
CAPI User Guide and Reference
Manual
Version 8.0

1

Copyright and Trademarks
CAPI User Guide and Reference Manual (Macintosh version)

Version 8.0

December 2021

Copyright © 2021 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in all copies and supporting documentation, and that the
name of M.I.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "as is"
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including all implied
warranties of merchantability and fitness. In no event shall M.I.T. be liable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright
and permission notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

2

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and
registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt III, as applicable. Rights reserved under the copyright laws of
the United States.

Address Telephone Fax

LispWorks Ltd
St. John's Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

From North America:
877 759 8839 (toll-free)

From elsewhere:
+44 1223 421860

From North America:
617 812 8283

From elsewhere:
+44 870 2206189

 www.lispworks.com

Copyright and Trademarks

3

www.lispworks.com

Contents

Preface 28

1 Introduction to the CAPI 32

1.1 What is the CAPI? 32

1.2 The CAPI model 32

1.3 The history of the CAPI 33

2 Getting Started 34

2.1 Using the CAPI package 34

2.2 Creating a window 34

2.3 Linking code into CAPI elements 36

3 General Properties of CAPI Panes 37

3.1 Generic properties 37

3.2 Base classes 40

3.3 Specifying titles 40

3.4 Callbacks 42

3.5 Displaying and entering text 42

3.6 Displaying rich text 46

3.7 Hierarchy of panes 46

3.8 Accessing pane geometry 47

3.9 Special kinds of windows 47

3.10 Button elements 49

3.11 Adding a toolbar to an interface 51

3.12 Tooltips 51

3.13 Screens 52

4 General Considerations 54

4.1 The correct thread for CAPI operations 54

4.2 Redisplay 55

4.3 Support for multiple monitors 55

5 Choices - panes with items 57

5.1 Items 57

5.2 Button panel classes 57

5.3 List panels 60

5.4 Trees 64

4

5.5 Stacked trees 65

5.6 Graph panes 65

5.7 Option panes 68

5.8 Text input choice 68

5.9 Menu components 68

5.10 General properties of choices 69

5.11 Operations on collections (choices) and their items 71

6 Laying Out CAPI Panes 73

6.1 Organizing panes in columns and rows 74

6.2 Other types of layout 77

6.3 Combining different layouts 78

6.4 Specifying geometry hints 79

6.5 Constraining the size of layouts 83

6.6 Other pane layouts 85

6.7 Changing layouts and panes within a layout 90

7 Programming with CAPI Windows 91

7.1 Initialization 91

7.2 Resizing and positioning 91

7.3 Geometric queries 92

7.4 Scrolling 92

7.5 Updating pane contents 94

7.6 Edit actions on the active element 95

7.7 Manipulating top-level windows 96

8 Creating Menus 98

8.1 Creating a menu 98

8.2 Presenting menus 99

8.3 Grouping menu items together 99

8.4 Creating individual menu items 101

8.5 The CAPI menu hierarchy 101

8.6 Mnemonics in menus 103

8.7 Accelerators in menus 103

8.8 Alternative menu items 104

8.9 Disabling menu items 105

8.10 Menus with images 105

8.11 The Edit menu on Cocoa 106

8.12 Popup menus for panes 106

8.13 Displaying menus programmatically 107

8.14 The Application menu 107

Contents

5

9 Adding Toolbars 108

9.1 Creating a toolbar button 108

9.2 Creating a toolbar with several buttons 109

9.3 Specifying the image for a toolbar button 110

9.4 Specifying toolbar callbacks 110

9.5 Specifying tooltips for toolbar buttons 111

9.6 Modifying toolbars 112

9.7 Advanced toolbar features 113

9.8 Disabling toolbar items 114

9.9 Non-standard toolbars 114

10 Dialogs: Prompting for Input 115

10.1 Some simple dialogs 115

10.2 Prompting for values 116

10.3 Window-modal Cocoa dialogs 121

10.4 Dialog Owners 122

10.5 Creating your own dialogs 122

10.6 In-place completion 125

11 Defining Interface Classes - top level windows 129

11.1 The define-interface macro 129

11.2 An example interface 130

11.3 Adapting the example 131

11.4 Connecting an interface to an application 134

11.5 Controlling the appearance of the top level window 136

11.6 Querying and modifying interface geometry 137

12 Creating Panes with Your Own Drawing and Input 139

12.1 Displaying graphics 139

12.2 Receiving input from the user 140

12.3 Creating graphical objects 146

12.4 output-pane scrolling 154

12.5 Transient display on output-pane and subclasses 157

13 Drawing - Graphics Ports 159

13.1 Introduction 159

13.2 Features 161

13.3 Graphics state 162

13.4 Drawing functions 163

13.5 How to draw to an on-screen port 164

13.6 Graphics state transforms 164

13.7 Combining source and target pixels 165

13.8 Pixmap graphics ports 166

Contents

6

13.9 Portable font descriptions 166

13.10 Working with images 167

14 Graphic Tools drawing objects 174

14.1 Lower level - drawing objects and objects displayers 174

14.2 Higher level - drawing graphs and bar charts 178

15 The Color System 180

15.1 Color specs 180

15.2 Color aliases 181

15.3 Color models 182

15.4 Loading the color database 183

15.5 Defining new color models 184

16 Printing from the CAPI - the Hardcopy API 186

16.1 Printers 186

16.2 Print jobs 186

16.3 Handling pages - page on demand printing 186

16.4 Handling pages - page sequential printing 187

16.5 Printing a page 187

16.6 Other printing functions 187

16.7 Printing on Motif 187

17 Drag and Drop 189

17.1 Overview of drag and drop 189

17.2 Dragging 189

17.3 Dropping 191

17.4 Limitations of CAPI drag and drop 193

18 Miscellaneous functionality 194

18.1 Development functions 194

18.2 Sounds 194

18.3 Modifier keys state 194

18.4 Restoring display while debugging 194

18.5 Object properties and name 195

18.6 Clipboard 195

18.7 Handles 195

18.8 Setting the font and colors for specific panes in specific interfaces. 195

19 Host Window System-specific issues 196

19.1 Microsoft Windows-specific issues 196

19.2 Cocoa-specific issues 196

19.3 GTK+-specific issues 197

Contents

7

19.4 Motif-specific issues 198

19.5 CAPI communication with host window system - libraries 199

20 Self-contained examples 201

20.1 Output pane examples 201

20.2 Graphics examples 202

20.3 Pinboard examples 204

20.4 Examples using timers to implement "animation" 204

20.5 Drag and Drop examples 205

20.6 Graph examples 205

20.7 Cocoa-specific examples 205

20.8 Examples of complete CAPI applications 206

20.9 Choice examples 206

20.10 Examples of dialogs and prompts 208

20.11 editor-pane examples 208

20.12 Menu examples 208

20.13 Miscellaneous examples 209

20.14 GTK+ specific examples 209

20.15 Motif specific examples 209

20.16 Layout examples 210

20.17 Tooltip examples 210

20.18 Examples illustrating other pane classes 210

20.19 Printing examples 211

20.20 Graphic Tools examples 212

21 CAPI Reference Entries 213

abort-callback 213

abort-dialog 213

abort-exit-confirmer 215

accepts-focus-p 215

activate-pane 216

active-pane-copy 217

active-pane-copy-p 217

active-pane-cut 217

active-pane-cut-p 217

active-pane-deselect-all 217

active-pane-deselect-all-p 217

active-pane-paste 217

active-pane-paste-p 217

active-pane-select-all 217

active-pane-select-all-p 217

active-pane-undo 217

active-pane-undo-p 217

append-items 219

Contents

8

apply-in-pane-process 219

apply-in-pane-process-if-alive 221

apply-in-pane-process-wait-multiple 221

apply-in-pane-process-wait-single 221

arrow-pinboard-object 222

attach-interface-for-callback 224

attach-simple-sink 224

attach-sink 225

beep-pane 226

browser-pane 227

browser-pane-available-p 231

browser-pane-busy 232

browser-pane-go-back 232

browser-pane-go-forward 232

browser-pane-navigate 232

browser-pane-property-get 234

browser-pane-property-put 234

browser-pane-refresh 232

browser-pane-set-content 232

browser-pane-stop 232

button 235

button-panel 238

calculate-constraints 241

calculate-layout 242

callbacks 243

call-editor 245

can-use-metafile-p 246

capi-object 247

capi-object-property 248

check-button 249

check-button-panel 250

choice 251

choice-selected-item 254

choice-selected-item-p 255

choice-selected-items 256

choice-update-item 258

clipboard 259

clipboard-empty 260

clone 261

cocoa-default-application-interface 261

cocoa-view-pane 264

cocoa-view-pane-view 265

collect-interfaces 266

collection 267

Contents

9

collection-find-next-string 269

collection-find-string 270

collection-last-search 271

collection-search 271

collector-pane 272

color-screen 273

column-layout 274

component-name 276

confirmer-pane 276

confirm-quit 277

confirm-yes-or-no 278

contain 279

convert-relative-position 281

convert-to-screen 281

count-collection-items 283

create-dummy-graphics-port 284

current-dialog-handle 285

current-document 286

current-pointer-position 286

current-popup 287

current-printer 288

default-editor-pane-line-wrap-marker 288

default-library 289

default-non-focus-message-timeout 290

default-non-focus-message-timeout-extension 290

define-command 291

define-interface 293

define-layout 297

define-menu 298

define-ole-control-component 299

destroy 301

destroy-dependent-object 302

detach-simple-sink 302

detach-sink 303

display 304

display-dialog 305

display-errors 308

display-message 308

display-message-for-pane 309

display-non-focus-message 310

display-pane 312

display-pane-selected-text 313

display-pane-selection 313

display-pane-selection-p 314

Contents

10

display-popup-menu 315

display-replacable-dialog 316

display-tooltip 317

docking-layout 318

docking-layout-pane-docked-p 320

docking-layout-pane-visible-p 320

document-container 321

document-frame 322

double-headed-arrow-pinboard-object 323

double-list-panel 324

drag-pane-object 326

draw-metafile 327

draw-metafile-to-image 328

drawn-pinboard-object 329

draw-pinboard-layout-objects 330

draw-pinboard-object 331

draw-pinboard-object-highlighted 332

drop-object-allows-drop-effect-p 333

drop-object-collection-index 334

drop-object-collection-item 335

drop-object-drop-effect 336

drop-object-get-object 337

drop-object-pane-x 338

drop-object-pane-y 338

drop-object-provides-format 339

echo-area-cursor-inactive-style 340

echo-area-pane 340

editor-cursor-active-style 340

editor-cursor-color 341

editor-cursor-drag-style 341

editor-cursor-inactive-style 342

editor-pane 342

editor-pane-blink-rate 347

editor-pane-buffer 348

editor-pane-composition-selected-range-face-plist 349

editor-pane-default-composition-callback 350

editor-pane-default-composition-face 351

editor-pane-native-blink-rate 351

editor-pane-selected-text 352

editor-pane-selected-text-p 353

editor-pane-stream 353

editor-window 354

element 354

element-container 358

Contents

11

element-interface-for-callback 358

element-screen 359

ellipse 360

end-pane-drag-operation 722

ensure-area-visible 360

ensure-interface-screen 361

execute-with-interface 361

execute-with-interface-if-alive 363

exit-confirmer 364

exit-dialog 365

expandable-item-pinboard-object 366

extended-selection-tree-view 366

filtering-layout 367

filtering-layout-match-object-and-exclude-p 369

find-graph-edge 370

find-graph-node 371

find-interface 372

find-string-in-collection 373

force-screen-update 373

force-update-all-screens 374

foreign-owned-interface 374

form-layout 375

free-metafile 376

free-sound 377

get-collection-item 377

get-constraints 378

get-horizontal-scroll-parameters 379

get-page-area 380

get-printer-metrics 381

get-scroll-position 382

get-vertical-scroll-parameters 379

graph-edge 383

graph-node 383

graph-node-children 384

graph-object 385

graph-pane 385

graph-pane-add-graph-node 389

graph-pane-delete-object 389

graph-pane-delete-objects 390

graph-pane-delete-selected-objects 391

graph-pane-direction 391

graph-pane-edges 392

graph-pane-nodes 393

graph-pane-object-at-position 393

Contents

12

graph-pane-select-graph-nodes 394

graph-pane-update-moved-objects 395

grid-layout 395

hide-interface 399

hide-pane 399

highlight-pinboard-object 400

image-list 401

image-locator 402

image-pinboard-object 402

image-set 403

installed-libraries 404

install-postscript-printer 405

interactive-pane 406

interactive-pane-execute-command 408

interface 409

interface-customize-toolbar 419

interface-display 420

interface-display-title 421

interface-document-modified-p 422

interface-editor-pane 422

interface-extend-title 423

interface-geometry 424

interface-iconified-p 425

interface-keys-style 425

interface-match-p 427

interface-menu-groups 428

interface-preserve-state 429

interface-preserving-state-p 429

interface-reuse-p 430

interface-toolbar-state 431

interface-visible-p 432

interpret-description 433

invalidate-pane-constraints 434

invoke-command 435

invoke-untranslated-command 435

item 436

itemp 438

item-pane-interface-copy-object 438

item-pinboard-object 440

labelled-arrow-pinboard-object 440

labelled-line-pinboard-object 441

layout 442

line-pinboard-object 444

line-pinboard-object-coordinates 445

Contents

13

listener-pane 445

listener-pane-insert-value 446

list-panel 447

list-panel-enabled 454

list-panel-filter-state 455

list-panel-items-and-filter 456

list-panel-search-with-function 457

list-panel-unfiltered-items 458

list-view 459

load-cursor 462

load-sound 464

locate-interface 465

lower-interface 466

make-container 467

make-docking-layout-controller 468

make-foreign-owned-interface 469

make-general-image-set 470

make-icon-resource-image-set 471

make-image-locator 472

make-menu-for-pane 472

make-pane-popup-menu 473

make-resource-image-set 475

make-scaled-general-image-set 476

make-scaled-image-set 477

make-sorting-description 478

manipulate-pinboard 480

map-collection-items 482

map-pane-children 482

map-pane-descendant-children 484

map-typeout 485

maximum-moving-objects-to-track-edges 485

menu 486

menu-component 489

menu-item 491

menu-object 494

merge-menu-bars 497

message-pane 498

metafile-port 499

modify-editor-pane-buffer 499

modify-multi-column-list-panel-columns 500

modify-stacked-tree 501

mono-screen 502

move-line 502

multi-column-list-panel 503

Contents

14

multi-line-text-input-pane 507

non-focus-list-add-filter 507

non-focus-list-interface 508

non-focus-list-remove-filter 507

non-focus-list-toggle-enable-filter 509

non-focus-list-toggle-filter 507

non-focus-maybe-capture-gesture 509

non-focus-terminate 511

non-focus-update 511

ole-control-add-verbs 512

ole-control-close-object 513

ole-control-component 513

ole-control-doc 515

ole-control-frame 515

ole-control-i-dispatch 516

ole-control-insert-object 517

ole-control-ole-object 518

ole-control-pane 518

ole-control-pane-frame 520

ole-control-pane-simple-sink 521

ole-control-user-component 521

option-pane 522

output-pane 525

output-pane-cached-display-user-info 532

output-pane-cache-display 532

output-pane-draw-from-cached-display 533

output-pane-free-cached-display 534

output-pane-resize 535

output-pane-stop-composition 536

over-pinboard-object-p 537

page-setup-dialog 538

pane-adjusted-offset 539

pane-adjusted-position 540

pane-can-restore-display-p 541

pane-close-display 542

pane-descendant-child-with-focus 543

pane-drag-operation-update 722

pane-got-focus 543

pane-has-focus-p 544

pane-initial-focus 545

pane-interface-copy-object 546

pane-interface-copy-p 546

pane-interface-cut-object 546

pane-interface-cut-p 546

Contents

15

pane-interface-deselect-all 546

pane-interface-deselect-all-p 546

pane-interface-paste-object 546

pane-interface-paste-p 546

pane-interface-select-all 546

pane-interface-select-all-p 546

pane-interface-undo 546

pane-interface-undo-p 546

pane-modifiers-state 547

pane-popup-menu-items 548

pane-restore-display 550

pane-screen-internal-geometry 551

pane-string 552

pane-supports-menus-with-images 553

parse-layout-descriptor 554

password-pane 555

pinboard-layout 556

pinboard-layout-display 558

pinboard-object 559

pinboard-object-at-position 563

pinboard-object-graphics-arg 564

pinboard-object-highlighted-p 565

pinboard-object-overlap-p 565

pinboard-pane-position 566

pinboard-pane-size 567

play-sound 568

popup-confirmer 569

popup-menu-button 575

popup-menu-force-popdown 576

ppd-directory 577

print-capi-button 577

print-collection-item 578

print-dialog 579

print-editor-buffer 580

printer-configuration-dialog 581

printer-metrics 582

printer-port 583

printer-port-handle 584

printer-port-supports-p 584

printer-search-path 585

print-file 586

print-rich-text-pane 587

print-text 588

process-pending-messages 589

Contents

16

progress-bar 589

prompt-for-color 590

prompt-for-confirmation 591

prompt-for-directory 592

prompt-for-file 594

prompt-for-files 596

prompt-for-font 598

prompt-for-form 598

prompt-for-forms 600

prompt-for-integer 601

prompt-for-items-from-list 603

prompt-for-number 604

prompt-for-string 605

prompt-for-symbol 606

prompt-for-value 608

prompt-with-list 609

prompt-with-list-non-focus 612

prompt-with-message 615

push-button 616

push-button-panel 617

quit-interface 618

radio-button 620

radio-button-panel 621

raise-interface 622

range-pane 622

range-set-sizes 623

read-sound-file 624

record-dependent-object 625

rectangle 626

redisplay-collection-item 627

redisplay-element 627

redisplay-interface 628

redisplay-menu-bar 629

redraw-drawing-with-cached-display 630

redraw-pinboard-layout 631

redraw-pinboard-object 631

reinitialize-interface 632

remove-capi-object-property 633

remove-items 634

replace-dialog 634

replace-items 635

report-active-component-failure 636

reuse-interfaces-p 637

rich-text-pane 638

Contents

17

rich-text-pane-character-format 639

rich-text-pane-operation 641

rich-text-pane-paragraph-format 643

rich-text-version 644

right-angle-line-pinboard-object 644

row-layout 645

screen 647

screen-active-interface 648

screen-active-p 649

screen-internal-geometries 650

screen-internal-geometry 651

screen-logical-resolution 652

screen-monitor-geometries 652

screens 653

scroll 654

scroll-bar 655

scroll-if-not-visible-p 657

search-for-item 658

selection 659

selection-empty 660

set-application-interface 660

set-button-panel-enabled-items 661

set-clipboard 662

set-composition-placement 663

set-confirm-quit-flag 664

set-default-editor-pane-blink-rate 665

set-default-interface-prefix-suffix 666

set-default-use-native-input-method 667

set-display-pane-selection 668

set-drop-object-supported-formats 668

set-editor-parenthesis-colors 670

set-geometric-hint 671

set-hint-table 671

set-horizontal-scroll-parameters 672

set-interactive-break-gestures 673

set-interface-pane-name-appearance 674

set-interface-pane-type-appearance 674

set-list-panel-keyboard-search-reset-time 676

set-object-automatic-resize 677

set-pane-focus 680

set-printer-metrics 680

set-printer-options 681

set-rich-text-pane-character-format 683

set-rich-text-pane-paragraph-format 685

Contents

18

set-selection 686

set-text-input-pane-selection 687

set-top-level-interface-geometry 688

set-vertical-scroll-parameters 672

shell-pane 689

show-interface 690

show-pane 691

simple-layout 691

simple-network-pane 692

simple-pane 693

simple-pane-handle 700

simple-pane-visible-height 700

simple-pane-visible-size 701

simple-pane-visible-width 702

simple-pinboard-layout 702

simple-print-port 703

slider 705

sorted-object 707

sorted-object-sort-by 708

sorted-object-sorted-by 708

sort-object-items-by 709

stacked-tree 710

stacked-tree-decrease-font-height 715

stacked-tree-default-color-function 715

stacked-tree-history-backward 716

stacked-tree-history-forward 716

stacked-tree-increase-font-height 715

stacked-tree-item-at-point 717

stacked-tree-width-ratio 718

stacked-tree-zoom-by-factor 719

start-drawing-with-cached-display 720

start-gc-monitor 721

start-pane-drag-operation 722

static-layout 723

static-layout-child-geometry 724

static-layout-child-position 725

static-layout-child-size 726

stop-gc-monitor 727

stop-sound 728

switchable-layout 729

switchable-layout-switchable-children 730

tab-layout 731

tab-layout-panes 733

tab-layout-visible-child 734

Contents

19

text-input-choice 735

text-input-pane 736

text-input-pane-append-recent-items 744

text-input-pane-complete-text 745

text-input-pane-copy 746

text-input-pane-cut 746

text-input-pane-delete 747

text-input-pane-delete-recent-items 744

text-input-pane-in-place-complete 748

text-input-pane-paste 748

text-input-pane-prepend-recent-items 744

text-input-pane-recent-items 749

text-input-pane-replace-recent-items 744

text-input-pane-selected-text 750

text-input-pane-selection 750

text-input-pane-selection-p 751

text-input-pane-set-recent-items 752

text-input-range 753

titled-menu-object 754

titled-object 755

titled-pinboard-object 758

title-pane 759

toolbar 760

toolbar-button 762

toolbar-component 765

toolbar-object 767

top-level-interface 768

top-level-interface-color-mode 768

top-level-interface-dark-mode-p 770

top-level-interface-display-state 770

top-level-interface-geometry 771

top-level-interface-geometry-key 773

top-level-interface-p 774

top-level-interface-save-geometry-p 775

tracking-pinboard-layout 775

tree-view 776

tree-view-ensure-visible 782

tree-view-expanded-p 782

tree-view-item-checkbox-status 783

tree-view-item-children-checkbox-status 784

tree-view-update-an-item 784

tree-view-update-item 785

undefine-menu 786

unhighlight-pinboard-object 786

Contents

20

uninstall-postscript-printer 787

unmap-typeout 788

unrecord-dependent-object 625

update-all-interface-titles 788

update-drawing-with-cached-display 789

update-drawing-with-cached-display-from-points 789

update-interface-title 790

update-internal-scroll-parameters 791

update-pinboard-object 792

update-screen-interfaces-hooks 793

update-screen-interface-titles 793

update-toolbar 794

virtual-screen-geometry 795

with-atomic-redisplay 795

with-busy-interface 796

with-dialog-results 797

with-document-pages 799

with-external-metafile 800

with-geometry 802

with-internal-metafile 804

with-output-to-printer 805

with-page 806

with-page-transform 807

with-print-job 808

with-random-typeout 810

wrap-text 810

wrap-text-for-pane 811

x-y-adjustable-layout 812

22 GRAPHICS-PORTS Reference Entries 814

2pi 814

analyze-external-image 814

apply-rotation 815

apply-rotation-around-point 816

apply-scale 817

apply-translation 818

augment-font-description 819

clear-external-image-conversions 819

clear-graphics-port 820

clear-graphics-port-state 821

clear-rectangle 821

compress-external-image 822

compute-char-extents 823

convert-external-image 823

Contents

21

convert-to-font-description 824

copy-area 825

copy-external-image 826

copy-pixels 827

copy-transform 828

create-pixmap-port 828

default-image-translation-table 830

define-font-alias 830

destroy-pixmap-port 831

dither-color-spec 831

draw-arc 832

draw-arcs 833

draw-character 833

draw-circle 834

draw-ellipse 835

draw-image 836

draw-line 838

draw-lines 839

draw-path 840

draw-point 842

draw-points 843

draw-polygon 844

draw-polygons 844

draw-rectangle 846

draw-rectangles 847

draw-string 847

ensure-gdiplus 849

external-image 850

external-image-color-table 850

externalize-and-write-image 851

externalize-image 853

f2pi 854

find-best-font 854

find-matching-fonts 855

font 856

font-description 857

font-description 858

font-description-attributes 858

font-description-attribute-value 859

font-dual-width-p 860

font-fixed-width-p 860

font-single-width-p 861

fpi 862

fpi-by-2 862

Contents

22

free-image 863

free-image-access 863

get-bounds 864

get-character-extent 865

get-char-ascent 866

get-char-descent 866

get-char-width 867

get-enclosing-rectangle 867

get-font-ascent 868

get-font-average-width 869

get-font-descent 869

get-font-height 870

get-font-width 871

get-graphics-state 871

get-origin 872

get-string-extent 873

get-transform-scale 873

graphics-port-background 874

graphics-port-font 874

graphics-port-foreground 874

graphics-port-mixin 875

graphics-port-transform 874

graphics-state 876

image 880

image-access-height 881

image-access-pixel 882

image-access-pixels-from-bgra 883

image-access-pixels-to-bgra 884

image-access-transfer-from-image 885

image-access-transfer-to-image 886

image-access-width 881

image-freed-p 887

image-loader 887

image-translation 888

initialize-dithers 889

inset-rectangle 889

inside-rectangle 890

invalidate-rectangle 891

invalidate-rectangle-from-points 892

invert-transform 893

list-all-font-names 893

list-known-image-formats 894

load-icon-image 895

load-image 896

Contents

23

make-dither 898

make-font-description 898

make-graphics-state 899

make-image 900

make-image-access 901

make-image-from-port 902

make-scaled-sub-image 903

make-sub-image 904

make-transform 905

merge-font-descriptions 906

offset-rectangle 906

ordered-rectangle-union 907

pi-by-2 908

pixblt 908

pixmap-port 909

port-drawing-mode-quality-p 910

port-graphics-state 910

port-height 911

port-owner 912

port-string-height 912

port-string-width 913

port-width 914

postmultiply-transforms 914

premultiply-transforms 915

read-and-convert-external-image 915

read-external-image 916

rectangle-bind 917

rectangle-bottom 918

rectangle-height 918

rectangle-left 919

rectangle-right 920

rectangle-top 920

rectangle-union 921

rectangle-width 922

rect-bind 922

register-image-load-function 923

register-image-translation 924

reset-image-translation-table 925

separation 925

set-default-image-load-function 926

set-graphics-port-coordinates 926

set-graphics-state 927

transform 928

transform-area 929

Contents

24

transform-distance 929

transform-distances 930

transform-is-rotated 931

transform-point 931

transform-points 932

transform-rect 933

undefine-font-alias 934

union-rectangle 934

unit-transform 935

unit-transform-p 935

unless-empty-rect-bind 936

untransform-distance 937

untransform-distances 937

untransform-point 938

untransform-points 939

validate-rectangle 939

with-dither 940

with-graphics-mask 941

with-graphics-post-translation 942

with-graphics-rotation 943

with-graphics-scale 943

with-graphics-state 944

with-graphics-transform 946

with-graphics-transform-reset 947

with-graphics-translation 943

with-inverse-graphics 948

without-relative-drawing 948

with-pixmap-graphics-port 949

with-transformed-area 950

with-transformed-point 951

with-transformed-points 952

with-transformed-rect 952

write-external-image 953

23 LW-GT Reference Entries 955

apply-drawing-object 955

basic-graph-spec 956

basic-graph-spec-p 973

compound-drawing-object 957

compute-drawing-object-from-data 958

copy-basic-graph-spec 973

drawing-object 959

fit-object 960

force-objects-redraw 963

Contents

25

generate-bar-chart 964

generate-graph-from-graph-spec 973

generate-graph-from-pairs 966

generate-grid-lines 967

generate-labels 969

geometry-drawing-object 971

make-absolute-drawing 960

make-absolute-drawing* 960

make-a-drawing-call 971

make-basic-graph-spec 973

make-draw-arc 971

make-draw-circle 971

make-draw-ellipse 971

make-draw-line 971

make-draw-lines 971

make-draw-polygon 971

make-draw-rectangle 971

make-draw-string 975

make-pinboard-objects-displayer 976

objects-displayer 977

pinboard-objects-displayer 978

position-and-fit-object 960

position-object 960

recurse-compute-drawing-object 958

rotate-object 960

string-drawing-object 979

24 COLOR Reference Entries 981

apropos-color-alias-names 981

apropos-color-names 982

apropos-color-spec-names 983

color-alpha 984

color-blue 984

color-database 986

color-from-premultiplied 986

color-green 984

color-hue 984

color-level 987

color-model 988

color-red 984

colors= 989

color-saturation 984

color-to-premultiplied 990

color-value 984

Contents

26

color-with-alpha 991

convert-color 991

define-color-alias 992

define-color-models 994

delete-color-translation 995

ensure-color 995

ensure-gray 997

ensure-hsv 997

ensure-model-color 996

ensure-rgb 997

get-all-color-names 998

get-color-alias-translation 999

get-color-spec 1000

load-color-database 1001

make-gray 1001

make-hsv 1002

make-rgb 1003

read-color-db 1004

unconvert-color 1005

Index

Contents

27

Preface

This preface contains information you need when using the rest of the CAPI documentation. It discusses the purpose of this
manual, the typographical conventions used, and gives a brief description of the rest of the contents.

About this manual

This manual contains a user guide section (previously published separately as the CAPI User Guide) and a reference section
(previously the LispWorks CAPI Reference Manual).

Assumptions

The CAPI documentation assumes that you are familiar with:

• LispWorks.

• Common Lisp and CLOS, the Common Lisp Object System.

• macOS.

Illustrations in this manual show the CAPI running on macOS 10.5, so if you use a different version you should expect some
variation from the figures depicted here.

Unless otherwise stated, examples given in this document assume that the current package has CAPI on its package-use-list.

Conventions used in the manual

Throughout this manual, certain typographical conventions have been adopted to aid readability.

1. Whenever an instruction is given, it is numbered and printed like this.

Text which you should enter explicitly is printed like this.

Exported symbols and example code are printed like-this. The package qualifier is often omitted, as if the current
package is capi (or graphics-ports or color.)

Variable arguments, slots and return values are italicised. They look like-this in the main text.

User Guide section

The user guide section of this manual forms an introductory course in developing applications using the CAPI. Please note
that, like the rest of the LispWorks documentation, it does assume knowledge of Common Lisp.

1 Introduction to the CAPI, introduces the principles behind the CAPI, some of its fundamental concepts, and what it sets
out to achieve.

2 Getting Started, presents a series of simple examples to familiarize you with some of the most important elements and
functions.

3 General Properties of CAPI Panes, introduces more of the fundamental CAPI elements and common themes. These
elements are explained in greater detail in the remainder of the manual.

28

4 General Considerations, covers some general issues that you should be aware of when using CAPI, including information
about multiple displays.

5 Choices - panes with items, explains the key CAPI concept of the choice. A choice groups CLOS objects together and
provides the notion of there being a selected object amongst that group of objects. Button panels and list panels are examples
of choices.

6 Laying Out CAPI Panes introduces the idea of layouts. These let you combine different CAPI elements inside a single
window.

7 Programming with CAPI Windows, outlines basic techniques for modifying existing windows.

8 Creating Menus, shows you how to implement menus.

9 Adding Toolbars, shows you how to add toolbars to a window.

11 Defining Interface Classes - top level windows, introduces the macro define-interface. This macro can be used to
define interface classes composed of CAPI elements, including the predefined elements described in this manual and also
elements which you define.

10 Dialogs: Prompting for Input, discusses the ways in which dialogs may be used to prompt the user for input.

12 Creating Panes with Your Own Drawing and Input, shows you how you can define your own classes when the
elements provided by the CAPI are not sufficient for your needs.

13 Drawing - Graphics Ports, describes the Graphics Ports API which provides a selection of drawing and image
transformation functions. Although not part of the CAPI package, and therefore not strictly part of the CAPI, the Graphics
Ports functions are used in conjunction with CAPI panes, and are therefore documented in this manual. See also 22
GRAPHICS-PORTS Reference Entries.

14 Graphic Tools drawing objects, describes the Graphic Tools API which provides a way to create more complex
drawings, including graphs and bar charts. Graphic Tools are built with Graphics Ports and CAPI pinboards, and are
therefore documented in this manual. See also 23 LW-GT Reference Entries.

15 The Color System, allows applications to use keyword symbols as aliases for colors in Graphics Ports drawing functions.
They can also be used for backgrounds and foregrounds of windows and CAPI objects. See also 24 COLOR Reference
Entries.

16 Printing from the CAPI—the Hardcopy API, describes the programmatic printing of Graphics Ports.

17 Drag and Drop, describes how you can implement drag and drop in your CAPI application.

19 Host Window System-specific issues, describes how to configure the appearance of CAPI windows on the various
supported host window systems.

20 Self-contained examples, enumerates the CAPI example files available in the LispWorks library.

Reference section

The reference section contains reference entries for the symbols in the capi, graphics-ports, lw-gt and color

packages.

Within each chapter, the symbols are organized alphabetically (ignoring non-alphanumeric characters that are common in
Lisp symbols, such as *). The typographical conventions used are similar to those used in Common Lisp: the Language (2nd
Edition). Further details on the conventions used are given below. The chapters are:

21 CAPI Reference Entries, describes the external symbols of the capi package.

22 GRAPHICS-PORTS Reference Entries, describes the external symbols of the graphics-ports package.

Preface

29

23 LW-GT Reference Entries, describes the external symbols of the lw-gt package.

24 COLOR Reference Entries, describes the external symbols of the color package.

Note: Although the graphics-ports and color packages are not strictly part of the CAPI, they are included in this
manual because the functionality is usually called from CAPI elements such as output panes. lw-gt is also included here
since it is built on top of graphics-ports and capi. 13 Drawing - Graphics Ports and 15 The Color System shows you
how to use the graphics-ports and color packages respectively; the remainder of the User Guide section shows you how
to use the capi package.

Conventions used for reference entries

Each entry is headed by the symbol name and type, followed by a number of fields providing further details. These fields
consist of a subset of the following: "Summary", "Package", "Signature", "Method signatures", "Arguments", "Values",
"Initial value", "Superclasses", "Subclasses", "Initargs", "Accessors", "Readers", "Description", "Notes", "Compatibility
notes", "Examples" and "See also".

Some symbols with closely-related functionality are coalesced into a single reference entry.

Entries with a long "Description" section usually have as their first field a short "Summary" providing a quick overview of the
symbol's purpose.

The "Package" section shows the package from which the symbol is exported.

The "Signature" section shows the arguments and return values of functions and macros, and the parameters of types.

In a Generic Function entry there may be a "Method signatures" section showing system-defined method signatures.

The "Arguments" and "Values" sections show types of the arguments and return values.

In a Variable entry, the "Initial value" section shows the initial value.

In a Class entry the "Subclasses" section of lists the external subclasses, though not subclasses of those, and the
"Superclasses" section lists the external superclasses, though not superclasses of those. The "Initargs" section describes the
initialization arguments of the class, though note that initargs of superclasses are also valid. There may be an "Accessors"
section listing accessor functions which are both readers and writers, and/or a "Readers" section listing accessor functions
which are only readers. Accessor functions access the slot with matching name.

The "Description" section contains the detail of what the symbol does, how each argument is interpreted (and its default value
if applicable), and how each return value is derived. More incidental information may be shown in a "Notes" section.

A few entries have a "Compatibility notes" section describing changes in the symbol's functionality relative to other
LispWorks versions.

Examples are given under the "Examples" heading. Short examples are shown directly. Longer examples are supplied as
source files in your LispWorks installation directory under examples/capi/. The convenience function
lw:example-edit-file allows you to open these files in the LispWorks editor.

Note that the example code is written with explicit package qualifiers such as capi:interface, so that it can be run as-is,
regardless of the current package.

Finally, the "See also" section provides links to other related symbols and user guide sections.

Viewing example files

This manual often refers to example files in the LispWorks library via a Lisp form like this:

(example-edit-file "capi/choice/drag-and-drop")

Preface

30

These examples are Lisp source files in your LispWorks installation under lib/8-0-0-0/examples/. You can simply
evaluate the given form to view the example source file.

Example files contain instructions about how to use them at the start of the file.

The examples files are in a read-only directory and therefore you should compile them inside the IDE (by the Editor
command Compile Buffer or the toolbar button or by choosing Buffer > Compile from the context menu), so it does not try
to write a fasl file.

If you want to manipulate an example file or compile it on the disk rather than in the IDE, then you need first to copy the file
elsewhere (most easily by using the Editor command Write File or by choosing File > Save As from the context menu).

The LispWorks manuals

The LispWorks manual set also includes the following books:

• The LispWorks® User Guide and Reference Manual describes the main language-level features and tools available in
LispWorks, along with reference pages.

• The LispWorks IDE User Guide describes the LispWorks IDE, the user interface for LispWorks. This is a set of
windowing tools that help you to develop and test Common Lisp programs.

• The Editor User Guide describes the keyboard commands and programming interface to the LispWorks IDE editor tool.

• The Foreign Language Interface User Guide and Reference Manual explains how you can use C source code in
applications developed using LispWorks.

• The Delivery User Guide describes how you can deliver working, standalone versions of your LispWorks applications
for distribution to your customers.

• Developing Component Software with CORBA® describes how LispWorks can interoperate with other CORBA-
compliant systems.

• The COM/Automation User Guide and Reference Manual describes a toolkit for using Microsoft COM and Automation
in LispWorks for Windows.

• The LispWorks Objective-C and Cocoa Interface User Guide and Reference Manual describes APIs for interfacing to
Objective-C and Cocoa in LispWorks for Macintosh.

• The KnowledgeWorks and Prolog User Guide describes the LispWorks toolkit for building knowledge-based systems.
Prolog is a logic programming system within Common Lisp.

• The Common Lisp Interface Manager 2.0 User's Guide describes the portable Lisp-based GUI toolkit.

• The Release Notes and Installation Guide which contains notes explaining how to install LispWorks and get it running.
It also contains a set of release notes which lists new features and any last minute issues that could not be included in the
main manual set.

These books are provided in both HTML and PDF formats, and may also be found at www.lispworks.com/documentation.

Commands in the Help menu of any of the LispWorks IDE tools give you direct access to your local copy of the HTML
format manuals. Details of how to use these commands can be found in the LispWorks IDE User Guide.

You can use Adobe® Reader® to browse the PDF documentation. Adobe Reader is available from Adobe's web site,
http://www.adobe.com/.

Please let us know at lisp-support@lispworks.com if you find any mistakes in the LispWorks documentation, or if you have
any suggestions for improvements.

Preface

31

http://www.lispworks.com/documentation
http://www.adobe.com/
mailto:lisp-support@lispworks.com

1 Introduction to the CAPI

1.1 What is the CAPI?

The CAPI (Common Application Programmer's Interface) is a library for implementing portable window-based application
interfaces. It is a conceptually simple, CLOS-based model of interface elements and their interaction. It provides a standard
set of these elements and their behaviors, as well as giving you the opportunity to define elements of your own.

The CAPI's model of window-based user interfaces is an abstraction of the concepts that are shared between all contemporary
window systems, such that you do not need to consider the details of a particular system. These hidden details are taken care
of by a back end library written for that system alone.

An advantage of making this abstraction is that each of the system-specific libraries can be highly specialized, concentrating
on getting things right for that particular window system. Furthermore, because the implementation libraries and the CAPI
model are completely separate, libraries can be written for new window systems without affecting either the CAPI model or
the applications you have written with it.

The CAPI currently runs under X Window System with either GTK+ or Motif, Microsoft Windows and macOS. Using CAPI
with Motif is deprecated.

1.2 The CAPI model

The CAPI provides an abstract hierarchy of classes which represent different sorts of window interface elements, along with
functions for interacting with them. Instances of these classes represent window objects in an application, with their slots
representing different aspects of the object, such as the text on a button, or the items on a menu. These instances are not
actual window objects but provide a convenient representation of them for you. When you ask the CAPI to display your
object, it creates a real window system object to represent it. This means that if you display a CAPI button, a real Windows
button is created for it when running on Microsoft Windows, a real GTK+ button when running on GTK+, and a real Cocoa
button when running on Cocoa.

The CAPI's approach makes the production of the screen objects the responsibility of the native window system, so it always
produces the correct look and feel. Furthermore, the CAPI's use of the real interface to the window system means that it does
not need to be upgraded to account for look and feel changes, and anything written with it is upwardly compatible, just like
any well-written application.

1.2.1 CAPI elements

There are five types of elements in the CAPI model: interface, menu, pane, layout and pinboard-object.

Everything that the CAPI displays is contained within an interface (an instance of the class interface). When an interface
is displayed a window appears containing all the menus and panes you have specified for it. Top level windows in an
application are normally defined as an interface subclass, by using define-interface.

An interface can contain a number of menus collected together on a menu bar, and context menus can also appear elsewhere.
Each menu can contain menu items or other menus (that is, submenus). Items can be grouped together visually and
functionally inside menu components. Menus, menu items, and menu components are, respectively, instances of the classes
menu, menu-item, and menu-component.

Panes are window objects such as buttons and lists. They can be positioned anywhere in an interface. The CAPI provides

32

many different kinds of pane class, among them push-button, list-panel, text-input-pane, editor-pane,
tree-view and graph-pane.

The positions of panes are controlled by a layout, which allows objects to be collected together and positioned either
regularly (with instances of the classes column-layout, row-layout or grid-layout) or arbitrarily using a
pinboard-layout. Layouts themselves can be laid out by other layouts — for example, a row of buttons can be laid out
above a list by placing both the row-layout and the list in a column-layout.

pinboard-objects are lightweight elements that you can use to create complex display and user interaction. They must be
used inside a pinboard-layout.

Note that layouts and interfaces are actually panes too (interface and layout are subclasses of simple-pane), and in
most of the cases can be used where panes are used. They are listed separately because of their special role in the layout of
windows.

1.3 The history of the CAPI

Window-based applications written with LispWorks 3 and previous used CLX², CLUE, and the LispWorks Toolkit. Such
applications are restricted to running under X Windows. Because we and our customers wanted a way to write portable
window code, we developed a new system for this purpose: the CAPI.

Part of this portability exercise was undertaken before the development of the CAPI, for graphics ports, the generic graphics
library. This includes the portable color, font, and image systems in LispWorks. The CAPI is built on top of this technology,
and has been implemented for Motif, Microsoft Windows, Cocoa and GTK+.

All Lisp-based environment and application development in LispWorks Ltd now uses the CAPI. We recommend that you use
the CAPI for window-based application development in preference to the systems mentioned earlier.

1 Introduction to the CAPI

33

2 Getting Started

This chapter introduces some of the most basic CAPI elements and functions. The intention is simply that you should
become familiar with the most useful elements available, before learning how you can use them constructively.

You should work through the examples in this chapter. For extended example code, see:

(example-edit-file "capi/elements/")

A CAPI application consists of a hierarchy of CAPI objects. CAPI objects are created using make-instance, and although
they are standard CLOS objects, CAPI slots should generally be accessed using the documented accessors, and not using the
CLOS slot-value function. You should not rely on slot-value because the implementation of the CAPI classes may
evolve.

Once an instance of a CAPI object has been created in an interface, it can be displayed on your screen using the function
display.

2.1 Using the CAPI package

All symbols in this manual are exported from either the CAPI or COMMON-LISP packages unless explicitly stated
otherwise. To access CAPI symbols, you could qualify them all explicitly in your code, for example capi:output-pane.

However it is more convenient to create a package which has CAPI on its package-use-list:

(defpackage "MY-PACKAGE"
 (:add-use-defaults t)
 (:use "CAPI"))

This creates a package in which all the CAPI symbols are accessible. To run the examples in this guide, first evaluate:

(in-package "MY-PACKAGE")

2.2 Creating a window

This section shows how easy it is to create a simple window, and how to include CAPI elements, such as panes, in your
window.

1. Enter the following in a listener:

(setq interface
 (make-instance 'interface
 :visible-min-width 200
 :title "My Interface"))

(display interface)

34

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm

Creating a simple window

A small window appears on your screen, called "My Interface". This is the most simple type of window that can be created
with the CAPI.

Note: By default this window has a menu bar with the Works menu. The Works menu gives you access to a variety of
LispWorks tools, just like the Works menu of any window in the LispWorks IDE. It is automatically provided by default for
any interface you create. You can omit it by passing :auto-menus nil.

The usual way to display an instance of a CAPI window is display. However, another function, contain, is provided to
help you during the course of development.

Notice that the "My Interface" window cannot be made smaller than the minimum width specified. All CAPI geometry
values (window size and position) are integers and represent pixel values relative to the topmost/leftmost visible pixel of the
primary monitor.

Only a top level CAPI element is shown by display — that is, an instance of an interface. To display other CAPI
elements (for example, buttons, editor panes, and so on), you must provide information about how they are to be arranged in
the window. Such an arrangement is called a layout — you will learn more about layouts in 6 Laying Out CAPI Panes.

On the other hand, contain automatically provides a default layout for any CAPI element you specify, and subsequently
displays it. During development, it can be useful for displaying individual elements of interest on your screen, without having
to create an interface for them explicitly. However, contain is only provided as a development tool, and should not be used
for the final implementation of a CAPI element. See 11 Defining Interface Classes - top level windows on how to display
CAPI elements in an interface.

Note that a displayed CAPI element should only be accessed in its own thread. See 4.1 The correct thread for CAPI
operations for more information about this.

This is how you can create and display a button using contain.

1. Enter the following into a listener:

(setq button
 (make-instance 'push-button
 :data "Button"))

(contain button)

Creating a push-button interface

This creates an interface which contains a single push-button, with a label specified by the :data keyword. Notice that you
could have performed the same example using display, but you would also have had to create a layout so that the button
could have been placed in an interface and displayed.

You can click on the button, and it will respond in the way you would expect (it will depress). However, no code will be run
which performs an action associated with the button. How to link code to window items is the topic of the next section.

2 Getting Started

35

2.3 Linking code into CAPI elements

Getting a CAPI element to perform an action is done by specifying a callback. This is a function which is performed
whenever you change the state of a CAPI element. It calls a piece of code whenever a choice is made in a window.

Note that the result of the callback function is ignored, and that its usefulness is in its side-effects.

1. Try the following:

(setq push-button
 (make-instance 'push-button
 :data "Hello"
 :callback
 #'(lambda (&rest args)
 (display-message
 "Hello World"))))
(contain push-button)

Specifying a callback

2. Click on the Hello button.

A dialog appears containing the message "Hello World".

A dialog displayed by a callback.

The CAPI provides the function display-message to allow you to pop up a dialog sheet containing a message and a
Confirm button. This is one of many pre-defined facilities that the CAPI offers. You can also pop up a dialog window
rather than a sheet, using prompt-with-message.

Note: When you develop CAPI applications, your application windows are run in the same Window system event loop as the
LispWorks IDE. This - and the fact that in Common Lisp user code exists in the same global namespace as the Common Lisp
implementation - means that a CAPI application running in the LispWorks IDE can modify the same values as you can
concurrently modify from one of the the LispWorks IDE programming tools.

For example, your CAPI application might have a button that, when pressed, sets a slot in a particular object that you could
also set by hand in the Listener. Such introspection can be useful but can also lead to unexpected values and behavior while
testing your application code.

2 Getting Started

36

3 General Properties of CAPI Panes

This chapter contains information that does not belong in the more specific sections that follow, including functionality
common to several (or most) pane classes. It also introduces classes allowing you to create more common windowing
elements, beyond the few mentioned in 2 Getting Started.

Before trying out the examples in this chapter, define the functions test-callback and hello in your Listener. The first
displays the list of arguments it is given, and returns nil. The second just displays a message.

(defun test-callback (data interface)
 (display-message "Data ~S in interface ~S"
 data interface))

(defun hello (data interface)
 (declare (ignore data interface))
 (display-message "Hello World"))

We will use these callbacks in the examples that follow.

3.1 Generic properties

Because CAPI elements are just like CLOS classes, many elements share a common set of properties. The remainder of this
section describes the properties that all the classes described in this chapter inherit.

3.1.1 Scroll bars

The CAPI lets you specify horizontal or vertical scroll bars for any subclass of the simple-pane element (including all of
the classes described in this chapter).

Horizontal and vertical scroll bars can be specified using the keywords :horizontal-scroll and :vertical-scroll.
By default, both :vertical-scroll and :horizontal-scroll are nil.

3.1.2 Background and foreground colors

All subclasses of the simple pane element can have different foreground and background colors, using the :background and
:foreground initargs of simple-pane. For example, including:

:background :blue
:foreground :yellow

in the make-instance of a text pane would result in a pane with a blue background and yellow text.

3.1.3 Fonts

The CAPI interface supports the use of other fonts for text in title panes and other CAPI objects, such as buttons, through the
use of the :font initarg of simple-pane.. If the CAPI cannot find the specified font it reverts to the default font. The
:font keyword applies to data following the :text keyword. The value is a graphics ports font-description object
specifying various attributes of the font.

37

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

On systems running X Windows, the xlsfonts command can be used to list which fonts are available. The X logical font
descriptor can be explicitly passed as a string to the :font initarg, which will convert them.

Here is an example of a title-pane with an explicit font:

(contain
 (make-instance 'title-pane
 :text "A title pane"
 :font (gp:make-font-description
 :family "Times"
 :size 12
 :weight :medium
 :slant :roman)))

Here is an example of using :font to produce a title pane with larger lettering. Note that the CAPI automatically resized the
pane to fit around the text.

(contain
 (make-instance 'title-pane
 :text "A large piece of text"
 :font (gp:make-font-description
 :family "Times"
 :size 34
 :weight :medium
 :slant :roman)))

An example of the use of font descriptions

3.1.4 Mnemonics

This section applies to Microsoft Windows and GTK+ only.

Underlined letters in menus, titles and buttons are called mnemonics. The user can select the element by pressing the
corresponding key.

3.1.4.1 Controlling Mnemonics

For individual buttons, menus, menu items and title panes, you can use the :mnemonic initarg to control them. For example:

(capi:contain (make-instance 'capi:push-button
 :data "FooBar"
 :mnemonic #\B))

For more information on mnemonics in buttons, see 3.10.4 Mnemonics in buttons.

For information on controlling mnemonics in button panels, see 5.2.4 Mnemonics in button panels. For information on
controlling mnemonics in menus, see 8.6 Mnemonics in menus.

The initarg :mnemonic-title allows you to specify the mnemonic in the title for many pane classes including
list-panel, text-input-pane and option-pane. Also grid-layout supports mnemonic-title when has-title-column-
p is true. For the details see titled-object.

3 General Properties of CAPI Panes

38

3.1.4.2 Mnemonics on Microsoft Windows

On Microsoft Windows the user can make the mnemonics visible by holding down the Alt key.

Windows can hide mnemonics when the user is not using the keyboard. This is controlled in Windows 8 by:

Control Panel > Ease of Access > Ease of Access Center > Make the keyboard easier to use > Underline keyboard
shortcuts and access keys

and in Windows XP by:

Control Panel > Display > Appearance > Effects > Hide underlined letters...

3.1.5 Focus

The focus is where keyboard gestures are sent.

You can specify that a pane should or should not get the focus by using the initarg :accepts-focus-p (defined for
element). By default interactive elements except menus accept focus, and non-interactive elements do not accept focus, so
normally you do not need to use :accepts-focus-p.

3.1.5.1 Initial focus

By default, when a window first appears the focus is in the top-left pane that accepts focus. You can override this by using the
initarg :initial-focus or using the accessor pane-initial-focus on interfaces and layouts, and using the initarg
:initial-focus-item for choices (check-button-panel for example).

3.1.5.2 Querying the focus

The function pane-descendant-child-with-focus can find a child pane that has the focus, when given as argument a
pane with children such as a layout, an interface, or certain choices including a button-panel and toolbar.

The function pane-has-focus-p can be used to determine if a specific pane has the focus.

3.1.5.3 Setting the focus dynamically

The function set-pane-focus can be used to set the focus to a pane inside an active window. If you need to ensure that the
window is active, you can use activate-pane, which activates the window and sets the focus. For panes that have children
(as described in 3.1.5.2 Querying the focus) the actual pane that receives the focus is the "initial focus", as described 3.1.5.1
Initial focus.

When set-pane-focus is called, just before it actually sets the focus, it calls the generic function pane-got-focus with
the interface and the pane. You can define your own method (specialized on your own interface class) to perform any
processing that may be required.

3.1.6 Mouse cursor

The mouse cursor of a pane can be specified by the initarg :cursor or accessor simple-pane-cursor. The cursor to be
used needs to be a result of a call to load-cursor.

It is possible to set an "override" cursor in an interface, which sets the cursors in all its panes. That is typically used to
temporarily set the cursor while the interface is in a different input state from the normal state. This feature does not work on
Cocoa.

3 General Properties of CAPI Panes

39

3.2 Base classes

Most CAPI classes inherit from capi-object, which has a plist and a name. The subclasses of capi-object are:

element The class of all elements that corresponding to an underlying window system element. element
defines geometry functionality including geometry hints (see 6.4 Specifying geometry hints),
and a few other basic properties. Note however that not all subclasses of element correspond to
an underlying element: some of them are a composition of several elements, and some of them
are layout elements.

Subclasses of element are menu for menus (chapter 8), and simple-pane for all other display
elements. The subclasses contain layout (6 Laying Out CAPI Panes), which is used to
arrange CAPI elements, and interface (11 Defining Interface Classes - top level windows),
which represents a window, and classes that correspond to specific display elements like button
(3.10 Button elements).

callbacks A mixin class for active elements that need to respond to user input, defining various callbacks
(3.4 Callbacks). item, collection and menu-object (parent of menu and
menu-component) inherit from callbacks.

item A mixin class for elements that have a single piece of text like menu-item and button. It can
also be used as a way of making individual items in collections/choices (5 Choices - panes with
items) have their own callbacks and properties. item inherits from callbacks.

pinboard-object The superclass of pinboard objects, are lightweight graphical objects which are displayed inside
pinboard-layout (12.3 Creating graphical objects).

collection and subclass choice

Choice is the mixin class for all elements that have items (5 Choices - panes with items).
collection (and hence choice) inherits from callbacks. The subclasses of choice that
can be displayed inherit from simple-pane too.

3.3 Specifying titles

It is possible to specify a title for a window, or part of a window. Several of the examples that you have already seen have
used titles. There are two ways that you can create titles:

• Use the title-pane class.

• Specify a title directly to any subclass of titled-object.

3.3.1 Title panes

A title-pane is a blank pane into which text can be placed in order to form a title.

(setq title (make-instance 'title-pane
 :visible-min-width 200
 :text "Title"))

(contain title)

3 General Properties of CAPI Panes

40

A title pane

3.3.2 Specifying titles directly

You can specify a title directly to all CAPI panes, using the :title keyword. This is much easier than using title-panes,
since it does not necessitate using a layout to group two elements together.

Any class that is a subclass of titled-object supports the :title keyword. All of the standard CAPI panes inherit from
this class. You can find all the subclasses of titled-object by using the Class Browser tool in the LispWorks IDE.

3.3.2.1 Window titles

Specify a title for a CAPI window by supplying the :title initarg for the interface, and access it with
interface-title.

Further control over the title of your application windows can be achieved by using
set-default-interface-prefix-suffix and/or specializing interface-extend-title as illustrated in 11.5.2
Controlling the interface title.

You can call interface-display-title to get the string that is actually displayed (or would be displayed if the interface
was displayed).

3.3.2.2 Titles for elements

The position of any title can be specified by using the :title-position keyword. Most panes default their title-position to
:top, although some use :left.

You can place the title in a frame (like a groupbox) around its element by specifying :title-position :frame.

You may specify the font used in the title via the keyword :title-font.

The title of a titled-object, and its font, may be changed interactively with the use of setf, if you wish.

1. Create a push button by evaluating the code below:

(setq button (make-instance 'push-button
 :text "Hello"
 :title "Press: "
 :title-position :left
 :callback 'hello))

(contain button)

2. Now evaluate the following:

(apply-in-pane-process
 button #'(setf titled-object-title) "Press here: " button)

As soon as the form is evaluated, the title of the pane you just created changes.

3. Lastly evaluate the following:

3 General Properties of CAPI Panes

41

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

(apply-in-pane-process
 button #'(setf titled-object-title-font)
 (gp:merge-font-descriptions
 (gp:make-font-description :size 42)
 (gp:convert-to-font-description
 button
 (titled-object-title-font button))) button)

Notice how the window automatically resizes in steps 2 and 3, to make allowance for the new size of the title.

3.4 Callbacks

The class callbacks is the superclass of all the CAPI objects that receive callback calls in response to user gestures,
excluding output panes. This includes collections and choices, buttons, menus, menu components, menu items and
item-pinboard-object. The actual interaction depends on the specific class.

The arguments that callbacks are called with can be specified by the initarg :callback-type. When the argument contain
the interface, the actual interface can be specified to be another interface by using attach-interface-for-callback.
The function element-interface-for-callback can be used to find which interface is going to be used in a callback.

Callbacks can be aborted using abort-callback.

There is more detail about the callbacks available in choices in 5.10.3 Callbacks in choices.

Note: output-pane and its subclasses implement callback calls by the input-model mechanism.

3.5 Displaying and entering text

There are a variety of ways in which an application can display text, accept text input or allow editing of text by the user:

Display panes Show non-editable text.

Text input panes Used for entering short pieces of text.

Editor panes Used for dealing with large amounts of text such as files. Also offer full configurable editor
functionality.

Rich text panes Support formatted text. Available on Cocoa and Microsoft Windows only.

3.5.1 Display panes

You can use a display-pane to display text messages on the screen. The text in these messages cannot be edited, so they
can be used by the application to present a message to the user. The :text initarg can be used to specify the message that is
to appear in the pane.

1. Create a display pane by evaluating the code below:

(setq display (make-instance 'display-pane
 :text "This is a message"))

(contain display)

3 General Properties of CAPI Panes

42

A display pane

Note that the window title, which defaults to "Container" for windows created by contain, may appear truncated.

You can access the text (get and set) of a display-pane by the accessor display-pane-text. You can access the
selection by display-pane-selection-p, display-pane-selection, set-display-pane-selection and
display-pane-selected-text.

3.5.2 Text input panes

When you want the user to enter a line of text, such as a search string, use a text-input-pane.

(setq text (make-instance 'text-input-pane
 :title "Search: "
 :callback 'test-callback))

(contain text)

A text input pane

Notice that the default title position for text input panes is :left.

You can place text programmatically in the text input pane by supplying a string for the :text initarg, or later by calling
(setf text-input-pane-text) in the appropriate process.

You can use set-text-input-pane-selection to control the selection in the text input pane:

(setq tip (make-instance 'capi:text-input-pane
 :title "Search: "
 :text "Foo Bar Baz"))

(capi:set-text-input-pane-selection
 tip
 (length "Foo ")
 (+ (length "Foo ") (length "Bar")))

(capi:contain tip)

text-input-pane has many callbacks which allow the program to perform various tasks as the user changes the text, the
selection or the caret position, or enters/leaves the pane. It is possible to respond to specific keyboard gestures, characters or
otherwise (like Up arrow). text-input-pane has also options for performing completion on the user input.

You can add toolbar buttons for easier user input in a text-input-pane via the :buttons initarg. This example allows the
user to enter the filename of an existing Lisp source file, either directly or by selecting the file in a dialog raised by the
Browse File button. There is also a Cancel button, but the default OK button is not displayed:

3 General Properties of CAPI Panes

43

(capi:contain
 (make-instance
 'capi:text-input-pane
 :buttons
 (list :cancel t
 :ok nil
 :browse-file
 (list :operation :open
 :filter "*.LISP;*.LSP"))))

For a larger quantity of text use multi-line-text-input-pane.

On Cocoa, text-input-pane can also be made to look like a search field, using the initarg :search-field and related
initargs.

For entering passwords use the subclass password-pane, which does not display the actual characters that the user types.

3.5.3 Editor panes

An editor-pane is a pane which displays text and allows the user to edit it. The text is held and manipulated in a separate
module, the Editor, which is implemented in the "EDITOR" package.

The Editor is optimized to deal with large amounts of text, whether that is because a single document contains large amount
of text or because the user wants to edit many texts at the same time. It has a large set of commands that the user can invoke
to perform a variety of tasks, including many kinds of editing and search operations, integration with the LispWorks IDE, and
various other tasks. It also has a programmatic interface to manipulate the text, which is exported from the package
"EDITOR". The user interface and the programmatic interface are both documented in the Editor User Guide, and the
LispWorks IDE uses editor-pane for editing.

The interaction of the Editor emulates either Emacs style or the native style of macOS, Microsoft Windows or KDE/Gnome
as appropriate. There is a global default setting (native on Windows, Emacs elsewhere), which can be set in a runtime image
by the Delivery keyword :editor-style. In particular, you fix the style for editor-pane in your interfaces by defining
your method for interface-keys-style. See the chapter "Emulation" in the Editor User Guide for more detail about the
different styles.

From the CAPI side you can access the editor structures that hold the text by using editor-pane-buffer, which returns an
editor:buffer object which holds the text. You can then use the programmatic Editor interface to access and manipulate
the text.

For example, the following code inserts the string "foo" in the end of the editor pane (really in the end of the buffer):

(let ((buffer (capi:editor-pane-buffer editor-pane)))
 (let ((point (editor:buffers-end buffer)))
 (editor:insert-string point "foo")))

Above, point is an editor:point object.

Alternatively, editor commands can be executed by passing the name of an editor command to call-editor.

Note that the editor objects can be accessed from any process (as opposed to the CAPI elements), because they use locks.
Programmers can use the locks to group several editor operations so that they happen "atomically".

It is possible to specify that an editor-pane has an attached Echo Area which is where non-editing interactions (for
example entering a command name or filename) occur. To add an Echo Area, use the :echo-area initarg. Otherwise, a
special window pops up when such interaction needs to occur.

The variables *editor-cursor-active-style*, *editor-cursor-color*, *editor-cursor-drag-style* and
editor-cursor-inactive-style can be used to control the appearance of the cursor. When adding an echo area, the

3 General Properties of CAPI Panes

44

inactive cursor style can be controlled separately by *editor-cursor-inactive-style*.

An editor-pane can have input callbacks (before and after) and a change callback. These are described in 3.5.3.1 Editor
pane callbacks.

On the CAPI side there are few additional functions that can be used on an editor-pane. These are described in 3.5.3.2
Additional editor-pane functions.

3.5.3.1 Editor pane callbacks

You can use the initarg :change-callback to specify a function which is called whenever the editor buffer under the
editor-pane changes. The value change-callback can be set either by:

(make-instance 'capi:editor-pane :change-callback ...)

or:

(setf capi:editor-pane-change-callback)

The current value can be queried by the accessor editor-pane-change-callback.

The change-callback function must have signature:

change-callback pane point old-length new-length

pane is the editor-pane itself.

point is an editor:point object where the modification to the underlying buffer starts. point is a temporary point, and is
not valid outside the scope of the change callback. For more information about editor:point objects, see "Points" in the
Editor User Guide.

old-length is the length of the affected text following point, prior to the modification.

new-length is the length of the affected text following point, after the modification has occurred.

Typical calls to the change-callback occur on insertion of text (when old-length is 0) and on deletion of text (when new-length
is 0). There can be other combinations, for example, after executing the Uppercase Region editor command, change-
callback be called with both old-length and new-length being the length of the region. The same is true for changing editor
text properties.

The change-callback is always executed in the process of pane (as if by apply-in-pane-process).

The change-callback is permitted to modify the buffer of pane, and other editor buffers. The callback is disabled inside the
dynamic scope of the call, so there are no recursive calls to the change-callback of pane. However, changes done by the
callback may trigger change-callback calls on other editor-panes, whether in the same process or in another process.

There is an example illustrating the use of change-callback in:

(example-edit-file "capi/editor/change-callback")

You can use the initargs :before-input-callback and :after-input-callback to add input callbacks which are
called when call-editor is called. Note that the default input-model also generates calls to call-editor, so unless you
override the default input-model these input callbacks are called for all keyboard and mouse gestures (other than gestures that
are processed by a non-focus completer window).

In both cases (before-input-callback and after-input-callback) the argument is a function that takes two arguments: the editor
pane itself and the input gesture (the second argument to call-editor).

3 General Properties of CAPI Panes

45

call-editor may redirect gestures to another pane. For example, gestures to an editor-pane are redirected to the echo
area while it is used. In this case before-input-callback is called more than once for the same gesture, but after-input-callback
is called only once for each gesture, on the pane that actually processed the gesture.

3.5.3.2 Additional editor-pane functions

The contents of the buffer can be retrieved and set by the accessor editor-pane-text.

modify-editor-pane-buffer can be used to change the text and the filling at the same time.

editor-pane-line-wrap-marker, editor-pane-line-wrap-face and
default-editor-pane-line-wrap-marker control the appearance of the marker that indicates wrapping of lines that
are too long.

The function editor-pane-selected-text returns the selected text (if any), and editor-pane-selected-text-p

checks if there is a selection.

You can call set-default-editor-pane-blink-rate to set the default blink rate of the cursor on all editor panes. You
can specialize editor-pane-blink-rate to control the blink rate of specific panes, and use
editor-pane-native-blink-rate to query the blink rate of the underlying GUI system. Note that the underlying
system will normally allow the user to change this value.

The function print-editor-buffer can be used to print the contents of the editor buffer.

The function set-editor-parenthesis-colors can be used to control parenthesis coloring in Lisp mode.

Editor panes support composition of characters using input methods (see composition-callback in output-pane) by having a
default callback editor-pane-default-composition-callback, which handles it mostly right. You can specify your
own callback, which can also call editor-pane-default-composition-callback to do the actual work.

The editor-pane is geared towards editing files, and in particular it tries to guard against loss of work by keeping backup
files and auto-save files, and asking the user before closing an unsaved buffer. When you use an editor-pane for other
purposes, and therefore do not need all of this functionality, you should use temporary buffers. Create a temporary buffer by
supplying the initarg :buffer-name :temp, or create your own temporary buffer explicitly by
(editor:make-buffer ... :temporary t).

You can make an editor-pane be non-editable by users by supplying the initarg :enabled :read-only, or completely
disable it with :enabled nil.

3.6 Displaying rich text

On Microsoft Windows and Cocoa, rich-text-pane allows you to display and edit rich text. It supports character
attributes such as font, size and color, and paragraph attributes such as alignment and tab-stops.

See this example:

(example-edit-file "capi/applications/rich-text-editor")

3.7 Hierarchy of panes

Every element that is displayed has a parent, which you can find by the element accessor element-parent. The ultimate
ancestor is a screen, which you can find by element-screen. The element is inside some window which is associated
with a CAPI interface instance (that is, an instance of subclass of interface) which is called the "top level interface" and
can be found by by top-level-interface. Note that inside MDI on Microsoft Windows the top level interface is the one
inside the MDI, rather than the enclosing MDI window. You can test whether an object is a top level interface by

3 General Properties of CAPI Panes

46

top-level-interface-p. The function element-container returns the parent of the top level interface, that is the
screen outside the MDI, but the document-frame inside the MDI.

Some elements have children. You can operate on the children of an element by using map-pane-children or
map-pane-descendant-children. These functions will work on any element, and they will do nothing for elements
without children.

The implementation of the panes you specify may internally involve generating more panes, and element-parent,
map-pane-children and map-pane-descendant-children will find these. Thus when using these functions you
cannot assume that you know the hierarchy, and you need to check if the pane that you got is the right one. For example, if
you create a layout like this:

(setq layout
 (make-instance 'capi:row-layout
 :description
(list (make-instance 'capi:list-panel))))

then doing something like:

(capi:map-pane-children layout
 #'(lambda (pane) (setf (capi:collection-items pane) nil)

may not work, because the list panel may not be a direct child of the layout. In most cases it is best to record the actual panes
so you know where to access them (most commonly in a slot in the interface). Alternatively you can use
map-pane-descendant-children with a function that checks each child pane before operating on it.

Note that all these functions give useful results only for displayed elements.

3.8 Accessing pane geometry

The functions simple-pane-visible-height, simple-pane-visible-width, and simple-pane-visible-size

can be used to read the visible geometry of a pane. Other geometrical properties of a pane can be accessed by
with-geometry, which binds variables to the various geometrical properties of the pane.

3.9 Special kinds of windows

3.9.1 Browser pane

On Microsoft Windows and Cocoa, browser-pane implements embedding of a basic web browser. It allows you to display
HTML, navigate, refresh, handle errors, redirect to another URL, and so on.

3.9.2 OLE embedding and control

On Microsoft Windows ole-control-pane implements embedding of OLE control components. You can also embed
CAPI windows inside other applications using ole-control-component. You define an OLE control component (an
Automation class that implements OLE Control protocols) using define-ole-control-component, and other (non-
LispWorks) applications can use it.

3.9.3 Cocoa views and application interfaces

On Cocoa, you can use cocoa-view-pane to display an arbitrary Cocoa View. You can specify the name of the Cocoa view
class to create, and a function that is called to initialize it. The function cocoa-view-pane-view can be used to access the

3 General Properties of CAPI Panes

47

Cocoa view after it has been created.

The class cocoa-default-application-interface is a special class for defining application interfaces, which gives
you control of application-wide properties which are not associated with specific windows. This includes the Application
menu and default menu bar items, Dock context menu, application message processing and display state of the whole
application.

3.9.4 Slider, Progress bar and Scroll bar

The classes slider and scroll-bar implement panes that show the value of some quantity and allow the user to change it
interactively.

slider is intended to be used in general for any pseudo-continuous quantity that the user should be able to manipulate.

scroll-bar is intended to be used for scrolling. Normally a scroll bar is specified simply by supplying the
:vertical-scroll or :horizontal-scroll initarg when making the pane that needs scrolling, but in some
circumstances an explicit scroll bar may be useful.

The class progress-bar implements a pane that shows the value of some quantity and is used to indicate progress in
performing some task.

All of these classes inherit from range-pane, which defines the various values that are used and the orientation. In addition
to the range-pane accessors, there is also the function range-set-sizes which you can use to set several values at the
same time.

3.9.5 Text input range

text-input-range is a special pane for entering numeric values, allowing the user to either type the number or use buttons
to adjust the value.

3.9.6 Stream panes

There are three subclasses of editor-pane which handle Common Lisp streams.

3.9.6.1 Collector panes

A collector-pane displays anything printed to the stream associated with it. Background output windows, for instance,
are examples of collector panes.

(setq collector
 (make-instance 'collector-pane
 :title "Example collector pane:"))

(contain collector)

(princ "abc" (collector-pane-stream collector))

The collector-pane has a mechanism to temporarily make it the child of a parent switchable-layout, so the user can
see the output printed into it. The functions map-typeout and unmap-typeout do the switch, and the macro
with-random-typeout can be used to do both switches and to also bind a variable to the stream of the collector-pane.
This mechanism is used in the LispWorks IDE to show the output of Compile Buffer and other operations.

3 General Properties of CAPI Panes

48

3.9.6.2 Interactive panes

An interactive-pane is the building block on which listener-pane is built.

(contain (make-instance 'interactive-pane
 :title "Interactive pane"))

You can simulate user input into an interactive-pane by interactive-pane-execute-command.

Note: interactive-pane is probably too difficult to use, due to the complexities involved with the interaction with the
Editor. However, for its subclass listener-pane, the system deals with all these issues.

3.9.6.3 Listener panes

The listener-pane class is a subclass of interactive-pane, and allows you to create interactive Common Lisp
sessions. You may occasionally want to include a listener pane in a tool (as, for instance, in the LispWorks IDE Debugger).

(contain (make-instance 'listener-pane
 :title "Listener"))

The listener-pane activity would normally be interacting with the user, but you can also emulate user interaction using
listener-pane-insert-value. Note also that since listener-pane is a subclass of editor-pane, you can use the
full power of the Editor on it.

3.9.7 Shell pane

shell-pane is a pane that runs a sub-process ("shell", "console") and allows the user to interact with it.

3.10 Button elements

Button classes inherit from the class button, which defines most of the attributes of buttons. button inherits from
simple-pane and item. Button panels can be created, and are described in 5 Choices - panes with items.

There are three classes of buttons:

push-button Never selected, just invokes the callback when clicked.

check-button Toggles between selected and unselected each time it is clicked.

radio-button When clicked is selected, and deselects all other buttons in the same panel.

A single radio-button does not really make sense and this class will normally be used only inside
radio-button-panel. check-button and push-button are used both inside check-button-panel or
push-button-panel and on their own. Note that when using a panel, you do not have to actually use button objects,
because the panel generates them automatically, and most of the functionality of buttons can be specified in the
button-panel.

The text and the data that are associated with a button are defined by the the initargs and accessor inherited from item:
:data, :text, :print-function, item-data, item-text, item-print-function. The function
print-capi-button can be used to find what string is displayed (or will be displayed) for a button.

The callbacks of button are inherited from callbacks (via item). The :selection-callback (the initarg :callback

can be used too) is the main callback, and :retract-callback is called for deselection.

button has various initargs and accessors controlling which image(s) to display, whether it is selected and/or enabled, and

3 General Properties of CAPI Panes

49

whether it is a Cancel button or the default button.

3.10.1 Push buttons

The :enabled keyword can be used to specify whether or not the button should be selectable when it is displayed. This can
be useful for disabling a button in certain situations.

The following code creates a push-button which cannot be selected.

(setq offbutton (make-instance 'push-button
 :data "Button"
 :enabled nil))

(contain offbutton)

These setf expansions enable and disable the button:

(apply-in-pane-process
 offbutton #'(setf button-enabled) t offbutton)

(apply-in-pane-process
 offbutton #'(setf button-enabled) nil offbutton)

All subclasses of the button class can be disabled in this way.

3.10.2 Check buttons

Check buttons can be produced with the check-button element.

1. Enter the following in a Listener:

(setq check (make-instance 'check-button
 :selection-callback 'hello
 :retract-callback 'test-callback
 :text "Button"))

(contain check)

A check button

Notice the use of :retract-callback in the example above, to specify a callback when the element is deselected.

Like push buttons, check buttons can be disabled by specifying :enabled nil.

3.10.3 Radio buttons

Radio buttons can be created explicitly with the radio-button element, but they are usually part of a button panel as
described in 5 Choices - panes with items. The :selected initarg is used to specify whether or not the button is selected,
and the :text initarg can be used to label the button.

(contain (make-instance 'radio-button

3 General Properties of CAPI Panes

50

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

 :text "Radio Button"
 :selected t))

An explicitly created radio button

Although a single radio button is of limited use, having an explicit radio button class gives you greater flexibility, since
associated radio buttons need not be physically grouped together. Generally, the easiest way of creating a group of radio
buttons is by using a button panel, but doing so means that they will be geometrically, as well as semantically, connected.

3.10.4 Mnemonics in buttons

This section applies to Microsoft Windows and GTK+ only.

The initarg :mnemonic allows you to specify a mnemonic for a button.

Alternatively you can specify the button text and its mnemonic together with the initarg :mnemonic-text, for example:

(contain
 (make-instance 'radio-button
 :mnemonic-text
 "Radio Button with a &Mnemonic"))

For all the details see button.

3.11 Adding a toolbar to an interface

A top level interface can have a toolbar, which is typically displayed at the top of the window and follows platform-standard
behavior. On Cocoa, this will be a standard foldable toolbar.

For the details see 9 Adding Toolbars.

3.12 Tooltips

A tooltip is a temporary window containing text which appears when the user positions the cursor over an element for a
period. The appearance is slightly delayed and the text is usually short.

Tooltips are often used for brief help text and identification of GUI elements. For example the "X" button alongside the Filter
area in the Process Browser tool in the LispWorks IDE has a tooltip "Clear filter". Tooltips can also be used to complete the
display of partially hidden text, for example in the Debugger tool Backtrace view where the display of long variable values
might be truncated.

You can implement tooltips for output-panes, collections, elements, menu-items and toolbar-buttons.

3.12.1 Tooltips for output panes

To implement tooltips in an output-pane, call display-tooltip via a :motion gesture in the pane's input-model. The
tooltip text might depend on the cursor position or, in the case of a pinboard-layout, on the pinboard object under the
cursor.

3 General Properties of CAPI Panes

51

See this example:

(example-edit-file "capi/graphics/pinboard-help")

3.12.2 Tooltips for collections, elements and menu items

Supply the :help-callback initarg in an interface, along with a suitable :help-key initarg for each of its collections,
elements and menu-items that should have a tooltip. help-callback should return a suitable string (which will be the tooltip
text) when passed type :tooltip and the help-key.

See the manual page for interface for an example of a tooltip on a text-input-pane.

3.12.3 Tooltips for toolbar buttons

You can implement tooltips for a toolbar-button exactly as for collections and so on as described in 3.12.2 Tooltips for
collections, elements and menu items. See the example in 9.5 Specifying tooltips for toolbar buttons.

However, if your toolbar-buttons are grouped in a toolbar-component it is simpler to supply the :tooltips initarg.
tooltips should be a list containing a string giving the tooltip text of each button in the component. See this example:

(example-edit-file "capi/applications/simple-symbol-browser")

3.13 Screens

A screen object (of class screen or a subclass) represents what CAPI thinks is the screen that the user sees. In principle it
can be a mono-screen, but these days it is always color-screen. screen is subclass of capi-object, but not
simple-pane.

You get a screen object by one of:

• Calling convert-to-screen.

• Calling element-screen on a displayed element.

• Calling screens.

convert-to-screen can take screen specification in various forms. On X GUI systems (GTK+ and Motif) this can be used
to select which display to use. On Microsoft Windows on any pane that is displayed inside MDI returns the MDI
document-container, but otherwise there is only one screen. On Cocoa there is always only one screen.
convert-to-screen initializes the screen if needed.

From a displayed element you can find the screen by element-screen. Note that this returns the actual screen, even for a
pane inside MDI.

The function screens returns a list of the currently active screens. This list is always of length 1 on Cocoa and Microsoft
Windows, not including MDI.

A screen specification that convert-to-screen accepts can also be used to specify the screen on which to display an
interface in a call to display.

You can find the geometry of the screen by the readers screen-width and screen-height, and its depth by
screen-depth. Some physical properties can be found by the readers screen-width-in-millimeters,
screen-height-in-millimeters and the function screen-logical-resolution. screen-number returns the
screen number for X11 interface (GTK+ and Motif).

3 General Properties of CAPI Panes

52

The area that is actually used for display may be restricted by some parts of the screen being dedicated to global features, for
example menubar on Cocoa. The area that can be used for displaying by the application is called "internal geometry", which
can be found by screen-internal-geometry.

A screen may correspond to several monitors. In this case it has a "virtual geometry", which is a rectangle containing all the
physical screens, which can be found by virtual-screen-geometry. The coordinates of top-level windows are with
respect to this rectangle. With multiple screens, screen-internal-geometry returns the internal geometry of the first
(main) monitor. You can use screen-internal-geometries to find the internal geometries of all the monitors, and
screen-monitor-geometries to find all the full geometries. You can use pane-screen-internal-geometry to find
the internal geometry of the monitor on which the pane is displayed.

On the X interface the screen "dies" when the X connection gets broken for whatever reason. You can check for that by
calling screen-active-p, which returns true for "live" screens and false otherwise.

You can find the CAPI interfaces that are displayed on a specific screen by screen-interfaces, and the active interface
(as far as CAPI is concerned) by calling screen-active-interface. Note that this interface may be obscured by
windows of another application.

On Microsoft Windows using MDI, the CAPI interface are children of a document-container, which is a "screen-like"
object. In particular, it can be used as the screen argument of display, the internal geometry functions return the correct
values, and screen-interfaces returns the interfaces.

3 General Properties of CAPI Panes

53

4 General Considerations

This chapter describes general issues relating to the use of CAPI. Subsequent chapters address issues specific to the host
window system, and then the use of particular CAPI elements.

4.1 The correct thread for CAPI operations

All operations on displayed CAPI elements need to be in the thread (that is, the mp:process) that runs their interface. On
some platforms, display and contain make a new thread. On Cocoa, all interfaces run in a single thread.

Specifying an owner (using the keyword :owner) in a dialog, for example by calling display-dialog or
popup-confirmer, is also "an operation" on the owner. See 10.4 Dialog Owners for discussion of dialog owners.

In most cases this issue does not arise, because CAPI callbacks are run in the correct thread. However, if your code needs to
communicate with a CAPI window from a random thread, it should use execute-with-interface,
execute-with-interface-if-alive, apply-in-pane-process or apply-in-pane-process-if-alive to send
the function to the correct thread.

This is why the brief interactive examples in this manual generally use execute-with-interface or
apply-in-pane-process when modifying a displayed CAPI element. In contrast, the demo example in 11.4 Connecting
an interface to an application is modified only by callbacks which run in the demo interface's own thread, and so there is no
need to use execute-with-interface or apply-in-pane-process.

Threads started by CAPI process events in the "standard" way, that is they call mp:general-handle-event on objects that
are sent to them by mp:process-send. In particular, if you want to "schedule" an event to happen in the current after the
current callback returns, you can use mp:current-process-send. For example, if the display-callback of an
output-pane sometimes needs to start another interface, it would be a bad idea to do this inside the display-callback, so
instead of:

(capi:display new-interface)

you can use:

(mp:current-process-send `(capi:display ,new-interface))

which will cause it to happen later.

On systems other than Cocoa, when you run something that is lengthy inside a CAPI process, you can process events in a
similar way to the way CAPI processes them by calling process-pending-messages, which processes all pending events
and returns. However that may not always work well, because the processing of the event can do arbitrary things, so you
should always consider running the lengthy computation in another process.

If your code needs to cause visible updates whilst continuing to do further computation, see 7.5.1 Updating windows in real
time.

54

4.2 Redisplay

The setting of any CAPI property that should affect the display causes CAPI to redisplay the relevant elements. However,
when what is displayed depends on a state which is not a CAPI state, and this state changes, you may need to cause CAPI to
redisplay.

For example, you may have a list-panel where the items are some objects, and the print-function generates a string for
each object, based on some property of the object (typically a slot value). If that property changes then the display also needs
to change, but there is no way for CAPI to know that so you need to tell CAPI explicitly.

A simple way to achieve this is to set a CAPI state which will cause redisplay. For example, doing:

(setf (capi:collection-items my-pane) (capi:collection-items my-pane))

leaves my-pane's items unchanged, but because the value is set CAPI redisplays all of the items. This approach, however, is
both computationally expensive when done often with large number of items, and causes flickering on screen that can be
avoided.

Instead you can use one of the following functions.

• To update specific items in a choice, use redisplay-collection-item.

• To update menus and buttons in a window, use redisplay-interface.

• To update part of a pinboard-layout, use redraw-pinboard-layout.

• To update specific pinboard objects, use redraw-pinboard-object.

• In a tree-view, you can also use tree-view-update-item in cases when the update involves moving the child in its
parent or completely removing the child.

4.2.1 Atomic redisplay

Often you need several distinct updates to the display to appear simultaneously. For example when you set the text in several
elements at the same time, or you set the text of an element and then also set the background. To ensure that multiple updates
appear together, wrap the macro with-atomic-redisplay around the updates.

4.3 Support for multiple monitors

CAPI supports positioning (and querying the position of) windows on multiple monitors.

The function screen-monitor-geometries supports the notion of monitor geometry. The monitor geometry includes
"system" areas such as the macOS menu bar and the Microsoft Windows task bar.

The functions screen-internal-geometries and pane-screen-internal-geometry support the notion of internal
geometry. The internal geometry excludes the system areas.

There is a "primary monitor" which displays any system areas. The origin of the coordinate system (as returned by
top-level-interface-geometry and screen-internal-geometry) is the topmost/leftmost visible pixel of the
primary monitor. Thus the origin may be in a system area such as the macOS menu bar.

The function virtual-screen-geometry returns a rectangle just covering the full area of all the monitors associated with
a screen.

Note that code which relies on the position of a window should not assume that a window is located where it has just been
programmatically displayed, but should query the current position. This is because the geometry includes system areas where
CAPI windows cannot be displayed. For more information about this see 7.2 Resizing and positioning.

4 General Considerations

55

Note also that CAPI does not currently support multiple desktops, which are called workspaces in Linux distros, and called
Spaces on macOS.

4 General Considerations

56

5 Choices - panes with items

Some elements of a window interface contain collections of items, for example rows of buttons, lists of filenames, and groups
of menu items. Such elements are known in the CAPI as collections.

In most collections, items may be selected by the user — for example, a row of buttons. Collections whose items can be
selected are known as choices. Each button in a row of buttons is either checked or unchecked, showing something about the
application's state — perhaps that color graphics are switched on and sound is switched off. This selection state came about
as the result of a choice the user made when running the application, or default choices made by the application itself.

The CAPI provides a convenient way of producing groups of items from which collections and choices can be made. The
abstract class collection provides a means of specifying a group of items. The subclass choice provides groups of
selectable items, where you may specify what initial state they are in, and what happens when the selection is changed.
Subclasses of collection and choice used for producing particular kinds of grouped elements are described in the
sections that follow.

All the choices described in this chapter can be given a print function via the :print-function keyword. This allows you
to control the way in which items in the element are displayed. For example, passing the argument
'string-capitalize to :print-function would capitalize the initial letters of all the words of text that an instance of
a choice displays. The default is princ-to-string.

Collections and choices inherit from the abstract class callbacks, which defines callbacks that are called in response to user
gestures.

Some of the examples in this chapter require the callback function test-callback and hello which were introduced in 3
General Properties of CAPI Panes.

5.1 Items

choices in general can take arbitrary Lisp objects as the items, and then the behavior of the items (how they are displayed,
callbacks) is determined by the properties of the choice. It is possible to give individual properties to individual items by
using objects of class item, which encapsulates the properties of an item in a choice. The items of a choice can be a
mixture of arbitrary objects and item instances.

item has several subclasses which are intended for specific choice subclasses, and these are documented in the entries for
the specific choices. The predicate itemp determines whether its argument is an instance of item.

5.2 Button panel classes

This section discusses the immediate subclasses of choice which can be used to build button panels. If you have a group of
several buttons, you can use the appropriate button-panel element to specify them all as a group, rather than using
push-button or check-button to specify each one separately. There are three such elements altogether:
push-button-panel, check-button-panel and radio-button-panel. The specifics of each are discussed below.

5.2.1 Push button panels

The arrangement of a number of push buttons into one group can be done with a push-button-panel. Since this provides
a panel of buttons which do not maintain a selection when the user clicks on them, push-button-panel is a choice that
does not allow a selection. When a button is activated it causes a :selection-callback, but the button does not maintain

57

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm

the selected state.

Here is an example of a push button panel:

(setq push-button-panel
 (make-instance 'push-button-panel
 :items '(one two three four five)
 :selection-callback 'test-callback
 :print-function 'string-capitalize))

(contain push-button-panel)

A push button panel

The layout of a button panel (for instance, whether items are listed vertically or horizontally) can be specified using the
:layout-class keyword. This can take two values: 'column-layout if you wish buttons to be listed vertically, and
'row-layout if you wish them to be listed horizontally. The default value is 'row-layout. If you define your own layout
classes, you can also use these as values to :layout-class. Layouts, which apply to many other CAPI objects, are
discussed in detail in 6 Laying Out CAPI Panes.

5.2.2 Radio button panels

A group of radio buttons (a group of buttons of which only one at a time can be selected) is created with the
radio-button-panel class. Here is an example of a radio button panel:

(setq radio (make-instance 'radio-button-panel
 :items (list 1 2 3 4 5)
 :selection-callback 'test-callback))

(contain radio)

A radio button panel

5.2.3 Check button panels

A group of check buttons can be created with the check-button-panel class. Any number of check buttons can be
selected.

Here is an example of a check button panel:

(contain
 (make-instance
 'check-button-panel
 :items '("Red" "Green" "Blue")))

5 Choices - panes with items

58

A check button panel

5.2.4 Mnemonics in button panels

On Windows and GTK+ you can specify the mnemonics (underlined letters) in a button panel with the :mnemonics initarg,
for example:

(contain
 (make-instance 'push-button-panel
 :items '(one two three many)
 :mnemonics '(#\O #\T #\E :none)
 :print-function 'string-capitalize))

Notice that the value :none removes the mnemonic.

5.2.5 Programming button panels

The panels inherit the callbacks functionality from callbacks, most importantly the selection-callback and retract-callback,
which are used as the default callbacks for the buttons.

The items functionality of button panel is inherited from collection. Typically you just use the initarg :items to specify
the items, but in principle you can set the items dynamically. The other important functionality from collection is the
print-function to define the strings that are displayed in the buttons.

Accessing the state of the buttons in check-button-panel and radio-button-panel is done by the selection
functionality that is defined on choice. For example, making a check-button-panel with four buttons and the last is
selected, and after two seconds selecting the first and the third:

(progn
 (setq cbp
 (capi:contain
 (make-instance 'capi:check-button-panel
 :items '(1 2 3 4)
 :selected-item 4)))
 (sleep 2)
 (capi:apply-in-pane-process
 cbp
 #'(lambda ()
 (setf (capi:choice-selected-items cbp)
 '(1 3)))))

All the button panel classes inherit from button-panel, which defines all the functionality of button panels. This includes a
mechanism for specifying the layout of the buttons, images for the buttons, mnemonics, and also default and Cancel button.
It also has an initarg :callbacks to define an individual selection callback for each item.

The function set-button-panel-enabled-items is used dynamically to enable/disable individual items in a panel.

For more control over individual buttons, some (or all) of the items in a panel may be buttons themselves (that is, instances of
a subclass of button). The behavior on an item that is actually a button is controlled by accessing the button.

5 Choices - panes with items

59

5.3 List panels

Lists of selectable items can be created with the list-panel class. Here is a simple example of a list panel:

(setq list
 (make-instance 'list-panel
 :items '(one two three four)
 :visible-min-height '(character 2)
 :print-function 'string-capitalize))

(contain list)

A list panel

Notice how the items in the list panel are passed as symbols, and a print-function is specified which controls how those items
are displayed on the screen.

Any item on the list can be selected by clicking on it with the mouse.

By default, list panels are single selection — that is, only one item in the list may be selected at once. You can use the
:interaction keyword to change this:

(setq list-panel
 (make-instance 'list-panel
 :items (list "One" "Two" "Three" "Four")
 :interaction :multiple-selection))

(contain list-panel)

You can add callbacks to any items in the list using the :selection-callback keyword.

5 Choices - panes with items

60

(setq list-panel
 (make-instance 'list-panel
 :items (list "One" "Two" "Three" "Four")
 :selection-callback 'test-callback))

(contain list-panel)

5.3.1 List interaction

If you select different items in the list, only the last item you select remains highlighted. The way in which the items in a list
panel interact upon selection can be controlled with the :interaction keyword.

The list produced in the example above is known as a single-selection list because only one item at a time may be selected.
List panels are single-selection by default.

There are also multiple-selection and extended-selection lists available. The possible interactions for list panels are:

• :single-selection — only one item may be selected.

• :multiple-selection — more than one item may be selected.

• :extended-selection — see 5.3.2 Extended selection.

To get a particular interaction, supply one of the values above to the :interaction keyword, like this:

(contain
 (make-instance
 'list-panel
 :items '("Red" "Green" "Blue")
 :interaction :multiple-selection))

Note that :no-selection is not a supported choice for list panels. To display a list of items with no selection possible you
should use a display-pane.

5.3.2 Extended selection

Application users often want to make single and multiple selections from a list. Some of the time they want a new selection
to deselect the previous one, so that only one selection remains — just like a :single-selection panel. On other
occasions, they want new selections to be added to the previous ones — just like a :multiple-selection panel.

The :extended-selection interaction combines these two interactions. Here is an extended-selection list panel:

(contain
 (make-instance
 'list-panel
 :items '("Item" "Thing" "Object")
 :interaction :extended-selection))

Before continuing, here are the definitions of a few terms. The action you perform to select a single item is called the
selection gesture. The action performed to select additional items is called the extension gesture. There are two extension
gestures. To add a single item to the selection, the extension gesture is a click of the left button while holding down the
Control key. For selecting a range of items, it is a click of the left button while holding down the Shift key.

5 Choices - panes with items

61

5.3.3 Deselection, retraction, and actions

As well as selecting items, users often want to deselect them. Items in multiple-selection and extended-selection lists may be
deselected.

In a multiple-selection list, deselection is done by clicking on the selected item again with either of the selection or extension
gestures.

In an extended-selection list, deselection is done by performing the extension gesture upon the selected item. (If this was
done using the selection gesture, the list would behave as a single-selection list and all other selections would be lost.)

Just like a selection, a deselection — or retraction — can have a callback associated with it.

For a multiple-selection list panel, there may be the following callbacks:

• :selection-callback — called when a selection is made.

• :retract-callback — called when a selection is retracted.

Consider the following example. The function set-title changes the title of the interface to the value of the argument
passed to it. By using this as the callback to the check-button-panel, the title of the interface is set to the current
selection. The retract-callback function displays a message dialog with the name of the button retracted.

1. Display the example window:

(defun set-title (data interface)
 (setf (interface-title interface)
 (format nil "~A" (string-capitalize data))))

(setq check-button-panel
 (make-instance 'check-button-panel
 :items '(one two three four five)
 :print-function 'string-capitalize
 :selection-callback 'set-title
 :retract-callback 'test-callback))

(contain check-button-panel)

The example check button panel before the callback.

2. Try selecting one of the check buttons. The window title will change:

The example check button panel after the callback.

3. Now de-select the button. Notice that the retract-callback is called.

For an extended-selection list panel, there may be the following callbacks:

• :selection-callback — called when a selection is made.

5 Choices - panes with items

62

• :retract-callback — called when a selection is retracted.

• :extend-callback — called when a selection is extended.

Also available in extended-selection and single-selection lists is the action callback. This is called when you double-click on
an item.

• :action-callback — called when a double-click occurs.

5.3.4 Selections in a list

List panels — all choices, in fact — can have selections, and you can set them from within Lisp. You can specify default
settings and arrange for side-effects when a user selection is made. For the details see 5.10.2 Selections ..

5.3.5 Images and appearance

A list panel can include images displayed on the left of each item. To include images supply the initarg :image-function.
You can use images from an image-list via the initarg :image-lists.

Additionally, state images are supported on Microsoft Windows, GTK+ and Motif, via the initarg
:state-image-function and, if required, :image-lists.

A list panel can have an alternating background color on Cocoa and GTK+, when specified by the initarg
:alternating-background.

5.3.6 Filters

You can add a filter to a list-panel by passing the :filter initarg.

List panel filters are used in the LispWorks IDE, for example in the Inspector tool.

When a list-panel has a filter, you can the state of the filter by using list-panel-filter-state. The accessor
collection-items on a list-panel with a filter returns the items after filtering. The function
list-panel-unfiltered-items can be used to retrieve all the items. (setf collection-items) resets the filter, and
(setf list-panel-unfiltered-items) can be used to set the items without affecting the filter. The function
list-panel-items-and-filter can be used to get or set the unfiltered items and filter state together.
(setf list-panel-items-and-filter) is especially useful, because setting the items and the filters separately causes
the list-panel to redisplay twice.

5.3.7 Multi-column list panels

multi-column-list-panel is a subclass of list-panel which has several columns. Each line in a
multi-column-list-panel displays several strings corresponding to a single item. multi-column-list-panel takes
an initarg :item-print-functions which specifies how to generate the strings. The initarg :columns specifies column
properties including width, alignment, and title.

The columns can have headers, which can be active (that is, they have callbacks). In particular, the headers can be made to
sort the items based on some key and comparison function, by supplying the header's selection-callback as :sort and
defining sort-descriptions (inherited from sorted-object via list-panel) with types that match the titles of the
columns.

For an example see:

(example-edit-file "capi/choice/multi-column-list-panels")

5 Choices - panes with items

63

5.3.8 Double list panel

double-list-panel is a choice that displays the items in two list-panels side-by-side, and allows the user to move
items between them. It is not a subclass of list-panel.

The selection interface functions (choice-selected-items, the choice accessorchoice-selection, and so on) treat
the items in one sub-panel as the selected items and the items in the other sub-panel as the non-selected items.
double-list-panel takes more space, but is very convenient for the user when she needs to add or remove items from the
selection, especially when there are many items.

5.3.9 Searching by keyboard input

list-panel has an initarg :keyboard-search-callback which allows you to define searches in the list-panel in
response to user input. The function list-panel-search-with-function is intended to simplify writing the callback.

The default search uses a timeout to decide whether to:

• add an input character to the previous input to create the string to search, or:

• search for the character.

This timeout can be set by set-list-panel-keyboard-search-reset-time.

The keyboard-search-callback can actually be used to perform other tasks in response to user keyboard input.

For an example see:

(example-edit-file "capi/choice/list-panel-keyboard-search")

5.4 Trees

tree-view is a pane that displays a hierarchical list of items. Each item may optionally have an image and a checkbox.

Callbacks can be specified as for other choice classes. Additionally you can control how the nodes of the tree are expanded,
and there is delete-item-callback available for use when the user presses the Delete key.

Tree views are used in the LispWorks IDE, for example in the Output Data view of the Tracer tool and the Backtrace area of
the Debugger and Stepper tools.

5.4.1 Tree interaction

tree-view supports only the :single-selection interaction but you can have :extended-selection functionality by
using the subclass extended-selection-tree-view.

5.4.2 Images and appearance

tree-view can include images displayed on the left of each item. To include images supply the initarg :image-function.
You can use images from an image-list via the initarg :image-lists.

Additionally, state images are supported on Microsoft Windows, GTK+ and Motif, via the initarg
:state-image-function and, if required, :image-lists.

A tree view can have an alternating background color on Cocoa and GTK+, when specified by the initarg
:alternating-background.

5 Choices - panes with items

64

5.5 Stacked trees

stacked-tree is a pane that displays a tree of items in a "stacked" drawing, where each item has an associated value and
child items that represent a fraction of that value. Each item is displayed as a colored rectangle whose width corresponds to
the value. Child items are displayed below the item to make a stack of rectangles.

The Stacked Tree tab of the Profiler tool in the LispWorks IDE is a situation where a stacked tree is useful.

For an example see:

(example-edit-file "capi/choice/stacked-tree")

5.6 Graph panes

Another kind of choice is the graph-pane. This is a special pane that can draw graphs, whose nodes and edges can be
selected, and for which callbacks can be specified, as usual.

While graph-pane is a subclass of choice and hence collection, the concept of collection items is not applicable to a
graph. Instead, the items in a graph-pane are constructed from a list of "roots" (arbitrary objects) which are specified by the
initarg :roots and can be accessed later by graph-pane-roots, and a children-function. The roots define the initial
nodes, and when the user expands a node, the children-function is called to compute the children, which is a list of more
items, which specify the children nodes of the expanded node. Thus the actual items in the graph are changed as nodes are
expanded or collapsed.

The concepts of selection, that is the functions choice-selected-items and so on, are applicable to graph-pane.

Here is a simple example of a graph pane. It draws a small rooted tree:

(contain
 (make-instance
 'graph-pane
 :roots '(1)
 :children-function
 #'(lambda (x)
 (when (< x 8)
 (list (* 2 x) (1+ (* 2 x)))))))

A graph pane

The graph pane is supplied with a :children-function which it uses to calculate the children of the root node, and from
those children it continues to calculate more children until the termination condition is reached. For more details of this, see

5 Choices - panes with items

65

the manual page for graph-pane.

graph-pane provides a gesture which expands or collapses a node, depending on its current state. Click on the circle
alongside the node to expand or collapse it.

You can associate selection, retraction, extension, and action callbacks with any or all elements of a graph. Here is a simple
graph pane that has an action callback on its nodes.

First we need a pane which will display the callback messages. Executing the following form to create this pane:

(defvar *the-collector*
 (contain (make-instance 'collector-pane)))

Then, define the following four callback functions:

(defun test-action-callback (&rest args)
 (format (collector-pane-stream
 the-collector) "Action"))

(defun test-selection-callback (&rest args)
 (format (collector-pane-stream *the-collector*)
 "Selection"))

(defun test-extend-callback (&rest args)
 (format (collector-pane-stream *the-collector*)
 "Extend"))

(defun test-retract-callback (&rest args)
 (format (collector-pane-stream *the-collector*)
 "Retract"))

Now create an extended selection graph pane which uses each of these callbacks, the callback used depending on the action
taken:

(contain
 (make-instance
 'graph-pane
 :interaction :extended-selection
 :roots '(1)
 :children-function
 #'(lambda (x)
 (when (< x 8)
 (list (* 2 x) (1+ (* 2 x)))))
 :action-callback 'test-action-callback
 :selection-callback 'test-selection-callback
 :extend-callback 'test-extend-callback
 :retract-callback 'test-retract-callback))

The selection callback function is called whenever any node in the graph is selected.

The extension callback function is called when the selection is extended by middle clicking on another node (thus selecting it
too).

The retract callback function is called whenever an already selected node is deselected.

The action callback function is called whenever an action is performed on a node (that is, whenever it gets a double-click, or
Return is pressed while the node is selected).

5 Choices - panes with items

66

5.6.1 Changing the graphics in the graph

graph-pane is actually a subclass of pinboard-layout, and displays the graph using elements (normally
pinboard-object, but can also be simple-pane). You can specify the class of these elements, as well as a function to
actually create the object for each node. This allows you to modify the appearance of the graph without affecting or accessing
the topology of the graph.

You can also access the element that displays a graph-object by the reader graph-object-element, and manipulate it
directly. See for example:

(example-edit-file "capi/graphics/graph-color-edges.lisp")

5.6.2 Controlling the layout

The roots of the graph are placed at one side of the panes and the graph grows into the pane. The side on which the roots are
placed is defined by the layout-function and accessor graph-pane-layout-function, which takes one of the keyword
values :left-right, :top-down, :right-left and :bottom-up, where the first word in a keyword is the side where
the roots are placed. There is also an accessor graph-pane-direction, which maps :forward to/from :left-right

and :left-right, and maps :backward to/from :right-left and :bottom-up, which makes it easier to set the
direction without changing the vertical/horizontal dimension.

5.6.3 Accessing the topology of the graph

The topology of the graph is represented by graph-node objects and graph-edge objects. The list of graph-nodes and
graph-edges of the graph-pane can be found by graph-pane-edges and graph-pane-nodes. Note, however, that
these are subject to change as the user interacts with the graph.

You can find the node associated with an item (if any) by using find-graph-node. You can find the children of a supplied
node by graph-node-children. You can find the edges from the node (that is, to its children) by the reader
graph-node-out-edges, and edges in by graph-node-in-edges. You can also search for an edge between a parent and
child by find-graph-edge. From a graph-edge, you can find the the parent and child that are connected by it by the
accessors graph-edge-from and graph-edge-to respectively. It is possible to select specific nodes by
graph-pane-select-graph-nodes, which takes a predicate that is applied to all the nodes.

You can find the geometry of a node, that is the part of the pane occupied by the element that is associated with the node, by
the graph-node readers graph-node-x, graph-node-y, graph-node-height and graph-node-width. You can find
whether a point in the pane is within the area of a graph object, either a graph-node or graph-edge, by using
graph-pane-object-at-position.

It is possible to modify the graph explicitly by graph-pane-delete-object, graph-pane-delete-objects,
graph-pane-delete-selected-objects and graph-pane-add-graph-node. However, that will be overridden next
time the graph-pane computes the layout.

The user can interactively move nodes (and hence also edges) in the graph. If you need to know when that happens, you
make a subclass of graph-pane, and then specialize graph-pane-update-moved-objects on it.

graph-node and graph-edge are both subclasses of graph-object, and inherit from it the readers
graph-object-object, which returns the graph item associated with the graph-object, and
graph-object-element, which returns the element that displays it (normally pinboard-object, but can also be
simple-pane).

5 Choices - panes with items

67

5.7 Option panes

Option panes, created with the option-pane class, display the current selection from a single-selection list. When the user
clicks on the option pane, the list appears and the user can make another selection from it. Once the selection is made, it is
displayed in the option pane. In contrast to text-input-choice, the user cannot edit the selection.

The appearance of the option-pane list varies between platforms: a drop-down list box on Microsoft Windows; a combo
box on GTK+ or Motif, and a popup list on Cocoa.

Here is an example option pane, which shows the choice of one of five numbers. The initial selection is controlled with
:selected-item.

(contain
 (make-instance
 'option-pane
 :items '(1 2 3 4 5)
 :selected-item 3
 :title "One of Five:"))

An option pane

5.7.1 Option panes with images

You can add images to option pane items. Supply the :image-function initarg when creating the option-pane, as
illustrated in:

(example-edit-file "capi/choice/option-pane-with-images")

5.8 Text input choice

The text-input-choice class allows arbitrary text input augmented with a choice like an option-pane. The user can
edit the text after selecting it from the list.

See this example:

(example-edit-file "capi/elements/text-input-choice")

5.9 Menu components

Menus (covered in 8 Creating Menus) can have components that are also choices. These components are groups of items
that have an interaction upon selection just like other choices. The :interaction keyword is used to associate radio or
check buttons with the group — with the values :single-selection and :multiple-selection respectively. By
default, a menu component has an interaction of :no-selection.

See 8.3 Grouping menu items together for more details.

5 Choices - panes with items

68

5.10 General properties of choices

This section summarizes the general properties of choices.

5.10.1 Interaction

All choices have an interaction style, controlled by the :interaction initarg. The radio-button-panel and
check-button-panel are simply button-panels with their interactions set appropriately. The possible values for
interaction are listed below.

:single-selection Only one item may be selected at a time: selecting an item deselects any other selected item.

:multiple-selection

A multiple selection choice allows the user to select as many items as she wants. A selected item
may be deselected by clicking on it again.

:extended-selection

An extended selection choice is a combination of the previous two: only one item may be
selected, but the selection may be extended to more than one item.

:no-selection Forces no interaction. Note that this option is not available for list panels. To display a list of
items with no selection you should use a display pane instead.

Specifying an interaction style that is invalid for a particular choice causes an error.

The accessor choice-interaction is provided for accessing the interaction of a choice.

5.10.2 Selections

All choices have a selection. This is a state representing the items currently selected. The selection is represented as a list of
indexes into the list of the choice's items, unless it is a single-selection choice, in which case it is just represented as an index.
The indexes in the selection can be used to access the actual items using get-collection-item.

The initial selection is controlled with the initarg :selection. The choice accessor choice-selection is provided, and
you can also use (setf choice-selection).

Generally, it is easier to refer to the selection in terms of the items selected, rather than by indexes, so the CAPI provides the
notion of a selected item and the selected items. The first of these is the selected item in a single-selection choice. The second
is a list of the selected items in any choice.

The accessors choice-selected-item and choice-selected-items provide access to these conceptual slots, and you
can also supply the values at make-instance time via the initargs :selected-item and :selected-items.

5.10.3 Callbacks in choices

All choices can have callbacks associated with them. Callbacks are invoked both by mouse button presses and keyboard
gestures that change the selection or are "Action Gestures" such as Return. Different sorts of gesture can have different sorts
of callback associated with them.

The following callbacks are available: :selection-callback, :retract-callback (called when a deselection is
made), :extend-callback, :action-callback (called when a double-click occurs) and
:alternative-action-callback (called when a modified double-click occurs). What makes one choice different from
another is that they permit different combinations of these callbacks. This is a consequence of the differing interactions. For
example, you cannot have an :extend-callback in a radio button panel, because you cannot extend selection in one.

5 Choices - panes with items

69

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

Callbacks pass data to the function they call. There are default arguments for each type of callback. Using the
:callback-type keyword allows you to change these defaults. Example values of callback-type are :interface (which
causes the interface to be passed as an argument to the callback function), :data (the value of the selected data is passed),
:element (the element containing the callback is passed) and :none (no arguments are passed). Also there is a variety of
composite :callback-type values, such as :data-interface (which causes two arguments, the data and the interface,
to be passed). For a complete description of :callback-type values, see the manual page for callbacks.

The following example uses a push button and a callback function to display the arguments it receives.

(defun show-callback-args (arg1 arg2)
 (display-message "The arguments were ~S and ~S" arg1 arg2))

(setq example-button
 (make-instance 'push-button
 :text "Push Me"
 :callback 'show-callback-args
 :data "Here is some data"
 :callback-type :data-interface))

(contain example-button)

Try changing the :callback-type to other values.

If you do not use the :callback-type argument and you do not know what the default is, you can define your callback
function with lambda list (&rest args) to account for all the arguments that might be passed.

Specifying a callback that is invalid for a particular choice causes an error.

5.10.4 image-list, image-set and image-locator

Choices that need images for displaying items generally have an slot image-function which holds a function that returns the
image to use for an item. The return value ultimately needs to evaluate to an image to display, but there are various ways to
specify it. These include all the specifications that load-image understands. In addition, they can also be an integer which
is an index into an image-list or an image-locator.

To use image-list in a choice you need to specify the image-list by the appropriate initarg, for example
:image-lists for tree-view. See the entry for each specific class. Once the choice has image-lists, the image-
function can return an index into the relevant list.

An image-list is an object that specifies an ordered set of images with a common width and common height. The images
in the image-list can be image objects, image identifiers (pathname or symbol, which are automatically loaded by
load-image), or image-set objects. You need to supply these objects when you make the image-list by
cl:make-instance.

An image-list object can be used repeatedly in several panes. It is useful because it simplifies the handling of the images.

Example:

(example-edit-file "capi/choice/tree-view")

An image-set represents a group of images of the same size that are derived from a single object. For example, six images
of 16x16 pixels each can be derived from a single image of 16x96 pixels. This is an example of the "general" image-set,
which is created by make-general-image-set. In addition, you can create a scaled image set by either
make-scaled-general-image-set or make-scaled-image-set. On Microsoft Windows, you can also create
image-sets from resources in a DLL, either a bitmap resource by make-resource-image-set, or icon resource by
make-icon-resource-image-set.

5 Choices - panes with items

70

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

image-sets are useful because it is often convenient to hold a group of images as a combined larger image, which reduces
the number of objects that needed to be dealt with. image-sets are used inside image-lists, and sometimes can be used
directly, for example in toolbar. image-set can also be used in image-locators.

Examples:

(example-edit-file "capi/choice/tree-view")

(example-edit-file "capi/elements/toolbar")

(example-edit-file "capi/choice/multi-column-list-panels")

An image-locator specifies one image out of an image-set, and it is created by make-image-locator. It can be used
instead of an image in various places, most usefully as a result of the various image-functions.

Example:

(example-edit-file "capi/choice/multi-column-list-panels")

For choices like tree-view or list-panel, you can include a sub-set from an image-set either by using image
locators, or by including the image-set in an image-list and use the image-list in the choice. The latter technique is
normally more convenient when all the image-set is used, but in other situations using image-locators may be more
convenient.

5.11 Operations on collections (choices) and their items

This section describes how you can access the items of a collection. In practice you will perform these operations on
instances of subclasses of choice.

5.11.1 Accessing items

Given a collection and an index, you can retrieve the actual items in the collection by get-collection-item. Find the
number of items in a collection at any point by count-collection-items. map-collection-items can be used to map
a function over the collection items. print-collection-item can be used to "print" an item, that is generate the same
string that will be displayed for this item. The collection accessor collection-items returns a list of the items in the
collection, and can be used with setf to set the items.

5.11.2 Efficient manipulation of collection items

It is always possible to modify all the items of a collection by using setf with collection-items on it. However that can
be expensive when called often with large numbers of items, and can cause flickering on screen. For typical choices (when
items-get-function is svref), it is possible to modify the items of the choice more efficiently by using one of
replace-items, remove-items or append-items.

Note: graph-pane and tree-view are not "typical" (their items-get-function is not svref) and therefore these functions
cannot be used on these panes.

5.11.3 Searching in a collection

The function search-for-item can be used to find an item in a collection.

find-string-in-collection can be used to find a string in the printed items (that is, in the result of calling the print

5 Choices - panes with items

71

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_svref.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_svref.htm

function). There is also collection-find-string which prompts the user for the string and then searches, and
collection-find-next-string to continue the search from the previous match. collection-last-search can be
used to retrieve the last search string, if any.

5 Choices - panes with items

72

6 Laying Out CAPI Panes

The CAPI provides various layout classes which allow you to combine multiple window elements in a single window. This
chapter provides an introduction to the different classes of layout available and the ways in which each can be used.

Layouts are created just like any other CAPI element, by calling make-instance. Each layout needs to have a description
which is a list of the CAPI elements it contains. The description can be supplied via the :description initarg. It can also
be supplied or modified later by calling (setf layout-description) in the layout's process. The description is
interpreted by interpret-description as specifying a list of elements which are the "children" of the layout. The layout
groups its children on the screen and specifies their geometry (x and y coordinates of top-left corner, width and height).

Only CAPI elements can be layout children. In this chapter "children" or "child" refers only to elements of these types:

• Instances of simple-pane and its subclasses.

• Instances of pinboard-object and its subclasses (discussed in 12 Creating Panes with Your Own Drawing and
Input).

For example, to put elements one above the other you make an instance of class column-layout with the elements as its
description:

(defun put-in-a-column (list-of-elements)
 (make-instance 'column-layout
 :description list-of-elements))

Since the result is a layout, you can put it in an interface and display it:

(defun display-in-a-column (list-of-elements)
 (display
 (make-instance 'interface
 :layout (put-in-a-column list-of-elements))))

(display-in-a-column
 (list (make-instance 'text-input-pane
 :text "Text input pane")
 (make-instance 'push-button
 :data "Button")))

(display-in-a-column
 (loop for x below 10
 collect
 (make-instance 'push-button
 :data (format nil "Button No. ~d" x))))

Layout themselves are subclasses of simple-pane, and hence can be children of other layouts, creating a hierarchical "tree"
of layouts with other types of children as the "leaves". This is the normal way of laying out all the elements inside an
interface. interface is also a subclass of simple-pane and can appear in the hierarchy, though usually interface is
used only for the top-level window.

In general, the layouts need to know their childrens' geometrical requirements. These requirements are referred to as
"constraints" and include the minimum and maximum width and height. Some of the child classes have default constraints,
for example text-input-pane by default has both minimum and maximum height which allows showing one line, taking
into account the height of the font. Most child classes do not have default constraints, and in effect have a minimum
dimension of 0 and no maximum. Quite often that is good enough, but not always.

73

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

You can override the default constraints of an element by specifying geometrical "hints" (the word "constraint" is sometimes
used to refer to the hint). Hints can be specified in many ways, for example the minimum width can be specified as enough to
display 30 characters. Geometrical hints are typically specified by initargs when making a pane, but you can also set them
dynamically. See 6.4 Specifying geometry hints for details. In most cases, specifying the hints is sufficient (once you
specify the hierarchy of layouts).

The function get-constraints computes the constraints in pixels based on the hints or the defaults, and returns the
min/max of the width and height. Note that the result of get-constraints is dependent both on the hints themselves and
other factors. For example, if the minimum width of an element is specified as "30 characters", changing the font of the
element will cause get-constraints to return a different value. For more complex computations, it is also possible to
define a calculate-constraints method, but in most cases the geometry hints are enough.

The layouts in general use get-constraints to get the constraints of their children, and take them into account when
calculating the geometry of the elements and its own implicit constraints. For example, a row-layout puts elements side-by
-side, and if it has two children with minimum width and height of 100, it will have an implicit minimum width of 200 and
implicit minimum height of 100. The implicit constraints are used by get-constraints on the layout itself (by its parent),
unless they are overridden by geometry hints or calculate-constraints on the layout.

The process of laying out starts at the top of the hierarchy, with the outer layout calling get-constraints on its children.
If any of the children is a layout itself, it calls get-constraints of its children. Thus the get-constraints call is
propagated down the hierarchy to all the tree, and the results are propagated back. Then the top layout lays out its children,
that is it tells them their geometry, and again this is propagated down by each child which is a layout itself.

When a layout lays out its children, its uses its own geometry, the children's constraints and a layout-specific algorithm,
which is implemented by calculate-layout. Thus when the documentation describes a layout of some class as "laying
out its children in some way" it really means that this is what the applicable method of calculate-layout tries to achieve.
Note that calculate-layout does not necessarily obey the constraints, and even the methods that intend to obey the
constraints may fail to do so. For example, a row-layout with two children each of minimum width 100 which is given a
width of 150 pixels will give only 50 to the second child. Conversely, when the layout has more space that the minimum
required it usually distributes space between the elements that are not constrained by a maximum.

calculate-layout records the layout that it computed by setting the x y width and height in the geometries of the children
(using with-geometry). The system then displays the children with the new geometry.

The hierarchy of layouts is laid out from the top layout of the top level interface when the interface is being displayed. After
that, whenever the program makes a change to any element which may change its constraints, the system goes up the
hierarchy until it finds a layout that it can tell is not going to need to change its constraints, and then lays out the children of
that layout, as described above.

You can tell CAPI that the constraints of a pane may have changed and need to be recomputed (and hence maybe part of the
hierarchy needs re-layout) by calling invalidate-pane-constraints.

Once again, you should make sure you have defined the test-callback function before attempting any of the examples in
this chapter. Its definition is repeated here for convenience.

(defun test-callback (data interface)
 (display-message "Data ~S in interface ~S"
 data interface))

6.1 Organizing panes in columns and rows

You will frequently need to organize a number of different elements in rows and columns. The column-layout and
row-layout elements are provided to make this easy.

The following is a simple example showing the use of column-layout.

6 Laying Out CAPI Panes

74

(contain (make-instance 'column-layout
 :description (list
 (make-instance 'text-input-pane)
 (make-instance 'list-panel
 :items '(1 2 3 4 5)))))

An example of using column-layout

1. Define the following elements:

(setq button1 (make-instance 'push-button
 :data "Button 1"
 :callback 'test-callback))

(setq button2 (make-instance 'push-button
 :data "Button 2"
 :callback 'test-callback))

(setq editor (make-instance 'editor-pane
 :text "An editor pane"))

(setq message (make-instance 'display-pane
 :text "A display pane"))

(setq text (make-instance 'text-input-pane
 :title "Text: "
 :title-position :left
 :callback 'test-callback))

These will be used in the examples throughout the rest of this chapter.

To arrange any number of elements in a column, create a layout using column-layout, listing the elements you wish to use.
For instance, to display title, followed by text and button1, enter the following into a Listener:

(contain (make-instance 'column-layout
 :description
 (list text button1)))

6 Laying Out CAPI Panes

75

A number of elements displayed in a column

To arrange the same elements in a row, simply replace column-layout in the example above with row-layout. If you run
this example, close the column layout window first: each CAPI element can only be on the screen once at any time.

Layouts can be given horizontal and vertical scroll bars, if desired; the keywords :horizontal-scroll and
:vertical-scroll can be set to t or nil, as necessary.

When creating panes which can be resized (for instance, list panels, editor panes and so on) you can specify the size of each
pane relative to the others by listing the proportions of each. This can be done via either the :y-ratios keyword (for
column layouts) or the :x-ratios keyword (for row layouts).

(contain (make-instance 'column-layout
 :description (list
 (make-instance 'display-pane)
 (make-instance 'editor-pane)
 (make-instance 'listener-pane))
 :y-ratios '(1 5 3)))

You may need to resize this window in order to see the size of each pane.

Note that the heights of the three panes are in the proportions specified. The :x-ratios initarg will adjust the width of
panes in a row layout in a similar way.

It is also possible to specify that some panes are fixed at their minimum size while others in the same row or column adjust
proportionately when the interface is resized:

(contain
 (make-instance
 'column-layout
 :description
 (list
 (make-instance 'output-pane
 :background :red
 :visible-min-height '(:character 1))
 (make-instance 'output-pane
 :background :blue
 :visible-min-height '(:character 1))
 (make-instance 'output-pane
 :background :red
 :visible-min-height '(:character 3)))
 :y-ratios '(1 nil 3)
 :title "Resize this window vertically: the red panes maintain ratio 1:3, while the blue pane is f
ixed."
))

To arrange panes in your row or column layout with constant gaps between them, use the :gap initarg:

(contain
 (make-instance
 'column-layout

6 Laying Out CAPI Panes

76

 :description (list
 (make-instance 'output-pane
 :background :red)
 (make-instance 'output-pane
 :background :white)
 (make-instance 'output-pane
 :background :blue))
 :gap 20
 :title "Try resizing this window vertically"
 :background :gray))

To create resizable spaces between panes in your row or column layout, use the special value nil in the layout description:

(contain (make-instance 'column-layout
 :description (list
 (make-instance 'output-pane
 :background :red)
 nil
 (make-instance 'output-pane
 :background :white)
 nil
 (make-instance 'output-pane
 :background :blue))
 :y-ratios '(1 1 4 1 1)
 :title "Try resizing this window vertically"
 :background :gray))

6.2 Other types of layout

Row and column layouts are the most basic type of layout class available in the CAPI, and will be sufficient for many things
you want to do. A variety of other layouts are available as well, as described in this section.

6.2.1 Grid layouts

Row and column layouts only allow you to position a pane horizontally or vertically (depending on which class you use), but
grid layouts let you specify both thus allowing you to create a complete grid of different CAPI panes.

grid-layout supports a title column, as illustrated in:

(example-edit-file "capi/layouts/titles-in-grid")

and it supports cells spanning multiple columns or rows, as illustrated in:

(example-edit-file "capi/layouts/extend")

grid-layout (and its subclasses column-layout and row-layout) is a subclass of x-y-adjustable-layout, which
allows you to specify adjustments when you position the pane using the initargs :x-adjust and :y-adjust.

6.2.2 Simple layouts

A simple-layout has only one child. Where possible, the child is resized to fit the layout. Simple layouts are sometimes
useful when you need to encapsulate a pane.

6 Laying Out CAPI Panes

77

6.2.3 Pinboard layouts

Pinboard layouts allow you to position a pane anywhere within a window, by specifying the x and y integer coordinates of the
pane precisely. They are a means of letting you achieve any effect which you cannot create using the other available layouts,
although their use can be correspondingly more complex. They are discussed in more detail in 12 Creating Panes with Your
Own Drawing and Input.

6.3 Combining different layouts

You will not always want to arrange all your elements in a single row or column. You can include other layouts in the list of
elements used in any layout, thus enabling you to specify precisely how panes in a window should be arranged.

For instance, suppose you want to arrange the elements in your window as shown in A sample layout. The two buttons are
shown on the right, with the text input pane and a message on the left. Immediately below this is the editor pane.

A sample layout

The layout in A sample layout can be achieved by creating two row layouts: one containing the display pane and a button,
and one containing the text input pane and the other button, and then creating a column layout which uses these two row
layouts and the editor.

(setq row1 (make-instance 'row-layout
 :description (list message button1)))

(setq row2 (make-instance 'row-layout
 :description (list text button2)))

(contain (make-instance 'column-layout
 :description
 (list row1 row2 editor)))

An instantiation of the sample layout

As you can see, creating a variety of different layouts is simple. This means that it is easy to experiment with different

6 Laying Out CAPI Panes

78

layouts, allowing you to concentrate on the interface design, rather than its code.

However, remember that each instance of a CAPI element must not be used in more than one place at the same time.

6.4 Specifying geometry hints

If you do not specify any hints, the CAPI uses the default constraints. In many cases that gives useful geometry already.

When you do need to specify the constraints, the normal way is to specify the hints for the element(s) when making them by
passing the appropriate keywords. The available keywords and their meanings are explained in 6.4.1 Width and height
hints, and the potential values are explained in 6.4.2 Hint values formats.

It also possible to set the hints later, either by set-geometric-hint to set a single hint or set-hint-table to set all of
them.

It is also possible to specify initial constraints, which are applicable during the creation of the window, but not later.
Typically that is used to force the initial window to be large enough, but later allowing the user to reduce the size.

6.4.1 Width and height hints

In CAPI, there are three kinds of geometry dimensions: external, visible and internal.

External and visible dimensions are two different ways to specify the dimensions of an element on the screen. The external
dimension specifies the size of the element including its borders, while the visible dimension specifies the size of the pane
inside its borders. Thus:

external-width = visible-width + borders-width
external-height = visible-height + borders-height

For a non-scrolling pane, internal dimensions mean the same as visible. For a scrolling pane, internal dimensions specify the
size that the pane would need to display all of its data. For example, a list-panel with 100 items of which exactly 30
items are fully visible and each line is 15 pixels high has internal height of 100 x 15 = 1500 pixels and visible height of 30 x
15 = 450 pixels.

To get the right layout on the screen, you typically need to specify constraints on the width and height on the screen, which
you do by specifying either the external constraints or visible constraints. This is the main way of using constraints.

The internal dimensions are needed only to compute the size of the scrollbars. Most elements implicitly compute their own
internal dimensions. You should specify the minimum internal dimensions by :scroll-height and :scroll-width

when you have an output-pane with scrollbar(s) which does ordinary scrolling (the default), so the pane can compute the
size of the scrollbars. However, you can use set-horizontal-scroll-parameters and
set-vertical-scroll-parameters instead.

The following keywords are used to specify geometrical constraints.

External constraints control the size that the pane takes up in its parent:

:external-min-width

The minimum width of the child in its parent.

:external-max-width

The maximum width of the child in its parent.

:external-min-height

The minimum height of the child in its parent.

6 Laying Out CAPI Panes

79

:external-max-height

The maximum height of the child in its parent.

Visible constraints control the size of the part of the pane that you can see:

:visible-min-width The minimum visible width of the child.

:visible-max-width The maximum visible width of the child.

:visible-min-height

The minimum visible height of the child.

:visible-max-height

The maximum visible height of the child.

If the visible-max-width is the same as the visible-min-width, then the element is not horizontally resizable. If the visible-max
-height is the same as the visible-min-height, then the element is not vertically resizable.

Internal constraints control the size of region used to display the contents of the pane: These are all deprecated.

:internal-min-width

The minimum width of the display region.

:internal-max-width

The maximum width of the display region.

:internal-min-height

The minimum height of the display region.

:internal-max-height

The maximum height of the display region.

In addition, methods for the generic function calculate-constraints can be defined on your pane classes to compute the
internal geometries. Note that when scrolling the :internal-max-width and :internal-max-height are not
meaningful and are ignored.

For a scrolling pane, the internal constraints control the size of region over which you can scroll and the visible constraints
control the size of the viewport. Here is an illustration of the external, internal and visible sizes in a scrolling list panel with 8
items, 4 of which are fully visible and 1 is partially visible:

6 Laying Out CAPI Panes

80

External, visible and internal sizes:

Initargs :min-width, :max-width, :min-height and :max-height are deprecated. They are synonyms for the visible
constraints :visible-min-width and so on.

It is often wrong to constrain CAPI elements to fixed pixel sizes, as these constraints may lead to poorer layouts in some
configurations.

6.4.1.1 Priority of constraints

The order of priority is the order in 6.4.1 Width and height hints. That is, for a non-scrolling pane when there is only one
independent constraint the preference order is:

External > Visible > Internal > calculate-constraints.

For a scrolling pane where there are two independent constraints the preference order for the external constraint is:

External > Visible.

and the preference order for the internal constraint is:

Internal > calculate-constraints.

6.4.2 Hint values formats

The possible values for the hints listed in 6.4.1 Width and height hints are as follows:

integer The size in pixels.

t For :visible-max-width, t means use the value of :visible-min-width.

For :visible-max-height, t means use the value of :visible-min-height.

:text-width The width of any text in the element.

:text-height The height of any text in the element.

:screen-width The width of the screen.

:screen-height The height of the screen.

6 Laying Out CAPI Panes

81

A list starting with any of the following operators, followed by one or more hints:

max — the maximum size of the hints.

min — the minimum size of the hints.

+ — the sum of the hints.

- — the subtraction of hints from the first.

* — the multiplication of the hints.

/ — the division of hints from the first.

A two element list specifying the size of a certain amount of text when drawn in the element:

(:character integer) — the size of integer characters.

(character integer) — the size of integer characters.

(:string string) — the size of string.

(string string) — the size of string.

A two-element list starting with symbol-value, and containing one other symbol:

(symbol-value foo) — the size of the symbol-value of foo.

A list starting with apply or funcall, followed by a symbol and arguments:

(apply function arg1 arg2 ...) — the result of applying the function function to the
arguments.

(funcall function arg1 arg2 ...) — the result of calling the function function with the
arguments.

6.4.3 Initial constraints

You can use the initarg :initial-constraints to specify constraints that apply during creation of the element's interface,
but not after the interface is displayed.

initial-constraints must be a plist of constraints, where the keywords are geometry hints as described above.

For example, this creates a window that starts at least 600 pixels high, but can be made shorter by the user, because that
initial constraint is transient. However, the permanent height constraints on the two output panes remain in effect:

(contain
 (make-instance 'column-layout
 :description
 (list (make-instance 'output-pane
 :visible-min-height 100
 :background :red)
 (make-instance 'output-pane
 :visible-min-height 200
 :background :blue))
 :initial-constraints '(:visible-min-height 600)))

6 Laying Out CAPI Panes

82

http://www.lispworks.com/documentation/HyperSpec/Body/f_max_m.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_max_m.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_5.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_5.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_apply.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_funcal.htm

6.5 Constraining the size of layouts

The size of a layout (often referred to as its geometry) is calculated automatically on the basis of the size of each of its
children. The algorithm used takes account of hints provided by the children, and from the description of the layout itself.
Hints are specified via the panes' initargs when they are created. The various pane classes have useful default values for these
initargs.

6.5.1 Default Constraints

If you do not specify any hints, the CAPI calculates the on-screen geometry based on its default constraints. With this
geometry the various elements are displayed with adequate space in the window.

This is designed to work regardless of variable factors such as the user's configuration, for example specifying large font
sizes. It is often wrong to constrain CAPI elements to fixed pixel sizes, as these constraints may lead to poorer layouts in
some configurations.

For information about the effect of constraints on scrolling, see 6.4.1 Width and height hints.

6.5.2 Constraint Formats

Hints can take arguments in a number of formats, which are described in full under 6.4.2 Hint values formats. When given a
number, this should be an integer and the layout is constrained to that number of pixels. A constraint can also be specified in
terms of character widths or heights, as shown in the next section.

6.5.2.1 Character constraints

In 6.3 Combining different layouts, you created a window with five panes, by combining row and column layouts. Now
consider changing the definition of the editor pane so that it is required to have a minimum size. This would be a sensible
change to make, because editor panes need to be large enough to work with comfortably.

(setq editor2
 (make-instance 'editor-pane
 :text "An editor pane with minimum size"
 :visible-min-width '(:character 30)
 :visible-min-height '(:character 10)))

Now display a window similar to the last example, but with the editor2 editor pane. Note that it is only the description of
the top-level column layout which differs. Before entering the following into the listener, you should close all the windows
created in this chapter in order to free up the instances of button1, button2 and so forth.

(contain (make-instance 'column-layout
 :description
 (list row1 row2 editor2)))

You will not be able to resize the window any smaller than this:

6 Laying Out CAPI Panes

83

The result of resizing the sample layout

6.5.2.2 String constraints

To make a pane that is wide enough to accommodate a given string, use the :visible-min-width hint with a
(:string string) constraint.

