected in the list. For full details of the standard action commands, see 3.8
Performing operations on selected objects.

17 The Inspector

183

17.5.1.1 Example

Consider the following example, where a closure is defined:

(let ((test-button (make-instance 'capi:button)))
 (defun is-button-enabled ()
 (capi:button-enabled test-button)))

This has defined the function is-button-enabled, which is a closure over the variable test-button, where the value of
test-button is an instance of the capi:button class.

1. Enter the definition of the closure shown above into a Listener.

2. Choose Values > Inspect.

The Inspector examines the symbol is-button-enabled.

3. Click on the FUNCTION slot to select the closure.

4. Choose Slots > Inspect to inspect the value in the selected slot.

The closure is inspected.

17.5.1.2 Recursive inspection

You can also double-click on an item in the attributes list to inspect its value. Most users find this the most convenient way to
recursively inspect objects.

To return to the previous inspection, choose History > Previous or click in the toolbar.

17.5.2 Examining attributes

The Slots > Attributes submenu allows you to apply the standard action commands (described in 3.8.1 Operations
available) to the attributes rather than the values of those attributes.

For example, the Slots > Attributes > Inspect command causes the Inspector to view the attributes, rather than the values, of
the selected slots. This is useful when inspecting hash tables or lists, since the attributes (keys) might be composite objects
themselves.

17.5.3 Tracing slot access

The Slots > Trace submenu provides four commands. When inspecting a CLOS object, code which accesses the selected slot
may be traced using these commands.

Break on Access causes a break to the debugger if the slot is accessed for read or write, either by a defined accessor or by
slot-value.

Break on Read causes a break to the debugger if the slot is accessed for read, either by a defined accessor or by
slot-value.

Break on Write causes a break to the debugger if the slot is accessed for write, either by a defined accessor or by
slot-value.

Untrace turns off tracing on the selected slot.

The Object > Trace submenu provides the same four options, but these commands control the tracing of all the slots in the
object.

17 The Inspector

184

http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm

17.5.4 Manipulation operations

As well as examining objects in the Inspector, you can destructively modify the contents of any composite object.

This sort of activity is particularly useful when debugging; you might inspect an object and see that it contains incorrect
values. Using the options available you can modify the values in the slots, before continuing execution of a program.

Choose Slots > Set to change the value of any selected slots. A dialog appears into which you can type a new value for the
items you have selected. Previously entered values are available via a dropdown in this dialog.

Choose Slots > Paste to paste the contents of the clipboard into the currently selected items.

17.5.4.1 Example

This example takes you through the process of creating an object, examining its contents, and then modifying the object.

1. Create a button as follows:

(setq button1 (make-instance 'capi:button))

2. Choose Values > Inspect in the Listener to inspect the button in the Inspector.

3. In the Listener, use the CAPI accessor button-enabled to find out whether button1 is enabled.

(capi:button-enabled button1)

This returns t. So we see buttons are enabled by default. The next step is to destructively modify button1 so that it is
not enabled, but first we will make the Inspector display a little simpler.

4. Choose LispWorks > Preferences... and select Inspector in the list on the left side of the Preferences dialog. You can
now change the current package of Inspector tools.

5. In the Package box, replace the default package name with CAPI and click OK.

This changes the process package of the Inspector to the CAPI package, and the package name disappears from all the
slots listed. This makes the display a lot easier to read.

6. In the Inspector, type enabled into the Filter box.

Button objects have a large number of slots, and so it is easier to filter out the slots that you do not want to see than to
search through the whole list. After applying the filter, only one slot is listed.

7. Select the slot enabled.

8. Choose the Slots > Set... menu item.

A dialog appears into which you can type a new value for the slot enabled.

Entering a new slot value

17 The Inspector

185

9. Note that previously entered forms are available via a dropdown in this dialog. Enter nil (or select it from the history)
and click on OK.

The attributes and values area shows the new value of the enabled slot.

10
.

Click on the button. This removes the filter and displays all the slots once again.

11
.

To confirm that the change happened, type the following in the Listener. You should be able to recall the last command
using Alt+P or History > Previous.

(capi:button-enabled button1)

This now returns nil, as expected.

The next part of this example shows you how you can modify the slots of an object by pasting in the contents of the
clipboard. This example shows you how to modify the text and font of button1.

12
.

Type the following into the Listener and then press Return:

"Hello World!"

13
.

Choose Values > Copy to copy the string to the clipboard.

14
.

Select the TEXT slot of button1 in the Inspector.

15
.

Choose Slots > Paste to paste the "Hello World!" string into the text slot of button1.

This sets the text slot of button1 to the string.

16
.

Enter the following into the Listener and press Return:

(let ((font (capi:simple-pane-font button1)))
 (if font
 (gp:find-best-font
 button1
 (apply 'gp:make-font-description
 (append (list :size 30)
 (gp:font-description-attributes
 (gp:font-description
 (capi:simple-pane-font button1))))))
 (gp:make-font-description :size 30)))

This form simply calculates a large font object suitable for the button object.

17
.

Choose Values > Copy to copy the font to the clipboard.

18
.

Select the FONT slot of button1 in the Inspector.

19
.

Choose Slots > Paste to paste the font into the font slot of button1.

17 The Inspector

186

20
.

Confirm the effect of these changes by displaying the button object. To do this, choose Object > Listen.

This transfers the button object back into the Listener. As feedback, the string representation of the object is printed in
the Listener above the current prompt. The object is automatically transferred to the * variable so that it can be operated
on.

21
.

In the Listener, type the following:

(capi:contain *)

This displays a window containing the button object. Note that the text now reads "Hello World!", as you would expect, and
that the font size is larger than the default size size for buttons. Note further that you cannot click on the button; it is not
enabled. This is because you modified the setting of the enabled slot in the earlier part of this example.

17.5.5 Copying in the Inspector

You can easily copy objects in the inspector, ready for pasting into other tools.

To copy the inspected object itself use Object > Copy.

To copy a slot value use Slots > Copy.

To copy an attribute use Slots > Attributes > Copy.

Similarly you can use Object > Clip, Slots > Clip or Slots > Attributes > Clipto place the object itself, a slot value or an
attribute on the Object Clipboard, so that you can conveniently retrieve them later. See 8 The Object Clipboard for details.

17.6 Configuring the Inspector

The Inspector Preferences allows you to set different display options including the standard options for sorting items in the
main list, displaying package information and controlling display of the Inspector toolbar, together with some additional
options specific to the Inspector. To do this, raise the Preferences dialog using one of the methods described in 3.2 Setting
preferences and select Inspector in the list on the left side of the dialog.

17 The Inspector

187

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

The General tab of the Inspector Preferences

Choose the sort option that you require from those listed in the Sort panel:

By Item Sorts items alphabetically according to the printed representation of the item.

By Name Sorts items alphabetically according to their names. This is the default setting.

By Package Sorts items alphabetically according to the packages of the name field.

Unsorted Leaves items unsorted. This displays them in the order they were originally defined.

In the Package box, specify the name of the process package for the Inspector. Select Show Package Names if you want
package names to be displayed in the Inspector. See 3.7 Displaying packages for more details.

The Maximum panel contains options to let you configure the amount of information displayed in the Inspector.

Choose a value from the Attribute Length drop-down list box to limit the length of any attributes displayed in the main list
(that is, the contents of the first column in the list). The default value is 100 characters, and the minimum allowable value is
20 characters.

Choose a value from the Items drop-down list box to limit the number of items displayed in the main list. By default, 500
items are shown.

If you inspect an object that has more than the maximum number of items, then the excess items are grouped together in a list
which itself becomes the last item displayed in the main list. Double-clicking on this inspects the remaining items for the
object.

If necessary, the Inspector splits any remaining items into several lists, all linked together in this fashion. For instance, if you
limit the maximum number of items to 10, and inspect an object with 24 items, the Inspector displays the first 10, together
with an 11th entry, which is a list containing the next ten items. Double-clicking on this shows the next ten items, together
with an 11th entry, which is a list containing the last four items. This is illustrated in Displaying an object with more items
than can be displayed below.

17 The Inspector

188

Displaying an object with more items than can be displayed

17.7 Customizing the Inspector

The Inspector Preferences provides two additional options in the listener view.

The Listener tab of the Inspector Preferences

These options control the interaction between the listener pane of the Inspector, if it has one, and the Inspector itself.

See 17.2.1 Adding a Listener to the Inspector for details of how to add a listener pane in the Inspector.

Check Bind $ to the current inspector object to bind the variable $ to the current object in the Inspector in the listener.

Check Automatically inspect listener values to inspect listener values automatically.

Both these options are checked by default.

17.8 Creating new inspection formats

There is a default inspection format for each Lisp object.

The Inspector tool can be customized by adding new inspection formats. To do this, you need to define new methods on the
generic function get-inspector-values.

17 The Inspector

189

get-inspector-values takes two arguments: object and mode, and returns 5 values: names, values, getter, setter and
type.

object The object to be inspected.

mode This argument should be either nil or eql to some other symbol. The default format for
inspecting any object is its nil format. The nil format is defined for all Lisp objects, but it
might not be sufficiently informative for your classes and it may be overridden.

names The slot-names of object.

values The values of the slots corresponding to names. The Inspector displays the names and values in
two columns in the scrollable pane.

getter This is currently ignored. Use nil.

setter This is a function that takes four arguments: an object (of the same class as object), a slot-name,
an index (the position of the slot-name in names, counting from 0), and finally a new-value. (It is
usual to ignore either the slot-name or the index.) This function should be able to change the
value of the appropriate slot of the given object to the new-value.

type This is the message to be displayed in the message area of the Inspector. This is typically either
mode or - if mode is nil - then the name of the class of object.

17.8.1 Example

Consider the following implementation of doubly-linked lists.

(in-package "DLL")

(defstruct (dll (:constructor construct-dll)
 (:print-function print-dll))
 previous-cell
 value
 next-cell)

(defun make-dll (&rest list)
 (loop with first-cell
 for element in list
 for previous = nil then cell
 for cell = (construct-dll :previous-cell cell
 :value element)
 doing
 (if previous
 (setf (dll-next-cell previous) cell)
 (setq first-cell cell))
 finally
 (return first-cell)))

(defun print-dll (dll stream depth)
 (declare (ignore depth))
 (format stream "#<dll-cell ~A>" (dll-value dll)))

You can inspect a single cell by inspecting the following object:

(dll::make-dll "mary" "had" "a" "little" "lamb")

The resulting Inspector shows three slots: dll::previous-cell with value nil, value with value "mary" and

17 The Inspector

190

http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm

dll::next-cell with value #<dll-cell had>.

In practice, you are more likely to want to inspect the whole doubly-linked list in one window. To do this, define the
following method on get-inspector-values.

(in-package "DLL")

(defun dll-root (object)
 (loop for try = object then next
 for next = (dll-previous-cell try)
 while next
 finally
 (return try)))

(defun dll-cell (object number)
 (loop for count to number
 for cell = object then (dll-next-cell cell)
 finally
 (return cell)))

(defmethod lw:get-inspector-values ((object dll)
 (mode (eql 'follow-links)))
 (let ((root (dll-root object)))
 (values
 (loop for cell = root then (dll-next-cell cell)
 for count from 0
 while cell
 collecting count)
 (loop for cell = root then (dll-next-cell cell)
 while cell
 collecting (dll-value cell))
 nil
 #'(lambda (object key index new-value)
 (declare (ignore key))
 (setf (dll-value (dll-cell (dll-root object) index)) new-value))
 "FOLLOW-LINKS")))

Inspecting the same object with the new method defined displays a new tab in the Inspector Follow Links. This shows five
slots, numbered from 0 to 4 with values "mary" "had" "a" "little" and "lamb".

The following example adds another method to get-inspector-values which inspects cells rather than their value slots.
The cells are displayed in a Follow Cells tab of Inspector. The setter updates the next-cell. Use this new mode to inspect
the "lamb" cell - that is, double-clink on the "lamb" cell in the Follow Cells tab - and then set its next-cell slot to
(make-dll "with" "mint" "sauce").

(in-package "DLL")

(defmethod lw:get-inspector-values
 ((object dll) (mode (eql 'follow-cells)))
 (let ((root (dll-root object)))
 (values
 (loop for cell = root then (dll-next-cell cell)
 for count from 0
 while cell
 collecting count)
 (loop for cell = root then (dll-next-cell cell)
 while cell
 collecting cell)
 nil
 #'(lambda (object key index new-value)

17 The Inspector

191

 (declare (ignore key))
 (setf (dll-next-cell (dll-cell (dll-root object) index)) new-value))
 "FOLLOW-CELLS")))

The extended sentence can now be inspected in the follow-links mode.

17 The Inspector

192

18 The Symbol Browser

18.1 Introduction

The Symbol Browser allows you to view symbols in your LispWorks image found by a match on symbol names, in a manner
analogous to the Common Lisp function apropos but with additional functionality.

You can restrict the search to specified packages. You can then filter the list of found symbols based on their symbol name,
restrict it to those symbols with function or variable definitions and so on, and restrict it based on the symbols' accessibility.

The Symbol Browser also displays information about each selected symbol and allows you to perform operations on the
symbol or objects associated with it, including transferring these to other tools in the LispWorks IDE by using standard
commands.

To raise a Symbol Browser, choose Window > Tools > Symbol Browser or click in the LispWorks toolbar.

Also the editor command Esc X Apropos raises a Symbol Browser tool using the supplied substring to match symbol
names.

Also the standard action command Browse Symbols Like is available in Context menus and also in the Expression menu of
editor-based tools. This command raises a Symbol Browser using the current symbol to match symbol names.

18.2 Description of the Symbol Browser

193

http://www.lispworks.com/documentation/HyperSpec/Body/f_apropo.htm

The Symbol Browser

The Symbol Browser has five main areas.

18.2.1 Search Settings

The main search setting is the Regexp: box.

Enter a string or regular expression in the Regexp: box and press Return or click the button. This will match symbol
names of interned symbols in a similar way to apropos, except that it is a case-insensitive regular expression match.

The remainder of this section describes the other search settings.

18 The Symbol Browser

194

http://www.lispworks.com/documentation/HyperSpec/Body/f_apropo.htm

18.2.1.1 Packages

By default symbols in all packages are listed, but you can restrict the search to certain packages by clicking the Select
Packages... button. This raises a dialog which you use in just the same way as the Profiler's Selected Packages dialog - see
23.4.1.2 Choosing packages for instructions.

When you have selected packages only those symbols whose home package is amongst the selected packages are shown,
unless Accessibility (see 18.2.1.3 Accessibility) is set to All, in which case symbols inherited by the selected packages are
also shown.

18.2.1.2 Type

By default all symbols found are displayed but you can restrict this to functions, classes, structures, variables, constants,
keywords or others (meaning the complement of all these subsets). If you wish to see, for instance, only those symbols with a
function or macro definition then select Functions in the Type option pane.

18.2.1.3 Accessibility

You can also restrict the display to just those symbols which are present, external or internal in their home package. Select
the appropriate item in the Accessibility option pane:

All Show all accessible symbols in the selected packages.

Present Show all present symbols in the selected packages.

Externals Only Show only external symbols in the selected packages.

Internals Only Show only internal symbols in the selected packages.

18.2.2 Filter area

The filter area allows you to filter the display of the symbols list in the same way as other tools. See 3.12 Filtering
information for details.

18.2.3 Symbols list

The symbols list displays the matched symbol names alongside the name of their home package. You can sort the list by
clicking on the Home Package or Name header at the top of each column.

Select an item in the symbols list to display information about the symbol in the Description and Documentation areas, or to
perform an operation on it. You may select multiple symbols, but in this case only the description and documentation for the
first selected symbol is displayed.

You can transfer the selected symbol or symbols to other tools, for example by Symbol > Listen or Symbol > Inspect.

To unintern the selected symbol or symbols, choose Symbol > Unintern....

18.2.4 Description area

When you select an item in the Symbols list, various properties of that symbol are displayed in the Description area as
appropriate. These can include:

Home Package The name of the symbol's home package and an indication of whether it is external or internal.

Name The symbol name

18 The Symbol Browser

195

Definitions The dspec class names for any definitions known to the system.

Visible In The names of the packages (other than the home package) that the symbol is visible in.

Function The function or macro function.

Lambda List The lambda list of the function or macro, if known to the system.

Plist The symbol plist, if non-nil.

Value The value of a variable or constant.

Class The class name, representing the class object.

Select an item in the Description list to perform an operation on it. For example, if the symbol has a class definition, you can
select the Class: item and do Description > Listen to transfer the class object to the Listener tool.

18.2.5 Documentation area

When you select an item in the Symbols list, documentation known to the system is displayed in the Documentation area.

Note: the documentation shown is that returned by the Common Lisp function documentation.

18.3 Configuring the Symbol Browser

Using the Symbol Browser Preferences, shown in Symbol Browser Preferences below, you can configure some properties
of the tool. Choose LispWorks > Preferences... or click and select Symbol Browser in the list on the left side of the
Preferences dialog.

Symbol Browser Preferences

To configure the default sort order for the Symbols list, select Unsorted, By Name or By Package under Sort.

To configure the display of package names in the Description area, alter the Package settings as described in 3.7 Displaying
packages.

You can control whether the Symbol Browser displays the history toolbar by the option Show Toolbar, as described in 3.1.8
Toolbar configurations.

Click OK in the Preferences dialog to see your changes in the Symbol Browser tool and save them for future use.

18 The Symbol Browser

196

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

19 The Interface Builder

The interface builder is not supported in LispWorks for Macintosh.

197

20 The Listener

The Listener is a tool that lets you evaluate Common Lisp expressions interactively and immediately see the results. It is
useful for executing short pieces of Common Lisp, and extensive use is made of it in the examples given in this manual. This
chapter describes all the facilities of the Listener.

20.1 The basic features of a Listener

A Listener is created automatically when you start the LispWorks IDE. You can also create a Listener yourself by choosing
Window > Tools > Listener or click on in the LispWorks toolbar.

Listener

In the Listener view, the main area of the Listener contains a prompt at the left side of the window.

Rather like the command line prompt in a Terminal.app window, this prompt helps you identify the point in the Listener at
which anything you type is evaluated. It may also contain other useful information, by default this is the current package and
the current number in the command history list. If your Listener is in the debugger, as Listener, the prompt also contains a
colon followed by an integer indicating how many debugger levels have been entered.

In this chapter, the prompt is shown in most examples simply as PROMPT >.

You can click the Output tab to display the output view of the Listener; this view displays any output that is created by the
Listener, or any child processes created from the Listener..

To familiarize yourself with the Listener, follow the instructions in the rest of this chapter, which forms a short lesson. Note

198

that, depending on the nature of the image you are using, and the configuration that the image has been saved with, the
messages displayed by Lisp may be different to those shown here.

20.2 Evaluating simple forms

1. Type the number 12 at the prompt, and press Return.

In general, assume that you should press Return after typing something at the prompt, and that you should type at the
current prompt (that is, the one at the bottom of the screen). In fact, the latter is not always necessary; 20.10 Execute
mode describes how to move the cursor to different places, and thus you may not always be on the current prompt.

Any Common Lisp form entered at the prompt is evaluated and its results are printed immediately below in the Listener.

When Common Lisp evaluates a number, the result is the number itself, and so 12 is printed out:

PROMPT > 12
12

PROMPT >

When results are printed in the Listener, they start on the line following the last line of input. The 12 has been printed
immediately below the first prompt, and below that, another prompt has been printed.

2. Type * at the current prompt.

PROMPT > *
12

PROMPT >

The variable * always has as its value the result of the previous expression; in this case, 12, which was the result of the
expression typed at the first prompt. For a full description, see the Common Lisp HyperSpec. This is an HTML version
of the ANSI Common Lisp standard which is supplied with LispWorks.

3. Type (setq val 12) at the current prompt.

PROMPT > (setq val 12)
12

PROMPT >

The expression sets the variable val to 12. The result of evaluating the form is the value to which val has been set, and
thus the Listener prints 12 below the form typed at the prompt.

This is exactly the same behavior as before, when you typed a number it was evaluated and the result printed in the
Listener. What is different this time, of course, is that Lisp has been told to "remember" that 12 is associated with val.

4. Type val.

The form is evaluated and 12 is printed below it.

5. Type (+ val val val).

The form, which computes the sum of three vals, is evaluated, and 36 is printed below it.

20 The Listener

199

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm

20.3 Re-evaluating forms

If you change val to some other number, and want to know the sum of three vals again, you can avoid re-typing the form
which computes it. To see how this is done, follow the instructions below.

1. Type (setq val 1).

The variable val is now set to 1.

2. Press Esc P or choose History > Previous or click .

PROMPT > (setq val 1)

The form you previously typed appears at the prompt. At this point, you could edit this form and press Return to
evaluate the edited form. For the moment, just carry on with the next instruction.

3. Press Esc P again, and then press Return.

PROMPT > (+ val val val)
3

PROMPT >

Pressing Esc P a second time displayed the second to last form that you evaluated. This time, pressing Return immediately
afterwards simply re-evaluates the form. Note that you could have edited the recalled form before evaluating it. You can use
Esc P repeatedly, recalling any form that you have evaluated in the current session.

This time the form evaluates to the number 3, because the value of val was changed in the interim.

20.4 The debugger prompt and debugger level

When you get an error by evaluating a form in the Listener, LispWorks enters the debugger. The first debugger prompt
contains a colon followed by the integer 1, indicating that Lisp is 1 level deep in the debugger.

Subsequent errors in the debugger increment the debugger level:

CL-USER 57 > (/ 1 0)

Error: Division-by-zero caused by / of (1 0).
 1 (continue) Return a value to use.
 2 Supply new arguments to use.
 3 (abort) Return to level 0.
 4 Return to top loop level 0.

Type :b for backtrace or :c <option number> to proceed.
Type :bug-form "<subject>" for a bug report template or :? for other options.

CL-USER 58 : 1 > (/ 2 0)

Error: Division-by-zero caused by / of (2 0).
 1 (continue) Return a value to use.
 2 Supply new arguments to use.
 3 (abort) Return to level 1.
 4 Return to debug level 1.
 5 Return to level 0.
 6 Return to top loop level 0.

Type :b for backtrace or :c <option number> to proceed.
Type :bug-form "<subject>" for a bug report template or :? for other options.

20 The Listener

200

CL-USER 59 : 2 >

After fixing the cause of an error you should exit from the debugger, for example by entering :a to invoke the abort restart. If
you do not exit, then the next time you get an error you will be nested more deeply in the debugger, which is usually not
desirable. Try to avoid this.

Note: If you reach debugger level 9 then LispWorks opens a console window to run the debugger (because it assumes that the
IDE is broken). In this situation you can enter the :top command and then minimize the console window to restore the IDE
Listener. Closing the console window will terminate LispWorks without any warning.

20.5 Interrupting evaluation

The button interrupts evaluation in the Listener. The break gesture key stroke Command+Ctrl+, can also be used.

This is useful for stopping execution in the middle of a loop, or for debugging. When the interrupt is processed, the debugger
is entered, with a continue restart available.

If the Listener is not evaluating a form, then the Process Browser will be opened allowing you to interrupt a background
process.

20.6 The History menu

The forms and commands typed at previous prompts are stored in the history list of the Listener. It is so named because it
records all the forms and commands you have typed into the Listener. Many other command line systems have a similar
concept of a history. Each form or command in the history is known as an event.

You can obtain a list of up to the last ten events in the history by displaying the History > Items menu. To bring a previous
event to the prompt, choose it from this menu.

For more information about history lists in the LispWorks IDE, see 3.5 The history list.

20.7 The Expression menu

The Expression menu lets you perform operations on the current expression, that is, the symbol in which the cursor currently
lies. It behaves in exactly the same way as the Expression menu in the Editor tool. See 12.13.2 Current buffers,
definitions and expression for details.

Choose Expression > Class to look at the class of the current expression in a Class Browser. See 7 The Class Browser for
full details about this tool.

Choose Expression > Find Source to search for the source code definition of the current expression. If the definition is
found, the file is displayed in the editor and the definition is highlighted. See 12 The Editor for an introduction to the editor.
Note that you can find only the definitions of symbols you have defined yourself - those for which you have evaluated or
compiled the source code - not those provided by the system.

Choose Expression > Documentation to display the Common Lisp documentation (that is, the result of the function
documentation) for the current expression. If such documentation exists, it is printed in a help window.

Choose Expression > Arguments to print the lambda list of the current expression in the echo area, if it is a function, generic
function or method. This is similar to using the keystrokes Esc =, except that the current expression is automatically used.

Choose Expression > Value to display the value of the current expression in the echo area.

Choose Expression > Inspect Value to inspect the value of the current expression in the Inspector tool. If the value is nil, a
message is printed in the echo area.

20 The Listener

201

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

Choose Expression > Toggle Breakpoint to add or remove a stepper breakpoint on the current expression. See for
information about using the Stepper tool.

Choose Expression > Evaluate Region to evaluate the Lisp code in the current region. You must make sure you have marked
a region before choosing this command; see 12.11.1 Marking the region. Whether you use the mouse or keyboard
commands to mark a region does not matter.

Choose Expression > Compile Region to compile the Lisp code in the current region.

Choose Expression > Macroexpand to macroexpand the current form. The macroexpansion is printed in the output view,
which is displayed automatically. Click the Output tab to redisplay the output at any time.

Choose Expression > Walk to walk the current form. This performs a recursive macroexpansion on the form. The
macroexpansion is printed in the output view, which is displayed automatically. Click the Output tab to redisplay the output
at any time.

Choose Expression > Trace to display a menu of trace commands which can be applied to the current expression. See 3.10
Tracing symbols from tools for full details.

Choose Expression > Function Calls to browse the current expression in a Function Call Browser. See 14 The Function
Call Browser for more details.

Choose Expression > Generic Function to browse the current expression in a Generic Function Browser. This command is
only available if the current expression is a generic function. See 15 The Generic Function Browser for more details.

Choose Expression > Browse Symbols Like to view symbols containing the current expression in a Symbol Browser. This
command is analogous to cl:apropos. See 18 The Symbol Browser for more details.

20.8 The Values menu

The Values menu lets you perform operations on the results of the last expression entered at the Listener prompt. The values
returned from this expression are referred to as the current values.

The menu is not available if the most recent input was not a Common Lisp form. This is because the evaluation of the last
expression entered must have produced at least one value to work on.

The Values menu gives you access to the standard action commands described in 3.8 Performing operations on selected
objects.

Note that the most commonly used of the standard action commands are available from the toolbar. For instance, to inspect
the current values, click the button.

20.9 The Debug menu

This menu allows you to perform command line debugger operations upon the current stack frame. The menu is only
available when the debugger has been invoked by some activity within the Listener.

Some of the most commonly-used command line debugger commands are available from the Debug menu. You can also
invoke the debugger tool from this menu.

Choose Debug > Restarts to display a submenu containing all the possible restarts for the debugger, including the abort and
continue restarts. Choose any of the commands on this submenu to invoke the appropriate restart. Note that the continue and
abort restarts are also available on the toolbar.

Choose Debug > Listener > Backtrace to produce a backtrace of the error.

Choose Debug > Listener > Bindings to display information about the current stack frame.

20 The Listener

202

http://www.lispworks.com/documentation/HyperSpec/Body/f_apropo.htm

Choose Debug > Frame > Find Source to find the source code definition of the function at the current call frame and display
it in an editor.

Choose Debug > Listener > Next to move to the next call frame in the stack.

Choose Debug > Listener > Previous to move to the previous call frame in the stack.

Choose Debug > Start GUI Debugger to invoke a debugger tool on the current error. See 10 The Debugger Tool, for full
details about using this tool.

Choose Debug > Report Bug to report a bug in LispWorks.

You can also invoke any of the commands from this menu by typing keyboard commands into the Listener itself. See the
LispWorks® User Guide and Reference Manual for more details.

20.10 Execute mode

The Listener is actually a special type of editor window, which is run in a mode known as execute mode. This means that, as
well as the normal keyboard commands available to the editor, a number of additional commands are available which are
especially useful when working interactively.

20.10.1 History commands

These commands are useful in the common situation where you need to repeat a previously entered command, or enter a
variant of it.

History First Emacs Key Sequence: Ctrl+C <

Replaces the current command by the first command.

History Kill Current Emacs Key Sequence: Ctrl+C Ctrl+K

Kills the current command when in a listener.

History Last Emacs Key Sequence: Ctrl+C >

Replaces the current command by the last command.

History Next Emacs Key Sequence: Esc N or Ctrl+C Ctrl+N

Displays the next event on the history list. That is, it replaces the current command by the next
one. This is not available if you are at the end of the history list.

History Previous Emacs Key Sequence: Esc P or Ctrl+C Ctrl+P

Displays the previous event on the history list: that is, it replaces the current command by the
previous one.

History Search Emacs Key Sequence: Esc R or Ctrl+C Ctrl+R

Searches for a previous command containing a given string, which it prompts for, and replaces
the current command with it.

History Search from Input

20 The Listener

203

Emacs Key Sequence: None

Searches the history list using current input. That is, it searches for a previous command
containing the string entered so far, and replaces the current command with it.

Repeated uses step back to previous matches.

History Select Emacs Key Sequence: Ctrl+C Ctrl+F

Presents a list of items in the command history, and replaces the current command with the
selection.

History Yank Emacs Key Sequence: Ctrl+C Ctrl+Y

Inserts the previous command into the current one, when in a listener.

20.10.2 Debugger commands

These commands are useful when in the debugger in the Listener:

Debugger Backtrace Emacs Key Sequence: Esc Shift+B

Gets a backtrace when in the debugger.

Debugger Abort Emacs Key Sequence: Esc Shift+A

Aborts in the debugger.

Debugger Continue Emacs Key Sequence: Esc Shift+C

Continues in the debugger.

Debugger Previous Emacs Key Sequence: Esc Shift+P

Displays the previous frame in the debugger.

Debugger Next Emacs Key Sequence: Esc Shift+N

Displays the next frame in the debugger.

Debugger Edit Emacs Key Sequence: Esc Shift+E

Edits the current frame in the debugger.

Debugger Print Emacs Key Sequence: Esc Shift+V

Prints the variables of the current frame in the debugger.

20.10.3 Miscellaneous Listener commands

Here are more commands, with their Execute mode key bindings, which are useful in the Listener.

