
Delivery User Guide
Version 8.0

1

Copyright and Trademarks
Delivery User Guide

Version 8.0

December 2021

Copyright © 2021 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in all copies and supporting documentation, and that the
name of M.I.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "as is"
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including all implied
warranties of merchantability and fitness. In no event shall M.I.T. be liable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright
and permission notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

2

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and
registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt III, as applicable. Rights reserved under the copyright laws of
the United States.

Address Telephone Fax

LispWorks Ltd
St. John's Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

From North America:
877 759 8839 (toll-free)

From elsewhere:
+44 1223 421860

From North America:
617 812 8283

From elsewhere:
+44 870 2206189

 www.lispworks.com

Copyright and Trademarks

3

www.lispworks.com

Contents

1 Introduction 8

1.1 What does Delivery do? 8

1.2 What do you get with Delivery? 8

1.3 Conventions and terminology used in this manual 9

1.4 A breakdown of the delivery process 10

1.5 Examples 11

2 A Short Delivery Example 12

2.1 Developing the program 12

2.2 Delivering the program 12

3 Writing Code Suitable for Delivery 15

3.1 Separate run time initializations from the build phase 15

3.2 Error handling in delivered applications 15

3.3 Efficiency considerations 17

4 Delivering your Application 18

4.1 The delivery function: deliver 18

4.2 Using the delivery tools effectively 19

4.3 Delivering a standalone application executable 19

4.4 Delivering a dynamic library 20

4.5 How to deliver a smaller and faster application 24

4.6 How Delivery makes an image smaller 24

5 Keywords to the Delivery Function 26

5.1 Topic-based list of deliver keywords 26

5.2 Alphabetical list of deliver keywords 31

6 Delivery on macOS 56

6.1 Universal binaries 56

6.2 Application bundles 56

6.3 Bad interaction with clean-up utilities 56

6.4 Cocoa and GTK+ images 56

6.5 Terminal windows and message logs 57

6.6 File associations for a Macintosh application 57

6.7 Editor emulation 57

6.8 Standard Edit keyboard gestures 57

4

6.9 Quitting a CAPI/Cocoa application 58

6.10 Retaining Objective-C classes 58

6.11 X11/Motif considerations 58

6.12 Examples of delivering Cocoa applications 58

7 Delivery on Microsoft Windows 59

7.1 Run time library requirement 59

7.2 Application Manifests 59

7.3 DOS windows and message logs 60

7.4 File associations for a Windows application 60

7.5 Editor emulation 60

7.6 ActiveX controls 61

7.7 Example of delivering a Service 61

8 Delivery on Linux, FreeBSD and x86/x64 Solaris 62

8.1 GTK+ considerations 62

8.2 X11/Motif considerations 62

8.3 LispWorks executable corrupted 63

8.4 Logging debugging messages 64

8.5 Editor emulation 64

8.6 Products supporting dynamic library delivery 64

9 Delivering for mobile platforms 65

9.1 Delivery of iOS runtimes 65

9.2 Delivery of Android runtimes 65

10 Delivery and Internal Systems 66

10.1 Delivery and CLOS 66

10.2 Delivery and the Lisp reader 68

10.3 Editors for delivered applications 68

10.4 Delivery and CAPI 69

10.5 The condition system in delivered applications 70

10.6 Delivery and the FLI 70

10.7 Modules 71

10.8 Symbol, SYMBOL-NAME and package issues during delivery 72

10.9 Throwing symbols and packages out of the application 72

10.10 Keeping packages and symbols in the application 74

10.11 Coping with intern and find-symbol at run time 75

10.12 Symbol-name comparison 75

10.13 Delivery and Java interface 75

11 Troubleshooting the delivery process 77

11.1 Debugging errors in the delivery image 77

11.2 Problems with undefined functions or variables 77

Contents

5

11.3 Problems with READ 78

11.4 Failure to find a class 78

11.5 REQUIRE was called after delivery time with module ... 78

11.6 Failed to reserve... error in compacted image 78

11.7 Memory clashes with other software 79

11.8 Possible explanations for a frozen image 79

11.9 Warnings about combinations and templates 79

11.10 FLI template needs to be compiled 80

11.11 Failure to lookup X resources 80

11.12 Reducing the size of the delivered application 80

11.13 Symbol names changed to "Dummy Symbol Name" 80

11.14 Debugging with :no-symbol-function-usage 80

11.15 Interrogate-Symbols 81

12 Interface to the Delivery Process 83

12.1 Interface to the delivery process 83

13 Example: Delivering CAPI Othello 84

13.1 Preparing for delivery 84

13.2 Delivering a standalone image 85

13.3 Creating a macOS application bundle 85

13.4 Command line applications 87

13.5 Making a smaller delivered image 87

14 Efficiency considerations when coding for delivery 88

14.1 Use of modules 88

14.2 Loading code at run time 88

14.3 General strategy for reducing the image size 88

14.4 Use of symbols, functions, and classes 89

14.5 Making references to packages 89

14.6 Declaring the types of variables used in function calls 89

14.7 Avoid referencing type names 89

14.8 Use of the INTERN and FIND-SYMBOL functions 90

14.9 Use of the EVAL function and the invocation of uncompiled functions 90

14.10 User-defined and built-in packages 90

15 Self-contained examples of delivery 91

15.1 Delivering a Cocoa CAPI application examples 91

15.2 Delivering a CAPI application examples 91

15.3 Delivering a dynamic library examples 92

15.4 Delivering a Windows service examples 92

Contents

6

16 Delivery Reference Entries 93

deliver 93

deliver-keep-symbol-names 94

deliver-keep-symbols 95

deliver-keywords 96

delivery-shaker-cleanup 96

delivery-shaker-weak-pointer 98

delivery-value 101

Index

Contents

7

1 Introduction

1.1 What does Delivery do?

Delivery does three distinct things:

• It creates standalone software.

• It removes Lisp development functionality, including the LispWorks IDE.

• Optionally, it tries to make the image smaller.

Most of the discussion in this manual concerns the technical issues arising from this last point. Note that you can deliver such
that the system does not try to make the image smaller, and most of the technical issues are irrelevant in this case.

The process of creating standalone executables or dynamic libraries is called delivery.

1.1.1 Making the image smaller

The principle behind application delivery is quite simple: an application does not use everything in the LispWorks
development environment when it is running, so there is no need for those unused parts of LispWorks to be in the image.
Delivery can discard the unnecessary code and create a single image file that contains just what is needed to run the
application.

Because the delivered application (sometimes called a runtime) is smaller, it can reduce virtual memory paging and thereby
run faster than it did under LispWorks. Delivery can also actively speed code up by, for example, converting single-method
generic functions into ordinary functions. Packing it all into a single file means it is simple to start up and can be run
independently of LispWorks.

1.2 What do you get with Delivery?

Delivery consists of an extended routine that is called once all the code that your application needs has been loaded in to
LispWorks.

To deliver your application, you use the Application Builder tool in the LispWorks IDE, or run LispWorks on the command
line with your build file which does all the necessary preparations (normally just loading patches and the application code)
and then calls the function deliver.

1.2.1 Programming libraries and facility support code

LispWorks also provides sets of programming libraries and code supporting various other facilities that you may want to use
in your application. Some of these facilities are available in the basic LispWorks image, while others are provided as modules
and need to be loaded explicitly using require.

See the LispWorks® User Guide and Reference Manual for further details.

8

http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm

1.2.2 Functionality removed by delivery

The following general Lisp development functionality is forcibly removed by delivery:

• compile-file

• save-image

• deliver

• The graphical LispWorks IDE.

Contact Lisp Sales if you want to build an application which uses these features.

1.3 Conventions and terminology used in this manual

This section discusses the conventions and terminology that are used throughout this manual.

1.3.1 Common Lisp reference text

The Common Lisp reference text for Delivery and LispWorks is the ANSI Common Lisp standard. A HTML version of this
standard is installed with LispWorks and can be viewed by choosing Help > Manuals from the LispWorks podium and
selecting "ANSI Common Lisp Standard". This is referred to as "the ANSI standard" throughout.

1.3.2 Platform-specific keywords

Some of the delivery parameters do not apply to all platforms. This is indicated where applicable:

Windows means all supported Microsoft Windows operating systems.

Linux means all supported Linux and FreeBSD operating systems.

x86/x64 Solaris means all supported Solaris operating systems running on x86 or x64 hardware. It does not
include SPARC hardware.

DLL means a Microsoft Windows dynamic link library.

Dynamic library means a loadable dynamic shared library on any platform, including Windows DLLs.

1.3.3 Example files

This manual often refers to example files in the LispWorks library, like this:

(example-edit-file "delivery/hello/deliver")

These examples are Lisp source files in your LispWorks installation under lib/8-0-0-0/examples/. You can simply
evaluate the given form to view the example source file.

Example files contain instructions about how to use them at the start of the file.

The examples files are in a read-only directory and therefore you should compile them inside the IDE (by the Editor
command Compile Buffer or the toolbar button or by choosing Buffer > Compile from the context menu), so it does not try
to write a fasl file.

If you want to manipulate an example file or compile it on the disk rather than in the IDE, then you need first to copy the file
elsewhere (most easily by using the Editor command Write File or by choosing File > Save As from the context menu).

1 Introduction

9

http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm

1.4 A breakdown of the delivery process

The process of developing and delivering a LispWorks application can typically be broken down as follows:

1. Develop and fully compile your application.

2. Load the application into the LispWorks image and deliver a standalone image.

3. If the delivered version of the image is broken, go back to step 2 and adjust the delivery parameters.

4. If performance problems remain, go back to step 1 and refine your code.

1.4.1 Developing your application

Develop your application using LispWorks. In addition to the code that you write, you can use third-party libraries and all the
functionality of LispWorks apart from that listed in 1.2.2 Functionality removed by delivery.

Application development is covered in detail in 3 Writing Code Suitable for Delivery and you should also read 14
Efficiency considerations when coding for delivery.

Read 6 Delivery on macOS, 7 Delivery on Microsoft Windows, or 8 Delivery on Linux, FreeBSD and x86/x64 Solaris,
as appropriate according to your target platform(s).

If you use CLOS, the FLI or the LispWorks editor in your application, you should also read 10 Delivery and Internal
Systems.

1.4.2 Managing and compiling your application

You can use any defsystem facility to organize your sources. For example:

• the built-in lw:defsystem macro, or:

• ASDF.

You can then use functions lw:load-system and lw:compile-system, or the ASDF equivalents, to work with your
source files as a whole.

1.4.3 Debugging, profiling and tuning facilities

You may discover performance bottlenecks in your application, before or after delivery. LispWorks provides tools to help
eliminate these sorts of problems. A profiler is available in LispWorks, in order to help you make critical code more efficient.

You can also tune the behavior of the garbage collector. See the LispWorks® User Guide and Reference Manual for details.

There is a TTY-based debugger available to help debug applications broken by severe delivery parameters. You can deliver
this debugger in the application so that you can debug it on-line if something goes wrong.

See the LispWorks® User Guide and Reference Manual for more information about these facilities.

1.4.4 Delivering your compiled application

Once your application is ready, you can deliver it by loading it and then calling deliver. Note that this has to be done in a
script, as described in 2.2 Delivering the program.

deliver takes many keyword arguments for fine-tuning, but it is intended to work well with a minimal number of keywords.
You should start by delivering with no more than the following keywords if required: :interface :capi, or

1 Introduction

10

http://common-lisp.net/project/asdf/

:multiprocessing t. Only add other keywords when you find that they are needed.

You can also make LispWorks discard unused code, in order to reduce the delivered image size and thereby improve
performance. You should not do this until your delivered application is working, though, because discarding certain code
impedes debugging.

If you deliver at level 0 the system does not try to get rid of any code and delivery should be straightforward. Delivery at
higher levels tries to remove code, which may cause some problems, and in this case you will need to add the appropriate
delivery keywords to fix these problems. However, you should not need to use many keywords. If you use 6 or more delivery
keywords, please contact Lisp Support with the details to check that you are doing the right thing.

Delivery is covered in 4 Delivering your Application.

5 Keywords to the Delivery Function describes the keywords you can pass to the delivery function, deliver, that permit
fine control over the delivery process.

1.4.5 Licensing issues

Executables and dynamic libraries that are created using Delivery with LispWorks on most platforms do not require a run
time license key.

1.4.6 Modules

You should load all the Lisp modules that your application needs into the LispWorks image before attempting to deliver your
application. Do this by calling require with each module name in your delivery script.

1.4.7 Error handling

Delivered applications can deal with errors using the Common Lisp and LispWorks-specific Condition System and error
handling facilities if so desired. But if you cannot keep the full Common Lisp Condition System because it is too large, you
can still use some basic facilities provided for handling errors.

See 10.5 The condition system in delivered applications for more details.

You should also consider adding a logging mechanism to your application, which logs any error (as well as other useful
information). That is needed both because the delivered application does not have the LispWorks IDE debugging tools, and
because end-users generally cannot be expected to debug Lisp code.

1.4.8 Troubleshooting

11 Troubleshooting the delivery process presents a number of explanations and workarounds for problems you might have
when delivering your application.

1.5 Examples

There are a number of examples in the manual which help to illustrate the delivery process.

2 A Short Delivery Example shows how to deliver a very small application.

13 Example: Delivering CAPI Othello shows how a CAPI program can be delivered.

15 Self-contained examples of delivery lists further examples with complete code for delivering small applications which
are supplied in the LispWorks library.

1 Introduction

11

http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm

2 A Short Delivery Example

This chapter presents a simple example of Delivery in use. It shows a small, pre-written program being delivered.

There are usually four stages to application delivery: coding, compiling, delivering, and debugging. The example is broken
up into these stages and the discussion in each case points to more detailed material later in the manual.

If you would like to try this example delivery out while following the text, you can find the program in the LispWorks
distribution at:

lib/8-0-0-0/examples/delivery/hello/hello.lisp

2.1 Developing the program

The program we use in the example is essentially this:

(in-package "CL-USER")

(defun hello-world ()
 (capi:display-message "Hello World!"))

with a couple of small modifications which are not important here.

Perform these steps to "develop" the program:

1. Open the source file in the LispWorks Editor tool by evaluating this form:

(example-edit-file "delivery/hello/hello")

2. Compile the program in the LispWorks Editor by the menu command Buffers > Compile.

3. Test the program by calling (hello-world).

2.2 Delivering the program

Having developed and tested the program, the next step is to attempt delivery. You will compile the file containing the
program source code, and load the fasl and call deliver in a fresh LispWorks session.

Programs are delivered with the function deliver. This function takes three mandatory arguments. There are also many
optional keyword arguments to help Delivery make the smallest image possible, and also control some aspects of the behavior
of the runtime that is created.

You can read more about the deliver function in 4 Delivering your Application.

5 Keywords to the Delivery Function describes all the optional keyword arguments available.

In this example, we use just one of the optional keyword arguments, and of course we provide the mandatory arguments.
These are:

• The name of a startup function. This is the first function called when the application is run.

12

• A pathname specifying where to write the delivered image.

• A delivery level. This is an integer in the range 0 to 5. It controls how much work is done to make the image smaller
during delivery. At level 0, little effort is put into making a smaller image, while at level 5 a variety of strategies are
employed.

You can deliver and run the application in two ways: either use the LispWorks IDE, or use a command shell. This means a
DOS command window (on Microsoft Windows), Terminal.app (macOS) or a shell (Unix/Linux etc).

2.2.1 Delivering the program using the LispWorks IDE

You can use the Application Builder tool in the LispWorks IDE to deliver your application. This performs the same steps as
described in 2.2.2 Delivering the program using a command shell, but provides a windowing interface which is easier to
use.

To start, you will need a script which loads your compiled application code. This can be as simple as:

(in-package "CL-USER")
(example-compile-file "delivery/hello/hello" :load t)

but you can also start with a complete delivery script such as that shown in 2.2.2 Delivering the program using a command
shell.

For full instructions on using the Application Builder tool, see the LispWorks IDE User Guide.

2.2.2 Delivering the program using a command shell

Continuing with the example:

1. Write a delivery script file (deliver.lisp) that compiles and loads the program, and then calls deliver:

(in-package "CL-USER")
(load-all-patches)
(example-compile-file "delivery/hello/hello" :load t)
(deliver 'hello-world
 #+:cocoa
 (create-macos-application-bundle
 "~/Desktop/Hello.app"
 ;; Do not copy file associations...
 :document-types nil
 ;; ...or CFBundleIdentifier from the LispWorks bundle
 :identifier "com.example.Hello"
)
 #-:cocoa "~/hello"
 0
 :interface :capi)

2. Run the LispWorks image passing your file as the build script. For example, on Microsoft Windows open a DOS
window. Ensure you are in the folder containing the LispWorks image and type:

MS-DOS> lispworks-8-0-0-x86-win32.exe -build deliver.lisp

On Linux and other Unix-like platforms type the following into a shell:

% lispworks-8-0-0-x86-linux -build deliver.lisp

Note: the image name varies between the supported platforms.

2 A Short Delivery Example

13

On macOS, use Terminal.app. Ensure you're in the directory of the image first:

% cd "/Applications/LispWorks 8.0 (64-bit)/LispWorks (64-bit).app/Contents/MacOS"
% ./lispworks-8-0-0-macos64-universal -build deliver.lisp

If you want to see the output, you can redirect the output with > to a file or use |, if it works on your system.

3. Run the application, which is saved in hello.exe on Microsoft Windows, Hello.app on macOS, and hello on
Linux and other Unix-like platforms.

4. Now generate a smaller executable by discarding unused code while delivering. Do this by editing your file
deliver.lisp to specify a higher level argument in the call to deliver. Try changing it to 5 for the largest effect.

Note: On macOS, if hcl:create-macos-application-bundle does not do what you need, please see 13.3.2
Alternative application bundle creation code for an alternative, but also please inform Lisp Support.

2.2.3 Further examples

There is another more detailed example later in this manual. This is in 13 Example: Delivering CAPI Othello, and shows
how to deliver a small CAPI application. The application is an implementation of the board game Othello.

Further examples with complete code for delivering small applications are supplied in the LispWorks library. See 15 Self-
contained examples of delivery.

2 A Short Delivery Example

14

3 Writing Code Suitable for Delivery

How successfully you can deliver your application depends to a large extent upon how you wrote it in the first place. Delivery
reduces the size of some symbols and constructs more than others, so a knowledge of what sort of code leads to the best
delivered images is useful.

This chapter explains what sorts of considerations you might make when coding your application.

3.1 Separate run time initializations from the build phase

To deliver a runtime application correctly, you need two distinct phases: the build phase, and the run time phase.

In the build phase the delivery script loads the application code including the definition of its start-up function, but should not
actually do any run time initialization. It then saves the executable or dynamic library to disk. An executable is primed with
the start-up function as its entry point.

In the run time phase the end-user runs the executable which calls its start-up function. This function must perform any
required run time initializations, and not attempt to load any more application code.

You may have developed or inherited a program with a control file which loads your application, initializes and starts it
successfully in the LispWorks IDE, but which fails when used as a delivery script. For example it might run code which
relies on multiprocessing.

To correctly deliver this program as a LispWorks runtime application you will need to remove those forms from the control
file which do run time initialization, and cause them to occur at run time by adding them to the start-up function. Take care to
preserve the order of initializations when you do this.

3.2 Error handling in delivered applications

Normally you do not expect an application user to debug it, so you never want your delivered application to call the debugger.
Obviously you try to achieve that by making the application error-free, but it is difficult to guarantee that the application
never calls error. You therefore handle errors in the application, such that even if an error occurs it does not enter the
debugger.

There are two classes of error an application is likely to need to handle: errors generated by the application, and errors
generated by the Lisp system.

3.2.1 Handling errors generated by the application

Error conditions that can occur in your application domain can be handled easily enough if you define your own error
handling or validation functions to trap them. For instance, you might have the following code to detect an error condition
and call error:

.....
(let ((res (call-something)))
 (when res
 (generate-error res))
.....
(defun generate-error(res)
 (error 'application-error
 :error-number res))

15

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

You can easily define a version of generate-error that does all the work without calling error:

(defun generate-error (res)
 (let ((action
 (capi:prompt-with-list
 '(("Abort Operation" . abort)
 ("Retry Operation" . retry)
 ("Ignore Error")
 ("Quit" . stop-application)
 ("Do Something Else" . do-something-else))
 (find-error-string res)
 :print-function 'first
 :value-function 'rest)))
 (case action
 ((abort retry) (invoke-restart action))
 ((nil))
 (t (funcall action)))))

3.2.2 Handling errors generated by the Lisp system

Errors generated by the Lisp system, rather than the application domain, are a little harder to deal with.

Suppose your application performs an operation upon a file. The application calls a system function to complete this
operation, so when there is no error system, any errors it generates must be caught by an error handler in the application
itself.

Error handling can be dynamically-scoped or global.

Dynamically-scoped error handling is done by wrapping cl:handler-bind or cl:handler-case around a body of code.
This has the advantage that it allows you to tailor the response to errors in specific pieces of code and for specific types of
error. It has the disadvantage that it is not global. If you put it in the process function (the function argument to
mp:process-run-function) it will apply only to the code that is executed in that process, but you still need it in each
process.

The global error handling is done by setting cl:*debugger-hook*. This applies to anything that tries to enter the
debugger, in particular any cl:error call that was not handled otherwise. It has the advantage that it really is global, but the
disadvantage that it cannot be tailored locally.

Since the cl:*debugger-hook* is applied only if the error was not handled, the two mechanisms can be used at the same
time and typically they are. The dynamically-scoped ones are used to give the accurate response, while the global one used to
catch any error that is not handled for some reason.

In either case, the handling means that some of your code is being executed. Either it is the function is bound to the error type
in cl:handler-bind or set to cl:*debugger-hook*, or the body in the clause in cl:handler-case. This code should
the "right thing" to deal with the situation. For unexpected errors, that normally would mean generating some log of the
problem, telling the end-user that something went wrong, maybe giving the user some options of actions, and aborting (note
that cl:handler-case already aborted when the code is executed). Note that the type of condition passed to handlers
may be affected by the delivery level (see 10.5 The condition system in delivered applications).

The log of the problem would normally be a bug form, which you can generate by:

(dbg:output-backtrace :bug-form ...)

If you can obtain the bug form, it will give you (the programmer) a chance to identify the reason for the error. There is also
dbg:log-bug-form which writes it to a file. You would not normally show the bug form to the end-user. Instead, in a GUI
application you will probably want to display a dialog informing the user that something went wrong and maybe giving them
some options. In a console application you probably want to just print a short message.

3 Writing Code Suitable for Delivery

16

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_handle.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_hand_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debugg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debugg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_handle.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debugg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_hand_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_hand_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_cnd.htm

There is a simple example of using cl:*debugger-hook* in:

(example-edit-file "delivery/debugger-hook/application-with-errors")

3.3 Efficiency considerations

There are numerous efficiency considerations when coding for delivery. They are detailed in 14 Efficiency considerations
when coding for delivery.

3 Writing Code Suitable for Delivery

17

http://www.lispworks.com/documentation/HyperSpec/Body/v_debugg.htm

4 Delivering your Application

This chapter describes the process of delivering a completed application.

The first part of the delivery process is to make a standalone version of your application, that runs without assistance from
LispWorks. After that, you may want to look into making your program smaller and more efficient.

Delivering a standalone application, and much of the work in making it smaller and faster, is very simple and is accomplished
by running a simple script. However, fine-tuning the delivery process to make the application as small and as fast as possible
is a more involved process that may require trial-and-error work.

A call to the function deliver starts the delivery process. A variety of arguments control the effects of delivery. A few of
the keywords are introduced below in 4.1 The delivery function: deliver and all are documented fully in 5 Keywords to the
Delivery Function.

4.1 The delivery function: deliver

The function deliver is the main interface to the delivery tools. Its basic syntax is shown below:

deliver Function

deliver function file level &rest keywords

The following three arguments are required:

function The name of the function that starts an executable application.

file A string or pathname naming the file in which the delivered image should be saved.

On macOS, you may wish to create an application bundle containing your delivered image. For
an example showing how to do this, see 13.3 Creating a macOS application bundle.

level An integer specifying the delivery level.

This is a measure of how much work Delivery does to reduce the size of the image. It must be an
integer in the range 0 to 5. Level 5 is the most severe, while the least work on image reduction is
done at level 0.

For the complete syntax and description, see the reference entry for deliver.

The most important keywords arguments are :interface and :multiprocessing. If your application uses the CAPI, you
must pass :interface :capi. If your application does not use the CAPI, but does use multiprocessing, then you must pass
:multiprocessing t. Your first attempt to deliver your application should use no more than these keywords.

In addition, a variety of other keywords can be passed to deliver. These are for fine-tuning by controlling aspects of
delivery explicitly. Add more keywords only when you find that you need them.

All the deliver keywords are documented in 5 Keywords to the Delivery Function. Additionally, they can been seen in
the LispWorks image by calling:

(require "delivery")
(deliver-keywords)

18

4.2 Using the delivery tools effectively

This section gives some useful tips that should speed the delivery process up and make mistakes less likely.

4.2.1 Saving the image before attempting delivery

If starting LispWorks and loading your application takes a significant amount of time, you can cut down on this startup time
by saving a copy of the image when the compiled application and library code has been loaded. Use save-image (see the
LispWorks® User Guide and Reference Manual) to do this. You then have an image that is "ready to go" for delivery as soon
as it is started up.

Note: Before and after saving the image, it is a good idea to check that the application still works exactly as it did running on
top of the LispWorks development environment.

4.2.2 Delivering the application in memory

You can save time when experimenting with delivery parameters by delivering the application in memory rather than saving it
to disk.

If the deliver keyword :in-memory-delivery is non-nil, the delivered image is not saved to disk, but instead starts up
automatically after the delivery operations are complete.

For example, a good early test is:

(deliver 'run
 "the-application"
 0
 :in-memory-delivery t)

Note: The image exits as soon as the application terminates.

4.3 Delivering a standalone application executable

There are usually two considerations when delivering an application.

1. Making the application run standalone. That is, turn the application into a single file that needs no assistance from
LispWorks in order to run.

2. Make the application smaller. That is, make the application smaller than the development environment plus application
code.

We recommend delivering a standalone executable application first, with no attempt to make the image smaller. Do this by
delivering at delivery level 0, which removes very little from the image. You can then look into making the image smaller if
you need to.

If you try to do both of these in the first attempt and the delivered application does not work, it is not clear whether the wrong
thing was removed from the image, or the application would not have delivered properly even if no image reduction work
was done.

Once you have developed and compiled your application, you are ready to deliver it as a standalone application. Delivering a
standalone version is done by calling deliver with level 0, which does not try to make the image smaller, but does remove
the LispWorks development tools as described in 1.2.2 Functionality removed by delivery. To do this modify your
deliver.lisp script from 2.2 Delivering the program as appropriate to your application:

(in-package "CL-USER")
(load-all-patches)

4 Delivering your Application

19

(load-my-application)
(deliver 'my-function "my-program" 0 :interface :capi)

The (load-my-application) is not needed if you have it already loaded as suggested in 4.2.1 Saving the image before
attempting delivery.

This is assuming your application uses CAPI. If it does not, you can eliminate :interface :capi. In this case, if your
application requires multiprocessing, you to need to pass :multiprocessing t:

(deliver `my-function "my-program" 0 :multiprocessing t)

Then run LispWorks with deliver.lisp as a build script. You can do this using the graphical Application Builder tool (see
2.2.1 Delivering the program using the LispWorks IDE) or in a command window, like this:

• On Microsoft Windows, open a DOS window and enter:

MS-DOS> lispworks-8-0-0-x86-win32.exe -build deliver.lisp

• On Linux and other Unix-like platforms, enter a command line like this in a shell:

% lispworks-8-0-0-x86-linux -build deliver.lisp

Note: the image name varies between the supported platforms.

• On macOS, use Terminal.app:

% ./lispworks-8-0-0-macos64-universal -build deliver.lisp

This creates an executable in my-program.exe on Microsoft Windows, or my-program on macOS, Linux and other Unix-
like platforms. When this executable starts, it calls my-function without arguments.

4.4 Delivering a dynamic library

Depending on how your application needs to interoperate with other software, you may want to build it as a DLL (also
referred to as a dynamic library) rather than an executable.

4.4.1 Simple delivery of a dynamic library

Supply the names of your library's exports in a list value for the deliver keyword :dll-exports. Each name in :dll-

exports should be a string naming a Lisp function defined by fli:define-foreign-callable.

The deliver function argument should be nil, because a dynamic library does not have a startup function.

Supply the file type of the delivered image in the deliver file argument if necessary.

As when delivering a LispWorks executable, start at deliver level 0. Increase the delivery level, if desired, after you have
debugged your library. Whenever possible, debug your code running in the LispWorks development image. If the problem
only occurs when your code runs inside a dynamic library, you may be able to debug it on your development machine in a
dynamic library created by save-image rather than deliver.