In this example we also supply :visible-max-width t, which fixes the maximum visible width to be the same as the
minimum visible width. Hence the pane is wide enough, but no wider:

(defvar *text* "Exactly this wide")

(capi:contain
 (make-instance 'capi:text-input-pane
 :text *text*
 :visible-min-width `(:string ,*text*)
 :visible-max-width t
 :font (gp:make-font-description
 :size (+ 6 (random 30)))))

Note that the width constraint works regardless of the font used.

6.5.3 Changing the constraints

If you need to alter the constraints on an existing element, use the function set-hint-table. See how the interface in
6.5.2.1 Character constraints resizes after this call:

(apply-in-pane-process editor2
 'set-hint-table editor2 '(:visible-min-width (:character 100)))

If you define your own pinboard-object class, ensure that its hint table matches the visible geometry and is kept
synchronized after any movement of the object, otherwise redrawing may be incorrect.

Similarly if you draw pinboard objects under a transform, call set-hint-table with the transformed geometry to ensure
correct redrawing.

6 Laying Out CAPI Panes

84

6.6 Other pane layouts

The example below uses three predefined panes, which need to be defined as follows:

(setq red-pane (make-instance 'output-pane
 :background :red))

(setq green-pane (make-instance 'output-pane
 :background :green))

(setq blue-pane (make-instance 'output-pane
 :background :blue))

6.6.1 Switchable layouts

A switchable layout allows you to place CAPI objects on top of one another and determine which object is displayed on top
through Lisp code, possibly linked to a button or menu option through a callback. Switchable layouts are set up using a
switchable-layout element in a make-instance. As with the other layouts, such as column-layout and
row-layout, the elements to be organized are listed in the description slot, initialized in this example by the
:description initarg:

(setq switching-panes (make-instance
 'switchable-layout
 :description (list red-pane green-pane)))

(contain switching-panes)

Note that the default pane to be displayed is the red pane, which was the first pane in the description list. The two panes can
now be switched between using switchable-layout-visible-child:

(apply-in-pane-process
 switching-panes #'(setf switchable-layout-visible-child)
 green-pane switching-panes)

(apply-in-pane-process
 switching-panes #'(setf switchable-layout-visible-child)
 red-pane switching-panes)

6.6.2 Tab layouts

A tab-layout displays several tabs, and a single pane which contains the main contents.

In its simplest mode, a tab-layout is similar to a switchable layout, except that each pane is provided with a labelled tab,
like the tabs on filing cabinet folders or address books. If the tab is clicked on by the user, the pane it is attached to is pulled
to the front. Remember to close the switchable layout window created in the last example before displaying this:

(setq tab-layout
 (make-instance 'tab-layout
 :items (list (list "one" red-pane)
 (list "two" green-pane)
 (list "three" blue-pane))
 :print-function 'car
 :visible-child-function 'second))

(contain tab-layout)

6 Laying Out CAPI Panes

85

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

A tab layout

The example needs the :print-function to be car, or else the tabs will be labelled with the object numbers of the panes
as well as the title provided in the list.

However, a tab layout can also be used in a non-switchable manner, with each tab responding with a callback to alter the
appearance of only one pane. In this mode the :description keyword is used to describe the main layout of the tab pane.
In the following example the tabs alter the choice of starting node for one graph pane, by using a callback to the
graph-pane-roots accessor:

(defun tab-graph (items)
 (let* ((gp (make-instance 'graph-pane))
 (tl (make-instance 'tab-layout
 :description (list gp)
 :items items
 :visible-child-function nil
 :print-function (lambda (x) (format nil "~R" x))
 :callback-type :data
 :selection-callback #'(lambda (data)
 (setf (graph-pane-roots gp)
 (list data))))))
 (contain tl)))

(tab-graph '(1 2 4 5 7))

You can access the pane that is currently displayed in the tab-layout by tab-layout-visible-child, and you can
obtain a list of the panes that have been displayed by calling tab-layout-panes.

6 Laying Out CAPI Panes

86

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

6.6.3 Dividers and separators

If you need adjacent panes in a row or column to have a narrow user-movable divider between them, supply the special value
:divider in the description. The divider allows the user to resize one pane into the space of the other. To see this in the
column layout below, grab the divider between the two panes and then drag it vertically to resize both panes:

(contain (make-instance 'column-layout
 :description (list green-pane
 :divider
 red-pane)))

The arrow keys can also be used to move the divider.

To include a narrow visible element between adjacent panes which cannot be moved (dragged) by the user, supply the special
value :separator in the description.

If you also specify ratios, the ratio for each occurrence of either of these special values should be nil to specify that the
narrow element is fixed at its minimum size:

(contain (make-instance 'column-layout
 :description (list
 (make-instance 'output-pane
 :background :red)
 :divider
 (make-instance 'output-pane
 :background :white)
 :separator
 (make-instance 'output-pane
 :background :blue))
 :y-ratios '(1 nil 4 nil 1)
 :title "You can drag the divider, but not the separator"
 :background :gray))

Dividers and separators can also be placed between panes in a row-layout or even combinations of row and column
layouts.

6.6.4 Static layout

static-layout is a layout that simply places each of its children where the geometry specifies (x, y, visible-min-width and
visible-min-height). The children can be moved and resized by (setf static-layout-child-position) and
(setf static-layout-child-size).

An important subclass of static-layout is pinboard-layout, which is documented in 12.3 Creating graphical
objects. pinboard-layout is used to create your own kind of panes.

6.6.5 Interface toolbars

Your interface can have a toolbar which the user can configure by selecting and rearranging the buttons to display. To
implement this, specify an interface toolbar as described in 9 Adding Toolbars.

6.6.6 Docking layout

docking-layout allows docking/undocking of panes, which means interactively moving the panes between places in the
interface (docking) and into standalone floating windows (undocking). The full functionality is available only on Microsoft
Windows, while GTK+ gives very limited functionality. On Cocoa it is completely static. Docking layouts are especially
useful for toolbars, but can contain other panes.

6 Laying Out CAPI Panes

87

To allow moving a pane between different places in the interface, you need to group several docking-layouts. This done
by using make-docking-layout-controller to create a controller object, and then passing the controller when making
the docking-layout with the initarg :controller. You then place each docking-layout in a different place in the
interface, by including it in the layout hierarchy of the interface in the usual way, and then it is possible to interactively move
panes between all the docking-layouts that share the controller.

If you merely want to allow undocking, you do not need a controller.

The function docking-layout-pane-docked-p can be used to test whether a pane is docked in a specific
docking-layout, and can be used with cl:setf to programmatically dock a pane in a specific docking-layout or to
undock it (to do this, dock it to nil).

The function docking-layout-pane-visible-p can be used to test whether a pane is docked in one of the
docking-layouts in the group of a docking-layout (that is, layouts with the same controller) or is undocked, and the
docking-layout or the floating window is visible. It can be used with cl:setf to change the visibility of the
docking-layout (if the pane is docked) or the floating window (undocked).

There is an example in:

(example-edit-file "capi/layouts/docking-layout")

6.6.7 Multiple-Document Interface (MDI)

In LispWorks for Windows, the CAPI supports MDI through the class document-frame. MDI is not supported on other
platforms.

To use MDI in the CAPI, define an interface class that inherits from document-frame, and use the two special slots
capi:container and capi:windows-menu as described below.

In your interface's layouts, use the symbol capi:container in the description to denote the pane inside the MDI interface
in which child interfaces are added.

document-frame-container is a reader which returns the document-container of the document-frame.

Interfaces of any type other than subclasses of document-frame may be added as children. To add a child interface in your
MDI interface, call display on the child interface and pass the MDI interface as the screen argument. This will display the
child interface inside the container pane. To obtain a list of the child interfaces, call the screen reader function
screen-interfaces, passing the frame's document-container as the screen argument.

You can use most of the normal CAPI window operations such as top-level-interface-geometry and
activate-pane on windows displayed as children of a document-frame.

The slot capi:windows-menu contains the Windows Menu, which allows the user to manipulate child interfaces. The
standard functionality of the Windows Menu is handled by the system and normally you will not need to modify it. However,
you will want to specify its position in the menu bar. Do this by adding the symbol capi:windows-menu in the
:menu-bar option of your define-interface form.

By default the menu bar is made by effectively appending the menu bar of the document-frame interface with the menu bar
of the current child. You can customize this behavior with merge-menu-bars.

6.6.7.1 MDI example

This example uses document-frame to create a primitive cl:apropos browser.

Firstly we define an interface that lists symbols. There is nothing special about this in itself.

6 Laying Out CAPI Panes

88

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_apropo.htm

(capi:define-interface symbols-listing ()
 ((symbols :initarg :symbols))
 (:panes
 (symbols-pane capi:list-panel
 :items symbols
 :print-function
 'symbol-name))
 (:default-initargs
 :best-width '(character 40)
 :best-height '(character 10)))

Next we define the MDI interface. Note:

1. It inherits from document-frame.

2. capi:container is used in the layout description.

3. capi:windows-menu is in the :menu-bar list.

4. When the interface showing the symbols is being displayed, the MDI interface is passed as the screen argument to
display.

Otherwise, this example uses standard Common Lisp and CAPI functionality.

(capi:define-interface my-apropos-browser
 (capi:document-frame)
 ((string :initarg :string))
 (:panes
 (package-list
 capi:list-panel
 :items
 (loop for package in (list-all-packages)
 when
 (let ((al (apropos-list string package)))
 (when al
 (cons (package-name package) al)))
 collect it)
 :print-function 'car
 :action-callback
 #'(lambda (mdi-interface name-and-symbols)
 (capi:display
 (make-instance
 'symbols-listing
 :symbols (cdr name-and-symbols)
 :title (car name-and-symbols))
 :screen mdi-interface))
 :callback-type :interface-data)
)
 (:menu-bar capi:windows-menu)
 (:layouts
 (main
 capi:row-layout
 '(package-list :divider capi:container)
 :ratios '(1 nil 4)))
 (:default-initargs
 :visible-min-height '(character 20)
 :visible-min-width '(character 100)))

To browse apropos of a specific string:

(capi:display
 (make-instance 'my-apropos-browser
 :string "EDITOR"))

6 Laying Out CAPI Panes

89

6.7 Changing layouts and panes within a layout

To change to another layout, use (setf pane-layout):

(setf layout
 (capi:contain
 (make-instance 'row-layout
 :description
 (list (make-instance 'title-pane :text "One")
 (make-instance 'title-pane :text "Two"))
 :visible-min-height 100)))

(apply-in-pane-process
 layout #'(setf pane-layout)
 (make-instance 'column-layout
 :description
 (list (make-instance 'title-pane :text "Three")
 (make-instance 'title-pane :text "Four")))
 (element-interface layout))

To change the panes within a layout, use (setf layout-description):

(setf layout
 (capi:contain
 (make-instance 'row-layout
 :description
 (list (make-instance 'title-pane :text "One")
 (make-instance 'title-pane :text "Two"))
 :visible-min-height 100)))

(apply-in-pane-process
 layout #'(setf layout-description)
 (list (make-instance 'title-pane :text "Three")
 (make-instance 'title-pane :text "Four")
 (make-instance 'title-pane :text "Five"))
 layout)

Note: A CAPI layout must not reuse panes that are already displayed in another layout.

6 Laying Out CAPI Panes

90

7 Programming with CAPI Windows

An interface or its children can be altered programmatically in many ways. This chapter describes APIs for the most common
of these.

Note: By default, each CAPI interface runs in its process. It is important to understand that an on-screen interface and its
elements must be accessed only in the process of that interface. In most circumstances the user alters the interface by a
callback inside the interface, which will automatically happen in the correct process. However, calls from other processes
(including other CAPI interfaces) should use execute-with-interface, execute-with-interface-if-alive,
apply-in-pane-process or apply-in-pane-process-if-alive.

7.1 Initialization

If necessary you can run code just before or just after your interface's windows are displayed on screen.

You can do this by defining a :before or :after method on the generic function interface-display. Your method will
run just before or just after your interface is displayed on screen.

For example:

(defun make-text (self createdp)
 (multiple-value-bind (s m h dd mm yy)
 (decode-universal-time (get-universal-time))
 (format nil "Window ~S ~:[displayed~;created~] at ~2,'0D:~2,'0D:~2,'0D"
 self createdp h m s)))

(capi:define-interface dd () () (:panes (dp capi:display-pane)))

(defmethod capi:interface-display :before ((self dd))
 (with-slots (dp) self
 (setf (capi:display-pane-text dp)
 (make-text self t))))

(capi:contain (make-instance 'dd))

Sometimes initialization code can be put in the create-callback of your interface, though adding it in suitable methods for
initialize-instance or interface-display is usually better.

7.2 Resizing and positioning

Programmatic resizing can be done using the function set-top-level-interface-geometry. For example, to double
the width of an interface about its center:

(setf interface (contain (make-instance 'interface)))

Use the mouse or window manager-specific gesture to resize the interface, then evaluate:

(multiple-value-bind (x y w h)
 (top-level-interface-geometry interface)
 (execute-with-interface interface
 'set-top-level-interface-geometry
 interface

91

http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm

 :x (round (- x (* 0.5 w)))
 :y y
 :width (* 2 w)
 :height h))

All resize operations are subject to the constraints. The constraints can be altered programmatically as described in 6.5.3
Changing the constraints.

Resize operations are also subject to automatic modification by the system in cases where the new window geometry
coincides with a system area such as the macOS menu bar or the Microsoft Windows taskbar, as described in 7.2.1
Positioning CAPI windows.

7.2.1 Positioning CAPI windows

You should not assume that a window is located where it has just been programmatically positioned. Instead you should
query the current position by top-level-interface-geometry.

So if you wish to display CAPI interface windows W1 and W2 relative to each other. You should:

1. Display W1 (by display), then:

2. Query position of W1, then:

3. Arrange for W2 to have the desired relative position, for example in its make-instance or later by set-hint-table,
then:

4. Display W2.

The reason for this is that the window system may disallow certain positions (for example on the macOS menu bar) therefore
you cannot be certain of the position of W1.

7.3 Geometric queries

The visible size of a pane can be found by simple-pane-visible-height and simple-pane-visible-width, or
simple-pane-visible-size (which returns two values, width and height). Other geometric values can be accessed using
with-geometry. See 6.4.1 Width and height hints for the meaning of visible, external and internal size.

The function convert-relative-position can be used to convert coordinates between one pane or screen to another
pane or screen.

Inside a static-layout (including pinboard-layout) the function static-layout-child-position and
static-layout-child-size can be used to find (and set) the coordinates of a child.

Setting coordinates of panes (other than inside a static-layout) is done by the layout mechanism which is described in 6
Laying Out CAPI Panes. In most cases, you use geometric hints or set the scroll parameters, as described in 6.4 Specifying
geometry hints.

7.4 Scrolling

7.4.1 Programmatic scrolling

Programmatic scrolling is implemented with the generic function scroll. This example shows vertical scrolling in a
list-panel:

(setf list-panel

7 Programming with CAPI Windows

92

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

 (contain
 (make-instance 'list-panel
 :items (loop for i below 100 collect i)
 :vertical-scroll t)))

(apply-in-pane-process
 list-panel 'scroll list-panel :vertical :move 50)

11 Defining Interface Classes - top level windows shows how an editor-pane can be scrolled using editor commands.

An output-pane can be made to scroll - see 12.4 output-pane scrolling.

You can also use the functions set-horizontal-scroll-parameters and set-vertical-scroll-parameters to
affect scrolling operations.

The current scroll position can be found by using get-scroll-position. Using it later in a call to scroll with :move

scrolls the pane back to the same position.

7.4.2 Scroll values and initialization keywords

The six :scroll-* simple-pane initargs for each dimension correspond to the six keyword arguments of
set-horizontal-scroll-parameters/get-horizontal-scroll-parameters and
set-vertical-scroll-parameters/get-vertical-scroll-parameters as follows:

Specifying scroll parameters: the correspondence between simple-pane initargs and keyword arguments

simple-pane initargs keyword argument

:scroll-horizontal-slug-size
:scroll-vertical-slug-size

:slug-size

:scroll-start-x
:scroll-start-y

:min-range

:scroll-width
:scroll-height

:max-range

:scroll-initial-x
:scroll-initial-y

:slug-position

:scroll-horizontal-step-size
:scroll-vertical-step-size

:step-size

:scroll-horizontal-page-size
:scroll-vertical-page-size

:page-size

The values for all of these parameters should be real numbers. The set of values supplied for each dimension is treated
independently from the other set.

The difference between the max-range and min-range specifies the range of scrolling. When applied to the scrollbar display,
all the values are scaled by the ratio between the height/width of the scrollbar and the range, for example:

slug-size-in-pixels = slug-size * scrollbar-height-in-pixels / (max-range - min-range)

The slug-position is also translated by the min-range:

slug-position-in-pixels = (slug-position - min-range) * scrollbar-height-in-pixels / (max-range - min-range)

The scrolling position of the pane is the slug-position (translated by the min-range) scaled by the ratio between the pane

7 Programming with CAPI Windows

93

dimension (width or height) and the slug-size, that is:

pane-scrolling-position = (slug-position - min-range) * pane-dimension / slug-size

When slug-size is not supplied or is nil, it is set to track the dimension of the pane, so the scaling factor above is 1, and all
the other numbers can be considered as if specified in pixels in the internal coordinates of the pane. If slug-size is supplied, it
is in effect creating a scaling factor between the values and the coordinates in the pane.

The min-range initial value defaults to 0, the max-range initial value defaults to either the width/height in pixels of the data in
the pane if this is deducible, otherwise to the height of the pane. The latter is not useful, and typically the max-range is the
one value that you have to specify. In many cases it is the only value you need to specify.

The initial slug-position defaults to 0.

The step-size defines the amount to scroll for a gesture that means step (typically clicking on the arrows at the ends of the
scrollbar). It initially defaults to the dimension of a character in the pane in pixels. Note that this is normally useful only if
slug-size is not set, otherwise it is scaled by pane-dimension / slug-size. If you set the slug-size, you probably want to set
the step-size too.

page-size defines the amount to scroll for page gestures (typically clicking on the scroll bar outside the scroll slug). It initially
defaults to slug-size - step-size, which is normally the useful value.

7.4.3 Automatic scrolling

Automatic scrolling of the parent to show the focus pane can be specified by using scroll-if-not-visible-p.

For output-pane with "internal" scrolling (see 12.4 output-pane scrolling), you can force some area to become visible,
that is scroll as needed, by using ensure-area-visible.

7.5 Updating pane contents

Use only the documented functions such as the accessors (setf editor-pane-text) and (setf collection-items)

and so on to set the data in a pane. For details, see the manual pages for the particular pane class and its superclasses in 21
CAPI Reference Entries.

7.5.1 Updating windows in real time

If your code needs to cause visible updates while continuing to do further computation, then you should run your
computation in a separate thread which is not directly associated with the CAPI window.

Consider the following example where real work is represented by calls to sleep:

1. Evaluate this code:

(defun change-text (win text)
 (setf (title-pane-text win)
 text))

(defun my-callback (win)
 (change-text win "Go")
 (loop
 for i from 0 to 20 do
 (change-text win (format nil "~D" i))
 (sleep 0.1)))

(defun test ()
 (let* ((p1 (make-instance 'title-pane

7 Programming with CAPI Windows

94

http://www.lispworks.com/documentation/HyperSpec/Body/f_sleep.htm

 :text "init"))
 (p2 (make-instance
 'button :text "Go"
 :callback-type :none
 :callback #'(lambda ()
 (my-callback p1)))))
 (contain
 (make-instance 'row-layout :description (list p1 nil p2))
 :width 200 :height 200)))

2. Run (test) and note that the updates do not appear until my-callback returns. This is because it uses only one
thread.

3. Now try this modified callback which uses a worker thread to perform the calculations:

(defun my-work-function ()
 (let ((mbox (mp:ensure-process-mailbox)))
 ;; This should really have an error handler.
 (loop (let ((event (mp:process-read-event mbox
 "Waiting for events")))
 (cond ((consp event)
 (apply (car event) (cdr event)))
 ((functionp event)
 (funcall event)))))))

(setf *worker*
 (mp:process-run-function "Worker process" ()
 'my-work-function))

(defun change-text (win text)
 (apply-in-pane-process win
 #'(setf title-pane-text)
 text win))

(defun my-callback (win)
 (mp:process-send
 worker
 #'(lambda ()
 (change-text win "Go")
 (loop
 for i from 0 to 20 do
 (change-text win (format nil "~D" i))
 (sleep 0.1)))))

4. Run (test) again: you should see the updates appear immediately.

A real application might also display an Abort button during the computation, with a callback that aborts the worker process.

Also see this example:

(example-edit-file "capi/elements/progress-bar-from-background-thread")

7.6 Edit actions on the active element

It is possible to perform standard edit actions like copy and paste on the current active element, which is not necessarily a
CAPI pane, using the functions active-pane-edit-function, for example active-pane-copy.

These functions find the active element and try to perform the operation on it. The active element can potentially not
correspond to a CAPI pane, for example when prompting for a file the active element is somewhere in the dialog, which is a
standard dialog of the windowing system rather than being a CAPI interface.

7 Programming with CAPI Windows

95

It is also possible to define what edit operations do when they are called on a pane in an interface class which you have
defined, by specializing the pane-interface-* methods such as pane-interface-copy-object. For choices, there is
also item-pane-interface-copy-object. Typically these methods will need to access the system clipboard, using
set-clipboard and clipboard (see 18.6 Clipboard).

7.7 Manipulating top-level windows

7.7.1 Visibility and focus

To bring a top level window to the front (on top of other windows) call raise-interface, and to put it behind other
windows call lower-interface.

To hide a window call hide-interface, and to unhide it call show-interface.

To raise an interface and give the input focus to a pane inside it, call activate-pane. For more information about the input
focus, see 3.1.5 Focus.

You can test whether the interface in which a pane is contained is visible by calling interface-visible-p.

7.7.2 Iconifying and restoring windows

You can iconify an interface window as follows:

(setf (top-level-interface-display-state interface) :iconic)

You can also make it be hidden, maximized or restore it to normal, and you have the option to create it in one of these states
initially. For the details see top-level-interface-display-state.

You can test whether an interface is iconified by calling interface-iconified-p.

7.7.3 Closing windows

To close a CAPI interface window unconditionally, call the generic function destroy.

To close a CAPI interface window such that its confirm-destroy-function is called first to allow the user to confirm, call
quit-interface. You must call it in the window's process, for example in the callback of a menu item.

7.7.4 Finding interfaces

You can use the function locate-interface to find an interface of a specified class which is currently displayed. It uses
the method interface-match-p to decide if there is any "matching" interface, in which case that is simply returned,
otherwise it uses interface-reuse-p to decide if any instance of the class can be reused, in which case it reinitializes it
using reinitialize-interface and returns it.

find-interface uses locate-interface to find an interface, and if succeeds it activates it, otherwise it creates a new
interface. find-interface is used by the LispWorks IDE when starting the tools.

You can call collect-interfaces to obtain a list of displayed interfaces of a specific class.

It is possible to switch off locating of interfaces by calling (setf reuse-interfaces-p). This causes
locate-interface to always return nil, and hence find-interface will always create new interface. Note: The IDE
uses a different switch for its own interfaces, which can be set from the Preferences... dialog.

7 Programming with CAPI Windows

96

7.7.5 Quitting applications

To make an application quit when one of its CAPI windows is closed, make that window's destroy-function call quit.

To arrange for a delivered CAPI application to quit automatically when all of its CAPI windows are closed, call deliver
with :quit-when-no-windows t.

7.7.6 Preserving information when saving an IDE session

You can save a session in the LispWorks IDE, either programmatically by hcl:save-current-session or interactively
from the Tools menu. If you integrate your own interfaces with the LispWorks IDE and want associated information to be
preserved over session saving, you can define interface-preserve-state methods on your own interfaces. You can also
use interface-preserving-state-p in the destroy-callback and interface-display methods to check for any
destroying/displaying that is performed as part of session saving (as opposed to the normal display/destroy cycle).

7 Programming with CAPI Windows

97

8 Creating Menus

You can create menus for an application using the menu class. For more control you can also use menu-component and
menu-item.

menu, menu-component and menu-item all inherit from the callbacks class, which defines callbacks that are called
when the user selects an item in the menu. They also inherit from the menu-object class, which adds some menu-specific
callback functionality, title and enabling.

You should make sure you have defined the test-callback and hello functions before attempting any of the examples in
this chapter. Their definitions are repeated here for convenience.

(defun test-callback (data interface)
 (display-message "Data ~S in interface ~S"
 data interface))

(defun hello (data interface)
 (declare (ignore data interface))
 (display-message "Hello World"))

The menus in the menu bar of a window are defined by the :menu-bar of the interface. See define-interface, the
interface initarg :menu-bar-items, and 11.3.1 Adding menus. The macro define-interface allows you to define
menus by specifying the arguments that you would pass to cl:make-instance if you made them explicitly. The actual
menus in the menu bar have the properties described in this chapter.

8.1 Creating a menu

A menu can be created in much the same way as any of the CAPI classes you have already met.

Enter the following into a Listener:

(setq menu
 (make-instance 'menu
 :title "Foo"
 :items '("One" "Two" "Three" "Four")
 :callback 'test-callback))

(setq interface
 (make-instance 'interface
 :menu-bar-items (list menu)))
(display interface)

This creates a CAPI interface with a menu, Foo, which contains four items. Choosing any of these items displays its
arguments. Each item has the callback specified by the :callback keyword.

A submenu can be created simply by specifying a menu as one of the items of the top-level menu.

Enter the following into a Listener:

(setq submenu
 (make-instance 'menu
 :title "Bar"
 :items '("One" "Two" "Three" "Four")

98

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

 :callback 'test-callback))
(setq menu
 (make-instance 'menu
 :title "Baz"
 :items (list 1 2 submenu 4 5)
 :callback 'test-callback))
(contain menu)

This creates an interface which has a menu, called Baz, which itself contains five items. The third item is another menu, Bar,
which contains four items. Once again, selecting any item returns its arguments.

Menus can be nested as deeply as required using this method.

Note: In general you must not use a CAPI menu object in multiple different places in menu bar(s) at the same time. This is
because menu bar menus are created when the interface is displayed, and (like any other CAPI pane) cannot be used
elsewhere at the same time. Supply distinct instances instead. The one exception is popup menus, which are actually created
only when they are on the screen, so they can be used repeatedly and in different places.

8.2 Presenting menus

The most common way of presenting menus is in the menu bar. This is done by putting the menus in the menu bar of an
interface, typically by using :menu-bar in define-interface. It is also possible to set the menu bar dynamically using
(setf interface-menu-bar-items).

On Cocoa, you may want to define the application menu, the menus that are shown when no interface is active, and maybe a
Dock context menu. For these, you will need to define your own subclass of cocoa-default-application-interface,
and use set-application-interface on an instance of this class. See entry for
cocoa-default-application-interface.

Pane-specific menus are invoked automatically by the system for the appropriate user gesture. See 8.12 Popup menus for
panes for a full discussion of the mechanism that finds the menu to raise.

There is also a special pane popup-menu-button, which raises a menu when clicked.

In addition, you can raise a menu programmatically by calling display-popup-menu.

8.3 Grouping menu items together

The menu-component class lets you group related items together in a menu. This allows similar menu items to share
properties, such as callbacks, and to be visually separated from other items in the menus. Menu components are actually
choices.

Here is a simple example of a menu component. This creates a menu called Items, which has four items. Menu 1 and Menu 2
are ordinary menu items, but Item 1 and Item 2 are created from a menu component, and are therefore grouped together in
the menu.

(setq component (make-instance 'menu-component
 :items '("item 1" "item 2")
 :print-function 'string-capitalize
 :callback 'test-callback))

(contain (make-instance 'menu
 :title "Items"
 :items
 (list "menu 1" component "menu 2")
 :print-function 'string-capitalize
 :callback 'hello)
 :width 150

8 Creating Menus

99

 :height 0)

A menu

Menu components allow you to specify, via the :interaction keyword, selectable menu items — either as multiple-
selection or single-selection items. This is like having radio buttons or check boxes as items in a menu, and is a popular
technique among many GUI applications.

The following example shows you how to include a panel of radio buttons in a menu.

(setq radio (make-instance 'menu-component
 :interaction :single-selection
 :items '("This" "That")
 :callback 'hello))

(setq commands (make-instance 'menu
 :title "Commands"
 :items
 (list "Command 1" radio "Command 2")
 :callback 'test-callback))

(contain commands)

Radio buttons included in a menu

The menu items This and That are radio buttons, only one of which may be selected at a time. The other menu items are just
ordinary commands, as you saw in the previous examples. Note that the CAPI automatically groups the items which are parts
of a menu component so that they are separated from other items in the menu.

This example also illustrates the use of more than one callback in a menu, which of course is the usual case when you are
developing real applications. Choosing either of the radio buttons displays one message on the screen, and choosing either
Command1 or Command2 returns the arguments of the callback.

Checked menu items can be created by specifying :multiple-selection to the :interaction keyword, as illustrated
below.

8 Creating Menus

100

(setq letters (make-instance 'menu-component
 :interaction :multiple-selection
 :items (list "Alpha" "Beta")))

(contain (make-instance 'menu
 :title "Greek"
 :items (list letters)
 :callback 'test-callback))

An example of checked menu items

Note how the items in the menu component inherit the callback given to the parent, eliminating the need to specify a separate
callback for each item or component in the menu.

Within a menu or component, you can specify alternatives for a main menu item that are invoked by modifier keys. See 8.8
Alternative menu items for more information.

8.4 Creating individual menu items

The menu-item class lets you create individual menu items. These items can be passed to menu-components or menus via
the :items keyword. Using this class, you can assign different callbacks to different menu items.

(setq test (make-instance 'menu-item
 :title "Test"
 :callback 'test-callback))

(setq hello (make-instance 'menu-item
 :title "Hello"
 :callback 'hello))

(setq group (make-instance 'menu-component
 :items (list test hello)))

(contain group)

Individual menu items

Remember that each instance of a menu item must not be used in more than one place at a time.

8.5 The CAPI menu hierarchy

The combination of menu items, menu components and menus can create a hierarchical structure as shown schematically in
A schematic example of a menu hierarchy and graphically in An example of a menu hierarchy. This menu has five
elements, one of which is itself a menu (with three menu items) and the remainder are menu components and menu items.
Items in a menu inherit values from their parent, allowing similar elements to share relevant properties whenever possible.

8 Creating Menus

101

(defun menu-item-name (data)
 (format nil "Menu Item ~D" data))

(defun submenu-item-name (data)
 (format nil "Submenu Item ~D" data))

(contain
 (make-instance
 'menu
 :items
 (list
 (make-instance 'menu-component
 :items '(1 2)
 :print-function 'menu-item-name
)
 (make-instance 'menu-component
 :items
 (list 3
 (make-instance
 'menu
 :title "Submenu"
 :items '(1 2 3)
 :print-function
 'submenu-item-name))
 :print-function 'menu-item-name)
 (make-instance 'menu-item
 :data 42))
 :print-function 'menu-item-name))

A schematic example of a menu hierarchy

An example of a menu hierarchy

8 Creating Menus

102

8.6 Mnemonics in menus

On Microsoft Windows and GTK+ you can control the mnemonics in menu titles and menu items using the initargs
:mnemonic, :mnemonic-title (and if necessary :mnemonic-escape).

This example illustrates the various ways you can specify the mnemonics in a menu:

(contain
 (make-instance
 'menu
 :mnemonic-title "M&nemonics"
 :items
 (list
 (make-instance 'menu-item
 :data "Menu Item 1"
 :mnemonic #\1)
 (make-instance 'menu-item
 :data "Menu Item 2"
 :mnemonic 10)
 (make-instance 'menu-item
 :mnemonic-title "Menu Item &3")
 (make-instance 'menu-item
 :mnemonic-title "Menu Item !4"
 :mnemonic-escape #\!)
 (make-instance 'menu-item
 :data "Menu Item 5"
 :mnemonic :default)
 (make-instance 'menu-item
 :data "Menu Item 6"
 :mnemonic :none))))

This example shows two ways to specify menu title mnemonics within the :menus option of a define-interface form.
The first way, using :mnemonic, is the most natural:

(capi:define-interface menu-bar-mnemonics ()
 ()
 (:panes (pane1 capi:text-input-pane
 :visible-min-width 200))
 (:layouts (main-layout
 capi:column-layout '(pane1)))
 (:menus
 (menu1 "Menu One"
 (("Foo"))
 :mnemonic #\O)
 (menu2 nil
 (("Bar"))
 :mnemonic-title "Menu &Two"))
 (:menu-bar menu1 menu2))

(capi:display (make-instance 'menu-bar-mnemonics))

8.7 Accelerators in menus

To define an accelerator key for a menu command, supply the initarg accelerator to the menu-item. See menu-item for the
details.

8 Creating Menus

103

8.7.1 Standard default accelerators

On Microsoft Windows and GTK+, by default a standard accelerator is added to a menu item if its title matches a standard
menu command. The standard accelerators are:

Edit > Copy Ctrl+C

Edit > Cut Ctrl+X

Edit > Find... Ctrl+F

Edit > Paste Ctrl+V

Edit > Redo Ctrl+Y

Edit > Replace... Ctrl+H

Edit > Select All Ctrl+A

Edit > Undo Ctrl+Z

File > Close Ctrl+W

File > Exit Ctrl+Q

File > New Ctrl+N

File > Open... Ctrl+O

File > Print... Ctrl+P

File > Save Ctrl+S

Works > Refresh F5

8.8 Alternative menu items

Menus can include "alternative" items, which are invoked if some modifiers are held while selecting the "main" item. The
modifiers are defined by the :accelerator initarg of the item, which also allows the item to be invoked by a keyboard
accelerator key if specified. On Cocoa, the title and accelerator of the alternative item appear when the appropriate
modifier(s) are pressed.

A menu item becomes an alternative to an immediately previous item when it is made with initargs :alternative t. Each
alternative item must have the same parent as its previous item. That is, they are within the same menu and menu component,
as described in 8.3 Grouping menu items together. More than one alternative item can be supplied for a given main item
by putting them consecutively in the menu. The main item is the item preceding the first alternative item.

The main item and its alternative items forms a group of items. The accelerators of all items in the group must consist of the
same key, but with different modifiers. If there is no need for an accelerator key, the main item should not have an accelerator
and the alternative items should have accelerators with Null as the key, for example "Shift-Null".

When the menu is displayed, only one item from the group will be shown. On Windows, GTK+ and Motif the main item is
always displayed. Cocoa displays the item with the least number of modifiers initially, so to get a consistent cross-platform
behavior, the main item should have the least number of modifiers. On Cocoa, pressing modifier keys that match alternative
items changes the title and accelerators displayed for the item.

When the user selects an item with the modifiers pressed, the appropriate alternative item is selected.

To make a menu-item an alternative item, pass the initarg :alternative t and a suitable value for the initarg
:accelerator.

8 Creating Menus

104

There is an example illustrating alternative menu items in:

(example-edit-file "capi/elements/accelerators")

Note: Accelerators of alternative items do not work on Motif.

8.9 Disabling menu items

A function can be specified via the :enabled-function initarg (inherited from menu-object), that determines whether or
not the menu, menu item, or menu component is enabled. By default, a menu object is always enabled.

Consider the following example:

(defvar *on* nil)

(contain
 (make-instance 'menu
 :items
 (list
 (make-instance
 'menu-item
 :title "Foo"
 :enabled-function
 #'(lambda (menu) *on*))
 (make-instance
 'menu-item
 :title "Bar"))))

A menu with a disabled menu item

Changing the value of *on* between t and nil in the Listener, using setq, results in the menu item changing between the
enabled and disabled states.

8.9.1 Dialogs and disabled menu items

By default, items in the menu bar menus and sub-menus are disabled while a dialog is on the screen on top of the active
window. You can override this by passing a suitable value for the menu-item initarg :enabled-function-for-dialog.

8.10 Menus with images

You can add images to menu items. Supply the :image-function initarg when creating the menu, as illustrated in:

(example-edit-file "capi/elements/menu-with-images")

Note: on some platforms support for images in menus is limited to menu items without text and/or images without
transparency. If pane-supports-menus-with-images returns true, then images are fully supported in menus.

8 Creating Menus

105

http://www.lispworks.com/documentation/HyperSpec/Body/s_setq.htm

8.11 The Edit menu on Cocoa

This section is only applicable to LispWorks for Macintosh.

LispWorks for Macintosh adds a minimal Edit menu to all CAPI interfaces when running in the LispWorks IDE, which
makes the edit gestures Command+V, Command+C and Command+X work in every interface displayed in the LispWorks IDE.

However, to implement these gestures in your CAPI/Cocoa runtime application, you must include an Edit menu explicitly in
your interface definition, as described in 11.3.1 Adding menus.

Here is a minimal example of an Edit menu:

(edit-menu
 "Edit"
 (("Cut" :callback 'capi:active-pane-cut
 :enabled-function 'capi:active-pane-cut-p)
 ("Copy" :callback 'capi:active-pane-copy
 :enabled-function 'capi:active-pane-copy-p)
 ("Paste" :callback 'capi:active-pane-paste
 :enabled-function 'capi:active-pane-paste-p))
 :callback-type :interface)

To remove the automatic menu when running your program in the LispWorks IDE, pass the initarg :auto-menus nil when
making the interface.

Note that, in the presence of an application interface (see cocoa-default-application-interface), a CAPI interface
with no menus of its own and with :auto-menus nil uses the menu bar from the application interface.

8.12 Popup menus for panes

The CAPI tries to display a popup menu for a pane when the :post-menu gesture is entered by the user (mouse-right-click
or Shift+F10 on Microsoft Windows, GTK+ or Motif, control-click on Cocoa). See below for the special case of
output-pane.

It first tries to get a menu for the pane. There are two mechanisms by which it can get a menu: which is tried depends on the
value of pane-menu.

1. If the pane's initarg pane-menu is not :default in the call to make-instance, then its value is used. If the value is a
function or a fbound symbol, it is called with four arguments: the pane, data (this is the selected object if there is a
selection), x, y. It should return a menu. If it is not a function or a fbound symbol, it should be a menu, which is used
directly. The :pane-menu mechanism is useful when the menu needs to be dependent on the location of the mouse
inside the pane, or when each pane requires a unique menu. In other cases, the other mechanism is more useful.

2. If pane-menu is :default (this is the default value), CAPI calls the generic function make-pane-popup-menu with
two arguments: the pane and its interface. The result should be a menu.

If the chosen mechanism does not produce a menu, the CAPI does not do anything in response to :post-menu.

The system definition of make-pane-popup-menu calls pane-popup-menu-items with the pane and the interface, and if
this returns a non-nil list, it calls make-menu-for-pane to make the menu. You can define make-pane-popup-menu
methods that specialize on your pane or interface classes, but in most cases it is more useful to add methods to
pane-popup-menu-items. make-menu-for-pane is used to generate the menu, and it makes the menu such that by
default all setup callbacks are done on the pane itself, rather than on the interface. make-pane-popup-menu is useful when
the application needs a menu with the same items as the items on the popup menu, typically to add it to the menu bar.

In output-pane, you control the input behavior using the input-model. By default, the system assigns :post-menu and
:keyboard-post-menu (Shift+F10) to a callback that raises a menu as described above, but your code can override this
in the input-model.

8 Creating Menus

106

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

Note: Accelerators are ignored in a pane-menu.

8.13 Displaying menus programmatically

You can programmatically display a menu by using display-popup-menu (which is used internally to raise the context
menu). The menu that display-popup-menu displays can be any properly constructed menu object, for example:

(defun popup-animal-menu (animal interface)
 (let* ((items (list (string-append
 "Get a picture of a " animal)
 (string-append
 "Send a postcard to " animal)))
 (menu (make-instance 'capi:menu :items items)))
 (capi:display-popup-menu menu :owner interface)))

(capi:contain (make-instance 'capi:list-panel
 :items
 '("zebra" "dog" "parrot")
 :selection-callback
 'popup-animal-menu))

Click on an item to see the menu.

You can use popup-menu-force-popdown to force a popup menu down (that is, make it disappear). This is useful for
writing scripts that emulate user interactions.

8.14 The Application menu

This section is only applicable to LispWorks for Macintosh.

The CAPI includes an interface to the Application menu supporting standard macOS behaviors in your delivered LispWorks
for Macintosh applications.

See these examples:

(example-edit-file "capi/applications/cocoa-application")

(example-edit-file "delivery/macos/single-window-application")

(example-edit-file "delivery/macos/multiple-window-application")

and the manual entries in the reference section, starting with cocoa-default-application-interface.

8 Creating Menus

107

9 Adding Toolbars

You can add a toolbar for an interface using the interface initarg :toolbar-items. This creates a toolbar which is
automatically positioned correctly in the window, which the user can customize, and which has platform-standard behavior
such as folding on Cocoa. Such a toolbar is referred to as an interface toolbar.

You can also create toolbars using the toolbar class explicitly, and arrange them using layouts in the same way as other
elements. This approach is used to implement buttons on a text-input-pane as seen in various tools in the LispWorks
IDE such as the Class Browser, but you should note that it has some disadvantages. For more information see 9.9 Non-
standard toolbars.

Toolbar buttons typically have images. The examples in this chapter use three standard image identifiers. To run the example
code that follows, first evaluate this form:

(setq file-images (list :std-file-new
 :std-file-open
 :std-file-save))

You also should define these callback functions before attempting any of the examples in this chapter:

(defun test-callback (data interface)
 (display-message "Data ~S in interface ~S"
 data interface))

(defun print-callback (data interface)
 (declare (ignore data interface))
 (display-message "Print Something"))

(defun hello (data interface)
 (declare (ignore data interface))
 (display-message "Hello World"))

9.1 Creating a toolbar button

To create a toolbar button you can do:

(setf print-button
 (make-instance 'toolbar-button
 :image :std-print
 :text "Print Something"
 :name :print-something))

You should supply image, text and name. This is because the user can customize the toolbar such that one (or all) of these
appear, as described in 9.6 Modifying toolbars.

A toolbar-button cannot be displayed directly. To include it in an interface toolbar, do:

(display
 (make-instance
 'interface
 :toolbar-items (list print-button)))

108

9.2 Creating a toolbar with several buttons

Let us create three more buttons:

(setf file-buttons
 (loop for image in file-images
 collect
 (make-instance 'toolbar-button
 :image image
 :name image
 :text
 (string-capitalize
 (substitute #\Space #\-
 (string image))))))

and then include them along with the print button defined in 9.1 Creating a toolbar button:

(display
 (make-instance
 'interface
 :toolbar-items (append file-buttons (list print-button))))

Remember that each instance of a toolbar button must not be used in more than one place at a time.

It is possible to include to include toolbar buttons which are not initially displayed, but which are available for the user to
add. For the details, see 9.6 Modifying toolbars.

9.2.1 Grouping toolbar buttons

The toolbar-component class lets you group related buttons together in a toolbar. This allows similar buttons to:

• Share properties such as callbacks.

• Be visually separated from other buttons in the toolbar.

• On Microsoft Windows, form a separately dockable group of items.

Toolbar components are actually choices similar to button panels. By default, their interaction is :single-selection.

We can amend our example using toolbar components to group the file buttons separately from the print button:

(display
 (make-instance
 'interface
 :toolbar-items (list
 (make-instance 'toolbar-component
 :items file-buttons)
 (make-instance 'toolbar-component
 :items (list print-button)))
 :visible-min-width 200))

9.2.2 Implicitly-created buttons

A toolbar-component may contain arbitrary Lisp objects as items. For each such object, a toolbar button is automatically
created, using the appropriate elements of the component's images, names, texts and tooltips lists.

(display
 (make-instance
 'interface

9 Adding Toolbars

109

 :toolbar-items
 (list (make-instance 'toolbar-component
 :items file-images
 :images file-images
 :names file-images
 :texts
 (mapcar 'string-capitalize file-images)
 :tooltips
 (mapcar 'string-downcase file-images)
 :selection-callback
 (lambda (data interface)
 (display-message "callback data ~S" data))
))))

Rather than selection-callback above, you could supply callbacks to specify callback functions for each button.

9.3 Specifying the image for a toolbar button

There are several ways to supply the image for a toolbar button, including direct specification of an image object. The
simplest approach is to use a symbol which is registered as an image identifier, including the pre-registered standard images,
as in the preceding examples. For details of this and the other way to supply images, see toolbar-button.

You can, if desired, supply an alternative image which is displayed while the button is selected in a :multiple-selection
component (see 9.7 Advanced toolbar features), using the initarg selected-image.

9.3.1 Specifying images for a group of toolbar buttons

In a toolbar-component it is possible to specify images for the buttons by supplying an image-set as the default-image-
set, along with integers in the images initarg specifying the index for the image of each button:

(display
 (make-instance
 'interface
 :toolbar-items
 (list
 (make-instance
 'toolbar-component
 :items '(1 2) :names '(1 2) :texts '("One" "Two")
 :images '(0 1)
 :default-image-set
 (make-general-image-set
 :image-count 5
 :id
 (gp:read-external-image
 (example-file
 "capi/elements/images/toolbar-radio-images.bmp")
 :transparent-color-index 7))))))

9.4 Specifying toolbar callbacks

Supply the selection-callback initarg to specify a callback for a toolbar button:

(setf print-button
 (make-instance 'toolbar-button
 :image :std-print
 :text "Print File"
 :selection-callback 'print-callback))

9 Adding Toolbars

110

You can also supply selection-callback for a toolbar-component. This specifies the same callback function for each
button in the component.

To specify different callback functions for each button in a toolbar-component, either make the buttons explicitly as
above, or supply the callbacks initarg.

9.4.1 Sharing toolbar callbacks with menu items

Where you want a toolbar button to perform the same command as a menu item, use the :remapped initarg.

remapped should match (by cl:equalp) the name of the menu-item:

(display
 (make-instance
 'interface
 :menu-bar-items
 (list
 (make-instance 'menu
 :items
 (list
 (make-instance 'menu-item
 :name 'say-hello
 :data "Hello"
 :callback
 'test-callback))))
 :toolbar-items
 (list
 (make-instance 'toolbar-button
 :image :std-file-new
 :remapped 'say-hello))))

9.4.2 Other types of callback for a toolbar button

You can, if desired, supply a retract-callback which is called when the button is deselected in a :multiple-selection
component. You can also make a button display a dropdown menu nearby. See 9.7 Advanced toolbar features for the
details.

9.5 Specifying tooltips for toolbar buttons

There are two ways to implement tooltips in an interface toolbar:

• Group the buttons in a toolbar-component and supply the :tooltips initarg. tooltips should be a list containing a
string for each button in the component. For an example of this see:

(example-edit-file "capi/applications/simple-symbol-browser")

• Alternatively you can implement a tooltip for each toolbar-button exactly as for collections and so on as described in
3.12.2 Tooltips for collections, elements and menu items. Supply help-key for the toolbar-button and help-
callback for the interface, as follows:

(setf print-button
 (make-instance 'toolbar-button
 :image :std-print
 :text "Print Something"
 :help-key 'foo))

(defun do-help (interface pane type help-key)

9 Adding Toolbars

111

http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm

 (when (eq type :tooltip)
 (when (eq help-key 'foo)
 "Tooltip help")))

(display
 (make-instance
 'interface
 :toolbar-items
 (list print-button)
 :help-callback 'do-help))

9.6 Modifying toolbars

An interface toolbar can be customized by the user. It can also be manipulated programmatically.

9.6.1 User-customization of toolbars

The user can change toolbar state, that is the set of visible toolbar items, their order and their appearance. The user does this
via the context menu on the toolbar. This menu includes commands to display the button images or titles (or both), and a
Customize Toolbar... command to alter the set of items, including separators and spaces, and the order in which the items
appear.

The toolbar context menu

To raise the customization dialog programmatically, call interface-customize-toolbar.

You can supply a default toolbar state in the initarg default-toolbar-states. This is used when the user presses the Default
button in the Customize Toolbar dialog. You can read this value with interface-default-toolbar-states.

You can control the initial toolbar state by supplying the initarg toolbar-states.

9.6.2 Changing an interface toolbar programmatically

You can read and change the toolbar-states slot programmatically. Its value should be a toolbar state plist.

Be aware that toolbar-states may not be the same each time you read it, because the user may have changed it as described in
9.6.1 User-customization of toolbars.

For the details, see the accessor interface-toolbar-state.

9 Adding Toolbars

112

9.7 Advanced toolbar features

9.7.1 Toolbar items other than buttons with images

A toolbar-component, a toolbar or the interface toolbar may also contain CAPI panes as items, which will appear
within the toolbar. This is typically used with text-input-pane, option-pane, and text-input-choice. Each pane
should have toolbar-title (see simple-pane) specified, to provide the text that is shown for the toolbar item:

(display
 (make-instance
 'interface
 :toolbar-items (list
 (make-instance 'toolbar-component
 :items (list print-button))
 (make-instance 'text-input-pane
 :text "Text Input Pane"
 :visible-min-width :text-width
 :toolbar-title "Text Input Pane")
 (make-instance 'text-input-choice
 :items
 (list "Text Input Choice1"
 "Text Input Choice2")
 :visible-min-width :text-width
 :toolbar-title "Text Input Choice")
 (make-instance 'option-pane
 :items
 (list "Option Pane1"
 "Option Pane2")
 :visible-min-width :text-width
 :toolbar-title "Option Pane")
)
 :visible-min-width 500))

Note: Some platforms may not recommend placing text input panes and so on in a toolbar. You may wish to consult the
appropriate user interface guidelines before adding such a toolbar in your application.

Note: Each toolbar-button or simple-pane in the toolbar-items list (including those within a toolbar-component)
should have a name that is not cl:eql to any other item in the list. These names are needed to support :items in
interface-toolbar-state and the :toolbar-states initarg.

Toolbar buttons can display text, which should be in the data or text slot inherited from item. You can specify whether text
and/or image is displayed, using :display in the toolbar-states initarg or interface-toolbar-state.

9.7.2 Alternative interaction in a toolbar

You can make a toolbar-component with interaction :multiple-selection and then each of its buttons may have a
retract-callback which is called when the user clicks a selected button to deselect it.

9.7.3 Toolbar buttons with menus

You can add a menu to a toolbar button, which is displayed via a separate smaller button next to the main button. To do this,
supply dropdown-menu or dropdown-menu-function. See toolbar-button for the details.

9 Adding Toolbars

113

http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm

9.8 Disabling toolbar items

To disable a toolbar button you can set its enabled slot to nil. Alternatively supply it with a suitable enabled-function. For
more information about this, see toolbar-object.

You can disable and enable a toolbar-component in the same way.

9.9 Non-standard toolbars

You can create toolbars using the toolbar class explicitly, and arrange them like other elements, using layouts. This
approach differs from using an interface toolbar as described in the preceding sections of this chapter. Note that, while it
allows you some flexibility this approach can produce non-standard appearance, does not support user-customization, and
does not support folding on Cocoa. Other than this, non-standard toolbars support all the features described in the preceding
sections of this chapter, and additionally:

• You can disable and enable a toolbar using its enabled or enabled-function slot.

• There are two further options for a button with a dropdown menu.

It can be merged with the separate smaller button such that it displays only the menu and does not respond to its selection
-callback.

Alternatively, it can display the menu only after being pressed down for a while, and respond to the selection-callback
when pressed only briefly. In this case the smaller button does not appear.

See toolbar-button for the details.

• You can make a toolbar button which displays an interface (and does not respond to its selection-callback) by
supplying popup-interface.

There is an example here:

(example-edit-file "capi/elements/toolbar")

9.9.1 Changing a non-standard toolbar dynamically

The best way to change a non-standard toolbar is to use a switchable-layout. Include a toolbar instance in each of two
or more child layouts, of which only one is visible at a time.

There is an example here:

(example-edit-file "capi/layouts/switchable")

9 Adding Toolbars

114

10 Dialogs: Prompting for Input

A dialog is a window that is displayed transiently to interact with the user. While a dialog is on screen it is placed in front of
other windows and user input is directed to it. Dialogs are used for interactions that are relatively rare, and so do not deserve
a permanent place on the screen, and for alerting the user about something that they need to be aware of. For example, when
an application needs to know where to save a file, it typically prompts with a file dialog. If there is a problem during saving
the file, it would normally alert the user by some other dialog.

Dialogs can also be cancelled, meaning that the application should cancel the current operation. In order to let you know
whether or not the dialog was cancelled, CAPI dialog functions always return two values. The first value is the return value
itself, and the second value is t if the dialog returned normally and nil if the dialog was cancelled.

On Cocoa you can control whether a CAPI dialog is application-modal or window-modal. In the latter case the user can
interact with the application's other windows while the dialog is on screen.

The CAPI provides both a large set of predefined dialogs and the means to create your own. This chapter takes you through
some example uses of the predefined dialogs, and then shows you how to create custom built dialogs.

The last section briefly describes a way to get input for completions via a special non-modal window.

10.1 Some simple dialogs

The simplest form of dialog is a message dialog, which is used to inform the user of some event, typically the end of a long
operation. You can use display-message for this.

(display-message
 "Finished computing the answer to everything: ~a" 41.97)

A message dialog

When you want to ensure that the messages dialog is associated with (that is, owned by) a specific pane, you can use
display-message-for-pane. There is also prompt-with-message, which can be used for displaying the message in a
window-modal sheet on Cocoa.

(display-message
 "This function is ~S"
 'display-message)

115

A second message dialog

Another simple dialog asks the user a question and returns t or nil depending on whether the user has chosen yes or no.
This function is confirm-yes-or-no.

(confirm-yes-or-no
 "Do you own a pet?")

A message dialog prompting for confirmation

For more control over such a dialog, use the function prompt-for-confirmation.

10.2 Prompting for values

The CAPI provides a number of different dialogs for accepting values from the user, ranging from accepting strings to
accepting whole Lisp forms to be evaluated.

10.2.1 Prompting for strings

The simplest of the CAPI prompting dialogs is prompt-for-string which returns the string you enter into the dialog.

(prompt-for-string
 "Enter a string:")

10 Dialogs: Prompting for Input

116

A dialog prompting for a string

An initial value can be placed in the dialog by specifying the keyword argument :initial-value.

10.2.2 Prompting for numbers

The CAPI also provides a number of more specific dialogs that allow you to enter other types of data. For example, to enter
an integer, use the function prompt-for-integer. Only integers are accepted as valid input for this function.

(prompt-for-integer
 "Enter an integer:")

There are a number of extra options which allow you to specify more strictly which integers are acceptable. Firstly, there are
two arguments :min and :max which specify the minimum and maximum acceptable integers.

(prompt-for-integer
 "Enter an integer in the inclusive range [10,20]:"
 :min 10 :max 20)

If this does not provide enough flexibility you can specify a function that validates the result with the keyword argument
:ok-check. This function is passed the current value and must return non-nil if it is a valid result.

(prompt-for-integer
 "Enter an odd integer:"
 :ok-check 'oddp)

Try also the function prompt-for-number.

10.2.3 Prompting for an item in a list

If you would like the user to select an item from a list of items, the function prompt-with-list should handle the majority
of cases. The simplest form just passes a list to the function and expects a single item to be returned.

(prompt-with-list
 '(:red :yellow :blue)
 "Select a color:")

10 Dialogs: Prompting for Input

117

A dialog prompting for a selection from a list

You can also specify the interaction style that you would like for your dialog, which can be any of the interactions accepted
by a choice. The specification of the interaction style to this choice is made using the keyword argument :interaction:

(prompt-with-list
 '(:red :yellow :blue)
 "Select a color:"
 :interaction :multiple-selection)

By default, the dialog is created using a list-panel to display the items, but the keyword argument :choice-class can
be specified with any choice pane. Thus, for instance, you can present a list of buttons.

(prompt-with-list
 '(:red :yellow :blue)
 "Select a color:"
 :interaction :multiple-selection
 :choice-class 'button-panel)

Selection from a button panel

Finally, as with any of the prompting functions, you can specify additional arguments to the pane that has been created in the
dialog. Thus to create a column of buttons instead of the default row, use:

10 Dialogs: Prompting for Input

118

(prompt-with-list
 '(:red :yellow :blue)
 "Select a color:"
 :interaction :multiple-selection
 :choice-class 'button-panel
 :pane-args
 '(:layout-class column-layout))

Selection from a column of buttons

There is a more complex example in:

(example-edit-file "capi/choice/prompt-with-buttons")

10.2.4 Prompting for files

To prompt for a file, use the function prompt-for-file:

(prompt-for-file
 "Enter a file:")

You can also specify a starting pathname:

(prompt-for-file
 "Enter a filename:"
 :pathname (get-temp-directory))

10 Dialogs: Prompting for Input

119

Selection of a file

Try also the function prompt-for-directory.

10.2.5 Prompting for fonts

To obtain a gp:font object from the user call prompt-for-font.

10.2.6 Prompting for colors

To obtain a color specification from the user call prompt-for-color.

10.2.7 Prompting for Lisp objects

The CAPI provides a number of dialogs specifically designed for creating Lisp aware applications. The simplest is the
function prompt-for-form which accepts an arbitrary Lisp form and optionally evaluates it.

(prompt-for-form
 "Enter a form to evaluate:"
 :evaluate t)

(prompt-for-form
 "Enter a form (not evaluated):"
 :evaluate nil)

10 Dialogs: Prompting for Input

120

Another useful function is prompt-for-symbol which prompts the user for an existing symbol. The simplest usage accepts
any symbol, as follows:

(prompt-for-symbol
 "Enter a symbol:")

If you have a list of symbols from which to choose, then you can pass prompt-for-symbol this list with the keyword
argument :symbols.

Finally, using :ok-check you can accept only certain symbols. For example, to only accept a symbol which names a class,
use:

(prompt-for-symbol
 "Enter a class-name symbol:"
 :ok-check #'(lambda (symbol)
 (find-class symbol nil)))

Cocoa programmers will notice that the dialog sheet displayed by this form prevents input to other LispWorks windows while
it is displayed. For information about creating dialog sheets which are not application-modal, see 10.3 Window-modal
Cocoa dialogs.

10.3 Window-modal Cocoa dialogs

By default, CAPI dialogs on Cocoa use sheets which are application-modal. This means that the application does not allow
the user to interact with its other windows until the sheet is dismissed.

This section describes how to create CAPI dialogs which are window-modal on Cocoa. This is done with portable code, so
Windows, GTK+ and Motif programmers may wish to code their CAPI dialogs as described in this section, which would ease
a future port to the Cocoa GUI.

10.3.1 The :continuation argument

All CAPI dialog functions take a keyword argument continuation. This is a function which is called with the results of the
dialog.

You do not need to construct the continuation argument yourself, but rather call the dialog function inside
with-dialog-results.

10.3.2 A dialog which is window-modal on Cocoa

To create a dialog which is window-modal on Cocoa, call the dialog function inside the macro with-dialog-results as in
this example:

(with-dialog-results (symbol okp)
 (prompt-for-symbol
 "Enter a class-name symbol:"
 :ok-check #'(lambda (symbol)
 (find-class symbol nil)))
 (when okp
 (display-message "symbol is ~S" symbol)))

On Microsoft Windows, GTK+ and Motif this displays the dialog, calls display-message when the user clicks OK, and
then returns. The effect is no different to what you saw in 10.2.7 Prompting for Lisp objects.

On Cocoa, this creates a sheet and returns. display-message is called when the user clicks OK. The sheet is window-

10 Dialogs: Prompting for Input

121

modal, unlike the sheet you saw in 10.2.7 Prompting for Lisp objects.

For more details, see the manual page for with-dialog-results.

10.4 Dialog Owners

When a dialog appears, it should be "owned" by some window. The main effect of this "ownership" is that the dialog is
always in front of the owner window. When either the dialog or the owner is raised, the other follows.

All CAPI functions which display a dialog allow you to specify the owner.

10.4.1 The default owner

When a dialog is displayed and the owner is not supplied or is given as nil, the CAPI tries to identify the appropriate owner.
In particular, in the case where a dialog pops up in a process in which a CAPI interface is displayed, by default the CAPI uses
this interface as the owner window. This case covers most situations.

10.4.2 Specifying the owner

If the default is not appropriate, then the programmer needs to supply the owner. This owner argument can be any CAPI pane
that is currently displayed, and the top level interface of the pane is used as the actual owner. A CAPI pane owner must be
running in the current thread (see the process argument to display). Creating cross-thread ownership can lead to deadlocks.

The owner can also be a screen object, which tells the system on which screen to put the dialog, but none of the windows
will be the dialog's owner.

The owner can be supplied by the keyword argument :owner in functions such as display-dialog and print-dialog.
Other functions such as prompt-for-string and prompt-for-file can be supplied an owner in the :popup-args list
as a pair :owner owner.

10.5 Creating your own dialogs

The CAPI provides a number of built-in dialogs which should cover the majority of most programmers' needs. However,
there is always the occasional need to create custom built dialogs, and the CAPI makes this very simple, using the function
popup-confirmer which displays any CAPI interface as a dialog, and the functions exit-confirmer to return from such
a dialog.

10.5.1 Using popup-confirmer

The function popup-confirmer is a higher level function provided to add the standard buttons to dialogs. In order to create
a dialog using popup-confirmer, all you need to do is to supply a pane to be placed inside the dialog along with the
buttons and the title. The function also expects a title, like all of the prompter functions described earlier.

(popup-confirmer
 (make-instance
 'text-input-pane
 :callback-type :data
 :callback 'exit-dialog)
 "Enter a string")

Since interfaces and layouts are panes too, the pane argument to popup-confirmer can be a layout or an interface, and
often it is. Layouts are used for simple combinations of panes, and interfaces are used for complex dialogs. All the dialogs in
the LispWorks IDE which are not either native, just a message or asking for a single item of input are interfaces displayed by

10 Dialogs: Prompting for Input

122

popup-confirmer. As an example, you can load the Othello example file:

(example-edit-file "capi/applications/othello")

which defines an interface othello-board. You can then run this as a dialog:

(capi:popup-confirmer
 (make-instance 'othello-board) "Play Othello")

Note that it works as usual, except that the menubar is not displayed.

Here is a simple example using a layout to ask the user for five strings:

(let* ((panes
 (loop repeat 5
 collect
 (make-instance 'capi:text-input-pane)))
 (layout (make-instance 'capi:column-layout
 :description panes)))
 (multiple-value-bind (res okp)
 (capi:popup-confirmer layout
 "Enter some strings")
 (declare (ignore res))
 (when okp
 (loop for pane in panes
 collect
 (capi:text-input-pane-text pane)))))

An interface intended for display by popup-confirmer can also be displayed by display (not at the same time), in which
case it is just another window. That is especially useful during development of your dialog code, because you can then work
on the callbacks while the interface is displayed.

A common thing to want to do with a dialog is to get the return value from some state in the pane specified. For instance, in
order to create a dialog that prompts for an integer the string entered into the text-input-pane would need to be converted
into an integer. It is possible to do this once the dialog has returned, but popup-confirmer has a more convenient
mechanism. The function provides a keyword argument, :value-function, which gets passed the pane, and this function
should return the value to return from the dialog. It can also indicate that the dialog cannot return by returning a second value
which is non-nil.

In order to do this conversion, popup-confirmer provides an alternative exit function to the usual exit-dialog. This is
called exit-confirmer, and it does all of the necessary work on exiting.

You now have enough information to write a primitive version of prompt-for-integer.

(defun text-input-pane-integer (pane)
 (let* ((text
 (text-input-pane-text pane))
 (integer
 (parse-integer
 text
 :junk-allowed t)))
 (or (and (integerp integer) integer)
 (values nil t))))

(popup-confirmer
 (make-instance
 'text-input-pane
 :callback 'exit-confirmer)
 "Enter an integer:"
 :value-function 'text-input-pane-integer)

10 Dialogs: Prompting for Input

123

A example using popup-confirmer

Note that the dialog's OK button never becomes activated, yet pressing Return once you have entered a valid integer will
return the correct value. This is because the OK button is not being dynamically updated on each keystroke in the
text-input-pane so that it activates when the pane contains a valid integer. The activation of the OK button is recalculated
by the function redisplay-interface, and the CAPI provides a standard callback, :redisplay-interface, which
calls this as appropriate.

Thus, to have an OK button that becomes activated and deactivated dynamically, you need to specify the change-callback for
the text-input-pane to be :redisplay-interface.

(popup-confirmer
 (make-instance
 'text-input-pane
 :change-callback :redisplay-interface
 :callback 'exit-confirmer)
 "Enter an integer:"
 :value-function 'text-input-pane-integer)

Note that the OK button now changes dynamically so that it is only ever active when the text in the text-input-pane is a
valid integer.

Note that the Escape key activates the Cancel button - this too was set up by popup-confirmer.

The next thing that you might want to do with your integer prompter is to make it accept only certain values. For instance,
you may only want to accept negative numbers. This can be specified to popup-confirmer by providing a validation
function with the keyword argument :ok-check. This function receives the potential return value (the value returned by the
value function) and it must return non-nil if that value is valid. Thus to accept only negative numbers we could pass minusp
as the :ok-check.

(popup-confirmer
 (make-instance
 'text-input-pane
 :change-callback :redisplay-interface
 :callback 'exit-confirmer)
 "Enter an integer:"
 :value-function 'text-input-pane-integer
 :ok-check 'minusp)

10.5.2 Using display-dialog

popup-confirmer creates an interface (of an internal class) around the pane that you give it which displays the pane and
the buttons it adds, and then calls display-dialog to actually display it. If you have an interface and do not want any of
the buttons, you can call display-dialog directly.

display-dialog takes an interface (unlike popup-confirmer, which can take any pane) and displays it as a dialog. The
keyword arguments can be used to control the exact behavior. You can use exit-dialog and abort-dialog to dismiss the

10 Dialogs: Prompting for Input

124

http://www.lispworks.com/documentation/HyperSpec/Body/f_minusp.htm

dialog programmatically.

10.5.3 Modal and non-modal dialogs

By default popup-confirmer and display-dialog create modal dialog windows which prevent input to other application
windows until they are dismissed by the user clicking on a button or another appropriate gesture. You can change this
behavior by passing the modal keyword argument.

10.5.4 Getting the current dialog

The function current-popup can be used to find the current popup pane, if there is any, and is useful inside callbacks.

The function current-dialog-handle returns the "handle" of the dialog in the underlying GUI system, which may be
useful in some circumstances.

10.6 In-place completion

'In-place completion' allows the user to select from a list of possible completions displayed in a special non-modal window
which appears in front of an input pane (such as an editor-pane or a text-input-pane) but does not grab the input
focus.

To raise this special window and select a completion from it, the user invokes certain keyboard gestures including Up, Down
and Return. The full set of keys for operations on an in-place completion window are described 10.6.1 In-place completion
user interface. The user can also continue typing her input in which case the list of possible completions is updated to
reflect the text in the input pane.

10.6.1 In-place completion user interface

This section describes the user interface of in-place completion.

In-place completion is available in the LispWorks IDE, in the Editor tool and also in tools that ask for a named object such as
the Class Browser and the Generic Function Browser. Set the Preferences... Environment > General > Use in-place
completion option to use in-place completion in the LispWorks IDE, and see LispWorks IDE User Guide for further details.

In-place completion is also available to you to use in your CAPI applications. You may wish to adapt the remainder of this
section for your end-user documentation. See 10.6.2 Programmatic control of in-place completion for information on how
to implement it.

10.6.1.1 Invoking in-place completion in text-input-pane and editor-pane

In a text-input-pane that supports in-place completion, any of the gestures Up, Down, PageUp, and PageDown invokes
the in-place completion unless it is already displayed.

In an editor-pane, completion commands invoke in-place completion by default, though you can make them use dialogs
instead by setting editor:*use-in-place-completion* to nil.

There are several Editor commands that invoke in-place completion unconditionally:

Abbreviated in-place Complete Symbol

Completes the symbol before the point, taking the string as abbreviation.

In-Place Complete Symbol

10 Dialogs: Prompting for Input

125

Completes the symbol before the point.

In-Place Complete Input

Echo Area: Complete the input in the echo area. For file input, does file completion.

In-Place Expand File Name

Expand the file name at the current point.

In-Place Expand File Name with space

Expand the file name at the current point, allowing spaces.

See the Editor User Guide for information on binding these commands to keyboard gestures. See call-editor for
information on calling them from CAPI.

10.6.1.2 Keyboard input handling while the in-place window is displayed

Keyboard input while the in-place window is displayed goes to the input pane, but some of the input gestures are redirected to
the in-place window. By default, the following gestures are redirected:

Up, Down, PageUp, PageDown

Change the selection in the list of completions in the obvious way.

Return Perform the completion using the current selected item in the list. In non-file-completion, or in
file-completion when the item is not a directory, the in-place window disappears. In file-
completion when the selected item is a directory, the in-place window changes to display the list
of files in the completed directory.

Escape Causes the in-place window to disappear, without doing anything else. Note that if the text in the
input pane was edited while the in-place window was displayed, these edits are not undone.

Control+Return Toggles the filter.

Control+Shift+Return

Toggles redirection of characters to the filter. A filter is a text-input-pane which filters the
list of completions based on its contents. While the filter is on, the list of completions shows
only the completions that match the filter.

While the filter is visible and enabled, all character input plus Backspace are redirected to the
filter. The filter can be disabled by Control+Shift+Return, which means it still filters, but
characters go to the the input pane.

The functionality of the in-place completion filter is the same as the standard filter for
list-panel. For a full description of the pattern matching see "Regular expression searching"
in the Editor User Guide.

Control+Shift+R, Control+Shift+E, Control+Shift+C

Change the setting in the filter.

Other keyboard input goes to the input pane.

While the filter is off (the default), or when the filter is on and disabled, plain characters go to the input pane, and hence
change the text in it.

10 Dialogs: Prompting for Input

126

When the filter is on and is enabled, plain characters go to the filter.

10.6.1.3 Performing a completion

In a text-input-pane, performing a completion means replacing part of the text in the pane by the selected completion. In
a file-completion, only the last part of the text (from the last directory separator) is replaced.

If a text-input-pane was made with complete-do-action true, once the completion was performed, if it is not file-
completion and the completion is a directory, the callback of the pane is invoked.

In an editor-pane, while the in-place window is displayed, the editor highlights the part of the text that will be replaced.
In non-file-completion it is the beginning of the "symbol", as seen by the editor, and the end of the "symbol". In a file-
completion it is the part of the filename after the last directory separator.

Performing the completion in an editor-pane means replacing the highlighted text by the selected completion. The
replacement is done as a single separate operation (for example Undo will undo the replacement separately from any previous
changes).

10.6.1.4 Interaction while the in-place window is displayed

Any operation that affects the text between the start of the relevant text (this is the start in a text-input-pane, and the
highlighted area in an editor-pane) and the current cursor causes the in-place window to recompute the possible
completions and display the new list. These operations include not only actual changes to the text, but also cursor movement.

In an editor-pane, if the insertion point moves out of the highlighted area then the in-place window goes away.

If the input pane loses the focus, the in-place window goes away, except on Motif.

10.6.2 Programmatic control of in-place completion

You can add in-place completion to your application as described in this section.

10.6.2.1 Text input panes

A text-input-pane will do in-place completion if you pass either of these initargs:

:file-completion with value t or a pathname designator, or:

:in-place-completion-function with value a suitable function designator.

You can add a filter to the in-place window by passing the initarg :in-place-filter. Additionally you can control the
functionality for file completion by passing :directories-only and :ignore-file-suffices. The keyword
arguments :complete-do-action and :gesture-callbacks also interact with in-place completion.

The in-place completion can be invoked explicitly for a text-input-pane by calling
text-input-pane-in-place-complete.

See the manual page for text-input-pane for details.

10.6.2.2 Editor panes

An editor-pane does in-place completion when your code calls the function editor:complete-in-place.

10 Dialogs: Prompting for Input

127

10.6.2.3 Other CAPI panes

You can also implement in-place completion on arbitrary CAPI panes by calling prompt-with-list-non-focus.

10 Dialogs: Prompting for Input

128

11 Defining Interface Classes - top level
windows

Interface classes (subclasses of interface) are (mainly) used to define top level windows and the components inside them.
Normally, each kind of a window in an application is specified by a different interface class. Complex dialogs are also
typically presented using an interface class.

An interface class can also be used to create a component made of several elements. This is especially useful when these
elements need to interact, because the syntax of define-interface makes it easier to refer to elements in the interface. To
distinguish between this usage and the more typical case where an interface instance corresponds to a window, the latter case
is referred to as a "top level interface" (also "top level window"). The parent of a top level interface is a screen (or
document-container inside MDI on Microsoft Windows) rather than another pane.

An interface class is defined by the macro define-interface (normally, cl:defclass inheriting from an interface class
works too). define-interface is an extension of cl:defclass with additional options for specifying display elements.
After an interface class is defined it can be used to display a window or a dialog by calling display or display-dialog on
an instance of it. For example:

(capi:define-interface my-interface ()
 ()
 (:panes (my-display-pane capi:display-pane :text "Some text"))
 (:default-initargs :title "My title"))

(capi:display (make-instance 'my-interface))

11.1 The define-interface macro

The macro define-interface is used to define subclasses of interface, the superclass of all CAPI interface classes.

It is an extension to defclass, which provides the functionality of that macro as well as the specification of the panes,
layouts, and menus from which an interface is composed. It takes the same arguments as defclass, and supports the
additional options :panes, :layouts, :menus, and :menu-bar.

If you specify :panes but no :layouts, then on creating your interface the CAPI will create a column-layout and
arrange the panes in it in the order they are defined. For real applications you will need some control over how the panes are
laid out, and this is supplied via the :layouts option.

Each component of the interface is named in the code, and a slot of that name is added to the class created. When an instance
of the class is made, each component is created automatically and placed in its slot.

To access a pane, layout or menu in an instance of your interface class you can define an accessor, like the viewer pane in
11.3 Adapting the example, or simply use with-slots.

When defining a component, you can use other components within the definition simply by giving its name. You can refer to
the interface itself by the special name capi:interface.

There are examples using define-interface in:

(example-edit-file "capi/applications/pong")

129

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_slts.htm

(example-edit-file "capi/applications/othello")

11.2 An example interface

Here is a simple example of interface definition done with define-interface:

(define-interface demo ()
 ()
 (:panes
 (page-up push-button
 :text "Page Up")
 (page-down push-button
 :text "Page Down")
 (open-file push-button
 :text "Open File"))
 (:layouts
 (row-of-buttons row-layout
 '(page-up page-down open-file)))
 (:default-initargs :title "Demo"))

An instance of this interface can be displayed as follows:

(display (make-instance 'demo))

At the moment the buttons do nothing, but they will eventually do the following:

• Open File will bring up a file prompter and allow you to select a filename from a directory. Later on, we will add an
editor pane to display the chosen file's contents.

• Page Down will scroll downwards so that you can view the lower parts of the file that cannot be seen initially.

• Page Up will scroll upwards so that you can return to parts of the file seen before.

A demonstration of a CAPI interface

Later on, we will specify callbacks for these buttons to provide this functionality.

The (:default-initargs :title "Demo") part at the end is necessary to give the interface a title. If no title is given,
the default name is "Untitled CAPI Interface".

11.2.1 How the example works

Examine the define-interface form to see how this interface was built. The first part of this form is shown below:

(define-interface demo ()
 ()

This part of the macro is identical to defclass — you provide:

• The name of the interface class being defined.

11 Defining Interface Classes - top level windows

130

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

• The superclasses of the interface (defaulting to interface).

• The slot descriptions.

The interesting part of the define-interface form occurs after these defclass-like preliminaries, where it lists the
elements that define the interface's appearance. Here is the :panes part of the definition:

(:panes
 (page-up push-button
 :text "Page Up")
 (page-down push-button
 :text "Page Down")
 (open-file push-button
 :text "Open File"))

Two arguments — the name and the class — are required to produce a pane. You can supply slot values as you would for any
CLOS object.

The :panes list specifies panes that are made when the interface is made. However it does not specify which panes are
displayed: that is controlled dynamically by the interface's layout which may contain all, some or none of the panes in the
:panes list. The interface may also display other panes that are made explicitly, though this is less common.

Here is the :layouts part of the definition:

(:layouts
 (row-of-buttons row-layout
 '(page-up page-down open-file)))

Three arguments — the name, the class, and any child layouts — are required to produce a layout. Notice how the children
of the layout are specified by using their component names.

The interface information supplied in this section is a series of specifications for panes and layouts. It could also specify
menus and a menu bar. In this case, three buttons are defined. The layout chosen is a row layout, which displays the buttons
side by side at the top of the pane.

11.3 Adapting the example

The :panes and :layouts keywords can take a number of panes and layouts, each specified one after the other. By listing
several panes, menus, and so on, complicated interfaces can be constructed quickly.

To see how simply this is done, let us add an editor pane to our interface. We need this to display the text contained in the file
chosen with the Open File button.

The editor pane needs a layout. It could be added to the row-layout already built, or another layout could be made for it.
Then, the two layouts would have to be put inside a third to contain them (see 6 Laying Out CAPI Panes).

The first thing to do is add the editor pane to the panes description. The old panes description read:

(:panes
 (page-up push-button
 :text "Page Up")
 (page-down push-button
 :text "Page Down")
 (open-file push-button
 :text "Open File"))

The new one includes an editor pane named viewer.

11 Defining Interface Classes - top level windows

131

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

(:panes
 (page-up push-button
 :text "Page Up")
 (page-down push-button
 :text "Page Down")
 (open-file push-button
 :text "Open File")
 (viewer editor-pane
 :title "File:"
 :text "No file selected."
 :visible-min-height '(:character 8)
 :reader viewer-pane))

This specifies the editor pane, with a stipulation that it must be at least 8 characters high. This allows you to see a worthwhile
amount of the file being viewed in the pane.

Note the use of :reader, which defines a reader method for the interface which returns the editor pane. Similarly, you can
also specify writers or accessors. If you omit accessor methods, it is still possible to access panes and other elements in an
interface instance using with-slots.

The interface also needs a layout containing the editor pane along with the buttons. The old layouts description read:

(:layouts
 (row-of-buttons row-layout
 '(page-up page-down open-file)))

The new one reads:

(:layouts
 (main-layout column-layout
 '(row-of-buttons viewer))
 (row-of-buttons row-layout
 '(page-up page-down open-file))
)

This encapsulates the new pane viewer into a column-layout called main-layout. This is used as the default layout,
specified by setting the :layout initarg to main-layout in the :default-initargs section. If there is no default layout
specified, uses the first one listed.

By putting the layout of buttons and the editor pane in a column layout, their relative position has been controlled: the
buttons appear in a row above the editor pane.

The code for the new interface is now as follows:

(define-interface demo ()
 ()
 (:panes
 (page-up push-button
 :text "Page Up")
 (page-down push-button
 :text "Page Down")
 (open-file push-button
 :text "Open File")
 (viewer editor-pane
 :title "File:"
 :text "No file selected."
 :visible-min-height '(:character 8)
 :reader viewer-pane))
 (:layouts
 (main-layout column-layout
 '(row-of-buttons viewer))
 (row-of-buttons row-layout

11 Defining Interface Classes - top level windows

132

http://www.lispworks.com/documentation/HyperSpec/Body/m_w_slts.htm

 '(page-up page-down open-file)))
 (:default-initargs :title "Demo"))

Displaying an instance of the interface by entering the line of code below produces the window in A CAPI interface with
editor pane:

(display (make-instance 'demo))

A CAPI interface with editor pane

11.3.1 Adding menus

To add menus to your interface you must first specify the menus themselves, and then a menu bar of which they will be a
part.

Let us add some menus that duplicate the proposed functionality for the buttons. We will add:

• A File menu with a Open option, to do the same thing as Open File.

• A Page menu with Page Up and Page Down options, to do the same things as the buttons with those names.

The extra code needed in the define-interface call is this:

(:menus
 (file-menu "File"
 ("Open"))
 (page-menu "Page"
 ("Page Up" "Page Down")))
(:menu-bar file-menu page-menu)

Menu definitions give a slot name for the menu, followed by the title of the menu, a list of menu item descriptions, and then,
optionally, a list of keyword arguments for the menu.

In this instance the menu item descriptions are just strings naming each item, but you may wish to supply initialization
arguments for an item — in which case you would enclose the name and those arguments in a list.

The menu bar definition simply names all the menus that will be on the bar, in the order that they will appear. By default, of
course, the environment may add menus of its own to an interface — for example the Window menu in the LispWorks IDE.

The code for the new interface is:

11 Defining Interface Classes - top level windows

133

(define-interface demo ()
 ()
 (:panes
 (page-up push-button
 :text "Page Up")
 (page-down push-button
 :text "Page Down")
 (open-file push-button
 :text "Open File")
 (viewer editor-pane
 :title "File:"
 :text "No file selected."
 :visible-min-height '(:character 8)
 :reader viewer-pane))
 (:layouts
 (main-layout column-layout
 '(row-of-buttons viewer))
 (row-of-buttons row-layout
 '(page-up page-down open-file)))
 (:menus
 (file-menu "File"
 ("Open"))
 (page-menu "Page"
 ("Page Up" "Page Down")))
 (:menu-bar file-menu page-menu)
 (:default-initargs :title "Demo"))

A CAPI interface with menu items

The menus contain the items specified — try it out to be sure.

11.4 Connecting an interface to an application

Having defined an interface in this way, you can connect it up to your program using callbacks, as described in earlier
chapters. Here we define some functions to perform the operations we required for the buttons and menus, and then hook
them up to the buttons and menus as callbacks.

The functions to perform the page scrolling operations are given below:

(defun scroll-up (data interface)
 (call-editor (viewer-pane interface)

11 Defining Interface Classes - top level windows

134

 "Scroll Window Up"))

(defun scroll-down (data interface)
 (call-editor (viewer-pane interface)
 "Scroll Window Down"))

The functions use the generic function call-editor which calls an editor command (given as a string) on an instance of an
editor-pane. The editor commands Scroll Window Up and Scroll Window Down perform the necessary operations for
Page Up and Page Down respectively.

The function to perform the file-opening operation is given below:

(defun file-choice (data interface)
 (let ((file (prompt-for-file "Select a File:")))
 (when file
 (setf (titled-object-title (viewer-pane interface))
 (format nil "File: ~S" file))
 (setf (editor-pane-text (viewer-pane interface))
 (file-string file)))))

This function prompts for a filename and then displays the file in the editor pane.

The function first produces a file prompter through which a file may be selected. Then, the selected file name is shown in the
title of the editor pane (using titled-object-title). Finally, the file name is used to get the contents of the file and
display them in the editor pane (using editor-pane-text).

The correct callback information for the buttons is specified as shown below:

(:panes
 (page-up push-button
 :text "Page Up"
 :selection-callback 'scroll-up)
 (page-down push-button
 :text "Page Down"
 :selection-callback 'scroll-down)
 (open-file push-button
 :text "Open File"
 :selection-callback 'file-choice)
 (viewer editor-pane
 :title "File:"
 :text "No file selected."
 :visible-min-height '(:character 8)
 :reader viewer-pane))

All the buttons and menu items operate on the editor pane viewer. A reader is set up to allow access to it.

The correct callback information for the menus is specified as shown below:

(:menus
 (file-menu "File"
 (("Open"))
 :selection-callback 'file-choice)
 (page-menu "Page"
 (("Page Up"
 :selection-callback 'scroll-up)
 ("Page Down"
 :selection-callback 'scroll-down)))

In this case, each item in the menu has a different callback. The complete code for the interface is listed below — try it out.

11 Defining Interface Classes - top level windows

135

(capi:define-interface demo ()
 ()
 (:panes
 (page-up capi:push-button
 :text "Page Up"
 :selection-callback 'scroll-up)
 (page-down capi:push-button
 :text "Page Down"
 :selection-callback 'scroll-down)
 (open-file capi:push-button
 :text "Open File"
 :selection-callback 'file-choice)
 (viewer capi:editor-pane
 :title "File:"
 :text "No file selected."
 :visible-min-height '(:character 8)
 :reader viewer-pane))
 (:layouts
 (main-layout capi:column-layout
 '(row-of-buttons viewer))
 (row-of-buttons capi:row-layout
 '(page-up page-down open-file)))
 (:menus
 (file-menu "File"
 (("Open"))
 :selection-callback 'file-choice)
 (page-menu "Page"
 (("Page Up"
 :selection-callback 'scroll-up)
 ("Page Down"
 :selection-callback 'scroll-down))))
 (:menu-bar file-menu page-menu)
 (:default-initargs :title "Demo"))

11.5 Controlling the appearance of the top level window

This section describes ways to control the appearance and behavior of the top level window displaying our CAPI interface.

11.5.1 Window styles

The interface initarg window-styles allows you to control a wide range of visible properties of the top level window
including borders, shadows and so on.

window-styles also allows you to specify that the window can be moved by dragging on its background, or cannot be
minimized, or acts as a windoid, or is visible only when the application is the current application, and so on.

Many of these properties are specific to the windowing system and are therefore not supported on all platforms. See
interface for the details.

11.5.2 Controlling the interface title

A top level interface has a title, which normally appears at the top. This title is used by the Window Browser tool in the
LispWorks IDE and also by system tools that deal with windows. The title is set either by the interface initarg :title or
the accessor interface-title.

In addition, you can specify a prefix and/or suffix that is added to the titles of all the interfaces in an application, by using
set-default-interface-prefix-suffix.

The title string is constructed by the generic function interface-extend-title. The default method constructs it from

11 Defining Interface Classes - top level windows

136

the title of the interface and the prefix/suffix, if any. For finer control, you can define interface-extend-title
method(s) for specific interface class(es).

When you change something that may cause the title to change, that is some value that interface-extend-title uses,
you can use one of update-interface-title, update-screen-interface-titles or
update-all-interface-titles to cause the titles to be recomputed.

11.5.3 Indicating a changed document

Some windowing systems support a visible indication that a displayed document has been edited, helping users to see that it
needs saving. To implement this in a CAPI interface, set interface-document-modified-p at suitable times.

You can extend the definition of the viewer pane in our example like this:

(viewer capi:editor-pane
 :title "File:"
 :text "No file selected."
 :visible-min-height '(:character 8)
 :reader viewer-pane
 :change-callback 'check-viewer-modified)

and define the change-callback as follows:

(defun check-viewer-modified (viewer point old-length new-length)
 (declare (ignore point old-length new-length))
 (setf (capi:interface-document-modified-p
 (capi:element-interface viewer))
 (editor:buffer-modified
 (capi:editor-pane-buffer viewer))))

Note: Currently interface-document-modified-p has an effect only on Cocoa.

11.6 Querying and modifying interface geometry

The functions screen-monitor-geometries, screen-internal-geometries and
pane-screen-internal-geometry support the notions of monitor geometry (which includes "system" areas such as the
macOS menu bar and the Microsoft Windows task bar) and internal geometry (which excludes the system areas).

Note that code which relies on the position of a window should not assume that a window is located where it has just been
programmatically displayed, but should query the current position by top-level-interface-geometry. This is because
the geometry includes system areas where CAPI windows cannot be displayed.

11.6.1 Support for multiple monitors

CAPI supports multiple monitors by providing functions such as screen-internal-geometries to query "screen
rectangles" representing the area of each monitor. The function virtual-screen-geometry returns a rectangle just
enclosing all the screen rectangles.

There is a "primary monitor" which displays any system areas. The origin of the coordinate system (as returned by
top-level-interface-geometry and screen-internal-geometry) is the topmost/leftmost visible pixel of the
primary monitor. Thus (0,0) may be in a system area such as the macOS menu bar.

Note also that CAPI does not currently support multiple desktops, which are called workspaces in Linux distros, and called
Spaces on macOS.

11 Defining Interface Classes - top level windows

137

11.6.2 Saving and restoring top-level geometry

You can specify that that the geometry of a top level interface should be saved when the interface is closed and be used to
define the geometry of the interface when it is opened again (potentially in a different invocation of the application). You
need to define a method of top-level-interface-save-geometry-p that returns true for the interface class. You
normally also need to specify where to save the geometry, using top-level-interface-geometry-key.

11 Defining Interface Classes - top level windows

138

12 Creating Panes with Your Own Drawing
and Input

The CAPI provides a wide range of built-in panes, but it is still fairly common to need to create panes of your own. In order
to do this, you need to specify both the input behavior of the pane (how it reacts to keyboard and mouse events) and its output
behavior (how it displays itself). The class output-pane is provided for this purpose.

An output-pane is a fully functional graphics port. This allows it to use all of the graphics ports functionality to create
graphics, and it also has a powerful input model which allows it to receive mouse and keyboard input.

output-pane has a subclass pinboard-layout, to which you can add graphic objects, which makes it easier to organize
the interaction when it becomes complex. pinboard-layout is probably the more useful class.

12.1 Displaying graphics

In order to display your own drawings, you need to provide a function to the output-pane that is called to redraw sections
of the pane when they are exposed. This function is called the display-callback, and it is automatically called in the correct
process. When the CAPI needs to redisplay a region of an output-pane, it calls that output pane's display-callback
function, passing it the pane and the region in question.

For example, to create a pane that has a circle drawn inside it, do the following:

(defun draw-a-circle (pane x y width height)
 (gp:draw-circle pane 100 100 50))

(contain
 (make-instance
 'output-pane
 :display-callback 'draw-a-circle)
 :best-width 300
 :best-height 300)

Notice that the callback in this example ignores the region that needs redrawing and just redraws everything. This is possible
because the CAPI clips the drawing to the region that needs redisplaying, and hence only the needed part of the drawing gets
done. For maximum efficiency, it would be better to only draw the minimum area necessary.

The arguments :best-width and :best-height specify the initial width and height of the interface. More detail can be
found in the manual page for interface.

Now that we can create output panes with our own display functions, we can create a new class of window by using
defclass as follows.

(defclass circle-pane (output-pane)
 ()
 (:default-initargs
 :display-callback 'draw-a-circle))

(contain (make-instance 'circle-pane))

Compatibility Note: you must ensure that all drawing occurs inside the display-callback. In previous versions of LispWorks,
we documented examples where drawing was done outside the display-callback, but this was always a bad idea because it

139

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

was not coordinated updates triggered by the window system. On macOS Big Sur and later, drawing outside the display-
callback will not work and may cause errors.

12.2 Receiving input from the user

The CAPI supports receiving input from the user through the use of an input model, which is a mapping of events to the
callbacks that should be run when they occur. The input model is specified by the initarg :input-model.

When the event callback is called, it gets passed the output-pane and the x and y integer coordinates of the mouse pointer
at the time of the event. A few events also pass additional information as necessary; for example, keyboard events also pass
the key that was pressed.

For example, we can create a very simple drawing pane by adding a callback to draw a point whenever the left button is
dragged across the pane. This is done using the function draw-point as follows:

(defun display-a-message (pane x y)
 (display-message-for-pane pane "clicked at ~d/~d" x y))

(contain (make-instance 'output-pane
 :input-model '(((:button-1 :press)
 display-a-message))))

An interactive output pane

The input model above seems quite complicated, but it is just a list of event to callback mappings, where each one of these
mappings is a list containing an event specification and a callback. An event specification is also a list containing keywords
specifying the type of event required.

There is an example input model in:

(example-edit-file "capi/graphics/pinboard-test")

12 Creating Panes with Your Own Drawing and Input

140

and more examples are listed in 20.1 Output pane examples.

For the full input-model syntax, see 12.2.1 Detailed description of the input model.

12.2.1 Detailed description of the input model

The input model provides a means to get callbacks on mouse, keyboard and touch gestures in an output-pane. An input-
model is a list of mappings from gesture to callback, where each mapping is a list:

(gesture callback . extra-callback-args)

gesture specifies the type of gesture, which can be Gesture Spec, character, button, modifier change, key, command, cursor
motion or multi-touch. These are described in the following sections. User input is processed as described in 12.2.1.10
Processing user input.

Note: it is recommended you follow the style guidelines and conventions of the platform you are targeting when mapping
gestures to callbacks.

12.2.1.1 Gesture Spec mappings

In a Gesture Spec mapping, gesture can be simply the keyword :gesture-spec, which matches any keyboard input. For
specific mappings, gesture is a list:

(:gesture-spec data [modifier]*)

in which data is a character object or an integer between 0 and char-code-limit (interpreted as the character object
obtained by code-char), or a keyword naming a function key, and each modifier is one of the keywords :shift,
:control and :meta. Note that the modifier :meta is received only when the keys style is :emacs (see
interface-keys-style).

Also data can be a string which is interpreted as a Gesture Spec as if by sys:coerce-to-gesture-spec. See the
LispWorks® User Guide and Reference Manual for a description of this and other functions for manipulating Gesture Spec
objects.

Note: on Cocoa you cannot receive Command key gestures via Gesture Spec mapping in input-model. To receive Command
key gestures you should add corresponding menu items with accelerators. See menu-item for information about
accelerators.

12.2.1.2 Character mappings

In a character mapping, gesture can be simply the keyword :character, which matches any character input. For specific
mappings, gesture can be a list containing a single character object char, or a list:

(char)

Note: where input would match both a Gesture Spec mapping and a character mapping, the Gesture Spec mapping takes
precedence.

Note: in LispWorks 7.0 and later versions the cl:character type does not support the bits attribute. To represent keyboard
input with modifier keys, see 12.2.1.1 Gesture Spec mappings.

12 Creating Panes with Your Own Drawing and Input

141

http://www.lispworks.com/documentation/HyperSpec/Body/v_char_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_code_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

12.2.1.3 Button mappings

In a button mapping, gesture should be list:

(button action [modifiers]*)

where button is one of :button-1, :button-2 or :button-3 denoting the mouse buttons. action is one of :press,
:release, :second-press, :third-press, :nth-press and :motion, and each modifier is one of the keywords
:shift, :control, :meta and :hyper. The :meta modifier will be the Alt key on most keyboards. On Cocoa, the
:hyper modifier is interpreted as the Command key for button and motion gestures. On Windows, the :hyper modifier is
currently never generated, so gesture mappings using it will never be invoked.:third-press and :nth-press are
supported only on Cocoa and Motif.

Button mappings with action :nth-press are matched on the nth button click made in quick succession, but only when
there is not a more specific match with :press, :second-press or :third-press. The callback for :nth-press
receives an extra argument which is the count of clicks.

12.2.1.4 Modifier change mappings

In a modifier change mapping, gesture is :modifier-change, which generates a callback whenever the state of a modifier
(Control, Shift and Meta key, Command on Cocoa, and Caps Lock) changes.

The callback is called with the output pane, x and y, an integer mods, followed by extra-callback-args if any. mods is
calculated as a logior of sys:gesture-*-bit values. The bits that that may be set in mods are:

• sys:gesture-spec-shift-bit

• sys:gesture-spec-control-bit

• sys:gesture-spec-meta-bit

• sys:gesture-spec-hyper-bit

• sys:gesture-spec-caps-lock-bit

Note that sys:gesture-spec-hyper-bit is set when Command is pressed.

Note that for Caps Lock, the callback is generated when the state of the Caps Lock changes, not when the Caps Lock key is
pressed or released.

The pane gets the callback only when it has the focus. If the pane receives the focus and the state of the modifiers is different
from what it was the last time the pane had the focus, a callback is generated at that time. That means that tracking the state
using the callback is reliable while the pane has the focus, but not while the pane does not have the focus.

For an example, see:

(example-edit-file "capi/output-panes/modifier-change")

12.2.1.5 Key mappings

Key mappings are intended for detecting low-level keyboard input. In a key mapping, gesture should be a list:

(:key [keyname] action [modifiers]*)

where the optional keyname is a character naming a key (no modifiers) or one of the valid Gesture Spec keywords
documented in the entry for sys:make-gesture-spec, action is one of :press or :release and each modifier is one of

12 Creating Panes with Your Own Drawing and Input

142

the keywords :shift, :control and :meta. The callback will receive a sys:gesture-spec, with its data set to an
integer ASCII code or a keyword representing the primary item on the key and its modifiers representing the set of modifiers
pressed. The :meta modifier will be the Alt key on most keyboards. On Cocoa, the :hyper modifier is interpreted as the
Command key for :key input.

12.2.1.6 Motion mappings

In a motion mapping, gesture can either be defined in terms of dragging a button (in which case it is defined as a button
gesture with action :motion), or it can be defined for motions while no button is down by just specifying the keyword
:motion with no additional arguments.

12.2.1.7 Command mappings

In a command mapping, gesture should be a command which is defined using define-command, and provides an alias for a
gesture. The following commands are predefined:

:post-menu (:button-3 :release) on Microsoft Windows.

(:button-3 :press) on Motif.

(:button-1 :press :control) on macOS.

:control-post-menu (:button-3 :press :control) on Microsoft Windows, Motif and macOS.

:keyboard-post-menu

(:gesture-spec :f10 :shift) on Microsoft Windows, Motif and macOS.

12.2.1.8 Touch mappings

On Cocoa and Windows input-model can contain mappings for multi-touch gestures from devices that can generate them
(trackpad or touchscreen). These include zoom, rotate, pan, swipe (Cocoa only), two finger tap (Windows only), press and
tap (Windows only), and beginning and end of sequences of gestures.

In a touch mapping gesture should be of the form:

(:touch multi-touch-keyword)

where multi-touch-keyword specifies the type of gesture as listed below. For all multi-touch gestures the callback receives as
arguments the pane, and the x and y of the event. There are also an additional one or two arguments for each specific gesture.
The extra arguments are always relative to the previous state, so each event can be interpreted on each own. Use extra-
callback-args if any are added in the end.

multi-touch-keyword should be one of:

:zoom The callback receives an extra argument which is the zoom factor.

:rotate The callback receives an extra argument which is the angle to rotate, anti-clockwise in radians.

:pan The callback receives two extra arguments, the delta-x and delta-y, which are the amount to
scroll in the x and y directions.

:swipe The callback receives an extra argument which is one of the keywords :left, :right, :up or
:down.

:swipe is supported only on Cocoa.

12 Creating Panes with Your Own Drawing and Input

143

:two-finger-tap The callback receives an extra argument which is the distance between the fingers.

:two-finger-tap is supported only on Windows.

:press-and-tap The callback receives two extra arguments, which are the delta-x and delta-y of the tapping
finger from the resting finger.

:press-and-tap is supported only on Windows.

:begin-end The callback receives an extra argument begin-p which is a boolean, t for beginning of a
sequence of events and nil for end. The beginning and end of sequences are determined by the
underlying device implementation, which tries to identify what the user regards as a single
operation.

12.2.1.9 Notes about touch mappings

Because the callbacks receive relative values, you do not need the :begin-end events to interpret them. These events are
useful when you want to do things which correspond to user operations, for example recording a state for undo or committing
a change.

They are also useful if you want to restrict the type of events that are processed inside each operation. For example, your
pane may have a flag that the callbacks check and set which is used to allow only one kind of gesture to have an effect in each
sequence.

The x and y coordinates are the coordinates which should be used as the center of operation. On Windows, you can track the
x and y in :zoom and :rotate events, and do panning while rotating or zooming.

On Cocoa, a sequence of events (starting and ending with :begin-end events) can contain either :zoom and :rotate

events or :pan events, but not a mixture of :pan and :rotate or :zoom. On Windows all these three types of events can be
mixed in principle.

:swipe events (Cocoa only) are three finger brushing. :swipe events are always on their own, and are not enclosed in pairs
of :begin-end callbacks.

On Cocoa, pan should generally act as a scrolling gesture, so normally you should not need to use it.

Windows touch events are described in the MSDN in:

Dev Center - Desktop > Design > Guidelines > Guidelines > Interaction > Touch

http://msdn.microsoft.com/en-us/library/windows/desktop/dn742468(v=vs.85).aspx.

Note that on Windows the Control+Mousewheel gesture generates :zoom events and Shift+Mousewheel generates
:rotate.

The entries in the input-model look like this:

((:touch :zoom) my-zoom-callback)

((:touch :pan) my-pan-callback)

((:touch :rotate) my-rotate-callback)

((:touch :begin-end) my-begin-end-callback)

#+macosx

12 Creating Panes with Your Own Drawing and Input

144

http://msdn.microsoft.com/en-us/library/windows/desktop/dn742468(v=vs.85).aspx

((:touch :swipe) my-swipe-callback))

#+mswindows
((:touch :two-finger-tap) my-two-finger-tap-callback)

#+mswindows
((:touch :press-and-tap) my-press-and-tap-callback)

The corresponding callbacks have these signatures:

my-zoom-callback pane x y zoom-factor

my-pan-callback pane x y delta-x delta-y

my-rotate-callback pane x y delta-angle

my-begin-end-callback pane x y begin-p

my-swipe-callback pane x y direction-keyword

my-two-finger-tap-callback pane x y distance

my-press-and-tap-callback pane x y distance-x distance-y

12.2.1.10 Processing user input

When user input matches a gesture gesture, the callback is called with the gesture callback arguments followed by any user-
supplied extra-callback-args.

The gesture callback arguments contain three standard arguments, and for some gestures there is a fourth argument. The
standard three arguments are:

output-pane x y

where (x, y) is the cursor position.

The following gestures have a fourth argument:

:gesture-spec or :key

A sys:gesture-spec representing the user input.

:character or character

A character representing the user input.

:modifier-change An integer specifying the modifiers as a logior of the constants
sys:gesture-spec-shift-bit etc.

Button with :nth-press

An integer which is the number of clicks.

12 Creating Panes with Your Own Drawing and Input

145

http://www.lispworks.com/documentation/HyperSpec/Body/f_logand.htm

Note: mouse gestures with :press, :second-press, :third-press and :nth-press actions can each be expected to be
followed by a :release action.

Note: In some circumstances :motion events can be received even when the output-pane does not have the input focus.
See window style :motion-events-without-focus under interface for details.

input-model can be set before the pane is displayed, but changes after that are ignored.

In particular, cl:initialize-instance is the natural place for subclasses to modify the existing input-model, using the
output-pane accessor output-pane-input-model. Note that since the mappings are processed in order, prepending to
an existing input-model overrides it when there are clashes, while appending affects only gestures for which the original input
-model did not have a match.

12.2.2 Commands - aliases

It is possible to define aliases for gestures (called "commands"), which is mapping between a gesture and a command (a
unique Lisp object, typically a keyword). The command then can be used as the gesture in an input-model. That allows
changing the actual user gesture to invoke the callbacks that are associated with the command in input models of many panes,
without having to change the actual input model specifications.

A command is defined using define-command, which defines the mapping, and can also specify on which library it is
applicable and a translator to change the arguments that are passed to the callback.

Commands that are defined by define-command can be programmatically invoked (as if the user entered the gesture) by
invoke-command or invoke-untranslated-command.

12.2.3 Native input method

The input that CAPI sees may be pre-processed by a native input method. Native input methods are part of the underlying
GUI system which allow the user to enter characters that do not appear on the keyboard. On GTK+ you can control whether
the native input method is used by the output-pane initarg :use-native-input-method, and you can specify the
default by set-default-use-native-input-method.

12.2.4 Composition of characters

Composition of characters is done by the underlying window system, which combines several keystrokes to one character (or
more rarely, to several characters) , and is used to input characters that are not available on the keyboard. output-pane has
a callback, :composition-callback, which is called when composition starts and ends, and also if the pane is supposed
to display the input, it is called to tell it what to display.

Inside the callback call for starting composition, the function set-composition-placement where relative to the
composition should, which tells the system where to put any window that it popups to interact the user. For example,
editor-pane uses this to set the placement at the position of the cursor.

12.3 Creating graphical objects

A common feature needed by an application is to have a number of objects displayed in a window and to make events affect
the object underneath the cursor. The CAPI provides the ability to create graphical objects, to place them into a window at a
specified size and position, and to display them as necessary. Also a function is provided to determine which object is under
any given point so that events can be dispatched correctly.

These graphical objects are called pinboard objects, as they can only be displayed if they are contained within a
pinboard-layout.

12 Creating Panes with Your Own Drawing and Input

146

http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm

Like simple panes, you display a pinboard-object by putting it in the description of a layout, but in the case of a
pinboard-object the layout must be either a pinboard-layout or a layout that is a descendant of a pinboard-layout
(to any depth). Adding or removing pinboard-objects can be done using the standard mechanism of the :description
initarg and (setf layout-description), but normally it should be done by manipulate-pinboard. This is much
more efficient and causes much less flickering, which is important when there are many objects.

CAPI provides built-in pinboard object classes for several simple cases including item-pinboard-object for displaying
text, line-pinboard-object, rectangle, ellipse and arrow-pinboard-object for simple shapes, and
image-pinboard-object for displaying an image. To display more complex drawing, you can use
drawn-pinboard-object, which takes a display-callback which actually does the drawing. For greater control, you can
subclass pinboard-object, and define the method draw-pinboard-object to do the drawing, and if needed also
draw-pinboard-object-highlighted. You can also subclass any of the specialized pinboard-object subclasses if it
is useful.

pinboard-objects have geometry like simple-pane, that is x, y, width and height. These can be specified initially by the
initargs :x and :y and geometry hints (see 6.4 Specifying geometry hints), and can be read and set later by
static-layout-child-position and static-layout-child-size. They can also be read by using the binding
inside with-geometry, but setting should be done only by (setf static-layout-child-position) and
(setf static-layout-child-size).

For line-pinboard-object and its subclasses, you would normally specify the start and end points, rather than the
rectangle that encloses it (which would require computations taking into account the line width and the position of any label).
This is done when making the object using the initargs :start-x, :start-y, :end-x and :end-y, and later by the
function move-line. The function line-pinboard-object-coordinates can be used to find the start and end points of
an object.

The graphics args that are used to draw the objects in built-in subclasses of pinboard-object can be specified by
supplying the initarg :graphics-args, and modified dynamically by (setf pinboard-object-graphics-args) and
(setf pinboard-object-graphics-arg). For example, the following code displays a line and after 2 seconds changes
its color:

(progn
 (setq po
 (capi:contain
 (make-instance 'capi:line-pinboard-object
 :start-x 50 :end-x 250
 :start-y 50 :end-y 50
 :graphics-args
 '(:thickness 10 :foreground :red))))
 (sleep 2)
 (capi:apply-in-pane-process
 po
 #'(lambda ()
 (setf (capi:pinboard-object-graphics-arg po :foreground)
 :blue))))

For pinboard object classes which you define, the drawing functions that you call need to do the drawing using the Graphics
Ports drawing functions (see 13.4 Drawing functions). They take their coordinates with respect to the pinboard-layout
(not the object), so you need to use the x and y to compute the arguments for the drawing functions. This is how the
specialized classes mentioned above know where to draw. You need to keep the drawing inside the geometry (that is inside
the rectangle defined by x, y, width and height), because the pinboard-layout decides which objects need redrawing using
these values.

pinboard-objects can be highlighted. You need to use the functions highlight-pinboard-object and
unhighlight-pinboard-object to switch the highlight state of objects. The function
pinboard-object-highlighted-p can be used to check whether an object is in the highlighted state. By default, CAPI
calls draw-pinboard-object-highlighted to add the highlight after drawing the object. In many cases, it is better to
do the highlight in the drawing function (either the method of draw-pinboard-object or the display-callback for

12 Creating Panes with Your Own Drawing and Input

147

drawn-pinboard-object) rather than separately. Use the initarg :no-highlight with value t when making the
pinboard-object, and pinboard-object-highlighted-p inside the drawing function to check whether it needs to
highlight. These examples both use this technique:

(example-edit-file "capi/graphics/circled-graph-nodes")

(example-edit-file "capi/graphics/tracking-pinboard-layout")

It is possible to set an element such that its geometry changes automatically when the pinboard-layout is resized, by
using either the initarg :automatic-resize or calling set-object-automatic-resize. See:

(example-edit-file "capi/layouts/automatic-resize")

Note: pinboard-objects are implemented as graphics on a native window. Compare this with simple-pane and its
subclasses, where each instance is itself a native window. A consequence of this is that simple-panes do not work well
within a pinboard-layout, since they always appear above the pinboard-objects. For example, to put labels on a
pinboard, use item-pinboard-object rather than display-pane or title-pane.

Note: The pinboard-layout displays the pinboard objects via its own display-callback function
pinboard-layout-display. If you want do other drawing too, see the entry for pinboard-layout-display. It is also
possible to draw the pinboard objects of a pinboard-layout to another graphics port (for example, a pixmap) using
draw-pinboard-layout-objects.

Here is an example of the built-in pinboard object class item-pinboard-object which displays its text like a
title-pane. Note that the function contain always creates a pinboard-layout as part of the wrapper for the object to
be contained, and so it is possible to test the display of pinboard-objects in just the same way as you can test other
classes of CAPI object.

(contain
 ;; CONTAIN makes a pinboard-layout if needed, so we don't
 ;; need one explicitly in this example.
 ;; You will need an explicit pinboard-layout if you define
 ;; your own interface class.
 (make-instance
 'item-pinboard-object
 :text "Hello world"))

A pinboard object

Here is another example illustrating item-pinboard-object:

(example-edit-file "capi/graphics/pinboard-object-text-pane")

12.3.1 Buffered drawing

Where the display of an output-pane is complex you may see flickering on screen on some platforms. Typically this
occurs in a pinboard-layout with many pinboard objects, or some other characteristic that makes the display complex.

The flickering can be avoided by passing the draw-with-buffer initarg which causes the drawing to go to an off-screen pixmap
buffer. The screen is then updated from the buffer.

12 Creating Panes with Your Own Drawing and Input

148

Note: GTK+ and Cocoa always buffer, so the draw-with-buffer initarg is ignored on these platforms.

12.3.2 Finding pinboard objects from coordinates

To find the top pinboard-object at a supplied position (x, y), which is typically needed when processing user input, use
pinboard-object-at-position. To decide whether a pinboard object is at a position,
pinboard-object-at-position uses the generic function over-pinboard-object-p. over-pinboard-object-p
has a default method that return true when the position is in the rectangle of the object, and a method for line object
(subclasses of line-pinboard-object) that return true if the position is close to the line. You add methods to
over-pinboard-object-p for your own classes. For example, if your pinboard object displays a thunder picture, you may
want an over-pinboard-object-p method that computes whether the position is inside the thunder drawing.

There is also the generic function pinboard-object-overlap-p, with a default method that determines whether the
rectangle of the object overlaps the rectangle specified by the other arguments.

12.3.3 The implementation of graph panes

One of the major uses the CAPI itself makes of pinboard objects is to implement graph panes. The graph-pane itself is a
pinboard-layout and it is built using pinboard-objects for the nodes and edges. This is because each node (and
sometimes each edge) of the graph needs to react individually to the user. For instance, when an event is received by the
graph-pane, it is told which pinboard object was under the pointer at the time, and it can then use this information to
change the selection.

Create the following graph-pane and notice that every node in the graph is made from an item-pinboard-object as
described in the previous section and that each edge is made from a line-pinboard-object.

(defun node-children (node)
 (when (< node 16)
 (list (* node 2)
 (1+ (* node 2)))))

(contain
 (make-instance
 'graph-pane
 :roots '(1)
 :children-function 'node-children)
 :best-width 300 :best-height 400)

12 Creating Panes with Your Own Drawing and Input

149

A graph pane with pinboard object nodes

As mentioned before, pinboard-layouts can just as easily display ordinary panes inside themselves, and so the
graph-pane provides the ability to specify the class used to represent the nodes. As an example, here is a graph-pane
with the nodes made from push-buttons.

(contain
 (make-instance
 'graph-pane
 :roots '(1)
 :children-function 'node-children
 :node-pinboard-class 'push-button)
 :best-width 300 :best-height 400)

12 Creating Panes with Your Own Drawing and Input

150

A graph pane with push-button nodes

12.3.4 An example pinboard object

To create your own pinboard objects, the class drawn-pinboard-object is provided, which is a pinboard-object that
accepts a display-callback to display itself. The following example creates a new subclass of drawn-pinboard-object
that displays an ellipse.

(defun draw-ellipse-pane (gp pane
 x y
 width height)
 (with-geometry pane
 (let ((x-radius
 (1- (floor %width% 2)))
 (y-radius
 (1- (floor %height% 2))))
 (gp:draw-ellipse
 gp
 (1+ (+ %x% x-radius))
 (1+ (+ %y% y-radius))
 x-radius y-radius
 :filled t
 :foreground
 (if (> x-radius y-radius)
 :red
 :yellow)))))

(defclass ellipse-pane
 (drawn-pinboard-object)
 ()
 (:default-initargs
 :display-callback 'draw-ellipse-pane
 :visible-min-width 50

12 Creating Panes with Your Own Drawing and Input

151

 :visible-min-height 50))

(contain
 (make-instance 'ellipse-pane)
 :best-width 200
 :best-height 100)

An ellipse-pane class

The with-geometry macro is used to set the size and position, or geometry, of the ellipse drawn by the
draw-ellipse-pane function. The fill color depends on the radii of the ellipse - try resizing the window to see this. For
more details of see the manual page for drawn-pinboard-object.

Now that you have a new ellipse-pane class, you can create instances of them and place them inside layouts. For instance, the
example below creates nine ellipse panes and places them in a three by three grid.

(contain
 (make-instance
 'grid-layout
 :description
 (loop for i below 9
 collect
 (make-instance 'ellipse-pane))
 :columns 3)
 :best-width 300
 :best-height 400)

12 Creating Panes with Your Own Drawing and Input

152

Nine ellipse-pane instances in a layout

12.3.5 Simple pinboard layout

simple-pinboard-layout is a subclass of pinboard-layout with only one child (a pane or a pinboard-object). It
adopts the size constraints of its child. simple-pinboard-layout is useful when you want to arrange
pinboard-objects using a layout pane (or a hierarchy of layouts). pinboard-objects need a pinboard-layout
somewhere in the parent hierarchy, but using pinboard-layout would mean that the constraints computed by layout (top
layout if it is a hierarchy) would not be automatically propagated to the next level. simple-pinboard-layout solves this
problem. An example is the graph-pane, which is actually a subclass of simple-pinboard-layout, and as a child has a
layout (of internal type) with a special algorithm that lays out the graph and displays it using pinboard-objects.

12.3.6 Tracking pinboard layout

tracking-pinboard-layout is a subclass of pinboard-layout which tracks the motion of the mouse cursor, by
highlighting the object underneath it (if any). Otherwise it behaves the same as pinboard-layout. It saves you from
implementing the tracking when it is is desired.

(example-edit-file "capi/graphics/tracking-pinboard-layout")

12 Creating Panes with Your Own Drawing and Input

153

12.4 output-pane scrolling

An output-pane or an instance of any of its subclasses can be made to scroll by passing the :vertical-scroll and/or
:horizontal-scroll initargs which are inherited from simple-pane.

12.4.1 Ordinary scrolling

By default, the scrolling is what is called ordinary scrolling. In this case you just need to specify that you want scrolling by
:vertical-scroll and/or :horizontal-scroll, and maybe also specify the internal scroll dimension(s) (see below).

In ordinary scrolling, all the interactions are done as if the pane has an "internal canvas" with dimensions (the "internal
dimensions") which are different from the visible dimensions on the screen, and typically larger. The coordinates of input
gestures and drawing in the pane are all with respect to this internal canvas. Only part of the canvas is displayed at any one
time, depending on the position of the scroll slugs. The effect of scrolling is to change what part of the pane is visible, which
causes a display-callback to draw any newly visible areas. However, the call to the display-callback is an ordinary call like
any call (for example, like a call as result of part of the window being exposed), and the display-callback does not need to
know anything about scrolling.

If you need to know when scrolling happened, rather than just display what is needed to display, you can use the
:scroll-callback initarg to specify a callback that is called before the display-callback. However, this is not required for
ordinary scrolling to work.

The internal dimensions of the pane can be specified by the initargs :scroll-height and :scroll-width, and can also
be set dynamically set by set-vertical-scroll-parameters and set-horizontal-scroll-parameters. Some
subclasses can compute their internal dimensions, for example graph-pane computes its internal dimensions to show all the
graph, and static-layout and its subclass pinboard-layout by default compute the internal dimensions to fit their
children (unless fit-size-to-children is nil).

For example, create an output-pane with vertical scroll and internal height of 600 pixels, minimum visible height of 300
pixels, and a display-callback that prints the y coordinate and the height and displays a green square at (0,100) of size 10x10
and a blue square at (0,400) of size 10x10:

(defun my-display-callback (pane x y width height)
 (declare (ignore x width))
 (format t " y = ~d, height = ~d~%" y height)
 (gp:draw-rectangle pane 0 100 10 10
 :foreground :green :filled t)
 (gp:draw-rectangle pane 0 400 10 10
 :foreground :blue :filled t))

(setq output-pane
 (make-instance 'capi:output-pane
 :vertical-scroll t
 :scroll-height 600
 :visible-min-height 300
 :display-callback 'my-display-callback))

Then display it:

(capi:contain output-pane)

When it appears on the screen its height is 300 pixels, the scrollbar is half the height. You receive a display callback with y
being 0 and height 300. You see the green square 100 pixels down from the top. The blue square is invisible, because it is
drawn at y = 400, which is not inside the visible area.

Now if you scroll to the bottom, you will receive a callback with y = 300 and height still 300 (possibly after several callbacks
with intermediate y values). Now you see the blue square 100 pixels from the top, and the green square is invisible.

12 Creating Panes with Your Own Drawing and Input

154

Note that the display callback knows nothing about the scrolling. It just draws. A real display callback may be made faster by
avoiding the drawings which are not going to be visible, for example:

(defun my-display-callback-1 (pane x y width height)
 (declare (ignore x width))
 (format t " y = ~d, height = ~d~%" y height)
 (unless (or (> y 110) (< (+ Y height) 100) (> x 10))
 (gp:draw-rectangle pane 0 100 10 10
 :foreground :green :filled t))
 (unless (or (> y 410) (< (+ Y height) 400) (> x 10))
 (gp:draw-rectangle pane 0 400 10 10
 :foreground :blue :filled t)))

but this is just optimization. It does not affect what is shown on the screen.

12.4.2 Internal scrolling

The other type of scrolling is called internal scrolling (sometimes "pane scrolling"), and it is set up by passing the
output-pane initarg :coordinate-origin with either :fixed or :fixed-graphics. In general, internal scrolling is
more complex to use, but allows more flexible scrolling.

When using internal scrolling with coordinate-origin :fixed, drawing coordinates are relative to the visible area, and the
coordinates arguments to callbacks are also relative to the visible area. Thus drawing a rectangle at 0,100 as my-display-
callback above does will always show it at 0,100 on the screen, ignoring any scrolling.

For example, evaluate the following (which requires the definition of my-display-callback):

(capi:contain (make-instance
 'capi:output-pane
 :vertical-scroll t
 :scroll-height 600
 :visible-min-height 300
 :display-callback 'my-display-callback
 :coordinate-origin :fixed ; <<
)
 :title "With :coordinate-origin :fixed")

Scroll it and you will see that it is "fixed": the green rectangle does not move, and the y coordinate that is passed to my-
display-callback is always 0.

When using internal scrolling with coordinate-origin :fixed-graphics, the drawing coordinate are relative to the visible
pane, but CAPI coordinates (that is the arguments to callbacks such as display-callback, scroll-callback and input-model and
in calls to display-popup-menu) are offset by the scroll position of the pane like in ordinary scrolling. The scroll position
can be obtained by calling get-horizontal-scroll-parameters and get-vertical-scroll-parameters with
:slug-position, or from %scroll-x% and %scroll-y% inside with-geometry.

For example, evaluate this:

(capi:contain (make-instance
 'capi:output-pane
 :vertical-scroll t
 :scroll-height 600
 :visible-min-height 300
 :display-callback 'my-display-callback
 :coordinate-origin :fixed-graphics ;<<
)
 :title "With :coordinate-origin :fixed-graphics")

12 Creating Panes with Your Own Drawing and Input

155

Scroll it and you will see that the graphics are "fixed" (the green rectangle does not move) but the coordinates "scroll" (the y
coordinate increases as you scroll). In practice, this means that to get the effect of scrolling, the display-callback needs to
subtract the scroll position before drawing, or use Graphics Ports transformations, for example:

(gp:with-graphics-translation (pane (- scroll-x) (- scroll-y))
 (do-all-the-drawing))

If you do not supply scroll-callback (inherited from simple-pane) in a pane that does internal scrolling, then LispWorks
calls update-internal-scroll-parameters in response to scrolling gestures to update the internal parameters (that
updates the scroll bars themselves if needed), and then calls invalidate-rectangle, which will cause the display-
callback to be called for the whole visible area of the pane. In many cases, that is what you need, but not always.

In some cases, redisplaying the whole of the pane every time it scrolls may not be required or may be too slow, and in other
cases you will want to do other things. In these situations, performs the scrolling yourself by supplying a scroll-callback.
When you supply a scroll-callback, your function is responsible for doing anything that needs to be done to make "scrolling"
happen (which is not necessarily proper scrolling).

In general, your scroll-callback will have to call update-internal-scroll-parameters (and maybe
set-vertical-scroll-parameters or set-horizontal-scroll-parameters) to update the scroll parameters, and
get-vertical-scroll-parameters and get-horizontal-scroll-parameters to get the scroll values. Some of
these values may be initialized by the :scroll-... initargs of output-pane. scroll-callback may also need to do other
computations.

Once the scroll-callback has adjusted the internal scrolling state of the application, it needs to ensure that the pane is
redisplayed, by calling invalidate-rectangle on the area (or on each of multiple areas) that need(s) to be redisplayed.
This will then cause the display-callback of the output-pane to be called on those areas. The display-callback needs to
know how to draw the pane taking into account the internal scrolling state. It can do that by calling
get-vertical-scroll-parameters and get-horizontal-scroll-parameters (or using the %scroll-...%
variables inside with-geometry), or by using some internal scrolling state that scroll-callback has set up.

For examples of internal scrolling that do a little unconventional scrolling see:

(example-edit-file "capi/output-panes/coordinate-origin-fixed")

For an example of internal scrolling that does something different altogether (rotating) see:

(example-edit-file "capi/output-panes/fixed-origin-scrolling")

Ordinary scrolling is not only easier to use, but is also normally more efficient, because the underlying window system
handles scrolling. In particular, areas that move on the screen are just copied, without a need to redraw what is displayed.

Internal scrolling is useful in situations where what is displayed changes according to the scroll position, other than just
scrolling. With ordinary scrolling, the underlying window system calls the display-callback when scrolling happens, but only
for areas that become visible by the scroll operation. Other areas are normally just copied to their new locations, so the
program cannot change them. For example, the display callback below tries to keep a string with a yellow background at a
fixed position 100 pixels down from the top left of the pane:

(defun a-display-callback (pane x y width height)
 (let* ((scroll-y
 (capi:get-vertical-scroll-parameters pane
 :slug-position)))
 (gp:draw-string pane "A string" 0 (+ scroll-y 100)
 :background :yellow :block t)))

(capi:contain
 (make-instance 'capi:output-pane
 :vertical-scroll t
 :scroll-height 900

12 Creating Panes with Your Own Drawing and Input

156

 :visible-max-height 600
 :display-callback 'a-display-callback))

However, once you display it and try to scroll, it should be obvious that it does not work because the window system moves
the string an the display callback is not called for the area 100 pixels down from the top left of the pane.

One way of working around this kind of issue is add a scroll-callback that fixes the display, for example by calling
invalidate-rectangle, but that can become quite complex. The other way is to use internal scrolling.

Apart from the display-callback, the scroll-callback and any code that needs to know about scrolling because of the logic of
the application, the rest of your code should not need to worry about scrolling. Thus it does not actually add must complexity
to your code.

Another situation when you may prefer internal scrolling is when your code precomputes what to display based on the scroll
position, and the display-callback does minimal computation that is not substantially more expensive than the copying the
system would do. That will mean that the display-callback does not need to know about scrolling, but all your callbacks will
either have to add the scroll position to the their arguments, or work with respect to the precomputed information rather than
the whole pane. The latter is what editor-pane does.

12.5 Transient display on output-pane and subclasses

It is quite often that you want to transiently add some drawing on top of the permanent drawing of an output-pane. Most
typically, you want to allow the user to select an area by dragging the mouse while pressing a button, and you want to include
some transient graphics to indicate what they are going to select. This could simply be a rectangle, but you may want
something more complex.

Ideally, the display-callback of the pane would be fast enough to handle this, in which case you simply need to make the
display-callback draw the transient graphics. For example, in the case of a pinboard-layout, it can be done by adding a
transient pinboard-object above the other objects. This is demonstrated by the "outliner" example:

(example-edit-file "capi/graphics/pinboard-test")

Note that in this case the outliner's drawing is simple, but it could draw much more complex graphics if required.

However, that solution does not work well if the display-callback is not fast enough for these situations. The Cached Display
functionality is intended to be used in this case. There are two ways to use the Cached Display interface:

1. Use output-pane-cache-display to cache the display, and then output-pane-draw-from-cached-display to
draw from the cache. In this case you have to ensure that the display-callback knows when to use
output-pane-draw-from-cached-display, either by replacing the display-callback for the duration of the Cached
Display operation or by keeping a flag that the display-callback checks, for example:

(if (drawing-by-cached-display-p pane)
 (progn
 (output-pane-draw-from-cached-display pane x y width height)
 (do-some-transient-drawing pane))
 (real-display-callback pane x y width height))

2. Use start-drawing-with-cached-display, which replaces the display-callback, and then use
update-drawing-with-cached-display or update-drawing-with-cached-display-from-points to
update the display. This technique is illustrated in:

(example-edit-file "capi/output-panes/cached-display")

In both cases you finish using the cached display by calling output-pane-free-cached-display. The function
output-pane-cached-display-user-info can be used to hold temporary data during the operation.

12 Creating Panes with Your Own Drawing and Input

157

12 Creating Panes with Your Own Drawing and Input

158

13 Drawing - Graphics Ports

13.1 Introduction

Graphics Ports allow you to write source-compatible applications which draw text, lines, shapes and images, for different
host window systems. Graphics Ports are the destinations for the drawing primitives. They are implemented with a generic
host-independent part and a small host-specific part.

All Graphics Ports symbols are exported from the graphics-ports package, nicknamed gp.

Graphics Ports implement a set of drawing functions and a mechanism for specifying the graphics state to be used in each
drawing function call. There are four categories of graphics ports:

On-screen ports These correspond to visible windows. They are instances of output-pane or a subclass, and are
integral part of the CAPI panes system. The functionality of output-pane (other than drawing)
is discussed in 12 Creating Panes with Your Own Drawing and Input. All drawing to an
output-pane must be done inside its display-callback.

Pixmap ports These are solely for off-screen drawing. Once the drawing is completed they can be copied to
another port (typically an on-screen port, with copy-area), or converted to an image. For the
details see 13.1.2 Pixmaps and Metafiles.

Printer ports These are used for drawing to a printer. Printing is described in 16 Printing from the
CAPI—the Hardcopy API.

Metafile ports These are used for recording drawing operations so that the drawing can be realized later or
exported to a file that can read by other applications. For the details see 13.1.2 Pixmaps and
Metafiles.

13.1.1 Creating instances

Graphics ports instances are created or temporarily redirected by any of these interfaces:

On-screen ports make-instance with output-pane or any subclass (including editor-pane,
pinboard-layout and graph-pane).

Pixmap ports create-pixmap-port and with-pixmap-graphics-port.

Metafile ports with-internal-metafile and with-external-metafile.

Printer ports with-print-job and simple-print-port.

For the details, see the manual pages for the various CAPI and GRAPHICS-PORTS classes listed above.

13.1.2 Pixmaps and Metafiles

Pixmaps are graphics ports for doing off-screen drawing. You create a pixmap with with-pixmap-graphics-port or
create-pixmap-port, and draw on it using the drawing functions. You draw the contents of the pixmap on another port
(any kind of port) by copying it (using copy-area), or create an image from it using make-image-from-port. The
drawing into and the using of a pixmap can be interleaved (but not in parallel), and each time you use the pixmap you get the
result of all the drawing operations on it until this point. If the pixmap is created by with-pixmap-graphics-port it is

159

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

destroyed on exiting the scope of with-pixmap-graphics-port, otherwise you will need to destroy the pixmap when you
finish with it (using destroy-pixmap-port).

Pixmaps are used for efficiency. In general copy-area would be much faster than doing the drawing operations again for
any significant number of drawing operations. It is especially useful for drawing inside the display-callback of an
output-pane, which is called whenever part of the output pane needs redrawing, and needs to be fast to look good.

Pixmaps are also useful way of creating your own images for exporting with externalize-and-write-image.

Examples of using pixmaps:

(example-edit-file "capi/graphics/compositing-mode-simple")

(example-edit-file "capi/graphics/compositing-mode")

(example-edit-file "capi/graphics/image-scaling")

(example-edit-file "capi/graphics/images-with-alpha")

(example-edit-file "capi/graphics/pixmap-port")

(example-edit-file "capi/graphics/plot-offline")

Metafiles are graphics ports that record drawing operations to them. They are used for two purposes:

• Grouping drawing operations together.

The operations can then be drawn by one call, and on Cocoa and Windows can also be put in on the clipboard so that
another process can access it.

• Exporting the drawing to a file.

The file is in a format that other applications can also use.

You can group operations by drawing to a metafile inside with-internal-metafile which returns a metafile object, and
later drawing the metafile by using draw-metafile. You can also convert it directly to an image by
draw-metafile-to-image. Once you have finished with it you need to free the metafile by free-metafile.

It is possible to perform the same task by drawing the operations to a pixmap and then drawing the pixmap, as described
above. However, a metafile gives much better results when it is transformed, because it does the drawing with the
transformation, while with a pixmap the transformation transforms the pixels. Metafiles also give better results when the
drawing is not completely opaque.

The result of with-internal-metafile can also be put on the clipboard for other processes, by using set-clipboard

with a :plist (list :metafile metafile). LispWorks can also read a metafile from the clipboard by passing
:metafile as the format to clipboard.

You can export the drawing to a file by drawing to a metafile inside using with-external-metafile, which creates the
file when it exits.

On Microsoft Windows it creates a Windows enhanced metafile (there are several possible formats). On Cocoa and GTK+ it
creates a PDF file.

Compared to exporting images (using with-pixmap-graphics-port, make-image-from-port, and
externalize-and-write-image), the exported metafiles (PDF or Windows metafile) behave much better in
transformation and combination with other drawings. They are also simpler to use.

13 Drawing - Graphics Ports

160

LispWorks itself can read the file that was created by with-external-metafile using the functions that read images
(load-image, read-external-image).

Metafile functionality is not available on version of GTK+ before 2.8, and on Motif. The function can-use-metafile-p

can be used to check whether the GUI system associated with a screen supports metafile functionality.

Examples of metafiles:

(example-edit-file "capi/graphics/metafile")

(example-edit-file "capi/graphics/metafile-rotation")

13.2 Features

The main features of graphics ports are:

1. Each port has a "graphics state" which holds all the information about drawing parameters such as color, line thickness,
fill pattern, line-end-style and so on. A graphics state object can also be created independently of any particular graphics
port.

2. The graphics state contents can either be enumerated in each drawing function call, bound to values for the entirety of a
set of calls, or permanently changed.

3. The graphics state includes a transform which implements generalized coordinate transformations on the port's
coordinates.