Inspect Star Emacs Key Sequence: Ctrl+C Ctrl+I

Inspects the current value (that is, the value of the Common Lisp variable *).

20 The Listener

204

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

Inspect Variable Emacs Key Sequence: None

Inspects the value of an editor variable, which is prompted for.

Throw to Top Level Emacs Key Sequence: Esc K

Abandons the current input.

For more details about other keyboard commands available in the editor, see 12 The Editor, and the Editor User Guide.

20.10.4 Highlighting of results

The results of expression evaluation in the Listener are output as marked objects (except for trivial objects). That means they
have a special style, and you can operate on them by using the context menu and choosing items from the Marked Object
submenu, with items like the Values menu.

Note that, for the latest results, you also can also use Values menu in the menu bar. However, the Values menu is applicable
only to the latest results, and if there is more than one result (the form that was evaluated returned multiple values), then it is
applied to the list of the latest results. The Marked Object submenu of the context menu is applicable to all the results in the
Listener, and to each result individually.

The style used to display marked objects is called Marked Object and can be changed via Preferences... > Environment >
Styles > Styles Colors And Attributes. By default, marked objects are underlined.

The function prin1-marked-object can be used to print objects as marked objects in the Listener or Background Output
streams.

prin1-marked-object Function

lw-tools:prin1-marked-object object &optional output-stream => object

The function prin1-marked-object prints any Lisp object object to the stream designator output-stream similarly to
prin1, but when output-stream is a Listener or Background Output stream, it outputs object as a marked object. output-
stream defaults to the value of *standard-output*.

prin1-marked-object limits the length of the output to 1000000 (million) characters.

20.11 Setting Listener preferences

To set options for the Listener tool choose LispWorks > Preferences... or click , and select Listener in the list on the left
side of the Preferences dialog.

The Listener tab of the Listener Preferences

The Listener tab allows you to set the size of the stack used in the Listener's evaluation process. By default, this process has a
stack of size determined by the value of the variable system:*sg-default-size*. If you find you are getting stack
overflow errors in correct code that you enter at the Listener prompt, then increase the stack size. This setting takes effect for

20 The Listener

205

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_pr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm

subsequently created Listener windows and LispWorks sessions.

The Listener tab also allows you to control whether syntax coloring is applied to the input in a Listener when it first started
by checking Use syntax coloring initially. You can turn it off or on within the Listener using the Editor command Font Lock
Mode.

The other configurable aspects of the Listener are shared with the Editor and other tools, including:

• Emulation, including key input and cursor styles.

• The font.

• The text styles used to highlight selected text, color code and input, and so on.

To alter these, raise the Preferences dialog, select Environment in the list on the left side, and choose the Emulation or Styles
tab. See 3.2 Setting preferences for a description of these options.

20.12 Running Editor forms in the Listener

Suppose that you have code displayed in an Editor tool and you want a convenient way to run it in the Listener. Perhaps you
need to capture the return value, or perhaps ou want to test several variants by evaluating edited versions of that code. The
editor command Evaluate Last Form in Listener is useful in these cases.

20.13 Switching to and from other tools

To switch quickly from the Listener to another window, use Command+~. To return to the Listener, use Command+Shift+~.

These shortcuts cycle through all the windows in turn, and they work in any of the LispWorks IDE windows.

You might also find the tool accelerator keys useful. See 3.1.5.1 Tool accelerator keys.

20.14 Help with editing in the Listener

Two help commands are available to provide you with more information about editor commands which can be used in the
Listener.

Choose Help > Editing > Key to Command and type a key sequence to display a description of the extended editor command
it is bound to, if any.

Choose Help > Editing > Command to Key and supply an extended editor command to see the key sequence it is bound to, if
any.

For more details about the keyboard commands and extended editor commands available, see 12 The Editor.

20 The Listener

206

21 The Output Browser

The Output Browser is a simple tool that displays the output generated by your programs, and by operations such as
macroexpansion, compilation and tracing. You can create one by choosing Window > Tools > Output Browser or clicking
in the LispWorks toolbar or as described in 3.1.5 Displaying tools using the keyboard. The Output Browser shows the
Output Browser.

The Output Browser

The Output Browser has one main area that displays the output from the environment. Output usually consists mostly of
compilation, trace and macroexpansions, but can also include compiler explanations and output from other tools, such as the
Profiler. The main area is actually an editor window, so all the usual editor keyboard commands can be used in it. See 12 The
Editor for more details about these operations.

The Output Browser is invaluable when you are developing code, because it collects any output generated by your code. An
example of how to do this is given in 2.4 Viewing output.

Many other tools in the LispWorks IDE contain an output view, which you can display by clicking their Output tab. The
Output tab collects all the output generated by that tool. For instance, the System Browser has an Output tab that displays
compilation messages. The Editor tool's Output tab additionally displays macroexpansions. Note that the Output Browser is
the only tool which displays any output from your own code without any need for further action on your part.

Note: The Output Browser (and the Output tab of some tools) displays only the output from the LispWorks IDE. By default,
processes not associated with the tools write their output to the terminal stream.

207

21.1 Interactive compilation messages

Compilation messages are highlighted in the output, with errors, warnings and optimization hints each displayed in a unique
style. When the editor's cursor is within a compilation message, choose Find Source in the context menu to display the
source code where the condition occurred, in an Editor tool.

Compilation messages and the use of the context menu

You can also raise a Compilation Conditions Browser tool to view the errors and warnings directly from the output view, by
pressing Return as mentioned in the output shown above.

Another way to visit the source code where the condition occurred is the editor's Edit Recognized Source command which is
bound to Ctrl+X , (comma) in Emacs emulation.

21.1.1 Compilation message styles

The text styles used to highlight compilation messages in the output have these meanings and default appearance:

21 The Output Browser

208

Compilation message styles

Style Name Use Default appearance

Compiler Note Optimization hints :magenta foreground

Compiler Warning Warnings and other messages :orange3 foreground

Compiler Error Errors :red foreground

Compiler explanations are optimization hints generated by compiling code with the :explain declaration. See the
LispWorks® User Guide and Reference Manual for a description of the :explain declaration.

Note: You can changes the styles used to display compilation messages via Preferences... > Environment > Styles > Styles
Colors And Attributes.

21 The Output Browser

209

22 The Process Browser

The Process Browser allows you to view and control the processes in the LispWorks multiprocessing model. See the
LispWorks® User Guide and Reference Manual for more information about multiprocessing.

Note: The Lisp environment runs several distinct processes in the LispWorks multiprocessing model, one each running the
IDE, Listener evaluation, editor commands and so on. The whole of the LispWorks IDE runs in a single process. Each
LispWorks process corresponds to a system thread.

To create a Process Browser, choose Window > Tools > Process Browser or click in the LispWorks toolbar.

The Process Browser

The Process Browser consists of a main area in which all the current processes in the environment are listed, and a Filter area
which you can use to restrict the information displayed in the main area.

Like other filter areas, you can enter a string or a regular expression in the Filter to limit the display to only those items which
match your input, or the complement of this. See 3.12 Filtering information for more information about using the Filter
area.

210

Process browser

The toolbar buttons are labelled in Process browser. These buttons provide the same actions as the Process context menu:
Break, Stop, Unstop, Terminate, Debug, Inspect and Listen.

Notice that Terminate and Debug are disabled for certain system processes such as the Cocoa Event Loop. This is by design.

22.1 The process list

The main area contains a list of all the current processes in the Lisp image. Properties of each process are shown in the
columns Name, Priority and Status.

If you have many processes running, you can use the filter area to only list processes containing a given string. For example,
if you enter "Running" in the filter area, and click on then only processes that have the word "Running" in their description
will be shown.

The processes displayed in the main area can be sorted by clicking the relevant button above each column. For example, to
sort all listed processes by process priority, click on the Priority title button.

22.2 Process control

The Processes menu contains commands that let you control the execution of processes in the Lisp image. These same
commands are available using the toolbar buttons at the top of the Process Browser window or by using the context menu.
(Use the left mouse button or the arrow keys to select a process; the context menu is usually accessed by the right mouse
button.) Process commands act on the process that has been selected in the process list. You can select a process by clicking
on the line in the process list that contains the process name and status information or by using Tab and the arrow keys to
navigate to that line.

Choose Processes > Break to break the selected process. This breaks Lisp and gives you the opportunity to follow any of the

22 The Process Browser

211

normal debugger restarts.

Choose Processes > Terminate to terminate (kill) the selected process.

Choose Processes > Stop to stop the selected process. The process can be started again by choosing Processes > Unstop.

Choose Processes > Unstop to restart a process which has been stopped using Processes > Stop.

Choose Processes > Inspect to call up an Inspector tool to inspect the selected process. See 17 The Inspector for more
information on inspecting objects and processes.

Choose Processes > Listen to make the selected process be the value of * in a Listener tool. See 20 The Listener for more
information on using the Listener tool.

Choose Processes > Remote Debug to debug the current process in a Debugger tool.See 10 The Debugger Tool for more
information on using the Debugger tool.

Note: do not attempt to break, terminate, stop or debug system processes such as Editor Command Loop or Cocoa Event
Loop. This may make your environment unusable.

22.3 Other ways of breaking processes

In the Listener tool, you can break the evaluation process as described in 20.5 Interrupting evaluation.

You can break a process by calling the function mp:process-break.

22.4 Updating the Process Browser

The Process Browser updates itself automatically when a new process is created and when a process terminates.

In the initial configuration the Process Browser does not automatically update on any other event, so changes such as
processes sleeping and waking are not noticed immediately. There are two ways to ensure such changes are visible in the
Process Browser:

• You can do Window > Refresh to view the latest status displayed for each process, or:

• The Process Browser can be made to update automatically, as described in 22.5 Process Browser Preferences.

22.5 Process Browser Preferences

To display the Process Browser preferences, choose LispWorks > Preferences... or click , and select Process Browser in
the list on the left side of the Preferences dialog.

You can control whether the Process Browser displays the process operations toolbar by the option Show Toolbar on the
General tab, as described in 3.1.8 Toolbar configurations.

You can make the Process Browser update automatically at a predetermined frequency by setting the option Update
Frequency, as illustrated in the figure below. The update periods are in seconds.

22 The Process Browser

212

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

Configuring the Process Browser to update automatically

The option Automatic Update Delay determines a delay period (in seconds) after each automatic update of the Process
Browser. Any automatic update during this time is delayed until the end of the delay period.

Automatic updates occur when process are created, die or stop and when the scheduler affects the status of a process. That is
quite often too frequent to be useful. Automatic Update Delay limits the update to a reasonable frequency. To see the effect,
make sure the Process Browser is visible and run the following form with different settings of the delay:

(dotimes (x 1000)
 (mp:process-run-function
 (format nil "Process ~d" x)
 ()
 'sleep
 (/ x 200)))

22 The Process Browser

213

23 The Profiler

23.1 Introduction

The Profiler provides a way of monitoring Lisp functions during the execution of your code. It is likely that you can make
your code more efficient using the data that the Profiler displays.

The Profiler helps you to identify functions which are called frequently or are particularly slow. You should concentrate your
optimization efforts on these routines.

The Profiler gives you an easy way of choosing which functions you wish to profile, which code you want to run while
profiling, and provides you with a straightforward display of the results of each profile.

When code is being profiled, the Lisp process running that code is interrupted regularly at a specified time interval. At each
interruption, the Profiler scans the execution stack and records the name of every function found, including a note of the
function at the top of the stack. Moreover, a snapshot of the stack is recorded at each interruption, so we know not merely
how many times we reach a function call, but also how we reached that call.

When profiling stops (that is, when the code being profiled has stopped execution) the Profiler presents the data that it has
collected.

To create a Profiler, choose Window > Tools > Profiler or click in the LispWorks toolbar.

In the next section, we assume you are profiling a call to the function foo defined as follows:

(in-package "CL-USER")

(defun baz (l)
 (dotimes (i l)))

(defun quux (l)
 (dotimes (i l)))

(defun bar (n l)
 (dotimes (i n)
 (baz l))
 (dotimes (i n)
 (quux (floor l 2))))

(defun foo (n l)
 (bar n l))

23.2 Description of the Profiler

There are four tabs in the main body of the tool. The first three tabs (Call Tree, Cumulative and Stacked Tree) display the
current profiler information in the tool in different ways. The fourth tab (Code To Profile), contains an editor-pane where you
can type code and then profile it.

Note that the profiler information in the tool may come from various sources. It may be a result of profiling the code in the
Code To Profile tab or choosing Profiler > Start Profiling... or it can be the result of importing profiler information using the
items in the Profiler menu.

214

The Echo area allows interaction with editor commands, as in other tools.

The Profiler

23.2.1 Call Tree

The Call Tree tab shows a graph of functions called by the top level function call that was profiled. Each node represents a
function call. The graph edges are labelled according to the proportion of time spent in each function call. For example in
The Profiler, of all the time spent in function bar, most was spent in baz and the rest in quux. This allows you to see which
branches of the code dominate the total time spent.

When optimizing your code you will want to concentrate on the calls which take a large proportion of the time. The least
significant parts of the graph are removed from the display according to the percentage in the Hide calls below (%) box. You
can adjust this percentage simply by entering an integer and pressing Return.

When analysing the call tree to find the most significant branches, single callees (that is, functions which account for all of
the time spent by their caller) are not interesting. You can adjust the call tree to omit these functions from the displayed graph
by checking the Collapse singletons box.

A Description area optionally shows a description of a function in the profile data. You can show the description by clicking
on the Description >> button. The name, function object, lambda list, documentation string and source files of the selected
function are displayed. The context menu in the description area allows further operations. Hide the description area if you
wish by clicking on the Description << button.

23 The Profiler

215

The Profiler's Call Tree adjusted

23.2.2 Options in the context menu for viewing parts of the call graph

The context menu in the Call Tree and the Stacked Tree tabs allow you to view a subset of the call tree in various ways based
on the selected node.

Choosing Set Node As Root makes the selected node be the root of the displayed tree.

Choosing Set Function As Root makes the function associated with the selected node be the root of the displayed tree, by
merging all subtrees starting at the outermost occurrences of that function. Nodes above the outermost occurrences are not
displayed.

Note that the branches in the displayed tree for the selected function are merged across all branches in the whole tree for
matching functions and caller chains. For example, suppose the profiler sometimes saw function A calling function V calling
function W, (A>V>W), and at other times saw B>V>W>X, and other times saw C>V>Y>W. In the whole tree, each of these
call chains will be on separate branches because they start with different functions (A, B and C). However, if you set the
function V to be root of the tree, then underneath there will two children: one for W with a child X (merging the occurrences
of V>W in A>V>W and B>V>W>X) and one for Y with a child W (for the occurrence of V>Y in C>V>Y>W.).

Choosing Show Calls To Function [Inverted] creates an inverted tree with the function at its root. The children of the inverted
tree are the callers of that function and the branches are merged as for Set Function As Root tree. An inverted tree is a useful
way for exploring why a function seems to be on the stack more than expected.

Choosing Show calls to allocation functions [inverted] shows an inverted tree where the allocation functions are the roots,
making it easier to see where allocation happens.

Choose Show Whole Tree to display the entire call tree again.

23 The Profiler

216

Notes: These menus items set new values in the panes (the roots in the graph of the Call Tree tab and root in the stacked tree
of the Stacked Tree tab). They reset the history of scroll/zoom states in stacked tree. Using the History menu to move
between trees always resets to the whole tree. Currently there is no history of subtree settings.

23.2.3 Cumulative Results

The Profiler's Cumulative Results view

The Cumulative tab shows aggregated information about each function that includes the following information:

• The number of times each function was found on the stack by the profiler, both in absolute terms and as a percentage of
the total number of scans of the stack.

• The number of times each function was found on the top of the stack, both in absolute terms and as a percentage of the
total number of scans of the stack.

With a suitable profiler setup it also shows:

• The number of times each function being profiled was called.

Note: by default the Profiler does not count function calls, because this can distort results significantly in SMP LispWorks.
Therefore the Call# column shows 0 for each function. To make the Profiler count calls, check Call counter in the dialog
described in 23.4 Selecting what to profile:

The Filter box lets you restrict the display of information in the Results area.

23 The Profiler

217

23.2.4 Stacked Tree

The Profiler's Stacked Tree view

The results can also be displayed in capi:stack-tree pane. See the documentation for capi:stacked-tree for details
on how it works in the general. This capi:stacked-tree displays the same tree as the graph in Call Tree. When the tree
changes for any reason, both panes change to display the new tree. In particular, when using the context menu to display only
part of the tree, both panes display the same part.

In the Stacked Tree tab, the root node represents the total for all processes. Note that when profiling more than one process,
the percentage for all processes will typically be higher than 100%. The children of the root node are the processes that were
profiled, which correspond to the root nodes in Call Tree tab.

The Stacked Tree in general is easier to navigate than the Call Tree because it is more compact and has useful options for
zooming into specific regions.

The context menu in the Stacked Tree tab allow you to view a subset of the call tree in various ways based on the selected
node, as described in 23.2.2 Options in the context menu for viewing parts of the call graph.

A Description area optionally shows a description of a function in the profile data. You can show the description by clicking
on the Description >> button. The name, function object, lambda list, documentation string and source files of the selected
function are displayed. The context menu in the description area allows further operations. Hide the description area if you
wish by clicking on the Description << button.

23.2.5 Code To Profile

Use the large text box in the Code To Profile tab to enter the Lisp source code that you wish to profile. This text area is
actually an editor window, similar to those described in 12.8 Basic Editor commands.

23 The Profiler

218

Code may be placed in this window in three ways:

• Type it directly into the window.

• Paste it in from other editor windows in the environment.

• Paste it in from other applications.

Specify the package in which you want to run the code to be profiled using the Package box in the General tab of the Profiler
Preferences. To see this, choose LispWorks > Preferences... or click , and select Profiler in the list on the left side of the
dialog. If you are unsure, full details on how to do this can be found in 3.7.1 Specifying a package. Like all other tools in
the LispWorks IDE, the Profiler can have a particular package associated with it; the default package is CL-USER.

You can then profile it, using either by clicking the Profile toolbar button or the Profiler > Profile the 'Code To Profile'
menu item. This reads one form from the text box, evaluates it while profiling and then displays the make the result the
current profiler information in the tool.

Note: The Code To Profile tab only profiles the thread that is evaluating the form. It does not profile other threads. To profile
multiple threads, choose Profiler > Start Profiling... as described in 23.3 The Profiler menu and Profiler-specific toolbar
buttons.

By default, the Profiler switches to the Stacked Tree tab after profiler finishes. You can change this using the buttons under
When Code To Profile finishes profiling in the Profiler Preferences (see 23.7 Configuring the Profiler).

23.3 The Profiler menu and Profiler-specific toolbar buttons

The Profiler menu lets you modify the Profiler tool.

• Choosing Read Profiler Tree From File... reads a profiler tree from a file that you select. Normally this should have
.tree extension. The file is opened and the profiler tries to read a profiler tree from it. If successful, then the tree
becomes the current tree in the tool and is displayed.

Profiler tree files would normally be created either by calling hcl:save-current-profiler-tree or by choosing
Save Profiler tree. from the Profiler menu. In principle, they may be generated in some other way, provided that they
match the format that is described in "Profiler tree file format" in the LispWorks® User Guide and Reference Manual.

• Choosing Save Profiler Tree... saves the current tree to a file that you specify. If the file name does not have an
extension, the Profiler adds .tree (the same as hcl:save-current-profiler-tree).

Note the name of the tree is written to the file as well, so you may want to set the name beforehand by choosing Name
the current tree....

• Choosing Import Current Internal Tree imports the current internal profiler tree into the tool and displays it. The internal
tree is set either by a call to hcl:stop-profiling with :suspend nil (which is the default), or when
hcl:profile returns successfully.

Note that the current internal tree is the same tree that hcl:save-current-profiler-tree saves.

• Choosing Start Profiling... raises a dialog to configure profiling parameters and starts the profiler by calling
hcl:start-profiling. The initial settings in the dialog are from the previous time you raised it and clicked OK.

Use Stop Profiling and Import to stop profiling.

Note: profiling is a global operation, i.e. there can be only one profile operation at the same time, and it uses the last
global setting of profiler parameters.

You cannot click OK in the configuration dialog until you select some processes. Check the All processes box to profile
all processes or choose specific processes by clicking the Select processes button and optionally check the New
processes box to include processes created while profiling is running as well. This corresponds to the :processes
argument to hcl:start-profiling.

23 The Profiler

219

Check Profile waiting processes or Ignore processes inside a foreign call to collect information from processes when
they are waiting or inside a foreign call.

This action can also be done by clicking the Start Profiling toolbar button.

• Choosing Stop Profiling and Import stops the profiler by calling hcl:stop-profiling and then imports the profiler
tree, which makes it current, displayed tree in the tool.

This action can also be done by clicking the Stop Profiling toolbar button.

• Choosing Name The Current Tree... allows you to give the current tree a name.

The name is displayed in the message area at the bottom of the tool, is listed in the History menu, and is used when
saving the tree to a file.

• Choosing Set Profiling Parameters... allows you to select what is shown in the profiler. See 23.4 Selecting what to
profile for more details.

This action can also be done by clicking the Set Up Profiler toolbar button.

Compatibility note: This item replaces the Symbols... and Packages... buttons that used to be in the Code To Profile
frame of the Profiler in LispWorks 7.0 and earlier releases.

• Choosing Profile the 'Code To Profile' reads a form from the editor pane in the Code To Profile tab, and profiles it, in the
same way that hcl:profile does. The results of the profiling then become the current profiler information in the tool
and is displayed in the other tabs.

This action can also be done by clicking the Profile toolbar button.

Compatibility note: This item replaces the Profile button that used to be in the Code To Profile frame in LispWorks 7.0
and earlier releases.

23.4 Selecting what to profile

23 The Profiler

220

The Profiler's Set Profiling Parameters dialog

Choosing Profiler > Set Profiling Parameters... or clicking the Set Up Profiler toolbar button allows you to select what is
shown in the profiler, as for the function hcl:set-up-profiler described in the LispWorks® User Guide and Reference
Manual.

You can select values for keyword arguments of set-up-profiler:

Select packages :packages

Select symbols :symbols

Interval :interval

Profile GC code :gc

Call Counter :call-counter

Show unknown frames :show-unknown-frames

Select KW contexts :kw-contexts

You cannot click OK in the dialog until you select at least one package, symbol or KW context.

Note that "symbols" are actually function dspecs (see "Function dspecs" in the LispWorks® User Guide and Reference

23 The Profiler

221

Manual), so can also be setf functions and method names. KW contexts can be profiled only when KnowledgeWorks is
loaded.

Once you click the OK button, hcl:set-up-profiler is called with the keywords listed above and the values that you
have selected. See the documentation for hcl:set-up-profiler for details.

The effect of hcl:set-up-profiler is global and persistent, that is any profile operation in the same session (including
any calls to hcl:profile and hcl:start-profiling) will use the settings from the last call to
hcl:set-up-profiler. Thus using Set Profiling Parameters... and calling hcl:set-up-profiler will have the same
effect.

Typically it is only useful to select packages (and if you use KnowledgeWorks, maybe KW contexts). If you want to select
symbols, it is easier to type them in an editor, or write a function that computes the list, and then calls
hcl:set-up-profiler explicitly.

In the packages selection, checking All or None passes the keyword :all or :none respectively as the value of :packages.
Checking Selected passes a list of packages, which you can choose by clicking the "Choose packages.." button. When
Selected is checked, if no package is chosen, the dialog for choosing packages is raised immediately. In the Select KW
contexts selection, checking All passes t as the value of :kw-contexts.

23.4.1 Choosing the functions to profile

It is possible to keep track of every function called when running code, but this involves significant effort in determining
which functions are suitable for profiling and in keeping track of the results. To minimize this effort you should specify
which functions you want to profile. The profiler checks that these functions have indeed got function definitions and are
therefore suitable for profiling. For more information on the types of function that can be profiled, see 23.8 Profiling pitfalls.

There are two ways of specifying functions that you want to profile:

• Choose which individual functions you want to profile.

• Choose whole packages, all of whose functions are profiled.

23.4.1.1 Choosing individual functions

Click the button to the right of Select symbols to specify a list of Lisp functions that you want to profile. The dialog shown
in Select Symbols to Profile dialog appears.

23 The Profiler

222

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

Select Symbols to Profile dialog

This dialog displays the list of functions to be profiled.

• To add a function to the list, enter its name in the New Symbol text box and click .

• To remove a function from the list, select it from the list and click Remove.

• To remove several functions, select them all before clicking Remove.

Click OK when you have finished choosing symbols.

Note: while entering the function name in the New Symbol text box you can click click to use completion. This allows
you to select from a list of all symbol names which begin with the partial input you have entered. See 3.14 Completion for
detailed instructions.

23.4.1.2 Choosing packages

You may often want to profile every function in a package, or if you do not know which symbols to profile, you will want
profile all symbols in all packages.

23 The Profiler

223

You can select which packages to profile using the buttons in the Select packages area. Check the All button, which is initial
setting, to profile all symbols in all packages. Check the None button if you only want to select specific symbols to profile.
Check the Selected button if you want to choose specific packages to profile, which will display a dialog as shown in Select
Packages to Profile dialog. If Selected is already checked, then click the Choose packages button to change the selected
packages.

Select Packages to Profile dialog

The main part of this dialog consists of two lists:

• The Unselected Packages list shows packages in the Lisp image whose functions are not to be profiled.

• The Selected Packages list shows packages in the Lisp image whose functions are to be profiled.

A global function will be profiled if its symbol is visible in one of the selected packages.

To modify the Selected Packages list:

1. Consider whether one of these buttons offers what you need, or close to it:

23 The Profiler

224

All Selects all packages.

Note: There are significant processing overheads when profiling all functions in all packages,
and the results you get may include much unwanted information.

User Only Adds the "user" packages, which means packages that are not part of the LispWorks
implementation, or packages that are part of the implementation but you are allowed to add
definitions to them. Includes the CL-USER package.

User and CL Adds the "user" and CL packages.

User and Standard Adds the "user" packages along with those packages that are used by default (from the value of
hcl:*default-package-use-list*, which initially includes CL, HCL and LW).

Note: The Profiler tool assumes that packages not named in the value of
packages-for-warn-on-redefinition are user-defined.

2. Add to your Selected Packages list if necessary. You can add a single package in one of three ways:

• Type the package name in the Select Package box and press Return or click , or:

• Select the package in the Unselected Packages list and click on the >>> button, or:

• Double-click on the package in the Unselected Packages list.

3. Remove packages from the Selected Packages list if necessary. You can remove a single package in one of two ways:

• Select the package in the Selected Packages list and click on the <<< button, or:

• Double-click on the package in the Selected Packages list.

Also you can click the None button to clear the list of selected packages. Note that if you only want to profile a few
functions, you should do this by checking the None button in the main dialog and selecting symbols as described in
23.4.1.1 Choosing individual functions.

4. Finally, click OK to dismiss the dialog when you have finished selecting the packages whose functions you want to
profile, or click Cancel to cancel the operation. This also dismisses the dialog.

23.5 Format of the cumulative results

After you have run the profile, a four column table is printed in the large list in the Cumulative tab of the Results area. These
columns are laid out as follows:

Call# The call count of each function, that is, the number of times it was called during execution of the
code.

Stack#(%) The number of times the function was found on the stack when the Lisp process was interrupted.
The parenthesized figure shows the percentage of time the function was found on the stack.

Top#(%) The number of times the function was found on the top of the stack when the Lisp process was
interrupted. Again, the figure in brackets shows the percentage of time the function was found on
top of the stack.

Name The name of the function.

You can order the items in the list by clicking on the relevant heading button.

Selecting any item in the list displays a description of that function in the Description area. In addition, an item selected in
the main list can be acted upon by any relevant commands in the Function menu (or, equivalently, the main list's context

23 The Profiler

225

menu). For instance, if you select a generic function in the main list and choose Function > Generic Function, you can view
the generic function in a Generic Function Browser. This is consistent with many of the other tools in the environment.

The context menu also allows you to show the selected function in a tree. By default, the Profiler switches to the Stacked
Tree tab to show the tree. You can change this using the buttons under When Code To Profile finishes profiling in the Profiler
Preferences (see 23.7 Configuring the Profiler).

• Choosing Set Function As Root makes the function associated with the selected node be the root of the displayed tree,
by merging all subtrees starting at the outermost occurrences of that function.

• Choosing Calls To Function [Inverted] creates an inverted tree with the function at its root. The children of the inverted
tree are the callers of that function and the branches are merged as for Set Function As Root tree. An inverted tree is a
useful way for exploring why a function seems to be on the stack more than expected.

Double-clicking on an item in the Description list invokes an Inspector on the selected item. In addition, an item selected in
this area may be acted on by any relevant commands in the Description menu, as is the case with many other tools in the
environment. For instance, choose Description > Copy to copy the item selected in the Description list to the clipboard. See
3.8 Performing operations on selected objects for details on the commands available.

23.6 Interpreting the cumulative results

The most important columns in the Cumulative tab are those showing call count (Call#) and number of times on the top of the
stack (Stack#). Looking solely at the number of times a function is found on the stack (Stack#) can be misleading, because
functions which are on the stack are not necessarily using up much processing time. However, functions which are
consistently found on the top of the stack are likely to have a significant execution time. Similarly the functions that are
called most often are likely to have the most significant effect on the program as a whole.

23.7 Configuring the Profiler

You can configure the Profiler using the Preferences dialog. To do this, choose LispWorks > Preferences... or click to
display this dialog, and then select Profiler in the list on the left side of the dialog.

23 The Profiler

226

Profiler Preferences

23.7.1 Behavior of the Cumulative tab

You can change what happens after choosing Set Function As Root or Calls To Function [Inverted] from the context menu in
the Cumulative tab. The options under When setting a root in the Cumulative tab are:

Switch to Stacked Tree

Switch to the Stacked Tree tab.

Switch to Call Tree Switch to the Call Tree tab.

Do Not Switch The Cumulative Results tab remains visible.

23.7.2 Behavior after profiling finishes

You can change what happens when profiling in the Code To Profile tab finishes. The options under When Code To Profile
finishes profiling are:

Switch to Stacked Tree

23 The Profiler

227

Switch to the Stacked Tree tab.