4.4.2 Using the dynamic library

A Microsoft Windows application should use LoadLibrary to load the DLL and GetProcAddress to find the address of
the exported names. On other platforms the application should use dlopen and dlsym.

4 Delivering your Application

20

On some platforms there are special requirements for a program that loads a LispWorks dynamic library, as follows:

Linux The program should be linked with libpthread.so.

FreeBSD The program should be linked with libpthread.so.

x86/x64 Solaris The program should be compiled and linked multi-threaded, for example using the -mt option to
Oracle's cc.

macOS No special requirements.

A dynamic library can be loaded into LispWorks using fli:register-module, and this is a convenient way of testing it.
See 4.4.5 Further example for an example.

For more information about the behavior of LispWorks dynamic libraries see the chapter "LispWorks as a dynamic library" in
the LispWorks® User Guide and Reference Manual.

4.4.3 Simple Windows example

The script below creates hello.dll.

-------------------- hello.lisp -------------------------
(in-package "CL-USER")
(load-all-patches)
;; The signature of this function is suitable for use with
;; rundll32.exe.
(fli:define-foreign-callable ("Hello"
 :calling-convention :stdcall)
 ((hwnd w:hwnd)
 (hinst w:hinstance)
 (string :pointer)
 (cmd-show :int))
 (capi:display-message "Hello world")
 ;; quit when library's job is done
 (dll-quit))

(deliver nil "hello" 0 :dll-exports '("Hello") :interface :capi)

You can build the DLL with this command line:

MS-DOS> lispworks-8-0-0-x86-win32.exe -build hello.lisp

and you can test it with this command line:

rundll32 hello.dll,Hello

4.4.3.1 Using the Application Builder

The Application Builder tool provides another way to build and test hello.dll:

1. In the LispWorks for Windows IDE do Works > Tools > Application Builder.

2. Set the Build script to be your file hello.lisp and do Works > Build > Build to build the DLL.

3. Do Works > Build > Run With Arguments. Enter rundll32 in the Execute pane, enter hello.dll,Hello in the
Arguments pane, and press OK to test the library.

4 Delivering your Application

21

4.4.4 Simple non-Windows example

See the example in the LispWorks library at:

examples/delivery/dynamic-library/

This example creates a LispWorks dynamic library and also a test program for loading it on non-Windows platforms.

To build and run the example, follow the instructions in README.txt.

4.4.5 Further example

This example builds a dynamic library which in principle could be loaded by any application and called to calculate square
numbers.

For illustrative purposes, we show how to load the dynamic library into the LispWorks development image. This illustrates
some platform-specific initialization. Then we use the library, ensure it exits cleanly, and finally delete the dynamic library
file.

Note that on non-Windows platforms, to deliver a dynamic library, the build machine must have a C compiler installed.

For convenience the code is presented without external files. To run it, copy each form in turn and enter it at the Listener
prompt.

1. Define a path for the dynamic library:

(defvar *dynamic-library-path*
 (merge-pathnames (make-pathname :name "CalculateSquareExample"
 :type scm::*object-file-suffix*)
 (get-temp-directory)))

2. Define a function to create the dynamic library:

(defun save-dynamic-library ()
 (let* ((file (open-temp-file :file-type "lisp"))
 (ns (namestring file)))
 (format file
 "
 (fli:define-foreign-callable (calculate-square :result-type :int)
 ((arg :int))
 (* arg arg))
 (deliver nil ~s 5 :dll-exports '(\"calculate_square\"))"
 (namestring *dynamic-library-path*))
 (close file)
 (sys:call-system-showing-output (list (lisp-image-name)
 "-build"
 ns))
 (delete-file file nil)))

3. Create the dynamic library:

(save-dynamic-library)

4. Define functions to use the dynamic library:

(fli:define-foreign-function (my-quit-lispworks "QuitLispWorks")
 ((force :int)
 (milli-timeout :int))
 :result-type :int

4 Delivering your Application

22

 ;; specifying :module ensures the foreign function finds
 ;; the function in our module
 :module 'my-dynamic-library)
(fli:define-foreign-function (my-init-lispworks "InitLispWorks")
 ((milli-timeout :int)
 (base-address (:pointer-integer :int))
 (reserve-size (:pointer-integer :int)) ; really size_t
)
 :result-type :int
 :module 'my-dynamic-library)
(fli:define-foreign-function calculate-square
 ((arg :int))
 :result-type :int
 :module 'my-dynamic-library)

5. Define a function to load the dynamic library, use it, and then unload it:

(defun run-the-dynamic-library ()
 (fli:register-module 'my-dynamic-library
 :connection-style :immediate
 :file-name *dynamic-library-path*)
 ;; Windows and macOS can detect and resolve memory clashes.
 ;; On other platforms, tell the library to load at different
 ;; address (that is, relocate) because otherwise it will use
 ;; the same address as the running LispWorks development image.
 ;; Relocation may be needed when loading a LispWorks dynamic
 ;; library in other applications.
 #-(or mswindows darwin)
 (my-init-lispworks 0
 #+lispworks-64bit #x5000000000
 #+lispworks-32bit #x50000000
 0)
 (dotimes (x 4)
 (format t "square of ~d = ~d~%" x
 (calculate-square x)))
 (my-quit-lispworks 0 1000)
 (fli:disconnect-module 'my-dynamic-library))

6. Use the dynamic library:

(run-the-dynamic-library)

Check the output to see that it computed square numbers.

7. (optional) Delete the dynamic library file:

(delete-file *dynamic-library-path* nil)

4.4.6 More about building dynamic libraries

On non-Windows platforms, you can supply files to be included in the library via the deliver keyword argument :dll-
added-files. This is useful if you need to write wrappers around calls into the library.

You can specify whether your LispWorks dynamic library initializes itself automatically on loading with the deliver
keyword argument :automatic-init. For more information see "Initialization of the dynamic library" in the LispWorks®
User Guide and Reference Manual.

4 Delivering your Application

23

4.5 How to deliver a smaller and faster application

Once you have delivered your application at level 0 and tested that it works, you may want to try to make it smaller.

An entire Common Lisp system, and other supporting code, remains in a standalone image delivered at delivery level 0. A
good deal of this can usually be removed.

What can be removed depends on the needs of the application. Few applications use all the facilities in the basic image. For
instance, if the application does not use any complex numbers, all the code in the image for working with complex numbers
can be deleted.

4.5.1 Making the image smaller

You can specify that the image be made smaller in two complementary ways:

1. By increasing the delivery level.

This is the simplest way to make the image smaller. As you increase the delivery level, delivery employs different and
increasingly severe strategies.

2. By specifying what to remove and what to keep, using keyword arguments to deliver.

This is a more complicated way to control image size, and should only be resorted to if there are problems or not enough
savings can be achieved by simply increasing the delivery level. These keywords are documented in 5 Keywords to the
Delivery Function.

These two approaches are based upon the same mechanism: delivery levels are in fact nothing more than different
combinations of keyword parameters. But when you specify a delivery level and at the same time pass keyword values, the
values you pass override any settings forced by the delivery level.

As an example of how explicit directions to Delivery can be necessary for effective delivery, consider the general addition
function, +. The internal representation of the function contains references to functions that carry out complex number
arithmetic, since + has to use them if it is given complex arguments. If you know your application does not ever pass complex
arguments to +, you should probably remove those functions from the delivered image.

Delivery cannot decide for itself that you do not pass + any complex arguments, and so does not delete the complex number
functions. You can tell Delivery to do so explicitly, by passing :keep-complex-numbers nil to deliver. (See :keep-
complex-numbers for a discussion of this keyword.)

4.6 How Delivery makes an image smaller

Delivery makes an image smaller in two ways.

1. By garbage collecting the image.

This is done automatically.

2. By "shaking" the image with the treeshaker.

This is done automatically from delivery level 2 upward.

4.6.1 Garbage collecting the image

The image is garbage collected during delivery. The garbage collector locates any unreferenced objects and frees the space
they occupy. Then Delivery compacts the remaining memory so that the saved image is smaller.

Garbage collection is a generally good method of trimming the image size at delivery time. However, it is generally too

4 Delivering your Application

24

conservative, and so it has no effect on a significant portion of the Common Lisp system and your application: Interned
symbols, class definitions, and methods discriminating on classes. Such objects must be dealt with by the treeshaker.

4.6.2 Shaking the image

From delivery level 2 upward, the image is "shaken" by default during delivery with the treeshaker. You can also invoke the
treeshaker directly with the deliver keyword :shake-shake-shake.

As discussed above, the garbage collector does not delete any interned symbols, class definitions, or methods discriminating
on classes from the image, even when they are unused. This is because it is designed to keep any object for which a reference
exists.

There are always references to interned symbols, class definitions, and methods discriminating on classes. Interned symbols,
naturally, are referred to by their package. Class definitions are always pointed to by their superclasses (the root class, t, has
no superclass but is protected from garbage collection), and a method discriminating on a class is always pointed to by the
class.

Thus we have a special class of objects that cannot be removed under the normal garbage collection scheme. Using the
treeshaker, however, we can do so. The treeshaker does the following to overcome the default links between these objects:

1. Record the default links.

2. Break the links.

3. Garbage collect the image.

4. Reinstate the links.

Step 2 renders the objects the same as all others in the image. They are now only protected from garbage collection if there
are links to them elsewhere in the image — that is, if they are actually used in the application.

The term "treeshaker" is derived from the notion that the routine picks up, by its root, a tree comprising the objects in the
image and the links between them, and then shakes it until everything that is not somehow connected to the root falls off, and
only the important objects remain. (An image would usually be better characterized as a directed graph than a tree, but the
metaphor has persisted in the Lisp community.)

4 Delivering your Application

25

5 Keywords to the Delivery Function

This chapter describes the keywords to the delivery function, deliver.

The keyword descriptions are given in alphabetical order. Before the alphabetical section, there is a topic-based list of
keyword names which should be of value if you are looking for a keyword to perform a particular task for you, but do not
know what it is called or do not know if it exists.

The list of keywords can be printed by calling deliver-keywords.

Note: Delivery is designed to work well with a small number of delivery keywords only. Start attempting delivery by passing
no keywords, or :interface :capi, or :multiprocessing t, as required. Only add other keywords when you find that
you need them. If you are passing more than 6 delivery keywords, please contact Lisp Support with details.

Caution: Many keywords interact with one another, causing apparent values to change. It is a good idea to check how
keywords interact and also what happens to their defaults at the different delivery levels. In the descriptions of the default
values of deliver keywords in 5.2 Alphabetical list of deliver keywords, the level appears as the symbol
delivery-level.

5.1 Topic-based list of deliver keywords

This section provides a topic-based index to the descriptions of deliver keywords. Use the topic headings to find a keyword
related to a particular kind of delivery task, then look it up on the page given to see how to use it.

5.1.1 Controlling the behavior of the delivered application

The following keywords control aspects of the delivered application's behavior. There are keywords for specifying startup
banners, application icons, image security, and so on.

• :action-on-failure-to-open-display

• :automatic-init

• :clean-for-dump-type

• :console

• :editor-style

• :icon-file

• :image-type

• :interface

• :interrupt-function

• :keep-gc-cursor

• :license-info

• :multiprocessing

26

• :old-cpu-compatible

• :product-code

• :product-name

• :quit-when-no-windows

• :redefine-compiler-p

• :registry-path

• :split

• :startup-bitmap-file

• :versioninfo

5.1.2 Testing and debugging during delivery

The following keywords can be used to help test and debug the application either during delivery or at run time. There are
keywords for encoding test routines into the delivered application, for ensuring that features such as the debugger and the
read-eval-print loop are kept in the image, for performing delivery without writing the image out to disk, and so on.

• :analyse

• :call-count

• :clos-info

• :diagnostics-file

• :error-handler

• :error-on-interpreted-functions

• :post-delivery-function

• :in-memory-delivery

• :interrogate-symbols

• :keep-conditions

• :keep-debug-mode

• :keep-modules

• :keep-stub-functions

• :keep-symbol-names

• :keep-top-level

• :keep-xref-info

• :kill-dspec-table

• :run-it

• :symbol-names-action

5 Keywords to the Delivery Function

27

• :warn-on-missing-templates

5.1.3 Controlling aspects of the executable or dynamic library

The following keywords control aspects of the executable or dynamic library.

• :dll-added-files

• :dll-exports

• :dll-extra-link-options

• :exe-file

• :manifest-file

5.1.4 Behavior of the delivery process

The following keywords control the behavior of the delivery process itself. They do not affect the delivered application's
behavior or the debugging information generated.

• :display-progress-bar

5.1.5 Retaining or removing functionality

The keywords listed in this section control the main part of the delivery process, involved in keeping things in and deleting
things from the image. Most of the deliver keywords are in this general category, so it has been split up into a number of
subcategories.

5.1.5.1 Directing the behavior of the treeshaker and garbage collector

The following keywords control the invocation of the treeshaker and garbage collector during delivery:

• :compact

• :shake-shake-shake

• :clean-down

• :redefine-compiler-p

5.1.5.2 Classes and structures

The following keywords are for examining, for keeping and for removing data information in the image about structured data:
structures, classes and so on.

• :classes-to-keep-effective-slots

• :classes-to-remove

• :clos-initarg-checking

• :generic-function-collapse

• :gf-collapse-output-file

• :gf-collapse-tty-output

5 Keywords to the Delivery Function

28

• :keep-clos

• :keep-clos-object-printing

• :keep-structure-info

• :make-instance-keyword-check

• :metaclasses-to-keep-effective-slots

• :shake-classes

• :shake-class-accessors

• :shake-class-direct-methods

• :shake-classes

• :structure-packages-to-keep

• :symbols-to-keep-structure-info

5.1.5.3 Symbols, SYMBOL-NAME, functions, and packages

The following keywords are for examining, for keeping and for removing symbols, functions, and entire packages from the
image.

• :delete-packages

• :exports

• :functions-to-remove

• :keep-documentation

• :keep-foreign-symbols

• :keep-function-name

• :keep-keyword-names

• :keep-load-function

• :keep-package-manipulation

• :keep-symbols

• :macro-packages-to-keep

• :never-shake-packages

• :no-symbol-function-usage

• :packages-to-keep

• :packages-to-keep-externals

• :packages-to-keep-symbol-names

• :packages-to-shake-externals

• :redefine-compiler-p

5 Keywords to the Delivery Function

29

• :remove-plist-indicators

• :remove-setf-function-name

• :shake-externals

• :smash-packages

• :smash-packages-symbols

• :symbol-names-action

5.1.5.4 Editor functionality

Keywords for keeping and for removing editor commands and LispWorks environment tools:

• :editor-commands-to-delete

• :editor-commands-to-keep

• :keep-editor

• :keep-walker

5.1.5.5 CLOS metaclass compression

• :classes-to-keep-effective-slots

• :metaclasses-to-keep-effective-slots

5.1.5.6 Input and output

The following keywords are for keeping and for removing code loading facilities, fasl dumping facilities, special printing
code, and so on, from the image.

• :format

• :keep-fasl-dump

• :keep-lisp-reader

• :keep-load-function

• :keep-pretty-printer

• :print-circle

5.1.5.7 Dynamic code

The following keywords are for keeping and for removing code facilitating dynamic run time activities, such as
macroexpansion, evaluation, use of the Common Lisp reader and the lexer, and so on, from the image.

• :keep-eval

• :keep-macros

• :macro-packages-to-keep

• :remove-setf-function-name

5 Keywords to the Delivery Function

30

5.1.5.8 Numbers

The following keywords are for keeping and for removing code from the image that can handle certain numerical types:

• :keep-complex-numbers

• :keep-trans-numbers

• :numeric

5.1.5.9 Conditions deletion

The following keywords are for controlling the preservation or deletion of conditions.

• :condition-deletion-action

• :keep-conditions

• :packages-to-remove-conditions

5.2 Alphabetical list of deliver keywords

This section describes each of the deliver keywords. They are presented in alphabetical order.

:action-on-failure-to-open-display Keyword

Default value: nil

GTK and Motif applications only: if the application uses the X11 code or CAPI, it may fail to run if it cannot open the X
display.

In this case, if the value is a function it calls this function with one argument, the display name. The default value of nil
means that a message is printed and Lisp quits.

:analyse Keyword

Default value: nil

When non-nil, the delivery code arranges to generate an analysis of what there is in the image before running the
application. If the value of :analyse is a string or a pathname, it writes the analysis to this file, otherwise it writes to
standard-output.

:automatic-init Keyword

Default value: t on Microsoft Windows, nil on other platforms

:automatic-init specifies whether a LispWorks dynamic library should initialize automatically on loading.
Automatic initialization is useful when the dynamic library does not communicate by function calls but prevents you
from relocating the library if necessary or doing other initialization.

To deliver a dynamic library on non-Windows platforms, the build machine must have a C compiler installed. This is
typically gcc (which is available on the Macintosh by installing Xcode).

deliver uses :automatic-init just like save-image. See save-image in the LispWorks® User Guide and
Reference Manual for more details.

For more information about the behavior of LispWorks DLLs (dynamic libraries) and in particular a discussion of
automatic and explicit initialization, see the chapter "LispWorks as a dynamic library" in the LispWorks® User Guide

5 Keywords to the Delivery Function

31

http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm

and Reference Manual.

:call-count Keyword

Default value: nil

This keyword can be used to produce reports about what is left in the image when delivery is over. It is useful when
determining which remaining parts of the system are not needed. When nil, no reports are generated.

Possible values of :call-count are:

:size After running the application, the image is scanned, and the size of each object, in bytes, is
printed out. This produces a lot of output, comparable in size to the delivered image itself, so
make sure you have plenty of disk space first.

:all After running the application, the image is scanned, and the name of each symbol found is
printed out. A + sign is printed next to the symbol if it is non-nil. If the symbol is fboundp, the
call count (that is, the number of times it was called while the application ran) is printed too.

Delivery sets the call counter for all symbols to 0 before the saving the delivered image.

Interpreted functions do not maintain a call counter.

t This has the same effect as :all, but only symbols with function definitions that were not called
are printed.

The output is written to a file or the standard output. You can specify its name with :diagnostics-file.

:classes-to-keep-effective-slots Keyword

Default value: nil

Classes on this list retain their effective-slot-definitions.

:classes-to-remove Keyword

Default value: nil

This keyword accepts a list naming the classes to be deleted from image during delivery.

Note: Their subclasses are also deleted, because they have lost their connection to the root class.

:clean-down Keyword

Default value: t

If true, call clean-down before saving the image.

:clean-for-dump-type Keyword

Default value: :user

Related to the :type argument of save-image. This is for expert use only - please consult Lisp Support before using.

:clos-info Keyword

Default value: nil

With this keyword you can make the delivered image print a list of the remaining classes, methods, or both, after
execution terminates.

5 Keywords to the Delivery Function

32

http://www.lispworks.com/documentation/HyperSpec/Body/f_fbound.htm

Possible values of :clos-info are:

:classes Print remaining classes only.

:methods Print remaining methods only.

:classes-and-methods

Print remaining classes and methods.

The output is written to the file given by :diagnostics-file.

:clos-initarg-checking Keyword

Default value: (if (delivery-value :keep-debug-mode) :default nil)

The value of the :clos-initarg-checking keyword controls whether CLOS checks initialization arguments.
Initializations checked can include:

• Calls to make-instance.

• Calls to reinitialize-instance.

• Calls to change-class.

• call-next-method to update-instance-for-redefined-class with extra keywords.

If the value is t and :keep-clos is t, :full-dynamic-definition or :method-dynamic-definition then all
of these checks are switched on.

If the value is t and :keep-clos is nil, :no-dynamic-definition or :meta-object-slots then only the
make-instance checking is switched on, and the other checks are switched off.

If the value is :default, the checks are not affected by the delivery process. See the function
clos:set-clos-initarg-checking for instructions on controlling the checks in this situation.

If the value is nil, then all of these checks are switched off.

Note: :clos-initarg-checking always affects the behavior of the delivered application, regardless of :keep-clos.

Note: :keep-debug-mode retains the current setting of CLOS initialization checks (as set by :clos-initarg-

checking or clos:set-clos-initarg-checking), rather than forcing the checks to be switched on.

Affected by: :keep-debug-mode, :keep-clos.

:compact Keyword

Default value:

(and (not (delivery-value :keep-debug-mode))
 (not (delivery-value :interrogate-symbols))
 (eq (delivery-value :dll-exports) :no))

x86 platforms only: If this is non-nil, the heap is compacted just before the delivered image is saved, with all functions
being made static. This usually gives the greatest size reduction in delivery. You may want to leave this until the final
delivery if you are using a slow machine on which this operation takes some time.

:condition-deletion-action Keyword

Default value: (when (> *delivery-level* 0) :delete)

The value is one of:

5 Keywords to the Delivery Function

33

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_reinit.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chg_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_call_n.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_upda_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

nil Do not delete any condition class. This is the default at delivery level 0.

:delete Delete unwanted conditions. If an error for a deleted condition is signaled, it is signalled as a
simple error condition, with the arguments in the format-arguments slot. This is the default at
delivery level > 0.

:redirect Redirect unwanted conditions to the first parent in their hierarchy which is not deleted.

See 10.5.1 Deleting of condition classes.

:console Keyword

Default value: :default

Windows and Macintosh only. This is the same as the :console keyword argument to hcl:save-image. See the
LispWorks® User Guide and Reference Manual for details.

:delete-packages Keyword

Default value: nil

This keyword takes a list of packages, in addition to those in the variable *delete-packages*, that should be deleted
during delivery. The Common Lisp function delete-package is used to do this.

When a package is deleted, all of its symbols are uninterned, and the package's name and nicknames cease to be
recognized as package names.

After the package is deleted, its symbols continue to exist, but because they are no longer interned in a package they
become eligible for removal at the next garbage collection. They survive only if there are references to them elsewhere in
the application.

Note: Invoking the treeshaker has much the same effect on packages as deleting them. However, by deleting a package
you regain some extra space taken up by hash tables.

Affected by: :packages-to-keep.

:diagnostics-file Keyword

Default value: nil

The string passed with this keyword specifies a file to which output generated by :call-count and :clos-info is
written (in that order). The value nil means write to *standard-output*.

Compatibility Note: In LispWorks 4.4 and previous on Windows and Linux platforms, the default value of
:diagnostics-file was "dvout.txt". The default value is now nil on all platforms.

:display-progress-bar Keyword

Default value: t

Windows only: by default a progress bar is displayed during the delivery process. If the value of the :display-
progress-bar keyword is false, it does not display a progress bar.

Compatibility Note: In LispWorks for Windows 4.4 and previous, there was no way to prevent the display of the
progress bar.

:dll-added-files Keyword

Default value: nil

5 Keywords to the Delivery Function

34

http://www.lispworks.com/documentation/HyperSpec/Body/f_del_pk.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm

non-Windows platforms only: A list value means that the saved image is a dynamic library file rather than an executable.
The build machine must have a C compiler installed.

If non-nil, :dll-added-files should be a list of filenames and then a dynamic library containing each named file is
saved. Each file must be of a format that the default C compiler can incorporate into a shared library and must not
contain exports that clash with predefined exports in the LispWorks shared library. The added files are useful to write
wrappers around calls into the LispWorks dynamic library.

deliver uses :dll-added-files just like save-image. See save-image in the LispWorks® User Guide and
Reference Manual for more details.

For more information about the behavior of LispWorks DLLs (dynamic libraries) see the chapter "LispWorks as a
dynamic library" in the LispWorks® User Guide and Reference Manual.

:dll-exports Keyword

Default value: :default

:dll-exports is implemented only on Windows, Linux, x86/x64 Solaris, Macintosh and FreeBSD. It controls
whether the image saved is an executable or a dynamic library (DLL), just as for save-image.

If :dll-exports is :default, the delivered image is an executable. The value :com is supported on Microsoft
Windows only (see below). Otherwise :dll-exports should be list (potentially nil). In this case a dynamic library is
saved, and each string in :dll-exports names a function which becomes an export of the dynamic library and should
be defined as a Lisp function using fli:define-foreign-callable. Each exported name can be found by
GetProcAddress (on Windows) or dlsym (on other platforms). The exported symbol is actually a stub which ensures
that the LispWorks dynamic library has finished initializing, and then enters the Lisp code.

On Microsoft Windows :dll-exports can also contain the keyword :com, or :dll-exports can simply be the
keyword :com, both of which mean that the DLL is intended to be used as a COM server. See the COM/Automation
User Guide and Reference Manual for details.

To deliver a dynamic library on non-Windows platforms, the build machine must have a C compiler installed. This is
typically gcc (which is available on the Macintosh by installing Xcode).

On macOS the default behavior is to generate an object of type "Mach-O dynamically linked shared library" with file
type dylib. See :image-type below for information about creating another type of library on macOS.

On Microsoft Windows you can use LoadLibrary from the main application to load the DLL and GetProcAddress to
find the address of the external names.

There is an example DLL delivery script in 4.4 Delivering a dynamic library.

For more information about the behavior of LispWorks DLLs (dynamic libraries) see the chapter "LispWorks as a
dynamic library" in the LispWorks® User Guide and Reference Manual.

:dll-extra-link-options Keyword

Default value: nil

Unix/Linux/FreeBSD and Macintosh only: A list of strings passed as arguments to the linker when creating a dynamic
library file.

:dll-extra-link-options is used just like save-image. See save-image in the LispWorks® User Guide and
Reference Manual for more details.

For more information about the behavior of LispWorks DLLs (dynamic libraries) see the chapter "LispWorks as a
dynamic library" in the LispWorks® User Guide and Reference Manual.

5 Keywords to the Delivery Function

35

:editor-commands-to-delete Keyword

Default value: :all-groups

When the Editor is loaded, you can delete some of its commands by passing a list of them with this keyword. Note that,
by default, most Editor commands are retained. See 10.3 Editors for delivered applications for more details.

Affected by: :keep-debug-mode.

:editor-commands-to-keep Keyword

Default value: nil

When the Editor is loaded, you can keep some of its commands by passing a list of them with this keyword. Note that,
by default, most Editor commands are retained. See 10.3 Editors for delivered applications for more details.

:editor-style Keyword

Default value: :default

This controls the editor emulation style used in capi:editor-pane (and subclasses) in the delivered image.

The value should be one of:

:emacs Use Emacs emulation.

:pc Use Microsoft Windows emulation on Windows, and KDE/Gnome style keys on GTK and Motif.

:mac Use macOS editor emulation.

:default Use the default emulation style for the current platform. That is, use :pc on Microsoft Windows,
:mac on macOS/Cocoa and :emacs on GTK and Motif.

nil Use the default setting on the current machine.

Note that not all emulation styles are supported on all platforms. See the the "Emulation" chapter of the Editor User
Guide for details about the different emulation styles.

:error-handler Keyword

Default value: nil

The value :btrace changes error handling, so that a simple backtrace is generated whenever error is called.

:error-on-interpreted-functions Keyword

Default value: nil

If this is non-nil, an error is signalled during delivery if the interpreter is removed (with :keep-eval nil) while
interpreted functions remain in the image.

:exe-file Keyword

On Microsoft Windows, used as the basis for the new executable. This is for expert use only - please consult Lisp
Support before using.

:exports Keyword

Default value: nil

This keyword takes a list of symbols that should be exported from their home packages before any delivery work takes

5 Keywords to the Delivery Function

36

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

place.

:format Keyword

Default value: t

If this is nil, part of the functionality of format is removed. The format directives deleted are:

~ | R P O G E C B ? < / W $

The value can also be a list of directives to keep. The elements of the list should be Lisp characters corresponding to
(some of) the format directives above.

:functions-to-remove Keyword

Default value: nil

This keyword takes a list of symbols to be fmakunbound during delivery.

:generic-function-collapse Keyword

Default value:

(and (>= *delivery-level* 3)
 (not (member (delivery-value :keep-clos)
 '(t
 :full-dynamic-definition
 :method-dynamic-definition))))

If this is non-nil, generic functions with single methods and simple arguments are collapsed — that is, replaced by
ordinary functions.

Note: Methods cannot be added to collapsed generic functions, since after their collapse to ordinary functions the
generic functions definitions are deleted.

:gf-collapse-output-file Keyword

Default value: nil

If the value is a string, it is the name of the file in which a formatted report detailing the actions performed during the
generic function collapse is written. If the value is nil, no report is written.

:gf-collapse-tty-output Keyword

Default value: nil

If true, send the report of generic function collapsing to the console.

:icon-file Keyword

Default value:(if (eq (delivery-value :console) t) nil :default)

Windows only: The name of a file containing the icon to use, in Windows .ico format, or nil (meaning no icon -- not
recommended except for console applications) or :default (which uses the icon from the LispWorks image).

Note: to achieve the same effect on macOS, do not pass :icon-file, but put your delivered image in a suitable
application bundle which contains the application icon. See 15.1 Delivering a Cocoa CAPI application examples.