4. Off-screen ports can compute the horizontal and vertical bounds of the results of a set of drawing function calls, thus
facilitating image or pixmap generation.

13.2.1 The drawing mode and anti-aliasing

Graphics ports has two drawing modes:

:compatible Compatible with LispWorks 6.0 and earlier versions.

:quality Introduced in LispWorks 6.1, allowing high quality drawing.

The main visible effect is that with drawing-mode :quality, all drawings are transformed properly.

With drawing-mode :compatible, strings and images are not scaled or rotated at all, and ellipses are not rotated correctly.
Other shapes are transformed "at the front", that is they are drawn as if the drawing function was called with transformed
coordinates. The target of copy-pixels is also transformed "at the front", that is the rectangle can be translated, but not
scaled or rotated.

With drawing-mode :quality, all drawings are fully transformed correctly. Shapes are transformed "at the back", that is
they are drawn and then the result of the drawing is transformed. Note that clear-rectangle and pixblt are not drawing
functions in this sense, and do not take transforms into account.

Another difference is that drawing-mode :quality supports anti-aliasing on Windows, and on GTK+ it adds control over
anti-aliasing. See shape-mode and text-mode on the page for graphics-state.

With drawing-mode :quality the operation value in the graphics-state is not supported and is ignored. This is because
operations do not combine sensibly with anti-aliasing and colors with alpha components. Instead, there is now compositing-
mode. For more information see the page for graphics-state.

On Microsoft Windows with drawing-mode :quality only Truetype fonts are supported.

13 Drawing - Graphics Ports

161

The drawing-mode of all graphics ports is :quality by default, except when a graphics port is made in association with
another graphics ports (for example, by create-pixmap-port), in which case the drawing-mode is inherited from the
"parent" graphics port.

All the interfaces that create graphics ports, or modify a graphics port to draw to another place, take keyword argument
:drawing-mode. Its value drawing--mode can be :quality, :compatible, or nil which is interpreted as use the default
(either inherited or the global default :quality). These interfaces are listed in 13.1.1 Creating instances.

These examples demonstrate features that are available only with drawing-mode :quality:

Rotating a string:

(example-edit-file "capi/graphics/catherine-wheel")

Using compositing-mode.

(example-edit-file "capi/graphics/compositing-mode-simple")

Using compositing-mode.

(example-edit-file "capi/graphics/compositing-mode")

Using compositing-mode, transforming an image.

(example-edit-file "capi/graphics/images-with-alpha")

13.3 Graphics state

The graphics-state object associated with each port holds values for parameters such as foreground, background,
operation, thickness, scale-thickness, mask and font which affect graphics ports drawing to that port.

The full set of parameters is described under graphics-state.

13.3.1 Setting the graphics state

The graphics state values associated with a drawing function call are set by one of three mechanisms.

1. Enumeration in the drawing function call. For example:

(draw-line port 1 1 100 100
 :thickness 10
 :scale-thickness nil
 :foreground :red)

2. Bound using macros such as with-graphics-state. For example:

(with-graphics-state (port :thickness 10
 :scale-thickness nil
 :foreground :red)
 (draw-line port 1 1 100 100)
 (draw-rectangle port 2 2 40 50 :filled t))

For common cases of locally changing the transform in the graphics state, there are specific macros:

• with-graphics-transform just changes the transform like with-graphics-state with :transform.

13 Drawing - Graphics Ports

162

• with-graphics-transform-reset allows you to ignore surrounding transformations.

• with-graphics-translation, with-graphics-post-translation, with-graphics-scale and
with-graphics-rotation perform commonly-used transformations.

• with-graphics-mask affects specifically the masking slots.

3. Set by the set-graphics-state function. For example:

(set-graphics-state port :thickness 10
 :scale-thickness nil
 :foreground :red)

The first two mechanisms change the graphics state temporarily. The last one changes it permanently in port, effectively
altering the "default" state.

13.4 Drawing functions

The section describes the various shapes and so on that you can draw with graphics ports, and lists the relevant drawing
functions. The graphics state foreground parameter is used for the drawing color.

All drawing functions must be called in the same process as the pane. You will need to arrange for that explicitly in contexts
other than callbacks on that pane. To call a function explicitly in the pane's process, use apply-in-pane-process,
apply-in-pane-process-if-alive, execute-with-interface or execute-with-interface-if-alive.

Note: Unlike images, the foreground and background colors used when drawing shapes described in this section are not pre-
multiplied. Displaying images is described in 13.10 Working with images.

Note: The full set of graphics state parameters is described under graphics-state.

13.4.1 Text

You can draw text with the functions draw-string and draw-character.

To control the font used, see 13.9 Portable font descriptions.

13.4.2 Simple lines

You can draw straight lines with the functions draw-line and draw-lines.

You can draw arcs of an ellipse with the functions draw-arc and draw-arcs.

13.4.3 Simple shapes

You can draw ellipses and polygons with the functions draw-ellipse, draw-rectangle, draw-rectangles,
draw-polygon and draw-polygons.

You can specify whether a shape is drawn in outline or is filled (with the graphics state foreground color) by the argument
filled.

For example, to clear a rectangular region of an output pane, do:

(draw-rectangle pane x y width height
 :filled t
 :foreground color
 :compositing-mode :copy

13 Drawing - Graphics Ports

163

 :shape-mode :plain)

:compositing-mode :copy is needed only when the color has alpha, and :foreground color is needed only if it is
different from the foreground in pane's graphics-state.

13.4.4 Paths

A graphics path is a series of lines, arcs and Bézier curves that together specify one or more disconnected figures to be drawn.

You can draw a path with the function draw-path.

A path can be drawn in outline or can be filled. A path can also be used as the clipping mask.

13.5 How to draw to an on-screen port

Drawing on an output-pane should almost always happen only inside its display-callback. See output-pane for more
information about this initarg.

If you want to display from outside the display-callback then you should call invalidate-rectangle or
redisplay-element, which will cause the display-callback to be called.

13.6 Graphics state transforms

Coordinate systems for windows generally have the origin (0,0) positioned at the upper left corner of the window with X
positive to the right and Y positive downwards. This is the "window coordinates" system. Generalized coordinates are
implemented using scaling, rotation and translation operations such that any Cartesian coordinates can be used within a
window. The Graphics Ports system uses a transform object to achieve this.

13.6.1 Generalized points

An (x, y) coordinate pair can be transformed to another coordinate system by scaling, rotation and translation. The first two
can be implemented using 2 x 2 matrices to hold the coefficients:

If the point P is (x, y) and it is transformed to the point Q (x', y'):

P ⇒ Q or (x, y) ⇒ (x', y'), i.e.

x' = px + ry, y' = qx + sy.

Translation can be included in this if the points P and Q are regarded as 3-vectors instead of 2-vectors, with the 3rd element
being unity:

The coefficients u and v specify the translation.

13 Drawing - Graphics Ports

164

So, the six elements (p, q, r, s, u, and v) of the 3 x 3 matrix contain all the transformation information. These elements are
stored in a list (of type transform) in the graphics-state slot transform.

Transforms can be combined by matrix multiplication to effect successions of translation, scaling and rotation operations.

Functions are provided in Graphics Ports which apply translation, scaling and rotation to a transform, combine transforms by
pre- or post-multiplication, invert a transform, perform some operations while ignoring an established transform, and so on.
The macros with-graphics-rotation, with-graphics-scale and with-graphics-translation pre-multiply a
supplied transform while a body of code is executed.

13.6.2 Drawing on screen

Drawing functions such as draw-line and draw-ellipse modify pixels, but you cannot assume that they have exactly the
same effect on all platforms. Some platforms might put pixels below and to the right of integer coordinates (x y) while others
may center the pixel at (x y).

This applies to all the drawing functions which are documented in 22 GRAPHICS-PORTS Reference Entries - see the
entries for functions with names beginning draw-.

13.7 Combining source and target pixels

This section describes how new drawings are combined with the existing pixel values in the target of the drawing to generate
the result, according to graphics state parameters compositing-mode or operation.

Note: The full set of graphics state parameters is described under graphics-state.

13.7.1 Combining pixels with :compatible drawing

When the port's drawing-mode is :compatible the graphics state parameter operation determines how the colors are
combined, and compositing-mode is ignored.

The allowed values of operation are the values of the Common Lisp constants boole-1, boole-and and so on. These are
the allowed values of the first argument to the Common Lisp function boole. See the specification of boole in the ANSI
Common Lisp standard for the full list of operations.

The color combination corresponds to the logical operation defined there, as if by calling:

(boole operation new-pixel screen-pixel)

For example, passing :operation boole-andc2 provides a graphics-state where graphics ports drawing functions
draw with the bitwise AND of the foreground color and the complement of the existing color of each pixel.

Note: Graphics State operation is not supported by Cocoa/Core Graphics so this parameter is ignored on Cocoa.

13.7.2 Combining pixels with :quality drawing

When the port's drawing-mode is :quality the graphics state parameter compositing-mode determines how the colors are
combined, and operation is ignored.

compositing-mode :over means draw over the existing values, blending alpha values if they exist.

compositing-mode :copy means that the source is written to the destination ignoring the existing values. If the source has
alpha and the target does not, that has the effect of converting semi-transparent source to solid. :copy is especially useful for
creating transparent and semi-transparent pixmap ports, which can be displayed directly or converted to images by
make-image-from-port.

13 Drawing - Graphics Ports

165

http://www.lispworks.com/documentation/HyperSpec/Body/v_b_1_b.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_b_1_b.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_boole.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_boole.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_b_1_b.htm

Further compositing-mode values are supported on later versions of Cocoa and GTK+.

13.8 Pixmap graphics ports

Pixmap graphics ports are drawing destinations which exist only as pixel arrays whose contents are not directly accessible.
They can be drawn to using the draw-thing functions (for example draw-string), they can be used as the port for loading
images using load-image, and their contents can be copied onto other graphics ports. However this copying can be
meaningless unless the conversion of colors uses the same color device on both ports. Because color devices are associated
with regular graphics ports (windows) rather than pixmap graphics ports, you have to connect a pixmap graphics port to a
regular graphics port for color conversion. This is the main role of the port argument of with-pixmap-graphics-port
and create-pixmap-port. The conversion of colors to color representations is done in the same way as for regular
graphics ports, but the pixmap graphics port's owner is used to find a color device. You can draw to pixmap graphics ports
using pre-converted colors to avoid color conversion altogether, in which case a null color owner is OK for a pixmap graphics
port.

13.8.1 Relative drawing in pixmap graphics ports

Many of the drawing functions have a relative argument. If non-nil, it specifies that when drawing functions draw to the
pixmap, the extremes of the pixel coordinates reached are accumulated. If the drawing strays beyond any edge of the pixmap
port (into negative coordinates or beyond its width or height), then the drawing origin is shifted so that it all fits on the port. If
the drawing extremes exceed the total size available, some are inevitably lost. If relative is nil, any part of the drawing
which extends beyond the edges of the pixmap is lost. If relative is nil and collect non-nil, the drawing bounds are collected
for later reading, but no relative shifting of the drawing is performed. The collected bounds are useful when you need to
know the graphics motion a series of drawing calls causes. The rest args are host-dependent. They usually include a :width
and :height pair.

13.9 Portable font descriptions

Portable font descriptions are designed to solve the following problems:

• Specify enough information to uniquely determine a real font.

• Query which real fonts match a partial specification.

• Allow font specification to be recorded and reused in a later run.

All the functions described below are exported from the gp package.

You can obtain the names of all the fonts which are available for a given pane by calling list-all-font-names, which
returns a list of partially-specified font descriptions.

Portable font descriptions are used only for lookup of real fonts and for storing the parameters to specify when doing a font
lookup operation. To draw text in a specified font using the Graphics Ports drawing functions, supply in the graphics state a
font object as returned by find-matching-fonts and find-best-font.

13.9.1 Font attributes and font descriptions

Font attributes are properties of a font, which can be combined to uniquely specify a font on a given platform. There are
some portable attributes which can be used on all platforms; other attributes are platform-specific and will be ignored or
signal errors when used on the wrong platform.

Font descriptions are externalizable objects which contain a set of font attributes. When using a font description in a font
lookup operation, missing attributes are treated as wildcards (as are those with value :wild) and invalid attributes signal
errors. The result of a font lookup contains all the attributes needed to uniquely specify a font on that platform.

13 Drawing - Graphics Ports

166

The :stock font attribute is special: it can be used to reliably look up a system font on all platforms.

Font descriptions can be manipulated using the functions merge-font-descriptions and
augment-font-description.

These are the current set of portable font attributes and their portable types:

Set of portable font attributes

Attribute Possible values Comments

:family string Values are not portable.

:weight (member :normal :bold)

:slant (member :roman :italic)

:size (or (eql :any) (integer 0 *)
)

:any means a scalable font

:stock (member :system-font :system
-fixed-font)

Stock fonts are guaranteed to exist.

:charset keyword

13.9.2 Fonts

Fonts are the objects which are actually used in drawing operations. They are made by a font lookup operation on a pane,
using a font description as a pattern.

Examples of font lookup operations are find-best-font and find-matching-fonts.

Once a font object is resolved you can read its properties such as height, width and average width. The functions
get-font-height, get-font-width and get-font-average-width and so on need a pane that has been created. In
general, you need to call these functions within interface-display, or a display-callback or possibly a create-callback.
See the manual page for interface for more information about these initargs.

13.9.3 Font aliases

You can define font aliases, which map a keyword symbol to some font or font description, using define-font-alias.
You can then use this the keyword as the font for CAPI panes.

13.10 Working with images

Graphics Ports supports drawing images, and also reading/writing them from/to file via your code. A wide range of image
types is supported. Also, several CAPI classes support the same image types.

To draw an image with Graphics Ports, you need an image object which is associated with an instance of output-pane (or
a subclass of this). You can create an image object from:

• A file of recognized image type.

• A registered image identifier (see 13.10.4 Registering images).

• An external-image object.

• A graphics port.

13 Drawing - Graphics Ports

167

Draw the image to the pane by calling draw-image. Certain images ("Plain Images") can be manipulated via the Image
Access API. The image should be freed by calling free-image when you are done with it.

The CAPI classes image-pinboard-object, button, list-panel, list-view, tree-view, toolbar,
toolbar-button and toolbar-component all support images. There is also limited support for images in menu. These
classes handle the drawing and freeing for you.

13.10.1 Image formats supported for reading from disk and drawing

This table lists the formats supported at the time of writing:

Operating system and supported image types

OS Supported Image Types

Microsoft Windows BMP, DIB, GIF, JPEG, PNG, TIFF, EMF, ICO

macOS BMP, DIB, GIF, JPEG, TIFF, PICT and many others.
Also EPS, PDF

GTK+ BMP, DIB, GIF, JPEG, PNG, TIFF and many others.

X11/Motif BMP, DIB, GIF, JPEG, PNG, TIFF, XPM, PGM, PPM

Functions which load images from a file attempt to identify the image type from the file type.

Call the function list-known-image-formats to list the formats that the current platform supports for reading and
drawing.

Note: On X11/Motif, LispWorks uses the freeware imlib2 library on Linux, FreeBSD and macOS, and imlib on Solaris.

Note: On Microsoft Windows, ICO images are supported for certain situations such as buttons and drawing images. See
button and draw-image for details.

Note: On Microsoft Windows, LispWorks additionally supports Windows Icon files with scaling - see load-icon-image
for details.

Note: On Microsoft Windows, only bitmaps with maximum 24 bits per pixel are supported.

Note: LispWorks 4.3 and previous versions supported only Bitmap images.

13.10.2 Image formats supported for writing to disk

Graphic images can be written to files in several formats, using externalize-and-write-image.

All platforms can write at least BMP, JPG, PNG and TIFF files. Call the function list-known-image-formats with
optional argument for-writing-too t to list the formats that the current platform supports for writing.

On Microsoft Windows and Cocoa you can also write GIF files, while on GTK+ you can also write ICO and CUR (cursor)
files. The cursor files that are written with GTK+ can be used on Windows and Cocoa, although on Cocoa it does not
recognize the hot-spot in a CUR file.

There is a simple example of writing a PNG image here:

(example-edit-file "capi/graphics/images-with-alpha")

13 Drawing - Graphics Ports

168

13.10.3 External images

An External Image is an intermediate object. It is a representation of a graphic but is not associated with a port and cannot be
used directly for drawing. It is a Lisp object which can be loaded into Lisp and saved in a LispWorks image created by
save-image or deliver.

An object of type external-image is created by reading an image from a file, or by externalizing an image object, or by
copying an existing external-image. Or, if you have the image bitmap data, you can create one directly as in this
example:

(example-edit-file "capi/buttons/buttons")

The external-image contains the bitmap data, potentially compressed. You can copy external-image objects, or write
them to file, or compress the data.

You cannot query the size of the image in an external-image object directly. To get the dimensions without actually
drawing it on screen see 13.8 Pixmap graphics ports.

An external-image can be written to a file using write-external-image. If you create an image and want to
externalize it to write it to file, follow this example:

(let ((image (gp:make-image-from-port pane 10 10 200 200)))
 (unwind-protect
 (gp:externalize-and-write-image pane image filename)
(gp:free-image pane image)))

13.10.3.1 Converting an external image

Convert an external-image to an object of type image ready for drawing to a port in several ways as described in 13.10.5
Making an image that is suitable for drawing. Such conversions are cached but you can remove the caches by
clear-external-image-conversions.

You can also convert an image to an external-image by calling externalize-image.

13.10.3.2 Transparency and the alpha channel

Graphics ports images support an alpha channel, as long as the image format does.

An External Image representing an image in a format with a color table but with no alpha channel (such as 8-bit BMP) can
simulate transparency by specifying an index to represent the transparent color. When converted this color is replaced by the
background color of the port (which is documented in simple-pane).

You can specify the transparent color by:

(gp:read-external-image file :transparent-color-index 42)

or by:

(setf
 (gp:external-image-transparent-color-index
 external-image) 42)

You can use an image tool such as Gimp (www.gimp.org) to figure out the transparent color index.

On platforms other than Motif you can actually make the background of such an image format truly transparent when
displayed. To do this, supply transparent-color-index as a cons (index . :transparent).

13 Drawing - Graphics Ports

169

http://www.gimp.org

Note: transparent-color-index works only for images with a color map - those with 256 colors or less.

13.10.4 Registering images

One way to load an image is via a registered image identifier.

Registering an external image is the way to pre-load images while building an application. To do this, establish a registered
image identifier by calling register-image-translation at build time:

(gp:register-image-translation
 'info-image
 (gp:read-external-image "info.bmp"
 :transparent-color-index 7))

Then at run time obtain the image object by:

(gp:load-image port 'info-image)

13.10.5 Making an image that is suitable for drawing

To create an image object suitable for drawing on a given pane, use one of convert-external-image,
read-and-convert-external-image, load-image, make-image-from-port, make-sub-image,
make-scaled-sub-image or (on Microsoft Windows) load-icon-image.

Images need to be freed after use. When the pane that an image was created for is destroyed, the image is freed automatically.
However if you want to remove the image before the pane is destroyed, you must make an explicit call free-image. If the
image is not freed, then a memory leak will occur.

Another way to create an image object is to supply a registered image identifier in a CAPI class that supports images. For
example you can specify an image in an image-pinboard-object. Then, an image object is created implicitly when the
pinboard object is displayed and freed implicitly when the pinboard object is destroyed.

In all cases, the functions that create the image object require the pane to be already created. So if you are displaying the
image when first displaying your window, take care to create the image object late enough, for example in the :before
method of interface-display on the window's interface class, or in the first :display-callback of the pane.

13.10.6 Querying image dimensions

To obtain the pixel dimensions of an image, load the image using load-image and then use the readers image-width and
image-height. The first argument to load-image must be a pane in a displayed interface.

To query the dimensions before displaying anything you can create and "display" an interface made with the
:display-state :hidden initarg. Call load-image with this hidden interface and your external-image object, and
then use the readers image-width and image-height.

13.10.7 Drawing images

The function to draw an image is draw-image.

As with the other drawing functions, this must be called in the same process as the pane, as outlined in 13.4 Drawing
functions.

13 Drawing - Graphics Ports

170

13.10.8 Image access

You can read and write pixel values in an image via an Image Access object, but only if the image is a Plain Image. You can
ensure you have a Plain Image by using the result of:

(load-image pane image :force-plain t)

To read and/or write pixel values, follow these steps:

1. Start with a Graphics Port (for example an output-pane) and an image object associated with it, which is a Plain
Image. See above for how to create an image object.

2. Construct an Image Access object by calling make-image-access.

3. To read pixels from the image, first call image-access-transfer-from-image on the Image Access object. This
notionally transfers all the pixel data from the window system into the access object. It might do nothing if the window
system allows fast access to the pixel data directly. Then call image-access-pixel with the coordinates of each pixel
(or use image-access-pixels-to-bgra). The values are color representations like those returned from
convert-color and can be converted to RGB using unconvert-color if required.

4. To write pixels to the image, you must have already called image-access-transfer-from-image. Then call
(setf image-access-pixel) with the coordinates of each pixel (or use image-access-pixels-from-bgra) to
write pre-multiplied pixel RGB values and then call image-access-transfer-to-image on the Image Access
object. This notionally transfers all the pixel data back to the window system from the access object. It might do nothing
if the window system allows fast access to the pixel data directly.

5. Free the image access object by calling free-image-access on it.

It is also possible to get all the pixels into a single vector, where each color is represented by four elements, using
image-access-pixels-from-bgra, and to change all the pixels in the image to values from a vector using
image-access-pixels-to-bgra. When accessing many pixels, using these functions and accessing the vector is much
faster than using the single pixel access.

There is an example that demonstrates the uses of Image Access objects in:

(example-edit-file "capi/graphics/image-access")

This further example demonstrates the uses of Image Access objects with colors that have an alpha component:

(example-edit-file "capi/graphics/image-access-alpha")

13.10.8.1 Pre-multiplied pixel values in images

The color values that are received and set using Image Access are premultiplied, which means that the value of each of the
three components (Red, Green and Blue) are already multiplied by the value of the alpha. This is different from the way
colors are represented elsewhere. The functions color-to-premultiplied and color-from-premultiplied can be
used the convert between premultiplied colors and ordinary colors, although they lose some precision in the process.

For example, the form below creates an image from a pixmap filled with a color that has alpha 0.5. When accessing the
image using Image Access, the values in the color that it returned are half of the values in the original color.

(let* ((initial-color (color:make-rgb 0.8 0.6 0.4 0.5))
 (image-pixel
 (let ((pane (capi:editor-pane
 (capi:find-interface 'lw-tools:listener))))
 ;; Make a temporary pixmap filled with the
 ;; initial-color and create a gp:image from it

13 Drawing - Graphics Ports

171

 (let ((image (gp:with-pixmap-graphics-port
 (pixmap pane 10 10
 :background initial-color
 :clear t)
 (gp:make-image-from-port pixmap))))
 ;; Create a gp:image-access, read
 ;; a pixel and unconvert it
 (let ((image-access (gp:make-image-access
 pane image)))
 (gp:image-access-transfer-from-image
 image-access)
 (let ((pixel (color:unconvert-color
 pane
 (gp:image-access-pixel
 image-access 0 0))))
 (gp:free-image-access image-access)
 (gp:free-image pane image)
 pixel))))))
 (flet ((output-color (string color)
 (format t
 "~%~a~28t: Red ~4,2f, Green ~4,2f, Blue ~4,2f"
 string
 (color:color-red color)
 (color:color-green color)
 (color:color-blue color))))
 (output-color "Initial-color"
 initial-color)
 (output-color "premultiplied"
 (color:color-to-premultiplied initial-color))
 (output-color "In the image"
 image-pixel)
 (output-color "Pixel un-premultiplied"
 (color:color-from-premultiplied image-pixel))))

13.10.9 Creating external images from Graphics Ports operations

To create an external-image object from graphics ports operations, use with-pixmap-graphics-port, and in the
scope of it do the drawing and then use make-image-from-port to create an image object. You can then use
externalize-image or externalize-and-write-image to externalize the image.

(defun record-picture (output-pane)
 (gp:with-pixmap-graphics-port
 (port output-pane
 400 400
 :clear t
 :background :red)
 (gp:draw-rectangle port 0 0 200 200
 :filled t
 :foreground :blue)
 (let ((image (gp:make-image-from-port port)))
 (gp:externalize-image port image))))

Here output-pane must be a displayed instance of output-pane (or a subclass). The code does not affect the displayed pane.

If you do not already display a suitable output pane, you can create an invisible one like this:

(defun record-picture-1 ()
 (let* ((pl (make-instance 'capi:pinboard-layout))
 (win (capi:display
 (make-instance 'capi:interface
 :display-state :hidden
 :layout pl))))

13 Drawing - Graphics Ports

172

 (prog1 (record-picture pl)
 (capi:destroy win))))

Note: There is no reason to create and destroy the invisible interface each time a new picture is recorded, so for efficiency
you could cache the interface object and use it repeatedly.

13 Drawing - Graphics Ports

173

14 Graphic Tools drawing objects

The drawing objects of Graphic Tools add a mechanism to creates a hierarchy of drawing, when a "drawing" is (typically) a
simple Graphics Ports drawing operation. The hierarchy specifies the geometry of each node in the hierarchy, so the whole
group of drawings can be manipulated as a single object.

The lower level interface allows you to create drawing objects and manipulate them. The higher level interface allows you to
generate graphs of functions or bar charts, where "generate" means create a hierarchy of drawing objects. The higher level
functions are useful on their own, but they also give examples of how to create high-level objects from drawing objects. You
can look at their output to get a better idea how to write your own Graphic Tools code.

The Graphic Tools interface is defined in the package LW-GT. To use it, you need to load the "graphic-tools" module:

(require "graphic-tools")

14.1 Lower level - drawing objects and objects displayers

The drawing objects are instances of subclasses of drawing-object. The term "drawing-object-spec" refers to either a
drawing-object or a list of "drawing-object-specs". The drawing objects hierarchy is made of "drawing-object-specs".

The leaf nodes in the hierarchy are drawing-objects which actually do the drawing, typically by calling a Graphics Ports
drawing function (for example draw-line). You generate such a drawing-object by using any of the
lw-gt:make-draw-… functions, for example make-draw-line. You can also have a drawing-object that calls an
arbitrary function by using make-a-drawing-call.

The non-leaf nodes in the hierarchy are made by instances of compound-drawing-object. compound-drawing-object
has a sub-object slot, which contains a "drawing-object-spec" (either a list of "drawing-object-specs" or a
drawing-object). Since the elements in lists are themselves "drawing-object-specs", that is can also be lists, part of the
hierarchy can be done in lists of lists.

The main function of compound-drawing-object is to define the geometry of the drawing. The actual objects are
instances of geometry-drawing-object which is a subclass of compound-drawing-object. These objects define the
geometry, by rebinding the Graphics Ports transform, and then drawing their sub-object in this context. The width and height
of the compound-drawing-object are also passed down, so geometry-drawing-objects inside the sub-object can use
it when computing their own geometry.

You create a geometry-drawing-object by using one of:

position-object Defines the rectangle for drawing the sub-object.

fit-object Scales its sub-object.

position-and-fit-object

Both positions and scales.

rotate-object Rotates its sub-object.

make-absolute-drawing* and make-absolute-drawing

Draw their sub-object in the translated position, but without scaling or rotation.

174

Lists just draw their elements in the same geometry as their "parent".

To actually be drawn, the root of the hierarchy must be stored in the drawing-object slot of an "objects displayer", which is
either an objects-displayer (subclass of pinboard-layout), or pinboard-objects-displayer (subclass of
pinboard-object). The objects-displayer or pinboard-objects-displayer displays the hierarchy starting from
the object in their drawing-object slot, passing its own geometry. The object in the drawing-object slot will typically be a list
(which then draws its elements) or a compound-drawing-object (which then draws its sub-object with modified
geometry). This process recurses and draws the entire hierarchy.

By default, both objects-displayer and pinboard-objects-displayer use an internal metafile as a way to cache
the drawing and also to improve resizing.

drawing-objects do not have a permanent notion of "parent", and can appear concurrently as "children" of many
"parents", and the same applies to a list in the hierarchy. The objects do not have any specific thread information and drawing
does not modify anything in the objects. Therefore "drawing-object-specs" can appear concurrently in many places, whether
inside the same hierarchy or in different hierarchies.

For example, the following do-object function takes an object, and positions it at the bottom (with no positioning), middle
and top. It then groups these three occurrences in a list ("drawing-object-spec"). It then uses "drawing-object-spec" twice,
once inside pinboard-objects-displayer, and once in an objects-displayer that also displays the
pinboard-objects-displayer. Thus the object is displayed six times: bottom, middle and top of the
pinboard-objects-displayer, and bottom, middle and top of objects-displayer.

(defun do-object (the-object height)
 (let* ((bottom-one the-object)
 (middle-one
 (lw-gt:position-object the-object
 :bottom-ratio 0.5
 :bottom-margin (/ height -2)))
 (top-one
 (lw-gt:position-object the-object
 :bottom-ratio 1
 :bottom-margin (- height)))
 (drawing-object-spec
 (list bottom-one middle-one top-one))
 (pinboard-object
 (lw-gt:make-pinboard-objects-displayer
 drawing-object-spec
 :x 80
 :y 40
 :width 100
 :height 200)))
 (capi:contain
 (make-instance 'lw-gt:objects-displayer
 :description (list pinboard-object)
 :drawing-object drawing-object-spec))))

We then use do-object to display a red rectangle:

(do-object
 (lw-gt:make-draw-rectangle 0 0 40 20 :filled t :foreground :red)
 20)

You see that there are six rectangles. When you resize the pane, the three rectangles on the left, which are the rectangles in
the drawing-object slot of the objects-displayer, resize too. That is because the metafile of the objects-displayer
resizes. The three rectangles of the pinboard-objects-displayer do not resize, because the
pinboard-objects-displayer does not change its size.

The function can be used for more complex objects:

14 Graphic Tools drawing objects

175

(do-object
 (list
 (lw-gt:make-draw-rectangle 0 0 40 20
 :filled t :foreground :red)
 (lw-gt:make-draw-ellipse 20 10 20 10
 :filled t :foreground :blue)
 (lw-gt:make-draw-line 0 10 40 10
 :filled t :foreground :green))
 20)

The next example uses rotate-object. This first shifts the object to the right and down by using position-object,
rotates the objects six times, rotating pi/3 each time, around a point which is in the middle of the height of the object, and
distance of height to its left. Note that consequently the actual position of the copies is quite different from where
position-object put them, which is a slightly counter-intuitive feature of rotate-object when using a rotating point
which is not the center of the object:

(defun do-rotating (the-object height)
 (let ((shifted
 (lw-gt:position-object the-object
 :left-margin height
 :bottom-margin (- (/ height 2)))))
 (let* ((rotated-copies
 (loop repeat 6
 for angle from 0 by (/ pi 3)
 collect (lw-gt:rotate-object shifted angle)))
 ;; position the result in the middle of the pane
 (positioned-drawing
 (lw-gt:position-object rotated-copies
 :bottom-ratio 0.5
 :left-ratio 0.5)))
 (capi:contain
 (make-instance 'lw-gt:objects-displayer
 :drawing-object positioned-drawing)))))

and rotate the same object that we used above:

(do-rotating
 (list (lw-gt:make-draw-rectangle 0 0 40 20
 :filled t :foreground :red)
 (lw-gt:make-draw-ellipse 20 10 20 10
 :filled t :foreground :blue)
 (lw-gt:make-draw-line 0 10 40 10
 :filled t :foreground :green))
 20)

A sub-hierarchy inside a hierarchy can be modified destructively by setting the sub-object slot of
compound-drawing-objects in the hierarchy. For example, we use the function do-object above to display rectangles,
and then make it switch between rectangles and ellipses:

(let ((rect
 (lw-gt:make-draw-rectangle 0 0 40 20
 :filled t :foreground :red))
 (ellipse
 (lw-gt:make-draw-ellipse 20 10 20 10
 :filled t :foreground :blue)))
 (let ((my-object
 ;; Use lw-gt:position-object to create a
 ;; compound-drawing-object, without actual positioning
 (lw-gt:position-object rect)))
 (let ((the-pane (do-object my-object 20)))
 (dotimes (x 20)
 (sleep 0.5)

14 Graphic Tools drawing objects

176

 ;; modify the hierarchy
 (setf (lw-gt:compound-drawing-object-sub-object my-object)
 (if (evenp x) ellipse rect))
 ;; make it redraw
 (lw-gt:force-objects-redraw the-pane)))))

In principle you can also modify the hierarchy by setting the cl:car of a cons in a list inside the hierarchy, though that will
make your code less clear. Do not set the cl:cdr of conses in these lists.

As the example above shows, you do not need to do modifications in the pane thread (in contrast to operations on CAPI
objects). If you modify the hierarchy while it is being drawn, the drawing in this drawing operation may be mixed up.
However, normally you will want to force it to redraw using force-objects-redraw, which will draw correctly.

To make it easier to modify objects in the hierarchy, the functions that generate compound-drawing-objects all take
keyword arguments data and function, which then are used to update the object automatically by calls to
compute-drawing-object-from-data or recurse-compute-drawing-object. For example, the switch example
above can be written using this mechanism, without having to remember my-object:

(defun my-updating-function (data)
 (car data))

(let ((data (list nil)))
 (let ((rect
 (lw-gt:make-draw-rectangle 0 0 40 20 :filled t :foreground :red))
 (ellipse
 (lw-gt:make-draw-ellipse 20 10 20 10 :filled t :foreground :blue)))
 (let ((my-object
 ;; Use position-object to create a compound-drawing-object,
 ;; without actual positioning, but with updating information
 (lw-gt:position-object rect
 :function 'my-updating-function
 :data data)))
 (let ((the-pane (do-object my-object 20)))
 (dotimes (x 20)
 (sleep 0.5)
 (setf (car data) (if (evenp x) ellipse rect))
 (lw-gt:recurse-compute-drawing-object the-pane))))))

Because drawing-objects do not actually know which hierarchy they are in, they cannot tell their containing pane to
redraw. We used force-objects-redraw in the first example above, and in the last example above we rely the fact that
recurse-compute-drawing-object, when called on a pane, does this itself. In general, to actually get the pane redrawn,
you will have to have a call of some function (force-objects-redraw or a function that calls it) on either the pane or on
a pinboard-objects-displayer.

Note that just invalidating the pane (by invalidate-rectangle) does not cause redrawing of the drawing-objects
when a metafile is used (the default case). That is intentional, to make exposure and resize fast.

Modifying the hierarchy is thread-safe, in that threads modifying the hierarchy in parallel, and even parallel to it being drawn,
will not cause a problem on its own. However there is no guard against different threads making conflicting changes. For
example, if thread A sets the sub-object of a compound-drawing-object, and at the same time thread B sets something
inside the sub-object, then the change that thread B made will not be visible in the hierarchy. You will have to guard against
such conflicts.

The drawing-object code cannot cope with a circular hierarchy.

14 Graphic Tools drawing objects

177

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

14.2 Higher level - drawing graphs and bar charts

The higher level Graphic Tools functions all generate a "drawing-object-spec" (a drawing-object or a list) which can then
be displayed by inclusion in the hierarchy under an objects-displayer (potentially via a
pinboard-objects-displayer).

The functions are geared towards producing graphs of (mathematical) functions and bar charts. The function
generate-grid-lines is used to generate grid of lines. The function generate-labels is used to generate labels, with
the intention that these labels will match the grid lines.

The functions generate-graph-from-pairs and generate-graph-from-graph-spec are used to generate the actual
graph. The graph is actually a sequence of straight lines connecting consecutive points (neighbouring points in the x
dimension), but by giving it enough points the graph can be made to look smooth. Currently there is no smoothing option.

generate-graph-from-pairs receives the points as a list of lists (x y). generate-graph-from-graph-spec takes a
basic-graph-spec which you make by calling make-basic-graph-spec. The graph spec contains a function which
computes the y value corresponding to the supplied x value, and information (start, step and range) which specifies the x
values to use. The basic-graph-spec is intended to simplify writing code that repeatedly draws graphs with similar
attributes.

generate-bar-chart generates the bars of a bar chart, with an optional title for each bar.

To show something useful, you will normally combine the results of generate-grid-lines, generate-labels and one
of generate-graph-from-pairs, generate-graph-from-graph-spec or generate-bar-chart (typically by just
using cl:list), and then position and scale the result using the geometry functions (position-object, fit-object,
position-and-fit-object), and the result of this will be put into a hierarchy under an objects-displayer or
pinboard-objects-displayer.

Note that when you scale (using fit-object or position-and-fit-object), you effectively change the units of
drawing inside the scaled object. You can therefore generate the graph in its natural coordinates, and then put in the correct
dimensions on the screen. The example below generates a graph with size of 18x9, and then uses fit-object with the same
width and height, which scales the graph to fit the full area that it is supplied. We also give it some margin using
position-object.

We then use the result (fitted-graph-with-margin) both as the drawing-object of a pinboard-objects-displayer and the
drawing-object of an objects-displayer which also contains the pinboard-objects-displayer. In the
pinboard-objects-displayer we also add a red rectangle to show the area of the pinboard-objects-displayer.
The result is that the the same graph is displayed twice: once inside pinboard-objects-displayer and once inside the
whole objects-displayer. If you resize the window, you see that the outer graph resizes, while the inner graph stays the
same (because the pinboard-objects-displayer does not change size).

(let* ((graph
 (lw-gt:generate-grid-lines :horizontal-count 18
 :vertical-count 9
 :right-thickness 3
 :major-x-step 4
 :major-y-step 3
 :thickness 1
 :major-thickness 2
 :major-color :blue
 :color :green))
 (fitted-graph (lw-gt:fit-object graph 18 9))
 (fitted-graph-with-margin
 (lw-gt:position-object fitted-graph
 :left-margin 10
 :right-margin 10
 :top-margin 10
 :bottom-margin 10))
 (red-rectangle
 (lw-gt:fit-object

14 Graphic Tools drawing objects

178

http://www.lispworks.com/documentation/HyperSpec/Body/a_list.htm

 (lw-gt:make-draw-rectangle 0 0 1 1
 :foreground :red
 :thickness 2
 :scale-thickness nil)
 1 1))
 (pinboard-object (lw-gt:make-pinboard-objects-displayer
 (list red-rectangle fitted-graph-with-margin)
 :x 45 :y 45 :width 400 :height 400)))
 (setq *pane* (capi:contain (make-instance 'lw-gt::objects-displayer
 :description (list pinboard-object)
 :drawing-object fitted-graph-with-margin
)
 :best-width 500 :best-height 500)))

For the pinboard-object to resize, you need to resize it explicitly.

The following function moves the first pinboard object:

(defun move-first-pinboard-object (pane x y width height)
 (capi:apply-in-pane-process
 pane
 #'(lambda (pane x y width height)
 (let ((po (car (capi:layout-description pane))))
 (setf (capi:static-layout-child-geometry po)
 (values x y width height))))
 pane x y width height))

Now this moves the pinboard object, and resizes the grid inside it (as well as the red rectangle):

(move-first-pinboard-object *pane* 20 60 420 300)

More extended are examples are in:

(example-edit-file "graphic-tools/bar-chart-example")

(example-edit-file "graphic-tools/graph-example")

14 Graphic Tools drawing objects

179

15 The Color System

The LispWorks Color System allows you to manipulate colors, which are used as the color values in Graphics Ports and
CAPI functions. For example, to draw a string in red, you call:

(gp:draw-string pane string x y :foreground :red)

The value of :foreground (:red above) must be a color specification that is recognized by the Color System (:red is
recognized because it is part of the color database that is pre-loaded)..

In the LispWorks Color System, colors can be represented in two ways:

1. A color spec, which specifies a color model (for example RGB) and the values of the parameters in this model (for
example the parameters in RGB would be the values of the red, green and blue components, and optionally the alpha
value).

2. A symbol, normally a keyword. For a symbol to be used a color, it must be associated with a color spec, either directly
or via another symbol. Symbols that are used as colors are looked up in a color database. The LispWorks image is
supplied with a large color database already loaded (approximately 660 entries), and you can add your own entries using
define-color-alias or by loading your own color database.

The LispWorks Color System allows you to:

• Make your own color specs in RGB, HSV or GRAY color models, and access components of color specs. See 15.1
Color specs.

• Define new association between symbols and colors, query which association exist, and find the color spec associated
with a symbol. See 15.2 Color aliases.

• Convert color specs between color models. See 15.3 Color models.

• Load a color database from a file of color descriptions. See 15.4 Loading the color database.

• Define new color models. See 15.5 Defining new color models.

The Color System symbols are exported from the COLOR package, and all symbols mentioned in this chapter are assumed to
be external to this package unless otherwise stated.

15.1 Color specs

A color spec is an object which numerically defines a color in some color-model. For example the object returned by the call:

(color:make-rgb 0.0 1.0 0.0) =>
#(:RGB 0.0 1.0 0.0)

defines the color green in the RGB color model. Generally short-floats are used; this results in the most efficient color
conversion process. However, any float type can be used.

To find out what color-spec is associated with a color name, use the function get-color-spec. It returns the color-spec
associated with a symbol. If there is no color-spec associated with color-name, this function returns nil. If color-name is the
name of a color alias, the color alias is dereferenced until a color-spec is found.

180

Color-specs are made using standard functions make-rgb, make-hsv and make-gray. For example:

(make-rgb 0.0s0 1.0s0 0.0s0)
(make-hsv 1.2s0 0.5s0 0.9s0)
(make-gray 0.66667s0)

To create a color spec with an alpha component using the above constructors, pass an extra optional argument. For example
this specifies green with 40% transparency:

(make-rgb 0.0s0 1.0s0 0.0s0 0.6s0)

You can also make a transparent color using color-with-alpha:

(color-with-alpha color-spec 0.8s0)

Note that the alpha component is not supported on Motif.

The function color-model returns the model in which a color-spec object has been defined.

The components of color specs can be accessed using the following functions:

RGB model color-red, color-green, color-blue.

HSV model color-hue, color-saturation, color-value.

Gray model color-level.

When these readers are supplied a color spec of their model, they just return the corresponding component. If they are
supplied a color spec of another model, they compute the component.

The function color-alpha can be used to access the alpha value of a color (its opacity). If the color does not have an alpha,
color-alpha returns 1.0.

15.2 Color aliases

You can enter a color alias in the color database using the function define-color-alias. You can remove an entry in the
color database using delete-color-translation.

define-color-alias makes an entry in the color database under a name, which should be a symbol. LispWorks by
convention uses keyword symbols. The name points to either a color-spec or another color name (symbol):

(define-color-alias :wire-color :darkslategray)

Attempting to replace an existing color-spec in the color database results in an error. By default, replacement of existing
aliases is allowed but there is an option to control this (see the manual page for define-color-alias).

delete-color-translation removes an entry from the color-database. Both original entries and aliases can be removed:

(delete-color-translation :wire-color)

As described in 15.1 Color specs, the function get-color-spec returns the color-spec associated with a color alias. The
function get-color-alias-translation returns the ultimate color name for an alias:

(define-color-alias :lispworks-blue
 (make-rgb 0.70s0 0.90s0 0.99s0))
(define-color-alias :color-background
 :lispworks-blue)

15 The Color System

181

(define-color-alias :listener-background
 :color-background)

(get-color-alias-translation :listener-background)
 => :lispworks-blue
(get-color-alias-translation :color-background)
 => :lispworks-blue

There is a system-defined color alias :transparent which is useful when specified as the background of a pane. It is
currently supported only on Cocoa. For example:

(capi:popup-confirmer
 (make-instance 'capi:display-pane
 :text
 (format nil "The background of this pane~%is transparent")
 :background :transparent)
 "")

To find out what colors are defined in the color database, use the function apropos-color-names. For example:

(apropos-color-names "RED") =>
 (:ORANGERED3 :ORANGERED1 :INDIANRED3 :INDIANRED1
 :PALEVIOLETRED :RED :INDIANRED :INDIANRED2
 :INDIANRED4 :ORANGERED :MEDIUMVIOLETRED
 :VIOLETRED :ORANGERED2 :ORANGERED4 :RED1 :RED2 :RED3
 :RED4 :PALEVIOLETRED1 :PALEVIOLETRED2 :PALEVIOLETRED3
 :PALEVIOLETRED4 :VIOLETRED3 :VIOLETRED1 :VIOLETRED2
 :VIOLETRED4)

For information about only aliases or only original entries, use apropos-color-alias-names or
apropos-color-spec-names respectively.

To get a list of all color names in the color database, call get-all-color-names.

15.3 Color models

Three color models are defined by default: RGB, HSV and GRAY. RGB and HSV allow specification of any color within
conventional color space using three orthogonal coordinate axes, while gray restricts colors to one hue between white and
black. All color models contain an optional alpha component, though this is used only on Cocoa and Windows.

Color models defined by default

Model Name Component: Range

RGB Red Green Blue RED (0.0 to 1.0)
GREEN (0.0 to 1.0)
BLUE (0.0 to 1.0)
ALPHA (0.0 to 1.0)

HSV Hue Saturation Value HUE (0.0 to 5.99999)
SATURATION (0.0 to 1.0)
VALUE (0.0 to 1.0)
ALPHA (0.0 to 1.0)

GRAY Gray GRAY (0.0 to 1.0)
ALPHA (0.0 to 1.0)

15 The Color System

182

The Hue value in HSV is mathematically in the open interval [0.0 6.0). All values must be specified in floating point values.

You can convert color-specs between models using the available ensure-<model> functions. For example:

(setf green (make-rgb 0.0 1.0 0.0))
 => #(:RGB 0.0 1.0 0.0)
(eq green (ensure-rgb green)) => T

(ensure-hsv green) => #(:HSV 2.0 0.0 1.0)
(eq green (ensure-hsv green)) => NIL

(ensure-rgb (ensure-hsv green)) => #(:RGB 0.0 1.0 0.0)
(eq green (ensure-rgb (ensure-hsv green))) => NIL

Of course, information can be lost when converting to GRAY:

(make-rgb 0.3 0.4 0.5) => #(:RGB 0.3 0.4 0.5)
(ensure-gray (make-rgb 0.3 0.4 0.5))
 => #(:GRAY 0.39999965)
(ensure-rgb (ensure-gray
 (make-rgb 0.3 0.4 0.5)))
 => #(:RGB 0.39999965 0.39999965 0.39999965)

There is also ensure-color which takes two color-spec arguments. It converts if necessary the first argument to the same
model as the second. For example:

(ensure-color (make-gray 0.3) green)
 => #(:RGB 0.3 0.3 0.3)

ensure-model-color takes a model as the second argument. For example:

(ensure-model-color (make-gray 0.3) :hsv)
 => #(:HSV 0 1.0 0.3)

The function colors= compares two color-spec objects for color equality.

The function color-level returns the gray level of a color-spec, and the functions color-blue, color-green,
color-red, color-hue, color-saturation and color-value return the associated components.

The color models above represent the color in a portable (and externalizable) way. To actually use it, the system needs to
convert to the representation used by the underlying display system. The user can do the conversion using convert-color.
The result is called a "converted color" or "color representation" or "color-rep", and is more efficient to use in drawing
functions, because it saves the system from doing the conversion each time it uses the color.

15.4 Loading the color database

You can load new color definitions into the color database using read-color-db and load-color-database.

Given a color definition file my-colors.db of lines like these:

#(:RGB 1.0s0 0.980391s0 0.980391s0) snow
#(:RGB 0.972548s0 0.972548s0 1.0s0) GhostWhite

call:

(load-color-database (read-color-db "my-colors.db"))

15 The Color System

183

The color database is stored in the variable *color-database*. To clear the database use the form:

(setf *color-database* (make-color-db))

Note: You should do this before starting the LispWorks IDE (that is, before env:start-environment is called) or before
your application's GUI starts. Be sure to load new color definitions for all the colors used in the GUI. The initial colors were
obtained from the config/colors.db file.

You can remove a color database entry with delete-color-translation.

15.5 Defining new color models

Before using the definition described here, you should evaluate the form:

(require "color-defmodel")

The macro define-color-models can be used to define new color models for use in the color system.

The default color models are defined by the following form:

(define-color-models ((:rgb (red 0.0 1.0)
 (green 0.0 1.0)
 (blue 0.0 1.0))
 (:hsv (hue 0.0 5.99999)
 (saturation 0.0 1.0)
 (value 0.0 1.0))
 (:gray (level 0.0 1.0))))

For example, to define a new color model YMC and keep the existing RGB, HSV and GRAY models:

(define-color-models ((:rgb (red 0.0 1.0)
 (green 0.0 1.0)
 (blue 0.0 1.0))
 (:hsv (hue 0.0 5.99999)
 (saturation 0.0 1.0)
 (value 0.0 1.0))
 (:gray (level 0.0 1.0))
 (:ymc (yellow 0.0 1.0)
 (magenta 0.0 1.0)
 (cyan 0.0 1.0))))

You must then define some functions to convert YMC color-specs to other color-specs. In this example, those functions are
named:

make-ymc-from-rgb
make-ymc-from-hsv
make-ymc-from-gray

and:

make-rgb-from-ymc
make-hsv-from-ymc
make-gray-from-ymc

You can make this easier, of course, by defining the functions:

make-ymc-from-hsv
make-ymc-from-gray

15 The Color System

184

make-hsv-from-ymc
make-gray-from-ymc

in terms of make-ymc-from-rgb and make-rgb-from-ymc.

If you never convert between YMC and any other model, you need only define the function make-rgb-from-ymc.

15 The Color System

185

16 Printing from the CAPI—the Hardcopy
API

The CAPI hardcopy API is a mechanism for printing a Graphics Port (and hence a CAPI output-pane) to a printer. It is
arranged in a hierarchy of concepts: printers, print jobs, pagination and outputting.

Printers correspond to the hardware accessible to the OS. Print jobs control connection to a printer and any printer-specific
initialization. Pagination controls the number of pages and which output appears on which page. Outputting is the operation
of drawing to a page. This is accomplished using the standard Graphics Ports drawing functions discussed in 13 Drawing -
Graphics Ports.

Printing is done by using the macro with-print-job to define a job. Inside its body you specify pages to print by either
with-document-pages ("page on demand printing") or with-page ("page sequential printing"). Inside the body of
with-document-pages or with-page you use normal drawing functions on the variable bound by with-print-job to
draw the page. You normally also use with-page-transform to specify the transformation to the page area. There are also
several functions for simple printing jobs.

16.1 Printers

You can obtain the current printer, or ask the user to select one, by using current-printer. You can ask the user about
configuration by using the functions page-setup-dialog and print-dialog which display the standard Page Setup and
Print dialogs.

You can pass the printer object (as returned by current-printer or print-dialog) to APIs with a printer argument,
such as with-print-job, page-setup-dialog and print-dialog. The printer object itself is opaque but you can
modify the configuration programmatically using set-printer-options.

16.1.1 Standard shortcut keys in printer dialogs

On Cocoa by default the standard shortcuts Command+P and Command+Shift+P invoke Print... and Page Setup... menu
commands respectively.

In Microsoft Windows editor emulation by default the standard shortcut Ctrl+P invokes a Print... menu command.

16.2 Print jobs

A Print job is contained within a use of the macro with-print-job, which handles connection to the printer and sets up a
graphics port for drawing to the printer.

16.3 Handling pages—page on demand printing

In Page on Demand Printing, the application provides code to output an arbitrary page. The application should be prepared to
print pages in any order. This is the preferred means of implementing printing. Page on Demand printing uses the
with-document-pages macro, which executes the code for each page to be printed, in an unspecified order.

186

16.4 Handling pages—page sequential printing

Page Sequential Printing may be used when it is inconvenient for the application to implement Page on Demand printing. In
Page Sequential Printing, the application outputs each page of the document in order. Page Sequential printing is done by
using the with-page macro, with each invocation of with-page contributing a new page to the document.

Note: with-page does not work on Cocoa.

16.5 Printing a page

In either mode of printing, the way in which a page is printed is the same. A suitable transformation must be established
between the coordinate system of the output-pane or printer-port object and the physical page being printed. The page
is then drawn using normal Graphics Ports operations, which are described in 13 Drawing - Graphics Ports.

16.5.1 Establishing a page transform

The with-page-transform macro can be used to establish a page transform which controls scaling by mapping a
rectangular region of the document to the printable area of the page. The scale matches the screen by default. By specifying a
large rectangle, you can get finer granularity in the drawing. Any number of invocations of with-page-transform may
occur during the printing of a page. For instance, it may be convenient to use a different page transform when printing
headers and footers to the page from that used when printing the main body of the page.

A helper function, get-page-area, is provided to simplify the calculation of suitable rectangles for use with
with-page-transform. It calculates the width and height of the rectangle in the user's coordinate space that correspond to
one printable page, based on the logical resolution of the user's coordinate space in dpi.

For more specific control over the page transform, the printer metrics can be queried using get-printer-metrics and the
various printer-metrics accessors such as printer-metrics-height.

Margins and the printable area can be set using set-printer-metrics.

There is an example in:

(example-edit-file "capi/printing/fit-to-page")

16.6 Other printing functions

To add, remove and configure printers on platforms other than Motif use the system configuration utility. On Microsoft
Windows this is the Printer Control Panel. On Cocoa printers are configured via the System Preferences.

A simple printing API is available via simple-print-port, which prints the contents of an output-pane to a printer.

The Hardcopy API also allows you to print plain text to a printer. To do this, use the functions print-text, print-file
and print-editor-buffer, and the macro with-output-to-printer.

16.7 Printing on Motif

This section applies only to X11/Motif, where the hardcopy API uses Postscript rather than native printing.

16 Printing from the CAPI—the Hardcopy API

187

16.7.1 Printer definition files

On Motif, CAPI uses its own printer definition files to keep information about printers. These files contain a few
configuration settings, and the name of the PPD file if applicable (see 16.7.2 PPD files for information about PPD files).
When a user saves a printer configuration, the system writes such a file. Note that because the printer definition file contains
the name of the PPD file, it must only be moved between machines with care: the PPD file must exist in the same path.

Printer definition files are loaded from directories in the value of *printer-search-path*.

16.7.2 PPD files

To fully use the functionality of a Postscript printer on Motif, the system needs a Postscript Printer Description (PPD) file,
which is a file in a standard format defined by Adobe. It describes the options the printer has and how to control them.

When a print dialog is presented to the user (either by an explicit call to print-dialog, or by printing), the system uses the
PPD file to find what additional options to present, and how to communicate them to the printer.

A PPD file should be supplied by the manufacturer with the printer itself. Otherwise, it is normally possible to obtain the
PPD file from the website of the manufacturer. The name of a PPD file should be printername.ppd.

When the user configures a new printer, the first thing the system does is to show the user all the PPD files that it can find
under the *ppd-directory* (directly, or one level of directories below it). The application should set this variable to the
appropriate directory.

If the value of *ppd-directory* is nil, the system looks at the directory obtained by evaluating
(sys:lispworks-dir "postscript/ppd").

If the printer does not have a PPD file, the user can still use it by selecting the default button in the print dialog. This means
that the system will let the user change only the basic properties of the printer, without using its more complex features.

16.7.3 Adding and removing printers

On Motif, printers can be added, removed and configured interactively via printer-configuration-dialog. Printers
can be added and removed programmatically with install-postscript-printer and
uninstall-postscript-printer.

16 Printing from the CAPI—the Hardcopy API

188

17 Drag and Drop

This chapter discusses how to implement drag and drop functionality in your CAPI application. The example code in this
chapter forms a complete example allowing the user to drag an item from a tree-view to a list-panel.

17.1 Overview of drag and drop

A drag and drop operation occurs when the user clicks and holds the mouse button in a pane supporting dragging, then drags
to a pane supporting dropping, and releases the mouse button.

Visual feedback may be provided indicating that dragging is happening, whether a drop operation is possible at the current
mouse position, and what operation will occur when the user drops. Usually the operation is the transfer of data.

You need to decide which CAPI pane(s) and interfaces will support dragging and then implement it for each, and similarly for
dropping. You will implement drag and drop for one or more specified data formats.

17.1.1 Drag and drop with other applications

Certain predefined data formats can be dragged from a CAPI application to another application such as the Windows
Explorer or the macOS Finder, and vice versa.

17.1.2 Drag and drop within a CAPI application

When both the drag and the drop phases are within the same CAPI image, you can specify private data formats, in addition to
the predefined data formats.

17.2 Dragging

First you should decide which CAPI pane(s) and interfaces will support dragging, and which data formats they will support.
Data formats are arbitrary keywords that must be interpreted by the pane where the user can drop.

17.2.1 Dragging values from a choice

To implement dragging in list-panel or tree-view supply the :drag-callback initarg. When the user drags, drag-
callback receives a list of indices of the choice items being dragged.

The drag-callback should return a property list whose keys are the data formats (such as :string or :image) to be dragged,
along with the values associated with each format.

17.2.1.1 Example: dragging from a tree

This example returns string data for a tree-view defined below:

(defun tree-drag-callback (pane indices)
 (list :string
 (string (elt (capi:collection-items pane)
 (first indices)))))

189

(defun fruits (x)
 (case x
 (:fruits (list :apple :orange))
 (:apple (list :cox :bramley))
 (:orange (list :blood-orange :seville))
 (t nil)))

(capi:contain
 (make-instance 'capi:tree-view
 :title "Fruit tree"
 :roots '(:fruits)
 :children-function 'fruits
 :drag-callback 'tree-drag-callback))

There is a further example showing dragging from list-panels in:

(example-edit-file "capi/choice/drag-and-drop")

17.2.2 Dragging within an output-pane

To implement dragging items around within a single output-pane, include suitable callbacks on these gestures in its input-
model:

(:button-1 :press)

(:button-1 :motion)

In this case it is not necessary to call drag-pane-object and you can implement dropping in the same pane by a suitable
callback for:

(:button-1 :release)

See this example:

(example-edit-file "capi/applications/balloons")

17.2.3 Dragging values from an output-pane

To implement dragging from an output-pane include an appropriate callback on the (:button-1 :press) gesture in the
pane's input-model. This callback should call drag-pane-object with arguments which provide the data formats and
values associated with each format. You will also specify drop-callback in the destination pane(s), as described in 17.3
Dropping.

See the example file in:

(example-edit-file "capi/output-panes/drag-and-drop")

17.2.3.1 Dragging editor-pane text

To implement dragging of text in an editor-pane, use EDITOR functions such as editor:points-to-string to obtain
the value for the :string format.

17 Drag and Drop

190

17.2.4 Data formats

:string Receives a string, potentially from another application. Is also understood by some other panes
that expect text.

:image Receives an image on Cocoa and GTK+. The value passed should be an image object. See
13.10 Working with images for more information about images.

When supplying an image for dragging (that is, including :image image in the plist argument of
drag-pane-object or in the plist that is returned from the drop-callback), the dragging
mechanism frees the image (as by free-image) when it finishes with it (which will be at some
indeterminate time later). If you need to pass an image which you want to use later, you should
make a copy of it by make-sub-image.

When receiving an image (by calling drop-object-get-object with :image), the received
image should also be freed when you finish with it. However, it will be freed automatically when
the pane supplied to drop-object-get-object is destroyed, so you do not need to free it
explicitly if freeing can wait (which is probably true in most cases).

See this example:

(example-edit-file "capi/choice/list-panel-drag-images")

:filename-list Receives a list of files. Is understood by other applications such as the macOS Finder and
Windows Explorer.

You can also use private formats, named by arbitrary keywords, which will work only in the same Lisp image.

17.2.5 Dragging a Cocoa title bar image

On Cocoa, if there is a drag image in an interface title bar, then dragging this image will by default return a list containing
the interface pathname as :filename-list data. You could override this by providing a drag-callback for the interface.

17.3 Dropping

First you should decide which CAPI pane(s) and interfaces will support dropping, where exactly dropping should be allowed,
and what should occur on dropping for each data format that is made available.

17.3.1 The drop callback

To implement dropping in list-panel or tree-view or output-pane, supply the :drop-callback initarg.

You can also supply :drop-callback for an interface. When the user drags an object over a window, the system first
tries to call the drop-callback of any pane under the mouse and otherwise calls the drop-callback of the top-level interface, if
supplied.

The drop-callback receives as arguments a drop-object which is used to communicate information about the dropping
operation and stage which is a keyword. The drop-callback is called at several stages: when the pane is displayed; when the
user drags over the pane; and when the user drops over the pane. Various functions are provided which you can use to query
the drop-object and set attributes appropriately.

You will use set-drop-object-supported-formats to specify the data formats that it wants to receive. The :string
format can be used to receive a string from another application and the :filename-list format can be used to receive a list
of filenames from another application such as the Macintosh Finder or the Windows Explorer. Any other keyword in formats
is assumed to be a private format that can only be used to receive objects from within the same Lisp image.

17 Drag and Drop

191

You can use drop-object-provides-format to query whether a given data format is actually available, and then you can
call (setf drop-object-drop-effect) to modify the effect of the dropping operation .

Finally, at the :drop stage, you will use drop-object-get-object to retrieve (for each data format) the object which was
returned by the drag-callback, and then do something with this object, typically copying or moving it to the pane in some
way.

17.3.2 Dropping in a choice

Additionally within the drop-callback of a list-panel or tree-view you can use drop-object-collection-index
(or drop-object-collection-item) to query the index (or item) where the object would currently be dropped.

17.3.2.1 Example: dropping in a list

This drop-callback simply appends the dropped string at the end of the list:

(defun list-drop-callback (pane drop-object stage)
 (format t "list drop callback ~S ~S ~S" pane drop-object stage)
 (case stage
 (:formats
 (set-drop-object-supported-formats drop-object
 (list :string)))
 ((:enter :drag)
 (when (and (drop-object-provides-format drop-object
 :string)
 (drop-object-allows-drop-effect-p drop-object
 :copy))
 (setf (drop-object-drop-effect drop-object) :copy)))
 (:drop
 (when (and (drop-object-provides-format drop-object
 :string)
 (drop-object-allows-drop-effect-p drop-object
 :copy))
 (setf (drop-object-drop-effect drop-object) :copy)
 (add-list-item pane drop-object)))))

(defun add-list-item (pane drop-object)
 (append-items
 pane
 (list (string-capitalize
 (drop-object-get-object drop-object
 pane :string)))))

(contain
 (make-instance 'list-panel
 :title "Shopping list"
 :items (list "Tea" "Bread")
 :drop-callback 'list-drop-callback))

Try dragging an item from the tree-view created in 17.2.1.1 Example: dragging from a tree.

Below is a more sophisticated version of add-list-item which inserts the item at the expected position within the list.
This position is obtained using drop-object-collection-index:

(defun add-list-item (pane drop-object)
 (multiple-value-bind (index placement)
 (drop-object-collection-index drop-object)
 (list-panel-add-item pane
 (string-capitalize
 (drop-object-get-object
 drop-object pane :string))

17 Drag and Drop

192

 index placement)))

(defun list-panel-add-item (pane item index placement)
 (let ((item-count (count-collection-items pane)))
 (let ((adjusted-index (if (eq placement :above)
 index
 (1+ index)))
 (current-items (collection-items pane)))
 (setf (collection-items pane)
 (concatenate 'simple-vector
 (subseq current-items 0 adjusted-index)
 (vector item)
 (subseq current-items adjusted-index
 item-count))))))

17.3.3 Dropping text in an editor-pane

Supply the special drop-callback :default to implement dropping text in an editor-pane.

17.3.4 Dropping in an output-pane

Additionally within the drop-callback of an output-pane, you can use drop-object-pane-x and
drop-object-pane-y to query the coordinates in the pane that the object is being dropped over.

17.4 Limitations of CAPI drag and drop

:image format currently works fully only on Cocoa and GTK+. On Microsoft Windows the :image format works only
when dragging between panes in the same process.

Drag and drop is not implemented in CAPI on Motif.

Not all pane classes support drag and drop.

17 Drag and Drop

193

18 Miscellaneous functionality

This chapter discusses miscellaneous functionality available for use during development and in your CAPI application.

18.1 Development functions

The following functions are intended as aids during development. In general they are not suitable for use in real applications,
though they are fully supported.

The function contain takes an element argument and displays it. The element can be any pane, menu or a part of a menu, or
a pinboard-object. Since displaying always requires an interface, contain creates an interface (unless the element is an
interface itself). contain takes various keyword arguments that tell it how to display, and can also display the element as
a dialog.

To create the interface, contain uses make-container, which can also be called directly.

18.2 Sounds

18.2.1 Sound API

This section applies to Cocoa and Microsoft Windows only.

On Cocoa and Microsoft Windows, CAPI provides a simple interface to play sound from sound files. The host system
determines which formats of sound files it can play.

Use load-sound to create a sound object from either a file or the result of read-sound-file, then play-sound to play
it, and stop-sound to stop playing. free-sound can be used to free it.

read-sound-file can be used to load a sound file as data into the Lisp image, which then can be used by load-sound

without accessing a file. This is useful in delivered applications.

18.2.2 Beep

The function beep-pane tries to make a beep sound.

18.3 Modifier keys state

You can query the state of the modifier keys (Control, Shift, Meta, Command (Hyper) and Caps Lock) by calling
pane-modifiers-state.

18.4 Restoring display while debugging

Some error handlers may disable display of a pane if there is an error during the display. You can check if a pane is in this
state by calling pane-can-restore-display-p, and if so you can use pane-restore-display to restore the display.
That assumes that the code was fixed, so is useful only while debugging.

The Window Browser tool in the LispWorks IDE allows you to restore the display interactively using these functions.

194

18.5 Object properties and name

All CAPI elements (panes and pinboard-object) inherit from capi-object. This includes a plist, which can be
accessed by capi-object-property, (setf capi-object-property) and remove-capi-object-property.
There is also the accessor capi-object-plist.

CAPI object property is a very convenient mechanism to add slot-like behavior without having to define your own class. For
example, it is used for caching the images in:

(example-edit-file "capi/choice/list-panel-drag-images")

A capi-object also has a name, which can be used to give it a unique identifier. You can set name by the initarg :name,
and access it by capi-object-name.

18.6 Clipboard

You can access the system clipboard, which allows passing and receiving values from other processes, by the functions
clipboard and set-clipboard. These can deal with strings and images, and metafiles on Cocoa and Microsoft Windows.
When used inside the same Lisp process, they can also be used to pass Lisp values. Use clipboard-empty to check if
there is anything in the clipboard. See also 7.6 Edit actions on the active element.

Similarly, the primary selection of the GUI system can accessed by the function selection, set-selection and
selection-empty.

18.7 Handles

The function simple-pane-handle can be used to retrieve the "handle" of a displayed pane. Similarly
current-dialog-handle returns the handle of the current dialog, if there is one.

The handle is the representation in the underlying GUI system, and may be useful in some situations for performing
operations for which there is no CAPI interface.

18.8 Setting the font and colors for specific panes in specific interfaces.

The functions set-interface-pane-name-appearance and set-interface-pane-type-appearance can be used
to tell LispWorks to set some attributes (font, foreground, background) in specific panes (specified by name or type) inside
specific interfaces (specified by type). They can be used to customize the appearance of the panes without changing the code
that created them. For example, it can be used to customize the LispWorks IDE.

18 Miscellaneous functionality

195

19 Host Window System-specific issues

This chapter describes how the host window system affects the appearance and behavior of CAPI windows, and how to
configure this.

19.1 Microsoft Windows-specific issues

19.1.1 Using Windows themes

On Microsoft Windows Vista, Windows 7, Windows 8 and Windows 10 LispWorks is themed. That is, it uses the current
theme of the desktop.

It is possible to switch this off by calling the function win32:set-application-themed with argument nil.

win32:set-application-themed affects only windows that are created after it was called. Normally, it should be called
before any window is created, so that all LispWorks windows will have a consistent appearance.

19.1.2 The break gesture

If a CAPI/Windows window is busy and unresponsive you can use the break gesture Ctrl+Break to regain control.

19.2 Cocoa-specific issues

19.2.1 The break gesture

If a CAPI/Cocoa window is busy and unresponsive you can use the break gesture Command+Ctrl+, (comma) to regain
control.

19.2.2 The Cocoa application interface

You can use set-application-interface on an instance of a subclass of
cocoa-default-application-interface to get the following functionality:

• Define the application menu (leftmost menu in the menu bar).

• Define the menu bar items that are displayed when no interface is on the screen.

• Define the Dock context menu, which is raised from the Dock icon.

• Control and callbacks about the lifecycle of the interface.

A proper Cocoa application is likely to use this mechanism. Note that the call to set-application-interface needs to
happen before any display or attempt to access the screen. See cocoa-default-application-interface for more
details.

196

19.3 GTK+-specific issues

19.3.1 The break gesture

If a CAPI/GTK+ window is busy and unresponsive you can use the break gesture Meta+Ctrl+C to regain control.

On GTK+ you can use the function set-interactive-break-gestures both to find and to set the keys that are used
interactively as break gestures. When the system detects a break gesture it tries to interrupt any running process, to allow the
user to deal with runaway processes.

19.3.2 Matching resources for GTK+

You can configure the LispWorks IDE and your application to use resources on GTK+. The applicable resources determine
the default fonts, colors and certain other properties used in CAPI elements.

The element initarg :widget-name is used to match resources. CAPI gives a name for the main widget that it creates for
each element that has a representation in the library. This name is then included in the "path" that GTK+ uses to match
resources for each widget.

19.3.2.1 Resources on GTK+

By default, the name of the widget is the name of the class of the element, downcased (except top level interfaces, see next
paragraph). You can override the name by either passing widget-name when making the element, or by setting the
element-widget-name before displaying the element.

To make it easier to define resources specific to the application, the CAPI GTK+ library, when using the default name,
prepends the application-class (see convert-to-screen) followed by a dot. So for an interface of class my-interface
which is displayed in a screen with application-class "my-application", the default widget-name is:

my-application.my-interface

Example GTK+ resource files are in your LispWorks installation directory under examples/gtk/:

gtkrc-break-gestures

gtkrc-font

gtkrc-parameters

gtkrc-styles

19.3.2.2 Resources for CAPI/GTK+ applications

Delivered applications which need fallback resources should pass the :application-class and :fallback-resources

keys described in the manual page for convert-to-screen.

This example shows how to make a CAPI GUI configurable by GTK+ resources:

(example-edit-file "capi/elements/gtk-resources")

To construct custom resources for your CAPI/GTK+ application, see the example resource files in your LispWorks
installation directory under examples/gtk/.

19 Host Window System-specific issues

197

19.3.2.3 X resources for in-place completion windows

The special window described in 10.6 In-place completion has interface with name "non-focus-list-prompter". This
name can be used to define resources specific to the in-place completion window. The completion list is a list-panel and
the filter is a text-input-pane.

19.4 Motif-specific issues

19.4.1 Using Motif

The Motif backend is deprecated and the GTK+ backend is preferred.

This section describes how to use the Motif window system on supported platforms.

19.4.1.1 Using Motif on Linux, FreeBSD and x86/x64 Solaris

Use of Motif with LispWorks is deprecated on these platforms, but you can still use it.

LispWorks uses GTK+ as the default window system for CAPI and the LispWorks IDE on Linux, FreeBSD and x86/x64
Solaris.

To use Motif instead you need to load it explicitly, by:

(require "capi-motif")

Requiring the "capi-motif" module makes CAPI use Motif as its default library.

You can override the default library by specifying the appropriate CAPI screen (see 19.5 CAPI communication with host
window system - libraries and the screen argument to display and convert-to-screen).

19.4.1.2 Using Motif on Macintosh

Use of Motif with LispWorks is deprecated on the Macintosh, but you can still use it.

LispWorks is supplied as two images. One uses Cocoa as the default window system for CAPI and the LispWorks IDE, the
other uses GTK+ as its default window system. Only this latter image can use the alternative Motif window system.

To use Motif you need to load it into the GTK+ LispWorks image, by:

(require "capi-motif")

Requiring the "capi-motif" module makes CAPI use Motif as its default library.

You can override the default library by specifying the appropriate CAPI screen (see 19.5 CAPI communication with host
window system - libraries and the screen argument to display and convert-to-screen).

Note: you cannot load Motif into the Cocoa image.

Note: the GTK+ LispWorks image is installed on Macintosh when you select the X11 GUI option at install time. See the
Release Notes and Installation Guide for further information on installing this option.

19 Host Window System-specific issues

198

19.4.2 The break gesture

If a CAPI/Motif window is busy and unresponsive you can use the break gesture Meta+Ctrl+C to regain control.

On Motif you can use the function set-interactive-break-gestures both to find and to set the keys that are used
interactively as break gestures. When the system detects a break gesture it tries to interrupt any running process, to allow the
user to deal with runaway processes.

19.4.3 Matching resources for X11/Motif

On Motif, you can configure the LispWorks IDE and your application to use resources similarly to GTK+ (see 19.3.2
Matching resources for GTK+).

19.4.3.1 Resources on X11/Motif

widget-name is used as described for GTK+ in 19.3.2.1 Resources on GTK+, except that the default widget-name for a top
level interface does include the prepended application-class.

The file app-defaults/Lispworks, supplied in the LispWorks library for relevant platforms, contains the application
fallback resources for LispWorks 8.0 and illustrates resources you may wish to change.

The file app-defaults/GcMonitor contains the application fallback resources for the Lisp Monitor window.

The files app-defaults/*-classic contain the fallback resources that were supplied with LispWorks 4.4.

For further information about X resources, consult documentation for the X Window system.

19.4.3.2 Resources for CAPI/Motif applications

To construct custom X resources for your CAPI/Motif application, consult app-defaults/Lispworks which illustrates
resources you may wish to change in your application.

19.5 CAPI communication with host window system - libraries

CAPI communicates with the host window system via backends called libraries. In most cases you need not worry about the
library, and just use generic CAPI.

Currently there are four libraries, named by keywords as follows:

:win32 The only library for Microsoft Windows.

:cocoa The default library for macOS.

:gtk The default library for Linux, FreeBSD and x86/x64 Solaris, also available on macOS.

:motif Deprecated but available on non-Windows platforms.

The function default-library returns the default library for the current platform.

Note: On platforms that support GTK+ and Motif, default-library normally returns :gtk, but after loading Motif using
(require "capi-motif") it returns :motif.

A library name is a valid argument to convert-to-screen, and can be used in places when a screen specification is
required, most importantly as argument to display. Normally, however, you will be using the default screen of the default
library, so you will not have to worry about it.

19 Host Window System-specific issues

199

default-library is used when a program that is designed to run on various platforms wants to do different things in
different GUI systems. Note that default-library is available before displaying anything, and can be used at load-time.

The functions installed-libraries returns a list of the installed libraries in the current image. Normally it is just a list
of the default library, but loading Motif adds it into the list.

19 Host Window System-specific issues

200

20 Self-contained examples

This chapter enumerates the set of CAPI examples in the LispWorks library. Each example contains complete, self-contained
code and detailed comments, which include one or more entry points near the start of the file which you can run to start the
program.

To run the example code:

1. Open the file in the Editor tool in the LispWorks IDE. Evaluating the call to example-edit-file shown below will
achieve this.

2. Compile the example code, by Ctrl+Shift+B.

3. Place the cursor at the end of the entry point form and press Ctrl+X Ctrl+E to run it.

4. Read the comment at the top of the file, which may contain further instructions on how to interact with the example.

20.1 Output pane examples

This section lists the example files illustrating input, drawing, scrolling, tooltips, dragging and images in an output-pane.
These are also applicable to static-layout and pinboard-layout.

Processing input with the input-model:

(example-edit-file "capi/output-panes/input-model1")

(example-edit-file "capi/output-panes/input-model")

(example-edit-file "capi/output-panes/drawing")

(example-edit-file "capi/output-panes/spirograph")

(example-edit-file "capi/output-panes/input-model-touch")

(example-edit-file "capi/output-panes/modifier-change")

Defining a command (that is, an alias to an input gesture):

(example-edit-file "capi/output-panes/commands")

Drawing to an output pane:

See the following section 20.2 Graphics examples.

Temporary drawing on top of the normal drawing, for example when the user drags:

(example-edit-file "capi/output-panes/cached-display")

(example-edit-file "capi/graphics/pinboard-test")

201

(example-edit-file "capi/graphics/pixmap-port")

Simple scrolling without a scroll bar:

(example-edit-file "capi/output-panes/scrolling-without-bar")

Using scroll-callback:

(example-edit-file "capi/graphics/scrolling-test")

Using fixed coordinate-origin scrolling:

(example-edit-file "capi/output-panes/coordinate-origin-fixed")

(example-edit-file "capi/output-panes/fixed-origin-scrolling")

Displaying tooltips:

(example-edit-file "capi/graphics/pinboard-help")

Dragging from/to an output pane:

(example-edit-file "capi/output-panes/drag-and-drop")

Copying and pasting images in an output pane:

(example-edit-file "capi/output-panes/drawing")

Indicate selection of objects in response to mouse movement:

(example-edit-file "capi/graphics/highlight-rectangle")

20.2 Graphics examples

This section lists the example files illustrating graphics transforms, transparency in images and pixmaps ports, combining
existing and new pixels when drawing, drawings dependent on dynamic computations, editing an image, scaling an image,
metafiles and paths.

Drawing an image read from a file:

(example-edit-file "capi/graphics/images")

Transforms and apply-rotation-around-point:

(example-edit-file "capi/graphics/rotation-around-point")

(example-edit-file "capi/output-panes/cached-display")

Creating transparent and semi-transparent areas in a pixmap:

(example-edit-file "capi/graphics/compositing-mode-simple")

20 Self-contained examples

202

Simple example of compositing-mode:

(example-edit-file "capi/graphics/compositing-mode-simple")

Complex example of compositing-mode:

(example-edit-file "capi/graphics/compositing-mode")

Simple example of scaling an image:

(example-edit-file "capi/graphics/image-scaling")

Draw something that is computed dynamically and slowly without hanging the GUI:

(example-edit-file "capi/graphics/plot-offline")

Using an Image Access object:

(example-edit-file "capi/graphics/image-access")

Pixel-by-pixel editing of an image:

(example-edit-file "capi/graphics/image-access-alpha")

Obtaining BGRA color data from an image:

(example-edit-file "capi/graphics/image-access-bgra")

Handling the alpha channel (transparency) of images:

(example-edit-file "capi/graphics/images-with-alpha")

Creating and using a metafile:

(example-edit-file "capi/graphics/metafile-rotation")

Clipboard access with a metafile:

(example-edit-file "capi/graphics/metafile")

Drawing paths using draw-path:

(example-edit-file "capi/graphics/paths")

Drawing a chart of prices:

(example-edit-file "capi/applications/price-charting")

Effects of drawing-mode:

(example-edit-file "capi/graphics/catherine-wheel")

20 Self-contained examples

203

20.3 Pinboard examples

Simple manipulation of pinboard-objects:

(example-edit-file "capi/graphics/pinboard-movement")

(example-edit-file "capi/graphics/pinboard-test")

(example-edit-file "capi/layouts/wrapping-layout")

Simple manipulation with animation:

(example-edit-file "capi/applications/balloons")

Laying out objects inside pinboard-layout using child layouts:

(example-edit-file "capi/graphics/pinboard-object-text-pane")

Specialized drawing using drawn-pinboard-object:

(example-edit-file "capi/graphics/pinboard-test")

(example-edit-file "capi/applications/othello")

Specialized drawing using your own pinboard objects:

(example-edit-file "capi/applications/balloons")

Automatic resizing of pinboard objects:

(example-edit-file "capi/layouts/automatic-resize")

Indicate selection of pinboard objects in response to mouse movement:

(example-edit-file "capi/graphics/highlight-rectangle-pinboard")

20.4 Examples using timers to implement "animation"

(example-edit-file "capi/graphics/rotation-around-point")

(example-edit-file "capi/graphics/metafile-rotation")

(example-edit-file "capi/applications/balloons")

(example-edit-file "capi/applications/pong")

20 Self-contained examples

204

20.5 Drag and Drop examples

From and to output panes:

(example-edit-file "capi/output-panes/drag-and-drop")

From and to list panels:

(example-edit-file "capi/choice/drag-and-drop")

Images from and to list panels:

(example-edit-file "capi/choice/list-panel-drag-images")

GTK+ specific:

(example-edit-file "capi/elements/gtk-filename-list-and-uris")

Minimal drag-and-drop code:

(example-edit-file "capi/elements/simple-dragndrop")

20.6 Graph examples

Simple examples:

(example-edit-file "capi/graphics/graph-pane")

(example-edit-file "capi/choice/simple-graph-pane")

Customizing graph-pane:

(example-edit-file "capi/graphics/circled-graph-nodes")

(example-edit-file "capi/graphics/labelled-graph-edges")

(example-edit-file "capi/graphics/wiggly-line-graph")

(example-edit-file "capi/choice/simple-graph-pane")

Changing the appearance of edges:

(example-edit-file "capi/graphics/graph-color-edges")

20.7 Cocoa-specific examples

Control over the macOS application menu:

(example-edit-file "capi/applications/cocoa-application-single-window")

20 Self-contained examples

205

(example-edit-file "capi/applications/cocoa-application")

20.8 Examples of complete CAPI applications

Simple applications:

(example-edit-file "capi/applications/hangman")

(example-edit-file "capi/applications/maze")

(example-edit-file "capi/applications/maze-multi")

(example-edit-file "capi/applications/othello")

(example-edit-file "capi/applications/simple-othello")

(example-edit-file "capi/applications/pong")

(example-edit-file "capi/applications/rich-text-editor")

Complete interface, including toolbar, option pane, and multi-column list panel:

(example-edit-file "capi/applications/simple-symbol-browser")

Incorporating CPU-intensive work with responsive GUI:

(example-edit-file "capi/applications/multi-threading")

20.9 Choice examples

Different kinds of interaction:

(example-edit-file "capi/choice/double-list-panels")

(example-edit-file "capi/choice/list-panels")

Using print-function and data-function:

(example-edit-file "capi/choice/list-panels")

Using (setf capi:collection-items) and print-function in a list panel:

(example-edit-file "capi/choice/expanding-list")

Adding images:

(example-edit-file "capi/choice/double-list-panels")

Drag and drop in a list panel:

20 Self-contained examples

206

(example-edit-file "capi/choice/drag-and-drop")

(example-edit-file "capi/choice/list-panel-drag-images")

Simple tree-view with images:

(example-edit-file "capi/choice/tree-view")

(example-edit-file "capi/choice/extended-selection-tree-view")

Tree-view images and checkboxes:

(example-edit-file "capi/choice/extended-selection-tree-view")

tree-view combined with an XML parser to display an RSS file:

(example-edit-file "capi/applications/rss-reader")

An example of using stacked-tree:

(example-edit-file "capi/choice/stacked-tree")

Interaction between context menu and selection:

(example-edit-file "capi/choice/list-panel-pane-menu")

Multi column list panel:

(example-edit-file "capi/choice/multi-column-list-panels")

Sorting a list-panel for a specific column:

(example-edit-file "capi/choice/multi-column-list-panels")

Using keyboard-search-callback in a list-panel:

(example-edit-file "capi/choice/list-panel-keyboard-search")

Adding images to option-pane:

(example-edit-file "capi/choice/option-pane-with-images")

Disabling items in option-pane:

(example-edit-file "capi/choice/option-pane-with-images")

(example-edit-file "capi/choice/option-pane")

Alternative action callback (that is, a callback when modifier key is pressed):

(example-edit-file "capi/choice/alternative-action-callback")

20 Self-contained examples

207

20.10 Examples of dialogs and prompts

Simple dialog:

(example-edit-file "capi/dialogs/simple-dialog")

(example-edit-file "capi/dialogs/mutating-dialog")

Customizing prompt-with-list:

(example-edit-file "capi/choice/prompt-with-buttons")

20.11 editor-pane examples

Simple editor pane:

(example-edit-file "capi/editor/editor-pane")

change-callback, text property and editor face:

(example-edit-file "capi/editor/change-callback")

Callbacks before and after input:

(example-edit-file "capi/editor/input-callback")

20.12 Menu examples

Adding images to menus:

(example-edit-file "capi/elements/menu-with-images")

Defining accelerator keys:

(example-edit-file "capi/elements/accelerators")

Dynamically defining the items in the context menu:

(example-edit-file "capi/elements/pane-popup-menu-items")

Button with a drop-down menu:

(example-edit-file "capi/elements/popup-menu-button")

Menus with a popup-callback:

(example-edit-file "capi/elements/popup-menu-button")

20 Self-contained examples

208

20.13 Miscellaneous examples

A prototype grid implementation, and an example using it:

(example-edit-file "capi/elements/grid")

(example-edit-file "capi/elements/grid-impl")

Converting coordinates between a pane and its ancestors or the screen:

(example-edit-file "capi/elements/convert-relative-position")

Changing the mouse cursor:

(example-edit-file "capi/elements/cursor")

Passing initargs to a pane inside an interface using :make-instance-extra-apply-args:

(example-edit-file "capi/applications/argument-passing")

Server and client for a simple line-based textual chat program:

(example-edit-file "capi/applications/chat")

(example-edit-file "capi/applications/chat-client")

Server and client for a simple textual remote debugger:

(example-edit-file "capi/applications/remote-debugger")

(example-edit-file "capi/applications/remote-debugger-client")

20.14 GTK+ specific examples

Defining and using GTK+ resources:

(example-edit-file "capi/elements/gtk-resources")

Dragging URIs:

(example-edit-file "capi/elements/gtk-filename-list-and-uris")

20.15 Motif specific examples

Defining and using Motif resources:

(example-edit-file "capi/elements/widget-name")

20 Self-contained examples

209

20.16 Layout examples

Simple grid-layout:

(example-edit-file "capi/layouts/titles-in-grid")

Extending cells in grid-layout:

(example-edit-file "capi/layouts/extend")

Dynamic resizing of layouts:

(example-edit-file "capi/layouts/resize-layout")

Define a layout which aligns its children top/bottom and also displays oversized children nicely:

(example-edit-file "capi/layouts/buffer-layout")

A graph-pane with a custom layout:

(example-edit-file "capi/graphics/simple-layout-definition")

20.17 Tooltip examples

General tooltips:

(example-edit-file "capi/elements/help")

Displaying tooltips in an output-pane:

(example-edit-file "capi/graphics/pinboard-help")

20.18 Examples illustrating other pane classes

Simple standalone scroll bar:

(example-edit-file "capi/elements/scroll-bar")

Non-linear integer values in a slider:

(example-edit-file "capi/elements/slider-print-function")

Simple use of progress bars:

(example-edit-file "capi/elements/progress-bar")

Updating a progress bar from another thread:

(example-edit-file "capi/elements/progress-bar-from-background-thread")

text-input-choice basic functionality:

20 Self-contained examples

210

(example-edit-file "capi/elements/text-input-choice")

text-input-pane basic functionality:

(example-edit-file "capi/elements/text-input-pane")

text-input-range basic functionality:

(example-edit-file "capi/elements/text-input-range")

Toolbar examples:

(example-edit-file "capi/elements/toolbar")

Docking layout:

(example-edit-file "capi/layouts/docking-layout")

Switchable layout:

(example-edit-file "capi/layouts/switchable")

Rich Text pane:

(example-edit-file "capi/applications/rich-text-editor")

Various buttons:

(example-edit-file "capi/buttons/buttons")

Simple layout in button panel:

(example-edit-file "capi/buttons/button-panel-layout")

tracking-pinboard-layout example:

(example-edit-file "capi/graphics/tracking-pinboard-layout")

simple-network-pane example with labeling of graph edges:

(example-edit-file "capi/graphics/network")

20.19 Printing examples

Simple printing:

(example-edit-file "capi/printing/simple-print-port")

Fitting drawing to a page:

(example-edit-file "capi/printing/fit-to-page")

Printing a drawing on multiple pages:

20 Self-contained examples

211

(example-edit-file "capi/printing/multi-page")

(example-edit-file "capi/printing/page-on-demand")

20.20 Graphic Tools examples

Using the higher level Graphic Tools to draw bar charts and graphs:

(example-edit-file "graphic-tools/bar-chart-example")

(example-edit-file "graphic-tools/graph-example")

Drawing a chart of prices:

(example-edit-file "capi/applications/price-charting-gt")

20 Self-contained examples

212

21 CAPI Reference Entries

The following chapter documents symbols exported from the capi package.

abort-callback Function

Summary

Aborts out of the context of the current callback.

Package

capi

Signature

abort-callback &optional always-abort

Arguments

always-abort⇓ A generalized boolean.

Description

The function abort-callback aborts out of the context of the current callback, returning nil when it is relevant (for
example in an interface confirm-destroy-callback).

If called outside the context of a callback, if always-abort is t then abort-callback calls (abort), otherwise it just returns.

The default value of always-abort is t.

See also

callbacks
interface
3.4 Callbacks

abort-dialog Function

Summary

Aborts the current dialog.

Package

capi

213

Signature

abort-dialog &rest ignored-args

Arguments

ignored-args⇓ Lisp objects.

Description

The function abort-dialog aborts the current dialog. For example, it can be made a selection callback from a Cancel
button so that pressing the button aborts the dialog. In a similar manner the complementary function exit-dialog can be
used as a callback for an OK button.

The arguments in ignored-args are all ignored.

If there is no current dialog then abort-dialog does nothing and returns nil. If there is a current dialog then
abort-dialog either returns non-nil or does a non-local exit. Therefore code that depends on abort-dialog returning
must be written carefully. Constructs like this can be useful:

(unless (capi:abort-dialog)
 (foo))

Above, foo will be called only if there is no current dialog.

It is not useful to do either:

(when (capi:abort-dialog)
 (foo))

or:

(progn
 (capi:abort-dialog)
 (foo))

as in both cases it is not well-defined whether foo will be called if there is a current dialog.

Examples

(capi:display-dialog
 (capi:make-container
 (make-instance 'capi:push-button
 :text "Cancel"
 :callback 'capi:abort-dialog)
 :title "Test Dialog"))

Also see these examples:

(example-edit-file "capi/dialogs/")

See also

exit-dialog
display-dialog
popup-confirmer

21 CAPI Reference Entries

214

interface
10 Dialogs: Prompting for Input

abort-exit-confirmer Function

Summary

Aborts the exiting of a dialog.

Package

capi

Signature

abort-exit-confirmer

Description

The function abort-exit-confirmer can be used to abort the exiting of a confirmer. It can be used in the ok-function of a
confirmer, to abort the exit and return to the dialog.

If abort-exit-confirmer is called outside the exiting of a confirmer, it does nothing.

Examples

This example asks the user for a string. If the string is longer than 20 characters, it confirms with the user that they really
want such a long string, and if they do not it returns to the dialog.

(capi:popup-confirmer
 (make-instance 'capi:text-input-pane)
 "New Name"
 :value-function 'capi:text-input-pane-text
 :ok-function
 #'(lambda (value)
 (when (and (> (length value) 20)
 (not (capi:prompt-for-confirmation
 "Name is very long. Use it?")))
 (capi:abort-exit-confirmer))
 value))

See also

popup-confirmer

accepts-focus-p Generic Function

Summary

Determines if an element accepts the focus.

21 CAPI Reference Entries

215

Package

capi

Signature

accepts-focus-p element => result

Arguments

element⇓ A CAPI element.

Values

result A boolean.

Description

The generic function accepts-focus-p determines if the element element accepts the focus for user input, and controls
tabstops.

The method on element uses the value of the accepts-focus-p slot, but methods on some subclasses override this.

accepts-focus-p also influences whether a pane is a tabstop. On Microsoft Windows a pane acts as a tabstop if and only
if the function accepts-focus-p returns true and the element accepts-focus-p initarg value is :force. On Motif and
Cocoa, a pane acts as a tabstop if and only if the function accepts-focus-p returns true.

See also

element
pane-has-focus-p
set-pane-focus
3.1.5 Focus

activate-pane Function

Summary

Gives a pane the input focus and raises the window containing it.

Package

capi

Signature

activate-pane pane

Arguments

pane⇓ An element or a pinboard-object or a toolbar-object.

21 CAPI Reference Entries

216

Description

The function activate-pane gives the focus to the pane pane and brings the window containing pane to the front.

If pane cannot accept the focus then activate-pane chooses a sensible alternative inside the same interface.

Examples

This example demonstrates how to swap the focus from one window to another.

(setq text-input-pane
 (capi:contain (make-instance
 'capi:text-input-pane)))

(setq button
 (capi:contain (make-instance
 'capi:push-button
 :text "Press Me")))

(capi:activate-pane text-input-pane)

(capi:activate-pane button)

See also

hide-interface
raise-interface
set-pane-focus
show-interface
quit-interface
simple-pane
7.7 Manipulating top-level windows

active-pane-copy
active-pane-copy-p
active-pane-cut
active-pane-cut-p
active-pane-deselect-all
active-pane-deselect-all-p
active-pane-paste
active-pane-paste-p
active-pane-select-all
active-pane-select-all-p
active-pane-undo
active-pane-undo-p Functions

21 CAPI Reference Entries

217

Summary

Perform, or check applicability of, an "edit/select operation" on the active pane.

Package

capi

Signatures

active-pane-copy &optional pane

active-pane-copy-p &optional pane

active-pane-cut &optional pane

active-pane-cut-p &optional pane

active-pane-deselect-all &optional pane

active-pane-deselect-all-p &optional pane

active-pane-paste &optional pane

active-pane-paste-p &optional pane

active-pane-select-all &optional pane

active-pane-select-all-p &optional pane

active-pane-undo &optional pane

active-pane-undo-p &optional pane

Arguments

pane⇓ A simple-pane.

Description

These functions perform an "edit/select operation" on the active pane, or check if this operation is currently applicable.

The active pane will be the one on the same screen as pane if pane is non-nil, or otherwise the same screen as the default
interface.

These functions find the active pane, that is the pane where keyboard input currently goes. Note that this is not necessarily a
pane that is recognized by CAPI. The predicates (those with names ending -p) return true if the operation is currently
applicable. The other functions tell the active pane to do the operation.

The edit/select operations are implemented by the pane-interface-* generic functions such as
pane-interface-copy-object.

It is not an error to do the operation even if the predicate returns false. It will just do nothing useful.

Examples

(example-edit-file "capi/applications/rich-text-editor")

21 CAPI Reference Entries

218

See also

pane-interface-copy-object
7.6 Edit actions on the active element

append-items Generic Function

Summary

Adds to the items in a collection.

Package

capi

Signature

append-items collection new-items

Arguments

collection⇓ A collection.

new-items⇓ A sequence.

Description

The generic function append-items adds the items in new-items to the collection collection.

This is logically equivalent to recalculating the collection items and calling (setf collection-items). However,
append-items is more efficient and causes less flickering on screen.

append-items can only be used when the collection has the default items-get-function svref.

Notes

append-items cannot be used a graph-pane or a tree-view.

See also

collection
remove-items
replace-items
5 Choices - panes with items

apply-in-pane-process Function

Summary

Applies a function in the process associated with a pane.

21 CAPI Reference Entries

219

http://www.lispworks.com/documentation/HyperSpec/Body/f_svref.htm

Package

capi

Signature

apply-in-pane-process pane function &rest args => nil

Arguments

pane⇓ An element or a pinboard-object or a toolbar-object.

function⇓ A function designator.

args⇓ Lisp objects.

Description

The function apply-in-pane-process applies function to args in the process that is associated with pane. This is required
when function modifies pane or changes how it is displayed. If pane has not been displayed yet, then function is called
immediately.

Notes

1. All accesses (reads as well as writes) on a pane should be performed in the pane's process. Within a callback on the
pane's interface this happens automatically, but apply-in-pane-process is a useful utility in other circumstances.

2. apply-in-pane-process calls function on the current process if the pane's interface does not have a process.

3. If the pane's process is no longer active then apply-in-pane-process applies function directly.

4. apply-in-pane-process-if-alive is another way to call function in the CAPI process appropriate for pane.
However it only does this if pane is alive so in particular, if pane does not have a process, it does not call function.

Examples

Editor commands must be called in the correct process:

(setq editor
 (capi:contain
 (make-instance 'capi:editor-pane
 :text "Once upon a time...")))

(capi:apply-in-pane-process
 editor 'capi:call-editor editor "End Of Buffer")

(capi:apply-in-pane-process
 editor 'capi:call-editor editor "Beginning Of Buffer")

See also

apply-in-pane-process-if-alive
execute-with-interface
4.1 The correct thread for CAPI operations
7 Programming with CAPI Windows

21 CAPI Reference Entries

220

apply-in-pane-process-if-alive
apply-in-pane-process-wait-single
apply-in-pane-process-wait-multiple Functions

Summary

Applies a function in the process associated with a pane, and optionally waits for and returns its values.

Package

capi

Signatures

apply-in-pane-process-if-alive pane function &rest args => alivep

apply-in-pane-process-wait-single pane timeout function &rest args => result, status

apply-in-pane-process-wait-multiple pane timeout function &rest args => results, status

Arguments

pane⇓ A CAPI element or pinboard object.

function⇓ A function or an fbound symbol.

args⇓ Any Lisp objects.

timeout⇓ A non-negative real (number of seconds) or nil.

Values

alivep⇓ A boolean.

result⇓ Any Lisp object.

status⇓ nil, t or :timeout.

results⇓ A list of Lisp objects.

Description

The function apply-in-pane-process-if-alive applies function to args in the process that is associated with pane , if
pane is "alive". This is like apply-in-pane-process except that function is called only if pane is alive. The meaning of
"alive" and the value of alivep are as defined for execute-with-interface-if-alive.

If pane does not have a process, then function is not called.

The return value of apply-in-pane-process-if-alive, alivep, is true if the pane is "alive" and false otherwise.

apply-in-pane-process-wait-single applies function to args like apply-in-pane-process-if-alive, and then
waits for function to return. If the call returns successfully, result is the first return value of the call to function, and status is
t. If pane is not "alive", result and status are nil. If timeout is non-nil and the call did not return within timeout seconds,
then result is nil and status is :timeout.

21 CAPI Reference Entries

221

apply-in-pane-process-wait-multiple is the same as apply-in-pane-process-wait-single except for the
returned values. If the call to function returns successfully, results is a list of the values that function returned and status is t.
If pane is not "alive", result and status are nil. If timeout is non-nil and the call did not return within timeout seconds, then
result is nil and status is :timeout.

Notes

Even if apply-in-pane-process-if-alive returns true for alivep, function is not guaranteed to be called. For example,
the process of pane might be killed or hang.

After timeout has expired in apply-in-pane-process-wait-multiple or apply-in-pane-process-wait-single,
function may or may not have been called.

apply-in-pane-process-wait-multiple and apply-in-pane-process-wait-single work by creating a
mp:mailbox, applying (in the same way that apply-in-pane-process-if-alive does) a lambda that puts the result(s)
of function in the mailbox, and then wait for the mailbox. It is quite easy to write your own version of this if you need
additional features (for example, error handling).

See also

apply-in-pane-process
execute-with-interface-if-alive
4.1 The correct thread for CAPI operations
7 Programming with CAPI Windows

arrow-pinboard-object Class

Summary

A pinboard-object that draws itself as an arrow.

Package

capi

Superclasses

line-pinboard-object

Subclasses

double-headed-arrow-pinboard-object
labelled-arrow-pinboard-object

Initargs

:head A keyword specifying the position of the arrowhead on the line.

:head-direction A keyword specifying the direction of the arrowhead.

:head-length The length of the arrowhead.

:head-breadth The breadth of the arrowhead, or nil.

:head-graphics-args

A graphics args plist.

21 CAPI Reference Entries

222

Description

An instance of the class arrow-pinboard-object is a pinboard-object that draws itself as an arrow.

head must be :end, :middle or:start. The default is :end.

head-direction must be :forwards, :backwards or :both. The default is :forwards.

head-length is the length of the arrowhead in pixels. It defaults to 12.

head-breadth is the breadth of the arrowhead in pixels, or nil which means that the breadth is half of head-length. The
default is nil.

head-graphics-args is a plist of graphics state parameters and values used when drawing the arrow head. For information
about the graphics state, see graphics-state.

Examples

(capi:contain
 (make-instance
 'capi:pinboard-layout
 :description
 (list
 (make-instance 'capi:arrow-pinboard-object
 :start-x 5 :start-y 10
 :end-x 105 :end-y 60)
 (make-instance 'capi:arrow-pinboard-object
 :start-x 5 :start-y 110
 :end-x 105 :end-y 160
 :head :middle)
 (make-instance 'capi:arrow-pinboard-object
 :start-x 5 :start-y 210
 :end-x 105 :end-y 260
 :head-direction :both)
 (make-instance 'capi:arrow-pinboard-object
 :start-x 5 :start-y 310
 :end-x 105 :end-y 360
 :head-graphics-args
 '(:foreground :pink)
 :head-length 30)
 (make-instance 'capi:arrow-pinboard-object
 :start-x 5 :start-y 410
 :end-x 105 :end-y 460
 :head-length 30 :head-breadth 5)
 (make-instance 'capi:arrow-pinboard-object
 :start-x 5 :start-y 510
 :end-x 105 :end-y 560
 :head-breadth 10
 :head-direction :backwards))
 :visible-min-width 120
 :visible-min-height 620))

See also

graphics-state
12.3 Creating graphical objects

21 CAPI Reference Entries

223

attach-interface-for-callback Function

Summary

Changes the interface that is passed when a callback is made.

Package

capi

Signature

attach-interface-for-callback element interface

Arguments

element⇓ An element.

interface⇓ An interface.

Description

The function attach-interface-for-callback changes the interface that is passed when a callback is made. Callbacks
for element get passed interface instead of the parent interface of element.

See also

callbacks
element
element-interface-for-callback
interface
3.4 Callbacks

attach-simple-sink Function

Summary

Attaches a sink to the active component in an ole-control-pane.

Package

capi

Signature

attach-simple-sink invoke-callback pane interface-name &key sink-class => sink

Arguments

invoke-callback⇓ A function designator.

21 CAPI Reference Entries

224

pane⇓ An ole-control-pane.

interface-name⇓ A refguid or the symbol :default.

sink-class⇓ A symbol naming a class.

Values

sink The sink object.

Description

The function attach-simple-sink make a sink object and attaches it to the active component in pane.

When an event callback is triggered for the source interface named by interface-name, the sink object will call invoke-
callback with four arguments: pane (see sink-class below), the source method name as a string, the source method type
(either :method, :get or :put) and a vector of the remaining callback arguments.

interface-name is either a string naming a source interface that the component in pane supports or :default to connect to
the default source interface.

sink-class can be used to control the class of the sink object. This defaults to ole-control-pane-simple-sink, but can
be a subclass of this class to allow the first argument of invoke-callback to be chosen by a method on the generic function
com:simple-i-dispatch-callback-object.

Attached sinks are automatically disconnected when the object is closed or can be manually disconnected by calling
detach-simple-sink.

Notes

This function is implemented only in LispWorks for Windows. Load the functionality by (require "embed").

See also

detach-simple-sink
ole-control-pane
ole-control-pane-simple-sink

attach-sink Function

Summary

Attaches a sink to the active component in an ole-control-pane.

Package

capi

Signature

attach-sink sink pane interface-name

Arguments

21 CAPI Reference Entries

225

sink⇓ A class instance.

pane⇓ An ole-control-pane.

interface-name⇓ A refguid or the symbol :default.

Description

The function attach-sink attaches a sink to the active component in the the ole-control-pane pane.

sink is an instance of a class that implements the source interface interface-name.

pane is an ole-control-pane which is the pane where the component is.

interface-name is either a string naming a source interface that the component in pane supports or :default to connect to
the default source interface.

Attached sinks are automatically disconnected when the object is closed or can be manually disconnected by calling
detach-sink.

Notes

This function is implemented only in LispWorks for Windows. Load the functionality by (require "embed").

See also

attach-simple-sink
detach-sink
ole-control-pane

beep-pane Function

Summary

Sounds a beep.

Package

capi

Signature

beep-pane &optional pane

Arguments

pane⇓ A simple-pane.

Description

The function beep-pane sounds a beep on the screen associated with pane or on the current screen if pane is nil.

Examples

(capi:beep-pane)

21 CAPI Reference Entries

226

See also

simple-pane
screen
18.2 Sounds

browser-pane Class

Summary

Embeds a pane that can display HTML. Implemented only on Microsoft Windows and Cocoa.

Package

capi

Superclasses

simple-pane

Initargs

:before-navigate-callback

A function that is called before navigating, or nil.

:navigate-complete-callback

A function that is called when navigation completes, or nil.

:new-window-callback

A function that is called before opening a new window, or nil.

:status-text-change-callback

A function that is called when there is a new status text or nil.

:document-complete-callback

A function that is called when a document is complete, or nil.

:title-change-callback

A function that is called when the title changes, or nil.

:update-commands-callback

A function that is called when the enabled status of commands related to the pane may
need to change, or nil.

:internet-explorer-callback

Microsoft Windows specific: A function that is whenever there is an event from the
underlying IWebBrowser2, or nil.

:navigate-error-callback

A function that is called when the pane fails to navigate, or nil.

:progress-callback

:debug A boolean specifying whether debugging mode is on or not.

:url A string specifying the initial URL.

21 CAPI Reference Entries

227

Accessors

browser-pane-navigate-complete-callback
browser-pane-new-window-callback
browser-pane-status-text-change-callback
browser-pane-document-complete-callback
browser-pane-title-change-callback
browser-pane-update-commands-callback
browser-pane-internet-explorer-callback
browser-pane-before-navigate-callback
browser-pane-navigate-error-callback
browser-pane-debug

Readers

browser-pane-url
browser-pane-successful-p
browser-pane-title

Description

An instance of the class browser-pane is a pane that embeds a pane that can display HTML. Navigation in the pane
happens either by the user clicking on hyperlinks, or by the application using browser-pane-navigate. The various
callbacks gives the program information on what happens in the window and can be used to control (for example, to block or
redirect pages).

browser-pane is implemented only on Microsoft Windows (where it embeds an IWebBrowser2) and Cocoa (where it uses
WebKit).

The initarg :url specifies the initial URL. After being created, the pane automatically navigates to this URL.

When before-navigate-callback is non-nil, it is called before any navigation (whether programmatic or by the user), and gives
the application control over whether to perform the navigation. The callback must have this signature:

before-navigate-callback pane url &key sub-frame-p frame-name &allow-other-keys => do-it

pane is the pane that navigates, and url is a string to which it wants to navigate. sub-frame-p is true when the navigation is for
a sub-frame inside the current URL, otherwise sub-frame-p is nil. frame-name is either nil or the name of a sub-frame
when the navigation is to a sub-frame.

If before-navigate-callback returns nil, the navigation is canceled.

Note: To perform a redirection, just call browser-pane-navigate to the required URL, and return nil from before-
navigate-callback.

If new-window-callback is non-nil, it is called before the pane tries to open a new window. It must have this signature:

new-window-callback pane url &key context flags &allow-other-keys => do-it-p

pane is the pane that wants to open a new window, and url is a string containing the URL that the new window will navigate
to. context is a string containing the URL of the page from which the request comes.

flags is implementation-specific flags. On Cocoa flags is always 0. On Microsoft Windows flags contains bits from the
NWMF enumeration.

If new-window-callback returns nil, the opening of the new window is canceled. If new-window-callback returns t or is not
supplied, it launches a browser using the OS settings.

21 CAPI Reference Entries

228

On Microsoft Windows, new-window-callback is invoked from the "NewWindow3" event (or "NewWindow2" for old
versions) of the sink of the underlying IWebBrowser2. If not canceled, the pane opens a new normal Internet Explorer
window.

If document-complete-callback is non-nil, it is called when the new document in the pane is complete. It must be a function
with signature:

document-complete-callback pane url title =>

url is the loaded URL, and may be nil in the case of failure. title is a string that is associated with the URL url (or the
previous URL if the latest call failed).

document-complete-callback is called when, as far as the system is concerned, all the data for the URL has been loaded and is
displayed in the pane. There is only one call to document-complete-callback for each navigation of the pane.

If navigate-complete-callback is non-nil, it is called whenever a navigation completes. navigate-complete-callback can be
called several times for each navigation of the pane. It must be a function with the signature:

navigate-complete-callback pane url sub-frame-p =>

pane is the pane that is navigated. url is a string to which it navigated, unless the navigation failed, in which case url is nil.
sub-frame-p is true when the navigation was in a sub-frame.

Notes: For most purposes the document-complete-callback is more useful than navigate-complete-callback. When navigate-
complete-callback gets a nil url, the value of the URL in the pane (that is, what the accessor browser-pane-url returns)
is still set to the actual URL. The success flag (which you can read with browser-pane-successful-p) is set to nil.

url can be non-nil even if there was an error in the navigation, if the server supplied another URL. In this case, on Microsoft
Windows only, the success flag is set to :redirected. You can read it with browser-pane-successful-p.

If navigate-error-callback is non-nil, it is called when navigation fails for some reason. It should have this signature:

navigate-error-callback pane url &key http-code error-symbol implementation-error-code message frame-name sub-frame-p
fatal &allow-other-keys => cancel

pane is the navigating pane, and url is the URL that got the error.

If the failure is server-side failure, then http-code contains the http-code in the response of the server, otherwise (that is, when
it failed to connect to a server) it is nil.

error-symbol is a keyword uniquely identifying the error. For an http error it is of the form :HTTP_STATUS*, and for
requests with bad syntax error-symbol is :bad-request.

On Microsoft Windows implementation-error-code is the code in the "NavigateError" event. If http-code is non-nil then
implementation-error-code and http-code will be the same. On Cocoa implementation-error-code will be the same as http-
code in the case of server-side failure, otherwise it is one of the NSURLError* constants.

fatal is a boolean. A true value means that nothing is going to be displayed in the pane to tell the user about the error.

message is a message saying what the error is. sub-frame-p is t when the navigation is for a sub-frame, otherwise nil. frame
-name is the name of the frame.

The return value cancel of navigate-error-callback should be one of nil, t, or :stop, with these interpretations:

nil On Microsoft Windows this means displaying either the substitution page from the server if there
is one, or displaying automatically generated (by the underlying IWebBrowser2) error page.

21 CAPI Reference Entries

229

t Cancel. On Microsoft Windows this means not displaying the automatically generated error
page, but displaying server substitution if there is any.

:stop Stop the navigation immediately.

Note that the effect of the returned value cancel is only on the specific navigation, so it possible for a sub-frame to be
stopped, while the main page and maybe other sub-frames complete.

On Cocoa there is no automatically generated error page, so the return value of cancel nil means the same as t, and both
display whatever the server returned.

Note: To redirect on error, navigate-error-callback should just call browser-pane-navigate with the new page and return
:stop.

If title-change-callback is non-nil, it is called when the title of the pane should change. It should have this signature:

title-change-callback pane new-title

new-title is a string, which the application should use as the title of the pane.

Note: In most cases, using the title argument of the document-complete-callback is more useful.

If status-text-change-callback is non-nil, it is called when the status text of the pane should change. It has this signature:

status-text-change-callback pane new-status-text

new-status-text is a string, which the application should use as the status text for the pane.

If update-commands-callback is non-nil, it is called when other panes (typically buttons or menu items) that are used to
perform commands on the pane need to update. The callback has this signature:

update-commands-callback pane what enabled-p

Currently what can be one of:

:forward Other panes that are used to go forward in the pane should be enabled or disabled.

:backward Other panes that are used to go backward in the pane should be enabled or disabled.

Additionally on Microsoft Windows only, what can be:

t Other panes that may try to anything with the pane may need updating. Note that this callback is
called quite often with what = t, so make sure it usually does not do much work in this case.

enabled-p specifies whether the other panes should be enabled or disabled.

On Windows only, if internet-explorer-callback is non-nil, it is called for each event for the pane. It has the signature:

internet-explorer-callback pane event-name args

event-name is a string specifying the event. args is a vector containing the arguments in order. The callback is called before
any code that is used to implement the callbacks, which is called afterwards with the same argument vector. That means that
the callback should not set anything in the vector, except when debugging.

internet-explorer-callback is intended to add functionality that is not given by the callbacks, and for debugging (but see also
:debug). If you need more control, you probably want to define your pane directly: for the basics see:

(example-edit-file "com/ole/html-viewer")

21 CAPI Reference Entries

230

debug specifies that the pane should be in debugging mode. Currently, on Microsoft Windows this means that it prints each
event and the arguments that it receives. Whenever an event is sent to the sink associated with the embedded browser, the
method name (which is the same as the event name in this case) and the argument are printed to
mp:*background-standard-output*. On Cocoa it prints some diagnostics to mp:*background-standard-output*.

browse-pane-url returns the current url of the pane. Initially the value is the keyword :url, but once the browser
completed navigation to some URL it is changed to this. Note that the url changes even if the navigation was not successful,
as long as it was not stopped or canceled and there was no substitution page.

browse-pane-title returns the title of the current document. Note that during navigation browse-pane-title and
browse-pane-url may not be synchronized. They are synchronized when document-complete-callback is called, until the
next before-navigate-callback call.

browser-pane-successful-p tests whether the navigation to the current URL completed successfully, returning nil for
failure and t for success. On Microsoft Windows only it can also return :substituted, which means that the server
returned an error but also supplied a substitution page. On Cocoa, browser-pane-successful-p returns only t or nil.

Notes

browser-pane and related APIs are implemented on Microsoft Windows and Cocoa only. You can test whether it is
available by browser-pane-available-p.

See also

browser-pane-available-p
browser-pane-busy
browser-pane-go-forward
browser-pane-go-back
browser-pane-navigate
browser-pane-refresh
browser-pane-set-content
browser-pane-stop
3.6 Displaying rich text

browser-pane-available-p Function

Summary

The predicate for whether browser-pane can be used on a specified screen.

Package

capi

Signature

browser-pane-available-p &optional screen-spec => result

Arguments

screen-spec⇓ A CAPI object, a plist, or nil,.

21 CAPI Reference Entries

231

Values

result A boolean.

Description

The function browser-pane-available-p returns true if there is a browser-pane implementation for the library
associated with screen-spec.

If screen-spec is not supplied, the default library is used.

If screen-spec is supplied, it must be a valid argument to convert-to-screen.

See also

browser-pane
convert-to-screen

browser-pane-navigate
browser-pane-busy
browser-pane-go-back
browser-pane-go-forward
browser-pane-set-content
browser-pane-stop
browser-pane-refresh Functions

Summary

Controls a browser-pane.

Package

capi

Signatures

browser-pane-navigate pane url => result

browser-pane-busy pane => result

browser-pane-go-back pane

browser-pane-go-forward pane

browser-pane-set-content pane string

browser-pane-stop pane

browser-pane-refresh pane &optional level

Arguments

pane⇓ A browser-pane.

21 CAPI Reference Entries

232

url⇓ A string.

string⇓ A string.

level⇓ One of the keywords :normal and :completely.

Values

result⇓ A boolean.

Description

These functions are used to control an instance of browser-pane.

browser-pane-navigate navigates to url, that is it gets and displays the contents of url. Note that if there is any
redirection, it is the redirected URL that is displayed.

browser-pane-navigate does the navigation asynchronously, so when the function returns the navigation has just started.
If result is true then the navigation started, and if result is nil then some error in the URL has already been detected. If the
pane has an error callback, it already has been called in this case.

If browser-pane-navigate is called while pane is not displayed, it sets the initial URL of it.

Note: browser-pane-navigate can be used to effect a redirection from inside the error before navigation and new-
window callbacks.

browser-pane-busy tests whether the browser is currently navigating, returning true if it is.

browser-pane-go-forward and browser-pane-go-back navigate forward and back in the history, like the buttons on
most web browsers.

browser-pane-set-content sets the contents of pane to string. It has same effect as if pane navigated to a URL whose
contents is string. browser-pane-set-content creates a temporary file containing string and uses the pathname as the
URL for pane. The file is deleted when pane is destroyed.

browser-pane-stop stops the current navigation.

browser-pane-refresh refreshes the pane, which means re-reading the URL. level can be one of:

:normal Asks the server for the contents again. This is the default value of level.

:completely Asks the server for the contents again without looking at any cache.

Notes

browser-pane and related APIs are implemented on Microsoft Windows and Cocoa only.

Compatibility note

In LispWorks 6.1 these functions were documented as generic functions, however it is not intended that you should define
methods.

See also

browser-pane

21 CAPI Reference Entries

233

browser-pane-property-get
browser-pane-property-put Generic Functions

Summary

Get or set value of a specified Windows property of the underlying browser.

Package

capi

Signatures

browser-pane-property-get pane property-name => value

browser-pane-property-put pane property-name value

Arguments

pane⇓ A browser-pane.

property-name⇓ A string.

value⇓ A Lisp value of appropriate type for the property property-name.

Values

value A Lisp value of appropriate type for the property property-name.

Description

The functions browser-pane-property-get and browser-pane-property-put get or set the value of a specified
Windows property of the underlying browser of pane.

property-name has to be one of the properties listed in the Properties section of the documentation of IWebBrowser2 in the
MSDN and value should be of the appropriate type for that property when setting it.

Notes

1. browser-pane-property-get and browser-pane-property-put are implemented on Microsoft Windows only.

2. browser-pane-property-get and browser-pane-property-put do not correspond to the methods
"GetProperty" and "PutProperty" of IWebBrowser2.

See also

browser-pane

21 CAPI Reference Entries

234

button Class

Summary

A class of pane that displays either a piece of text or an image, and that performs an action when pressed. Certain types of
buttons can also be selected and deselected.

Package

capi

Superclasses

simple-pane
item

Subclasses

push-button
radio-button
check-button

Initargs

:interaction The interaction style for the button.

:selected For radio button and check button styles, if selected is set to t, the button is initially
selected.

:callback Specifies the callback to use when the button is selected.

:image An image for the button (or nil).

:selected-image The image used when the button is selected.

:enabled If nil the button cannot be selected.

:cancel-p If true the button is the "Cancel" button, that is, the button selected by the Escape key.

:default-p If true the button is the default button, that is, the button selected by the Return key.

:disabled-image The image for the button when disabled (or nil), only implemented on Motif and
Microsoft Windows.

:selected-disabled-image

The image used when the button is selected and disabled, only implemented on Motif and
Microsoft Windows.

:armed-image The image used when the button is pressed and interaction is :no-selection, only
implemented on GTK+ and Motif and Microsoft Windows.

:mnemonic A character, integer or symbol specifying a mnemonic for the button, only implemented
on Microsoft Windows and GTK+.

:mnemonic-text A string specifying the text and a mnemonic, only implemented on Microsoft Windows
and GTK+.

:mnemonic-escape A character specifying the mnemonic escape. The default value is #\&, only implemented
on Microsoft Windows and GTK+.

21 CAPI Reference Entries

235

Accessors

button-selected
button-image
button-armed-image
button-selected-image
button-disabled-image
button-selected-disabled-image
button-enabled
button-cancel-p
button-default-p

Description

The class button is the class that push-button, radio-button, and check-button are built on. It can be displayed
either with text or an image, and a callback is called when the button is clicked. It inherits all of its textual behavior from
item, including the slot text which is the text that appears in the button.

Rather than creating direct instances of button, you usually create instances of its subclasses, each of which has a specific
interaction style. Occasionally it may be easier to instantiate button directly with the appropriate value of interaction (for
instance, when the interaction style is only known at run-time) but you may not use such a button as an item in a
button-panel.

The values allowed for interaction are as follows:

:no-selection A push button.

:single-selection A radio button.

:multiple-selection

A check button.

Both radio buttons and check buttons can have a selection which can be set using the initarg :selected and the accessor
button-selected.

The button's callback gets called when the user clicks on the button, and by default gets passed the data in the button and the
interface. This can be changed by specifying a callback type as described in the description of callbacks. The following
callbacks are accepted by buttons:

:selection-callback

Called when the button is selected.

:callback For buttons this is a synonym of :selection-callback.

:retract-callback Called when the button is deselected.

By default, image and disabled-image are nil, meaning that the button is a text button, but if image is provided then the
button displays an image instead of the text. The image can be an external-image or any object accepted by
load-image, including a .ico file on Microsoft Windows. The disabled image is the image that is shown when the button is
disabled (or nil, meaning that it is left for the window system to decide how to display the image as disabled). On some
platforms the system computes the disabled image and so disabled-image is ignored.

The button's actions can be enabled and disabled with the enabled slot, and its associated accessor button-enabled. This
means that when the button is disabled, pressing on it does not call any callbacks or change its selection.

Note that the class button-panel provides functionality to group buttons together, and should normally be used in
preference to creating individual buttons yourself. For instance, a radio-button-panel makes a number of radio buttons

21 CAPI Reference Entries

236

and also controls them such that only one button is ever selected at a time.

A mnemonic is an underlined character within the button text or the printed representation of the button data which can be
entered to select the button. The value mnemonic is interpreted as described for menu.

An alternative way to specify a mnemonic is to pass mnemonic-text. This is a string which provides the text for the button and
also specifies the mnemonic character. mnemonic-text and mnemonic-escape are interpreted in just the same way as the
mnemonic-title and mnemonic-escape of menu.

Notes

1. The simple-pane initarg foreground is not supported for buttons on Windows and Cocoa.

2. The disabled-image, armed-image and selected-disabled-image will work on Microsoft Windows provided you are
running with the themed look-and-feel (which is the default). See 19.1.1 Using Windows themes.

Examples

In the following example a button is created. Using the button-enabled accessor the button is then enabled and disabled.

(setq button
 (capi:contain (make-instance
 'capi:push-button
 :text "Press Me")))

(capi:apply-in-pane-process
 button #'(setf capi:button-enabled) nil button)

(capi:apply-in-pane-process
 button #'(setf capi:button-enabled) t button)

In the next example a button with an image instead of text is created.

(setq button
 (capi:contain
 (make-instance
 'capi:push-button
 :image
 (example-file
 "capi/applications/images/info.bmp"))))

The following examples illustrate mnemonics:

(defun egg (&rest ignore)
 (declare (ignore ignore))
 (capi:display-message "Egg"))

(capi:contain
 (make-instance 'capi:push-button
 :selection-callback 'egg
 :mnemonic-text "Chicken && Rice"))

(capi:contain
 (make-instance 'capi:push-button
 :data "Chicken"
 :selection-callback 'egg
 :mnemonic #\k))

Compare this with the previous example: the #\k does not appear and the #\e becomes the mnemonic:

21 CAPI Reference Entries

237

(capi:contain
 (make-instance 'capi:push-button
 :selection-callback 'egg
 :mnemonic-escape #\k
 :mnemonic-text "Chicken"))

Also see these examples:

(example-edit-file "capi/buttons/")

See also

button-panel
callbacks
3.10 Button elements
13.10 Working with images

button-panel Class

Summary

The class button-panel is a pane containing a number of buttons that are laid out in a particular style, and that have group
behavior.

Package

capi

Superclasses

choice
titled-object
simple-pane

Subclasses

push-button-panel
radio-button-panel
check-button-panel

Initargs

:layout-class The type of layout for the buttons.

:layout-args Initialization arguments for the layout.

:callbacks The selection callbacks for each button.

:button-class The class of the buttons.

:images A list.

:disabled-images A list.

:armed-images A list.

:selected-images A list.

:selected-disabled-images

21 CAPI Reference Entries

238

A list.

:help-keys A list.

:default-button Specifies the default button.

:cancel-button Specifies the cancel button.

:mnemonics A list specifying mnemonics for the buttons, only implemented on Microsoft Windows.

:mnemonic-items A list of strings, each specifying the text and a mnemonics, only implemented on
Microsoft Windows.

:mnemonic-escape A character specifying the mnemonic escape. The default value is #\&s, only
implemented on Microsoft Windows.

:mnemonic-title A string specifying the title and a mnemonics, only implemented on Microsoft Windows.

Accessors

pane-layout

Description

The class button-panel inherits most of its behavior from choice, which is an abstract class providing support for
handling items and selections. By default, a button panel has single selection interaction style (meaning that only one of the
buttons can be selected at any one time), but this can be changed by specifying an interaction.

The subclasses push-button-panel, radio-button-panel and check-button-panel are provided as convenience
classes, but they are just button panels with different interactions (:no-selection, :single-selection and
:multiple-selection respectively).

The layout of the buttons is controlled by a layout of class layout-class (which defaults to row-layout) but this can be
changed to be any other CAPI layout. When the layout is created, the list of initargs layout-args is passed to
make-instance.

Each button uses the callbacks specified for the button panel itself, unless the argument callbacks is specified. callbacks
should be a list (one element per button). Each element of callbacks, if non-nil, will be used as the selection callback of the
corresponding button.

button-class, if supplied, determines the class used for each of the buttons. This should be the class appropriate for the
interaction, or a subclass of it. The default behavior is to create buttons of the class appropriate for the interaction.

Each of images, disabled-images, armed-images, selected-images, selected-disabled-images and help-keys, if supplied,
should be a list of the same length as items. The values are passed to the corresponding item, and interpreted as described for
button. The button-panel images values map to button image arguments, and so on.

For button-panel and its subclasses, the items supplied to the :items initarg and (setf collection-items) function
can contain button objects. In this case, the button is used directly in the button panel rather than a button being created by
the CAPI.

This allows button size and spacing to be controlled explicitly. Note that the button must be of the appropriate type for the
subclass of button-panel being used, as shown in the following table:

21 CAPI Reference Entries

239

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

Button and panel classes

Button panel class Button class

push-button-panel push-button

radio-button-panel radio-button

check-button-panel check-button

For example:

(let ((button1 (make-instance 'capi:push-button
 :text "button1"
 :internal-border 20
 :visible-min-width 200))
 (button2 (make-instance 'capi:push-button
 :text "button2"
 :internal-border 20
 :visible-min-width 200)))
 (capi:contain (make-instance 'capi:push-button-panel
 :items (list button1 button2)
 :layout-args '(:x-gap 30))))

default-button specifies which button is the default (selected by pressing Return). It should be equal to a member of items
when compared by test-function. If the items are non-immediate objects such as strings or button objects, you must ensure
either that the same (eq) object is passed in items as in default-button, or that a suitable test-function is supplied.

cancel-button specifies which button is selected by pressing Escape. The comparison with members of items is as for default
-button.

mnemonics is a list of the same length as items. Each element is a character, integer or symbol specifying the mnemonic for
the corresponding button in the same way as described for menu.

mnemonic-items is an alternate way to specify the mnemonics in a button panel. It is a list of the same length as items. Each
element is a string which is interpreted for the corresponding button as its mnemonic-text initarg.

mnemonic-title and mnemonic-escape are interpreted as for menu. mnemonic-escape specifies the escape character for
mnemonics both in the buttons and in the pane's title.

Compatibility note

Button panels now default to having a maximum size constrained to their minimum size as this is useful when attempting to
layout button panels into arbitrary spaces without them changing size. To get the old behavior, specify
:visible-max-width nil in the make-instance.

Examples

(capi:contain (make-instance
 'capi:button-panel
 :items '(:red :green :blue)
 :print-function 'string-capitalize))

(setq buttons
 (capi:contain
 (make-instance
 'capi:button-panel
 :items '(:red :green :blue)
 :print-function 'string-capitalize
 :interaction :multiple-selection)))

21 CAPI Reference Entries

240

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

(capi:apply-in-pane-process
 buttons #'(setf capi:choice-selected-items)
 '(:red :green) buttons)

(capi:contain (make-instance
 'capi:button-panel
 :items '(1 2 3 4 5 6 7 8 9)
 :layout-class 'capi:grid-layout
 :layout-args '(:columns 3)))

This example illustrates use of default-button and test-function:

(capi:contain
 (make-instance 'capi:push-button-panel
 :items '("one" "two" "three")
 :default-button "two"
 :test-function 'equalp
 :selection-callback
 'capi:display-message))

Also see these example files:

(example-edit-file "capi/buttons/buttons")

(example-edit-file "capi/buttons/button-panel-layout")

See also

radio-button
check-button
push-button
set-button-panel-enabled-items
5 Choices - panes with items

calculate-constraints Generic Function

Summary

Calculates the internal constraints of a pane.

Package

capi

Signature

calculate-constraints pane

Arguments

pane⇓ A CAPI pane or layout.

21 CAPI Reference Entries

241

Description

The generic function calculate-constraints calculates the internal constraints for pane according to the sizes of its
children, and sets these values into its geometry cache. It can also store other information about the constraints for later use
by calculate-layout.

When the pane does not scroll in the relevant dimension, all the geometry hints (:external-min-width,
:visible-max-height and so on) override the values that are computed by calculate-constraints.

When the pane does scroll in the relevant dimension, :internal-min-width and :internal-min-height override the
values that are computed by calculate-constraints. (:internal-max-width and :internal-max-height are
ignored when scrolling.)

See 6.4.1 Width and height hints for a description of internal and external constraints.

The CAPI calls calculate-constraints for each pane and layout that it displays.

When creating your own layout, you should define a method for calculate-constraints that sets the values of the
following geometry slots based on the constraints of its children.

%min-width% The minimum width of pane.

%max-width% The maximum width of pane.

%min-height% The minimum height of pane.

%max-height% The maximum height of pane.

See with-geometry for more details of these slots.

The constraints of any CAPI element can be found by calling get-constraints.

Note: Unless your layout is a direct subclass of layout, you must ensure that the calculate-constraints methods from
the superclasses are called. You can do this by calling call-next-method or defining your calculate-constraints
method as an :after method.

See also

calculate-layout
define-layout
get-constraints
element
layout
with-geometry
7 Programming with CAPI Windows

calculate-layout Generic Function

Summary

Provides a method for laying out the children of a new layout.

Package

capi

21 CAPI Reference Entries

242

http://www.lispworks.com/documentation/HyperSpec/Body/f_call_n.htm

Signature

calculate-layout layout x y width height

Arguments

layout⇓ A layout.

x⇓, y⇓, width⇓, height⇓
Integers.

Description

The generic function calculate-layout is called by the CAPI to set the position and size of the children of layout.

x, y, width and height are the position and size of a rectangle that should contain the children.

When defining a new subclass of layout using define-layout, a calculate-layout method must be provided that sets
the position and size of each of the layout's children. This method must try to obey the constraints specified by its children
(its minimum and maximum size) and should only break them when it becomes impossible to fit the constraints of all of the
children. Use x, y, width and height to calculate a suitable position and size for each of the children and set them using the
macro with-geometry, which works in a similar way to with-slots.

Examples

(example-edit-file "capi/layouts/buffer-layout")

(example-edit-file "capi/layouts/wrapping-layout")

See also

get-constraints
with-geometry
interpret-description
6 Laying Out CAPI Panes

callbacks Class

Summary

The class callbacks is used as a mixin by classes that provide callbacks.

Package

capi

Superclasses

capi-object

Subclasses

collection

21 CAPI Reference Entries

243

http://www.lispworks.com/documentation/HyperSpec/Body/m_w_slts.htm

item
menu-object

Initargs

:callback-type The type of arguments for the callbacks.

:selection-callback

The callback for selecting an item.

:extend-callback The callback for extending the selection.

:retract-callback The callback for deselecting an item.