Switch to Call Tree Switch to the Call Tree tab.

Switch to Cumulative Switch to the Cumulative tab.

Do Not Switch The Code To Profile tab remains visible.

23.8 Profiling pitfalls

It is generally only worth profiling code which has been compiled. If you profile interpreted code, the interpreter itself is
profiled, and this skews the results for the actual Lisp program.

Macros cannot be profiled because they are expanded during the compilation process.

23.8.1 Effects of random sampling

Always bear in mind that the numbers produced are from random samples, so you should be careful when interpreting their
meaning. The rate of sampling is always coarse in comparison to the function call rate, so it is possible for strange effects to
occur and significant events to be missed. For example, resonance may occur when an event always occurs between regular
sampling times. In practice, however, this is not usually a problem.

23.8.2 Recursive functions

Recursive functions need special attention. A recursive function may well be found on the stack in more than one place
during one interrupt. The profiler counts each occurrence of the function, and so the total number of times a function is found
on the stack may be greater than the number of times the stack is examined.

23.8.3 Structure accessors

You must take care when profiling structure accessors. These compile down into a call to a closure, of which there is one for
all structure setters and one for all structure getters. Therefore it is not possible to profile individual structure setters or getters
by name.

23.8.4 Consequences of restricted profiling

Even if you configure the Profiler to profile all the known functions of an application, it is possible that less than 100% of the
time is spent monitoring the top function. This is because an internal system function could be on the top of the stack at the
time of the interrupt.

If you configure the Profiler to omit certain functions then these will not be displayed in the Results area, and so the display
may not match what you expect from your source code.

23.8.5 Effect of compiler optimizations

With certain compiler settings code can be optimized such that the Profiler data does not appear to match your source code.
For example when a tail call is optimized, the tail-called function appears in the call tree as a child of the parent of the caller,
rather than as a child of its caller (just as in the debugger stack). Similarly code using funcall or apply may yield
confusing results. To prevent tail-call optimization, use compiler setting debug 3.

23 The Profiler

228

http://www.lispworks.com/documentation/HyperSpec/Body/f_funcal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_apply.htm

23.8.6 Effect of compiler transforms

The compiler may transform some functions such that they are present in the source code but not in the compiled code.

For example, the compiler transforms this source expression:

(member 'x '(x y z) :test #'eq)

into this compiled expression:

(memq 'x '(x y z))

Therefore function memq will appear instead of member in the profile results.

Similarly, you cannot profile inlined functions.

23.9 Some examples

The examples below demonstrate different ways in which the profiler can be configured and code profiled so as to produce
different sets of results. In each example, the following piece of code is profiled:

(dotimes (x 1000)
 (capi:make-container
 (make-instance 'capi:title-pane
 :text "Title")))

This is a simple form which makes some CAPI objects.

1. Create a Profiler tool if you have not already done so.

2. Copy the code above into the box in the Code to Profile panel.

3. Choose LispWorks > Preferences... or click , select Profiler in the list on the left side of the dialog, and then select the
General tab. Now you can change the package of the Profiler.

Profiler Preferences

4. In the Profiler Preferences, replace the default package in the Package text box with CAPI and click .

5. Click OK to dismiss the Preferences dialog and apply the change you have made.

6. Click on Profile.

23 The Profiler

229

http://www.lispworks.com/documentation/HyperSpec/Body/a_member.htm

This profiles the functions in the COMMON-LISP, CL-USER and LISPWORKS packages.

Next, add the CAPI package to the list of packages whose functions are profiled.

7. Click Packages.

8. In the dialog, double-click on CAPI in the Unselected Packages list, and click on OK.

9. Click on Profile to profile the code again.

Notice that this time there are many more functions which appear in the profile results.

10
.

Select a few of the functions listed at the top of the Results area, and look at their function descriptions.

Add the Description area by clicking the Description >> button if you have not already done so.

Notice that most of the functions appearing on the stack are in the CAPI package. It is worth profiling a few functions
explicitly, and removing unwanted packages from the list of packages to profile.

11
.

Click Symbols..., and add the following four functions to the list in the dialog:

merge find-class make-char functionp

Type the name of each function and press Return or click to add it to the list.

12
.

Click OK when you have finished adding to this list.

Now remove the unwanted packages from the list of packages to profile, as follows:

13
.

Click Packages....

14
.

In the dialog click on None to remove all items in the Selected Packages list.

15
.

Click on OK, and profile the code again by clicking on Profile.

Notice that the four functions in the COMMON-LISP package are still being profiled, even though you are no longer
profiling all functions from that package by default.

23 The Profiler

230

24 The Shell and Remote Shell Tools

24.1 Introduction

You can run a system command line session from within the LispWorks IDE by using the Shell tool. The Shell tool
automatically runs on your current host.

Also available is a Remote Shell tool which runs a session on another machine on your network.

24.2 The Shell tool

You can create a Shell tool in one of two ways:

• Choose Window > Tools > Shell or click in the LispWorks toolbar.

• Type the extended command Meta+X Shell in any Editor window (or any other window based on an editor, such as the
Listener).

The Shell Tool Preferences

The Operations menu contains the following commands which send POSIX signals to the shell process. These only work on
non-Windows platforms.

Choose Operations > Interrupt to send a break signal to the shell process. This stops the current task and returns control to

231

the command line in the Shell tool, if necessary.

Choose Operations > Suspend to send a suspend signal to the shell process. This suspends the current task so that you can
continue entering commands at the command line. To resume the task, type fg at the command line in the Shell tool.
Alternatively, type bg at the command line to force a task to run in the background.

Choose Operations > Eof to send an EOF signal to the process.

24.3 Command history in the shell

The Shell tool is another example of a tool which is based on an editor, and thus many of the keys available in the editor are
also available in the Shell tool.

Like the Listener, the Shell tool is run in execute mode, which means that several additional keystrokes are available in
Emacs emulation, as follows:

• Press Esc P or Ctrl+C Ctrl+P to display the previous command entered in the shell.

• Press Esc N or Ctrl+C Ctrl+N to display the next command in the history.

• Press Esc R or Ctrl+C Ctrl+R to perform a search of the command history.

24.4 Configuring the shell to run

This section applies only on non-Windows platforms.

By default, the Shell tool will use the value of the environment variable ESHELL or SHELL if set, or one of /bin/sh (System
V) and /bin/csh (otherwise). You can override the default by setting the variable editor:*shell-shell*. The value of
editor:*shell-shell* must be a string that is the command to run, including any command-line arguments (separated
by spaces as you would do in a terminal). For example, if you want to execute a remote shell (rsh) on another machine, you
can set editor:*shell-shell* to "exec rsh another-machine". Note that this will affect all Shell windows that are
created after editor:*shell-shell* was set.

LispWorks uses an external format for communicating with the shell. By default, LispWorks checks the standard POSIX
environment variables LC_ALL, LC_CTYPE and LANG (in that order). If the first of these that is set specifies a "codeset"
(which means it contains a dot and the "codeset" is the bit after the dot) that matches a LispWorks external format, then
LispWorks uses this external format. Otherwise, it uses :utf-8. In an ideal world, that should be adequate, but the POSIX
environment variables are not always set properly, :utf-8 may not be the right default, and also if you run your own
program by setting editor:*shell-shell* then you may want something else.

The selection of the external format can be changed via Preferences... > Shell > General > External Format, where you can
switch off checking for the POSIX environment variables by unchecking Check Environment Variables and select the default
external format to use in the dropdown list. If Check Environment Variables is checked, LispWorks will use the external
format from the dropdown list only if the environment variables do not specify a "codeset" matching a LispWorks external
format. Otherwise, LispWorks will always use the exteral format that you specify in the dropdown list.

24 The Shell and Remote Shell Tools

232

The Shell tool

Note that the above only affects Shell windows that are created after any change is made. Existing windows are not affected.

24.5 The Remote Shell tool

This looks similar to the Shell Tool, but you must specify which host to run the remote shell on when you start it up.

To start a Remote Shell tool, enter Meta+X Remote Shell in the Editor or Listener tool, and supply the hostname of the
remote machine when prompted.

The tool runs an appropriate shell command (rsh or remsh) with the hostname which you specify.

24 The Shell and Remote Shell Tools

233

25 The Stepper

25.1 Introduction

The Stepper tool allows you to follow the execution of your program, displaying the source code as it executes. While
stepping, you can see the evaluation of each subform, function call and the arguments and return values in each call. At every
call to one of your functions, you have the option of stepping into that function, that is stepping the source code definition of
the function.

Where a macro appears in stepped code, the Stepper can macroexpand the form and step the resulting expansion, or simply
step the visible inner forms of the macro form. Where a special form such as if appears in stepped code, the Stepper
processes it according to the execution order in that special form.

The system creates a Stepper tool automatically when your code reaches a breakpoint.

Other ways to start a Stepper tool are:

• Choose Window > Tools > Stepper or click on in the LispWorks toolbar and enter a single form.

• Choose Frame > Restart Frame Stepping in a Debugger tool.

The Stepper

The Stepper has four areas:

234

http://www.lispworks.com/documentation/HyperSpec/Body/s_if.htm

25.1.1 Stepper toolbar

The commands on the stepper toolbar allow you to step to various points in the code, set breakpoints and perform macro
expansions.

25.1.2 Source area

This is an editor window where you can enter the initial form to step. It also displays a read-only copy of a definition that you
step into.

The title of the source area may be Source: or Source file: path or Old copy of source file: path or Buffer: buffer-name,
depending on where the original source code is.

Notice that the editor cursor is an underline in the source area. This is because the normal cursor styles are not visible where
the Stepper is highlighting a form.

25.1.3 Backtrace area

The Backtrace tab displays the function calls on the execution stack in the code being stepped.

The topmost item in the backtrace area shows the next step, known as the status. When calling a function, the status item is
represented by a icon and contains the arguments represented as subnodes with a yellow disc icon. When returning
from any form, the status item is represented by a icon and contains the return values. When evaluating a form, the status
item is represented by a icon. You can see the contents of the status item by expanding it. You can make the status item
expand automatically if you wish, as described in 25.9.2 Backtrace preferences.

The second topmost item in the backtrace area is the active frame represented by a icon. This shows the function
executing when the breakpoint was reached, and its arguments which are represented as subnodes with a yellow disc icon.

Other call frames on the stack are represented in the same way, below.

A subnode with a cyan disc icon represents some other frame.

For function calls, arguments and local variables can be seen by expanding the item. You can make the active frame expand
automatically if you wish, as described in 25.9.2 Backtrace preferences. Just as in the Backtrace area of the Debugger tool,
these stack frames and variables can be operated on using the Frame and Variables menus. For details, see 10.1.2 Backtrace
area.

Double-click on a status or call frame node to show the source of that function, if available, in the Editor. Double-click on the
disc icons to show that variable in the Inspector.

25.1.4 Listener area

The Listener tab provides a Listener in which the execution steps are indicated. Commands can be entered here as an
alternative to using the buttons on the 25.1.1 Stepper toolbar.

Any form entered here is evaluated on the dynamic environment of the function being stepped.

Moreover, you can use the debugger commands such as :v, which prints the local variables in the current frame. You can use
the value of a local variable simply by entering its name as shown. See the LispWorks® User Guide and Reference Manual
for more details about the debugger commands.

See 25.8 Listener area for more details.

25 The Stepper

235

25.2 Simple examples

There are two ways to enter the Stepper tool:

25.2.1 Standalone use of the stepper

1. Compile and load the demo system defined in the file:

(example-edit-file "tools/demo-defsys")

First, load this file to define the system. Then evaluate in the Listener:

(compile-system "demo" :load t)

Note: for another way to compile and load a system, see 26 The System Browser.

2. Create a Stepper tool by choosing Window > Tools > Stepper or pressing in the LispWorks toolbar.

3. Enter this form in the source area of the Stepper tool:

(my-function 3)

4. Choose the menu command Stepper > Step. The open parenthesis is highlighted orange, indicating that the next step is
to evaluate the form.

5. Choose Stepper > Step again. The symbol my-function is now highlighted orange, indicating that the next step is to
call this function. Notice how the current stepping position is always highlighted orange.

6. Notice how the topmost item in the Backtrace area always indicates the next step. Expand this item to show the
arguments.

25 The Stepper

236

Stepper backtrace showing the next step

7. At this point we have the option to step my-function itself, but for the moment simply choose Stepper > Step again,
which steps to the point where the function call returns. The Backtrace area shows the return value, 12, when you
expand the status item.

Note how the Step command always steps only inside the current form, and does not step into other functions.

25.2.2 Invoking the Stepper via a breakpoint

1. Compile and load the code in the system demo defined in the file:

(example-edit-file "tools/demo-defsys")

2. Open the file:

(example-edit-file "tools/demo-utils")

in an Editor and set a breakpoint at the call to + as described in 12.13.6.1 Setting breakpoints.

3. Evaluate (my-useful-function 42) in a Listener.

4. A Stepper tool appears, with the current stepping position at the breakpoint.

25 The Stepper

237

Stepper invoked by reaching a breakpoint

5. You can now step this code, just as in standalone mode.

6. When you choose Stepper > Continue, or otherwise finish stepping, my-useful-function returns, the Stepper is
hidden and the Listener tool becomes active again.

25.3 The implementation of the Stepper

It is important to understand the following points about the implementation of the Stepper.

25.3.1 Requirements for stepping

The code you step must have been compiled, evaluated or loaded in the Lisp image.

25.3.2 Editing source code

While the Stepper is running, it displays a read-only copy of the source in the source area. Therefore, you cannot edit the
code in the source area, other than when the status is "Enter a form to step in the pane above.".

If you step a function for which the source has been edited since it was compiled, then the Stepper uses a copy of the compile

25 The Stepper

238

time source, not the edited source.

This copy is stepped in a new editor buffer created specially for it and this is displayed in the source area.

25.3.3 Side-effects of stepping

When the Stepper steps a definition for the first time, it evaluates it.

This will not normally alter the behavior of your program, but there are three situations where this will cause unexpected
behavior:

• The code is loaded from a fasl file which is not compatible with the corresponding source file.

• The source relies on compile-time side-effects of forms preceding it in the file.

• The defining form has other side effects. This is unlikely to matter for simple definers such as defun and defmethod.

25.3.4 Atomic and constant forms

It is not possible to step to atomic forms or constant forms.

25.4 Stepper controls

The Stepper menu offers fine control over the next step.

It also includes commands for setting breakpoints, displaying the source code, macro expansion, and aborting from the
current step.

All these commands are also available on the Stepper toolbar as shown in The Stepper controls.

25 The Stepper

239

http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm

The Stepper controls

The Stepper controls operate as described below. Recall that the current position is always highlighted in orange:

Step Steps once, remaining inside the current form. At the start of the current form, this steps the first
inner form. At a function call, it steps to the value. At the form value, it steps the next form or
value.

Step Through Call Steps once. This is the same as Step above, except that at a function call, it steps that function if
the source is known.

Step To Call At the start of a form, steps to the function call of that form after evaluation of the arguments. At
a function call or at the end of a form, steps to the function call of the enclosing form.

Step To Value At the start or function call of a form, steps to the value of that form. At the end of a form, steps
to the value of the enclosing form.

Next Steps to the start of the next form, or behaves like Step if there is no next form.

Step To End Steps to the value of the current function.

Step To Cursor Steps to the cursor position, or displays a message if that position is not steppable.

Continue Runs the code until a breakpoint is reached.

25 The Stepper

240

Breakpoint Sets a breakpoint at the position of the cursor if there is no breakpoint there already and the
position is steppable. If there is a breakpoint under the cursor, this command removes it. Note
that breakpoints are highlighted red, though the orange highlight on the current stepping position
overrides any breakpoint highlight..

Show Current Source Moves the editor buffer in the source area so that the definition at the top of the backtrace area,
and the active form within it, is visible.

Macroexpand Macroexpands the form under the cursor.

Undo Macroexpand Collapses the macro expansion under the cursor.

Abort Aborts the execution and returns to the form which you first stepped, allowing you to repeat the
execution or edit the form. This command is available only when using the Stepper in standalone
mode.

25.4.1 Shortcut keys for the Stepper

The following Editor commands run the corresponding Stepper command in the current stepper:

Stepper Breakpoint#
Stepper Continue#
Stepper Macroexpand#
Stepper Next#
Stepper Restart#
Stepper Show Current Source#
Stepper Step#
Stepper Step Through Call#
Stepper Step To Call#
Stepper Step To Cursor#
Stepper Step To End#
Stepper Step To Value#
Stepper Undo Macroexpand

These commands can be bound to keys in the LispWorks editor, which makes those keys invoke the command in a Stepper
tool. For example:

(editor:bind-key "Stepper Step" #("Control-S" "Control-s"))

Note: the editor key binding only takes effect when the input focus is in the Source or Listener panes of the Stepper tool.

For more information about Editor key bindings, see the Editor User Guide.

25.5 Stepper restarts

The Restarts menu lists a number of restart options, which offer ways to continue execution.

This works the same as described for the Debugger tool in 10.3 Simple use of the Debugger tool.

25 The Stepper

241

25.6 Breakpoints

You can set a breakpoint in any form which might be evaluated, except for:

• Atomic and constant forms.

• Forms which are evaluated while the file is loaded.

• Forms within non-locatable defining forms (see below).

The breakpoint can be at the start, function call or return point of the form.

For each of the load source, load fasl, compile defun and compile buffer operations, breakpoints are activated only after the
operation has finished.

A locatable defining form is a named defining form that can be located by the Dspec system (for example by the
Find Dspec editor command). This includes defun, defmethod and all the standard Common Lisp definers. For more
information about the Dspec system, see the LispWorks® User Guide and Reference Manual.

When not at the current stepping position, a breakpoint is highlighted red in the Stepper source area. When the same source
code is also visible in an Editor tool, the breakpoint is visible there too.

25.6.1 Setting breakpoints

To set a breakpoint from the Stepper, position the cursor where you want the breakpoint and choose Stepper > Breakpoint or
click in the Stepper toolbar.

25 The Stepper

242

http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm

A breakpoint on the function call +

When you run code, or choose Stepper > Continue, execution stops if a breakpoint is reached. The Stepper will show the
form in the source area with the breakpoint highlighted in yellow.

In the picture above, execution has stopped at the start of the print form and we have just set a breakpoint on the call to +.
Continuing from this point will cause execution to stop just before it calls +, and the Stepper will display the arguments that
are about to be passed to +.

If you set a breakpoint on the closing parenthesis of a form, then it will cause execution to stop when the form returns and the
top backtrace frame will display the values of that form.

To set a breakpoint from the Editor, see 12.13.6 Breakpoints.

25.6.2 Conditional breakpoints

A breakpoint can be modified to make it effective only when a condition is true.

Suppose that you have reached a breakpoint on the call to + as set in the example above. To make this breakpoint conditional
on a variable *use-my-breakpoints* (which you should define with defvar), choose Stepper > Edit Breakpoints... or
choose Expression > Edit Breakpoints... from the context menu:

25 The Stepper

243

http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm

The Edit Breakpoints menu

Select your breakpoint in the Breakpoints dialog and choose Edit... to display the Edit Breakpoint dialog.

Select the Condition radio button in the Conditional tab of the Edit Breakpoint dialog, then enter *use-my-breakpoints*
in the condition area and click OK.

25 The Stepper

244

The Edit Breakpoint dialog

The form defining the breakpoint condition is evaluated in the package where the stepped function was defined. Note that this
package is displayed in the Conditional tab of the Edit Breakpoint dialog. Therefore, after confirming the dialog shown
above, your code breaks at the breakpoint depending on the value of common-lisp-user::*use-my-breakpoints*.

To make a breakpoint unconditional, select Unconditional in the dialog shown above.

Note: you cannot currently access the values of local variables in the condition expression.

25.6.3 Printing breakpoints

A breakpoint can be modified to make it print an expression and its value when it is reached.

Again suppose that you have reached a breakpoint on the call to + as set in the example above. To make this breakpoint print,
enter a valid Lisp expression in the Printing tab of the Edit Breakpoint dialog, and click OK.

When the breakpoint is reached, the expression and its value are printed like this:

Stepper value (+ 4 4 4 4): 16

The Lisp expression is evaluated in the package where the stepped function was defined. Note that this package is displayed
in the Printing tab of the Edit Breakpoint dialog.

If you check the Print without stopping option, then the above line is printed but the code continues to execute and does not
stop at the breakpoint.

Note: you cannot currently access the values of local variables in the printed expression.

25 The Stepper

245

25.6.4 Editing breakpoints

To edit the Conditional or Printing properties of a breakpoint visible in the source, position the cursor on the breakpoint and
proceed as described in 25.6.2 Conditional breakpoints or 25.6.3 Printing breakpoints.

Where you wish to change the Conditional or Printing properties of a breakpoint without finding it in the source, choose the
menu command Stepper > Edit Breakpoints.... Select a breakpoint in the Breakpoints list and click the Edit... button.
Choose the Conditional or Printing tab as appropriate and proceed as described in 25.6.2 Conditional breakpoints and
25.6.3 Printing breakpoints.

To visit the source code where a breakpoint was set, choose the menu command Stepper > Edit Breakpoints.... Select a
breakpoint in the Breakpoints list and click the Goto Source button. This cancels the dialog and then displays the source
containing the breakpoint.

25.6.5 Removing breakpoints

To remove a breakpoint under the cursor, click in the toolbar. Equivalently you can choose Stepper > Breakpoint.

Where you wish to remove one or more breakpoints without finding them in the source, choose the menu command Stepper
> Edit Breakpoints..., select a breakpoint or breakpoints in the Breakpoints list, and click Remove.

If you remove all breakpoints, then the breakpoints dialog is closed.

25.7 Stepping macro forms

Where your code contains a macro, you can step the macro expansion or simply step the macro form as-is.

25.7.1 Interactive macro expansion

When the Stepper reaches code for which the source contains an unexpanded macro form, by default it offers you the option
of macro expanding that form.

To see this, follow the example in 25.2.1 Standalone use of the stepper and when your reach my-function choose Stepper
> Step Through Call or click in the Stepper toolbar.

The source code for my-function is shown in the source area of the Stepper. Choose Stepper > Step or click in the
Stepper toolbar.

Click Yes on the dialog asking "Expand MY-MACRO form?". The macro expansion replaces the macro form:

25 The Stepper

246

Stepping a macro expansion

Now you can Step into the macro expansion of my-macro.

25.7.2 Macro expansion in the stepper

To macroexpand a macro form before reaching it in the Stepper, position the cursor at the start of the macro form and choose
the menu command Stepper > Macroexpand or click in the Stepper toolbar. You can only this when the Stepper has
already stepped the function.

Sometimes it is useful to expand macros in outer forms, to allow the more detailed stepping of their expansions. For example,
for a definition such as:

(defstruct foo (x (print 10)) y)

when stepping:

(make-foo)

expanding the defstruct form allows you to step more of the constructor.

25 The Stepper

247

http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm

25.7.3 Collapsing macro expansions

To collapse a macro expansion in the Stepper, position the cursor at the start of the macro expansion and choose the menu
command Stepper > Undo Macroexpand or click in the Stepper toolbar.

25.7.4 Controlling macro expansion

You can alter the way the Stepper handles macro forms on a per-symbol or per-package basis. For instance, you can specify
that the Stepper always expands your macros automatically, without prompting. For details, see 25.9.1 Operator
preferences.

25.8 Listener area

Select the Listener tab of the Stepper tool to display a Listener.

This area offers all the usual Listener and Debugger commands. Moreover, the execution environment is that of the function
currently being stepped, and contains the variables of each frame on the stack.

The Stepper listener also offers the following listener commands to control stepping.

:s, :step Step

:st, :step-through-call

Step Through Call

:sc, :step-to-call Step To Call

:sv, :step-to-value

Step To Value

:sn, :next Next

:se, :step-to-end Step To End

:c, :continue Continue

:sm, :macroexpand Macroexpand

:restart Abort

See 25.4 Stepper controls for a full description of these controls.

25.9 Configuring the Stepper

To configure the Stepper tool, raise the Preferences dialog, by choosing LispWorks > Preferences... or clicking . Then
select Stepper in the list on the left side of the Preferences dialog.

The Stepper Preferences have three tabs:

• The General tab controls display of the Stepper toolbar, as described in 3.1.8 Toolbar configurations.

• The Operators tab contains options controlling the behavior when the stepper sees functions or macros in the source.

• The Backtrace tab controls the amount of information shown automatically in the Backtrace area.

25 The Stepper

248

25.9.1 Operator preferences

Stepper Preferences

When reaching a function call you can use the Step Through Call command to step through the call into its definition. You
can configure the Stepper to do this automatically, never do this or ask you which action to take.

Similarly when reaching a macro form you can macroexpand it (or not). You can configure the Stepper to macroexpand
automatically, never macroexpand or ask you whether to macroexpand..

For a given symbol naming a function or macro, the action is determined by the preferences in the Operators tab. If the
symbol is listed, then the corresponding action is taken. Otherwise, if the symbol's package is listed, then the corresponding
action is taken. If neither the symbol nor its package are shown,. then the default action is taken.

For example, the default behavior on reaching your macro forms is to prompt for whether to macroexpand. To configure the
Stepper such that macros defined in the CL-USER package are macroexpanded automatically, click the Add... button, enter
CL-USER in the Name pane of the dialog, select Always in the Expand macros panel, click OK and click OK to dismiss the
Preferences dialog.

To configure the Stepper such that it never steps through my-function, raise the Stepper preferences again, click the Add...
button and select the Symbol radio button. Enter cl-user::my-function in the Name pane of the dialog, select Never in
the Step through calls panel, click OK and click OK to dismiss the Preferences dialog.

25.9.2 Backtrace preferences

To control the amount of information displayed automatically in the Backtrace area, select the Backtrace tab of the Stepper
Preferences:

Stepper Preferences Backtrace tab

By default the status item in the Backtrace area automatically expands to show the arguments or return values. To change this
behavior, select No against Expand status automatically.

By default the active frame in the Backtrace area automatically expands to show the local variables and arguments. To
change this behavior, select No against Expand active frame automatically.

Compatibility Note: in LispWorks 5.0 these Backtrace options have the opposite default values. This is changed in

25 The Stepper

249

LispWorks 5.1 and later versions.

25 The Stepper

250

26 The System Browser

26.1 Introduction

When an application becomes large, it is usually prudent to divide its source into separate files. This makes the individual
parts of the program easier to find and speeds up editing and compiling. When you make a small change to one file, just
recompiling that file may be all that is necessary to bring the whole program up to date.

The drawback of this approach is that it is difficult to keep track of many separate files of source code. If you want to load the
whole program from scratch, you need to load several files, which is tedious to do manually, as well as prone to error.
Similarly, if you wish to recompile the whole program, you must check every file in the program to see if the source file is
out of date with respect to the object file, and if so re-compile it.

To make matters more complicated, files often have interdependencies; files containing macros must be loaded before files
that use them are compiled. Similarly, compilation of one file may necessitate the compilation of another file even if its
object file is not out of date. Furthermore, one application may consist of files of more than one source code language, for
example Lisp files and C files. This means that different compilation and loading mechanisms are required.

The System Browser tool is designed to take care of these problems, allowing consistent development and maintenance of
large programs spread over many files. A system is basically a collection of files that together constitute a program (or a part
of a program), plus rules expressing any interdependencies which exist between these files.

You can define a system in your source code using the defsystem macro. See the LispWorks® User Guide and Reference
Manual for more on the use of defsystem. Once defined, operations such as loading, compiling and printing can be
performed on the system as a whole. The system tool ensures that these operations are carried out completely and
consistently, without doing unnecessary work, by providing you with a GUI front end for defsystem.

A system may itself have other systems as members, allowing a program to consist of a hierarchy of systems. Each system
can have compilation and load interdependencies with other systems, and can be used to collect related pieces of code within
the overall program. Operations on higher-level systems are invoked recursively on member systems.

26.2 A brief introduction to systems

A system is defined with a defsystem form in an ordinary Lisp source file. This form must be evaluated in the Lisp image
in order to use the system.

Once defined, operations can be carried out on the system by invoking Lisp functions.

For example, the expression:

CL-USER 5 > (compile-system 'debug-app :force t)

would compile every file in a system called debug-app.

Note: When defining a hierarchy of systems, the leaf systems must be defined first - that is, a system must be defined before
any systems that include it.

By convention, system definitions are placed in a file called defsys.lisp which usually resides in the same directory as the
members of the system.

251

26.2.1 Examples

Consider an example system, demo, defined as follows:

(defsystem demo (:package "CL-USER")
 :members ("macros"
 "demo-utils"
 "demo-functions")
 :rules ((:in-order-to :compile ("demo-utils" "demo-functions")
 (:caused-by (:compile "macros"))
 (:requires (:load "macros")))))

This system compiles and loads members in the CL-USER package if the members themselves do not specify packages. The
system contains three members - macros, demo-utils, and demo-functions - which may themselves be either files or
other systems. There is only one explicit rule in the example. If macros needs to be compiled (for instance, if it has been
changed), then this causes demo-utils and demo-functions to be compiled as well, irrespective of whether they have
themselves changed. In order for them to be compiled, macros must first be loaded.

Implicitly, it is always the case that if any member changes, it needs to be compiled when you compile the system. The
explicit rule above means that if the changed member happens to be macros, then every member gets compiled. If the
changed member is not macros, then macros must at least be loaded before compiling takes place.

The next example shows a system consisting of three files:

(defsystem my-system
 (:default-pathname "~/junk/")
 :members ("a" "b" "c")
 :rules ((:in-order-to :compile ("c")
 (:requires (:load "a"))
 (:caused-by (:compile "b")))))

What plan is produced when all three files have already been compiled, but the file b.lisp has since been changed?

First, file a.lisp is considered. This file has already been compiled, so no instructions are added to the plan.

Second, file b.lisp is considered. Since this file has changed, the instruction compile b is added to the plan.

Finally file c.lisp is considered. Although this has already been compiled, the clause:

(:caused-by (:compile "b"))

causes the instruction compile c to be added to the plan. The compilation of c.lisp also requires that a.lisp is loaded, so
the instruction load a is added to the plan first. This gives us the following plan:

1. Compile b.lisp.

2. Load a.lisp.

3. Compile c.lisp.

26.3 The System Browser

The System Browser provides an intuitive graphical way to examine and operate on systems and their members.