5 Keywords to the Delivery Function

37

http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_fmakun.htm

:image-type Keyword

Default value: (if (eq (delivery-value :dll-exports) :no) :exe :dll)

:image-type defines whether the image is to be an executable or a dynamic library, , just as for save-image.

The value can be :exe, :dll or :bundle. It defaults to :exe or :dll according to the value of :dll-exports and
therefore you do not normally need to supply :image-type.

:image-type :bundle is used only when saving a dynamic library. On macOS it generates an object of type "Mach-O
bundle" and is used for creating shared libraries that will be used by applications that cannot load dylibs (FileMaker for
example). It also does not force the filename extension to be dylib. On other Unix-like systems :image-type merely
has the effect of not forcing the filename extension of the delivered image, and the format of the delivered image is the
same as the default. On Microsoft Windows :image-type :bundle is ignored.

On non-Windows platforms, :image-type :bundle requires that the build machine has a C compiler installed. This is
typically gcc (available by installing Xcode on the Macintosh).

Note: :image-type :bundle is completely unrelated to the macOS notion of an application bundle.

:in-memory-delivery Keyword

Default value: nil

If this is non-nil, the delivered application is not saved, but run in memory instead.

This can be useful while still deciding on the best delivery parameters for your application. Writing the delivered image
to disk takes a lot of time, and is not really necessary until you have finished work on delivering it.

Note: When using this keyword, the deliver function still demands that you pass it a filename. However, the filename
you give is ignored. You can use nil.

:interface Keyword

Default value: nil

Set this to :capi for applications that use the CAPI and/or Graphics Ports.

Because the CAPI uses multiprocessing, :interface :capi also sets the deliver keyword :multiprocessing to
t.

:interrogate-symbols Keyword

Default value: nil

When non-nil this does two things:

First it loads the reverse-pointers-code module. This can be used to check what things to keep in the image. If you
need documentation for reverse-pointers-code, please contact Lisp Support.

Secondly it sets the image up such that calling the application with command line argument -interrogate-symbols,
before starting the application, allows you to interrogate-symbols. See 11.15 Interrogate-Symbols.

:interrupt-function Keyword

Default value: :quit

The :interrupt-function keyword specifies what happens when the delivered application is interrupted. The value
should be one of:

5 Keywords to the Delivery Function

38

:quit (the default) or t.

On interrupt, the application quits. Note that t was the default until LispWorks 8.0, but it should
be regarded as deprecated.

:ignore The application ignores interrupts.

:break On interrupt, the application calls break. This is the same behaviour as in non-delivered
LispWorks.

A function that takes no arguments.

On interrupt, the function is called. The application does nothing else except call the function, so
if the function returns without doing anything the interrupt is effectively ignored. Typically, the
function will ask the user whether they want to quit or not.

:keep-clos Keyword

Default value:

(if (= *delivery-level* 0)
 :full-dynamic-definition
 (if (= *delivery-level* 1)
 :method-dynamic-definition
 :no-dynamic-definition))

If this is :no-dynamic-definition, then the functions for dynamic class and method definition are deleted --
defmethod , defclass and so on and the direct slots and direct methods slots all classes are set to nil.

If the value of the :keep-clos keyword is nil, then it is treated as :no-dynamic-definition.

If it is :meta-object-slots, then the direct slots and direct methods of all classes are retained, and the dynamic
definition functionality is deleted.

If it is :method-dynamic-definition, nothing is smashed or deleted, though the direct slots and direct methods of
all classes are emptied. With this setting, methods can be defined dynamically but not classes.

If it is :full-dynamic-definition or t, then all dynamic class and method definition is allowed.

Compatibility Note: In LispWorks 4.3 and previous versions the values :no-empty and :no-empty-no-dd were
documented for the :keep-clos keyword. These values are still accepted in LispWorks 8.0, but you should not rely on
this. Change to one of the new values described above.

Note: CLOS initarg checking in the delivered application by make-instance and other initializations may be
controlled by :clos-initarg-checking.

:keep-clos-object-printing Keyword

Default value:

(or (delivery-value :keep-debug-mode)
 (<= *delivery-level* 2))

If nil, the generic function print-object is redefined to be the ordinary function x-print-object:

(defun x-print-object (object stream)
 (t-print-object object stream))

5 Keywords to the Delivery Function

39

http://www.lispworks.com/documentation/HyperSpec/Body/f_break.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pr_obj.htm

(defun t-print-object (object stream)
 (print-unreadable-object (object stream :identity t)
 (if (and (fboundp 'find-class)
 (find-class 'undefined-function nil)
 (ignore-errors
 (typep object 'undefined-function)))
 (progn
 (write-string "Undefined function " stream)
 (prin1 (cell-error-name object) stream))
 (progn
 (princ (or (ignore-errors (type-of object))
 "<Unknown type>")
 stream)
 (ignore-errors
 (when-let (namer (find-symbol "NAME" "CLOS"))
 (when-let (name (and (slot-exists-p object namer)
 (slot-boundp object namer)
 (slot-value object namer)))
 (format stream " ~a" name))))))))

You may redefine x-print-object.

Affected by: :keep-debug-mode.

:keep-complex-numbers Keyword

Default value: (delivery-value :numeric)

If this is non-nil, all numeric functions that can handle complex numbers are retained.

Compatibility Note: This keyword has an effect on all platforms in LispWorks 5.0 and later. It has no effect in
LispWorks 4.4 and previous on Windows and Linux platforms.

Affected by: :numeric.

:keep-conditions Keyword

Default value: nil

The value should be one of:

:none Eliminate all conditions.

:minimal Keep only the conditions that are in the class-precedence-list of simple-error.
(simple-error, simple-condition error, and serious-condition condition). This is
useful for applications that use only ignore-errors. It is equivalent to:

:keep-conditions '(simple-error) :packages-to-remove-conditions '("COMMON-
LISP")

:all Keep all conditions.

A list A list of conditions to keep. For each condition, all the precedence list is kept.

See 10.5.1 Deleting of condition classes.

:keep-debug-mode Keyword

Default value: (> 5 *delivery-level*)

If this is non-nil, by default delivery retains the full TTY debugger, so it can be used when debugging delivered
applications.

5 Keywords to the Delivery Function

40

http://www.lispworks.com/documentation/HyperSpec/Body/e_smp_er.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_smp_er.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_smp_cn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_seriou.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_ignore.htm

On Unix, if the value is :all, all debug information is kept.

On all platforms, if :keep-debug-mode is set to :keep-packages, all packages are retained as well as the debugger,
so that they can be used for debugging purposes.

The value of :keep-debug-mode affects the default value of the following keywords too:

• :compact

• :keep-clos-object-printing

• :keep-eval

• :keep-function-name

• :keep-lisp-reader

• :keep-load-function

• :keep-structure-info

• :keep-top-level

• :make-instance-keyword-check

• :no-symbol-function-usage

• :packages-to-keep-symbol-names

:keep-documentation Keyword

Default value: (= *delivery-level* 0)

If non-nil, documentation strings in the image are preserved.

:keep-editor Keyword

Default value: nil

Keep the editor intact. By default some parts of the editor (mainly those that deal with Lisp definitions) are explicitly
eliminated. When this keyword is true, nothing is removed.

:keep-eval Keyword

Default value:

(or (delivery-value :keep-debug-mode)
 (< *delivery-level* 4))

If this is non-nil, the evaluator is preserved.

:keep-fasl-dump Keyword

Default value: nil

If this is non-nil, the internal functions needed to dump fasl files are preserved.

:keep-foreign-symbols Keyword

Default value: nil

This keyword is ignored.

5 Keywords to the Delivery Function

41

:keep-function-name Keyword

Default value:

(if (delivery-value :shake-shake-shake)
 (if (delivery-value :keep-debug-mode) t nil)
 :all)

This keyword controls the retention of names for functions. The following values are accepted:

nil Do not keep names.

:minimal Keep names as strings, but keep no other debug information.

t Keep names as strings and retain argument information.

:all Do not modify function names.

On x86 platforms, if :call-count is either t or :all, then :keep-function-name is set to t automatically.

When :keep-debug-mode is non-nil, :keep-function-name is set to t automatically.

Affected by: :keep-debug-mode, :shake-shake-shake.

Compatibility Note: In LispWorks 4.4 and previous on Windows and Linux platforms, if the keyword :compact is non
-nil, function names are eliminated. This is not true in LispWorks 5.0 and later versions.

:keep-gc-cursor Keyword

Default value: nil

Windows only: If this is non-nil, the mouse pointer turns into a distinctive `GC' cursor during the garbage collection of
generations 1 and above. (Even if the cursor is kept, generation 0 collections are never indicated, because they occur
frequently and do not cause a noticeable delay in operation.)

:keep-keyword-names Keyword

Default value: t

If non-nil, keep symbol names of keywords.

:keep-lisp-reader Keyword

Default value:

(or (delivery-value :keep-debug-mode)
 (< *delivery-level* 5))

If the value is nil, the functions and values used to read Lisp expressions are deleted. This means that the listener no
longer works. On non-Windows platforms it also prevents lw:user-preference and
capi:top-level-interface-geometry-key from working.

The :keep-lisp-reader keyword is set to t automatically if :keep-debug-mode is t.

:keep-load-function Keyword

Default value:

(when (or (delivery-value :keep-debug-mode)
 (delivery-value :keep-modules)

5 Keywords to the Delivery Function

42

 (<= *delivery-level* 2))
 :full)

If this is nil, the load function is deleted. Run time loading is no longer possible when this is done, whether or not
require is being used.

It can take two non-nil values:

t Keeps the loading code required to load data files.

:full Keeps the code as for t, plus those internal functions that are required for loading Lisp code.
Note that if the Lisp code uses functions that are shaken, these functions must be explicitly kept.

Note: In most cases you need to keep the COMMON-LISP package if files might be loaded into your application, and
probably some other packages too. (See :packages-to-keep.)

:keep-macros Keyword

Default value: (< *delivery-level* 2)

If this is nil, the functions macroexpand, macroexpand-1 and macro-function are deleted, and all macro
functions and special forms are undefined.

Note: This has no effect on compiled code, unless it explicitly calls macroexpand.

:keep-modules Keyword

Default value: nil

If non-nil, the mechanism for loading modules supplied by LispWorks is preserved. We recommend using require to
load all modules before delivery (see 10.7 Modules).

Compatibility note: In LispWorks 7.0 and previous versions, this defaulted to (< *delivery-level* 1).

:keep-package-manipulation Keyword

Default value: (< *delivery-level* 2)

If this is non-nil, the following package manipulation functions are preserved: shadowing-import, shadow,
unexport, unuse-package, delete-package, rename-package, import, export, make-package,
use-package, unintern.

:keep-pretty-printer Keyword

Default value: nil

If nil the pprint functionality is eliminated.

:keep-structure-info Keyword

Default value:

(or (delivery-value :keep-debug-mode)
 (case *delivery-level*
 ((0 1) t)
 (2 :print)
 (otherwise nil)))

This keyword controls the extent to which structure internals are shaken out of the image.

If nil, all references from structure-objects to their conc-names, (BOA) constructors, copiers, slot names, printers and

5 Keywords to the Delivery Function

43

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mexp_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mexp_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_macro_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mexp_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_shdw_i.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_shadow.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_unexpo.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_unuse_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_del_pk.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rn_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_import.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_export.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_use_pk.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_uninte.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_pr.htm

documentation are removed. See also :structure-packages-to-keep.

To retain slot name information (necessary if either the #S() reader syntax or CLOS slot-value are to be used for
structure-objects) set :keep-structure-info to :slots.

To retain slot names and the default structure printer, set :keep-structure-info to :print.

Note: Any functions (constructors, copiers or printers) referenced in the application are retained, just as any other code
would be. It is therefore not normally necessary to set this keyword.

Affected-by: :keep-debug-mode.

:keep-stub-functions Keyword

Default value: t

When this is non-nil, all functions deleted by the treeshaker are replaced by small stub functions. When a deleted
function is called by the application, its stub prints a message telling you that the function has been deleted and how it
can be reinstated. These stubs can take up a lot of space if you smash large packages, but are invaluable while refining
delivery parameters.

For instance, if your application calls complexp after delivery with :keep-complex-numbers set to nil, a message
like the following is printed:

Attempt to invoke function COMPLEXP on arguments (10).
 COMPLEXP was removed by Delivery keyword :KEEP-COMPLEX-NUMBERS
 NIL.
 Try :KEEP-COMPLEX-NUMBERS T.

:keep-symbol-names Keyword

Default value: nil

A list of symbols that must retain their symbol names.

:keep-symbols Keyword

Default value: nil

This keyword takes a list of symbols that are retained in the delivered image. A pointer to this list is kept throughout the
delivery process, protecting them from garbage collection.

:keep-top-level Keyword

Default value:

(or (< *delivery-level* 5) (delivery-value :keep-debug-mode))

If this is nil, functions for handling the top level read-eval-print loop are deleted. Note that this means that if the line
based debugger is invoked, there is no way to communicate with it.

Note: the top level history is cleared, regardless of the value of the :keep-top-level argument.

Affected by: :keep-debug-mode.

:keep-trans-numbers Keyword

Default value: (delivery-value :numeric)

If this is nil, eliminate transcendental functions (for example sin).

5 Keywords to the Delivery Function

44

http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_comp_3.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sin_c.htm

Compatibility Note: This keyword has an effect on all platforms in LispWorks 5.0 and later. It has no effect in
LispWorks 4.4 and previous on Windows and Linux platforms.

Affected by: :numeric.

:keep-walker Keyword

Default value: nil

If this is nil, the walker is deleted.

:keep-xref-info Keyword

Default value: nil

If non-nil, keep cross-reference information that is used by functions like hcl:who-calls and hcl:calls-who.

Compatibility note: In LispWorks 6.1 and earlier versions cross-reference information is kept if any of the functions
that use it is kept. Now the cross-reference information is cleared even if any of these functions is kept, unless this
keyword is non-nil.

:kill-dspec-table Keyword

Default value: (> *delivery-level* 0)

The dspec table is an internal table used for tracking redefinitions by defadvice, trace and so on. If this keyword is
non-nil it does an implicit call to untrace, and previous uses of trace and defadvice are discarded.

:license-info Keyword

Default value: nil

This keyword is obsolete. Was previously used to pass license information for products on certain platforms.

:macro-packages-to-keep Keyword

Default value: nil

A list of package names. Symbols in these packages that have a macro definition are not fmakunbound when the
delivery process deletes macros from the image (when :keep-macros is nil). Note that if these symbols are not
referenced, they may be shaken anyway. When :keep-macros is nil, this keyword has no effect.

:make-instance-keyword-check Keyword

Default value: (if (delivery-value :keep-debug-mode) :default nil)

This keyword is deprecated in favor of :clos-initarg-checking.

The value of the :make-instance-keyword-check keyword controls whether make-instance checks its initargs in
the delivered application, and in LispWorks 6.1 this was extended to include checking in the other CLOS initializations.

Note: :make-instance-keyword-check now does the same comprehensive checking as :clos-initarg-
checking but is deprecated as its name is no longer accurate. Please use :clos-initarg-checking instead.

Affected by: :keep-debug-mode.

:manifest-file Keyword

Default value: nil

Windows only. Overrides the default application manifest, which can affect whether an executable application is themed.

5 Keywords to the Delivery Function

45

http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_fmakun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

If the value is a string it must name a file that is a legal application manifest containing the "dependency" element for
Microsoft.VC80.CRT. If the value is the keyword :no-common-controls-6 a manifest without the element for
common controls is used. If the value is nil, then the LispWorks manifest is used.

See 7.2 Application Manifests for more information about Windows application manifests in LispWorks applications.

:metaclasses-to-keep-effective-slots Keyword

Default value:

(when (member (delivery-value :keep-clos)
 '(t :full-dynamic-definition))
 :all)

If the value is a list, the elements are metaclasses whose classes retain their effective-slot-definitions. Value :all means
all metaclasses.

:multiprocessing Keyword

Default value: nil

If set to t, starts multiprocessing with the delivery function (that is, the first argument to deliver) running in a process
created specially for it.

If set to :manual, allows multiprocessing to be started by the delivery function, which should call
mp:initialize-multiprocessing.

If set to nil, multiprocessing cannot be used in the delivered application.

The value of this keyword argument is automatically t when :interface is :capi, so you only need to supply it if
CAPI is not being used.

:never-shake-packages Keyword

Default value: delivery::*never-shake-packages*

A list of package names that will not be shaken. These packages and all their symbols are preserved.

:no-symbol-function-usage Keyword

Default value: (not (delivery-value :keep-debug-mode))

x86 platforms only: eliminates symbols that are used only for function calls.

See 11.14 Debugging with :no-symbol-function-usage for information about debugging an image where these symbols
have been eliminated.

:numeric Keyword

Default value: t

Keep all numeric operations, unless overridden by :keep-complex-numbers.

Compatibility Note: This keyword has an effect on all platforms in LispWorks 5.0 and later. It has no effect in
LispWorks 4.4 and previous on Windows and Linux platforms.

:old-cpu-compatible Keyword

Default value: t

This keyword has an effect on x86 32-bit platforms only. It allows the delivered image to run on old Pentium-compatible

5 Keywords to the Delivery Function

46

CPUs that do not support SSE2 instructions.

LispWorks 6.0 and later on x86 platforms uses instructions that are part of SSE2. All new CPUs have SSE2, but it may
be required to run LispWorks runtimes (that is, delivered images) on old machines without SSE2. On these machines the
SSE2 instructions are not implemented, and cause exceptions.

When :old-cpu-compatible is non-nil, deliver creates a runtime with a mechanism that checks for SSE2 on
startup. If the run time machine does not have SSE2, this mechanism then eliminates the SSE2 instructions. This
mechanism allows the runtime to run on any Pentium-compatible CPU.

The cost associated with this mechanism is negligible, so normally there is no reason to change the default value of :old
-cpu-compatible.

:packages-to-keep Keyword

Default value: nil

This keyword takes a list of packages to be retained. All packages in the list are kept in the delivered image, regardless
of the values of the :smash-packages and :delete-packages keywords.

If :packages-to-keep is :all, then the two variables above are set to nil. See also 10.11 Coping with intern and
find-symbol at run time.

Note: Other keywords push packages onto the :packages-to-keep list.

Note: When you keep a package by :packages-to-keep, this does not cause that package's symbols to be kept. To
retain symbols, see 10.10.2 Ensuring that symbols are kept.

:packages-to-keep-externals Keyword

Default value: nil

A list of packages that should retain their external symbols, even when :shake-externals is t (the default). When
:shake-externals is nil, this keyword has no effect.

The externals of the setf package are always retained, regardless of the value of :packages-to-keep-externals.

:packages-to-keep-symbol-names Keyword

Default value:

(if (or
 (delivery-value :keep-debug-mode)
 (< *delivery-level* 5))
 :all
 nil)

A list of packages that should keep their symbol names. The names of symbols in these packages are not modified,
irrespective of the value of :symbol-names-action.

The value can also be :all, meaning all packages.

:packages-to-remove-conditions Keyword

Default value: nil

A list of packages whose conditions are removed (that is where the symbol-package of the name of the condition is
one of the packages). The system automatically adds the internal packages to this list. Conditions that are in these
packages but are also in the :keep-conditions list or its precedence list are kept. The defaults cause all the conditions
that are defined by the system and are not standard to be deleted. To keep all the conditions, you should pass :keep-

5 Keywords to the Delivery Function

47

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_3.htm

conditions :all (or :condition-deletion-action nil). To eliminate all conditions, you should pass :keep-
conditions :none.

See 10.5.1 Deleting of condition classes.

:packages-to-shake-externals Keyword

Default value: nil

A list of package names for which their external symbols should be shaken when the value of :shake-externals is
nil. When the value of :shake-externals is t (the default), this keyword has no effect.

The externals of the keyword package are always shaken, regardless of the value of :packages-to-shake-
externals.

:post-delivery-function Keyword

Default value: nil

When non-nil, the value :post-delivery-function should be a function designator for a function of one argument:

post-delivery-function successp

The system calls :post-delivery-function after delivery. successp is true if delivery was successful and false
otherwise.

Note: during the delivery process, the Lisp system can be in an unstable state, so it is not always possible to recover
when delivery is not successful.

:print-circle Keyword

Default value:

(or (= *delivery-level* 0)
 (delivery-value :interrogate-symbols))

When this is nil, the mechanism for printing circular structures is eliminated.

:product-code Keyword

Default value: nil

This keyword is ignored.

:product-name Keyword

Default value: nil

On Microsoft Windows only :product-name provides the name that is used in CAPI dialogs which have no specific
title or owner.

On other platforms, :product-name is ignored.

:quit-when-no-windows Keyword

Default value: t

If t, then after the application has opened at least one CAPI window, whenever the application is waiting for input, a
routine is run to check whether any of its CAPI windows are still open. If there are no open windows, the application
exits.

5 Keywords to the Delivery Function

48

On Microsoft Windows, if the application is an automation server, the checking routine also checks the server. If the
application uses com:automation-server-top-loop (maybe indirectly via com:automation-server-main), the
checking routine does not cause exit until com:automation-server-top-loop exits. Otherwise the checking routine
does not cause exit as long as the server is used. After the server is not used, the exit is further delayed by the exit-delay
(default 5 second, see documentation for com:set-automation-server-exit-delay).

The function set-quit-when-no-windows can be used to turn checking on and off dynamically at run time regardless
of the value of the :quit-when-no-windows keyword.

Note: a multiprocessing LispWorks executable will stop multiprocessing when there is no process other than the Idle
Process. So if your application simply displays a window, which is closed, then multiprocessing will stop. This is
independent of :quit-when-no-windows.

:redefine-compiler-p Keyword

Default value: (>= *delivery-level* 1)

When this is true, the function compile is eliminated from the image.

Note: the function compile-file is always removed by delivery, regardless of :redefine-compiler-p.

:registry-path Keyword

Path for storing user preferences.

On Microsoft Windows this is relative to HKEY_CURRENT_USER.

On macOS, Linux and other Unix-like platforms this is relative to the user's home directory.

Note: see 10.4 Delivery and CAPI for information on a possible problem with delivered applications that record
window geometries in the registry.

:remove-plist-indicators Keyword

Default value: nil

This keyword takes a list of plist indicators to be deleted.

:remove-setf-function-name Keyword

Default value: (not (delivery-value :keep-macros)

When t, the direct pointer from a symbol to its setf expansion is removed. That means that macroexpansion of setf is
not reliable anymore. Normally, that is not a problem for the application.

:run-it Keyword

Default value: t

If this is t, the function argument to deliver is used as the application startup function.

If this is nil, no application startup function is called when the delivered image is started up.

The image exits immediately upon startup when :run-it is nil. Any :call-count report requested is still generated
on exit.

This keyword can be useful if you want to look at the symbols in the image (with the keyword :call-count) but
cannot you actually run the application — for example because the application links up to a database, but the database
has not been started up. In such cases, set it to nil.

5 Keywords to the Delivery Function

49

http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

:shake-class-accessors Keyword

Default value:

(cond ((>= *delivery-level* 4) :remove)
 ((>= *delivery-level* 3) t)
 (t nil)))

This keyword controls whether class accessor functions are kept in their slot-definition objects. Removing them allows
unreferenced functions to be deleted.

If it is nil it ensures all accessors are kept.

If it is non-nil, class accessors which are never referenced are deleted.

If it is :remove, all class accessor functions are removed from their slot descriptions.

In general, accessors may be safely removed. However, if your application needs to examine the slots of class instances,
you need to retain them.

:shake-class-direct-methods Keyword

Default value: (>= *delivery-level* 3)

This keyword controls whether class-direct methods are deleted.

Note: A method is not deleted if it specializes on a class that remains in the delivered image.

:shake-classes Keyword

Default value: (>= *delivery-level* 2)

This keyword controls whether classes are shaken.

:shake-externals Keyword

Default value: t

If this is nil, all external symbols are preserved.

If this is non-nil, external symbols are also made eligible for garbage collection when the treeshaker is invoked. See also
:packages-to-shake-externals.

:shake-shake-shake Keyword

Default value: (>= *delivery-level* 2)

If this is non-nil, the treeshaker is invoked during delivery. The treeshaker attempts to get rid of unreferenced symbols
from the delivered image.

It uninterns every package's internal symbols. (In the special case of the KEYWORD package, it uninterns the external
symbols.) A garbage collection is then carried out, after which any remaining symbols are re-interned in the package
from which they came. A similar procedure for class definitions and methods discriminating on classes is also
performed.

If you require that certain internal symbols be kept, and know they will not be kept because they are not referenced in the
image, you can export them explicitly. See :exports. Doing so prevents them from being deleted.

External symbols are shaken by default.. See :shake-externals.

5 Keywords to the Delivery Function

50

:smash-packages Keyword

Default value: nil

This keyword takes a list of packages that should be smashed during delivery.

When a package is smashed, all of its symbols are uninterned, and the package structure is deleted. Also, its function
definitions, property lists, classes, values, and structure definitions are deleted or set to nil.

See 10.9.3 Smashing packages for more details.

Caution: Smashing destroys a whole package and all information within its symbols. You are advised to avoid using it if
possible. A better alternative, if you cannot deal individually with symbols, is :smash-packages-symbols.

Affected by: :keep-clos, :packages-to-keep, :keep-debug-mode.

:smash-packages-symbols Keyword

Default value: nil

Takes a list of packages as for :smash-packages but only the symbols in each specified package are smashed. The
package is left, making it easier to see which symbols in the specified packages are pointed to by other packages.

:split Keyword

Default value: :default

The main use of :split is to allow third-party code signing to be applied to the executable or dynamic library.

See the documentation for split argument to save-image in the LispWorks® User Guide and Reference Manual.

:startup-bitmap-file Keyword

Default value: :internal

Either nil, :internal or a string naming a file containing an image to be displayed when the application starts.

The value nil means no bitmap is displayed.

The default value :internal causes the "Built With LispWorks" splash screen to be displayed.

If a string is supplied on Microsoft Windows, the image needs to be in Windows Bitmap format and must be Indexed
Color rather than RGB color.

If a string is supplied on Cocoa, GTK and Motif, the image can be in any format supported by Graphics Ports, and the
file will be read as if by gp:read-external-image. See the "Working with images" section in the CAPI User Guide
and Reference Manual for details.

On Windows the user can dismiss the startup screen by clicking on it. It can be dismissed programmatically by calling
win32:dismiss-splash-screen - see the LispWorks® User Guide and Reference Manual for details.

:structure-packages-to-keep Keyword

Default value: nil

A list of packages. For symbols in these packages that have a structure definition, delivery keeps all the information in
this structure definition, regardless of the value of :keep-structure-info.

5 Keywords to the Delivery Function

51

:symbol-names-action Keyword

Default value: (>= *delivery-level* 5)

Defines what to with symbol names. When it is nil, or when :packages-to-keep-symbol-names is :all, all
symbol names are kept. When :symbol-names-action is t, symbol names (except those which are kept by :keep-

symbol-names, :keep-keyword-names or :packages-to-keep-symbol-names) are changed to the same string
"Dummy Symbol Name".

:symbol-names-action is treated as nil unless the treeshaker is invoked during delivery (see :shake-shake-
shake).

Compatibility Note: in LispWorks 4.4 and previous on Windows and Linux platforms, :symbol-names-action t
shortens symbol names to a three-character unique code. This has changed, as described above, in LispWorks 5.0 and
later.

Removing symbol names makes it very difficult to debug the application, and it is assumed that it is done after the
application is essentially error free. However, some applications may make use of symbol names as strings, which may
cause errors to appear only when the symbol names are removed. In some cases the easiest solution is to retain symbol
names. This will result in a larger executable, though the size increase is usually small.

If you do want to remove symbol names and need to debug your application, :symbol-names-action takes these
other values :spell-error, :reverse, :invert and :plist. Note that these other values are only useful when
debugging an application which works with :symbol-names-action nil but not with :symbol-names-action t.
In other cases they simply make debugging difficult to no advantage.

In the case of :spell-error (which is probably the most useful), the last alphabetic characters in the first 6 characters
of the symbol name are rotated by one, that is, A becomes B, g becomes h, and Z becomes A. This leaves the symbol
names quite readable, but any function that relies on symbol names fails. A more drastic effect is achieved by the value
:reverse, which reverses the symbol name. The value :invert just changes the case of every alphabetic character to
the other case. This is more readable than :spell-error, but if the application relies on symbol names but does not
care about case, the errors do not appear. The value :plist causes the symbol names to be set to the dummy name, but
the old string is being put on the plist of the symbol (get symbol 'sys::real-symbol-name). A simple
backtrace (obtained after :error-handler :btrace) uses this property when it exists to get the symbol name to
display.

If the debugging shows that some symbols must retain their symbol name for the application to work, this must be
flagged to deliver by either :keep-symbol-names or :packages-to-keep-symbol-names.