:action-callback The callback for an action.

:alternative-action-callback

The callback for an alternative action in choice and its subclasses.

Accessors

callbacks-callback-type
callbacks-selection-callback
callbacks-extend-callback
callbacks-retract-callback
callbacks-action-callback

Description

Each callback function can be one of the following:

function Call the function.

list Apply the head of the list to the tail.

:redisplay-interface

Call redisplay-interface on the top-level interface.

:redisplay-menu-bar

Call redisplay-menu-bar on the top-level interface.

The slot value callback-type determines which arguments get passed to each of the callbacks. It can be any of the following
values, and passes the corresponding data to the callback function:

:collection-data (collection data)

:data (item-data)

:data-element (item-data element)

:data-interface (item-data interface)

:element (element)

:element-data (element item-data)

:element-item (element item)

:interface-data (interface item-data)

:item (item)

21 CAPI Reference Entries

244

:item-element (item element)

:item-interface (item interface)

:interface-item (interface item)

:interface (interface)

:full (item-data item interface)

:focus The pane with the current input focus.

:none ()

nil ()

callback-type can also be a list containing any of :focus, :data, :element, :interface, :collection, :item.

The item-data variable is the item's data if the item is of type item, otherwise it is the item itself, as for item. The item
variable means the item itself. The interface is the element-interface of the element. collection is the element's
collection, if there is one. The element variable means the element containing the callback itself.

In a choice, the alternative-action-callback is invoked by a gesture which is the action-callback gesture modified by the
Shift key on Microsoft Windows and GTK+, and modified by the Command key on Cocoa.

alternative-action-callback is applicable only to choice and its subclasses.

Apart from being invoked with a different gesture, the alternative-action-callback has exactly the same semantics as action-
callback.

Examples

(example-edit-file "capi/choice/alternative-action-callback")

See also

abort-callback
choice
attach-interface-for-callback
3.4 Callbacks
5.10.3 Callbacks in choices
8 Creating Menus

call-editor Generic Function

Summary

Executes an editor command in an editor-pane.

Package

capi

Signature

call-editor editor-pane command

21 CAPI Reference Entries

245

Arguments

editor-pane⇓ An editor-pane.

command⇓ A string.

Description

The generic function call-editor executes the editor command command in the current buffer in editor-pane.

It can be used directly in a callback for an interface that contains editor-pane. See 11.4 Connecting an interface to an
application. In other cases, take care to modify displayed CAPI interfaces only in their own process:
execute-with-interface and apply-in-pane-process are useful for this.

The before-input-callback and after-input-callback of the editor-pane are called when call-editor is called.

Examples

(setq editor (capi:contain
 (make-instance 'capi:editor-pane
 :text "abc")))

(capi:apply-in-pane-process
 editor 'capi:call-editor editor "End Of Buffer")

Also see this example:

(example-edit-file "capi/editor/editor-pane")

See also

apply-in-pane-process
editor-pane
execute-with-interface
10.6 In-place completion

can-use-metafile-p Function

Summary

Queries whether metafiles can be used.

Package

capi

Signature

can-use-metafile-p &optional screen => result

Arguments

screen⇓ An object accepted by the function convert-to-screen.

21 CAPI Reference Entries

246

Values

result A boolean.

Description

The function can-use-metafile-p is the predicate for whether the default library (if no argument is passed) or a specified
screen (if an argument is passed) can use metafiles.

If the argument screen is supplied, it is converted to a screen by convert-to-screen.

Examples

(example-edit-file "capi/graphics/metafile")

See also

convert-to-screen
default-library

capi-object Class

Summary

The class capi-object is the superclass of all CAPI classes.

Package

capi

Superclasses

standard-class

Subclasses

item
callbacks
element
interface
pinboard-object

Initargs

:name The name of the object.

:plist A property list for storing miscellaneous information.

Accessors

capi-object-name
capi-object-plist

21 CAPI Reference Entries

247

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm

Description

The class capi-object provides a name and a property list for general purposes, along with the accessors
capi-object-name and capi-object-plist respectively. The name of a capi-object is defaulted by
define-interface to be the name of the slot into which the object is put.

Examples

(setq object (make-instance 'capi:capi-object
 :name 'test))

(capi:capi-object-name object)

(setf (capi:capi-object-plist object)
 '(:red 1 :green 2 :blue 3))

(capi:capi-object-property object :green)

See also

capi-object-property
18.5 Object properties and name

capi-object-property Accessor

Summary

Accesses properties in the property list of a capi-object.

Package

capi

Signature

capi-object-property object property => value

setf (capi-object-property object property) value => value

Arguments

object⇓ A capi-object.

property⇓ A Lisp object.

value⇓ A Lisp object.

Values

value⇓ A Lisp object.

21 CAPI Reference Entries

248

Description

The accessor capi-object-property gets and sets the property named property in the property list of object. value can be
any Lisp object.

All CAPI objects contain a property list, similar to the plist of a symbol. The recommended ways of accessing properties are
capi-object-property and (setf capi-object-property). To remove a property, use the function
remove-capi-object-property.

Examples

In this example a list panel is created, and a test property is set and examined using capi-object-property.

(setq pane (make-instance 'capi:list-panel
 :items '(1 2 3)))

(capi:capi-object-property pane 'test-property)

(setf (capi:capi-object-property pane 'test-property)
 "Test")
(capi:capi-object-property pane 'test-property)

(capi:remove-capi-object-property pane 'test-property)
(capi:capi-object-property pane 'test-property)

See also

capi-object
remove-capi-object-property
18.5 Object properties and name

check-button Class

Summary

A check button is a button that can be either selected or deselected, and its selection is independent of the selections of any
other buttons.

Package

capi

Superclasses

button
titled-object

Description

The class check-button inherits most of its behavior from the class button. Note that it is normally best to use a
check-button-panel rather than make the individual buttons yourself, as the button panel provides functionality for
handling groups of buttons. However, check-button can be used if you need to have more control over the button's
behavior.

21 CAPI Reference Entries

249

Examples

The following code creates a check button.

(setq button (capi:contain
 (make-instance 'capi:check-button
 :text "Press Me")))

The button can be selected and deselected using this code.

(capi:apply-in-pane-process
 button #'(setf capi:button-selected) t button)

(capi:apply-in-pane-process
 button #'(setf capi:button-selected) nil button)

The following code disables and enables the button.

(capi:apply-in-pane-process
 button #'(setf capi:button-enabled) nil button)

(capi:apply-in-pane-process
 button #'(setf capi:button-enabled) t button)

See also

push-button
radio-button
button-panel
3.10 Button elements

check-button-panel Class

Summary

A class of panes containing a group of buttons each of which can be selected or deselected.

Package

capi

Superclasses

button-panel

Description

The class check-button-panel inherits all of its behavior from button-panel, which itself inherits most of its behavior
from choice. Thus, the check-button-panel can accept items, callbacks, and so on.

Examples

(capi:contain (make-instance
 'capi:check-button-panel
 :title "Select some packages"

21 CAPI Reference Entries

250

 :items '("CAPI" "LISPWORKS" "CL-USER")))

(setq buttons (capi:contain
 (make-instance
 'capi:check-button-panel
 :title "Select some packages"
 :items '("CAPI" "LISPWORKS" "CL-USER")
 :layout-class 'capi:column-layout)))

(capi:choice-selected-items buttons)

Also see this example:

(example-edit-file "capi/buttons/buttons")

See also

check-button
push-button-panel
radio-button-panel
5 Choices - panes with items

choice Class

Summary

An abstract class that collects together a group of items, and provides functionality for displaying and selecting them.

Package

capi

Superclasses

collection

Subclasses

button-panel
double-list-panel
extended-selection-tree-view
graph-pane
list-panel
menu-component
option-pane
toolbar-component
tree-view

Initargs

:interaction The interaction style of the choice.

:selection The indexes of the choice's selected items.

:selected-item The selected item for a single selection choice.

21 CAPI Reference Entries

251

:selected-items A list of the selected items.

:keep-selection-p If t, retains any selection when the items change.

:initial-focus-item

If supplied, this should be an item in the choice.

Accessors

choice-selection

Readers

choice-interaction
choice-initial-focus-item

Description

The class choice inherits most of its behavior from collection, and then provides the selection facilities itself. The
classes list-panel, button-panel, option-pane, menu-component and graph-pane inherit from it, and so it plays
a key role in CAPI applications.

A choice can have one of four different interaction styles, and these control how it behaves when an item is selected by the
user. interaction can be one of:

:no-selection The choice behaves just as a collection.

:single-selection The choice can have only one selected item.

:multiple-selection

The choice can have multiple selected items, except on macOS.

:extended-selection

An alternative to multiple-selection.

With interaction :no-selection, the choice cannot have a selection, and so behaves just as a collection would.

With interaction :single-selection, the choice can only have one item selected at a time. When a new selection is made,
the old selection is cleared and its selection-callback is called. The selection-callback is also called when the user invokes
the selection gesture on the selected item.

With interaction :multiple-selection, the choice can have any number of items selected, and selecting an item toggles
its selection status. The selection-callback is called when an item becomes selected, and the retract-callback is called when
an item is deselected. :multiple-selection is not supported for lists on macOS.

With interaction :extended-selection, the choice can have any number of items selected as with
:multiple-selection interaction, but the usual selection gesture removes the old selection. However, there is a window
system-specific means of extending the selection. When an item is selected the selection-callback is called, when the
selection is extended the extend-callback is called, and when an item is deselected the retract-callback is called.

On macOS, the selection gesture is mouse (left button) click. Deselection and discontinuous selections are made by
Command+Click, and a continuous selection is made by Shift+Click, regardless of whether if interaction is
:multiple-selection or :extended-selection.

The choice's selection stores the indices of the currently selected item, and is a single number for single selection choices and
a list for all other interactions. Therefore when calling (setf choice-selection) you must pass an integer or nil if
interaction is :single-selection, and you must pass a list of integers if interaction is :multiple-selection or

21 CAPI Reference Entries

252

:extended-selection.The functions choice-selected-item and choice-selected-items treat the selection in
terms of the items themselves as opposed to their indices.

Usually when a choice's items are changed using (setf collection-items) the selection is lost.

However, if the choice was created with :keep-selection-p t, then the selection is preserved over the change.

initial-focus-item, if supplied, specifies the item which has the input focus when the choice is first displayed.

Notes

When calling (setf choice-selection) you must pass an integer or nil when interaction is :single-selection.
You must pass a list for other values of interaction.

Compatibility note

In LispWorks 5.0 and earlier versions, for interaction :single-selection the selection-callback is called only after a new
selection is made.

Examples

The following example defines a choice with three possible selections.

(setq choice (make-instance 'capi:choice
 :items '("One" "Two" "Three")
 :selection 0))

(capi:display-message "Selection: ~S"
 (capi:choice-selection choice))

(capi:choice-selected-item choice)

The selection is changed using the following code.

(setf (capi:choice-selection choice) 1)

(capi:choice-selected-item choice)

Also see these examples:

(example-edit-file "capi/choice/")

(example-edit-file "capi/graphics/graph-pane")

See also

choice-selected-item
choice-selected-item-p
choice-selected-items
choice-update-item
redisplay-collection-item
remove-items
replace-items
5 Choices - panes with items

21 CAPI Reference Entries

253

choice-selected-item Accessor

Summary

Returns the currently selected item in a single selection choice.

Package

capi

Signature

choice-selected-item choice => item

(setf choice-selected-item) item choice => item

Arguments

choice⇓ A choice.

item A Lisp object.

Values

item A Lisp object.

Description

The accessor choice-selected-item accesses the currently selected item in a single selection choice. A setf method is
provided as a means of setting the selection. Note that the items are compared by the test-function of choice - see
collection or the example below.

It is an error to call this function on choices with different interactions — in that case, you should use
choice-selected-items.

Examples

This example illustrates setting the selection. First we set up a single selection choice — in this case, a list-panel.

(setq list (capi:contain
 (make-instance 'capi:list-panel
 :items '(a b c d e)
 :selection 2)))

The following code line returns the selection of the list panel.

(capi:choice-selected-item list)

The selection can be changed, and the change viewed, using the following code.

(capi:apply-in-pane-process
 list #'(setf capi:choice-selected-item) 'e list)

(capi:choice-selected-item list)

21 CAPI Reference Entries

254

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

This example illustrates the effect of the test-function. Make a choice with test-function cl:eq:

(setf *list*
 (capi:contain
 (make-instance 'capi:list-panel
 :items (list "a" "b" "c")
 :selection 0
 :visible-min-height :text-height)))

This call loses the selection since (eq "b" "b") fails:

(capi:apply-in-pane-process
 list #'(setf capi:choice-selected-item)
 "b" *list*)

Change the test function:

(capi:apply-in-pane-process
 list #'(setf capi:collection-test-function)
 'equal *list*)

This call sets the selection since (equal "b" "b") succeeds:

(capi:apply-in-pane-process
 list #'(setf capi:choice-selected-item)
 "b" *list*)

See also

choice
choice-selected-item-p
choice-selected-items
collection
5 Choices - panes with items

choice-selected-item-p Function

Summary

Checks if an item is currently selected in a choice.

Package

capi

Signature

choice-selected-item-p choice item => result

Arguments

choice⇓ A choice.

item⇓ An item.

21 CAPI Reference Entries

255

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm

Values

result A boolean.

Description

The function choice-selected-item-p is the predicate for whether an item item of the choice choice is selected.

Note that the items are compared by the test-function of choice - see collection for details.

Examples

(setq list
 (capi:contain
 (make-instance 'capi:list-panel
 :items '(a b c d)
 :selection 2
 :visible-min-height
 '(:character 4))))

(capi:choice-selected-item-p list 'c)
=>
t

Now click on another item.

(capi:choice-selected-item-p list 'c)
=>
nil

See also

choice
collection

choice-selected-items Accessor

Summary

Returns the currently selected items in a choice as a list of the items.

Package

capi

Signature

choice-selected-items choice => items

(setf choice-selected-items) items choice => items

Arguments

choice⇓ A choice.

21 CAPI Reference Entries

256

items A list of items.

Values

items A list of items.

Description

The accessor choice-selected-items accesses the currently selected items in a choice as a list of the items. A setf

method is provided as a means of setting the currently selected items. Note that the items are compared by the test-function of
choice - see collection for details.

In the case of :single-selection choices, it is usually easier to use the complementary function
choice-selected-item, which returns the selected item as its result.

Examples

First we set up a :multiple-selection choice — in this case, a list panel.

(setq list (capi:contain
 (make-instance
 'capi:list-panel
 :items '(a b c d e)
 :visible-min-height '(:character 5)
 :interaction :multiple-selection
 :selection '(1 3))))

The following code line returns the selections of the list.

(capi:choice-selected-items list)

The selections of the list panel can be changed and redisplayed using the following code.

(capi:apply-in-pane-process
 list #'(setf capi:choice-selected-items)
 '(a c e) list)

(capi:choice-selected-items list)

Note that interaction :multiple-selection is not supported for lists on macOS.

See also

choice
choice-selected-item
choice-selected-item-p
choice-selected-items
collection
5 Choices - panes with items

21 CAPI Reference Entries

257

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

choice-update-item Function

Summary

Updates an item in a choice.

Package

capi

Signature

choice-update-item choice item

Arguments

choice⇓ A choice.

item⇓ An item.

Description

The function choice-update-item updates the display of the item item in the choice choice. It should be called if the
display of item (that is, the string returned by the print-function) changes.

Examples

Create a list panel that displays the status of something:

(defun my-print-an-item (item)
 (format nil "~a: ~a"
 (substitute-if-not #\space
 'alphanumericp
 (symbol-name item))
 (symbol-value item)))

(defvar *status-one* :on)
(defvar *status-two* :off)

(setq list
 (capi:contain
 (make-instance
 'capi:list-panel
 :items '(*status-one* *status-two*)
 :print-function 'my-print-an-item
 :visible-min-height :text-height
 :visible-min-width :text-width)))

Setting the status variables does not change the display:

(setq *status-one* :error)

Update the item to change the display:

21 CAPI Reference Entries

258

(capi:choice-update-item list '*status-one*)

This example also demonstrates choice-update-item:

(example-edit-file "capi/choice/alternative-action-callback")

See also

choice

clipboard Function

Summary

Returns the contents of the system clipboard.

Package

capi

Signature

clipboard self &optional format => result

Arguments

self⇓ A displayed CAPI pane or interface.

format⇓ A keyword.

Values

result A string, an image, a Lisp object, or nil.

Description

The function clipboard returns the contents of the system clipboard as a string, or nil if the clipboard is empty.

format controls what kind of object is read. The following values of format are recognized:

:string The object is a string. This is the default value.

:image The object is of type image, converted from whatever format the platform supports.

:value The object is the Lisp value.

:metafile The object is a metafile.

When format is :image, the image returned by clipboard is associated with self, so you can free it explicitly with
free-image or it will be freed automatically when the pane is destroyed.

When format is :metafile the object is a metafile which should be freed using free-metafile when no longer needed.
See also draw-metafile and draw-metafile-to-image. format :metafile is not supported on GTK+ or X11/Motif.

The Microsoft Windows clipboard is usually set by the user with the Ctrl+C and Ctrl+X gestures. Note that the LispWorks

21 CAPI Reference Entries

259

editor uses these gestures when in Windows emulation mode.

On X11/Motif, various gestures may set the clipboard. Note that LispWorks uses Ctrl+C and Ctrl+X when in KDE/Gnome
editor emulation mode. The X clipboard can also be accessed by running the program xclipboard or the Emacs function
x-get-clipboard.

The macOS clipboard is usually set by the user with the Command+C and Command+X gestures.

See also

clipboard-empty
draw-metafile
draw-metafile-to-image
free-image
free-metafile
image
selection
set-clipboard
text-input-pane-paste
18.6 Clipboard

clipboard-empty Function

Summary

Determines whether the system clipboard contains an object of the specified kind.

Package

capi

Signature

clipboard-empty self &optional format => result

Arguments

self⇓ A displayed CAPI pane or interface.

format⇓ A keyword.

Values

result t or nil.

Description

The function clipboard-empty returns nil if there is an object of the kind indicated by format on the clipboard associated
with self, or t otherwise.

format controls what kind of object is checked. The allowed values of format are as described for clipboard.

See also

clipboard

21 CAPI Reference Entries

260

image
18.6 Clipboard

clone Generic Function

Summary

Creates a copy of a CAPI object.

Package

capi

Signature

clone capi-object => cloned-object

Arguments

capi-object⇓ A capi-object.

Values

cloned-object⇓ A copy of capi-object.

Description

The generic function clone returns a new object cloned-object which is a copy of capi-object. It does not share any data
with capi-object, but has a copy of the useful part of its state.

The system contains methods on clone. You may add methods on your own interface classes.

See also

capi-object

cocoa-default-application-interface Class

Summary

The class supporting application menus and message processing for a Cocoa application.

Package

capi

Superclasses

interface

21 CAPI Reference Entries

261

Initargs

:message-callback A function or nil.

:application-menu nil, a menu, or the name of a slot containing a menu in the application interface.

:dock-menu nil, a menu, or a function designator.

Accessors

application-interface-message-callback
application-interface-application-menu
application-interface-dock-menu

Description

The class cocoa-default-application-interface supports the application menu, application messages and other
functionality for a Cocoa application.

All Cocoa applications in LispWorks for Macintosh have an application interface, which is a hidden interface that provides
the following:

1. The application menu (the leftmost menu in the menu bar, named after the application). See application-menu below.

2. The menu bar items that are displayed when no other interfaces are on the screen. See menu-bar-items in interface

and menu-bar in define-interface.

3. An optional Dock context menu. See dock-menu below.

4. Optional application message processing. See message-callback below.

5. Control over the lifecycle and display-state of the application as a whole.

If you wish to override the defaults, then you should first define a subclass of cocoa-default-application-interface
with your changes. Then set a single instance of this subclass as the application interface by calling
set-application-interface before any CAPI functions that make the screen object (such as convert-to-screen
and display).

Do not call display with a subclass of cocoa-default-application-interface - the application interface does not
have a window on the screen and should be created in addition to the visible interfaces in your application.

When non-nil, message-callback should be a function with signature:

interface message &rest args

message-callback will be called for various application messages. The interface argument will be the application interface
and the message argument will be a keyword. The message argument will be one of the following:

:open-file This message is invoked when the user double-clicks on a document associated with the
application or drags a document into the application icon. The args contain the name of the file
to open.

:finished-launching

This message is invoked just after the user has started the application and all other initialization
has been done (including any :open-file message if applicable). You can use it to open a
default document for example. There are no args.

application-menu controls the application's main menu. If this is nil, then a minimal application menu will be made using
the title of the application interface, otherwise it should be a menu containing the usual items or the name of a slot containing

21 CAPI Reference Entries

262

such a menu in the application interface. Note that the Quit item in the application-menu needs to call destroy on the
interface, rather than call lw:quit.

dock-menu provides a menu for use by the macOS Dock icon. If the value is nil (the default), then the standard menu is
used. If dock-menu is a function designator, it is called with the application interface as its argument when the menu is
popped up and should return a menu. Otherwise dock-menu should be a menu, which is used directly. The Dock will add the
standard items such as Quit to the end of the menu you supply.

interface initargs are interpreted as follows:

• The activate-callback is called when the application is activated or deactivated.

• The create-callback is called when the application starts up.

• The destroy-callback is called when the application shuts down.

• The confirm-destroy-function is called to confirm whether the application should shut down.

All of these callbacks execute in the thread that runs the Cocoa event loop, so they can call CAPI and GP functions.

The application interface also allows you to control aspects of the application. In particular:

• The function destroy will cause the application to shut down.

• The function top-level-interface-display-state will return :hidden if the whole application is hidden and
will return :normal otherwise.

• The function (setf top-level-interface-display-state) can be used to perform some operations typically
found on the application menu.

The display-state value can one of:

:normal Show the application and activate it.

:restore Show the application again without activating it.

:hidden Hide.

:others-hidden Hide Others.

:all-normal Show All.

Notes

cocoa-default-application-interface is implemented only in LispWorks for Macintosh with the Cocoa IDE.

Examples

(example-edit-file "capi/applications/cocoa-application")

(example-edit-file "capi/applications/cocoa-application-single-window")

(example-edit-file "delivery/macos/multiple-window-application")

(example-edit-file "delivery/macos/single-window-application")

21 CAPI Reference Entries

263

See also

set-application-interface
3.9 Special kinds of windows
8 Creating Menus

cocoa-view-pane Class

Summary

Allows an arbitrary Cocoa view class to be used on the Macintosh.

Package

capi

Superclasses

simple-pane
titled-object

Initargs

:view-class A string naming the view class to use.

:init-function A function that initializes the view class.

Accessors

cocoa-view-pane-view-class
cocoa-view-pane-init-function

Description

The class cocoa-view-pane allows an instance of an arbitrary Cocoa view class to be displayed within a CAPI interface.

When the pane becomes visible, the CAPI allocates and initialize a Cocoa view object using the initargs as follows:

• If view-class is specified, then it should be a string naming the Cocoa view class to allocate. Otherwise the class NSView
is allocated.

• If init-function is not nil, then it should be a function which is called with of two arguments, the pane and a foreign
pointer to the newly allocated Cocoa view object. The function should initialize the Cocoa view object in whatever way
is required, including invoking the appropriate Objective-C initialization method, and return the initialized view. If init-
function is nil then the Objective-C method init is called and the result is returned.

After the Cocoa view has been initialized, the function cocoa-view-pane-view can be used the retrieve it.

You can use the functions (setf cocoa-view-pane-view-class) and (setf cocoa-view-pane-init-function)

to modify the view-class and init-function, but the values will be ignored if this is done after the pane becomes visible.

See the LispWorks Objective-C and Cocoa Interface User Guide and Reference Manual for details on using Cocoa.

Notes

cocoa-view-pane is implemented only in LispWorks for Macintosh with the Cocoa IDE.

21 CAPI Reference Entries

264

Examples

The following code uses cocoa-view-pane to display an NSMovieView displaying an existing movie.

(defun show-movie (movie)
 (capi:contain
 (make-instance
 'cocoa-view-pane
 :view-class "NSMovieView"
 :init-function
 #'(lambda (pane view)
 (setq view
 (objc:invoke view "init"))
 (objc:invoke view "setMovie:" movie)
 view))))

See also

cocoa-view-pane-view
3.9 Special kinds of windows

cocoa-view-pane-view Function

Summary

Returns the Cocoa view of a cocoa-view-pane.

Package

capi

Signature

cocoa-view-pane-view pane => view

Arguments

pane⇓ A cocoa-view-pane.

Values

view A foreign pointer to a Cocoa view or nil.

Description

The function cocoa-view-pane-view returns the Cocoa view for the cocoa-view-pane pane as a foreign pointer. This
view is only accessible when the pane is visible and nil is returned in other cases.

Notes

cocoa-view-pane-view is implemented only in LispWorks for Macintosh with the Cocoa IDE. See the LispWorks
Objective-C and Cocoa Interface User Guide and Reference Manual for details on using Cocoa.

21 CAPI Reference Entries

265

Examples

(example-edit-file "objc/movie-view")

See also

cocoa-view-pane
3.9 Special kinds of windows

collect-interfaces Generic Function

Summary

Finds all interfaces of a given class.

Package

capi

Signature

collect-interfaces proto &key screen current-process-first sort-by => interfaces

Arguments

proto⇓ A class, class name, or an interface.

screen⇓ nil, the symbol :any, a screen, or a keyword naming a library.

current-process-first⇓
A boolean.

sort-by⇓ :visible or :create.

Values

interfaces⇓ A list.

Description

The generic function collect-interfaces returns a list of CAPI interfaces which are instances of the class indicated by
proto, or subclasses thereof.

If screen is nil, the interfaces on the default screen are returned. This is the default. If screen is:any, interfaces includes
those on any screen. If screen is a screen object, the interfaces on that screen are returned. screen can also be a library
name, currently the accepted values are :win32, :motif and :cocoa.

If interfaces on multiple screens are returned, then those on each screen are grouped together in interfaces.

Amongst those for each screen, the interfaces are grouped as follows. If current-process-first is true, then the interfaces in the
current process appear together at the beginning of the group. If sort-by is :create then these interfaces are sorted by
creation time, otherwise sort-by is :visible and they are are sorted in Z-order. The interfaces of other processes appear at
the end of the group, also sorted according to sort-by.

21 CAPI Reference Entries

266

If current-process-first is nil, then the interfaces for each screen are sorted according to sort-by.

The default value of sort-by is :create and of current-process-first is t.

See also

find-interface
installed-libraries

collection Class

Summary

A class that collects together a set of items, and provides functionality for accessing and displaying them.

Package

capi

Superclasses

capi-object
callbacks

Subclasses

choice

Initargs

:items The items in the collection.

:print-function A function that prints an item.

:test-function A comparison function between two items.

:items-count-function

A function which returns the length of items.

:items-get-function

A function that returns the nth item.

:items-map-function

A function that maps a function over the items.

:accepts-focus-p Specifies that the collection should accept input. The default value is t.

:help-key An object used for lookup of help.

Accessors

collection-items
collection-print-function
collection-test-function

Readers

collection-items-count-function

21 CAPI Reference Entries

267

collection-items-get-function
collection-items-map-function
help-key

Description

The main use of the class collection is as a part of the class choice, which provides selection capabilities on top of the
collection handling, and which is used by list panels, button panels and menus amongst others.

The items in the collection are printed by print-collection-item.

Items can be instances of the CAPI class item or any Lisp object. The main difference is that non-CAPI items use the
callbacks specified for the collection, while the CAPI items will use their callbacks in preference if these are specified.

By default, items must be a sequence, but this can be changed by specifying items-get-function, items-count-function, and
items-map-function.

items-get-function should take as arguments the items and an index, and should return the indexed item. The default is
svref.

items-count-function should take the items as an argument and should return the number of them.

items-map-function should take as arguments the items, a function function and a flag collect-results-p, and should call
function on each of the items in turn. If collect-results-p is non-nil, then it should also return the results of these calls in a list.

print-function should be a one argument function which returns a string. The default is princ-to-string. To display an
item, the collection call print-function with the item, and then draws the resulting string (the way it draws is different between
the subclasses of choice). The time when print-function is called is not defined; it may happen before the string is needed
for drawing, and may be cached so not called each time the item is drawn. The function choice-update-item can be used
to flush the cache when needed.

test-function should be suitable for comparing the items in your collection, returning a boolean. For example, if there are
both strings and integers amongst your items, you should supply test-function cl:equal. The default value of test-function
is cl:eq.

You can change the items using (setf collection-items). Note that there is an optimization append-items that is
sometimes useful when adding items.

accepts-focus-p and help-key are interpreted as described in element.

Examples

The following code uses push-button-panel, a subclass of collection.

(capi:contain (make-instance 'capi:push-button-panel
 :items '(one two three)))

(capi:contain (make-instance
 'capi:push-button-panel
 :items '(one two three)
 :print-function 'string-capitalize))

The following example provides a collection with all values from 1 to 6 by providing an items-get-function and an items-
count-function.

(capi:contain (make-instance
 'capi:push-button-panel
 :items 6
 :items-get-function

21 CAPI Reference Entries

268

http://www.lispworks.com/documentation/HyperSpec/Body/f_svref.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm

 #'(lambda (items index) (1+ index))
 :items-count-function
 #'(lambda (items) items)))

Here is an example demonstrating the use of CAPI items in a collections list of items to get more specific callbacks.

(defun specific-callback (data interface)
 (capi:display-message "Specific callback for ~S"
 data))

(defun generic-callback (data interface)
 (capi:display-message "Ordinary callback for ~S"
 data))

(capi:contain (make-instance
 'capi:list-panel
 :items (list (make-instance
 'capi:item
 :text "Special"
 :data 1000
 :selection-callback
 'specific-callback)
 2 3 4)
 :selection-callback 'generic-callback)
 :visible-min-width 200
 :visible-min-height 200)

See also

append-items
count-collection-items
get-collection-item
item
map-collection-items
print-collection-item
search-for-item
3.12 Tooltips
5 Choices - panes with items

collection-find-next-string Generic Function

Summary

Finds the next occurrence of the string that was previously searched for in a collection.

Package

capi

Signature

collection-find-next-string collection &key set => index

21 CAPI Reference Entries

269

Arguments

collection⇓ A collection.

set⇓ A boolean.

Values

index A non-negative integer or nil.

Description

The generic function collection-find-next-string must be called after one of collection-search,
collection-find-string or find-string-in-collection was called on collection. It searches for the next item in
collection with printed representation matching the last string searched for and returns its index, or nil if no match is found.

If set is true, then if an item matching the string is found, the selection is set to this item. set defaults to t.

See also

collection-find-string
collection-last-search
find-string-in-collection

collection-find-string Generic Function

Summary

Finds the next occurrence of a string in a collection, prompting for the string if it is not supplied.

Package

capi

Signature

collection-find-string collection &key set string => index

Arguments

collection⇓ A collection.

set⇓ A boolean.

string⇓ A string, or nil.

Values

index A non-negative integer or nil.

Description

The generic function collection-find-string calls find-string-in-collection with collection and set.

string is also passed if non-nil. If string is nil, collection-find-string first prompts the user for a string to pass.

21 CAPI Reference Entries

270

set defaults to t.

See also

find-string-in-collection

collection-last-search Generic Function

Summary

Returns the last string searched for in a collection.

Package

capi

Signature

collection-last-search collection => string

Arguments

collection⇓ A collection.

Values

string⇓ A string, or nil.

Description

The generic function collection-last-search returns the last string searched for in collection by
find-string-in-collection.

If neither of these functions has been called on collection, then the return value string is nil.

See also

find-string-in-collection

collection-search Generic Function

Summary

The generic function collection-search calls find-string-in-collection with a string provided by the user.

Package

capi

21 CAPI Reference Entries

271

Signature

collection-search collection &optional set

Arguments

collection⇓ A collection.

set⇓ A boolean.

Description

Prompts the user for a string and calls find-string-in-collection with collection, set and this string.

set defaults to t.

Notes

collection-search is deprecated. Use collection-find-string instead.

See also

collection
collection-find-string
find-string-in-collection

collector-pane Class

Summary

Displays an editor buffer with an associates output stream.

Package

capi

Superclasses

editor-pane

Initargs

:buffer-name The name of a buffer onto an editor stream.

:stream The editor stream to be collected.

Readers

collector-pane-stream

Description

The class collector-pane is a subclass of editor-pane which displays the output sent to a particular type of character
stream called an editor stream, the contents of which are stored in an editor buffer.

21 CAPI Reference Entries

272

A new instance collector-pane can be created to view an existing editor stream by passing the stream itself or by passing
the buffer name of that stream.

To create a new stream, either specify buffer-name which does not match any existing buffer, or do not pass buffer-name in
which case the CAPI will create a unique buffer name for you.

To access the stream, use the reader collector-pane-stream on the collector-pane.

Note that the editor buffer "Background Output" is a buffer onto the output stream *standard-output*.

Examples

Here is an example that creates two collector panes onto a new stream (that is created by the first collector pane).

(setq collector (capi:contain
 (make-instance 'capi:collector-pane)))

(setq *test-stream*
 (capi:collector-pane-stream collector))

(capi:contain
 (make-instance 'capi:collector-pane
 :stream *test-stream*))

(format *test-stream* "Hello World~%")

Finally, this example shows how to create a collector pane onto the "Background Output" stream.

(capi:contain (make-instance 'capi:collector-pane
 :buffer-name "Background Output"))

See also

with-random-typeout
map-typeout
unmap-typeout
3.9.6 Stream panes

color-screen Class

Summary

A class for screens that can display color.

Package

capi

Superclasses

screen

21 CAPI Reference Entries

273

http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm

Description

Instances of the class color-screen are created for color screens. It is primarily available as a means of discriminating on
whether or not to use colors in an interface.

See also

element-screen
mono-screen

column-layout Class

Summary

A layout which arranges its children in a column.

Package

capi

Superclasses

grid-layout

Initargs

:ratios The size ratios between the layout's children.

:adjust The horizontal adjustment for each child.

:gap The gap between each child.

:uniform-size-p If t, each child in the column has the same height.

Accessors

layout-ratios

Description

The class column-layout lays its children out in a column. It inherits the behavior from grid-layout. The description is
a list of the layout's children, and the layout also translates the initargs ratios, adjust, gap and uniform-size-p into the
equivalent grid-layout initargs y-ratios, x-adjust, y-gap and y-uniform-size-p.

description may also contain the keywords :divider and :separator which create a divider or separator as a child of the
column-layout. The user can move a divider, but cannot move a separator.

When specifying :ratios in a row with :divider or :separator, you should use nil to specify that the divider or
separator is given its minimum size, as in the example below.

Examples

(capi:contain (make-instance
 'capi:column-layout
 :description
 (list

21 CAPI Reference Entries

274

 (make-instance 'capi:push-button
 :text "Press me")
 "Title"
 (make-instance 'capi:list-panel
 :items '(1 2 3)))))

(setq column (capi:contain
 (make-instance
 'capi:column-layout
 :description
 (list
 (make-instance 'capi:push-button
 :text "Press me")
 "Title:"
 (make-instance 'capi:list-panel
 :items '(1 2 3)))
 :adjust :center)))

(capi:apply-in-pane-process
 column #'(setf capi:layout-x-adjust) :right column)

(capi:apply-in-pane-process
 column #'(setf capi:layout-x-adjust) :left column)

(capi:apply-in-pane-process
 column #'(setf capi:layout-x-adjust) :center column)

(flet ((make-list-panel (x y)
 (make-instance
 'capi:list-panel
 :items
 (loop for i below x
 collect i)
 :selection
 (loop for i below x by y
 collect i)
 :interaction
 :multiple-selection)))
 (capi:contain
 (make-instance
 'capi:column-layout
 :description
 (list
 (make-list-panel 100 5)
 :divider
 (make-list-panel 100 10))
 :ratios '(1 nil 2))))

See also

row-layout
1.2.1 CAPI elements
5.2 Button panel classes
6 Laying Out CAPI Panes
7 Programming with CAPI Windows
11 Defining Interface Classes - top level windows

21 CAPI Reference Entries

275

component-name Accessor

Summary

Gets and sets the component-name of an ole-control-pane.

Package

capi

Signature

component-name pane => name

(setf component-name) name pane => name

Arguments

pane⇓ An ole-control-pane.

name A string.

Values

name A string.

Description

The accessor component-name accesses the component-name of pane.

When pane is created, it automatically opens the component and inserts it.

If (setf component-name) is called on a pane that is already created, any existing component is closed, and the new
component is opened and inserted. (setf component-name) also sets the pane's user-component to nil.

Notes

component-name is implemented only in LispWorks for Windows. Load the functionality by (require "embed").

See also

ole-control-pane

confirmer-pane Function

Summary

Returns the pane associated with a confirmer interface.

Package

capi

21 CAPI Reference Entries

276

Signature

confirmer-pane interface => pane

Arguments

interface⇓ A confirmer interface displayed by popup-confirmer.

Values

pane The pane argument passed to popup-confirmer.

Description

The function confirmer-pane returns the pane associated with interface, which must have been displayed by
popup-confirmer.

In most cases the programmer does not have access to this interface, but it can be passed to the confirmer's callbacks when
extra buttons are added via the buttons argument.

See also

popup-confirmer

confirm-quit Function

Summary

Quits the Lisp session, potentially after user confirmation.

Package

capi

Signature

confirm-quit application-name

Arguments

application-name⇓ A string.

Description

The function confirm-quit calls quit, potentially after confirmation from the user.

The behavior of confirm-quit when called within LispWorks is determined by a LispWorks user preference, which can be
set by Tools > Preferences... > Environment > General > Confirm Before Exiting. This preference can also be set
programmatically (for example in an application) by set-confirm-quit-flag.

If the value of the flag is :check-editor-files (the default), confirm-quit checks whether there are editor buffers
which are associated with files and are modified. If there is at least one such modified buffer, confirm-quit prompts the
user to decide between three options:

21 CAPI Reference Entries

277

Save Changes Saves all modified buffers before quitting.

Discard Changes Quits without saving.

Cancel Does not save or quit.

If there are no such modified buffers, confirm-quit simply calls quit.

If the flag is nil then confirm-quit simply calls quit.

If the flag is t then confirm-quit prompts the user. If there are unsaved buffers, the prompt is as described above,
otherwise the prompt is a simple yes/no confirmer dialog.

application-name is used in the prompt to identify the application.

Notes

The LispWorks IDE uses confirm-quit.

See also

set-confirm-quit-flag

confirm-yes-or-no Function

Summary

Pops up a dialog button containing a message and a Yes and No button.

Package

capi

Signature

confirm-yes-or-no format-string &rest format-args => result

Arguments

format-string⇓ A string.

format-args⇓ Lisp objects.

Values

result t or nil,.

Description

The function confirm-yes-or-no pops up a dialog box containing a message and the buttons Yes and No, returns t when
the Yes button is clicked, and nil when the No button is clicked. The message is obtained by calling the Common Lisp
function format with format-string and objects in format-args.

This function is actually a convenient version of prompt-for-confirmation, but has the disadvantage that you cannot
specify any customization arguments. For more flexibility, use prompt-for-confirmation itself.

21 CAPI Reference Entries

278

http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm

Examples

(setq pane (capi:contain
 (make-instance 'capi:text-input-pane)
 :title "Test Interface"))

(when (capi:confirm-yes-or-no "Close ~S?" pane)
 (capi:apply-in-pane-process
 pane 'capi:quit-interface pane))

See also

prompt-for-confirmation
display-dialog
popup-confirmer
10 Dialogs: Prompting for Input

contain Function

Summary

Displays a window containing an element.

Package

capi

Signature

contain element &rest interface-args &key screen process title as-dialog &allow-other-keys => element

Arguments

element⇓ A CAPI element.

interface-args⇓ A plist of keywords and values.

screen⇓ A screen, or any argument accepted by convert-to-screen.

process⇓ On GTK+, Microsoft Windows or Motif, a CAPI process, t or nil. On Cocoa, this
argument is not supported.

title⇓ A string.

as-dialog⇓ A generalized boolean.

Values

element A CAPI element.

Description

The function contain creates and displays a container for the CAPI element element. contain returns element as its result.

contain is provided as a convenient way of testing CAPI functionality and is useful mainly during interactive development.
Many of the CAPI examples use it.

21 CAPI Reference Entries

279

The container is created using make-container, which can make containers for any of the following classes:

simple-pane

layout

interface

pinboard-object

menu

menu-item

menu-component

cl:list

In the case of a cl:list, the CAPI tries to see what sort of objects they are and makes an appropriate container. For
instance, if they were all simple-panes it would put them into a column-layout.

interface-args, after removing the arguments screen and process, are passed to make-container as the initargs to the
interface. title is used as the title of the container.

as-dialog can be nil, t or :no-escape-button. The default value of as-dialog is nil, which means display the interface
as an ordinary window using display. When as-dialog is true it displays using display-dialog. When as-dialog is t,
contain adds to the interface an escape button which invokes abort-dialog, to ensure that the user does not get stuck
with a dialog that cannot be dismissed. When as-dialog is :no-escape-button, it does not add the escape button. Any
value of as-dialog has the same effect as t.

The values of the arguments screen and process are passed to display when displaying the container.

Examples

(capi:contain (make-instance 'capi:text-input-pane))

(capi:contain (make-instance
 'capi:column-layout
 :description `("Title:"
 ,(make-instance
 'capi:text-input-pane))))

(capi:contain (make-instance 'capi:menu-item)
 :title "Test")

See also

make-container
display
display-dialog
element
2 Getting Started
4.1 The correct thread for CAPI operations
12 Creating Panes with Your Own Drawing and Input

21 CAPI Reference Entries

280

http://www.lispworks.com/documentation/HyperSpec/Body/a_list.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_list.htm

convert-relative-position Function

Summary

Converts a screen position from one coordinate system to another.

Package

capi

Signature

convert-relative-position from to x y => to-x, to-y

Arguments

from⇓ A pane, interface or screen.

to⇓ A pane, interface or screen.

x⇓ An integer.

y⇓ An integer.

Values

to-x An integer.

to-y An integer.

Description

The function convert-relative-position converts the position x,y in the coordinate system of from to that of to.

Examples

(example-edit-file "capi/elements/convert-relative-position")

See also

top-level-interface-geometry
with-geometry

convert-to-screen Function

Summary

Finds the appropriate screen or container for a CAPI object.

Package

capi

21 CAPI Reference Entries

281

Signature

convert-to-screen &optional object => result

Arguments

object⇓ A CAPI object, a plist, or keyword or nil.

Values

result⇓ A screen or a container.

Description

The function convert-to-screen finds the appropriate screen or container for the CAPI object object.

If object is nil, result is the default screen. object defaults to nil.

If object is a pane inside a MDI interface, then result is the capi:container of the interface, rather than the real screen,
because this is more useful in most cases. To obtain the real screen, call convert-to-screen on the top level interface.
See document-frame for a description of MDI interfaces.

object can be a keyword representing the CAPI library. This is equivalent to using the :library key in the plist case below.
object can also be the special keyword :if-any, which finds a screen if there is any active screen, otherwise it returns nil.

object can be a plist. The keys below are supported on GTK+ and Motif. Other libraries ignore them.

:display The value is an X Window System display string describing the X display and screen to use. The
default value is derived from the DISPLAY environment variable or (on Motif) the -display
command-line option, or (on GTK+) the --display command-line option. If neither is
supplied, the default is to use the default screen on the local host.

:host The name of the host to use for the X Window System display. This key is valid only if no
:display key/value is supplied. The default value is the local host.

:server-number The number of the display server to use for the X Window System display. This key is valid only
if no :display key/value is supplied. The default value is 0.

:screen-number The number of the screen to use for the X Window System display. This key is valid only if no
:display key/value is supplied. The default value is the default screen of the display.

:application-class The value is a string naming the application class used for X Window System resources. The
default value is "Lispworks". When running a delivered LispWorks image, you should specify
the :application-class key if you want to provide application-specific resources.

On GTK+ the value is used for constructing the default widget-name for top-level interfaces. The
application-class is prepended to the interface name followed by a ".", so if application-class is
"my-application", a top-level-interface of class my-interface will have a default widget-
name "my-application.my-interface".

See element for the description of widget-name.

Example GTK+ resource files are in lib/8-0-0-0/examples/gtk/.

:fallback-resources

21 CAPI Reference Entries

282

On GTK+ the fallback resources are global, so they cannot be used to define different resources
for different screens. Each call to convert-to-screen where fallback-resources is passed
overrides the previous call. The value of fallback-resources is either a single string or a list of
strings. In either case each string must be a complete specification according to the standard
resource specification of GTK+ resource files (gtk_rc_parse_string should be able to parse it).

On Motif the value is a list of strings representing the set of application context fallback
resources to use (see XtAppSetFallbackResources). Each string corresponds to a single line
of an X resource file.

:library The value specifies the CAPI library. This is useful on Linux, FreeBSD and x86/x64 Solaris
platforms, and in the macOS/GTK+ image, to choose between :gtk and :motif if the
deprecated "capi-motif" module is loaded.

This keys is supported on Motif only. Other libraries ignore it.

:command-line-args The value is a list of strings representing the set of command-line arguments to pass to
XtOpenDisplay. Each string corresponds to a single argument. The default value is derived
from the command line used to start Lisp.

The resources are used only when no other system resource files can be found. When running a non-delivered LispWorks
image, the default value of the :fallback-resources key is read from the file whose name is the value of the
:application-class key in the app-defaults directory of the current LispWorks library. When running a delivered
LispWorks image, you should specify the :fallback-resources key if your application needs fallback resources.

Examples

(capi:convert-to-screen)

See also

document-frame
screen
19 Host Window System-specific issues

count-collection-items Generic Function

Summary

Returns the number of items in a collection.

Package

capi

Signature

count-collection-items collection &optional items

Arguments

collection⇓ A collection

21 CAPI Reference Entries

283

items⇓ A sequence.

Description

The generic function count-collection-items returns the number of items in collection by calling the items-count-
function.

items defaults to nil. If it is non-nil, it is used instead of the items of collection.

Examples

The following example uses count-collection-items to return the number of items in a list panel.

(setq list (make-instance 'capi:list-panel
 :items '(1 2 3 4 5)))

(capi:count-collection-items list)

The following example shows how to count the number of items in a specified list.

(capi:count-collection-items list '(1 2))

See also

collection
get-collection-item
search-for-item

create-dummy-graphics-port Function

Summary

Creates a graphics port object that can be used for querying fonts and measuring text or images.

Package

capi

Signature

create-dummy-graphics-port &optional screen => graphics-port

Arguments

screen⇓ A value suitable as the argument to convert-to-screen.

Values

graphics-port⇓ A graphics port.

21 CAPI Reference Entries

284

Description

The function create-dummy-graphics-port creates a graphics port object that can be used for font queries, measuring
text and images.

graphics-port is a graphics port object associated with screen. graphics-port is never visible on the screen, but can be used to
query fonts, measure text and load images to obtain their width and height. Drawing functions are not supported.

See also

convert-to-screen

current-dialog-handle Function

Summary

Returns the underlying handle of the current dialog.

Package

capi

Signature

current-dialog-handle => handle

Values

handle A platform-specific value, or nil.

Description

The function current-dialog-handle returns the underlying handle of the current dialog, as follows:

Microsoft Windows The hwnd of the dialog.

GTK+ A pointer to the GdkWindow.

Motif A windowid of the dialog.

Cocoa The value returned by the NSWindow's windowNumber method.

This value is useful if you want to perform some operation on the underlying handle that the CAPI does not supply.

If there is no current dialog, current-dialog-handle returns nil.

Examples

Press on "Get handle" to see the handle of the dialog.

(capi:popup-confirmer
 (make-instance
 'capi:push-button
 :text "Get handle"
 :callback-type :none
 :selection-callback

21 CAPI Reference Entries

285

 #'(lambda ()
 (capi:display-message
 (format nil "current-dialog-handle ~a~%"
 (capi:current-dialog-handle)))))
 nil
 :title "A dialog")

See also

simple-pane-handle
18.7 Handles

current-document Generic Function

Summary

Returns the current document of a MDI interface.

Package

capi

Signature

current-document mdi-interface => child

Arguments

mdi-interface⇓ An instance of a subclass of document-frame.

Values

child The current document of mdi-interface.

Description

The generic function current-document returns the top child interface of mdi-interface.

See also

document-frame

current-pointer-position Function

Summary

Returns the current position of the pointer.

Package

capi

21 CAPI Reference Entries

286

Signature

current-pointer-position &key relative-to pane-relative-p => x, y

Arguments

relative-to⇓ A screen or a displayed interface or a CAPI pane.

pane-relative-p⇓ A boolean.

Values

x An integer.

y An integer.

Description

The function current-pointer-position returns the current x,y position of the pointer on the screen of relative-to,
which defaults to the current screen.

If pane-relative-p is true then the position is returned relative to relative-to, otherwise it is returned relative to the screen. The
default value of pane-relative-p is t.

See also

interface
screen

current-popup Function

Summary

Returns the current popup pane if there is one.

Package

capi

Signature

current-popup => result

Values

result A pane or nil.

Description

The function current-popup returns the current popup pane or nil if there is none. A current popup exists in the scope of
callbacks which are done while a dialog is displayed on the screen in the current process.

If the dialog was raised by an explicit call to display-dialog or popup-confirmer, current-popup returns the first
argument of display-dialog or popup-confirmer. For other functions that raise a dialog (such as the
prompt-for-file, prompt-for-confirmation and so on), the result is CAPI pane created by the system.

21 CAPI Reference Entries

287

See also

display-dialog
popup-confirmer

current-printer Function

Summary

Returns the currently selected printer object.

Package

capi

Signature

current-printer &key interactive => printer

Arguments

interactive⇓ A boolean.

Values

printer⇓ A printer, or nil.

Description

The function current-printer returns the currently selected printer object for the default library.

If interactive is non-nil and there is no current printer, a confirmer is displayed warning the user and printer is nil. The
default value of interactive is nil.

See also

page-setup-dialog
set-printer-options
16 Printing from the CAPI—the Hardcopy API

default-editor-pane-line-wrap-marker Variable

Summary

The default line wrap marker for editor panes.

Package

capi

21 CAPI Reference Entries

288

Initial Value

#\!

Description

The variable *default-editor-pane-line-wrap-marker* provides the default value for the line-wrap-marker of an
editor-pane. The value should be a character object, or nil.

See also

editor-pane

default-library Function

Summary

Returns the default library.

Package

capi

Signature

default-library => library

Values

library A library name.

Description

The function default-library returns a keyword naming the the default library.

On Linux, FreeBSD and x86/x64 Solaris platforms, the default library is :gtk. If you load the deprecated "capi-motif"
module, then the library will be :motif.

On Microsoft Windows platforms, currently the only library available is :win32, hence this is the default library.

On macOS platforms, the only library available in the native GUI image is :cocoa, hence this is the default library. In the
macOS/GTK+ image, the default library is :gtk, but you load the deprecated "capi-motif" module, then the library will be
:motif.

See also

installed-libraries
19.5 CAPI communication with host window system - libraries

21 CAPI Reference Entries

289

http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

default-non-focus-message-timeout Variable

Summary

Specify the default timeout in display-non-focus-message.

Package

capi

Initial Value

2

Description

The variable *default-non-focus-message-timeout* specifies the default timeout in
display-non-focus-message.

See display-non-focus-message for details.

See also

display-non-focus-message
default-non-focus-message-timeout-extension

default-non-focus-message-timeout-extension Variable

Summary

Specify the default timeout-extension in display-non-focus-message.

Package

capi

Initial Value

60

Description

The variable *default-non-focus-message-timeout-extension* specifies the default timeout-extension in
display-non-focus-message respectively.

See display-non-focus-message for details.

See also

display-non-focus-message
default-non-focus-message-timeout

21 CAPI Reference Entries

290

define-command Macro

Summary

Defines an alias for a mouse or keyboard gesture that can be used in the input model of an output pane.

Package

capi

Signature

define-command name gesture &key translator host library

Arguments

name⇓ A unique Lisp object.

gesture⇓ A valid input model gesture.

translator⇓ A function.

host⇓ Alias for library, for backwards compatibility.

library⇓ Specifies for which library this mapping is applicable. See <new section above about
libraries> for which libraries are applicable. By default the mapping is applicable to all
libraries.

Description

The macro define-command defines an alias for an input gesture that can then be used in the input model of an
output-pane.

name is the name of the alias, which should be a symbol.

gesture is one of the gestures accepted by output-pane. For a full description of the gesture syntax and arguments for the
callback, see 12.2.1 Detailed description of the input model. It is possible to specify multiple gestures by passing as
gesture a list of the form:

(:one-off gesture1 gesture2 ...)

If translator is supplied it needs to be a function that takes the same arguments that a callback for the gesture would take (not
including the extra-callback-args), and returns a list which is used after pane instead of the gesture callback arguments.
When there is a translator, the callbacks for commands in the models are invoked by:

(apply callback pane
 (append (apply translator gesture-callback-args)
 extra-callback-args))

library specifies which library this mapping is applicable to. It is possible to have distinct definitions for different libraries,
but redefinition with the same library overrides the previous definition. The default value of library is nil, which means all
libraries. host is recognised an alias library for backwards compatibility.

21 CAPI Reference Entries

291

Examples

Firstly, here is an example of defining a command which maps onto a gesture.

(defun gesture-callback (output-pane x y)
 (capi:display-message
 "Pressed ~S at (~S,~S)"
 output-pane x y))

(capi:define-command :select (:button-1 :press))

(capi:contain (make-instance
 'capi:output-pane
 :input-model '((:select
 gesture-callback))))

Here is a more complicated example demonstrating the use of translator to affect the arguments passed to a callback.

(capi:define-command
 :select-object (:button-1 :press)
 :translator #'(lambda (output-pane x y)
 (let ((object
 (capi:pinboard-object-at-position
 output-pane x y)))
 (when object
 (list object)))))

(defun object-select-callback (output-pane
 &optional object)
 (when object (capi:display-message
 "Pressed on ~S in ~S"
 object output-pane)))

(setq pinboard
 (capi:contain (make-instance
 'capi:pinboard-layout
 :input-model '((:select-object
 object-select-callback)))))

(make-instance 'capi:item-pinboard-object
 :text "Press Me!"
 :parent pinboard
 :x 10 :y 20)

(make-instance 'capi:line-pinboard-object
 :parent pinboard
 :start-x 20 :start-y 50
 :end-x 120 :end-y 150)

Here is a further example:

(example-edit-file "capi/output-panes/commands")

See also

output-pane
invoke-command
invoke-untranslated-command

21 CAPI Reference Entries

292

12.2.2 Commands - aliases

define-interface Macro

Summary

Defines subclasses of interface.

Package

capi

Signature

define-interface name superclasses slots &rest options

Arguments

name⇓ A symbol.

superclasses⇓ A list of symbols naming classes.

slots⇓ A list of slot specifiers as in defclass.

options⇓ Class options as in defclass, plus specific options (see below).

Description

The macro define-interface is used to define subclasses of interface, which when created with make-instance has
the specified panes, layouts and menus created automatically. slots and superclasses are used to describe the slots and
superclasses of name as in the defclass macro, except that if superclasses is non-nil it must include interface or a
subclass of it.

define-interface accepts the same class options in options as defclass, plus the following extra options:

:panes Descriptions of the interface's panes.

:layouts Descriptions of the interface's layouts.

:menus Descriptions of the interface's menus.

:menu-bar A list of menus for the interface's menu bar.

:definition Options to alter define-interface.

The class options :panes, :layouts and :menus add extra slots to the class that will contain the CAPI object described in
their description. Within the scope of the extra options, the slots themselves are available by referencing the name of the slot,
and the interface itself is available with the variable interface. Each of the slots can be made to have readers, writers,
accessors or documentation by passing the appropriate defclass keyword as one of the optional arguments in the
description. Therefore, if you need to find a pane within an interface instance, you can provide an accessor, or simply use
with-slots.

The option :panes is a list of pane descriptions of the following form:

(:panes
 (slot-name pane-class initargs)
 …

21 CAPI Reference Entries

293

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_slts.htm

 (slot-name pane-class initargs)
)

where slot-name is a name for the slot, pane-class is the class of the pane being included in the interface, and initargs are the
initialization arguments for the pane - the allowed forms are described below.

The option :layouts is a list of layout descriptions of the following form:

(:layouts
 (slot-name layout-class children initargs)
 …
 (slot-name layout-class children initargs)
)

where slot-name is a name for the slot, layout-class specifies the type of layout, children is a list of children for the layout,
and initargs are the initialization arguments for the layout - the allowed forms are described below. The primary layout for
the interface defaults to the first layout described, but can be specified as the :layout initarg to the interface. If no layouts
are specified, then the CAPI will place all of the defined panes into a column layout and make that the primary layout.

The option :menus is a list of menu and menu component descriptions of the following form:

(:menus
 (slot-name title descriptions initargs)
 …
 (slot-name title descriptions initargs)
)

slot-name is the slot name for each menu or menu component.

title is the menu's title, the keyword :menu, or the keyword :component. For an example showing how you can specify
mnemonics for menu titles, see 8.6 Mnemonics in menus.

descriptions is a list of menu item descriptions. Each menu item description is either a title, a slot name for a menu, or a list
of items containing a title, descriptions, and a list of initialization arguments for the menu item. descriptions should nil if
you specify the :items-function initarg.

initargs are the initialization arguments for the menu.

The values given in initargs under :panes, :layouts and :menus can be lists of the form:

(:initarg keyword-name)
(:initarg key-spec)
(:initarg key-spec initarg-value)

key-spec := var
 | (var)
 | (var initform)
 | ((keyword-name var))
 | ((keyword-name var) initform)

keyword-name := any keyword

key-spec is interpreted as in the &key symbol of ordinary Common Lisp lambda lists. When this form of value is used, the
specified keyword-name is added as an extra initarg to the class defined by the define-interface form.

If key-spec is followed by initarg-value, then its value is used as the initarg of the pane. Otherwise the value from key-spec is
used.

Additionally initargs may contain the keyword argument :make-instance-extra-apply-args which is useful when you

21 CAPI Reference Entries

294

http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm

want to supply initargs to the pane slot-name when the interface is initialized. The value make-instance-extra-apply-args
should be a keyword which becomes an extra initarg to the interface class name. The value of that initarg should be a list of
pane initargs and values which is passed when the pane is initialized. For an example, see:

(example-edit-file "capi/applications/argument-passing")

The option :menu-bar is a list of slot names, where each slot referred to contains a menu that should appear on the menu
bar.

The option :definition is a property list of arguments which define-interface uses to change the way that it behaves.
Currently there is only one definition option:

:interface-variable

Allows you to specify the name of a variable which (lexically within the define-interface
form) refers to the interface instance. By default this variable is interface. See the example
below.

Examples

Firstly, a couple of pane examples:

(capi:define-interface test1 ()
 ()
 (:panes
 (text capi:text-input-pane))
 (:default-initargs :title "Test1"))

(capi:display (make-instance 'test1))

(capi:define-interface test2 ()
 ()
 (:panes
 (text capi:text-input-pane)
 (buttons capi:button-panel :items '(1 2 3)
 :reader test2-buttons))
 (:layouts
 (main-layout capi:column-layout '(text buttons)))
 (:default-initargs :title "Test2"))

(test2-buttons
 (capi:display (make-instance 'test2)))

Here are a couple of menu examples:

(capi:define-interface test3 ()
 ()
 (:menus
 (color-menu "Colors" (:red :green :blue)
 :print-function 'string-capitalize))
 (:menu-bar color-menu)
 (:default-initargs :title "Test3"))

(capi:display (make-instance 'test3))

(capi:define-interface test4 ()
 ()
 (:menus
 (colors-menu "Colors"
 ((:component

21 CAPI Reference Entries

295

 (:red :green :blue)
 :interaction :single-selection
 :print-function
 'string-capitalize)
 more-colors-menu))
 (more-colors-menu "More Colors"
 (:pink :yellow :cyan)
 :print-function
 'string-capitalize))
 (:menu-bar colors-menu)
 (:default-initargs :title "Test4"))

(capi:display (make-instance 'test4))

This example demonstrates inheritance amongst subclasses of interface:

(capi:define-interface test5 (test4 test1)
 ()
 (:default-initargs :title "Test5"))

(capi:display (make-instance 'test5))

The next three examples illustrate the use of :initarg in initarg specifications for :panes.

Here we initialize the :selected-items initarg of the pane foo to the value passed by :select when making the interface
object, or nil otherwise:

(capi:define-interface init1 () ()
 (:panes
 (foo
 capi:list-panel
 :items '(0 1 2 3 4)
 :visible-min-height '(:character 5)
 :interaction :multiple-selection
 :selected-items (:initarg select))))

(capi:contain (make-instance 'init1
 :select '(1 3)))

(capi:contain (make-instance 'init1))

Here we initialize the :selected-items initarg of pane foo to the value passed by :select initarg when making the
interface object, or (1 3) otherwise:

(capi:define-interface init2 () ()
 (:panes
 (foo
 capi:list-panel
 :items '(0 1 2 3 4)
 :visible-min-height '(:character 5)
 :interaction :multiple-selection
 :selected-items
 (:initarg (select '(1 3))))))

(capi:contain (make-instance 'init2))

Here we increment the indices passed in the interface's :select initarg before passing them in the :selected-items
initarg of pane foo:

(capi:define-interface init3 () ()

21 CAPI Reference Entries

296

 (:panes
 (foo
 capi:list-panel
 :items '(0 1 2 3 4)
 :visible-min-height '(:character 5)
 :interaction :multiple-selection
 :selected-items
 (:initarg select
 (mapcar '1+ select)))))

(capi:contain (make-instance 'init3
 :select '(1 3)))

This example illustrates the use of :interface-variable. Both menu commands act on the interface itself, but they
receive this argument in different ways:

(capi:define-interface foo () ()
 (:menus
 (menu "Run"
 (("Interface Variable"
 :callback (lambda () (test xxx))
 :callback-type :none)
 (":callback-type :interface"
 :callback 'test
 :callback-type :interface))))
 (:menu-bar menu)
 (:definition :interface-variable xxx))

(defmethod test ((foo foo))
 (capi:display-message "foo"))

(capi:display (make-instance 'foo))

There are many more examples in the LispWorks installation directory under examples/capi/.

See also

interface
layout
menu
8 Creating Menus
11 Defining Interface Classes - top level windows

define-layout Macro

Summary

Defines new classes of layout.

Package

capi

Signature

define-layout name superclasses slots &rest options

21 CAPI Reference Entries

297

Arguments

name⇓ A symbol.

superclasses⇓ A list of symbols naming classes.

slots⇓ A list of slot specifiers as in defclass.

options⇓ Class options as in defclass.

Description

The macro define-layout is used to create new classes of layout. The macro is essentially the same as defclass
except that its default superclass is layout. See defclass for a description of name, superclasses, slots and options.

To implement a new class of layout, methods need to be provided for the following generic functions:

interpret-descriptio
n

Translate the layout's child descriptions.

calculate-constraint
s

Calculate the constraints for the layout.

calculate-layout Layout the children of the layout.

See also

interpret-description
calculate-constraints
calculate-layout
layout

define-menu Macro

Summary

Defines a menu function.

Package

capi

Signature

define-menu function-name (self) title descriptions &rest initargs

Arguments

function-name⇓ A symbol.

self⇓ A symbol.

title⇓ A string.

descriptions⇓ Lisp forms describing menu items.

initargs⇓ Keywords and values.

21 CAPI Reference Entries

298

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

Description

The macro define-menu defines a function called function-name with a single argument self that will make a menu from
title, descriptions and initargs, which take the same form as the :menus section of define-interface.

Examples

(capi:define-menu make-test-menu (self)
 "Test"
 ("Item1"
 "Item2"
 (:component
 ("Item3"
 "Item4")
 :interaction :single-selection)
 (:menu
 ("Item5"
 "Item6")
 :title "More Items")))

(setq interface (make-instance 'capi:interface))

(setf (capi:interface-menu-bar-items interface)
 (list (make-test-menu interface)))

(capi:display interface)

See also

define-interface
menu
undefine-menu

define-ole-control-component Macro

Summary

Defines a class that implements the OLE Control protocol for a CAPI pane.

Package

capi

Signature

define-ole-control-component class-name (superclass-name*) slots &rest class-options

Arguments

class-name⇓ A symbol.

superclass-name⇓ A symbol naming a class.

slots⇓ A list of slot specifiers as in defclass.

class-options⇓ Class options as in defclass, plus specific options (see below).

21 CAPI Reference Entries

299

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

Description

The macro define-ole-control-component defines an Automation component class class-name (like
com:define-automation-component) that also implements the OLE Control protocols and other named interfaces or a
coclass. This allows a CAPI pane to be embedded in an OLE Control container implemented outside LispWorks.

Each superclass-name argument specifies a direct superclass of the new class, which can be any standard-class provided
that certain standard classes are included somewhere in the overall class precedence list. These standard classes depend on
the other options and provide the default superclass list if none is specified. The following standard classes are available:

ole-control-component is always needed and provides an implementation of the OLE Control protocol.

com:standard-i-dispatch is always needed and provides a complete implementation of the i-dispatch interface, based
on the type information in a type library.

com:standard-i-connection-point-container is needed if there are any source interfaces specified (via the
:coclass or :source-interfaces options). This provides a complete implementation of the Connection Point protocols,
used to support events.

slots is a list of standard defclass slot definitions.

class-options are standard defclass options. In addition the following options are recognized:

(:coclass coclass-name)

(:interfaces interface-name*)

(:source-interfaces interface-name*)

See com:define-automation-component in the COM/Automation User Guide and Reference Manual for details of these
options.

Typically the :pane-function and :create-callback initargs are supplied using the :default-initarg option.

Implementations of the methods in the :coclass and :interfaces options should be defined using
com:define-com-method, com:define-dispinterface-method or com:com-object-dispinterface-invoke.

Notes

define-ole-control-component is implemented only in LispWorks for Windows. Load the functionality by
(require "embed").

Examples

(example-edit-file "com/ole/control-implementation/deliver.lisp")

See also

ole-control-component

21 CAPI Reference Entries

300

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

destroy Generic Function

Summary

Closes a window and calls the destroy-callback.

Package

capi

Signature

destroy interface

Arguments

interface⇓ An interface.

Description

The generic function destroy closes the window associated with interface, and then calls the interface's destroy-callback if
it has one.

There is a complementary function quit-interface which calls the interface's confirm-destroy-function to confirm that the
destroy should be done, and it is advisable to always use this unless you want to make sure that the interface's confirm-
destroy-function is ignored.

Notes

destroy must only be called in the process of interface. Menu callbacks on interface will be called in that process, but
otherwise you probably need to use execute-with-interface or apply-in-pane-process.

Examples

(setq interface
 (capi:display (make-instance
 'capi:interface
 :title "Test Interface"
 :destroy-callback
 #'(lambda (interface)
 (capi:display-message
 "Quitting ~S"
 interface)))))

(capi:apply-in-pane-process
 interface 'capi:destroy interface)

See also

interface
quit-interface
update-screen-interfaces-hooks
7 Programming with CAPI Windows

21 CAPI Reference Entries

301

destroy-dependent-object Generic Function

Summary

A mechanism to destroy objects when a pinboard-layout is destroyed.

Package

capi

Signature

destroy-dependent-object object

Method signatures

destroy-dependent-object (object cons)

destroy-dependent-object (object process)

Arguments

object⇓ A Lisp object.

Description

The generic function destroy-dependent-object is part of a mechanism for destroying objects when a
pinboard-layout is destroyed.

Objects may be registered for destruction by calling record-dependent-object and unregistered by calling
unrecord-dependent-object.

The predefined destroy-dependent-object method specializing on cl:cons expects a list where the car is a function
and the cdr are its arguments. It applies the function to the arguments. The predefined method specializing on mp:process

calls mp:process-terminate on the process object.

See also

pinboard-layout
record-dependent-object
unrecord-dependent-object

detach-simple-sink Function

Summary

Detaches a previously-attached simple sink object.

Package

capi

21 CAPI Reference Entries

302

http://www.lispworks.com/documentation/HyperSpec/Body/a_cons.htm

Signature

detach-simple-sink sink pane

Arguments

sink⇓ A class instance.

pane⇓ An ole-control-pane.

Description

The function detach-simple-sink detaches a sink that was previously attached to the active component in the
ole-control-pane pane by a call to attach-simple-sink.

sink is the value returned by attach-simple-sink when the sink was attached.

pane is an ole-control-pane which is the pane where the component is.

Attached sinks are automatically disconnected when the object is closed.

Notes

This function is implemented only in LispWorks for Windows. Load the functionality by (require "embed").

See also

attach-simple-sink
ole-control-pane

detach-sink Function

Summary

Detaches a previously-attached sink.

Package

capi

Signature

detach-sink sink pane interface-name

Arguments

sink⇓ A class instance.

pane⇓ An ole-control-pane.

interface-name⇓ A refguid or the symbol :default.

Description

The function detach-sink detaches a sink which was previously attached to the active component in the

21 CAPI Reference Entries

303

ole-control-pane pane.

sink is an instance of a class that implements the interface interface-name.

pane is an ole-control-pane which is the pane where the component is.

interface-name is either a string naming a source interface that the component in pane supports or :default to disconnect
from the default source interface.

Attached sinks are automatically disconnected when the object is closed.

Notes

This function is implemented only in LispWorks for Windows. Load the functionality by (require "embed").

See also

attach-simple-sink
attach-sink
ole-control-pane

display Function

Summary

Displays a CAPI interface on a specified screen.

Package

capi

Signature

display interface &key screen owner window-styles process => interface

Arguments

interface⇓ A CAPI interface.

screen⇓ A screen, or any argument accepted by convert-to-screen.

owner⇓ A CAPI interface.

window-styles⇓ A list of keywords.

process⇓ On GTK+, Microsoft Windows or Motif, a CAPI process, t or nil. On Cocoa, this
argument is not supported.

Values

interface A CAPI interface.

Description

The function display displays the CAPI interface interface on the specified screen (or the current one if not supplied).

21 CAPI Reference Entries

304

If process is not supplied, then if owner is supplied interface runs in owner's process, otherwise interface runs in the process
of the parent of interface if it is a document-container, or in a new process created for interface if not.

On Microsoft Windows and Motif, if process is t, then interface runs in a newly-created process. If process is nil, interface
runs in the current process. Otherwise process is expected to be a CAPI process, and interface runs in it. A CAPI process is a
mp:process which was created by calling display. You can pass only a CAPI process as process, because it needs to
handle messages using the LispWorks event loop. The default value of process is t.

On Cocoa, all CAPI interfaces run in the Cocoa Event Loop process (which is the main thread of LispWorks) and therefore
process is not supported. If process is any process other than the Cocoa Event Loop process an error is signalled.

owner specifies an owner for interface, which should be another CAPI interface. interface inherits a number of attributes
from owner, including the default process, default screen and default display state.

window-styles, if supplied, sets the window-styles slot of interface. See interface for information about window-styles.

display returns its interface argument.

Notes

1. Use the function contain to display objects other than interfaces.

2. Once display has finished preparing the interface to display, it calls interface-display to actually do the display.
The primary method does the actual display, and you can :before or :after methods to execute code just before or
just after the window appears.

Examples

(capi:display (make-instance 'capi:interface
 :title "Test"))

See also

contain
convert-to-screen
display-dialog
document-container
execute-with-interface
interface
interface-display
quit-interface
update-screen-interfaces-hooks
2 Getting Started
4.1 The correct thread for CAPI operations
19 Host Window System-specific issues
7 Programming with CAPI Windows
10.4 Dialog Owners

display-dialog Function

Summary

Displays a CAPI interface as a dialog box.

21 CAPI Reference Entries

305

Package

capi

Signature

display-dialog interface &key screen focus modal timeout owner x y position-relative-to continuation callback-error-
handler => result, okp

Arguments

interface⇓ A CAPI interface.

screen⇓ A screen.

focus⇓ A pane of interface.

modal⇓ t, :dismiss-on-input or nil.

timeout⇓ nil or a real number.

owner⇓ A pane.

x⇓, y⇓ Real numbers representing coordinates, or keywords or lists specifying an adjusted
position.

position-relative-to⇓ :owner or nil.

continuation⇓ A function or nil.

callback-error-handler⇓
A function designator or nil.

Values

result⇓ An object.

okp A boolean.

Description

The function display-dialog displays the CAPI interface interface as a dialog box.

screen is the screen for the dialog to be displayed on.

focus should be the pane within the interface that should be given the focus initially. If a focus is not supplied, then it lets the
window system decide.

A true value of modal indicates that the dialog takes over all input to the application. Additionally, if modal is
:dismiss-on-input then any user gesture (a button or key press) causes the dialog to disappear. :dismiss-on-input
works on platforms other than Motif. The default value of modal is t.

owner specifies an owner window for the dialog. See 10.4 Dialog Owners for details.

If timeout is non-nil, the dialog automatically aborts if it is still displayed after timeout seconds.

If x and y are numbers they specify the coordinates of the dialog. Alternatively x and y can be keywords like :left and
:top, or lists like (:left 100), (:bottom 50) and so on.. These values cause the dialog to be positioned relative to its
owner in the same way as the adjust argument to pane-adjusted-position. The default location is at the center of the
dialog's owner.

position-relative-to has a default value :owner, meaning that x and y are relative to dialog's owner. The value nil means that

21 CAPI Reference Entries

306

x and y are relative to the screen.

If continuation is non-nil, then it must be a function with a lambda list that accepts two arguments. continuation is called
with the values that would normally be returned by display-dialog. On Cocoa, passing continuation causes the dialog to
be made as a window-modal sheet and display-dialog returns immediately, leaving the dialog on the screen. The
with-dialog-results macro provides a convenient way to create a continuation function.

The values returned depend on how the dialog is dismissed. Typically a user gesture will trigger a call to abort-dialog,
causing the values nil, nil to be returned or to exit-dialog causing the values result, t to be returned, where result is the
argument to exit-dialog. If continuation is non-nil, then the returned values are always :continuation, nil.

The CAPI also provides popup-confirmer which gives you the standard OK and Cancel button functionality.

callback-error-handler allows error handling in callbacks which is uniform across platforms, as described for
popup-confirmer.

Notes

1. If you need to replace one dialog with another, you can use display-replacable-dialog and replace-dialog.

2. In a modal dialog at least one button which aborts or exits the dialog must be provided in interface. This is the
programmer's responsibility, as without such a button there is no way to clear the modal dialog. A straightforward way to
add these buttons is to display the window via popup-confirmer which adds the buttons for you.

Examples

(capi:display-dialog
 (capi:make-container
 (make-instance 'capi:push-button-panel
 :items '("OK" "Cancel")
 :callback-type :data
 :callbacks '(capi:exit-dialog
 capi:abort-dialog))
 :title "Empty Dialog"))

There are further examples:

(example-edit-file "capi/dialogs/")

See also

abort-dialog
display
display-replacable-dialog
exit-dialog
interface
popup-confirmer
with-dialog-results
update-screen-interfaces-hooks
10 Dialogs: Prompting for Input

21 CAPI Reference Entries

307

display-errors Macro

Summary

Displays a message if an error is signalled.

Package

capi

Signature

display-errors &body body

Arguments

body⇓ Lisp forms.

Description

The macro display-errors executes the forms in body inside a handler-case form. If an error is signalled inside body,
a message is displayed and the debugger is not entered.

display-message Function

Summary

Displays a message on the current CAPI screen.

Package

capi

Signature

display-message format-string &rest format-args

Arguments

format-string⇓ A string.

format-args⇓ Lisp objects.

Description

The function display-message creates a message from format-string and format-args using format, and then displays it
on the current CAPI screen.

21 CAPI Reference Entries

308

http://www.lispworks.com/documentation/HyperSpec/Body/m_hand_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm

Notes

If you need to make a window-modal sheet on Cocoa, then use the function prompt-with-message.

Examples

(capi:display-message "Current screen = ~S"
 (capi:convert-to-screen))

See also

prompt-with-message
display-message-for-pane
display-non-focus-message
display-dialog
2 Getting Started
10 Dialogs: Prompting for Input

display-message-for-pane Function

Summary

Displays a message on the same screen as a specified pane.

Package

capi

Signature

display-message-for-pane pane format-string &rest format-args

Arguments

pane⇓ A simple-pane.

format-string⇓ A string.

format-args⇓ Lisp objects.

Description

The function display-message-for-pane creates a message from the arguments format-string and format-args using
format, and then displays it on the same screen as pane.

Notes

If you need to make a window-modal sheet on Cocoa, then use the function prompt-with-message.

Compatibility note

The function display-message-on-screen is retained for compatibility with previous versions of LispWorks. It is a
synonym for display-message-for-pane.

21 CAPI Reference Entries

309

http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm

Examples

(setq pane (capi:contain (make-instance
 'capi:text-input-pane)))

(capi:display-message-for-pane pane
 "Just created ~S" pane)

See also

prompt-with-message
display-message

display-non-focus-message Function

Summary

Display a message in a non-focus window for a short period of time.

Package

capi

Signature

display-non-focus-message string &key timeout timeout-extension owner x alternative-x right y alternative-y bottom
alternative-right alternative-bottom transparency background font widget-name

Arguments

string⇓ A string or a list of strings.

timeout⇓ A positive integer.

timeout-extension⇓ A positive integer.

owner⇓ A visible CAPI pane.

x⇓, alternative-x⇓, right⇓
Integers, or one of the keywords :left, :right, :center and :centre.

y⇓, alternative-y⇓, bottom⇓
Integers, or one of the keywords :top, :bottom, :center and :centre.

alternative-right⇓ An integer, or one of the keywords :left, :right, :center and :centre, or t.

alternative-bottom⇓ An integer, or one of the keywords :top, :bottom, :center and :centre, or t.

transparency⇓ A real number in the inclusive range [0,1].

background⇓ A color in the Graphics Ports color system.

font⇓ A font or a font-description, or a positive integer.

widget-name⇓ A string designator.

21 CAPI Reference Entries

310

Description

The function display-non-focus-message displays a message in a non-focus window for a short period of time, to
notify the user of something that does not actually require their attention.

string is the message. It should be either a string, or a list of strings, which are concatenated with newlines to give the actual
text to display. #\Newline characters in string break lines as expected.

timeout, if supplied, should be a positive integer. It specifies the time in seconds before the window displaying the message
disappears. The default value of timeout is *default-non-focus-message-timeout*.

timeout-extension is used when the user tries to copy the message text. The default value of timeout-extension is
default-non-focus-message-timeout-extension. See "Copying from the message" below for discussion.

owner should be a visible CAPI pane. The positioning of the non-focus window is with respect to owner.

x, y, right, bottom, alternative-x, alternative-y, alternative-right, and alternative-bottom are used for positioning the window.
x, alternative-right, alternative-x and right are the horizontal keywords, and one of them determines the horizontal position
as described below. y, alternative-bottom, alternative-y and bottom are the vertical keywords, and one of them determines the
vertical position. The values :center and :centre are synonyms here.

x and y specify the positioning of the left and top sides of the window, except for :center/:centre. An integer means the
offset in pixels from the left or top of owner. :left, :right, :top and :bottom mean the left/right/top/bottom of owner.
:center means the center of owner, and in this case it specifies the location of the center of the window in the x or y
dimension. The default value of both x and y is :center.

right and bottom override x and y respectively. They specify the positioning of the right or bottom of the window, except for
:center/:centre, where they are interpreted in the same way as x and y.

alternative-x, alternative-y, alternative-right, and alternative-bottom are used if positioning the window using x or right and
y or bottom would place it outside of the screen, and are interpreted the same way as the non-alternative keywords. The
decision to use the alternative variables is made independently in the horizontal and vertical directions. alternative-right and
alternative-bottom can both take the special value t, meaning the screen width and height.

transparency specifies the transparency of the window. See interface for details.

background specifies the background color of the window.

font specifies the font to use. If it is a positive integer it specifies the font size, that is equivalent to:

(gp:make-font-description :size font)

widget-name specifies the widget-name of the interface that displays the window. See element for details.

Copying from the message

The user can select part of the message with the mouse, and then copy it using the context menu (raised by right-click).
Whenever the user changes the selection or cursor position, a timout specified by timeout is re-scheduled with timeout-
extension seconds, so the window does not disappear while the user tries to copy.

The context menu also has a Close item, so the user can explicitly close the window once she has finished.

Notes

Because display-non-focus-message raises a window that does not take the focus, it does not interfere with what the
user is already doing (except when the user clicks on the window). It is therefore useful to notify the user about events that do
not actually require the user to stop what they are doing and do something, for example when a saving operation is complete.

21 CAPI Reference Entries

311

See also

display-message
default-non-focus-message-timeout
default-non-focus-message-timeout-extension

display-pane Class

Summary

The class display-pane is a pane that displays multiple lines of text.

Package

capi

Superclasses

titled-object
simple-pane

Initargs

:text A string or a list of strings to be displayed.

Accessors

display-pane-text

Description

The text passed to a display pane can be provided either as a single string containing newlines, or else as a list of strings
where each string represents a line.

Examples

(capi:contain (make-instance
 'capi:display-pane
 :text
 '("One" "Line" "At" "A" "Time...")))

(setq dp (capi:contain
 (make-instance
 'capi:display-pane
 :text
 '("One" "Line" "At" "A" "Time...")
 :visible-min-height
 '(:character 5))))

(capi:apply-in-pane-process
 dp #'(setf capi:display-pane-text)
 '("Some" "New" "Text") dp)

21 CAPI Reference Entries

312

See also

display-pane-selected-text
display-pane-selection
display-pane-selection-p
editor-pane
set-display-pane-selection
text-input-pane
title-pane
3.5 Displaying and entering text

display-pane-selected-text Function

Summary

Returns the selected text in a display-pane.

Package

capi

Signature

display-pane-selected-text display-pane => result

Arguments

display-pane⇓ An instance of display-pane or a subclass.

Values

result A string or nil.

Description

The function display-pane-selected-text returns the selected text in display-pane, or nil if there is no selection.

See also

display-pane
display-pane-selection-p
display-pane-selection

display-pane-selection Function

Summary

Returns the bounds of the selection in a display-pane.

Package

capi

21 CAPI Reference Entries

313

Signature

display-pane-selection pane => start, end

Arguments

pane⇓ A display-pane.

Values

start⇓, end⇓ Non-negative integers.

Description

The function display-pane-selection returns as multiple values the bounding indexes of the selection in pane. That is,
start is the inclusive index of the first selected character, and end is one greater than the index of the last selected character.

If there is no selection, then both start and end are the caret position in pane.

See also

set-display-pane-selection
display-pane
display-pane-selected-text
display-pane-selection-p

display-pane-selection-p Function

Summary

Returns true if there is selected text in a display-pane.

Package

capi

Signature

display-pane-selection-p pane => selectionp

Arguments

pane⇓ A display-pane.

Values

selectionp A boolean.

Description

The function display-pane-selection-p returns t if there is a selected region in pane and nil otherwise.

21 CAPI Reference Entries

314

See also

set-display-pane-selection
display-pane
display-pane-selected-text
display-pane-selection

display-popup-menu Function

Summary

Displays a popup menu.

Package

capi

Signature

display-popup-menu menu &key owner x y button => result

Arguments

menu⇓ A menu.

owner⇓ A pane.

x⇓ The horizontal coordinate of menu's position relative to owner.

y⇓ The vertical coordinate of menu's position relative to owner.

button⇓ The mouse button that raises the menu.

Values

result t or nil.

Description

The function display-popup-menu displays the menu menu at position x,y. display-popup-menu should be used in
response to the user clicking a mouse button, and is typically used to implement context ("right button") menus.

The user may select an item in the menu, in which case the item's selection-callback is invoked, and display-popup-menu

returns t.

Alternatively the user may cancel the menu, by clicking elsewhere or pressing the Escape key. In this case,
display-popup-menu returns nil.

owner specifies the owner of the menu, that is, a pane that the menu is associated with. If owner is not supplied the system
tries to find the appropriate owner, which usually suffices.

x and y default to the horizontal and vertical coordinates, relative to owner, of the location of the mouse pointer.

button defaults to :button-3.

21 CAPI Reference Entries

315

Examples

See 8.13 Displaying menus programmatically.

See also

menu
pinboard-layout
popup-menu-force-popdown
8.13 Displaying menus programmatically

display-replacable-dialog Function

Summary

Displays a replacable dialog.

Package

capi

Signature

display-replacable-dialog interface &rest args => result

Arguments

interface⇓ An interface.

args⇓ Other arguments as for display-dialog.

Values

result The value returned by the dialog.

Description

The function display-replacable-dialog displays a dialog that can be replaced by another dialog.

interface is a CAPI interface to be displayed as a dialog.

The arguments args are interpreted the same as the arguments to display-dialog, except that modal is ignored.
display-replacable-dialog displays the dialog like display-dialog.

Within the scope of display-replacable-dialog (that is, inside the callbacks) the programmer can call
replace-dialog which replaces the dialog by a new dialog and destroys the existing one. There can be many calls to
replace-dialog inside the same scope of display-replacable-dialog.

display-replacable-dialog returns the last dialog that was displayed.

Inside display-replacable-dialog, the functions that use the current dialog, such as exit-dialog and
abort-dialog, work in the same way that they work inside display-dialog, except that they do not affect the return
value of display-replacable-dialog.

21 CAPI Reference Entries

316

See also

abort-dialog
display-dialog
exit-dialog
replace-dialog

display-tooltip Generic Function

Summary

Displays tooltip help on an output pane.

Package

capi

Signature

display-tooltip output-pane &key x y text

Arguments

output-pane⇓ An instance of a subclass of output-pane.

x⇓ The horizontal coordinate of the tooltip position.

y⇓ The vertical coordinate of the tooltip position.

text⇓ The help text.

Description

The generic function display-tooltip displays text as tooltip help at position x,y in output-pane.

Notes

1. On GTK+, display-tooltip is implemented only for GTK+ versions 2.12 and later.

2. On GTK+, the :x and :y arguments might not be handled.

Compatibility note

On GTK+, display-tooltip is not implemented in LispWorks 6.0.

Examples

(example-edit-file "capi/graphics/pinboard-help")

See also

3.12.1 Tooltips for output panes

21 CAPI Reference Entries

317

docking-layout Class

Summary

A class that implements docking of panes.

Package

capi

Superclasses

simple-layout

Initargs

:items A list of pane specifications. The panes become the items in the layout.

:controller A docking layout controller.

:docking-test-function

A function controlling whether a pane can be docked.

:docking-callback A function called when a pane is docked or undocked.

:divider-p A boolean allowing a visible edge around the layout.

:orientation One of :horizontal or :vertical.

Accessors

docking-layout-controller
docking-layout-divider-p
docking-layout-docking-test-function
docking-layout-items

Readers

docking-layout-orientation

Description

The class docking-layout defines a region in which panes can be docked and undocked. The undocking functionality
works only in LispWorks for Windows.

If controller is non-nil, it must be a controller object as returned by a call to make-docking-layout-controller. In this
case the docking-layout is one of a group of docking-layouts which share that same controller, known as the Docking
Group. The panes that can be docked and undocked are shared between the members of the Docking Group. If controller is
nil (the default value), the docking-layout is in a Docking Group of one.

A pane pane is dockable in a Docking Group when it is an item of any member of the Docking Group. This is the case when
it is one of the items passed to make-instance for some member of the group, or it has been set in some member by
(setf docking-layout-items). The user can dock and undock pane in any member of the Docking Group. You can
change the dockable status of panes programmatically by (setf docking-layout-items). You can query a pane's
docked and visible status in a docking-layout by docking-layout-pane-docked-p and
docking-layout-pane-visible-p. You can change a pane's docked and visible status in a docking-layout by

21 CAPI Reference Entries

318

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

(setf docking-layout-pane-docked-p) and (setf docking-layout-pane-visible-p).

By default, the context menu allows the user to alter the visibility status of each of the panes in the Docking Group.

items is a list of pane specifications. Each specification in the list is either an atom denoting a pane, or a list wherein the
cl:car is an object denoting a pane and the cl:cdr is a plist of options and values. The object denoting the pane can be:

• The pane itself.

• A symbol naming a slot in the interface which contains the docking-layout. The value in that slot, which must be a
pane, is used. Typically the slot name is defined in the :panes or :layouts class option in the define-interface
form.

• A string, denoting a title-pane with that text.

• A list, wherein the car is the name of a pane class and the cdr is a list of initialization arguments for that class. This
denotes the pane created by applying make-instance to the list. Note that in this case the list cannot be the item in the
items list, because it would be wrongly interpreted as a list wherein the car denotes a pane directly and the cdr is a plist
of options and values.

When an item in the items list is a list, the cdr is a plist of options and values, which can contain these options:

:title A string which is title associated with the pane. This is used when the pane is presented to the
user, for example in the default context menu.

:docked-p A boolean specifying whether the pane should be docked. The default value is t. When a pane is
not docked and is visible, it is displayed in its own window.

:visible-p A boolean specifying whether the pane is visible. The default value is t.

:undocked-geometry A list of four integers specifying the geometry of the pane when undocked, as
(x y width height).

:start-new-line-p A boolean specifying whether to place the pane on a new line in the docking-layout. The
default value is nil.

docking-layout-items always returns the items as lists, with the cdr containing the options and values.

docking-test-function is a function of two arguments with a boolean return value. When the user attempts to dock a pane pane
in the docking-layout, docking-test-function is called with the docking-layout and pane. If it returns nil, pane is not
docked. If it returns true, pane is docked. The default behavior is that all panes under the controller which is the controller in
this docking-layout, and only these panes, can be docked.

docking-callback, if non-nil, is a function of three arguments: the docking-layout, the pane and a boolean. This third
argument is t when the pane is docked, and nil when the pane is undocked. The default value of docking-callback is nil.

divider-p controls whether a visible edge is drawn around the border of the docking-layout. The default value is nil.

orientation specifies whether the items are laid out horizontally or vertically. The default value is :horizontal.

Examples

(example-edit-file "capi/layouts/docking-layout")

See also

docking-layout-pane-docked-p
docking-layout-pane-visible-p

21 CAPI Reference Entries

319

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

docking-layout-pane-docked-p Accessor

Summary

Used to indicate whether a pane is currently docked in a docking-layout.

Package

capi

Signature

docking-layout-pane-docked-p docking-layout pane &key anywhere => dockedp

(setf docking-layout-pane-docked-p) dockedp docking-layout pane &key anywhere => dockedp

Arguments

docking-layout⇓ An instance of docking-layout or a subclass.

pane⇓ A pane.

anywhere⇓ A boolean.

dockedp⇓ A boolean.

Values

dockedp⇓ A boolean.

Description

The accessor docking-layout-pane-docked-p accesses a boolean indicating whether pane is currently docked.

If anywhere is t, dockedp is true if pane is docked in any member of the Docking Group of docking-layout. If anywhere is
nil, dockedp is true only if pane is docked in docking-layout itself. The default value of anywhere is nil.

(setf docking-layout-pane-docked-p) may be used to change the docking state of pane in docking-layout only when
pane is dockable in the Docking Group of docking-layout, that is, it was added to the items of any of the docking-layouts
in the group.

See also

docking-layout

docking-layout-pane-visible-p Accessor

Summary

Used to indicate whether a pane is currently visible in a docking-layout.

21 CAPI Reference Entries

320

Package

capi

Signature

docking-layout-pane-visible-p docking-layout pane => visiblep

(setf docking-layout-pane-visible-p) visiblep docking-layout pane => visiblep

Arguments

docking-layout⇓ An instance of docking-layout or a subclass.

pane⇓ A pane.

visiblep A boolean.

Values

visiblep A boolean.

Description

The accessor docking-layout-pane-visible-p accesses a boolean indicating whether pane is currently visible in the
Docking Group of docking-layout. pane may be docked in any member of the Docking Group, or undocked.

(setf docking-layout-pane-visible-p) may be used to change the visibility of pane in docking-layout only when
pane is dockable in the Docking Group of docking-layout, that is, it was added to the items of any of the docking-layouts
in the group.

See also

docking-layout

document-container Class

Summary

A container for a document-frame (only implemented on Microsoft Windows).

Package

capi

Superclasses

capi-object

Readers

screen-interfaces

21 CAPI Reference Entries

321

Description

The class document-container is used to implement the container in a document-frame.

A document-container has some screen-like functionality, responding to screen-internal-geometry and
screen-active-interface.

This works only in LispWorks for Windows.

See also

display
document-frame
screen-active-interface
screen-internal-geometry
3.13 Screens
11 Defining Interface Classes - top level windows

document-frame Class

Summary

The class document-frame is used to implement MDI (only implemented on Microsoft Windows).

Package

capi

Superclasses

interface

Readers

document-frame-container

Description

The class document-frame is used to implement Multiple-Document Interface (MDI) which is a standard technique on
Microsoft Windows (see the MSDN for documentation).

To use MDI in the CAPI, define an interface class that inherits from document-frame, and use the two special slots
capi:container and capi:windows-menu. For the details and an example, see 6.6.7 Multiple-Document Interface
(MDI).

This works only in LispWorks for Windows.

Notes

capi:windows-menu is a special slot in document-frame and this symbol should not appear elsewhere in the
define-interface form.

21 CAPI Reference Entries

322

See also

current-document
merge-menu-bars
3.7 Hierarchy of panes
6.6.7 Multiple-Document Interface (MDI)

double-headed-arrow-pinboard-object Class

Summary

A pinboard-object that draws itself as an arrow.

Package

capi

Superclasses

arrow-pinboard-object

Initargs

:double-head-predicate

A function determining whether a single or double arrowhead is drawn.

Description

The class double-headed-arrow-pinboard-object is a pinboard-object that draws itself as an arrow, which can
switch dynamically from double-headed to single-headed.

double-head-predicate should be a function of two arguments returning a boolean value. The first argument is the output
pane on which the arrow pinboard object is drawn. The second argument is the arrow pinboard object itself.

double-head-predicate should return a true value if the arrow is to be double-headed, and nil if a single-headed arrow should
be drawn. It is called each time the arrow object is redrawn.

Examples

(defvar *doublep* t)

(let ((dhr
 (capi:contain
 (make-instance
 'capi:pinboard-layout
 :description
 (list
 (make-instance
 'capi:double-headed-arrow-pinboard-object
 :double-head-predicate
 #'(lambda (x y) *doublep*)
 :start-x 5 :start-y 5 :end-x 95 :end-y 95)
 (make-instance
 'capi:double-headed-arrow-pinboard-object
 :double-head-predicate
 #'(lambda (x y) *doublep*)

21 CAPI Reference Entries

323

 :head-direction :backwards
 :start-x 5 :start-y 95 :end-x 95 :end-y 5)))
 :visible-min-width 100
 :visible-min-height 100)))
 (dotimes (x 10)
 (sleep 1)
 (setq *doublep* (not *doublep*))
 (mapcar 'capi:redraw-pinboard-object
 (capi:layout-description dhr))))

See also

12.3 Creating graphical objects

double-list-panel Class

Summary

A choice which displays its selected items and its unselected items in disjoint lists displayed in two sub-panels, and
facilitates easy movement of items between these lists.

Package

capi

Superclasses

choice
interface

Initargs

:selected-items-title

:unselected-items-title

selected-items-title and unselected-items-title are passed as the :title initarg to the list
panels.

:selected-items-filter

:unselected-items-filter

selected-items-filter and unselected-items-filter are passed as the :filter initarg to the
list panels.

:list-visible-min-width

:list-visible-min-height

list-visible-min-width and list-visible-min-height are passed as the :visible-min-width
and :visible-min-height initargs to both list panels.

:image-function

:image-state-function

:image-width

:image-height

:state-image-width

21 CAPI Reference Entries

324

:state-image-height

image-function, image-state-function, image-width, image-height, state-image-width and
state-image-height are passed to both of the sub-panels to specify images.

Description

The class double-list-panel is a choice which displays its items in two list-panels. One list contains the selected
items and the other contains the unselected items. There is a pair of arrow buttons which move highlighted items between the
lists.

selected-items-title and unselected-items-title are passed as the :title initarg to the corresponding sub-panels (see
list-panel). selected-items-title defaults to "Selected items:" and unselected-items-title defaults to
"Unselected items:".

selected-items-filter and unselected-items-filter are passed as the :filter initarg to the corresponding sub-panels (see
list-panel). selected-items-filter and unselected-items-filter both default to nil.

list-visible-min-width and list-visible-min-height are passed as the :visible-min-width and :visible-min-height

initargs to both sub-panels (see list-panel). list-visible-min-width and list-visible-min-width both default to nil.

image-function, image-state-function, image-width, image-height, state-image-width and state-image-height are passed to
both of the sub-panels to specify images (see list-panel).

The default interaction of double-list-panel is :extended-selection.

The selection-callback, extend-callback or retract-callback is called as appropriate when items are moved between the lists.
There is no action-callback for double-list-panel.

The user selects and de-selects items in the double-list-panel by moving them between the two lists. There are three
ways to move the items:

• Highlight the items to move by normal list-panel selection gestures, then press an arrow button.

• Highlight a single item to move by normal list-panel selection gestures, then press Return.

• Double click on an item to move it.

Notes

1. double-list-panel is not a subclass of list-panel.

2. double-list-panel does not have image lists. To use sub-images from an image-set, use image-locators.

Examples

(capi:display
 (make-instance
 'capi:double-list-panel
 :items '("John" "Geoff" "chicken" "blue" "water")
 :selection-callback
 #'(lambda (item choice)
 (capi:display-message "selecting ~a" item))
 :extend-callback
 #'(lambda(item choice)
 (capi:display-message "extending ~a" item))
 :retract-callback
 #'(lambda(item choice)
 (capi:display-message "deselecting ~a" item))))

21 CAPI Reference Entries

325

See also

list-panel
5.3 List panels

drag-pane-object Function

Summary

Initiates a dragging operation.

Package

capi

Signature

drag-pane-object pane value &key string plist image-function operations => operation

Arguments

pane⇓ A pane.

value⇓ An object to be dragged.

string⇓ A string to be dragged or nil.

plist⇓ A plist of formats and objects to be dragged.

image-function⇓ A function or nil.

operations⇓ A list of operation keywords allowed for the dragged objects.

Values

operation⇓ One of the operation keywords.

Description

The function drag-pane-object initiates a dragging operation from within the pane pane. It can only be called from
within the button :press or button :motion callbacks of the input-model of an output-pane.

value, string and plist are combined to provide an object to be dragged in various formats.

value can be any Lisp object (not necessarily a string) to make available for dropping into a pane within the local Lisp image.

string can be a string representation of value to make available, or nil. If string is nil and value is a string, then that will be
made available as the string.

plist is a property list of additional format/value pairs to make available. The currently supported formats are as described for
set-drop-object-supported-formats. You can make more than one format available simultaneously.

image-function provides a graphical image for use during the dragging operation on Cocoa. If image-function is supplied,
then it should be a function of one argument. It might be called to provide an image for use during the dragging operation.
The function image-function should return three values: a image object, an x offset and a y offset. The x and y offsets are the
position within the image where the mouse should be located. If the image is nil or image-function is not supplied then a
default image is generated. If the x or y offsets are nil or not returned then the image is positioned with the mouse at its

21 CAPI Reference Entries

326

center point. The image that is returned by image-function is freed automatically in the end of dragging operation. It must be
a new image, and cannot be reused.

operations should be a list of operation keywords that the pane will allow the target application to perform. The operation
keywords are :copy, :move and :link as described for the effect in drop-object-drop-effect. If certain platform-
specific modifier keys are pressed, then some of the operations will be ignored.

The return value operation indicates which operation was performed by the application where the dragged object was
dropped. The value will be :none if the object was not dropped anywhere or dragging was abandoned (for example, by the
user hitting the Escape key). If operation is :move, then you should update the data structures in your application to remove
the object that was dragged.

Notes

1. drag-pane-object is not supported on X11/Motif. See simple-pane for information about drop callbacks.

2. image-function is only called on Cocoa. There is no way to specify an image when dragging on Microsoft Windows.

3. If :image is supplied in plist, the dragging mechanism automatically frees the image object as if by free-image when
it no longer needs it.

Examples

(example-edit-file "capi/output-panes/drag-and-drop")

See also

simple-pane
17 Drag and Drop

draw-metafile Function

Summary

Draws a metafile to a pane.

Package

capi

Signature

draw-metafile pane metafile x y width height

Arguments

pane⇓ An output-pane.

metafile⇓ A metafile, as described in with-internal-metafile.

x⇓, y⇓ Integers.

width⇓, height⇓ Non-negative integers.

21 CAPI Reference Entries

327

Description

The function draw-metafile draws the metafile metafile to the pane pane at position x,y with size width, height.

metafile should be a metafile as returned by with-internal-metafile.

The graphics-state parameters transform, mask and mask-transform affect how the metafile is drawn. The other
graphics-state parameters are taken from the metafile.

Notes

1. draw-metafile is supported on GTK+ only where Cairo is supported (GTK+ 2.8 and later).

2. Metafiles look bad on GTK+, because they transform the image rather than the drawing.

3. draw-metafile is not implemented on X11/Motif.

Examples

(example-edit-file "capi/graphics/metafile")

(example-edit-file "capi/graphics/metafile-rotation")

See also

can-use-metafile-p
clipboard
draw-metafile-to-image
free-metafile
graphics-state
with-internal-metafile

draw-metafile-to-image Function

Summary

Draws a metafile as an image.

Package

capi

Signature

draw-metafile-to-image pane metafile &key width height max-width max-height background alpha => image

Arguments

pane⇓ An output-pane.

metafile⇓ A metafile.

width⇓, height⇓ Non-negative integers, or nil.

max-width⇓, max-height⇓

21 CAPI Reference Entries

328

Non-negative integers, or nil.

background⇓ A color specification.

alpha⇓ A generalized boolean.

Values

image An image.

Description

The function draw-metafile-to-image returns a new image object for pane, with metafile drawn into the image.

metafile should be a metafile as returned by with-internal-metafile.

If width and height are both nil then the size of the image is computed from the metafile. If both width and height are
integers, then they specify the size of the image and the metafile is scaled to fit. If one of width or height is nil, then it is
computed from the other dimension, preserving the aspect ratio of the metafile. The default values of width and height are
both nil.

max-width and max-height, if non-nil, constrain the computed or specified values of width and height respectively. The
aspect ratio is retained when the size is constrained, so specifying a max-width can also reduce the actual height of the image.
The default values of max-width and max-height are both nil.

background should be a color spec, which controls the non-drawn parts of the image. For information about color specs, see
15.1 Color specs. If background is omitted, then the background color of pane is used (see simple-pane).

If alpha is non-nil, then the image will have an alpha component. The default value of alpha is nil.

Notes

1. draw-metafile-to-image is supported on GTK+ only where Cairo is supported (GTK+ 2.8 and later).

2. Metafiles look bad on GTK+, because they transform the image rather than the drawing.

3. draw-metafile-to-image is not implemented on X11/Motif.

See also

clipboard
draw-metafile
free-metafile
with-internal-metafile

drawn-pinboard-object Class

Summary

The class drawn-pinboard-object is a subclass of pinboard-object which is drawn by a supplied function, and is
provided as a means of the user creating their own pinboard objects.

Package

capi

21 CAPI Reference Entries

329

Superclasses

pinboard-object

Initargs

:display-callback Called to display the object.

Accessors

drawn-pinboard-object-display-callback

Description

The display-callback is called with the output pane to draw on, the drawn-pinboard-object itself, and the x, y, width and
height of the object, and it is expected to redraw that section. The display-callback should not draw outside the object's
bounds.

An alternative way of doing this is to create a subclass of pinboard-object and to provide a method for
draw-pinboard-object.

Examples

(defun draw-an-ellipse
 (output-pane self x y width height)
 (let ((x-radius (floor width 2))
 (y-radius (floor height 2)))
 (gp:draw-ellipse output-pane
 (+ x x-radius) (+ y y-radius)
 x-radius y-radius
 :foreground :red
 :filled t)))

(capi:contain (make-instance
 'capi:drawn-pinboard-object
 :visible-min-width 200
 :visible-min-height 100
 :display-callback 'draw-an-ellipse))

There are further examples in 20 Self-contained examples.

See also

pinboard-layout
12 Creating Panes with Your Own Drawing and Input

draw-pinboard-layout-objects Function

Summary

Draws the pinboard objects which intersect a given rectangle in a pinboard-layout.

Package

capi

21 CAPI Reference Entries

330

Signature

draw-pinboard-layout-objects pinboard-layout graphics-port x y width height => nil

Arguments

pinboard-layout⇓ A pinboard-layout.

graphics-port⇓ A graphics port.

x⇓, y⇓, width⇓, height⇓
Non-negative integers.

Description

The function draw-pinboard-layout-objects draws the pinboard objects in pinboard-layout which intersect the
rectangle specified by x, y, width and height into the graphics port graphics-port.

graphics-port can be pinboard-layout itself or another graphics port. The drawing is done into the target rectangle, but may
also draw outside it.

Notes

1. draw-pinboard-layout-objects is used by pinboard-layout when it actually needs to display the objects.

2. draw-pinboard-layout-objects does not do any caching. The display-callback of pinboard-layout does any
caching, and may use draw-pinboard-layout-objects to draw into a cache (a pixmap) rather than the screen.

3. draw-pinboard-layout-objects is useful when you want to have your own display-callback for a
pinboard-layout or a subclass. It is possible to use a graphics transformation on graphics-port around the call to
draw-pinboard-layout-objects to affect the drawing. For example with-graphics-translation can be used
to move the drawing to the origin.

See also

pinboard-layout
pinboard-layout-display
12 Creating Panes with Your Own Drawing and Input

draw-pinboard-object Generic Function

Summary

Draws a pinboard object.

Package

capi

Signature

draw-pinboard-object pinboard object &key x y width height &allow-other-keys

21 CAPI Reference Entries

331

Arguments

pinboard⇓ A pinboard-layout.

object⇓ A pinboard-object.

x⇓, y⇓, width⇓, height⇓
Non-negative integers.

Description

The generic function draw-pinboard-object is called whenever object needs to be drawn in pinboard. x, y, width and
height indicate the region that needs to be redrawn, but a method is free to ignore these and draw the complete object.
However, it should not draw outside the pinboard object's bounds.

Examples

(example-edit-file "capi/graphics/circled-graph-nodes")

See also

pinboard-layout
pinboard-object
pinboard-object-highlighted-p

draw-pinboard-object-highlighted Generic Function

Summary

Draws highlighting on a pre-drawn pinboard object.

Package

capi

Signature

draw-pinboard-object-highlighted pinboard object &key &allow-other-keys

Arguments

pinboard⇓ A pinboard-layout.

object⇓ A pinboard-object.

Description

The generic function draw-pinboard-object-highlighted draws the highlighting for object in pinboard after object
has already been drawn. The default highlighting method draws a box around the object, and should be sufficient for most
purposes.

21 CAPI Reference Entries

332

Examples

(example-edit-file "capi/graphics/circled-graph-nodes")

See also

highlight-pinboard-object

drop-object-allows-drop-effect-p Function

Summary

Queries whether a dropping operation can be performed with a given effect.

Package

capi

Signature

drop-object-allows-drop-effect-p drop-object effect => result

Arguments

drop-object⇓ A drop-object, as passed to the drop-callback.

effect⇓ An effect keyword.

Values

result A boolean.

Description

The function drop-object-allows-drop-effect-p returns non-nil if the dropping operation can be performed for drop-
object with the given effect effect. It returns nil if the dropping operation cannot be performed. See
drop-object-drop-effect for information on drop effect keywords.

Notes

drop-object-allows-drop-effect-p should only be called within a drop-callback. It is not supported on X11/Motif.
See simple-pane for information about drop callbacks.

See also

drop-object-drop-effect
simple-pane

21 CAPI Reference Entries

333

drop-object-collection-index Accessor

Summary

Gets the index and relative place in the collection that an object is being dropped over.

Package

capi

Signatures

drop-object-collection-index drop-object => index, placement

(setf (drop-object-collection-index drop-object) (values new-index new-placement))

Arguments

drop-object⇓ A drop-object, as passed to the drop-callback.

new-index⇓ An integer.

new-placement⇓ One of :above, :item or :below.

Values

index⇓ An integer.

placement⇓ One of :above, :item or :below.

Description

The accessor drop-object-collection-index accesses the index and place relative to that index within the
collection that the object drop-object is being dropped over. This information is only meaningful when the pane is an
instance of list-panel or tree-view.

The returned value index is the position in the collection (see get-collection-item or choice-selection). The
returned value placement indicates whether the user is dropping above, on or below the item at index.

There is also a setf expander that can be called with the values new-index and new-placement within the :drag stage of the
operation, to adjust where the user will be allowed to drop the object.

Notes

drop-object-collection-index should only be called within a drop-callback. It is not supported on X11/Motif. See
simple-pane for information about drop callbacks.

Examples

For an example illustrating the use of drag and drop in a choice, see:

(example-edit-file "capi/choice/drag-and-drop")

21 CAPI Reference Entries

334

See also

drop-object-collection-item
17 Drag and Drop

drop-object-collection-item Accessor

Summary

Gets the item and relative place in the collection that an object is being dropped over.

Package

capi

Signatures

drop-object-collection-item drop-object => item, placement

(setf (drop-object-collection-item drop-object) (values new-item new-placement))

Arguments

drop-object⇓ A drop-object, as passed to the drop-callback.

new-item⇓ An item of a collection.

new-placement⇓ One of :above, :item or :below.

Values

item An item of a collection.

placement⇓ One of :above, :item or :below.

Description

The accessor drop-object-collection-item accesses the item and place relative to that item within the collection
that the object drop-object is being dropped over. This information is only meaningful when the pane is an instance of
list-panel or tree-view.

The returned value placement indicates whether the user is dropping above, on or below the item.

There is also a setf expander that can be called with the values new-item and new-placement within the :drag stage of the
operation, to adjust where the user will be allowed to drop the object.

Notes

drop-object-collection-item should only be called within a drop-callback. It is not supported on X11/Motif. See
simple-pane for information about drop callbacks.

Examples

For an example illustrating the use of drag and drop in a choice, see:

21 CAPI Reference Entries

335

(example-edit-file "capi/choice/drag-and-drop")

See also

drop-object-collection-index
17 Drag and Drop

drop-object-drop-effect Accessor

Summary

Reads or sets the current effect of a dropping operation.

Package

capi

Signature

drop-object-drop-effect drop-object => effect

(setf drop-object-drop-effect) effect drop-object => effect

Arguments

drop-object⇓ A drop-object, as passed to the drop-callback.

effect⇓ An effect keyword.

Values

effect⇓ An effect keyword.

Description

The accessor drop-object-drop-effect gets or sets the current effect of the dropping operation for drop-object. effect
can be one of:

:copy The object will be copied. This is the most common value for operations between applications.

:move The object will be moved. This is usually triggered by the user dragging with a platform-specific
modifier key pressed.

:link A link to the object will be created. This is usually triggered by the user dragging with a platform
-specific modifier key pressed.

:none No dragging is possible.

Notes

drop-object-drop-effect should only be called within a drop-callback. It is not supported on X11/Motif. See
simple-pane for information about drop callbacks.

21 CAPI Reference Entries

336

Examples

(example-edit-file "capi/output-panes/drag-and-drop")

See also

simple-pane
17 Drag and Drop

drop-object-get-object Function

Summary

Returns a dropped object in a given format.

Package

capi

Signature

drop-object-get-object drop-object pane format &rest args => object

Arguments

drop-object⇓ A drop-object, as passed to the drop-callback.

pane⇓ A CAPI pane.

format⇓ A format keyword.

args⇓ Other arguments, currently ignored.

Values

object An object in the given format.

Description

The function drop-object-get-object returns the dropped object in the dropping operation for drop-object over pane
with format format. See set-drop-object-supported-formats for information on format keywords.

Other arguments in args are currently ignored.

Notes

1. When receiving an image (by calling drop-object-get-object with the :image format), the received image should
also be freed when you finish with it. However, it will be freed automatically when the pane supplied to
drop-object-get-object is destroyed, so normally you do not need to free it explicitly.

2. drop-object-get-object should only be called within a drop-callback, passing the supplied drop-object and pane.
It is not supported on X11/Motif. See simple-pane for information about drop callbacks.

21 CAPI Reference Entries

337

Examples

(example-edit-file "capi/output-panes/drag-and-drop")

(example-edit-file "capi/choice/list-panel-drag-images")

See also

set-drop-object-supported-formats
simple-pane
17 Drag and Drop

drop-object-pane-x
drop-object-pane-y Functions

Summary

Gets the coordinates in the pane that an object is being dropped over.

Package

capi

Signatures

drop-object-pane-x drop-object => x-coord

drop-object-pane-y drop-object => y-coord

Arguments

drop-object⇓ A drop-object, as passed to the drop-callback.

Values

x-coord, y-coord Integers.

Description

The functions drop-object-pane-x and drop-object-pane-y return the x and y coordinates within the pane that the
object is being dropped over in the dropping operation for drop-object. This information is only meaningful when the pane is
an instance of output-pane or one of its subclasses.

Notes

drop-object-pane-x and drop-object-pane-y should only be called within a drop-callback. They are not supported
on X11/Motif. See simple-pane for information about drop callbacks.

See also

simple-pane
17 Drag and Drop

21 CAPI Reference Entries

338

drop-object-provides-format Function

Summary

Queries whether a dropping operation can provide an object in a given format.

Package

capi

Signature

drop-object-provides-format drop-object format => result

Arguments

drop-object⇓ A drop-object, as passed to the drop-callback.

format⇓ A format keyword.

Values

result A boolean.

Description

The function drop-object-provides-format returns non-nil if the dropping operation can provide an object with format
format in the dropping operation for drop-object. It returns nil if it cannot provide that format.

See set-drop-object-supported-formats for information on format keywords.

Notes

drop-object-provides-format should only be called within a drop-callback. It is not supported on X11/Motif. See
simple-pane for information about drop callbacks.

Examples

(example-edit-file "capi/output-panes/drag-and-drop")

See also

set-drop-object-supported-formats
simple-pane
17 Drag and Drop

21 CAPI Reference Entries

339

echo-area-cursor-inactive-style Variable

Summary

The drawing style of the Echo Area cursor when the window is inactive.

Package

capi

Initial Value

:invisible

Description

The variable *echo-area-cursor-inactive-style* specifies the drawing style of the cursor in the Echo Area of an
inactive window in the LispWorks IDE.

The allowed values are :inverse, :outline, :underline and :invisible.

echo-area-pane Class

Summary

The class of the Editor's echo area.

Package

capi

Superclasses

editor-pane

Description

The class echo-area-pane is used to implement the small window for user interaction, known as the Echo Area, which is
at the bottom of Editor windows in the LispWorks IDE.

You should not normally need to work with this class directly. To add an Echo Area, pass :echo-area t when making the
editor-pane.

editor-cursor-active-style Variable

Summary

The drawing style of the editor's cursor when the window is active.

21 CAPI Reference Entries

340

Package

capi

Initial Value

:inverse

Description

The variable *editor-cursor-active-style* specifies the drawing style of an editor-pane cursor when the window
is active.

The allowed values are :inverse, :outline, :underline, :left-bar and :caret.

See also

editor-pane-blink-rate

editor-cursor-color Variable

Summary

The background color of the cursor.

Package

capi

Initial Value

nil

Description

When non-nil, the value of the variable *editor-cursor-color* is a color spec or color alias determining the background
color of the editor-pane cursor. See 15 The Color System for information about color specs and aliases.

The value nil means that the cursor background color is the same as the foreground color of the editor pane. foreground is a
slot inherited from simple-pane.

Examples

(setf capi:*editor-cursor-color* :red)

editor-cursor-drag-style Variable

Summary

The drawing style of the editor's cursor during a selection drag.

21 CAPI Reference Entries

341

Package

capi

Initial Value

:left-bar

Description

The variable *editor-cursor-drag-style* specified the drawing style of an editor-pane cursor during a selection
drag.

The allowed values are :inverse, :outline, :underline, :left-bar and :caret.

editor-cursor-inactive-style Variable

Summary

The drawing style of the editor's cursor when the window is inactive.

Package

capi

Initial Value

:outline

Description

The variable *editor-cursor-inactive-style* specifies the drawing style of an editor-pane cursor when the
window is inactive.

The allowed values are :inverse, :outline, :underline or :invisible.

See also

editor-pane

editor-pane Class

Summary

An editor pane is an editor that has all of the functionality described in the LispWorks Guide To The Editor.

Package

capi

21 CAPI Reference Entries

342

Superclasses

output-pane

Subclasses

interactive-pane
collector-pane

Initargs

:text A string or nil.

:enabled t, nil or :read-only.

:buffer-modes A list specifying the modes of the editor buffer.

:buffer-name A string, an editor buffer or the keyword :temp.

:buffer A synonym for the initarg :buffer-name.

:change-callback A function designator, or nil.

:before-input-callback

A function designator, or nil.

:after-input-callback

A function designator, or nil.

:echo-area A flag determining whether the editor pane has an Echo Area.

:fixed-fill An integer specifying the fill length, or nil.

:flag A non-keyword symbol.

:line-wrap-marker A character, or nil.

:line-wrap-face An editor:face object, or a symbol naming a face, or nil.

:wrap-style nil, t or the keyword :split-on-space.

:composition-face Changes the editor face that is used by
editor-pane-default-composition-callback to display the composition string.
The default value is :default.

Accessors

editor-pane-text
editor-pane-change-callback
editor-pane-enabled
editor-pane-fixed-fill
editor-pane-line-wrap-marker
editor-pane-line-wrap-face
editor-pane-wrap-style
editor-pane-composition-face

Description

The class editor-pane is an editor that has all of the functionality described in the LispWorks Guide To The Editor.

enabled controls how user input affects the editor-pane. If enabled is nil, all input from the mouse and keyboard is
ignored. When enabled is t, all input is processed according to the input-model. When enabled is :read-only, input to the
pane by keyboard or mouse gestures cannot change the text. More accurately, input via the default input-model of editor-pane
cannot change the text. The Cut and Paste menu entries are also disabled. When a user tries to change the text, the operation
quietly aborts. Programmatic modifications of the text are still allowed (see Notes below for more detail).

21 CAPI Reference Entries

343

http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

The enabled state can be set by the accessor editor-pane-enabled. simple-pane-enabled has the same effect when
applied to an editor-pane.

The pane stores text in buffers which are uniquely named, and so to create an editor-pane using an existing buffer you
should pass the buffer-name. To create an editor-pane with a new buffer, use either flag or a non-empty text string or a
buffer-name that does not match any existing buffer.

buffer-name can also be an editor buffer naming itself.

buffer-name can also be the keyword :temp. In this case the editor-pane will be created with a temporary buffer that will
go away when the editor-pane is Garbage Collected (it is created by editor:make-buffer with :temporary t).

A non-empty string value of text specifies the initial text displayed and forces the creation of a new buffer. The accessor
editor-pane-text is provided to read and write the text in the editor buffer.

buffer-modes allows you to specify the initial major mode and minor modes of the editor-pane's buffer. It should be a list
of the form (major-mode-name . minor-mode-names). See the Editor User Guide for a description of major and minor modes
in the LispWorks editor. buffer-modes is used only when the CAPI creates the buffer, and not when it reuses a buffer.

If echo-area is non-nil. then an Echo Area is added. echo-area defaults to nil.

If fixed-fill is non-nil, the editor pane tries to form lines of length close to, but no more than, fixed-fill. It does this by forcing
line breaks at spaces between words. fixed-fill defaults to nil.

The cursor in an editor-pane blinks on and off by the mechanism described in editor-pane-blink-rate.

change-callback, if non-nil, should be a function which is called whenever the editor buffer under the editor-pane
changes. For the details see 3.5.3.1 Editor pane callbacks.

before-input-callback and after-input-callback, if non-nil, should be functions which are called when call-editor is
called. For the details see 3.5.3.1 Editor pane callbacks.

line-wrap-marker specifies the marker to display at the end of a line that is wrapped to the next line, or truncated if wrap-style
is nil. The value must be a character, or nil (which is interpreted as #\Space). The default value is the value of
default-editor-pane-line-wrap-marker. The value can be read by editor-pane-line-wrap-marker.

line-wrap-face specifies a face to use when displaying the line-wrap-marker. The argument can be nil, an editor:face

object (the result of a call to editor:make-face), or a symbol naming a face (that is, the first argument to
editor:make-face).

The default value of line-wrap-face is an internal symbol naming a face. The value can be accessed by
editor-pane-line-wrap-face. The default face can be modified in the LispWorks IDE via Tools > Preferences... >
Environment > Styles > Colors and Attributes, style name Line Wrap Marker.

wrap-style defines the wrapping of text lines that cannot be displayed in one line of the editor-pane. The argument can be
one of:

t Normal wrapping. Display as many characters as possible in the editor-pane line.

nil Do not wrap. Text lines that are too long are truncated.

:split-on-space Wrapping, but attempts to split lines on spaces. When the text reaches the end of a line, the code
looks backwards for space, and wraps before it.

The default value of wrap-style is t and the value can accessed by editor-pane-wrap-style.

The input behavior of an editor-pane is determined by its input-model (inherited from output-pane). By default, an
editor-pane has an input-model that implements the functionality of the Editor tool in the LispWorks IDE, and always
does it via call-editor. You can replace this behavior by supplying :input-model when you call make-instance or
by (setf capi:output-pane-input-model), though this has an effect only if called before the pane is displayed. It is

21 CAPI Reference Entries

344

http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

possible to achieve a minor modification to the default input behavior by prepending the modification (see the example
below). Note that functions performing editor operations must do this via call-editor.

Editor panes support GNU Emacs keys on all platforms. Additionally on Microsoft Windows they support Windows editor
keys, on GTK+ and Motif they support KDE/Gnome keys, and on Cocoa they support macOS editor keys. Exactly one style
of emulation is active at any one time for each editor pane. By default, editor panes in the LispWorks IDE use Emacs
emulation on all platforms. By default, editor panes in delivered applications use Windows emulation on Microsoft Windows,
macOS editor emulation on Cocoa, and Emacs emulation on GTK+ and Motif. To alter the choice of emulation, see
interface-keys-style or the deliver keyword :editor-style, described in the Delivery User Guide.

Notes

1. The output-pane initarg :drawing-mode controls anti-aliasing of the text displayed in an editor-pane on
Microsoft Windows and GTK+.

2. For an editor-pane with enabled :read-only, Editor commands (predefined, and user-defined by
editor:defcommand) may or may not be able to change the text, depending on how they are called. When executed by
a key sequence they cannot change the text directly. However Editor commands can also be called via
editor:process-character or call-editor, and then are programmatic input and so can change the text.

3. The effect of enabled :read-only is on the editor-pane. It does not affect the underlying Editor buffer, which can
still be modified from other panes. The buffer that is displayed can be changed, and this does not affect the enabled state
of the editor-pane.

4. Except when actually editing a file, it is normally best to use a temporary buffer when using an editor-pane,
supplying :buffer-name :temp (or :buffer-name tb, where tb is created by editor:make-buffer with
:temporary t). This prevents auto-saving and sharing buffers unintentionally.

5. To control whether the native input method is used to interpret keyboard input, you can supply the output-pane initarg
:use-native-input-method or call set-default-use-native-input-method.

6. The default value of composition-callback (see output-pane) is editor-pane-default-composition-callback.

Compatibility note

In LispWorks 4.4 and previous versions editor-pane supports only fixed-width fonts.

On Cocoa, editor-pane supports only fixed-width fonts in LispWorks 6.1 and earlier versions.

In LispWorks 6.1 and later versions, variable-width fonts can be used on Microsoft Windows, GTK+ and Motif. In
LispWorks 7.0 and later, variable-width fonts can also be used on Cocoa. Specify the font via the :font initarg (see
simple-pane).

The initarg :wrap-style supersedes editor:set-window-split-on-space, which is deprecated.

Examples

(capi:contain (make-instance 'capi:editor-pane
 :text "Hello world"
 :buffer-name :temp))

(setq ed (capi:contain
 (make-instance 'capi:editor-pane
 :text "Hello world"
 :enabled nil
 :buffer-name :temp)))

Note that you cannot type into the editor pane.

21 CAPI Reference Entries

345

(capi:apply-in-pane-process
 ed #'(setf capi:editor-pane-enabled) t ed)

Now you can enter text into the editor pane interactively.

You can also change the text programmatically:

(capi:apply-in-pane-process
 ed #'(setf capi:editor-pane-text) "New text" ed)

In this example the callback modifies the buffer in the correct editor context so you that see the editor update immediately:

(capi:define-interface updating-editor ()
 ()
 (:panes
 (numbers capi:list-panel
 :items '(1 2 3)
 :selection-callback 'update-editor
 :callback-type :interface
 :visible-min-height '(:character 3))
 (editor capi:editor-pane
 :text
 "Select numbers in the list above."
 :visible-min-width
 (list :character 35)
 :buffer-name :temp)))

(defun update-editor (interface)
 (with-slots (numbers editor) interface
 (editor:process-character
 (list #'(setf capi:editor-pane-text)
 (format nil "~R"
 (capi:choice-selected-item numbers))
 editor)
 (capi:editor-window editor))))

(capi:display (make-instance 'updating-editor))

This example illustrates the use of buffer-modes to specify a major mode:

(defclass my-lisp-editor (capi:editor-pane) ()
 (:default-initargs
 :buffer-modes '("Lisp")
 :echo-area t
 :text
 ";; Lisp mode functionality such as command bindings and
;; parenthesis balancing work in this window.

(list 1 2 3)
"
 :visible-min-width '(:character 60)
 :name "My Lisp Editor Pane"))

(capi:define-interface my-lisp-editor-interface ()
 ()
 (:panes
 (ed
 my-lisp-editor
))
 (:default-initargs
 :title "My Lisp Editor Interface"))

;; Ensure Emacs-like bindings regardless of platform

21 CAPI Reference Entries

346

(defmethod capi:interface-keys-style
 ((self my-lisp-editor-interface))
 :emacs)

(capi:display
 (make-instance 'my-lisp-editor-interface))

This example makes an editor-pane with no input behavior:

(capi:contain
 (make-instance 'capi:editor-pane
 :input-model nil
 :buffer-name :temp))

This example makes an editor-pane with the default input behavior, except that pressing the mouse button displays a
message rather than setting the point. It then displays the pane:

(progn
 (defun foo (self x y)
 (capi:display-message "Button-1 Press at ~a/~a"
 x y))
 (let ((ep (make-instance 'capi:editor-pane
 :buffer-name :temp)))
 (setf (capi:output-pane-input-model ep)
 (list* '((:button-1 :press) foo)
 (capi:output-pane-input-model ep)))
 (capi:contain ep)))

Also see these examples:

(example-edit-file "capi/editor/")

See also

call-editor
default-editor-pane-line-wrap-marker
editor-pane-blink-rate
editor-cursor-active-style
editor-cursor-inactive-style
editor-cursor-color
editor-cursor-drag-style
editor-cursor-inactive-style
interface-keys-style
modify-editor-pane-buffer
output-pane
set-default-use-native-input-method
3.5 Displaying and entering text
10.6 In-place completion

editor-pane-blink-rate Generic Function

Summary

Returns the cursor blinking rate for an editor pane.

21 CAPI Reference Entries

347

Package

capi

Signature

editor-pane-blink-rate pane => blink-rate

Arguments

pane⇓ An editor-pane.

Values

blink-rate⇓ A non-negative real number, or nil.

Description

LispWorks calls the generic function editor-pane-blink-rate to determine the cursor blinking rate in milliseconds for
pane. The pane uses the value blink-rate each time it gets the focus.

If blink-rate is a positive real number, then it is the blinking rate in milliseconds. If blink-rate is 0, then there is no blinking.
If blink-rate is nil, then the default blinking rate is used.

The default method on editor-pane-blink-rate returns nil, which means use the default blinking rate.
set-default-editor-pane-blink-rate.

You can define methods on editor-pane-blink-rate specializing on your own subclassses of editor-pane.

See also

editor-cursor-active-style
editor-pane
editor-pane-native-blink-rate
set-default-editor-pane-blink-rate
3.5 Displaying and entering text

editor-pane-buffer Function

Summary

Returns the editor buffer associated with an editor pane.

Package

capi

Signature

editor-pane-buffer pane

Arguments

pane⇓ An editor-pane.

21 CAPI Reference Entries

348

Description

The function editor-pane-buffer returns the editor buffer associated with pane, which can be manipulated in the
standard ways with the routines in the editor package.

Examples

(setq editor-pane
 (capi:contain (make-instance 'capi:editor-pane
 :text "Hello world")))

(setq buffer
 (capi:editor-pane-buffer editor-pane))

(editor:insert-string (editor:buffers-end buffer)
 (format nil "~%Here's some more text..."))

See also

editor-pane

editor-pane-composition-selected-range-face-plist Variable

Summary

Can modify the face of the default editor composition string.

Package

capi

Initial Value

(:inverse-p t)

Description

The variable *editor-pane-composition-selected-range-face-plist* is a plist that is used to modify the face of
the composition string when :selected-range and :selection-needs-face are passed in the plist to
editor-pane-default-composition-callback. The plist is merged into the plist that is passed into
editor-pane-default-composition-callback, so keywords in it override the keywords in the face.

See also

editor-pane-default-composition-callback

21 CAPI Reference Entries

349

editor-pane-default-composition-callback Function

Summary

The default composition callback of the editor. Composition here means composing input characters into other characters by
an input method.

Package

capi

Signature

editor-pane-default-composition-callback editor-pane what

Arguments

editor-pane⇓ An editor-pane.

what⇓ One of :start, :end or a plist.

Description

The function editor-pane-default-composition-callback is the default composition-callback of editor-pane. It
may also be called by your program.

editor-pane is the editor-pane that is currenltly being used for composition.

When what is :start, editor-pane-default-composition-callback sets the composition placement in the editor
by calling set-composition-placement, and also makes it move the composition window following the user's mouse
cursor movement.

When what is :end, it stops the following of the mouse cursor.

When what is a list (which needs to be a plist), editor-pane-default-composition-callback checks if it contains a
keyword/value pair for :string-face-lists, and if it does displays it in the editor temporarily (until the next call to it).
See the entry for output-pane for the description of the value string-face-lists.

By default, editor-pane-default-composition-callback uses the faces that are supplied in string-face-lists, but if
the plist contains :selection-needs-face and :selected-range, it displays the selected range with a different face,
by merging *editor-pane-composition-selected-range-face-plist* into the given face of the selected range.

This can be overridden by setting the composition-face in the editor-pane, or the global
editor-pane-default-composition-face if the composition-face of the pane is :default. If composition-face is
a true value then the exact behavior depends on its type:

A plist This is appended to each face plist in the the string-face-lists. In other words, it provides default
values for the attributes of the face.