For example, the operation outlined in 26.2 A brief introduction to systems would be performed by the System Browser
menu commands Systems > Compilation options > Force followed by Systems > Compile.

To create a System Browser, choose Window > Tools > System Browser or press in the LispWorks toolbar. Alternatively,
choose File > Browse Parent System from any appropriate tool in the environment or execute Esc X Describe System in

26 The System Browser

252

an editor, to display the parent system for the selected or current file in the System Browser. See 3.6 Operating on files for
details.

In order to browse a system, first ensure it is defined. To define a system, load the Lisp source code containing the
defsystem form into the Lisp image. For instance, open the file in an Editor and choose File > Load. Alternatively, choose
File > Load... from the System Browser and choose a file to load in the dialog that appears.

26.4 A description of the System Browser

The System Browser has four views:

• The Tree view displays a tree of all the systems defined in the image, together with their members.

• The Text view lists the systems defined in the image together with the members of the current system.

• The Preview view provides a powerful way of generating and executing systems plans.

• The Output view is used to display any output messages which have been created by the System Browser as a result of
executing plans.

26.5 Examining the system tree

When you first invoke the System Browser, the Tree view is the default view. You can also switch to it from another view by
choosing the relevant tab above the main view. The Tree view is shown in Displaying loaded systems using the Tree view
below.

Displaying loaded systems using the Tree view

26 The System Browser

253

The System Browser window has four areas, described below.

26.5.1 System area

The System area is used to enter and display in the name of the system.

You can browse a system by entering its name into the System: area. While doing this you can press Up, Down or click to
complete a partially specified name. This allows you to select from a list of all system names which begin with the partial
input you have entered. See 3.14 Completion for detailed instructions.

The members of the system are displayed in the tree area.

26.5.2 Tree area

The Tree area produces a tree of the current system, together with all its members. The generic facilities available to all tree
views throughout the environment are available here; see 6 Manipulating Graphs for details.

• Double-click on a filename to display the file in the editor.

• Click on an unfilled circle alongside a system name to display its members.

• Click on a filled circle alongside a system name to hide its members.

• Select either a system name or a file name to display details in the Description area.

You can operate on systems and files via the context menu, which offers commands such as Concatenate... and Search
Files... for systems, and Compile and Print... for files. The system commands are also available in the Systems menu. If no
items are selected, the commands apply to the current system, whose name is printed in the System area.

To traverse the system hierarchy, expand a system node in the tree. If the desired parent node is not in the tree, choose
Systems > Browse All Systems. The parent of all systems defined in the image at any time is called ALL-SYSTEMS.

To see the source code definition of a system, double-click its node in the tree or do Systems > Find Source or click .

26.5.3 Description area

The Description area shows details about any system member selected in the Tree area. The following items of information
are shown:

Module The name of the selected member. This is either the filename (if the member is a file of source
code) or the system name (if the member is a subsystem).

Pathname The directory pathname of the selected member. This is the full pathname of the file, if the
selected member is a file of source code, or the default directory of the system, if the selected
member is a subsystem.

Flags This lists any keyword flags which have been set for the selected member in the system
definition, such as the :source-only flag.

To operate on any of the items displayed in this area, select them and choose a command from the Description menu, which
contains the standard actions described in 3.8 Performing operations on selected objects. By making multiple selections,
you can operate on as many of the items as you like.

26 The System Browser

254

26.5.4 Performing operations on system members

A variety of operations can be performed on any number of nodes selected in the Tree area. If no system nodes are selected,
or if you are in another view, the commands are performed on the current system, whose name is printed in the System area.

The Systems menu gives you access to the standard actions described in 3.8 Performing operations on selected objects.

• Systems > Browse All Systems causes the System Browser to display the root node, whose children include all loaded
systems.

• Systems > Browse Systems For Directory causes the System Browser to display all systems that have files in a given
directory or one of its subdirectories.

• Choose Systems > Compile and Load, Systems > Compile, or Systems > Load to compile or load the selected systems.

• Choose Systems > Concatenate... to produce a single fasl file from a system. You will need to supply the name of the
fasl file, when prompted.

• Choose Systems > Search Files... to search the files of the selected systems (and any subsystems) for a given regular
expression. A dialog prompts for the regular expression, and then a Search Files tool is raised in System Search mode,
displaying the results of the search. The Search Files tool is described in 16 The Search Files tool.

• Choose Systems > Hide Files, to remove system member files from the tree and display only systems. Choose Systems
> Show Files to reverse this effect.

• Choose Systems > Query Replace to search all the files in the selected members (and any subsystems) for a given string
and replace it with another string. You are prompted for both strings and an option to save the modified files in the same
way as described for the Search Files tool in 16.4 Modifying the matched lines.

26.6 Examining systems in the text view

The text view allows you to list the parent system, subsystems and files in the current system in one view, and gives you an
easy way of changing the current system. Choose the Text tab to display this view. The System Browser appears as shown in
Displaying loaded systems using the text view below.

26 The System Browser

255

Displaying loaded systems using the text view

The System Browser contains the areas described below when in the text view.

26.6.1 System area

As with the tree view, the current system is shown here. See 26.5.1 System area for details about this area.

26.6.2 Parent system area

This area lists any parent systems of the current system. Note that every system apart from ALL-SYSTEMS must have at least
one parent.

Double-click on any item in this list to make it the current system. Its name is printed in the System area.

26 The System Browser

256

26.6.3 Subsystems area

This area lists any systems which are subsystems of the current system.

Double-click on any item in this list to make it the current system. Its name is shown in the System area.

26.6.4 Files area

This area lists any files which are members of the current system. Source files containing either Lisp or non-Lisp code (such
as C code which is loaded via the Foreign Language Interface) are listed in this area.

• Select a file to display its description in the Description area.

• Double-click on a file to display it in the editor.

26.6.5 File description area

The Description: area displays information about any system member selected in the Files area. If no such member is
selected, information about the current system (the one named in the System area) is shown instead. The same pieces of
information are shown as in the tree view. See 26.5.3 Description area for details. As with other views, items selected in this
area can be operated on using commands in the Description menu.

26.7 Generating and executing plans in the preview view

The preview view allows you to generate different system plans automatically based on three things:

• The current compilation and load status of each member of a system.

• The rules specified in the system definition.

• The specific actions that you wish to perform.

You can use this view to browse the plan and to execute all or any part of it, as well as generate it.

Click on the Preview tab to switch to the preview view in the System Browser. The System Browser appears.

26 The System Browser

257

Previewing system plans using the Preview view

Click Recompute Events or the menu command Window > Refresh and expand nodes in the tree to make the plan fully
visible as in Previewing system plans using the Preview view.

The System Browser has the areas described below.

26.7.1 System area

As with the tree view, the current system is shown here. See 26.5.1 System area for details about this area.

26.7.2 Actions area

The Actions area contains a number of options allowing you to choose which actions you want to perform, thereby allowing
you to create system plans.

The Compile, Load and Force check buttons can be selected or deselected as desired. Note that at least one of Compile and
Load must always be selected.

• Select Compile to create a plan for system compilation. The plan displays what actions need to be performed in order to
update the fasls for the entire system.

• Select Load to create a plan for loading the system. The plan displays a list of the actions required to load the system.

• Select Force if you want to force compilation or loading of all system members, whether it is necessary or not.

26 The System Browser

258

Click Recompute Events to create a new plan for the specified options. You should click this button whenever you change
the Compile, Load, or Force options, or whenever you change any of the files in the system or any of its subsystems.

Click Execute Events is used to execute the events currently selected in the main area. Notice that this button is only
enabled.when some event is selected in the plan. See 26.7.6 Executing plans in the preview view below for details.

26.7.3 Filter area

As with other tools, you can use the Filter area to restrict the output in the plan area to just those actions you are interested in.
This may be useful, for instance, if you want to see only compile actions, or only load actions, or if you are only interested
in the actions that need to be performed for a particular file.

26.7.4 Plan area

The Plan area lists the actions in the current plan. Items are indented to indicate groups of related actions. Thus, if a
subsystem needs to be loaded, the individual files or subsystems that comprise it are listed underneath, and are indented with
respect to it.

26.7.5 File description area

The File Description area displays information about any system member selected in the Plan area. If no such member is
selected, information about the current system (the one named in the System area) is shown instead. The same pieces of
information are shown as in the tree view. See 26.5.3 Description area for details. As with other views, items selected in this
area can be operated on using commands in the Description menu.

26.7.6 Executing plans in the preview view

Once you have created a plan in the preview view, there are a number of ways that you can execute either the whole plan, or
individual actions within that plan.

As already mentioned, to execute individual actions in the plan, select them in the main area and then click the Execute
Events button.

To execute the whole plan, just choose the relevant command:

• Choose the menu command Systems > Load or click the button to execute a plan for loading the system.

• Choose the menu command Systems > Compile or click the button to execute a plan for compiling the system.

• Choose the menu command Systems > Compile and Load or click the button to execute a plan for both compiling
and loading the system.

Note that you can also execute the whole plan by choosing Edit > Select All and then clicking Execute Events.

26.8 Examining output in the output view

The output view can be used to view and interact with messages that have been generated as a result of actions performed in
the System Browser. This largely consists of compilation and load messages that are generated when system plans or
individual actions in a plan are executed.

Click on the Output tab to switch to the output view. The System Browser appears as in Viewing output in the System
Browser.

26 The System Browser

259

Viewing output in the System Browser

The output view has the areas described below.

26.8.1 System area

As with the tree view, the current system is shown here. See 26.5.1 System area for details about this area.

26.8.2 Output area

The largest area in this view is used to display all the output messages which have been generated by the System Browser.
This area has the same properties as the Output Browser described in 21 The Output Browser. In particular you can interact
with highlighted compiler warnings and notes in the same way as in any output tab in the IDE.

26.9 ASDF Integration

The System Browser tool allows integration of source code managers.

There is an example for integrating ASDF in:

(lw:example-file "misc/asdf-integration.lisp")

The interface is described in some detail in the remainder of this section, but the example above is sufficient to allow you to
use ASDF in the LispWorks IDE.

26 The System Browser

260

26.9.1 Interface to source code managers

The interface comprises a function scm:add-system-namespace which must be called, and a set of generic functions for
which methods need to be defined.

scm:add-system-namespace adds a namespace of "systems", which:

• Are objects that may have children.

• Themselves may be "systems".

• Are associated with pathnames.

• Have operations :load and :compile defined for them.

LispWorks has its own built-in source code manager (lw:defsystem, lw:compile-system, lw:load-system,
lw:concatenate-system and related functions). A widely-used source code manager is ASDF.

In the LispWorks IDE tools, a system name that contains a colon is interpreted as namespace:systemname.

To find the system LispWorks applies the finder specified in scm:add-system-namespace to the string systemname. A
system name without a colon is searched (using the finder) in all the known namespaces. Note that this means that a system
name without a colon may match several systems in different namespaces.

In addition to the integration interface, there are new functions which look at the namespaces and systems.

The most important symbols in the integration interface are described in the remainder of this section. "module" means one
of the objects that is returned by the finder in scm:add-system-namespace or by the system-lister in
scm:add-system-namespace or by scm:module-children. A "system" is a module for which
scm:module-is-system-p returns true.

scm:add-system-namespace Function

add-system-namespace name &key finder system-lister name-lister

The function scm:add-system-namespace tells LispWorks about another system namespace.

name must be a string. It is compared case-insensitively. The name must be different from "LW", which is the namespace for
the LispWorks built-in lw:defsystem systems.

finder must be supplied as a function or symbol which takes one argument, a string. If there is an exact match (case-
insensitive) it returns a module object or a list of module objects. The finder needs to be error-free when called with a string.

system-lister must be a designator for a function which takes no argument, and returns a list of the known systems in the
namespace.

name-lister is optional. If supplied, it must be a designator for a function which takes no argument and returns a list of the
names of the systems in the namespace. If it is not supplied, the system uses system-lister and maps scm:module-name on
the result.

scm:module-name Generic Function

module module => name

The function scm:module-name must be defined for any module. It takes a module and returns its name.

scm:module-is-system-p Generic Function

scm:module-is-system-p module => boolean

26 The System Browser

261

The generic function scm:module-is-system-p returns true if the module is a "system". That is, it has children. The
default method returns false.

scm:module-children Generic Function

scm:module-children module => list-of-modules

The generic function scm:module-children returns the children of the module, if any. The default method returns nil.
This generic function is called only on "systems", that is after checking that scm:module-is-system-p returned true.

26.10 Configuring the display

The System Browser allows you to configure the display so that it best suits your needs. The commands available for this are
described below.

26.10.1 Sorting entries

Entries in the System Browser can be sorted in a number of ways. To change the sorting, choose LispWorks > Preferences...
or click to display the Preferences dialog, and then select System Browser in the list on the left side of the dialog. Click
on the General tab to view the sorting options.

By Name Sorts entries in the main area of the current view (the tree in the tree view and the Files area in
the text view) according to the symbol name.

By Package Sorts entries in the main area according to their package.

Unsorted Leave entries in the main area unsorted. This is the default setting.

26.10.2 Displaying package information

As with other tools, you can configure the way package names are displayed in the System Browser, using the Package box.
See 3.7 Displaying packages for full details.

26.10.3 Display of the toolbar

You can control whether the System Browser displays the compile/load and history toolbars by the option Show Toolbar, as
described in 3.1.8 Toolbar configurations.

26.11 Setting options in the system browser

The Systems > Compilation Options menu allows you to set options which apply whenever you compile or load system
members. Each of the commands described below toggles the respective option.

Choose Systems > Compilation Options > Force to force the compile or load operation to be performed. If you are operating
on a whole system (as opposed to system members which are files) this means that actions for all the members are added to
the plan.

Choose Systems > Compilation Options > Source to force the use of Lisp source rather than fasls in operations on the
system.

Choose Systems > Compilation Options > Preview to automatically preview the plan prior to execution of a compile or load
instruction chosen from the Systems menu. This switches the System Browser to the preview view and allows you to see
what operations are going to be performed, and to change them if you want. See 26.7 Generating and executing plans in

26 The System Browser

262

the preview view for full details about previewing plans.

Choose Systems > Concatenate... to concatenate the selected system into a single fasl after compiling it. You will need to
supply the name of the single fasl file, when prompted.

26 The System Browser

263

27 The Window Browser

27.1 Introduction

The Window Browser lets you examine any windows that have been created in the environment. You can examine not only
the environment windows themselves, but also more discrete components of those windows, such menus and menu
commands. To create a Window Browser, choose Window > Tools > Window Browser or click in the LispWorks toolbar.

The Window Browser only has one view, shown in The Window Browser.

The Window Browser

The Window Browser has three sections.

264

27.1.1 Graph box

The Graph: text box shows the window object that is being examined; that is, the window at the root of the graph.

27.1.2 Window graph

The window graph displays the current window and all its subwindows. The generic facilities available to all graphs
throughout the LispWorks IDE are available here; see 6 Manipulating Graphs for details.

When you first create a Window Browser, it automatically browses the parent window of the whole environment. A graph of
the parent window together with its children - each individual window that has been created - is drawn in the main area.

Select any item in the graph to display its description in the Description: area.

To see the children of an unexpanded node in the graph, click on the unfilled circle to its right. To make one of the child
windows be the root of the graph, select it and choose Windows > Browse - Window.

Any items selected in the graph can be operated on using commands in the Windows menu. If no items are selected, the
commands in this menu apply to the root window of the graph. See 27.3 Performing operations on windows for details.

27.1.3 Description list

The Description: are gives a description of the item selected in the Graph: area. If nothing is selected, a description of the
window at the root of the graph is shown. The following information is listed:

Window The object which represents the selected window.

Class The class of the window object.

Name The name of the selected window.

Representation The CAPI representation of the selected window.

Interface The underlying native window system object which represents the selected window.

Screen The name of the screen on which the selected window is displayed.

Any item selected in the Description list can be operated on by using commands under the Description menu. This menu
gives you access to the standard actions commands described in 3.8 Performing operations on selected objects.

27.2 Configuring the Window Browser

You can configure the Window Browser using the Preferences dialog. To do this, choose LispWorks > Preferences... or click
to display this dialog, and then select Window Browser in the list on the left side of the dialog.

27 The Window Browser

265

Window Browser Preferences

The Window Browser Preferences has three tabs:

• The General tab contains options for configuring general properties of the Window Browser.

• The Graph Layout tab contains options for configuring options specific to the graph. See 6.6 Preferences for graphs for
a description of these options.

• The Components tab contains options for configuring properties unique to the Window Browser.

27.2.1 Sorting entries

Entries in the Window Browser can be sorted using the Sort panel in the General tab in the Preferences dialog. Choose the
sort option you require from the list available.

By Name Sorts items alphabetically by name.

By Package Sorts items alphabetically by package name.

Unsorted Displays items in the order they are defined in. This is the default setting.

27.2.2 Displaying package information

As with other tools, you can configure the way package names are displayed in the Window Browser using options available
in the General tab.

Check or uncheck Show Package Names to turn the display of package names in the Window Browser on and off.

Specify the process package of the Window Browser in the Package text box.

27 The Window Browser

266

27.2.3 Displaying the toolbar

You can control whether the Window Browser displays its history toolbar by the option Show Toolbar in the General tab of
the Preferences, as described in 3.1.8 Toolbar configurations.

27.2.4 Displaying different types of window

There are several types of window object which can be displayed in the Window Browser, and you can configure which types
are displayed using the Display Component panel of the Components tab in the Preferences dialog. Six options are
available; select whichever ones you want to display.

Below, the current window means the window that is at the root of the graph.

Layouts Displays the major layouts available to the current window. For the parent window of the
environment, this means all the windows that have been created. For an individual window, this
means the configuration of the different panes in that window.

Panes Displays CAPI panes in the current window.

Pinboard Objects Displays any pinboard objects in the current window. See the CAPI User Guide and Reference
Manual for a full description of pinboard objects.

Menus Displays any menus available to the current window.

Menu Items Displays any menu items available to the current window. This option only takes effect if Menus
is selected as well.

Graph Objects Displays any graph objects in the current window. See the CAPI User Guide and Reference
Manual for a full description of graph objects.

Toolbar Items Displays any toolbar items available to the current window.

By default, all these options are selected in the Window Browser.

27.2.5 Showing IDE iterfaces

Check or uncheck Show IDE Interfaces to control whether the Window Browser shows the the LispWorks IDE windows in
the graph or not. Unchecking it makes it easier to find your windows in the graph.

27.2.6 Displaying short or long names

By default, the Window Browser gives each item in the graph a short name. You can also display the complete symbol name
for each item if you wish, as displayed in the Window line of the Description list. You can configure this option from the
Components tab of the Preferences.

Select Long Names in the Print Using panel to display the complete symbol name of each item in the graph.

Select Short Names in the Print Using panel to display the short name for each item in the graph. This is the default setting.

Bear in mind that graphs are larger when you display them using long names, and can therefore be more difficult to examine.

27 The Window Browser

267

27.3 Performing operations on windows

You can perform a number of operations on any windows selected in the Graph area using the commands in the Windows
menu. If no items are selected in the Graph area, the commands in this menu apply to the root window of the graph.

The Windows menu gives you access to the standard actions commands described in 3.8 Performing operations on selected
objects.

27.3.1 Navigating the window hierarchy

Choose Windows > Browse Parent to display the parent of the current window. This takes you back up one level in the
window hierarchy.

Choose Windows > Browse Screens to examine the parent window of the environment once again - this takes you back up to
the root of the window hierarchy.

27.3.2 Window control

There are several commands which give you control over the current window.

Choose Windows > Lower to push the current window to the bottom of the pile of windows on-screen.

Choose Windows > Raise to bring the current window to the front of your screen.

Choose Windows > Quit to quit any windows selected in the graph. This is equivalent to closing the window using the
window system.

Choose Windows > Destroy to destroy any windows which are selected in the graph. You are prompted before the windows
are destroyed.

27 The Window Browser

268

28 The Application Builder

28.1 Introduction

The Application Builder makes it easier to create applications, typically by calling deliver. It helps you to control and
debug the delivery process. It can also be used to save a development image, calling save-image.

To create an Application Builder, choose Window > Tools > Application Builder or click in the LispWorks toolbar.

Note: the Application Builder needs deliver (or save-image) functionality and therefore it is not available in LispWorks
Personal Edition.

Note: in LispWorks Hobbyist Edition you can use the Application Builder to save a development image, but not to deliver an
application.

On first use the Application Builder appears all set to build the CAPI example Hello World, as shown in The Application
Builder with the Hello World example below.

The Application Builder with the Hello World example

Choose Build > Build or click to build the Hello World example.

Then choose Build > Run or click to run the Hello World example that you just built.

Note that these Application Builder commands are also available on the Build menu.

269

28.1.1 What the Application Builder does

This tool helps to control and debug the delivery process.

To use the Application Builder, you need to configure it to know about your delivery script, and then invoke the Build
command. This runs LispWorks in a subprocess with the script. The Application Builder displays the output, and reports on
the progress of Delivery. It also allows you to edit the script, and to run the built application.

Note: the Application Builder runs the build in a subprocess. It does not save the LispWorks IDE image containing the
Application Builder tool. The built application contains code loaded by the delivery script, but does not inherit any settings
you have made in the LispWorks IDE image.

Note: The Application Builder does not help you in writing your application.

Note: In LispWorks 4.4 and previous versions, you would generally need to write a shell script which runs LispWorks with
the appropriate command arguments for delivery. The Application Builder obviates the need for such a script, allowing you
to complete the delivery process entirely within the LispWorks IDE.

28.2 Preparing to build your application

First you will need a script which loads your application code and then calls deliver. Delivery scripts are described in
detail in the Delivery User Guide. If you do not already have a delivery script, the Application Builder can help you to create
a simple script, which you can modify as needed.

It is also possible to use the Application Builder with a script that calls save-image rather than deliver.

28.2.1 The script

The delivery script is a Lisp source file, which at a minimum loads patches and your application code, and then calls
deliver. The script may do other things, such as configuring your application, though in general you should try to keep it as
simple as possible.

28.2.1.1 Using your existing delivery script

If you already have an appropriate delivery script (because you already delivered your application before), click the button
to the right of the Build script pane and select your script file. The Application Builder now displays the path to your script
in its Build script pane.

28.2.1.2 Creating a new delivery script

Suppose that you already have a file compile-and-load-my-app.lisp that you use to compile and load your application.
Then you can create a suitable delivery script with the help of the Application Builder.

To create the new delivery script:

1. Choose Build > Make a New Script or click in the Application Builder toolbar.

This displays a dialog as shown in The New Delivery script dialog.

2. Enter the path to compile-and-load-my-app.lisp in the Loading script pane. You can use the button to locate
the file.

3. Enter the deliver arguments.

Note: Level defaults to 0, which is a good choice the first time you deliver your application. You will probably want to
increase the Delivery level later, for reasons explained in the Delivery User Guide.

28 The Application Builder

270

4. Check the calculated Script Name (and modify it if desired), and click OK.

The New Delivery script dialog

The Application Builder now displays the path to the new script in its Build script pane. The new script will load patches,
load your file, and then call deliver, something like this:

(in-package "CL-USER")
(load-all-patches)
(load "compile-and-load-my-app")
(deliver 'my-start-function "my-app" 0)

Note: the script will be more complex for Cocoa applications.

Note: your delivery script should load all the code needed for the application. Do not rely on your personal initialization or
siteinit files (which are ordinarily loaded into LispWorks), because these initialization files will not be used when building the
application.

28.3 Building your application

Once you have a script name in the Build script pane, build your application by choosing Build > Build or clicking the
toolbar button. The Application Builder invokes LispWorks in a subprocess, with the script as its -build argument.

If desired, you can abort the build process by pressing the Abort button.

The State pane displays the status of the building operation. After a successful build, the status changes to "Done" and the

28 The Application Builder

271

tool displays the name and size of the saved image in the Saved Image and Size panes, as shown in The Application Builder
after a successful build below.

The Application Builder after a successful build

28.4 Editing the script

The Application Builder makes it easy to find the script. Choose Build > Edit Script or click the toolbar button. Edit the
script using the Editor tool that this displays. See 12 The Editor for more information about using the Editor tool.

Before it starts a build, the Application Builder saves the editor buffer displaying the script if you have modified that buffer.
This behavior can be switched off - for the details, see 28.9 Configuring the Application Builder.

28.5 Troubleshooting

During the build, the output is displayed in the Application Build output pane. This is a normal editor text box which you can
search and edit in the usual way.

If there is an error during the build, a backtrace is generated and the subprocess image exits.

28.5.1 Viewing errors

To view the error message choose Build > Display Error or click the toolbar button.

To view the error message and the backtrace in an Editor tool choose Build > Display Backtrace or click the toolbar
button. Most errors can be resolved after checking the backtrace.

28 The Application Builder

272

28.5.2 Clearing the output

To clear the Application Build output pane choose Build > Clear Output or click the toolbar button.

You can set the tool to do this automatically - for the details see 28.9 Configuring the Application Builder.

28.6 Running the saved application

Once you have successfully built your application, you can run it from the Application Builder.

If the application can run without arguments you can run it by choosing Build > Run or clicking the toolbar button.

28.6.1 Passing arguments and redirecting output

If the application requires command line arguments, or you want to see what it writes to the standard output, or you need
some other setups, choose Build > Run With Arguments or click the toolbar button. This raises a dialog, shown in The
Run With Arguments dialog below.

The Run With Arguments dialog

To pass one or more command line arguments to your application, enter these in the Arguments pane.

To redirect the output of your application, select an option in the Output area.

Click OK to run your application with the settings you specified. The State pane shows when the application is running and
reports when it has finished.

28 The Application Builder

273

28.6.2 Executing a different file

The Run With Arguments dialog also allows you to set a different file to execute, rather than the saved image. This is useful
if your application needs some setups, or if it needs to be invoked by some other program (for example, when it is a dynamic
library).

To execute a different file from the one you built, enter the path in the Execute pane.

28.6.3 Killing application processes

Application processes that were invoked by the Application Builder can conveniently be killed if needed.

To kill all such processes, choose Build > Kill All or click the button.

To kill just one such process choose Build > Kill Application. This raises a menu listing the invoked applications that are still
running in the chronological order in which they were invoked. Select one item from the menu to kill that process.

28.7 Building universal binaries

You can build a universal binary on an Apple silicon Macintosh computer by choosing Build > Build Universal or clicking the
button, using the same script as was used to build a normal ("thin") image.

This actually runs two LispWorks subprocesses. One builds the Apple silicon (arm64) part of the binary, and the other builds
the Intel (x86_64) part of the binary under Rosetta. Both LispWorks subprocesses load the script. Afterwards, the
Application Builder creates the universal binary.

The Application Builder uses the script in the same way as save-universal-from-script. In particular, the functions
building-main-architecture-p and building-universal-intermediate-p have the same behaviour.

When you have saved a universal binary, you can invoke it as Intel (x86_64) by choosing Build > Run With Arguments or
clicking the toolbar button (see Running the saved application for details).

The option of building a universal binary is available only in an image that is itself a universal binary, such as the supplied
LispWorks image, and runs on Apple silicon macOS.

28.8 Using the Application Builder to save a development image

To use the Application Builder to save a development image you first configure it to know about it your save-image script,
which you must write by hand. Then you invoke the Build command.

For example, you can use the Application Builder to save a console development image. We assume that you have the script
in the file /tmp/resave.lisp as described under "Saving a non-GUI image with multiprocessing enabled" in the
LispWorks® User Guide and Reference Manual. Enter /tmp/resave.lisp in the Build script: area, and then press the
Build the application using the script toolbar button. Then you can run the new image ~/lw-console.

Note: The Application Builder runs the build in a subprocess. It does not save the current LispWorks IDE image in which
you are running the Application Builder tool, and your saved image does not inherit any settings you have made in the current
LispWorks IDE image. For that functionality, see 5 Session Saving.

28 The Application Builder

274

28.9 Configuring the Application Builder

You can configure the tool to suit your needs using the Preferences dialog. To do this, choose LispWorks > Preferences... or
click , and then select Application Builder in the list on the left side of the Preferences dialog.

Application Builder Preferences

To make the Application Builder clear the output before each build, select the Clear output before doing build option.

To prevent automatic saving of your edited script before a build, deselect the Save the build script before doing build option.

To make the Application Builder ensure that the cursor is at the end of the current output before each build, select the Move
to the end of the output when start building option.

You can control whether the Application Builder displays its toolbar by the option Show Toolbar on the General tab, as
described in 3.1.8 Toolbar configurations.

Click OK in the Preferences dialog to confirm your options and save them for future use.

28 The Application Builder

275

29 Remote Debugging

This chapter describes how to use remote debugging in the IDE. See "Remote Debugging" in the "The Debugger" chapter of
the LispWorks® User Guide and Reference Manual for technical details about remote debugging.

Remote debugging allows you to debug a LispWorks process that is running on one machine using a LispWorks IDE that is
running on another machine. It is intended to make it easier to debug applications running on machines that do not have the
LispWorks IDE, mainly mobile device applications on iOS and Android, but also applications running on servers where you
cannot run the LispWorks IDE.

With remote debugging you can:

• Configure a remote client to open a Remote Debugger in the IDE when the client enters the debugger. The Remote
Debugger behaves like an ordinary Debugger, but the data it displays is from the client, and input into its Listener pane is
read and evaluated by the client.

• Open a Remote Listener in the IDE, where reading and evaluating input is done by the client.

• Inspect remote objects, by using the Inspector as usual on the IDE side.

• Evaluate forms on the client side from the Editor on the IDE side.

The Remote Debugger, Remote Listener and Inspector tools mostly work as normal tools when they are used to debug
remotely, but any differences are documented below. Note that an Inspector window that is inspecting a remote object is not
special in any way, and it can inspect objects on the IDE side as well (there is nothing that can be called a "remote
inspector"). The Listener and Debugger windows are specifically associated with the remote client, and are therefore called
"Remote Listener" and "Remote Debugger".