After debugging your delivered application using :spell-error, :reverse, :invert or :plist, you may want the
production build to be done with :symbol-names-action t to remove symbol names and achieve a small reduction in
size.

Compatibility Note: in LispWorks 4.4 and previous on Windows and Linux platforms, :symbol-names-action
allows the value :dump. This is no longer supported.

:symbols-to-keep-structure-info Keyword

Default value: nil

A list of symbols of which the structure information should be kept, in addition to the symbols in the packages in
:structure-packages-to-keep.

:versioninfo Keyword

Default value: nil

Windows only. The keyword :default or a plist containing containing version information to be placed in the delivered

5 Keywords to the Delivery Function

52

file.

If :versioninfo is nil, no version information is supplied. If :versioninfo is :default, then the version
information in the :exe-file is retained (by default, there is no version info). Otherwise :versioninfo should be a
plist of the following keywords. All strings should be in a form suitable for presentation to the user. Some of the
keywords discussed below are mandatory, and some are optional.

Mandatory keywords:

:binary-version :binary-file-version :binary-product-version

You must specify either :binary-version or both :binary-file-version and
:binary-product-version.

The file version relates to this file only; the product version relates to the product of which this
file forms a part.

If :binary-version is specified, it is used as both the file and product version.

The binary version numbers are 64-bit integers; conventionally, this quantity is split into 16-bit
subfields, denoting, for example, major version, minor version and build number. For example,
version 1.10 build 15 might be denoted #x0001000A0000000F.

Note: There is no requirement to follow this convention; the only requirement is that later
versions have larger binary version values.

:version-string :file-version-string :product-version-string

You must specify either :version-string or both :file-version-string and
:product-version-string.

The file version relates to this file only; the product version relates to the product of which this
file forms a part.

If :version-string is specified, it is used as both the file and product version.

The version strings specify the file and product versions as strings, suitable for presentation to
the user. There are no restrictions on the format.

:company-name The name of the company producing the product.

:product-name The name of the product of which this file forms a part.

:file-description A (brief) description of this file.

Optional keywords:

:private-build Indicates that this is a private build. The value should be a string identifying the private build (for
example, who the build was produced for).

:special-build Indicates that this is a special build, and the file is a variation of the normal build with the same
version number. The value should be a string identifying how this build differs from the standard
build.

:debugp A non-nil value indicates that this is a debugging version.

:patchedp A non-nil value indicates that this file has been patched; that is, it is not identical to the original
version with the same version number. It should normally be nil for original files.

:prereleasep A non-nil value indicates that this is a prerelease version.

5 Keywords to the Delivery Function

53

:comments A string value, which allows additional comments to be specified, in a form suitable to
presentation to the user.

:original-filename This specifies the filename (excluding drive and directory) of this file. Normally it is defaulted
based on the filename argument to deliver.

:internal-name This the internal name of this file. Normally it is defaulted to the value of
:original-filename, with the extension stripped.

:legal-copyright A string containing copyright messages.

:legal-trademarks A string containing trademark information.

:language The language for which this version of the file is intended.

This can be either a numeric Windows language identifier, or one of the keywords listed below.
The default is :us-english.

:arabic :bulgarian :catalan :traditional-chinese :czech :danish :german
:greek :us-english :castilian-spanish :finish :french :hebrew :hungarian
:icelandic :italian :japanese :korean :dutch :norwegian-bokmal :polish
:brazilian-portuguese :rhaeto-romanic :romanian :russian :croatio-serbian-
latin :slovak :albanian :swedish :thai :turkish :urdu :bahasa :simplified-
chinese :swiss-german :uk-english :mexican-spanish :belgian-french :swiss-
italian :belgian-dutch :norwegian-nynorsk :portuguese :serbo-croatian-
cyrillic :canadian-french :swiss-french

:character-set Specifies the character set to use. Acceptable values are either the numeric ID of a character set,
or one of keywords listed below:

:ascii :windows-japan :windows-korea :windows-taiwan :unicode :windows-
latin-2 :windows-cyrillic :windows-multilingual :windows-greek :windows-
turkish :windows-hebrew :windows-arabic

:additional-pairs Allows adding arbitrary string-name/value pairs to the main StringTable (Block in the
resource definition) in the StringFileInfo structure (StringFileInfo in the resource definition).

The argument is a plist whose elements are all strings. Each two strings constitute a string-
name/value pair, which are added to the main StringTable.

The string-name in a pair can be also one of the recognized keywords.

Example:

:additional-pairs '("MIMEType" "application/basic-plugin")

:string-file-info Adds a StringTable (block in the resource definition) to the StringFileInfo structure.

The argument has to be a plist. Each two items in the list constitute a pair of string-name/value,
which are added to the block. The special keywords :language and :character-set are
exceptions: they specify the "lang-charset" value of the block. They have the same syntax as
these keywords when they appear in the top list.

To be useful, the plist must include either:character-set or :language, because
applications that read the version info will normally expect one block for the lang-charset
combination.

5 Keywords to the Delivery Function

54

:warn-on-missing-templates Keyword

Default value: nil

Controls whether to warn about missing CLOS templates, which should be pre-compiled. See 10.1.2.1 Finding the
necessary templates for details.

5 Keywords to the Delivery Function

55

6 Delivery on macOS

This chapter describes several issues relevant to delivery with LispWorks for Macintosh.

6.1 Universal binaries

The supplied LispWorks (64-bit) for Macintosh image are a universal binaries, which run the correct native architecture on
arm64 (Apple silicon) and x86_64 (Intel) Macintosh computers by default. To deliver a universal binary application from
LispWorks (64-bit) for Macintosh, you will need an Apple silicon Macintosh computer. You can specify a universal binary
build in the Application Builder tool (see 28 The Application Builder in the LispWorks IDE User Guide) or call
save-universal-from-script directly (see the LispWorks® User Guide and Reference Manual).

6.2 Application bundles

deliver creates a single executable file. However graphical Macintosh applications consist of an application bundle, which
is a folder Foo.app with several subfolders containing the main executable and other resources.

LispWorks for Macintosh contains a function that constructs an application bundle. You can use this such that your
executable is delivered ready to run in its application bundle in the usual macOS way. See 13.3 Creating a macOS
application bundle for an illustration of this.

6.3 Bad interaction with clean-up utilities

Utilities which attempt to "clean up" your Mac by removing unused parts of an image can damage LispWorks itself and also
LispWorks applications.

If you use such a utility on your LispWorks development machines, configure it to ignore LispWorks.

If you distribute a LispWorks application, document that it may be damaged by utilities which attempt to clean up a Mac by
removing unused parts of an image. To prevent this, such utilities should be configured to ignore the LispWorks application.

As an example, CleanMyMac has an Ignore List which includes LispWorks by default, but will not include your LispWorks
runtime application until you add it.

6.4 Cocoa and GTK+ images

LispWorks for Macintosh is supplied with two images. One supports the Cocoa GUI, the other supports the GTK+ GUI (and
can load the Motif GUI). You cannot build a Cocoa application using the GTK+ LispWorks image, and vice versa.

You should use the appropriate image to deliver your application.

For GTK+ and Motif applications delivered with LispWorks for Macintosh, the issues described in 8 Delivery on Linux,
FreeBSD and x86/x64 Solaris will be relevant.

56

6.5 Terminal windows and message logs

6.5.1 Controlling use of a terminal window

A graphical Macintosh application does not usually have a console/terminal window.

You can achieve this by supplying the keyword argument :console :input when delivering your application.

6.5.2 Logging debugging messages

Output to *terminal-io* from an application without a console/terminal window will not ordinarily be visible to the user,
so debugging messages should be written to a log file.

Log files are recommended for any complex application as they make it easier for you to get information back from your
users.

You can use dbg:log-bug-form for logging errors. See the LispWorks® User Guide and Reference Manual for details.

6.6 File associations for a Macintosh application

To create an association between your LispWorks for Macintosh application and files with a specified type (file extension):

1. Create the appropriate entries for the file type in the CFBundleDocumentTypes array within the Info.plist file of the
delivered application.

2. Define a subclass of capi:cocoa-default-application-interface with a message-callback.

3. Implement the :open-file message in the message-callback function.

4. Set the application interface on startup.

Also see the examples mentioned in 15.1 Delivering a Cocoa CAPI application examples.

6.7 Editor emulation

If your application uses capi:editor-pane or its subclasses, your should consider the input style. The editor in the
delivered application can emulate Emacs or macOS style editing. The deliver keyword :editor-style controls which
emulation is used.

6.8 Standard Edit keyboard gestures

To implement the standard gestures Command+X, Command+C and Command+V in your CAPI/Cocoa runtime application, you
must include an Edit menu explicitly in your capi:interface definition.

Note: The LispWorks IDE adds a minimal Edit menu to all CAPI interfaces automatically, in order to make these standard
gestures work in the LispWorks IDE, but this does not persist after delivery.

6 Delivery on macOS

57

http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

6.9 Quitting a CAPI/Cocoa application

The application menu's quit callback (that is, the callback normally invoked by Command+Q) should simply call
capi:destroy with the application interface and should not call lw:quit directly.

For an example see the Quit Multiple Window CAPI Application menu item in:

(example-edit-file "capi/applications/cocoa-application")

6.10 Retaining Objective-C classes

If you implement an Objective-C class in Lisp but its name is not referenced at run time, then you need to arrange for this
symbol to be retained during delivery.

This can be achieved with :keep-symbols, but a more modular approach is to keep the name on the plist of some other
symbol. For example the internal CAPI class lw-slider is defined like this:

(objc:define-objc-class lw-slider ()
 ()
 (:objc-class-name "LWSlider")
 (:objc-superclass-name "NSSlider"))

and lw-slider is retained like this:

(setf (get 'slider-representation 'owner-class)
 'lw-slider)

In this case, the code for slider-representation is the only thing that makes the LWSlider object, so it is the best place
to retain it (that is, only if slider-representation is retained).

6.11 X11/Motif considerations

The default double-click (and triple-click) speed for X11 applications is 200ms, whereas the default for Macintosh
applications is typically 500ms.

To match this in your configuration, add a line:

*.multiClickTime: 500

in the Xresources file.

6.12 Examples of delivering Cocoa applications

Several self-contained examples in the LispWorks library illustrate delivering a CAPI/Cocoa application, listed in 15 Self-
contained examples of delivery.

6 Delivery on macOS

58

7 Delivery on Microsoft Windows

This chapter describes several issues relevant to delivery with LispWorks for Windows.

7.1 Run time library requirement

Applications that you build with LispWorks for Windows require the Microsoft Visual Studio run time library msvcr80.dll,
so you must ensure it is available on target machines. It is part of Windows Vista and later version, but for earlier Windows
operating systems you should use the Microsoft redistributable mentioned below.

At the time of writing, the redistributable vcredist_x86.exe for use with for LispWorks (32-bit) applications is freely
available at:

http://www.microsoft.com/downloads/details.aspx?familyid=32BC1BEE-A3F9-4C13-9C99-
220B62A191EE&displaylang=en

The redistributable vcredist_x64.exe for use with LispWorks (64-bit) applications is freely available at:

http://www.microsoft.com/downloads/details.aspx?FamilyID=90548130-4468-4bbc-9673-
d6acabd5d13b&DisplayLang=en

Run the redistributable from your application's installer, or tell your users to run it directly themselves before running your
application.

7.2 Application Manifests

LispWorks for Windows is supplied with an embedded application manifest. This default manifest tells the Operating
System:

• which msvcr80.dll to use, and:

• to use Common Controls 6.

You can change the manifest in your delivered image by passing the keyword argument :manifest-file to deliver. The
value must be the name of a file that is a legal application manifest, which is is used as the manifest. The manifest must
contain at least the "dependency" element for Microsoft.VC80.CRT (without it, your application will fail to start with error
messages "Failed to find msvcr80.dll" or "The application configuration is incorrect"). If the manifest does not contain the
"dependency" element for Microsoft.Windows.common-controls your application will use Common Controls 5, and
therefore will not be a "Themed" application.

The value of :manifest-file can also be the special value :no-common-controls-6, in which case a default manifest
without the element for Common Controls is used.

The default manifests that LispWorks uses are provided by way of documentation in the lib/8-0-0-0/config directory. If
desired, you can base your application manifests as supplied via :manifest-file on these files:

59

http://www.microsoft.com/downloads/details.aspx?familyid=32BC1BEE-A3F9-4C13-9C99-220B62A191EE&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=32BC1BEE-A3F9-4C13-9C99-220B62A191EE&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=90548130-4468-4bbc-9673-d6acabd5d13b&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=90548130-4468-4bbc-9673-d6acabd5d13b&DisplayLang=en

The default manifests used by LispWorks

32-bit LispWorks 64-bit LispWorks

With Common Controls 6 winlisp32.manifest winlisp64.manifest

Without Common Controls 6 lisp32.manifest lisp64.manifest

Note: the above only applies when LispWorks is an executable. If LispWorks is a DLL, then it will be themed if the
executable that loads it contains the Common Controls 6 manifest.

7.3 DOS windows and message logs

7.3.1 Controlling use of a DOS window

A graphical Windows application does not usually have a console (or "DOS window").

You can achieve this by supplying the keyword argument :console :input when delivering your application.

7.3.2 Logging debugging messages

Output to *terminal-io* from an application without a console will not ordinarily be visible to the user, so debugging
messages should be written to a log file.

Log files are recommended for any complex application as they make it easier for you to get information back from your
users.

You can use dbg:log-bug-form for logging errors. See the LispWorks® User Guide and Reference Manual for details.

7.4 File associations for a Windows application

To create an association between your LispWorks for Windows application and files with a specified type (file extension),
create a DDE server in Lisp and register the file types in Windows.

There is an example of this (for the LispWorks IDE) in:

(example-edit-file "dde/lispworks-ide")

but the technique is the same for any file extension.

7.5 Editor emulation

If your application uses capi:editor-pane or its subclasses, your should consider the input style. The editor in the
delivered application can emulate Emacs or Microsoft Windows style editing. The deliver keyword :editor-style

controls which emulation is used.

7 Delivery on Microsoft Windows

60

http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

7.6 ActiveX controls

If your library foo is a Windows ActiveX control (that is, it uses capi:ole-control-component and
capi:define-ole-control-component) you may choose to specify file "foo.ocx" as the file argument to deliver.
The file type defaults to "dll".

The file extension does not alter functionality - the system simply loads the file referenced in the Windows registry.

7.7 Example of delivering a Service

This example in the LispWorks library illustrates delivering an application that can be run as a Windows Service:

(example-edit-file "delivery/ntservice/README.txt")

7 Delivery on Microsoft Windows

61

8 Delivery on Linux, FreeBSD and x86/x64
Solaris

This chapter describes issues relevant to delivery with LispWorks for Linux, LispWorks for FreeBSD and LispWorks for
x86/x64 Solaris.

8.1 GTK+ considerations

The section describes issues relevant to delivery of CAPI applications running on GTK+.

8.1.1 GTK+ libraries on the target machine

A suitable version of the GTK+ libraries must be installed on the target machine for your CAPI/GTK application to run. The
version requirements are as for LispWorks itself, as mentioned in the Release Notes and Installation Guide.

8.1.2 Fallback resources

If your CAPI/GTK application needs fallback resources then it should pass the :application-class and
:fallback-resources arguments when calling capi:display and/or capi:convert-to-screen.

See capi:convert-to-screen in the CAPI User Guide and Reference Manual for a full description of these arguments.

You could use the LispWorks resources as a starting point when constructing your application's resources. You can see the
LispWorks fallback resources (these are for application class Lispworks) as described under "Using X resources" in the
CAPI User Guide and Reference Manual.

You can override the default resource name using the capi:element initarg :widget-name or the accessor
(setf capi:element-widget-name). There is an example in:

(example-edit-file "capi/elements/gtk-resources")

8.2 X11/Motif considerations

The section describes issues relevant to delivery of CAPI applications running on X11/Motif.

Note that the X11/Motif GUI is deprecated, because the alternative GTK+ GUI library is now supported.

8.2.1 Loading Motif

On LispWorks platforms supporting pthreads, the supplied image contains the GTK GUI only, and therefore GTK is the
default graphical library for applications. To build a Motif application on these platforms you need to include:

(require "capi-motif")

in your delivery script.

62

You may wish to consider building a GTK version of your application too.

8.2.2 Motif on the target machine

A suitable version of the OpenMotif library must be installed on the target machine for your CAPI/Motif application to run.
The version requirements are as for LispWorks itself, as mentioned in the Release Notes and Installation Guide.

8.2.3 Fallback resources

If your CAPI/Motif application needs fallback resources then it should pass the :application-class and
:fallback-resources arguments when calling capi:display and/or capi:convert-to-screen.

See capi:convert-to-screen in the CAPI User Guide and Reference Manual for a full description of these arguments.

You could use the LispWorks resources as a starting point when constructing your application's resources. You can see the
LispWorks fallback resources (these are for application class Lispworks) as described under "Using X resources" in the
CAPI User Guide and Reference Manual.

You can override the default resource name using the capi:element initarg :widget-name or the accessor
(setf capi:element-widget-name).

8.2.4 X resource names use Lisp symbol names

The default color and other attributes for each CAPI pane on X11/Motif is computed as an X resource using the symbol name
of the pane's class. Therefore obtaining the correct X resources depends on the application containing these symbol names.

Symbol names are removed at delivery level 5, but you can retain specific names in the delivered image by passing a list of
the class names to deliver as the value of the keyword argument :keep-symbol-names.

8.3 LispWorks executable corrupted

After an initially successful installation of LispWorks for Linux, the LispWorks executable may appear to be corrupted:

$ lispworks-8-0-0-amd64-linux
Lisp executable apparently corrupted. (Truncated?) Cannot restart.

The executable is reduced in size, typically to a few 10Kb. This problem, which has been seen on various Linux machines, is
caused by the prelink cron job, which does not understand Lisp executables.

Another error message seen attempting to run a saved LispWorks executable on Fedora 14 was:

Reading LispWorks file lw-6-0-1: failed to find trailer, error -101

To prevent this happening, add descriptions of your LispWorks executables to the end of the file /etc/prelink.conf. For
example, this will match the default names:

-b lispworks-*-linux

Then the truncated LispWorks executables need to be reinstalled.

The LispWorks for Linux rpm installer writes a line in /etc/prelink.conf which protects the released image. However
this does not protect LispWorks images or runtime executables that you have saved, because the name will differ. If you
distribute LispWorks for Linux runtimes you should consider protecting them adding a suitable line in /etc/prelink.conf

at installation time.

8 Delivery on Linux, FreeBSD and x86/x64 Solaris

63

8.4 Logging debugging messages

Log files are recommended for any complex application as they make it easier for you to get information back from your
users. The log should contain any debugging messages, and can also contain information from your program.

You can use dbg:log-bug-form for logging errors. See the LispWorks® User Guide and Reference Manual for details.

8.5 Editor emulation

If your application uses capi:editor-pane or its subclasses, your should consider the input style. The editor in the
delivered application can emulate Emacs or KDE/Gnome style editing. The deliver keyword :editor-style controls
which emulation is used.

8.6 Products supporting dynamic library delivery

You can deliver a dynamic library using LispWorks on Linux, FreeBSD and x86/x64 Solaris.

During delivery of a dynamic library, LispWorks links a small C executable that loads Lisp and also defines the exported
foreign symbols. As a result, when this is loaded it may have some dependency on the system libraries that you have on the
machine where you delivered it. That means that the delivered image may not work on older versions of the operating
system. It is therefore recommended that you deliver on the oldest version of the operating system that you need to support.

On Linux, LispWorks requires specific versions of symbols in the C library which reduces the chance of problems like this.

8 Delivery on Linux, FreeBSD and x86/x64 Solaris

64

9 Delivering for mobile platforms

This chapter describes issues relevant to delivery with LispWorks for iOS Runtime and LispWorks for Android Runtime.

Your app can include your own Lisp code, LispWorks modules such as KnowledgeWorks, and third party Common Lisp
libraries. However note that CAPI is not supported on iOS or Android, therefore any GUI part of your app will need to be
written using the native API.

9.1 Delivery of iOS runtimes

To create an iOS app that uses LispWorks, you need a license for LispWorks for iOS Runtime.

This section describes issues relevant to delivery of the LispWorks component of an iOS app.

9.1.1 Compiler not available in iOS runtimes

LispWorks for iOS Runtime supports all of ANSI Common Lisp except for the compiler. This is because it is not possible to
create executable code on-the-fly on iOS.

9.1.2 How to deliver an iOS runtime

You will need an Xcode project which includes any GUI part and links with a iOS object file (a .o file) created with
LispWorks. You create this LispWorks runtime with a special LispWorks image (which runs in the QEMU emulator on Intel-
based Macs and natively on Apple silicon Macs) calling the function deliver. You can also build a runtime for the iOS
Simulator running on macOS.

Follow the full instructions in the Chapter "iOS interface" in the LispWorks® User Guide and Reference Manual.

9.2 Delivery of Android runtimes

To create an Android app that uses LispWorks, you need a license for LispWorks for Android Runtime.

This section describes issues relevant to delivery of the LispWorks component of an Android app.

9.2.1 How to deliver an Android runtime

You will need an Android project written in Java, which includes any GUI part and loads a LispWorks dynamic library
runtime. You create the LispWorks runtime with a special LispWorks image which runs on ARM architecture, calling the
function hcl:deliver-to-android-project (not lw:deliver).

Follow the full instructions in the Chapter "Android interface" in the LispWorks® User Guide and Reference Manual.

65

10 Delivery and Internal Systems

10.1 Delivery and CLOS

Most applications using CLOS can be delivered without difficulty. However, there are a few potential exceptions to this rule.
Code dynamically redefining classes and methods, and with certain method combinations, needs some extra work.

However, at delivery level 0 it is unlikely that you will need to do anything.

10.1.1 Applications defining classes or methods dynamically

Set the deliver keyword :keep-clos to t or :full-dynamic-definition to keep the code needed for dynamic
definition in the image.

At delivery level 0 the default value of :keep-clos is :full-dynamic-definition, so you will not need to do anything
special.

10.1.2 Special dispatch functions and templates for them

The LispWorks CLOS implementation achieves fast method dispatch by producing special functions to perform
discrimination and method dispatch. Since the required operation can often only be determined by seeing what arguments a
generic function is called with, these functions can often end up being generated and compiled at run time.

If the compiler has been removed in a delivered application, then these special run time-generated functions cannot be
compiled on the fly.

There are two ways in which the delivery system deals with this problem.

The first is to have a set of pre-compiled "template" constructors which can construct an appropriate function. LispWorks
comes with extensive set of such constructors, which should cover most of cases. The programmer can add her own, as
explained below.

The other mechanism is to construct generic closures to do the work. The code that generates the closures can cope with:

1. A simple method combination, with the operator naming a function (or generic function) -- not a macro or special form.

2. A more complicated method combination, constructing a form which should effectively be a tree of progn ,
multiple-value-prog1 and call-method forms.

In most cases the effect on method dispatch time of using the generic technique is negligible. Pathological cases might,
however, cause a slowdown of 10-20% over compiled special functions. In this case, as well as for cases of user-defined
complex method combinations which the generic mechanism cannot cope with, the delivered image must have precompiled
"template" constructors, and if they are not already there the user needs to add them, as described next.

10.1.2.1 Finding the necessary templates

Even though it cannot compile the functions at run time, delivery can generate the forms for them. The necessary method
combination templates can be found by using the keyword :warn-on-missing-templates. This defaults to nil. If this
keyword is non-nil, a warning is issued whenever a missing template is detected. The value of this keyword can be either a
string or a pathname, in which case it is a file to put the warning in, or t, in which case the warning goes to

66

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_mult_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_call_m.htm

terminal-io. The warning takes this form:

;*****

;>>> Add this combination to the template file <<<

(CLOS::PRE-COMPILE-COMBINED-METHODS

 ((1 COMMON-LISP:NIL) COMMON-LISP:NIL (CLOS::_CALL-METHOD_)))

; *****

You can take this template, place it in an ordinary lisp file, return to LispWorks, and compile it. This compiled file should be
loaded into the image before delivery. See 10.1.2.2 Incorporating the templates into the application.

Most missing templates can be found statically, and if :warn-on-missing-templates has been set, they are output at the
time of saving the delivery image. An attempt is made to find all missing templates. However, because method combinations
are dependent on the actual arguments to generic functions, it is not always possible to find every missing template. The
application must be run to be sure of finding all the missing templates.

Note: Valid combinations may be generated or seen in warnings even if they are never used. Delivery can only tell you what
combinations the application could potentially use.

10.1.2.2 Incorporating the templates into the application

A typical measure is to put all the templates generated into a file. You can add new ones to it as you work through the
delivery process. The templates must be compiled and loaded into the application before delivery. To do this:

1. Collect into one template file all the method combination template forms that have been output, so that it looks
something like this:

(CLOS::PRE-COMPILE-COMBINED-METHODS ((1 COMMON-LISP:NIL) COMMON-LISP:NIL

 (COMMON-LISP:MULTIPLE-VALUE-PROG1 (CLOS::_CALL-METHOD_)

 (CLOS::_CALL-METHOD_)

 (CLOS::_CALL-METHOD_))))

(CLOS::DEFINE-PRE-TEMPLATES

 CLOS::DEMAND-CACHING-DCODE-MISS-FUNCTION (5 COMMON-LISP:NIL (4)))

(CLOS::DEFINE-PRE-TEMPLATES

 CLOS::DEMAND-CACHING-DCODE-MISS-FUNCTION (6 COMMON-LISP:NIL (4)))
...

No matter how many times the template form is printed, it only needs to be included in the template file once.

2. In the LispWorks image, compile the template file.

3. Load the compiled template file into the image (along with the application and library files) before delivery.

10.1.3 Delivery and the MOP

MOP programmers should note that, by default, the direct slots and direct methods of all classes are emptied at delivery level
1 and above. To prevent this, set the deliver keyword :keep-clos to t, :full-dynamic-definition or
:meta-object-slots as required.

10 Delivery and Internal Systems

67

http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

10.1.4 Compression of CLOS metaobjects

To reduce the size of the delivered image, the delivery process compresses the representation of CLOS metaobjects (classes,
generic functions and methods). This includes:

1. nullifying the class direct slots of the class.

2. Changing the effective slots to a function that is used in the initialization of the instance. This is controlled by
:metaclasses-to-keep-effective-slots and :classes-to-keep-effective-slots.

3. Compressing the representation of method objects. This is controlled by :keep-clos. If :keep-clos is t, the
representation of method objects is not compressed. There is also no compression if you add a method to
method-qualifiers, method-specializers or method-function.

4. Compressing the representation of generic functions. This is not done if :keep-clos is t, or if you add methods to any
of the accessors of generic functions.

10.1.5 Classes, methods, and delivery

See 4.6.2 Shaking the image for a discussion of how unused class definitions and methods are treated by delivery process.

10.1.6 Delivery and make-instance initarg checking

By default make-instance checks for valid initargs in LispWorks, signalling an error on an invalid call. However, in a
delivered application this behavior may not be useful.

Initarg checking in the delivered application is controlled by the deliver keyword :make-instance-keyword-check.

For more information about make-instance initarg checking, see the LispWorks® User Guide and Reference Manual.

10.2 Delivery and the Lisp reader

On non-Windows platforms, the API for accessing persistent settings and the CAPI functionality for recording and retrieving
window position and size values rely on the Lisp reader, which delivery can remove. Therefore if your application uses
lw:user-preference or capi:top-level-interface-geometry-key you should ensure that the reader is retained,
by supplying :keep-lisp-reader with value t.

10.3 Editors for delivered applications

This section contains information on how to include the LispWorks editor in your delivered applications and how to control
its behavior.

10.3.1 Form parsing and delivery

If the delivered image is used to edit LISP code, the parsing of forms will still not work properly. The deliver keyword
:keep-editor can be used to keep the code for parsing forms in the editor.

10.3.2 Emulation and delivery

The editor in the delivered application can emulate Emacs style, and Microsoft Windows or macOS style editing (depending
on the platform). The deliver keyword :editor-style controls which emulation is used.

10 Delivery and Internal Systems

68

http://www.lispworks.com/documentation/HyperSpec/Body/f_method.htm
http://www.lispworks.com/documentation/lw70/MOP/mop/dictionary.html#method-
http://www.lispworks.com/documentation/lw70/MOP/mop/dictionary.html#method-
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

10.3.3 Editor command groups

If any part of the editor is present in the image, every editor command that has been loaded will be kept in the delivered
image. Two deliver keywords allow you to specify which commands to keep and which commands to delete:

• :editor-commands-to-keep (default nil)

• :editor-commands-to-delete (default :all-groups)

The effect of these default values is that all the commands are deleted. If a command is both these lists, it is kept.

To get rid of editor commands, use the keyword argument :editor-commands-to-delete.

Deleting a command does not automatically delete the associated function. For example, the function
editor:do-something-command could be called by the application even if the command "Do Something" has been
deleted.