An editor:face Overrides the supplied face completely.

A function or a symbol

For string-face-list, funcalls it with two arguments, the pane and the supplied face plist, and uses
the result (which may be an editor:face or a face plist).

21 CAPI Reference Entries

350

editor-pane-default-composition-callback is the default value of composition-callback for editor-pane. This
can be overridden by passing :composition-callback or using output-pane-composition-callback (see entry for
output-pane).

The user-supplied callback may call editor-pane-default-composition-callback to do the actual display,
potentially after modifying the argument when it is a plist.

See also

set-composition-placement

editor-pane-default-composition-face Variable

Summary

The default composition face for editor-pane.

Package

capi

Initial Value

nil

Description

The variable *editor-pane-default-composition-face* gives the default composition face for all editor-panes
where the composition-face is set to :default.

:default is the default value for composition-face, so normally setting this variable affects the composition-face of all
editor-panes.

See editor-pane-default-composition-callback for a description of how it is used.

See also

editor-pane-default-composition-callback

editor-pane-native-blink-rate Function

Summary

Returns the native cursor blinking rate for an editor-pane.

Package

capi

Signature

editor-pane-native-blink-rate pane => blink-rate

21 CAPI Reference Entries

351

Arguments

pane⇓ An editor-pane.

Values

blink-rate⇓ A non-negative real number, or nil.

Description

The function editor-pane-native-blink-rate returns the native cursor blinking rate for the editor-pane pane, that
is the rate that the GUI library (Motif, Microsoft Windows, Cocoa) uses.

The value blink-rate is interpreted as a blinking rate as described in editor-pane-blink-rate.

See also

editor-pane-blink-rate
set-default-editor-pane-blink-rate

editor-pane-selected-text Function

Summary

Returns the selected text in an editor-pane.

Package

capi

Signature

editor-pane-selected-text editor-pane => result

Arguments

editor-pane⇓ An editor-pane.

Values

result A string or nil.

Description

The function editor-pane-selected-text takes an instance of editor-pane as its argument and returns the selected
text in editor-pane, or nil if there is no selection.

See also

editor-pane
editor-pane-selected-text-p

21 CAPI Reference Entries

352

editor-pane-selected-text-p Function

Summary

The predicate for a current selection in an editor-pane.

Package

capi

Signature

editor-pane-selected-text-p editor-pane => result

Arguments

editor-pane⇓ An editor-pane.

Values

result A boolean.

Description

The function editor-pane-selected-text-p takes an instance of editor-pane as its argument and returns t if there is
text currently selected in editor-pane, or nil if there is no selection.

See also

editor-pane
editor-pane-selected-text

editor-pane-stream Generic Function

Summary

Returns the output stream associated with an editor pane.

Package

capi

Signature

editor-pane-stream editor-pane => stream

Arguments

editor-pane⇓ An editor-pane.

21 CAPI Reference Entries

353

Values

stream An output stream.

Description

The generic function editor-pane-stream returns the stream where the results of evaluation in the editor buffer currently
associated with editor-pane are printed to.

See also

editor-pane

editor-window Generic Function

Summary

Returns the editor window object.

Package

capi

Signature

editor-window editor => editor-window

Arguments

editor⇓ An editor-pane or an Editor interface in the LispWorks IDE.

Values

editor-window An editor window object.

Description

The generic function editor-window returns the editor window object associated with editor.

The functionality of editor windows is documented in the Editor User Guide.

See also

editor-pane

element Class

Summary

The class element is the superclass of all CAPI objects that appear in a window.

21 CAPI Reference Entries

354

Package

capi

Superclasses

capi-object

Subclasses

simple-pane
menu

Initargs

:parent The element containing this element.

:interface The interface containing this element.

:accepts-focus-p Specifies that the element should accept input.

:help-key An object used for lookup of help. Default value t.

:widget-name A string designator.

:initial-constraints

Specifies constraints (geometry hints) that apply to the element during the creation of the
element's interface, but not after the interface is displayed.

:x A geometry hint specifying the initial x position of the element in a pinboard.

:y A geometry hint specifying the initial y position of the element in a pinboard.

:external-min-width

A geometry hint specifying the minimum width of the element in its parent.

:external-min-height

A geometry hint specifying the minimum height of the element in its parent.

:external-max-width

A geometry hint specifying the maximum width of the element in its parent.

:external-max-height

A geometry hint specifying the maximum height of the element in its parent.

:visible-min-width A geometry hint specifying the minimum visible width of the element.

:visible-min-height

A geometry hint specifying the minimum visible height of the element.

:visible-max-width A geometry hint specifying the maximum visible width of the element.

:visible-max-height

A geometry hint specifying the maximum height of the element.

:internal-min-width

A geometry hint specifying the minimum width of the display region.

:internal-min-height

A geometry hint specifying the minimum height of the display region.

:internal-max-width

A geometry hint specifying the maximum width of the display region.

:internal-max-height

A geometry hint specifying the maximum height of the display region.

21 CAPI Reference Entries

355

Accessors

element-parent
element-widget-name

Readers

element-interface
help-key

Description

The class element contains the slots parent and interface which contain the element and the interface that the element is
contained in respectively. The writer method element-parent can be used to re-parent an element into another parent (or
to remove it from a container entirely by setting its parent to nil). Note that an element should not be used in more than one
place at a time.

The initarg accepts-focus-p specifies that the element can accept input. The default value is t. In some subclasses including
display-pane and title-pane the default value of accepts-focus-p is nil. A pane accepts the input focus if and only if
the function accepts-focus-p returns true.

accepts-focus-p also influences whether a pane is a tabstop on Microsoft Windows, where a pane acts as a tabstop if and only
if the function accepts-focus-p returns true and the :accepts-focus-p initarg value is :force. On Motif and Cocoa,
a pane acts as a tabstop if and only if the function accepts-focus-p returns true.

help-key is used to determine how help is displayed for the pane. The value nil means that no help is displayed. Otherwise,
help-key is passed to the help-callback, except when help-key is t, when the name of the pane is passed to the help-callback.
For details of help-callback, see interface.

widget-name specifies the widget name of the element. This is used to match resources on GTK+ and Motif. Note that this
name will be in the path only if the element has a representation. tab-layout and pinboard-layout always have a
representation, as do all elements that show anything on the screen. Other layouts may or may not have a representation and
so you should not supply widget-name for these.

The actual widget name is the result of a call to cl:string, except when widget-name is a symbol, in which case the
symbol name is downcased to derive the widget name.

If widget-name is not supplied, the system constructs a default widget name which is the name of the class of the widget
(downcased), except for top level interfaces on GTK+ where the application-class is prepended followed by a dot.

Example GTK+ resource files are in lib/8-0-0-0/examples/gtk/.

Note: When widget-name is supplied, the GTK+ library does not prepend the application-class.

The accessor element-widget-name gets and (with setf) sets the widget-name. widget-name is used when the widget is
created, that is when display is called on the top level interface of the element. Setting widget-name afterwards has no
effect.

All elements accept initargs (listed above) representing hints as to the initial size and position of the element. By default
elements have a minimum pixel size of one by one, and a maximum size of nil (meaning no maximum), but the hints can be
specified to change these values. For the detailed interpretation of, and possible values for, these hints see 6.4.1 Width and
height hints.

Notes

1. Some classes have default initargs providing useful hints. For example, display-pane has :text-height as the
default value of :visible-min-height, ensuring that the text is visible.

21 CAPI Reference Entries

356

http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

2. The ratios, x-ratios and y-ratios settings in some layouts (for example grid-layout) also control the actual size of the
pane when the constraints are not specified. In particular, if nil is used in the ratios then the associated pane(s) will be
fixed at their minimum size.

Examples

(capi:display (make-instance 'capi:interface
 :title "Test"
 :visible-min-width 300))

(capi:display (make-instance 'capi:interface
 :title "Test"
 :visible-min-width 300
 :visible-max-height 200))

Here is a simple example that demonstrates the use of the element-parent accessor to place elements.

(setq pinboard (capi:contain
 (make-instance
 'capi:pinboard-layout)
 :visible-min-width 520
 :visible-min-height 395))

(setq object
 (make-instance
 'capi:image-pinboard-object
 :x 10 :y 10
 :image
 (example-file "capi/graphics/Setup.bmp")
 :parent pinboard))

(capi:apply-in-pane-process
 pinboard #'(setf capi:element-parent) nil object)

(capi:apply-in-pane-process
 pinboard #'(setf capi:element-parent) pinboard object)

These final two examples illustrate the effect of initial-constraints.

Create a pane that starts at least 600 pixels high, but can be made shorter by the user:

(capi:contain
 (make-instance 'capi:output-pane
 :initial-constraints '(:visible-min-height 600)))

Compare with this, which creates a pane at least 600 pixels high but which cannot be made shorter.

(capi:contain
 (make-instance 'capi:output-pane
 :visible-min-height 600))

See also

set-hint-table
3.1.5 Focus
3.7 Hierarchy of panes
3.12 Tooltips
19.3.2 Matching resources for GTK+

21 CAPI Reference Entries

357

6 Laying Out CAPI Panes

element-container Function

Summary

Returns the container of an element.

Package

capi

Signature

element-container element => container

Arguments

element⇓ An element.

Values

container⇓ A screen or a document-frame.

Description

The function element-container returns the container of the element element.

If element is inside a standalone interface, then container is the screen object.

If element is inside an interface that is inside a MDI interface, then container is the capi:container object of that MDI
interface. See document-frame for details.

See also

document-frame
element
3.7 Hierarchy of panes

element-interface-for-callback Generic Function

Summary

Returns the interface that is used in an element's callbacks.

Package

capi

21 CAPI Reference Entries

358

Signature

element-interface-for-callback element => interface

Arguments

element⇓ An element.

Values

interface An interface.

Description

The generic function element-interface-for-callback returns the interface that is passed to callbacks in element.
Normally this is the interface that element is in, but that can be changed by attach-interface-for-callback.

See also

attach-interface-for-callback
element
3.4 Callbacks

element-screen Function

Summary

Returns the screen that an element is associated with.

Package

capi

Signature

element-screen element => screen

Arguments

element⇓ An element.

Values

screen A screen.

Description

The function element-screen returns the screen that the element element is associated with.

See also

element
3.7 Hierarchy of panes

21 CAPI Reference Entries

359

3.13 Screens

ellipse Class

Summary

A pinboard object that draws itself as an ellipse.

Package

capi

Superclasses

pinboard-object

Initargs

:filled A boolean.

Accessors

filled

Description

The class ellipse is a pinboard-object that draws itself as an ellipse.

If filled is true, then the ellipse is filled with the foreground color. filled defaults to nil.

See also

12.3 Creating graphical objects

ensure-area-visible Function

Summary

Ensures an area is visible in a scrollable pane.

Package

capi

Signature

ensure-area-visible pane x y width height

Arguments

pane⇓ A displayed output-pane or layout.

21 CAPI Reference Entries

360

x⇓, y⇓ The coordinates of the origin of the area to make visible.

width⇓, height⇓ The dimensions of the area to make visible.

Description

The function ensure-area-visible ensures that the area of pane specified by x, y, width and height, or at least part of it,
is visible.

This function can be used only for instances of output-pane of layout which have at least one scroll bar.

ensure-interface-screen Function

Summary

Ensures that a top level interface is displayed on a given screen.

Package

capi

Signature

ensure-interface-screen interface &key screen

Arguments

interface⇓ An interface.

screen⇓ A screen, or any argument accepted by convert-to-screen.

Description

The function ensure-interface-screen ensures that the top level interface interface is displayed on the given screen (or
the default) if display is called later without a screen argument. This allows the querying of font and color information
associated with a particular screen. It returns the screen that is used.

See also

screen
display
interface

execute-with-interface Function

Summary

Allows functions to be executed in the event process of a given interface.

Package

capi

21 CAPI Reference Entries

361

Signature

execute-with-interface interface function &rest args

Arguments

interface⇓ An interface.

function⇓ A function designator.

args⇓ Arguments passed to function.

Description

The function execute-with-interface is a useful way of operating on an interface owned by another process. It
takes a top-level interface, a function designator function and some arguments args and queues the function to be run by that
process when it next enters its event loop (for an interface owned by the current process, it calls the function immediately).

Notes

1. execute-with-interface applies function even if interface does not have a screen representation, for example when
it is destroyed. To call function only if interface has a representation, use execute-with-interface-if-alive.

2. All accesses (reads as well as writes) on a CAPI interface and its sub-elements should be performed in the interface
process. Within a callback on the interface this happens automatically, but execute-with-interface is a useful
utility in other circumstances.

3. execute-with-interface calls function on the current process if interface does not have a process.

4. apply-in-pane-process and apply-in-pane-process-if-alive are other ways to call a function in the
appropriate CAPI process. They takes panes of all classes, not merely interface.

Examples

(setq a (capi:display (make-instance 'capi:interface)))

(capi:execute-with-interface
 a 'break
 "Break inside the interface process")

(example-edit-file "capi/elements/progress-bar-from-background-thread")

See also

apply-in-pane-process
apply-in-pane-process-if-alive
execute-with-interface-if-alive
4.1 The correct thread for CAPI operations
7 Programming with CAPI Windows

21 CAPI Reference Entries

362

execute-with-interface-if-alive Function

Summary

Executes a function in the event process of a given interface if it is alive.

Package

capi

Signature

execute-with-interface-if-alive interface function &rest args => alivep

Arguments

interface⇓ An interface.

function⇓ A function designator.

args⇓ Arguments passed to function.

Values

alivep⇓ A boolean.

Description

The function execute-with-interface-if-alive applies the function function to the arguments args in the process of
the interface interface, if the interface is "alive". An interface become alive during the creation process before
interface-display is called (and before display returns). It stops being alive once it is destroyed, either
programmatically or by the user.

If interface is not alive, function is not applied. This is in contrast to execute-with-interface, which in this case applies
the function in the current process.

The return value alivep is true if interface was alive while execute-with-interface-if-alive executed. It does not
guarantee that function is going to be called.

execute-with-interface-if-alive is useful for automatic updating of interfaces that may be destroyed by the user,
where the update is redundant if the interface is not alive.

Notes

1. The return value is useful for checking whether the interface has gone away (for example closed by the user), in which
case the caller may want to do something, most typically stop calling execute-with-interface-if-alive on the
dead interface. It should be checked only when the caller knows that the interface is already displayed (display
returned, or interface-display was called on it), otherwise it may be nil because it is not displayed yet.

2. All accesses (reads as well as writes) on a CAPI interface and its sub-elements should be performed in the interface
process. Using execute-with-interface-if-alive is one way of ensuring this.

21 CAPI Reference Entries

363

See also

apply-in-pane-process-if-alive
execute-with-interface
4.1 The correct thread for CAPI operations
7 Programming with CAPI Windows

exit-confirmer Function

Summary

Called by the OK button on a dialog created with popup-confirmer.

Package

capi

Signature

exit-confirmer &rest dummy-args

Arguments

dummy-args⇓ Ignored.

Description

The function exit-confirmer is called by the OK button on a dialog created using popup-confirmer, and it is provided
as an entry point so that other callbacks can behave in the same way. There is a full description of the OK button in
popup-confirmer.

All of the arguments in dummy-args are ignored.

Examples

This example demonstrates the use of exit-confirmer to make the dialog exit when pressing Return in the text input
pane. It also demonstrates the use of value-function as a means of deciding the return value from popup-confirmer.

(capi:popup-confirmer (make-instance
 'capi:text-input-pane
 :callback 'capi:exit-confirmer)
 "Enter some text:"
 :value-function
 'capi:text-input-pane-text)

See also

popup-confirmer
display-dialog
interface
10 Dialogs: Prompting for Input

21 CAPI Reference Entries

364

exit-dialog Function

Summary

Exits the current dialog.

Package

capi

Signature

exit-dialog value

Arguments

value⇓ A Lisp object.

Description

The function exit-dialog is the means to successfully return a value value from the current dialog. Hence, it might be
called from an OK button so that pressing the button would cause the dialog to return successfully, while the Cancel button
would call the counterpart function abort-dialog.

If there is no current dialog then exit-dialog does nothing and returns nil. If there is a current dialog then exit-dialog

either returns non-nil or does a non-local exit. Therefore code that depends on exit-dialog returning must be written
carefully - see the discussion under abort-dialog for details.

Examples

(capi:display-dialog
 (capi:make-container
 (make-instance 'capi:text-input-pane
 :callback-type :data
 :callback 'capi:exit-dialog)
 :title "Test Dialog"))

There is another example in:

(example-edit-file "capi/dialogs/simple-dialog")

See also

abort-dialog
display-dialog
popup-confirmer
interface
10 Dialogs: Prompting for Input

21 CAPI Reference Entries

365

expandable-item-pinboard-object Class

Summary

A class used to implement nodes in graph-pane.

Package

capi

Superclasses

item-pinboard-object

Description

The class expandable-item-pinboard-object is a pinboard-object that graph-pane uses by default to implement
nodes in a graph.

expandable-item-pinboard-object draws itself with a small circle to indicate that the node has children.

See also

graph-pane
12.3 Creating graphical objects

extended-selection-tree-view Class

Summary

A pane that displays a hierarchical list of items which (unlike tree-view) allows extended selection.

Package

capi

Superclasses

tree-view

Description

The class extended-selection-tree-view is like tree-view but allows more than one item to be selected at once.

Notes

1. Although extended-selection-tree-view is a subclass of collection, it does its own items handling and you
must not access its items and related slots directly. In particular for extended-selection-tree-view do not pass
:items, :items-count-function, :items-get-function or :items-map-function, and do not use the
corresponding accessors.

21 CAPI Reference Entries

366

2. The delete item callback (see delete-item-callback in tree-view) is called in extended-selection-tree-view

with the second argument being a list of the selected items, unless interaction is :single-selection, in which case it
behaves the same as in tree-view.

See also

tree-view
5 Choices - panes with items

filtering-layout Class

Summary

A layout that can be used for filtering.

Package

capi

Superclasses

row-layout

Initargs

:callback-object The argument for the callbacks. If it is nil the top-level-interface of the layout is used.

:change-callback A function of one argument (the callback-object).

:callback A function of one argument (the callback-object).

:gesture-callbacks Additional gesture-callbacks to the text-input-pane inside the layout.

:text A string specifying the initial text of the filter, or nil.

:matches-title A string, t or nil.

:help-string A string, t or nil.

:added-filters A list of additional filter specifications.

:label-style :short, :medium or :long.

Accessors

filtering-layout-state
filtering-layout-matches-text

Description

The class filtering-layout can be used to display a filter pane for some other pane, such as a list-panel.

The main part of a filtering layout is a text-input-pane which allows the user to enter a string, which is intended to be
used for filtering. The user can control how it is used by a menu (or special keystroke) that allows her to specify whether:

• The string is used as a regular expression or plain string (Control+R).

• The filter excludes matches or includes matches (Control+E).

• Filtering is case-sensitive or case-insensitive (Control+C).

21 CAPI Reference Entries

367

The filtering layout defines the parameters to use, and calls the callbacks to perform the filtering. It does not do any filtering
itself.

change-callback is called whenever the text in the filter changes. Also if callback is not supplied, then change-callback is
called instead.

callback is called whenever there is any change in the state of the filter: the user presses Return, makes a selection from the
menu, clicks the Confirm button or changes the selection in any of the added filters. If callback is not supplied, then change-
callback is called instead.

To actually do the filtering, the using code needs to call filtering-layout-match-object-and-exclude-p, which
returns as multiple values a precompiled regexp and a flag specifying whether to exclude matches. The regexp should be used
to perform the filtering, typically by using lispworks:find-regexp-in-string. Note that
filtering-layout-match-object-and-exclude-p returns nil when there is no string in the text-input-pane,
and that even when the filter is set to plain match it returns a regexp (which matches a plain string).

You supply a filtering-layout amongst the panes of your interface definition (not its layouts). The description of a
filtering-layout is set by the initialize-instance method of the class, and therefore the description cannot be
passed as an initarg and should not be manipulated.

filtering-layout-state returns a "state" object which can be used later to set the state of any filtering-layout by
(setf capi:filtering-layout-state). When setting the state, the value can also be a string or nil. A string means
setting the filter string to it and making the filtering state be plain string, includes matches, and case-insensitive. nil means
the same as the empty string.

matches-title controls whether the filtering-layout contains a display-pane (the "matches pane") showing the
number of matches. If matches-title is a string, it provides the title of the matches pane. If matches-title is t the title is
Matches:. Note that the actual text in the matches pane must be set by the caller by
(setf capi:filtering-layout-matches-text).

If help-string is non-nil then the filter has a Help button which raises a default help text if help-string is t, or the text of help-
string if it is a string.

If label-style is :short the filter menu has a short title. For example if the filter is set for case-sensitive plain inclusive
matching the short label is PMC. If label-style is :medium then this label would be Filter:C. Any other value of label-style
would make a long label Plain Match Cased.

When added-filters is non-nil, it adds panes (check-button or option-pane) to the filtering-layout. Each element
of added-filters must be one of:

A cons of a string and some object.

This specifies a check-button, with the string as its text, plus an associated object.

A list of conses, where each cons is a cons of a string and some object.

This specifies an option-pane, where the string of each cons specifies the text of an item in the
option-pane, plus an associated object for the item.

The check-button and option-pane panes are displayed in the same row as the filter.

The third return value of filtering-layout-match-object-and-exclude-p contains the associated objects from each
selected check-button (but not from any unselected check-button) and from the selected item of each option-pane.

Notes

A filtering-layout is used when a list-panel is made with the :filter initarg.

21 CAPI Reference Entries

368

http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm

Examples

(defvar *things* (list "Foo" "Bar" "Baz" 'car 'cdr))

(capi:define-interface my-interface ()
 ((things :reader my-things
 :initform *things*))
 (:panes
 (my-things-list-panel
 capi:list-panel
 :reader my-interface-list-panel
 :items things
 :visible-min-height `(:character ,(length *things*)))
 (my-filtering
 capi:filtering-layout
 :change-callback 'update-my-interface
 :reader my-interface-filtering))
 (:layouts
 (a-layout
 capi:column-layout
 '(my-filtering my-things-list-panel)))
 (:default-initargs :title "Filtering example")
)

(defun update-my-interface (my-interface)
 (let* ((things (my-things my-interface))
 (filtered-things
 (multiple-value-bind (regexp excludep)
 (capi:filtering-layout-match-object-and-exclude-p
 (my-interface-filtering my-interface)
 nil)
 (if regexp
 (loop for thing in things
 when (if (find-regexp-in-string
 regexp
 (string thing))
 (not excludep)
 excludep)
 collect thing)
 things))))
 (setf (capi:collection-items
 (my-interface-list-panel my-interface))
 filtered-things)))

See also

filtering-layout-match-object-and-exclude-p

filtering-layout-match-object-and-exclude-p Function

Summary

Returns filtering parameters for a filtering-layout.

Package

capi

21 CAPI Reference Entries

369

Signature

filtering-layout-match-object-and-exclude-p filtering-layout display-message => regexp, excludep, added-
filters-values

Arguments

filtering-layout⇓ A filtering-layout.

display-message⇓ A generalized boolean.

Values

regexp A precompiled regular expression.

excludep⇓ A boolean.

added-filters-values⇓ A list of objects.

Description

The function filtering-layout-match-object-and-exclude-p returns a regexp to use for filtering in filtering-
layout.

The second returned value excludep specifies whether the filter should be used to exclude or include matches.

The third returned value added-filters-values is non-nil when filtering-layout has filters added by the initarg
:added-filters (see the documentation for filtering-layout). added-filters-values is a list containing the associated
object from each selected check-button and from the selected item of each option-pane that were added. Note that
added-filters-values does not contain anything for any added check-button that is currently unselected.

display-message is a generalized boolean controlling whether a message is displayed to the user if there is an error when
compiling the regexp.

See filtering-layout for details.

See also

filtering-layout

find-graph-edge Generic Function

Summary

Finds and returns an edge in a graph given two items.

Package

capi

Signature

find-graph-edge graph from to => edge

21 CAPI Reference Entries

370

Arguments

graph⇓ A graph-pane.

from⇓ An item in graph.

to⇓ An item in graph.

Values

edge A graph edge, or nil.

Description

The generic function find-graph-edge finds the edge in graph that goes from the node corresponding to from to the node
corresponding to to.

If there is no such edge, find-graph-edge returns nil.

See also

find-graph-node
graph-pane

find-graph-node Generic Function

Summary

Finds and returns a node in a graph corresponding to an item.

Package

capi

Signature

find-graph-node graph object => node

Arguments

graph⇓ A graph-pane.

object⇓ An item in graph.

Values

node A node of graph, or nil.

Description

The generic function find-graph-node finds the node in graph that corresponds to the item object.

If there is no such node, find-graph-node returns nil.

21 CAPI Reference Entries

371

See also

find-graph-edge
graph-pane

find-interface Generic Function

Summary

Displays an interface of a given class, making it if necessary.

Package

capi

Signature

find-interface class-name &rest initargs &key screen &allow-other-keys => interface

Arguments

class-name⇓ A specifier for a subclass of interface.

initargs⇓ Initialization arguments for class-name.

screen⇓ A screen or nil.

Values

interface An interface of class class-name.

Description

The generic function find-interface finds and displays an interface of the given class class-name that matches initargs
and screen.

class-name can be the name of a suitable class, the class itself, or an instance of the class.

screen can be a CAPI object as accepted by convert-to-screen. screen defaults to the default screen.

find-interface calls locate-interface to locate an existing interface:

1. If an interface of the class specified by class-name matching initargs exists already on screen, then this interface is
activated and returned.

2. Otherwise, if an interface of the class specified by class-name exists already on screen, then
reinitialize-interface is applied to this interface which is then activated and returned.

If no instance of class class-name exists on screen, then find-interface creates one by passing class-name and initargs to
make-instance, and displays the result on screen.

Notes

There are many uses of find-interface in the LispWorks IDE.

21 CAPI Reference Entries

372

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

See also

locate-interface
reinitialize-interface

find-string-in-collection Generic Function

Summary

Returns the next item whose printed representation matches a given string.

Package

capi

Signature

find-string-in-collection collection string &optional set

Arguments

collection⇓ A collection.

string⇓ A string.

set⇓ A generalized boolean.

Description

The generic function find-string-in-collection returns the next item in collection whose printed representation
matches string. If set is true, the choice selection is set to this item. The search is started from the previous search point. If
the choice selection is set, the next search will start from the first selected item.

See also

collection
collection-find-string
collection-find-next-string
collection-last-search

force-screen-update Function

Summary

Ensures a screen is up to date.

Package

capi

Signature

force-screen-update &key screen

21 CAPI Reference Entries

373

Arguments

screen⇓ A screen.

Description

The function force-screen-update makes sure that the screen specified by screen is up to date.

screen can be a CAPI object as accepted by convert-to-screen. The default value of screen is nil.

Notes

On GTK+, force-screen-update does not work when it is called inside the display-callback of an output-pane or a
sub-class, including drawing of pinboard-objects inside a pinboard-layout.

See also

force-update-all-screens

force-update-all-screens Function

Summary

Ensures a screen is up to date.

Package

capi

Signature

force-update-all-screens

Description

The function force-update-all-screens makes sure that all screens are up to date.

See also

force-screen-update

foreign-owned-interface Class

Summary

Allows another application to own a CAPI dialog.

Package

capi

21 CAPI Reference Entries

374

Superclasses

interface

Description

The class foreign-owned-interface allows another application's window to be the owner of a CAPI dialog. Instances
should be created by calling make-foreign-owned-interface.

foreign-owned-interface is implemented only on Microsoft Windows.

See also

make-foreign-owned-interface

form-layout Class

Summary

The class form-layout lays its children out in a form.

Package

capi

Superclasses

layout

Initargs

:vertical-gap The gap between rows in the form.

:vertical-adjust The adjustment made to the rows.

:title-gap The gap between the two columns.

:title-adjust The adjustment made to the left column.

Accessors

form-vertical-gap
form-vertical-adjust
form-title-gap
form-title-adjust

Description

The form layout lays its children out in two columns, where the children in the left column (which are usually titles) are right
adjusted while the children in the right column are left adjusted.

Compatibility note

This class has been superseded by grid-layout, and will probably be removed at some point in the future. The examples
below demonstrate the use of grid layouts as an alternative to forms.

21 CAPI Reference Entries

375

Examples

(setq children (list
 "Button:"
 (make-instance 'capi:push-button
 :text "Press Me")
 "Enter Text:"
 (make-instance 'capi:text-input-pane)
 "List:"
 (make-instance 'capi:list-panel
 :items '(1 2 3))))

(capi:contain (make-instance
 'capi:grid-layout
 :description children
 :x-adjust '(:right :left)
 :y-adjust :center))

See also

grid-layout
layout

free-metafile Function

Summary

Frees a metafile.

Package

capi

Signature

free-metafile metafile

Arguments

metafile⇓ A metafile.

Description

The function free-metafile releases the window system storage used by metafile.

free-metafile must be called when the metafile is no longer needed, to avoid memory leaks.

free-metafile is supported on GTK+ only where Cairo is supported (GTK+ 2.8 and later).

Notes

free-metafile is not implemented on X11/Motif.

21 CAPI Reference Entries

376

Examples

(example-edit-file "capi/graphics/metafile")

See also

clipboard
draw-metafile
draw-metafile-to-image

free-sound Function

Summary

Frees a loaded sound object on Microsoft Windows and Cocoa.

Package

capi

Signature

free-sound sound

Arguments

sound⇓ An array returned by load-sound.

Description

The function free-sound unloads (frees) the loaded sound object sound.

Notes

free-sound is not implemented on GTK+ and Motif.

See also

load-sound
read-sound-file
18.2.1 Sound API

get-collection-item Generic Function

Summary

Returns the item at a specified position in a collection.

Package

capi

21 CAPI Reference Entries

377

Signature

get-collection-item collection index

Arguments

collection⇓ A collection.

index⇓ A non-negative integer.

Description

The generic function get-collection-item returns the item at position index from collection. It achieves this by calling
the items-get-function of collection. There is also a complementary function, search-for-item which finds the index for a
given item in a collection.

See also

collection
search-for-item

get-constraints Function

Summary

Returns the external constraints for an element.

Package

capi

Signature

get-constraints element => min-width, min-height, max-width, max-height

Arguments

element⇓ An instance of simple-pane (or one of its subclasses), or an instance of
pinboard-object (or one of its subclasses).

Values

min-width, min-height Integers specifying the minimum external dimensions of element.

max-width, max-height Integers specifying the maximum external dimensions of element.

Description

The function get-constraints returns the external constraints for element as multiple values.

The values are the minimum width, the minimum height, the maximum width and the maximum height of the element
including borders. A containing layout will use these values when laying out its children.

get-constraints calls the generic function calculate-constraints to calculate these sizes initially, but then just uses
the values in the geometry cache for the element. To force an element to take account of its new constraints, call the function

21 CAPI Reference Entries

378

invalidate-pane-constraints.

See also

calculate-constraints
define-layout
element
invalidate-pane-constraints
6 Laying Out CAPI Panes

get-horizontal-scroll-parameters
get-vertical-scroll-parameters Functions

Summary

Queries the scroll parameters of a horizontal or vertical scroll bar.

Package

capi

Signatures

get-horizontal-scroll-parameters self &rest keys => parameter*

get-vertical-scroll-parameters self &rest keys => parameter*

Arguments

self⇓ A displayed output-pane or layout.

keys⇓ Keywords as below.

Values

parameter* The parameters are returned as multiple values, one for each key passed in keys and in the
same order as the arguments.

Description

The functions get-horizontal-scroll-parameters and get-vertical-scroll-parameters retrieve the specified
parameters of the horizontal or vertical scroll bar of self.

self should be a displayed instance of a subclass of output-pane (such as editor-pane) or layout and have a scroll bar.

The valid keys are:

:min-range The minimum data coordinate.

:max-range The maximum data coordinate.

:slug-position The current scroll position.

:slug-size The length of the scroll bar slug.

21 CAPI Reference Entries

379

:page-size The scroll page size.

:step-size The scroll step size.

Notes

For the other pane classes, such as list-panel, the underlying widget determines what the scroll range and units are.

Examples

See the following CAPI example files:

(example-edit-file "capi/output-panes/scrolling-without-bar")

(example-edit-file "capi/output-panes/fixed-origin-scrolling")

(example-edit-file "capi/output-panes/coordinate-origin-fixed")

See also

get-scroll-position
scroll
set-horizontal-scroll-parameters
set-vertical-scroll-parameters
simple-pane
12.4 output-pane scrolling

get-page-area Function

Summary

Calculates the dimensions of suitable rectangles for use with with-page-transform.

Package

capi

Signature

get-page-area printer &key scale dpi screen

Arguments

printer⇓ A printer.

scale⇓ A real or nil.

dpi⇓ An integer, a list of two integers or nil.

screen⇓ A screen.

21 CAPI Reference Entries

380

Description

The function get-page-area is provided to simplify the calculation of suitable rectangles for use with
with-page-transform. It calculates and returns the width and height of the rectangle in the user's coordinate space that
corresponds to one printable page on printer, based on the logical resolution of the user's coordinate space in dpi.

For example, if a logical resolution of 72 dpi was specified, this means that each unit in user space would map onto 1/72 of
an inch on the printed page, assuming that no scale is specified.

If dpi is nil (the default), the logical resolution of screen is used, or the logical resolution of the default screen if screen is
nil. dpi can be a number, or a list of two elements representing the logical resolution of the coordinate spaces in the x and y
directions respectively.

If scale is specified the rectangle is calculated so that the image is scaled by this factor when printed. It defaults to 1.0.

Examples

(example-edit-file "capi/printing/fit-to-page")

(example-edit-file "capi/printing/multi-page")

(example-edit-file "capi/printing/page-on-demand")

See also

printer-metrics
with-page-transform
16 Printing from the CAPI—the Hardcopy API

get-printer-metrics Function

Summary

Returns the metrics for a printer.

Package

capi

Signature

get-printer-metrics printer => metrics

Arguments

printer⇓ A printer.

Values

metrics⇓ A printer-metrics object.

21 CAPI Reference Entries

381

Description

The function get-printer-metrics returns the metrics of printer.

The metrics values in metrics should be accessed by the printer-metrics readers.

See also

set-printer-metrics
printer-metrics
with-page-transform
16 Printing from the CAPI—the Hardcopy API

get-scroll-position Generic Function

Summary

Returns the current scroll position of a pane such as list-panel, display-pane or tree-view.

Package

capi

Signature

get-scroll-position pane dimension => position

Arguments

pane⇓ A pane with built-in scrolling.

dimension⇓ A keyword, either :horizontal or :vertical.

Values

position⇓ An integer or nil.

Description

The generic function get-scroll-position returns the scroll position of the pane pane in the given dimension.

pane should be an instance of a pane class that has built-in scrolling. That is, the scrolling is implemented by the underlying
widget. Examples include list-panel, display-pane and tree-view.

In general, the units in the returned value position are unspecified, but they can be passed to the generic function scroll

with operation :move to restore the position.

For a list-panel, the vertical units are items.

position is nil if pane is not displayed on the screen, for example if get-scroll-position is called after pane is
destroyed.

See also

get-horizontal-scroll-parameters

21 CAPI Reference Entries

382

get-vertical-scroll-parameters
scroll

graph-edge Class

Summary

The class of objects that represent edges in a graph.

Package

capi

Superclasses

graph-object

Initargs

:from The node where the edge starts.

:to The node where the edge ends.

Accessors

graph-edge-from
graph-edge-to

Description

The class graph-edge represent edges in a graph-pane.

from and to are the nodes that the edge connects.

See also

graph-pane

graph-node Class

Summary

The class of objects that represent nodes in a graph.

Package

capi

Superclasses

graph-object

21 CAPI Reference Entries

383

Readers

graph-node-x
graph-node-y
graph-node-width
graph-node-height
graph-node-in-edges
graph-node-out-edges

Description

The class graph-node is the default class of nodes in a graph-pane.

The graph-pane generates a graph of graph-node and graph-edge objects.

See also

graph-edge
graph-pane

graph-node-children Generic Function

Summary

Returns the children of a graph node.

Package

capi

Signature

graph-node-children node => result

Arguments

node⇓ A graph-node.

Values

result A list.

Description

The generic function graph-node-children returns a list of all the 'children' of the node node. These children are the
nodes which are at the other end of some edge in the graph-node-out-edges of the graph-node node.

See also

graph-node

21 CAPI Reference Entries

384

graph-object Abstract Class

Summary

The superclass of node and edge objects.

Package

capi

Superclasses

standard-object

Subclasses

graph-edge
graph-node

Readers

graph-object-element
graph-object-object

Description

The abstract class graph-object is the superclass of graph-edge and graph-node.

The reader graph-object-element returns the CAPI object that is displayed.

The reader graph-object-object returns the user object associated with the graph object.

graph-pane Class

Summary

A graph pane is a pane that displays a hierarchy of items in a graph.

Package

capi

Superclasses

simple-pinboard-layout
choice

Subclasses

simple-network-pane

21 CAPI Reference Entries

385

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm

Initargs

:roots The roots of the graph.

:children-function Returns the children of a node.

:layout-function A keyword denoting how to layout the nodes.

:layout-x-adjust The adjust value for the x direction.

:layout-y-adjust The adjust value for the y direction.

:node-pinboard-class

The class of pane to represent nodes.

:edge-pinboard-class

The class of pane to represent edges.

:node-pane-function

A function to return an element for each node.

:edge-pane-function

A function to return an element for each edge.

Accessors

graph-pane-layout-function
graph-pane-roots

Description

The class graph-pane is a pane that displays a hierarchy of items in a graph.

The graph-pane calculates the items of the graph by calling the children-function on each of its roots, and then calling it
again on each of the children recursively until no more children are found. The children-function gets called with an item of
the graph and should return a list of the children of that item.

Each item is represented by a node in the graph.

The layout-function tells the graph pane how to lay out its nodes. It can be one these values:

:left-right Lay the graph out from the left to the right.

:top-down Lay the graph out from the top down.

:right-left Lay the graph out from the right to the left.

:bottom-up Lay the graph out from the bottom up.

layout-x-adjust and layout-y-adjust act on the underlying layout to decide where to place the nodes. The values should be a
keyword or a list of the form (keyword n) where n is an integer. These values of adjust are interpreted as by
pane-adjusted-position. :top is the default for layout-y-adjust and :left is the default for layout-x-adjust.

When a graph pane wants to display nodes and edges, it creates instances of node-pinboard-class and edge-pinboard-class
which default to item-pinboard-object and line-pinboard-object respectively. These classes must be subclasses of
simple-pane or pinboard-object, and there are some examples of the use of these keywords below.

The node-pane-function is called to create an element for each node, and by default it creates an instance of node-pinboard-
class. It gets passed the graph pane and the item corresponding to the node, and should return an instance of a subclass of
simple-pane or pinboard-object. Note that the name of the initarg is a little misleading, as in most cases you should
return a pinboard-object rather than a pane. If you use your own class which has its own geometry requirements, you
should define a calculate-constraints method for it, which should use with-geometry on the object to set

21 CAPI Reference Entries

386

%min-width% and %width% to the desired width, and %height% and %min-height% to the desired height. See the
example in:

(example-edit-file "capi/graphics/circled-graph-nodes")

edge-pane-function is called to create an element for an edge. The default creates an object of the class specified by edge-
pinboard-class. If edge-pane-function is supplied, it must be a function that takes three arguments: the pane and the two
items that are connected by the edge, and must return an element (a simple-pane or a pinboard-object).

To expand or contract a node, the user clicks on the circle next to the node. An expandable node has an unfilled circle and a
collapsible node has a filled circle.

graph-pane is a subclass of choice, so for details of its selection handling, see choice.

The highlighting of the children is controlled as described for pinboard-layout, but for graph-pane the default value of
highlight-style is :standard.

Notes

The output-pane initarg :drawing-mode controls quality of drawing in a graph-pane, including anti-aliasing of any
text displayed on Microsoft Windows and GTK+.

Compatibility note

In LispWorks 4.3 the double click gesture on a graph-pane node always calls the action-callback, and the user gesture to
expand or collapse a node is to click on the circle drawn alongside the node.

In LispWorks 4.2 and previous versions, the double click gesture was used for expansion and contraction of nodes and the
action-callback was not always called.

Examples

(defun node-children (node)
 (when (< node 16)
 (list (* node 2)
 (1+ (* node 2)))))

(setq graph
 (capi:contain
 (make-instance 'capi:graph-pane
 :roots '(1)
 :children-function
 'node-children)
 :best-width 300 :best-height 400))

(capi:apply-in-pane-process
 graph #'(setf capi:graph-pane-roots) '(2 6) graph)

(capi:contain
 (make-instance 'capi:graph-pane
 :roots '(1)
 :children-function
 'node-children
 :layout-function :top-down)
 :best-width 300 :best-height 400)

21 CAPI Reference Entries

387

(capi:contain
 (make-instance 'capi:graph-pane
 :roots '(1)
 :children-function
 'node-children
 :layout-function :top-down
 :layout-x-adjust :left)
 :best-width 300 :best-height 400)

This example demonstrates a different style of graph output with right-angle edges and parent nodes being adjusted towards
the top instead of at the center.

(capi:contain
 (make-instance
 'capi:graph-pane
 :roots '(1)
 :children-function 'node-children
 :layout-y-adjust '(:top 10)
 :edge-pinboard-class
 'capi:right-angle-line-pinboard-object)
 :best-width 300
 :best-height 400)

This example demonstrates the use of :node-pinboard-class to specify that the nodes are drawn as push buttons.

(capi:contain
 (make-instance
 'capi:graph-pane
 :roots '(1)
 :children-function 'node-children
 :node-pinboard-class 'capi:push-button)
 :best-width 300
 :best-height 400)

There are more examples here:

(example-edit-file "capi/graphics/*graph*")

See also

find-graph-edge
find-graph-node
graph-edge
graph-node
graph-node-children
graph-pane-add-graph-node
graph-pane-delete-object
graph-pane-delete-objects
graph-pane-delete-selected-objects
graph-pane-direction
graph-pane-edges
graph-pane-nodes
graph-pane-object-at-position
graph-pane-select-graph-nodes
graph-pane-update-moved-objects
maximum-moving-objects-to-track-edges
output-pane
1.2.1 CAPI elements
5 Choices - panes with items

21 CAPI Reference Entries

388

12 Creating Panes with Your Own Drawing and Input

graph-pane-add-graph-node Generic Function

Summary

Adds a node to a graph.

Package

capi

Signature

graph-pane-add-graph-node graph-pane object parent-node => new-node

Arguments

graph-pane⇓ A graph-pane.

object⇓ An object.

parent-node⇓ A graph-node.

Values

new-node A graph-node.

Description

The generic function graph-pane-add-graph-node adds a new node in the graph graph-pane corresponding to object,
and links it as a child of parent-node.

See also

graph-node
graph-pane

graph-pane-delete-object Generic Function

Summary

Removes a node from a graph.

Package

capi

Signature

graph-pane-delete-object graph-pane object

21 CAPI Reference Entries

389

Arguments

graph-pane⇓ A graph-pane.

object⇓ An object.

Description

The generic function graph-pane-delete-object deletes the node corresponding to object in the graph graph-pane.

See also

graph-node
graph-pane
graph-pane-add-graph-node
graph-pane-delete-objects

graph-pane-delete-objects Generic Function

Summary

Removes nodes from a graph.

Package

capi

Signature

graph-pane-delete-objects graph-pane objects

Arguments

graph-pane⇓ A graph-pane.

objects⇓ A list of objects.

Description

The generic function graph-pane-delete-objects deletes the node in the graph graph-pane corresponding to each
object in the list objects.

See also

graph-node
graph-pane
graph-pane-delete-object

21 CAPI Reference Entries

390

graph-pane-delete-selected-objects Generic Function

Summary

Removes selected nodes from a graph.

Package

capi

Signature

graph-pane-delete-selected-objects graph-pane

Arguments

graph-pane⇓ A graph-pane.

Description

The generic function graph-pane-delete-selected-objects deletes the currently selected nodes in the graph graph-
pane.

See also

graph-node
graph-pane
graph-pane-delete-object

graph-pane-direction Accessor

Summary

Returns or sets the direction of a graph.

Package

capi

Signature

graph-pane-direction graph-pane => direction

(setf graph-pane-direction) direction graph-pane => direction

Arguments

graph-pane⇓ A graph-pane.

direction⇓ One of :forwards or :backwards.

21 CAPI Reference Entries

391

Values

direction⇓ One of :forwards or :backwards.

Description

The accessor graph-pane-direction accesses the direction of the graph graph-pane. If the layout-function of graph-pane
is :top-down or :left-right then direction is :forwards. Otherwise direction is :backwards.

The setter (setf graph-pane-direction) maintains the dimension of the layout-function but potentially reverses its
direction.

Examples

(setf gp
 (make-instance 'capi:graph-pane
 :layout-function :top-down))
=>
#<CAPI:GRAPH-PANE [0 items] 20603294>

(setf (capi:graph-pane-direction gp)
 :backwards)
=>
NIL

(capi:graph-pane-layout-function gp)
=>
:TOP-DOWN

See also

graph-pane

graph-pane-edges Function

Summary

Returns the edges of a graph.

Package

capi

Signature

graph-pane-edges graph-pane => edges

Arguments

graph-pane⇓ A graph-pane.

Values

edges A list.

21 CAPI Reference Entries

392

Description

The function graph-pane-edges returns a list of all the graph-edge objects in the graph graph-pane.

See also

graph-edge
graph-pane

graph-pane-nodes Function

Summary

Returns the nodes of a graph.

Package

capi

Signature

graph-pane-nodes graph-pane => nodes

Arguments

graph-pane⇓ A graph-pane.

Values

nodes A list.

Description

The function graph-pane-nodes returns a list of all the graph-node objects in the graph graph-pane.

See also

graph-node
graph-pane

graph-pane-object-at-position Function

Summary

Returns the graph object at a given position in a graph.

Package

capi

21 CAPI Reference Entries

393

Signature

graph-pane-object-at-position graph-pane x y => object

Arguments

graph-pane⇓ A graph-pane.

x⇓, y⇓ Non-negative numbers.

Values

object A graph-object, or nil.

Description

The function graph-pane-object-at-position returns the graph-object (either a graph-edge or a graph-node)
at the coordinates x, y in the graph graph-pane.

If there is no graph-object at position x,y then graph-pane-object-at-position returns nil.

See also

graph-pane

graph-pane-select-graph-nodes Generic Function

Summary

Selects nodes in a graph according to a predicate.

Package

capi

Signature

graph-pane-select-graph-nodes graph-pane predicate

Arguments

graph-pane⇓ A graph-pane.

predicate⇓ A function of one argument with boolean result.

Description

The generic function graph-pane-select-graph-nodes applies predicate to all of the graph-nodes in graph-pane, and
sets the selected-items to be the objects corresponding to those nodes for which predicate returns a true value.

See also

choice-selected-items
graph-node

21 CAPI Reference Entries

394

graph-pane

graph-pane-update-moved-objects Generic Function

Summary

Updates a graph after the user moves objects.

Package

capi

Signature

graph-pane-update-moved-objects graph-pane objects

Arguments

graph-pane⇓ A graph-pane.

objects⇓ A list.

Description

The generic function graph-pane-update-moved-objects is called after some objects in the graph graph-pane were
moved by a user gesture.

objects is a list containing the objects that were moved.

The primary method updates the geometry of edges connected to the moved objects. You can add non-primary methods to
perform other operations at that point.

See also

graph-pane

grid-layout Class

Summary

A layout which positions its children on a two dimensional grid.

Package

capi

Superclasses

x-y-adjustable-layout

21 CAPI Reference Entries

395

Subclasses

row-layout
column-layout

Initargs

:columns The number of columns in the grid.

:has-title-column-p

A boolean specifying whether the first column is a title column.

:orientation The orientation of the children.

:rows The number of rows in the grid.

:x-ratios The ratios between the columns.

:y-ratios The ratios between the rows.

:x-gap The gap between each column.

:y-gap The gap between each row.

:x-uniform-size-p If t, make each of the columns the same size.

:y-uniform-size-p If t, make each of the rows the same size.

:min-column-width nil, or a real number which provides a minimum of the width of each column.

:min-row-height nil, or a real number which provides a minimum of the height of each row.

Accessors

layout-x-ratios
layout-y-ratios
layout-x-gap
layout-y-gap

Description

The class grid-layout is a layout which positions its children on a two dimensional grid.

The row and column sizes are controlled by the constraints on their children. For example, the visible-min-width of any
column is the maximum of the visible-min-width in of the children in the column. The size of the layout is controlled by the
constraints on the rows and columns.

For grid-layout description is either a two dimensional array or a list in the order specified by orientation (which defaults
to :row). In the case of a list, one of columns or rows can be supplied to specify the dimensions (the default is two columns).
As well as panes, slot names and strings, description may contain the element nil, which is interpreted as a special dummy
pane with suitable geometry for resizable gaps. This special interpretation of nil in the description is specific to
grid-layout and its subclasses.

x-ratios and y-ratios control the sizes of the elements in a grid layout.

If x-ratios (or y-ratios) is a list, then each of its elements control the size of each child relative to the others. If an element in x
-ratios (or y-ratios) is nil then the child is fixed at its minimum size. Otherwise the size is calculated as follows:

(round (* total ratio) ratio-sum)

where ratio-sum is the sum of the non-nil elements of x-ratios (or y-ratios) and ratio is the element of ratios corresponding to
the child. If this ideal ratio size does not fit the maximum or minimum constraints on the child size, and the constraint means
that changing the ratio size would not assist the sum of the child sizes fitting the total space available, then the child is fixed

21 CAPI Reference Entries

396

at its constrained size, the child is removed from the ratio calculation, and the calculation is performed again. If x-ratios (or y
-ratios) has fewer elements than the number of children, 1 is used for each of the missing ratios. Leaving x-ratios (or y-
ratios) nil (the default) causes all of the children to be the same size.

The positions of each pane in the layout can be specified using x-adjust and y-adjust like every other
x-y-adjustable-layout, except that if there is one value then it is used for all of the panes, whereas if it is a list then
each value in the list refers to one row or column. If the list does not contain a value for every row or column then the last
value is taken to refer to all of the remaining panes.

Normally, the items in a grid-layout are arranged to look like a set of columns that are joined horizontally and rows that
are joined vertically. All the cells in each column have the same width and all the cells in each row have the same height. The
keyword :right-extend (or :bottom-extend) can be used to allow an item to span more than one column (or row). The
keyword should be placed in the cell of the description that you want the item to expand into. For :right-extend, the cell
immediately to the left will be extended to fill both columns in that row. For :bottom-extend, the cell immediately above
will be extended to fill both rows in that column. Note that the item can only be extended if its constraints allow this. Fosr
example, a push-button-panel will not extend by default with :bottom-extend because its constraints fix its height at
its min-height.

If has-title-column-p is true, then the items in the description which correspond to the first column are treated specially:

A string Equivalent to specifying (:title string)

A list of the form (:title string . options).

Make a title using the given list as initargs. options is a plist of options, which can include the
keys :title-font, :title-args, :mnemonic or :mnemonic-escape. See
titled-object for how these are processed.

A list of the form (:mnemonic-title string . options).

Make a title using the given list as initargs. string can contain the mnemonic escape. options is a
plist of options, which can include the keys :title-font, :title-args, or
:mnemonic-escape. See titled-object for how these are processed.

Notes

Mnemonics are not supported on all platforms.

Examples

(capi:contain (make-instance
 'capi:grid-layout
 :description '("1" "2" "3"
 "4" "5" "6"
 "7" "8" "9")
 :columns 3))

(capi:contain (make-instance
 'capi:grid-layout
 :description (list "List:"
 (make-instance
 'capi:list-panel
 :items '(1 2 3))
 "Buttons:"
 (make-instance
 'capi:button-panel
 :items '(1 2 3)))))

21 CAPI Reference Entries

397

(capi:contain (make-instance
 'capi:grid-layout
 :description (list "List:"
 (make-instance
 'capi:list-panel
 :items '(1 2 3))
 "Buttons:"
 (make-instance
 'capi:button-panel
 :items '(1 2 3)))
 :x-adjust '(:right :left)
 :y-adjust '(:center :bottom)))

(capi:contain (make-instance
 'capi:grid-layout
 :description (list "List:"
 (make-instance
 'capi:list-panel
 :items '(1 2 3))
 "Buttons:"
 (make-instance
 'capi:button-panel
 :items '(1 2 3)))
 :orientation :column))

This example illustrates the special interpretation of nil in the description:

(capi:contain
 (make-instance
 'capi:grid-layout
 :description
 (cdr
 (loop for i below 5
 appending
 (list
 nil
 (make-instance 'capi:simple-pane
 :background :red
 :visible-min-width 50
 :visible-max-width t
 :visible-min-height 50
 :visible-max-height t))))
 :columns 3)
 :height 150 :width 150 :title "Resize Me")

This example illustrates the use of :right-extend and :bottom-extend to make cells span multiple columns and rows:

(example-edit-file "capi/layouts/extend")

There are more examples here:

(example-edit-file "capi/applications/")

This example is a grid with :has-title-column-p t :

(example-edit-file "capi/layouts/titles-in-grid")

See also

layout

21 CAPI Reference Entries

398

1.2.1 CAPI elements
3.1.4.1 Controlling Mnemonics
6 Laying Out CAPI Panes

hide-interface Function

Summary

The function hide-interface hides the interface containing a specified pane.

Package

capi

Signature

hide-interface pane &optional iconify

Arguments

pane⇓ A simple-pane.

iconify⇓ A generalized boolean.

Description

The function hide-interface hides the interface containing pane from the screen. If iconify is non-nil then it will iconify
it, else it will just remove it from the screen. To show it again, use show-interface.

The default value of iconify is t.

See also

interface
show-interface
quit-interface
7.7 Manipulating top-level windows

hide-pane Function

Summary

Hides the specified pane.

Package

capi

Signature

hide-pane pane => pane

21 CAPI Reference Entries

399

Arguments

pane⇓ An instance of simple-pane or a subclass.

Values

pane An instance of simple-pane or a subclass.

Description

The function hide-pane hides the pane pane, removing it from the screen. pane's children, if any, are hidden too.

To restore pane to the screen, use show-pane.

See also

hide-interface
show-pane

highlight-pinboard-object Function

Summary

Highlights a specified pinboard object.

Package

capi

Signature

highlight-pinboard-object pinboard object &key redisplay => was-unhighlighted-p

Arguments

pinboard⇓ A pinboard-layout.

object⇓ A pinboard-object.

redisplay⇓ A generalized boolean.

Values

was-unhighlighted-p⇓ A boolean.

Description

The function highlight-pinboard-object causes the pinboard object object to become highlighted until
unhighlight-pinboard-object is called on it.

The pinboard object highlighting is drawn according to the highlight-style of the pinboard-layout pinboard.

If redisplay is non-nil the highlighting is drawn immediately. The default value for redisplay is t.

The returned value was-unhighlighted-p is true if object was unhighlighted before the call.

21 CAPI Reference Entries

400

See also

unhighlight-pinboard-object
draw-pinboard-object-highlighted
pinboard-object
pinboard-layout

image-list Class

Summary

An object used to manage the images displayed by tree views and list views.

Package

capi

Superclasses

capi-object

Initargs

:image-width The width of the images in this image list.

:image-height The height of the images in this image list.

:image-sets A list of images or image sets.

Description

The class image-list is used to manage the images displayed by tree-view and list-view.

The initarg :image-sets specifies a list. Each item in the list image-sets may be one of the following:

A pathname or string This specifies the filename of a file suitable for loading with load-image.

A symbol The symbol must be a predefined image identifier, or have been registered by means of a call to
register-image-translation.

An image object For example, as returned by load-image.

An image-set object See image-set for further details.

Note that image sets are added in their entirety; it is not possible to use image-locators to extract
a single image from an image set.

The images added to the image list are numbered in order, starting from zero. An image-set containing n images
contributes n images to the image list, and hence consumes n consecutive integer indices.

Examples

(example-edit-file "capi/choice/tree-view")

(example-edit-file "capi/choice/extended-selection-tree-view")

21 CAPI Reference Entries

401

See also

image-set
load-image
register-image-translation
5.10.4 image-list, image-set and image-locator

image-locator Type

Summary

The type of the object that make-image-locator creates.

Package

capi

Signature

image-locator

Description

The type image-locator is the type of the object that make-image-locator creates.

See make-image-locator for the details.

See also

make-image-locator
5.10.4 image-list, image-set and image-locator

image-pinboard-object Class

Summary

A pinboard object that displays itself as an image.

Package

capi

Superclasses

pinboard-object
titled-object

Initargs

:image The image to be displayed.

21 CAPI Reference Entries

402

Accessors

image-pinboard-object-image

Description

The class image-pinboard-object is a pinboard-object that displays itself as an image.

The image initarg for an image-pinboard-object should either be an external-image or any other object accepted by
load-image. The image displayed in the object can be changed read or changed dynamically using the accessor
image-pinboard-object-image.

Examples

(cd (example-file "capi/"))

(setf image
 (capi:contain
 (make-instance
 'capi:image-pinboard-object
 :image "applications/images/info.bmp")))

(capi:apply-in-pane-process
 (capi:element-parent image)
 #'(setf capi:image-pinboard-object-image)
 "graphics/Setup.bmp" image)

(capi:apply-in-pane-process
 (capi:element-parent image)
 #'(setf capi:image-pinboard-object-image)
 "applications/images/info.bmp" image)

(capi:contain
 (make-instance
 'capi:image-pinboard-object
 :image "graphics/Setup.bmp"
 :title "LispWorks Splashscreen"
 :title-adjust :right
 :title-position :bottom))

See also

pinboard-layout
12.3 Creating graphical objects
13.10 Working with images

image-set Class

Summary

An object that identifies the location of image.

Package

capi

21 CAPI Reference Entries

403

Superclasses

t

Description

An instance of the class image-set is an object that identifies the location of an image. The image is typically a large image
to be broken down into sub-images. The sub-images must all have the same size and be positioned side by side.

The following functions are available to create image set objects:

See also

make-general-image-set
make-icon-resource-image-set
make-scaled-image-set
make-scaled-general-image-set
make-resource-image-set
5.10.4 image-list, image-set and image-locator
9 Adding Toolbars

installed-libraries Function

Summary

Returns the installed libraries.

Package

capi

Signature

installed-libraries => libraries

Values

libraries⇓ A list of library names.

Description

The function installed-libraries returns the list of installed CAPI libraries.

A library name is a keyword naming a library.

On Linux, FreeBSD and x86/x64 Solaris platforms, libraries is initially (:gtk) but may also include :motif if the
deprecated "capi-motif" module is loaded.

On Microsoft Windows platforms, currently libraries is always (:win32).

On macOS platforms, in the native GUI image libraries is always (:cocoa). In the macOS/GTK+ image, libraries is
initially (:gtk) but may also include :motif if the deprecated "capi-motif" module is loaded.

21 CAPI Reference Entries

404

See also

default-library
19.5 CAPI communication with host window system - libraries

install-postscript-printer Function

Summary

Installs or modifies a Postscript printer definition.

Package

capi

Signature

install-postscript-printer name &key if-exists default savep ppd-file description use-jcl command use-file always-
print-to-file orientation installed-options

Arguments

name⇓ A string.

if-exists⇓ One of :supersede, :error or nil.

default⇓ One of t, nil or :when-none.

savep⇓ A boolean.

ppd-file⇓ A string or pathname.

description⇓ A string, or :preserve.

use-jcl⇓ A boolean, or :preserve.

command⇓ A string, or :preserve.

use-file⇓ A boolean, or :preserve.

always-print-to-file⇓ A boolean, or :preserve.

orientation⇓ One of :landscape, :portrait or :preserve.

installed-options⇓ An association list, or :preserve.

Description

The function install-postscript-printer installs or modifies a Postscript printer definition for the given printer name.

This applies only on Motif.

name is a string naming the printer.

if-exists controls what happens if the named printer is already known. The default value is :supersede.

default controls whether the default printer is set. The value t forces the default printer to be set. The value :when-none
causes the default printer to be set if there is currently no default. The default value of default is nil.

savep, if true, causes the printer to be saved for subsequent sessions, by writing a file to the path specified by the first item of

21 CAPI Reference Entries

405

printer-search-path.

ppd-file, if non-nil, should be a pathname or string specifying the name of a PPD file (PostScript Printer Description File)
which comes with the printer and specifies the printer properties. ppd-file must be supplied when installing a new printer.
The default value is nil.

All the other arguments provide optional printer information. Each defaults to the value :preserve, which means that
appropriate defaults are used. These correspond to the settings on the dialog displayed by
printer-configuration-dialog. Non-default values are as follows:

description is a string describing the printer.

use-jcl controls whether to use Job Control Language (JCL).

command is the command to execute to print with the printer.

use-file controls how to pass data to the printer. A true value means a file is used, nil means a pipe is used.

always-print-to-file controls whether printing always goes to a file.

orientation controls the orientation of the output.

installed-options is an association list, with pairs of strings where the car is an option name and the cdr is its value. Which
options are available and their potential values is defined by the *OpenUI/*CloseUI and *JCLOpenUI/*JCLCloseUI entries
in the PPD file.

See also

printer-configuration-dialog
ppd-directory
printer-search-path
uninstall-postscript-printer
16.7 Printing on Motif

interactive-pane Class

Summary

An editor with a process reading and processing input, and that collects any output into itself. We are considering deprecating
this class - please contact Lisp Support if you use it.

Package

capi

Superclasses

editor-pane

Subclasses

listener-pane
shell-pane

21 CAPI Reference Entries

406

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

Initargs

:top-level-function

The input processing function.

Readers

interactive-pane-stream
interactive-pane-top-level-function

Description

An instance of the class interactive-pane is an editor with a process reading and processing input, and that collects any
output into itself.

interactive-pane contains its own GUI stream. The top-level-function is called once, when the interactive pane is
created: it needs to repeatedly take input from the GUI stream and write output to it. The top-level-function is called on a
separate process from the process that displays the pane and does editor interaction. If the top-level-function wants to invoke
CAPI functionality, it needs to use apply-in-pane-process to ensure it is done on the right process. If the top-level-
function returns, the process just exits, but the pane itself stays and continues to function as an editor-pane.

Note that because the pane is a fully functional editor-pane, the user can perform complex operations, and the top-level-
function should try to cope with it. For example, the user may yank a very large amount of text, or may delete half of the
buffer.

The first argument to top-level-function is the interface containing the interactive pane. The second argument is the interactive
pane itself. The third argument is the GUI stream. The default for top-level-function is a function which runs a Lisp listener
top-loop.

Notes

The class listener-pane is built upon interactive-pane. listener-pane adds functionality for handling Lisp forms
and handles complexities involved with the interaction with the Editor, so it is much easier to use. If you use
interactive-pane directly please contact Lisp Support.

Compatibility note

This class was named interactive-stream in LispWorks 3.2 but has been renamed to avoid confusion (as this class is not
a stream but a pane that contains a stream). interactive-stream and its accessors
interactive-stream-top-level-function and interactive-stream-stream have now been removed.

Examples

This example assumes there is just one line of output from each command sent to the pipe:

(capi:contain
 (make-instance
 'capi:interactive-pane
 :top-level-function
 #'(lambda (interface pane stream)
 (declare (ignore interface pane))
 (with-open-stream (s (sys:open-pipe
 '("/usr/local/bin/bash")
 :direction :io))
 (loop
 (progn
 (format stream "primitive xterm$ ")
 (let ((input (read-line stream nil nil)))

21 CAPI Reference Entries

407

 (if input
 (progn
 (write-line input s)
 (force-output s))
 (return))))
 (let ((output (read-line s nil nil)))
 (if output
 (progn
 (write-line output stream)
 (force-output stream))
 (return)))))))
 :best-height 300
 :best-width 300)

See also

collector-pane
3.9.6 Stream panes

interactive-pane-execute-command Generic Function

Summary

Simulates user entry of commands in an interactive-pane.

Package

capi

Signature

interactive-pane-execute-command interactive-pane command &key command-modification-function editp &allow-
other-keys

Arguments

interactive-pane⇓ An interactive-pane.

command⇓ A Lisp form.

command-modification-function⇓
A function or nil.

editp⇓ A generalized boolean.

Description

The generic function interactive-pane-execute-command has the same effect as the user typing the Lisp form
command into the interactive-pane interactive-pane, and pressing Return.

interactive-pane-execute-command may be called from any process.

If command-modification-function is non-nil, it is a function of one argument. It is called with argument command in the
process in which interactive-pane runs. The result of this call is used as the command to enter. The default value of command
-modification-function is nil.

If editp is true then the command is left at the end of the pane for the user to edit before pressing Return. If editp is nil then

21 CAPI Reference Entries

408

interactive-pane-execute-command simulates the user pressing Return. The default value of editp is nil.

See also

interactive-pane
listener-pane-insert-value

interface Class

Summary

The class interface is the top level window class, which contains both menus and a hierarchy of panes and layouts.
Interfaces can also themselves be contained within a layout, in which case they appear without their menu bar.

Package

capi

Superclasses

simple-pane
titled-object

Initargs

:title A string, the title of the interface.

:layout The layout of the interface.

:menu-bar-items The items on the menu bar.

:auto-menus A flag controlling the automatic addition of menu objects.

:create-callback A callback done on creating the window, before display and user interaction.

:destroy-callback A callback done on closing the window.

:confirm-destroy-function

A function to verify closing of the window.

:best-x The best x position for the interface.

:best-y The best y position for the interface.

:best-width The best width of the interface.

:best-height The best height of the interface.

:geometry-change-callback

A function called when the interface geometry changes.

:activate-callback A function called when the interface is activated or deactivated.

:iconify-callback A function called when the interface is iconified or restored.

:override-cursor A cursor that takes precedence over the cursors of panes inside the interface. Not
supported on Cocoa and ignored by text-input-pane on GTK+.

:message-area A boolean determining whether the interface has a message area.

:enable-pointer-documentation

A boolean determining whether Pointer Documentation is enabled. Supported only on
Motif.

21 CAPI Reference Entries

409

:enable-tooltips A boolean determining whether Tooltip Help is enabled.

:help-callback A function called when a user gesture requests help.

:top-level-hook A function called around the top level event handler.

:external-border An integer or nil.

:initial-focus A pane, a symbol naming a pane, or nil.

:display-state One of the keywords :normal, :maximized, :iconic and :hidden.

:color-mode nil (the default), a keyword or a string. Only effective on Cocoa.

:color-mode-callback

A function that takes a single argument or nil.

:transparency A real number in the inclusive range [0,1], used on Cocoa, later versions of Microsoft
Windows, and GTK+.

:window-styles A list of keywords, or nil.

:toolbar-items A list of items for the toolbar.

:toolbar-states A toolbar state plist.

:default-toolbar-states

A toolbar state plist.

:pathname A pathname designator.

:drag-image nil, t or an image specifier (that is, a value acceptable as the id argument of
load-image).

Accessors

interface-title
pane-layout
interface-menu-bar-items
interface-create-callback
interface-destroy-callback
interface-confirm-destroy-function
interface-geometry-change-callback
interface-activate-callback
interface-iconify-callback
interface-override-cursor
interface-message-area
interface-pointer-documentation-enabled
interface-tooltips-enabled
interface-help-callback
top-level-interface-color-mode-callback
top-level-interface-external-border
top-level-interface-transparency
interface-toolbar-items
interface-toolbar-states
interface-default-toolbar-states
interface-pathname
interface-drag-image

Readers

interface-window-styles

21 CAPI Reference Entries

410

Description

Every interface can have a title title which when it is a top level interface is shown as a title on its window, and when it is
contained within another layout is displayed as a decoration (see the class titled-object for more details).

The argument layout specifies a layout object that contains the children of the interface. To change this layout you can either
use the writer pane-layout, or you can use the layout switchable-layout which allows you to easily switch the
currently visible child.

The argument menu-bar-items specifies a list of menus to appear on the interface's menu bar.

auto-menus defaults to t, which means that an interface may have some automatic menus created by the environment in
which it is running (for example the Works menu in the LispWorks IDE). To switch off these automatic menus, pass
:auto-menus nil.

Note: On Cocoa, certain system menu commands such as Edit > Start Dictation are added automatically. auto-menus does
not control this.

When you have an instance of an interface, you can display it either as an ordinary window or as a dialog using respectively
display and display-dialog. The CAPI calls create-callback (if supplied) with the interface as its single argument, after
all the widgets have been created but before the interface appears on screen. Then to remove the interface from the display,
you use quit-interface and either exit-dialog or abort-dialog respectively. When the interface is about to be
closed, the CAPI calls the confirm-destroy-function (if there is one) with the interface, and if this function returns non-nil the
interface is closed as if by calling destroy. Once the interface is closed, the destroy-callback is called with the interface.
Therefore, neither confirm-destroy-function nor destroy-callback should call destroy.

Note: create-callback should be used only for operations that must be done with the interface already created and cannot be
done in interface-display. Otherwise they should be either done in initialize-instance or between your calls to
make-instance and display. An operation that needs to run after the interface is created but just before displaying the
interface as an ordinary window (typical cases are font queries and loading images) can be put in the interface-display
:before method. An operation that needs to run just after displaying the interface as an ordinary window can be put in the
interface-display :after method.

The interface also accepts a number of hints as to the size and position of the interface for when it is first displayed. The
arguments best-x and best-y specify the position, while the arguments best-width and best-height specify the size. The values
can be any hints accepted by :visible-max-width and :visible-max-height for elements (see 6.4.2 Hint values
formats), except for the character, string or text based hints. If best-width or best-height is nil or not specified, then the
interface is displayed at its minimum size based on its constraints.

Whether or not an interface window is resizable is indicated as allowed by the window system. For non-resizable windows on
Cocoa the interface window's maximize button is disabled and the resize indicator is not shown, and on Microsoft Windows
the maximize box is disabled.

geometry-change-callback may be nil, meaning there is no callback. This is the default value. Otherwise geometry-change-
callback is a function of five arguments: the interface and the geometry. Its signature is:

geometry-change-callback interface x y width height

x and y are measured from the top-left of the screen rectangle representing the area of the primary monitor (the primary
screen rectangle).

activate-callback may be nil, meaning there is no callback. This is the default value. Otherwise activate-callback is a
function of two arguments: the interface and a boolean activatep which is true on activation and false on deactivation. Its
signature is:

activate-callback interface activatep

21 CAPI Reference Entries

411

http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

iconify-callback may be nil, meaning there is no callback. This is the default value. Otherwise iconify-callback is a function
of two arguments: the interface and a boolean iconify which is true when interface is iconified and false when it is restored.
Its signature is:

iconify-callback interface iconifyp

override-cursor, if non-nil, specifies a cursor that is used instead of the cursor of each pane inside the interface. The default
value of override-cursor is nil. See below for an example of setting and unsetting the override cursor. override-cursor is not
supported on Cocoa. override-cursor is ignored by text-input-pane on GTK+.

If message-area is true, then the interface is created with a message area at the bottom. The text of the message area can be
accessed using the titled-object accessor titled-object-message. The default value of message-area is nil.

enable-pointer-documentation is a boolean controlling whether Pointer Documentation is enabled. The default value is t.
The actual action is done by the help-callback. enable-pointer-documentation is supported only on Motif. It is possible to
implement equivalent functionality for output-pane and subclasses such as pinboard-layout by using the focus-
callback of output-pane.

enable-tooltips is a boolean controlling whether Tooltip Help is enabled. The default value is t. The actual action is done by
the help-callback.

help-callback may be nil, meaning there is no callback. This is the default value. Otherwise help-callback is a function of
four arguments: the interface, the pane inside interface where help is requested, the type of help requested, and the help key
of the pane. Its signature is:

help-callback interface pane type help-key

Here type can be one of:

:tooltip A tooltip is requested. The function needs to return a string to display in the tooltip, or nil if no
tooltip should be displayed.

:help The function should display a detailed, asynchronous help. This value is passed when the user
presses the F1 key (not implemented on Cocoa). :help is also passed when the user clicks the '?'
box in the title bar of a Microsoft Windows dialog with window style :contexthelp (see
window-styles below).

:pointer-documentation-enter

The cursor entered the pane. The function should set the pointer documentation. This is only
supported on Motif.

:pointer-documentation-leave

The cursor left the pane. The function needs to reset the pointer documentation. This is only
supported on Motif.

help-key is the help-key of pane, as described in element. There is an example illustrating help-callback in:

(example-edit-file "capi/elements/help")

and there is another example below.

top-level-hook can be used on Microsoft Windows and Motif to specify a hook function that is called around the interface's
top level event handler. The hook is passed two arguments: a continuation function (with no arguments) and the interface.
The hook must call the continuation, which normally does not return. top-level-hook is designed especially for error handling
(see below for an example). It can also be used for other purposes, for instance to bind special variables around the top level
function. :top-level-hook is not supported on Cocoa.

21 CAPI Reference Entries

412

external-border controls how close to the edge of the screen the interface can be placed with explicit positioning using the
best-x, best-y, best-height and best-width initargs or implicit positioning when a dialog is centered within its owner. The
value nil allows the window to be anywhere, on or off the screen. The value 0 allows the window can be anywhere on the
screen. If external-border is a positive integer then the window can be anywhere within external-border pixels from the edge
of the screen. If external-border is a negative integer then the window be anywhere on the screen or up to external-border
pixels off the edge of the screen. This does not affect whether the use can move the window after it has been displayed. It
also does not affect the default positioning of interfaces, where the window system chooses the position.The default value of
external-border is 0.

initial-focus specifies a pane which has the input focus when the interface is first displayed. See pane-initial-focus for
more information about the initial focus pane.

display-state controls the initial display of the interface window, as described for
top-level-interface-display-state.

color-mode controls the visual appearance the interface window, as described for top-level-interface-color-mode.
Only effective on Cocoa.

If color-mode-callback is non-nil, it is called, with the interface as a single argument, when the global color mode (the
Appearance on Cocoa, the Theme on Windows and GTK+) may have changed. It may take any action that is useful. Note
that color-mode-callback may be called sometimes where there is no actual change.

transparency is the overall transparency of the whole interface, where 0 is fully transparent and 1 is fully opaque. This has no
effect on whether the user can click on the window. This is implemented for Cocoa and Microsoft Windows. It also works
on GTK+, provided that GTK+ and the X server support it. On GTK+ it is supported in version 2.12 and later. The X server
needs compositing manager to do it.:transparency should only be used for top-level interfaces.

window-styles is a list of keywords controlling various aspects of the top level window's appearance and behavior. Each
keyword is supported only on the Window systems explicitly mentioned below.

The following keywords apply to ordinary windows:

:no-geometry-animation

Cocoa: Programmatic changes to window geometry happen without animation.

:hides-on-deactivate-window

Cocoa: The window is only visible when the application is the current application.

Microsoft Windows and GTK+: The window is only visible when it is the active window.

:toolbox Cocoa, Microsoft Windows and GTK+: A window with a small title bar. This window style is
used in docking-layout.

:borderless Cocoa, Microsoft Windows, GTK+ and Motif: A window with no external decoration or frame.

:internal-borderless

Cocoa and Motif: Remove the default border between the window's edge and its contents.

Microsoft Windows: Remove the default border between the window's edge and its contents for
dialogs.

:never-iconic Cocoa, Microsoft Windows, GTK+ and Motif: The window cannot be minimized.

:movable-by-window-background

21 CAPI Reference Entries

413

Cocoa and Microsoft Windows: The user can move the window by grabbing at any point not in
an inner pane.

:shadowed Cocoa: Force a shadow on windows with window style :borderless. (Other windows have a
shadow by default.)

Windows XP (and later): The window has a shadow.

:shadowless Cocoa: The window has no shadow.

:textured-background

Cocoa: The window has a textured background (like the Finder).

:always-on-top Cocoa, Microsoft Windows and GTK+: The window is always above all other windows. Such a
window is also known as a windoid.

:ignores-keyboard-input

Cocoa and GTK+: The window cannot be given the focus for keyboard input.

:no-character-palette

Cocoa: The Special Characters... menu item is not inserted automatically. (This menu item is
added to the Edit menu by default.)

:motion-events-without-focus

Cocoa: output-panes in the window will see :motion input model events even if the output
pane does not have the focus. This is the same behavior as on Microsoft Windows.

:can-full-screen Cocoa: The window can be made full screen (only supported on macOS 10.7 and later).

The following keywords are supported in window-styles when the interface is displayed as a dialog:

:resizable Microsoft Windows: The dialog has a border to allow resizing. (Generally Windows dialogs do
not allowing resizing.)

:contexthelp Microsoft Windows: A '?' box appears in the window's title bar that sends help-callback type
:help.

If toolbar-items is non-nil, then the interface will have a toolbar, which is typically displayed at the top of the window. The
value of toolbar-items is a list of objects of type toolbar-button, toolbar-component or simple-pane, which are
items that might be shown on the toolbar. The set of visible items, their order and their appearance is determined by the
current toolbar-state, which can be changed if the user customizes the toolbar interactively. Each toolbar-button or
simple-pane in the toolbar-items list (including those within a toolbar-component) should have a name that is not
cl:eql to any other item in the list. Each toolbar-button should have image and text specified, to control the image and
title that is shown for the item. Each simple-pane should have toolbar-title specified, to control the title that is shown for
the item.

toolbar-states is a plist containing information about the state of the toolbar. The user can also change this by customizing the
toolbar, so you cannot assume that the value will be the same each time you read it. See interface-toolbar-state for a
description of the keys and values in this plist.

default-toolbar-states is a plist containing information about the default state of the toolbar, which you can provide as the
suggested toolbar state for the interface. The key :items will be used in the Customize Toolbar dialog as the "default" set of
toolbar buttons. If both default-toolbar-states and toolbar-states are supplied, then the value of any key in toolbar-states

21 CAPI Reference Entries

414

http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm

takes precedence over that of the same key in default-toolbar-states. See interface-toolbar-state for a description of
the keys and values in this plist.

pathname specifies the interface pathname. You can get and set this with the accessor interface-pathname. The
pathname may be displayed in some way to the user, depending on the GUI library.

Currently, only Cocoa uses pathname, in two ways:

• It makes the interface display a drag image on the title bar (This is the same image that is set by
interface-drag-image, and the drag-image takes precedence if it not nil). The user can drag from the drag image,
and if there is no drag-callback or if the drag-callback returns :default it will drag the pathname as a one item in a
:filenames-list. For information about drag-callback, see simple-pane's description of :drag-callback and
simple-pane-drag-callback.

• The context menu (invoked by right-mouse-click) on the drag image or on the title raises a menu containing the
components of the path. Selecting a component opens the Finder with it.

drag-image is currently only effective on Cocoa. A non-nil value specifies that the interface should have a drag image,
which on Cocoa is a small image (16x16px) to the left of the window title.

When the user drags this image, if the interface has a drag-callback it is called and if this returns non-nil LispWorks
performs drag-and-drop with the image. See simple-pane for details of the drag-callback.

It is possible to have the image for aesthetic purposes only by supplying drag-image and not specifying a drag-callback.
When drag-callback is non-nil, it can dynamically decide whether to allow a dragging, or to disallow dragging (by returning
nil).

The image specification can be an already converted image (made by load-image, convert-external-image,
make-sub-image or make-image-from-port). The image will be freed automatically when the interface is destroyed or
when drag-image is set by (setf interface-drag-image). Otherwise the system uses load-image to create a new
image, which is also freed automatically.

The value t for drag-image is interpreted specially: it means display some image. If drag-image is set to t after an image has
already been set, it just displays the previous image. This is useful if an image was displayed but then removed by
(setf interface-drag-image) with nil. If there was no previous image, a default image is displayed.

Notes

1. create-callback can only be used for actions that are part of the creation of the pane, that is preparing the pane for
display. The create-callback is called before the pane is actually displayed, and therefore cannot interact with the user.

2. On Microsoft Windows F1 always calls help-callback if it is non-nil.

3. (setf capi:interface-message-area) has an effect only before display. After display, this writer has no effect
unless the interface is destroyed and re-created.

4. Even though interface is a subclass of titled-object, the accessor titled-object-message-font cannot be
used to get and set the font of the interface's message.

5. On Cocoa in the presence of a cocoa-default-application-interface, an interface with no menus of its own
and with :auto-menus nil uses the menu bar from the application interface.

Compatibility note

interface-iconize-callback is deprecated. Use the synonym interface-iconify-callback instead.

21 CAPI Reference Entries

415

Examples

(capi:display (make-instance 'capi:interface
 :title "Test Interface"))

(capi:display (make-instance
 'capi:interface
 :title "Test Interface"
 :destroy-callback
 #'(lambda (interface)
 (capi:display-message
 "Quitting ~S"
 interface))))

(capi:display (make-instance
 'capi:interface
 :title "Test Interface"
 :confirm-destroy-function
 #'(lambda (interface)
 (capi:confirm-yes-or-no
 "Really quit ~S"
 interface))))

(capi:display (make-instance
 'capi:interface
 :menu-bar-items
 (list
 (make-instance 'capi:menu
 :title "Menu"
 :items '(1 2 3)))
 :title "Menu Test"))

(setq interface
 (capi:display
 (make-instance
 'capi:interface
 :title "Test Interface"
 :layout
 (make-instance 'capi:simple-layout
 :description
 (list (make-instance
 'capi:text-input-pane
 :text "Text Pane"))))))

(capi:execute-with-interface interface
 #'(setf capi:pane-layout) (make-instance
 'capi:simple-layout
 :description
 (list (make-instance
 'capi:editor-pane
 :text "Editor Pane")))

interface)
(capi:display
(make-instance
 'capi:interface
 :title "Test"
 :best-x 200
 :best-y 200
 :best-width '(/ :screen-width 2)
 :best-height 300))

21 CAPI Reference Entries

416

The following forms illustrate the use of help-callback:

(capi:define-interface my-interface ()
 ()
 (:panes
 (a-pane
 capi:text-input-pane
 :help-key 'input)
 (another-pane
 capi:display-pane
 :help-key 'output
 :text "some text"))
 (:menu-bar a-menu)
 (:menus
 (A-menu
 "A menu"
 (("An item" :help-key "item 1")
 ("Another item" :help-key "item 2"))
 :help-key "a menu"))
 (:layouts
 (main-layout
 capi:column-layout
 '(a-pane another-pane)))

 (:default-initargs
 :help-callback 'my-help-callback
 :message-area t))

(defun do-detailed-help (interface)
 (capi:contain
 (make-instance
 'capi:display-pane
 :text "Detailed help for my interface")
 :title
 (format nil "Help for ~a"
 (capi:capi-object-name interface))))

(defun my-help-callback (interface pane type key)
 (declare (ignore pane))
 (case type
 (:tooltip (if (eq key 'input)
 "enter something"
 (when (stringp key) key)))
 (:pointer-documentation-enter
 (when (stringp key)
 (setf (capi:titled-object-message interface)
 key)))
 (:pointer-documentation-leave
 (setf (capi:titled-object-message interface)
 "Something else"))
 (:help (do-detailed-help interface))))

(capi:display
 (make-instance 'my-interface :name "Helpful"))

The following forms illustrate the use of override-cursor to set and then remove an override cursor.

Create an interface with panes that have various different cursors. Move the pointer across each pane.

(setf interface
 (capi:element-interface
 (car
 (capi:contain
 (loop for cursor
 in '(:crosshair :hand :v-double-arrow)

21 CAPI Reference Entries

417

 collect
 (make-instance 'capi:editor-pane
 :cursor cursor
 :text
 (format nil "~A CURSOR"
 cursor)))))))

Override the pane cursors by setting the override cursor on the interface, and move the pointer across each pane again.

(setf (capi:interface-override-cursor interface)
 :i-beam)

Remove the override cursor.

(setf (capi:interface-override-cursor interface)
 :default)

This example illustrates top-level-hook. Evaluate this form and then get an error by the interrupt gesture in the editor pane.
(For example, the interrupt gesture is Meta+Control+C on Motif and Control+Break on Microsoft Windows). Then
select the Destroy Interface restart.

(capi:display
 (capi:make-container
 (make-instance
 'capi:editor-pane)
 :top-level-hook
 #'(lambda (func interface)
 (restart-case (funcall func)
 (nil ()
 :report
 (list "Destroy Interface ~a" interface)
 (capi:destroy interface))))))

For an example of using color-mode and color-mode-callback, see:

(example-edit-file "capi/applications/interface-color-mode")

This example illustrates the use of toolbar-items:

(example-edit-file "capi/applications/simple-symbol-browser")

See also

layout
switchable-layout
menu
display
display-dialog
interface-display
quit-interface
define-interface
activate-pane
titled-object
interface-document-modified-p
interface-toolbar-state
interface-customize-toolbar
top-level-interface-display-state
top-level-interface-color-mode

21 CAPI Reference Entries

418

top-level-interface-dark-mode-p
1.2.1 CAPI elements
2 Getting Started
3.3.2.1 Window titles
3.12.2 Tooltips for collections, elements and menu items
6 Laying Out CAPI Panes
9 Adding Toolbars
11 Defining Interface Classes - top level windows
12 Creating Panes with Your Own Drawing and Input
13 Drawing - Graphics Ports
17 Drag and Drop

interface-customize-toolbar Function

Summary

Displays a window that allows the user to customize an interface toolbar.

Package

capi

Signature

interface-customize-toolbar interface

Arguments

interface⇓ A CAPI interface.

Description

The function interface-customize-toolbar displays a window owned by the interface interface that allows the user to
customize the interface toolbar of interface.

See 9 Adding Toolbars for information on how to specify an interface toolbar.

Notes

interface must be displayed at the time interface-customize-toolbar is called.

See also

interface
9 Adding Toolbars

21 CAPI Reference Entries

419

interface-display Generic Function

Summary

The function called to display an interface on screen.

Package

capi

Signature

interface-display interface

Arguments

interface⇓ An instance of a subclass of interface.

Description

The generic function interface-display is called by display to display an interface on screen.

The primary method for interface actually does the work. You can add :before methods on your own interface classes
for code that needs to be executed just before the interface appears, and :after methods for code that needs to be executed
just after the interface appears.

interface-display is useful when you need to make changes to the interface which require it to be already be created.
Font queries and loading images are typical cases.

Notes

1. interface-display is called in the process of interface.

2. interface-display is not called when interface is displayed as a dialog. Another way to run code before it appears
on screen is to supply a create-callback for interface.

Examples

This example shows how interface-display can be used to set the initial selection in a choice whose items are computed
at display-time:

(capi:define-interface my-tree ()
 ((favorite-color :initform :blue))
 (:panes
 (tree
 capi:tree-view
 :roots '(:red :blue :green)
 :print-function
 'string-capitalize))
 (:default-initargs
 :width 200
 :height 200))

(defmethod capi:interface-display :after
 ((self my-tree))

21 CAPI Reference Entries

420

 (with-slots (tree favorite-color) self
 (setf (capi:choice-selected-item tree)
 favorite-color)))

(capi:display (make-instance 'my-tree))

See also

display
interface
7 Programming with CAPI Windows
13 Drawing - Graphics Ports

interface-display-title Function

Summary

Returns the interface title to use on screen.

Package

capi

Signature

interface-display-title interface => string

Arguments

interface⇓ A CAPI interface.

Values

string A string.

Description

The function interface-display-title returns the title to use when displaying the interface interface on screen.

This is equivalent to:

(capi:interface-extend-title
 interface
 (capi:interface-title interface))

See also

interface-extend-title
set-default-interface-prefix-suffix

21 CAPI Reference Entries

421

interface-document-modified-p Accessor

Summary

Gets and sets the document-modified flag in the interface.

Package

capi

Signature

interface-document-modified-p interface => value

(setf interface-document-modified-p) value interface => value

Arguments

interface⇓ A CAPI interface.

value A boolean.

Values

value A boolean.

Description

The accessor interface-document-modified-p gets and sets the document-modified flag in the interface interface.

Currently this only has a visible effect on Cocoa, where an interface whose document is modified is flagged by adding a dark
dot in the middle of its Close button (the red button at top-left of the window).

On other platforms the document-modified state is merely remembered.

See also

interface
11.5.3 Indicating a changed document

interface-editor-pane Generic Function

Summary

Finds an editor-pane in an interface.

Package

capi

21 CAPI Reference Entries

422

Signature

interface-editor-pane interface => pane

Arguments

interface⇓ An instance of a subclass of interface.

Values

pane An editor-pane or nil.

Description

The generic function interface-editor-pane finds the first pane of interface that is an editor-pane, and returns it.

If there is no editor-pane, then interface-editor-pane returns nil.

interface-editor-pane may be useful when you need to apply an editor command in the process of some "random"
interface, in which case you can use call-editor with the result of interface-editor-pane (if it is not nil).

See also

call-editor
editor-pane
interface

interface-extend-title Generic Function

Summary

Calculates the complete interface title.

Package

capi

Signature

interface-extend-title interface title => string

Arguments

interface⇓ A CAPI interface.

title⇓ A string.

Values

string⇓ A string.

Description

The generic function interface-extend-title is called by LispWorks with an interface interface and its title title before

21 CAPI Reference Entries

423

actually displaying the title on the screen. The result must be a string, which is actually displayed. There is no requirement
for any relation between title and the result.

The return value string is the title to display on the screen.

The default method uses the values set by set-default-interface-prefix-suffix. You can specialize
interface-extend-title to get other effects.

See also

interface-display-title
set-default-interface-prefix-suffix
3.3.2.1 Window titles
11.5 Controlling the appearance of the top level window

interface-geometry Generic Function

Summary

Returns the geometry of an interface. This function is deprecated. Use top-level-interface-geometry instead.

Package

capi

Signature

interface-geometry interface => geometry

Arguments

interface⇓ An instance of a subclass of interface.

Values

geometry A list.

Description

The generic function interface-geometry returns a list representing the geometry of interface in pixel values.

This function is deprecated. Use top-level-interface-geometry instead.

See also

top-level-interface-geometry

21 CAPI Reference Entries

424

interface-iconified-p Function

Summary

The predicate for whether an interface is iconified.

Package

capi

Signature

interface-iconified-p pane => iconifiedp

Arguments

pane⇓ A CAPI element.

Values

iconifiedp A boolean.

Description

The function interface-iconified-p returns t if the top level interface containing pane is iconified. An interface is
iconified when its display state as returned by top-level-interface-display-state is :iconic. This means that the
window is visible as an icon, also referred to as minimized.

If the top level interface is not iconified, then interface-iconified-p returns nil.

See also

hide-interface
top-level-interface
top-level-interface-display-state

interface-keys-style Generic Function

Summary

Determines the emulation for an interface.

Package

capi

Signature

interface-keys-style interface => keys-style

21 CAPI Reference Entries

425

Arguments

interface⇓ An instance of a subclass of interface.

Values

keys-style⇓ A keyword, :pc, :emacs or :mac.

Description

The generic function interface-keys-style returns a keyword indicating a keys style, or emulation. It is called when
interface starts running in a new process, and keys-style determines how user input is interpreted by output panes (including
editor-pane) in interface.

The editor (that is, instances of editor-pane and its subclasses) responds to user input gestures according to one of three
basic models.

When keys-style is :emacs, the editor emulates GNU Emacs. This value is allowed on all platforms.

When keys-style is :pc, the editor emulates standard Microsoft Windows keys on Windows, and KDE/Gnome keys on GTK+
and Motif. This value is allowed in the Windows, GTK+ and X11/Motif implementations.

When keys-style is :mac, the editor emulates macOS editor keys. This value is allowed only in the macOS Cocoa
implementation.

The most important differences between the styles are in the handling of the Alt key on Microsoft Windows, selected text,
and accelerators:

:emacs Alt is interpreted on Microsoft Windows as the Meta key (used to access many Emacs
commands).

The modifier :meta is used in an output-pane input-model gesture specification.

Control characters such as Ctrl+S are not interpreted as accelerators.

The selection is not deleted on input.

:pc Alt is interpreted as Alt on Microsoft Windows and can be used for shortcuts.

The modifier :meta is not used in an output-pane input-model gesture specification.

Control keystrokes are interpreted as accelerators. Standard accelerators are added for standard
menu commands, for example Ctrl+S for File > Save. For the full set of standard accelerators
see 8.7.1 Standard default accelerators.

The selection is deleted on input, and movement keys behave like a typical Microsoft Windows
or KDE/Gnome editor.

:mac Emacs Control keys are available, since they do not clash with the Macintosh Command key.

The selection is deleted on input, and movement keys behave like a typical macOS editor.

By default keys-style is :pc on Microsoft Windows platforms and :emacs on other platforms. You can supply methods for
interface-keys-style on your own interface classes that override the default methods.

In the Cocoa implementation, Command keystrokes such as Command+X are available if there is a suitable Edit menu,
regardless of the Editor emulation.

See the chapter "Emulation" in the Editor User Guide for more detail about the different styles.

21 CAPI Reference Entries

426

Notes

On Motif the code to implement accelerators and mnemonics clashes with the LispWorks meta key support. Therefore the
keyboard must be configured so that none of the keysyms connected to mod1 (see xmodmap) are listed in the variable
capi-motif-library:*meta-keysym-search-list*, which must be also be non-nil. Note also that Motif requires Alt
to be on mod1.

See also

editor-pane

interface-match-p Generic Function

Summary

Determines whether an interface is suitable for displaying initargs.

Package

capi

Signature

interface-match-p interface &rest initargs &key &allow-other-keys => matchp

Arguments

interface⇓ An instance of a subclass of interface.

initargs⇓ Initargs for interface.

Values

matchp A boolean.

Description

The generic function interface-match-p returns a true value if interface is suitable for displaying the initargs initargs.

interface-match-p is used by locate-interface. When there is an existing interface for which
interface-match-p returns true, then locate-interface returns it.

The default method for interface-match-p always returns nil. You can add methods for your own interface classes.

See also

locate-interface

21 CAPI Reference Entries

427

interface-menu-groups Generic Function

Summary

Used when an embedded document sets the menu-bar-items to its menus, on Microsoft Windows.

Package

capi

Signature

interface-menu-groups interface => result

Arguments

interface⇓ A CAPI interface.

Values

result A list.

Description

The generic function interface-menu-groups is called when an embedded document sets the menu bar of its containing
interface interface. It is called when an embedded object uses the IOleInPlaceFrame::InsertMenus method to add
menus from the interface to its own composite menu, which is used as the menubar while the embedded object is active.

The menu bar for the embedded document includes three groups of menus that are supplied by the container (file-group, view
-group, windows-group). interface-menu-groups is used to define these groups of menus.

interface-menu-groups should return a list of length 3. Each element is a list of menus. In this list, each item is either a
menu object, or a cons. When it is a cons, the car is a menu object and the cdr is a string, which overrides the the title of the
menu.

The default method, specialied on interface, simply returns (nil nil nil).

Notes

interface-menu-groups is implemented only in LispWorks for Windows. Load the functionality by
(require "embed").

See also

ole-control-pane

21 CAPI Reference Entries

428

interface-preserve-state Generic Function

Summary

Called before an interface is destroyed during session saving.

Package

capi

Signature

interface-preserve-state interface

Arguments

interface⇓ An interface.

Description

The generic function interface-preserve-state is called by hcl:save-current-session just before it destroys
interface. It is called in the process that runs interface. You can specialize this for your own interface classes. Your methods
should not interact with the user or other external sources, and should not interact with other processes, because it is called
after hcl:save-current-session already started to destroy interfaces.

The return value is not used.

The default method does nothing.

See also

interface-preserving-state-p
7.7.6 Preserving information when saving an IDE session

interface-preserving-state-p Function

Summary

The predicate for whether an interface is in "preserving-state" context.

Package

capi

Signature

interface-preserving-state-p interface => result

Arguments

interface⇓ An interface.

21 CAPI Reference Entries

429

Values

result⇓ nil, t, :different-invocation or :keeping-processes.

Description

The function interface-preserving-state-p returns information about whether interface is in the "preserving-state"
context. An interface enters "preserving-state" context just before it is destroyed by hcl:save-current-session, and
exits the context just after interface-display returns.

If the interface interface is in "preserving-state" context, then result is either t or :different-invocation. The value t
means that the current invocation of LispWorks is still the same invocation. The value :different-invocation means it
is a different invocation, in other words it is the saved image that is restarted.

In other circumstances interface-preserving-state-p can return :keeping-processes, which means that the
interfaces are destroyed but processes that are not associated with interface are not killed. That currently happens only on
Microsoft Windows when the programmer changes the arrangement of IDE windows via Preferences... > Environment >
General > Window Options.

Otherwise result is nil.

interface-preserving-state-p is typically used in the destroy-callback of an interface or a pane to decide whether
really to destroy the information, and in the create-callback or interface-display to decide whether the existing
information can be used. Note that if it is a pane, it needs to find the top-level-interface.

Information that is made entirely of Lisp objects can be preserved in all cases. Information that is associated with external
objects is invalid when the image is restarted. So when interface-preserving-state-p is used inside the create-
callback or interface-display, external information can be preserved only if it returns t. When
interface-preserving-state-p returns t, the external information may be preserved, unless it is tied to the lightweight
process.

See also

interface
interface-display
interface-preserve-state
7.7.6 Preserving information when saving an IDE session

interface-reuse-p Generic Function

Summary

Determines whether an interface is suitable for re-use.

Package

capi

Signature

interface-reuse-p interface &rest initargs &key &allow-other-keys => reusep

21 CAPI Reference Entries

430

Arguments

interface⇓ An instance of a subclass of interface.

initargs⇓ Initargs for interface.

Values

reusep A boolean.

Description

The generic function interface-reuse-p returns a true value if interface is suitable for reuse with initargs.

interface-reuse-p is used by locate-interface if no matching interface is found first by interface-match-p. In
this case, when there is an interface for which interface-reuse-p returns true, then locate-interface reinitializes it
by reinitialize-interface and returns it.

Notes

interface-reuse-p should not be confused with reuse-interfaces-p, which determines the global re-use state.

See also

interface-match-p
locate-interface

interface-toolbar-state Accessor

Summary

Reads or changes the properties of an interface toolbar that give information about its state.

Package

capi

Signature

interface-toolbar-state interface key => value

(setf interface-toolbar-state) value interface key => value

Arguments

interface⇓ An instance of interface or a subclass.

key⇓ One of the toolbar-states plist keys.

value The value associated with the toolbar-states plist key.

Values

value The value associated with the toolbar-states plist key.

21 CAPI Reference Entries

431

Description

The accessor interface-toolbar-state reads or changes the properties of the interface toolbar of interface that give
information about its state. The user can also change these properties by customizing the toolbar, so you cannot assume that
the value will be the same each time you read it.

See 9 Adding Toolbars for information on how to specify an interface toolbar.

key can be one of the following, with the corresponding value:

:visible visible is true if the toolbar is visible and false if it is hidden. The default is true.

:items items is a list of the names of the toolbar-items which are shown on the toolbar, in the order they
are shown. The built-in names :separator, :space and :flexible-space represent various
kinds of gap between items. On Microsoft Windows, an item can be a list of the form
(:titled-separator title) which starts a dockable group of items that displays title when it
is undocked. The default items includes all items in toolbar-items, with :separator between
each toolbar-component.

:display display is a keyword describing what is displayed for each item. It can be :image (just shows an
image), :title (just shows the title), :image-and-title (shows both title and image) or
:image-and-title-horizontal (shows title and image horizontally, only supported on
GTK+). The default is platform-specific.

:size size is a keyword describing the size of the items. It can be one of :small, :normal or :large.
Some of these sizes might be the same as others. The default is platform-specific.

You can set all of the keys simultaneously by setting the interface-toolbar-state accessor or providing the toolbar-
states initarg.

Notes

The value :separator in items may or may not actually be visible, depending on the windowing system. On macOS Lion it
is zero width.

See also

interface
interface-customize-toolbar
9 Adding Toolbars

interface-visible-p Function

Summary

The predicate for whether the interface containing a pane is visible.

Package

capi

Signature

interface-visible-p pane => visiblep

21 CAPI Reference Entries

432

Arguments

pane⇓ A CAPI pane.

Values

visiblep A boolean.

Description

The function interface-visible-p returns nil if one of the following is true:

1. pane is not associated with any interface.

2. pane is associated with an interface which is not displayed.

3. pane is associated with an interface which is minimized or iconified.

4. pane is known to be fully obscured by other windows. This can happen on Motif, but is not detected on Microsoft
Windows.

An error is signalled if pane is not a CAPI pane (that is, it is not an instance of a subclass of element, collection or
pinboard-object).

Otherwise interface-visible-p returns t.

Notes

On Microsoft Windows, interface-visible-p may return t even though the interface is entirely obscured by another
window.

interpret-description Generic Function

Summary

Converts an abstract description of a layout's children into a list of objects.

Package

capi

Signature

interpret-description layout description interface => result

Arguments

layout⇓ A layout.

description⇓ A list, or other Lisp object accepted for some layout class.

interface⇓ An interface.

21 CAPI Reference Entries

433

Values

result A list, each element being a simple-pane, a pinboard-object or a geometry object.

Description

The generic function interpret-description is used by the layout mechanism to translate an abstract description of
layout's children (supplied by the initarg :description or (setf layout-description)) into a list of objects to
actually use. Each object must be either an element (an object of type simple-pane or of type pinboard-object) or a
geometry object (the result of the default method of parse-layout-descriptor). interface is the interface of layout.

The default method specialized on layout expects description to be a list, and returns a list of the values returned by
parse-layout-descriptor for each element. Some built-in subclasses of layout have their own methods, which allow
different values of description. In these cases the manual page for the layout class describes what description can be.

For example, column-layout expects as its description a list of items where each item in the list is either the slot-name of
the child or a string which should be turned into a title pane. This is the default handling of a layout's description, which is
done by calling the generic function parse-layout-descriptor to do the translation for each item.

You can define a method for your own layout class. The elements in the returned list must not be returned more than once for
layouts that are displayed at the same time.

See also

parse-layout-descriptor
define-layout
layout
6 Laying Out CAPI Panes

invalidate-pane-constraints Function

Summary

Causes the resizing of a pane if its minimum and maximum size constraints have changed. It returns t if resizing was
necessary.

Package

capi

Signature

invalidate-pane-constraints pane

Arguments

pane⇓ A simple-pane.

Description

The function invalidate-pane-constraints informs the CAPI that the constraints (its minimum and maximum size) of
pane may have changed. The CAPI then checks this, and if the pane is no longer within its constraints it resizes it so that it is
and then makes the pane's parent layout lay its children out and display them again at their new positions and sizes. If the
pane is resized, then invalidate-pane-constraints returns t.

21 CAPI Reference Entries

434

See also

get-constraints
layout
element
define-layout
6 Laying Out CAPI Panes

invoke-command Function

Summary

Invokes a command in the input model for a specified output pane.

Package

capi

Signature

invoke-command command output-pane &rest event-args

Arguments

command⇓ A Lisp object defined as a command by define-command.

output-pane⇓ An output-pane.

event-args⇓ A list of appropriate arguments for the event that command is associated with.

Description

The function invoke-command invokes command with arguments event-args in the input model of output-pane, with the
translator being called to process the gesture information. To avoid the translation, use invoke-untranslated-command.

See also

invoke-untranslated-command
define-command
output-pane
12.2.2 Commands - aliases

invoke-untranslated-command Function

Summary

Invokes a command in the input model for a specified output pane, without the translator being called.

Package

capi

21 CAPI Reference Entries

435

Signature

invoke-untranslated-command command output-pane &rest event-args

Arguments

command⇓ A Lisp object defined as a command by define-command.

output-pane⇓ An output-pane.

event-args⇓ A list of appropriate arguments for the event that command is associated with.

Description

The function invoke-untranslated-command invokes command with arguments event-args in the input model of output-
pane, without the translator being called to process the gesture information. To perform the translation, use
invoke-command.

See also

invoke-command
define-command
output-pane
12.2.2 Commands - aliases

item Class

Summary

The class item groups together a title, some data and some callbacks into a single object for use in collections and choices.

Package

capi

Superclasses

callbacks
capi-object

Subclasses

menu-item
button
item-pinboard-object
popup-menu-button
toolbar-button

Initargs

:collection The collection in which item is displayed.

:data The data associated with the item.

:text The text to appear in the item (or nil).

:print-function If text is nil, this is called to print the data.

21 CAPI Reference Entries

436

:selected If t the item is selected.

Accessors

item-collection
item-data
item-text
item-print-function
item-selected

Description

An item can provide its own callbacks to override those specified in its enclosing collection, and can also provide some data
to get passed to those callbacks.

An item is printed in the collection by print-collection-item. By default this returns a string using the item's text if
specified, or else calls a print function on the item's data. The print-function will either be the one specified in the item, or
else the print-function for its parent collection.

The selected slot in an item is non-nil if the item is currently selected. The accessor item-selected is provided to access
and to set this value.

Examples

(defun main-callback (data interface)
 (capi:display-message "Main callback: ~S"
 data))

(defun item-callback (data interface)
 (capi:display-message "Item callback: ~S"
 data))

(capi:contain (make-instance
 'capi:list-panel
 :items (list
 (make-instance
 'capi:item
 :text "Item"
 :data '(some data)
 :selection-callback
 'item-callback)
 "Non-Item 1"
 "Non-Item 2")
 :selection-callback 'main-callback))

See also

itemp
collection
choice
print-collection-item
9 Adding Toolbars

21 CAPI Reference Entries

437

itemp Function

Summary

A predicate for item.

Package

capi

Signature

itemp object => result

Arguments

object⇓ A Lisp object.

Values

result A boolean.

Description

The function itemp returns true if object is an item and false otherwise. It is equivalent to:

(typep object 'capi:item)

See also

item
collection

item-pane-interface-copy-object Generic Function

Summary

Determines what pane-interface-copy-object returns from a choice.

Package

capi

Signature

item-pane-interface-copy-object item choice interface => object, string, plist

Arguments

item⇓ A Lisp object that is one of the items of choice.

21 CAPI Reference Entries

438

choice⇓ A choice within interface.

interface⇓ An interface.

Values

object A Lisp object.

string A string.

plist⇓ A plist.

Description

The generic function item-pane-interface-copy-object is used by the method of pane-interface-copy-object
that specializes on choice to decide what to return.

item is one of the items of choice, which is a choice within interface.

If only one item is selected, the pane-interface-copy-object method for choice returns what
item-pane-interface-copy-object returns for this item. In this case all three of the return values are used.

If multiple items are selected, pane-interface-copy-object applies item-pane-interface-copy-object to each
one, and returns a list of the returned objects as the first value, and a concatenation of returned strings (separated by newlines)
as the second value. plist is ignored if the there more than one element.

The default method returns the item and its print representation (using the print-function of the choice), and no third return
value.

You can define your own methods for item-pane-interface-copy-object. This is useful to make
active-pane-copy work properly for a choice, in cases where the actual items in the choice are not the objects that are
displayed in the choice as far as the user is concerned. For example, you may have a structure:

(defstruct my-item
 real-object
 color)

To give different colors to different lines in a list-panel. In this case pane-interface-copy-object (and hence
active-pane-copy when the list-panel is active) will return the my-item structure, while the user will expect the real
object. This can be fixed by adding a method:

(defmethod item-pane-interface-copy-object
 ((item my-item) pane interface)
 (let ((real-object (my-item-real-object item)))
 (values real-object
 (print-a-real-object real-object))))

See also

pane-interface-copy-object
active-pane-copy
7.6 Edit actions on the active element

21 CAPI Reference Entries

439

item-pinboard-object Class

Summary

A pinboard-object that displays a single piece of text.

Package

capi

Superclasses

pinboard-object
item

Description

The class item-pinboard-object displays an item on a pinboard layout. It displays the text specified by the item in the
usual way (either by the text field, or through printing the data with the print function).

Examples

(capi:contain (make-instance
 'capi:item-pinboard-object
 :text "Hello World"))

(capi:contain (make-instance 'capi:item-pinboard-object
 :data :red
 :print-function
 'string-capitalize))

See also

image-pinboard-object
pinboard-layout
12.3 Creating graphical objects

labelled-arrow-pinboard-object Class

Summary

A pinboard-object that displays an arrow with a label on it.

Package

capi

Superclasses

arrow-pinboard-object
labelled-line-pinboard-object

21 CAPI Reference Entries

440

Description

The class labelled-arrow-pinboard-object displays an arrow with a label on it on a pinboard-layout.

Examples

See labelled-line-pinboard-object.

See also

pinboard-layout
12.3 Creating graphical objects

labelled-line-pinboard-object Class

Summary

A subclass of pinboard-object which draws a labelled line.

Package

capi

Superclasses

item-pinboard-object
line-pinboard-object

Subclasses

labelled-arrow-pinboard-object

Initargs

:text-foreground A valid color specification, as defined for the graphics-state parameter foreground.

:text-background A valid color specification, as defined for the graphics-state parameter foreground, or
the keyword :background, or nil.

Accessors

labelled-line-text-foreground
labelled-line-text-background

Description

The class labelled-line-pinboard-object displays a line on a pinboard-layout and draws a label in the middle of
it.

Note that the label text is inherited from item.

text-foreground defines the color of the label text.

text-background defines the background for the text, which is the color used to draw a filled rectangle in the area of the text
before drawing the text. The value :background means use the background of the pinboard-layout of the object. The

21 CAPI Reference Entries

441

value nil means do not draw a background rectangle. The default value of text-background is :background.

Notes

For a description of color specifications, see 15.1 Color specs.

Examples

(capi:contain
 (make-instance
 'capi:pinboard-layout
 :description
 (list (make-instance
 'capi:labelled-line-pinboard-object
 :text "Labelled Line"
 :start-x 10 :start-y 10
 :end-x 80 :end-y 60)
 (make-instance
 'capi:labelled-arrow-pinboard-object
 :text "Labelled Arrow"
 :start-x 10 :start-y 70
 :end-x 80 :end-y 120
 :head-direction :both))))

See also

graphics-state
pinboard-layout
12.3 Creating graphical objects

layout Class

Summary

A pane that positions one or more child panes within itself according to a layout policy.

Package

capi

Superclasses

titled-object
simple-pane

Subclasses

simple-layout
grid-layout
pinboard-layout

Initargs

:default A flag to mark the default layout for an interface.

:description The list of the layout's children.

21 CAPI Reference Entries

442

:initial-focus A child of the layout, or its name, specifying where the input focus should be, or nil.

Accessors

layout-description

Description

The class layout is a pane that positions one or more child panes within itself according to a layout policy.

description is an abstract description of the children of the layout, and each layout defines its format. Generally, description
is a list, each element of which is one of:

• An element, that is an object of type simple-pane or pinboard-object.

• A slot name, where the name refers to a slot in the layout's interface containing an element.

• A string, where the string gets converted to a title-pane or an item-pinboard-object.

Note that pinboard-objects can be used only when the hierarchy contains pinboard-layout.

Some subclasses of layout have different syntax for description, for example grid-layout (and its subclasses
row-layout and column-layout) allows arrays too, and it also accepts nil in the description list.

Setting the layout description causes the layout to translate it, and then to layout the new children, adjusting the size of its
parent if necessary. The actual translation is done by interpret-description.

A number of default layouts are provided which provide the majority of layout functionality that is needed. They are as
follows:

simple-layout A layout for one child.

row-layout Lays its children out in a row.

column-layout Lays its children out in a column.

grid-layout Lays its children out in an n by m grid.

pinboard-layout Places its children where the user specifies.

switchable-layout Keeps only one of its children visible.

initial-focus specifies which child of the layout has the input focus when the layout is first displayed. Panes are compared by
cl:eq or capi-object-name. See pane-initial-focus for more information about the initial focus pane..

Notes

In most cases, a layout does not have its own native GUI object. You can force it to have its own native GUI object by
supplying the initargs :background :background. You need to do that if you want to make a layout without a
background initially, and change it later using (setf simple-pane-background).

See also

define-layout
interpret-description
6 Laying Out CAPI Panes

21 CAPI Reference Entries

443

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm

line-pinboard-object Class

Summary

A subclass of pinboard-object which displays a line drawn between two corners of the area enclosed by the pinboard
object.

Package

capi

Superclasses

pinboard-object

Subclasses

arrow-pinboard-object
right-angle-line-pinboard-object

Initargs

:start-x The x coordinate of the start of the line.

:start-y The y coordinate of the start of the line.

:end-x The x coordinate of the end of the line.

:end-y The y coordinate of the end of the line.

Description

The class line-pinboard-object displays a line drawn between two corners of the area enclosed by the pinboard object.

start-x, start-y, end-x and end-y default to values computed from the x, y, width and height. They are used to compute the
size of the object, and the proper value of x and y. Note that width and height may be larger, for example to accommodate the
label in a labelled-line-pinboard-object, and the x and y are adjusted for that.

To change the end points of the line, call move-line.

A complementary class right-angle-line-pinboard-object is provided which draws a line around the edge of the
pinboard object.

Examples

(capi:contain
 (make-instance
 'capi:line-pinboard-object
 :start-x 0 :end-x 100
 :start-y 100 :end-y 0))

See also

move-line
pinboard-layout

21 CAPI Reference Entries

444

12.3 Creating graphical objects

line-pinboard-object-coordinates Function

Summary

Returns the coordinates of a line-pinboard-object.

Package

capi

Signature

line-pinboard-object-coordinates object => start-x, start-y, end-x, end-y

Arguments

object⇓ A line-pinboard-object.

Values

start-x An integer.

start-y An integer.

end-x An integer.

end-y An integer.

Description

The function line-pinboard-object-coordinates returns the start and end coordinates of the
line-pinboard-object object.

See also

move-line

listener-pane Class

Summary

An editor that accepts Lisp forms, entered by the user at a prompt, which it then evaluates and displays any output and
results.

Package

capi

Superclasses

interactive-pane

21 CAPI Reference Entries

445

Description

An instance of the class listener-pane is an editor that accepts Lisp forms, entered by the user at a prompt, which it then
evaluates. All of the output that is sent to *standard-output* is sent to the listener, and finally the results of the
evaluation are displayed.

Examples

(capi:contain (make-instance 'capi:listener-pane)
 :best-width 300 :best-height 200)

See also

collector-pane
interactive-pane
3.9.6 Stream panes

listener-pane-insert-value Function

Summary

Evaluates a form and inserts the result in a listener-pane.

Package

capi

Signature

listener-pane-insert-value pane form

Arguments

pane⇓ A listener-pane.

form⇓ A Lisp form.

Description

The function listener-pane-insert-value evaluates the form form and inserts the result in the listener-pane pane,
as if it resulted from user input. The result is printed, and the values of the history variables *, **, ***, /, //, and /// are
set.

listener-pane-insert-value may be called in any process.

Multiple values in the result of evaluating form are not supported: only the first value is inserted in pane.

See also

interactive-pane-execute-command

21 CAPI Reference Entries

446

http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_sl_sls.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_sl_sls.htm

list-panel Class

Summary

A pane that displays a group of items and provides support for selecting items and performing actions on them. Each item
may optionally have an image.

Package

capi

Superclasses

choice
simple-pane
sorted-object
titled-object

Subclasses

list-view
multi-column-list-panel

Initargs

:right-click-selection-behavior

A keyword or nil. Controls the behavior on a right mouse button click.

:color-function A function designator or nil. Controls item text color on Microsoft Windows, Cocoa and
GTK+.

:alternating-background

A boolean influencing the use of alternating background color on Cocoa and GTK+.

:filter A boolean. The default value is nil. Only used when filter is non-nil.

:the

:filter-automatic-p

A boolean. The default value is t. Only used when filter is non-nil.

:filter-callback A function designator or the keyword :default, which is the default value. Only used
when filter is non-nil.

:filter-change-callback-p

A boolean. Only used when filter is non-nil.

:filter-short-menu-text

A boolean. The default value is nil. Only used when filter is non-nil.

:filter-matches-title

A string, t or nil. Only used when filter is non-nil.

:filter-help-string

A string, t or nil. Only used when filter is non-nil.

:filter-added-filters

A list of additional filter specifications.

21 CAPI Reference Entries

447

:keyboard-search-callback

A function that is used to search for an item when the user types ordinary characters.

:image-function Returns an image for an item.

:state-image-function

Returns a state image for an item.

:image-lists A plist of keywords and image-list objects.

:use-images Flag to specify whether items have images. Defaults to t.

:use-state-images Flag to specify whether items have state images. Defaults to nil.

:image-width Defaults to 16.

:image-height Defaults to 16.

:state-image-width Defaults to image-width.

:state-image-height

Defaults to image-height.

:separators One of nil (the default), :horizontal, :vertical, :both or t.

Accessors

list-panel-right-click-selection-behavior
list-panel-keyboard-search-callback
list-panel-image-function
list-panel-state-image-function

Description

The class list-panel gains much of its behavior from choice, which is an abstract class that handles items and their
selection. By default, a list panel has both horizontal and vertical scrollbars.

list-panel does not support the :no-selection interaction style. For a non-interactive list use a display-pane.

To scroll a list-panel, call scroll with scroll-operation :move.

mnemonic-title is interpreted as for menu.

color-function allows you to control the text colors on Microsoft Windows, Cocoa and GTK+. If color-function is non-nil,
then it is a function used to compute the text color of each item, with signature:

color-function list-panel item state => result

When alternating-background is true, the list panel is drawn with alternating background on Cocoa. On GTK+ it provides a
hint, which the theme can override. Experience suggests that theme may draw with alternating background even when
alternating-background is false, but when it is true they tend to draw it always. The default value of alternating-background
is nil.

state is a keyword representing the state of the item. It can be one of :normal, :selected or :disabled. The value result
should be a value suitable for the function convert-color. The pane uses the converted color as the foreground color for
the item item. color-function is called while list-panel is being drawn, so it should not do heavyweight computations.

Description: Filter

If filter is non-nil, the system automatically adds a filtering-layout above the list. The items in the list-panel are
filtered by the value in the filtering-layout. Filtering displays only those items whose print representation matches the
filter. (The print representation is the result of print-collection-item, and is what the user sees.) Only the items that

21 CAPI Reference Entries

448

match, or those that do not match if Exclude is set, are displayed in the list-panel.

Here filtering means mapping over the unfiltered items, collecting each item that matches the current setting in the filter, and
then setting the items of the list-panel to the collected items.

For a list-panel with a filter, collection-items returns only the filtered items, and the selection (that is, the result of
choice-selection and the argument to (setf choice-selection)) index into the filtered items.

Calling (setf collection-items) on a filtered list-panel sets an internal unfiltered list, and then clears the filtering
so that all items are visible.

To get and set the unfiltered items, use the accessor list-panel-unfiltered-items. To access the filter-state, use
list-panel-filter-state. To access both the unfiltered items and the filter simultaneously, which is especially useful
when setting both of them at the same time, use list-panel-items-and-filter.

filter-automatic-p controls whether the filter automatically does the filtering whenever the text in the filter changes, and filter-
callback defines the callback of the filtering-layout.

If filter-automatic-p is t, whenever a change occurs in the filter the list is refreshed against the new value in the filter. The
filter-callback (if non-nil) is called with two arguments, the filtering-layout and the list-panel itself, when the user
"confirms" (that is, she presses Return or clicks the Confirm button). If filter-automatic-p is false and filter-callback is
:default, then the filtering-layout is given a callback that does the filtering when the user "confirms". If filter-
automatic-p is false and filter-callback is non-nil, then no filtering is done explicitly, and it is the responsibility of the
callback to do any filtering that is required.

filter-matches-title (default t) and filter-help-string (default t) are passed down to the filtering layout using the
filtering-layout initargs :matches-title and :help-string respectively. See filtering-layout for a
description of these initargs.

If filter-short-menu-text is true, the filter menu has a short title. For example if the filter is set for case-sensitive plain
inclusive matching the short label is PMC. If filter-short-menu-text were false then this label would be Filter:C.

When filter-added-filters is non-nil, it adds additional filters that apply to the items of the list-panel. Each element of
filter-added-filters must be one of:

A cons of a string and a function.

This specifies a check-button, with the string as its text, plus an associated function.

A list of conses, where each cons is a cons of a string and a function.

This specifies an option-pane, where the string of each cons specifies the text of an item in the
option-pane, plus an associated function for the item. The function can also be nil, which
means no filtering.

The check-button and option-pane panes are displayed in the same row as the filter.

Before checking if an item in the list-panel matches the filter's text, the filter passes the item to the associated function
from each selected check-button and from the selected item of each option-pane (unless the associated function is nil).
If any of these functions returns nil, then the item is excluded (so it is not displayed). Note that the Exclude setting of the
filter does not apply to the added filters, and the functions are called with the item in the list-panel, rather than its printed
representation.

Any change in the selection of any of the check-button and option-pane panes causes the filter to be applied, which
recomputes the displayed items.

There is a simple example of using filter-added-filters in:

(example-edit-file "capi/choice/filter-added-filters")

21 CAPI Reference Entries

449

Notes: Filter

If you use filter:

1. You should not rely on the element-parent of the list-panel, because it is implemented by wrapping some layouts
around the list-panel.

2. The filter is actually a filtering layout, so it has the same interactive semantics as filtering-layout.

Description: Keyboard search

keyboard-search-callback should be a function with signature:

keyboard-search-callback pane string position => index, last-match, last-match-reset-time

pane is the list-panel, string is a string to match and position is the item index from which the system thinks that the
search should start.

string contains the character that the user typed, appended to the "last match", if there is one. There is a "last match" if the
previous call to keyboard-search-callback returned it (see below).

index is an index in the collection-items to move to. Apart from an integer inside the items range of the list-panel,
this can be nil, which means do nothing, or :no-change, which selects the current item.

last-match is a string that should be recorded as the "last match" (if it is not a string, the "last match" is reset). This is
prepended to the character in the next call, if the character is typed before the "last match" is reset.

last-match-reset-time is the time to wait before resetting the "last match", in seconds. Once this time passes, the last match is
reset to nil. If last-match-reset-time is nil, the default value (which defaults to 1) is used. This default value can be
changed by set-list-panel-keyboard-search-reset-time.

You can simplify the implementation of keyboard-search-callback by using list-panel-search-with-function.

As a special case, passing :keyboard-search-callback t tells CAPI to use its own internal search mechanism in
preference to the native one. That can be useful on GTK+, where the default is to use the native search mechanism (for
GTK+ versions after 2.4).

Notes: Keyboard search

keyboard-search-callback is intended for searching, but it is not limited to doing a search, and in fact can be used for
implementing other functionality. However, since the system waits for the result, if the callback does something heavy or
interacts with the user, it should schedule it in some way and return, for example:

(defun my-keyboard-search-callback (pane string pos)
 (declare (ignore pane pos))
 ;; cause a call to display-message in event loop
 (mp:current-process-send
 (list 'capi:display-message
 (format nil "You pressed ~a" string)))
 nil ; return nil so do nothing
)

Description: Images

The image-function is called on an item to return an image associated with the item. It can return one of the following:

A pathname or string This specifies the filename of a file suitable for loading with load-image. Currently this must
be a bitmap file.

21 CAPI Reference Entries

450

A symbol The symbol must have been previously registered by means of a call to
register-image-translation. It can also one of the following symbols, which map to
standard images: :std-cut, :std-copy, :std-paste, :std-undo, :std-redo,
:std-delete, :std-file-new, :std-file-open, :std-file-save, :std-print,
:std-print-pre, :std-properties, :std-help, :std-find and :std-replace.

On Microsoft Windows, the following symbols are also recognized. They map to view images:
:view-large-icons, :view-small-icons, :view-list, :view-details,
:view-sort-name, :view-sort-size, :view-sort-date, :view-sort-type,
:view-parent-folder, :view-net-connect, :view-net-disconnect and
:view-new-folder.

Also on Microsoft Windows, these symbols are recognized. They map to history images:
:hist-back, :hist-forward, :hist-favorites, :hist-addtofavorites and
:hist-viewtree.

An image object For example, as returned by load-image.

An image locator object

This allowing a single bitmap to be created which contains several button images side by side.
See make-image-locator for more information. On Microsoft Windows, it also allows access
to bitmaps stored as resources in a DLL.

An integer This is a zero-based index into the list panel's image lists. This is generally only useful if the
image list is created explicitly. See image-list for more details.

The state-image-function is called on an item to determine the state image: an additional optional image used to indicate the
state of an item. It can return one of the above, or nil to indicate that there is no state image.

If image-lists is specified, it should be a plist containing the following keywords as keys. The corresponding values should be
image-list objects.

:normal Specifies an image-list object that contains the item images. The image-function should
return a numeric index into this image-list.

:state Specifies an image-list object that contains the state images. The state-image-function should
return a numeric index into this image-list.

Description: Right-click selection behavior

right-click-selection-behavior can take the following values:

nil Corresponds to the behavior in LispWorks 4.4 and earlier. The data is not passed.

All non-nil values pass the clicked item as data to the pane-menu:

:existing-or-clicked/restore/discard

If the clicked item is not already selected, make it be the entire selection while the menu is
displayed. If the clicked item is already selected, do not change the selection. If the menu is
cancelled, the original selection is restored. If the user chooses an item from the menu, the
selection is not restored.

:temporary-selection

A synonym for :existing-or-clicked/restore/discard.

21 CAPI Reference Entries

451

:existing-or-clicked/restore/restore

If the clicked item is not already selected, make it be the entire selection while the menu is
displayed. If the clicked item is already selected, do not change the selection. If the user chooses
an item from the menu and the item's callback does not set the selection then the original
selection is restored after the callback. If the callback sets the selection, then this selection
remains. The original selection is restored if the user cancels the menu.

:temporary-restore A synonym for :existing-or-clicked/restore/restore.

:clicked/restore/discard

Make the clicked item be the entire selection while the menu is displayed. If the menu is
cancelled, the original selection is restored. If the user chooses an item from the menu, the
selection is not restored.

:temporary-always A synonym for :clicked/restore/discard.

:clicked/restore/restore

Make the clicked item be the entire selection while the menu is displayed. If the user chooses an
item from the menu and the item's callback does not set the selection then the original selection is
restored after the callback. If the callback sets the selection, then this selection remains. The
original selection is restored if the user cancels the menu.

:existing-or-clicked/discard/discard

If the clicked item is not already selected, make it be the entire selection while the menu is
displayed. If the clicked item is already selected, do not change the selection. The original
selection is never restored, regardless of whether the user chooses an item from the menu or
cancels the menu.

:discard-selection A synonym for :existing-or-clicked/discard/discard.

:clicked/discard/discard

Make the clicked item be the entire selection. The original selection is never restored, regardless
of whether the user chooses an item from the menu or cancels the menu.

:discard-always A synonym for :clicked/discard/discard.

:no-change Does not affect the selection, but the clicked item is nonetheless passed as the data.

The default value of right-click-selection-behavior is :no-change.

separators controls whether there are separators. Horizontal separators means that each row is separated from the previous
row by a horizontal line. Vertical separators are applicable only in multi-column-list-panel, and means that by default
each column is separated by a vertical line from the previous column. This can be overridden by the :separator option in
the column specification (see entry for multi-column-list-panel). If separators is nil (the default), there are no
separators. :both and t are equivalent, and specify both horizontal and vertical separators. :horizontal and :vertical

specify separators for one direction.

Examples

(setq list (capi:contain
 (make-instance 'capi:list-panel
 :items '(:red :blue :green)

21 CAPI Reference Entries

452

 :selected-item :blue
 :print-function
 'string-capitalize)))

(capi:apply-in-pane-process
 list #'(setf capi:choice-selected-item) :red list)

(capi:apply-in-pane-process
 list #'(setf capi:choice-selected-item) :green list)

(capi:contain (make-instance
 'capi:list-panel
 :items '(:red :blue :green)
 :print-function 'string-capitalize
 :selection-callback
 #'(lambda (data interface)
 (capi:display-message
 "~S" data))))

This example illustrates the use of :right-click-selection-behavior:

(capi:define-interface click ()
 ((keyword :initarg :right-click-selection-behavior))
 (:panes
 (list-panel
 capi:list-panel
 :items '("foo" "bar" "baz" "quux")
 :visible-min-height '(:character 4)
 :pane-menu 'my-menu
 :interaction :multiple-selection
 :right-click-selection-behavior keyword)))

(defun my-menu (pane data x y)
 (declare (ignore pane x y))
 (make-instance 'capi:menu
 :items (list "Hi There"
 ""
 "Here's the data:"
 data)))

(capi:display
 (make-instance 'click
 :right-click-selection-behavior
 :clicked/restore/restore))

See also this example:

(example-edit-file "capi/choice/list-panel-pane-menu")

There are further examples here:

(example-edit-file "capi/choice/")

This example illustrates the use of color-function:

(example-edit-file "capi/applications/simple-symbol-browser")

There are further examples in 20 Self-contained examples.

21 CAPI Reference Entries

453

See also

button-panel
double-list-panel
1.2.1 CAPI elements
3.1.4.1 Controlling Mnemonics
19.3.2 Matching resources for GTK+
5 Choices - panes with items
7 Programming with CAPI Windows
10.2.3 Prompting for an item in a list
13.10 Working with images
17 Drag and Drop

list-panel-enabled Accessor Generic Function

Summary

Gets or sets the enabled state of a list-panel. This accessor is deprecated.

Package

capi

Signature

list-panel-enabled list-panel => enabledp

(setf list-panel-enabled) enabledp list-panel => enabledp

Arguments

list-panel⇓ A list-panel.

enabledp A boolean.

Values

enabledp A boolean.

Description

The accessor generic function list-panel-enabled gets or sets the enabled state of list-panel.

Notes

list-panel-enabled is deprecated because it is equivalent to the simple-pane accessor simple-pane-enabled. Use
simple-pane-enabled instead.

See also

simple-pane

21 CAPI Reference Entries

454

list-panel-filter-state Accessor Generic Function

Summary

Accesses the state of the filter in a filtered list-panel.

Package

capi

Signature

list-panel-filter-state list-panel => filter-state

(setf list-panel-filter-state) filter-state list-panel => filter-state

Arguments

list-panel⇓ A list-panel.

filter-state⇓ A "state" of a filtering-layout or nil.

Values

filter-state⇓ A "state" of a filtering-layout or nil.

Description

The accessor generic function list-panel-filter-state accesses the state of the filter in a filtered list-panel (that
is, a list-panel created with filter t).

list-panel-filter-state returns the state of the filter in list-panel. The return value filter-state is the same type as the
state that is used in filtering-layout.

(setf list-panel-filter-state) sets the filter in list-panel, filters the unfiltered items and displays those that match
the new-state. The new-state has the same semantics as the new-value of (setf filtering-layout-state). It can be a
result of a call to list-panel-filter-state or to filtering-layout-state (on a filtering-layout), or a string
(meaning plain match, case-insensitive), or nil (meaning match everything).

On an unfiltered list-panel list-panel-filter-state returns nil, and (setf list-panel-filter-state)

does nothing.