Remote Debugger windows are opened automatically when the client side enters the debugger. Remote Listener windows are
opened on request, either by choosing Windows > Tools > Remote Listener, by calling dbg:ide-open-a-listener, or
by calling dbg:ide-connect-remote-debugging with :open-a-listener t (or from the client side by
dbg:start-remote-listener). The Inspector inspects a remote object when you tell it to inspect in the same way as you
would tell it to inspect an ordinary object (typically from the Debugger or Listener), or by calling dbg:remote-inspect on
the client side.

29.1 Remote Listeners

When the remote debugging module is loaded, it adds a menu item Remote Listener to the Windows > Tools menu. This
opens a Remote Listener, either using an existing remote debugging connection or by opening a new connection and using it.
By default it will use an existing connection if there is any, otherwise it asks for a hostname and connects to it using
dbg:ide-connect-remote-debugging with the default port. It opens a Remote Listener on the connection using
dbg:ide-open-a-listener. You can configure the hostname in the Preferences dialog Debugger options Remote tab, so
that LispWorks does not need to ask you for it before opening the connection (see 29.4.1 Remote Debugging Client).

The Remote Listener (and the Listener pane in a Remote Debugger window) allows evaluation of forms on the client side. It
sends each character that is typed after the Listener pane's prompt to the client side, which performs all of the reading and
evaluation, after which the values are printed.

Most Editor commands are executed entirely on the IDE side, with a few exceptions that affect the client side if they add or
remove characters after the prompt. Note in particular that symbol completion (Complete Symbol) occurs on the IDE side,
and Editor commands that evaluate forms (for example Evaluate Last Form) perform all of the reading and evaluation on the
IDE side without interacting with the client side.

276

There are several Editor commands that always interact with the client side. These commands have the same effect as in an
ordinary Listener/Debugger, but they need to interact with the client side to do that.

• Debugger Abort

• Debugger Backtrace

• Debugger Continue

• Debugger Edit

• Debugger Next

• Debugger Previous

• Debugger Print

• Debugger Top

• Throw out of Debugger

• Throw To Top Level

• Inspect Star.

29.2 Menus in the Remote Debugger and Remote Listener tools

Most menu items in the Remote Debugger and Remote Listener work as in the ordinary tools. A major exception is that you
cannot use the Stepper remotely, so the corresponding menu items are disabled.

29.3 Editor commands for remote debugging

Apart from Connect Remote Debugging and Reconnect Remote Listener, the "remote" editor commands expect there to
be an open connection to a client. This may be opened by Connect Remote Debugging, by an explicit call to
dbg:ide-connect-remote-debugging, by using the Preferences dialog Debugger options Remote tab (see 29.4.1
Remote Debugging Client), or by a connection from a client (after calling
dbg:start-ide-remote-debugging-server on the IDE side).

The command Connect Remote Debugging allows you to connect to a remote client from the Editor. It prompts for a host
name and a port (using the value of dbg:*default-client-remote-debugging-server-port* as the default) and
calls dbg:ide-connect-remote-debugging, with :open-a-listener t and
mp:*background-standard-output* as the log-stream. Note that the client side must have already called
dbg:start-client-remote-debugging-server for this to work.

The commands Remote Evaluate Defun, Remote Evaluate Region, Remote Evaluate Buffer and Remote Evaluate Last
Form send forms from the editor for evaluation on the client side. They work like their ordinary counterparts (commands
without "Remote "), but they use dbg:ide-eval-form-in-remote to evaluate the forms.

The commands Remote Evaluate Defun In Listener, Remote Evaluate Last Form In Listener, Remote Evaluate Region
In Listener evaluate forms in a Remote Listener. They do the same as their ordinary counterparts (commands without
"Remote "), but look for a remote listener. If there is no current remote listener, they open one (using
dbg:ide-open-a-listener).

Normally you have only one remote debugging connection, so there is no ambiguity about which connection to use for these
commands. If you have more than debugging connection, you can use the command Set Default Remote Debugging
Connection to set which connection the commands above use (which calls
dbg:ide-set-default-remote-debugging-connection). If no default is set, the commands use the last connection

29 Remote Debugging

277

that was opened.

The Editor command Reconnect Remote Listener can be used only in a Remote Listener after the client side has
disconnected, which may be either because the read-eval-print loop on the client side exited, or the connection was closed
(which may also be because the client crashed). The command tries to reconnect the Listener to the same client, which can
work if the connection is still open, if there is another connection to the same client, or if the client is listening for
connections (that is the client called dbg:start-client-remote-debugging-server).

Note that the IDE recognizes the client only by its hostname and port number. Therefore, the reconnection is not necessarily
to the same invocation on the client side. It may be a different invocation of the same application or a different application,
and if the configuration of the network changes, it may be a different device altogether.

29.4 Configuring Remote Debugging

The Preferences dialog Debugger options has a Remote tab that gives you options for remote debugging. To use it, raise the
Preferences dialog as described in 3.2 Setting preferences, select Debugger in the list on the left, and select the Remote tab.

Remote Debugger Preferences

29.4.1 Remote Debugging Client

The Remote Debugging Client section allows you to connect to a debugging client that is waiting for connections (see "Using
the client as the TCP server" in the "The Debugger" chapter of the LispWorks® User Guide and Reference Manual). It also
sets the hostname and port to be used when you choose Windows > Tools > Remote Listener. You need to enter the

29 Remote Debugging

278

hostname in the Host Name pane, and optionally you can also change the TCP port number in the Port Number pane. You
then can connect to the debugging client by clicking Connect To Debugging Client, which calls
dbg:ide-connect-remote-debugging with the hostname and the port. In addition, once you confirm the change,
choosing Windows > Tools > Remote Listener will use the hostname and port to open a connection if it does not have an
existing connection.

If there is already a connection, the button changes to Close Connection To Debugging Client, and clicking it closes the
connection. Note that an existing connection is only found if it was opened with exactly the same hostname and port; other
connections to the same client are ignored, for example those by the debugging client connecting, or with a different
hostname that names the same machine. If there is more than one such connection, only one is closed in each click.

Note that at the time you connect, the client side must already be listening, that is it must have already called
dbg:start-client-remote-debugging-server, with a port number that matches your setting.

29.4.2 Remote Listener

The Remote Listener section gives some control over the behavior of the Remote Listener.

If Use Existing Connection is checked, then any existing debugging connection is re-used when you choose Windows >
Tools > Remote Listener, ignoring the host and port that are set in the Remote Debugging Client section. If Use Existing
Connection is not set, opening a Remote Listener always opens a new connection, using the hostname and port number as
described in 29.4.1 Remote Debugging Client.

If Close Listener On Exit is checked, then the Remote Listener window closes automatically when the read-eval-print loop on
the client side exits or the connection has been closed (which may also because the client crashes). If Close Listener On Exit
is unchecked, then the Remote Listener remains visible but is marked in its title as <closed> or <exited> and does not
evaluate input anymore. You can still look at all the interaction that you had in it, copy it or save it to a file. Moreover, you
can reconnect it using the Reconnect Remote Listener Editor command. Close Listener On Exit affects the behavior of all
Remote Listeners, independently of how they were opened.

29.4.3 IDE Remote Debugging Server

The IDE Remote Debugging Server section allows you to start and stop an IDE remote debugging server (see "Using the IDE
as the TCP server" in the "The Debugger" chapter of the LispWorks® User Guide and Reference Manual). The Port Number
pane allows you to specify the TCP port number (blank means use the default). Clicking Start IDE Remote Debugging
Server starts the server by calling dbg:start-ide-remote-debugging-server with the port number. Once the server is
running, clients can connect to it as described in the LWUGRM.

If there is already an IDE remote debugging server, the button changes to Stop Running IDE Remote Debugging Server, and
clicking it stops the server. Stopping the server prevents new connections from being made but does not close any
connections that have already been opened to it.

Note that changing the port numbers does not affect the values of the remote-debugger module variables
(dbg:*default-ide-remote-debugging-server-port* and
dbg:*default-client-remote-debugging-server-port*). The defaults of the port numbers come from the
variables, but otherwise there is no interaction between these.

In normal usage you should not change the port numbers, because any change must be matched on the client side. You will
need to change them if there are clashes with other usage of the ports by any other software on the same machines.

29 Remote Debugging

279

Index

A

aborting commands in the editor 12.9.1 : Aborting commands 138

accelerators

for tools 3.1.5 : Displaying tools using the keyboard 28

accessors

simple-pane-foreground 2.6 : Examining classes in the Class Browser 24

Actions menu 3.8 : Performing operations on selected objects 45

active-finders variable 16.2.1.4 : Known Definitions searches 173

add-system-namespace function 26.9.1 : Interface to source code managers 261

Alt key

as Emacs Meta key 3.2.2.3 : Effect of the specified Meta key 35

effect of 3.2.2.3 : Effect of the specified Meta key 35

use of 12.1.4 : Using keyboard commands 124

application builder 28.1 : Introduction 269

apropos function 18.1 : Introduction 193

Arguments command 12.13.10 : Other facilities 149, 20.7 : The Expression menu 201

ASDF 16.2.1.3 : System Search 172, 26.9 : ASDF Integration 260

Attributes menu 17.5.2 : Examining attributes 184

Clip 17.5.5 : Copying in the Inspector 187

Copy 17.5.5 : Copying in the Inspector 187

Inspect 17.5.2 : Examining attributes 184

B

Backtrace command 20.9 : The Debug menu 202

backtraces 10.5 : An example debugging session 111

binding $ to the current inspector object 17.7 : Customizing the Inspector 189

binding frames 10.9.1 : Configuring the call frames displayed 114

Bindings button 10.9.1 : Configuring the call frames displayed 114

Bindings command 20.9 : The Debug menu 202

Break command 22.2 : Process control 211

breaking a process 22.2 : Process control 211

breaking processes 3.4 : The Break gesture 42

Break on Access command 17.5.3 : Tracing slot access 184

Break on Read command 17.5.3 : Tracing slot access 184

Break On Return from Frame command 10.7.2 : Restarts and returning from the frame 112

Break on Write command 17.5.3 : Tracing slot access 184

280

breakpoints

in the editor 12.13.6.1 : Setting breakpoints 146

Browse All Systems command 26.5.2 : Tree area 254, 26.5.4 : Performing operations on system members 255

Browse command 3.8.1 : Operations available 46, 3.17 : Examining a window 58, 27.1.2 : Window graph 265

variations in name 3.8.1 : Operations available 46

Browse Metaclass command 7.2.5 : Performing operations on the current class 84, 7.3.5 : Performing operations on the selected classes or the
current class 86, 7.4.4 : Performing operations on the selected classes or the current class 88, 7.5.5 : Performing operations on the
current class 90, 7.6.5 : Performing operations on the current class 92, 7.7.5 : Performing operations on the selected classes or the
current class 94

Browse Parent command 27.3.1 : Navigating the window hierarchy 268

Browse Parent System command 3.6 : Operating on files 43, 12.13.10 : Other facilities 148, 26.3 : The System Browser 252

browsers 4.1 : Online manuals in HTML format 59

Browse Screens command 27.3.1 : Navigating the window hierarchy 268

Browse Symbols Like command 3.8.1 : Operations available 46, 18.1 : Introduction 193, 20.7 : The Expression menu 202

Browse Systems For Directory command 26.5.4 : Performing operations on system members 255

browsing

Common Lisp classes 7 : The Class Browser 77

compilation conditions 9.1 : Introduction 101

errors 9.1 : Introduction 101

function calls 14.1 : Introduction 154

generic functions 15 : The Generic Function Browser 161

HTML documentation 4.1.5 : Browsing manuals online 61

online manuals 4.1.5 : Browsing manuals online 61

output 2.4 : Viewing output 20, 21 : The Output Browser 207

selected object, class of the 3.8.1 : Operations available 46, 20.7 : The Expression menu 201

symbols 18.1 : Introduction 193

systems 3.6 : Operating on files 43, 26.3 : The System Browser 252

window definitions 27.1 : Introduction 264

Buffer Changed Definitions editor command 12.5.1 : Setting the reference point for changed definitions 130

buffers

closing 12.8.4 : Using several buffers 137

swapping between 12.8.4 : Using several buffers 137

Buffers menu 12.3.2 : Buffers area 127, 12.13 : Using Lisp-specific commands 144

Compile 12.13.4.1 : Compiling in memory 145

Evaluate 12.13.3 : Evaluating code 145

Trace. See Trace menu 12.13.7 : Tracing symbols and functions 147

Undefine 12.13.10 : Other facilities 148

bugs, reporting 20.9 : The Debug menu 203

Build command 28.1 : Introduction 269, 28.3 : Building your application 271

building

applications 28.1 : Introduction 269

Build menu

Build 28.1 : Introduction 269, 28.3 : Building your application 271

Build Universal 28.7 : Building universal binaries 274

Index

281

Clear Output 28.5.2 : Clearing the output 273

Display Backtrace 28.5.1 : Viewing errors 272

Display Error 28.5.1 : Viewing errors 272

Edit Script 28.4 : Editing the script 272

Kill All 28.6.3 : Killing application processes 274

Kill Application 28.6.3 : Killing application processes 274

Make a New Script 28.2.1.2 : Creating a new delivery script 270

Run 28.1 : Introduction 269, 28.6 : Running the saved application 273

Run With Arguments 28.6.1 : Passing arguments and redirecting output 273, 28.7 : Building universal binaries 274

Build Universal command 28.7 : Building universal binaries 274

By Name option 3.9.1 : Sorting items in views 48

By Package option 3.9.1 : Sorting items in views 48

C

call frames 10.4 : The stack in the Debugger 110, 10.9.1 : Configuring the call frames displayed 113

Catchers button 10.9.1 : Configuring the call frames displayed 114

catch frames 10.9.1 : Configuring the call frames displayed 114

choosing menu commands preface 12

class browser 7 : The Class Browser 77

Class area 7.2.1 : Class box 83

current class, operations specific to the 7.2.5 : Performing operations on the current class 84, 7.3.5 : Performing operations on the selected
classes or the current class 86, 7.4.4 : Performing operations on the selected classes or the current class 88, 7.5.5 : Performing
operations on the current class 90, 7.6.5 : Performing operations on the current class 92, 7.7.5 : Performing operations on the selected
classes or the current class 94

description 1.1.3 : The Class Browser 15

Description area 7.3.4 : Description list 86, 7.4.3 : Description list 88, 7.6.4 : Description list 92

examining a class 7.1.4 : Examining other classes 81

Filter area 7.2.2 : Filter area 83

filtering information 7.1.3 : Filtering slot information 79

Function description area 7.5.4 : Description list 90

functions list 7.5.3 : List of functions or methods 90

functions view 7.5 : Examining generic functions and methods 89

generic functions, operating on 7.5.6 : Operations specific to the current function or method 90

Graph area 7.4.2 : Subclasses and superclasses graphs 87

graph view 7.4 : Examining classes graphically 86

hierarchy view 7.1.4 : Examining other classes 81

Include Accessors button 7.5.3 : List of functions or methods 90

Include Inherited button 7.5.3 : List of functions or methods 90

inherited slots 7.1.2 : Examining inherited slots 79

Initargs area 7.6.3 : List of initargs 92

initargs view 7.6 : Examining initargs 91

invoking on the current expression 20.7 : The Expression menu 201

invoking on the selected object 3.8.1 : Operations available 46

menu commands, see menu or command name 7 : The Class Browser 77

Index

282

methods list 7.5.3 : List of functions or methods 90

overview of the 7 : The Class Browser 77

Precedence area 7.7.3 : List of precedences 94

precedence view 7.7 : Examining class precedences 93

See also classes 7 : The Class Browser 77

Slot description area 7.2.4 : Description list 83

slot information 7.1.1 : Examining slots 79

Slots area 7.2.3 : Slots list 83

slots view 7.1.1 : Examining slots 79

sorting information 7.1.5 : Sorting information 81

tracing classes from the 7.5.6 : Operations specific to the current function or method 91

undefining functions and methods 7.5.6 : Operations specific to the current function or method 90

Class command 2.6 : Examining classes in the Class Browser 23, 3.8.1 : Operations available 46, 7.1 : Simple use of the Class
Browser 77, 7.1.3 : Filtering slot information 80, 7.2.1 : Class box 83, 20.7 : The Expression menu 201

classes 7 : The Class Browser 77

changing slot values in the inspector 17.5.4.1 : Example 185

displaying graphs of 7.4 : Examining classes graphically 86

examining 7.1.4 : Examining other classes 81

examining functions and methods defined on 7.5 : Examining generic functions and methods 89

inherited slots in 7.1.2 : Examining inherited slots 79

initargs 7.6 : Examining initargs 91

inspecting local slots 17.4 : Examining objects 183

list-panel 7.1.3 : Filtering slot information 79

operations specific to the current class 7.2.5 : Performing operations on the current class 84, 7.3.5 : Performing operations on the selected
classes or the current class 86, 7.4.4 : Performing operations on the selected classes or the current class 88, 7.5.5 : Performing
operations on the current class 90, 7.6.5 : Performing operations on the current class 92, 7.7.5 : Performing operations on the selected
classes or the current class 94

precedence list 7.7 : Examining class precedences 93

push-button-panel 7.1.4 : Examining other classes 81

See also class browser 7 : The Class Browser 77

tracing 7.5.6 : Operations specific to the current function or method 91

Classes menu

Browse Metaclass 7.2.5 : Performing operations on the current class 84, 7.3.5 : Performing operations on the selected classes or the current
class 86, 7.4.4 : Performing operations on the selected classes or the current class 88, 7.5.5 : Performing operations on the current
class 90, 7.6.5 : Performing operations on the current class 92, 7.7.5 : Performing operations on the selected classes or the current
class 94

objects operated on by the 7.2.5 : Performing operations on the current class 84, 7.3.5 : Performing operations on the selected classes or the
current class 86, 7.4.4 : Performing operations on the selected classes or the current class 88, 7.5.5 : Performing operations on the
current class 90, 7.6.5 : Performing operations on the current class 92, 7.7.5 : Performing operations on the selected classes or the
current class 94

Clear Output command 28.5.2 : Clearing the output 273

clipboard

general use 3.3.3 : Using the Object operations with the clipboard 41

interaction with system clipboard 3.3.3 : Using the Object operations with the clipboard 41

See also clipboard, kill ring 3.3.3 : Using the Object operations with the clipboard 41

usage in editor 12.10 : Cutting, copying and pasting using the clipboard 138

Index

283

Clip command 8.1.9 : General clipping 96

Clone command 3.1.9 : Copying windows 30, 3.11 : Linking tools together 49, 12.8.4 : Using several buffers 138

Close command 12.8.4 : Using several buffers 137

closing

editor buffers 12.8.4 : Using several buffers 137

Code Coverage Browser

Coloring preferences 13.3 : Code Coverage Files List Context Menu 152, 13.4 : Traverse 153

Files List context menu 13.3 : Code Coverage Files List Context Menu 151

Files List preferences 13.2 : Displaying a Code Coverage data 151

Pathname Mapping preferences 13.3 : Code Coverage Files List Context Menu 152

code-coverage-file-stats function 13.2 : Displaying a Code Coverage data 151

Code Coverage Goto Next editor command 13.4 : Traverse 152

Code Coverage menu

Copy To New Data... 13.6 : Creating new Data 153

Load Data... 13.1 : Starting the Code Coverage Browser 150

Traverse 13.4 : Traverse 152

Use Internal Data 13.5 : Using the internal data 153

Collapse Nodes command 6.3.2 : Expanding and collapsing by menu commands 71

collapsing graphs 6.3 : Expanding and collapsing graphs 70

colors

of code in Lisp mode 3.2.3.2 : Setting the text style attributes 38

Command+Ctrl+,, break gesture 3.4 : The Break gesture 42

Command key

as Emacs Meta key 3.2.2.3 : Effect of the specified Meta key 35

use of preface 12

command line arguments

-build 5.5 : Redirecting images to a Saved Session image 67

-eval 5.5 : Redirecting images to a Saved Session image 67

-init 5.5 : Redirecting images to a Saved Session image 67

-load 5.5 : Redirecting images to a Saved Session image 67

-lw-no-redirection 5.5 : Redirecting images to a Saved Session image 68

-siteinit 5.5 : Redirecting images to a Saved Session image 67

commands

completion of 12.1.3 : The echo area 124

repeating 3.5 : The history list 42

Commands menu 3.15 : The Commands menu 55

commands-menu-add-commands function 3.15.1 : Editor Commands List 56

commands-menu-get-commands function 3.15.1 : Editor Commands List 57

commands-menu-remove-commands function 3.15.1 : Editor Commands List 57

Command to Key command 12.14 : Help with editing 149, 20.14 : Help with editing in the Listener 206

common features in the environment 3 : Common Features 26

Index

284

common features in the IDE

See also under graphs 3 : Common Features 26

Common Lisp

classes. See classes 7 : The Class Browser 77

debugging 10 : The Debugger Tool 105

displaying documentation for expressions 20.7 : The Expression menu 201

displaying documentation for selected object 3.8.1 : Operations available 46, 10.7.1 : Source location, documentation, inspect and method
combination for the current frame 112

evaluating forms 20.2 : Evaluating simple forms 199

file extension 12.8.1 : Opening, saving and printing files 135

indentation of forms in source code 12.13.9 : Indentation of forms 148

prompt 20.1 : The basic features of a Listener 198

systems. See system 26.1 : Introduction 251

Common Lisp symbols 3.2.3.2 : Setting the text style attributes 38

compilation conditions browser 9.1 : Introduction 101

pathnames 9.3.1 : Display preferences 103

preference dialog 9.3 : Configuring the display 103

Compilation Options menu

Force 26.11 : Setting options in the system browser 262

Preview 26.11 : Setting options in the system browser 262

Source 26.11 : Setting options in the system browser 262

Compile and Load command

on File menu 3.6 : Operating on files 43, 10.5 : An example debugging session 110, 12.13.4.2 : Compiling to a file 146

on Systems menu 26.5.4 : Performing operations on system members 255, 26.7.6 : Executing plans in the preview view 259

Compile and Load... command 12.13.4.2 : Compiling to a file 146

Compile command

on Buffers menu 12.13.4.1 : Compiling in memory 145

on Definitions menu 12.13.4.1 : Compiling in memory 145

on File menu 3.6 : Operating on files 43, 12.13.4.2 : Compiling to a file 146

on Systems menu 26.5.4 : Performing operations on system members 255, 26.7.6 : Executing plans in the preview view 259

Compile... command 12.13.4.2 : Compiling to a file 146

Compile Region command 20.7 : The Expression menu 202

in editor 12.13.4.1 : Compiling in memory 145

compiler output 12.13.4.1 : Compiling in memory 145

compile-system function 26.2 : A brief introduction to systems 251

compiling code

editor 12.13.4 : Compiling code 145

compiling files in the listener 3.6 : Operating on files 43

completion 3.14 : Completion 52, 12.1.3 : The echo area 124

dynamic 3.2.3.2 : Setting the text style attributes 38

in class browser 7.1.4 : Examining other classes 81, 10.9.2 : Displaying package information 114

in generic function browser 15.1.1 : Function area 162

in-place 3.2.1.2 : Controlling completion behavior 33, 3.2.3.2 : Setting the text style attributes 38

Index

285

using Tab 3.14.1 : Invoking completion 52

Concatenate... command 26.5.4 : Performing operations on system members 255, 26.11 : Setting options in the system browser 263

Condition menu

Actions. See Actions menu 10.6 : Performing operations on the error condition 112

Report Bug 10.6 : Performing operations on the error condition 112

consistency in the IDE. See common features in the IDE 3 : Common Features 26

contain function 2.5 : Inspecting objects using the Inspector 21, 7.1.3 : Filtering slot information 79, 17.5.4.1 : Example 187

Contents radio button 4.1.3 : Searching the online manuals 60

Control key, use of preface 12, 12.1.4 : Using keyboard commands 124

controls

choosing preface 12

conventions used in the manual preface 10

Copy command 3.8.1 : Operations available 46, 12.10 : Cutting, copying and pasting using the clipboard 138, 12.11.2 : Cutting or copying
text 139, 17.5.4.1 : Example 186

in Actions menu 23.5 : Format of the cumulative results 226

standard action command 3.8.1 : Operations available 46

copying windows 3.1.9 : Copying windows 30

Copy Object command 3.3.3 : Using the Object operations with the clipboard 41

create snapshot 5 : Session Saving 63

creating new files 3.6 : Operating on files 43, 12.8.1 : Opening, saving and printing files 135

cross-referencing 14.1 : Introduction 154

current

object. See selected object 3.8 : Performing operations on selected objects 45

package of any tool 3.7.1 : Specifying a package 44

prompt 20.2 : Evaluating simple forms 199

value, operating on 20.8 : The Values menu 202

current buffer 12.13.2 : Current buffers, definitions and expression 144

current class, operations specific to the 7.2.5 : Performing operations on the current class 84, 7.3.5 : Performing operations on the selected
classes or the current class 86, 7.4.4 : Performing operations on the selected classes or the current class 88, 7.5.5 : Performing
operations on the current class 90, 7.6.5 : Performing operations on the current class 92, 7.7.5 : Performing operations on the
selected classes or the current class 94

current definition 12.13.2 : Current buffers, definitions and expression 144

current expression 12.13.2 : Current buffers, definitions and expression 144

displaying lambda list for 12.13.10 : Other facilities 149, 20.7 : The Expression menu 201

displaying value 12.13.10 : Other facilities 149, 20.7 : The Expression menu 201

stepper breakpoint 20.7 : The Expression menu 202

toggling stepper breakpoint 20.7 : The Expression menu 201

tracing 20.7 : The Expression menu 202

current form

macroexpanding 20.7 : The Expression menu 202

macro expanding 20.7 : The Expression menu 202

walking 20.7 : The Expression menu 202

Customize menu

Reusable 3.1.6.2 : Per-window control of re-use 29, 12.3.3 : Editor tool solely as buffers list 127

Index

286

Cut command 12.10 : Cutting, copying and pasting using the clipboard 139, 12.11.2 : Cutting or copying text 139

Cut Object command 3.3.3 : Using the Object operations with the clipboard 41

D

Debug command 22.2 : Process control 212

debugger 10 : The Debugger Tool 105

abort restart 10.3 : Simple use of the Debugger tool 109

backtrace tree 10.1.2.1 : Frames and Variables in a tree 107

binding frames 10.9.1 : Configuring the call frames displayed 114

call frame 10.1.2.1 : Frames and Variables in a tree 107

call frames 10.4 : The stack in the Debugger 110, 10.9.1 : Configuring the call frames displayed 113

catch frames 10.9.1 : Configuring the call frames displayed 114

closure variable 10.1.2.1 : Frames and Variables in a tree 107

colors of variables 10.1.2.1 : Frames and Variables in a tree 107

continue restart 10.3 : Simple use of the Debugger tool 109

controlling from the listener 20.9 : The Debug menu 202

debugger tool 20.9 : The Debug menu 203

description 10.2 : What the Debugger tool does 109

displaying documentation for object in current frame 10.7.1 : Source location, documentation, inspect and method combination for the current
frame 112

example session 10.5 : An example debugging session 110

finding source code for object in current frame 10.7.1 : Source location, documentation, inspect and method combination for the current
frame 112

handler frames 10.9.1 : Configuring the call frames displayed 114

invisible frames 10.9.1 : Configuring the call frames displayed 114

invoking 10.1 : Description of the Debugger 106

invoking from the process browser 22.2 : Process control 212

invoking from the tracer 3.10 : Tracing symbols from tools 49

lexical variable 10.1.2.1 : Frames and Variables in a tree 107

menu commands in the listener 20.9 : The Debug menu 202

other frame 10.1.2.1 : Frames and Variables in a tree 107, 25.1.3 : Backtrace area 235

remote 29 : Remote Debugging 276

restart frames 10.9.1 : Configuring the call frames displayed 114

restart options 10.3 : Simple use of the Debugger tool 109

See also debugger tool 10 : The Debugger Tool 105

special variable 10.1.2.1 : Frames and Variables in a tree 107

stack 10.4 : The stack in the Debugger 110

stack frames 10.4 : The stack in the Debugger 110

Debugger command 2.3 : Using the Debugger 19, 20.9 : The Debug menu 203

debugger level 20.4 : The debugger prompt and debugger level 200

debugger prompt

colon 20.4 : The debugger prompt and debugger level 200

debugger tool 10 : The Debugger Tool 105

Backtrace area 10.1.2 : Backtrace area 106

Index

287

buttons 10.1.3 : Toolbar buttons 108

Condition area 10.1.1 : Condition box 106

invoking 10 : The Debugger Tool 105

invoking from notifier 10.1 : Description of the Debugger 106

package information 10.9.2 : Displaying package information 114

Restarts menu 10.3 : Simple use of the Debugger tool 109

See also debugger 10 : The Debugger Tool 105

types of frame, displaying 10.9.1 : Configuring the call frames displayed 113

debugging a process 22.2 : Process control 212

Debug menu

Debugger 2.3 : Using the Debugger 19

Listener 2.3 : Using the Debugger 19

Restarts 20.9 : The Debug menu 202

Start GUI Debugger 10 : The Debugger Tool 105, 10.3 : Simple use of the Debugger tool 109, 10.5 : An example debugging
session 111

default font 3.2 : Setting preferences 31

defclass macro 7.5.3 : List of functions or methods 90

Definitions menu 12.4.2 : Definitions area 128, 12.5 : Changed definitions 129, 12.13 : Using Lisp-specific commands 144

Compile 12.13.4.1 : Compiling in memory 145

Evaluate 12.13.3 : Evaluating code 145

Generic Function 12.13.10 : Other facilities 148

Trace. See Trace menu 12.13.7 : Tracing symbols and functions 147

Undefine 12.13.10 : Other facilities 148

defsystem macro 16.2.1.3 : System Search 172, 26.3 : The System Browser 253

examples of use 26.2.1 : Examples 252

deleting text in the editor 12.8.3 : Inserting and deleting text 136

See also kill ring 12.11 : Cutting, copying and pasting using the kill ring 139

deliver function 28.1 : Introduction 269, 28.2 : Preparing to build your application 270

Describe Generic Function editor command 15 : The Generic Function Browser 161

Describe System editor command 26.3 : The System Browser 252

description

of compilation conditions 9.2 : Examining conditions 102

Description menu 9.2 : Examining conditions 103, 14.2.5.1 : Function description area 157, 15.1.4 : Description list 163