The function itself is only deleted if it is not referenced elsewhere in the application or if it is removed explicitly. Therefore,
an application which uses the editor in a non-interactive or limited interactive manner can delete all or most of the editor
commands. Note also that key bindings associate key sequences with commands and not functions, so if a command is
deleted any sequences bound to it will no longer work. For consistency, the delivery process removes the bindings too.

The keyword :editor-commands-to-delete is processed in different ways depending on the type of value supplied:

List value Process each element of the list. (Thus the list is traversed recursively.)

String value The corresponding editor command is deleted.

Symbol value Taken to specify a Command Group.

The available Command Groups are:

:simple-editor The simple editor contains basic mechanisms for editing text files, including regions, buffers and
windows, movement, insertion and removal commands, key bindings, the echo area and
extended commands (such as Alt+X), file handling commands, filling and indenting, and undo.

:full-editor The full editor has all the facilities of the simple editor, and adds handling for Lisp forms, auto-
save help and other documentation commands searching, including the system based search
commands, tags support, and support for interactive modes.

:extended-editor The extended editor adds Lisp introspection to those features: argument lists, evaluate, trace,
walk-form, symbol completion, dspecs, callers and callees, buffer changes, and hooks into the
inspector and class, generic function, and system browsers.

:demand-loaded Commands present in the standard LispWorks image only if they are demand loaded.

:tools Commands supporting tools which must be explicitly loaded on top of the editor, for example the
listener.

:exclude Commands always deleted by the delivery process, for example, compilation commands.

10.4 Delivery and CAPI

This section describes platform-independent issues in delivered applications which use CAPI. See also 6 Delivery on
macOS, 7 Delivery on Microsoft Windows, and 8 Delivery on Linux, FreeBSD and x86/x64 Solaris for issues specific to
each supported windowing system.

See the CAPI User Guide and Reference Manual for details of the CAPI symbols mentioned.

10 Delivery and Internal Systems

69

10.4.1 Interface geometry depends on Lisp symbol names

The function capi:top-level-interface-geometry-key depends on symbol names and hence will break at delivery
level 5 unless the relevant symbol names are retained. Use the deliver keyword :keep-symbols to keep the class name of
your top level interface.

10.5 The condition system in delivered applications

The Condition System provided by the Common Lisp is available in runtimes delivered at level 0.

If you deliver at higher levels, then be aware that the full Condition System will not be present by default in your application.
If you choose not to retain the full Condition System, you can make use of the more limited, but smaller, error systems
available with Delivery. It is useful to make the application handle errors appropriately, because it is generally used by non-
Lisp programmers, and it does not have the IDE so it is less easy to debug.

Simplified error handling is still possible in applications without the Condition System. They can only trap conditions of type
error or warning. If an application signals any condition other than warning or simple-warning, the condition is
categorized as one of type error, and therefore can be trapped.

10.5.1 Deleting of condition classes

Condition types are classes like any other class, so may be shaken out. However the code may contain many references to
condition types through error calls that are never going to happen in the application. Therefore, there is a special deletion
action for conditions, which is controlled by the deliver keywords :condition-deletion-action, :keep-
conditions and :packages-to-remove-conditions.

When a condition is deleted (that is when :condition-deletion-action is :delete), trying to signal it returns a
simple-error, which means that it got the wrong type. On the other hand, it has all the information in the
format-arguments slot. If the conditions are redirected (that is, when :condition-deletion-action is :redirect),
a stricter type is returned, but some of the information may be lost, because the condition that it redirects to has fewer slots.

User defined conditions are kept, unless:

1. You add packages to :packages-to-remove-conditions.

2. You set :keep-conditions to :none, in which case all the conditions are eliminated, or :minimal, in which case all
the user conditions are deleted.

10.6 Delivery and the FLI

This section describes particular issues relevant to a delivered image containing Foreign Language Interface (FLI) code.

10.6.1 Foreign Language Interface templates

The Foreign Language Interface requires compiled code (known as FLI templates) to convert between foreign objects and
Lisp objects. Most of these FLI templates are already available in the image, and most applications do not need extra
templates.

However it is difficult to know in advance exactly which FLI templates will be needed. When a new template is actually
required, it is compiled. In a delivered image where the compiler has been removed, this causes an error like this:

FLI template needs to be compiled
(see 'Foreign Language Interface templates' in the LispWorks Delivery User Guide):
 (FLI::DEFINE-PRECOMPILED-FOREIGN-OBJECT-SETTER-FUNCTIONS ((:FLOAT :SIZE 4)))

10 Delivery and Internal Systems

70

http://www.lispworks.com/documentation/HyperSpec/Body/09_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_warnin.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_warnin.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_smp_wa.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_smp_er.htm

To solve this you need to find which templates your application uses that are not already available, compile them, and load
them before delivering.

To find which templates your application needs, do the following:

1. Start the undelivered application image (that is, LispWorks with your application code loaded).

2. Call

(FLI:START-COLLECTING-TEMPLATE-INFO)

3. Fully exercise the application. You must test thoroughly all the functionality of the application to ensure that any code
that needs templates gets run.

4. Call

(FLI:PRINT-COLLECTED-TEMPLATE-INFO)

This prints all the templates that were generated while exercising your application. These FLI template forms should be put
in a file which is compiled and loaded as part of your application. fli:print-collected-template-info takes a
keyword :output-stream to make this easier, for example:

(with-open-file (stream "fli-templates.lisp" :direction :output)
 (FLI:PRINT-COLLECTED-TEMPLATE-INFO
 :OUTPUT-STREAM stream))

Once you have compiled the file containing the templates, it should be loaded as part of your application.

10.6.2 Foreign callable names

In most cases foreign callable names are passed to deliver in the value of the :dll-exports keyword argument, and each
of these foreign callables will be retained automatically in the delivered image.

However other foreign callables defined with a string foreign-name are liable to be shaken from the delivered image. The best
approach is to use a symbol to name such foreign callables, as described under fli:define-foreign-callable in the
Foreign Language Interface User Guide and Reference Manual.

10.7 Modules

Part of the system is implemented using load on demand modules that are loaded automatically when a function is called.
Most of these modules are only useful during development, so are not needed in the application. However, in some cases the
application may need some module.

You can obtain the list of loaded modules by entering:

:bug-form nil

in a Listener. This prints the list of loaded modules, along with much other information.

To obtain a minimal list of modules, follow these steps:

1. Start a fresh LispWorks image, making sure it does not load any irrelevant code (for example in your .lispworks init
file):
C:\Program Files\LispWorks> lispworks-8-0-0-x86-win32.exe -init -

2. Load the application and run it.

10 Delivery and Internal Systems

71

3. Exercise the application, to ensure that any entry points for load on demand modules are called.

4. Enter :bug-form nil in a Listener. The list of loaded modules should include only modules that your application
needs.

Once you know a module is required in your application, you need to load it before delivering, by calling require:

(require module-name)

Add the call to require to your delivery script.

Note: require is case-sensitive, and generally module-name is lowercase for LispWorks modules.

10.8 Symbol, SYMBOL-NAME and package issues during delivery

Symbols and packages usually have the most significant effect on the size of a delivered application, so it is worth paying
attention to them during delivery.

The basic principle of delivery is to garbage collect the image, freeing anything the application does not refer to in order to
make the image smaller. This strategy works well enough for most objects, but not for symbols within packages: since all
such symbols are referred to by their package, none of them can be deleted.

You can overcome this problem in the following ways:

1. By shaking the image.

2. By deleting packages.

3. By smashing packages.

Deleting and smashing packages are not recommended. Deleting and smashing are explained in the next section. They are
both ways of removing symbols from the application, one being more extreme than the other. You should note, however, that
it is possible to handle specific symbols individually. This is preferred.

By default, Delivery deletes all of the system's packages, and smashes some of them. This following section also explains
how to prevent this when necessary.

Delivery can remove symbol names. At level 5 by default it changes all symbol names that are not explicitly retained to the
same string "Dummy Symbol Name". This makes it difficult to debug the application - for the recommended approach see
:symbol-names-action.

10.9 Throwing symbols and packages out of the application

This section discusses the circumstances in which you might want to throw symbols and packages out of the application, by
deleting or smashing them.

10.9.1 Deleting packages

When you delete a package, the following happens:

1. All the package's symbols are uninterned.

2. The package name is deleted.

After the package is deleted, its symbols continue to exist, but because they are no longer interned in a package they become
eligible for collection at the next garbage collection. They survive only if there are useful references to them elsewhere in the

10 Delivery and Internal Systems

72

http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm

application.

Note: Invoking the treeshaker has much the same effect on packages as deleting them. However, by deleting a package you
regain some extra space taken up by hash tables.

10.9.2 How to delete packages

You can pass deliver a list of packages to delete with the keyword :delete-packages.

10.9.3 Smashing packages

When you smash a package, the following happens:

1. All the package's symbols are uninterned.

2. The package structure is deleted.

3. Its symbols' function definitions, property lists, classes, values, and structure definitions are deleted or set to nil.

After the package is smashed, the symbols continue to exist, but all the information they contained is gone. By being
uninterned they become eligible for garbage collection. Also, the chances of any objects they referred to being collected are
increased.

Caution: Smashing destroys a whole package and all information within its symbols. Use it carefully.

Note: Any symbol whose home package is to be smashed can be retained by being uninterned before delivery commences.

10.9.4 How to smash packages

You can pass deliver a list of packages to smash with the keyword :smash-packages or :smash-packages-symbols.

10.9.5 When to delete and smash packages

Note: In general, you are advised against deleting or smashing packages unless it is absolutely necessary. Always try to
reduce the image size as much as possible by treeshaking first.

If an application does one of the following things, packages are involved and you must consider keeping them in the
application:

1. Makes an explicit reference to a package by some of the package functions, for example, intern, find-symbol and so
on.

2. Uses the reader, with read or any of the other reader functions.

These functions make reference to a package (either *package* or one given explicitly) whenever they read a symbol.

3. Printing a symbol with the format directive ~S.

The format function prints the symbol with a package prefix if the symbol is part of a package.

4. Loading a file, whether compiled or interpreted.

5. Using the function symbol-package.

Fortunately, most applications are unlikely to do these things to more than a small number of packages. You should,
therefore, be able to delete most packages without breaking the application. When you know that none of the symbols
belonging to a package are used, you can go one step further and smash it.

10 Delivery and Internal Systems

73

http://www.lispworks.com/documentation/HyperSpec/Body/f_intern.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_find_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_rd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_3.htm

Smashing a package guarantees space savings where deleting it would not. Even in a case where a symbol is referenced but
unused, because it has been smashed you still regain space taken up by objects hanging from slots for function definition,
value, property list and so on.

You do not usually gain much by smashing your own packages that you would not gain by just deleting them — you are after
all unlikely to have included an entire package of symbols in your final application if you know it is not going to use them.
The real benefits of smashing can be seen when it is performed on the system's packages, some of which may be entirely
irrelevant to your application. In addition, you are unlikely to gain very much by deleting a package that you would not gain
by treeshaking. In general, you should try to avoid either deleting or smashing packages explicitly.

However, if symbols in your packages are referenced through complex data structures, making it difficult to track references
down, smashing may still prove useful.

10.10 Keeping packages and symbols in the application

This section explains how to keep packages and symbols in the application when Delivery would otherwise remove them.

10.10.1 Ensuring that packages are kept

Your application may rely upon certain system packages that Delivery deletes or smashes by default.

You can protect these packages with :packages-to-keep. All packages in the list passed with this keyword are kept in the
delivered image, regardless of the state of the :smash-packages and :delete-packages keywords. If you pass
:packages-to-keep :all, then the two variables are set to nil.

Note: COMMON-LISP is the package your application is most likely to rely on, and it is also very large. Keeping it has a very
noticeable effect on the size of the application. However, if your application uses read or load, it invites the possibility of
reading arbitrary code, and so COMMON-LISP must be kept.

See also 10.11 Coping with intern and find-symbol at run time.

10.10.2 Ensuring that symbols are kept

Internal symbols in packages you have kept may still be shaken out. If any such symbol must be kept in the application,
retain it by force in one of the following five ways:

1. With the :keep-symbols keyword.

This is the recommended solution in most circumstances.

2. With the :never-shake-packages keyword.

This solution is suitable when all the symbols to keep are in one package, FOO-PKG say. Pass :never-shake-
packages (list "FOO-PKG").

3. Use deliver-keep-symbols.

This is useful for symbols that are not explicitly referenced by Lisp (and hence may be shaken out) but are still needed,
for example symbols that are called directly from Java.

4. Export the symbol from the package.

External symbols are always shaken during delivery.

You can override this behavior by passing :shake-externals nil to deliver.

You can also specify :packages-to-shake-externals and :packages-to-keep-externals.

10 Delivery and Internal Systems

74

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_rd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

5. Make explicit reference to the symbol with another object that you know will not be deleted.

A reference from the object to the symbol ensures that the garbage collector passes over it during delivery.

See also 10.11 Coping with intern and find-symbol at run time.

Note: If you need to retain the names of the symbols if the symbols themselves are not shaken out, use
deliver-keep-symbol-names. This is useful when the symbol name is used as long the symbol is used.

10.11 Coping with intern and find-symbol at run time

If you want to delete or smash a package, but discover that a symbol is created in it at run time with intern, or found in it
with intern or find-symbol, you have two choices: either change the source to create or manipulate the symbol in
another package, or keep the package after all.

If you cannot or do not want to change the source, and the package is large, you face the annoying prospect of having to keep
a lot of code in the image for the sake of one symbol created or manipulated at run time. Fortunately, there are ways to get
around this.

The method is to migrate the symbols by hand into new or smaller, "dummy" packages. This is the only working method if at
compile time you do not know the names of the symbols to be saved.

Create a special package or packages for the symbols mentioned in these calls, and delete the original packages. When this
package is created (with make-package or defpackage), it should use as few of the other packages in the application as
possible. Typically, :use nil suffices. For example:

(rename-package "XYZ" "XXX")
(push "XXX" *delete-packages*) ; discard pkg
(make-package "XYZ" :use nil) ; new pkg to reference

This allows the real package XYZ to be deleted without breaking a call to intern such as the following:

(intern "FISH" "XYZ")

10.12 Symbol-name comparison

In a non-delivered LispWorks image, the form:

(eq (symbol-name 'foo) (symbol-name 'foo))

evaluates to t. This behavior is due to the way symbol names are cached. There is no requirement or guarantee that the
results of successive calls to symbol-name be the same (eq) object.

After delivery, LispWorks symbol names are implemented differently such that the eq test above fails. Take care that your
application does not rely on identity of symbol names.

Note: eq is not a reliable comparison of strings in general. Use equal for reliable string comparison.

10.13 Delivery and Java interface

If you deliver an image as a shared library that is intended to be loaded into the Java VM, you should call
lw-ji:setup-deliver-dynamic-library-for-java before calling deliver.
lw-ji:setup-deliver-dynamic-library-for-java ensures that LispWorks will find the JVM that it was loaded in,
and (by default) initializes the Java interface by calling lw-ji:init-java-interface.

10 Delivery and Internal Systems

75

http://www.lispworks.com/documentation/HyperSpec/Body/f_intern.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_intern.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_find_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_intern.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_2.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm

If you call Lisp functions from Java using the methods in the Java class com.lispworks.LispCalls, you should ensure
that these functions are not shaken out during delivery. The function deliver-keep-symbols is the intended interface to
do that, but you can also use the :keep-symbols argument to deliver.

10 Delivery and Internal Systems

76

11 Troubleshooting the delivery process

This chapter provides solutions to common delivery problems.

11.1 Debugging errors in the delivery image

In general, it is worth avoiding debugging an image that has been delivered at a high delivery level if possible. If you discover
a bug:

1. First check if the same error occurs in the original (undelivered) development image. If it does, debug the problem in this
image.

2. If the error is not reproducible in the development image, check if it is reproducible in an image delivered at a lower
delivery level (try 0, then 1 etc). If it is, read the error message and backtrace carefully. In most cases, this is enough to
debug the problem.

3. Make sure you can see messages printed by the application (the run time output), which may contain useful information.
In the case of a graphical application on Microsoft Windows or Macintosh these messages may not normally be visible
but can be captured by redirecting the run time output to a file.

To redirect the run time output, run the application in a command shell. This means a DOS command window (on
Microsoft Windows), Terminal.app (macOS) or a shell (Unix/Linux etc). Enter the application executable filename
followed by > followed by the output filename, for example:

on Windows:

C:\Program Files\MyApp> myapp.exe > C:\temp\myapp-output

on Macintosh:

mymac:/Applications/MyApp/MyApp.app/Contents/MacOS 2 % ./myapp > /tmp/myapp-output

4. Consider the possibility that you are trying to use functionality that was removed by delivery. You may need to keep the
functionality explicitly, by using one of the deliver keywords described in 5.1.5 Retaining or removing
functionality.

5. If the problem occurs only in the delivered image and not in the original image, and it is still not clear what the problem
is, please contact Lisp Support immediately. Send us your deliver script, all the output of the delivery process and the
run time output of the application itself. This situation is regarded by Lisp Support as a bug that should be fixed.

11.2 Problems with undefined functions or variables

A function or variable can be undefined for any of the following reasons:

1. It was never defined.

Check the image to see if it was defined before calling deliver again.

2. It belongs to a package that was smashed.

Check whether its package is in the list of smashed packages printed by deliver. Use symbol-package identify its
home package.

77

http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_3.htm

3. It was interned in the wrong package.

This would probably be because its real package was deleted. Check if the symbol that was called is one that was
interned after delivering the image — that is, while the application was running.

4. It has been deleted explicitly.

For example, load, complex number functions, and so on. Check in 5 Keywords to the Delivery Function that there is
no Delivery keyword with a default setting that throws it out.

5. It is an internal symbol and was shaken out.

If a symbol that is printed is uninterned and you cannot work out its home package from its name, try using
find-all-symbols or apropos in the image after loading the application, but before the call to deliver, to find the
possible symbols.

6. It belongs to a load-on-demand module. See 10.7 Modules.

See 10.8 Symbol, SYMBOL-NAME and package issues during delivery for the explanation and suggestions in cases 2, 3
and 5 above.

11.3 Problems with READ

A run time error:

Error: Attempt to invoke function READ on arguments...

occurs when the application uses the Lisp reader but delivery has removed that functionality.

The solution is to retain the Lisp reader, by the delivery keyword :keep-lisp-reader.

If your application does not use the reader directly, the error may be due to a LispWorks function using it. Please see 10.2
Delivery and the Lisp reader for more information.

11.4 Failure to find a class

This situation can be resolved by much the same procedure as that described in 11.2 Problems with undefined functions or
variables.

11.5 REQUIRE was called after delivery time with module ...

This error message means that a loadable module was omitted from the application build, and the program now tries and fails
to load that module. The solution is described in 10.7 Modules.

11.6 Failed to reserve... error in compacted image

Loading a compacted LispWorks (32-bit) for Windows DLL might result in an error message like this:

Failed to reserve 14024705 bytes of memory (preferred address 0x20000000)
Error 487: Attempt to access invalid address.

LispWorks normally relocates its heap if the default address 0x20000000 is already in use (for example, by another DLL) but
this is not possible if the DLL is compacted.

The solution is to build a non-compacted DLL:

11 Troubleshooting the delivery process

78

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_find_a.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_apropo.htm

(deliver nil "foo" 5 :dll-exports '("Foo") :compact nil)

11.7 Memory clashes with other software

LispWorks executables and dynamic libraries have a default startup location which may clash with other software already
mapped at that location. Also, a LispWorks image may grow up to an address where other software is already mapped.
Where possible LispWorks attempts to avoid such clashes automatically.

If LispWorks fails to use other memory as it grows, the effect will be to limit the size of the Lisp heap, possibly leading to
messages:

failed to enlarge memory

at the console. On some platforms LispWorks can fail to detect a clash safely, which will lead to unpredictable behavior if it
overwrites other code.

The behavior is specific to the particular platform and LispWorks implementation. There is a discussion of these issues (with
the platform-specific details) and a description of how you can avoid memory clashes under "Startup relocation" in the
LispWorks® User Guide and Reference Manual.

11.8 Possible explanations for a frozen image

The image may die or hang up without issuing any useful message, either at run time or possibly during delivery. Some
possible remedies follow:

• Deliver the application at a lower delivery level.

If things work after this, try the same level, but override the changed keywords one by one.

• Retain more packages, with the keyword :packages-to-keep.

For example:

(deliver 'application-entry
 "application"
 5
 :packages-to-keep '("LISPWORKS"))

The COMMON-LISP package normally should not be deleted or smashed, so it is unlikely to cause problems , but
LISPWORKS and the packages defined in the application itself are worth investigating.

If this gets the image working again, try to discover why the package is required and see if you can eliminate this
requirement. See 10.8 Symbol, SYMBOL-NAME and package issues during delivery for more information on
keeping and throwing away packages.

11.9 Warnings about combinations and templates

Warning messages such as the following:

;*****
;>>> Add this combination to the template file <<<
(PRE-COMPILE-COMBINED-METHODS
 ((1 NIL) NIL (_CALL-METHOD_))) ;

11 Troubleshooting the delivery process

79

occur when a method combination required by a particular function call is not available. You can eliminate these warnings
either by compiling the method combination template forms output in the message and loading them into the image before
delivery, or by using the keyword :warn-on-missing-templates. See 10.1.2.1 Finding the necessary templates and
10.1.2.2 Incorporating the templates into the application.

11.10 FLI template needs to be compiled

An error starting with:

"FLI template needs to be compiled"

is probably a result of missing Foreign Language Interface templates. See 10.6.1 Foreign Language Interface templates for
instructions.

11.11 Failure to lookup X resources

X resource names use Lisp symbol names in CAPI/Motif, which might be removed from the delivered image. This issue and
the solution is described on page 8.2.4 X resource names use Lisp symbol names.

11.12 Reducing the size of the delivered application

If your application does not contain very large data structures, the greatest factor in its size when delivered is usually the
number of symbols left in it.

This is because function definitions (which are large) are usually associated with symbols. Only when these symbols are
deleted can the associated function definitions be deleted. Until that happens, the garbage collector passes over them during
delivery.

You should look for symbols that are left in the image, which do not need to be there. You can do this by starting the
delivered image in level 4 (or with :keep-debug-mode) with the argument -listener. The image starts by interacting
with the user. You can then check which packages and symbols are left.

list-all-packages is one function you can use. Using the :call-count keyword is another possibility.

11.13 Symbol names changed to "Dummy Symbol Name"

Delivery can remove symbol names, changing them to the same string "Dummy Symbol Name". This makes it difficult to
debug the application - for the recommended approach see :symbol-names-action.

11.14 Debugging with :no-symbol-function-usage

When :no-symbol-function-usage is true while delivering an image "foo" on x86 platforms, delivery writes a file
named "foo.zaps" (the "zaps file") containing debug information about the symbols that were eliminated.

If an error occurs in the delivered image, the backtrace will contain a line of the form.

("SYMBOL-FUNCTION-VECTOR" nnn)

where nnn is an integer. The actual function name can be recovered from the zaps file by doing this in the LispWorks
development image:

11 Troubleshooting the delivery process

80

http://www.lispworks.com/documentation/HyperSpec/Body/f_list_a.htm

(require "delivery")
(dv::recover-zapped-symbol-from-file "foo.zaps" nnn)

The numbers are unique to each image, so take care to use the zaps file that was produced at the same time as the delivered
image.

11.15 Interrogate-Symbols

interrogate-symbols is designed to find why symbols are left in the image even though they should not be. Since
keeping information in the image would itself keep symbols, the facility has as little functionality as possible. The result is a
non-intuitive interface, and you should be ready for this. You are encouraged to try other methods first. In particular, you
might consider contacting Lisp Support first.

To use interrogate-symbols pass :interrogate-symbols t to deliver. This loads the interrogate symbol facility.
and causes the delivered image to check for the command line argument -interrogate-symbols on startup. If this
command line argument appears, the image first does symbol interrogation, and then proceeds to run the application as
normal.

Symbol interrogation starts by building an internal table of reverse pointers, during which the image prints some messages
about its progress. When it finishes, it prompts:

Enter Symbol >

The input is read one line at a time. Each line is interpreted as a single string, where SYMBOLNAME and PACKAGENAME

contain no colons and the line does not begin with a plus sign unless specified. The string can take one of five formats. If the
string is of the format:

1. SYMBOLNAME

then it is a symbol name. The string is used as the argument to find-symbol (in the current package).

Note the string is used as-is, so it must not contain escape characters or leading or trailing spaces, and must be in the
right case. For example, the symbol that is printed:

SETF::\"USER\"\ \"WHATEVER\"

must be entered:

SETF::"USER" "WHATEVER"

[omitting the escape characters #\\] and to find the symbol CAR, you must enter CAR, and not car. #\: characters
after the first one (or the first pair) are taken as part of the symbol.

If the symbol is found, the image prints a list, when the first element is the symbol, the second element is a list of
interesting symbols that point to that symbol (possibly through uninteresting symbols), and the third element is a list of
symbols that point to the symbol directly. A symbol B points to symbol B directly when there is a chain of pointers from
A to B which does not go via another symbol.

An interesting symbol is a symbol in another package, or a symbol from the same package which is pointed to by a
symbol from another package. The idea is that the interesting symbols are the symbols that are most likely to be worth
further investigation.

Both the second and the third element may be the symbol :many rather than a list, if there are more the
sys::*maximum-interrogate-return* (default value 30) of them.

2. PACKAGENAME:SYMBOLNAME or
PACKAGENAME::SYMBOLNAME

11 Troubleshooting the delivery process

81

http://www.lispworks.com/documentation/HyperSpec/Body/f_find_s.htm

then it is a package name followed by a symbol name. The characters up to the first colon are used to search for the
package. The characters after the last colon comprise a symbol name. Like in 1. above, both the package name and the
symbol name must exactly match the actual package and symbol name. The output is the same as in 1.

3. +SYMBOLNAME or
+PACKAGENAME:SYMBOLNAME or
+PACKAGENAME::SYMBOLNAME

then the package and/or symbol is determined from the rest of the string as in 1. or 2. However, instead of looking for
symbols that point to it, the image builds a tree of reversed pointers starting from the symbol, going to depth
sys::*check-symbol-depth*. In the tree, the car is an object and the cdr is a list of pointers to it. Each pointer
may be a single object (if it has reached the depth limit, or found an object that is already in the tree), or a recursive tree.
The tree may be quite extensive.

4. PACKAGENAME:

than the line specifies a package name. If the string does not start with a #\+, the image prints each symbol from other
packages that point (as defined in 1.) to symbols in the package, followed by a list of the symbols in the package that it
points to. To construct this list it has to check the reverse pointers from all the symbols in the package, which may take a
long time if the package contains many symbols.

This option is especially useful in conjunction with the :smash-packages-symbols keyword to deliver, to find
why a package that should have gone remains in the image.

5. +PACKAGENAME:

then the rest of the string is treated as a package name as in 4., but the image prints the same information that 1. prints,
but for each symbol in the package.

11 Troubleshooting the delivery process

82

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

12 Interface to the Delivery Process

12.1 Interface to the delivery process

For details of the functions delivery-value, deliver-keywords, delivery-shaker-cleanup and
delivery-shaker-weak-pointer which allow you fine-grained control during the delivery process, if required, see 16
Delivery Reference Entries.

The function hcl:delivered-image-p is the predicate for whether the running image is a delivered image, that is an
image saved by a call to deliver.

The action list "Delivery actions" is executed when the delivery process starts, before any system action. For example, if
my-hash-table contains entries that are not required in the delivered application, then you may write:

(defun clear-my-hash-table()
 (maphash #'(lambda (x y)
 (unless (required-in-the-application-p x y)
 (remhash x *my-hash-table*)))
 my-hash-table))

(define-action "delivery actions" "Clear my hash table"
 'clear-my-hash-table)

Using the action list has two advantages (over the crude method of removing code by fmakunbound and so on):

1. It does not have to be part of the deliver script, so it can be written near the code that uses *my-hash-table*. This
makes it easier to maintain that code.

2. It can access the user interface of the delivery process via the accessor delivery-value.

83

http://www.lispworks.com/documentation/HyperSpec/Body/f_fmakun.htm

13 Example: Delivering CAPI Othello

This short example demonstrates how to deliver a small graphical application: an implementation of the board game Othello,
with the graphical portion of it written using the CAPI library.

You can see the code for this application by evaluating the following form:

(example-edit-file "capi/applications/othello")

13.1 Preparing for delivery

With our ready-written application we can move straight to delivery. But first, try the application out in an ordinary image so
that you can see what it does.

To do this:

1. Create a directory called othello and copy the example file into it.

2. Start up LispWorks and its environment.

3. Compile and load the example file.

CL-USER 1 > (compile-file "othello.lisp" :load t)
[compilation messages elided]

4. Start up the application with the following form:

CL-USER 2 > (play-othello)

5. Play Othello!

Once you are familiar with this implementation of Othello, you can move on to delivery preparations.