See also

list-panel
list-panel-unfiltered-items
filtering-layout

21 CAPI Reference Entries

455

list-panel-items-and-filter Accessor

Summary

Accesses the unfiltered items and filter in a list-panel.

Package

capi

Signature

list-panel-items-and-filter list-panel => unfiltered-items, filter-state

setf (list-panel-items-and-filter list-panel) (values unfiltered-items filter-state) => unfiltered-items, filter-
state

Arguments

list-panel⇓ A list-panel.

unfiltered-items A sequence.

filter-state⇓ A "state" for a filtering-layout.

Values

unfiltered-items A sequence.

filter-state⇓ A "state" for a filtering-layout.

Description

The accessor list-panel-items-and-filter accesses the unfiltered items and the state of the filter in the list panel list-
panel simultaneously. It is especially useful for setting the filter state and the items without flickering.

list-panel-items-and-filter returns the items and filter state in list-panel as multiple values. It is equivalent to:

(values (list-panel-unfiltered-items list-panel)
 (list-panel-filter-state list-panel))

but is more efficient.

The return value filter-state is the same type as the state that is used in filtering-layout.

The setf form of list-panel-items-and-filter takes the items and new filter state as two values and sets them in list-
panel:

These two forms:

(setf (list-panel-items-and-filter list-panel)
 (values new-items new-filter-state))

(progn
 (setf (list-panel-unfiltered-items list-panel) new-items)

21 CAPI Reference Entries

456

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

 (setf (list-panel-filter-state list-panel) new-filter-state))

have the same ultimate effect on list-panel, but the latter form will filter new-items with the old filter and display the result
and then filter new-items again with new-filter-state, whereas the setf form of list-panel-items-and-filter filters
new-items just once, with new-filter-state.

See also

list-panel
list-panel-filter-state
list-panel-unfiltered-items

list-panel-search-with-function Function

Summary

Searches a list-panel.

Package

capi

Signature

list-panel-search-with-function list-panel function arg &key start-index wrap-around reset-time

Arguments

list-panel⇓ A list-panel.

function⇓ A function taking two arguments. The first is arg, the second is an item in list-panel.

arg⇓ Any Lisp object.

start-index⇓ An integer, default 0.

wrap-around⇓ A boolean, default t.

reset-time⇓ A real number. The default is an internal value which can be set by
set-list-panel-keyboard-search-reset-time.

Description

The function list-panel-search-with-function searches list-panel using function.
list-panel-search-with-function is intended to simplify the implementation of the keyboard-search-callback of
list-panel.

list-panel-search-with-function searches list-panel for a match. It applies function to each item and arg, until
function returns non-nil.

When function returns non-nil, list-panel-search-with-function returns three values: the index of the item, arg, and reset-time.

The search starts at start-index if supplied, and at 0 otherwise. When the search reaches the end of the list panel and it did not
start from 0, it wraps around to the beginning, unless wrap-around is supplied as nil. The default value of wrap-around is
t.

21 CAPI Reference Entries

457

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

Examples

(defun string-equal-prefix (string item)
 (let* ((start 0)
 (len (length item))
 (end (+ start (length string))))
 (and (>= len end)
 (string-equal string item
 :start2 start
 :end2 end))))

(capi:contain
 (make-instance
 'capi:list-panel
 :items '("ae" "af" "bb" "cc")
 :keyboard-search-callback
 #'(lambda (pane string position)
 (capi:list-panel-search-with-function
 pane
 'string-equal-prefix ; or 'string-not-greaterp
 string
 :start position
 :reset-time 1
 :wrap-around t))))

Pressing "a" slowly cycles between "ae" and "af". Running the same example with string-not-greaterp instead causes
"a" to cycle around all of the items.

See also

list-panel
set-list-panel-keyboard-search-reset-time
5.3.9 Searching by keyboard input

list-panel-unfiltered-items Accessor Generic Function

Summary

Accesses the unfiltered items of a filtered list-panel.

Package

capi

Signature

list-panel-unfiltered-items list-panel => unfiltered-items

setf (list-panel-unfiltered-items list-panel) unfiltered-items => unfiltered-items

Arguments

list-panel⇓ A list-panel.

unfiltered-items A sequence.

21 CAPI Reference Entries

458

http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm

Values

unfiltered-items A sequence.

Description

The accessor generic function list-panel-unfiltered-items accesses the unfiltered items of a filtered list-panel

(that is, a list-panel created with :filter t).

list-panel-unfiltered-items returns the unfiltered items of list-panel (that is all of them, as opposed to the accessor
collection-items, which returns only those items that match the filter).

(setf list-panel-unfiltered-items) sets the items of list-panel without affecting the filter (as opposed to
(setf collection-items) which resets the filter). The items are then filtered, and only those that match the filter are
displayed.

list-panel-unfiltered-items behaves the same as collection-items when called on an unfiltered list-panel.

See also

list-panel
list-panel-items-and-filter
list-panel-filter-state

list-view Class

Summary

The list view pane is a choice that displays its items as icons and text in a number of formats. Not implemented on Cocoa.

Package

capi

Superclasses

list-panel

Initargs

:view Specifies which view the list view pane shows. The default is :icon.

:subitem-function Returns additional information to be displayed in report view.

:subitem-print-functions

Used in report view to print the additional information.

:image-function Returns an image for an item.

:state-image-function

Returns a state image for an item.

:image-lists A plist of keywords and image-list objects.

:columns Defines the columns used in report view.

:auto-reset-column-widths

Determines whether columns automatically resize. Defaults to :all.

21 CAPI Reference Entries

459

:auto-arrange-icons

Determines whether icons are automatically arranged to fit the size of the window.

:use-large-images Indicates whether large icons will be used (generally only if the icon view will be used).
Defaults to t.

:use-small-images Indicates whether small icons will be used. Defaults to t.

:use-state-images Indicates whether state images will be used. Defaults to nil.

:large-image-width Width of a large image. Defaults to 32.

:large-image-height

Height of a large image. Defaults to 32.

:small-image-width Width of a small image. Defaults to 16.

:small-image-height

Height of a small image. Defaults to 16.

:state-image-width Width of a state image. Defaults to small-image-width.

:state-image-height

Height of a state image. Defaults to small-image-height.

Accessors

list-view-view
list-view-subitem-function
list-view-subitem-print-functions
list-view-image-function
list-view-state-image-function
list-view-columns
list-view-auto-reset-column-widths
list-view-auto-arrange-icons

Description

The class list-view displays items as icons and text in a number of formats.

list-view inherits its functionality from choice. In many ways it may be regarded as a kind of enhanced list panel,
although its behavior is not identical. It supports single selection and extended selection interactions.

The list view displays its items in one of four ways, determined by the value in the view slot. An application may use the list
view pane in just a single view, or may change the view between all four available views using (setf list-view-view).

See the notes below on using both large and small icon views.

In all views, the text associated with the item (the label) is returned by the print-function, as with any other choice.

• The icon view — :icon.

In this view, large icons are displayed, together with their label, positioned in the space available. See also auto-arrange-
icons, below.

• The small icon view — :small-icon.

In this view, small icons are displayed, together with their label, positioned in the space available. See also auto-arrange
-icons, below.

• The list view — :list.

In this view, small icons are displayed, arranged in vertical columns.

21 CAPI Reference Entries

460

• The report view — :report.

In this view, multiple columns are displayed. A small icon and the item's label is displayed in the first column.
Additional pieces of information, known as subitems, are displayed in subsequent columns.

To use the view :report, columns must specify a list of column specifiers. Each column specifier is a plist, in which
the following keywords are valid:

:title The column heading.

:width The width of the column in pixels. If this keyword is omitted or has the value nil, the width of
the column is automatically calculated, based on the widest item to be displayed in that column.

:align May be :left, :right or :center to indicate how items should be aligned in this column.
The default is :left. Only left alignment is available for the first column.

If auto-arrange-icons is true, then the icons are automatically arranged to fit the size of the window when the view is showing
:icon or :small-icon. The default value of auto-arrange-icons is nil.

The subitem-function is called on the item to return subitem objects that represent the additional information to be displayed
in the subsequent columns. Hence, subitem-function should normally return a list, whose length is one less than the number
of columns specified. Each subitem is then printed in its column using the appropriate subitem print function. subitem-print-
function may be either a single print function, to be used for all subitems, or a list of functions: one for each subitem column.

Note that the first column always contains the item label, as determined by the choice-print-function.

The image-function is called on an item to return an image associated with the item. It can return one of the following:

A pathname or string This specifies the filename of a file suitable for loading with load-image. Currently this must
be a bitmap file.

A symbol The symbol must have been previously registered by means of a call to
register-image-translation.

An image object For example, as returned by load-image.

An image locator object

Allowing a single bitmap to be created which contains several button images side by side. See
make-image-locator for more information. On Microsoft Windows, this also allows access
to bitmaps stored as resources in a DLL.

An integer This is a zero-based index into the list view's image list. This is generally only useful if the
image list is created explicitly. See image-list for more details.

The state-image-function is called on an item to determine the state image, an additional optional image used to indicate the
state of an item. It can return one of the above, or nil to indicate that there is no state image. State images may be used in
any view, but are typically used in the report and list views.

If image-lists is supplied, it should be a plist containing the following keywords as keys. The corresponding values should be
image-list objects.

:normal Specifies an image-list object that contains the large item images. The image-function should
return a numeric index into this image-list.

:small Specifies an image-list object that contains the small item images. The image-function should
return a numeric index into this image-list.

:state Specifies an image-list object that contains the state images. The state-image-function should
return a numeric index into this image-list.

21 CAPI Reference Entries

461

If both the large icon view (icon view) and one or more of the small icon views (small icon view, list view, report view) are to
be used, special considerations apply.

The image lists must be created explicitly, using the :image-lists initarg, and the image-function must return an integer.
Take care to ensure that corresponding images in the :normal and :small image lists have the same numeric index.

Returning pathnames, strings or image-locators from the image function cause the CAPI to create the image-lists
automatically; however, if large and small icon views are mixed, this will lead to incorrect icons (or no icons) being
displayed in one or other view.

Notes

1. list-view is not implemented on Cocoa.

2. For some applications multi-column-list-panel will suffice instead of list-view.

See also

image-list
list-panel
make-image-locator
multi-column-list-panel
5.10.4 image-list, image-set and image-locator
13.10 Working with images

load-cursor Function

Summary

Loads a cursor.

Package

capi

Signature

load-cursor filename-or-list => cursor

Arguments

filename-or-list⇓ A string or a list.

Values

cursor A cursor object.

Description

The function load-cursor loads a cursor from your cursor file, or loads a built-in cursor. It returns a cursor object which
can be supplied as the value of the simple-pane :cursor initarg.

The cursor object can also be set with (setf simple-pane-cursor) to change a pane's cursor. This must be done in the
process of the pane's interface.

21 CAPI Reference Entries

462

If filename-or-list is a string, then it names a file which should be in a suitable format for the platform, as follows:

Microsoft Windows .cur or .ani format.

Cocoa TIFF format.

GTK+ Any image format that load-image supports.

Note: The image can be of any dimension, but it will be clipped to what the server thinks is an
appropriate size, 32x32 or 16x16. Using large images would waste space, because the image
would still be in memory.

The file is loaded at the time load-cursor is called, so the cursor object does not require the file at the time the cursor is
displayed. The cursor object survives saving and delivering the image.

If filename-or-list is a list then it names a file or a built-in cursor to be loaded for a particular library, optionally together with
arguments to be passed to the library. It should be of the form:

((libname_1 filename_1 arg_1a arg_1b ...)
 (libname_2 filename_2 arg_2a arg_2b ...)
 ...
)

where libname_n is a keyword naming a supported library such as :cocoa, :win32 or :gtk (see default-library for
the values) and filename_n is either a string naming the cursor file to load for this library or a keyword naming one of the
built-in cursors. arg_na, arg_nb and so on are library-specific arguments. Currently these are not used on Microsoft
Windows. Hotspot keyword arguments :x-hot and :y-hot are supported on Cocoa and GTK+ as in the example below.
They specify the hotspot of the cursor. The values must be integers inside the image dimensions, that is they satisfy:

(and (> image-width x-hot -1)
 (> image-height y-hot -1))

On GTK+ the library-specific arguments also include the keywords :transparent-color-index and :type, which are
passed to read-external-image. Note that supplying the transparent-color-index allows making a useful cursor with a
simple format image file which does not have transparency.

Examples

This example loads a standard Microsoft Windows cursor file:

(setq cur1 (capi:load-cursor "arrow_l"))

This example loads a standard Windows cursor file, and on Motif uses one of the built-in cursors:

(setq cur2
 (capi:load-cursor '((:win32 "3dwns")
 (:motif :v-double-arrow))))

This example loads a horizontal double-arrow on Windows, and a vertical double-arrow on Motif:

(setq cur3
 (capi:load-cursor '((:win32 :h-double-arrow)
 (:motif :v-double-arrow))))

This example loads a custom .cur file:

(setq cur4

21 CAPI Reference Entries

463

 (capi:load-cursor "C:/Temp/Animated_Cursors/1a.cur"))

In this extended example, firstly we load a custom cursor for two platforms:

(setq cur
 (capi:load-cursor
 '((:win32
 "c:/WINNT40/Cursors/O_CROSS.CUR")
 (:cocoa
 "/Applications/iPhoto.app/Contents/Resources/retouch-cursor.tif"
 :x-hot 2
 :y-hot 2))))

Now we display a pane with the custom cursor loaded above:

(setq oo
 (capi:contain
 (make-instance
 'capi:output-pane
 :cursor cur
 :input-model
 `(((:button-1 :press)
 ,(lambda (&rest x)
 (print x)))))))

We can remove the custom cursor:

(capi:apply-in-pane-process
 oo
 (lambda ()
 (setf (capi:simple-pane-cursor oo)
 :default)))

And we can restore the custom cursor:

(capi:apply-in-pane-process
 oo
 (lambda ()
 (setf (capi:simple-pane-cursor oo)
 cur)))

See also

simple-pane

load-sound Function

Summary

Converts data to a loaded sound object on Microsoft Windows and Cocoa.

Package

capi

21 CAPI Reference Entries

464

Signature

load-sound source &key owner => sound

Arguments

source⇓ A pathname designator or an array returned by read-sound-file.

owner⇓ A CAPI interface, or nil.

Values

sound⇓ An array of element type (unsigned-byte 8).

Description

The function load-sound converts source into a loaded sound which can be played by play-sound.

source can be a pathname designator or an array returned by read-sound-file.

owner should be a CAPI interface object, or nil which means that the sound's owner is the current top level interface.

The loaded sound sound will be unloaded (freed) automatically when its owner is destroyed. To create a sound that is never
unloaded, pass the screen as the argument owner.

Notes

1. The array sound contains the contents of the file. Its bytes are interpreted by the OS functions, so the format can be
whatever they can deal with, for example WAV on Microsoft Windows. The fact that this date is represented as an
(unsigned-byte 8) array in Lisp does not constrain the output size.

2. load-sound is not implemented on GTK+ and Motif.

See also

free-sound
play-sound
read-sound-file
18.2 Sounds

locate-interface Generic Function

Summary

Finds an interface of a given class that matches supplied initargs.

Package

capi

Signature

locate-interface class-spec &rest initargs &key screen no-busy-interface &allow-other-keys => interface

21 CAPI Reference Entries

465

Arguments

class-spec⇓ A specifier for a subclass of interface.

initargs⇓ Initialization arguments for class-spec.

screen⇓ A screen or nil.

no-busy-interface⇓ A boolean, defaulting to nil.

Values

interface An interface of class class-spec, or nil.

Description

The generic function locate-interface finds an interface of the class specified by class-spec that matches initargs and
screen.

First, locate-interface finds all interfaces of the class specified by class-spec by calling collect-interfaces with
class-spec and screen. The first of these which match initargs (by interface-match-p) is returned.

If there is no match, then locate-interface finds the first of these which can be reused for initargs, by
interface-reuse-p. This reusable interface is reinitialized by reinitialize-interface and returned.

no-busy-interface controls the use of the busy cursor during reinitializing of a reusable interface. If no-busy-interface is nil,
then this interface has the busy cursor during reinitialization. If no-busy-interface is true, then there is no busy cursor.

If no matching or reusable interface is found, or if global interface re-use is disabled by (setf reuse-interfaces-p),
then locate-interface returns nil.

See also

collect-interfaces
interface-match-p
interface-reuse-p
reuse-interfaces-p

lower-interface Function

Summary

Pushes a window to the back of the screen.

Package

capi

Signature

lower-interface pane

Arguments

pane⇓ A simple-pane.

21 CAPI Reference Entries

466

Description

The function lower-interface pushes the window containing pane to the back of the screen.

To raise the window use raise-interface, and to iconify it use hide-interface.

See also

hide-interface
interface
raise-interface
quit-interface
7.7 Manipulating top-level windows

make-container Function

Summary

Creates a container for a specified element.

Package

capi

Signature

make-container element &rest interface-args

Arguments

element⇓ A Lisp object.

interface-args⇓ Initialization arguments of interface.

Description

The function make-container creates a container for element such that calling display on it will produce a window
containing element on the screen. It will produce a container for any of the following classes of object:

• simple-pane

• layout

• interface

• pinboard-object

• menu

• menu-item

• menu-component

• list

In the case of a list, the CAPI tries to see what sort of objects they are and makes an appropriate container. For instance, if
they were all simple panes it would put them into a column layout.

21 CAPI Reference Entries

467

http://www.lispworks.com/documentation/HyperSpec/Body/a_list.htm

The arguments interface-args will be passed through to the make-instance of the top-level interface, assuming that pane is
not a top-level interface itself.

The complementary function contain uses make-container to create a container for an element which it then displays.

Examples

(capi:display (capi:make-container
 (make-instance
 'capi:text-input-pane)))

See also

contain
display
interface
element
10.5 Creating your own dialogs

make-docking-layout-controller Function

Summary

Makes a docking layout controller object.

Package

capi

Signature

make-docking-layout-controller => controller

Values

controller A docking layout controller.

Description

The function make-docking-layout-controller returns a docking layout controller object for use as the :controller
initarg in docking-layout.

Layouts which share a docking layout controller are known as a Docking Group. See docking-layout for information
about Docking Groups.

See also

docking-layout

21 CAPI Reference Entries

468

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

make-foreign-owned-interface Function

Summary

Creates a dummy interface which allows another application's window to be the owner of a CAPI dialog.

Package

capi

Signature

make-foreign-owned-interface &key handle name => interface

Arguments

handle⇓ A Microsoft Windows hwnd.

name⇓ A string naming interface.

Values

interface⇓ An instance of foreign-owned-interface.

Description

The function make-foreign-owned-interface creates an instance of foreign-owned-interface. interface can be
used as the owner argument when displaying a dialog. For information about dialog owners, see 10 Dialogs: Prompting for
Input.

handle must be supplied and is the window handle (Windows hwnd) of a window in some application. For a CAPI window
this window handle can be obtained by simple-pane-handle. For non-CAPI applications, the method of finding the
window handle will depend on the language and the way windows are represented, so you should consult the appropriate
documentation.

name becomes the name of interface, and has no other meaning.

make-foreign-owned-interface is implemented only on Microsoft Windows.

Examples

This example shows how a CAPI window can be the owner of a dialog in another LispWorks image.

Start LispWorks for Windows.

1. In the Listener, do Tools > Interface > Listen. This puts the Listener interface in the value of *.

2. In the Listener enter (capi:simple-pane-handle *). The returned value is the window handle, it should be an
integer. Denote this value by hwnd.

Start another LispWorks for Windows image (do not quit the first image). In the Listener of this second LispWorks image:

1. Enter (setq foi (capi:make-foreign-owned-interface :handle hwnd)).

2. Enter (capi:prompt-for-color "Color?" :owner foi).

21 CAPI Reference Entries

469

Now note that the Color dialog is owned by the Listener of the first LispWorks image.

make-general-image-set Function

Summary

Creates an image-set object.

Package

capi

Signature

make-general-image-set &key image-count width height id => image-set

Arguments

image-count⇓ An integer.

width⇓ An integer or nil.

height⇓ An integer or nil.

id⇓ A pathname, string or symbol.

Values

image-set An image-set object.

Description

The function make-general-image-set creates an image-set object that refers to an image or a file containing an
image.

id is a pathname or string identifying an image file, or a symbol previously registered with
register-image-translation.

width and height are the dimensions of a single sub-image within the main image, and image-count specifies the number of
sub-images in the image.

Examples

(example-edit-file "capi/choice/tree-view")

(example-edit-file "capi/choice/extended-selection-tree-view")

(example-edit-file "capi/elements/toolbar")

See also

image-set
make-resource-image-set

21 CAPI Reference Entries

470

5.10.4 image-list, image-set and image-locator

make-icon-resource-image-set Function

Summary

Constructs an image set object identifying a icon resource in a Windows DLL.

Package

capi

Signature

make-icon-resource-image-set &key image-count width height library id => image-set

Arguments

image-count⇓ An integer.

width⇓ An integer.

height⇓ An integer.

library⇓ A string.

id⇓ A string or an integer.

Values

image-set An image-set object.

Description

The function make-icon-resource-image-set constructs an image set object that identifies an image stored as a icon
resource in a DLL on Microsoft Windows.

width and height are the dimensions of a single sub-image within the main image, and image-count specifies the number of
sub-images in the image.

library should be a string specifying the name of the DLL.

id should be either an integer which is the resource identifier of the icon, or a string naming the icon resource.

Notes

make-icon-resource-image-set is only available in LispWorks for Windows.

See also

image-set
make-general-image-set
5.10.4 image-list, image-set and image-locator

21 CAPI Reference Entries

471

make-image-locator Function

Summary

Creates an image-locator object to use with toolbars, list views and tree views.

Package

capi

Signature

make-image-locator &key image-set index => image-locator

Arguments

image-set⇓ An image-set.

index⇓ A non-negative integer.

Values

image-locator An image-locator.

Description

The function make-image-locator creates an image-locator object for use with toolbar, list-view and
tree-view. It is used to specify a single sub-image with index index from a larger image in image-set that contains many
images side by side. It is also useful for accessing some images that can only be specified by means of an image-set.

See also

image-set
5.10.4 image-list, image-set and image-locator

make-menu-for-pane Function

Summary

Makes a menu or a menu-component for a pane.

Package

capi

Signature

make-menu-for-pane pane items &key title menu-name component-p => menu

21 CAPI Reference Entries

472

Arguments

pane⇓ A pane.

items⇓ A list of menu-objects.

title⇓ A string or nil.

menu-name⇓ A string or nil.

component-p⇓ A boolean.

Values

menu⇓ A menu or a menu-component.

Description

The function make-menu-for-pane makes a menu or a menu-component for the pane pane with the items specified by
items.

items should be a list in which each element is a menu-item, menu-component or menu.

title and menu-name provide a title and name for menu. title and menu-name both default to nil.

If component-p is true, then make-menu-for-pane creates a menu-component rather than a menu. The default value of
component-p is nil.

menu is set up so that by default each callback inside it is done on the pane pane itself. This is the useful feature of
make-menu-for-pane because it avoids the need to set up items to do their callbacks on pane explicitly.

Note that this is merely the default behavior. You can specify different callback behavior on a per-item basis, using setup-
callback-argument and callback-data-function (see menu-object), callback-type (see callbacks) and data for
menu-item (see item).

See also

make-pane-popup-menu
pane-popup-menu-items
8.12 Popup menus for panes

make-pane-popup-menu Generic Function

Summary

Generates a popup menu or menu-component.

Package

capi

Signature

make-pane-popup-menu pane interface &key title menu-name component-p => menu

21 CAPI Reference Entries

473

Arguments

pane⇓ A pane in an interface.

interface⇓ An interface or nil.

title⇓ A string or nil.

menu-name⇓ A string or nil.

component-p⇓ A boolean.

Values

menu⇓ A menu or a menu-component.

Description

The generic function make-pane-popup-menu generates a popup menu for pane.

interface can be nil if pane has already been created, in which case the interface of pane is used (obtained by the element
accessor element-interface).

title and menu-name provide a title and name for menu. title and menu-name both default to nil.

If component-p is true, then make-pane-popup-menu creates a menu-component rather than a menu. The default value of
component-p is nil.

Examples

This code makes an interface with two graph-panes. The initialize-instance method uses
make-pane-popup-menu to add a menu to the menu bar from which the user can perform operations on the graphs.

Note that, because make-pane-popup-menu calls make-menu-for-pane to make each menu, the callbacks in the menus
are automatically done on the appropriate graph.

(capi:define-interface gg ()
 ()
 (:panes
 (g1 capi:graph-pane)
 (g2 capi:graph-pane))
 (:layouts
 (main-layout capi:column-layout '(g1 g2)))
 (:menu-bar)
 (:default-initargs
 :visible-min-width 200
 :visible-min-height 300))

(defmethod initialize-instance :after ((self gg)
 &key)
 (with-slots (g1 g2) self
 (setf
 (capi:interface-menu-bar-items self)
 (append
 (capi:interface-menu-bar-items self)
 (list
 (make-instance
 'capi:menu
 :title "Graphs"
 :items
 (list
 (capi:make-pane-popup-menu

21 CAPI Reference Entries

474

http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm

 g1 self :title "graph1")

 (capi:make-pane-popup-menu
 g2 self :title "graph2"))))))))

(capi:display (make-instance 'gg))

See also

make-menu-for-pane
8.12 Popup menus for panes

make-resource-image-set Function

Summary

Constructs an image set object identifying a bitmap resource in a Windows DLL.

Package

capi

Signature

make-resource-image-set &key image-count width height library id => image-set

Arguments

image-count⇓ An integer.

width⇓ An integer.

height⇓ An integer.

library⇓ A string.

id⇓ A string or an integer.

Values

image-set An image-set object.

Description

The function make-resource-image-set constructs an image set object that identifies an image stored as a bitmap
resource in a DLL on Microsoft Windows.

width and height are the dimensions of a single sub-image within the main image, and image-count specifies the number of
sub-images in the image.

library should be a string specifying the name of the DLL.

id should be either an integer which is the resource identifier of the bitmap, or a string naming the bitmap resource.

21 CAPI Reference Entries

475

Notes

make-resource-image-set is only available in LispWorks for Windows.

See also

image-set
make-icon-resource-image-set
make-general-image-set
5.10.4 image-list, image-set and image-locator

make-scaled-general-image-set Function

Summary

Constructs an image set object which scales images in another image set on Microsoft Windows.

Package

capi

Signature

make-scaled-general-image-set &key width height id image-count => image-set

Arguments

width⇓ An integer.

height⇓ An integer.

id⇓ A pathname, string or symbol.

image-count⇓ An integer.

Values

image-set An image-set object.

Description

The function make-scaled-general-image-set constructs an image set that provides scaled images based on an
image-set object constructed from id as if by make-general-image-set.

width and height are the dimensions of a single sub-image within the main image, and image-count specifies the number of
sub-images in both images. That is, the sub-images are scaled to this size.

The default value of image-count is 1.

Notes

make-scaled-general-image-set is only available in LispWorks for Windows.

21 CAPI Reference Entries

476

See also

image-set
make-general-image-set
5.10.4 image-list, image-set and image-locator

make-scaled-image-set Function

Summary

Creates an image set by scaling the images of another image set on Microsoft Windows.

Package

capi

Signature

make-scaled-image-set &key image-count width height base-image-set => image-set

Arguments

image-count⇓ An integer.

width⇓ An integer.

height⇓ An integer.

base-image-set⇓ An image-set object.

Values

image-set⇓ An image-set object.

Description

The function make-scaled-image-set constructs an image set that provides scaled images based on an existing image set
object base-image-set.

width and height are the dimensions of a single sub-image within the main image. That is, the sub-images in base-image-set
are scaled to this size to produce the sub-images of image-set.

image-count specifies the number of sub-images in the image. It is unspecified what happens if image-count is different from
the image count in base-image-set.

Notes

make-scaled-image-set is only available in LispWorks for Windows.

See also

image-set
make-general-image-set
5.10.4 image-list, image-set and image-locator

21 CAPI Reference Entries

477

make-sorting-description Function

Summary

Makes a sorting description suitable for use in a sorted-object.

Package

capi

Signature

make-sorting-description &key type key sort reverse-sort sort-function object-sort-caller => sorting-description

Arguments

type⇓ A Lisp object naming the type of sorting.

key⇓ A function of 1 argument.

sort⇓ A function of 2 arguments.

reverse-sort⇓ A function of 2 arguments.

sort-function⇓ A sorting function.

object-sort-caller⇓ A function of 5 arguments.

Values

sorting-description A sorting description object.

Description

The function make-sorting-description makes a sorting description object that can be used as one of the sort-
descriptions in a sorted-object such as a list-panel.

type is a name that should be unique (compared by cl:equalp) amongst the sort-descriptions of a sorted-object.

key is a function that is passed to sort-function as its :key argument. The default value of key is cl:identity.

sort is a predicate function that is passed to sort-function to compare pairs of items.

reverse-sort is a predicate function that is passed to sort-function for reverse sorting.

Unless object-sort-caller is supplied, sort-function is the function that is called to actually do the sorting. Its signature is:

sort-function items predicate &key key

The default value of sort-function is cl:sort.

When object-sort-caller is supplied, then it is called instead of calling sort-function, and is responsible for the sorting. The
signature of the caller is:

object-sort-caller sorted-object items sort-function sort-predicate key => sorted-items

21 CAPI Reference Entries

478

http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_identi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sort_.htm

where sorted-object is the sorted-object itself, items is the list of items to sort, and sort-function, sort-predicate and key
are taken from the description. sort-predicate is either sort or reverse-sort as appropriate. The caller needs to return a sorted
list of the items.

The caller can do the default behavior by:

funcall sort-function item sort :key key

Notes

1. The purpose of using object-sort-caller is to allow access to the sorted-object to decide how to do the sorting. When
using object-sort-caller, sort-function, sort, reverse-sort and key are used solely as arguments to it, hence in this case you
can supply arbitrary values which the caller interprets.

2. The sorting can be destructive.

Examples

(setq lp
 (capi:contain
 (make-instance
 'capi:list-panel
 :items '("Apple"
 "Orange"
 "Mangosteen"
 "Pineapple")
 :visible-min-height '(:character 5)
 :sort-descriptions
 (list (capi:make-sorting-description
 :type :length
 :sort
 #'(lambda (x y)
 (> (length x) (length y)))
 :reverse-sort
 #'(lambda (x y)
 (< (length x) (length y))))
 (capi:make-sorting-description
 :type :alphabetic
 :sort 'string-greaterp
 :reverse-sort 'string-lessp)))))

(capi:sorted-object-sort-by lp :length)

(capi:sorted-object-sort-by lp :alphabetic)

See also

sort-object-items-by
sorted-object
sorted-object-sort-by

21 CAPI Reference Entries

479

manipulate-pinboard Generic Function

Summary

Adds or removes one or more pinboard-objects on a pinboard.

Package

capi

Signature

manipulate-pinboard pinboard-layout pinboard-object action &key position

Arguments

pinboard-layout⇓ A pinboard-layout.

pinboard-object⇓ A pinboard-object to be added, or (with action :add-many) a list of
pinboard-objects to be added, or (with action :delete-if) a function of one
argument, for multiple deletion.

action⇓ One of :add, :add-top, :add-bottom, :add-many or :delete. Can also be
:delete-if, for multiple deletion.

position⇓ One of :top or :bottom, or a non-negative integer.

Description

The generic function manipulate-pinboard adds pinboard-object to pinboard-layout, or removes one or more
pinboard-objects from pinboard-layout. These operations can also be effected using (setf layout-description),
but manipulate-pinboard is much more efficient and produces a better display.

If action is :add, then the pinboard-object pinboard-object is added according to the value of position:

:top On top of the other pinboard objects.

:bottom Below the other pinboard objects.

An integer At index position in the sequence of pinboard objects, where 0 is the index of the topmost
pinboard object. Values of position greater than the number of pinboard objects are interpreted as
:bottom.

action :add-top is the same as passing action :add and position :top.

action :add-bottom is the same as passing action :add and position :bottom.

action :add-many is like calling the function with action :add several times, but is more efficient. The value of pinboard-
object must be a list of pinboard-objects, each of which is added at the specified position, as for :add.

action :delete deletes the pinboard-object pinboard-object from pinboard-layout.

When action is :delete-if, pinboard-object should be a function which takes one argument, a pinboard-object. This
function is applied to each pinboard-object in pinboard-layout and each object for which it returns true is deleted from
pinboard-layout.

21 CAPI Reference Entries

480

Notes

You can control automatic resizing of pinboard-object using set-object-automatic-resize.

Examples

(setq pl
 (capi:contain
 (make-instance 'capi:pinboard-layout
 :visible-min-height 500
 :visible-min-width 200)))

Add some pinboard-objects:

(capi:apply-in-pane-process
 pl #'(lambda (pp)
 (dotimes (y 10)
 (let ((yy (* y 40)))
 (capi:manipulate-pinboard
 pp
 (make-instance 'capi:line-pinboard-object
 :start-x 4 :start-y yy
 :end-x 54 :end-y (+ 6 yy))
 :add-top)
 (capi:manipulate-pinboard
 pp
 (make-instance 'capi:pinboard-object
 :x 4 :y (+ 20 yy)
 :width 50 :height 6
 :graphics-args
 '(:background :red))
 :add-top))))
 pl)

Remove some pinboard-objects:

(capi:apply-in-pane-process
 pl
 #'(lambda (pp)
 (dotimes (y 15)
 (let ((po (capi:pinboard-object-at-position pp
 10
 (* y 30))))
 (when po (capi:manipulate-pinboard pp
 po
 :delete)))))
 pl)

Remove all line-pinboard-objects:

(capi:apply-in-pane-process
 pl 'capi:manipulate-pinboard pl
 #'(lambda (x)
 (typep x 'capi:line-pinboard-object))
 :delete-if)

See also

pinboard-layout
set-object-automatic-resize

21 CAPI Reference Entries

481

map-collection-items Generic Function

Summary

The generic function map-collection-items calls a specified function on all the items in a collection.

Package

capi

Signature

map-collection-items collection function &optional collect-results-p

Arguments

collection⇓ A collection.

function⇓ A function designator for a function of one argument.

collect-results-p⇓ A generalized boolean.

Description

Calls function on each item in collection by calling collection's items-map-function. If collect-results-p is true, the results of
these calls are returned in a list.

Examples

(setq collection (make-instance 'capi:collection
 :items '(1 2 3 4 5)))

(capi:map-collection-items collection
 'princ-to-string t)

See also

collection
choice

map-pane-children Generic Function

Summary

Calls a function on each of a pane's children.

Package

capi

21 CAPI Reference Entries

482

Signature

map-pane-children pane function &key visible test reverse

Arguments

pane⇓ A CAPI pane.

function⇓ A function of one argument.

visible⇓ A boolean. The default value is nil.

test⇓ A function of one argument, or nil. The default is nil.

reverse⇓ A boolean. The default value is nil.

Description

The generic function map-pane-children applies function to pane's immediate children.

If visible is true, then function is applied only to the visible children.

If test is non-nil, it is a function which is applied first to each child, and only those for which test returns a true value are then
passed to function.

If reverse is non-nil, the order in which the children are processed is reversed.

Examples

This example constructs a pinboard containing random ellipses. A repainting function is mapped over them, restricted to
those with width greater than height.

(defun random-color ()
 (aref #(:red :blue :green :yellow :cyan
 :magenta :pink :purple :black :white)
 (random 10)))

(defun random-origin ()
 (list (random 350) (random 250)))

(defun random-size ()
 (list (+ 10 (random 40))
 (+ 10 (random 40))))

(setf ellipses
 (capi:contain
 (make-instance
 'capi:pinboard-layout
 :children
 (loop for i below 40
 for origin = (random-origin)
 for size = (random-size)
 collect
 (make-instance 'capi:ellipse
 :x (first origin)
 :y (second origin)
 :width (first size)
 :height (second size)
 :graphics-args
 (list :foreground
 (random-color))
 :filled t)))))

21 CAPI Reference Entries

483

(defun repaint (ellipse)
 (setf (capi:pinboard-object-graphics-args ellipse)
 (list :foreground (random-color)))
 (capi:redraw-pinboard-object ellipse t))

(defun widep (ellipse)
 (capi:with-geometry ellipse
 (> capi:%width% capi:%height%)))

(capi:map-pane-children ellipses 'repaint :test 'widep)

See also

map-pane-descendant-children
3.7 Hierarchy of panes

map-pane-descendant-children Generic Function

Summary

Calls a function on each of the descendant panes of a pane.

Package

capi

Signature

map-pane-descendant-children pane function &key visible test reverse leaf-only

Arguments

pane⇓ A CAPI pane.

function⇓ A function of one argument.

visible⇓ A boolean. The default value is nil.

test⇓ A function of one argument, or nil. The default is nil.

reverse⇓ A boolean. The default value is nil.

leaf-only⇓ A generalized boolean. The default value is nil.

Description

The generic function map-pane-descendant-children applies function to pane's descendant panes (that is, the children
and each of their children recursively), depth first.

If visible is true, then function is applied only to the visible descendant panes.

If test is non-nil, it is a function which is applied first to each descendant pane, and only those for which test returns a true
value are then passed to function.

If reverse is non-nil, the order in which the children are processed is reversed.

If leaf-only is true, then function is applied only to those panes which do not have children.

21 CAPI Reference Entries

484

See also

map-pane-children
pane-descendant-child-with-focus
3.7 Hierarchy of panes

map-typeout Function

Summary

Makes a collector-pane visible.

Package

capi

Signature

map-typeout pane &rest args

Arguments

pane⇓ A pane.

args⇓ Initialization arguments for collector-pane.

Description

The function map-typeout makes a collector-pane the visible child of a switchable-layout, and returns it as well.
The switchable layout is found by looking up the parent hierarchy starting from pane.

The switchable-layout should have one or more children. If it has one child, a new collector-pane is made using
args as the initargs with :buffer-name defaulting to "Background Output". If it has more than one child, it searches
through the children to find the first collector-pane.

See also

unmap-typeout
with-random-typeout
collector-pane

maximum-moving-objects-to-track-edges Variable

Summary

Limits the tracking of edges in a graph.

Package

capi

21 CAPI Reference Entries

485

Initial Value

15

Description

The variable *maximum-moving-objects-to-track-edges* limits the tracking of edges in a graph.

If there are more than *maximum-moving-objects-to-track-edges* objects being moved in a graph, then edges are
not tracked.

The value should be an integer.

See also

graph-pane

menu Class

Summary

The class menu creates a menu for an interface when specified as part of the menu bar (or as a submenu of a menu on the
menu bar). It can also be displayed as a context menu.

Package

capi

Superclasses

element
titled-menu-object

Initargs

:items The items to appear in the menu.

:items-function A function to dynamically compute the items.

:mnemonic A character, integer or symbol specifying a mnemonic for the menu.

:mnemonic-escape A character specifying the mnemonic escape. The default value is #\&.

:mnemonic-title A string specifying the title and a mnemonic.

:image-function A function providing images for the menu items, or nil.

Accessors

menu-items
menu-image-function

Description

A menu has a title, and has items appearing in it, where an item can be either a menu-item, a menu-component or another
menu.

The simplest way of providing items to a menu is to pass them as the argument items, but if you need to compute the items

21 CAPI Reference Entries

486

dynamically you should provide the setup callback items-function. This function should return a list of menu items for the
new menu. By default items-function is called on the menu's interface, but a different argument can be specified using the
menu-object initarg setup-callback-argument.

If an item is not of type menu-object, then it gets converted to a menu-object with the item as its data. This function is
called before the popup-callback and the enabled-function which means that they can affect the new items.

To specify a mnemonic in the menu title, you can use the initarg :mnemonic. The value mnemonic can be:

An integer The index of the mnemonic in the title.

A character The mnemonic in the title.

nil A character is chosen from a list of common mnemonics, or the :default behavior is followed.
This is the default.

:default A mnemonic is chosen using some rules.

:none The title has no mnemonic.

An alternative way to specify a mnemonic is to pass mnemonic-title (rather than title) This is a string which provides the text
for the menu title and also specifies the mnemonic character. The mnemonic character is preceded in mnemonic-title by
mnemonic-escape, and mnemonic-escape is removed from mnemonic-title before the text is displayed. For example:

:mnemonic-title "&Open File..."

At most one character can be specified as the mnemonic in mnemonic-title. To make mnemonic-escape itself appear in the
button, precede it in mnemonic-title with mnemonic-escape. For example:

:mnemonic-title "&Compile && Load File..."

If image-function is non-nil, it should be a function of one argument. image-function is called with the data of each menu
item and should return one of:

nil No image is shown.

An image The menu displays this image.

An image id or external-image

The system converts the value to a temporary image for the menu item and frees it when it is no
longer needed.

If image-function is nil, no items in the menu have images. This is the default value.

Notes

1. items-function is called before the menu is raised (in order to initialize accelerators) and in particular it may be called
before the interface is created. Therefore items-function, if you supply it, should work at this early stage.

2. On Microsoft Windows, Cocoa and GTK+, menu items can contain both images and strings, so the print-function should
return the appropriate string or "" if no string is required. On Motif, if there is an image then the string is ignored. You
can test programmatically whether menus with images are supported with pane-supports-menus-with-images.

3. On Microsoft Windows and GTK+, menu items that can have check marks (those inside menu-component with
interaction :multiple-selection or :single-selection) cannot have images (the image is ignored for such
items).

21 CAPI Reference Entries

487

4. When debugging a menu, it may be useful to pop up a window containing a menu with the minimum of fuss. The
function contain will do just that for you.

5. To display a menu as a context (right button) menu, use display-popup-menu, and to display a menu via a labelled
button use popup-menu-button.

6. You must not use a menu object in multiple different places in menu bar(s) at the same time. Supply distinct instances
instead. The one exception is popup menus, which can be used repeatedly and in different places.

7. Microsoft Windows can hide mnemonics when the user is not using the keyboard. See 3.1.4.2 Mnemonics on Microsoft
Windows.

Examples

(capi:contain (make-instance 'capi:menu
 :title "Test"
 :items '(:red :green :blue)))

(capi:contain (make-instance
 'capi:menu
 :title "Test"
 :items '(:red :green :blue)
 :print-function 'string-capitalize))

(capi:contain (make-instance
 'capi:menu
 :title "Test"
 :items '(:red :green :blue)
 :print-function 'string-capitalize
 :callback #'(lambda (data interface)
 (capi:display-message
 "Pressed ~S" data))))

Here is an example showing how to add submenus to a menu:

(setq submenu (make-instance 'capi:menu
 :title "Submenu..."
 :items '(1 2 3)))

(capi:contain (make-instance
 'capi:menu
 :title "Test"
 :items (list submenu)))

Here is an example showing how to use the items-function:

(capi:contain (make-instance
 'capi:menu
 :title "Test"
 :items-function #'(lambda (interface)
 (loop for i below 8
 collect (random 10)
))))

Finally, some examples showing how to specify a mnemonic in a menu title:

(capi:contain (make-instance
 'capi:menu

21 CAPI Reference Entries

488

 :title "Mnemonic Title"
 :mnemonic 1
 :items '(1 2 3)))

(capi:contain (make-instance
 'capi:menu
 :mnemonic-title "M&nemonic Title"
 :items '(1 2 3)))

(capi:contain (make-instance
 'capi:menu
 :mnemonic-title "M&e && You"
 :items '("Me" "You")))

This example shows how to make a menu with images:

(example-edit-file "capi/elements/menu-with-images")

There are further examples here:

(example-edit-file "capi/applications/")

See also

display-popup-menu
menu-component
menu-item
menu-object
ole-control-add-verbs
pane-supports-menus-with-images
popup-menu-button
1.2.1 CAPI elements
8 Creating Menus
13.10 Working with images

menu-component Class

Summary

The class menu-component is a choice that is used to group menu items and submenus both visually and functionally. The
items contained by the menu-component appear separated from other items, menus, or menu components, by separators.

Package

capi

Superclasses

choice
titled-menu-object

Initargs

:items The items to appear in the menu.

21 CAPI Reference Entries

489

:items-function A setup callback function to dynamically compute the items.

:selection-function

A setup callback function to dynamically compute the selection.

:selected-item-function

A setup callback function to dynamically compute the selected item.

:selected-items-function

A setup callback function to dynamically compute the selected items.

Description

Because menu-component is a choice, the component can have interaction :no-selection, :single-selection or
:multiple-selection (extended selection does not apply here). This is represented visually in the menu as appropriate to
the window system that the CAPI is running on (by ticks in Microsoft Windows, and by radio buttons and check buttons in
Motif).

Note that it is not appropriate to have menu components or submenus inside :single-selection and
:multiple-selection components, but it is OK in :no-selection components.

items and items-function behave as in menu.

No more than one of selection-function, selected-item-function and selected-items-function should be non-nil. Each defaults
to nil. If one of these setup callbacks is supplied, it should be a function which is called before the menu-component is
displayed and which determines which items are selected. By default the setup callback is called on the interface of the
menu-component, but this argument can be changed by passing the menu-object initarg setup-callback-argument.

selection-function, if non-nil, should return a value which is suitable for passing to the choice accessor
(setf choice-selection). This will be nil, or a single index (for interaction :single-selection), or a list of item
indices (for interaction :multiple-selection and :extended-selection).

selected-item-function, if non-nil, should return an object which is an item in the menu-component, or is equal to such an
item when compared by the menu-component's test-function.

selected-items-function, if non-nil, should return a list of such objects.

Examples

(capi:contain (make-instance
 'capi:menu-component
 :items '(:red :green :blue)
 :print-function 'string-capitalize
 :interaction :single-selection))

(capi:contain (make-instance
 'capi:menu-component
 :items '(:red :green :blue)
 :print-function 'string-capitalize
 :interaction :multiple-selection))

(capi:contain (make-instance
 'capi:menu
 :items (list
 "An Item"
 (make-instance
 'capi:menu-component
 :items '(:red :green :blue)
 :print-function

21 CAPI Reference Entries

490

 'string-capitalize
 :interaction :no-selection)
 "Another Item")))

See also

menu
menu-item
1.2.1 CAPI elements
5 Choices - panes with items
8 Creating Menus

menu-item Class

Summary

An individual item in a menu or menu component.

Package

capi

Superclasses

item
titled-menu-object

Initargs

:accelerator A character, string or plist, or the keyword :default.

:alternative A generalized boolean.

:help-key An object used for lookup of help. Default value t.

:mnemonic A character, integer or symbol specifying a mnemonic for the menu item.

:mnemonic-escape A character specifying the mnemonic escape. The default value is #\&.

:mnemonic-title A string specifying the text and a mnemonic.

:selected-function A setup callback determining whether the item is selected.

:enabled-function-for-dialog

nil, t, :same-as-normal or a function designator. Determines enabled state when a
dialog is on screen.

Readers

help-key

Description

The class menu-item is an individual item in a menu or menu component. Instances of menu-item are often made
automatically by define-interface, but you can make them explicitly as well.

The text displayed in the menu item is the contents of the text slot, or the contents of the title slot, otherwise it is the result of
applying the print-function to the data.

21 CAPI Reference Entries

491

If selected-function is non-nil it should a function which is called before the menu-item is displayed and which determines
whether or not the menu-item is selected. By default selected-function is called on the interface of the menu-item, but this
argument can be changed by passing the menu-object initarg setup-callback-argument. The default value of selected-
function is nil.

Callbacks are made in response to a user gesture on a menu-item. The callback-type (see callbacks), callback and
callback-data-function (see menu-object) are found by looking for a non-nil value, first in the menu-item, then the
menu-component (if any) and finally the menu. This allows a whole menu to have, for example, callback-type :data
without having to specify this in each item. Some items could override this by having their callback-type slot non-nil if
needed.

To specify a mnemonic in the menu item, you can use the initarg :mnemonic, or the initargs :mnemonic-title and
:mnemonic-escape. These initargs are all interpreted just as in menu.

A menu item should not be used more in more than one place at a time.

help-key is interpreted as described for element.

accelerator can be a character or string specifying a key gesture which will be the accelerator for the menu item.

Note that both-case-p characters are not allowed with the single modifier Shift in the accelerator argument. So instead
of:

:accelerator "shift-x"

use:

:accelerator "X"

Note that the Shift modifier still appears in the menu.

A both-case-p character is allowed with Shift if there are other modifiers, for example:

:accelerator "alt-shift-x"

If accelerator is a character then the system adds the normal modifier for the platform. That is, Command on Cocoa and
Control on Microsoft Windows. The shortcut is validated for the platform.

If accelerator is a string with modifier keys then the system uses it only if it follows the normal conventions for the
platform. The shortcut is validated for the platform.

The special virtual modifier name "accelerator" is allowed in string values of accelerator. It is interpreted as the normal
modifier key for the platform. For example:

:accelerator "accelerator-x"

means Control+X on Microsoft Windows and Motif, and Command+X on Cocoa.

If accelerator is a plist then its keys are keywords naming some or all of the supported libraries (as returned by
default-library). The plist's values are characters or strings which the system interprets as above, except that no check is
made that the keyboard shortcut is valid for the platform.

accelerator has a special default value :default, which means that, depending on interface-keys-style for the
interface, a standard accelerator is added if the item title matches a standard menu command. For the full set of standard
accelerators see 8.7.1 Standard default accelerators.

Note: accelerator is not supported when the menu-item is in the pane-menu of a simple-pane.

21 CAPI Reference Entries

492

http://www.lispworks.com/documentation/HyperSpec/Body/f_upper_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_upper_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm

alternative, when true, makes the menu-item an "alternative item". Alternative items are invoked if modifiers are held while
selecting the "main item". These modifiers are defined by the item's accelerator. The main item is the one before the first
alternative item, and each alternative item must be within the same menu and menu component. For an example see:

(example-edit-file "capi/elements/accelerators")

and for more information see 8.8 Alternative menu items.

enabled-function-for-dialog determines whether the item is enabled when a dialog is on the screen. Items in the menu bar
menus and sub-menus are disabled by default while a dialog is on the screen on top of the active window. You can override
this by specifying enabled-function-for-dialog. The value can be one of:

t The item is enabled whenever there is a dialog.

nil The item is disabled whenever there is a dialog.

:same-as-normal Do the same as when there is no dialog. This depends on the enabled-function (see
menu-object).

A function A function that is called instead of the enabled-function to decide if the item should be enabled.
It is called with one argument, by the default the menu interface, which can be overridden by the
initarg :setup-callback-argument (see menu-object for details).

The default value of enabled-function-for-dialog is nil.

Notes

Some accelerators do not work on some platforms because they have other standard meanings, for example on Microsoft
Windows F1 always invokes the help-callback.

On X11/Motif the accelerators of alternative items do not work.

Examples

(capi:contain (make-instance 'capi:menu-item
 :text "Press Me"))

(capi:contain (make-instance 'capi:menu-item
 :data :red
 :print-function
 'string-capitalize))

(capi:contain (make-instance
 'capi:menu-item
 :data :red
 :print-function 'string-capitalize
 :callback #'(lambda (data interface)
 (capi:display-message
 "Pressed ~S"
 data))))

In this example note how the File menu gets accelerators automatically for its standard items:

(defun do-menu-item (item)
 (capi:display-message
 (format nil "~A" (capi:item-data item))))

(capi:define-interface mmm () ()

21 CAPI Reference Entries

493

 (:menu-bar f-menu a-menu)
 (:menus
 (f-menu
 "File"
 (("Open..." :data "Open...")
 ("New" :data "New"))
 :callback 'do-menu-item
 :callback-type :item)
 (a-menu
 "Another Menu"
 (("Open..." :data "Another Open")
 ("New" :data "Another New")
 ("Blancmange" :data "Blancmange"
 :accelerator "accelerator-b"))
 :callback 'do-menu-item
 :callback-type :item))
 (:default-initargs
 :width 300
 :height 200))

;; This causes automatic accelerators on all platforms.

;; That is the default behavior on Microsoft Windows.
(defmethod capi:interface-keys-style ((self mmm))
 :pc)

(capi:contain (make-instance 'mmm))

These are further examples:

(example-edit-file "capi/applications/hangman")

(example-edit-file "capi/printing/fit-to-page")

See also

choice
interface-keys-style
menu
menu-component
1.2.1 CAPI elements
3.12 Tooltips
8 Creating Menus
9.4.1 Sharing toolbar callbacks with menu items

menu-object Class

Summary

The class menu-object is the superclass of all menu objects, and provides functionality for handling generic aspects of
menus, menu components and menu items.

Package

capi

21 CAPI Reference Entries

494

Superclasses

callbacks

Subclasses

titled-menu-object

Initargs

:popup-callback Callback before the menu appears.

:enabled-function Returns true if the menu is enabled.

:enabled-slot The object is enabled if the slot is non-nil.

:callback The selection callback for the object.

:callback-data-function

A function to return data for the callback.

:setup-callback-argument

If non-nil, specifies the argument to the setup callbacks (listed below) that are used to set
up the menu-object.

:title The title for the object.

:title-function A setup callback which returns the title for the object, and optionally a mnemonic for the
title.

Accessors

menu-popup-callback
menu-title
menu-title-function

Readers

menu-object-enabled

Description

The simplest way to give a title to a menu-object is to just supply a title string, and this will then appear as the title of the
object.

Alternatively, a title-function can be provided which will be called when the menu is about to appear and which should return
the title to use. By default title-function is called on the interface of the menu-object, but this argument can be changed by
passing the initarg setup-callback-argument.

To specify a mnemonic in the title returned by title-function, make title-function return the mnemonic as a second value. This
value is interpreted in the same way as the mnemonic argument for menu.

When the menu object is about to appear on the screen, the CAPI does the following:

1. The setup callback items-function (if there is one) is called and the result is used to set the items, for menu and
menu-component. The argument passed to items-function is the same as for the other setup callbacks (see below).

2. The popup-callback (if there is one) is called and can make arbitrary changes to that object. The popup-callback is
always called with the menu object, regardless of the value of setup-callback-argument.

21 CAPI Reference Entries

495

3. The other setup callbacks are called to set up the selection, enabled state and title. These setup callbacks include enabled
-function for all menu-objects and title-function for all titled-menu-objects. The additional setup callbacks for
menu-component are selection-function, selected-item-function, and selected-items-function. menu-item has the
additional setup callback selected-function.

By default setup-callback-argument is nil, which means that each of the setup callbacks is called on the interface of the
menu-object. If setup-callback-argument is non-nil, then it is passed (instead of the interface) as the argument to each
of the setup callbacks.

4. The menu containing the object appears with all of the changes made.

Note that enabled-slot is a short-hand means of creating an enabled-function which checks the value of a slot in the menu
object's interface.

The enabled state of a menu-object is computed each time the menu is displayed, using enabled-function or enabled-slot.
Therefore the accessor menu-object-enabled is only useful as a reader.

The callback argument is placed in the selection-callback, extend-callback and retract-callback slots unless these are given
explicitly, and so will get called when the menu object is selected or deselected.

The callback-data-function is a function that is called with no arguments and the value it returns is used as the data to the
callbacks.

Notes

1. The function enabled-function should not display a dialog or do anything that may cause the system to hang. In general
this means interacting with anything outside the Lisp image, including files, databases and so on.

2. The subclass titled-menu-object is retained only for backward compatibility.

Examples

(capi:contain (make-instance
 'capi:menu-item
 :text "Press Me"
 :enabled-function #'(lambda (item)
 (eq (random 2)
 1))))

The next example illustrates the use of setup-callback-argument. The initialize-instance method adds to the "Some
Numbers" menu a sub-menu that lists the selected items in the list-panel. By using setup-callback-argument in this
menu, the setup callbacks (in this case enabled-function and items-function) are called directly on the list-panel.

Note that, while this example uses a CAPI object as the setup-callback-argument, any object of any type can be used.

(capi:define-interface my-interface ()
 ()
 (:panes
 (list-panel
 capi:list-panel
 :items '(1 2 3 4 5 6 7 8 9 0)
 :interaction :extended-selection
 :visible-min-height '(character 10)))
 (:menus
 (a-menu
 "Some Numbers"
 ("One" "Two")
))
 (:menu-bar a-menu))

21 CAPI Reference Entries

496

http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm

(defmethod initialize-instance :after
 ((self my-interface) &key)
 (with-slots (a-menu list-panel) self
 (setf (capi:menu-items a-menu)
 (append
 (capi:menu-items a-menu)
 (list
 (make-instance 'capi:menu
 :items-function
 'capi:choice-selected-items
 :setup-callback-argument
 list-panel
 :enabled-function
 'capi:choice-selection
 :title
 "Selected Items"))))))

(capi:display (make-instance 'my-interface))

See also

menu
menu-item
menu-component

merge-menu-bars Generic Function

Summary

Computes the menu bar for a document-frame on Microsoft Windows.

Package

capi

Signature

merge-menu-bars frame document => menus

Arguments

frame⇓ A document-frame.

document⇓ An interface or nil.

Values

menus A list of menu objects.

Description

The generic function merge-menu-bars is called by the system to compute the menu bar for a document-frame interface
frame.

The set of visible menus in such an interface is typically made up from those of frame and those of the active document
document within it.

21 CAPI Reference Entries

497

There is a built-in unspecialized method that appends the menu bars of the two interfaces and is equivalent to this:

(defmethod capi:merge-menu-bars ((frame t)
 (document t))
 (append
 (capi:interface-menu-bar-items frame)
 (and document
 (capi:interface-menu-bar-items document))))

You can customize the menu bar by adding methods which specialize on particular frame and document interface classes.

Notes

merge-menu-bars is implemented only in LispWorks for Windows.

See also

document-frame
interface
menu

message-pane Class

Summary

The class displaying the message when a pane is created with the :message initarg.

Package

capi

Superclasses

title-pane

Description

The class message-pane is used to implement the message decoration on subclasses of titled-object.

A message-pane with text "Message" is created automatically when a titled-object is created with message
"Message".

Notes

message-pane does not add functionality to title-pane, and it is used only to allow different resources in GTK+ and
Motif.

See also

titled-object

21 CAPI Reference Entries

498

metafile-port Class

Summary

A graphics port created by with-external-metafile and with-internal-metafile.

Package

capi

Superclasses

graphics-port-mixin

Description

The class metafile-port is the graphics port that with-external-metafile and with-internal-metafile create
when their pane argument is not supplied.

See also

with-external-metafile
with-internal-metafile

modify-editor-pane-buffer Function

Summary

Modifies the contents and fill mode of a specified buffer.

Package

capi

Signature

modify-editor-pane-buffer pane &key contents flag fill fixed-fill force

Arguments

pane⇓ An editor-pane.

contents⇓ A string or nil.

flag⇓ A keyword.

fill⇓ A boolean, with special meaning for a fixnum and :default.

fixed-fill⇓ An integer or nil.

force⇓ A generalized boolean.

21 CAPI Reference Entries

499

Description

The function modify-editor-pane-buffer modifies the editor-pane pane according to the keyword arguments.

contents (if non-nil) supplies a new string to place in the buffer.

If fill is non-nil the editor fills each paragraph in the buffer. If fill is a fixnum then the buffer is filled at that width. If fill is
:default (the default value) and fixed-fill is supplied then the value fixed-fill is used. Otherwise the buffer is filled to the
window width.

fixed-fill defaults to nil.

If force is true (the default), then an editor buffer is created for pane if it does not have one yet. If force is false then
modify-editor-pane-buffer will signal an error if pane does not have an editor buffer.

Notes

The argument flag is deprecated. You can supply the initarg :flag when creating an editor-pane.

See also

editor-pane

modify-multi-column-list-panel-columns Function

Summary

Modify the columns of a multi-column-list-panel.

Package

capi

Signature

modify-multi-column-list-panel-columns self &key columns x-adjust reorderable-columns sort-descriptions column
-function item-print-functions

Arguments

self⇓ A multi-column-list-panel.

columns⇓ A list of column specifications.

x-adjust⇓ A list.

reorderable-columns⇓ A list.

sort-descriptions⇓ A list.

column-function⇓ A function of one argument or a list of functions of one argument. The default is
identity.

item-print-functions⇓ A function of one argument, or a list of such functions.

21 CAPI Reference Entries

500

http://www.lispworks.com/documentation/HyperSpec/Body/f_identi.htm

Description

The function modify-multi-column-list-panel-columns modifies the columns of self.

All the keyword arguments have the same meaning as the corresponding initargs in multi-column-list-panel. See the
entry for multi-column-list-panel for details.

For all the keyword arguments except x-adjust and reorderable-columns, if they are not supplied then the value does not
change. For all keyword arguments except sort-descriptions, x-adjust and reorderable-columns, if they are passed as nil
then the corresponding value does not change. If sort-descriptions is passed as nil, then the sort-descriptions are changed to
nil.

Notes

1. columns and column-function need to match, so normally you modify them both. Supplying column-function as a list of
functions makes it easier to match, by just making column-function a list parallel to columns.

2. An alternative solution is to use a column-function that decides dynamically what values to return based on some value
that you set when you call modify-multi-column-list-panel-columns. For example you can make column-
function a function that closes over the containing interface, and check a slot in it to decide which columns to return, and
then update this slot whenever you call modify-multi-column-list-panel-columns.

3. If item-print-functions is a list, it will also have to be updated when columns are updated.

4. If columns is supplied then x-adjust and reorderable-columns are also used to modify the columns, so you might need to
supply them as well. x-adjust and reorderable-columns are ignored if columns is not supplied.

5. Since sort-descriptions are searched, they do not need to be updated when columns is updated, provided that they already
contain all the sort kinds that any column may use.

See also

multi-column-list-panel

modify-stacked-tree Function

Summary

Modify several properties of a stacked-tree at the same time.

Package

capi

Signature

modify-stacked-tree stacked-tree &key root value max-level item-function

Arguments

stacked-tree⇓ A stacked-tree.

root⇓, value⇓, max-level⇓, item-function⇓
See the initargs of stacked-tree.

21 CAPI Reference Entries

501

Description

The function modify-stacked-tree can be used to modify several properties in stacked-tree at the same time. Most
importantly, it allows you to set the properties that you are likely to want to change at the time you set the root.

Setting max-level and item-function has no effect until the next time the root is set. If you want to set one or both of them for
the existing root, just supply the :root keyword with the current root using stacked-tree-root.

Supplying root or value has an immediate effect, and stacked-tree is redrawn with the new setting. When supplying root, this
means recomputing the whole tree, which may take enough time to cause a noticeable delay.

For keywords that are not supplied, the corresponding properties do not change.

modify-stacked-tree can be called before stacked-tree is displayed, but will not have any affect until then.

See also

stacked-tree

mono-screen Class

Summary

A class for monochrome screen.

Package

capi

Superclasses

screen

Description

Instances of the class mono-screen are created for monochrome screens. It is available primarily as a means of
discriminating on whether or not to use colors in an interface.

See also

color-screen

move-line Generic Function

Summary

Moves a line-pinboard-object.

Package

capi

21 CAPI Reference Entries

502

Signature

move-line line-pinboard-object start-x start-y end-x end-y &key redisplay

Arguments

line-pinboard-object⇓ An instance of line-pinboard-object or a subclass.

start-x⇓ The x coordinate of the start of the line.

start-y⇓ The y coordinate of the start of the line.

end-x⇓ The x coordinate of the end of the line.

end-y⇓ The y coordinate of the end of the line.

redisplay⇓ A boolean.

Description

The generic function move-line moves line-pinboard-object to a new location with start and end points specified by start-x,
start-y, end-x and end-y.

This automatically adjusts the geometry of the object, taking into account other constraints. Examples of such constraints are
the label in a labelled-line-pinboard-object and the arrowhead in a arrow-pinboard-object.

The default value of redisplay is t, which means that the changed line is redrawn immediately. If you are moving many
objects at the same time, it is useful to pass :redisplay nil.

See also

line-pinboard-object
line-pinboard-object-coordinates

multi-column-list-panel Class

Summary

A list panel with multiple columns of text.

Package

capi

Superclasses

list-panel

Initargs

:column-function A function of one argument or a list of functions of one argument. The default is
identity.

:item-print-functions

A function of one argument, or a list of such functions.

:columns A list of column specifications.

21 CAPI Reference Entries

503

http://www.lispworks.com/documentation/HyperSpec/Body/f_identi.htm

:header-args A plist of keywords and values.

:auto-reset-column-widths

A boolean. The default is t.

:reorderable-columns

A boolean. The default is nil.

:x-adjust A list. The default is nil.

Description

The class multi-column-list-panel is a list panel which displays multiple columns of text. The columns can each have
a title.

Note that this is a subclass of list-panel, and hence of choice, and inherits the behavior of those classes.

Each item in a multi-column-list-panel is displayed in a line of multiple objects. The corresponding objects of each
line are aligned in a column.

The column-function generates the objects for each item. It should take an item as its single argument and return a list of
objects to be displayed. The default column-function is identity, which works if each item is a list.

column-function can also be a list of function designators. In this case the length has to match the length of the columns.
Each function is called with the item to generate the object for the corresponding column.

The item-print-functions argument determines how to calculate the text to display for each element. If item-print-functions is
a single function, it is called on each object, and must return a string. Otherwise item-print-functions should be a sequence of
length no less than than the number of columns. The text to display for each object is the result (again, a string) of calling the
corresponding element of item-print-functions on that object.

The columns argument specifies the number of columns, and whether the columns have titles and callbacks on these titles.

Each element of columns is a specification for a column. Each column specification is a plist of keyword and values, where
the allowed keywords are as follows:

:title Specifies the title to use for the column. If any of the columns has a title, a header object is
created which displays the titles. The values of the :title keywords are passed as the items of
the header, unless header-args specifies :items.

:adjust Specifies how to adjust the column. The value can be one of :right, :left, or :center.

:width Specifies a fixed width of the column.

:default-width Specifies the default initial width of the column. The user can resize it. If :width is supplied it
overrides :default-width.

:visible-min-width Minimum width of the column.

:gap Specifies an additional gap alongside the text in the column. :gap is not supported consistently
across platforms (see Notes below).

:reorderable Has an effect only on GTK+. When non-nil, :reorderable specifies that the column is
reorderable, that is the user can drag the header of the column to move the column to another
position. Note that the initarg reorderable-columns forces all columns to be reorderable,
overriding any :reorderable value in the column specification.

21 CAPI Reference Entries

504

http://www.lispworks.com/documentation/HyperSpec/Body/f_identi.htm

:separator A boolean specifying whether the column has a separator from its previous column. The first
column never has a separator. For columns that do not have this keyword, whether they have a
separator is determined by the initarg :separators, which is inherited from list-panel and
defaults to nil.

The values of :width, :visible-min-width and :gap are interpreted as standard geometric hints. See element for
information about these hints.

columns should indicate how many columns to display. At a minimum, the value needs to be (() ()) for two columns
without any titles.

header-args is a plist of initargs passed to the header which displays the titles of the columns. The header object is a
collection. The following collection initargs are useful to pass in header-args:

:selection-callback

A callback function for clicking on the header, or the keyword :sort which specifies sorting as
described below.

:callback-type Defines the arguments of the selection-callback.

:items The items of the header object, that is the titles. Note that :items overrides :title if that is
supplied in columns.

:print-function Controls how each of items is printed, providing the title of each column.

header-args may also contain the keyword :alignments. The value should be a list of alignment keywords, each of which
is interpreted like an :adjust value in columns. The alignment is applied to the title only.

When the callback is :sort, clicking on a header causes a call to sorted-object-sorted-by on the pane, with sort-type
the title of the column, as given either by :items or :title in the columns. To make it work, you also need to define the
sort-definitions, by making the pane with sort-descriptions with types that match the titles (see sorted-object and
make-sorting-description).

If auto-reset-column-widths is true, then the widths of the columns are recomputed when the items of the
multi-column-list-panel are set.

reorderable-columns has effect only on GTK+. When reorderable-columns is non-nil, it makes all the columns in the
multi-column-list-panel reorderable, so the user can change their order by dragging the header of a column. Note that
you can also make only some columns reorderable by not using reorderable-columns, and instead using :reorderable in
the column specification.

If x-adjust is non-nil, then it specifies the adjust values for each columns, that is it has the same effect as having :adjust in
each column specification with the value being the matching item in x-adjust. x-adjust (when non-nil) must be a list of the
same length as columns, where each item is one of the keywords that :adjust in the column specification can accept. The
value in x-adjust overrides any :adjust given in the column specification.

Notes

1. Similar and enhanced functionality is provided by list-view.

2. On Microsoft Windows, :width in a column specification does not actually make the column width be fixed, though it
does supply the initial width.

3. On Microsoft Windows, :gap in a column specification adds the gap on both sides of the text. On Motif it adds the gap
only on the right side of the text. On GTK+ and Cocoa :gap is ignored.

21 CAPI Reference Entries

505

4. The number of columns in a multi-column-list-panel, their titles and what they show can be changed after the
pane is displayed using modify-multi-column-list-panel-columns.

Examples

This example uses the columns initarg:

(capi:contain
 (make-instance
 'capi:multi-column-list-panel
 :visible-min-width 300
 :visible-min-height :text-height
 :columns '((:title "Fruits"
 :adjust :right
 :width (character 15))
 (:title "Vegetables"
 :adjust :left
 :visible-min-width (character 30)))
 :items '(("Apple" "Artichoke")
 ("Pomegranate" "Pumpkin"))))

This example uses header-args to add callbacks and independent alignment on the titles:

(defun mclp-header-callback (interface item)
 (declare (ignorable interface))
 (capi:display-message "Clicked on ~a" item))

(capi:contain
 (make-instance
 'capi:multi-column-list-panel
 :visible-min-width 300
 :visible-min-height :text-height
 :columns '((:adjust :right
 :width (character 15))
 (:adjust :left
 :visible-min-width (character 30)))
 :header-args '(:items ("Fruits" "Vegetables")
 :selection-callback
 mclp-header-callback
 :alignments (:left :right))
 :items '(("Apple" "Artichoke")
 ("Pomegranate" "Pumpkin"))))

This example file illustrates the use of the header's selection-callback :sort to implement sorting of the columns:

(example-edit-file "capi/choice/multi-column-list-panels")

This example uses column-function to implement a primitive process browser:

(defun get-process-elements (process)
 (list (mp:process-name process)
 (mp:process-whostate process)
 (mp:process-priority process)))

(capi:contain
 (make-instance
 'capi:multi-column-list-panel
 :visible-min-width '(character 70)
 :visible-min-height '(character 15)
 :items (mp:list-all-processes)
 :columns '((:title "Name" :adjust :left
 :visible-min-width (character 30))

21 CAPI Reference Entries

506

 (:title "State" :adjust :center
 :visible-min-width (character 20))
 (:title "Priority" :adjust :center
 :visible-min-width (character 12)))
 :column-function 'get-process-elements))

There are further examples in 20 Self-contained examples.

See also

collection
list-panel
list-view
make-sorting-description
modify-multi-column-list-panel-columns
sorted-object-sorted-by
5.3.7 Multi-column list panels

multi-line-text-input-pane Class

Summary

A pane allowing several lines of text to be entered.

Package

capi

Superclasses

text-input-pane

Description

The class multi-line-text-input-pane behaves like a text-input-pane, except that the text entered by the user is
allowed to span several lines — that is, it is allowed to contain Newline characters.

See also

text-input-pane
3.5 Displaying and entering text

non-focus-list-add-filter
non-focus-list-remove-filter
non-focus-list-toggle-filter Functions

Summary

Add or remove the filter in a non-focus list.

21 CAPI Reference Entries

507

Package

capi

Signatures

non-focus-list-add-filter non-focus-list-interface

non-focus-list-remove-filter non-focus-list-interface

non-focus-list-toggle-filter non-focus-list-interface

Arguments

non-focus-list-interface⇓
A non-focus-list-interface.

Description

These functions add or remove the filter in a non-focus list non-focus-list-interface.

non-focus-list-toggle-filter calls non-focus-list-add-filter if the filter is off, otherwise it calls
non-focus-list-remove-filter (it is used as the callback for the filtering-gesture).

non-focus-list-add-filter adds a filter is it is not already on, resets the text in it to empty string, and enables it.

non-focus-list-remove-filter removes the filter if it is on.

See also

prompt-with-list-non-focus

non-focus-list-interface Class

Summary

Created (and destroyed) only by prompt-with-list-non-focus and text-input-pane-in-place-complete.

Package

capi

Superclasses

interface

Description

The class non-focus-list-interface is the class of interface created and destroyed only by
prompt-with-list-non-focus and text-input-pane-in-place-complete. Do not instantiate this class directly.

See also

prompt-with-list-non-focus

21 CAPI Reference Entries

508

text-input-pane-in-place-complete

non-focus-list-toggle-enable-filter Function

Summary

Toggles the enabled state of the filter.

Package

capi

Signature

non-focus-list-toggle-enable-filter non-focus-list-interface

Arguments

non-focus-list-interface⇓
A non-focus-list-interface.

Description

The function non-focus-list-toggle-enable-filter toggles the enabled state of the filter in a non-focus list non-
focus-list-interface created by prompt-with-list-non-focus or text-input-pane-in-place-complete. It has no
effect if the filter is off.

It is used as the callback of the filtering-toggle.

See also

prompt-with-list-non-focus

non-focus-maybe-capture-gesture Function

Summary

Maybe capture a gesture by a non-focus-list-interface.

Package

capi

Signature

non-focus-maybe-capture-gesture non-focus-list-interface gesture => result

Arguments

non-focus-list-interface⇓
A non-focus-list-interface.

21 CAPI Reference Entries

509

gesture⇓ A gesture specifier.

Values

result A generalized boolean.

Description

The function non-focus-maybe-capture-gesture is used to pass input gestures to a non-focus-list-interface
that was created by prompt-with-list-non-focus.

A non-focus-list-interface, by its nature, does not receive keyboard input, but in most of cases it is still useful if it
responds to some gestures. For that to happen, non-focus-maybe-capture-gesture must be called.

gesture must be a gesture specifier, which is an object that can be coerced to a gesture-spec by
sys:coerce-to-gesture-spec.

Currently non-focus-maybe-capture-gesture does the following:

1. If gesture is Escape, it calls non-focus-terminate on non-focus-list-interface.

2. It checks whether the gesture matches any of the gestures in the gesture callbacks of non-focus-list-interface. The gesture
callbacks are either explicitly defined using the keyword arguments :gesture-callbacks or
:add-gesture-callbacks in prompt-with-list-non-focus, or implicitly. By default, all the gestures that are
used in in-place completion (see 10.6 In-place completion) are defined implicitly. These include Up, Down, PageUp,
PageDown (change selection in the list panel), Return (invoke the :action-callback), Control+Return and
Control+Shift+Return (control of the filter in the list panel). The implicitly defined gestures are affected by the
keywords :gesture-callbacks, :filtering-gesture and :filtering-toggle in
prompt-with-list-non-focus.

If a match is found, it is invoked as described for gesture-callbacks in prompt-with-list-non-focus.

3. If filtering is enabled, it checks if the gesture is captured by the filter. A gesture is captured by the filter if it is:

A plain graphic character.

It is inserted to the filter.

Backspace The last character in the filter is deleted.

One of the gestures that update the state of the filter (by default Control+Shift+R, Control+Shift+E,
Control+Shift+C)

The state of the filter is updated.

In any case, where a gesture is captured by the filter the list panel is updated.

If the gesture is captured by one of the possibilities above, non-focus-maybe-capture-gesture returns t, otherwise it
returns nil.

See also

non-focus-terminate
prompt-with-list-non-focus

21 CAPI Reference Entries

510

non-focus-terminate Generic Function

Summary

Terminates the non-focus interface.

Package

capi

Signature

non-focus-terminate non-focus-interface

Method signatures

non-focus-terminate (non-focus-interface non-focus-list-interface)

Arguments

non-focus-interface⇓ A non-focus-list-interface.

Description

The generic function non-focus-terminate closes the non-focus interface non-focus-interface.

It has no return value.

The method terminates a non-focus-list-interface. It destroys the interface in the correct process.

See also

prompt-with-list-non-focus

non-focus-update Generic Function

Summary

Updates the non-focus-interface.

Package

capi

Signature

non-focus-update non-focus-interface

Method signatures

non-focus-update (non-focus-interface non-focus-list-interface)

21 CAPI Reference Entries

511

Arguments

non-focus-interface⇓ A non-focus-list-interface.

Description

The generic function non-focus-update updates the non-focus-interface non-focus-interface.

It has no return value.

The method on non-focus-list-interface needs to be invoked in the process in which the list-updater that was passed
to prompt-with-list-non-focus is expecting to run.

It invokes the list-updater without arguments, and then updates the non-focus-interface with result. See the description of list-
updater in prompt-with-list-non-focus.

Note that if list-updater returns :destroy, this invokes non-focus-terminate on the interface.

See also

prompt-with-list-non-focus
non-focus-terminate

ole-control-add-verbs Function

Summary

Adds to the menu entries for the "verbs" that a component in an ole-control-pane supports.

Package

capi

Signature

ole-control-add-verbs pane menu item-identifier

Arguments

pane⇓ An ole-control-pane.

menu⇓ A menu.

item-identifier⇓ A string or symbol.

Description

The function ole-control-add-verbs adds to the menu entries for the "verbs" that the component supports. The
ole-control-pane pane must have an object already, and the menu menu must have already been created, so
ole-control-add-verbs is typically called in the popup-callback of menu.

item-identifier identifies an item in the menu or a component in the menu (but not in a sub-menu), either by being cl:eq to
the name of the item or cl:equalp to the title of the item. If the item is found, it is replaced either by a sub-menu with the
verbs that the object supports, or, if the object supports only one verb, by an entry for this.

When the user selects an added menu item, the verb is passed to the object (by a call to IOleObject::DoVerb).

21 CAPI Reference Entries

512

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm

Notes

This function is implemented only in LispWorks for Windows. Load the functionality by (require "embed").

See also

menu
ole-control-pane

ole-control-close-object Function

Summary

Closes the object in an ole-control-pane.

Package

capi

Signature

ole-control-close-object pane

Arguments

pane⇓ An ole-control-pane.

Description

The function ole-control-close-object closes the object that is currently in the ole-control-pane pane.

Notes

This function is implemented only in LispWorks for Windows. Load the functionality by (require "embed").

See also

ole-control-pane

ole-control-component Class

Summary

An implementation of the interfaces in the OLE Control protocol.

Package

capi

21 CAPI Reference Entries

513

Superclasses

com:standard-i-unknown

Initargs

:pane-function A function that is called when OLE embeds the Control in a container.

:create-callback A function called just after the pane is created.

:destroy-callback A function called just before the pane is destroyed.

Readers

ole-control-component-pane

Description

The class ole-control-component provides an implementation of the interfaces in the OLE Control protocol, to allow a
CAPI pane to be embedded in an OLE Control container implemented outside LispWorks. It is typically used with the macro
define-ole-control-component to define a subclass of ole-control-component that implements a particular
coclass from a type library. Instances of this class are usually created by the COM run time system, not by explicit calls to
make-instance.

A function designator pane-function must be supplied. pane-function that is called when OLE embeds the Control in a
container. It receives the component as its argument and should return a CAPI pane that will implement the visual aspects of
the control.

Note: The pane returned by pane-function must be a output-pane, layout or interface in the current implementation.
The pane is stored in the component and can be accessed using the reader ole-control-component-pane.

create-callback, if non-nil, is a function called when the pane returned by pane-function has been created in the window
system. The argument is the pane itself. create-callback can perform initialization such as loading images.

destroy-callback, if non-nil, is a function called when the pane returned by pane-function is going to be destroyed. The
argument is the pane itself. destroy-callback can perform cleanups.

Notes

When using an ole-control-component, the normal hierarchy of CAPI objects such as a layout and an interface do not
exist above it. The layout and control of the top level window is the responsibility of the application that embeds the control.
It can communicate with the control by using COM/Automation.

ole-control-component is implemented only in LispWorks for Windows. Load the functionality by
(require "embed").

See also

define-ole-control-component

21 CAPI Reference Entries

514

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

ole-control-doc Class

Summary

A class that implements the document around the object inside an ole-control-pane.

Package

capi

Superclasses

pinboard-layout

Subclasses

ole-control-frame

Description

The class ole-control-doc is a CAPI pane that can be used to implement the document around the object inside an
ole-control-pane. That is, it supports the IOleInPlaceUIWindow interface. Note that this is optional, and is rarely
useful.

To use it the ole-control-doc pane needs to be the parent, not necessarily directly, of an ole-control-pane. When the
object calls IOleInPlaceSite::GetWindowContext, it will get (in the ppdoc [out] argument) an
IOleInPlaceUIWindow interface associated with the ole-control-doc.

A ole-control-doc must have exactly one sub-pane (that is, the length of its description must be 1), but underneath this
pane there can be many panes.

Normally the program does not need to do anything else with the ole-control-doc. It acts in response to resizing of the
window and method calls from the object on the IOleInPlaceUIWindow interface.

Notes

ole-control-doc is implemented only in LispWorks for Windows. Load the functionality by (require "embed").

Even though it is a subclass of pinboard-layout, normally you should not use the pinboard-layout functionality when
using ole-control-doc.

See also

ole-control-pane

ole-control-frame Class

Summary

Implements the frame of components in an ole-control-pane.

21 CAPI Reference Entries

515

Package

capi

Superclasses

ole-control-doc

Description

The class ole-control-frame is a CAPI pane that implements the frame of components, that is it supports the
IOleInPlaceFrame interface. When an ole-control-pane pane is created, it looks upwards in the hierarchy of panes,
and if finds an ole-control-frame pane it uses this as the frame. It uses the first such pane found. When the object in the
ole-control-pane calls IOleInPlaceSite::GetWindowContext, it gets back in the ppframe arg an interface
associated with this frame.

Like ole-control-doc, a ole-control-frame can have only one sub-pane, which itself may contain many panes.

Normally the program does not need to do anything else with the ole-control-frame. It acts in response to resizing of the
window and method calls from the object on the IOleInPlaceFrame interface.

Note that having a frame is optional, and ActiveX does not need it. It is required when embedding an application by
ole-control-insert-object.

Notes

ole-control-frame is implemented only in LispWorks for Windows. Load the functionality by (require "embed").

Even though it is a subclass of pinboard-layout, normally you should not use the pinboard-layout functionality when
using ole-control-frame.

See also

ole-control-insert-object
ole-control-pane

ole-control-i-dispatch Function

Summary

Returns the com:i-dispatch of the component of an ole-control-pane.

Package

capi

Signature

ole-control-i-dispatch pane => result

Arguments

pane⇓ An ole-control-pane.

21 CAPI Reference Entries

516

Values

result A com:i-dispatch or nil.

Description

The function ole-control-i-dispatch returns the com:i-dispatch (that is, the IDispatch interface) of the
component within pane, or nil if none exists. The com:i-dispatch is the one that would be returned by
com:query-interface on the com:i-ole-object.

Notes

Calling ole-control-i-dispatch does not affect the reference count of the interface.

This function is implemented only in LispWorks for Windows. Load the functionality by (require "embed").

See also

ole-control-pane

ole-control-insert-object Function

Summary

Embeds a user-specified document in an ole-control-pane.

Package

capi

Signature

ole-control-insert-object pane

Arguments

pane⇓ An ole-control-pane.

Description

The function ole-control-insert-object prompts the user for a document using the Microsoft Windows function
OleUIInsertObject.

When the user specifies a document in the dialog presented, ole-control-insert-object embeds this document in the
ole-control-pane pane.

Notes

This function is implemented only in LispWorks for Windows. Load the functionality by (require "embed").

See also

ole-control-pane

21 CAPI Reference Entries

517

ole-control-ole-object Function

Summary

Returns the com:i-ole-object of the component of an ole-control-pane.

Package

capi

Signature

ole-control-ole-object pane => result

Arguments

pane⇓ An ole-control-pane.

Values

result A com:i-ole-object or nil.

Description

The function ole-control-ole-object returns the com:i-ole-object (that is, the IOleObject interface) of the
component of the ole-control-pane pane, or nil if none exists.

Notes

Calling ole-control-ole-object does not affect the reference count of the interface.

This function is implemented only in LispWorks for Windows. Load the functionality by (require "embed").

See also

ole-control-pane

ole-control-pane Class

Summary

A class that implements embedding of external components on Microsoft Windows.

Package

capi

Superclasses

pinboard-layout

21 CAPI Reference Entries

518

Initargs

:component-name A string or nil.

:user-component A COM interface pointer or nil.

:save-name A string.

:insert-callback A function.

:close-callback A function.

:sinks A list of sink specifications.

Description

The class ole-control-pane is used to implement embedding of external components.

Note: ole-control-pane is implemented only in LispWorks for Windows. Load the functionality by
(require "embed").

Note: even though it is a subclass of pinboard-layout, normally you should not use the pinboard-layout functionality
when using ole-control-pane.

component-name (if non-nil) specifies the component-name of the pane, as used by component-name.

user-component (if non-nil) is a COM interface pointer of an object that supports the com:i-ole-object interface, and is
ready to display as described in ole-control-user-component.

save-name is used when creating the IStorage object for this component.

insert-callback (if non-nil) is a function that takes a single argument, the pane. It is called immediately after a component was
inserted into the pane. This can be used for any additional initialization that is required, for example setting the properties of
the control.

close-callback (if non-nil) is a function that takes a single argument, the pane. It is called just before the component is going
to be closed, and can be used to do any cleanups that may be required.

sinks is a list of sink specifications for attaching event handlers to the source interfaces of the control. Each element of sinks
should be a list of the form:

(interface-name &key invoke-callback sink-class sink)

The interface-name is used to specify the name of the source interface in the control, which is either a string naming the
interface or :default for the default source interface. If invoke-callback is given, then it should be a function which will be
called with the pane, method-name, method-kind and arguments vector for each source event. The sink-class can be given to
set the class of the internal object used for the sink interface. This is similar to calling attach-simple-sink. Alternatively,
instead of calling invoke-callback, the sink can be specified directly. This is similar to calling attach-sink.

When the ole-control-pane is destroyed, the sinks are automatically detached.

There are currently three ways to insert an external component into an ole-control-pane. These are:

1. Call ole-control-user-component, which asks the user for something to insert.

2. Set the component-name of the pane. This can be done either via the initarg :component-name or by calling
(setf component-name).

3. Set the user-component of the pane, either via the initarg :user-component or by calling
(setf ole-control-user-component).

21 CAPI Reference Entries

519

Examples

(capi:contain
 (list
 (make-instance 'capi:ole-control-pane
 :component-name "OWC.Spreadsheet.9")))

This is a full example:

(example-edit-file "com/ole/html-viewer")

See also

attach-simple-sink
attach-sink
component-name
detach-sink
interface-menu-groups
ole-control-add-verbs
ole-control-close-object
ole-control-i-dispatch
ole-control-insert-object
ole-control-ole-object
ole-control-pane-frame
ole-control-user-component
report-active-component-failure

ole-control-pane-frame Function

Summary

Returns the ole-control-frame of an ole-control-pane.

Package

capi

Signature

ole-control-pane-frame pane => result

Arguments

pane⇓ An ole-control-pane.

Values

result An ole-control-frame or nil.

Description

The function ole-control-pane-frame returns the ole-control-frame of the ole-control-pane pane, if there is
one.

21 CAPI Reference Entries

520

Note: this function is implemented only in LispWorks for Windows. Load the functionality by (require "embed").

See also

ole-control-frame
ole-control-pane

ole-control-pane-simple-sink Class

Summary

A class that implements a sink interface for an embedded component on Microsoft Windows.

Package

capi

Superclasses

com:simple-i-dispatch

Initargs

:ole-control-pane A class instance.

Description

The class ole-control-pane-simple-sink is used by the function attach-simple-sink to implement a sink
interface for an embedded component on Microsoft Windows.

ole-control-pane is the object of type ole-control-pane to whose source interface the sink is being attached.

This class can be subclassed to provide additional functionality in callbacks. See com:simple-i-dispatch in the
COM/Automation User Guide and Reference Manual for more details.

Note: ole-control-pane-simple-sink is implemented only in LispWorks for Windows. Load the functionality by
(require "embed").

See also

attach-simple-sink
ole-control-pane

ole-control-user-component Accessor

Summary

Gets and sets the user-component of an ole-control-pane.

Package

capi

21 CAPI Reference Entries

521

Signature

ole-control-user-component pane => user-component

(setf ole-control-user-component) user-component pane => user-component

Arguments

pane⇓ An ole-control-pane.

user-component⇓ A COM com:i-ole-object interface pointer or nil.

Values

user-component⇓ A COM com:i-ole-object interface pointer or nil.

Description

The accessor ole-control-user-component gets and sets the user-component of the ole-control-pane pane.

user-component (if non-nil) is a COM interface pointer of an object that supports the com:i-ole-object interface, and has
been opened and initialized and is ready to be displayed. This is typically created by calling OleCreate,
OleCreateFromFile, OleCreateFromData or OleLoad with pCLientSite null.

user-component will be closed and released by the ole-control-pane pane, so after you have called
(setf ole-control-user-component) you should not try to use it again or release it. Setting user-component also sets
the pane's component-name to nil.

Notes

This function is implemented only in LispWorks for Windows. Load the functionality by (require "embed").

See also

ole-control-pane

option-pane Class

Summary

A pane which offers a choice of items, but which displays only the currently selected item.

Package

capi

Superclasses

choice
titled-object
simple-pane

21 CAPI Reference Entries

522

Initargs

:enabled Non-nil if the option pane is enabled.

:visible-items-count

An integer or the symbol :default.

:popup-callback A function called just before the popup menu appears, or nil.

:popdown-callback

:image-function A function providing images for items, or nil.

:image-lists A plist of keywords and image-list objects.

:separator-item An item that acts as a separator between other items, or nil.

:enabled-positions A list of fixnums, or the keyword :all.

:window-styles A list of keywords.

Accessors

option-pane-enabled
option-pane-image-function
option-pane-visible-items-count
option-pane-popup-callback
option-pane-separator-item
option-pane-enabled-positions

Description

The class option-pane provides a pane which offers a choice between a number of items via a popup menu. Only the
currently selected item is displayed.

The class option-pane inherits from choice, and so has all of the standard choice behavior such as selection and
callbacks. It also has an extra enabled slot along with an accessor which is used to enable and disable the option pane.

visible-items-count is implemented only on Microsoft Windows. If visible-items-count is an integer then the popup menu is
no longer than this, and is scrollable if there are more items. If visible-items-count is :default, then the popup menu is no
longer than 10. This is the default value.

When popup-callback is non-nil, it should be a function of one argument that will be called just before the popup menu
appears when the user clicks on it. The single argument to the function is the option pane and the return value is ignored. If
required, the function can change the items or selection of the pane. The default value of popup-callback is nil.

If image-function is non-nil, it should be a function of one argument which is called with each item. The return value depends
on image-lists. If image-lists contains an image-list for the :normal key, then the result of image-function should be one
of the following:

A pathname or string This specifies the filename of a file suitable for loading with load-image. Currently this must
be a bitmap file.

A symbol The symbol must have been previously registered by means of a call to
register-image-translation.

An image object For example, as returned by load-image.

An image locator object

This allowing a single bitmap to be created which contains several button images side by side.
See make-image-locator for more information. On Microsoft Windows, it also allows access
to bitmaps stored as resources in a DLL.

21 CAPI Reference Entries

523

An integer This is a zero-based index into the option-pane's image-list. This is generally only useful if
the image list is created explicitly. See image-list for more details.

Otherwise if there is no image-list then it should return one of:

nil No image is shown.

An image object The pane displays this image.

An image id or an external-image object

The system converts the value to a temporary image for the item and frees it when it is no longer
needed.

If image-function is nil, no items have images. This is the default value..

If image-lists is specified, it should be a plist containing the keyword :normal as a key. The corresponding value should be
an image-list object. No other keys are supported at the present time. The image-list associated with the :normal key
is used with the image-function (see above) to specify an image to display in each tab.

separator-item should be an item (compared using test-function) that acts as a separator between other items. A separator
item is not selectable. The default value nil means that there are no separators (regardless of test-function).

If enabled-positions is :all then all the items can be selected. Otherwise the value is a list of fixnums indicating the
positions in the item list which can be selected. The default value is :all.

On Microsoft Windows, if window-styles contains the keyword :simple-text-only, then the option-pane is displayed
using the UI theme and the enabled-positions, separator-item, image-function and visible-items-count initargs are not
supported. Otherwise it is displayed without the UI theme and those options work as documented. This is a limitation in
Microsoft Windows.

Notes

1. The user cannot edit the items in an option-pane. For an element with similar functionality which allows editing, see
text-input-choice.

2. :image-function and :image-lists are currently only implemented for Microsoft Windows, GTK+ and Cocoa.

3. On Motif, the separator is represented simply as a blank item between the other items.

4. On Motif and GTK+ versions older than 2.12, there is no visible representation of the disabled items.

Examples

This example sets the selection and changes the enabled state of an option-pane:

(setq option-pane (capi:contain
 (make-instance 'capi:option-pane
 :items '(1 2 3 4 5)
 :selected-item 3)))

(capi:apply-in-pane-process
 option-pane #'(setf capi:choice-selected-item)
 5 option-pane)

(capi:apply-in-pane-process
 option-pane #'(setf capi:option-pane-enabled)
 nil option-pane)

(capi:apply-in-pane-process

21 CAPI Reference Entries

524

 option-pane #'(setf capi:option-pane-enabled)
 t option-pane)

This example illustrates the use of visible-items-count (Windows only):

(capi:contain
 (make-instance 'capi:option-pane
 :items
 (loop for i below 20 collect i)
 :visible-items-count 6))

These are further examples:

(example-edit-file "capi/choice/option-pane")

(example-edit-file "capi/choice/option-pane-with-images")

There are further examples in 20 Self-contained examples.

See also

text-input-choice
3.1.4.1 Controlling Mnemonics
5 Choices - panes with items
9.7.1 Toolbar items other than buttons with images

output-pane Class

Summary

An output pane is a pane whose display and input behavior can be controlled by the programmer.

Package

capi

Superclasses

titled-object
simple-pane
graphics-port-mixin

Subclasses

pinboard-layout
editor-pane

Initargs

:display-callback A function called to redisplay the pane.

:drawing-mode A keyword controlling quality of drawing, especially anti-aliasing of text.

:graphics-options A platform-specific plist of options controlling how graphics are drawn.

:draw-with-buffer A boolean controlling whether output is buffered, on Microsoft Windows and Motif.

21 CAPI Reference Entries

525

:input-model A list of input specifications, otherwise known as a command table.

:scroll-callback A function called when the pane is scrolled, or nil. The default is nil.

:coordinate-origin Either :scrolled, :fixed or :fixed-graphics.

:focus-callback A function called when the pane gets or loses the input focus, or nil. The default is nil.

:resize-callback A function called when the pane is resized, or nil. The default is nil.

:create-callback A function called just after the pane is created.

:destroy-callback A function called just before the pane is destroyed.

:use-native-input-method

Controls whether to use native input method to interpret keyboard input. Currently this
has an effect only on GTK+.

:composition-callback

This is called for various events related to composition, which here means composing
input characters into other characters by an input method.

Accessors

output-pane-display-callback
output-pane-focus-callback
output-pane-resize-callback
output-pane-scroll-callback
output-pane-create-callback
output-pane-destroy-callback
output-pane-composition-callback
output-pane-input-model

Readers

output-pane-graphics-options
output-pane-coordinate-origin

Description

The class output-pane is a subclass of gp:graphics-port-mixin which means that it supports the graphics ports
drawing operations such as draw-image, draw-string and draw-path.

When the CAPI needs to redisplay a region of the output pane, the display-callback gets called with the output-pane and
the x, y, width and height of the region that needs redrawing. The display-callback should then use Graphics Ports functions
to redisplay that area. To force an area to be re-displayed, use the function invalidate-rectangle.

Note: if you need to temporarily prevent the display-callback from running, for example because it is slow, then use the
Cached Display interface so that the pane still redraws. See output-pane-cache-display for the details.

drawing-mode should be either :compatible which causes drawing to be the same as in LispWorks 6.0, or :quality
which causes all the drawing to be transformed properly, and allows control over anti-aliasing on Microsoft Windows and
GTK+. The default value of drawing-mode is :quality.

For more information about drawing-mode, see 13.2.1 The drawing mode and anti-aliasing.

graphics-options is currently only used by the macOS Cocoa implementation. The single option defined is
:text-rendering, with allowed values:

:glyph Draw glyphs directly using Core Graphics. This only draws characters with glyphs in the chosen
font.

21 CAPI Reference Entries

526

:atsui Draw using ATSUI APIs where possible.This is slower but can handle more characters.

When draw-with-buffer is true, display of the output-pane (that is drawing the background and calling the display-
callback) is done by first drawing to a pixmap buffer, and then drawing from that buffer. This is useful to avoid flickering if
the display is complex. The default value of draw-with-buffer is nil.

The input-model provides a means to get callbacks on m ouse and keyboard gestures. An input-model is a list of mappings
from gesture to callback, where each mapping is a list:

(gesture callback . extra-callback-args)

gesture specifies the type of gesture, which can be Gesture Spec (representing keyboard input), character, mouse button
(including multiple clicks made in quick succession), modifier change, key, command or cursor motion. On Microsoft
Windows and Cocoa gesture can also specify multi-touch gestures that come from trackpad or touchscreen devices, including
zoom, rotate, pan and more.

gesture can match specific input such as uppercase A with the Control key pressed, or a general class of input such as any
character.

input-model can be set before the pane is displayed, but changes after that are ignored. cl:initialize-instance is the
natural place for subclasses to modify the existing input-model, using the output-pane accessor
output-pane-input-model. Note that since the mappings are processed in order, prepending to an existing input-model
overrides it when there are clashes, while appending affects only gestures for which the original input-model did not have a
match.

For all the details of input-model syntax and the precedence and interpretation of the various gesture types, see 12.2.1
Detailed description of the input model.

When coordinate-origin is :scrolled, which is the default, then the CAPI is responsible for scrolling over the scroll range,
and the origin for all the coordinates in callbacks and drawing is scrolling when the user scrolls the pane. This is known as
ordinary scrolling, and is what you normally use.

When coordinate-origin is :fixed, then the user code is responsible for handling scrolling inside the scroll-callback of the
output-pane, and the origin for all coordinates is fixed relative to the top left of the visible area.

When coordinate-origin is :fixed-graphics, the behavior is like :fixed, except that the origin for all CAPI callbacks
and function is scrolled (like the ordinary case). Note that in this case, the CAPI coordinates do not match the coordinates
used when drawing.

Programming with coordinate-origin :fixed or :fixed-graphics is more complex, but is also much more flexible. See
12.4 output-pane scrolling for full details.

When the output pane is scrolled, the CAPI calls the scroll-callback if this is non-nil. The arguments of the scroll callback are
the output-pane, the direction (:vertical, :horizontal or :pan), the scroll operation (:move, :drag, :step or
:page), the amount of scrolling (an integer), and a keyword argument :interactive. This has value t if the scroll was
invoked interactively, and value nil if the scroll was programmatic, such as via the function scroll. In the macOS Cocoa
implementation the direction is always :pan. See the following CAPI example files:

(example-edit-file "capi/output-panes/scrolling-without-bar.lisp")
(example-edit-file "capi/graphics/scrolling-test.lisp")

focus-callback, if non-nil, is a function of two arguments. The first argument is the output-pane itself, and the second is a
boolean. When the output-pane gets the focus, focus-callback is called with second argument t, and when the
output-pane loses the focus, focus-callback is called with second argument nil.

resize-callback, if non-nil, is a function of five arguments called when the output-pane is resized. The first argument is the
output-pane itself, and the rest are its new geometry: x, y, width and height.

21 CAPI Reference Entries

527

http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm

create-callback, if non-nil, is a function of one argument which is called just after the pane is created (but before it becomes
visible). The argument is the pane itself. This function can perform initialization such as loading images.

destroy-callback, if non-nil, is a function of one argument which is called just before the pane is destroyed, for example when
the window is closed or the pane is removed from its layout. The argument is the pane itself. This function can perform
cleanup operations (though note that images associated with the pane are automatically freed).

use-native-input-method should be nil, t or :default. If use-native-input-method is not supplied, or is :default, the
default is used, which is controlled by set-default-use-native-input-method. The default setting is always to use
native input methods.

composition-callback is a function with signature:

composition-callback pane what

where pane is the output pane and what can be one of:

:start The composition operation is starting.

:end The composition ends.

A list A plist describing the "preedit" string, which is a string containing the partial input that should be
displayed while the composition is ongoing. These calls with a plist occur only when the
underlying system does not display the partial input itself. Currently on Microsoft Windows the
system always displays the preedit string itself, so these calls occur only on GTK+ and Cocoa.

During composition there will be repeated calls with a list, in general each time that the preedit string changes. Each call is a
complete description of what needs to be displayed. The data from previous calls should be ignored.

The keys that can appear in the plist are currently:

:string-face-lists The value is a list where each element is itself a list, where the first element is a string and the
second a plist describing a face (a face plist). The strings are the strings that need to be
displayed, and the face plist describing the face that the underlying GUI thinks that each string
needs to be displayed. The face plist may contain any of the following keywords:
:foreground, :background, :font, :bold-p, :italic-p, :underline-p. The argument
string-face-lists may be nil, which means display nothing.

:cursor The argument is an integer describing where the "cursor" should be displayed. The index is into
the string that is concatenation of the strings in string-face-lists.

:selected-range If present, the value specifies the selected range as a cons of start and length in characters. The
start is an index into the string that is a concatenation of the strings in the string-face-lists.

:selection-needs-face

A boolean specifying whether the selected-range should have a different face to the unselected
range.

The editor uses the :start call to position the composition window at the cursor by using set-composition-placement

and the calls with a list to display the partial composition string.

Notes

1. A composition session is initiated and managed by the underlying windowing system (not CAPI) when it is set to use
input method which needs to compose characters from several keyboard gestures (mostly input methods for east Asian
languages). Keyboard gestures that are used by the composition session are not visible to the application, but some
keyboard gestures, typically gestures with modifiers, may be passed through.

21 CAPI Reference Entries

528

2. When the user commits the composition session, the user callbacks from the input-model are called on each character in
the resulting string (as if the user typed each of these characters). The call to composition-callback with :start should
typically use set-composition-placement to tell the system where the interaction should happen. The calls to
composition-callback with a list do not always happen, the underlying system may do it all itself.

3. You can stop an ongoing composition session by calling output-pane-stop-composition. That is useful for
gestures like mouse clicks that may change the interaction such that it does not make sense to continue the composition.

4. draw-with-buffer is typically useful for a pinboard-layout with large number of pinboard objects, or any other feature
that may cause it to flicker.

5. The GTK+ and Cocoa libraries always buffer, so draw-with-buffer is ignored on these platforms.

6. In GTK+ versions before 2.12 the :start and :end calls are not reliable.

Compatibility note

In LispWorks 7.0 and earlier versions, the initarg :pane-can-scroll was used instead of :coordinate-origin.
:pane-can-scroll can still be used, but it is deprecated. :pane-can-scroll nil is the same as
:coordinate-origin :scrolled. :pane-can-scroll t is the same as
:coordinate-origin :fixed-graphics. There was no documented equivalent to :coordinate-origin :fixed.

Examples

Firstly, here is an example that draws a circle in an output pane.

(defun display-circle (self x y width height)
 (declare (ignore x y width height))
 (gp:draw-circle self 200 200 200 :filled t))

(capi:contain (make-instance
 'capi:output-pane
 :display-callback 'display-circle)
 :best-width 200 :best-height 200)

Here is an example that shows how to use a button gesture.

(defun test-callback (self x y)
 (capi:display-message
 "Pressed button 1 at (~S,~S) in ~S" x y self))

(capi:contain
 (make-instance
 'capi:output-pane
 :title "Press button 1:"
 :input-model `(((:button-1 :press)
 test-callback)))
 :best-width 200 :best-height 200)

This example illustrates Gesture Spec mappings.

(defun draw-input (self x y gspec)
 (let ((data (sys:gesture-spec-data gspec))
 (mods (sys:gesture-spec-modifiers gspec)))
 (gp:draw-string
 self
 (with-output-to-string (ss)
 (sys:print-pretty-gesture-spec
 gspec ss :force-shift-for-upcase nil))
 x y)))

21 CAPI Reference Entries

529

(capi:contain
 (make-instance
 'capi:output-pane
 :title "Press keys in the pane..."
 :input-model '((:gesture-spec
 draw-input)))
 :best-width 200 :best-height 200)

(capi:contain
 (make-instance
 'capi:output-pane
 :title "Press Control-a in the pane..."
 :input-model '(((:gesture-spec "Control-a")
 draw-input)))
 :best-width 200 :best-height 200)

Here is a simple example that draws the character typed at the cursor point.

(defun draw-character (self x y character)
 (gp:draw-character self character x y))

(capi:contain
 (make-instance
 'capi:output-pane
 :title "Press keys in the pane..."
 :input-model '((:character draw-character)))
 :best-width 200 :best-height 200)

This example shows how to use the motion gesture.

(defun draw-red-blob (self x y)
 (gp:draw-circle self x y 3
 :filled t
 :foreground :red))

(capi:contain
 (make-instance
 'capi:output-pane
 :title "Drag button-1 across this pane."
 :input-model '(((:button-1 :motion)
 gp:draw-point)
 ((:button-1 :motion :control)
 draw-red-blob)))
 :best-width 200 :best-height 200)

This example illustrates the use of focus-callback:

(capi:contain
 (make-instance
 'capi:output-pane
 :focus-callback
 #'(lambda (x y)
 (format t
 "Pane ~a ~:[lost~;got~] the focus~%"
 x y))))

This example illustrates the use of graphics-options to specify ATSUI drawing on Cocoa:

(defvar *string*
 (coerce (loop for i from 0 below 60
 collect (code-char (* 5 i)))

21 CAPI Reference Entries

530

 'text-string))

(capi:contain
 (make-instance 'capi:output-pane
 :visible-min-width 400
 :visible-max-height 50
 :display-callback
 #'(lambda (pane x y w h)
 (gp:draw-string pane
 string
 10 10))
 :graphics-options
 '(:text-rendering :atsui)))

This example illustrates some effects of drawing-mode:

(example-edit-file "capi/graphics/catherine-wheel")

This example shows how to draw a rectangle indicating selection of objects in response to mouse movement:

(example-edit-file "capi/graphics/highlight-rectangle")

This example illustrate drawing the results of dynamic computation:

(example-edit-file "capi/graphics/plot-offline")

There are further examples here:

(example-edit-file "capi/output-panes/")

See also 20 Self-contained examples.

See also

define-command
pane-modifiers-state
output-pane-resize
output-pane-stop-composition
pinboard-object
scroll
set-default-use-native-input-method
set-composition-placement
system:gesture-spec
3.12 Tooltips
7 Programming with CAPI Windows
8.12 Popup menus for panes
12 Creating Panes with Your Own Drawing and Input
13 Drawing - Graphics Ports
12.4 output-pane scrolling
16 Printing from the CAPI—the Hardcopy API
17 Drag and Drop

21 CAPI Reference Entries

531

output-pane-cached-display-user-info Accessor

Summary

Gets and sets the user-info in the current cached display of an output pane.

Package

capi

Signature

output-pane-cached-display-user-info pane => user-info

(setf output-pane-cached-display-user-info) user-info pane => user-info

Arguments

pane⇓ An output-pane.

user-info⇓ A Lisp object.

Values

user-info⇓ A Lisp object.

Description

The accessor output-pane-cached-display-user-info gets and sets the user-info in the current cached display of the
output pane pane.

If pane does not have a cached display, the getter returns nil and the setter has no effect (but returns the new user-info as per
normal Common Lisp conventions).

A value that is set by the setter will be returned by the getter until the cached display is freed by a call to
output-pane-free-cached-display, either explicitly or implicitly. Note that this means that calls to
start-drawing-with-cached-display and output-pane-cache-display also reset the user-info.

See also

output-pane-free-cached-display
start-drawing-with-cached-display
12.5 Transient display on output-pane and subclasses

output-pane-cache-display Function

Summary

Caches the display of an output pane, ready for later drawing.

21 CAPI Reference Entries

532

Package

capi

Signature

output-pane-cache-display output-pane &optional from-display-p

Arguments

output-pane⇓ An output-pane.

from-display-p⇓ A generalized boolean.

Description

The function output-pane-cache-display caches the display of the output-pane output-pane, that is what it currently
shows. The result can be used later by output-pane-draw-from-cached-display.

When from-display-p is false the cached display is created by a "dummy" call to the display-callback of output-pane. If from-
display-p is true the cached display is created by copying whatever is currently showing on the screen. Note that any
obscured part of the pane will not be copied in this case. The default value of from-display-p is false.

Before caching the display, output-pane-cache-display performs an implicit call to
output-pane-free-cached-display, which undoes the effect of all previous Cached Display interface calls.

Notes

1. Caching the display is useful when you want to avoid calls to the display-callback during some period, which may be
because it is slow or perhaps some other reason.

2. The Cached Display interface functions do not affect the display-callback and it is your responsibility to prevent the
display-callback being called. See output-pane-draw-from-cached-display for more information.

See also

output-pane
output-pane-draw-from-cached-display
output-pane-free-cached-display
start-drawing-with-cached-display
12.5 Transient display on output-pane and subclasses

output-pane-draw-from-cached-display Function

Summary

Draws from the cached display of an output pane.

Package

capi

21 CAPI Reference Entries

533

Signature

output-pane-draw-from-cached-display pane x y width height

Arguments

pane⇓ An output-pane.

x⇓, y⇓, width⇓, height⇓
Real numbers.

Description

The function output-pane-draw-from-cached-display copies into the output pane pane from the last cached display
in the region specified by x, y, width and height.

Notes

The Cached Display interface functions do not affect the display-callback of pane. It is your responsibility to prevent the
display-callback being called, and instead use output-pane-draw-from-cached-display. One way of achieving this is
to have a display-callback that does:

(if (drawing-from-cached-display-p pane)
 (progn
 (output-pane-draw-from-cached-display
 pane x y width height)
 (draw-some-temporary-stuff pane))
 (real-display-callback pane x y width height))

Another way is to replace the display-callback for a while.

See also start-drawing-with-cached-display, which replaces the display-callback too.

See also

output-pane-cache-display
output-pane-free-cached-display
start-drawing-with-cached-display
12.5 Transient display on output-pane and subclasses

output-pane-free-cached-display Function

Summary

Frees the cached display in an output pane.

Package

capi

Signature

output-pane-free-cached-display pane => user-info

21 CAPI Reference Entries

534

Arguments

pane⇓ An output-pane.

Values

user-info⇓ A Lisp object.

Description

The function output-pane-free-cached-display frees the last cached display in pane. This is useful because the
cached display can be large in memory.

output-pane-free-cached-display returns the user-info that is associated with the cached display. Such user-info can
be set either by (setf output-pane-cached-display-user-info) or by passing user-info to
start-drawing-with-cached-display.

Notes

1. output-pane-free-cached-display also undoes any effect of start-drawing-with-cached-display.

2. The Cached Display interface functions do not affect the display-callback and it is your responsibility to prevent the
display-callback being called. See output-pane-draw-from-cached-display for more information.

Examples

This file illustrates the use of output-pane-free-cached-display in a drag operation:

(example-edit-file "capi/output-panes/cached-display")

See also

output-pane-cache-display
start-drawing-with-cached-display
12.5 Transient display on output-pane and subclasses

output-pane-resize Generic Function

Summary

Called when an output-pane is resized.

Package

capi

Signature

output-pane-resize output-pane x y width height

Method signatures

output-pane-resize (output-pane output-pane) (x t) (y t) (width t) (height t)

21 CAPI Reference Entries

535

Arguments

output-pane⇓ An output-pane.

x⇓, y⇓, width⇓, height⇓
Non-negative integers.

Description

The generic function output-pane-resize is called when the output-pane output-pane is resized. width and height
specify the new width and height. x and y specify the position, but are not reliable and should not be used.

output-pane-resize should not called by the user.

The primary method specialized on output-pane sets up internal slots and calls the resize-callback.

Notes

1. Normally you respond to resizing by specifying the resize-callback with the :resize-callback initarg. It is useful to
define your own output-pane-resize method only when you define your own subclass of output-pane which
needs to do something when resizing, and you want to allow different resize-callbacks for individual instances of this
class.

2. output-pane-resize should not draw anything. Newly-exposed areas are automatically displayed by a later call to
the display-callback. If areas that are already exposed need redrawing, output-pane-resize should call
invalidate-rectangle to mark these areas for the display-callback.

See also

output-pane
invalidate-rectangle

output-pane-stop-composition Function

Summary

Stops the ongoing composition.

Package

capi

Signature

output-pane-stop-composition output-pane &key process-p x y => result

Arguments

output-pane⇓ An output-pane.

process-p⇓ A generalized boolean.

x⇓, y⇓ An integer or nil.

21 CAPI Reference Entries

536

Values

result A string or nil.

Description

The function output-pane-stop-composition stops the ongoing composition session if there is any, returning the
currently composed string.

If process-p is true and there is a composition, the current composition string is processed as if the user committed it. That is,
for each character, the user callbacks from the input model are invoked as if it was typed by the user. The default value of
process-p is nil.

x and y provide coordinates for the callbacks. If either of them is nil, the current pointer position is used. When process-p is
nil, x and y are ignored.

output-pane-stop-composition returns the current composition string, if any, or nil.

Notes

1. A composition session is initiated and managed by the underlying windowing system (not CAPI) when it is set to use an
input method which needs compositioning (mostly input methods for east Asian languages). You can tell when it
happens by using :composition-callback in output-pane.

2. Calling output-pane-stop-composition when there is no composition session has no effect.

3. You will typically need to use output-pane-stop-composition when a gesture that is not processed by the input
method (for example a mouse click) changes the interaction such that it does not make sense to continue the composition.

See also

output-pane

over-pinboard-object-p Generic Function

Summary

Tests whether a point lies within the boundary of a pinboard object.

Package

capi

Signature

over-pinboard-object-p pinboard-object x y

Arguments

pinboard-object⇓ A pinboard-object.

x⇓, y⇓ Reals.

21 CAPI Reference Entries

537

Description

The generic function over-pinboard-object-p returns non-nil if the coordinates specified by x and y are within the
boundary of pinboard-object. To find the actual object at this position, use pinboard-object-at-position.

The default method returns t if x and y are within the bounding area of the pinboard object. A method is supplied for
line-pinboard-object and you may add methods for your own pinboard-object subclasses.

See also

pinboard-object-at-position
pinboard-object-overlap-p
pinboard-object
pinboard-layout

page-setup-dialog Function

Summary

Displays the page setup dialog for a given printer.

Package

capi

Signature

page-setup-dialog &key screen owner printer continuation

Arguments

screen⇓ A screen or nil.

owner⇓ A pane or nil.

printer⇓ A printer or nil.

continuation⇓ A function or nil.

Description

The function page-setup-dialog displays the page setup dialog for printer. If printer is not specified, the dialog for the
current printer is displayed.

The CAPI screen on which to display the dialog is given by screen, which is the current screen by default.

owner specifies an owner window for the dialog. See 10 Dialogs: Prompting for Input for details.

If continuation is non-nil, then it must be a function with a lambda list that accepts one argument. continuation is called with
the values that would normally be returned by page-setup-dialog. On Cocoa, passing continuation causes the dialog to
be made as a window-modal sheet and display-dialog returns immediately, leaving the dialog on the screen. The
with-dialog-results macro provides a convenient way to create a continuation function.

Examples

(example-edit-file "capi/printing/simple-print-port")

21 CAPI Reference Entries

538

See also

current-printer
16 Printing from the CAPI—the Hardcopy API

pane-adjusted-offset Generic Function

Summary

Calculates the offset required to place a pane correctly in a layout.

Package

capi

Signature

pane-adjusted-offset pane adjust available-size actual-size &key &allow-other-keys => offset

Arguments

pane⇓ A pane.

adjust⇓ A keyword or a list of keyword and an integer.

available-size⇓ An integer.

actual-size⇓ An integer.

Values

offset An integer.

Description

The generic function pane-adjusted-offset calculates the offset required by adjust so that the pane pane of size actual-
size pixels is placed correctly within available-size pixels in its parent layout. It is called by all of the layouts that inherit from
x-y-adjustable-layout to interpret the values of x-adjust and y-adjust.

Typically, adjust will be a keyword or a list of the form (keyword n) where n is an integer. These values of adjust are
interpreted as by pane-adjusted-position.

However, new methods can accept alternative values for adjust where required and can also add extra keywords. For
example, grid-layout allows adjust to be a list of adjust values, and then passes the offset into this list as an additional
keyword.

Notes

1. pane-adjusted-offset is deprecated.

2. Only a keyword value for adjust should be supplied when pane is a column-layout or row-layout.

Examples

(setq button-panel (make-instance 'capi:button-panel

21 CAPI Reference Entries

539

 :items '(1 2 3)))

(capi:pane-adjusted-offset button-panel
 :center 200 100)

(capi:pane-adjusted-offset button-panel
 :left 200 100)

(capi:pane-adjusted-offset button-panel
 :right 200 100)

See also

layout
x-y-adjustable-layout

pane-adjusted-position Generic Function

Summary

Calculates how to place a pane correctly within a layout, given a minimum and maximum position.

Package

capi

Signature

pane-adjusted-position pane adjust min-position max-position &key &allow-other-keys

Arguments

pane⇓ A pane.

adjust⇓ A keyword or a list of keyword and an integer.

min-position⇓ An integer.

max-position⇓ An integer.

Description

The generic function pane-adjusted-position calculates the position required by adjust so that the pane pane is placed
correctly within the available space in its parent layout, between min-position and max-position. It is a complementary
function to pane-adjusted-offset, and the default method actually calls pane-adjusted-offset with the gap
between the two positions, and then adds on the minimum position to get the new position.

The default method accepts the following values for adjust.

:top Place pane at the top of the region.

:bottom Place pane at the bottom of the region.

:left Place pane at the left of the region.

21 CAPI Reference Entries

540

:right Place pane at the right of the region.

:center Place pane in the center of the region.

(:top n) Place the top of pane n pixels below the top of the region.

(:bottom n) Place the bottom of pane n pixels above the bottom of the region.

(:left n) Place the left of pane n pixels after the left of the region.

(:right n) Place the right of pane n pixels before the right of the region.

(:center n) Place the center of pane n pixels below the center of the region.

However, new methods can accept alternative values for adjust where required and can also add extra keywords. For
example, grid-layout allows adjust to be a list of adjust values, and then passes the offset into this list as an additional
keyword. It is preferable to add new methods to pane-adjusted-offset as these changes will be seen by the default
method of pane-adjusted-position.

Notes

pane-adjusted-position is deprecated.

Examples

(setq button-panel (make-instance 'capi:button-panel
 :items '(1 2 3)))

(capi:pane-adjusted-position button-panel
 :center 100 200)

(capi:pane-adjusted-position button-panel
 :right 100 200)

(capi:pane-adjusted-position button-panel
 :left 100 200)

See also

layout
graph-pane
x-y-adjustable-layout

pane-can-restore-display-p Function

Summary

The predicate for whether a pane's disabled display can be restored.

Package

capi

21 CAPI Reference Entries

541

Signature

pane-can-restore-display-p pane => result

Arguments

pane⇓ A CAPI pane.

Values

result⇓ A boolean.

Description

The function pane-can-restore-display-p is the predicate for whether a pane that has its display disabled can be
restored by pane-restore-display.

result is t if pane has its display disabled and this can be restored by pane-restore-display. Otherwise result is nil.

See also

pane-restore-display
18.4 Restoring display while debugging

pane-close-display Function

Summary

Closes the X display of a pane.

Package

capi

Signature

pane-close-display pane => closedp

Arguments

pane⇓ A CAPI element.

Values

closedp⇓ A boolean.

Description

The function pane-close-display closes the X display connection on which pane is currently displayed. This destroys all
the other panes on the same connection.

closedp is true if the connection was closed.

21 CAPI Reference Entries

542

Notes

pane-close-display is deprecated. It has no effect on Microsoft Windows and Cocoa, and may not do anything useful on
GTK+ either.

pane-descendant-child-with-focus Function

Summary

Finds the child with the input focus.

Package

capi

Signature

pane-descendant-child-with-focus pane => result

Arguments

pane⇓ A pane or layout.

Values

result A pane or nil.

Description

The function pane-descendant-child-with-focus attempts to find the pane inside pane that currently has the input
focus, and returns this pane if successful.

pane-descendant-child-with-focus may return nil if it does not find a pane with the focus.

See also

pane-has-focus-p
3.1.5 Focus

pane-got-focus Generic Function

Summary

A function called when the focus is set programmatically.

Package

capi

21 CAPI Reference Entries

543

Signature

pane-got-focus interface pane

Arguments

interface⇓ The interface of pane.

pane⇓ A CAPI element.

Description

The generic function pane-got-focus is called just before the focus is set in pane by set-pane-focus. interface is the
interface of pane.

The supplied primary method does nothing. You may add methods on your own interface classes, which can be useful for
example when the focus is set programmatically to a pane which is hidden inside a tab-layout or switchable-layout.
Your method can check for this case and modify the layout as required.

See also

set-pane-focus
3.1.5 Focus

pane-has-focus-p Generic Function

Summary

Determines whether a pane has the focus.

Package

capi

Signature

pane-has-focus-p pane => focusp

Arguments

pane⇓ A CAPI element.

Values

focusp A boolean.

Description

The generic function pane-has-focus-p is the predicate for whether pane currently has the input focus.

Notes

On Motif, pane-has-focus-p cannot be used in menu functions such as the enabled-function or popup-callback of a menu

21 CAPI Reference Entries

544

item. It will always return nil, because the focus is on the menu button when the user clicks on it.

See also

accepts-focus-p
pane-descendant-child-with-focus
set-pane-focus
3.1.5 Focus

pane-initial-focus Accessor Generic Function

Summary

Gets or sets the initial focus pane.

Package

capi

Signature

pane-initial-focus pane-with-children => pane

(setf pane-initial-focus) pane pane-with-children => pane

Arguments

pane-with-children⇓ A pane with children.

pane A child of pane-with-children.

Values

pane A child of pane-with-children.

Description

The accessor generic function pane-initial-focus get or sets the child of pane-with-children that has the input focus
when pane-with-children is first displayed.

(setf pane-initial-focus) may be used to set the initial focus pane, but only before pane-with-children has been
created. If the setter is called after pane-with-children has been created, an error is signalled.

pane-with-children should be a pane with child panes such as a layout, an interface, a button-panel or a toolbar.

See also

pane-has-focus-p
3.1.5 Focus

21 CAPI Reference Entries

545

pane-interface-copy-object
pane-interface-copy-p
pane-interface-cut-object
pane-interface-cut-p
pane-interface-deselect-all
pane-interface-deselect-all-p
pane-interface-paste-object
pane-interface-paste-p
pane-interface-select-all
pane-interface-select-all-p
pane-interface-undo
pane-interface-undo-p Generic Functions

Summary

Implements "edit/select operations" and the associated predicates for the active pane.

Package

capi

Signatures

pane-interface-copy-object pane interface => object, string, plist

pane-interface-copy-p pane interface => boolean

pane-interface-cut-object pane interface

pane-interface-cut-p pane interface => boolean

pane-interface-deselect-all pane interface

pane-interface-deselect-all-p pane interface => boolean

pane-interface-paste-object pane interface

pane-interface-paste-p pane interface => boolean

pane-interface-select-all pane interface

pane-interface-select-all-p pane interface => boolean

pane-interface-undo pane interface

pane-interface-undo-p pane interface => boolean

Arguments

pane⇓ A pane.

21 CAPI Reference Entries

546

interface⇓ The interface of pane.

Values

object A Lisp object.

string A string.

plist A plist.

boolean A generalized boolean.

Description

The active pane "edit/select operations" call these generic functions when the active pane does not specify how to perform the
operation. Do not call these directly.

interface is the top level interface of pane. The predicate functions (those with names ending with -p) should return true if
the operation can be performed. The other functions should perform the operations.

You can implement your own methods specializing on pane and interface classes.

Notes

1. These generic functions should not display a dialog or do anything that may cause the system to hang. In general this
means interacting with anything outside the Lisp image, including files, databases and so on.

2. The three return values of pane-interface-copy-object are passed to set-clipboard.

See also

active-pane-copy
item-pane-interface-copy-object
set-clipboard
7.6 Edit actions on the active element

pane-modifiers-state Function

Summary

Returns an integer describing which modifiers are currently active.

Package

capi

Signature

pane-modifiers-state pane => gesture-spec-bits

Arguments

pane⇓ A CAPI pane.

21 CAPI Reference Entries

547

Values

gesture-spec-bits An integer or nil.

Description

The function pane-modifiers-state returns an integer describing which modifiers are currently pressed. The modifiers
are Control, Shift, Meta and Hyper (representing Command on macOS). It also describes whether Caps Lock is currently
on.

pane should be a pane that is displayed on the screen. If it is not displayed, pane-modifiers-state returns nil.

The result is a cl:logior of the following bits:

• sys:gesture-spec-shift-bit

• sys:gesture-spec-control-bit

• sys:gesture-spec-meta-bit

• sys:gesture-spec-hyper-bit

• sys:gesture-spec-caps-lock-bit

The Caps Lock bit behaves in a special way: it is on when Caps is locked, rather than when the Caps Lock key is pressed.

For example, to check if the Control modifier is currently pressed call:

(logtest (pane-modifiers-state pane)
 sys:gesture-spec-control-bit)

Notes

On Cocoa sys:gesture-spec-hyper-bit is for Command.

output-pane supports responding to modifier changes - see :modifier-change in the input-model.

sys:gesture-spec-shift-bit and so on are documented in the LispWorks® User Guide and Reference Manual.

See also

output-pane
sys:gesture-spec-shift-bit
sys:gesture-spec-control-bit
sys:gesture-spec-meta-bit
sys:gesture-spec-hyper-bit
sys:gesture-spec-caps-lock-bit
18.3 Modifier keys state

pane-popup-menu-items Generic Function

Summary

Generates the items for the menu associated with a pane.

21 CAPI Reference Entries

548

http://www.lispworks.com/documentation/HyperSpec/Body/f_logand.htm

Package

capi

Signature

pane-popup-menu-items pane interface => items

Arguments

pane⇓ A pane in interface interface.

interface⇓ An interface.

Values

items⇓ A list in which each element is a menu-item, menu-component or menu.

Description

The generic function pane-popup-menu-items generates the items for the menu associated with the pane pane within the
interface interface. The default method of make-pane-popup-menu calls pane-popup-menu-items to find the items for
the menu. If pane-popup-menu-items returns nil, then make-pane-popup-menu returns nil.

To specify items for menus associated with panes in your interfaces, define pane-popup-menu-items methods specialized
on your interface class.

For most supplied CAPI pane classes, the system method returns nil. The exceptions are editor-pane and graph-pane.
To inherit the items from the system method (or other more general method), call call-next-method.

Notes

1. pane-popup-menu-items is not supported for text panes on Cocoa such as rich-text-pane.

2. pane-popup-menu-items is intended to allow multiple calls on the same pane, to generate menus in different places
(as in the example in make-pane-popup-menu). Therefore the menu-objects that it returns, and their descendant
menu-objects, must be constructed each time that pane-popup-menu-items is called, so that no two menus share
any menu item.

3. The returned items may specify the arguments for their callbacks, but it is not required. If they do not specify the
arguments, then make-pane-popup-menu (by calling make-menu-for-pane) sets up the callbacks such that they are
called on the pane pane.

Examples

The methods below specialized on interface class edgraph:

1. Append the items that were returned by the system method in the bottom of the menu for the editor-pane, and:

2. Add them as a sub-menu for the menu of the graph-pane.

(capi:define-interface edgraph ()
 ()
 (:panes
 (e1 capi:editor-pane)
 (g1 capi:graph-pane))
 (:layouts
 (main-layout capi:column-layout '(e1 g1)))

21 CAPI Reference Entries

549

http://www.lispworks.com/documentation/HyperSpec/Body/f_call_n.htm

 (:menu-bar)
 (:default-initargs
 :visible-min-width 200
 :visible-min-height 300))

(defun my-callback (pane)
 (capi:display-message "Callback on pane ~S." pane))

(defmethod capi:pane-popup-menu-items
 ((self capi:editor-pane) (interface edgraph))
 (list*
 (make-instance 'capi:menu-item
 :title "Item for My Editor Menu."
 :selection-callback 'my-callback)
 (call-next-method)))

(defmethod capi:pane-popup-menu-items
 ((self capi:graph-pane) (interface edgraph))
 (list
 (make-instance 'capi:menu-item
 :title "Item for My Graph Menu."
 :selection-callback 'my-callback)
 (capi:make-menu-for-pane self (call-next-method)
 :title "Default Graph Menu")))

(capi:display (make-instance 'edgraph))

This is a further example:

(example-edit-file "capi/elements/pane-popup-menu-items")

See also

make-pane-popup-menu
8.12 Popup menus for panes

pane-restore-display Function

Summary

Restores the disabled display of a pane if possible.

Package

capi

Signature

pane-restore-display pane => result

Arguments

pane⇓ A CAPI pane.

Values

result A boolean.

21 CAPI Reference Entries

550

Description

The function pane-restore-display restores the disabled display of the pane pane if possible.

If the display of pane is disabled and can be restored, the function pane-restore-display restores it and returns t.
Otherwise it returns nil.

The display of a pane may be disabled to a "restorable" state by some feature, typically a restart around the display callback.
For example, if there is an error inside the display-callback of an output-pane, a restart is added that removes the display
callback. If this restart is used, the output-pane is not displayed (its display-callback is not called) until it is restored (or
the display-callback gets set explicitly).

Examples

The Window Browser tool in the LispWorks IDE uses pane-restore-display in the Enable Display item in its menu.

See also

pane-can-restore-display-p
18.4 Restoring display while debugging

pane-screen-internal-geometry Function

Summary

Returns the internal geometry of the monitor in which a pane's interface is displayed.

Package

capi

Signature

pane-screen-internal-geometry pane => x, y, width, height

Arguments

pane⇓ A CAPI pane.

Values

x⇓ An integer.

y⇓ An integer.

width⇓ A positive integer.

height⇓ A positive integer.

Description

The function pane-screen-internal-geometry returns the internal geometry of the "monitor" in which the interface
that contains pane is displayed. A "monitor" is typically a physical monitor, but can be anything that the underlying GUI

21 CAPI Reference Entries

551

system considers a monitor.

pane must be inside an interface that is already displayed. pane-screen-internal-geometry returns the internal
geometry of the monitor on which this interface is displayed. If the interface spreads across multiple monitors, it returns the
geometry for the monitor on which the largest area of the interface is displayed.

The internal geometry of a monitor is a rectangle which excludes "system areas" like taskbars and global menu bars and so
on. Examples of these include the Windows taskbar, the macOS menu bar, and the macOS Dock. See
screen-internal-geometry for information about displaying CAPI windows in system areas.

x, y, width and height specify a screen rectangle. x and y are offsets from the top-left of the primary monitor.