Listen 18.2.4 : Description area 196

Deselect All command 3.3.4 : Selecting text and objects 41, 11.2 : Tracing and Untracing functions 118, 12.10 : Cutting, copying and
pasting using the clipboard 138

Destroy command 27.3.2 : Window control 268

Display Backtrace command 28.5.1 : Viewing errors 272

Display Error command 28.5.1 : Viewing errors 272

displaying

package information 3.7 : Displaying packages 43

windows 3.1.1 : Displaying existing windows 27

Index

288

Documentation command 3.8.1 : Operations available 46, 10.7.1 : Source location, documentation, inspect and method combination for the
current frame 112, 20.7 : The Expression menu 201

documentation, online. See online help 4 : Getting Help 59

drag and drop 12 : The Editor 123

dynamic library 28.6.2 : Executing a different file 274

E

echo area 12.1.3 : The echo area 124

Edit > Object menu

Copy Object 3.3.3 : Using the Object operations with the clipboard 41

Cut Object 3.3.3 : Using the Object operations with the clipboard 41

Paste Object 3.3.3 : Using the Object operations with the clipboard 41

Editing menu

Command to Key 12.14 : Help with editing 149, 20.14 : Help with editing in the Listener 206

Key to Command 12.14 : Help with editing 149, 20.14 : Help with editing in the Listener 206

editing the history list 3.5.2 : Editing the history list 42

Edit menu 3.3 : Performing editing functions 40

Copy 3.3.2 : Using the clipboard 40, 3.8.1 : Operations available 46, 12.10 : Cutting, copying and pasting using the
clipboard 138, 12.11.2 : Cutting or copying text 139

Cut 3.3.2 : Using the clipboard 40, 12.10 : Cutting, copying and pasting using the clipboard 139, 12.11.2 : Cutting or copying text 139

Deselect All 3.3.4 : Selecting text and objects 41, 11.2 : Tracing and Untracing functions 118, 12.10 : Cutting, copying and pasting
using the clipboard 138

Find 12.12.1 : Searching for text 141, 12.12.3 : Replacing text 144

Find... 3.3.5 : Searching for text and objects 41

Find, for graph view 6.2 : Searching graphs 70

Find Next 3.3.5 : Searching for text and objects 41, 12.12.1 : Searching for text 142

Find Next, for graph view 6.2 : Searching graphs 70

Link. See Link Menu 3.11 : Linking tools together 49

Paste 3.3.2 : Using the clipboard 40, 7.2.1 : Class box 83, 12.10 : Cutting, copying and pasting using the clipboard 139, 15.1.1 :
Function area 162

Replace 12.12.3 : Replacing text 143

Replace... 3.3.5 : Searching for text and objects 41

Search Files... 16.1 : Introduction 169

Select All 3.3.4 : Selecting text and objects 41, 11.2 : Tracing and Untracing functions 118, 12.10 : Cutting, copying and pasting using
the clipboard 138, 26.7.6 : Executing plans in the preview view 259

Undo 3.3.1 : Undoing changes 40, 12.9.2 : Undoing commands 138

editor

aborting commands 12.9.1 : Aborting commands 138

breakpoints 12.13.6.1 : Setting breakpoints 146

buffers. See buffers 12 : The Editor 122

buffers view 12.3 : Displaying and swapping between buffers 125, 12.8.4 : Using several buffers 137

changed definitions list 12.5 : Changed definitions 128

closing buffers 12.8.4 : Using several buffers 137

compiling source code 12.13.4 : Compiling code 145

creating a new window 12.8.4 : Using several buffers 138

Index

289

creating files 3.6 : Operating on files 43, 12.8.1 : Opening, saving and printing files 135

current expression, displaying value 12.13.10 : Other facilities 149

current package and displayed package 12.7.2.4 : Displaying package information 134

definitions list 12.4 : Displaying Common Lisp definitions 127

definitions, operating on 12.13.10 : Other facilities 148

deleting text 12.8.3 : Inserting and deleting text 136

Emacs, comparison with 12 : The Editor 122

evaluating source code 12.13.3 : Evaluating code 145

expressions, operating on 12.13.10 : Other facilities 148

History menu 12.8.4 : Using several buffers 137

indenting forms 12.13.9 : Indentation of forms 148

inserting files into the current buffer 12.8.3 : Inserting and deleting text 137

inserting text 12.8.3 : Inserting and deleting text 136

invoking 12 : The Editor 122

keyboard commands, use of 12.1.4 : Using keyboard commands 124

kill ring. See kill ring 12.11 : Cutting, copying and pasting using the kill ring 139

Lisp-specific commands 12.13 : Using Lisp-specific commands 144

macroexpanding forms in the 12.13.10 : Other facilities 149

macro expanding forms in the 12.13.10 : Other facilities 149

menu and keyboard commands, distinctions 12.8.1 : Opening, saving and printing files 135

menu commands. See menu or command name 12 : The Editor 122

moving around in the buffer 12.8.2 : Moving around files 136

new files 3.6 : Operating on files 43, 12.8.1 : Opening, saving and printing files 135

online help 12.14 : Help with editing 149, 20.14 : Help with editing in the Listener 206

opening files 3.6 : Operating on files 43, 12 : The Editor 122, 12.8.1 : Opening, saving and printing files 135

opening recent files 3.6 : Operating on files 43

output view 12.2 : Displaying output messages in the Editor 125

overview 1.1.2 : The Editor 15

package information 12.7.2.4 : Displaying package information 134

package usage 12.13.8.1 : The primary package 148

repeating commands 12.9.3 : Repeating commands 138

replacing text 12.12.3 : Replacing text 143

reverting to last saved version 12.8.1 : Opening, saving and printing files 135

saving files 12.8.1 : Opening, saving and printing files 135, 12.8.4 : Using several buffers 137

saving text regions 12.8.1 : Opening, saving and printing files 135

scrolling text 12.8.2 : Moving around files 136

searching 12.12 : Searching and replacing text 141

sorting entries 12.7.2.3 : Sorting items in lists 134

swapping between buffers 12.8.4 : Using several buffers 137

tracing 12.13.7 : Tracing symbols and functions 147

undefining symbols 12.13.10 : Other facilities 148

undoing commands 12.9.2 : Undoing commands 138

using the clipboard 12.10 : Cutting, copying and pasting using the clipboard 138

Index

290

viewing two sections of the same file 12.8.4 : Using several buffers 138

views available 12 : The Editor 122

walking forms 12.13.10 : Other facilities 149

editor-color-code-coverage function 13.3 : Code Coverage Files List Context Menu 151

editor commands

Buffer Changed Definitions 12.5.1 : Setting the reference point for changed definitions 130

Code Coverage Goto Next 13.4 : Traverse 152

Describe Generic Function 15 : The Generic Function Browser 161

Describe System 26.3 : The System Browser 252

Find Dspec 25.6 : Breakpoints 242

finding keyboard command for 20.14 : Help with editing in the Listener 206

Indent Selection or Complete Symbol 3.14.1 : Invoking completion 52

Search Files 16.1 : Introduction 169

Shell 24.2 : The Shell tool 231

View Source Search 12.6 : Finding definitions 131

Visit Tags File 12.1.4 : Using keyboard commands 124

Editor Commands List 3.15.1 : Editor Commands List 55

editor emulation 3.2 : Setting preferences 31

editor font 3.2 : Setting preferences 31

Edit Script command 28.4 : Editing the script 272

Emacs 3.2.2.1 : Choosing the key input style 34

comparison with built-in editor 12 : The Editor 122

Enable Display command 10.12 : Errors in CAPI display callbacks 117

encoding 3.2.4 : Setting the default encodings 39

enter-debugger-directly variable 10.1.4 : Bypassing the Notifier window 109

Enter Search String dialog 4.1.3 : Searching the online manuals 59

environment

common features 3 : Common Features 26

quitting 3.2.1.3 : Quitting the environment 33

environment variables

ESHELL 24.4 : Configuring the shell to run 232

LANG 24.4 : Configuring the shell to run 232

LC_ALL 24.4 : Configuring the shell to run 232

LC_CTYPE 24.4 : Configuring the shell to run 232

SHELL 24.4 : Configuring the shell to run 232

EOF command 24.2 : The Shell tool 232

error conditions 9.2 : Examining conditions 102

Escape key, use of preface 12, 12.1.4 : Using keyboard commands 124

ESHELL environment variable 24.4 : Configuring the shell to run 232

Evaluate command

in editor Buffers menu 12.13.3 : Evaluating code 145

Index

291

in editor Definitions menu 12.13.3 : Evaluating code 145

Evaluate Last Form in Listener editor command 20.12 : Running Editor forms in the Listener 206

Evaluate Region command

in editor 12.13.3 : Evaluating code 145

in listener 20.7 : The Expression menu 202

evaluating

code in the editor 12.13.3 : Evaluating code 145

forms 20.2 : Evaluating simple forms 199

interrupting in listener 20.5 : Interrupting evaluation 201

event

next 20.10.1 : History commands 203

previous 20.10.1 : History commands 203

repeating 3.5.1 : Repeating events from the history list 42

examining objects 17.4 : Examining objects 182

examples

searching 4.1.4 : Searching the example source files 60

example source files

searching 4.1.4 : Searching the example source files 60

execute mode 20.10 : Execute mode 203

expanding graphs 6.3 : Expanding and collapsing graphs 70

Expand Nodes command 6.3.2 : Expanding and collapsing by menu commands 70

Expression menu 12.13 : Using Lisp-specific commands 144

Arguments 12.13.10 : Other facilities 149, 20.7 : The Expression menu 201

Browse Symbols Like 20.7 : The Expression menu 202

Class 20.7 : The Expression menu 201

Compile Region 12.13.4.1 : Compiling in memory 145, 20.7 : The Expression menu 202

Documentation 20.7 : The Expression menu 201

Evaluate Region 12.13.3 : Evaluating code 145, 20.7 : The Expression menu 202

Find Source 3.2.1.5 : Automatic use of Find Definitions view 33, 20.7 : The Expression menu 201

Function Calls 20.7 : The Expression menu 202

Generic Function 20.7 : The Expression menu 202

Inspect Value 20.7 : The Expression menu 201

Macroexpand 12.13.10 : Other facilities 149

Macroexpand Form 20.7 : The Expression menu 202

Toggle Breakpoint 20.7 : The Expression menu 202

Trace. See Trace menu 12.13.7 : Tracing symbols and functions 147

Value 12.13.10 : Other facilities 149, 20.7 : The Expression menu 201

Walk 12.13.10 : Other facilities 149

Walk Form 20.7 : The Expression menu 202

expressions

browsing the class of 20.7 : The Expression menu 201

displaying documentation 20.7 : The Expression menu 201

finding source code 20.7 : The Expression menu 201

Index

292

extended editor commands, finding keyboard command for 20.14 : Help with editing in the Listener 206

external format 3.2.4 : Setting the default encodings 39

F

fg shell command 24.2 : The Shell tool 232

File menu 2.1 : Starting the environment 17, 12.3.2 : Buffers area 127

Browse Parent System 3.6 : Operating on files 43, 12.13.10 : Other facilities 148, 26.3 : The System Browser 252

Close 12.3 : Displaying and swapping between buffers 125, 12.8.4 : Using several buffers 137

Compile 3.6 : Operating on files 43, 12.13.4.2 : Compiling to a file 146

Compile... 12.13.4.2 : Compiling to a file 146

Compile and Load 3.6 : Operating on files 43, 10.5 : An example debugging session 110, 12.13.4.2 : Compiling to a
file 146, 12.13.6.4 : Reloading code with breakpoints 147

Compile and Load... 12.13.4.2 : Compiling to a file 146

description 3.6 : Operating on files 43

Insert 12.8.3 : Inserting and deleting text 137

Load 3.6 : Operating on files 43, 12.13.3 : Evaluating code 145, 12.13.6.4 : Reloading code with breakpoints 147, 26.3 : The
System Browser 253

Load... 12.13.3 : Evaluating code 145

New 3.6 : Operating on files 43, 12.8.1 : Opening, saving and printing files 135

Open 3.6 : Operating on files 43, 12 : The Editor 122, 12.3 : Displaying and swapping between buffers 125, 12.8.1 : Opening,
saving and printing files 135

Print 3.6 : Operating on files 43, 12.8.1 : Opening, saving and printing files 135

Recent Files 3.6 : Operating on files 43, 12 : The Editor 122

Revert to Saved 12.8.1 : Opening, saving and printing files 135

Save 12.3 : Displaying and swapping between buffers 125, 12.3.2 : Buffers area 127, 12.8.1 : Opening, saving and printing files 135

Save All 12.8.4 : Using several buffers 137

Save As 12.8.1 : Opening, saving and printing files 135

Save Region As 12.8.1 : Opening, saving and printing files 135

filenames

completion of 12.1.3 : The echo area 124

extensions for CL files 12.8.1 : Opening, saving and printing files 135

files

compiling in listener 3.6 : Operating on files 43

creating new 3.6 : Operating on files 43, 12.8.1 : Opening, saving and printing files 135

inserting one into another 12.8.3 : Inserting and deleting text 137

loading 3.6 : Operating on files 43

navigating in the editor 12.8.2 : Moving around files 136

opening 3.6 : Operating on files 43, 12 : The Editor 122, 12.8.1 : Opening, saving and printing files 135

opening recent 3.6 : Operating on files 43

printing 3.6 : Operating on files 43

reverting to last saved version 12.8.1 : Opening, saving and printing files 135

saving 12.8.1 : Opening, saving and printing files 135

saving all 12.8.4 : Using several buffers 137

Index

293

filtering information 3.12 : Filtering information 50, 7.1.3 : Filtering slot information 79, 26.7.3 : Filter area 259

in inspector 17.3 : Filtering the display 181

filtering results 3.12 : Filtering information 50

filters 3.12 : Filtering information 50

Find command

in graph view 6.2 : Searching graphs 70

Find... command 3.3.5 : Searching for text and objects 41

in editor 12.12.1 : Searching for text 141, 12.12.3 : Replacing text 144

Find Dspec editor command 25.6 : Breakpoints 242

Find Next command 3.3.5 : Searching for text and objects 41, 12.12.1 : Searching for text 142

in graph view 6.2 : Searching graphs 70

Find Source command 3.2.1.5 : Automatic use of Find Definitions view 33, 3.8.1 : Operations available 46, 10.7.1 : Source location,
documentation, inspect and method combination for the current frame 112, 12 : The Editor 122, 20.7 : The Expression menu 201

displaying list of results 3.2.1.5 : Automatic use of Find Definitions view 33

in Debug menu 20.9 : The Debug menu 203

shortcut in debugger tool 10.5 : An example debugging session 111

Font Lock Mode editor command 20.11 : Setting Listener preferences 206

font size 3.2 : Setting preferences 31

Force command 26.11 : Setting options in the system browser 262

forms

compiling in editor 12.13.4 : Compiling code 145

evaluating 20.2 : Evaluating simple forms 199

evaluating in editor 12.13.3 : Evaluating code 145

indentation of 12.13.9 : Indentation of forms 148

interrupting evaluation 20.5 : Interrupting evaluation 201

re-evaluating 20.3 : Re-evaluating forms 200

Frame menu

Break On Return From Frame 10.7.2 : Restarts and returning from the frame 112

Documentation 10.7.1 : Source location, documentation, inspect and method combination for the current frame 112

Find Source 10.5 : An example debugging session 111, 10.7.1 : Source location, documentation, inspect and method combination for the
current frame 112, 12 : The Editor 122

Inspect Function 10.7.1 : Source location, documentation, inspect and method combination for the current frame 112

Method Combination 10.7.1 : Source location, documentation, inspect and method combination for the current frame 112, 15.2 : Examining
information about combined methods 164

Restart Frame 10.7.2 : Restarts and returning from the frame 112, 10.9.1 : Configuring the call frames displayed 114

Restart Frame Stepping 10.7.2 : Restarts and returning from the frame 112, 25.1 : Introduction 234

Return from Frame 10.7.2 : Restarts and returning from the frame 112

Trace. See Trace menu 10.7.3 : Tracing the function in the frame 113

function call browser 14.1 : Introduction 154

By Name command 14.4.1 : Sorting entries 159

By Package command 14.4.1 : Sorting entries 159

Callees area 14.3.1 : Called By area 158

Callers area 14.3.2 : Calls Into area 159

description 14.1 : Introduction 154

Index

294

Documentation area 14.2.5.2 : Documentation area 158

Function area 14.2.1 : Function area 155

Function description area 14.2.5.1 : Function description area 157

Function menu 14.6 : Performing operations on functions 160

Function menu: Trace submenu 14.6 : Performing operations on functions 160

Graph area 14.2.3 : Graph area 156

graphing callers and callees 14.2.3 : Graph area 156

invoking on selected object 3.8.1 : Operations available 46, 20.7 : The Expression menu 202

menu commands, see menu or command name 14.1 : Introduction 154

operating on functions 14.6 : Performing operations on functions 160

package information 14.4.2 : Displaying package information 159

Show Package Names command 14.4.2 : Displaying package information 159

sorting entries 14.4.1 : Sorting entries 159

text view 14.3 : Examining functions using the text view 158

tracing from 14.6 : Performing operations on functions 160

Unsorted command 14.4.1 : Sorting entries 159

views available 14.1 : Introduction 154

function calls

browsing from listener 20.7 : The Expression menu 202

Function Calls command 3.8.1 : Operations available 46, 20.7 : The Expression menu 202

Function menu 15.1.1 : Function area 163

in the profiler 23.5 : Format of the cumulative results 225

Trace. See Trace menu 15.1.5 : Performing operations on the current function or selected methods 164

functions

apropos 18.1 : Introduction 193

code-coverage-file-stats 13.2 : Displaying a Code Coverage data 151

commands-menu-add-commands 3.15.1 : Editor Commands List 56

commands-menu-get-commands 3.15.1 : Editor Commands List 57

commands-menu-remove-commands 3.15.1 : Editor Commands List 57

compile-system 26.2 : A brief introduction to systems 251

contain 2.5 : Inspecting objects using the Inspector 21, 7.1.3 : Filtering slot information 79, 17.5.4.1 : Example 187

deliver 28.1 : Introduction 269, 28.2 : Preparing to build your application 270

editor-color-code-coverage 13.3 : Code Coverage Files List Context Menu 151

get-inspector-values 17.8 : Creating new inspection formats 189

prin1-marked-object 20.10.4 : Highlighting of results 205

process-break 22.3 : Other ways of breaking processes 212

save-code-coverage-data 13.1 : Starting the Code Coverage Browser 150

save-current-code-coverage 13.1 : Starting the Code Coverage Browser 150

save-image 5 : Session Saving 63, 28.1 : Introduction 269, 28.2 : Preparing to build your application 270, 28.8 : Using the
Application Builder to save a development image 274

scm:add-system-namespace 26.9.1 : Interface to source code managers 261

undefining 7.5.6 : Operations specific to the current function or method 90

Index

295

Functions menu

in the class browser 7.5.6 : Operations specific to the current function or method 90

in the function call browser 14.6 : Performing operations on functions 160

G

generic function browser 15 : The Generic Function Browser 161

Arguments types area 15.2.3 : Arguments types box 166

description 15 : The Generic Function Browser 161

Description area 15.1.4 : Description list 163

displaying signatures 15.2.6 : Restricting displayed signatures by class 166

Filter area 15.1.2 : Filter area 163

Function area 15.1.1 : Function area 162

invoking on selected object 3.8.1 : Operations available 46, 12.13.10 : Other facilities 148

menu commands. See menu or command name 15 : The Generic Function Browser 161

Method combination list 15.2.4 : List of method combinations 166

method combinations, viewing 15.2 : Examining information about combined methods 164

methods list 15.1.3 : Methods list 163

operating on signatures 15.2.6 : Restricting displayed signatures by class 166

Signatures area 15.2.2 : Signatures button 165

Generic Function command 3.8.1 : Operations available 46, 12.13.10 : Other facilities 148, 20.7 : The Expression menu 202, 23.5 :
Format of the cumulative results 225

generic functions

defined on selected object 3.8.1 : Operations available 46, 12.13.10 : Other facilities 148

in class browser 7.5.6 : Operations specific to the current function or method 90

scm:module-children 26.9.1 : Interface to source code managers 262

scm:module-is-system-p 26.9.1 : Interface to source code managers 261

scm:module-name 26.9.1 : Interface to source code managers 261

get-inspector-values function 17.8 : Creating new inspection formats 189

Getting help from the LispWorks website 4.1.6 : The Lisp Knowledgebase 61

Getting public patches 4.1.7 : LispWorks Patches 61

global preferences

When modified buffers 3.2.1.3 : Quitting the environment 33

graph layout menu 6 : Manipulating Graphs 69

Collapse Nodes 6.3.2 : Expanding and collapsing by menu commands 71

Expand Nodes 6.3.2 : Expanding and collapsing by menu commands 70

Preferences 6.6 : Preferences for graphs 72

Reset Graph Layout 6.4 : Moving nodes in graphs 71

graphs 6 : Manipulating Graphs 69

altering breadth 6.6.1 : Altering the depth and breadth of graphs 73

altering depth 6.6.1 : Altering the depth and breadth of graphs 73

different layouts 6.6.2 : Displaying different graph layouts 74

expanding and collapsing nodes 6.3 : Expanding and collapsing graphs 70

menu commands. See menu or command name 5 : Session Saving 63, 6 : Manipulating Graphs 69

Index

296

searching 6.2 : Searching graphs 70

sorting items 3.9.1 : Sorting items in views 47

graph view

system browser 26.5 : Examining the system tree 253

Grep

search kind 16.2.1.6 : Grep searches 173

grep-command variable 16.5.4 : The External Grep Program 179

grep-command-format variable 16.5.4 : The External Grep Program 179

grep-fixed-args variable 16.5.4 : The External Grep Program 179

H

handler frames 10.9.1 : Configuring the call frames displayed 114

Handlers button 10.9.1 : Configuring the call frames displayed 114

Help menu 4 : Getting Help 59

Editing. See Editing menu 20.14 : Help with editing in the Listener 206

Lisp Knowledgebase 4.1.6 : The Lisp Knowledgebase 61

LispWorks Patches 4.1.7 : LispWorks Patches 61

Manuals 4.1.5 : Browsing manuals online 61

On Symbol 4.1.1 : Getting help on the current symbol 59

On Tool 4.1.2 : Getting help on the current tool 59

Register... 4.4 : Registering a new license key 61

Report Bug 4.3 : Reporting bugs 61

Search 4.1.3 : Searching the online manuals 59

Search Examples 4.1.4 : Searching the example source files 60

help. See online help 4 : Getting Help 59

Hidden Symbols button 10.9.1 : Configuring the call frames displayed 114

hierarchy view

in class browser 7.1.4 : Examining other classes 81

highlight

compiler messages 3.2.3.2 : Setting the text style attributes 37

interactive input 3.2.3.2 : Setting the text style attributes 37

matching parentheses 3.2.3.2 : Setting the text style attributes 37, 12.13.1 : Lisp mode 144

selected text 3.2.3.2 : Setting the text style attributes 37

history list 3.5 : The history list 42

editing the 3.5.2 : Editing the history list 42

in the listener 20.6 : The History menu 201

repeating next event 3.5.1 : Repeating events from the history list 42, 20.10.1 : History commands 203

repeating previous event 3.5.1 : Repeating events from the history list 42, 20.10.1 : History commands 203

searching the 20.10.1 : History commands 203

History menu 3.5 : The history list 42

in editor 12.8.4 : Using several buffers 137

in listener 20.6 : The History menu 201

in the listener 20.6 : The History menu 201

Index

297

Modify 3.5.2 : Editing the history list 42

Next 3.5.1 : Repeating events from the history list 42

Previous 3.5.1 : Repeating events from the history list 42

I

Include Inherited Slots button 7.1.2 : Examining inherited slots 79, 7.2.3 : Slots list 83

Include Inherited Slots checkbox 2.6 : Examining classes in the Class Browser 24

incremental search 12.12.2 : Incremental searches 143

Indent Selection or Complete Symbol editor command 3.14.1 : Invoking completion 52

Index radio button 4.1.3 : Searching the online manuals 60

initargs of slot, displaying 7.2.4 : Description list 83

init file 28.2.1.2 : Creating a new delivery script 271

initform of slot, displaying 7.2.4 : Description list 83

initial I/O streams 3.16 : Output and Input to/from the standard streams 57

initialization file 3.2.1.6 : Initialization file 33

initialization files 28.2.1.2 : Creating a new delivery script 271

in-package macro 12.13.8 : Packages 147

in-place completion 3.2.1.2 : Controlling completion behavior 33

Insert... command 12.8.3 : Inserting and deleting text 137

inserting files in editor 12.8.3 : Inserting and deleting text 137

inserting text in editor 12.8.3 : Inserting and deleting text 136

Inspect command 3.8.1 : Operations available 46

on Processes menu 22.2 : Process control 212

on Slots menu 17.5.1.1 : Example 184

on Symbol menu 18.2.3 : Symbols list 195

on Values menu 2.5 : Inspecting objects using the Inspector 21, 3.1.11 : Updating windows 30, 17.1 : Inspecting the current
object 180, 17.5.1.1 : Example 184, 17.5.4.1 : Example 185

Inspect Function command 10.7.1 : Source location, documentation, inspect and method combination for the current frame 112

inspecting listener values automatically 17.7 : Customizing the Inspector 189

inspector 17 : The Inspector 180

changing values 17.5.4 : Manipulation operations 185

description 17.2 : Description of the Inspector tool 181

display options 17.6 : Configuring the Inspector 187

filtering display 17.3 : Filtering the display 181

inspecting selected object 3.8.1 : Operations available 46

menu commands. See menu or command name 17 : The Inspector 180

overview 1.1.5 : The Inspector 15

simple use 17.4 : Examining objects 182

sorting entries 17.6 : Configuring the Inspector 188

tracing 17.5.3 : Tracing slot access 184

tracing in the 17.5.3 : Tracing slot access 184

viewing local class slots 17.4 : Examining objects 183

Index

298

Inspector command 17 : The Inspector 180

Inspect Value command 20.7 : The Expression menu 201

Interface menu 3.17 : Examining a window 58

interrupting evaluation 20.5 : Interrupting evaluation 201

invisible frames 10.9.1 : Configuring the call frames displayed 114

Invisible Functions button 10.9.1 : Configuring the call frames displayed 114

:items keyword 7.1.3 : Filtering slot information 79

K

keyboard commands

comparison with menu commands 12.8.1 : Opening, saving and printing files 135

finding editor command for 20.14 : Help with editing in the Listener 206

in the editor 12.1.4 : Using keyboard commands 124

keyboard conventions preface 12

key input 3.2.2.1 : Choosing the key input style 34

Key to Command command 12.14 : Help with editing 149, 20.14 : Help with editing in the Listener 206

keywords

:items 7.1.3 : Filtering slot information 79

Kill All command 28.6.3 : Killing application processes 274

Kill Application menu 28.6.3 : Killing application processes 274

killing a process 22.2 : Process control 212

kill ring 12.11 : Cutting, copying and pasting using the kill ring 139

copying text from 12.11.3 : Pasting text 140

marking the region 12.11.1 : Marking the region 139

putting text into 12.11.2 : Cutting or copying text 139

rotating 12.11.3 : Pasting text 140

summary of use 12.11.3 : Pasting text 141

Known Definitions

search kind 16.2.1.4 : Known Definitions searches 172

L

lambda list, displaying 12.13.10 : Other facilities 149, 20.7 : The Expression menu 201

LANG environment variable 24.4 : Configuring the shell to run 232

layouts, displaying in window browser 27.2.4 : Displaying different types of window 267

LC_ALL environment variable 24.4 : Configuring the shell to run 232

LC_CTYPE environment variable 24.4 : Configuring the shell to run 232

Link from command 3.11 : Linking tools together 49

linking tools together 3.11 : Linking tools together 49

.lisp files 12.8.1 : Opening, saving and printing files 135

Lisp Knowledgebase command 4.1.6 : The Lisp Knowledgebase 61

.lispworks file 3.2.1.6 : Initialization file 33

LispWorks IDE tools

Process Browser 3.4 : The Break gesture 42

Index

299

LispWorks menu

Preferences... 3.1.6.2 : Per-window control of re-use 29, 3.2 : Setting preferences 31, 3.2.1.3 : Quitting the environment 33, 3.14.2 :
Selecting the completed input 52, 3.14.3.1 : Filtering modal dialog completion 54, 12.7.1 : Controlling other aspects of the
Editor 132, 12.7.2 : Controlling options specific to the Editor 132, 13.2 : Displaying a Code Coverage data 151, 15.3 : Configuring
the Generic Function Browser 167, 16.5 : Configuring the Search Files tool 176, 17.5.4.1 : Example 185, 18.3 : Configuring the
Symbol Browser 196, 20.11 : Setting Listener preferences 205, 22.5 : Process Browser Preferences 212, 23.2.5 : Code To
Profile 219, 23.7 : Configuring the Profiler 226, 23.9 : Some examples 229, 25.9 : Configuring the Stepper 248, 26.10.1 :
Sorting entries 262, 27.2 : Configuring the Window Browser 265, 28.9 : Configuring the Application Builder 275