13.1.1 Writing a delivery script

The next task is to create a delivery script. This is a Lisp file that, when loaded into the image, loads your compiled
application code into the image, then calls the delivery function deliver to produce a standalone image.

The first delivery should be at delivery level 0. A successful delivery at this level proves that the code is suitable for delivery
as a standalone application. After assuring yourself of this, you can look into removing code from the image to make it
smaller.

If the delivered image is small enough for your purposes, there is no need to pursue a smaller image. An application delivered
at level 0 contains a lot more in the way of debugging information and aids, and so is in some ways preferable to a leaner
image.

The startup function in the Othello game is cl-user::play-othello. The initial delivery script therefore looks like this:

(in-package "CL-USER")
(load-all-patches)
;; Load the compiled file othello. Should be in the same

84

;; directory as this script.
(load (current-pathname "othello" nil))
;; Now deliver the application itself to create the image othello
(deliver 'play-othello "othello" 0 :interface :capi)

Save this script in the newly created othello directory as script.lisp.

Note: Alternatively you can create a delivery script using the Application Builder tool in the LispWorks IDE. The
Application Builder is a windowing interface offering another way to performs the steps described the following sections. For
full instructions on using the Application Builder tool, see the LispWorks IDE User Guide.

The remainder of this section shows you how to complete delivery of the othello application using a command shell.

13.2 Delivering a standalone image

We now have a delivery script, enabling us to deliver the application as conveniently as possible. We can now try to deliver a
simple, standalone image (with the delivery script having been set up to deliver at delivery level 0) to verify that the
application can function standalone, before trying to make it smaller.

1. Run the image with the script like this:

lispworks-8-0-0 -build script.lisp

See 2.2 Delivering the program for details of how to run the image with a script on your platform. The LispWorks
image name will differ from the above according to the platform.

The script runs for a while, and as delivery proceeds a number of messages are printed. When it is finished, the image
exits and there is an executable file called othello.exe in your current working folder on Microsoft Windows, and
othello in your working directory on macOS, Linux and other Unix-like platforms.

2. Execute the othello file.

This should be a working, standalone Othello game.

Note: On macOS/Cocoa you will also need to create an application bundle to run GUI applications properly. See 13.3
Creating a macOS application bundle for details.

See 4.3 Delivering a standalone application executable for a more detailed discussion of this part of the delivery process.

13.3 Creating a macOS application bundle

The section applies only to LispWorks for Macintosh with the native Cocoa GUI.

You should not simply run a macOS/Cocoa GUI application from the command line in Terminal.app. Instead you should put
the image in a suitable Application Bundle and run it using the Finder. The example delivery scripts in this manual create the
Application Bundle before writing the executable.

The function hcl:create-macos-application-bundle does several things to construct a suitable macOS application
bundle for your delivered image. It:

• Creates the folders comprising an Application Bundle.

• Adds the resources from a supplied template bundle (or LispWorks (64-bit).app) to the Application Bundle.

• Writes a suitable Info.plist file in the Application Bundle.

• Returns the path of the executable within the Application Bundle.

13 Example: Delivering CAPI Othello

85

Note: You must supply identifier to provide CFBundleIdentifier when creating a bundle for your own application.

13.3.1 Example application bundle delivery script

Note how this script calls deliver with the executable path returned by hcl:create-macos-application-bundle:

(in-package "CL-USER")
(load-all-patches)
;; Compile and load othello example code
(compile-file (example-file "capi/applications/othello")
 :output-file :temp
 :load t)
;; Create Othello.app and deliver the executable inside it
(deliver 'play-othello
 #+:cocoa
 (create-macos-application-bundle
 "~/Desktop/Othello.app"
 ;; Do not copy file associations...
 :document-types nil
 ;; ...or CFBundleIdentifier from the LispWorks bundle
 :identifier "com.example.Othello"
)
 #-:cocoa "~/othello" 0 :interface :capi)

In the session below script.lisp is in the user's home directory. Here is the start and end of the session output in
Terminal.app:

mymac:/Applications/LispWorks 8.0 (64-bit)/LispWorks (64-bit).app/Contents/MacOS % ./lispworks-8-0-
0-macos64-universal -build ~/script.lisp
; Loading text file /Applications/LispWorks 8.0 (64-bit)/Library/lib/8-0-0-0/private-patches/load.l
isp
LispWorks(R): The Common Lisp Programming Environment
Copyright (C) 1987-2021 LispWorks Ltd. All rights reserved.
Version 8.0.0
Saved by LispWorks as lispworks-8-0-0-amd64-darwin-gtk, at 02 Aug 2021 15:21
User lw on mymacmachine.lispworks.com
; Loading text file /Users/lw/script.lisp
; Loading text file /Applications/LispWorks 8.0 (64-bit)/Library/lib/8-0-0-0/private-patches/load.
lisp
;;; Compiling file /Applications/LispWorks 8.0 (64-bit)/Library/lib/8-0-0-0/examples/capi/applicati
ons/othello ...
;;; Safety = 3, Speed = 1, Space = 1, Float = 1, Interruptible = 1

[... full compilation and delivery output not shown...]

Shaking stage : Saving image
Build saving image: /Users/lw/Desktop/Othello.app/Contents/MacOS/Othello
Build saved image: /Users/lw/Desktop/Othello.app/Contents/MacOS/Othello

Delivery successful - /Users/lw/Desktop/Othello.app/Contents/MacOS/Othello

The last line of the deliver output shows the full path to the executable, but you should run the application bundle
Othello.app via the Finder.

13.3.2 Alternative application bundle creation code

Your LispWorks Library contains example code which constructs a macOS application bundle. It defines
write-macos-application-bundle which is similar to hcl:create-macos-application-bundle.

LispWorks 5.1 and earlier versions relied on this example code to create macOS application bundles and you may still wish to

13 Example: Delivering CAPI Othello

86

use it, or a modified version of it, if hcl:create-macos-application-bundle does not meet your needs. Load the
example file in your delivery script, before calling deliver, like this:

#+:cocoa
(compile-file
 (example-file "configuration/macos-application-bundle")
 :output-file :temp
 :load t)

There is another example, which is actually a save-image script (rather than deliver), in:

(example-file "configuration/save-macos-application.lisp")

13.3.3 Further macOS delivery examples

These can be found in your LispWorks library directory:

(example-edit-file "delivery/macos/")

13.4 Command line applications

If you need to deliver a non-GUI application for macOS, change the delivery script to remove the code (conditionalized in the
examples under #+cocoa) that constructs the Application Bundle.

On all platforms, delivering a non-GUI application will not need the :interface :capi keyword argument.

Your delivery script to build a command line application will look something like this:

(in-package "CL-USER")
(load-all-patches)
(load "non-gui-code")
(deliver 'dont-start-the-gui
 "non-gui-app"
 5
 :console t)

13.5 Making a smaller delivered image

Having delivered a standalone image successfully, we can look into delivering a smaller one. To do this we adjust the
parameters passed to deliver in the delivery script. The typical approach is to experiment with parameters until you find a
set that produces the smallest possible working image from your application.

There are many ways to make the image smaller, but the simplest is to increase the delivery level specified to the deliver
function. See 4.5 How to deliver a smaller and faster application for more details.

13.5.1 Increasing the delivery level

Applications that do not use any of Common Lisp's more dynamic features (creating classes at run time, evaluating arbitrary
code) can usually be delivered all the way up to the maximum level of 5 without breaking. Our Othello game is one such
application.

Try re-delivering the Othello game at different levels. Do this by editing your delivery script, changing the third argument to
deliver to a number between 0 and 5 inclusive.

13 Example: Delivering CAPI Othello

87

14 Efficiency considerations when coding for
delivery

This chapter explains some efficiency considerations you might make when coding your application.

14.1 Use of modules

Can you avoid using a large module and still get the functionality you need? Modules are saved in the image, and even after
Delivery has gone through them to throw things out, they may still have a noticeable effect on the size of the delivered image.
The fewer modules you use, the smaller the delivered size of your application.

Note: Some modules are built on top of others. If you load such a module into the image the others are loaded too. Pay close
attention to these "hidden" contributions to image size by following the loader messages in the Listener.

14.2 Loading code at run time

You may retain the loader in a delivered application, and use it to load compiled code or any of the supplied modules at run
time. This is useful if your application's users need to load their own code into it.

However, we do not recommend using this as a means of deferring the addition of module code to your image. It is far better
to deliver your application with all the modules it needs. The first benefit is that the module itself is delivered — if you load it
at run time you cannot do this. Second, you avoid slowing your application to a halt while it loads the module. Finally, if
you leave the option open of loading arbitrary code into the image, you may need to keep the entire COMMON-LISP package,
which adds greatly to the size of the delivered image.

14.3 General strategy for reducing the image size

In many cases, the size of the image can be reduced if part of the user code or data is eliminated, for example, when this code
or data is present only for debugging purposes. The system, however, cannot tell which part of the code or data can be
eliminated, so you have to do it yourself.

That can be done in either of two ways:

1. You can eliminate the code or data explicitly before calling deliver, by using fmakunbound, makunbound, remhash
and so on. The advantage of this approach is that it does not require you to know anything about Delivery. The
disadvantage of this is that these calls must be put explicitly in the delivery script.

2. The LispWorks image contains an action list called "Delivery actions", which you can add actions to. For details of how
to use this, see 12 Interface to the Delivery Process.

See the LispWorks® User Guide and Reference Manual for information about action lists in general.

88

http://www.lispworks.com/documentation/HyperSpec/Body/f_fmakun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_makunb.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_remhas.htm

14.4 Use of symbols, functions, and classes

Bear in mind that symbols, functions, and classes contribute significantly to the size of a delivered application. While it is not
worth letting this interfere greatly with good design and maintainability, efforts to minimize their use in your application may
pay off.

Note: Symbols, functions and classes interact. If a symbol is retained, any function or class bound to it is also retained in the
delivered application, even if it is never funcalled or instantiated. Delivery cannot be sure that the symbol is not ever used to
do these things, and so errs on the side of safety, at the expense of image size.

14.5 Making references to packages

Certain Common Lisp functions and macros make explicit reference to packages. If you use any of these on particular
packages, you may need to keep those packages in the application. This can contribute greatly to the size of the delivered
application image. For more details, see 10.9.5 When to delete and smash packages.

14.6 Declaring the types of variables used in function calls

You can minimize, or even eliminate, run time decisions about the types of function arguments by making them instances of a
known type. This gives the compiler a chance to inline appropriate code or perform other optimizations.

14.7 Avoid referencing type names

Referencing the name of a type (that is, a symbol) in code means that delivery cannot remove that type even if it is not used
anywhere else. This is often seen in code using typep, typecase or subtypep to discriminate between types.

For example, if you have code like this:

(defun foo (x)
 (cond ((typep x 'class1) ...)
 ((typep x 'class2) ...)
 ...
 ((subtypep x 'class1000) ...)))

then delivery would keep all of the classes class1,...,class1000 even if nothing else references these classes.

Possible solutions are described in 14.7.1 Referencing types via methods and 14.7.2 Referencing types via predicates.

14.7.1 Referencing types via methods

Code can reference type names either directly as shown in 14.7 Avoid referencing type names or via type-of in code like
this:

(defun foo (x)
 (let ((type (type-of x)))
 (cond ((eq type 'class1) ...)
 ((eq type 'class2) ...)
 ...
 ((eq type 'class1000) ...))))

Instead, you could express the conditional clauses as methods specialized for each class:

(defmethod foo ((x class1)) ...)
(defmethod foo ((x class2)) ...)

14 Efficiency considerations when coding for delivery

89

http://www.lispworks.com/documentation/HyperSpec/Body/f_typep.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tpcase.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_subtpp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_tp_of.htm

...
(defmethod foo ((x class1000)) ...)

This would allow any unused classes to be removed by delivery, because each method is a separate function.

14.7.2 Referencing types via predicates

If you do not wish to retain CLOS, and are referencing types that have built-in predicates, or structure types, you could use
these predicates instead of the type names to allow delivery to remove unused types. For example this code:

(typecase x
 (integer (process-an-integer x))
 (string (process-a-string x))
 (a-struct (process-a-struct x)))

could be rewritten as:

(cond ((integerp x) (process-an-integer x))
 ((stringp x) (process-a-string x))
 ((a-struct-p x) (process-a-struct x)))

14.8 Use of the INTERN and FIND-SYMBOL functions

These functions allow a running program to locate arbitrary symbols. If your application uses them you may need to keep
many symbols in the image, along with any associated definitions. See 10.11 Coping with intern and find-symbol at run
time.

Note: The read function typically calls intern, thus causing the same problems.

14.9 Use of the EVAL function and the invocation of uncompiled
functions

Applications using eval or invoking uncompiled functions in other ways need the entire Common Lisp interpreter available
to them. Delivery therefore keeps it in the delivered image, adding significantly to its size.

14.10 User-defined and built-in packages

Try to develop your application using a well-defined set of packages. Particularly, try not to intern symbols in built-in
packages. You may find at delivery time that a particular built-in package is suitable for throwing out, and therefore have to
go back and take your symbol out of it in order to do so safely.

Note: When you use built-in packages in your own packages (via defpackage), take care when naming symbols, since they
may accidentally tie up with external function or class definitions in the built-in package and cause them to be retained
unnecessarily. (This retention occurs because Delivery does not throw out unused definitions if they are referred to by some
other symbol in the application — See 14.4 Use of symbols, functions, and classes.)

14 Efficiency considerations when coding for delivery

90

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_rd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_intern.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eval.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpkg.htm

15 Self-contained examples of delivery

This chapter enumerates the set of examples in the LispWorks library which illustrate how to deliver a runtime.

See README.txt files in the sub-directories for instructions. To view the example code and the README.txt file, open the
file in the Editor tool in the LispWorks IDE. Evaluating the calls to example-edit-file shown below will achieve this.

Note: In the README.txt files, "Use x as delivery script" (when x is a file name) means you can do one of the following:

• Use the file path as a command-line argument with -build. That is, run LispWorks in a console like this:

LispWorks-image -build x

• Use the script in the Application Builder tool in the the LispWorks IDE. To do this, either edit the file and use the editor
command Build Application, or start the Application Builder tool directly and enter the file path in the Build script
pane.

For more information about the Application Builder tool, see the LispWorks IDE User Guide.

15.1 Delivering a Cocoa CAPI application examples

These files illustrate building Cocoa applications on macOS, using templates to create the application bundle:

(example-edit-file "delivery/macos/README.txt")

(example-edit-file "delivery/macos/single-window-application")

(example-edit-file "delivery/macos/multiple-window-application")

15.2 Delivering a CAPI application examples

These files illustrate building a CAPI "Hello World" application:

(example-edit-file "delivery/hello/README.txt")

(example-edit-file "delivery/hello/deliver")

(example-edit-file "delivery/hello/hello")

These files illustrate building a CAPI application which plays the Othello game:

(example-edit-file "delivery/othello/README.txt")

(example-edit-file "delivery/othello/deliver")

(example-edit-file "capi/applications/othello")

91

These files illustrate building a CAPI application with error handling:

(example-edit-file "delivery/debugger-hook/README.txt")

(example-edit-file "delivery/debugger-hook/application-with-errors")

(example-edit-file "delivery/debugger-hook/deliver")

15.3 Delivering a dynamic library examples

These files illustrate building a dynamic library on Unix-like platforms:

(example-edit-file "delivery/dynamic-library/README.txt")

(example-edit-file "delivery/dynamic-library/example")

(example-edit-file "delivery/dynamic-library/deliver")

These files illustrate building a dynamic library to load into Java:

(example-edit-file "java/lisp-as-dll/README.txt")

(example-edit-file "java/lisp-as-dll/LispWorksCaller.java")

(example-edit-file "java/lisp-as-dll/deliv-script")

15.4 Delivering a Windows service examples

These files illustrate creating a service on Microsoft Windows:

(example-edit-file "delivery/ntservice/README.txt")

(example-edit-file "delivery/ntservice/define-service")

(example-edit-file "delivery/ntservice/deliver")

(example-edit-file "delivery/ntservice/build-config")

(example-edit-file "delivery/ntservice/testapp-lw-test")

(example-edit-file "delivery/ntservice/ntservice")

(example-edit-file "delivery/ntservice/testapp-lw")

15 Self-contained examples of delivery

92

16 Delivery Reference Entries

This chapter contains reference pages for Delivery, including the interface to the Delivery process.

deliver Function

Summary

Creates LispWorks executable applications and dynamic libraries.

Package

lispworks

Signature

deliver function file level &rest keywords

Arguments

function⇓ A symbol.

file⇓ A string or pathname.

level⇓ An integer in the inclusive range [0, 5].

keywords⇓ Keyword arguments described in full in 5 Keywords to the Delivery Function.

Description

The function deliver is the main interface to the delivery tools. You use it to create LispWorks executable applications and
dynamic libraries.

The first three arguments are required.

If you are creating an executable application, function should name a function of no arguments. This function will be called
on startup of the executable. If you are creating a dynamic library, function should be nil.

file names the file in which the delivered image should be saved. The file extension .exe is appended to executables
delivered on Microsoft Windows. For dynamic libraries, a file extension is appended as follows:

Microsoft Windows .dll

macOS .dylib

Other Unix-like systems

.so

If the delivery keyword :split is true then a second file containing the Lisp heap is created.

On macOS, you may wish to create an application bundle containing your delivered image. For an example showing how to

93

do this, see 13.3 Creating a macOS application bundle.

level specifies the delivery level which is a measure of how much work Delivery does to reduce the size of the image. level 5
is the most severe. The least work on image reduction is done at level 0.

The most important keywords arguments are :interface and :multiprocessing. If your application uses CAPI, you
must pass :interface :capi. If your application does not use the CAPI, but does use multiprocessing, then you must pass
:multiprocessing t. Your first attempt to deliver your application should use no more than these keywords.

In addition, a variety of other keywords can be passed to deliver. These are for fine-tuning by controlling aspects of
delivery explicitly. Add more keywords only when you find that you need them.

All the deliver keywords are documented in 5 Keywords to the Delivery Function. Additionally, they can been seen in
the LispWorks image by calling:

(require "delivery")
(deliver-keywords)

deliver checks that load-all-patches has been called. If load-all-patches has not been called in the session, then
deliver signals an error.

Notes

For information about invoking deliver using the IDE, see 28 The Application Builder in the LispWorks IDE User Guide.

See also

deliver-keywords
5 Keywords to the Delivery Function
delivered-image-p
save-image

deliver-keep-symbol-names Function

Summary

Causes specified symbol names to be retained if the symbols are retained.

Package

lispworks

Signature

deliver-keep-symbol-names &rest symbols

Arguments

symbols⇓ Symbols.

Description

The function deliver-keep-symbol-names marks the symbols symbols such that their names are kept if the symbols
themselves are not shaken out. This is useful when the symbol name is used as long the symbol is used. For example, you

16 Delivery Reference Entries

94

may have a function that calls error, passing its name (the symbol) to be included in the error message. If the symbol is not
referenced by the actual application, it will be shaken out and there is no issue, but if it is referenced, you still want the
message to print the name properly. For example the import interface of Java, which generates many callers and there is a
good chance that many of them will not be used, marks these callers to keep the symbol names.

Notes

If you want to ensure that the symbol is kept even if it is not referenced, use deliver-keep-symbols.

See also

deliver-keep-symbols
:keep-symbol-names

deliver-keep-symbols Function

Summary

Causes symbols and their names to be retained.

Package

lispworks

Signature

deliver-keep-symbols &rest symbols

Arguments

symbols⇓ Symbols.

Description

The function deliver-keep-symbols marks each symbol in symbols such that they are not shaken out during delivery, and
their names are kept.

This is useful for symbols that are not explicitly referenced by Lisp (and hence may be shaken out) but are still needed, for
example symbols that are called directly from Java.

Using deliver-keep-symbols has the same effect as passing :keep-symbols to deliver, but
deliver-keep-symbols is much more convenient because you can use it in your source code before loading the delivery
module.

You will typically add a call to deliver-keep-symbols after the definition(s) of the symbols, as in the example below.

Examples

(defun function-called-directly-from-java (x y)

)

(deliver-keep-symbols
 'function-called-directly-from-java)

16 Delivery Reference Entries

95

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

See also

deliver-keep-symbol-names
:keep-symbols

deliver-keywords Function

Summary

Prints the legal keywords to deliver.

Package

lispworks

Signature

deliver-keywords

Description

The function deliver-keywords prints the legal keywords to deliver.

If the default value for a particular keyword is non-nil, it is printed on the same line. The default is a form that is evaluated if
the keyword was not passed to deliver, in the order that deliver-keywords prints.

deliver-keywords also prints a short documentation string for each keyword.

See also

deliver

delivery-shaker-cleanup Function

Summary

Defines a cleanup function that is called after the shaking operation.

Package

lispworks

Signature

delivery-shaker-cleanup object function

Arguments

object⇓ An object.

function⇓ A function designator.

16 Delivery Reference Entries

96

Description

The function delivery-shaker-cleanup can be used to define a cleanup function that is called after the shaking
operation. delivery-shaker-cleanup stores a pointer to function and a weak pointer to object. After the shaking, the
shaker goes through all the object/function pairs, and for each object that is still alive, calls function with object as argument.
This is used to perform operations that are dependent on the results of the shaking operation.

If the cleanup function has to be called unconditionally, then object should be t. The cleanup function should be a symbol or
compiled function/closure, unless the evaluator is kept via :keep-eval. The shaker performs another round of shaking after
calling the cleanup functions, so unless something points to them, they are removed before the delivered image is saved.
This also means that objects (including symbols) that survived the shaking until the cleanup function is called, but become
garbage as a result of the cleanup function, are removed as well.

The cleanup function cannot use delivery-value. If the value of one of the keywords to deliver is needed in the
cleanup function, it has to be stored somewhere (for example, as a value of a symbol, or closed over). It cannot be bound
dynamically around the call to deliver, because the cleanup function is executed outside the dynamic context in which
deliver is called.

Examples

Suppose the symbol P:X is referred to by objects that are not shaken, but its values are used in function P:Y, which may or
may not be shaken. We want to get rid of the value of P:X if the symbol P:Y has been shaken, and set the value of P:X to t if
:keep-debug-mode is passed to deliver and is non-nil, or nil otherwise.

(defun setup-eliminate-x ()
 (let ((new-value
 (if (delivery-value :keep-debug-mode)
 t
 nil)))
 (delivery-shaker-cleanup
 t
 #'(lambda ()
 (unless (find-symbol "Y" "P")
 (let ((sym (find-symbol "X" "P")))
 (when sym
 (set sym new-value))))))))

(define-action "Delivery actions" "Eliminate X"
 'setup-eliminate-X)

This sets up the lambda to be called after the shaking operation. It will set the value of P:X if the symbol P:Y has been
shaken.

Notes about the cleanup function:

1. It does not call delivery-value itself. Instead, it closes over the value.

2. It does not contain pointers to P:X or P:Y. In this case, it is specially important not to keep a pointer to P:Y, because
otherwise it is never shaken.

3. It does not assume that P:X will survive the shaking.

4. It does assume that the package "P" is not deleted or smashed.

The cleanup functions are called after the operation of delivery-shaker-weak-pointer is complete, and are useful for
cleaning up the operations of delivery-shaker-weak-pointer.

16 Delivery Reference Entries

97

See also

delivery-shaker-weak-pointer

delivery-shaker-weak-pointer Function

Summary

Used to make a pointer from one object to another weak object during the shaking operation.

Package

lispworks

Signature

delivery-shaker-weak-pointer pointing accessor &key setter remover dead-value pointed

Arguments

pointing⇓ An object. You are free to use your own notion of pointing, for example, it may be the key
in a hash table.

accessor⇓ A symbol or a list starting with a symbol.

setter⇓ A function designator or a list starting with a function designator.

remover⇓ A function designator or a list starting with a function designator, or t.

dead-value⇓ An object.

pointed⇓ An object.

Description

The function delivery-shaker-weak-pointer is used to make a pointer from one object pointing to another weak object
pointed during the shaking operation. The operations of delivery-shaker-weak-pointer are:

1. If setter is nil, it computes it based on accessor (see below), and creates a record with all the arguments for the shaker.

2. Before the shaker starts shaking, for each of the records created in (1), it finds the value of the pointed object, which is
pointed if it is not nil, or the result of applying accessor to pointing.

If pointed is nil and accessor returns nil, the shaker does not do anything else for this record. Otherwise, it stores
weak pointers to both pointing and the pointed object, and uses remover to remove the pointer from pointing.

3. After the main shaking operation, for each pair of pointing/pointed object from (2) it checks if both have survived the
shaking. If they did, it stores a pointer to the pointed object in pointing using setter.

If both pointed and setter are non-nil then accessor is not used. Otherwise accessor is called with pointing and returns the
pointed object. accessor is used for two purposes:

• Getting the pointed object if pointed is nil.

• Computing the value for setter if it is nil.

If accessor is a symbol then it specifies a function that is called with the pointing object as its argument. If accessor is a list
then the car of the list is called with pointing as its first argument, and the cdr of the list forming the rest of the arguments,

16 Delivery Reference Entries

98

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

that is:

(apply (car accessor) pointing (cdr accessor))

For example, if accessor is (slot-value name) the call is (slot-value pointing name), and if accessor is
(aref 1 2) the call is (aref pointing 1 2).

If setter is nil, it is computed by the system using accessor and the same expansion that setf would use. If setter is non-nil,
it has the same properties as accessor, except that in the call the pointed object is inserted before the rest of the arguments.
That is, if setter is (set-something name), the call is (set-something pointed-object pointing name). In addition,
where accessor accepts a symbol, setter also accepts a function object.

The default value of remover is t, which means use setter with new value being dead-value. remover is used to remove the
pointer to the pointed object from pointing. It is called exactly like setter, except that the first argument is dead-value, rather
than pointed.

pointed gives the value of the pointed object. If pointed is nil then accessor is used to get the pointed object.

The default value of dead-value is nil. This is the value that is stored by remover in the pointing value before starting the
shaking. Note that if the pointed object is shaken, pointing is left with dead-value.

Note that between the calls to remover and setter (steps 2 and 3 above), pointing points to the wrong thing (dead-value). This
may cause problems if pointing is used by the system during the shaking (this does not happen unless you access objects
which you should not access), or if you use delivery-shaker-weak-pointer more than once on the same object, and
one of these uses a slot that has been defined by the other. Thus you have to make sure that you do not cause this situation.

Examples

Suppose the keys of *my-hash-table* are conses of an object and a number, and it is desired to remove from
my-hash-table those entries where the car is not pointed to from anywhere else. This can be done by something like
this :

;; This will eliminate all entries where the car is nil
(defun clean-my-hash-table (table)
 (maphash (lambda (x y)
 (declare (ignore y))
 (unless (car x) (remhash x table)))
 table))

;; This will cause the car of any entry where the car is
;; not pointed to from another object to change to nil
(defun shake-my-hash-table ()
 (maphash #'(lambda (x y) (declare (ignore y))
 (delivery-shaker-weak-pointer x 'car))
 my-hash-table))

;; This will cause clean-my-hash-table to be called
;; later in the shaking, provided that *my-hash-table*
;; is still alive.
(delivery-shaker-cleanup *my-hash-table*
 'clean-my-hash-table)

;; Call this function at delivery time
(define-action "Delivery Actions" "shake my hash table"
 'shake-my-hash-table)

If the car can be nil, the code above removes some entries it should not. In this case the appropriate forms should be
changed to:

16 Delivery Reference Entries

99

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

(delivery-shaker-weak-pointer x 'car
 :dead-value 'my-dead-value)

and inside the definition of clean-my-hash-table above replace thge unless form by:

(when (eq (car x) 'my-dead-value) (remhash x table))

This assumes there are no entries where the car is my-dead-value.

Note that the cleanup function is not going to be called unless the hash table actually survives the shaking operation.

Examples

The value of *aaa* is a list of objects of type a-struct, which has a slot called name, which points to a symbol. We want
to get rid of any of these structures if the symbol is not pointed to by some other object.

Implementation A:

Make the pointers from the structures to the names be weak, and have the cleanup function throw away any structure where
the name becomes nil.

(defun clean-*aaa* ()
 (loop for a on *aaa* do
 (delivery-shaker-weak-pointer
 a
 'a-struct-name)))

(delivery-shaker-cleanup
 '*aaa*
 #'(lambda (symbol)
 (set symbol
 (remove-if-not 'a-struct-name
 (symbol-value symbol)))))

(define-action "Delivery Actions" "Clean *aaa*"
 'clean-*aaa*)

Implementation B:

Make a pointer from the symbol to the structure, and make *aaa* point weakly to the names, and set *aaa* to nil. The
remover and accessor do nothing, and the setter is defined to restore *aaa*. This implementation does not use the cleanup
function.