Notes

On GTK+ the internal geometry is of the workspace in which the interface is displayed. When there are multiple monitors
these values may be incorrect. You can check the number of monitors by screen-monitor-geometries.

See also

screen-internal-geometry
screen-internal-geometries
virtual-screen-geometry
3.13 Screens
4.3 Support for multiple monitors
11.6 Querying and modifying interface geometry

pane-string Generic Function

Summary

Returns the text displayed in an editor-pane.

Package

capi

Signature

pane-string pane => text

Arguments

pane⇓ An editor-pane.

Values

text A string.

Description

The generic function pane-string returns as a string the text of the buffer that is currently displayed in the editor-pane
pane.

21 CAPI Reference Entries

552

Notes

pane-string is deprecated. Use the accessor editor-pane-text instead.

See also

editor-pane

pane-supports-menus-with-images Function

Summary

Tests whether a pane supports menus with images.

Package

capi

Signature

pane-supports-menus-with-images pane => result

Arguments

pane⇓ A displayed CAPI pane.

Values

result A boolean.

Description

The function pane-supports-menus-with-images returns t if pane supports menus with images. This means that the
menus display both the images and the text correctly.

See the image-function of menu for details of creating a menu with images.

When pane-supports-menus-with-images returns nil, menus can display images, but not together with text at the
same item They may also display images with transparency incorrectly.

Whether the pane supports menus with images depends on the library in which it is displayed. Support is currently limited to
GTK+ and Cocoa.

See also

menu
8 Creating Menus

21 CAPI Reference Entries

553

parse-layout-descriptor Generic Function

Summary

Returns the object that layout uses for displaying a child.

Package

capi

Signature

parse-layout-descriptor child-descriptor interface layout => result

Arguments

child-descriptor⇓ An element, a symbol, a geometry object or a string.

interface⇓ An interface.

layout⇓ A layout.

Values

result An element or a geometry object.

Description

The generic function parse-layout-descriptor takes a description of a layout's child, and returns the object that the
layout is actually going to use. The returned object is an element (simple-pane or pinboard-object) or a geometry
object (the result of call to the default method of parse-layout-descriptor).

layout is the layout for which child-descriptor is being parsed. interface is the interface of layout.

parse-layout-descriptor is called by interpret-description to parse individual children in a layout.

The default method accepts a child-descriptor argument which can be one of:

• An element.

• A symbol naming a slot in the interface which contains an element.

• A geometry object.

• A string (used to construct a title-pane or item-pinboard-object with the string as its text).

Note that when parse-layout-descriptor is passed an element, it does not necessarily return that element. For example,
it may wrap it with some layout that adds functionality. It may also return a completely separate element.

You can define your own methods, which may specialize on the interface, the layout if you define your own layout class(es),
or the description by using a description of your own defined type.

The element that parse-layout-descriptor returns, whether explicitly or indirectly, must not be returned more than
once for any layouts that are displayed at the same time.

21 CAPI Reference Entries

554

See also

interpret-description
define-layout
layout
6 Laying Out CAPI Panes

password-pane Class

Summary

A pane designed for entering passwords, such that when the password is entered it is not visible on the screen.

Package

capi

Superclasses

text-input-pane

Initargs

:overwrite-character

A base-char.

Readers

password-pane-overwrite-character

Description

The class password-pane is a pane designed for entering passwords, such that when the password is entered it is not visible
on the screen. password-pane inherits most of its functionality from text-input-pane. It starts with the initial text and
caret position specified by the arguments text and caret-position respectively, and limits the number of characters entered with
the max-characters argument (which defaults to nil, meaning there is no maximum).

The password pane can be enabled and disabled with the text-input-pane accessor text-input-pane-enabled.

overwrite-character is a base-char which is the character to display instead of the real characters. The default value of
overwrite-character is #*.

Examples

(setq password-pane (capi:contain
 (make-instance
 'capi:password-pane
 :callback
 #'(lambda (password interface)
 (capi:display-message
 "Password: ~A"
 password)))))

(capi:text-input-pane-text password-pane)

21 CAPI Reference Entries

555

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

(setq password-pane
 (capi:contain
 (make-instance 'capi:password-pane
 :max-characters 5
 :text "abc"
 :overwrite-character #\$)))

(capi:password-pane-overwrite-character password-pane2)

See also

editor-pane
text-input-pane

pinboard-layout Class

Summary

The class pinboard-layout provides two very useful pieces of functionality for displaying CAPI windows. Firstly it is a
subclass of static-layout and so it allows its children to be positioned anywhere within itself (like a pinboard). Secondly
it supports pinboard-objects which are rectangular areas within the layout which have size and drawing functionality.

Package

capi

Superclasses

output-pane
static-layout

Subclasses

simple-pinboard-layout

Initargs

:highlight-style A keyword.

Description

When a pinboard-layout lays out its children, it positions them at the x and y specified as hints (using :x and :y), and
sizes them to their minimum size (which can be specified using :visible-min-width and :visible-max-width).
Objects can be moved and resized inside the pinboard-layout using (setf pinboard-pane-position) and
(setf pinboard-pane-size). You can find which object is the top object at a point by using
pinboard-object-at-position.

By default, the pinboard-layout is made sufficiently large to accommodate all of its children, as specified by fit-size-to-
children in the superclass static-layout. Note that this results in the pinboard resizing itself automatically when objects
are added, removed, moved or resized. If the layout has scrollbars these are also affected. If you need the sizing capabilities,
then use the class simple-pinboard-layout which surrounds a single child, and adopts the size constraints of that child.

The pinboard layout handles the display of pinboard objects itself by calculating which objects are visible in the region that
needs redrawing, and then by calling the generic function draw-pinboard-object on these objects in the order that they

21 CAPI Reference Entries

556

are specified in the layout description. This means that if two pinboard objects overlap, the later one in the layout description
will be on top of the other one. In other words, the description defines the Z-order for objects of type pinboard-object.
(See the note below regarding the Z-order for objects of type simple-pane.)

The children of the pinboard-layout are defined by its description (inherited from layout). When the contents of the
layout need to be manipulated while it is on the screen, it is possible to do this by using (setf layout-description).
However, when the change involves only pinboard-objects, it is much more efficient to use manipulate-pinboard
instead. This will also cause less flickering.

Highlighting of the layout's children by highlight-pinboard-object is controlled by the value of highlight-style, as
follows:

:invert Swaps the foreground and background colors.

:standard Uses system colors.

:default Calls draw-pinboard-object-highlighted.

The default value of highlight-style is :default.

record-dependent-object can be used to record objects that need to be cleaned-up when the pinboard layout is
destroyed.

Notes

1. The output-pane initarg :drawing-mode controls quality of drawing in a pinboard-layout, including anti-
aliasing of any text displayed on Microsoft Windows and GTK+.

2. If redrawing flickers on Microsoft Windows or Motif, perhaps because there are many pinboard objects, you can pass the
output-pane initarg :draw-with-buffer t, which uses a pixmap to buffer the output before drawing it to the
screen. See output-pane for more information.

3. pinboard-layout defines its own default display-callback (see output-pane), pinboard-layout-display. If
you want to do additional drawing, see pinboard-layout-display.

4. Objects of type simple-pane are drawn directly by the windowing system and cannot be clipped relative to
pinboard-objects, which are drawn by CAPI. Therefore simple-panes always appear on top in a pinboard, and
their position in the description does not affect the Z-order.

Examples

Here are some examples of the use of pinboard objects with pinboard layouts.

(capi:contain
 (make-instance
 'capi:pinboard-layout
 :description
 (list
 (make-instance
 'capi:image-pinboard-object
 :image
 (example-file "capi/graphics/Setup.bmp")
 :x 20 :y 20)))
 :best-width 540 :best-height 415)

(capi:contain
 (make-instance
 'capi:pinboard-layout
 :description (list
 (make-instance

21 CAPI Reference Entries

557

 'capi:item-pinboard-object
 :text "Hello"
 :x 40 :y 10)
 (make-instance
 'capi:line-pinboard-object
 :x 10 :y 30
 :visible-min-width 100)))
 :best-width 200 :best-height 200)

There are further examples here:

(example-edit-file "capi/applications/")

and here:

(example-edit-file "capi/graphics/")

This example illustrates use of draw-with-buffer t:

(example-edit-file "capi/graphics/compositing-mode")

This example shows how to draw a rectangle as the user moves the mouse to select pinboard objects:

(example-edit-file "capi/graphics/highlight-rectangle-pinboard")

There are further examples in 20 Self-contained examples.

See also

12.3 Creating graphical objects
manipulate-pinboard
output-pane
pinboard-object
pinboard-object-at-position
pinboard-pane-position
pinboard-pane-size
record-dependent-object
redraw-pinboard-object
static-layout
1.2.1 CAPI elements
3.12.1 Tooltips for output panes

pinboard-layout-display Generic Function

Summary

Draws the children of a pinboard-layout, by default.

Package

capi

21 CAPI Reference Entries

558

Signature

pinboard-layout-display pane x y width height

Arguments

pane⇓ A pinboard-layout.

x⇓, y⇓ Real numbers.

width⇓, height⇓ Positive real numbers.

Description

The generic function pinboard-layout-display is the default display-callback of pinboard-layout (see
output-pane for documentation of display-callback and a description of pane, x, y, width and height). It is responsible for
the drawing of all the children of the pinboard layout.

If you want to have drawing on a pinboard-layout which is not done via the children, you can either supply your own
display-callback to do the other drawing and call pinboard-layout-display (or draw-pinboard-layout-objects)
to draw the children, or subclass pinboard-layout and add methods to pinboard-layout-display specialized on your
class.

In either case, if any of your drawing is "behind" the children, that is children may overlap it and need to obscure it, you need
to do your drawing first and then tell the pane about it by calling redraw-pinboard-layout with the region that was
redrawn and the optional argument redisplay = nil.

Compatibility note

In LispWorks 6.1 and earlier versions the default display-callback was called pinboard-pane-display and was not
exported, but apparently some programmers defined methods on it anyway. If you did this, you must change your method to
pinboard-layout-display for LispWorks 7.0 and later versions.

See also

pinboard-layout
output-pane
redraw-pinboard-layout
draw-pinboard-layout-objects
12 Creating Panes with Your Own Drawing and Input

pinboard-object Class

Summary

Provides a rectangular area in a pinboard-layout with drawing capabilities.

Package

capi

Superclasses

capi-object

21 CAPI Reference Entries

559

Subclasses

ellipse
item-pinboard-object
image-pinboard-object
line-pinboard-object
drawn-pinboard-object
rectangle

Initargs

:pinboard The output pane on which the pinboard object is drawn.

:activep If t, the pinboard object is made active.

:graphics-args A plist of Graphics Ports drawing options.

:automatic-resize A plist.

:no-highlight A boolean.

:x A geometry hint specifying the initial x position of the pinboard object in the pinboard.

:y A geometry hint specifying the initial y position of the pinboard object in the pinboard.

:external-min-width

A geometry hint specifying the initial minimum width of the pinboard object in the
pinboard.

:external-min-height

A geometry hint specifying the initial minimum height of the pinboard object in the
pinboard.

:external-max-width

A geometry hint specifying the initial maximum width of the pinboard object in the
pinboard.

:external-max-height

A geometry hint specifying the initial maximum height of the pinboard object in the
pinboard.

:visible-min-width A geometry hint specifying the initial minimum visible width of the pinboard object.

:visible-min-height

A geometry hint specifying the initial minimum visible height of the pinboard object.

:visible-max-width A geometry hint specifying the initial maximum visible width of the pinboard object.

:visible-max-height

A geometry hint specifying the initial maximum height of the pinboard object.

:internal-min-width

A geometry hint specifying the initial minimum width of the display region.

:internal-min-height

A geometry hint specifying the initial minimum height of the display region.

:internal-max-width

A geometry hint specifying the initial maximum width of the display region.

:internal-max-height

A geometry hint specifying the initial maximum height of the display region.

21 CAPI Reference Entries

560

Accessors

pinboard-object-pinboard
pinboard-object-activep
pinboard-object-graphics-args

Description

The class pinboard-object provides a rectangular area in a pinboard-layout with drawing and highlighting
capabilities. A pinboard object behaves just like a simple pane within layouts, meaning that they can be placed into rows,
columns and other layouts, and that they size themselves in the same way. The main distinction is that a pinboard object is a
much smaller object than a simple pane as it does not need to create a native window for itself.

Each pinboard object is placed into a pinboard layout (or into a layout itself inside a pinboard layout), and then when the
pinboard layout wishes to redisplay a region of itself, it calls the function draw-pinboard-object on each of the pinboard
objects that are contained in that region (in the order that they are specified as children to the layout).

The graphics-args slot allows drawing options to be set. These include the font, the background and foreground colors, and
others (see graphics-state). The graphics-args are used by the built-in pinboard-object (all subclasses of
pinboard-object except drawn-pinboard-object) as extra arguments in calls to drawing functions. For example, to
create a filled red rectangle object, you can use:

(make-instance
 'capi:rectangle
 :filled t :x 100 :y 100
 :visible-min-width 100
 :visible-min-height 100
 :graphics-args '(:foreground :red))

The graphics args can be accessed after creation using pinboard-object-graphics-args, and it is also possible to
modify a single value using pinboard-object-graphics-arg.

When no-highlight is t, CAPI does not call draw-pinboard-object-highlighted even when the object is highlighted.
Typically, the drawing function you supply (either the method draw-pinboard-object or the display-callback for
drawn-pinboard-object) will do the highlight in this case, using pinboard-object-highlighted-p to check if they
need to.

The geometry hints are interpreted as described for element. After creation, you can query the geometry of a
pinboard-object using the functions static-layout-child-position and static-layout-child-size and
static-layout-child-geometry. You can also set the geometry using cl:setf with these functions.

By default a pinboard-object does not accept the input focus.

There are a number of predefined pinboard objects provided by the CAPI. They are as follows:

ellipse Draws an ellipse.

rectangle Draws a rectangle.

item-pinboard-objectDraws a title.

line-pinboard-objectDraws a line.

right-angle-line-pinboard-object

Draws a right-angled line.

image-pinboard-objec
t

Draws an image.

21 CAPI Reference Entries

561

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

drawn-pinboard-objec
t

Uses a user-defined display function.

The main user of pinboard objects in the CAPI is the graph pane, which uses item-pinboard-object and
line-pinboard-object to display its nodes and edges respectively.

To force a pinboard object to redraw itself call redraw-pinboard-object. The redrawing may be cached and displayed at
a later date.

Call the generic functions highlight-pinboard-object and unhighlight-pinboard-object to highlight a pinboard
and remove its highlighting. If you want non-standard highlighting, you can implement methods for your subclass of
pinboard-object.

You can test whether a whether a point or region coincides with a pinboard object by the generic functions
over-pinboard-object-p and pinboard-object-overlap-p. The default methods assume a rectangle based on the
geometry, which must always be the enclosing rectangle of the whole pinboard object. Therefore you only need to implement
methods if your subclass of pinboard-object has a non-rectangular shape.

automatic-resize makes the pinboard object resize automatically. This has an effect only if it is placed inside a
static-layout (including subclasses like pinboard-layout). The effect is that when the static-layout is resized
then the pinboard object also changes its geometry.

The value of automatic-resize defines how the pinboard object's geometry changes. It must be a plist of keywords and values
which match the keywords of the function set-object-automatic-resize and are interpreted in the same way.

Notes

You can also control automatic resizing of a pinboard object using set-object-automatic-resize.

Examples

(example-edit-file "capi/graphics/pinboard-test")

(example-edit-file "capi/graphics/highlight-rectangle-pinboard")

(example-edit-file "capi/graphics/circled-graph-nodes")

There are further examples in 20 Self-contained examples.

See also

pinboard-layout
draw-pinboard-object
graph-pane
highlight-pinboard-object
over-pinboard-object-p
redraw-pinboard-object
redraw-pinboard-layout
pinboard-object-overlap-p
pinboard-object-graphics-arg
set-object-automatic-resize
static-layout
unhighlight-pinboard-object
6 Laying Out CAPI Panes
12.3 Creating graphical objects

21 CAPI Reference Entries

562

pinboard-object-at-position Generic Function

Summary

Returns the uppermost pinboard object containing a specified point.

Package

capi

Signature

pinboard-object-at-position pinboard x y

Arguments

pinboard⇓ A pinboard-layout.

x⇓ A real.

y⇓ A real.

Description

The generic function pinboard-object-at-position returns the uppermost pinboard object in pinboard that contains
the point specified by x and y. It determines this by mapping over every pinboard object within the pinboard until it finds one
for which the generic function over-pinboard-object-p returns t.

Examples

(setq pinboard
 (capi:contain
 (make-instance
 'capi:pinboard-layout)
 :best-width 300
 :best-height 300))

(capi:apply-in-pane-process
 pinboard
 #'(lambda ()
 (make-instance 'capi:item-pinboard-object
 :text "Hello world"
 :x 100 :y 100
 :parent pinboard)))

(capi:pinboard-object-at-position pinboard 0 0)

(capi:pinboard-object-at-position pinboard 110 110)

See also

over-pinboard-object-p
pinboard-object-overlap-p
pinboard-object
pinboard-layout

21 CAPI Reference Entries

563

pinboard-object-graphics-arg Accessor Generic Function

Summary

Gets or sets the value of a particular drawing parameter in a pinboard-object.

Package

capi

Signature

pinboard-object-graphics-arg self keyword => value

(setf pinboard-object-graphics-arg) value self keyword => value

Arguments

self⇓ A pinboard-object.

keyword⇓ A keyword denoting a graphics state parameter.

value The value of the drawing option keyword in self.

Values

value The value of the drawing option keyword in self.

Description

The accessor generic function pinboard-object-graphics-arg returns or sets the value of the graphics state parameter
keyword in self.

pinboard-object-graphics-arg accesses the value in the graphics-args plist of the pinboard-object self, and
(setf pinboard-object-graphics-arg) sets the value in this plist. A call to
(setf pinboard-object-graphics-args) will overwrite anything set by previous calls to
(setf pinboard-object-graphics-arg).

The graphics-args are used by built-in subclasses of pinboard-object.

See graphics-state for details of the drawing parameters.

See also

graphics-state
pinboard-object

21 CAPI Reference Entries

564

pinboard-object-highlighted-p Function

Summary

The predicate for whether a pinboard-object is in the highlighted state.

Package

capi

Signature

pinboard-object-highlighted-p pinboard-object => result

Arguments

pinboard-object⇓ A pinboard-object.

Values

result A boolean.

Description

The function pinboard-object-highlighted-p tests whether pinboard-object is in the highlighted state. The state is
switched by calls to highlight-pinboard-object or unhighlight-pinboard-object. In graph-pane and
tracking-pinboard-layout, the state switches automatically, but in other panes it happens only by your calls to
highlight-pinboard-object or unhighlight-pinboard-object.

pinboard-object-highlighted-p is useful when the draw-pinboard-object method also does the highlighting, so
needs to decide if the object is highlighted or not.

pinboard-object-overlap-p Generic Function

Summary

Tests whether a specified region overlaps with the region of a pinboard object.

Package

capi

Signature

pinboard-object-overlap-p pinboard-object top-left-x top-left-y bottom-right-x bottom-right-y => result

Arguments

pinboard-object⇓ A pinboard-object.

top-left-x⇓ A real.

21 CAPI Reference Entries

565

top-left-y⇓ A real.

bottom-right-x⇓ A real.

bottom-right-y⇓ A real.

Values

result A boolean.

Description

The generic function pinboard-object-overlap-p returns true if the region of the pinboard object pinboard-object
overlaps with the region specified by top-left-x, top-left-y, bottom-right-x and bottom-right-y.

See also

pinboard-object-at-position
over-pinboard-object-p
pinboard-object
pinboard-layout

pinboard-pane-position Accessor

Summary

Gets and sets the location of an object inside its parent pinboard-layout. This function is deprecated.

Package

capi

Signature

pinboard-pane-position self => x, y

setf (pinboard-pane-position self) (values x y) => x, y

Arguments

self⇓ A pinboard-object or simple-pane.

x⇓, y⇓ The horizontal and vertical coordinates in the pinboard-layout parent of self.

Values

x⇓, y⇓ The horizontal and vertical coordinates in the pinboard-layout parent of self.

Description

The accessor pinboard-pane-position gets and sets the coordinates (x and y) of self inside its parent
pinboard-layout as multiple values.

21 CAPI Reference Entries

566

Examples

(let* ((po (make-instance 'capi:item-pinboard-object
 :text "5x5" :x 5 :y 5
 :graphics-args
 '(:background :red)))
 (pl (capi:contain
 (make-instance 'capi:pinboard-layout
 :description (list po)
 :visible-min-width 200
 :visible-min-height 200))))
 (capi:execute-with-interface
 (capi:element-interface pl)
 #'(lambda (po)
 (dotimes (x 20)
 (mp:wait-processing-events 1)
 (let ((new-x (* (1+ x) 10))
 (new-y (* 5 (+ 2 x))))
 (setf (capi:item-text po)
 (format nil "~ax~a" new-x new-y))
 (setf (capi:pinboard-pane-position po)
 (values new-x new-y)))))
 po))

Notes

pinboard-pane-position is deprecated, but is retained in this version for backwards compatibility. Please use
static-layout-child-position instead. This does just the same.

See also

static-layout-child-position

pinboard-pane-size Accessor

Summary

Gets and sets the size of an object inside its parent pinboard-layout. This function is deprecated.

Package

capi

Signature

pinboard-pane-size self => width, height

setf (pinboard-pane-size self) (values width height) => width, height

Arguments

self⇓ A pinboard-object or a simple-pane.

width⇓, height⇓ Positive integers.

21 CAPI Reference Entries

567

Values

width⇓, height⇓ Positive integers.

Description

The accessor pinboard-pane-size gets and sets the dimensions (width and height) of self as multiple values.

Examples

(let* ((po (make-instance 'capi:pinboard-object
 :x 5 :y 5
 :width 5 :height 5
 :graphics-args
 '(:background :red)))
 (pl (capi:contain
 (make-instance 'capi:pinboard-layout
 :description (list po)
 :visible-min-width 200
 :visible-min-height 200))))
 (capi:execute-with-interface
 (capi:element-interface pl)
 #'(lambda(po)
 (dotimes (x 20)
 (mp:wait-processing-events 1)
 (let ((new-x (* (1+ x) 10))
 (new-y (* 5 (+ 2 x))))
 (setf (capi:pinboard-pane-size po)
 (values new-x new-y)))))
 po))

Notes

pinboard-pane-size is deprecated, but is retained in this version for backwards compatibility. Please use
static-layout-child-size instead. This does just the same.

See also

static-layout-child-size

play-sound Function

Summary

Plays a loaded sound on Microsoft Windows and Cocoa.

Package

capi

Signature

play-sound sound &key wait

21 CAPI Reference Entries

568

Arguments

sound⇓ A sound object returned by load-sound.

wait⇓ A generalized boolean.

Description

The function play-sound plays the loaded sound sound.

If wait is true then play-sound will not return until sound has finished playing. That is, it plays the sound synchronously.
The default value of wait is nil.

Notes

1. :wait t is only implemented on Microsoft Windows.

2. play-sound is not implemented on GTK+ and Motif.

See also

load-sound
stop-sound
18.2 Sounds

popup-confirmer Function

Summary

Creates a dialog with predefined implementations of OK and Cancel buttons and a programmer-specified pane in a layout
with the buttons.

Package

capi

Signature

popup-confirmer pane message &rest interface-args &key title title-font value-function exit-function apply-function
apply-check apply-button ok-function ok-check ok-button no-button no-function all-button all-function cancel-button help-button
help-function buttons print-function callbacks callback-type button-position buttons-uniform-size-p foreground background font
modal screen focus owner timeout x y position-relative-to button-container button-font continuation callback-error-handler =>
result, successp

Arguments

pane⇓ A CAPI pane or interface.

message⇓ A string or nil.

interface-args⇓ Initialization arguments for interface.

title⇓ A string specifying the title of the dialog window.

title-font⇓ The font used in the title.

21 CAPI Reference Entries

569

value-function⇓ Controls the value returned, and whether a value can be returned.

exit-function⇓ Called on exiting the dialog.

apply-function⇓, apply-check⇓, apply-button⇓
Define the callback, check function and title an Apply button.

ok-function⇓, ok-check⇓, ok-button⇓
Define the callback, check function and title of an OK button.

no-button⇓, no-function⇓
Define the title and callback of a No button.

all-button⇓, all-function⇓
Define the title and callback of an All button.

cancel-button⇓ Defines the title of a Cancel button.

help-button⇓, help-function⇓
Define the title and callback of a Help button.

buttons⇓ Defines extra buttons.

print-function⇓ Displays ok-button, no-button, cancel-button, apply-button and all-button as button titles.

callbacks⇓ Defines callbacks for buttons.

callback-type⇓ Specifies the callback-type of buttons.

button-position⇓ One of :bottom, :top, :left, :right.

buttons-uniform-size-p⇓
Controls relative button sizes.

foreground⇓, background⇓
Specify colors.

font⇓ A font or a font description.

modal⇓, screen⇓, focus⇓, owner⇓, timeout⇓, x⇓, y⇓, position-relative-to⇓
These are passed to display-dialog.

button-container⇓ A layout controlling where the buttons of the dialog appear.

button-font⇓ A font or a font description.

continuation⇓ A function or nil.

callback-error-handler⇓
A function designator or nil.

Values

result⇓ The result of value-function, or pane, or nil.

successp nil if the dialog was cancelled, t otherwise.

Description

The function popup-confirmer is the quickest way to create new dialogs. It creates a dialog with predefined
implementations of buttons such as OK and Cancel and a programmer-specified pane in a layout with the buttons.

21 CAPI Reference Entries

570

Generally the Return key selects the dialog's OK button and the Escape key selects the Cancel button, if there is one.

The argument value-function should provide a callback which is passed pane and should return the value to return from
popup-confirmer. If value-function is not supplied, then pane itself will be returned as result. If value-function wants to
indicate that the dialog cannot return a value currently, then it should return a second value that is non-nil.

ok-check is passed the result returned by value-function and should return true if it is acceptable for that value to be returned.
These two functions are used by popup-confirmer to decide when the OK button should be enabled, thus stopping the
dialog from returning with invalid data. The OK button's state can be updated by a call to redisplay-interface on the
top-level, so the dialog should call it when the button may enable or disable.

ok-button, no-button and cancel-button are the text strings for the OK, No and Cancel buttons respectively, or nil meaning
do not include that button. The OK button returns successfully from the dialog (with the result of value-function), the No
button means continue but return nil, and the Cancel button aborts the dialog. Note that there are clear expectations on the
part of users as to the functions of these buttons — check the style guidelines of the platform you are developing for.

apply-button, if passed, specifies the title of an extra button which appears near to the OK button. apply-check and apply-
function define its functionality.

all-button, if passed, specifies the title of an extra button which is always enabled and which appears near to the button added
by apply-button (if that exists) or the OK button. all-function defines its functionality.

help-button, if passed, specifies the title of a help button which appears to the right of the Cancel button. help-function
defines its functionality.

print-function is called on the various button arguments to generate a string to display for each button title.

button-position specifies where to put the buttons. The default is :bottom.

buttons-uniform-size-p specifies whether the buttons are all the same size, regardless of the text on them. The default is t, but
nil can be passed to make each button only as wide as its text.

foreground and background specify colors to use for the parts of the dialog other than pane, including the buttons.

font specifies the font to use for message.

button-font specifies the font to use in the buttons.

button-container indicates where the buttons of the dialog appear. It must be a layout which is a descendant of pane. The
description of this layout is automatically set to the button-panel containing the buttons.

exit-function, ok-function and no-function are the callbacks that are called when exiting, pressing OK and pressing No
respectively. exit-function defaults to exit-confirmer, ok-function defaults to exit-function and no-function defaults to a
function exiting the dialog with nil.

buttons, callbacks and callback-type are provided as a means of extending the available buttons. The buttons provided by
buttons will be placed after the buttons generated by popup-confirmer, with the functions in callbacks being associated
with them. Finally callback-type will be provided as the callback type for the buttons.

If any of callbacks need to access pane, you could use confirmer-pane together with a callback-type that passes the
interface.

If continuation is non-nil, then it must be a function with a lambda list that accepts two arguments. continuation is called
with the values that would normally be returned by popup-confirmer. On Cocoa, passing continuation causes the dialog
to be made as a window-modal sheet and popup-confirmer returns immediately, leaving the dialog on the screen. The
with-dialog-results macro provides a convenient way to create a continuation function.

callback-error-handler, if non-nil, should be a function designator for a function of one argument which is a condition, like
the handler-function in cl:handler-bind. The handler is established (by cl:handler-bind with type cl:error)
around each callback call inside the scope of popup-confirmer or display-dialog. In recursive calls, only the handler

21 CAPI Reference Entries

571

http://www.lispworks.com/documentation/HyperSpec/Body/m_handle.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_handle.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

of the innermost call to popup-confirmer or display-dialog is established.

callback-error-handler can use current-popup to find the popup (first argument to the innermost call of
display-dialog or popup-confirmer).

If callback-error-handler wants to do a non-local exit, it should either call abort-callback to abort the callback but leave
the dialog, or exit-dialog (or abort-dialog) to exit (or abort) the dialog.

title, title-font, foreground,background, font and the initargs specified by interface-args will be passed to the call to
make-instance for the interface that will be displayed using display-dialog. Thus geometry information, colors, and
so on can be passed in here as well. foreground, background and font default to the corresponding values in pane.

modal, screen, focus, owner, timeout, x, y and position-relative-to will be passed to the call to display-dialog.

Notes

1. On Microsoft Windows and Motif, the effect of callback-error-handler can be achieved by using cl:handler-bind

around the call to display-dialog or popup-confirmer (the handler will also handle errors during raising the
dialog, but these are not expected to happen). On Cocoa, using such an error handler does not necessarily work, because
the callback may happen in another process. callback-error-handler ensures that the callback is in the scope of the
handler on all platforms. From the same reason the handler should not rely on the dynamic environment (including
catchers and restarts), and needs to use current-popup to find its "context" and use abort-callback,
exit-dialog or abort-dialog for non-local exit.

2. If the callback itself calls popup-confirmer or display-dialog, the error handler callback-error-handler will stay
until the callback returns. Unless the recursive call handles the error, the handler of the outer call may be called to handle
it, and needs to be written to deal with this possibility correctly. If the handler inside a recursive call needs to access the
popup that was used in the same call that the handler was used, it should close over it, because current-popup returns
the innermost one.

3. A handler that is established by the callback (by cl:handler-bind or cl:handler-case) is inside the scope of
callback-error-handler, and therefore will be called first.

Examples

Here are two simple examples which implement the basic functionality of two CAPI prompters: the first implements a simple
prompt-for-string, while the second implements prompt-for-confirmation.

(capi:popup-confirmer
 (make-instance 'capi:text-input-pane
 :callback
 'capi:exit-confirmer)
 "Enter some text:"
 :value-function 'capi:text-input-pane-text)

(capi:popup-confirmer nil
 "Yes or no?"
 :callback-type :none
 :ok-button "Yes"
 :no-button "No"
 :cancel-button nil
 :value-function #'(lambda (dummy) t))

This example demonstrates the use of :redisplay-interface to make the OK button enable and disable on each
keystroke.

(defun pane-integer (pane)
 (ignore-errors (values

21 CAPI Reference Entries

572

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_handle.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_handle.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_hand_1.htm

 (read-from-string
 (capi:text-input-pane-text
 pane)))))

(capi:popup-confirmer
 (make-instance 'capi:text-input-pane
 :callback 'capi:exit-confirmer
 :change-callback :redisplay-interface)
 "Enter an integer"
 :value-function 'pane-integer
 :ok-check 'integerp)

An example illustrating the use of :button-container:

(let* ((bt (make-instance 'capi:simple-layout
 :title "Button Container"
 :title-position :left))
 (tip1 (make-instance 'capi:text-input-pane
 :title "Top"))
 (tip2 (make-instance 'capi:text-input-pane
 :title "Bottom"))
 (layout (make-instance 'capi:column-layout
 :description
 (list tip1
 bt
 tip2))))
 (capi:popup-confirmer layout nil
 :title
 "Dialog using button-container"
 :button-container bt))

An example with all the defined buttons in use:

(defun all-buttons-dialog (&optional (num 20))
 (let ((pane
 (make-instance 'capi:list-panel
 :items
 (loop for ii from 1
 to num
 collect
 (format nil "~r" ii))
 :visible-min-width
 '(character 20))))
 (capi:popup-confirmer
 pane
 "All Buttons"
 :callback-type :none
 :button-position :right
 :cancel-button "Cancel Button"
 :ok-button "OK Button"
 :ok-function #'(lambda (x)
 (declare (ignorable x))
 (capi:exit-dialog
 (capi:choice-selected-item pane)))
 :no-button "No Button"
 :no-function
 #'(lambda ()
 (capi:exit-dialog
 (cons :no
 (capi:choice-selected-item pane))))
 :apply-button "Apply Button"
 :apply-function
 #'(lambda ()
 (capi:display-message

21 CAPI Reference Entries

573

 "Applying to ~a"
 (capi:choice-selected-item pane)))
 :help-button "Help Button"
 :help-function
 #'(lambda ()
 (capi:display-message
 "~a is ~:[an odd~;an even~] number"
 (capi:choice-selected-item pane)
 (oddp (capi:choice-selection pane))))
 :all-button "All Button"
 :all-function
 #'(lambda()
 (capi:exit-dialog
 (capi:collection-items pane))))))

(all-buttons-dialog)

A dialog with arbitrary buttons:

(capi:popup-confirmer
 (make-instance 'capi:text-input-pane)
 "Dialog with arbitrary buttons"
 :buttons '(:abc :xyz)
 :callbacks
 (list #'(lambda (data)
 (capi:display-message
 "Button ~A was pressed" data))
 #'(lambda (data)
 (capi:display-message
 "Button with ~A was pressed, exiting with ~S" data data)
 (capi:exit-dialog data)))
 :callback-type :data)

This example illustrates the use of callback-error-handler:

(defun my-error-handler (condition)
 (let ((pane (capi:current-popup)))
 (capi:display-message
 "Error inside dialog: ~a : ~a"
 (capi:capi-object-name pane)
 condition)
 (capi:abort-callback)))

(let*
 ((foo-callback
 (lambda ()
 (let ((md (make-instance
 'capi:push-button
 :text "Error inside Callback-Error-Handler"
 :name "Chicken"
 :callback-type :data
 :data "Twisted ankle."
 :callback 'error)))
 (capi:popup-confirmer
 md nil
 :callback-error-handler 'my-error-handler))))
 (foo (make-instance
 'capi:push-button
 :text
 "Popup confirmer with Callback-Error-Handler"
 :callback-type :none
 :callback foo-callback))
 (bar (make-instance
 'capi:push-button

21 CAPI Reference Entries

574

 :text "Error without a handler"
 :callback-type :data
 :data "Broken leg."
 :callback 'error)))
 (capi:contain (list foo bar)))

See also

abort-dialog
abort-exit-confirmer
confirmer-pane
display-dialog
exit-confirmer
exit-dialog
10 Dialogs: Prompting for Input

popup-menu-button Class

Summary

A button with a popup menu.

Package

capi

Superclasses

simple-pane
item

Initargs

:menu A menu or nil.

:menu-function A function designator or nil.

Accessors

popup-menu-button-menu
popup-menu-button-menu-function

Description

The class popup-menu-button provides a button with a popup menu, which is displayed when the user clicks on the
button.

If menu-function is non-nil, it should be function of one argument (the pane) and should return a menu object. Otherwise,
menu should be a menu object.

popup-menu-button inherits from item, so you can supply text, data and so on.

Notes

Do not use popup-menu-button inside toolbars. Use toolbar-button instead.

21 CAPI Reference Entries

575

Examples

(example-edit-file "capi/elements/popup-menu-button")

See also

menu
toolbar-button

popup-menu-force-popdown Function

Summary

Cancels a popup menu.

Package

capi

Signature

popup-menu-force-popdown popup-menu => result

Arguments

popup-menu⇓ A menu displayed using display-popup-menu.

Values

result⇓ A boolean.

Description

The function popup-menu-force-popdown cancels the menu popup-menu if it is currently displayed.

popup-menu should be a popup menu, that is a menu that is displayed using display-popup-menu.
popup-menu-force-popdown pops it down, in the same way that pressing Cancel would normally do.

popup-menu-force-popdown can be called from any process. In particular, it can be called from a timer without worrying
on which process it is actually executed. For examples of using timers in CAPI, see 20.4 Examples using timers to
implement "animation".

If popup-menu is not displayed, popup-menu-force-popdown has no effect.

The result is t if the menu is displayed when popup-menu-force-popdown is called. Otherwise result is nil.

Notes

popup-menu-force-popdown can be called from any process.

See also

display-popup-menu

21 CAPI Reference Entries

576

menu
8.13 Displaying menus programmatically

ppd-directory Variable

Summary

The directory in which LispWorks looks for PPD files.

Package

capi

Initial Value

nil

Description

The variable *ppd-directory* specifies where LispWorks looks for PostScript Printer Definition (PPD) files.

This applies only on Motif.

The directory which is the value of *ppd-directory* should contain PPD files (files with extension ppd) either directly, or
under subdirectories. The PPD files under each subdirectory are grouped together, with the name of the directory as the
group name. PPD files in *ppd-directory* itself are grouped under the "Other" group.

See also

16.7 Printing on Motif

print-capi-button Generic Function

Summary

Generates the text for a button.

Package

capi

Signature

print-capi-button button => text

Arguments

button⇓ A button.

Values

text A string.

21 CAPI Reference Entries

577

Description

The generic function print-capi-button is called by CAPI to generate the text for button.

You can add methods for your own button classes.

See also

button

print-collection-item Generic Function

Summary

Prints an item as a string.

Package

capi

Signature

print-collection-item item collection

Arguments

item⇓ An item or an Lisp object.

collection⇓ A collection or any Lisp object.

Description

The generic function print-collection-item prints item as a string. It is used when item is known to be an item in
collection.

An item in a collection prints using the first of these which returns non-nil: the item's text, the item's print-function, the
collection's print-function or the item's data. An item not known to be in the collection is printed simply using
print-object.

The method on (t collection) uses the collection's print-function.

Examples

(setq collection (make-instance
 'capi:collection
 :items '(1 2 3 4 5)
 :print-function #'(lambda (x)
 (format nil
 "<~A:>"
 x))))

(capi:print-collection-item 2 collection)

21 CAPI Reference Entries

578

http://www.lispworks.com/documentation/HyperSpec/Body/f_pr_obj.htm

In this example we provide our own print-collection-item method:

(defclass my-tree-view (capi:tree-view) ())

(defmethod capi:print-collection-item ((item capi:item)
 (tree my-tree-view))
 (string-capitalize (svref (capi:item-data item) 0)))

(capi:contain
 (make-instance 'my-tree-view
 :roots
 (list (make-instance 'capi:item
 :data
 (vector "foo")))))

See also

get-collection-item
collection

print-dialog Function

Summary

Displays a print dialog and returns a printer object.

Package

capi

Signature

print-dialog &key screen owner first-page last-page print-selection-p print-pages-p print-copies-p continuation =>
printer

Arguments

screen⇓ A screen or nil.

owner⇓ A pane or nil.

first-page⇓ A positive integer or nil.

last-page⇓ A positive integer or nil.

print-selection-p⇓ A generalized boolean.

print-pages-p⇓ A generalized boolean.

print-copies-p⇓ A generalized boolean.

continuation⇓ A function or nil.

Values

printer A printer, or nil.

21 CAPI Reference Entries

579

Description

The function print-dialog displays a print dialog and returns a printer object. The printer object returned will print
multiple copies if requested by the user.

If print-pages-p is t, the user can select a range of pages to print. This should always be the case unless the application only
produces single page output. If print-pages is t, first-page and last-page can be used to initialize the page range. For
example, they could be set to be the first and last pages of the document.

print-copies-p indicates whether the application handles production of multiple copies for drivers that do not support this
function. Currently this should be nil if the application uses Page Sequential printing and t if the application uses Page on
Demand printing.

If print-selection-p is t, the user is given the option of printing the current selection. Only specify this if the application has a
notion of selection and selecting printing functionality is provided.

The dialog is displayed on the current screen unless screen specifies otherwise.

owner specifies an owner window for the dialog. See 10 Dialogs: Prompting for Input for details.

If continuation is non-nil, then it must be a function with a lambda list that accepts one argument. continuation is called with
the values that would normally be returned by print-dialog. On Cocoa, passing continuation causes the dialog to be made
as a window-modal sheet and print-dialog returns immediately, leaving the dialog on the screen. The
with-dialog-results macro provides a convenient way to create a continuation function.

Note that the printer object itself is opaque but programmatic setting of some printer options is available via the function
set-printer-options.

Examples

(example-edit-file "capi/graphics/metafile")

(example-edit-file "capi/printing/fit-to-page")

(example-edit-file "capi/printing/multi-page")

(example-edit-file "capi/printing/page-on-demand")

See also

print-file
print-text
set-printer-options
10 Dialogs: Prompting for Input
16 Printing from the CAPI—the Hardcopy API

print-editor-buffer Function

Summary

Prints the contents of an editor buffer to the printer.

21 CAPI Reference Entries

580

Package

capi

Signature

print-editor-buffer buffer &key start end printer interactive font

Arguments

buffer⇓ An editor buffer.

start⇓, end⇓ Editor points or nil.

printer⇓ A printer or nil.

interactive⇓ A boolean.

font⇓ A font or a font-description, or nil.

Description

The function print-editor-buffer prints the contents of buffer to printer, which is the current printer by default.

By default the entire editor buffer is printed, but by specifying start and end to be editor points, a part of the buffer can be
printed. See the Editor User Guide for information about editor points.

If interactive is t, the default value, then a printer dialog is displayed.

font is interpreted as described for print-text.

See also

print-file
print-text
10 Dialogs: Prompting for Input
16 Printing from the CAPI—the Hardcopy API

printer-configuration-dialog Function

Summary

Displays a dialog allowing the user to configure printers.

Package

capi

Signature

printer-configuration-dialog &key screen owner

Arguments

screen⇓ A screen nil.

21 CAPI Reference Entries

581

owner⇓ A pane or nil.

Description

The function printer-configuration-dialog displays the printer configuration dialog that allows users to add and
configure PostScript printers.

This applies only on Motif.

screen specifies a CAPI screen on which to display the dialog. owner controls which interface owns the dialog. If it is
specified it should be a currently displayed CAPI interface; it defaults to the current top level interface.

The general options that are available are described under install-postscript-printer. In addition, printer-specific
options (which are defined in the printer PPD file) are available.

The printers that are visible in the dialog are defined by files in the directories in the list *printer-search-path*.

See also

install-postscript-printer
printer-search-path
16.7 Printing on Motif

printer-metrics System Class

Summary

The type of objects containing printer metrics.

Package

capi

Superclasses

t

Description

Instances of the system class printer-metrics are returned by get-printer-metrics. The readers for the slots of a
printer-metrics object are described below.

printer-metrics-device-height and printer-metrics-device-width respectively return the height and width of
the printable page in the internal units used by the printer driver or printing subsystem of the printer. These functions should
not be used to determine the aspect ratio of the printable page as some printers have size units that differ in the x and y
directions.

printer-metrics-dpi-x and printer-metrics-dpi-y return the number of printer device units per inch in the x and
y directions respectively. This typically corresponds to the printer resolution, although in some cases this may not be known.
For example, a generic PostScript language compatible driver might always return 300dpi, even though it cannot know the
resolution of the printer the PostScript file will actually be printed on.

printer-metrics-height and printer-metrics-width respectively return the height and width of the printable area
in millimeters.

21 CAPI Reference Entries

582

printer-metrics-left-margin and printer-metrics-top-margin respectively return the current left margin and
current top margin of the printable area in millimeters.

printer-metrics-max-height and printer-metrics-max-width respectively return the greatest possible height and
width of the printable area in millimeters.

printer-metrics-min-left-margin and printer-metrics-min-top-margin respectively return the smallest
possible left margin and top margin of the printable area in millimeters.

printer-metrics-paper-height and printer-metrics-paper-width respectively return the height and width of
the paper selected for this printer in millimeters.

See also

get-printer-metrics
16 Printing from the CAPI—the Hardcopy API

printer-port Class

Summary

An object that with-print-job uses when a pane is not supplied.

Package

capi

Superclasses

graphics-port-mixin

Description

The class printer-port is the class of the object that with-print-job binds its var argument to when it is not given a
pane.

printer-port is a graphics port, which is described in 13 Drawing - Graphics Ports and 22 GRAPHICS-PORTS
Reference Entries.

Notes

The phrase "printer port" refers to either to an instance of printer-port or an instance of output-pane when it is used as
the pane argument to with-printer-job.

See also

output-pane
with-print-job

21 CAPI Reference Entries

583

printer-port-handle Function

Summary

Returns the underlying handle to a printer port.

Package

capi

Signature

printer-port-handle &optional port => handle

Arguments

port⇓ A printer port.

Values

handle⇓ Platform-dependent.

Description

The function printer-port-handle returns a platform-dependent value which represents the underlying handle to the
printer port.

On Microsoft Windows, handle is the HDC for the printer device.

If port is passed it should be the value bound to var in with-print-job. If port is not supplied it defaults to the current
printer port (dynamically bound within with-print-job).

See also

with-print-job
16 Printing from the CAPI—the Hardcopy API

printer-port-supports-p Function

Summary

Detects if the printer port can support a certain feature.

Package

capi

Signature

printer-port-supports-p feature &optional port => supportedp, validp

21 CAPI Reference Entries

584

Arguments

feature⇓ A keyword.

port⇓ A printer port.

Values

supportedp⇓ A boolean.

validp⇓ A boolean.

Description

The function printer-port-supports-p detects if the printer port can support the feature named by feature.

If port is passed it should be the value bound to var in with-print-job. If port is not supplied it defaults to the current
printer port (dynamically bound within with-print-job).

supportedp indicates if the feature is supported.

validp indicates if the feature was recognized.

Currently the only value of feature that is recognized is :postscript and supportedp is true if the printer supports
PostScript.

See also

with-print-job
16 Printing from the CAPI—the Hardcopy API

printer-search-path Variable

Summary

Specifies where to look for printer definition files.

Package

capi

Initial Value

("~/.lispworks-printers/" nil)

Description

The variable *printer-search-path* specifies where to look for printer definition files.

This applies only on Motif.

The value is a list containing directory pathname designators specifying where to look for printer definition files. The list can
also include the value nil, which is interpreted as the printers directory in the LispWorks library.

To find known printers the system loads all files in these directories. If there are duplicate printer definitions, the printer in
the first directory takes precedence.

21 CAPI Reference Entries

585

The default path is useful when printing from the Common LispWorks IDE, but applications that want to allow users to use
printers should set the list appropriately.

The first path in the *printer-search-path* list is regarded as the "local" path. New printers are saved in this path.
When the user edits a printer that was found in another directory on *printer-search-path* and then tries to save it, the
system prompts for whether to overwrite the original or save it in the "local" directory.

The printer files can be copied to other directories, on the same machine, and hence to install printers in different directories.

A printer file can be copied to other machines, provided the printer is installed on the other machine and the PPD file is
available in the same path.

See also

16.7 Printing on Motif

print-file Function

Summary

Prints the contents of a specified file.

Package

capi

Signature

print-file file &key printer interactive font

Arguments

file⇓ A pathname designator.

printer⇓ A printer or nil.

interactive⇓ A boolean.

font⇓ A font or a font-description, or nil.

Description

The function print-file prints file to printer, which defaults to the current printer. If interactive is t, then a print dialog is
displayed. This is the default behavior.

font is interpreted as described for print-text.

See also

print-editor-buffer
print-text
16 Printing from the CAPI—the Hardcopy API

21 CAPI Reference Entries

586

print-rich-text-pane Function

Summary

Prints the contents of a rich-text-pane, on Microsoft Windows.

Package

capi

Signature

print-rich-text-pane pane &key jobname printer interactive selection => result

Arguments

pane⇓ A rich-text-pane.

jobname⇓ A string, or nil.

printer⇓ A printer, or nil.

interactive⇓ A boolean.

selection⇓ A boolean.

Values

result A boolean.

Description

The function print-rich-text-pane prints the contents in pane.

jobname is the name of the print job. The default value is nil, meaning that the name "Document" is used.

printer is the printer to use. The default value is nil, meaning that the current-printer is used.

interactive, if true, specifies that a print-dialog is displayed before printing. The default value of interactive is t.

selection is a boolean specifying what to print. If true, only the current selection is printed. If nil, all the contents of pane
are printed. The default value is nil.

Notes

print-rich-text-pane is supported only on Microsoft Windows.

See also

rich-text-pane
16 Printing from the CAPI—the Hardcopy API

21 CAPI Reference Entries

587

print-text Function

Summary

Prints plain text to a printer.

Package

capi

Signature

print-text line-function &key printer tab-spacing interactive font

Arguments

line-function⇓ A function.

printer⇓ A printer or nil.

tab-spacing⇓ A positive integer or nil.

interactive⇓ A boolean.

font⇓ A font or a font-description, or nil.

Description

The function print-text prints plain text to a printer specified by printer, and defaulting to the current printer.

line-function is called repeatedly with no arguments to enumerate the lines of text. It should return nil when the text is
exhausted.

tab-spacing, which defaults to 8, specifies the number of spaces printed when a tab character is encountered.

print-text starts a new page when a line consisting of just a formfeed character (ASCII 12) is found in the text.

If interactive is t, then a print dialog is displayed. This is the default behavior.

font should be a gp:font object, or a Font Description object, or a symbol which is a font alias as defined by
define-font-alias. The printed text is line wrapped on the assumption that the font is fixed width, so be sure to pass a
suitable font. The default value of font is a Font Description for a fixed pitch font of size 10.

See also

print-editor-buffer
print-file
16 Printing from the CAPI—the Hardcopy API

21 CAPI Reference Entries

588

process-pending-messages Function

Summary

Processes all the pending messages in the current process.

Package

capi

Signature

process-pending-messages ignored => nil

Arguments

ignored⇓ This argument is ignored.

Description

The function process-pending-messages processes all the pending messages in the current process, and then returns
nil. It is useful when your code needs to continuously do something, but also needs to respond to user input or other
messages.

ignored is ignored.

See also

4.1 The correct thread for CAPI operations

progress-bar Class

Summary

A pane that is used to show progress during a lengthy task.

Package

capi

Superclasses

range-pane
titled-object
simple-pane

Description

The class progress-bar is used to display progress during a lengthy task. It has no interactive behavior.

The range-pane accessors (setf range-start) and (setf range-end) are used to specify integers delimiting the

21 CAPI Reference Entries

589

range of values the progress bar can display.

The accessor (setf range-slug-start) is used to set an integer value for the progress indicator.

Examples

(example-edit-file "capi/elements/progress-bar")

(example-edit-file "capi/elements/progress-bar-from-background-thread")

See also

range-pane
titled-object
3.9.4 Slider, Progress bar and Scroll bar

prompt-for-color Function

Summary

Presents a dialog box allowing the user to choose a color.

Package

capi

Signature

prompt-for-color message &key color colors owner => result, successp

Arguments

message⇓ A string.

color⇓ A color specification.

colors⇓ A list.

owner⇓ An owner window.

Values

result A color specification, or nil.

successp A boolean.

Description

The function prompt-for-color pops up a dialog box allowing the user to choose a color.

message supplies a title for the dialog on GTK+ and Motif. On Microsoft Windows message is ignored.

color provides the default color in the dialog.

colors is a list of custom color specifications that the user can choose from.

21 CAPI Reference Entries

590

owner specifies an owner window for the dialog. See 10 Dialogs: Prompting for Input for details.

Notes

For a description of color specifications, see 15.1 Color specs.

See also

10 Dialogs: Prompting for Input

prompt-for-confirmation Function

Summary

Displays a dialog box with a message and Yes and No buttons.

Package

capi

Signature

prompt-for-confirmation message &key screen owner cancel-button default-button continuation => result, successp

Arguments

message⇓ A string.

screen⇓ A screen.

owner⇓ An owner window.

cancel-button⇓ A boolean.

default-button⇓ A keyword, or nil.

continuation⇓ A function or nil.

Values

result A boolean.

successp A boolean.

Description

The function prompt-for-confirmation displays a dialog box containing message, with Yes and No buttons. When
either Yes or No is pressed, it returns two values:

• A boolean indicating whether Yes was pressed.

• t (for compatibility with other prompt functions).

cancel-button specifies whether a Cancel button also appears on the dialog. When Cancel is pressed, abort is called and the
dialog is dismissed. The default value of cancel-button is nil.

default-button specifies which button has the input focus when the dialog appears (and is thus selected when the user

21 CAPI Reference Entries

591

http://www.lispworks.com/documentation/HyperSpec/Body/a_abort.htm

immediately presses Return).The value :ok means Yes, the value :cancel means Cancel, and any other value means No.
The default value of default-button is nil.

screen specifies a CAPI screen on which to display the dialog. owner specifies an owner window for the dialog. See 10
Dialogs: Prompting for Input for details.

If continuation is non-nil, then it must be a function with a lambda list that accepts two arguments. continuation is called
with the values that would normally be returned by prompt-for-continuation. On Cocoa, passing continuation causes
the dialog to be made as a window-modal sheet and prompt-for-confirmation returns immediately, leaving the dialog
on the screen. The with-dialog-results macro provides a convenient way to create a continuation function.

Examples

(capi:prompt-for-confirmation "Continue?")

(multiple-value-bind (res success)
 (capi:prompt-for-confirmation "Yes, No or Cancel"
 :cancel-button t)
 (if success
 res
 (abort)))

See also

confirm-yes-or-no
10 Dialogs: Prompting for Input

prompt-for-directory Function

Summary

Displays a dialog prompting the user for a directory.

Package

capi

Signature

prompt-for-directory message &key if-does-not-exist pathname file-package-is-directory pane-args popup-args owner
continuation use-file-dialog => result, successp

Arguments

message⇓ A string.

if-does-not-exist⇓ One of :ok, :prompt or :error.

pathname⇓ A pathname, or nil.

file-package-is-directory⇓
A generalized boolean.

pane-args⇓ Arguments to pass to the pane.

21 CAPI Reference Entries

592

popup-args⇓ Arguments to pass to the confirmer.

owner⇓ An owner window.

continuation⇓ A function or nil.

use-file-dialog⇓ A generalized boolean.

Values

result A directory pathname, or nil.

successp⇓ A boolean.

Description

The function prompt-for-directory prompts the user for a directory pathname using a dialog box. Like all the
prompters, prompt-for-directory returns two values: the directory pathname and a flag indicating success. successp
will be nil if the dialog was cancelled, and t otherwise.

message is shown in the dialog box.

On Windows and Motif, if if-does-not-exist is :ok, a non-existent directory can be chosen. When set to :prompt, if a non-
existent directory is chosen, the user is prompted for whether the directory should be created. When set to :error, the user
cannot choose a non existent directory. The default value of if-does-not-exist is :prompt.

On Cocoa it is never possible to choose a non-existent directory, and the value of if-does-not-exist is ignored.

pathname, if non-nil, supplies an initial directory for the dialog. The default value for pathname is nil, and with this value
the dialog initializes with the current working directory.

file-package-is-directory is handled as by prompt-for-file.

owner specifies an owner window for the dialog. See 10 Dialogs: Prompting for Input for details.

If continuation is non-nil, then it must be a function with a lambda list that accepts two arguments. continuation is called
with the values that would normally be returned by prompt-for-directory. On Cocoa, passing continuation causes the
dialog to be made as a window-modal sheet and prompt-for-directory returns immediately, leaving the dialog on the
screen. The with-dialog-results macro provides a convenient way to create a continuation function.

On Windows, when use-file-dialog is true (the default) and the "shell-objs" module has been loaded (not the default),
then the directory prompter looks like the standard file prompters. use-file-dialog is ignored on other platforms.

The prompt itself is created by passing an appropriate pane to popup-confirmer. Arguments can be passed to the
make-instance of the pane and the call to popup-confirmer using pane-args and popup-args respectively. Currently, the
pane used to create the file prompter is internal to the CAPI.

See also

popup-confirmer
prompt-for-file
10 Dialogs: Prompting for Input

21 CAPI Reference Entries

593

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

prompt-for-file Function

Summary

Displays a dialog prompting the user for a filename.

Package

capi

Signature

prompt-for-file message &key pathname ok-check filter filters if-exists if-does-not-exist file-package-is-directory
operation owner pane-args popup-args continuation => filename, successp, filter-name

Arguments

message⇓ A string or nil.

pathname⇓ A pathname designator or nil.

ok-check⇓ A function or nil.

filter⇓ A string or nil.

filters⇓ A property list.

if-exists⇓ One of :ok or :prompt.

if-does-not-exist⇓ One of :ok, :prompt or :error.

file-package-is-directory⇓
A generalized boolean.

operation⇓ One of :open or :save.

owner⇓ An owner window.

pane-args⇓ Arguments to pass to the pane.

popup-args⇓ Arguments to pass to the confirmer.

continuation⇓ A function or nil.

Values

filename⇓ A pathname or nil.

successp⇓ A boolean.

filter-name⇓ A string.

Description

The function prompt-for-file prompts the user for a file using a dialog box.

message is shown in the dialog box.

pathname, if non-nil, is a pathname designator providing a default filename for the dialog.

21 CAPI Reference Entries

594

ok-check, if non-nil, should be a function which takes a pathname designator argument and returns a true value if the
pathname is valid.

filter specifies the initial filter expression. The default value is "*.*". An example filter expression with multiple filters is
"*.LISP;*.LSP".

filter is used on all platforms. However on Motif, if filter contains multiple file types, only the first of these is used.

On Cocoa prompt-for-file supports the selection of application bundles as files if they match the filter. For example,
they will match if the filter expression contains *.app or *.*.

filters is a property list of filter names and filter expressions, presenting filters which the user can select in the dialog. If filter
is not one of the expressions in filters, an extra filter called "Files" is added for this expression.

On Microsoft Windows the default value of filters is:

("Lisp Source Files" "*.LISP;*.LSP"
 "Lisp Fasls" "*.OFASL"
 "Text Documents" "*.DOC;*.TXT"
 "Image Files" "*.BMP;*.DIB;*.ICO;*.CUR"
 "All Files" "*.*")

The "Lisp Fasls" extension may vary depending on the implementation.

On Cocoa and GTK+ the default value of filters is:

("Lisp Source Files" "*.lisp;*.lsp"
 "Text Documents" "*.txt;*.text"
 "All Files" "*.*")

filters is ignored on Motif.

When if-exists is :ok, an existing file can be returned. Otherwise the user is prompted about whether the file can be
overwritten. The default for if-exists is :ok when operation is :open and :prompt when operation is :save.

When if-does-not-exist is :ok, a non-existent file can be chosen. When it is :prompt, the user is prompted if a non-existent
file is chosen. When it is :error, the user cannot choose a non-existent file. The default for if-does-not-exist is :prompt if
operation is :open and :ok if operation is :save.

operation chooses the style of dialog used, in LispWorks for Windows only. The default value is :open.

owner, if non-nil, specifies an owner window for the dialog. See 10 Dialogs: Prompting for Input for details.

If continuation is non-nil, then it must be a function with a lambda list that accepts three arguments. continuation is called
with the values that would normally be returned by prompt-for-file. On Cocoa, passing continuation causes the dialog
to be made as a window-modal sheet and prompt-for-file returns immediately, leaving the dialog on the screen. The
with-dialog-results macro provides a convenient way to create a continuation function.

On Motif, the prompt itself is created by passing an appropriate pane to popup-confirmer. Arguments can be passed to the
make-instance of the pane and the call to popup-confirmer using pane-args and popup-args respectively. Currently,
the pane used to create the file prompter is internal to the CAPI. pane-args and popup-args are ignored on Microsoft
Windows.

filename is the full pathname of the file selected, or nil if the dialog was cancelled.

successp is a flag which is nil if the dialog was cancelled, and t otherwise.

On Microsoft Windows prompt-for-file returns a third value: filter-name is the name of the filter that was selected in the
dialog.

21 CAPI Reference Entries

595

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

file-package-is-directory controls how to treat file packages on Cocoa. By default it is nil, which means that a file package
is treated as file. If file-package-is-directory is non-nil, the a file package is treated as a directory. file-package-is-directory
corresponds to the treatsFilePackagesAsDirectories method of NSSavePanel in Cocoa. It has no effect on other
platforms.

Examples

(capi:prompt-for-file "Enter a filename:")

(capi:prompt-for-file "Enter a filename:"
 :pathname "/usr/bin/cal")

(capi:prompt-for-file "Enter a filename:"
 :ok-check 'probe-file)

See also

popup-confirmer
prompt-for-string
prompt-for-directory
10 Dialogs: Prompting for Input

prompt-for-files Function

Summary

Displays a dialog which returns multiple filenames.

Package

capi

Signature

prompt-for-files message &key pathname ok-check filter filters if-exists if-does-not-exist file-package-is-directory
operation owner pane-args popup-args continuation => filenames, successp, filter-name

Arguments

message⇓ A string or nil.

pathname⇓ A pathname designator or nil.

ok-check⇓ A function or nil.

filter⇓ A string or nil.

filters⇓ A property list.

if-exists⇓ One of :ok or :prompt.

if-does-not-exist⇓ One of :ok, :prompt or :error.

file-package-is-directory⇓
A generalized boolean.

21 CAPI Reference Entries

596

operation⇓ One of :open or :save.

owner⇓ An owner window.

pane-args⇓ Arguments to pass to the pane.

popup-args⇓ Arguments to pass to the confirmer.

continuation⇓ A function or nil.

Values

filenames⇓ A list.

successp⇓ A boolean.

filter-name⇓ A string.

Description

The function prompt-for-files presents the user with a dialog box similarly to prompt-for-file, but in which
multiple filenames can be selected.

message, pathname, ok-check, filter, filters, if-exists, if-does-not-exist, file-package-is-directory, operation, owner, pane-args
and popup-args are as for prompt-for-file, except on Microsoft Windows where the default value of filters is:

("MS Word files" "*.doc"
 "HTML files" "*.htm;*.html"
 "Plain Text files" "*.txt;*.text"
 "All files" "*.*")

On Cocoa and GTK+ the default value of filters is:

("Lisp Source Files" "*.lisp;*.lsp"
 "Text Documents" "*.txt;*.text"
 "All Files" "*.*")

which is the same default as for prompt-for-file.

filenames is a list of filenames, or nil if the user cancels the dialog.

successp is a flag which is nil if the dialog was cancelled, and t otherwise.

filter-name is the name of the filter that was selected in the dialog.

If continuation is non-nil, then it must be a function with a lambda list that accepts three arguments. continuation is called
with the values that would normally be returned by prompt-for-files. On Cocoa, passing continuation causes the dialog
to be made as a window-modal sheet and prompt-for-files returns immediately, leaving the dialog on the screen. The
with-dialog-results macro provides a convenient way to create a continuation function.

Notes

prompt-for-files is not implemented on Motif.

See also

prompt-for-file

21 CAPI Reference Entries

597

prompt-for-font Function

Summary

Presents a dialog box allowing the user to choose a font.

Package

capi

Signature

prompt-for-font message &key font owner => result, successp

Arguments

message⇓ A string.

font⇓ A font, a font description, or nil.

owner⇓ An owner window, or nil.

Values

result A font, or nil.

successp A boolean.

Description

The function prompt-for-font displays a dialog box allowing the user to choose a font.

message supplies a title for the dialog.

font, if non-nil, provides defaults for the dialog box. The default value is nil.

owner specifies an owner window for the dialog. See 10 Dialogs: Prompting for Input for details.

For a description of Graphics Ports fonts and font descriptions, see 13.9 Portable font descriptions.

See also

find-best-font
10 Dialogs: Prompting for Input

prompt-for-form Function

Summary

Displays a text input pane and prompts the user for a form.

21 CAPI Reference Entries

598

Package

capi

Signature

prompt-for-form message &key package initial-value evaluate quotify ok-check value-function pane-args popup-args
continuation => result, okp

Arguments

message⇓ A string or nil.

package⇓ A package or nil.

initial-value⇓ A Lisp object.

evaluate⇓ A generalized boolean.

quotify⇓ A generalized boolean.

ok-check⇓ A function or nil.

value-function⇓ A function, or nil.

pane-args⇓ Arguments to pass to the pane.

popup-args⇓ Arguments to pass to the confirmer.

continuation⇓ A function or nil.

Values

result A Lisp object.

okp A boolean.

Description

The function prompt-for-form prompts the user for a form by providing a text input pane that the form can be typed into.

message supplies a title for the dialog.

The form is read in package if specified or *package* if not. If evaluate is non-nil then the result is the evaluation of the
form, otherwise it is just the form itself. The printed version of initial-value will be placed into the text input pane as a
default, unless quotify, which defaults to evaluate, specifies otherwise. If value-function is provided it overrides the default
value function which reads the form and evaluates it when required. If ok-check is provided it will be passed the entered form
and should return t if the form is a valid result.

If continuation is non-nil, then it must be a function with a lambda list that accepts two arguments. continuation is called
with the values that would normally be returned by prompt-for-form. On Cocoa, passing continuation causes the dialog
to be made as a window-modal sheet and prompt-for-form returns immediately, leaving the dialog on the screen. The
with-dialog-results macro provides a convenient way to create a continuation function.

The prompter is created by calling prompt-for-string. Arguments can be passed to the make-instance of the pane and
the call to popup-confirmer using pane-args and popup-args respectively, and an input history can be implemented by
supplying a history-function or history-symbol in popup-args.

Examples

Try the following examples, and each time enter (+ 1 2) into the input pane.

21 CAPI Reference Entries

599

http://www.lispworks.com/documentation/HyperSpec/Body/v_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

(capi:prompt-for-form "Enter a form:")

(capi:prompt-for-form "Enter a form:" :evaluate nil)

See also

prompt-for-forms
prompt-for-string
popup-confirmer
text-input-pane
10 Dialogs: Prompting for Input

prompt-for-forms Function

Summary

Displays a text input pane prompting the user for a number of forms.

Package

capi

Signature

prompt-for-forms message &key package initial-value value-function pane-args popup-args continuation => result, okp

Arguments

message⇓ A string or nil.

package⇓ A package or nil.

initial-value⇓ A list.

value-function⇓ A function, or nil.

pane-args⇓ Arguments to pass to the pane.

popup-args⇓ Arguments to pass to the confirmer.

continuation⇓ A function or nil.

Values

result A list.

okp A boolean.

Description

The function prompt-for-forms prompts the user for a number of forms by providing a text input pane that the forms can
be typed into, and it returns the forms in a list. The forms are read in the specified package or *package* if not. If value-
function is provided it overrides the default value function which reads space-separated forms and returns a list of them.

message supplies a title for the dialog.

21 CAPI Reference Entries

600

http://www.lispworks.com/documentation/HyperSpec/Body/v_pkg.htm

The printed version of initial-value will be placed into the text input pane as a default.

If continuation is non-nil, then it must be a function with a lambda list that accepts two arguments. continuation is called
with the values that would normally be returned by prompt-for-forms. On Cocoa, passing continuation causes the dialog
to be made as a window-modal sheet and prompt-for-forms returns immediately, leaving the dialog on the screen. The
with-dialog-results macro provides a convenient way to create a continuation function.

The prompter is created by passing an appropriate pane (in this case a text input pane) to popup-confirmer. Arguments
can be passed to the make-instance of the pane and the call to popup-confirmer using pane-args and popup-args
respectively.

Examples

Try the following example, and enter 1 2 3 into the input pane.

(capi:prompt-for-forms "Enter some forms:")

See also

prompt-for-form
prompt-for-string
popup-confirmer
text-input-pane

prompt-for-integer Function

Summary

Prompts the user for an integer.

Package

capi

Signature

prompt-for-integer message &key min max initial-value ok-check pane-args popup-args continuation => result,
successp

Arguments

message⇓ A string.

min⇓ An integer or nil.

max⇓ An integer or nil.

initial-value⇓ An integer or nil.

ok-check⇓ A function or nil.

pane-args⇓ Arguments to pass to the pane.

popup-args⇓ Arguments to pass to the confirmer.

continuation⇓ A function or nil.

21 CAPI Reference Entries

601

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

Values

result⇓ An integer or nil.

successp A boolean.

Description

The function prompt-for-integer pops up a text-input-pane and prompts the user for an integer, which is returned in
result.

message supplies a title for the dialog.

When min or max are specified the allowable result is constrained accordingly.

initial-value determines the initial value displayed in the dialog. initial-value defaults to the value of min, or if min is nil
then no initial value is displayed.

Further restrictions can be applied by passing an ok-check function. ok-check should take one argument, the currently entered
number, and should return t if it is valid. If ok-check is nil (the default) then there is no further restriction.

If continuation is non-nil, then it must be a function with a lambda list that accepts two arguments. continuation is called
with the values that would normally be returned by prompt-for-integer. On Cocoa, passing continuation causes the
dialog to be made as a window-modal sheet and prompt-for-integer returns immediately, leaving the dialog on the
screen. The with-dialog-results macro provides a convenient way to create a continuation function.

The prompter is created by passing text-input-pane to popup-confirmer. Arguments can be passed to the
make-instance of the pane and the call to popup-confirmer using pane-args and popup-args respectively.

Examples

(capi:prompt-for-integer "Enter an integer:")

(capi:prompt-for-integer "Enter an integer:" :max 10)

(capi:prompt-for-integer "Enter an integer:"
 :min 100 :max 200)

(capi:prompt-for-integer "Enter an integer:"
 :ok-check 'evenp)

See also

prompt-for-string
popup-confirmer
text-input-pane
10 Dialogs: Prompting for Input

21 CAPI Reference Entries

602

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

prompt-for-items-from-list Function

Summary

Prompts with a choice of items.

Package

capi

Signature

prompt-for-items-from-list items message &key pane-args popup-args interaction choice-class continuation =>
result, successp

Arguments

items⇓ A sequence.

message⇓ A string.

pane-args⇓ Arguments to pass to the pane.

popup-args⇓ Arguments to pass to the confirmer.

interaction⇓ One of :single-selection, :multiple-selection, or :extended-selection.

choice-class⇓ A class name.

continuation⇓ A function or nil.

Values

result A list.

successp A boolean.

Description

The function prompt-for-items-from-list is similar to prompt-with-list. interaction defaults to
:extended-selection.

See prompt-with-list for how items, message, pane-args, popup-args, interaction, choice-class and continuation are
used.

See also

prompt-with-list

21 CAPI Reference Entries

603

prompt-for-number Function

Summary

Prompts the user for a number.

Package

capi

Signature

prompt-for-number message &key min max initial-value ok-check pane-args popup-args continuation => result,
successp

Arguments

message⇓ A string.

min⇓ A number or nil.

max⇓ A number or nil.

initial-value⇓ A number or nil.

ok-check⇓ A function or nil.

pane-args⇓ Arguments to pass to the pane.

popup-args⇓ Arguments to pass to the confirmer.

continuation⇓ A function or nil.

Values

result⇓ A number or nil.

successp A boolean.

Description

The function prompt-for-number pops up a text-input-pane and prompts the user for a number, which is returned in
result.

The functionality corresponds exactly to that of prompt-for-integer, except that all types of numbers are allowed.

See prompt-for-integer for how message, min, max, initial-value, ok-check, pane-args, popup-args, continuation are
used.

See also

prompt-for-integer
10 Dialogs: Prompting for Input

21 CAPI Reference Entries

604

prompt-for-string Function

Summary

Displays a text input pane and prompts the user for a string.

Package

capi

Signature

prompt-for-string message &key pane-args popup-args ok-check value-function text initial-value print-function history-
symbol history-function continuation => result, okp

Arguments

message⇓ A string.

pane-args⇓ Arguments to pass to the pane.

popup-args⇓ Arguments to pass to the confirmer.

ok-check⇓ A function or nil.

value-function⇓ A function or nil.

text⇓ A string or nil.

initial-value⇓ A string or nil.

print-function⇓ A function or nil.

history-symbol⇓ A symbol.

history-function⇓ A function or nil.

continuation⇓ A function or nil.

Values

result⇓ A string or nil.

okp⇓ A boolean.

Description

The function prompt-for-string prompts the user for a string and returns that string in result and a flag okp indicating
that the dialog was not cancelled. The initial string can either be supplied directly as a string using text, or by passing initial-
value and a print-function for that value. print-function defaults to princ-to-string. The value returned can be converted
into a different value by passing a value-function, which by default is the identity function. This value-function gets passed
the text that was entered into the pane, and should return both the value to return and a flag that should be non-nil if the value
that was entered is not acceptable. If an ok-check is passed, then it should return non-nil if the value about to be returned is
acceptable.

prompt-for-string creates an instance of text-input-pane or text-input-choice depending on the value of
history-function. Arguments can be passed to the make-instance of this pane using pane-args. prompt-for-string

21 CAPI Reference Entries

605

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

then passes this pane to popup-confirmer. Arguments can be passed to the call to popup-confirmer using popup-args.

message supplies a title for the dialog.

history-symbol, if non-nil, provides a symbol whose value is used to store an input history, when history-function is not
supplied. The default value of history-symbol is nil.

history-function, if supplied, should be a function designator for a function with signature:

history-function &optional push-value

history-function is called with no argument to obtain the history which is used as the items of the text-input-choice, and
with the latest input to update the history.

The default value of history-function is nil. In this case, if history-symbol is non-nil then a history function is constructed
which stores its history in the value of that symbol.

If continuation is non-nil, then it must be a function with a lambda list that accepts two arguments. continuation is called
with the values that would normally be returned by prompt-for-string. On Cocoa, passing continuation causes the
dialog to be made as a window-modal sheet and prompt-for-string returns immediately, leaving the dialog on the screen.
The with-dialog-results macro provides a convenient way to create a continuation function.

Examples

(capi:prompt-for-string "Enter a string:")

(capi:prompt-for-string
 "Enter an integer:"
 :initial-value 10
 :value-function #'(lambda (x)
 (let ((integer
 (ignore-errors
 (read-from-string x))))
 (values integer
 (not (integerp integer))
))))

See also

popup-confirmer
text-input-pane
10 Dialogs: Prompting for Input

prompt-for-symbol Function

Summary

Prompts the user for a symbol.

Package

capi

21 CAPI Reference Entries

606

Signature

prompt-for-symbol message &key initial-value symbols package ok-check pane-args popup-args continuation => result,
okp

Arguments

message⇓ A string or nil.

initial-value⇓ A symbol.

symbols⇓ A list of symbols.

package⇓ A package or nil.

ok-check⇓ A function, or nil.

pane-args⇓ Arguments to pass to the pane.

popup-args⇓ Arguments to pass to the confirmer.

continuation⇓ A function or nil.

Values

result A symbol.

okp A boolean.

Description

The function prompt-for-symbol prompts the user for a symbol which they should enter into the pane.

message supplies a title for the dialog.

initial-value, if non-nil, should be a symbol which is initially displayed in the pane.

The symbols that are valid can be constrained in a number of ways.

symbols, if non-nil, should be a list of all valid symbols. The default is nil, meaning all symbols are valid.

package, if non-nil, is a package in which the symbol must be available. The value nil means that the value of *package*
is used, and this is the default.

ok-check is a function which when called on a symbol will return non-nil if the symbol is valid.

The prompter is created by calling prompt-for-string. Arguments can be passed to the make-instance of the pane and
the call to popup-confirmer using pane-args and popup-args respectively, and an input history can be implemented by
supplying a history-function or history-symbol in popup-args.

If continuation is non-nil, then it must be a function with a lambda list that accepts two arguments. continuation is called
with the values that would normally be returned by prompt-for-symbol. On Cocoa, passing continuation causes the
dialog to be made as a window-modal sheet and prompt-for-symbol returns immediately, leaving the dialog on the screen.
The with-dialog-results macro provides a convenient way to create a continuation function.

Examples

(capi:prompt-for-symbol "Enter a symbol:")

(capi:prompt-for-symbol "Enter a symbol:"
 :package 'cl)

21 CAPI Reference Entries

607

http://www.lispworks.com/documentation/HyperSpec/Body/v_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

(capi:prompt-for-symbol "Enter a symbol:"
 :symbols
 '(foo bar baz))

(capi:prompt-for-symbol "Enter a symbol:"
 :ok-check #'(lambda (symbol)
 (string< symbol "B")))

This last example shows how to implement a symbol prompter with an input history:

(defvar *my-history* (list "cdr" "car"))

(capi:prompt-for-symbol "Enter a symbol"
 :popup-args
 '(:history-symbol *my-history*))

See also

prompt-for-form
prompt-for-string
popup-confirmer
text-input-pane
10 Dialogs: Prompting for Input

prompt-for-value Function

Summary

Prompts the user for a form to evaluate.

Package

capi

Signature

prompt-for-value message &key package initial-value value-function pane-args popup-args continuation => value, okp

Arguments

message⇓ A string or nil.

package⇓ A package or nil.

initial-value⇓ A symbol.

value-function⇓ A function, or nil.

pane-args⇓ Arguments to pass to the pane.

popup-args⇓ Arguments to pass to the confirmer.

continuation⇓ A function or nil.

Values

value A Lisp object.

21 CAPI Reference Entries

608

okp A boolean.

Description

The function prompt-for-value prompts the user for a form and returns the result of evaluating that form.

The form is read in package if specified or *package* if not and the result is the evaluation of the form.

If initial-value is supplied it provides a default form.

If value-function is supplied it overrides the default value function which reads the form and evaluates it.

message supplies a title for the dialog.

If continuation is non-nil, then it must be a function with a lambda list that accepts two arguments. continuation is called
with the values that would normally be returned by prompt-for-value. On Cocoa, passing continuation causes the dialog
to be made as a window-modal sheet and prompt-for-value returns immediately, leaving the dialog on the screen. The
with-dialog-results macro provides a convenient way to create a continuation function.

The prompter is created by passing a text-input-pane to popup-confirmer. Arguments can be passed to the
make-instance of the pane and the call to popup-confirmer using pane-args and popup-args respectively.

Examples

(capi:prompt-for-value
 "Square"
 :initial-value '(+ 1 2 3)
 :value-function
 #'(lambda (text)
 (let ((res (eval (read-from-string text))))
 (* res res))))

See also

prompt-for-form

prompt-with-list Function

Summary

Prompts the user to select an item or items from a choice.

Package

capi

Signature

prompt-with-list items message &key choice-class interaction selection selected-item selected-items value-function pane-
args popup-args continuation buttons callbacks all-button none-button => result, successp

Arguments

items⇓ A sequence.

21 CAPI Reference Entries

609

http://www.lispworks.com/documentation/HyperSpec/Body/v_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

message⇓ A string.

choice-class⇓ A class name.

interaction⇓ One of :single-selection, :multiple-selection, or :extended-selection.

selection⇓ The indexes of the choice's selected items.

selected-item⇓ The selected item for a single selection choice.

selected-items⇓ A list of the selected items.

value-function⇓ A function, or nil.

pane-args⇓ Arguments to pass to the pane.

popup-args⇓ Arguments to pass to the confirmer.

continuation⇓ A function or nil.

buttons⇓ A list of strings or the keyword :none.

callbacks⇓ A list of callback specs.

all-button⇓ A string, nil or t.

none-button⇓ A string, nil or t.

Values

result⇓ A list.

successp A boolean.

Description

The function prompt-with-list prompts the user with a choice. The user's selection is normally returned by the
prompter.

items supplies the items of the choice.

message supplies a title for the choice.

choice-class determines the type of choice used in the dialog. choice-class defaults to list-panel, and must be a subclass
of choice.

interaction determines the interaction style of the choice in the dialog. By default interaction is :single-selection. For
single selection, the dialog has an OK and a Cancel button, while for other selection styles it has Yes, No and Cancel buttons
where Yes means accept the selection, No means accept a null selection and Cancel behaves as normal. Note that interaction
:multiple-selection is not supported for lists on macOS.

One of selection, selected-item or selected-items can be used to set the initial selection of the choice.

The primary returned value is usually the selected items, but a value-function can be supplied that gets passed the result and
can then return a new result. If value-function is nil (this is the default), then result is simply the selection.

If continuation is non-nil, then it must be a function with a lambda list that accepts two arguments. continuation is called
with the values that would normally be returned by prompt-with-list. On Cocoa, passing continuation causes the dialog
to be made as a window-modal sheet and prompt-with-list returns immediately, leaving the dialog on the screen. The
with-dialog-results macro provides a convenient way to create a continuation function.

In addition to the choice showing the items, prompt-with-list can also display a panel of push buttons (the "action
buttons") which perform actions related to the choice. Note that these buttons are separated from the "dialog buttons" such as

21 CAPI Reference Entries

610

OK and Cancel. The dialog buttons are controlled separately by keywords in popup-args.

By default, prompt-with-list does not display action buttons. However, if interaction is :multiple-selection, the
default behavior is to display two action buttons, All and None. These change the selection to all of the items or none of the
items respectively.

When buttons is :none, it specifies no action buttons in any case (including no All and None buttons). Otherwise buttons
must be a list of strings specifying additional action buttons. Each of the strings specifies a button, and the string is displayed
in the button.

callbacks specifies the callbacks of the buttons. It should be a list of callback specifiers matching the list in buttons. Each
callback specifier is either a callable (a function or a symbol) which takes one argument, the choice, or a list where the car is
a callable which is called as follows:

(apply (car callback-spec) choice (cdr callback-spec))

When all-button and none-button are supplied they override the default behavior of the All and None buttons. If all-button
(none-button) is nil, then All (None) is not displayed. If all-button (none-button) is non-nil and buttons is not :none, the All
(None) button is displayed, and if the value is string, that string is used instead of the default string.

The prompter is created by passing an appropriate pane (in this case an instance of class choice-class) to popup-confirmer.
Arguments can be passed to the make-instance of the pane and the call to popup-confirmer using pane-args and
popup-args respectively.

Examples

(capi:prompt-with-list
 '(1 2 3 4 5) "Select an item:")

(capi:prompt-with-list
 '(1 2 3 4 5) "Select some items:"
 :interaction :multiple-selection
 :selection '(0 2 4))

(capi:prompt-with-list
 '(1 2 3 4 5) "Select an item:"
 :interaction :multiple-selection
 :choice-class 'capi:button-panel)

(capi:prompt-with-list
 '(1 2 3 4 5) "Select an item:"
 :interaction :multiple-selection
 :choice-class 'capi:button-panel
 :pane-args
 '(:layout-class capi:column-layout))

There is a more complex example in:

(example-edit-file "capi/choice/prompt-with-buttons")

See also

popup-confirmer
list-panel
choice
10 Dialogs: Prompting for Input

21 CAPI Reference Entries

611

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

prompt-with-list-non-focus Function

Summary

Raises a non-focus window.

Package

capi

Signature

prompt-with-list-non-focus items &key owner x alternative-x right y alternative-y bottom choice-class vertical-
scroll print-function selection selected-item visible-items selection-callback action-callback destroy-callback list-updater gesture-
callbacks add-gesture-callbacks alternative-bottom alternative-right widget-name filtering-gesture filtering-toggle &allow-
other-keys => interface

Arguments

items⇓ A sequence.

owner⇓ A displayed CAPI pane.

x⇓, alternative-x⇓, right⇓
Integers, or one of the keywords :left, :right, :center and :centre.

y⇓, alternative-y⇓, bottom⇓
Integers, or one of the keywords :top, :bottom, :center and :centre.

choice-class⇓ A subclass of list-panel.

vertical-scroll⇓ A boolean.

print-function⇓ A function designator or nil.

selection⇓ An integer.

selected-item⇓ An item.

visible-items⇓ A positive integer.

selection-callback⇓ A function designator or nil.

action-callback⇓ A function designator or nil.

destroy-callback⇓ A function designator or nil.

list-updater⇓ A function designator or nil.

gesture-callbacks⇓ A list of pairs of the form (gesture . callback).

add-gesture-callbacks⇓
A list of pairs of the form (gesture . callback).

alternative-bottom⇓ An integer, or one of the keywords :top, :bottom, :center and :centre, or t.

alternative-right⇓ An integer, or one of the keywords :left, :right, :center and :centre, or t.

widget-name⇓ A string.

filtering-gesture⇓ A Gesture Spec.

21 CAPI Reference Entries

612

filtering-toggle⇓ A Gesture Spec.

Values

interface A non-focus-list-interface, or nil.

Description

The function prompt-with-list-non-focus raises a non-focus window, displaying the items items in a list of class
choice-class, which should be list-panel or a subclass.

The non-focus window does not take the input focus, and hence does not see any keyboard input unless this is passed to it by
non-focus-maybe-capture-gesture. It responds to mouse gestures.

Note that even moving the selection in the list vertically in response to the arrow keys cannot happen without
non-focus-maybe-capture-gesture.

owner is required, and must be a CAPI pane visible on the screen. The position of the non-focus window is determined
relative to owner, and the callbacks are invoked in the process of owner.

x, y, right, bottom, alternative-x, alternative-y, alternative-right, and alternative-bottom are used for positioning the window.
x, alternative-right, alternative-x and right are the horizontal keywords, and one of them determines the horizontal position
as described below. y, alternative-bottom, alternative-y and bottom are the vertical keywords, and one of them determines the
vertical position. The values :center and :centre are synonyms here.

x and y specify the positioning of the left and top sides of the window, except for :center/:centre. An integer means
offset in pixels from the left or top of owner. :left, :right, :top and :bottom mean the left/right/top/bottom of owner.
:center means the center of the owner, and in this case it specifies the location of the center of the window in the x or y
dimension. x must be supplied, unless right is supplied. y must be supplied, unless bottom is supplied.

right and bottom override x and y respectively. They specify the positioning of the right or bottom of the window, except for
:center/:centre, where they are interpreted in the same way as x and y.

alternative-x, alternative-y, alternative-right, and alternative-bottom are used if positioning the window using x or right and
y or bottom would place it outside of the screen, and are interpreted the same way as the non-alternative keywords. For
example, both Editor completion and text-input-pane completion specify a y coordinate below the text, and alternative-
bottom above the text. The decision to use the alternative variables is made independently in the horizontal and vertical
directions. alternative-right and alternative-bottom can both take the special value t, meaning the height or width of the
screen.

The default value of choice-class is list-panel.

selection or selected-item can be used to specify the initially selected item in the list. If neither of these initargs is supplied,
the first item is selected.

visible-items specifies the height of the list panel when the filter is not visible. The default value of visible-items is 20.

vertical-scroll is supplied to cl:make-instance when making the list. The default value of vertical-scroll is t.

print-function is also supplied to cl:make-instance when making the list. The default value of print-function is nil.

selection-callback, if non-nil, should be a function of two arguments, the selected item and the non-focus interface. selection-
callback is called (in the process of owner) when an item is selected in the list panel. Note that callback-type does not affect
the arguments passed to selection-callback.

action-callback, if non-nil, should also be a function of two arguments, the selected item and the non-focus interface. action-
callback is called (in the process of owner) when an item is double-clicked in the list panel, or when Return is passed to
non-focus-maybe-capture-gesture (by default, see gesture-callbacks). Note that callback-type does not affect the

21 CAPI Reference Entries

613

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

arguments passed to action-callback.

destroy-callback, if non-nil, should be a function of one argument, the non-focus window (a CAPI interface). destroy-
callback is called when the non-focus window is destroyed. It is invoked in the process of owner.

list-updater, if non-nil, should be a function with signature:

list-updater => result

list-updater is called in the process of owner whenever non-focus-update is called. result must be a list of items to put
into the list panel, or one of the special values t (meaning no effect) and :destroy (meaning destroy the non-focus
window).

gesture-callbacks and add-gesture-callbacks define gesture callbacks which the non-focus window can "capture" (when
non-focus-maybe-capture-gesture is called). gesture-callbacks and add-gesture-callbacks should both be a list of
pairs of the form (gesture . callback). Each gesture must be a gesture specifier, that is an object that
sys:coerce-to-gesture-spec can coerce to a sys:gesture-spec. Each callback is either a callable (symbol or
function) which takes one argument, the non-focus window, or a list of the form (function . arguments). Note that when it is
a list, the window is not automatically passed to the function function amongst the arguments arguments. The gesture
callbacks are used only when non-focus-maybe-capture-gesture is called.

add-gesture-callbacks adds more gesture callbacks to those that are implicitly defined for controlling the list panel (see
non-focus-maybe-capture-gesture). gesture-callbacks, if supplied, replaces the gesture callbacks that are implicitly
defined for the list panel. In both cases, a gesture callback that is defined explicitly overrides any implicitly define gesture
callback.

filtering-gesture defines whether it is possible for the user to add a filter to the non-focus window with a keyboard gesture,
and defines that gesture. The gesture is actually a toggle: it destroys a filter that is on, and adds a filter when none is present.
When the filter is added, its text is reset and it is always enabled, that is it captures characters and Backspace. While the
filter is visible, the list panel displays only items that match the filter (see 5.3.6 Filters). The default value of filtering-gesture
is a Gesture Spec matching Control+Return.

filtering-toggle defines whether it is possible for the user to disable/enable the filter with a keyboard gesture, and defines that
gesture. When a filter is visible and enabled, the non-focus window captures characters and Backspace (when
non-focus-maybe-capture-gesture is called) and passes them to the filter. When the filter is visible and disabled,
characters and Backspace are captured. The default value of filtering-toggle is a Gesture Spec matching
Control+Shift+Return.

widget-name has an effect only on GTK+ and Motif. It defines the widget name of the interface, which can then be used to
define resources specific to the non-focus window. Note that the non-focus completers in editor-pane and
text-input-pane use the default widget-name which is "non-focus-list-prompter", so defining resources for non-
focus-list-prompter will affect them.

If items is nil, prompt-with-list-non-focus returns nil without doing anything. Otherwise, it raises the non-focus
window and returns the interface, which is of class non-focus-list-interface.

The non-focus window is "passive", because it does not see keyboard input. It is the responsibility of the caller to pass any
keyboard input that the non-focus window needs to process to the window, by using
non-focus-maybe-capture-gesture. In general, that should be all keyboard gestures, and
non-focus-maybe-capture-gesture decides which gestures it wants to process.

The caller can also use non-focus-terminate, non-focus-update, non-focus-list-toggle-filter,
non-focus-list-add-filter, non-focus-list-remove-filter and
non-focus-list-toggle-enable-filter to control the non-focus window.

21 CAPI Reference Entries

614

See also

list-panel
non-focus-terminate
non-focus-update
non-focus-list-toggle-filter
non-focus-list-toggle-enable-filter
non-focus-maybe-capture-gesture
10.6 In-place completion

prompt-with-message Function

Summary

Displays a message dialog, allowing it to be a window-modal sheet on Cocoa.

Package

capi

Signature

prompt-with-message message &key owner continuation

Arguments

message⇓ A string.

owner⇓ An owner window, or nil.

continuation⇓ A function or nil.

Description

The function prompt-with-message displays message in a dialog owned by owner.

If continuation is non-nil, then it must be a function with a lambda list that accepts two arguments. continuation is called
with the values that would normally be returned by prompt-with-message. On Cocoa, passing continuation causes the
dialog to be made as a window-modal sheet and prompt-with-message returns immediately, leaving the dialog on the
screen. The with-dialog-results macro provides a convenient way to create a continuation function.

Examples

(capi:prompt-with-message
 "No items were deleted.")

See also

display-message-for-pane
display-message

21 CAPI Reference Entries

615

push-button Class

Summary

A pane that displays either a piece of text or an image and when it is pressed it performs an action.

Package

capi

Superclasses

button
titled-object

Initargs

:alternate-callback

A callback invoked on Microsoft Windows, Cocoa and GTK+ when pressing the mouse
button over the button while a platform-specific modifier key is held down.

:press-callback A callback invoked on Microsoft Windows, GTK+ and Motif when pressing the mouse
button over the button.

Accessors

button-alternate-callback
button-press-callback

Description

The class push-button inherits most of its behavior from button. Note that it is normally best to use a
push-button-panel rather than make the individual buttons yourself, as the button panel provides functionality for
handling groups of buttons. However, push buttons can be used if you need to have more control over the button's behavior.

press-callback, if non-nil, should be a function which is called when the user presses the mouse left button over the push
button. The arguments to press-callback are as specified by callback-type. This initarg is not supported on Cocoa.

alternate-callback, if non-nil, should be a function. On Microsoft Windows and GTK+, it is called instead of callback when
the button is clicked with the Control key held down. On Cocoa, it is called instead of callback when the button is clicked
with the Command key held down. alternate-callback is not implemented for Motif or for other classes of button.

Notes

callback (from superclass button) is the general callback, triggered when the user clicks the button, either by pressing and
releasing the mouse button or by a keyboard gesture.

press-callback is called only when the user presses the mouse button.

Examples

(setq button (capi:contain
 (make-instance
 'capi:push-button

21 CAPI Reference Entries

616

 :text "Press Me"
 :data '(:some :data)
 :callback #'(lambda (data interface)
 (capi:display-message
 "Pressed ~S"
 data)))))

(capi:apply-in-pane-process
 button #'(setf capi:button-enabled) nil button)

(capi:apply-in-pane-process
 button #'(setf capi:button-enabled) t button)

See also

radio-button
check-button
button-panel
push-button-panel
1.2.1 CAPI elements
3.10 Button elements
12 Creating Panes with Your Own Drawing and Input

push-button-panel Class

Summary

A pane containing a group of buttons.

Package

capi

Superclasses

button-panel

Description

The class push-button-panel inherits all of its behavior from button-panel, which itself inherits most of its behavior
from choice. Thus, the push button panel can accept items, callbacks, and so on.

Examples

(defun test-callback (data interface)
 (capi:display-message
 "Pressed ~S" data))

(capi:contain (make-instance 'capi:push-button-panel
 :title "Press a button:"
 :items
 '("Press Me" "No, Me")
 :selection-callback
 'test-callback))

21 CAPI Reference Entries

617

(capi:contain (make-instance 'capi:push-button-panel
 :title "Press a button:"
 :items
 '("Press Me" "No, Me")
 :selection-callback
 'test-callback
 :layout-class
 'capi:column-layout))

(capi:contain (make-instance 'capi:push-button-panel
 :title "Press a button:"
 :items '(1 2 3 4 5 6 7 8 9)
 :selection-callback
 'test-callback
 :layout-class
 'capi:grid-layout
 :layout-args
 '(:columns 3)))

There is a further example here:

(example-edit-file "capi/buttons/buttons")

See also

push-button
radio-button-panel
check-button-panel
5 Choices - panes with items

quit-interface Function

Summary

Closes the top level interface containing a specified pane.

Package

capi

Signature

quit-interface pane &key force => result

Arguments

pane⇓ A CAPI element.

force⇓ A boolean. The default value is nil.

Values

result t if the interface was closed, nil otherwise.

21 CAPI Reference Entries

618

Description

The function quit-interface closes the top level interface containing pane, but first it verifies that it is OK to do this by
calling the interface's confirm-destroy-function. If it is OK to close the interface, it then calls destroy to do so. If force is
true, then neither the confirm-destroy-function or the destroy-callback are called, and the window is just closed immediately.

Notes

quit-interface must only be called in the process of the top level interface of pane. Menu callbacks on that interface will
be called in that process, but otherwise you probably need to use execute-with-interface or
apply-in-pane-process.

Examples

Here are two examples demonstrating the use of quit-interface with the destroy-callback and the confirm-destroy-
function.

(setq interface (capi:display
 (make-instance
 'capi:interface
 :title "Test Interface"
 :destroy-callback
 #'(lambda (interface)
 (capi:display-message
 "Quitting ~S" interface)))))

(capi:apply-in-pane-process
 interface 'capi:quit-interface interface)

With this second example, the user is prompted as to whether or not to quit the interface.

(setq interface (capi:display
 (make-instance
 'capi:interface
 :title "Test Interface"
 :confirm-destroy-function
 #'(lambda (interface)
 (capi:confirm-yes-or-no
 "Really quit ~S"
 interface)))))

(capi:apply-in-pane-process
 interface 'capi:quit-interface interface)

See also

destroy
display
interface
7 Programming with CAPI Windows

21 CAPI Reference Entries

619

radio-button Class

Summary

A button that can be either selected or deselected, but when selecting it any other buttons in its group will be cleared.

Package

capi

Superclasses

button
titled-object

Description

The class radio-button inherits most of its behavior from button. Note that it is normally best to use a
radio-button-panel rather than make the individual buttons yourself, as the button-panel provides functionality for
handling groups of buttons. However, radio buttons are provided in case you need to have more control over the button's
behavior.

Examples

(setq button (capi:contain
 (make-instance 'capi:radio-button
 :text "Press Me")))

(capi:apply-in-pane-process
 button #'(setf capi:button-selected) t button)

(capi:apply-in-pane-process
 button #'(setf capi:button-selected) nil button)

(capi:apply-in-pane-process
 button #'(setf capi:button-enabled) nil button)

(capi:apply-in-pane-process
 button #'(setf capi:button-enabled) t button)

There is a further example here:

(example-edit-file "capi/buttons/buttons")

See also

push-button
check-button
button-panel
radio-button-panel
3.10 Button elements

21 CAPI Reference Entries

620

radio-button-panel Class

Summary

A pane containing a group of buttons of which only one can be selected at any time.

Package

capi

Superclasses

button-panel

Description

The class radio-button-panel inherits all of its behavior from button-panel, which itself inherits most of its behavior
from choice. Thus, the radio button panel can accept items, callbacks, and so forth.

Examples

(capi:contain (make-instance
 'capi:radio-button-panel
 :title "Select a color:"
 :items '(:red :green :blue)
 :print-function 'string-capitalize))

(setq buttons (capi:contain
 (make-instance
 'capi:radio-button-panel
 :title "Select a color:"
 :items '(:red :green :blue)
 :print-function 'string-capitalize
 :layout-class 'capi:column-layout)))

(capi:choice-selected-item buttons)

There is a further example here:

(example-edit-file "capi/buttons/buttons")

See also

radio-button
push-button-panel
check-button-panel
5 Choices - panes with items

21 CAPI Reference Entries

621

raise-interface Function

Summary

Raises the interface containing a specified pane to the front of the screen.

Package

capi

Signature

raise-interface pane

Arguments

pane⇓ A pane.

Description

The function raise-interface raises the window containing pane to the front of the screen. To push it to the back use
lower-interface, and to iconify it use hide-interface.

Examples

(setq pane (capi:contain
 (make-instance
 'capi:text-input-pane)))

(capi:apply-in-pane-process
 pane 'capi:lower-interface pane)

(capi:apply-in-pane-process
 pane 'capi:raise-interface pane)

See also

activate-pane
hide-interface
interface
lower-interface
quit-interface
7.7 Manipulating top-level windows

range-pane Class

Summary

A class supporting progress-bar and slider.

21 CAPI Reference Entries

622

Package

capi

Superclasses

capi-object

Subclasses

progress-bar
scroll-bar
slider

Initargs

:start An integer specifying the lowest value of the range.

:end An integer specifying the highest value of the range.

:slug-start An integer specifying the start of the slug, corresponding to the current value of the range.

:slug-end An integer specifying the end of the slug.

:callback Called when the user changes the value.

:orientation One of :horizontal (the default) or :vertical.

Accessors

range-start
range-end
range-slug-start
range-slug-end
range-callback
range-orientation

Description

The class range-pane exists to support the progress-bar and slider classes. Consult the reference pages for
progress-bar and slider for further information.

See also

progress-bar
slider
3.9.4 Slider, Progress bar and Scroll bar

range-set-sizes Function

Summary

Set values in a range-pane.

Package

capi

21 CAPI Reference Entries

623

Signature

range-set-sizes range-pane &key start end slug-start slug-end redisplay

Arguments

range-pane⇓ A range-pane.

start⇓ A real number or nil.

end⇓ A real number or nil.

slug-start⇓ A real number or nil.

slug-end⇓ A real number or nil.

redisplay⇓ A generalized boolean.

Description

The function range-set-sizes set the values in the range-pane range-pane for any value of start, end, slug-start or slug
-end that is supplied as non-nil.

For each of start, end, slug-start and slug-end, if the value is nil or not supplied, the corresponding value in range-pane is
not changed.

If redisplay is true (the default) then range-pane is redisplayed with the new values.

Notes

The values can be also set individually by the accessors (setf range-start) and so on. range-set-sizes has the
advantage over the accessors that it causes fewer calls to redisplay.

See also

range-pane
3.9.4 Slider, Progress bar and Scroll bar

read-sound-file Function

Summary

Reads data from a sound file on Microsoft Windows and Cocoa.

Package

capi

Signature

read-sound-file source => array

Arguments

source⇓ A pathname designator.

21 CAPI Reference Entries

624

Values

array An array of element type (unsigned-byte 8).

Description

The function read-sound-file reads data from source and returns an array of its contents.

Notes

1. read-sound-file can be called during image building.

2. read-sound-file is not implemented on GTK+ and Motif.

See also

load-sound
18.2 Sounds

record-dependent-object
unrecord-dependent-object Functions

Summary

Register or unregister an object for destruction when a pinboard-layout is destroyed.

Package

capi

Signatures

record-dependent-object pinboard-layout object

unrecord-dependent-object pinboard-layout object

Arguments

pinboard-layout⇓ A pinboard-layout.

object⇓ A Lisp object.

Description

The functions record-dependent-object and unrecord-dependent-object are part of a mechanism for destroying
objects when a pinboard-layout is destroyed.

record-dependent-object records the object object, which means that when pinboard-layout is destroyed,
destroy-dependent-object is applied to object.

unrecord-dependent-object removes object from the dependents, comparing objects by cl:equal.

It is possible to record the same object more than once. unrecord-dependent-object removes one occurrence of object
at most. If there is no object, it does nothing.

21 CAPI Reference Entries

625

http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm

Notes

These functions are not designed to deal with many calls to record-dependent-object and
unrecord-dependent-object. If you need to deal with many objects, you can either use the destroy-callback of
pinboard-layout (inherited from output-pane), or add a single object of your object type (class or structure) and define
a destroy-dependent-object method for it that will deal with the many objects in an optimal way.

See also

destroy-dependent-object
pinboard-layout

rectangle Class

Summary

A pinboard-object that draws a rectangle.

Package

capi

Superclasses

pinboard-object

Initargs

:filled A boolean, default value nil.

Accessors

filled

Description

The class rectangle provides a simple pinboard-object that draws a rectangle.

The rectangle is always drawn with shape-mode :plain (that is, without anti-aliasing).

filled determines whether the rectangle is filled.

See also

12.3 Creating graphical objects

21 CAPI Reference Entries

626

redisplay-collection-item Generic Function

Summary

Redisplays the area in a collection that belongs to an item.

Package

capi

Signature

redisplay-collection-item collection item

Arguments

collection⇓ A collection.

item⇓ A Lisp object that is an item of collection.

Description

The generic function redisplay-collection-item redisplays item in collection.

There are methods supplied for graph-pane and tree-view.

See also

collection

redisplay-element Function

Summary

Force redisplay of an output-pane or a pinboard-object.

Package

capi

Signature

redisplay-element element &optional x y width height

Arguments

element⇓ An output-pane or a pinboard-object.

x⇓, y⇓, width⇓, height⇓
Positive reals or nil. Default nil.

21 CAPI Reference Entries

627

Description

The function redisplay-element causes element to be redisplayed. Redisplaying causes the display-callback of element
to be called. When element is pinboard-object, the display-callback of its pinboard-layout is called.

redisplay-element is special in that it can be called from any thread, as opposed to almost all of the other CAPI
functions, which must be called from the thread to which element belongs.

x, y, width and height specify which part of element to redisplay. If x or y are nil, they are set to 0. If width is nil, it is set
to the width of element minus x, and if height is nil it is set to the height of element minus y. Thus if redisplay-element
is called with only element, it redisplays all of it.

Notes

redisplay-element is the same as gp:invalidate-rectangle, except that redisplay-element is safe to call from
any thread, which gp:invalidate-rectangle is not.

The call to the display-callback is asynchronous, and there is no specific call to the display-callback that matches a given call
to redisplay-element. redisplay-element just guarantees that, provided element is displayed and nothing is broken,
at least one call to the display-callback will happen with the given rectangle or a rectangle that contains it.

Examples

This example shows use of redisplay-element from a timer:

(example-edit-file "capi/graphics/metafile-rotation.lisp")

See also

gp:invalidate-rectangle
output-pane
pinboard-object

redisplay-interface Generic Function

Summary

Updates the state of an interface.

Package

capi

Signature

redisplay-interface interface

Arguments

interface⇓ An interface.

21 CAPI Reference Entries

628

Description

The generic function redisplay-interface updates the state of the interface interface, such as enabling and disabling
menus, buttons, and so forth, that might have changed since the last call. When using this as a callback, you can use
:redisplay-interface instead of the symbol, and then it will get passed the correct arguments regardless of the callback
type.

Notes

This method is called by popup-confirmer to update its button's enabled state, and so it should be called when state
changes in a dialog.

See also

interface
redisplay-menu-bar
redraw-pinboard-layout
display
10 Dialogs: Prompting for Input

redisplay-menu-bar Function

Summary

Updates the menu bar of an interface.

Package

capi

Signature

redisplay-menu-bar interface &key redo-items

Arguments

interface⇓ An interface.

redo-items⇓ A generalized boolean.

Description

The function redisplay-menu-bar updates the menu bar of interface, such that menus become enabled and disabled as
appropriate.

When redo-items is non-nil, redisplay-menu-bar redoes the items in menu and menu-component that have an items-
function, by calling the items-function and setting the items. The default value of redo-items is t.

Notes

redo-items defaults to t in order to ensure that any accelerator associated with any item is up-to-date. When the menu bar
contains menus (including sub-menus and menu-components) that have an items-function, redisplay-menu-bar may take
a relatively long time (tens of milliseconds). If it is called often (for example, each time the user types a character), then it is
better to call redisplay-menu-bar with redo-items nil.

21 CAPI Reference Entries

629

Compatibility note

This function has been superseded by redisplay-interface, which updates the menu bar, but also updates other state
objects such as buttons, list panels and so on.

See also

interface
redisplay-interface

redraw-drawing-with-cached-display Function

Summary

Redraws a pane with cached display, in particular the areas that were drawn by calls to a temp-display-callback.

Package

capi

Signature

redraw-drawing-with-cached-display pane

Arguments

pane⇓ An output-pane.

Description

The function redraw-drawing-with-cached-display redraws the output pane pane, in particular the areas that were
drawn by calls to the temp-display-callback. This has the effect of restoring the display to how it was in the last call to
start-drawing-with-cached-display.

This function must be called in the scope of start-drawing-with-cached-display or
output-pane-free-cached-display. Calls outside this scope have no effect.

Notes

This redraws only what it thinks needs to be redrawn. To redraw all of the pane, use
update-drawing-with-cached-display passing only the pane.

See also

start-drawing-with-cached-display
update-drawing-with-cached-display

21 CAPI Reference Entries

630

redraw-pinboard-layout Function

Summary

Redraws any pinboard objects within a specified rectangle.

Package

capi

Signature

redraw-pinboard-layout pinboard x y width height &optional redisplay

Arguments

pinboard⇓ A pinboard-layout.

x⇓, y⇓, width⇓, height⇓
Non-negative integers.

redisplay⇓ A generalized boolean.

Description

The function redraw-pinboard-layout causes any pinboard objects within the rectangle specified by x, y, width and
height of the pinboard layout pinboard to get redrawn.

If redisplay is nil, then the redisplay will be cached until a later update. The default for redisplay is t.

See also

pinboard-object
redraw-pinboard-object

redraw-pinboard-object Function

Summary

Redraws a specified pinboard object.

Package

capi

Signature

redraw-pinboard-object object &optional redisplay

21 CAPI Reference Entries

631

Arguments

object⇓ A pinboard-object.

redisplay⇓ A generalized boolean.

Description

The function redraw-pinboard-object causes the pinboard object object to be redrawn, unless redisplay is nil in which
case the redisplay will be cached until a later update. The default for redisplay is t.

Examples

There are examples here:

(example-edit-file "capi/graphics/")

See also

pinboard-object
pinboard-layout
redraw-pinboard-layout

reinitialize-interface Generic Function

Summary

Reinitializes an existing interface.

Package

capi

Signature

reinitialize-interface interface &rest initargs

Arguments

interface⇓ An interface.

initargs⇓ Initialization arguments for interface.

Description

The generic function reinitialize-interface reinitializes interface (an existing instance of a subclass of interface)
using initargs.

reinitialize-interface is called automatically by find-interface when this re-uses an interface.

The applied primary method specialized on interface does nothing. You can add methods to specialize on subclasses of
interface which you define.

21 CAPI Reference Entries

632

See also

find-interface
interface-reuse-p

remove-capi-object-property Function

Summary

Removes a property from the property list of an object.

Package

capi

Signature

remove-capi-object-property object property

Arguments

object⇓ A capi-object.

property⇓ A Lisp object.

Description

The function remove-capi-object-property removes the property named by property from the property list of object.

All CAPI objects contain a property list, similar to the symbol plist. The functions capi-object-property and
(setf capi-object-property) are the recommended ways of setting properties, and
remove-capi-object-property is the way to remove a property.

Examples

(setq pane (make-instance 'capi:list-panel
 :items '(1 2 3)))

(capi:capi-object-property pane 'test-property)

(setf (capi:capi-object-property pane 'test-property)
 "Test")
(capi:capi-object-property pane 'test-property)

(capi:remove-capi-object-property pane 'test-property)
(capi:capi-object-property pane 'test-property)

See also

capi-object-property
capi-object
18.5 Object properties and name

21 CAPI Reference Entries

633

remove-items Generic Function

Summary

Removes some items from a collection.

Package

capi

Signature

remove-items collection list-or-predicate

Arguments

collection⇓ A collection.

list-or-predicate⇓ A list, or a function of one argument returning a boolean value.

Description

The generic function remove-items removes from the collection collection those items determined by list-or-predicate.

If list-or-predicate is list, then the items removed are those matching some element of list-or-predicate, compared by the test-
function of collection. Otherwise, the items removed are those for which the function list-or-predicate returns true.

This is logically equivalent to recalculating the collection items and then calling (setf collection-items). However,
remove-items is more efficient and causes less flickering on screen.

remove-items can only be used when the collection has the default items-get-function svref.

Notes

remove-items cannot be used a graph-pane or a tree-view.

See also

append-items
collection
replace-items
5 Choices - panes with items

replace-dialog Function

Summary

Replaces a replacable dialog.

Package

capi

21 CAPI Reference Entries

634

http://www.lispworks.com/documentation/HyperSpec/Body/f_svref.htm

Signature

replace-dialog interface &rest args => nil

Arguments

interface⇓ An interface.

args⇓ Other arguments as for display-dialog.

Description

The function replace-dialog displays a dialog in the same way the display-dialog does, except that it also destroys
the existing dialog.

interface is a CAPI interface to be displayed as a dialog.

The arguments args are interpreted the same as the arguments to display-dialog, except that modal is ignored.
replace-dialog displays the dialog like display-dialog.

See also

display-replacable-dialog

replace-items Generic Function

Summary

Replaces some items in a collection.

Package

capi

Signature

replace-items collection items &key start new-selection

Arguments

collection⇓ A collection.

items⇓ A list.

start⇓ A non-negative integer.

new-selection⇓ A list specifying the selection.

Description

The generic function replace-items replaces some items in the collection collection from items. replace-items can
only be used when the collection has the default items-get-function svref.

start should be a non-negative integer and less than the number of items in collection.

Items in collection are replaced starting at index start, and proceeding until the end of the list items, or the end of the items in

21 CAPI Reference Entries

635

http://www.lispworks.com/documentation/HyperSpec/Body/f_svref.htm

collection. If items is too long, the surplus is quietly ignored. replace-items never alters the number of items in the
collection.

If supplied, new-selection should be a list of items specifying the new selection in collection. To specify no selection, pass
nil.

If new-selection is not supplied, then replace-items attempts to preserve the selection. If some of the selected items are
replaced, then the selection on these items is removed, but if a selected item simply moves, then the selection moves with it.

Notes

replace-items cannot be used a graph-pane or a tree-view.

See also

append-items
collection
remove-items
5 Choices - panes with items

report-active-component-failure Generic Function

Summary

Reports on failures to find or create a component.

Package

capi

Signature

report-active-component-failure pane component-name error-string function-name hresult

Arguments

pane⇓ An ole-control-pane.

component-name⇓ A string or nil.

error-string⇓ A string.

function-name⇓ A symbol.

hresult⇓ An integer or nil.

Description

The generic function report-active-component-failure is used to report on failures to find or create a component.

component-name is the name of the component it tried to find.

error-string is the error string.

function-name is the name of the function that actually failed.

hresult is the hresult that came back. It may be nil if the error is that the guid of the named component could not be found.

21 CAPI Reference Entries

636

When the system fails to open the component, it calls report-active-component-failure, with the first argument the
ole-control-pane pane. The default method for ole-control-pane tries to call
report-active-component-failure again on its top level interface. The default method on interface calls error.

You can add your own methods, specializing on subclasses of ole-control-pane or subclasses of interface.

Notes

This function is implemented only in LispWorks for Windows. Load the functionality by (require "embed").

See also

ole-control-pane

reuse-interfaces-p Accessor

Summary

Determines whether global interface re-use is enabled.

Package

capi

Signature

reuse-interfaces-p => reusep

(setf reuse-interfaces-p) reusep => reusep

Arguments

reusep⇓ A boolean.

Values

reusep⇓ A boolean.

Description

The accessor reuse-interfaces-p gets and sets a flag that controls whether global interface re-use is enabled.

If reusep is t, then locate-interface and find-interface may return existing interfaces. If reusep is nil, then
locate-interface returns nil and find-interface returns a new interface.

See also

find-interface
locate-interface

21 CAPI Reference Entries

637

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

rich-text-pane Class

Summary

A text pane with extended formatting.

Package

capi

Superclasses

simple-pane

Initargs

:character-format A plist.

:paragraph-format A plist.

:change-callback A function called when a change is made.

:protected-callback

A function determining whether the user may edit a protected part of the text, on
Microsoft Windows.

:filename A file to display.

:text A string or nil.

:text-limit An integer.

:link-callback Windows only: A function designator, :open (the default), :ignore or nil.

Accessors

rich-text-pane-change-callback
rich-text-pane-limit
rich-text-pane-text

Description

The class rich-text-pane provides a text editor which supports character and paragraph formatting of its text.

character-format is the default character format. It is a plist which is interpreted in the same way as the attributes-plist
argument of set-rich-text-pane-character-format. The default value of character-format is nil.

paragraph-format is the default paragraph format. It is a plist which is interpreted in the same way as the attributes-plist
argument of set-rich-text-pane-paragraph-format. The default value of paragraph-format is nil.

change-callback, if non-nil, is a function of two arguments: the pane itself, and a keyword denoting the type of change. This
second argument is either :text or :selection. The default value of change-callback is nil.

protected-callback, if supplied, is called when the user tries to modify protected text. (Text is protected by setting the
protected attribute, see set-rich-text-pane-character-format.) protected-callback must be a function of four
arguments: the pane itself, bounding indexes of the protected text, and a boolean which is true when the change would affect
the selection. If the change would affect just a single character, this last argument is nil. If protected-callback returns nil,
then the change is not performed. If protected-callback is not supplied, then the user cannot modify protected text. protected-

21 CAPI Reference Entries

638

callback is supported only on Microsoft Windows.

filename, if non-nil, should be a string or pathname naming a file to display in the pane. filename takes precedence over text
if both are non-nil.

text, if non-nil, should be a string which is displayed in the pane if filename is nil.

text-limit, if non-nil, should be an integer which is an upper bound for the length of text displayed in the pane.

link-callback can be used on Windows to control what happens when the user clicks on a link in the text. By default,
LispWorks opens the link in the default browser. link-callback can be used to change this behavior. :open and nil give the
default behaviour. :ignore means that LispWorks ignores gestures for the hyperlink. Otherwise, link-callback must be a
function designator that takes three arguments: the pane, the gesture that the user entered, and the URL of the hyperlink (a
string). The gesture conforms to the syntax of the input model as described in 12.2 Receiving input from the user.
Currently it is always either the keyword :motion, or a list specifying a button mapping as in 12.2.1.3 Button mappings.
link-callback should do any processing that is required, including opening the URL if appropriate. When the cursor is moved
outside of a link, link-callback is called with getsure :motion and the URL is nil.

Notes

1. rich-text-pane is supported only on Microsoft Windows, and Cocoa in macOS 10.3 and later. Some of its features
are supported only on Microsoft Windows, as mentioned above.

2. change-callback and protected-callback are not yet implemented on Cocoa.

3. The functions that are specific to rich-text-pane cannot be called before the pane is created. If you need to perform
operations on the pane before it appears, and which cannot be performed using the initargs, the best approach is to define
an :after method on interface-display on the class of the interface containing the rich-text-pane, and
perform the operations inside this method.

Examples

For an example of using rich-text-pane, see:

(example-edit-file "capi/applications/rich-text-editor")

See also

print-rich-text-pane
rich-text-pane-character-format
rich-text-pane-operation
set-rich-text-pane-character-format
rich-text-pane-paragraph-format
set-rich-text-pane-paragraph-format
3.6 Displaying rich text

rich-text-pane-character-format Function

Summary

Returns the character format.

21 CAPI Reference Entries

639

Package

capi

Signature

rich-text-pane-character-format pane &key selection => result

Arguments

pane⇓ A rich-text-pane.

selection⇓ Must be t. This argument is deprecated.

Values

result⇓ A plist.

Description

The function rich-text-pane-character-format returns as a plist the current character attributes for pane.

If there is a current selection in the pane, then the attributes are those set for the selected text. If there is no selection, then it
gets the "typing attributes", which are applied to characters that are typed by the user. Note that any cursor movement
changes these attributes, so their values are ephemeral.

Supplying selection is deprecated. If selection is nil an error is signalled. The default value of selection is t.

An attribute appears in result only if its value is the same over all of the range. Therefore this form:

(getf
 (capi:rich-text-pane-character-format pane) :bold
 :unknown)

will return:

• t if all the selection is bold.

• nil if all the selection is not bold.

• :unknown if the selection is only partially bold.

For the possible attributes, see set-rich-text-pane-character-format.

Compatibility note

The value nil for the keyword argument :selection is not supported in LispWorks 6.1 and later. See the description above
for details of the current behavior with respect to the current selection in the rich-text-pane.

See also

rich-text-pane
set-rich-text-pane-character-format

21 CAPI Reference Entries

640

rich-text-pane-operation Function

Summary

Gets and sets values and performs various operations on a pane.

Package

capi

Signature

rich-text-pane-operation pane operation &rest args => result, result2

Arguments

pane⇓ A rich-text-pane.

operation⇓ A keyword specifying the operation to perform.

args⇓ The value or values to use, when the operation is setting something.

Values

result⇓ Various, see below.

result2⇓ Returned only for operation :get-selection, see below.

Description

The function rich-text-pane-operation gets and sets values and performs various operations on pane.

The valid values of operation on Microsoft Windows and Cocoa are:

:pastep, :cutp or :copyp

result is a boolean indicating whether it is currently possible to perform a :paste, :cut or
:copy operation.

:paste, :cut, or :copy

Performs the indicated operation.

:select-all Selects all the text.

:set-selection args should be two integers start and end. Sets the selection to the region bounded by start
(inclusive) and end (exclusive).

:get-selection Returns as multiple values the bounding indexes of the selection. result is the start (inclusive)
and result2 is the end (exclusive). If there is no selection, both values are the index of the
insertion point.

:can-undo or :can-redo

21 CAPI Reference Entries

641

result is a boolean indicating whether it is currently possible to perform an :undo or :redo
operation.

:undo Undoes the last editing operation. Note that, after typing, it is the whole input, rather than a
single character, that is undone. The :undo operation may be repeated successively, to undo
previous editing operations in turn.

Note: with RichEdit 1.0, :undo does not work repeatedly - it only undoes one previous editing
operation. See rich-text-version.

:redo Undoes the effect of the last :undo operation. The :redo operation may be repeated
successively, to cancel the effect of previous :undo operations in turn.

Note: with RichEdit 1.0, :redo does not work. See rich-text-version.

:get-modified result is the value of a boolean modified flag. This flag can be set by the :set-modified
operation. Also, editing the text sets it to true.

:set-modified Sets the modified flag. The argument is a boolean.

:save-file Saves the text to a file. Details below.

:load-file Loads the text from a file. Details below.

Additionally these values of operation are valid on Microsoft Windows, only:

:get-word-wrap Returns a value indicating the word wrap, which can be the keyword :none. result can also be
the keyword :window or a CAPI printer object, meaning that the text wraps according to the
width of the window or the printer.

:set-word-wrap Sets the word wrap. The argument can be as described for :get-word-wrap, and additionally it
can be the keyword :printer, meaning the current-printer.

:hide-selection Specifies whether the selection should be hidden (not highlighted) when pane does not have the
focus. The argument is a boolean.

For operations :save-file and :load-file, args is a lambda list:

filename &key selection format plain-text

filename is the file to save or load.

selection is a boolean, with default value nil.

format is nil or a keyword naming the file format. Values include :rtf and :text meaning Rich Text Format and text file
respectively.

plain-text is a boolean, with default value nil.

With operation :save-file, if selection is true, only the current selection is saved. If selection is nil, all the text is saved.
The default value of format is :rtf and there are two further allowed values, :rtfnoobjs and :textized. These are like
:rtf and :text except in the way they deal with COM objects. See the documentation for SF_RTFNOOBJS and
SF_TEXTIZED in the EM_STREAMOUT entry in the MSDN for details. When saving with format :rtf or :rtfnoobjs,
if plain-text is true, then keywords that are not common to all languages are ignored. With other values of format, plain-text
has no effect.

With operation :load-file, if selection is true, the unselected text is preserved. If there is a selection, the new text replaces
it. If there is no selection, the new text is inserted at the current insertion point. If selection is nil, all the text is replaced.

21 CAPI Reference Entries

642

The default value of format is nil, meaning that the RTF signature is relied upon to indicate a Rich Text Format file. If plain
-text is true, then keywords that are not common to all languages are ignored.

Examples

(setq rtp
 (capi:contain
 (make-instance
 'capi:rich-text-pane
 :text (format nil "First paragraph.~%Second paragraph, a little longer.~%Another paragraph,
 which should be long long enough that it spans more than one line. ~%"))))

Set the selection to characters 9 to 18:

(capi:rich-text-pane-operation rtp :set-selection 9 18)

Write all the text to a file in text format:

(capi:rich-text-pane-operation
 rtp :save-file "mydoc.txt" :format :text)

Paste:

(capi:rich-text-pane-operation rtp :paste)

See also

rich-text-pane
rich-text-version

rich-text-pane-paragraph-format Function

Summary

Returns the paragraph format.

Package

capi

Signature

rich-text-pane-paragraph-format pane => result

Arguments

pane⇓ A rich-text-pane.

Values

result A plist.

21 CAPI Reference Entries

643

Description

The function rich-text-pane-paragraph-format returns as a plist the paragraph attributes of the current paragraphs in
pane.

For the possible attributes, see set-rich-text-pane-paragraph-format.

See also

rich-text-pane

rich-text-version Function

Summary

Identifies the version of RichEdit in use, on Microsoft Windows.

Package

capi

Signature

rich-text-version => result

Values

result⇓ A keyword indicating the version of the RichEdit control in use.

Description

The function rich-text-version returns the version of RichEdit that is being used to implement rich-text-pane.

result is :rich-edit-2.0 if RichEdit 2.0 or newer is loaded. Otherwise result is :rich-edit-1.0.

rich-text-version is supported only on Microsoft Windows.

See also

rich-text-pane

right-angle-line-pinboard-object Class

Summary

A subclass of pinboard-object that displays a line drawn around two edges of the area enclosed by the pinboard object.

Package

capi

21 CAPI Reference Entries

644

Superclasses

line-pinboard-object

Initargs

:type The type of line.

Description

The class right-angle-line-pinboard-object is a a subclass of line-pinboard-object which displays a line
around the edge of the pinboard object rather than diagonally.

type can be one of two values.

:vertical-first Draw top-left to bottom-left to bottom-right.

:horizontal-first Draw top-left to top-right to bottom-right.

The main use of this class is to produce graphs with right-angled edges rather than diagonal ones.

Examples

(capi:contain
 (make-instance
 'capi:right-angle-line-pinboard-object
 :start-x 20 :start-y 20
 :end-x 280 :end-y 100))

(capi:contain
 (make-instance
 'capi:right-angle-line-pinboard-object
 :start-x 20 :start-y 120
 :end-x 280 :end-y 200
 :type :horizontal-first))

See also

pinboard-layout
12.3 Creating graphical objects

row-layout Class

Summary

A layout which arranges its children in a row.

Package

capi

Superclasses

grid-layout

21 CAPI Reference Entries

645

Initargs

:ratios The size ratios between the layout's children.

:adjust The vertical adjustment for each child.

:gap The gap between each child.

:uniform-size-p If t, each child in the row has the same width.

Accessors

layout-ratios

Description

The class row-layout lays its children out in a row. It inherits the behavior from grid-layout. The description is a list of
the layout's children, and the layout also translates the initargs ratios, adjust, gap and uniform-size-p into the grid layout's
equivalent arguments x-ratios, y-adjust, x-gap and x-uniform-size-p.

description may also contain the keywords :divider and :separator which create a divider or separator as a child of the
row-layout. The user can move a divider, but cannot move a separator.

When specifying :ratios in a row with :divider or :separator, you should use nil to specify that the divider or
separator is given its minimum size.

Examples

(setq row (capi:contain
 (make-instance
 'capi:row-layout
 :description
 (list
 (make-instance 'capi:push-button
 :text "Press me")
 (make-instance 'capi:title-pane
 :text "Title")
 (make-instance 'capi:list-panel
 :items '(1 2 3)))
 :adjust :center)))

(capi:apply-in-pane-process
 row #'(setf capi:layout-y-adjust) :bottom row)

(capi:apply-in-pane-process
 row #'(setf capi:layout-y-adjust) :top row)

This last example shows a row with a stretchable dummy pane between two other elements which are fixed at their minimum
size. Try resizing it:

(capi:contain
 (make-instance 'capi:row-layout
 :description
 (list (make-instance 'capi:push-button
 :text "foo")
 nil
 (make-instance 'capi:push-button
 :text "bar"))
 :ratios '(nil 1 nil)))

21 CAPI Reference Entries

646

See also

column-layout
1.2.1 CAPI elements
5.2 Button panel classes
6 Laying Out CAPI Panes
7 Programming with CAPI Windows
11 Defining Interface Classes - top level windows

screen Class

Summary

An object that represents a known monitor screen.

Package

capi

Superclasses

capi-object

Subclasses

color-screen
mono-screen

Initargs

:width The width in pixels of the screen.

:height The height in pixels of the screen.

:number The screen number.

:depth The number of color planes in the screen.

:interfaces A list of all of the interfaces visible on the screen.

Readers

screen-width
screen-height
screen-number
screen-depth
screen-interfaces
screen-width-in-millimeters
screen-height-in-millimeters

Description

The class screen represents the screen of a monitor.

When the CAPI initializes itself it creates one or more screen objects and they are then used to specify where a window is to
appear. A screen object can also be queried for information that the program may need to know about the screen that it is
working on, such as its width, height and depth.

21 CAPI Reference Entries

647

On Microsoft Windows and Cocoa there is exactly one CAPI screen. When there are multiple monitors, there are several
rectangles of pixels within the single CAPI screen.

On Motif, there is one CAPI screen for each X11 screen.

Compatibility note

In LispWorks for Macintosh 4.3 there is one CAPI screen for each Cocoa screen. In LispWorks for Macintosh 4.4 and later,
there is exactly one CAPI screen.

Examples

(setq screen (capi:convert-to-screen))

(capi:screen-width screen)

(capi:screen-height screen)

(capi:display (make-instance
 'capi:interface :title "Test")
 :screen screen)

(capi:screen-interfaces screen)

See also

convert-to-screen
3.13 Screens
10.4 Dialog Owners
11 Defining Interface Classes - top level windows

screen-active-interface Function

Summary

Returns the active interface on a screen.

Package

capi

Signature

screen-active-interface screen => interface

Arguments

screen⇓ A screen or document-container.

21 CAPI Reference Entries

648

Values

interface An interface, or nil.

Description

The function screen-active-interface returns the currently active interface on the screen screen, or nil if no CAPI
interface is active or if this cannot be determined.

screen-active-interface also works with document-container, returning the active interface within the container.

See also

document-container
screen
3.13 Screens

screen-active-p Function

Summary

Determines whether a screen is active.

Package

capi

Signature

screen-active-p screen => result

Arguments

screen⇓ A screen.

Values

result A boolean.

Description

The function screen-active-p is the predicate for whether screen is active.

Notes

A screen is normally "active". It can become inactive only when it "dies", which can happen on X interface (GTK+ or Motif)
when the X connection get broken for any reason.

See also

screen
3.13 Screens

21 CAPI Reference Entries

649

screen-internal-geometries Function

Summary

Returns the internal geometries of all the monitors of a screen.

Package

capi

Signature

screen-internal-geometries screen => internal-geometries

Arguments

screen⇓ A CAPI screen.

Values

internal-geometries⇓ A list of screen rectangles.

Description

The function screen-internal-geometries returns the internal geometries of all the "monitors" of screen. A "monitor"
typically corresponds to a physical monitor, but can be anything that the underlying GUI system considers a monitor.

The internal geometry of a monitor is a rectangle which excludes "system areas" like taskbars and global menu bars and so
on. Examples of these include the Windows taskbar, the macOS menu bar, and the macOS Dock. See
screen-internal-geometry for information about displaying CAPI windows in system areas.

Each internal geometry is represented as a screen rectangle. A screen rectangle is a list of four numbers: x and y being the
coordinates as offsets from the top-left of the primary monitor, and width and height.

The first screen rectangle in internal-geometries corresponds to the usable area of the primary monitor.

Notes

On GTK+ when using a desktop with separate workspaces, the workspaces may be considered as separate "monitors". When
there are multiple real monitors, the values may be incorrect. You can use screen-monitor-geometries to check the
number of monitors, and to check the full size of the monitors.

See also

pane-screen-internal-geometry
virtual-screen-geometry
screen-internal-geometry
screen-monitor-geometries
3.13 Screens
4.3 Support for multiple monitors
11.6 Querying and modifying interface geometry

21 CAPI Reference Entries

650

screen-internal-geometry Function

Summary

Returns the geometry of the unobscured region of a screen or document container.