Saved Sessions... 5.4 : Saving sessions 64

LispWorks Patches command 4.1.7 : LispWorks Patches 61

Listen command 3.8.1 : Operations available 46, 17.5.4.1 : Example 187, 18.2.3 : Symbols list 195, 18.2.4 : Description
area 196, 22.2 : Process control 212

listener

basic tutorial 20.2 : Evaluating simple forms 199

browsing function calls from 20.7 : The Expression menu 202

compiling files in 3.6 : Operating on files 43

current expression, displaying value 20.7 : The Expression menu 201

current expression, stepper breakpoint 20.7 : The Expression menu 202

current expression, toggling stepper breakpoint 20.7 : The Expression menu 201

debugger commands 20.10.2 : Debugger commands 204

debugging in the 20.9 : The Debug menu 202

description 20.1 : The basic features of a Listener 198

evaluating forms 20.2 : Evaluating simple forms 199

execute mode 20.10 : Execute mode 203

Expression menu. See Expression menu 20.7 : The Expression menu 201

history commands 20.10.1 : History commands 203

history list 20.6 : The History menu 201

History menu 20.6 : The History menu 201

interrupting evaluation 20.5 : Interrupting evaluation 201

loading files in 3.6 : Operating on files 43

macroexpanding forms 20.7 : The Expression menu 202

macro expanding forms 20.7 : The Expression menu 202

miscellaneous commands 20.10.3 : Miscellaneous Listener commands 204

next event 20.10.1 : History commands 203

online help 20.14 : Help with editing in the Listener 206

operating on expressions 20.7 : The Expression menu 201

overview 1.1.1 : The Listener 15

pasting selected object into 3.8.1 : Operations available 46

previous event 20.10.1 : History commands 203

prompt 20.1 : The basic features of a Listener 198

re-evaluating forms 2.2 : Creating a Listener 18, 20.3 : Re-evaluating forms 200

searching history list 20.10.1 : History commands 203

size of the stack 20.11 : Setting Listener preferences 205

stack size 20.11 : Setting Listener preferences 205

syntax coloring 20.11 : Setting Listener preferences 206

Index

300

tracing current expression 20.7 : The Expression menu 202

Values submenu. See Values menu 20.8 : The Values menu 202

* variable 2.6 : Examining classes in the Class Browser 25, 17.5.4.1 : Example 187, 20.2 : Evaluating simple forms 199

** variable 2.5 : Inspecting objects using the Inspector 21

*** variable 2.5 : Inspecting objects using the Inspector 21

* variable[listener:star variable] 2.5 : Inspecting objects using the Inspector 21

walking forms 20.7 : The Expression menu 202

Listener Bind $ command 17.7 : Customizing the Inspector 189

Listener command 20.1 : The basic features of a Listener 198

list-panel class 7.1.3 : Filtering slot information 79

Load command

on File menu 3.6 : Operating on files 43, 12.13.3 : Evaluating code 145, 26.3 : The System Browser 253

on Systems menu 26.5.4 : Performing operations on system members 255, 26.7.6 : Executing plans in the preview view 259

Load... command 12.13.3 : Evaluating code 145, 26.3 : The System Browser 253

loading files 3.6 : Operating on files 43

loading tools into the environment 3.1.4 : Displaying tools using the mouse 27

local slots, inspecting 17.4 : Examining objects 183

Long Names button 27.2.6 : Displaying short or long names 267

Lower command 27.3.2 : Window control 268

M

macOS editor emulation 3.2.2.1 : Choosing the key input style 34, 12.7.1 : Controlling other aspects of the Editor 132

Macroexpand command 12.13.10 : Other facilities 149

Macroexpand Form command 20.7 : The Expression menu 202

macros

defclass 7.5.3 : List of functions or methods 90

defsystem 16.2.1.3 : System Search 172, 26.3 : The System Browser 253

in-package 12.13.8 : Packages 147

trace 3.10 : Tracing symbols from tools 49, 11.1 : Introduction 118

major tools, overview 1.1 : Major tools 14

Make a New Script command 28.2.1.2 : Creating a new delivery script 270

manipulating values with inspector 17.5.4 : Manipulation operations 185

Manuals command 4.1.5 : Browsing manuals online 61

manuals, online. See online help 4 : Getting Help 59

menu commands

choosing preface 12

comparison with keyboard commands in editor 12.8.1 : Opening, saving and printing files 135

debugger commands 20.9 : The Debug menu 202

Meta key 3.2.2.2 : Specifying a Meta key in LispWorks for Macintosh 35

use of preface 12

Method Combination command 10.7.1 : Source location, documentation, inspect and method combination for the current frame 112, 15.2 :
Examining information about combined methods 164

Index

301

methods

displaying signatures 15.2.6 : Restricting displayed signatures by class 166

operating on signatures 15.2.6 : Restricting displayed signatures by class 166

undefining 7.5.6 : Operations specific to the current function or method 90

viewing method combinations 15.2 : Examining information about combined methods 164

Methods menu 7.5.3 : List of functions or methods 90, 15.1.3 : Methods list 163

Trace. See Trace menu 15.1.5 : Performing operations on the current function or selected methods 164

Trace submenu. See Trace menu 7.5.6 : Operations specific to the current function or method 91

Undefine 7.5.6 : Operations specific to the current function or method 90

Modify command 3.5.2 : Editing the history list 42

module-children generic function 26.9.1 : Interface to source code managers 262

module-is-system-p generic function 26.9.1 : Interface to source code managers 261

module-name generic function 26.9.1 : Interface to source code managers 261

N

navigating within files in the editor 12.8.2 : Moving around files 136

New command 3.6 : Operating on files 43, 12.8.1 : Opening, saving and printing files 135

new files, creating 3.6 : Operating on files 43, 12.8.1 : Opening, saving and printing files 135

New in LispWorks 7.0

Code Coverage Browser 13 : The Code Coverage Browser 150

Handling of Cocoa Event Loop hanging 10.11 : Handling of Cocoa Event Loop hanging 116

Preference option controlling anti-aliasing 3.2.1.1 : The window options 33

Preference option controlling quality drawing 3.2.1.1 : The window options 33

Restore display after fixing error in callback 10.12 : Errors in CAPI display callbacks 117

Search Files tool reports file count after failed search 16.3 : Viewing the results 175

Session saving preserves the Listener tool's current package 5.3 : What is saved and what is not saved 63

New in LispWorks 7.1

Customizing text and background colors 3.2.3.1 : Changing the main colors of editor panes 37

Double click drag gesture preface 11

Profiler background profiling 23.3 : The Profiler menu and Profiler-specific toolbar buttons 219

Profiler improved setting of profiling parameters 23.3 : The Profiler menu and Profiler-specific toolbar buttons 220

Profiler reading profiler tree from a file 23.3 : The Profiler menu and Profiler-specific toolbar buttons 219

Profiler Stacked Tree tab 23.2.4 : Stacked Tree 218

Profiler storing profiler tree in a file 23.3 : The Profiler menu and Profiler-specific toolbar buttons 219

Profiler tree Set Function As Root option 23.2.2 : Options in the context menu for viewing parts of the call graph 216

Profiler tree Show Calls To Function 23.2.2 : Options in the context menu for viewing parts of the call graph 216

Remote debugging 29 : Remote Debugging 276

Triple click drag gesture preface 11

New in LispWorks 8.0

Application Builder building universal binaries 28.7 : Building universal binaries 274

Commands menu 3.15 : The Commands menu 55

commands-menu-add-commands function 3.15.1 : Editor Commands List 56

commands-menu-get-commands function 3.15.1 : Editor Commands List 57

Index

302

commands-menu-remove-commands function 3.15.1 : Editor Commands List 57

Listener highlighting of results 20.10.4 : Highlighting of results 205

prin1-marked-object function 20.10.4 : Highlighting of results 205

Profiler action after Code To Profile finishes 23.2.5 : Code To Profile 219

Profiler Cumulative Results context menu options 23.5 : Format of the cumulative results 226

Profiler tree Show calls to allocation functions 23.2.2 : Options in the context menu for viewing parts of the call graph 216

Shell configurable external-format 24.4 : Configuring the shell to run 232

Window Browser showing IDE Interfaces 27.2.5 : Showing IDE iterfaces 267

Next command

command line debugger 20.9 : The Debug menu 203

history list 3.5.1 : Repeating events from the history list 42

next event

repeating 3.5.1 : Repeating events from the history list 42, 20.10.1 : History commands 203

Notifier window 10 : The Debugger Tool 105, 10.10 : The Notifier window 114

O

object clipboard

invoking on the selected object 3.8.1 : Operations available 46

menu commands, see menu or command name 8 : The Object Clipboard 95

Object Clipboard command 3.8.1 : Operations available 46

Object menu 3.8 : Performing operations on selected objects 45

Clip 17.5.5 : Copying in the Inspector 187

Copy 17.5.5 : Copying in the Inspector 187

objects

inspecting 17.4 : Examining objects 182

operating on 3.8 : Performing operations on selected objects 45

searching for 3.3.5 : Searching for text and objects 41

See also selected object 17.4 : Examining objects 182

selecting 3.3.4 : Selecting text and objects 41

online help 4 : Getting Help 59

browsing manuals 4.1 : Online manuals in HTML format 59

current symbol 4.1.1 : Getting help on the current symbol 59

current tool 4.1.2 : Getting help on the current tool 59

packages, searching 4.1.3 : Searching the online manuals 60

searching 4.1.1 : Getting help on the current symbol 59

On Symbol command 4.1.1 : Getting help on the current symbol 59

On Tool command 4.1.2 : Getting help on the current tool 59

Open command 3.6 : Operating on files 43, 12 : The Editor 122, 12.8.1 : Opening, saving and printing files 135, 12.8.4 : Using
several buffers 137

Opened Buffers

search kind 16.2.1.5 : Searching editor buffers 173

opening files 3.6 : Operating on files 43, 12 : The Editor 122, 12.8.1 : Opening, saving and printing files 135

Index

303

opening recent files 3.6 : Operating on files 43

operating on objects 3.8 : Performing operations on selected objects 45

See also objects 3.8 : Performing operations on selected objects 45

Operations menu

Break 24.2 : The Shell tool 231

EOF 24.2 : The Shell tool 232

Suspend 24.2 : The Shell tool 232

output

compiler 12.13.4.1 : Compiling in memory 145

editor 12.2 : Displaying output messages in the Editor 125

standard 21 : The Output Browser 207

output browser 2.4 : Viewing output 20, 21 : The Output Browser 207

menu commands. See menu or command name 21 : The Output Browser 207

overview 1.1.4 : The Output Browser 15

overview of major tools 1.1 : Major tools 14

overview of profiling 23.1 : Introduction 214

P

package variable 12.13.8 : Packages 147

packages

current package 3.7.1 : Specifying a package 44

display of 3.7 : Displaying packages 43

in editor 12.13.8.1 : The primary package 148

searching for documentation 4.1.3 : Searching the online manuals 60

Packages button 23.9 : Some examples 230

Packages... button 23.9 : Some examples 230

packages-for-warn-on-redefinition variable 23.4.1.2 : Choosing packages 225

Page Down key 12.8.2 : Moving around files 136

Page Up key 12.8.2 : Moving around files 136

Partial Search radio button 4.1.3 : Searching the online manuals 60

Paste command 12.10 : Cutting, copying and pasting using the clipboard 139

in class browser 7.2.1 : Class box 83

in generic function browser 15.1.1 : Function area 162

in inspector 17.5.4 : Manipulation operations 185, 17.5.4.1 : Example 186

Paste Object command 3.3.3 : Using the Object operations with the clipboard 41

patches

numbered 4.1.7 : LispWorks Patches 61

public 4.1.7 : LispWorks Patches 61

Plain Directory

search kind 16.2.1.1 : Plain Directory searches 170

preferences

setting 3.2 : Setting preferences 31

Index

304

Preferences... command 3.14.3.1 : Filtering modal dialog completion 54, 6.6 : Preferences for graphs 72, 12.7.1 : Controlling other aspects
of the Editor 132, 12.7.2 : Controlling options specific to the Editor 132, 13.2 : Displaying a Code Coverage data 151, 15.3 :
Configuring the Generic Function Browser 167, 16.5 : Configuring the Search Files tool 176, 17.5.4.1 : Example 185, 18.3 :
Configuring the Symbol Browser 196, 20.11 : Setting Listener preferences 205, 22.5 : Process Browser Preferences 212, 23.2.5 :
Code To Profile 219, 23.7 : Configuring the Profiler 226, 23.9 : Some examples 229, 25.9 : Configuring the
Stepper 248, 26.10.1 : Sorting entries 262, 27.2 : Configuring the Window Browser 265, 28.9 : Configuring the Application
Builder 275

Preview command 26.11 : Setting options in the system browser 262

previewing a system plan 26.7 : Generating and executing plans in the preview view 257, 26.11 : Setting options in the system browser 262

Previous command

command line debugger 20.9 : The Debug menu 203

history list 3.5.1 : Repeating events from the history list 42

previous event

repeating 3.5.1 : Repeating events from the history list 42, 20.10.1 : History commands 203

primary package in editor 12.13.8.1 : The primary package 148

prin1-marked-object function 20.10.4 : Highlighting of results 205

Print command 3.6 : Operating on files 43

Print... command 12.8.1 : Opening, saving and printing files 135

printing files 3.6 : Operating on files 43

process

breaking 3.4 : The Break gesture 42

process-break function 22.3 : Other ways of breaking processes 212

process browser 22 : The Process Browser 210

menu commands. See menu or command name 22 : The Process Browser 210

sorting processes 22.1 : The process list 211

Process Browser tool 3.4 : The Break gesture 42

processes

breaking 3.4 : The Break gesture 42

inspecting 22.2 : Process control 212

killing 22.2 : Process control 212

sorting 22.1 : The process list 211

terminating 22.2 : Process control 212

Processes menu 22.2 : Process control 211

profiler 23.1 : Introduction 214

choosing packages 23.4.1.2 : Choosing packages 223

choosing symbols 23.4.1 : Choosing the functions to profile 222

description 23.2 : Description of the Profiler 214

example of use 23.9 : Some examples 229

information returned 23.2.1 : Call Tree 215, 23.2.3 : Cumulative Results 217, 23.2.4 : Stacked Tree 218, 23.5 : Format of the
cumulative results 225

interpreting results 23.6 : Interpreting the cumulative results 226

menu commands. See menu or command name 23.1 : Introduction 214

overview of profiling 23.1 : Introduction 214

pitfalls 23.8 : Profiling pitfalls 228

running a profile 23.2.5 : Code To Profile 219

Index

305

sorting results 23.5 : Format of the cumulative results 225

specifying code to run 23.2.5 : Code To Profile 218

symbols that can be profiled 23.8 : Profiling pitfalls 228

prompt in the listener 20.1 : The basic features of a Listener 198

push-button-panel class 7.1.4 : Examining other classes 81

Q

Quit command 27.3.2 : Window control 268

quitting the environment 3.2.1.3 : Quitting the environment 33

R

Raise command 27.3.2 : Window control 268

readers of a slot, displaying 7.2.4 : Description list 83

Recent Files command 3.6 : Operating on files 43, 12 : The Editor 122

Recompute Events button 26.7.2 : Actions area 259

recursive macroexpansion 20.7 : The Expression menu 202

recursive macro expansion 20.7 : The Expression menu 202

re-evaluating forms in listener 2.2 : Creating a Listener 18, 20.3 : Re-evaluating forms 200

Refresh command 2.5 : Inspecting objects using the Inspector 22, 3.1.11 : Updating windows 30

regexp 3.13 : Regexp matching 51

Register...command 4.4 : Registering a new license key 61

regular expressions 3.13 : Regexp matching 51

remote debugging 29 : Remote Debugging 276

Remote Shell tool 24.5 : The Remote Shell tool 233

repeating commands 3.5 : The history list 42

in the editor 12.9.3 : Repeating commands 138

repeating the next event 3.5.1 : Repeating events from the history list 42

repeating the previous event 3.5.1 : Repeating events from the history list 42

Replace command 12.12.3 : Replacing text 143, 26.5.4 : Performing operations on system members 255

Replace... command 3.3.5 : Searching for text and objects 41, 12.12.3 : Replacing text 143

replacing text 12.12.3 : Replacing text 143

Report Bug command 4.3 : Reporting bugs 61, 10.6 : Performing operations on the error condition 112, 20.9 : The Debug menu 203

reporting bugs 10.6 : Performing operations on the error condition 112, 20.9 : The Debug menu 203

Restart Frame command 10.7.2 : Restarts and returning from the frame 112, 10.9.1 : Configuring the call frames displayed 114

restart frames 10.9.1 : Configuring the call frames displayed 114

Restart Frame Stepping command 10.7.2 : Restarts and returning from the frame 112, 25.1 : Introduction 234

Restarts button 10.9.1 : Configuring the call frames displayed 114

Restarts menu 10.3 : Simple use of the Debugger tool 109, 25.5 : Stepper restarts 241

Restarts submenu 20.9 : The Debug menu 202

Return from Frame command 10.7.2 : Restarts and returning from the frame 112

re-using windows 3.1.6.1 : Global control of re-use 29

reverting a file to the version stored on disk 12.8.1 : Opening, saving and printing files 135

Index

306

Revert to Saved command 12.8.1 : Opening, saving and printing files 135

Root and Patterns

search kind 16.2.1.2 : Root and Patterns searches 171

Run command 28.1 : Introduction 269, 28.6 : Running the saved application 273

Run With Arguments command 28.6.1 : Passing arguments and redirecting output 273, 28.7 : Building universal binaries 274

S

Save All... command 12.8.4 : Using several buffers 137

Save As... command 12.8.1 : Opening, saving and printing files 135

save-code-coverage-data function 13.1 : Starting the Code Coverage Browser 150

Save command 12.8.1 : Opening, saving and printing files 135

save-current-code-coverage function 13.1 : Starting the Code Coverage Browser 150

save-image function 5 : Session Saving 63, 28.1 : Introduction 269, 28.2 : Preparing to build your application 270, 28.8 :
Using the Application Builder to save a development image 274

Save Region As... command 12.8.1 : Opening, saving and printing files 135

saving all files 12.8.4 : Using several buffers 137

saving files 12.8.1 : Opening, saving and printing files 135

saving regions of text 12.8.1 : Opening, saving and printing files 135

scm:add-system-namespace function 26.9.1 : Interface to source code managers 261

scm:module-children generic function 26.9.1 : Interface to source code managers 262

scm:module-is-system-p generic function 26.9.1 : Interface to source code managers 261

scm:module-name generic function 26.9.1 : Interface to source code managers 261

scrolling text in editor 12.8.2 : Moving around files 136

Search command 4.1.3 : Searching the online manuals 59

Search Examples command 4.1.4 : Searching the example source files 60

Search Files editor command 16.1 : Introduction 169

Search Files... command 26.5.4 : Performing operations on system members 255

Search Files tool

Grep searches 16.2.1.6 : Grep searches 173

Known Definitions searches 16.2.1.4 : Known Definitions searches 172

Opened Buffers searches 16.2.1.5 : Searching editor buffers 173

Plain Directory searches 16.2.1.1 : Plain Directory searches 170

Root and Patterns searches 16.2.1.2 : Root and Patterns searches 171

System searches 16.2.1.3 : System Search 172

searching

examples 4.1.4 : Searching the example source files 60

example source files 4.1.4 : Searching the example source files 60

for objects 3.3.5 : Searching for text and objects 41

for text 3.3.5 : Searching for text and objects 41, 12.12 : Searching and replacing text 141

history list 20.10.1 : History commands 203

online manuals 4.1.3 : Searching the online manuals 59

Index

307

Select All command 3.3.4 : Selecting text and objects 41, 11.2 : Tracing and Untracing functions 118, 12.10 : Cutting, copying and pasting
using the clipboard 138, 26.7.6 : Executing plans in the preview view 259

selected object

browsing 3.8.1 : Operations available 46

browsing the class of 3.8.1 : Operations available 46

copying 3.8.1 : Operations available 46

displaying documentation 3.8.1 : Operations available 46

finding source code 3.8.1 : Operations available 46

inspecting 3.8.1 : Operations available 46

pasting into listener 3.8.1 : Operations available 46

placing on object clipboard 3.8.1 : Operations available 46

showing function calls 3.8.1 : Operations available 46, 20.7 : The Expression menu 202

showing generic functions 3.8.1 : Operations available 46, 12.13.10 : Other facilities 148

showing similar symbols 3.8.1 : Operations available 46

Select symbols button 23.4.1.1 : Choosing individual functions 222

sessions

saving 5 : Session Saving 63

Set command 17.5.4 : Manipulation operations 185, 17.5.4.1 : Example 185

debugger 10.8 : Performing operations on frame variables 113

Shell editor command 24.2 : The Shell tool 231

SHELL environment variable 24.4 : Configuring the shell to run 232

shell tool 24.1 : Introduction 231, 24.2 : The Shell tool 231

break signal, sending 24.2 : The Shell tool 231

creating 24.2 : The Shell tool 231

EOF signal, sending 24.2 : The Shell tool 232

menu commands. See menu or command name 24.1 : Introduction 231

recalling commands 24.3 : Command history in the shell 232

suspend signal, sending 24.2 : The Shell tool 232

type of shell 24.4 : Configuring the shell to run 232

Shift key, use of preface 12, 12.1.4 : Using keyboard commands 124

Short Names button 27.2.6 : Displaying short or long names 267

Show IDE Interfaces button 27.2.5 : Showing IDE iterfaces 267

Show in Tracer command 3.10 : Tracing symbols from tools 49, 11.1 : Introduction 118

Show Package Names button 3.7 : Displaying packages 44, 10.9.2 : Displaying package information 114, 17.6 : Configuring the
Inspector 188, 27.2.2 : Displaying package information 266

Show Toolbar button 3.1.8 : Toolbar configurations 30

Signature menu 15.2.6 : Restricting displayed signatures by class 166

signatures

displaying 15.2.6 : Restricting displayed signatures by class 166

operating on 15.2.6 : Restricting displayed signatures by class 166

simple-pane-foreground accessor 2.6 : Examining classes in the Class Browser 24

siteinit file 28.2.1.2 : Creating a new delivery script 271

Index

308

Slots menu 3.8 : Performing operations on selected objects 45, 7.2.3 : Slots list 83, 7.6.3 : List of initargs 92

Clip 17.5.5 : Copying in the Inspector 187

Copy 17.5.5 : Copying in the Inspector 187

Inspect 17.5.1.1 : Example 184

Paste 17.5.4 : Manipulation operations 185, 17.5.4.1 : Example 186

Set 17.5.4 : Manipulation operations 185, 17.5.4.1 : Example 185

snapshot

of running image 5 : Session Saving 63

snapshot Debugger 10.10 : The Notifier window 115

sorting

in class browser 7.1.5 : Sorting information 81

in editor 12.7.2.3 : Sorting items in lists 134

in inspector 17.6 : Configuring the Inspector 188

in process browser 22.1 : The process list 211

in window browser 27.2.1 : Sorting entries 266

views 3.9.1 : Sorting items in views 47

sort options

By Name 3.9.1 : Sorting items in views 48

By Package 3.9.1 : Sorting items in views 48

Unsorted 3.9.1 : Sorting items in views 48

source code

debugging 10 : The Debugger Tool 105

for current expression 20.7 : The Expression menu 201

for object in current frame of debugger 10.7.1 : Source location, documentation, inspect and method combination for the current frame 112

for selected object 3.8.1 : Operations available 46

Source command 26.11 : Setting options in the system browser 262

stack frames in the debugger 10.4 : The stack in the Debugger 110

stack overflow 20.11 : Setting Listener preferences 205

standard action command

Browse 3.8.1 : Operations available 46

Browse Symbols Like 18.1 : Introduction 193, 20.7 : The Expression menu 202

Class 3.8.1 : Operations available 46

Copy 3.8.1 : Operations available 46

Documentation 3.8.1 : Operations available 46

Find Source 3.8.1 : Operations available 46

Function Calls 20.7 : The Expression menu 202

Generic Function 3.8.1 : Operations available 46, 12.13.10 : Other facilities 148, 20.7 : The Expression menu 202

Inspect 3.8.1 : Operations available 46

Listen 3.8.1 : Operations available 46

Object Clipboard 3.8.1 : Operations available 46

standard output 21 : The Output Browser 207

standard-output variable 2.4 : Viewing output 21

Index

309

standard streams 3.16 : Output and Input to/from the standard streams 57

Start GUI Debugger command 10 : The Debugger Tool 105, 10.3 : Simple use of the Debugger tool 109, 10.5 : An example debugging
session 111

stepper

active frame 25.1.3 : Backtrace area 235

backtrace tree 25.1.3 : Backtrace area 235

call frame 25.1.3 : Backtrace area 235

calling a function 25.1.3 : Backtrace area 235

evaluating a form 25.1.3 : Backtrace area 235

returning from a form 25.1.3 : Backtrace area 235

status item 25.1.3 : Backtrace area 235

stepping through code 25.1 : Introduction 234

Stop command 22.2 : Process control 212

stopping a process 22.2 : Process control 212

Suspend command 24.2 : The Shell tool 232

swapping editor buffers 12.8.4 : Using several buffers 137

symbol browser 18.1 : Introduction 193

invoking on selected object 3.8.1 : Operations available 46

Symbol menu

Inspect 18.2.3 : Symbols list 195

Listen 18.2.3 : Symbols list 195

Unintern... 18.2.3 : Symbols list 195

symbols

online help for 4.1.1 : Getting help on the current symbol 59

tracing 12.13.7 : Tracing symbols and functions 147

undefining 12.13.10 : Other facilities 148

Symbols... button 23.9 : Some examples 230

syntax coloring 3.2.3.2 : Setting the text style attributes 37, 12.13.1 : Lisp mode 144

in listener 20.11 : Setting Listener preferences 206

text styles 3.2.3.2 : Setting the text style attributes 38

syntax styles 3.2.3.2 : Setting the text style attributes 38

System

ALL-SYSTEMS 26.5.2 : Tree area 254

browsing 26.3 : The System Browser 253

compiling and loading 26.5.4 : Performing operations on system members 255

concatenating 26.5.4 : Performing operations on system members 255

creating plans for 26.7.2 : Actions area 258

defining 26.2 : A brief introduction to systems 251

executing plans for 26.7.2 : Actions area 259

forcing compilation and loading of members 26.11 : Setting options in the system browser 262

introduction to 26.1 : Introduction 251

parent system, browsing 26.5.2 : Tree area 254

plan 26.7 : Generating and executing plans in the preview view 257

Index

310

previewing a plan 26.7 : Generating and executing plans in the preview view 257, 26.11 : Setting options in the system browser 262

searching 26.5.4 : Performing operations on system members 255

search kind 16.2.1.3 : System Search 172

using source files 26.11 : Setting options in the system browser 262

system browser 26.1 : Introduction 251

Actions area 26.7.2 : Actions area 258

compiling and loading systems 26.5.4 : Performing operations on system members 255

creating plans 26.7.2 : Actions area 258

description 26.3 : The System Browser 252

executing plans 26.7.2 : Actions area 259

File description area 26.5.3 : Description area 254

Filter area 26.7.3 : Filter area 259

forcing compilation and loading 26.11 : Setting options in the system browser 262

Graph area 26.5.2 : Tree area 254

graph view 26.5 : Examining the system tree 253

menu commands. See menu or command name 26 : The System Browser 251

output view 26.8 : Examining output in the output view 259

package information 26.10.2 : Displaying package information 262

parent system, browsing 26.5.2 : Tree area 254

Plan area 26.7.4 : Plan area 259

previewing the plan 26.7 : Generating and executing plans in the preview view 257

sorting information 26.10.1 : Sorting entries 262

System area 26.5.1 : System area 254

system plan, previewing 26.7 : Generating and executing plans in the preview view 257, 26.11 : Setting options in the system browser 262

text view 26.6 : Examining systems in the text view 255

using 26.3 : The System Browser 252

using source files 26.11 : Setting options in the system browser 262

views available 26.3 : The System Browser 252

system clipboard 7.2.1 : Class box 83, 15.1.1 : Function area 162

interaction with the LispWorks clipboard 3.3.3 : Using the Object operations with the clipboard 41

usage in editor 12.11.2 : Cutting or copying text 140

Systems menu 26.5.4 : Performing operations on system members 255

Browse All Systems 26.5.4 : Performing operations on system members 255

Browse Systems For Directory 26.5.4 : Performing operations on system members 255

Compile 26.5.4 : Performing operations on system members 255, 26.7.6 : Executing plans in the preview view 259

Compile and Load 26.5.4 : Performing operations on system members 255, 26.7.6 : Executing plans in the preview view 259

Concatenate... 26.5.4 : Performing operations on system members 255

Hide Files 26.5.4 : Performing operations on system members 255

Load 26.5.4 : Performing operations on system members 255, 26.7.6 : Executing plans in the preview view 259

Parent 26.5.2 : Tree area 254

Query Replace 26.5.4 : Performing operations on system members 255

Search Files 26.5.4 : Performing operations on system members 255

Show Files 26.5.4 : Performing operations on system members 255

Index

311

T

tabbing between buttons on macOS 3.19 : System preferences affecting the IDE tools 58

Tab completion 3.14.1 : Invoking completion 52

Tab key

on macOS 3.19 : System preferences affecting the IDE tools 58

tabs

choosing preface 12

Terminate command 22.2 : Process control 212

terminating a process 22.2 : Process control 212

text

deleting 12.8.3 : Inserting and deleting text 136

inserting 12.8.3 : Inserting and deleting text 136

replacing 12.12.3 : Replacing text 143

saving regions of 12.8.1 : Opening, saving and printing files 135

scrolling in editor 12.8.2 : Moving around files 136

searching for 3.3.5 : Searching for text and objects 41, 12.12 : Searching and replacing text 141