(defun clean-*aaa* ()
 (let ((setter
 #'(lambda (name symbol)
 (set symbol (nconc
 (symbol-value symbol)
 (list (get name 'a-struct))))
 (remprop name 'a-struct))))
 (dolist (x *aaa* ())
 (let ((name (a-struct-name x)))
 (setf (get name 'a-struct) x)
 (delivery-shaker-weak-pointer '*aaa* nil
 :remover nil
 :pointed name
 :setter setter)))
 (setq *aaa* nil)))

(define-action "Delivery actions" "Clean aaa"
 'clean-*aaa*)

16 Delivery Reference Entries

100

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

See also

delivery-shaker-cleanup

delivery-value Accessor

Summary

Accesses the value of a delivery keyword.

Package

lispworks

Signature

delivery-value deliver-keyword => value

setf (delivery-value deliver-keyword) value => value

Arguments

deliver-keyword⇓ One of the legal keywords to deliver. There are listed in 5 Keywords to the Delivery
Function.

value⇓ A lisp object.

Values

value⇓ A lisp object.

Description

The accessor delivery-value gets or sets value as the value of deliver-keyword.

These must only be called after deliver is called. deliver-keyword must be one of the legal keywords to deliver (see 5.2
Alphabetical list of deliver keywords, or can be displayed by calling deliver-keywords). delivery-value returns the
value associated with deliver-keyword. When deliver is called, the values associated with each keyword are initialized
from the arguments to deliver or using their default values (which are printed by deliver-keywords), or set to nil.
Values can be changed later by user actions that were added to the "Delivery actions" action list, and then by the system.
Before starting the shaking operations, the values of the keywords are reset, and delivery-value cannot be called after the
shaking.

You can use the setter of delivery-value to set the value of a keyword. Since the user actions are done before the system
actions, these system actions (which also use delivery-value to access the keyword's value) will see any change that the
user actions effected.

See also

deliver
deliver-keywords

16 Delivery Reference Entries

101

Index

A

accessors

delivery-value 101

:action-on-failure-to-open-display keyword 5.2 : Alphabetical list of deliver keywords 31

ActiveX control 7.6 : ActiveX controls 61

ActiveX DLL 7.6 : ActiveX controls 61

:analyse keyword 5.2 : Alphabetical list of deliver keywords 31

Application Builder tool 2.2.1 : Delivering the program using the LispWorks IDE 13

application error log 1.4.7 : Error handling 11

applications

coding for efficient delivery 14 : Efficiency considerations when coding for delivery 88

command line 13.4 : Command line applications 87

icons 5.2 : Alphabetical list of deliver keywords 37

name of delivered image file 4.1 : The delivery function: deliver 18, deliver 93

non-GUI 13.4 : Command line applications 87

standalone delivery 4.3 : Delivering a standalone application executable 19

:automatic-init keyword 4.4.6 : More about building dynamic libraries 23, 5.2 : Alphabetical list of deliver keywords 31

automatic memory management. See garbage collection. 1.4.3 : Debugging, profiling and tuning facilities 10

automation-server-main function 5.2 : Alphabetical list of deliver keywords 49

automation-server-top-loop function 5.2 : Alphabetical list of deliver keywords 49

C

:call-count keyword 5.2 : Alphabetical list of deliver keywords 32, 11.12 : Reducing the size of the delivered application 80

call counting

all symbols in application 5.2 : Alphabetical list of deliver keywords 32

recording results of 5.2 : Alphabetical list of deliver keywords 32, 5.2 : Alphabetical list of deliver keywords 34

setting up 5.2 : Alphabetical list of deliver keywords 32

call-next-method local function 5.2 : Alphabetical list of deliver keywords 33

calls-who function 5.2 : Alphabetical list of deliver keywords 45

CAPI

geometry 10.4.1 : Interface geometry depends on Lisp symbol names 70

preferences 10.4.1 : Interface geometry depends on Lisp symbol names 70

window positions 10.4.1 : Interface geometry depends on Lisp symbol names 70

change-class generic function 5.2 : Alphabetical list of deliver keywords 33

classes

accessors 5.2 : Alphabetical list of deliver keywords 50

deleting and keeping 5.2 : Alphabetical list of deliver keywords 32, 5.2 : Alphabetical list of deliver keywords 50

102

delivery issues 4.6.2 : Shaking the image 25

dynamic definition 10.1.1 : Applications defining classes or methods dynamically 66

ole-control-component 7.6 : ActiveX controls 61

printing information about 5.2 : Alphabetical list of deliver keywords 32

:classes-to-keep-effective-slots keyword 5.2 : Alphabetical list of deliver keywords 32, 10.1.4 : Compression of CLOS
metaobjects 68

:classes-to-remove keyword 5.2 : Alphabetical list of deliver keywords 32

:clean-down keyword 5.2 : Alphabetical list of deliver keywords 32

:clean-for-dump-type keyword 5.2 : Alphabetical list of deliver keywords 32

CLOS 10.1 : Delivery and CLOS 66

deleting and keeping 5.2 : Alphabetical list of deliver keywords 39

diagnostics 5.2 : Alphabetical list of deliver keywords 32

dynamic definition 10.1.1 : Applications defining classes or methods dynamically 66

method dispatch efficiency 10.1.2 : Special dispatch functions and templates for them 66

object printing code 5.2 : Alphabetical list of deliver keywords 39

templates for method combinations 10.1.2.2 : Incorporating the templates into the application 67

:clos-info keyword 5.2 : Alphabetical list of deliver keywords 32

:clos-initarg-checking keyword 5.2 : Alphabetical list of deliver keywords 33

code signing 5.2 : Alphabetical list of deliver keywords 51

coding applications for efficient delivery 14 : Efficiency considerations when coding for delivery 88

Command+C 6.8 : Standard Edit keyboard gestures 57

command line applications 13.4 : Command line applications 87

Command+V 6.8 : Standard Edit keyboard gestures 57

Command+X 6.8 : Standard Edit keyboard gestures 57

Common Lisp Object System 10.1 : Delivery and CLOS 66

:compact keyword 5.2 : Alphabetical list of deliver keywords 33, 11.6 : Failed to reserve... error in compacted image 78

compile function 5.2 : Alphabetical list of deliver keywords 49

compile-file function 1.2.2 : Functionality removed by delivery 9, 5.2 : Alphabetical list of deliver keywords 49

complex number representation, deleting and keeping 5.2 : Alphabetical list of deliver keywords 40

:condition-deletion-action keyword 5.2 : Alphabetical list of deliver keywords 33, 10.5.1 : Deleting of condition classes 70

:console keyword 5.2 : Alphabetical list of deliver keywords 34

convert-to-screen function 8.1.2 : Fallback resources 62, 8.2.3 : Fallback resources 63

corrupted executable 8.3 : LispWorks executable corrupted 63

create-macos-application-bundle function 2.2.2 : Delivering the program using a command shell 14, 13.3 : Creating a
macOS application bundle 85, 13.3.2 : Alternative application bundle creation code 86

D

debugger-hook variable 3.2.2 : Handling errors generated by the Lisp system 16

debugging and testing

checking an image without running it 5.2 : Alphabetical list of deliver keywords 49

in a delivered image 5.2 : Alphabetical list of deliver keywords 40

stub definitions for deleted functions 5.2 : Alphabetical list of deliver keywords 44

Index

103

define-foreign-callable macro 4.4.1 : Simple delivery of a dynamic library 20, 5.2 : Alphabetical list of deliver
keywords 35, 10.6.2 : Foreign callable names 71

define-ole-control-component macro 7.6 : ActiveX controls 61

:delete-packages keyword 5.2 : Alphabetical list of deliver keywords 34, 10.9.2 : How to delete packages 73, 10.10.1 : Ensuring
that packages are kept 74

delete-packages list 5.2 : Alphabetical list of deliver keywords 34

deleting and keeping

class accessors 5.2 : Alphabetical list of deliver keywords 50

classes 5.2 : Alphabetical list of deliver keywords 32, 5.2 : Alphabetical list of deliver keywords 50

CLOS 5.2 : Alphabetical list of deliver keywords 39

complex number representation 5.2 : Alphabetical list of deliver keywords 40

debugger 5.2 : Alphabetical list of deliver keywords 40

documentation 5.2 : Alphabetical list of deliver keywords 41

dspec table 5.2 : Alphabetical list of deliver keywords 45

editor commands 5.2 : Alphabetical list of deliver keywords 36, 5.2 : Alphabetical list of deliver keywords 36

eval function 14.9 : Use of the EVAL function and the invocation of uncompiled functions 90

evaluators 5.2 : Alphabetical list of deliver keywords 41

external symbols 5.2 : Alphabetical list of deliver keywords 50

fasl dumper 5.2 : Alphabetical list of deliver keywords 41

find-symbol function 10.11 : Coping with intern and find-symbol at run time 75, 14.8 : Use of the INTERN and FIND-SYMBOL
functions 90

format directives 5.2 : Alphabetical list of deliver keywords 37

function names 5.2 : Alphabetical list of deliver keywords 42

functions 5.2 : Alphabetical list of deliver keywords 37

history of forms entered 5.2 : Alphabetical list of deliver keywords 44

listener top level 5.2 : Alphabetical list of deliver keywords 44

load function 5.2 : Alphabetical list of deliver keywords 42

macros 5.2 : Alphabetical list of deliver keywords 43, 5.2 : Alphabetical list of deliver keywords 43

methods, class-direct 5.2 : Alphabetical list of deliver keywords 50

module facility 5.2 : Alphabetical list of deliver keywords 43

packages 5.2 : Alphabetical list of deliver keywords 34, 10.8 : Symbol, SYMBOL-NAME and package issues during delivery 72

packages, all 5.2 : Alphabetical list of deliver keywords 41

plist indicators 5.2 : Alphabetical list of deliver keywords 49

structure internals 5.2 : Alphabetical list of deliver keywords 43

stub definitions for deleted functions 5.2 : Alphabetical list of deliver keywords 44

walker 5.2 : Alphabetical list of deliver keywords 45

deliver function 93 1.2.2 : Functionality removed by delivery 9, 2.2 : Delivering the program 12, 4.1 : The delivery function:
deliver 18, 9.1.2 : How to deliver an iOS runtime 65

delivered image

debugger 5.2 : Alphabetical list of deliver keywords 40

module facility, deleting and keeping 5.2 : Alphabetical list of deliver keywords 43

delivered-image-p function 12.1 : Interface to the delivery process 83

Index

104

Delivering for Android 9.2 : Delivery of Android runtimes 65

Delivering for iOS 9.1 : Delivery of iOS runtimes 65

Delivering for mobile platforms 9 : Delivering for mobile platforms 65

Delivering on Linux, FreeBSD, x86/x64 Solaris 8 : Delivery on Linux, FreeBSD and x86/x64 Solaris 62

Delivering on macOS 6 : Delivery on macOS 56

Delivering on Windows 7 : Delivery on Microsoft Windows 59

deliver-keep-symbol-names function 94

deliver-keep-symbols function 95 10.10.2 : Ensuring that symbols are kept 74

deliver-keywords function 96 5 : Keywords to the Delivery Function 26

deliver-to-android-project function 9.2.1 : How to deliver an Android runtime 65

delivery 2.2 : Delivering the program 12, 4 : Delivering your Application 18

class issues 4.6.2 : Shaking the image 25, 14.4 : Use of symbols, functions, and classes 89

diagnostics for all symbols 5.2 : Alphabetical list of deliver keywords 32

examples 2.2.3 : Further examples 14

function issues 14.4 : Use of symbols, functions, and classes 89

keywords for controlling 5.2 : Alphabetical list of deliver keywords 31

library dependencies, and 14.1 : Use of modules 88

Lisp interface to 2.2 : Delivering the program 12, 4.1 : The delivery function: deliver 18, 5.2 : Alphabetical list of deliver
keywords 31, deliver 93

methods, and 4.6.2 : Shaking the image 25

package issues 5.2 : Alphabetical list of deliver keywords 36, 5.2 : Alphabetical list of deliver keywords 43, 10.8 : Symbol, SYMBOL-
NAME and package issues during delivery 72, 14.10 : User-defined and built-in packages 90

preparation for 4.2 : Using the delivery tools effectively 19

severity level 4.1 : The delivery function: deliver 18, 4.5.1 : Making the image smaller 24, deliver 93

stages of 1.4 : A breakdown of the delivery process 10, 4.5 : How to deliver a smaller and faster application 24

standalone applications 4.3 : Delivering a standalone application executable 19

stub definitions for deleted functions 5.2 : Alphabetical list of deliver keywords 44

symbol issues 4.6.2 : Shaking the image 25, 10.8 : Symbol, SYMBOL-NAME and package issues during delivery 72, 14.4 : Use of
symbols, functions, and classes 89

system packages 10.8 : Symbol, SYMBOL-NAME and package issues during delivery 72

treeshaking 4.6 : How Delivery makes an image smaller 24, 5.2 : Alphabetical list of deliver keywords 50

troubleshooting 11 : Troubleshooting the delivery process 77

with a command shell 2.2.2 : Delivering the program using a command shell 13

with a DOS command window 2.2.2 : Delivering the program using a command shell 13

without running the application 5.2 : Alphabetical list of deliver keywords 49

without writing to disk 5.2 : Alphabetical list of deliver keywords 38

with Terminal.app 2.2.2 : Delivering the program using a command shell 13

Delivery actions 12.1 : Interface to the delivery process 83, 14.3 : General strategy for reducing the image size 88, delivery-shaker-
cleanup 97, delivery-shaker-weak-pointer 99, delivery-shaker-weak-pointer 100, delivery-
shaker-weak-pointer 100, delivery-value 101

delivery level 4.1 : The delivery function: deliver 18, 4.5.1 : Making the image smaller 24, deliver 93

delivery-shaker-cleanup function 96

delivery-shaker-weak-pointer function 98

Index

105

delivery-value accessor 101

diagnostics

all delivered symbols 5.2 : Alphabetical list of deliver keywords 32

CLOS usage 5.2 : Alphabetical list of deliver keywords 32

:diagnostics-file keyword 5.2 : Alphabetical list of deliver keywords 34

dismiss-splash-screen function 5.2 : Alphabetical list of deliver keywords 51

display function 8.1.2 : Fallback resources 62, 8.2.3 : Fallback resources 63

:display-progress-bar keyword 5.2 : Alphabetical list of deliver keywords 34

:dll-added-files keyword 4.4.6 : More about building dynamic libraries 23, 5.2 : Alphabetical list of deliver keywords 34

DLL delivery 10.6.2 : Foreign callable names 71

:automatic-init keyword 5.2 : Alphabetical list of deliver keywords 31

:dll-added-files keyword 5.2 : Alphabetical list of deliver keywords 34

:dll-exports keyword 5.2 : Alphabetical list of deliver keywords 35

:dll-extra-link-options keyword 5.2 : Alphabetical list of deliver keywords 35

:image-type keyword 5.2 : Alphabetical list of deliver keywords 38

:dll-exports keyword 4.4.1 : Simple delivery of a dynamic library 20, 5.2 : Alphabetical list of deliver keywords 35, 10.6.2 :
Foreign callable names 71

:dll-extra-link-options keyword 5.2 : Alphabetical list of deliver keywords 35

documentation, deleting and keeping 5.2 : Alphabetical list of deliver keywords 41

dspec table, deleting and keeping 5.2 : Alphabetical list of deliver keywords 45

dynamic library delivery

:automatic-init keyword 5.2 : Alphabetical list of deliver keywords 31

:dll-added-files keyword 5.2 : Alphabetical list of deliver keywords 34

:dll-exports keyword 5.2 : Alphabetical list of deliver keywords 35

:dll-extra-link-options keyword 5.2 : Alphabetical list of deliver keywords 35

:image-type keyword 5.2 : Alphabetical list of deliver keywords 38

E

Edit menu

standard gestures 6.8 : Standard Edit keyboard gestures 57

standard keystrokes 6.8 : Standard Edit keyboard gestures 57

:editor-commands-to-delete keyword 5.2 : Alphabetical list of deliver keywords 36, 10.3.3 : Editor command groups 69

:editor-commands-to-keep keyword 5.2 : Alphabetical list of deliver keywords 36, 10.3.3 : Editor command groups 69

editors

deleting and keeping commands 5.2 : Alphabetical list of deliver keywords 36, 5.2 : Alphabetical list of deliver keywords 36, 10.3.3 :
Editor command groups 69

Emulation 5.2 : Alphabetical list of deliver keywords 36

:editor-style keyword 5.2 : Alphabetical list of deliver keywords 36, 6.7 : Editor emulation 57, 7.5 : Editor
emulation 60, 8.5 : Editor emulation 64, 10.3.2 : Emulation and delivery 68

efficiency

run time code loading 14.2 : Loading code at run time 88

See also size of the application. 3.3 : Efficiency considerations 17

Index

106

error function 3.2.2 : Handling errors generated by the Lisp system 16

:error-handler keyword 5.2 : Alphabetical list of deliver keywords 36

error handling 1.4.7 : Error handling 11, 3.2 : Error handling in delivered applications 15

application-generated errors 3.2.1 : Handling errors generated by the application 15

system-generated errors 3.2.2 : Handling errors generated by the Lisp system 16

:error-on-interpreted-functions keyword 5.2 : Alphabetical list of deliver keywords 36

errors

handling 1.4.7 : Error handling 11

eval function

deleting and keeping 5.2 : Alphabetical list of deliver keywords 41

effects on size of application 14.9 : Use of the EVAL function and the invocation of uncompiled functions 90

:exe-file keyword 5.2 : Alphabetical list of deliver keywords 36

exporting symbols from packages 5.2 : Alphabetical list of deliver keywords 36, 5.2 : Alphabetical list of deliver keywords 50

:exports keyword 5.2 : Alphabetical list of deliver keywords 36

external symbols and delivery 5.2 : Alphabetical list of deliver keywords 50

F

failed to enlarge memory 11.7 : Memory clashes with other software 79

fasl dumper, deleting and keeping 5.2 : Alphabetical list of deliver keywords 41

file for call-count output 5.2 : Alphabetical list of deliver keywords 34

files

association for extension 6.6 : File associations for a Macintosh application 57, 7.4 : File associations for a Windows application 60

association for type 6.6 : File associations for a Macintosh application 57, 7.4 : File associations for a Windows application 60

double clicking 6.6 : File associations for a Macintosh application 57, 7.4 : File associations for a Windows application 60

launching 6.6 : File associations for a Macintosh application 57, 7.4 : File associations for a Windows application 60

find-symbol function

effects on application size 10.11 : Coping with intern and find-symbol at run time 75, 14.8 : Use of the INTERN and FIND-SYMBOL
functions 90

FLI

templates 10.6.1 : Foreign Language Interface templates 70, 11.10 : FLI template needs to be compiled 80

:format keyword 5.2 : Alphabetical list of deliver keywords 37

function names, deleting and keeping 5.2 : Alphabetical list of deliver keywords 42

functions

automation-server-main 5.2 : Alphabetical list of deliver keywords 49

automation-server-top-loop 5.2 : Alphabetical list of deliver keywords 49

calls-who 5.2 : Alphabetical list of deliver keywords 45

compile 5.2 : Alphabetical list of deliver keywords 49

compile-file 1.2.2 : Functionality removed by delivery 9, 5.2 : Alphabetical list of deliver keywords 49

convert-to-screen 8.1.2 : Fallback resources 62, 8.2.3 : Fallback resources 63

create-macos-application-bundle 2.2.2 : Delivering the program using a command shell 14, 13.3 : Creating a macOS
application bundle 85, 13.3.2 : Alternative application bundle creation code 86

deleting and keeping 5.2 : Alphabetical list of deliver keywords 37

deliver 93 1.2.2 : Functionality removed by delivery 9, 2.2 : Delivering the program 12, 4.1 : The delivery function:

Index

107

deliver 18, 9.1.2 : How to deliver an iOS runtime 65

delivered-image-p 12.1 : Interface to the delivery process 83

deliver-keep-symbol-names 94

deliver-keep-symbols 95 10.10.2 : Ensuring that symbols are kept 74

deliver-keywords 96 5 : Keywords to the Delivery Function 26

deliver-to-android-project 9.2.1 : How to deliver an Android runtime 65

delivery-shaker-cleanup 96

delivery-shaker-weak-pointer 98

dismiss-splash-screen 5.2 : Alphabetical list of deliver keywords 51

display 8.1.2 : Fallback resources 62, 8.2.3 : Fallback resources 63

error 3.2.2 : Handling errors generated by the Lisp system 16

eval 5.2 : Alphabetical list of deliver keywords 41

initialize-multiprocessing 5.2 : Alphabetical list of deliver keywords 46

load-all-patches deliver 94

log-bug-form 3.2.2 : Handling errors generated by the Lisp system 16, 6.5.2 : Logging debugging messages 57, 7.3.2 : Logging
debugging messages 60, 8.4 : Logging debugging messages 64

names, deleting and keeping 5.2 : Alphabetical list of deliver keywords 42

output-backtrace 3.2.2 : Handling errors generated by the Lisp system 16

process-run-function 3.2.2 : Handling errors generated by the Lisp system 16

require 1.2.1 : Programming libraries and facility support code 8, 5.2 : Alphabetical list of deliver keywords 43, 10.7 : Modules 72

save-image 1.2.2 : Functionality removed by delivery 9

save-universal-from-script 6.1 : Universal binaries 56

set-automation-server-exit-delay 5.2 : Alphabetical list of deliver keywords 49

set-clos-initarg-checking 5.2 : Alphabetical list of deliver keywords 33

set-quit-when-no-windows 5.2 : Alphabetical list of deliver keywords 49

stub definitions for deleted functions 5.2 : Alphabetical list of deliver keywords 44

symbol-name 11.13 : Symbol names changed to "Dummy Symbol Name" 80

top-level-interface-geometry-key 10.4.1 : Interface geometry depends on Lisp symbol names 70

who-calls 5.2 : Alphabetical list of deliver keywords 45

:functions-to-remove keyword 5.2 : Alphabetical list of deliver keywords 37

G

garbage collection 1.4.3 : Debugging, profiling and tuning facilities 10, 4.6.2 : Shaking the image 25

delivery, and 4.6 : How Delivery makes an image smaller 24, 4.6.1 : Garbage collecting the image 24

heap compaction before delivery 5.2 : Alphabetical list of deliver keywords 33

See also treeshaking. 4.6 : How Delivery makes an image smaller 24

:generic-function-collapse keyword 5.2 : Alphabetical list of deliver keywords 37

generic functions

change-class 5.2 : Alphabetical list of deliver keywords 33

class-direct methods 5.2 : Alphabetical list of deliver keywords 50

collapsing into ordinary functions 5.2 : Alphabetical list of deliver keywords 37

Index

108

make-instance 5.2 : Alphabetical list of deliver keywords 33, 10.1.6 : Delivery and make-instance initarg checking 68

reinitialize-instance 5.2 : Alphabetical list of deliver keywords 33

update-instance-for-redefined-class 5.2 : Alphabetical list of deliver keywords 33

:gf-collapse-output-file keyword 5.2 : Alphabetical list of deliver keywords 37

:gf-collapse-tty-output keyword 5.2 : Alphabetical list of deliver keywords 37

H

handler-bind macro 3.2.2 : Handling errors generated by the Lisp system 16

handler-case macro 3.2.2 : Handling errors generated by the Lisp system 16

heap compaction before delivery 5.2 : Alphabetical list of deliver keywords 33

history list of forms entered

deleting and keeping 5.2 : Alphabetical list of deliver keywords 44

I

:icon-file keyword 5.2 : Alphabetical list of deliver keywords 37

image

split on saving 5.2 : Alphabetical list of deliver keywords 51

:image-type keyword 5.2 : Alphabetical list of deliver keywords 38

initialize-multiprocessing function 5.2 : Alphabetical list of deliver keywords 46

:in-memory-delivery keyword 4.2.2 : Delivering the application in memory 19, 5.2 : Alphabetical list of deliver keywords 38

:interface keyword 4.1 : The delivery function: deliver 18, 5.2 : Alphabetical list of deliver keywords 38, deliver 94

internal symbols and application size 5.2 : Alphabetical list of deliver keywords 50

intern function and application size 4.6.2 : Shaking the image 25, 10.11 : Coping with intern and find-symbol at run time 75, 14.8 : Use
of the INTERN and FIND-SYMBOL functions 90

:interrogate-symbols keyword 5.2 : Alphabetical list of deliver keywords 38, 11.15 : Interrogate-Symbols 81

:interrupt-function keyword 5.2 : Alphabetical list of deliver keywords 38

K

:keep-clos keyword 5.2 : Alphabetical list of deliver keywords 39, 10.1.1 : Applications defining classes or methods
dynamically 66, 10.1.3 : Delivery and the MOP 67, 10.1.4 : Compression of CLOS metaobjects 68

:keep-clos-object-printing keyword 5.2 : Alphabetical list of deliver keywords 39

:keep-complex-numbers keyword 4.5.1 : Making the image smaller 24, 5.2 : Alphabetical list of deliver keywords 40

:keep-conditions keyword 5.2 : Alphabetical list of deliver keywords 40, 10.5.1 : Deleting of condition classes 70

:keep-debug-mode keyword 5.2 : Alphabetical list of deliver keywords 40, 11.12 : Reducing the size of the delivered application 80

:keep-documentation keyword 5.2 : Alphabetical list of deliver keywords 41

:keep-editor keyword 5.2 : Alphabetical list of deliver keywords 41, 10.3.1 : Form parsing and delivery 68

:keep-eval keyword 5.2 : Alphabetical list of deliver keywords 41, delivery-shaker-cleanup 97

:keep-fasl-dump keyword 5.2 : Alphabetical list of deliver keywords 41

:keep-foreign-symbols keyword 5.2 : Alphabetical list of deliver keywords 41

:keep-function-name keyword 5.2 : Alphabetical list of deliver keywords 42

:keep-gc-cursor keyword 5.2 : Alphabetical list of deliver keywords 42

Index

109

:keep-keyword-names keyword 5.2 : Alphabetical list of deliver keywords 42

:keep-lisp-reader keyword 5.2 : Alphabetical list of deliver keywords 42, 10.2 : Delivery and the Lisp reader 68, 11.3 :
Problems with READ 78

:keep-load-function keyword 5.2 : Alphabetical list of deliver keywords 42

:keep-macros keyword 5.2 : Alphabetical list of deliver keywords 43

:keep-modules keyword 5.2 : Alphabetical list of deliver keywords 43

:keep-package-manipulation keyword 5.2 : Alphabetical list of deliver keywords 43

:keep-pretty-printer keyword 5.2 : Alphabetical list of deliver keywords 43

:keep-structure-info keyword 5.2 : Alphabetical list of deliver keywords 43

:keep-stub-functions keyword 5.2 : Alphabetical list of deliver keywords 44

:keep-symbol-names keyword 5.2 : Alphabetical list of deliver keywords 44, 8.2.4 : X resource names use Lisp symbol
names 63, deliver-keep-symbol-names 95

:keep-symbols keyword 5.2 : Alphabetical list of deliver keywords 44, 6.10 : Retaining Objective-C classes 58, 10.4.1 : Interface
geometry depends on Lisp symbol names 70, 10.10.2 : Ensuring that symbols are kept 74, 10.13 : Delivery and Java
interface 76, deliver-keep-symbols 95

:keep-top-level keyword 5.2 : Alphabetical list of deliver keywords 44

:keep-trans-numbers keyword 5.2 : Alphabetical list of deliver keywords 44

:keep-walker keyword 5.2 : Alphabetical list of deliver keywords 45

:keep-xref-info keyword 5.2 : Alphabetical list of deliver keywords 45

Keywords

:action-on-failure-to-open-display 5.2 : Alphabetical list of deliver keywords 31