See also under editor 12 : The Editor 122

selecting 3.3.4 : Selecting text and objects 41

text color 3.2 : Setting preferences 31

text style 3.2 : Setting preferences 31

text view

in editor 12.1 : Displaying and editing files 123

in function call browser 14.3 : Examining functions using the text view 158

in system browser 26.6 : Examining systems in the text view 255

The Break gesture 3.4 : The Break gesture 42, 20.5 : Interrupting evaluation 201

Toggle Breakpoint command 20.7 : The Expression menu 202

Toggle Tracing command 3.10 : Tracing symbols from tools 49

toolbar

customizing 3.1.8 : Toolbar configurations 30

hiding 3.1.8 : Toolbar configurations 29

toolbar buttons

size 3.1.8 : Toolbar configurations 30

text labels 3.1.8 : Toolbar configurations 30

toolbars

hiding 3.1.8 : Toolbar configurations 29

removing 3.1.8 : Toolbar configurations 29

tools

current package of 3.7.1 : Specifying a package 44

linking together 3.11 : Linking tools together 49

loading into the environment 3.1.4 : Displaying tools using the mouse 27

online help for 4.1.2 : Getting help on the current tool 59

overview of major 1.1 : Major tools 14

Index

312

reusing 3.2.1.1 : The window options 32

switching between 2.7 : Switching between windows 25

tracing from 3.10 : Tracing symbols from tools 49

Tools menu 1.1 : Major tools 14, 3.1.4 : Displaying tools using the mouse 27

accelerators 3.1.5 : Displaying tools using the keyboard 28

Application Builder 28.1 : Introduction 269

Class Browser 7 : The Class Browser 77

Code Coverage Browser 13.1 : Starting the Code Coverage Browser 150

Compilation Conditions Browser 9.1 : Introduction 101

Editor 12 : The Editor 122

Function Call Browser 14.1 : Introduction 154

Generic Function Browser 15 : The Generic Function Browser 161

Inspector 17 : The Inspector 180

Listener 20.1 : The basic features of a Listener 198

Object Clipboard 8 : The Object Clipboard 95

Output Browser 21 : The Output Browser 207

Process Browser 22 : The Process Browser 210

Profiler 23.1 : Introduction 214

Remote Listener 29.1 : Remote Listeners 276

Search Files 16.1 : Introduction 169

Shell 24.2 : The Shell tool 231

Stepper 25.1 : Introduction 234, 25.2.1 : Standalone use of the stepper 236

Symbol Browser 18.1 : Introduction 193

System Browser 26.3 : The System Browser 252

Tracer 11.1 : Introduction 118

Window Browser 27.1 : Introduction 264

trace macro 3.10 : Tracing symbols from tools 49, 11.1 : Introduction 118

Trace command 3.10 : Tracing symbols from tools 49, 12.13.7 : Tracing symbols and functions 147, 20.7 : The Expression menu 202

Trace Inside command 3.10 : Tracing symbols from tools 49

Trace menu

Break on Access 17.5.3 : Tracing slot access 184

Break on Read 17.5.3 : Tracing slot access 184

Break on Write 17.5.3 : Tracing slot access 184

Show in Tracer 3.10 : Tracing symbols from tools 49, 11.1 : Introduction 118

Trace 3.10 : Tracing symbols from tools 49

Trace Inside 3.10 : Tracing symbols from tools 49

Trace Read 17.5.3 : Tracing slot access 184

Trace with Break 3.10 : Tracing symbols from tools 49

Tracing 3.10 : Tracing symbols from tools 49

Untrace 3.10 : Tracing symbols from tools 49, 17.5.3 : Tracing slot access 184

Untrace All 3.10 : Tracing symbols from tools 49

Index

313

Tracer 11.1 : Introduction 118

Function menu 11.2 : Tracing and Untracing functions 118

trace-verbose variable 11.4 : Example 120

Trace with Break command 3.10 : Tracing symbols from tools 49

tracing 11.1 : Introduction 118

classes 7.5.6 : Operations specific to the current function or method 91

in function call browser 14.6 : Performing operations on functions 160

in inspector 17.5.3 : Tracing slot access 184

in the inspector 17.5.3 : Tracing slot access 184

U

Undefine command 7.5.6 : Operations specific to the current function or method 90, 12.13.10 : Other facilities 148

Undefine... command 12.13.10 : Other facilities 148, 15.1.5 : Performing operations on the current function or selected methods 163

undefining

current definition 12.13.10 : Other facilities 148

functions 7.5.6 : Operations specific to the current function or method 90

generic functions 15.1.5 : Performing operations on the current function or selected methods 163

methods 7.5.6 : Operations specific to the current function or method 90

Undo command 3.3.1 : Undoing changes 40

editor 12.9.2 : Undoing commands 138

Unintern... command 18.2.3 : Symbols list 195

Unsorted option 3.9.1 : Sorting items in views 48

Unstop command 22.2 : Process control 212

unstopping a process 22.2 : Process control 212

Untrace All command 3.10 : Tracing symbols from tools 49

Untrace command 3.10 : Tracing symbols from tools 49, 17.5.3 : Tracing slot access 184

updating windows 3.1.11 : Updating windows 30

using the clipboard 3.3.3 : Using the Object operations with the clipboard 41

See also kill ring 3.3.3 : Using the Object operations with the clipboard 41

using the keyboard preface 12

using the mouse preface 10

V

Value command 12.13.10 : Other facilities 149, 20.7 : The Expression menu 201

Value menu

Listen 17.5.4.1 : Example 187

values

changing in debugger tool 10.8 : Performing operations on frame variables 113

changing in inspector 17.5.4 : Manipulation operations 185

Values menu

Class 2.6 : Examining classes in the Class Browser 23, 7.1 : Simple use of the Class Browser 77, 7.1.3 : Filtering slot information 80

Copy 17.5.4.1 : Example 186

Inspect 2.5 : Inspecting objects using the Inspector 21, 3.1.11 : Updating windows 30, 17.1 : Inspecting the current
object 180, 17.5.1.1 : Example 184, 17.5.4.1 : Example 185

Index

314

variables

$ 17.7 : Customizing the Inspector 189

* 2.5 : Inspecting objects using the Inspector 21, 2.6 : Examining classes in the Class Browser 25, 8.5 : Using the Object Clipboard with
a Listener 99, 10.8 : Performing operations on frame variables 113, 17.5.4.1 : Example 187, 20.2 : Evaluating simple
forms 199, 20.10.3 : Miscellaneous Listener commands 204, 22.2 : Process control 212

** 2.5 : Inspecting objects using the Inspector 21

*** 2.5 : Inspecting objects using the Inspector 21

active-finders 16.2.1.4 : Known Definitions searches 173

enter-debugger-directly 10.1.4 : Bypassing the Notifier window 109

grep-command 16.5.4 : The External Grep Program 179

grep-command-format 16.5.4 : The External Grep Program 179

grep-fixed-args 16.5.4 : The External Grep Program 179

package 12.13.8 : Packages 147

packages-for-warn-on-redefinition 23.4.1.2 : Choosing packages 225

standard-output 2.4 : Viewing output 21

trace-verbose 11.4 : Example 120

Variables menu

Set 10.8 : Performing operations on frame variables 113

views

description 3.9.1 : Sorting items in views 47

graph 6 : Manipulating Graphs 69, 26.5 : Examining the system tree 253

hierarchy 7.1.4 : Examining other classes 81

in class browser 7 : The Class Browser 77

in editor 12 : The Editor 122

in function call browser 14.1 : Introduction 154

in generic function browser 15 : The Generic Function Browser 161

in inspector 17.6 : Configuring the Inspector 187

in system browser 26.3 : The System Browser 252

output 12.2 : Displaying output messages in the Editor 125, 21 : The Output Browser 207, 26.8 : Examining output in the output
view 259

slots 7.1.1 : Examining slots 79

sorting items in 3.9.1 : Sorting items in views 47

text 14.3 : Examining functions using the text view 158, 26.6 : Examining systems in the text view 255

View Source Search editor command 12.6 : Finding definitions 131

Visit Tags File editor command 12.1.4 : Using keyboard commands 124

W

Walk command 12.13.10 : Other facilities 149

Walk Form command 20.7 : The Expression menu 202

web browsers 4.1 : Online manuals in HTML format 59

Whole Word radio button 4.1.3 : Searching the online manuals 60

window browser 27.1 : Introduction 264

changing root of graph 27.1.2 : Window graph 265

Index

315

complete window names, displaying 27.2.6 : Displaying short or long names 267

destroying a window 27.3.2 : Window control 268

different types of window 27.2.4 : Displaying different types of window 267

lowering a window 27.3.2 : Window control 268

menu commands. See menu or command name 27.1 : Introduction 264

moving around different windows 27.3.1 : Navigating the window hierarchy 268

package information 27.2.2 : Displaying package information 266

quitting a window 27.3.2 : Window control 268

raising a window 27.3.2 : Window control 268

sorting entries 27.2.1 : Sorting entries 266

using 27.1.2 : Window graph 265

whole environment 27.3.1 : Navigating the window hierarchy 268

window colors 3.2.3.2 : Setting the text style attributes 38

Window menu 2.5 : Inspecting objects using the Inspector 22, 3.1.1 : Displaying existing windows 27

Clone 3.1.9 : Copying windows 30, 3.11 : Linking tools together 49

Close Window 12.3 : Displaying and swapping between buffers 125

Refresh 3.1.11 : Updating windows 30

windows

displaying 3.1.1 : Displaying existing windows 27

making copies of 3.1.9 : Copying windows 30

re-using 3.1.6.1 : Global control of re-use 29

switching between 2.7 : Switching between windows 25

updating 3.1.11 : Updating windows 30

Windows menu 27.3 : Performing operations on windows 268

Actions. See Actions menu 27.3 : Performing operations on windows 268

Browse 27.1.2 : Window graph 265

Browse Parent 27.3.1 : Navigating the window hierarchy 268

Browse Screen 27.3.1 : Navigating the window hierarchy 268

Destroy 27.3.2 : Window control 268

Enable Display 10.12 : Errors in CAPI display callbacks 117

in window browser 27.3.1 : Navigating the window hierarchy 268

Lower 27.3.2 : Window control 268

Quit 27.3.2 : Window control 268

Raise 27.3.2 : Window control 268

Works menu

Object submenu. See Object menu 27.1.3 : Description list 265

Packages submenu. See Packages menu 27.1.3 : Description list 265

Refresh 3.1.11 : Updating windows 30

Symbols submenu. See Symbols menu 27.1.3 : Description list 265

writers for a slot, displaying 7.2.4 : Description list 83

Index

316

X

xrefs 14.1 : Introduction 154

Non-alaphanumerics

$ variable 17.7 : Customizing the Inspector 189

* variable 2.5 : Inspecting objects using the Inspector 21, 2.6 : Examining classes in the Class Browser 25, 8.5 : Using the Object
Clipboard with a Listener 99, 10.8 : Performing operations on frame variables 113, 17.5.4.1 : Example 187, 20.2 : Evaluating
simple forms 199, 20.10.3 : Miscellaneous Listener commands 204, 22.2 : Process control 212

** variable 2.5 : Inspecting objects using the Inspector 21

*** variable 2.5 : Inspecting objects using the Inspector 21

Index

317

	LispWorks IDE User Guide
	Copyrights and Trademarks
	Contents
	Preface
	1 Introduction
	1.1 Major tools
	1.1.1 The Listener
	1.1.2 The Editor
	1.1.3 The Class Browser
	1.1.4 The Output Browser
	1.1.5 The Inspector
	1.1.6 The Object Clipboard

	2 A Short Tutorial
	2.1 Starting the environment
	2.1.1 The Lisp Monitor in the deprecated Motif IDE

	2.2 Creating a Listener
	2.3 Using the Debugger
	2.4 Viewing output
	2.5 Inspecting objects using the Inspector
	2.6 Examining classes in the Class Browser
	2.7 Switching between windows
	2.8 Summary

	3 Common Features
	3.1 Displaying tool windows
	3.1.1 Displaying existing windows
	3.1.2 Iconifying existing windows
	3.1.3 Arranging windows in MDI mode
	3.1.4 Displaying tools using the mouse
	3.1.5 Displaying tools using the keyboard
	3.1.5.1 Tool accelerator keys

	3.1.6 Re-using tool windows
	3.1.6.1 Global control of re-use
	3.1.6.2 Per-window control of re-use

	3.1.7 Menu bar configurations in LispWorks for Windows
	3.1.8 Toolbar configurations
	3.1.9 Copying windows
	3.1.10 Closing windows
	3.1.11 Updating windows

	3.2 Setting preferences
	3.2.1 General options
	3.2.1.1 The window options
	3.2.1.2 Controlling completion behavior
	3.2.1.3 Quitting the environment
	3.2.1.4 Automatic filters on dialogs
	3.2.1.5 Automatic use of Find Definitions view
	3.2.1.6 Initialization file

	3.2.2 Configuring the editor emulation
	3.2.2.1 Choosing the key input style
	3.2.2.2 Specifying a Meta key in LispWorks for Macintosh
	3.2.2.3 Effect of the specified Meta key
	3.2.2.4 Setting the cursor blink rate

	3.2.3 Setting the editor font, color and other style attributes
	3.2.3.1 Changing the main colors of editor panes
	3.2.3.2 Setting the text style attributes
	3.2.3.3 Controlling parenthesis coloring

	3.2.4 Setting the default encodings

	3.3 Performing editing functions
	3.3.1 Undoing changes
	3.3.2 Using the clipboard
	3.3.3 Using the Object operations with the clipboard
	3.3.4 Selecting text and objects
	3.3.5 Searching for text and objects

	3.4 The Break gesture
	3.5 The history list
	3.5.1 Repeating events from the history list
	3.5.2 Editing the history list

	3.6 Operating on files
	3.7 Displaying packages
	3.7.1 Specifying a package

	3.8 Performing operations on selected objects
	3.8.1 Operations available

	3.9 Using different views
	3.9.1 Sorting items in views

	3.10 Tracing symbols from tools
	3.11 Linking tools together
	3.12 Filtering information
	3.12.1 Plain Filtering
	3.12.2 Advanced Filtering

	3.13 Regexp matching
	3.13.1 Regexp and plain string matching

	3.14 Completion
	3.14.1 Invoking completion
	3.14.2 Selecting the completed input
	3.14.2.1 In-place completion
	3.14.2.2 Filtering in-place completion

	3.14.3 Completion dialog
	3.14.3.1 Filtering modal dialog completion

	3.15 The Commands menu
	3.15.1 Editor Commands List

	3.16 Output and Input to/from the standard streams
	3.17 Examining a window
	3.18 Specifying the initial tools
	3.19 System preferences affecting the IDE tools

	4 Getting Help
	4.1 Online manuals in HTML format
	4.1.1 Getting help on the current symbol
	4.1.2 Getting help on the current tool
	4.1.3 Searching the online manuals
	4.1.4 Searching the example source files
	4.1.5 Browsing manuals online
	4.1.6 The Lisp Knowledgebase
	4.1.7 LispWorks Patches
	4.1.8 Installing private patches in LispWorks for Windows
	4.1.9 Configuring the browser used

	4.2 Online help for editor commands
	4.3 Reporting bugs
	4.4 Registering a new license key
	4.5 Browsing manuals online using Adobe Reader

	5 Session Saving
	5.1 What session saving does
	5.2 The default session
	5.3 What is saved and what is not saved
	5.4 Saving sessions
	5.4.1 Scheduling automatic session saving
	5.4.2 The Save Session dialog and actual saving
	5.4.3 Saving a session interactively

	5.5 Redirecting images to a Saved Session image
	5.6 Non-IDE interfaces and session saving

	6 Manipulating Graphs
	6.1 An overview of graphs
	6.2 Searching graphs
	6.3 Expanding and collapsing graphs
	6.3.1 Expanding and collapsing by clicking
	6.3.2 Expanding and collapsing by menu commands

	6.4 Moving nodes in graphs
	6.5 Displaying plans of graphs
	6.6 Preferences for graphs
	6.6.1 Altering the depth and breadth of graphs
	6.6.2 Displaying different graph layouts

	6.7 Using graphs in your programs

	7 The Class Browser
	7.1 Simple use of the Class Browser
	7.1.1 Examining slots
	7.1.2 Examining inherited slots
	7.1.3 Filtering slot information
	7.1.4 Examining other classes
	7.1.5 Sorting information

	7.2 Examining slot information
	7.2.1 Class box
	7.2.2 Filter area
	7.2.3 Slots list
	7.2.4 Description list
	7.2.5 Performing operations on the current class

	7.3 Examining superclasses and subclasses
	7.3.1 Class box
	7.3.2 Superclasses list
	7.3.3 Subclasses list
	7.3.4 Description list
	7.3.5 Performing operations on the selected classes or the current class

	7.4 Examining classes graphically
	7.4.1 Class box
	7.4.2 Subclasses and superclasses graphs
	7.4.3 Description list
	7.4.4 Performing operations on the selected classes or the current class
	7.4.5 An example

	7.5 Examining generic functions and methods
	7.5.1 Class box
	7.5.2 Filter box
	7.5.3 List of functions or methods
	7.5.4 Description list
	7.5.5 Performing operations on the current class
	7.5.6 Operations specific to the current function or method

	7.6 Examining initargs
	7.6.1 Class box
	7.6.2 Filter box
	7.6.3 List of initargs
	7.6.4 Description list
	7.6.5 Performing operations on the current class

	7.7 Examining class precedences
	7.7.1 Class box
	7.7.2 Filter box
	7.7.3 List of precedences
	7.7.4 Description list
	7.7.5 Performing operations on the selected classes or the current class

	8 The Object Clipboard
	8.1 Placing objects on the Object Clipboard
	8.1.1 The Listener
	8.1.2 The Class Browser
	8.1.3 The Inspector
	8.1.4 The Function Call Browser
	8.1.5 The Generic Function Browser
	8.1.6 The Debugger
	8.1.7 The Stepper
	8.1.8 The System Browser
	8.1.9 General clipping

	8.2 Browsing clipped objects
	8.2.1 The Inspector
	8.2.2 The Class Browser
	8.2.3 The Listener
	8.2.4 General browsing
	8.2.5 Pasting of clipped objects

	8.3 Removing objects
	8.4 Filtering
	8.5 Using the Object Clipboard with a Listener

	9 The Compilation Conditions Browser
	9.1 Introduction
	9.2 Examining conditions
	9.3 Configuring the display
	9.3.1 Display preferences

	9.4 Access to other tools

	10 The Debugger Tool
	10.1 Description of the Debugger
	10.1.1 Condition box
	10.1.2 Backtrace area
	10.1.2.1 Frames and Variables in a tree
	10.1.2.2 Frames and Variables in two lists

	10.1.3 Toolbar buttons
	10.1.4 Bypassing the Notifier window

	10.2 What the Debugger tool does
	10.3 Simple use of the Debugger tool
	10.4 The stack in the Debugger
	10.5 An example debugging session
	10.6 Performing operations on the error condition
	10.7 Performing operations on stack frames
	10.7.1 Source location, documentation, inspect and method combination for the current frame
	10.7.2 Restarts and returning from the frame
	10.7.3 Tracing the function in the frame

	10.8 Performing operations on frame variables
	10.9 Configuring the debugger tool
	10.9.1 Configuring the call frames displayed
	10.9.2 Displaying package information
	10.9.3 Behavior on closing the Debugger
	10.9.4 Frames and variables display
	10.9.5 Remote debugging options

	10.10 The Notifier window
	10.11 Handling of Cocoa Event Loop hanging
	10.12 Errors in CAPI display callbacks

	11 The Tracer
	11.1 Introduction
	11.2 Tracing and Untracing functions
	11.2.1 Tracing methods

	11.3 Examining the output of tracing
	11.3.1 The Output Data view
	11.3.2 The Output Text view

	11.4 Example

	12 The Editor
	12.1 Displaying and editing files
	12.1.1 The toolbar
	12.1.2 The editor window
	12.1.3 The echo area
	12.1.4 Using keyboard commands

	12.2 Displaying output messages in the Editor
	12.3 Displaying and swapping between buffers
	12.3.1 Filter area
	12.3.2 Buffers area
	12.3.3 Editor tool solely as buffers list

	12.4 Displaying Common Lisp definitions
	12.4.1 Filter box
	12.4.2 Definitions area

	12.5 Changed definitions
	12.5.1 Setting the reference point for changed definitions

	12.6 Finding definitions
	12.7 Setting Editor preferences
	12.7.1 Controlling other aspects of the Editor
	12.7.2 Controlling options specific to the Editor
	12.7.2.1 Controlling toolbar display
	12.7.2.2 Buffers list option
	12.7.2.3 Sorting items in lists
	12.7.2.4 Displaying package information

	12.7.3 Other Editor options

	12.8 Basic Editor commands
	12.8.1 Opening, saving and printing files
	12.8.2 Moving around files
	12.8.3 Inserting and deleting text
	12.8.4 Using several buffers

	12.9 Other essential commands
	12.9.1 Aborting commands
	12.9.2 Undoing commands
	12.9.3 Repeating commands

	12.10 Cutting, copying and pasting using the clipboard
	12.11 Cutting, copying and pasting using the kill ring
	12.11.1 Marking the region
	12.11.2 Cutting or copying text
	12.11.3 Pasting text

	12.12 Searching and replacing text
	12.12.1 Searching for text
	12.12.2 Incremental searches
	12.12.3 Replacing text

	12.13 Using Lisp-specific commands
	12.13.1 Lisp mode
	12.13.2 Current buffers, definitions and expression
	12.13.3 Evaluating code
	12.13.4 Compiling code
	12.13.4.1 Compiling in memory
	12.13.4.2 Compiling to a file

	12.13.5 Argument list information
	12.13.6 Breakpoints
	12.13.6.1 Setting breakpoints
	12.13.6.2 Editing breakpoints
	12.13.6.3 Removing breakpoints
	12.13.6.4 Reloading code with breakpoints

	12.13.7 Tracing symbols and functions
	12.13.8 Packages
	12.13.8.1 The primary package
	12.13.8.2 The current package for Lisp operations

	12.13.9 Indentation of forms
	12.13.10 Other facilities

	12.14 Help with editing

	13 The Code Coverage Browser
	13.1 Starting the Code Coverage Browser
	13.2 Displaying a Code Coverage data
	13.3 Code Coverage Files List Context Menu
	13.4 Traverse
	13.5 Using the internal data
	13.6 Creating new Data

	14 The Function Call Browser
	14.1 Introduction
	14.2 Examining functions using the graph views
	14.2.1 Function area
	14.2.2 Show functions control
	14.2.3 Graph area
	14.2.4 Echo area
	14.2.5 The function description button
	14.2.5.1 Function description area
	14.2.5.2 Documentation area

	14.3 Examining functions using the text view
	14.3.1 Called By area
	14.3.2 Calls Into area

	14.4 Configuring the function call browser
	14.4.1 Sorting entries
	14.4.2 Displaying package information

	14.5 Configuring graph displays
	14.5.1 Graph layout settings
	14.5.2 Graph expansion settings
	14.5.3 Plan mode settings

	14.6 Performing operations on functions

	15 The Generic Function Browser
	15.1 Examining information about methods
	15.1.1 Function area
	15.1.2 Filter area
	15.1.3 Methods list
	15.1.4 Description list
	15.1.5 Performing operations on the current function or selected methods

	15.2 Examining information about combined methods
	15.2.1 Function box
	15.2.2 Signatures button
	15.2.3 Arguments types box
	15.2.4 List of method combinations
	15.2.5 Description list
	15.2.6 Restricting displayed signatures by class

	15.3 Configuring the Generic Function Browser

	16 The Search Files tool
	16.1 Introduction
	16.2 Performing searches
	16.2.1 Entering Search Specifications directly
	16.2.1.1 Plain Directory searches
	16.2.1.2 Root and Patterns searches
	16.2.1.3 System Search
	16.2.1.4 Known Definitions searches
	16.2.1.5 Searching editor buffers
	16.2.1.6 Grep searches

	16.2.2 Using context-dependent searches
	16.2.2.1 Context-dependent searches using Editor commands
	16.2.2.2 Context-dependent searches using menu commands
	16.2.2.3 Search History

	16.3 Viewing the results
	16.3.1 Displaying in an Editor
	16.3.2 Linking to an Editor
	16.3.3 Filtering the results
	16.3.4 Hiding certain results

	16.4 Modifying the matched lines
	16.5 Configuring the Search Files tool
	16.5.1 Search Parameters
	16.5.2 Display
	16.5.3 File Types
	16.5.4 The External Grep Program

	17 The Inspector
	17.1 Inspecting the current object
	17.2 Description of the Inspector tool
	17.2.1 Adding a Listener to the Inspector

	17.3 Filtering the display
	17.3.1 Updating the display

	17.4 Examining objects
	17.5 Operating upon objects and items
	17.5.1 Examination operations
	17.5.1.1 Example
	17.5.1.2 Recursive inspection

	17.5.2 Examining attributes
	17.5.3 Tracing slot access
	17.5.4 Manipulation operations
	17.5.4.1 Example

	17.5.5 Copying in the Inspector

	17.6 Configuring the Inspector
	17.7 Customizing the Inspector
	17.8 Creating new inspection formats
	17.8.1 Example

	18 The Symbol Browser
	18.1 Introduction
	18.2 Description of the Symbol Browser
	18.2.1 Search Settings
	18.2.1.1 Packages
	18.2.1.2 Type
	18.2.1.3 Accessibility

	18.2.2 Filter area
	18.2.3 Symbols list
	18.2.4 Description area
	18.2.5 Documentation area

	18.3 Configuring the Symbol Browser

	19 The Interface Builder
	20 The Listener
	20.1 The basic features of a Listener
	20.2 Evaluating simple forms
	20.3 Re-evaluating forms
	20.4 The debugger prompt and debugger level
	20.5 Interrupting evaluation
	20.6 The History menu
	20.7 The Expression menu
	20.8 The Values menu
	20.9 The Debug menu
	20.10 Execute mode
	20.10.1 History commands
	20.10.2 Debugger commands
	20.10.3 Miscellaneous Listener commands
	20.10.4 Highlighting of results

	20.11 Setting Listener preferences
	20.12 Running Editor forms in the Listener
	20.13 Switching to and from other tools
	20.14 Help with editing in the Listener

	21 The Output Browser
	21.1 Interactive compilation messages
	21.1.1 Compilation message styles

	22 The Process Browser
	22.1 The process list
	22.2 Process control
	22.3 Other ways of breaking processes
	22.4 Updating the Process Browser
	22.5 Process Browser Preferences

	23 The Profiler
	23.1 Introduction
	23.2 Description of the Profiler
	23.2.1 Call Tree
	23.2.2 Options in the context menu for viewing parts of the call graph
	23.2.3 Cumulative Results
	23.2.4 Stacked Tree
	23.2.5 Code To Profile

	23.3 The Profiler menu and Profiler-specific toolbar buttons
	23.4 Selecting what to profile
	23.4.1 Choosing the functions to profile
	23.4.1.1 Choosing individual functions
	23.4.1.2 Choosing packages

	23.5 Format of the cumulative results
	23.6 Interpreting the cumulative results
	23.7 Configuring the Profiler
	23.7.1 Behavior of the Cumulative tab
	23.7.2 Behavior after profiling finishes

	23.8 Profiling pitfalls
	23.8.1 Effects of random sampling
	23.8.2 Recursive functions
	23.8.3 Structure accessors
	23.8.4 Consequences of restricted profiling
	23.8.5 Effect of compiler optimizations
	23.8.6 Effect of compiler transforms

	23.9 Some examples

	24 The Shell and Remote Shell Tools
	24.1 Introduction
	24.2 The Shell tool
	24.3 Command history in the shell
	24.4 Configuring the shell to run
	24.5 The Remote Shell tool

	25 The Stepper
	25.1 Introduction
	25.1.1 Stepper toolbar
	25.1.2 Source area
	25.1.3 Backtrace area
	25.1.4 Listener area

	25.2 Simple examples
	25.2.1 Standalone use of the stepper
	25.2.2 Invoking the Stepper via a breakpoint

	25.3 The implementation of the Stepper
	25.3.1 Requirements for stepping
	25.3.2 Editing source code
	25.3.3 Side-effects of stepping
	25.3.4 Atomic and constant forms

	25.4 Stepper controls
	25.4.1 Shortcut keys for the Stepper

	25.5 Stepper restarts
	25.6 Breakpoints
	25.6.1 Setting breakpoints
	25.6.2 Conditional breakpoints
	25.6.3 Printing breakpoints
	25.6.4 Editing breakpoints
	25.6.5 Removing breakpoints

	25.7 Stepping macro forms
	25.7.1 Interactive macro expansion
	25.7.2 Macro expansion in the stepper
	25.7.3 Collapsing macro expansions
	25.7.4 Controlling macro expansion

	25.8 Listener area
	25.9 Configuring the Stepper
	25.9.1 Operator preferences
	25.9.2 Backtrace preferences

	26 The System Browser
	26.1 Introduction
	26.2 A brief introduction to systems
	26.2.1 Examples

	26.3 The System Browser
	26.4 A description of the System Browser
	26.5 Examining the system tree
	26.5.1 System area
	26.5.2 Tree area
	26.5.3 Description area
	26.5.4 Performing operations on system members

	26.6 Examining systems in the text view
	26.6.1 System area
	26.6.2 Parent system area
	26.6.3 Subsystems area
	26.6.4 Files area
	26.6.5 File description area

	26.7 Generating and executing plans in the preview view
	26.7.1 System area
	26.7.2 Actions area
	26.7.3 Filter area
	26.7.4 Plan area
	26.7.5 File description area
	26.7.6 Executing plans in the preview view

	26.8 Examining output in the output view
	26.8.1 System area
	26.8.2 Output area

	26.9 ASDF Integration
	26.9.1 Interface to source code managers

	26.10 Configuring the display
	26.10.1 Sorting entries
	26.10.2 Displaying package information
	26.10.3 Display of the toolbar

	26.11 Setting options in the system browser

	27 The Window Browser
	27.1 Introduction
	27.1.1 Graph box
	27.1.2 Window graph
	27.1.3 Description list

	27.2 Configuring the Window Browser
	27.2.1 Sorting entries
	27.2.2 Displaying package information
	27.2.3 Displaying the toolbar
	27.2.4 Displaying different types of window
	27.2.5 Showing IDE iterfaces
	27.2.6 Displaying short or long names

	27.3 Performing operations on windows
	27.3.1 Navigating the window hierarchy
	27.3.2 Window control

	28 The Application Builder
	28.1 Introduction
	28.1.1 What the Application Builder does

	28.2 Preparing to build your application
	28.2.1 The script
	28.2.1.1 Using your existing delivery script
	28.2.1.2 Creating a new delivery script

	28.3 Building your application
	28.4 Editing the script
	28.5 Troubleshooting
	28.5.1 Viewing errors
	28.5.2 Clearing the output

	28.6 Running the saved application
	28.6.1 Passing arguments and redirecting output
	28.6.2 Executing a different file
	28.6.3 Killing application processes

	28.7 Building universal binaries
	28.8 Using the Application Builder to save a development image
	28.9 Configuring the Application Builder

	29 Remote Debugging
	29.1 Remote Listeners
	29.2 Menus in the Remote Debugger and Remote Listener tools
	29.3 Editor commands for remote debugging
	29.4 Configuring Remote Debugging
	29.4.1 Remote Debugging Client
	29.4.2 Remote Listener
	29.4.3 IDE Remote Debugging Server

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Non-alaphanumerics