:analyse 5.2 : Alphabetical list of deliver keywords 31

:automatic-init 5.2 : Alphabetical list of deliver keywords 31

:call-count 5.2 : Alphabetical list of deliver keywords 32

:classes-to-keep-effective-slots 5.2 : Alphabetical list of deliver keywords 32

:classes-to-remove 5.2 : Alphabetical list of deliver keywords 32

:clean-down 5.2 : Alphabetical list of deliver keywords 32

:clean-for-dump-type 5.2 : Alphabetical list of deliver keywords 32

:clos-info 5.2 : Alphabetical list of deliver keywords 32

:clos-initarg-checking 5.2 : Alphabetical list of deliver keywords 33

:compact 5.2 : Alphabetical list of deliver keywords 33

:condition-deletion-action 5.2 : Alphabetical list of deliver keywords 33

:console 5.2 : Alphabetical list of deliver keywords 34

:delete-packages 5.2 : Alphabetical list of deliver keywords 34

:diagnostics-file 5.2 : Alphabetical list of deliver keywords 34

:display-progress-bar 5.2 : Alphabetical list of deliver keywords 34

:dll-added-files 5.2 : Alphabetical list of deliver keywords 34

:dll-exports 5.2 : Alphabetical list of deliver keywords 35

:dll-extra-link-options 5.2 : Alphabetical list of deliver keywords 35

:editor-commands-to-delete 5.2 : Alphabetical list of deliver keywords 36

:editor-commands-to-keep 5.2 : Alphabetical list of deliver keywords 36

Index

110

:editor-style 5.2 : Alphabetical list of deliver keywords 36

:error-handler 5.2 : Alphabetical list of deliver keywords 36

:error-on-interpreted-functions 5.2 : Alphabetical list of deliver keywords 36

:exe-file 5.2 : Alphabetical list of deliver keywords 36

:exports 5.2 : Alphabetical list of deliver keywords 36

:format 5.2 : Alphabetical list of deliver keywords 37

:functions-to-remove 5.2 : Alphabetical list of deliver keywords 37

:generic-function-collapse 5.2 : Alphabetical list of deliver keywords 37

:gf-collapse-output-file 5.2 : Alphabetical list of deliver keywords 37

:gf-collapse-tty-output 5.2 : Alphabetical list of deliver keywords 37

:icon-file 5.2 : Alphabetical list of deliver keywords 37

:image-type 5.2 : Alphabetical list of deliver keywords 38

:in-memory-delivery 5.2 : Alphabetical list of deliver keywords 38

:interface 5.2 : Alphabetical list of deliver keywords 38

:interrogate-symbols 5.2 : Alphabetical list of deliver keywords 38

:interrupt-function 5.2 : Alphabetical list of deliver keywords 38

:keep-clos 5.2 : Alphabetical list of deliver keywords 39

:keep-clos-object-printing 5.2 : Alphabetical list of deliver keywords 39

:keep-complex-numbers 5.2 : Alphabetical list of deliver keywords 40

:keep-conditions 5.2 : Alphabetical list of deliver keywords 40

:keep-debug-mode 5.2 : Alphabetical list of deliver keywords 40

:keep-documentation 5.2 : Alphabetical list of deliver keywords 41

:keep-editor 5.2 : Alphabetical list of deliver keywords 41

:keep-eval 5.2 : Alphabetical list of deliver keywords 41

:keep-fasl-dump 5.2 : Alphabetical list of deliver keywords 41

:keep-foreign-symbols 5.2 : Alphabetical list of deliver keywords 41

:keep-function-name 5.2 : Alphabetical list of deliver keywords 42

:keep-gc-cursor 5.2 : Alphabetical list of deliver keywords 42

:keep-keyword-names 5.2 : Alphabetical list of deliver keywords 42

:keep-lisp-reader 5.2 : Alphabetical list of deliver keywords 42

:keep-load-function 5.2 : Alphabetical list of deliver keywords 42

:keep-macros 5.2 : Alphabetical list of deliver keywords 43

:keep-modules 5.2 : Alphabetical list of deliver keywords 43

:keep-package-manipulation 5.2 : Alphabetical list of deliver keywords 43

:keep-pretty-printer 5.2 : Alphabetical list of deliver keywords 43

:keep-structure-info 5.2 : Alphabetical list of deliver keywords 43

:keep-stub-functions 5.2 : Alphabetical list of deliver keywords 44

:keep-symbol-names 5.2 : Alphabetical list of deliver keywords 44

:keep-symbols 5.2 : Alphabetical list of deliver keywords 44

Index

111

:keep-top-level 5.2 : Alphabetical list of deliver keywords 44

:keep-trans-numbers 5.2 : Alphabetical list of deliver keywords 44

:keep-walker 5.2 : Alphabetical list of deliver keywords 45

:keep-xref-info 5.2 : Alphabetical list of deliver keywords 45

:kill-dspec-table 5.2 : Alphabetical list of deliver keywords 45

:license-info 5.2 : Alphabetical list of deliver keywords 45

:macro-packages-to-keep 5.2 : Alphabetical list of deliver keywords 45

:make-instance-keyword-check 5.2 : Alphabetical list of deliver keywords 45

:manifest-file 5.2 : Alphabetical list of deliver keywords 45

:metaclasses-to-keep-effective-slots 5.2 : Alphabetical list of deliver keywords 46

:multiprocessing 5.2 : Alphabetical list of deliver keywords 46

:never-shake-packages 5.2 : Alphabetical list of deliver keywords 46

:no-symbol-function-usage 5.2 : Alphabetical list of deliver keywords 46

:numeric 5.2 : Alphabetical list of deliver keywords 46

:old-cpu-compatible 5.2 : Alphabetical list of deliver keywords 46

:packages-to-keep 5.2 : Alphabetical list of deliver keywords 47

:packages-to-keep-externals 5.2 : Alphabetical list of deliver keywords 47

:packages-to-keep-symbol-names 5.2 : Alphabetical list of deliver keywords 47

:packages-to-remove-conditions 5.2 : Alphabetical list of deliver keywords 47

:packages-to-shake-externals 5.2 : Alphabetical list of deliver keywords 48

:post-delivery-function 5.2 : Alphabetical list of deliver keywords 48

:print-circle 5.2 : Alphabetical list of deliver keywords 48

:product-code 5.2 : Alphabetical list of deliver keywords 48

:product-name 5.2 : Alphabetical list of deliver keywords 48

:quit-when-no-windows 5.2 : Alphabetical list of deliver keywords 48

:redefine-compiler-p 5.2 : Alphabetical list of deliver keywords 49

:registry-path 5.2 : Alphabetical list of deliver keywords 49

:remove-plist-indicators 5.2 : Alphabetical list of deliver keywords 49

:remove-setf-function-name 5.2 : Alphabetical list of deliver keywords 49

:run-it 5.2 : Alphabetical list of deliver keywords 49

:shake-class-accessors 5.2 : Alphabetical list of deliver keywords 50

:shake-class-direct-methods 5.2 : Alphabetical list of deliver keywords 50

:shake-classes 5.2 : Alphabetical list of deliver keywords 50

:shake-externals 5.2 : Alphabetical list of deliver keywords 50

:shake-shake-shake 5.2 : Alphabetical list of deliver keywords 50

:smash-packages 5.2 : Alphabetical list of deliver keywords 51

:smash-packages-symbols 5.2 : Alphabetical list of deliver keywords 51

:split 5.2 : Alphabetical list of deliver keywords 51

:startup-bitmap-file 5.2 : Alphabetical list of deliver keywords 51

Index

112

:structure-packages-to-keep 5.2 : Alphabetical list of deliver keywords 51

:symbol-names-action 5.2 : Alphabetical list of deliver keywords 52

:symbols-to-keep-structure-info 5.2 : Alphabetical list of deliver keywords 52

:versioninfo 5.2 : Alphabetical list of deliver keywords 52

:warn-on-missing-templates 5.2 : Alphabetical list of deliver keywords 55

keywords for controlling delivery 5.2 : Alphabetical list of deliver keywords 31

severity level, and 4.5.1 : Making the image smaller 24

:kill-dspec-table keyword 5.2 : Alphabetical list of deliver keywords 45

L

libraries 1.2.1 : Programming libraries and facility support code 8

dependencies between 14.1 : Use of modules 88

effects on application size 14.1 : Use of modules 88

:license-info keyword 5.2 : Alphabetical list of deliver keywords 45

Lisp executable apparently corrupted 8.3 : LispWorks executable corrupted 63

LispWorks IDE 1.2.2 : Functionality removed by delivery 9

listener top level

deleting and keeping 5.2 : Alphabetical list of deliver keywords 44

load-all-patches function deliver 94

load function, deleting and keeping 5.2 : Alphabetical list of deliver keywords 42

loading code at run time 14.2 : Loading code at run time 88

restrictions upon 5.2 : Alphabetical list of deliver keywords 43

log-bug-form function 3.2.2 : Handling errors generated by the Lisp system 16, 6.5.2 : Logging debugging messages 57, 7.3.2 :
Logging debugging messages 60, 8.4 : Logging debugging messages 64

logging 1.4.7 : Error handling 11

M

:macro-packages-to-keep keyword 5.2 : Alphabetical list of deliver keywords 45

macros

define-foreign-callable 4.4.1 : Simple delivery of a dynamic library 20, 5.2 : Alphabetical list of deliver
keywords 35, 10.6.2 : Foreign callable names 71

define-ole-control-component 7.6 : ActiveX controls 61

handler-bind 3.2.2 : Handling errors generated by the Lisp system 16

handler-case 3.2.2 : Handling errors generated by the Lisp system 16

macros, deleting and keeping 5.2 : Alphabetical list of deliver keywords 43

make-instance generic function 5.2 : Alphabetical list of deliver keywords 33, 10.1.6 : Delivery and make-instance initarg
checking 68

:make-instance-keyword-check keyword 5.2 : Alphabetical list of deliver keywords 45, 10.1.6 : Delivery and make-instance
initarg checking 68

:manifest-file keyword 5.2 : Alphabetical list of deliver keywords 45, 7.2 : Application Manifests 59

memory clashes 11.7 : Memory clashes with other software 79

memory management. See garbage collection. 1.4.3 : Debugging, profiling and tuning facilities 10

Index

113

:metaclasses-to-keep-effective-slots keyword 5.2 : Alphabetical list of deliver keywords 46, 10.1.4 : Compression of
CLOS metaobjects 68

methods

class-direct, deleting and keeping 5.2 : Alphabetical list of deliver keywords 50

discriminating on classes 4.6.2 : Shaking the image 25

dispatch efficiency 10.1.2 : Special dispatch functions and templates for them 66

dynamic definition 10.1.1 : Applications defining classes or methods dynamically 66

printing information about 5.2 : Alphabetical list of deliver keywords 32

modules

loading 1.2.1 : Programming libraries and facility support code 8, 5.2 : Alphabetical list of deliver keywords 43, 10.7 : Modules 72

msvcr80.dll 7.1 : Run time library requirement 59

:multiprocessing keyword 4.1 : The delivery function: deliver 18, 5.2 : Alphabetical list of deliver keywords 46, deliver 94

N

:never-shake-packages keyword 5.2 : Alphabetical list of deliver keywords 46, 10.10.2 : Ensuring that symbols are kept 74

New in LispWorks 7.0

deliver-keep-symbol-names function 94

deliver-keep-symbols function 95

:keep-xref-info delivery keyword 5.2 : Alphabetical list of deliver keywords 45

New in LispWorks 7.1

:dll-extra-link-options delivery keyword 5.2 : Alphabetical list of deliver keywords 35

:keep-modules default value of has changed 5.2 : Alphabetical list of deliver keywords 43

non-GUI applications 13.4 : Command line applications 87

:no-symbol-function-usage keyword 5.2 : Alphabetical list of deliver keywords 46

:numeric keyword 5.2 : Alphabetical list of deliver keywords 46

O

ocx file 7.6 : ActiveX controls 61

:old-cpu-compatible keyword 5.2 : Alphabetical list of deliver keywords 46

ole-control-component class 7.6 : ActiveX controls 61

output-backtrace function 3.2.2 : Handling errors generated by the Lisp system 16

P

package manipulation, deleting and keeping 5.2 : Alphabetical list of deliver keywords 43

packages

deleting and keeping 5.2 : Alphabetical list of deliver keywords 34, 10.8 : Symbol, SYMBOL-NAME and package issues during delivery 72

deleting versus smashing 10.9.1 : Deleting packages 73, 10.9.5 : When to delete and smash packages 73

delivery 14.10 : User-defined and built-in packages 90

exporting symbols from 5.2 : Alphabetical list of deliver keywords 36, 5.2 : Alphabetical list of deliver keywords 50

keeping 5.2 : Alphabetical list of deliver keywords 47, 10.10 : Keeping packages and symbols in the application 74

keeping all 5.2 : Alphabetical list of deliver keywords 41

keeping externals 5.2 : Alphabetical list of deliver keywords 47

keeping symbol names 5.2 : Alphabetical list of deliver keywords 47

Index

114

smashing 5.2 : Alphabetical list of deliver keywords 51, 10.8 : Symbol, SYMBOL-NAME and package issues during delivery 72

:packages-to-keep keyword 5.2 : Alphabetical list of deliver keywords 47, 10.10.1 : Ensuring that packages are kept 74, 11.8 :
Possible explanations for a frozen image 79

:packages-to-keep-externals keyword 5.2 : Alphabetical list of deliver keywords 47, 10.10.2 : Ensuring that symbols are
kept 74

:packages-to-keep-symbol-names keyword 5.2 : Alphabetical list of deliver keywords 47

:packages-to-remove-conditions keyword 5.2 : Alphabetical list of deliver keywords 47, 10.5.1 : Deleting of condition
classes 70

:packages-to-shake-externals keyword 5.2 : Alphabetical list of deliver keywords 48, 10.10.2 : Ensuring that symbols are
kept 74

performance 1.4.3 : Debugging, profiling and tuning facilities 10

plist indicators, deleting and keeping 5.2 : Alphabetical list of deliver keywords 49

:post-delivery-function keyword 5.2 : Alphabetical list of deliver keywords 48

prelink 8.3 : LispWorks executable corrupted 63

:print-circle keyword 5.2 : Alphabetical list of deliver keywords 48

process-run-function function 3.2.2 : Handling errors generated by the Lisp system 16

:product-code keyword 5.2 : Alphabetical list of deliver keywords 48

:product-name keyword 5.2 : Alphabetical list of deliver keywords 48

Q

:quit-when-no-windows keyword 5.2 : Alphabetical list of deliver keywords 48

R

:redefine-compiler-p keyword 5.2 : Alphabetical list of deliver keywords 49

:registry-path keyword 5.2 : Alphabetical list of deliver keywords 49

reinitialize-instance generic function 5.2 : Alphabetical list of deliver keywords 33

:remove-plist-indicators keyword 5.2 : Alphabetical list of deliver keywords 49

:remove-setf-function-name keyword 5.2 : Alphabetical list of deliver keywords 49

require function 1.2.1 : Programming libraries and facility support code 8, 5.2 : Alphabetical list of deliver keywords 43, 10.7 :
Modules 72

Rosetta 6.1 : Universal binaries 56

:run-it keyword 5.2 : Alphabetical list of deliver keywords 49

run time library

requirement on Windows 7.1 : Run time library requirement 59

S

save-image function 1.2.2 : Functionality removed by delivery 9

save-universal-from-script function 6.1 : Universal binaries 56

Self-contained examples

Creating the macOS application bundle when delivering a Cocoa application 15.1 : Delivering a Cocoa CAPI application examples 91

Delivering a CAPI application 15.2 : Delivering a CAPI application examples 91

Delivering a Cocoa application 15.1 : Delivering a Cocoa CAPI application examples 91

Delivering a Hello World application 15.2 : Delivering a CAPI application examples 91

Delivering a Unix dynamic library 15.3 : Delivering a dynamic library examples 92

Index

115

Delivering a Windows service 15.4 : Delivering a Windows service examples 92

Delivering the Othello application 15.2 : Delivering a CAPI application examples 91

Error handling in a delivered CAPI application 15.2 : Delivering a CAPI application examples 91

set-automation-server-exit-delay function 5.2 : Alphabetical list of deliver keywords 49

set-clos-initarg-checking function 5.2 : Alphabetical list of deliver keywords 33

set-quit-when-no-windows function 5.2 : Alphabetical list of deliver keywords 49

severity level of the delivery 4.1 : The delivery function: deliver 18, 4.5.1 : Making the image smaller 24, deliver 93

keyword parameters, and 4.5.1 : Making the image smaller 24

:shake-class-accessors keyword 5.2 : Alphabetical list of deliver keywords 50

:shake-class-direct-methods keyword 5.2 : Alphabetical list of deliver keywords 50

:shake-classes keyword 5.2 : Alphabetical list of deliver keywords 50

:shake-externals keyword 5.2 : Alphabetical list of deliver keywords 50, 10.10.2 : Ensuring that symbols are kept 74

:shake-shake-shake keyword 4.6.2 : Shaking the image 25, 5.2 : Alphabetical list of deliver keywords 50

shaking. See treeshaking. 4.6.2 : Shaking the image 25

size of the application

internal symbols, and 5.2 : Alphabetical list of deliver keywords 50

interned symbols, and 4.6.2 : Shaking the image 25

intern function, and 10.11 : Coping with intern and find-symbol at run time 75, 14.8 : Use of the INTERN and FIND-SYMBOL
functions 90

packages, and 14.10 : User-defined and built-in packages 90

smashing packages 5.2 : Alphabetical list of deliver keywords 51, 10.8 : Symbol, SYMBOL-NAME and package issues during delivery 72

:smash-packages keyword 5.2 : Alphabetical list of deliver keywords 51, 10.9.4 : How to smash packages 73, 10.10.1 : Ensuring
that packages are kept 74

:smash-packages-symbols keyword 5.2 : Alphabetical list of deliver keywords 51, 10.9.4 : How to smash packages 73, 11.15 :
Interrogate-Symbols 82

splash screen 5.2 : Alphabetical list of deliver keywords 51

:split keyword 5.2 : Alphabetical list of deliver keywords 51, deliver 93

standalone applications. See applications, standalone delivery. 1.1 : What does Delivery do? 8

startup and shutdown

shutdown when all windows closed 5.2 : Alphabetical list of deliver keywords 48

startup function 4.1 : The delivery function: deliver 18, deliver 93

startup function, ignoring 5.2 : Alphabetical list of deliver keywords 49

:startup-bitmap-file keyword 5.2 : Alphabetical list of deliver keywords 51

startup image 5.2 : Alphabetical list of deliver keywords 51

startup screen 5.2 : Alphabetical list of deliver keywords 51

startup window 5.2 : Alphabetical list of deliver keywords 51

structure internals, deleting and keeping 5.2 : Alphabetical list of deliver keywords 43

:structure-packages-to-keep keyword 5.2 : Alphabetical list of deliver keywords 51

stub definitions for deleted functions 5.2 : Alphabetical list of deliver keywords 44

symbol-name function 11.13 : Symbol names changed to "Dummy Symbol Name" 80

Symbol names

Dummy Symbol Name 11.13 : Symbol names changed to "Dummy Symbol Name" 80

Index

116

removed by delivery 11.13 : Symbol names changed to "Dummy Symbol Name" 80

:symbol-names-action keyword 5.2 : Alphabetical list of deliver keywords 52, 10.8 : Symbol, SYMBOL-NAME and package issues
during delivery 72, 11.13 : Symbol names changed to "Dummy Symbol Name" 80

symbols

deleting and keeping 10.10 : Keeping packages and symbols in the application 74

:symbols-to-keep-structure-info keyword 5.2 : Alphabetical list of deliver keywords 52

system packages and delivery 10.8 : Symbol, SYMBOL-NAME and package issues during delivery 72

T

templates

CLOS method combinations 10.1.2.2 : Incorporating the templates into the application 67

FLI 10.6.1 : Foreign Language Interface templates 70

Foreign Language Interface 10.6.1 : Foreign Language Interface templates 70

the zaps file 11.14 : Debugging with :no-symbol-function-usage 80

top-level-interface-geometry-key function 10.4.1 : Interface geometry depends on Lisp symbol names 70

treeshaking 4.6.2 : Shaking the image 25

garbage collection, and 4.6 : How Delivery makes an image smaller 24

interned symbols, classes, functions, and 4.6.2 : Shaking the image 25

Lisp interface to 5.2 : Alphabetical list of deliver keywords 50

troubleshooting 11 : Troubleshooting the delivery process 77

truncated executable 8.3 : LispWorks executable corrupted 63

type declaration and discrimination 14.6 : Declaring the types of variables used in function calls 89

U

universal binary 6.1 : Universal binaries 56

update-instance-for-redefined-class generic function 5.2 : Alphabetical list of deliver keywords 33

V

variables

debugger-hook 3.2.2 : Handling errors generated by the Lisp system 16

:versioninfo keyword 5.2 : Alphabetical list of deliver keywords 52

W

walker, deleting and keeping 5.2 : Alphabetical list of deliver keywords 45

:warn-on-missing-templates keyword 5.2 : Alphabetical list of deliver keywords 55, 10.1.2.1 : Finding the necessary
templates 66, 11.9 : Warnings about combinations and templates 80

who-calls function 5.2 : Alphabetical list of deliver keywords 45

X

X resources

dependency on symbol names 8.2.4 : X resource names use Lisp symbol names 63

fallback resources on GTK+ 8.1.2 : Fallback resources 62

fallback resources on Motif 8.2.3 : Fallback resources 63

Index

117

Non-alaphanumerics

"SYMBOL-FUNCTION-VECTOR" 11.14 : Debugging with :no-symbol-function-usage 80

Index

118

	Delivery User Guide
	Copyrights and Trademarks
	Contents
	1 Introduction
	1.1 What does Delivery do?
	1.1.1 Making the image smaller

	1.2 What do you get with Delivery?
	1.2.1 Programming libraries and facility support code
	1.2.2 Functionality removed by delivery

	1.3 Conventions and terminology used in this manual
	1.3.1 Common Lisp reference text
	1.3.2 Platform-specific keywords
	1.3.3 Example files

	1.4 A breakdown of the delivery process
	1.4.1 Developing your application
	1.4.2 Managing and compiling your application
	1.4.3 Debugging, profiling and tuning facilities
	1.4.4 Delivering your compiled application
	1.4.5 Licensing issues
	1.4.6 Modules
	1.4.7 Error handling
	1.4.8 Troubleshooting

	1.5 Examples

	2 A Short Delivery Example
	2.1 Developing the program
	2.2 Delivering the program
	2.2.1 Delivering the program using the LispWorks IDE
	2.2.2 Delivering the program using a command shell
	2.2.3 Further examples

	3 Writing Code Suitable for Delivery
	3.1 Separate run time initializations from the build phase
	3.2 Error handling in delivered applications
	3.2.1 Handling errors generated by the application
	3.2.2 Handling errors generated by the Lisp system

	3.3 Efficiency considerations

	4 Delivering your Application
	4.1 The delivery function: deliver
	4.2 Using the delivery tools effectively
	4.2.1 Saving the image before attempting delivery
	4.2.2 Delivering the application in memory

	4.3 Delivering a standalone application executable
	4.4 Delivering a dynamic library
	4.4.1 Simple delivery of a dynamic library
	4.4.2 Using the dynamic library
	4.4.3 Simple Windows example
	4.4.3.1 Using the Application Builder

	4.4.4 Simple non-Windows example
	4.4.5 Further example
	4.4.6 More about building dynamic libraries

	4.5 How to deliver a smaller and faster application
	4.5.1 Making the image smaller

	4.6 How Delivery makes an image smaller
	4.6.1 Garbage collecting the image
	4.6.2 Shaking the image

	5 Keywords to the Delivery Function
	5.1 Topic-based list of deliver keywords
	5.1.1 Controlling the behavior of the delivered application
	5.1.2 Testing and debugging during delivery
	5.1.3 Controlling aspects of the executable or dynamic library
	5.1.4 Behavior of the delivery process
	5.1.5 Retaining or removing functionality
	5.1.5.1 Directing the behavior of the treeshaker and garbage collector
	5.1.5.2 Classes and structures
	5.1.5.3 Symbols, SYMBOL-NAME, functions, and packages
	5.1.5.4 Editor functionality
	5.1.5.5 CLOS metaclass compression
	5.1.5.6 Input and output
	5.1.5.7 Dynamic code
	5.1.5.8 Numbers
	5.1.5.9 Conditions deletion

	5.2 Alphabetical list of deliver keywords

	6 Delivery on macOS
	6.1 Universal binaries
	6.2 Application bundles
	6.3 Bad interaction with clean-up utilities
	6.4 Cocoa and GTK+ images
	6.5 Terminal windows and message logs
	6.5.1 Controlling use of a terminal window
	6.5.2 Logging debugging messages

	6.6 File associations for a Macintosh application
	6.7 Editor emulation
	6.8 Standard Edit keyboard gestures
	6.9 Quitting a CAPI/Cocoa application
	6.10 Retaining Objective-C classes
	6.11 X11/Motif considerations
	6.12 Examples of delivering Cocoa applications

	7 Delivery on Microsoft Windows
	7.1 Run time library requirement
	7.2 Application Manifests
	7.3 DOS windows and message logs
	7.3.1 Controlling use of a DOS window
	7.3.2 Logging debugging messages

	7.4 File associations for a Windows application
	7.5 Editor emulation
	7.6 ActiveX controls
	7.7 Example of delivering a Service

	8 Delivery on Linux, FreeBSD and x86/x64 Solaris
	8.1 GTK+ considerations
	8.1.1 GTK+ libraries on the target machine
	8.1.2 Fallback resources

	8.2 X11/Motif considerations
	8.2.1 Loading Motif
	8.2.2 Motif on the target machine
	8.2.3 Fallback resources
	8.2.4 X resource names use Lisp symbol names

	8.3 LispWorks executable corrupted
	8.4 Logging debugging messages
	8.5 Editor emulation
	8.6 Products supporting dynamic library delivery

	9 Delivering for mobile platforms
	9.1 Delivery of iOS runtimes
	9.1.1 Compiler not available in iOS runtimes
	9.1.2 How to deliver an iOS runtime

	9.2 Delivery of Android runtimes
	9.2.1 How to deliver an Android runtime

	10 Delivery and Internal Systems
	10.1 Delivery and CLOS
	10.1.1 Applications defining classes or methods dynamically
	10.1.2 Special dispatch functions and templates for them
	10.1.2.1 Finding the necessary templates
	10.1.2.2 Incorporating the templates into the application

	10.1.3 Delivery and the MOP
	10.1.4 Compression of CLOS metaobjects
	10.1.5 Classes, methods, and delivery
	10.1.6 Delivery and make-instance initarg checking

	10.2 Delivery and the Lisp reader
	10.3 Editors for delivered applications
	10.3.1 Form parsing and delivery
	10.3.2 Emulation and delivery
	10.3.3 Editor command groups

	10.4 Delivery and CAPI
	10.4.1 Interface geometry depends on Lisp symbol names

	10.5 The condition system in delivered applications
	10.5.1 Deleting of condition classes

	10.6 Delivery and the FLI
	10.6.1 Foreign Language Interface templates
	10.6.2 Foreign callable names

	10.7 Modules
	10.8 Symbol, SYMBOL-NAME and package issues during delivery
	10.9 Throwing symbols and packages out of the application
	10.9.1 Deleting packages
	10.9.2 How to delete packages
	10.9.3 Smashing packages
	10.9.4 How to smash packages
	10.9.5 When to delete and smash packages

	10.10 Keeping packages and symbols in the application
	10.10.1 Ensuring that packages are kept
	10.10.2 Ensuring that symbols are kept

	10.11 Coping with intern and find-symbol at run time
	10.12 Symbol-name comparison
	10.13 Delivery and Java interface

	11 Troubleshooting the delivery process
	11.1 Debugging errors in the delivery image
	11.2 Problems with undefined functions or variables
	11.3 Problems with READ
	11.4 Failure to find a class
	11.5 REQUIRE was called after delivery time with module ...
	11.6 Failed to reserve... error in compacted image
	11.7 Memory clashes with other software
	11.8 Possible explanations for a frozen image
	11.9 Warnings about combinations and templates
	11.10 FLI template needs to be compiled
	11.11 Failure to lookup X resources
	11.12 Reducing the size of the delivered application
	11.13 Symbol names changed to "Dummy Symbol Name"
	11.14 Debugging with :no-symbol-function-usage
	11.15 Interrogate-Symbols

	12 Interface to the Delivery Process
	12.1 Interface to the delivery process

	13 Example: Delivering CAPI Othello
	13.1 Preparing for delivery
	13.1.1 Writing a delivery script

	13.2 Delivering a standalone image
	13.3 Creating a macOS application bundle
	13.3.1 Example application bundle delivery script
	13.3.2 Alternative application bundle creation code
	13.3.3 Further macOS delivery examples

	13.4 Command line applications
	13.5 Making a smaller delivered image
	13.5.1 Increasing the delivery level

	14 Efficiency considerations when coding for delivery
	14.1 Use of modules
	14.2 Loading code at run time
	14.3 General strategy for reducing the image size
	14.4 Use of symbols, functions, and classes
	14.5 Making references to packages
	14.6 Declaring the types of variables used in function calls
	14.7 Avoid referencing type names
	14.7.1 Referencing types via methods
	14.7.2 Referencing types via predicates

	14.8 Use of the INTERN and FIND-SYMBOL functions
	14.9 Use of the EVAL function and the invocation of uncompiled functions
	14.10 User-defined and built-in packages

	15 Self-contained examples of delivery
	15.1 Delivering a Cocoa CAPI application examples
	15.2 Delivering a CAPI application examples
	15.3 Delivering a dynamic library examples
	15.4 Delivering a Windows service examples

	16 Delivery Reference Entries
	deliver
	deliver-keep-symbol-names
	deliver-keep-symbols
	deliver-keywords
	delivery-shaker-cleanup
	delivery-shaker-weak-pointer
	delivery-value

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Non-alaphanumerics