Package

capi

Signature

screen-internal-geometry screen => x, y, width, height

Arguments

screen⇓ A screen.

Values

x⇓ An integer.

y⇓ An integer.

width⇓ A positive integer.

height⇓ A positive integer.

Description

The function screen-internal-geometry returns the geometry (as multiple values representing a screen rectangle) of the
region of screen that can be used to display windows without obstruction. This region excludes "system areas" like menubar
and taskbar and so on. Examples of these include the Windows taskbar, the macOS menu bar and the macOS Dock.

x and y are the screen rectangle's coordinates as offsets from the top-left of the primary monitor, and width and height are its
dimensions.

On Microsoft Windows screen-internal-geometry works with document-container, returning the current size of
the container (which may vary over time).

Notes

1. The internal geometry is a snapshot of the unobscured region of a screen. If a system area moves or changes size, then
the screen rectangle returned by screen-internal-geometry changes.

2. It may be possible to display a CAPI window outside the screen's internal geometry, for example under the macOS Dock,
but it will be obscured.

3. The primary monitor is that represented by the first screen rectangle in the list returned by
screen-internal-geometries.

See also

document-container

21 CAPI Reference Entries

651

pane-screen-internal-geometry
screen
screen-internal-geometries
3.13 Screens
4.3 Support for multiple monitors
11.6 Querying and modifying interface geometry

screen-logical-resolution Function

Summary

Returns the logical resolution of screen.

Package

capi

Signature

screen-logical-resolution screen => xlogres, ylogres

Arguments

screen⇓ A screen.

Values

xlogres, ylogres Integers representing the logical resolution of screen in DPI.

Description

The function screen-logical-resolution returns the logical resolution of screen, as dots per inch in the x and y
directions.

See also

screen
3.13 Screens

screen-monitor-geometries Function

Summary

Returns the geometries of all of a screen's monitors.

Package

capi

21 CAPI Reference Entries

652

Signature

screen-monitor-geometries screen => monitor-geometries

Arguments

screen⇓ A CAPI screen.

Values

monitor-geometries⇓ A list of screen rectangles.

Description

The function screen-monitor-geometries returns the geometries of all the monitors of screen. A monitor corresponds
to an entity that the host machine regards as a physical monitor. screen-monitor-geometries ignores software
manipulations like the desktop on GTK+.

The monitor geometry is a rectangle which includes all of its display area, including "system areas" like menubar and taskbar
and so on. Examples of these include the Windows taskbar, the macOS menu bar and the macOS Dock.

Each monitor geometry screen rectangle is represented by a list of four numbers: the x and y coordinates as offsets from the
top-left of the primary monitor, and the width and height.

The first screen rectangle in monitor-geometries corresponds to the primary monitor.

Notes

1. screen-monitor-geometries differs from screen-internal-geometries by returning screen rectangles which
include all the monitor areas, and also by ignoring desktop manipulations.

2. You cannot display a CAPI window on the macOS menu bar. You can display a CAPI window in the area occupied by
the macOS Dock or the Windows task bar, but the window will be obscured.

See also

pane-screen-internal-geometry
screen-internal-geometries
virtual-screen-geometry
3.13 Screens
4.3 Support for multiple monitors
11.6 Querying and modifying interface geometry

screens Function

Summary

Returns the active screens for a library.

Package

capi

21 CAPI Reference Entries

653

Signature

screens &optional library => result

Arguments

library⇓ A library name, a list, or :any.

Values

result A list.

Description

The function screens returns as a list all the active screens for library.

A library name is a keyword naming a library, currently :win32 on Microsoft Windows, :gtk on GTK+, :motif on Motif
and :cocoa on macOS with the native GUI.

library can be a library name, or a list of library names, or the keyword :any, meaning all the libraries. The default value of
library is the result of default-library.

See also

default-library
screen
3.13 Screens

scroll Generic Function

Summary

Moves the scrollbar and calls the scroll-callback.

Package

capi

Signature

scroll self scroll-dimension scroll-operation scroll-value &rest options

Arguments

self⇓ A pane that supports scrolling.

scroll-dimension⇓ :vertical, :horizontal or :pan.

scroll-operation⇓ :move, :step or :page.

scroll-value⇓ An integer, or a list of two integers, or a keyword, or a list of two keywords.

options⇓ A list.

21 CAPI Reference Entries

654

Description

The generic function scroll works for panes that support scrolling - these are subclasses of output-pane and layout.

scroll moves the scrollbar of a scrollable pane self according to scroll-dimension, scroll-operation and scroll-value. It then
calls the scroll-callback (see output-pane) with these arguments and options.

scroll-dimension determines whether the scrolling is vertical, horizontal or, if the value is :pan, in both dimensions.

scroll-operation determines the extent of the scroll. The value :move means that the pane scrolls to the position on the scroll
range given by scroll-value, regardless of the current scroll position. The value :step means scroll from the current scroll
position by scroll-value times the scroll step size. In the case of panes which do their own scrolling the scroll step size is
determined by the operating system (OS). In the case of panes for which the CAPI computes the scroll, the scroll step size is
as described in with-geometry. The value :page means scroll from the current scroll position by scroll-value times the
scroll page size (which is also determined by the OS or the pane's geometry).

scroll-value should be an integer or keyword if scroll-dimension is :horizontal or :vertical. Allowed keyword values
are :start and :end. scroll-value should be a list of two integers or keywords representing the horizontal and vertical scroll
values if scroll-dimension is :pan.

options is a list containing arbitrary user data.

Compatibility note

scroll supersedes set-scroll-position, which is deprecated and no longer exported. The call:

(capi:scroll pane :pan :move (list x y))

is equivalent to:

(capi:set-scroll-position pane x y)

See also

ensure-area-visible
get-scroll-position
output-pane
set-horizontal-scroll-parameters
set-vertical-scroll-parameters
with-geometry
7 Programming with CAPI Windows

scroll-bar Class

Summary

A pane which displays a scroll bar.

Package

capi

21 CAPI Reference Entries

655

Superclasses

range-pane
simple-pane
titled-object

Initargs

:line-size The distance scrolled by the scroll-line gesture.

:page-size The distance scrolled by clicking inside the scroll bar.

:callback A function called after a scroll gesture, or nil.

Accessors

scroll-bar-line-size
scroll-bar-page-size

Description

The class scroll-bar implements panes which display a scroll bar and call a callback when the user scrolls. It is not
however the most usual way to add scroll bars - see the note below about simple-pane.

line-size is the logical size of a line, and is the distance moved when the user enters a scroll-line gesture, that is clicking on
one of the arrow buttons at either end of the scroll bar or using a suitable arrow key. The default value of line-size is 1.

page-size is the logical size of a page, and is the distance moved when the user clicks inside the scroll bar. The default value
of page-size is 10.

callback can be nil, meaning there is no callback. This is the default value. Otherwise, is a function of four arguments, the
interface containing the scroll-bar, the scroll-bar itself, the mode of scrolling and the amount of scrolling. It has this
signature:

callback interface scroll-bar how where

how can be one of :line, :page, :move, or :drag.

If how is :line, then where is an integer indicating how many lines were scrolled.

If how is :page, then where is an integer indicating how many pages were scrolled.

If how is :move or :drag, then where is an integer giving the new location of the slug-start, or :start or :end.

Notes

1. The location of the slug can be found by the range-pane accessor range-slug-start.

2. Rather than using scroll-bar, it is more usual to add scroll bars to a pane by the simple-pane initargs
:horizontal-scroll and :vertical-scroll

Examples

(defun sb-callback (interface sb how where)
 (declare (ignorable interface))
 (format t "Scrolled ~a where ~a : ~a~%"
 how where (range-slug-start sb)))

(contain

21 CAPI Reference Entries

656

 (make-instance 'capi:scroll-bar
 :callback 'sb-callback
 :page-size 10
 :line-size 2
 :visible-min-width 200))

See also

simple-pane
3.9.4 Slider, Progress bar and Scroll bar

scroll-if-not-visible-p Accessor Generic Function

Summary

Accesses the scroll-if-not-visible-p attribute of a pane.

Package

capi

Signature

scroll-if-not-visible-p pane => value

(setf scroll-if-not-visible-p) value pane => value

Method signatures

scroll-if-not-visible-p (pane simple-pane)

(setf scroll-if-not-visible-p) value (pane simple-pane)

Arguments

pane⇓ A pane.

value⇓ One of t, nil or :non-mouse.

Values

value⇓ One of t, nil or :non-mouse.

Description

The accessor generic function scroll-if-not-visible-p gets and sets the scroll-if-not-visible-p attribute of pane.

value can be one of the following:

t When pane is given the input focus, and it is not fully visible, and its parent can be scrolled to
make the pane visible, then the parent is scrolled automatically. This is the default value.

nil Never scroll the parent to make a pane visible.

:non-mouse Like t, except that it does not scroll when the focus is given as a result of a mouse click in pane.

21 CAPI Reference Entries

657

scroll-if-not-visible-p is called by CAPI each time it may need to scroll the parent. The method on simple-pane

returns a value that is kept internally, and can be set by the default setf method.

You can specialize scroll-if-not-visible-p on your classes, but note that it is called often when the user clicks on any
pane, so it must be reasonably fast.

The setter sets the scroll-if-not-visible-p attribute. It is called when the initarg :scroll-if-not-visible-p is used in
making a simple-pane (or a subclass) instance, and can be called by your program. value must be t, nil or :non-mouse.

The method on simple-pane sets the internal value that is used by scroll-if-not-visible-p on simple-pane.

See also

simple-pane
7 Programming with CAPI Windows

search-for-item Generic Function

Summary

The generic function search-for-item returns the index of an item in a collection.

Package

capi

Signature

search-for-item collection item

Arguments

collection⇓ A collection.

item⇓ A Lisp object.

Description

Returns the index of item in collection, using its collection-test-function to determine equality, and returns nil if no match is
found.

The search is done by sequentially comparing item to each item in collection using the collection's test-function, which is
cl:eq by default.

search-for-item is the counterpart function to get-collection-item which given an index, finds the appropriate
item.

See also

get-collection-item
collection

21 CAPI Reference Entries

658

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm

selection Function

Summary

Returns the primary selection.

Package

capi

Signature

selection self &optional format => result

Arguments

self⇓ A displayed CAPI pane or interface.

format⇓ A keyword.

Values

result A string, an image, a Lisp object, or nil.

Description

The function selection returns the contents of the primary selection as a string, or nil if there is no selection.

format controls what kind of object is read. The following values of format are recognized:

:string The object is a string. This is the default value.

:image The object is of type image, converted from whatever format the platform supports.

:value The object is the Lisp value.

When format is :image, the image returned by selection is associated with self, so you can free it explicitly with
free-image or it will be freed automatically when the pane is destroyed.

On Microsoft Windows there is no notion of selection, so this mechanism is internal to Lisp.

Note that X applications may or may not use the primary selection for their paste operations. For instance, Emacs is
configurable by the variable interprogram-paste-function.

See also

clipboard
free-image
image
selection-empty
set-selection
18.6 Clipboard

21 CAPI Reference Entries

659

selection-empty Function

Summary

Determines whether there is a primary selection of a particular kind.

Package

capi

Signature

selection-empty self &optional format => result

Arguments

self⇓ A displayed CAPI pane or interface.

format⇓ A keyword.

Values

result t or nil.

Description

The function selection-empty returns nil if there is a primary selection of the kind indicated by format associated with
self, or t if there is no such selection.

format controls what kind of object is checked. The following values of format are recognized:

:string The object is a string. This is the default value.

:image The object is of type image, converted from whatever format the platform supports.

:value The object is the Lisp value.

See also

image
selection
18.6 Clipboard

set-application-interface Function

Summary

Specifies the main Cocoa application interface.

Package

capi

21 CAPI Reference Entries

660

Signature

set-application-interface interface

Arguments

interface⇓ An object of type cocoa-default-application-interface.

Description

The function set-application-interface sets interface as the main application interface. This interface is used to
supply the application menu and receives various callbacks associated with the application.

set-application-interface must be called before any CAPI functions that make the screen object (such as
convert-to-screen and display).

interface should not be displayed like a normal interface.

An application can only have one application menu and one dock menu. Because the LispWorks IDE already provides these
menus, calling set-application-interface while running the LispWorks IDE will add a submenu to the LispWorks
application menu to contain the application-menu and menu-bar-items of your application, and you can test them there.
Likewise, a submenu will be added to the LispWorks Dock icon menu. Other aspects of the application interface can only be
tested when running it standalone.

set-application-interface is only applicable when running under Cocoa.

Examples

(example-edit-file "capi/applications/cocoa-application")

(example-edit-file "capi/applications/cocoa-application-single-window")

(example-edit-file "delivery/macos/multiple-window-application")

(example-edit-file "delivery/macos/single-window-application")

See also

cocoa-default-application-interface

set-button-panel-enabled-items Generic Function

Summary

Sets the enabled state of the items in a button panel.

Package

capi

21 CAPI Reference Entries

661

Signature

set-button-panel-enabled-items button-panel &key enable disable set test key

Arguments

button-panel⇓ A button-panel.

enable⇓ A list.

disable⇓ A list.

set⇓ A boolean.

test⇓ A function.

key⇓ A function.

Description

The generic function set-button-panel-enabled-items sets the enabled state of the items in button-panel. If set is t,
then enable is ignored and all items are enabled except those in disable. If set is nil, disable is ignored and all items are
disabled except those in enable. If set is not given, the items in enable are enabled and the items in disable are disabled. If an
item is in both lists, it is enabled. A button is in a list when the result of calling key on the data of the button matches one of
the items in the list. A match is defined as a non-nil return value from calling test. The default value for test is cl:equal.
key defaults to identity.

See also

button-panel
redisplay-interface

set-clipboard Function

Summary

Sets the contents of the system clipboard.

Package

capi

Signature

set-clipboard self value &optional string plist => result

Arguments

self⇓ A displayed CAPI pane or interface.

value⇓ A Lisp object (not necessarily a string) to make available within the local Lisp image.

string⇓ The string representation of value to export, or nil.

plist⇓ A property list.

21 CAPI Reference Entries

662

http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_identi.htm

Values

result A string, or nil.

Description

The function set-clipboard sets the contents of the system clipboard associated with self.

If string is non-nil, then the text on the system clipboard is set to string. If string is nil and value is a string, then text on the
system clipboard is set to value. Otherwise, no text is set on the system clipboard.

In addition, value is made available within the local Lisp image when calling clipboard.

plist is a plist of additional format/value pairs to export to the system clipboard. The currently supported formats are as
described for clipboard. You can export more than one format simultaneously.

In Microsoft Windows applications (including LispWorks in Windows emulation mode), the contents of the system clipboard
is usually accessed by the user with the Ctrl+V gesture.

The X clipboard can be accessed by the Ctrl+V gesture in KDE/Gnome emulation, or by running the program xclipboard

or the Emacs function x-get-clipboard. The most likely explanation for apparent inconsistencies after set-clipboard
is that the pasting application does not use the X clipboard.

In Cocoa applications (including LispWorks), the contents of the system clipboard is usually accessed by the user with the
Command+V gesture.

Examples

To export an image:

(capi:set-clipboard pane nil nil (list :image image))

To export an image with a text description:

(capi:set-clipboard pane nil nil
 (list :image image
 :string "my image"))

See also

clipboard
selection
text-input-pane-copy
18.6 Clipboard

set-composition-placement Function

Summary

Specifies the placement of the composition window relative to the pane. Composition here mean composing input characters
into other characters by an input method.

Package

capi

21 CAPI Reference Entries

663

Signature

set-composition-placement pane x y &key width height force

Arguments

pane⇓ A pane.

x⇓, y⇓, width⇓, height⇓
Non-negative integers or nil.

force⇓ A generalized boolean.

Description

The function set-composition-placement tells the system where to place the composition window in pixel coordinates
relative to the pane pane.

On systems where the composition text is displayed by the application (rather than by the system, when the composition
callback is called with a plist), the placement coordinates are used to place the composition menu when it is raised.

x and y are the top left coordinates. If both width and height are supplied, they specify the dimensions of the composition
window. If force is supplied with a true value, the coordinates are forced, overriding adjustments that the system may
otherwise do.

x, y and, when supplied, width and height must all be positive integers.

Notes

set-composition-placement does not raise the composition window. It merely tells the system where to place the
composition window when it does appear.

See also

output-pane
output-pane-stop-composition
12.2.4 Composition of characters

set-confirm-quit-flag Function

Summary

Controls the behavior of confirm-quit.

Package

capi

Signature

set-confirm-quit-flag flag

21 CAPI Reference Entries

664

Arguments

flag⇓ One of t, nil or :check-editor-files.

Description

The function set-confirm-quit-flag sets a flag which controls the behavior of confirm-quit.

See confirm-quit for the meaning of flag.

Note: on initialization, the LispWorks IDE sets the flag to the stored value of the option Tools > Preferences... >
Environment > General > Confirm Before Exiting.

See also

confirm-quit

set-default-editor-pane-blink-rate Function

Summary

Sets the default cursor blinking rate for editor panes.

Package

capi

Signature

set-default-editor-pane-blink-rate blink-rate

Arguments

blink-rate⇓ A non-negative real number, or nil.

Description

The function set-default-editor-pane-blink-rate sets the default to use for the editor pane cursor blinking rate.
This default value is used when editor-pane-blink-rate returns nil.

Initially the setting is if this call has been made:

(set-default-editor-pane-blink-rate nil)

This means that the native blink rate will be used.

The argument blink-rate is interpreted as a blinking rate as described in editor-pane-blink-rate.

See also

editor-pane-blink-rate
editor-pane-native-blink-rate

21 CAPI Reference Entries

665

set-default-interface-prefix-suffix Function

Summary

Sets the default suffix and prefix that are added to each interface title.

Package

capi

Signature

set-default-interface-prefix-suffix &key prefix suffix child-prefix child-suffix => prefix, suffix, child-prefix,
child-suffix

Arguments

prefix⇓ A string or nil.

suffix⇓ A string or nil.

child-prefix⇓ A string or nil.

child-suffix⇓ A string or nil.

Values

prefix A string or nil.

suffix A string or nil.

child-prefix A string or nil.

child-suffix A string or nil.

Description

The function set-default-interface-prefix-suffix sets the global default suffix and prefix that are added to each
interface title. The prefix and suffix are added by the default method of interface-extend-title.

If prefix, suffix, child-prefix or child-suffix are supplied, their value must be either a string or nil. If any of them is not
passed, the corresponding previously set value is not changed.

prefix and suffix specify the prefix and suffix to use for interfaces that are children of a screen object. These values do not
affect child-prefix and child-suffix.

child-prefix and child-suffix specify the prefix and suffix to use for interfaces that are not children of a screen object, such as
an interface inside a Multiple Document Interface (MDI) window. These values do not affect prefix and suffix.

The return values are the settings of the prefix, suffix, child prefix and child suffix after the call.

To check the current settings, call set-default-interface-prefix-suffix with no arguments. This does not change
the current settings.

Before setting the title on a window on the screen, the system calls interface-extend-title with the interface and the
title of the interface, and uses the result for the actual title. The default method of interface-extend-title checks prefix
and suffix (or child-prefix and child-suffix for MDI) as were set by set-default-interface-prefix-suffix, and if

21 CAPI Reference Entries

666

they are non-nil adds the value to the title.

set-default-interface-prefix-suffix can be called after some windows are displayed. It automatically updates all
current interface windows as if by calling update-all-interface-titles.

Examples

If you work in an environment when it is not always obvious on which machine your image is running, you can add the name
of the machine to all windows by:

(capi:set-default-interface-prefix-suffix
 :suffix (format nil "-- ~a" (machine-instance)))

See also

interface-extend-title
update-all-interface-titles
3.3.2.1 Window titles
11.5 Controlling the appearance of the top level window

set-default-use-native-input-method Function

Summary

Controls the default of using native input method on GTK+.

Package

capi

Signature

set-default-use-native-input-method &key output-pane editor-pane => t

Arguments

output-pane⇓ A boolean.

editor-pane⇓ A boolean.

Description

The function set-default-use-native-input-method controls whether the native input method is used by default.
Currently it has an effect only on GTK+.

The values of the keyword arguments are booleans. editor-pane changes the default for editor-pane and subclasses.
output-pane controls the default for output-pane and subclasses, except editor-pane and its subclasses.

If a keyword argument is not supplied, the corresponding default is not set.

See also

output-pane
editor-pane

21 CAPI Reference Entries

667

12.2.3 Native input method

set-display-pane-selection Generic Function

Summary

Sets the selection in a display-pane.

Package

capi

Signature

set-display-pane-selection pane start end

Arguments

pane⇓ A display-pane.

start⇓, end⇓ Bounding indexes for a subsequence of the text of pane.

Description

The generic function set-display-pane-selection sets the selection in pane to be the text bounded by the indexes start
(inclusive) and end (exclusive).

See also

display-pane-selection
display-pane

set-drop-object-supported-formats Function

Summary

Sets the list of formats for a drop object.

Package

capi

Signature

set-drop-object-supported-formats drop-object formats

Arguments

drop-object⇓ A drop-object, as passed to the drop-callback.

formats⇓ A list of format keywords.

21 CAPI Reference Entries

668

Description

The function set-drop-object-supported-formats sets the list of formats that the drop object drop-object wants to
receive.

The format :string can be used to receive a string from another application and the :filename-list format can be used
to receive a list of filenames from another application such as the Macintosh Finder or the Windows Explorer.

GTK+ supports dragging of list of URIs. LispWorks uses a list of URIs to pass/receive the data with the format
:filename-list, and also adds the format :uris. The behavior is as follows:

• For dragging with format :filename-list (that is, call drag-pane-object with a plist containing
:filename-list, or including :filename-list in the value that drag-callback returns) the argument must be a list
of pathname designators. LispWorks canonicalizes the pathnames and converts them to file URIs.

• For dragging with format :uris, each value in the list must either a string containing a colon, or a pathname designator.
A string containing a colon is passed unchanged. Other it is assumed to be a pathname designator, and is converted to a
file URI.

• For dropping with format :filename-list (that is, calling drop-object-get-object with :filename-list),
LispWorks converts each file URI to the corresponding filename string (without checking whether it is a proper file
name), and discards all other URIs.

• For dropping with format :uris, LispWorks returns all the URIs as strings.

There is an example of :filename-list and :uris here:

(example-edit-file "capi/elements/gtk-filename-list-and-uris")

On Cocoa and GTK+ the :image format can be used to receive images. The value passed needs to be an image obtect.

Any other keyword in formats is assumed to be a private format that can only be used to receive objects from with the same
Lisp image.

Notes

set-drop-object-supported-formats should only be called within a drop-callback. See simple-pane for
information about drop callbacks.

Examples

(example-edit-file "capi/output-panes/drag-and-drop")

(example-edit-file "capi/choice/drag-and-drop")

(example-edit-file "capi/choice/list-panel-drag-images")

See also

drop-object-provides-format
simple-pane
17 Drag and Drop

21 CAPI Reference Entries

669

set-editor-parenthesis-colors Function

Summary

Sets the colors that are used for parenthesis coloring.

Package

capi

Signature

set-editor-parenthesis-colors colors &key dark-background-colors

Arguments

colors⇓ A list of colors, t or nil.

dark-background-colors⇓
A list of colors or nil.

Description

The function set-editor-parenthesis-colors sets the colors that are used for parenthesis coloring in an
editor-pane in Lisp mode.

If colors is a non-nil list, each of its elements must be a valid color specification or a defined color alias. See 15 The Color
System for information about color specifications and aliases.

If it is called when CAPI is running, set-editor-parenthesis-colors checks that the colors are valid. If it is called
when CAPI is not running, set-editor-parenthesis-colors does not check the colors, and a bad color will cause an
error later. The colors have an effect only on coloring that happens after the call.

The colors in colors are used when the background is light. When the background is dark, a different set of colors is used.
This set can be changed by supplying dark-background-colors, which should be a list colors. Each color in dark-background-
colors is paired to a corresponding color in light-background colors (colors if it is a non-nil list, or the current list of colors is
nil or t). If there are fewer colors in dark-background-colors than in the light-background colors, LispWorks pairs the rest
of the light-background color with random light colors. If there are too many colors in dark-background-colors, the excess
ones are ignored.

If colors is t or nil, parenthesis coloring is switched on or off, without changing the list of colors.

When parenthesis coloring is off, parentheses are drawn like other characters.

See also

editor-pane

21 CAPI Reference Entries

670

set-geometric-hint Function

Summary

Sets a hint.

Package

capi

Signature

set-geometric-hint element key value &optional override

Arguments

element⇓ A simple-pane or a pinboard-object.

key⇓ A geometric hint keyword.

value⇓ A Lisp object.

override⇓ A boolean.

Description

The function set-geometric-hint sets the hint associated with key to value in element.

If override is nil, the value is not changed when there is already a hint for this key. The default is t.

See also

set-hint-table
element

set-hint-table Function

Summary

Modifies the hint table for an element.

Package

capi

Signature

set-hint-table element plist

Arguments

element⇓ A simple-pane or a pinboard-object.

21 CAPI Reference Entries

671

plist⇓ A plist.

Description

The function set-hint-table modifies the hint table for the element element to include plist. All existing hints are
retained for keys not in plist.

This may or may not change the on-screen geometry. To change the geometry of an interface, use
set-top-level-interface-geometry.

Notes

If a hint keyword is repeated in plist, the first value is used.

See also

element
set-geometric-hint
set-top-level-interface-geometry
6 Laying Out CAPI Panes
7 Programming with CAPI Windows

set-horizontal-scroll-parameters
set-vertical-scroll-parameters Functions

Summary

Allows programmatic control of the parameters of a horizontal or vertical scroll bar.

Package

capi

Signatures

set-horizontal-scroll-parameters self &key min-range max-range slug-position slug-size page-size step-size

set-vertical-scroll-parameters self &key min-range max-range slug-position slug-size page-size step-size

Arguments

self⇓ A displayed output-pane or layout.

min-range⇓, max-range⇓, slug-position⇓, slug-size⇓, page-size⇓, step-size⇓
Reals or nil.

Description

The functions set-horizontal-scroll-parameters and set-vertical-scroll-parameters set the specified
parameters of the horizontal or vertical scroll bar of self.

self should be a displayed instance of a subclass of output-pane (such as editor-pane) or layout and have a scroll bar.

21 CAPI Reference Entries

672

The other arguments are:

min-range The minimum data coordinate.

max-range The maximum data coordinate.

slug-position The current scroll position.

slug-size The length of the scroll bar slug.

page-size The scroll page size.

step-size The scroll step size.

When one of these keyword arguments is not supplied, the value of the corresponding scroll parameter in self is not modified.

See 7.4.2 Scroll values and initialization keywords for a description of these scroll parameters.

Examples

(example-edit-file "capi/output-panes/fixed-origin-scrolling")

(example-edit-file "capi/output-panes/scrolling-without-bar")

(example-edit-file "capi/output-panes/coordinate-origin-fixed")

See also

scroll
get-horizontal-scroll-parameters
get-vertical-scroll-parameters
simple-pane
7 Programming with CAPI Windows
12.4 output-pane scrolling
7.4.2 Scroll values and initialization keywords

set-interactive-break-gestures Function

Summary

Sets the break gestures on GTK+ and Motif.

Package

capi

Signature

set-interactive-break-gestures gestures => result

Arguments

gestures⇓ A list of gesture specifiers, or t.

21 CAPI Reference Entries

673

Values

result A list.

Description

The function set-interactive-break-gestures sets the gestures that can be used to break by typing at an interface.

gestures is a list of gesture specifiers. A gesture specifier is an object that sys:coerce-to-gesture-spec can recognize.

When an interface is created, the break gestures are set such that typing any one of them when the interface is on top causes
an "interface break". This means that, if the interface process is busy, it tries to break it. In a Listener tool, it tries to break the
REPL. Otherwise it tries to find a process that appears busy, and breaks that. In the LispWorks IDE, if there is no busy
process it raises the Process Browser tool. Otherwise it breaks the current process.

set-interactive-break-gestures always returns the list of interactive break gestures.

gestures can also be t, which means do not change the gestures. This is useful to get the current list.

Notes

1. set-interactive-break-gestures has an effect only on GTK+ and Motif.

2. set-interactive-break-gestures has no effect on interfaces that are already created.

3. On GTK+ the list can be overridden by the resources file as illustrated in examples/gtk/gtkrc-break-gestures

set-interface-pane-name-appearance
set-interface-pane-type-appearance Functions

Summary

Set the appearance (foreground, background, font) of panes inside interfaces of a specific type.

Package

capi

Signatures

set-interface-pane-name-appearance interface-type pane-name &key font background foreground check-types

set-interface-pane-type-appearance interface-type pane-type &key font background foreground check-types

Arguments

interface-type⇓ A symbol naming a subtype of interface.

pane-name⇓ Any object.

font⇓ A font specification as in simple-pane, or nil or :default, or a function or an
fboundp symbol.

background⇓, foreground⇓
Color specifications as in simple-pane, or nil or :default, or a function or an
fboundp symbol.

21 CAPI Reference Entries

674

check-types⇓ A generalized boolean.

pane-type⇓ A symbol naming a subtype of simple-pane.

Description

The function set-interface-pane-name-appearance creates a setting such that, when a pane whose capi-object
name is pane-name is created inside an interface of type interface-type, the pane's font, foreground and background attributes
are set to font, foreground and background respectively.

If font, foreground or background is a function or an fboundp symbol, the value to use is the result of calling the function
with two arguments: the interface and the pane.

If font, foreground or background is nil then the corresponding attribute is set to what it would have been set if
set-interface-pane-name-appearance was not called at all for this interface-type and pane-name. See below for the
meaning of :default.

The function set-interface-pane-type-appearance behaves the same as
set-interface-pane-name-appearance, but the setting is applied to any pane of type pane-type.

Each call to set-interface-pane-name-appearance with a specific interface-type and pane-name, or to
set-interface-pane-type-appearance with a specific interface-type and pane-type, completely overrides previous
calls with the same interface-type and pane-type or pane-name.

When a pane (whose type is a subtype of simple-pane) is created (which happens when the interface is displayed by
display), the settings that were created by set-interface-pane-type-appearance and
set-interface-pane-name-appearance are applied, and override any other settings.

When more than one setting created by set-interface-pane-type-appearance or
set-interface-pane-name-appearance is applicable to a pane, settings created by
set-interface-pane-name-appearance take precedence over settings created by
set-interface-pane-type-appearance, and otherwise the more specific settings, according to interface-type and pane
-type, take precedence. The value for each attribute is specified by the setting with the highest precedence where the value is
not nil.

If the value for an attribute in the highest precedence settings is :default, then settings of this attribute of lower precedence
are ignored, and the attribute is set to what it would have been set to if none of the settings where created. Setting this for one
attribute has no effect on the other attributes.

check-types, which defaults to t, controls whether the functions check if interface-type is a subtype of interface, and if
pane-type is a subtype of simple-pane. Using :check-types nil allows you to use these functions before interface-type
or pane-type are defined, at the price of no error checking.

Notes

The settings override any defaults for the matching panes and changes to the simple-pane background, foreground or font
before the creation of the pane. They can be overridden after the pane is created, for example in a method on
interface-display.

You can use these functions to customize the LispWorks IDE. For example in the IDE, the type of the interface of the Editor
tool is lw-tools:editor, and this is also the name of the editor pane inside (but not of the collector-pane or echo-area
pane). So you can customize the background of all the Editors in the IDE to red by:

(set-interface-pane-name-appearance
 'lw-tools:editor 'lw-tools:editor
 :background :red)

21 CAPI Reference Entries

675

Note that this will not affect the pane in the "Output" tab and the echo area. You can use instead:

(set-interface-pane-type-appearance
 'lw-tools:editor 'capi:editor-pane
 :background :red)

The latter call affects the output and echo-area panes too, because they are subclasses of editor-pane. This will override
the preferences that are set by the Preferences Dialog in the IDE.

You can use interface as interface-type to make it applicable to all interfaces, but that may cause undesired effects if it
applies to unintended panes. There is also a little overhead associated with settings, though this is probably negligible unless
large number of settings are created.

set-interface-pane-name-appearance and set-interface-pane-type-appearance will typically be used in
your .lispworks initialization file. They can also be useful for adding customization to your application.

See also

simple-pane
15 The Color System
13.9 Portable font descriptions
18.8 Setting the font and colors for specific panes in specific interfaces.

set-list-panel-keyboard-search-reset-time Function

Summary

Sets the default length of time before resetting the "last match" in keyboard searching in a list-panel.

Package

capi

Signature

set-list-panel-keyboard-search-reset-time time

Arguments

time⇓ A positive real number.

Description

The function set-list-panel-keyboard-search-reset-time sets the default length of time before resetting the "last
match" in keyboard searching in a list-panel. The argument time specifies this time in seconds.

When the user types a character into a list-panel, if there is a "last match" the system searches for a string made of the
"last match" followed by the character, otherwise it searches for a string made of the character only. The system sets the "last
match" when it matches, and remembers the "last match" for one second by default.
set-list-panel-keyboard-search-reset-time can be used to change the time for which the "last match" is kept.

Notes

When keyboard-search-callback returns a third value non-nil, the value that

21 CAPI Reference Entries

676

set-list-panel-keyboard-search-reset-time sets is ignored.

See also

list-panel
list-panel-search-with-function
5.3.9 Searching by keyboard input

set-object-automatic-resize Function

Summary

Controls automatic resizing and repositioning of objects in a static layout.

Package

capi

Signature

set-object-automatic-resize object &key x-align y-align x-offset y-offset x-ratio y-ratio width-ratio height-ratio
aspect-ratio aspect-ratio-y-weight pinboard

Arguments

object⇓ A pinboard-object or a simple-pane.

x-align⇓ nil, :left, :center or :right.

y-align⇓ nil, :top, :center or :bottom.

x-offset⇓ A real number, default value 0.

y-offset⇓ A real number, default value 0.

x-ratio⇓ A positive real number or nil.

y-ratio⇓ A positive real number or nil.

width-ratio⇓ A positive real number or nil.

height-ratio⇓ A positive real number or nil.

aspect-ratio⇓ A positive real number, t or nil.

aspect-ratio-y-weight⇓
A real number, default value 0.5.

pinboard⇓ A static-layout, if supplied. This argument is deprecated, and can always be omitted.

Description

The function set-object-automatic-resize arranges for object to be resized and/or re-positioned automatically when
pinboard is resized, or removes such a setting.

The value of aspect-ratio can be t, which means use the current aspect ratio of object (that is, its height divided by its width).

object should be either a pinboard-object or a simple-pane which is (or will be) displayed in a static-layout. This
object will be added to the description of the layout by one of its :description initarg,

21 CAPI Reference Entries

677

(setf capi:layout-description) or manipulate-pinboard.

pinboard is the layout for object. If pinboard is already displayed with object in its description, the argument pinboard can be
omitted.

When pinboard is resized, object is resized if either height-ratio or width-ratio are set.

The new width of object is calculated as follows:

• If width-ratio, height-ratio and aspect-ratio are all set, the new width is the width of pinboard multiplied by width-ratio,
and then modified as described below.

• If width-ratio is set and either height-ratio or aspect-ratio is not set, the new width is the width of pinboard multiplied by
width-ratio.

• If width-ratio is not set, and both height-ratio and aspect-ratio are set, the new width is the new height divided by aspect
-ratio.

• Otherwise, the new width is the same as the old width.

The new height of object is calculated as follows:

• If width-ratio and aspect-ratio are set, the new height is the new width multiplied by the aspect ratio. Note that if height-
ratio is set, the new width will depend on height-ratio too.

• If height-ratio is set and either width-ratio or aspect-ratio are not set, the new height is the height of pinboard multiplied
by height-ratio.

• If height-ratio is not set, but both width-ratio and aspect-ratio are set, the new height is the new width multiplied by
aspect-ratio.

• Otherwise, the new height is the same as the old height.

If all of width-ratio, height-ratio and aspect-ratio are set, the new width and height of object are calculated as follows:

1. Compute calculated-width as the width of pinboard multiplied by width-ratio, and calculated-height as the height of
pinboard multiplied by height-ratio.

2. Compute aspect-ratio-ratio as:

(/ (/ calculated-height calculated-width) aspect-ratio)

3. Compute correction as:

(expt aspect-ratio-ratio aspect-ratio-y-weight)

4. Compute the new width as calculated-width multiplied by correction, and the new height as the new width multiplied by
aspect-ratio.

The result is that if aspect-ratio-y-weight is 0, correction is 1 and height-ratio is effectively ignored, while if aspect-ratio-y-
weight is 1, correction cancels the effect of width-ratio. With the default value of 0.5, the resulting position is in the
(geometric) middle, and object takes a fixed fraction of the area of the pinboard.

After resizing (if needed), object is also positioned horizontally if x-align is non-nil, and vertically if y-align is non-nil.

The new x coordinate of object is calculated as follows:

• If x-ratio is set, the new x coordinate is the sum of x-ratio multiplied by the width of pinboard plus x-offset, otherwise it
is simply x-offset.

21 CAPI Reference Entries

678

• The actual value of the x coordinate for object is adjusted according to the value of x-align such that the left, center or
right of object align with the new coordinate.

The new y coordinate of object is calculated similarly, using y-ratio and y-offset, with an adjustment such that the top, center
or bottom of object aligns with the new coordinate according to y-align.

If all of width-ratio, height-ratio, x-align and y-align are nil, automatic resizing/re-positioning of object is removed.

set-object-automatic-resize can be called before object is actually displayed, and its effect persists over calls adding
and removing object to/from static-layouts. The effect of set-object-automatic-resize also persists if object is
removed and added again, either to the same layout or another layout.

Repeated calls to set-object-automatic-resize set only the values that are passed to
set-object-automatic-resize. Keys that are not passed are left with their previous value. A call that removes the
automatic resizing (because width-ratio, height-ratio, x-align and y-align are all nil) erases all the values.

set-object-automatic-resize returns t if the object is set up for automatic resizing, or nil if the object is set up for
no automatic resizing.

Notes

1. The initarg :automatic-resize can be used to set up automatic resizing in the call to make-instance.

2. The name set-object-automatic-resize is slightly inaccurate, because this function can alter an object's position
without actually changing its size.

Compatibility note

In LispWorks 6.0 the effect of set-object-automatic-resize does not persist if the object is removed and then added,
to any layout.

In LispWorks 6.0 each call to set-object-automatic-resize sets all the values.

Examples

Put an object of fixed size at the top right corner:

(set-object-automatic-resize object
 :x-ratio 1 :x-align :right)

Put an object in the bottom-right quadrant:

(set-object-automatic-resize
 object
 :x-ratio 0.5 :y-ratio 0.5
 :width-ratio 0.5 :height-ratio 0.5)

Put an object with a fixed aspect ratio and object width linear with the width of the layout in the center:

(set-object-automatic-resize
 object
 :x-align :center :y-align :center
 :x-ratio 0.5 :y-ratio 0.5
 :aspect-ratio 0.6 :width-ratio 0.1)

There is a further example in:

(example-edit-file "capi/layouts/automatic-resize")

21 CAPI Reference Entries

679

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

See also

manipulate-pinboard
static-layout
pinboard-object
simple-pane

set-pane-focus Generic Function

Summary

Sets the input focus to a pane.

Package

capi

Signature

set-pane-focus pane

Arguments

pane⇓ An instance of a subclass of simple-pane or choice.

Description

The generic function set-pane-focus sets the input focus to pane or one of its children.

See also

pane-has-focus-p
3.1.5 Focus

set-printer-metrics Function

Summary

Sets the metrics in the given printer.

Package

capi

Signature

set-printer-metrics printer &key left-margin top-margin width height

Arguments

printer⇓ A printer.

21 CAPI Reference Entries

680

left-margin⇓ A real or nil.

top-margin⇓ A real or nil.

width⇓ A real or nil.

height⇓ A real or nil.

Description

The function set-printer-metrics sets the left margin and top margin, and the printable width and printable height, of
printer to left-margin, top-margin, width and height respectively. Values outside the bounds of the printer will be corrected
and values that are nil cause no change to the corresponding setting.

Examples

To set the margins as large as possible:

(let ((metrics (capi:get-printer-metrics printer)))
 (capi:set-printer-metrics printer
 :left-margin 0
 :top-margin 0
 :width
 (capi:printer-metrics-paper-width metrics)
 :height
 (capi:printer-metrics-paper-height metrics)))

Actually this sets the margins to the whole paper size, but the printer driver will move these in to take account of the
minimum margins of the device.

See also

get-printer-metrics
set-printer-options
print-dialog
16 Printing from the CAPI—the Hardcopy API

set-printer-options Function

Summary

Sets various options in the given printer.

Package

capi

Signature

set-printer-options printer &key output-file first-page last-page orientation copies

Arguments

printer⇓ A printer.

21 CAPI Reference Entries

681

output-file⇓ A pathname designator or nil.

first-page⇓ A positive integer or nil.

last-page⇓ A positive integer or nil.

orientation⇓ One of :landscape, :portrait or nil.

copies⇓ A positive integer or nil.

Description

The function set-printer-options allows some printer options for the current job to be set programmatically. Note that
the user can change the various printer options in the dialog displayed by print-dialog.

printer should be a printer object returned by current-printer or print-dialog. printer should then be passed to
with-print-job to print using the options specified.

The keyword arguments control which options are set. If a keyword is not passed then the option remains unchanged.

Values of output-file are:

nil Print directly to the device.

t Print to a file chosen by the user at printing time.

A pathname Print to the file given by pathname.

Values of first-page are:

:all Print all pages.

An integer Print from this page to the page given by last-page.

Values of orientation are:

:landscape Print in landscape mode.

:portrait Print in portrait mode.

Values of copies:

An integer The number of copies to print.

Notes

Printer objects cannot be reused after changing their options or metrics. Call current-printer after
set-printer-options to get a new printer object containing the latest settings.

Examples

;; Print two copies to the current printer.
(let ((printer (capi:current-printer)))
 (capi:set-printer-options printer :copies 2)
 (capi:with-print-job (port :printer printer)
 (print-my-document port)))

See also

print-dialog

21 CAPI Reference Entries

682

current-printer
with-print-job
16 Printing from the CAPI—the Hardcopy API

set-rich-text-pane-character-format Function

Summary

Sets the character format.

Package

capi

Signature

set-rich-text-pane-character-format pane &key selection attributes-plist => result

Arguments

pane⇓ A rich-text-pane.

selection⇓ Must be t. This argument is deprecated.

attributes-plist⇓ A plist or :default.

Values

result A plist.

Description

The function set-rich-text-pane-character-format sets current character attributes for text in pane.

If there is a current selection in the pane, then the attributes are set for the selected text. If there is no selection, then it sets
the "typing attributes", which are applied to characters that are typed by the user. Note that any cursor movement changes
these attributes, so the setting is ephemeral.

Supplying selection is deprecated. If selection is nil an error is signalled. The default value of selection is t.

If attributes-plist is the symbol :default then the default character format of the pane (that is, the value of the
rich-text-pane initarg :character-format) is used. Otherwise attributes-plist is a plist of keywords and values. These
are the valid keywords on Microsoft Windows and Cocoa:

:bold A boolean.

:italic A boolean.

:underline A boolean.

:face A string naming a font.

:color A color spec or alias specifying the foreground color.

:size The size of the font.

Additionally these attributes-plist keywords are valid on Microsoft Windows only:

21 CAPI Reference Entries

683

:strikeout A boolean.

:offset An integer specifying the vertical offset of characters from the line (a positive value makes them
superscript and a negative value makes them subscript).

:protected A boolean. See the description of protected-callback in rich-text-pane.

:charset A cons (charset . pitch-and-family) where charset has the value of a Microsoft Windows charset
identifier, and pitch-and-family is the value of (logior pitch family) where pitch and family
have the value of a Windows pitch and a Windows font family respectively.

Compatibility note

The value nil for the keyword argument :selection is not supported in LispWorks 6.1 and later. See the description above
for details of the current behavior with respect to the current selection in the rich-text-pane.

Examples

Note: This example uses some features which are supported only on Microsoft Windows:

(defun ok-to-edit-p (pane start end s)
 (declare (ignore pane))
 (capi:prompt-for-confirmation
 (format nil "Editing~:[~; selection ~]from ~a to ~a"
 s start end)))

(setq rtp
 (capi:contain
 (make-instance
 'capi:rich-text-pane
 :protected-callback 'ok-to-edit-p
 :character-format
 '(:size 14 :color :red)
 :visible-min-height 300
 :visible-min-width 400
 :paragraph-format
 '(:start-indent 20 :offset -15)
 :text-limit 160
 :text (format nil "First paragraph.~%Second paragraph, a little longer.~%Another paragraph,
 which should be long long enough that it spans more than one line. ~%"))))

Enter some characters in the rich text window and select a range.

Set the selection to blue:

(capi:set-rich-text-pane-character-format
 rtp
 :attributes-plist '(:color :blue))

Make it protected:

(capi:set-rich-text-pane-character-format
 rtp :attributes-plist '(:protected t))

Now try to delete a character, and also to delete the selection. In both cases the ok-to-edit-p callback is called.

See also

rich-text-pane

21 CAPI Reference Entries

684

rich-text-pane-character-format

set-rich-text-pane-paragraph-format Function

Summary

Sets the paragraph format.

Package

capi

Signature

set-rich-text-pane-paragraph-format pane attributes-plist => result

Arguments

pane⇓ A rich-text-pane.

attributes-plist⇓ A plist, or :default.

Values

result A plist.

Description

The function set-rich-text-pane-paragraph-format sets paragraph attributes for the current paragraphs in pane.

The current paragraphs are those paragraphs which overlap the current selection, or the paragraph containing the insertion
point if there is no selection.

If attributes-plist is the symbol :default then the default paragraph format of pane is used. Otherwise attributes-plist is a
plist of keywords and values. These are the valid keywords on Microsoft Windows and Cocoa:

:alignment :left, :right or :center.

:start-indent A number setting the indentation.

:offset-indent A number modifying the indentation.

:offset A number setting the relative indentation of subsequent lines in a paragraph.

:right-indent A number setting the right margin.

:tab-stops A list of numbers.

Additionally this attributes-list keyword is valid on Microsoft Windows, only:

:numbering nil, t, :bullet, :arabic, :lowercase, :uppercase, :lower-roman or :upper-roman.

numbering specifies the numbering style. Rich Edit 3.0 supports all the above values of numbering. Please note that the
Arabic and Roman styles start numbering from zero, and that only t and :bullet work with versions of Rich Edit before
3.0 (other values of numbering are quietly ignored).

start-indent specifies the indentation of the first line of a paragraph. A negative value removes the indentation.

21 CAPI Reference Entries

685

offset-indent takes effect only when start-indent is not passed. It specifies an increase in the current indentation. Therefore, a
negative value of offset-indent decreases the indentation.

offset specifies the offset of the second and following lines relative to the first line of the paragraph. That is, when the
indentation of the first line is indent, the indentation of the second and subsequent lines is indent + offset. When offset is
negative, the second and subsequent lines are indented less than the first line. If indent + offset is negative, then these lines
are not indented.

tab-stops should be a list of numbers specifying the locations of tabs. No more than 32 tabs are allowed.

Examples

(setq rtp
 (capi:contain
 (make-instance
 'capi:rich-text-pane
 :visible-min-height 300
 :visible-min-width 400
 :paragraph-format
 '(:start-indent 20 :offset -15)
 :text (format nil "First paragraph.~%Second paragraph, a little longer.~%Another paragraph,
 which should be long long enough that it spans more than one line. ~%"))))

(capi:set-rich-text-pane-paragraph-format
 rtp '(:offset-indent 30 :numbering :lowercase))

See also

rich-text-pane
rich-text-pane-paragraph-format

set-selection Function

Summary

Sets the primary selection.

Package

capi

Signature

set-selection self value &optional string plist => result

Arguments

self⇓ A displayed CAPI pane or interface.

value⇓ A Lisp object (not necessarily a string) to make available within the local Lisp image.

string⇓ The string representation of value to export, or nil.

plist⇓ A property list of additional format/value pairs to export.

21 CAPI Reference Entries

686

Values

result A string, or nil.

Description

The function set-selection sets the primary selection associated with self.

If string is non-nil, then the text of the primary selection is set to string. If string is nil and value is a string, then text of the
primary selection is set to value. Otherwise, no text is set for the primary selection.

In addition, value is made available within the local Lisp image when calling selection.

plist is a plist of additional format/value pairs to export to the primary selection. The currently supported formats are as
described for selection. You can export more than one format simultaneously.

On Microsoft Windows there is no notion of selection, so this mechanism is internal to Lisp.

Note that X applications may or may not use the primary selection for their paste operations. The most likely explanation for
apparent inconsistencies after set-selection is that the pasting application does not use the primary selection. For
instance, Emacs is configurable by the variable interprogram-paste-function.

See also

selection
set-clipboard
18.6 Clipboard

set-text-input-pane-selection Generic Function

Summary

Sets the selection in a text-input-pane.

Package

capi

Signature

set-text-input-pane-selection pane start end

Arguments

pane⇓ A text-input-pane.

start⇓, end⇓ Bounding indexes for a subsequence of the text of pane.

Description

The generic function set-text-input-pane-selection sets the selection in pane to be the text bounded by the indexes
start (inclusive) and end (exclusive).

21 CAPI Reference Entries

687

See also

text-input-pane-selection
text-input-pane

set-top-level-interface-geometry Generic Function

Summary

Sets the geometry of a top level interface.

Package

capi

Signature

set-top-level-interface-geometry interface &key x y width height

Arguments

interface⇓ A CAPI interface.

x⇓, y⇓, width⇓, height⇓
Integers specifying the new geometry.

Description

The generic function set-top-level-interface-geometry sets the geometry of a top level interface.

The coordinates of interface are modified according to x, y, width and height. interface should be a top level interface. If a
keyword is omitted then that part of the coordinates is not changed.

x and y are measured from the top-left of the screen rectangle representing the area of the primary monitor (the primary
screen rectangle).

Notes

On Cocoa set-top-level-interface-geometry behaves as if an interface toolbar is not present, even if interface does
contain an interface toolbar.

Examples

(setf ii
 (capi:element-interface
 (capi:contain
 (make-instance 'capi:text-input-pane))))

(multiple-value-bind (x y width height)
 (capi:top-level-interface-geometry ii)
 (capi:execute-with-interface
 ii
 'capi:set-top-level-interface-geometry
 ii
 :x (round (+ x (/ width 4)))
 :y y

21 CAPI Reference Entries

688

 :width (round (* 0.75 width))
 :height height))

See also

top-level-interface-p
top-level-interface-geometry
top-level-interface-display-state
interface
7 Programming with CAPI Windows

shell-pane Class

Summary

A pane allowing the user to interact with a subprocess.

Package

capi

Superclasses

interactive-pane

Initargs

:command The command which is run as a subprocess.

Accessors

shell-pane-command

Description

The class shell-pane creates an editor in which a subprocess runs.

User input is interpreted as input to the subprocess. In particular, when the user enters Return in the last line, the line is sent
to the subprocess. The output of the subprocess is displayed in the pane.

The default value of command is nil, which means that the actual command is determined as follows:

On Microsoft Windows, cmd.exe is run.

On non-Windows platforms, the value of the environment variable ESHELL is used if set, and otherwise the environment
variable SHELL is consulted. If that is not set, then /bin/csh (/bin/sh on SVR4 platforms) is run.

Examples

This function emulates user input on pane:

(defun send-keys-to-pane-aux (pane string newline-p)
 (loop for char across string
 do (capi:call-editor pane char))
 (if newline-p

21 CAPI Reference Entries

689

 (capi:call-editor pane #\Return)))

This function trampolines to send-keys-to-pane-aux on the right process:

(defun send-keys-to-pane (pane string newline-p)
 (capi:apply-in-pane-process pane
 'send-keys-to-pane-aux
 pane string newline-p))

(setq sp (capi:contain
 (make-instance 'capi:shell-pane
 :visible-min-width
 '(character 60)
 :visible-min-height
 '(character 30))))

This call emulates the user typing dir followed by Return:

(send-keys-to-pane sp "dir" t)

show-interface Function

Summary

Brings the interface containing a specified pane onto the screen.

Package

capi

Signature

show-interface pane

Arguments

pane⇓ A pane.

Description

The function show-interface brings the interface containing pane back onto the screen.

To hide the interface use hide-interface.

See also

hide-interface
activate-pane
interface
7.7 Manipulating top-level windows

21 CAPI Reference Entries

690

show-pane Function

Summary

Restores the specified pane to the screen.

Package

capi

Signature

show-pane pane => pane

Arguments

pane⇓ An instance of simple-pane or a subclass.

Values

pane An instance of simple-pane or a subclass.

Description

The function show-pane restores the pane pane to the screen if it is hidden (for instance by hide-pane) or iconified.

See also

hide-pane
show-interface

simple-layout Class

Summary

A layout with a single child, and the child is resized to fill the space (where possible).

Package

capi

Superclasses

x-y-adjustable-layout

Subclasses

switchable-layout

21 CAPI Reference Entries

691

Description

The class simple-layout is a layout with a single child, and the child is resized to fill the space (where possible).

The description of a simple-layout can be either a single child, or a list containing just one child. The simple layout then
adopts the size constraints of its child, and lays the child out inside itself.

Examples

(capi:contain (make-instance
 'capi:simple-layout
 :description (list (make-instance
 'capi:text-input-pane))))

See also

layout
row-layout
column-layout

simple-network-pane Class

Summary

A graph pane which arranges its nodes in a grid.

Package

capi

Superclasses

graph-pane

Initargs

:x-gap The horizontal node spacing.

:y-gap The vertical node spacing.

Description

The class simple-network-pane provides a graph which lays out its nodes in a rectangular grid by a simple algorithm.

The default values of x-gap and y-gap are 200 and 100 respectively.

simple-network-pane is a subclass of choice, so for details of its selection handling, see choice.

Examples

(example-edit-file "capi/graphics/network")

21 CAPI Reference Entries

692

simple-pane Class

Summary

The class simple-pane is the superclass for any elements that actually appear as a native window, and is itself an empty
window.

Package

capi

Superclasses

element

Subclasses

display-pane
interface
title-pane
button-panel
list-panel
option-pane
output-pane
progress-bar
slider
text-input-pane
tree-view
toolbar
layout
button

Initargs

:enabled A boolean controlling whether the pane is enabled.

:background The background color of the pane.

:foreground The foreground color of the pane.

:font The default font for the pane.

:horizontal-scroll t, :without-bar, or nil. If true the pane can scroll horizontally.

:vertical-scroll t, :without-bar, or nil. If true the pane can scroll vertically.

:scroll-bar-type nil (the default) or :always-visible.

:visible-border A boolean or a keyword controlling whether the pane has a border, for some pane classes.

:internal-border A non-negative integer, or nil. Controls the width of the internal border.

:cursor A keyword naming a built-in cursor, or a cursor object, or nil.

:pane-menu Specifies a menu to be raised by the :post-menu gesture.

:drop-callback Specifies a drop callback for output-pane, interface, list-panel or tree-view.

:drag-callback Specifies a drag callback for list-panel or tree-view.

:automatic-resize A plist.

:scroll-if-not-visible-p

21 CAPI Reference Entries

693

Defines whether, when the focus is given to the pane and the pane is not fully visible, the
pane's parent is automatically scrolled to show it.

:toolbar-title A string.

:scroll-horizontal-slug-size

Useful only for output-pane and subclasses and for layouts. See
set-horizontal-scroll-parameters.

:scroll-vertical-slug-size

Useful only for output-pane and subclasses and for layouts. See
set-vertical-scroll-parameters.

:scroll-start-x Useful only for output-pane and subclasses and for layouts. See
set-horizontal-scroll-parameters.

:scroll-start-y Useful only for output-pane and subclasses and for layouts. See
set-vertical-scroll-parameters.

:scroll-width Useful only for output-pane and subclasses and for layouts. See
set-horizontal-scroll-parameters.

:scroll-height Useful only for output-pane and subclasses and for layouts. See
set-vertical-scroll-parameters.

:scroll-initial-x Useful only for output-pane and subclasses and for layouts. See
set-horizontal-scroll-parameters.

:scroll-initial-y Useful only for output-pane and subclasses and for layouts. See
set-vertical-scroll-parameters.

:scroll-horizontal-step-size

Useful only for output-pane and subclasses and for layouts. See
set-horizontal-scroll-parameters.

:scroll-vertical-step-size

Useful only for output-pane and subclasses and for layouts. See
set-vertical-scroll-parameters.

:scroll-horizontal-page-size

Useful only for output-pane and subclasses and for layouts. See
set-horizontal-scroll-parameters.

:scroll-vertical-page-size

Useful only for output-pane and subclasses and for layouts. See
set-vertical-scroll-parameters.

Accessors

simple-pane-enabled
simple-pane-background
simple-pane-foreground
simple-pane-font
simple-pane-cursor
simple-pane-scroll-callback
simple-pane-drop-callback
simple-pane-drag-callback

Readers

simple-pane-horizontal-scroll
simple-pane-vertical-scroll

21 CAPI Reference Entries

694

simple-pane-visible-border

Description

enabled determines whether the pane is enabled. The default value is t. Note that changing the enabled state of a visible pane
by (setf simple-pane-enabled) changes its appearance.

background and foreground are colors specified using the Graphics Ports color system. Additionally on Cocoa, the special
value :transparent is supported, which makes the pane's background match that of its parent. The keyword
:background can also be used as the value for background, which is generally the same as not specifying background at all,
except for layout panes where the initargs :background :background also forces the pane to have its own native GUI
object. You need to do that if you want to make a layout without a background initially, and change it later using
(setf simple-pane-background).

font should be a font, a font-description, a font alias, or nil. If it is not a font, it is converted to a font when the pane is
created. nil is converted to the default font, and a font-description is converted as if by calling find-best-font.

pane-menu can be used to specify or create a menu to be displayed when the :post-menu gesture is received by the pane. It
has the default value :default which means that make-pane-popup-menu is called to create the menu. For a full
description of pane-menu, see 8.12 Popup menus for panes.

Notes

1. foreground is ignored for buttons on Windows and Cocoa.

2. On Microsoft Windows pane-menu is not supported for title-pane. See title-pane for alternative approaches.

3. The font, foreground and background might be overridden by settings created using
set-interface-pane-name-appearance or set-interface-pane-type-appearance.

Description: Cursor

cursor specifies a cursor for the pane. On Cocoa and GTK+, the cursor initarg has an effect only in output-pane and its
subclasses. On other platforms it changes the cursor for other CAPI pane classes, although this may contravene style
guidelines.

nil means use the default cursor, and this is the default value. cursor can also be a cursor object as returned by
load-cursor. The other allowed values are keywords naming built-in cursors which are supported on each platform as
shown in the table below.

cursor Cocoa Windows Motif

:busy No Yes Yes

:i-beam Yes Yes Yes

:top-left-arrow Yes Yes Yes

:h-double-arrow Yes Yes Yes

:v-double-arrow Yes Yes Yes

:left-side Yes Yes Yes

:right-side Yes Yes Yes

:top-side Yes Yes Yes

:bottom-side Yes Yes Yes

21 CAPI Reference Entries

695

:wait No Yes Yes

:crosshair Yes Yes Yes

:gc-notification No Yes Yes

:top-left-corner No Yes Yes

:top-right-corner No Yes Yes

:bottom-left-corner No Yes Yes

:bottom-right-corner No Yes Yes

:hand Yes Yes Yes

:fleur Yes Yes Yes

:move Yes Yes Yes

:closed-hand Yes No No

:open-hand Yes No No

:disappearing-item Yes No No

Description: Drag and drop

drop-callback can be specified for a pane that is an instance of output-pane, interface, list-panel, tree-view or a
subclass of one of these. When the user drags an object over a window, the CAPI first tries to call the drop-callback of any
pane under the mouse and otherwise calls the drop-callback of the top-level interface. The default value of drop-callback is
nil, which means that there is no support for dropping into the pane.

For editor-pane, drop-callback can be :default, which provides support for dropping a string into the pane and inserting
the string into the pane's editor buffer.

If drop-callback is any other non-nil value, it should be either a list (for simple cases) or function designator (to use all
options). When it is a function designator, it needs to have this signature:

drop-callback pane drop-object stage

The function drop-callback is called by the CAPI at various times such as when the pane is displayed and when the user
attempts to drop data into the pane. pane is the pane itself, drop-object is an object used to communicate information about
the current dropping operation (see below) and stage is a keyword. drop-callback should handle these values of stage:

:formats This might occur when the pane is being displayed or might occur each time the user drags or
drops an object over the pane. It should call set-drop-object-supported-formats with
the drop-object and a list of formats that the pane wants to receive. Each format is a keyword.
The list of the formats must be the same each time it is called.

:enter This occurs when the user drags an object into a pane which is an output-pane or interface
(but not for a pane which is a list-panel or tree-view). It can query the drop-object using
drop-object-provides-format and drop-object-allows-drop-effect-p to discover
what the user is dragging. It can also use drop-object-pane-x and drop-object-pane-y

to query the mouse position relative to the pane. It should call
(setf drop-object-drop-effect) with an effect if it wants to allow the object to be
dropped. If this is not called, then the object cannot be dropped into the pane.

:leave This occurs when the user drags an object out of a pane which is an output-pane or
interface (but not for a pane which is a list-panel or tree-view).

21 CAPI Reference Entries

696

:drag This occurs while the user is dragging an object over the pane. It can query the drop-object using
drop-object-provides-format and drop-object-allows-drop-effect-p to discover
what the user is dragging. For output-pane, it can use drop-object-pane-x and
drop-object-pane-y to query the mouse position relative to the pane. For list-panel and
tree-view, it can use drop-object-collection-index or
drop-object-collection-item to query where the user is attempting to drop the object and
can call their setf functions to adjust this position. It should call
(setf drop-object-drop-effect) with an effect if it wants to allow the object to be
dropped. If this is not called, then the object cannot be dropped into the pane. For output-pane
and interface, it might also want to update the pane to indicate where the object will be
dropped.

:drop This occurs when the user drops an object over the pane. It can query the drop-object as for the
:drag stage, but can also obtain the object itself using drop-object-get-object for one of
the formats in the list returned by drop-object-provides-format. Once the object is
received, it should call (setf drop-object-drop-effect) with the effect that has been
used by the callback. It should also update the pane to incorporate the object in whatever way the
application requires.

When drop-callback is a list, it specifies a simple response. The list should be of the form:

(effects formats drop-stage-callback &optional checker)

Both effects and formats can be either a list of effects or formats, or an atom which is interpreted as a list of one element.
effects and formats specify which effects and formats are allowed.

For the stages except :formats, the first effect of the given effects that the drop-object allows is set (by calling
(setf drop-object-drop-effect)), except when checker is supplied. In the latter case, before setting an effect it loops
through the formats and calls the checker with three arguments:

funcall checker pane effect format

If checker returns non-nil it sets the effect. If checker returns nil for the formats, it goes to the next effect.

In the :drop stage, after setting the effect, it gets the object with first format that is provided by the drop-object, and then
calls the drop-stage-callback with four arguments:

funcall drop-stage-callback pane object x-or-index y-or-placement

If the pane is a tree-view or list-panel, the last two arguments are the item index (for get-collection-item) and
placement (:above, :item, :below), which are the results of drop-object-collection-index. Otherwise, the last
two arguments are the x and y (results of drop-object-pane-x and drop-object-pane-y). It is the responsibility of the
drop-stage-callback to perform whatever dropping should mean.

drag-callback can be specified for a pane that is an instance of list-panel or tree-view. The default value of drag-
callback is nil, which means that there is no support for dragging from the pane. Otherwise, it should be a function
designator with this signature:

drag-callback pane info => result

When the user drags items in the pane, the CAPI calls the drag-callback. pane is the pane itself and info is a list of item
indices that are being dragged (compare with choice-selection).

The drag-callback should normally return a plist result whose keys are the data formats to be dragged, with a value associated
with each format. Formats are arbitrary keywords that must be interpreted by the pane where you intend to drop the values

21 CAPI Reference Entries

697

(see the drop-callback). The format :string is understood by some other panes that expect text.

The plist result returned by drag-callback can contain the key :image-function with a function image-function as value.

This function is used to generate the image that is used in the dragging itself, exactly as the image-function in
drag-pane-object is used. On Cocoa, tree-view and list-panel ignore this key in result.

drag-callback can also be used in top-level interfaces. In this case the second argument info is a flag describing the gesture
that caused the call. Currently the only value is :drag-image, which means it was invoked by dragging the drag-image (see
interface).

drag-callback is allowed to return the result :default rather than a plist. :default tells the system to do default dragging
if there is any. At the time of writing the only place where there is default dragging is on Cocoa for an interface with an
:interface-pathname. drag-callback is allowed to return the result nil, meaning do not do dragging.

On output-pane you add dragging by adding an entry to the input-model and which initiates the dragging by calling
drag-pane-object.

Notes: Drag and drop

If :image is supplied in the plist returned by drag-callback, the dragging mechanism automatically frees the image object as
if by free-image when it no longer needs it.

Description: Scroll

Any simple pane can be made scrollable by specifying t to :horizontal-scroll or :vertical-scroll. By default
these values are nil, but some subclasses of simple-pane default them to t where appropriate (for instance
editor-panes always default to having a vertical scroll bar).

For a pane which is scrollable but does not display a scroll bar, pass the value :without-bar for :horizontal-scroll or
:vertical-scroll. See:

(example-edit-file "capi/output-panes/scrolling-without-bar.lisp")

The height and width of a scrollable simple pane can be specified by the initargs :scroll-height and :scroll-width,
which have the same meaning as :internal-min-height and :internal-min-width. See 6.5.2 Constraint Formats
for more information about height and width initargs.

scroll-bar-type controls the visibility of scroll bars on Cocoa. By default, the visibility of scroll bars depends on the System
Preferences, which in newer versions of macOS is to have scroll bars that are not always visible. Supplying
:always-visible causes the scroll bars to be always visible as they used to be.

scroll-if-not-visible-p controls scrolling behavior of the parent when the pane is given the input focus. scroll-if-not-visible-p
can be t, nil, or :non-mouse. See scroll-if-not-visible-p for details. When this initarg is supplied, the generic
function (setf scroll-if-not-visible-p) is called with it.

Description: Border

The value for visible-border can be any of the following, with the stated meanings where applicable:

nil Has no border.

t Has a border.

:default Use the default for the window type.

:outline Add an outline border.

21 CAPI Reference Entries

698

There are various platform/pane class combinations which do not respond to all values of visible-border. For instance, on
Windows XP with the default theme, text-input-choice and option-pane always have a visible border regardless of
the value of visible-border, while other classes including display-pane, text-input-pane, list-panel,
editor-pane and graph-pane have three distinct border styles, with visible-border :default meaning the same as
visible-border t.

If internal-border is non-nil, it should be a non-negative integer specifying the width of an empty region around the edge of
the pane.

Description: Miscellaneous

automatic-resize makes the pane resize automatically. This has an effect only if it is placed inside a static-layout
(including subclasses like pinboard-layout). The effect is that when the static-layout is resized then the pane also
changes its geometry.

The value of automatic-resize defines how the pane's geometry changes. It must be a plist of keywords and values which
match the keywords of the function set-object-automatic-resize and are interpreted in the same way.

If the pane is used in the toolbar-items list of an interface, then toolbar-title should be a short string that will be shown
near to the pane if required for the toolbar.

Notes: Miscellaneous

1. In order to display a simple pane, it needs to be contained within an interface. In a real application you will will define
your interface class, but for debugging and just playing around with pane the two convenience functions
make-container and contain are provided to create an interface with enough support for that pane. The function
make-container just returns a container for an element, and the function contain displays an interface created for
the pane using make-container.

2. You can also control automatic resizing of a simple-pane using set-object-automatic-resize.

Examples

(capi:contain (make-instance 'capi:output-pane
 :background :red
 :scroll-width 300
 :horizontal-scroll t))

(setf ep
 (capi:contain
 (make-instance 'capi:editor-pane
 :visible-border t)))

(setf (capi:simple-pane-cursor ep) :crosshair)

For an example illustrating the use of drag-callback, see:

(example-edit-file "capi/choice/drag-and-drop")

See also

contain
define-font-alias
set-object-automatic-resize
3 General Properties of CAPI Panes
6 Laying Out CAPI Panes
9 Adding Toolbars

21 CAPI Reference Entries

699

13.10.3.2 Transparency and the alpha channel

simple-pane-handle Function

Summary

Returns the window handle of a pane.

Package

capi

Signature

simple-pane-handle pane => handle

Arguments

pane⇓ A pane.

Values

handle⇓ An integer, or nil.

Description

The function simple-pane-handle returns the handle of pane in the system that displays it, if there is an underlying
window.

On Microsoft Windows handle is the hwnd of pane.

On X11/Motif, handle is the windowid of the main part of pane (type Window in the X library).

If pane is not displayed, or if pane does not have an underlying window, then handle is nil. Note that layouts do not always
have an underlying window.

Use this function with caution: in general, drawing and moving of CAPI windows should be done through the CAPI.

See also

current-dialog-handle
18.7 Handles

simple-pane-visible-height Function

Summary

Gets the visible height of a pane.

Package

capi

21 CAPI Reference Entries

700

Signature

simple-pane-visible-height pane => result

Arguments

pane⇓ A simple pane.

Values

result The height of the visible part of pane, or nil.

Description

The function simple-pane-visible-height returns the height in pixels of the visible part of pane, that is the height of
the viewport, not including any borders or scroll bars. If pane is not displayed the function returns nil.

See 6.4.1 Width and height hints for a description of the visible size of a pane.

See also

simple-pane-visible-size
simple-pane-visible-width
with-geometry
3.8 Accessing pane geometry

simple-pane-visible-size Function

Summary

Gets the visible size of a pane.

Package

capi

Signature

simple-pane-visible-size pane => width, height

Arguments

pane⇓ A simple pane.

Values

width The width of the visible part of pane, or nil.

height The height of the visible part of pane, or nil.

Description

The function simple-pane-visible-size returns the size in pixels of the visible part of pane, that is the width and height
of the viewport, not including any borders or scroll bars. If pane is not displayed the return values are nil.

21 CAPI Reference Entries

701

See 6.4.1 Width and height hints for a description of the visible size of a pane.

See also

simple-pane-visible-height
simple-pane-visible-width
with-geometry
3.8 Accessing pane geometry

simple-pane-visible-width Function

Summary

Gets the visible width of a pane.

Package

capi

Signature

simple-pane-visible-width pane => result

Arguments

pane⇓ A simple pane.

Values

result The width of the visible part of pane, or nil.

Description

The function simple-pane-visible-width returns the width in pixels of the visible part of pane, that is the width of the
viewport, not including any borders or scroll bars. If pane is not displayed the function returns nil.

See 6.4.1 Width and height hints for a description of the visible size of a pane.

See also

simple-pane-visible-height
simple-pane-visible-size
with-geometry
3.8 Accessing pane geometry

simple-pinboard-layout Class

Summary

A subclass of pinboard-layout that can contain just one pinboard object or pane as its child, and it adopts the size
constraints of that child.

21 CAPI Reference Entries

702

Package

capi

Superclasses

pinboard-layout
simple-layout

Subclasses

graph-pane

Initargs

:child The child of the pinboard layout.

Description

The class simple-pinboard-layout is normally used to place pinboard objects in a layout by placing the layout inside a
simple-pinboard-layout, thus displaying the pinboard objects. It inherits all of its layout behavior from
simple-layout.

Examples

(setq column
 (make-instance
 'capi:column-layout
 :description
 (list
 (make-instance
 'capi:image-pinboard-object
 :image
 (example-file "capi/graphics/Setup.bmp"))
 (make-instance
 'capi:item-pinboard-object
 :text "LispWorks"))
 :x-adjust :center))

(capi:contain (make-instance
 'capi:simple-pinboard-layout
 :child column))

See also

pinboard-object

simple-print-port Function

Summary

Prints the contents of an output pane to a printer.

21 CAPI Reference Entries

703

Package

capi

Signature

simple-print-port port &key jobname scale dpi printer drawing-mode interactive background

Arguments

port⇓ An output-pane.

jobname⇓ A string or nil.

scale⇓ A positive real or nil.

dpi⇓ A positive real or nil.

printer⇓ A printer or nil.

drawing-mode⇓ One of :compatible, :quality or nil.

interactive⇓ A boolean.

background⇓ A color in the Graphics Ports color system.

Description

The function simple-print-port prints the output-pane specified by port to the default printer, unless specified
otherwise by printer.

If jobname is non-nil then it is used to set the name of the job that is seen by the user.

scale and dpi are used to determine how to transform the output pane's coordinate space to physical units. Their meaning here
is the same as in get-page-area, except that scale may also take the value :scale-to-fit, in which case the pane is
printed as large as possible on a single sheet.

The background color of port is ignored, and the value given by background is used instead. This defaults to :white.

drawing-mode should be either :compatible which causes drawing to be the same as in LispWorks 6.0, or :quality
which causes all the drawing to be transformed properly, and allows control over anti-aliasing on Microsoft Windows and
GTK+. The default value of drawing-mode is :quality.

For more information about drawing-mode, see 13.2.1 The drawing mode and anti-aliasing.

If interactive is t, a print dialog is displayed. This is the default. If interactive is nil, then the document is printed to the
current printer without prompting the user.

Examples

(example-edit-file "capi/printing/simple-print-port")

(example-edit-file "capi/printing/multi-page")

See also

print-dialog
13 Drawing - Graphics Ports
16 Printing from the CAPI—the Hardcopy API

21 CAPI Reference Entries

704

slider Class

Summary

A pane with a sliding marker, which allows the user to control a numerical value within a specified range.

Package

capi

Superclasses

range-pane
titled-object
simple-pane

Initargs

:print-function A function of two arguments, or a format string.

:show-value-p A generalized boolean.

:start-point A keyword.

:tick-frequency An integer, a ratio or the keyword :default.

Accessors

slider-print-function

Readers

slider-show-value-p
slider-start-point
slider-tick-frequency

Description

The class slider allows the user to enter a number by moving a marker on a sliding scale to the desired value.

show-value-p determines whether the slider displays the current value, on Microsoft Windows and GTK+. The default value
is t. show-value-p is ignored on Cocoa.

start-point specifies which end of the slider is the start point in the range. The values allowed depend on the orientation of
the slider. For horizontal sliders, start-point can take these values:

:left The start point is on the left.

:right The start point is on the right.

:default The start point is at the default side (the left).

For vertical sliders, start-point can take these values:

:top The start point is at the top.

:bottom The start point is at the bottom.

21 CAPI Reference Entries

705

:default The start point is at the default position, which is the top on Microsoft Windows and Motif, and
the bottom on Cocoa.

tick-frequency specifies the spacing of tick marks drawn on the slider. If tick-frequency is :default, then the slider may or
may not draw tick marks according the OS conventions. If tick-frequency is 0, then no tick marks are drawn. If tick-frequency
is a ratio 1/N for integer N>1, then tick marks are drawn to divide the slider range into N sections. Otherwise tick-frequency
should be an integer greater than 1 which specifies the spacing of tick marks in units between start and end. The default value
of tick-frequency is :default.

print-function, when supplied, should be a function with signature:

print-function pane value => result

where pane is the slider pane, value is its current value, and result is a string or nil. When the slider pane displays the
current value, it calls print-function and displays the value as result, unless that is nil, in which case the value is printed
normally.

As a special case, print-function can also be a string, which is used as the format string in a call to format with one
additional argument, the value, that is:

(format nil print-function value)

and the result of this call to format is displayed.

Notes

1. :print-function is not implemented on Motif.

2. :print-function has no effect on Cocoa because the slider pane never displays the value.

3. Use of the print-function is determined when the slider pane is displayed. Setting the print-function in a slider that did
not have a print-function when it was first displayed does not work until the slider is destroyed and displayed again.
Therefore, if you want to display a slider without a print-function but set it later, initially you should supply a print-
function that always returns nil, for example:

(make-instance 'capi:slider
 :start 10 :end 34
 :print-function 'false)

4. print-function is useful for displaying fractional values or values that grow logarithmically (or any other non-linear
function), because the actual values in a slider are always integers that increase linearly as the slider moves.

5. On Windows the value of a slider is displayed (when show-value-p is true) in a tooltip that is visible only while the
user moves the marker with a mouse.

Compatibility note

In LispWorks 6.0 and earlier versions, ticks are drawn as if tick-frequency is :default.

Examples

Given the default start and end of 0 and 100, this gives ticks at 0, 25, 50, 75 and 100:

(make-instance 'slider :tick-frequency 25)

21 CAPI Reference Entries

706

http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm

while this gives ticks at 0, 20, 40, 60, 80 and 100:

(make-instance 'slider :tick-frequency 1/5)

This example illustrates the use of print-function to display fractional and non-linear values ranges:

(example-edit-file "capi/elements/slider-print-function")

See also

3.9.4 Slider, Progress bar and Scroll bar

sorted-object Class

Summary

Defines sorting operations.

Package

capi

Superclasses

standard-object

Subclasses

list-panel

Initargs

:sort-descriptions A list.

Description

The class sorted-object defines sorting operations.

sorted-object is an interface for sorting the items in list-panel and list-view.

Each element of sort-descriptions is a sorting description object, as returned by make-sorting-description. These
define various sorting options and are used by sorted-object-sort-by and sort-object-items-by.

Notes

The subclass multi-column-list-panel supports sortable columns.

See also

list-panel
list-view
make-sorting-description
sort-object-items-by

21 CAPI Reference Entries

707

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm

sorted-object-sort-by
sorted-object-sorted-by

sorted-object-sort-by Generic Function

Summary

Sets the sorting type of a sorted-object.

Package

capi

Signature

sorted-object-sort-by pane new-sort-type &key allow-reverse

Arguments

pane⇓ An instance of sorted-object or a subclass.

new-sort-type⇓ The sort type to set.

allow-reverse⇓ A boolean.

Description

The generic function sorted-object-sort-by sets the sort type of pane to new-sort-type.

new-sort-type must match by cl:equalp the type of one of the sorting descriptions of pane.

If allow-reverse is non-nil and the sort type already matches new-sort-type, then the sort reverses the order of the items. The
default value of allow-reverse is t.

If pane is a list-panel, then sorted-object-sort-by also calls sort-object-items-by to sort the items with the
new sort type. For your own subclasses of sorted-object which are not subclasses of list-panel, if you need this
behavior define an :after method that calls sort-object-items-by. You can also define :after methods on
subclasses of list-panel to perform other tasks each time the items are sorted.

See also

list-panel
sort-object-items-by
sorted-object
sorted-object-sorted-by

sorted-object-sorted-by Function

Summary

Returns the current sorting type and reverse flag of a sorted-object.

21 CAPI Reference Entries

708

http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm

Package

capi

Signature

sorted-object-sorted-by pane => sort-type, reversed

Arguments

pane⇓ An instance of sorted-object or a subclass.

Values

sort-type⇓ A sort type.

reversed⇓ A boolean.

Description

The function sorted-object-sorted-by returns the current sorting type sort-type and reverse flag reversed of pane.

sort-type is the type of one of the sorting descriptions of pane. reversed is true if the pane is sorted in reverse order and false
if it is sorted in normal order.

See also

sorted-object
sorted-object-sort-by

sort-object-items-by Function

Summary

Sorts items according to a sorted-object.

Package

capi

Signature

sort-object-items-by sorted-object items => result

Arguments

sorted-object⇓ An instance of sorted-object or a subclass.

items⇓ A list.

Values

result A permutation of items.

21 CAPI Reference Entries

709

Description

The function sort-object-items-by sorts items according to the current sort type of sorted-object, as set by
sorted-object-sort-by.

Notes

1. If the sort type is reversed, items will be sorted in reverse order.

2. The sorting may be destructive, that is items may be modified during a call to sort-object-items-by.

See also

sorted-object
sorted-object-sort-by
sorted-object-sorted-by

stacked-tree Class

Summary

A pane that displays a tree of items in a "stacked" drawing, where each item has an associated value and child items that
represent a fraction of that value. Each item is displayed as a rectangle whose width corresponds to the value. Child items are
displayed below the item to make a stack of rectangles.

Package

capi

Superclasses

choice
output-pane

Initargs

:root An object which is the root of the tree of items, or nil.

:item-function A designator for a function.

:value A non-negative real or nil.

:motion-callback A designator for a function or nil.

:colors A list of colors.

:color-function A designator for a function or nil.

:item-menu-function

A designator for a function or nil.

:highlight A boolean.

:max-level A positive real or nil.

:empty-tree-string A string or nil.

21 CAPI Reference Entries

710

Accessors

stacked-tree-root
stacked-tree-item-function
stacked-tree-item-menu-function
stacked-tree-empty-tree-string

Description

The class stacked-tree is a subclass of output-pane, which displays a tree of items in a "stacked" drawing. In a stacked
drawing, each item of the tree is represented by a horizontal rectangle. The height of the rectangle is fixed to accommodate
the height of the font of the stacked-tree, while the width corresponds to the "value" of the item. The children of each
item are drawn side-by-side below the item itself, to make a stack of rectangles ("stacked").

Within each item's rectangle, the stacked-tree displays a label, consisting of the item's name (the third value of item-
function, see below) and the percentage of the item's value with respect to the value of the stacked-tree. The name and/or
percentage are omitted if the rectangle is not wide enough.

root and item-function specify the tree that the stacked-tree is displaying. root can be initialized by the :root initarg or
set by using (setf stacked-tree-root) or modify-stacked-tree. Likewise, item-function can be initialized by the
:item-function initarg or set by using (setf stacked-tree-item-function) or modify-stacked-tree. The
stacked-tree uses item-function to traverse the tree starting from root.

item-function must be a designator for a function with two arguments: the stacked-tree and an item. It should return three
values:

item-value A real or nil. If item-value is a positive real, it specifies the item's value, which affects the
width of the rectangle used to represent it. If item-value is nil, then the stacked-tree
computes the value as the sum of the values of the item-children. If item-value is not positive,
then the item is ignored.

item-children A list of items that are the children of the item argument. If item-children is nil then the item is
a leaf item and has no children.

item-name A string or nil. When item-name is non-nil, the string representation of it (the result of calling
the print-function inherited from collection) is displayed within the rectangle. Just the
rectangle is displayed if item-name is nil.

Both root and elements of item-children returned by item-function can be any object. The only requirement is that item-
function returns useful values when called with this object. Thus the tree is completely defined by root and by what item-
function returns.

stacked-tree calls item-function on items down the tree until either a leaf item is reached (that is when item-children is
nil), or when the depth of the tree reaches max-level, if that is non-nil.

Note: Currently there is nothing else to stop the descent down the tree, so you must either have a finite tree, that is your item-
function must return nil as the item-children at some level on every branch, or you must supply a non-nil max-level.

If value is non-nil, it specifies the value on which to base the percentage computations when displaying items. If value is nil
or not specified, it defaults to the item-value of root, which is the natural value in many cases, but not always. For example,
the Profiler tool in the LispWorks IDE uses a value that is the number of times that the profiling was done, while the item-
value of its root is the sum of the number of times that each process was profiled, which will be much larger when you profile
more than one process.

color-function or colors specify the background color used for each displayed rectangle.

If color-function is non-nil, then colors is ignored. color-function is called for each item, the first time the item is displayed,
with two arguments: the stacked-tree and the item. It must return a color specification (a color-spec or a recognized

21 CAPI Reference Entries

711

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

symbol, see 15 The Color System), which is then used as the background color of the rectangle for the item.

If color-function is nil, then colors is used. colors defaults to a plausible list of colors, so it does not need to be specified. If
it supplied, it must be a list of color specifications. The stacked-tree selects a random color from this list for each item
the first time the item is displayed.

Note: If you do not specify colors or color-function, then the stacked-tree automatically uses darker colors when the
window is running with a dark theme. If color-function is non-nil, then after a color mode switch, color-function is called
again for each item that is displyed. color-function can use top-level-interface-dark-mode-p on the top-level
interface of the stacked-tree to decide whether it is dark mode or not, but it is probably better to set something inside the
top-level-interface-color-mode-callback of the interface. If you supply colors, then it defines a fixed set that
does not change. In this case, you probably want to also set the foreground, so the the color of the text does not chnage either.

If motion-callback is non-nil, it is called when the user moves the mouse over the stacked-tree, with three arguments: the
stacked-tree, the item associated with the rectangle at the mouse position or nil if the mouse is not over any rectangle,
and a vector specifying the coordinates of the item (or nil if the item is nil). The vector contains eight elements:

0,1,2,3: x, y, width, height

x, y, width, height of the item's rectangle in internal coordinates. Note that the rectangle may
have only a partial overlap with the visible area, meaning that only part of it is visible.

4: label-offset. The horizontal offset in pixels of the beginning of the label from the left side of the rectangle,
that is the label's left side is x + label-offset.

5: label-draw-width The width in pixels that is available to display the label. This is always smaller than the width by
a few pixels, and if the rectangle is not visible, may be much smaller or 0.

6: label-width The width in pixels of the label that should be displayed (as returned by get-string-extent

when called with the label).

7: percent-width The width in pixels that is required to display the percentage for the item.

If highlight is non-nil, when the user moves the mouse over the stacked-tree, the rectangle under the mouse is
highlighted.

Note: Both motion-callback and highlight are implemented by defining the :motion gesture in the input-model of the
stacked-tree. If you supply an input-model containing :motion (see output-pane), then this will override the internal
one, so motion-callback will never be called and highlight will not have any effect.

empty-tree-string, if non-nil, should be a string. The default is "Empty STACKED-TREE displayer". It is displayed in the
stacked-tree if you set root to nil, or when a non-positive item-value is returned when item-function is called on root.

If item-menu-function is non-nil, it is called when the context menu needs to be raised (normally by right-click of the mouse),
with two arguments: the stacked-tree and the selected item (or nil if none is selected). It should return a menu,
menu-component or nil. If item-menu-function returns a menu, then it is used as the context menu. If it returns a
menu-component, LispWorks makes a menu containing the component followed by the default stacked-tree menu
(described later). If it returns nil, LispWorks raises the default stacked-tree menu. If item-menu-function is nil,
LispWorks also raises the default stacked-tree menu.

Note: item-menu-function is called from the make-pane-popup-menu method of stacked-tree. You can completely
override this by using the :pane-menu initarg (see 8.12 Popup menus for panes), or by defining your own
make-pane-popup-menu method specializing on stacked-tree and your own interface class.

Note: When the menu is raised as a result of a mouse click within a rectangle that is associated with an item then this item is
selected while the menu is visible. When the menu has been dismissed, if the contents and the selection of the
stacked-tree are still the same, then the selection goes back to the item that was selected before the mouse click.

21 CAPI Reference Entries

712

Description: capi:output-pane features

Some features of stacked-tree are inherited from output-pane as described here.

If you supply a display-callback then it will be called after the stacked-tree has drawn what it wants to draw.

If you supply a resize-callback, then the stacked-tree ensures that the selected item is visible after calling your callback.

stacked-tree forces coordinate-origin to be :fixed-graphics.

The stacked-tree has default initargs for :draw-with-buffer, :horizontal-scroll and :vertical-scroll (all
t). If you override any of these you will affect its behavior.

The stacked-tree implements its user input interaction (see below) using the input-model of output-pane. If you supply
the :input-model initarg, its value will be appended before the internal input-model of stacked-tree, so your callbacks
will override the internal ones. Note that this affects all interaction, including selection of an item. Your input-model
callbacks can use stacked-tree-item-at-point to find the item at the x,y coordinates.

Description: capi:choice features

Some features of stacked-tree are inherited from choice as described here.

The interaction of stacked-tree is always :single-selection. Setting the items signals an error.

choice-selection and choice-selected-item can be used in the usual way, including setting them. When the selection is
set, the stacked-tree ensures that the selected item is visible.

The selection-callback and action-callback (inherited from callbacks) can be used, and are called due to the input-model as
described above.

Description: Mouse interaction

In the following discussion, root-width is the width in pixels of the rectangle used to display root. Whenever root is changed
(and initially), root-width is set such that width of the rectangle used to display root is the visible width of the
stacked-tree.

Moving the mouse over a stacked-tree calls motion-callback if it is non-nil, and highlights the item under the mouse if
highlight is non-nil.

Left-click selects the item that was clicked.

Left-double-click on a item changes the root-width such that the width of the clicked item's rectangle matches the visible
width of the stacked-tree, and scrolls horizontally such that the item's rectangle starts at the left of the stacked-tree.

Left-click and drag pans the stacked-tree, scrolling it such that the clicked point follows the mouse.

Description: Keyboard interaction

The arrow keys change the selected item in the direction indicated if possible. The Down key moves to the first child of the
currently selected item (if any). The Left and Right keys move to the item at the same depth if there is any, which may be
on a completely different branch of the tree.

The following gestures are also available:

Ctrl-+, Ctrl--: Zoom in, zoom out.

Zooming increases or decreases the root-width. It does not affect the vertical dimension.

Ctrl-i, Ctrl-o: Zoom in and out in large steps.

21 CAPI Reference Entries

713

Zoom like Ctrl-+ and Ctrl--, but in larger steps.

Return, Ctrl-Return: Action callback, alternative action callback.

See callbacks.

Ctrl-r: Reset root-width.

Reset the root-width to its initial value, so the root of the tree has the visible width of the
stacked-tree at the time it was first displayed, and scroll the root to the left of the
stacked-tree.

Ctrl-b, Ctrl-f: Go backwards, Go forwards.

Go to the previous or next state of the display. Whenever the root-width changes or the user left-
clicks, the stacked-tree records the current state of the display, including the root-width and
scroll position. It uses a ring of length 50 for this record. Ctrl-b and Ctrl-f rotate around this
ring.

Ctrl->, Ctrl-<: Increment font size, decrement font size.

Try to increment or decrement the font size by one point, and if this fails then try changing the
font size by two points. If the font size changes then the height of the rectangles is adjusted to fit
the new font height.

Description: context menu

The stacked-tree context menu contains items to perform the operations listed for keyboard interaction above. It is
intended mainly as a way for the user to find the keyboard interaction shortcut. Note that if you override the input-model, and
you redefine some of the keys, the menu will be confusing and you should replace it by your own menu.

Notes

The stacked-tree is useful when the values of an item's children sum to the value of the item itself or less. If the values of
the children sum to more than the value of the item, they will overflow to the right of the item and clash with the children of
the item's next sibling.

The stacked-tree is used in the Stacked Tree tab of the Profiler tool in the LispWorks IDE.

When (setf stacked-tree-root) or modify-stacked-tree is used to set the root of a stacked-tree that is
already displayed, it immediately computes an internal representation by traversing the tree. This means that if the tree is big,
this operation may take enough time to cause a noticeable delay.

See also

modify-stacked-tree
stacked-tree-item-at-point
stacked-tree-zoom-by-factor
stacked-tree-width-ratio
stacked-tree-history-backward
stacked-tree-history-backward
stacked-tree-decrease-font-height
stacked-tree-decrease-font-height
stacked-tree-default-color-function

21 CAPI Reference Entries

714

stacked-tree-decrease-font-height
stacked-tree-increase-font-height Functions

Summary

Decrease or increase the font size in a stacked-tree.

Package

capi

Signatures

stacked-tree-decrease-font-height stacked-tree &rest ignore

stacked-tree-increase-font-height stacked-tree &rest ignore

Arguments

stacked-tree⇓ A stacked-tree.

ignore⇓ Ignored extra arguments.

Description

The functions stacked-tree-increase-font-height and stacked-tree-decrease-font-height try to
increase/decrease the point size of the font in stacked-tree. They add/subtract 1 from the size of the current font, and try to
find a font with the new size. If this does not work, they add/subtract 2 and try again. If they find a new font, they set the font
in stacked-tree to the new font. The heights of the rectangles are adjusted to fit the new font height.

stacked-tree-increase-font-height and stacked-tree-decrease-font-height are used by the Ctrl-> and
Ctrl-< gestures and you can use them to implement your gestures. The &rest ignore means that you can use these
functions in the input-model directly.

See also

stacked-tree

stacked-tree-default-color-function Function

Summary

Returns a color like the default algorithm of stacked-tree.

Package

capi

Signature

stacked-tree-default-color-function stacked-tree item => color

21 CAPI Reference Entries

715

http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm

Arguments

stacked-tree⇓ A stacked-tree.

item⇓ Any object.

Values

color A color specification.

Description

The function stacked-tree-default-color-function returns a color for item using the same algorithm that
stacked-tree uses if you do not specify color-function or colors.

stacked-tree-default-color-function is useful when you want to associate some items with a fixed color. Your
code will be something like:

(defun my-stacked-tree-color-function (pane node)
 (let ((key (my-get-a-key-from-node node))
 (hash-table (my-find-caching-table)))
 (or (gethash key hash-table)
 (setf (gethash key hash-table)
 (stacked-tree-default-color-function
 pane node)))))

Notes

The Profiler tool in the LispWorks IDE uses stacked-tree-default-color-function to make all occurences of the
same function in the tree have the same color even though the items are not eq.

Currently stacked-tree-default-color-function actually ignores stacked-tree and item and returns a random color.

See also

stacked-tree

stacked-tree-history-forward
stacked-tree-history-backward Functions

Summary

Go forwards or backwards in the history of a stacked-tree.

Package

capi

Signatures

stacked-tree-history-forward stacked-tree &rest ignore

stacked-tree-history-backward stacked-tree &rest ignore

21 CAPI Reference Entries

716

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm

Arguments

stacked-tree⇓ A stacked-tree.

ignore⇓ Ignored extra arguments.

Description

A stacked-tree has a ring of 50 elements in which it records the root-width and scroll position before each change of the
root-width, and before each user left-click. The function stacked-tree-history-backward goes to the previous record
of stacked-tree, and the function stacked-tree-history-backward goes to the next record. Going to the previous/next
record means changing the root-width and scroll position to their recorded values, and making this record the current one.

Notes

The meaning of root-width is explained in stacked-tree.

stacked-tree-history-forward and stacked-tree-history-backward are used by the Ctrl-b and Ctrl-f

gestures and you can use them to implement your own gestures. The &rest ignore means that you can use these functions in
the input-model directly.

See also

stacked-tree

stacked-tree-item-at-point Function

Summary

Return the item whose rectangle is displayed at a given point.

Package

capi

Signature

stacked-tree-item-at-point stacked-tree x y => item

Arguments

stacked-tree⇓ A stacked-tree.

x⇓, y⇓ reals.

Values

item⇓ An object.

Description

The function stacked-tree-item-at-point returns the item that is associated with the rectangle containing the point
specified by x and y in stacked-tree. x and y are internal coordinates that include the scroll position, like the coordinates that
are passed to the callbacks.

21 CAPI Reference Entries

717

http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

item is either the root of stacked-tree or one of the item-children that is returned by the item-function of stacked-tree.

See also

stacked-tree

stacked-tree-width-ratio Accessor

Summary

The horizontal scale of a stacked-tree.

Package

capi

Signature

stacked-tree-width-ratio stacked-tree => width-ratio

setf (stacked-tree-width-ratio stacked-tree) width-ratio => width-ratio

Arguments

stacked-tree⇓ A stacked-tree.

width-ratio⇓ A non-negative real.

Values

width-ratio⇓ A non-negative real.

Description

The accessor stacked-tree-width-ratio accesses the width-ratio of stacked-tree, which is the ratio between the width
of the root rectangle now and when the root was set.

The default action of the Ctrl-r gesture is effectively the same as setting stacked-tree-width-ratio to 1 and scrolling
to the top left.

Note that width-ratio is not affected by changes in the width of the stacked-tree after the root has been set.

See also

stacked-tree
stacked-tree-zoom-by-factor

21 CAPI Reference Entries

718

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

stacked-tree-zoom-by-factor Function

Summary

Zoom the horizontal scale of a stacked-tree.

Package

capi

Signature

stacked-tree-zoom-by-factor stacked-tree factor => width-ratio

Arguments

stacked-tree⇓ A stacked-tree.

factor⇓ A non-negative real.

Values

width-ratio⇓ A real.

Description

The function stacked-tree-zoom-by-factor expands the horizontal dimension of stacked-tree by factor. If factor is
between 0 and 1, the horizontal dimension contracts.

This is the same operation as is done by the keyboard gestures Ctrl--, Ctrl-+, Ctrl-i and Ctrl-o and you can use it to
implement your own gestures.

The returned width-ratio is the value returned by stacked-tree-width-ratio.

Notes

Evaluating the form:

(stacked-tree-zoom-by-factor stacked-tree factor)

is equivalent to:

(setf (stacked-tree-width-ratio stacked-tree)
 (* (stacked-tree-width-ratio stacked-tree)
 factor))

See also

stacked-tree
stacked-tree-width-ratio

21 CAPI Reference Entries

719

http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

start-drawing-with-cached-display Function

Summary

Temporarily replaces an output pane's display-callback such that it draws from the cached display and optionally adds further
drawing.

Package

capi

Signature

start-drawing-with-cached-display pane temp-display-callback &key automatic-cancel resize-automatic-cancel user-
info from-display-p

Arguments

pane⇓ An output-pane.

temp-display-callback⇓
A function designator, or nil.

automatic-cancel⇓ nil, t or a designator for a function of one argument.

resize-automatic-cancel⇓
nil, t or a designator for function of one argument.

user-info⇓ A Lisp object.

from-display-p⇓ A boolean.

Description

The function start-drawing-with-cached-display caches the display of the output pane pane (by calling
output-pane-cache-display with pane and from-display-p, which defaults to nil), remembers the current display-
callback, and replaces the display-callback with a callback that first uses the cached display to redraw the area and then uses
temp-display-callback (if non-nil) to draw additional arbitrary drawing. temp-display-callback has the same signature as the
display-callback of pane:

temp-display-callback pane x y width height

The arguments that will be passed to temp-display-callback are determined by calls to
update-drawing-with-cached-display or update-drawing-with-cached-display-from-points. These
functions should be called whenever the temporary display needs to be updated.

The effect of start-drawing-with-cached-display is undone by any call to output-pane-free-cached-display

(implicit or explicit). Since output-pane-cache-display, and hence start-drawing-with-cached-display itself,
makes an implicit call to output-pane-free-cached-display, it is not essential to call
output-pane-free-cached-display between calls. However, the cached display can be quite large, so it is normally
better to call output-pane-free-cached-display as soon as the cache is no longer needed.

If automatic-cancel is true then the cached drawing is automatically cancelled (by an implicit call to
output-pane-free-cached-display) when the pane loses the focus or is resized. This is useful when a cached display

21 CAPI Reference Entries

720

is used temporarily, for example during drag and drop. If the cached display needs to survive longer, pass
:automatic-cancel nil. The default value of automatic-cancel is true. If automatic-cancel is a designator for function,
it is called with pane after the cached displayed is canceled.

resize-automatic-cancel, which defaults to automatic-cancel, has the same effect as as automatic-cancel but controls what
happens when the window is resized rather than when it loses the focus.

user-info is an arbitrary value which will be returned by calls to output-pane-cached-display-user-info and the call
to output-pane-free-cached-display. It is useful for keeping information during an operation that uses the cached
display, for example drag and drop.

Notes

1. The most natural usage of this function is in the :press input model handler, with a matching
output-pane-free-cached-display call in the :release handler, to temporarily draw something on top of the
permanent display while the user drags the mouse.

2. start-drawing-with-cached-display and its associated functions (update-drawing-with-cached-display
and update-drawing-with-cached-display-from-points) use the cached display functions
(output-pane-cache-display, output-pane-draw-from-cached-display, and
output-pane-free-cached-display). Calling the cached display functions in the scope of
start-drawing-with-cached-display and output-pane-free-cached-display would confuse them.

Examples

This file shows how to use start-drawing-with-cached-display in the :press input model handler:

(example-edit-file "capi/output-panes/cached-display")

See also

output-pane-cache-display
output-pane-free-cached-display
output-pane-cached-display-user-info
redraw-drawing-with-cached-display
update-drawing-with-cached-display
update-drawing-with-cached-display-from-points
12.5 Transient display on output-pane and subclasses

start-gc-monitor Function

Summary

Starts a Lisp Monitor window.

Package

capi

Signature

start-gc-monitor screen => result

21 CAPI Reference Entries

721

Arguments

screen⇓ A screen.

Values

result⇓ A boolean.

Description

The function start-gc-monitor starts a Lisp Monitor window (otherwise known as the GC or Garbage Collector monitor)
on the screen screen.

result is t if it started a Lisp monitor, and nil if a Lisp monitor was already running on screen.

Note that this works only on Motif. There is no Lisp Monitor window on other platforms.

On Motif, start-gc-monitor is called automatically when the LispWorks IDE starts, but you can call stop-gc-monitor
and start-gc-monitor any time.

See also

stop-gc-monitor

start-pane-drag-operation
pane-drag-operation-update
end-pane-drag-operation Functions

Summary

Implement a simple dragging operation, which means the pane scrolls as much as the user drags.

Package

capi

Signatures

start-pane-drag-operation pane x y &key override-cursor

pane-drag-operation-update pane x y

end-pane-drag-operation pane x y

Arguments

pane⇓ A simple-pane with scrollbar(s).

x⇓, y⇓ Integers.

override-cursor⇓ A cursor specification or nil.

21 CAPI Reference Entries

722

Description

The functions start-pane-drag-operation, pane-drag-operation-update and end-pane-drag-operation

together implement a simple dragging operation, which means that pane scrolls as much as the user move the cursor. The
scrolling happens by a call to scroll with the appropriate parameters, in the dimension(s) for which pane has scrollbar(s).

start-pane-drag-operation initializes the dragging operation on pane. If override-cursor cursor is non-nil, the
overriding cursor is set internally (not affecting the value that interface-override-cursor accesses). override-cursor
defaults to :move.

pane-drag-operation-update performs the dragging operation and calls scroll with the appropriate arguments to
scroll pane, in the direction(s) that the pane has scrollbar(s). pane is scrolled based on the difference between the values of x
and y in the calls to pane-drag-operation-update and start-pane-drag-operation.

end-pane-drag-operation stops the dragging operation, and resets the override cursor to the value of that
interface-override-cursor accesses. It ignores x and y.

If pane-drag-operation-update or end-pane-drag-operation are called without a preceding call to
start-pane-drag-operation or after a call to end-pane-drag-operation without following call to
start-pane-drag-operation they do nothing.

Notes

These functions are intended to be used as callbacks in input model of output-pane and its subclasses.

Examples

(example-edit-file
 "capi/graphics/tracking-pinboard-layout.lisp")

See also

scroll
output-pane
simple-pane

static-layout Class

Summary

A layout that allows its children to be positioned anywhere within itself.

Package

capi

Superclasses

layout

Subclasses

pinboard-layout

21 CAPI Reference Entries

723

Initargs

:fit-size-to-children

A generalized boolean.

Description

The class static-layout is a layout that allows its children to be positioned anywhere within itself.

When a static-layout lays out its children, it positions them at the x and y specified as hints (using :x and :y), and sizes
them to their minimum size (which can be specified using :visible-min-width and :visible-max-width).

If fit-size-to-children is true, the static-layout is made sufficiently large to accommodate all of its children, and grows
and modifies its scrollbars (if they exist) if necessary when a child is added. This is the default behavior. Otherwise the static
layout has a minimum size of one pixel by one pixel which is not affected by the size of its children. If you need the sizing
capabilities, then use the class simple-layout which surrounds a single child, and adopts the size constraints of that child.

Examples

Here is an example of a static layout placing simple panes at arbitrary positions inside itself.

(capi:contain
 (make-instance
 'capi:static-layout
 :description
 (list (make-instance
 'capi:text-input-pane
 :x 20
 :y 100)
 (make-instance
 'capi:push-button-panel
 :x 30
 :y 200
 :items '(1 2 3))))
 :best-width 300 :best-height 300)

There are further examples in 20 Self-contained examples.

See also

pinboard-layout

static-layout-child-geometry Accessor

Summary

Gets or sets the geometry of a child in a static-layout.

Package

capi

Signature

static-layout-child-geometry pinboard-object-or-pane => x, y, width, height

21 CAPI Reference Entries

724

setf (static-layout-child-geometry pinboard-object-or-pane) (values x y width height) => x, y, width,
height

Arguments

pinboard-object-or-pane⇓
A pinboard-object or a pane.

x⇓, y⇓, width⇓, height⇓
Integers.

Values

x⇓, y⇓, width⇓, height⇓
Integers.

Description

The accessor static-layout-child-geometry returns as multiple values x, y, width and height the geometry of
pinboard-object-or-pane inside its parent static-layout. The setter can be used with all four values at the same time.

The setter can be used be used to set only some of the values, by using t for values that need not change. For example,
changing the x coordinate to 100 and the width to 50 without affecting the vertical dimension:

(setf (static-layout-child-geometry pinboard-object) (values 100 t 50 t))

The values that static-layout-child-geometry gets or sets are the same as the values that
static-layout-child-position and static-layout-child-size get and set. The setter is more efficient than
using the setters of static-layout-child-position and static-layout-child-size sequentially, and does only
one redisplay.

static-layout-child-position Accessor Generic Function

Summary

Gets and sets the location of an object inside its parent static-layout.

Package

capi

Signature

static-layout-child-position self => x, y

setf (static-layout-child-position self) (values x y) => x, y

Arguments

self⇓ A pinboard-object or a pane.

x⇓, y⇓ Non-negative integers.

21 CAPI Reference Entries

725

Values

x⇓, y⇓ Non-negative integers.

Description

The accessor generic function static-layout-child-position returns as multiple values x, y the horizontal and vertical
coordinates of self inside its parent static-layout.

There is also a setf expansion which sets the location of self in its parent.

Examples

(let* ((po (make-instance 'capi:item-pinboard-object
 :text "5x5" :x 5 :y 5
 :graphics-args
 '(:background :red)))
 (pl (capi:contain
 (make-instance 'capi:pinboard-layout
 :description (list po)
 :visible-min-width 200
 :visible-min-height 200))))
 (capi:execute-with-interface
 (capi:element-interface pl)
 #'(lambda (po)
 (dotimes (x 20)
 (mp:wait-processing-events 1)
 (let ((new-x (* (1+ x) 10))
 (new-y (* 5 (+ 2 x))))
 (setf (capi:item-text po)
 (format nil "~ax~a" new-x new-y))
 (setf (capi:static-layout-child-position po)
 (values new-x new-y)))))
 po))

See also

static-layout
static-layout-child-size

static-layout-child-size Accessor Generic Function

Summary

Gets and sets the size of an object inside its parent static-layout.

Package

capi

Signature

static-layout-child-size self => width, height

setf (static-layout-child-size self) (values width height) => width, height

21 CAPI Reference Entries

726

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

Arguments

self⇓ A pinboard-object or a pane.

width⇓, height⇓ Positive integers.

Values

width⇓, height⇓ Positive integers.

Description

The accessor generic function static-layout-child-size returns as multiple values width, height the dimensions of
self.

There is also a setf expansion which sets the dimensions of self.

Examples

(let* ((po (make-instance 'capi:pinboard-object
 :x 5 :y 5
 :width 5 :height 5
 :graphics-args
 '(:background :red)))
 (pl (capi:contain
 (make-instance 'capi:pinboard-layout
 :description (list po)
 :visible-min-width 200
 :visible-min-height 200))))
 (capi:execute-with-interface
 (capi:element-interface pl)
 #'(lambda(po)
 (dotimes (x 20)
 (mp:wait-processing-events 1)
 (let ((new-x (* (1+ x) 10))
 (new-y (* 5 (+ 2 x))))
 (setf (capi:static-layout-child-size po)
 (values new-x new-y)))))
 po))

See also

static-layout
static-layout-child-position

stop-gc-monitor Function

Summary

Stop a Lisp Monitor.

Package

capi

21 CAPI Reference Entries

727

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

Signature

stop-gc-monitor screen => result

Arguments

screen⇓ A screen.

Values

result⇓ A boolean.

Description

The function stop-gc-monitor stops the Lisp Monitor window on the screen screen.

result is t if it stopped a Lisp monitor, and nil if there was no Lisp monitor running on screen.

Note that this works only on Motif. The Lisp monitor can be restarted with start-gc-monitor.

See also

start-gc-monitor

stop-sound Function

Summary

Stops a sound from playing.

Package

capi

Signature

stop-sound sound

Arguments

sound⇓ A sound object returned by load-sound.

Description

The function stop-sound stops the sound sound from playing.

See also

play-sound
18.2 Sounds

21 CAPI Reference Entries

728

switchable-layout Class

Summary

A layout which displays only one of its children at a time, and supports switching to another child.

Package

capi

Superclasses

simple-layout

Initargs

:visible-child The currently visible pane from the children.

:combine-child-constraints

A generalized boolean.

Accessors

switchable-layout-visible-child

Readers

switchable-layout-combine-child-constraints

Description

The class switchable-layout is a subclass of simple-layout which displays only one of its children at a time, and
provides functionality for switching the displayed child to one of the other children.

The layout's description contains a list of its children. The argument visible-child specifies the initially visible child (which
defaults to the first of the children).

switchable-layout inherits most of its layout behavior from simple-layout as it only ever lays out one child at a time.

combine-child-constraints influences the initial size of the layout. When combine-child-constraints is nil the constraints of
the switchable layout depend only on its currently visible child pane. Switching to a different child pane might cause the
layout to resize. When combine-child-constraints is non-nil, the constraints depend on all of the child panes, including those
that are not visible. This might increase the time taken to create the switchable layout initially, but can prevent unexpected
resizing later. The default value of combine-child-constraints is nil.

Examples

(setq children (list
 (make-instance 'capi:push-button
 :text "Press Me")
 (make-instance 'capi:list-panel
 :items '(1 2 3 4 5))))

(setq layout (capi:contain
 (make-instance

21 CAPI Reference Entries

729

 'capi:switchable-layout
 :description children)))

(capi:apply-in-pane-process
 layout #'(setf capi:switchable-layout-visible-child)
 (second children) layout)

(capi:apply-in-pane-process
 layout #'(setf capi:switchable-layout-visible-child)
 (first children) layout)

Here is a further example:

(example-edit-file "capi/layouts/switchable")

See also

simple-layout
switchable-layout-switchable-children
6 Laying Out CAPI Panes
7 Programming with CAPI Windows
9.9.1 Changing a non-standard toolbar dynamically

switchable-layout-switchable-children Generic Function

Summary

Finds the switchable children of a switchable-layout.

Package

capi

Signature

switchable-layout-switchable-children switchable-layout => result

Arguments

switchable-layout⇓ An instance of switchable-layout or a subclass.

Values

result A list of panes.

Description

The generic function switchable-layout-switchable-children returns as a list all the children of switchable-layout
that could be made visible by calling the switchable-layout accessor
(setf switchable-layout-visible-child).

See also

switchable-layout

21 CAPI Reference Entries

730

tab-layout Class

Summary

Displays multiple tabs and a pane which shows the main contents. The user can select a tab, which affects what is displayed
in the pane.

Package

capi

Superclasses

choice
layout

Initargs

:description The main layout description.

:items Specifies the tabs of the tab layout.

:visible-child-function

Returns the visible child for a given selection in switchable mode.

:combine-child-constraints

A generalized boolean which influences the initial size of the layout.

:print-function The function used to print a name on each tab.

:callback-type The type of data passed to the callback function in callback mode.

:selection-callback

The function called when a tab is selected, in callback mode.

:image-function Returns an image for an item, on Microsoft Windows.

:image-lists A plist of keywords and image-list objects, on Microsoft Windows.

Accessors

tab-layout-visible-child-function

Readers

tab-layout-combine-child-constraints
tab-layout-image-function

Description

The class tab-layout displays multiple tabs and a pane which shows the main contents. The user can select a tab, which
what affects is displayed in the pane.

tab-layout is a subclass of choice. Most importantly it inherits choice's selection and selection-callback behavior, and
its print-function (which is used to determine the string that appear in each tab), and its items behavior (which in turn derives
from collection).

tab-layout has two modes:

21 CAPI Reference Entries

731

Switchable mode Selecting a different tab causes a different pane to be displayed.

Callback mode Selecting a tab merely calls a callback. This callback is responsible for make any required
change.

The mode of a tab-layout is determined by the initarg :visible-child-function. A non-nil value specifies
switchable mode, nil specifies callback mode.

In switchable mode, selecting on a tab causes a call to the function visible-child-function (after doing the selection-callback)
with the selected item as a single argument. visible-child-function must return a pane, which is then displayed. The pane that
is returned by visible-child-function must not be displayed elsewhere, but can be any pane. Repeated calls with the same item
should return the same pane, otherwise it will create a new pane each time the tab is selected.

In callback mode there is only one pane, which you must specify by the initarg :description (which is inherited from
layout). In this case the selection-callback must perform any changes that are needed.

In either mode combine-child-constraints influences the initial size of the layout. When combine-child-constraints is nil the
constraints of the tab layout depend only on its currently visible tab. Switching to a different tab might cause the layout to
resize. When combine-child-constraints is non-nil, the constraints depend on all of the tabs, including those that are not
visible. This might increase the time taken to create the tab layout initially, but can prevent unexpected resizing later. The
default value of combine-child-constraints is nil.

If image-lists is specified, it should be a plist containing the keyword :normal as a key. The corresponding value should be
an image-list object. No other keys are supported at the present time. The image-list associated with the :normal key
is used with the image-function to specify an image to display in each tab.

The image-function is called on an item to return an image associated with the item. It can return one of the following:

A pathname or string This specifies the filename of a file suitable for loading with load-image. Currently this must
be a bitmap file.

A symbol The symbol must have been previously registered by means of a call to
register-image-translation.

An image object For example, as returned by load-image.

An image locator object

This allowing a single bitmap to be created which contains several button images side by side.
See make-image-locator for more information. On Microsoft Windows, it also allows access
to bitmaps stored as resources in a DLL.

An integer This is a zero-based index into the tab-layout's image-list. This is generally only useful if the
image list is created explicitly. See image-list for more details.

Notes

image-lists and image-function are implemented only on Microsoft Windows.

Examples

The following example shows the use of the switchable mode of tab-layout. Each tab is linked to an output pane by
pairing them in the items list.

(defun switchable-tab-layout ()
 (let* ((red-pane (make-instance
 'capi:output-pane
 :background :red))

21 CAPI Reference Entries

732

 (blue-pane (make-instance
 'capi:output-pane
 :background :blue))
 (tl (make-instance
 'capi:tab-layout
 :items
 (list (list "Red" red-pane)
 (list "Blue" blue-pane))
 :print-function 'car
 :visible-child-function 'second)))
 (capi:contain tl)))

(switchable-tab-layout)

Here is an example of the callback mode of tab-layout, which uses the selection of a tab to change the nodes of a graph
pane through the selection-callback.

(defun non-switchable-tab-layout (tabs)
 (let* ((gp (make-instance
 'capi:graph-pane))
 (tl (make-instance
 'capi:tab-layout
 :description (list gp)
 :items tabs
 :visible-child-function nil
 :print-function
 (lambda (x)
 (format nil "~R" x))
 :callback-type :data
 :selection-callback
 #'(lambda (data)
 (setf (capi:graph-pane-roots gp)
 (list data))))))
 (capi:contain tl)))

(non-switchable-tab-layout '(1 2 4 5 6))

See also

callbacks
simple-layout
switchable-layout
tab-layout-panes
tab-layout-visible-child
6.6.2 Tab layouts
7 Programming with CAPI Windows

tab-layout-panes Function

Summary

Returns the panes in a tab-layout.

Package

capi

21 CAPI Reference Entries

733

Signature

tab-layout-panes tab-layout => panes

Arguments

tab-layout⇓ A tab-layout.

Values

panes A list.

Description

The function tab-layout-panes returns the panes in a tab-layout. Note that this is not necessarily the same as the
items of tab-layout, since visible-child-function and/or key may be specified.

See also

tab-layout
6.6.2 Tab layouts

tab-layout-visible-child Function

Summary

Returns the visible child in a tab-layout.

Package

capi

Signature

tab-layout-visible-child tab-layout => result

Arguments

tab-layout⇓ A tab-layout.

Values

result A pane.

Description

The function tab-layout-visible-child returns the currently-visible pane in tab-layout.

See also

tab-layout
6.6.2 Tab layouts

21 CAPI Reference Entries

734

text-input-choice Class

Summary

This pane consists of a text input area, and a button. Clicking on the button displays a list of editable strings, and selecting
one of the strings automatically pastes it into the text input area.

Package

capi

Superclasses

choice
text-input-pane

Initargs

:visible-items-count

An integer specifying the maximum length of the list, or the symbol :default.

:popup-callback A function called just before the list appears, or nil.

Description

The class text-input-choice behaves in the same way as a text-input-pane, but has additional functionality. The
element inherits from choice, and the choice items are used as the items to display when the user clicks on the button.

The callback is called when the user presses the Return key.

The selection-callback is called when the user selects an item in the list.

Notes

The user can edit the items in a text-input-choice. For an element with similar functionality which does not allow
editing, see option-pane.

Compatibility note

In LispWorks 6.0 and earlier versions the text-input-pane initarg value enabled :read-only is not supported for
text-input-choice on Microsoft Windows. This restriction is removed for LispWorks 6.1 and later versions.

Examples

(example-edit-file "capi/elements/text-input-choice")

See also

choice
option-pane
text-input-pane
5 Choices - panes with items
9.7.1 Toolbar items other than buttons with images

21 CAPI Reference Entries

735

text-input-pane Class

Summary

The class text-input-pane is a pane for entering a single line of text.

Package

capi

Superclasses

titled-object
simple-pane

Subclasses

multi-line-text-input-pane
password-pane
text-input-choice

Initargs

:text The text in the pane.

:caret-position The position of the caret in the text (from 0).

:max-characters The maximum number of characters allowed.

:enabled Controls the enabled state of the pane.

:callback A function usually called when the user presses Return.

:callback-type The type of arguments to callback.

:change-callback A function called when a change is made.

:change-callback-type

The type of arguments to change-callback.

:text-change-callback

A function designator.

:confirm-change-function

A function called to validate a change. Implemented for Motif only.

:gesture-callbacks A list of pairs (gesture . callback).

:completion-function

A function called to complete the text.

:in-place-completion-function

A function designator.

:file-completion t, nil or a pathname designator.

:in-place-filter A boolean.

:directories-only A boolean.

:ignore-file-suffices

A list of strings or the keyword :default.

21 CAPI Reference Entries

736

:complete-do-action

A boolean.

:navigation-callback

A function called when certain keyboard gestures occur in the pane.

:editing-callback A function called when editing starts or stops.

:buttons A plist specifying buttons to add, or t or nil.

:search-field Along with the next four initargs, this is implemented only on Cocoa. It specifies that the
pane has "recent-items", which also means using NSSearchField.

:recent-items See :search-field above.

:recent-items-name See :search-field above.

:maximum-recent-items

See :search-field above.

:recent-items-mode See :search-field above.

Accessors

text-input-pane-text
text-input-pane-max-characters
text-input-pane-enabled
text-input-pane-callback
text-input-pane-confirm-change-function
text-input-pane-change-callback
text-input-pane-completion-function
text-input-pane-navigation-callback
text-input-pane-editing-callback
text-input-pane-buttons-enabled

Readers

text-input-pane-caret-position

Description

The class text-input-pane provides a great deal of flexibility in its handling of the text being entered. It starts with the
initial text and caret-position specified by the arguments text and caret-position respectively. It limits the number of
characters entered with the max-characters argument (which defaults to nil, meaning there is no maximum).

If enabled is nil, the pane is disabled. If enabled is :read-only, then the pane shows the text and allows it to be selected
without it being editable. In this case the visual appearance varies between window systems, but often the text can be copied
and the caret position altered. If enabled is any other true value, then the pane is fully enabled. The default value of enabled
is t.

You can programmatically get and set the selection and caret position by set-text-input-pane-selection,
text-input-pane-selected-text, text-input-pane-selection and text-input-pane-caret-position.
You can programmatically perform standard edit operations by using text-input-pane-paste,
text-input-pane-copy, text-input-pane-cut and text-input-pane-delete. You can programmatically invoke
the completion functions by text-input-pane-complete-text and text-input-pane-in-place-complete.

For more than one line of input, use multi-line-text-input-pane.

Description: Callbacks

callback, if non-nil, is called when the user presses Return, unless navigation-callback is non-nil, in which case navigation-

21 CAPI Reference Entries

737

callback is called instead. If the pane has "recent-items" (implemented only on Cocoa) then the timing of calls to callback is
modified: see the discussion of recent-items below for the details.

When the text or caret-position is changed, the callback change-callback is called with the text, the pane itself, the interface
and the caret-position. The arguments that are passed to the change-callback can be altered by specifying the change-
callback-type (see the callbacks class for details of possible values).

With the Motif implementation it is possible to check changes that the user makes to the text-input-pane by providing a
confirm-change-function which gets passed the new text, the pane itself, its interface and the new caret position, and which
should return non-nil if it is OK to make the change. If nil is returned, then the pane will be unaltered and a beep will be
signalled to indicate that the new values were invalid.

gesture-callbacks provides callbacks to perform for specific keyboard gestures. Each gesture must be an object that
sys:coerce-to-gesture-spec can coerce to a sys:gesture-spec. Each callback can be a callable (symbol or
function) which takes one argument, the pane. Alternatively each callback can be a list of the form (function arguments).
Note that in this case, the pane itself is not automatically passed to the function amongst arguments.

When the user enters a gesture that matches gesture in any pair amongst gesture-callbacks, the callback is executed and the
gesture is not processed any more.

text-change-callback is a change callback (see change-callback) that is called only when the text in the pane changes. In
contrast, change-callback is also called when the caret moves. If both text-change-callback and change-callback are supplied,
only text-change-callback is invoked.

Notes: Callbacks

1. change-callback is potentially called more than once for each user gesture.

2. The interaction of in-place completion is implemented using gesture-callbacks. Gestures which you define explicitly by
gesture-callbacks override the gestures which are defined implicitly by the in-place completion mechanism.

3. For gestures that change the text, text-change-callback is probably better than gesture-callbacks.

Description: Completion

A completion-function can be specified which will get called when the completion gesture is made by the user (by pressing
the Tab key) or when text-input-pane-complete-text is called. The function should have signature:

completion-function pane string => completions, start, end

where pane is the text-input-pane itself and string is the string to complete. When completion is invoked completion-
function is called with pane and a string containing the text of pane to the left of the cursor.

The completion-function is called with the pane and the text to complete and should return either nil, the completed text as a
string or a list completions of candidate completions. In the latter case, the CAPI will prompt the user for the completion
they wish, and this will become the new text. In addition, the completion-function can return two more values, start and end,
which specify a range in the text that is to be replaced if the completion is successful.

When complete-do-action is non-nil, completion of the text in the pane automatically invokes callback (if callback is non-
nil). The default value of complete-do-action is nil.

in-place-completion-function tells the pane to do in-place completion and specifies the function to use. The function should
have signature:

in-place-completion-function pane string => completions, start, end

where pane is the text-input-pane itself and string is the string to complete. When in-place completion is invoked in-

21 CAPI Reference Entries

738

place-completion-function is called with pane and a string containing the text of pane to the left of the cursor.

completions needs to be a list of strings that are possible completions, a single string that is a unique completion, or the
symbol :destroy. :destroy means that the in-place completion needs to stop and close the in-place window. In addition,
the completion function can return two more values, start and end, which specify a range in the text that is to be replaced if
the completion is successful. The function is called repeatedly whenever there is a change to the text that should be
completed.

The default value of in-place-completion-function is nil.

file-completion, if non-nil, tells the pane to do file completion using an in-place window. The user invokes In-place
completion or file completion by pressing the Up or Down key. See 10.6 In-place completion for more details of the user
interaction.

If file-completion is a pathname designator, its location is used as the root path for the completion.

The default value of file-completion is nil.

in-place-filter takes effect only when either in-place-completion-function or file-completion is non-nil. If in-place-filter is t
then the in-place window can have a filter. Note that the filter needs to requested by a user gesture. Control+Return is the
default in-place filter gesture. The default value of in-place-filter is t.

directories-only takes effect only if file-completion is used. If directories-only is t then in-place completion shows only
directories. The default value of directories-only is nil.

ignore-file-suffices takes effect only if file-completion is used. It tells in-place completion to ignore files whose file
namestring (the result of cl:file-namestring) ends with any of the strings in the list ignore-file-suffices. If ignore-file-
suffices is :default, then completion uses the default value, which is the value of
editor:*ignorable-file-suffices* (see config/a-dot-lispworks.lisp).

Notes: Completion

1. If in-place-completion-function needs some dynamic information, it can put it in a property of the pane (using
capi-object-property).

2. For dynamic control over whether there is an in-place completion or not, specify an in-place-completion-function that
simply returns the keyword :destroy when there should be no completion.

3. The initarg :file-completion overrides :in-place-completion-function.

4. The in-place completion mechanism uses gesture-callbacks to implement the functionality.

5. :in-place-filter can be used to specify that the in-place window can have a filter.

6. The behavior of in-place completion is somewhat different from other completion.

7. The initargs :directories-only and :ignore-file-suffices can be used to change the behavior of the
completion.

Description: Editing and navigation callbacks

navigation-callback, if non-nil, is a function that will be called when certain navigation gestures are used in the
text-input-pane. The function is called with two arguments, the pane itself, and one of the following keywords:

:tab-forward Tab was pressed.

:tab-backward Tab Backwards (usually Shift+Tab) was pressed.

:return Return was pressed.

21 CAPI Reference Entries

739

http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm

:shift-return Shift+Return was pressed.

:enter Enter was pressed.

:shift-enter Shift+Enter was pressed.

When navigation-callback is non-nil, it is called instead of callback when Return is pressed. callback is still called via an
OK button if there is one (see buttons below).

navigation-callback is implemented only on Microsoft Windows and Cocoa.

editing-callback, if non-nil, is a function of two arguments:

editing-callback pane type

pane is the text-input-pane and type is a keyword. editing-callback is called with type :start when the user starts
editing and type :end when the user stops editing. In general, this occurs when the focus changes, but on Cocoa type
:start is passed when the first change is made to the text.

Notes: Editing and navigation callbacks

Enter is the key usually found on the numeric keypad.

Description: Buttons

buttons specifies toolbar buttons which appear next to the pane and facilitate user actions on it. It also specifies the position
of the buttons relative to the pane. This feature appears in the LispWorks IDE, for example the Class box of the Class
Browser.

The allowed keys and values of the plist buttons are:

:ok A boolean or a plist, default value t. If true, a button which calls callback appears. If the value is
a plist then this plist supplies details for the button, as described below.

:cancel A boolean or a plist, default value nil. If true, a button which calls cancel-function appears. A
plist value is interpreted as for :ok and can also contain the key :accelerator which specifies
an accelerator used for the button. There is no default accelerator.

:completion A boolean or a plist. If true, a button which calls completion-function appears. The default value
is t if completion-function is non-nil, and nil otherwise. A plist value is interpreted as for :ok.

:browse-file A keyword or a plist. If true, a button which invokes prompt-for-file appears. If the value is
:save or :open then it is passed as the operation argument to prompt-for-file, replacing
the text in the pane if successful. If the value is a plist, then it supplies details for the button, as
described below, and can also contain the keywords :message to specify a message for the file
prompter; :pathname to specify the default pathname of the file prompter (defaults to the text
in the text-input-pane), :directory to use prompt-for-directory rather than
prompt-for-file, or any of the keywords :ok-check, :filter, :filters, :if-exists,
:if-does-not-exist, :operation, :owner, :pane-args or :popup-args which are
passed directly to prompt-for-file or prompt-for-directory.

:cancel-function A function that expects the pane as its single argument. The default is a function which sets text
to the empty string.

21 CAPI Reference Entries

740

:help Specifies a help button. The value must be a plist containing either keys :function and
optionally :arguments, or the keys :title, :message and optionally :dialog-p.

If function is supplied, when the user presses the help button it calls:

(apply function pane arguments)

where pane is the text-input-pane. title, message and dialog-p are ignored in this case.

Otherwise when the user presses the help button it opens a window with title title displaying the
string message in a display-pane. The message can be long, and can include newlines. The
window is owned by the pane, but is not modal, so the user can interact with the pane while the
help window is displayed. If dialog-p is true, the help window is raised as a dialog. The default
value for dialog-p is nil. function and arguments are ignored in this case.

The plist can contain other keys as described below.

:orientation The value is either :horizontal or :vertical. orientation controls the orientation of the
toolbar. This is useful for multi-line-text-input-pane. The default value is
:horizontal.

:adjust The value is :top, :center, :centre or :bottom. adjust controls how the buttons are
adjusted vertically relative to the text input pane. This is useful for
multi-line-text-input-pane. The default value is :center.

:position The value is :top, :bottom, :left or :right. position determines whether the buttons appear
above, below, left or right of the text input pane. If :position is not supplied, then the buttons
appear to the right of the pane.

The value nil for buttons means there are no buttons - this is the default. When buttons is true the buttons appear or not
according to their specified values or their default values.

All of the button plists (for :ok, :cancel, :help and so on) can contain the following keys and values in addition to those
mentioned above:

:enabled A value that controls whether the button is enabled. (See the reader
text-input-pane-buttons-enabled).

:image The image to use for the button. This should be either a pathname or string naming an image file
to load, a symbol giving the id of an image registered with register-image-translation,
an image object as returned by load-image or an external-image. The default image is one
of the symbols ok-button, cancel-button or complete-button, which are pre-registered
image identifiers corresponding to each button.

:help-key The help-key used to find a tooltip for the button.

The reader text-input-pane-buttons-enabled returns a list containing keywords such as:ok, :cancel and
:completion, one for each corresponding button (as specified by buttons) that is currently enabled.

The writer (setf text-input-pane-buttons-enabled) takes a list of keywords as described for the reader and sets
the enabled state of the buttons, enabling each button if it appears in the list and disabling it otherwise. The value t can also
be passed: this enables all the buttons.

Description: Search field and recent items

If search-field is a string and recent-items-name is not supplied, then the value search-field is used as the name. See the
discussion of recent-items below.

21 CAPI Reference Entries

741

If any of search-field, recent-items or recent-items-name is supplied and is non-nil, the pane uses NSSearchField, and also
has "recent items". An NSSearchField has a different appearance from text-input-pane, can display recent items
menu, and its input behavior is a little different too.

If recent-items is non-nil, it must be a list of strings, or t. When it is a list of strings, it specifies the initial list of "recent
items". When it is t, it simply specifies that the pane should handle recent items.

If recent-items-name is non-nil, it should be a string. The string specifies the autosave name of the pane. When a pane has an
autosave name, Cocoa remembers the list of recent items for pane with the same autosave name and same application. The
record persists between invocations of the application.

If recent-items-name is not supplied or is nil, and search-field is a string, it is used instead as the name.

The maximum number of recent items defaults to 50 and can be controlled by the initarg value maximum-recent-items. The
value 0 can be used to switch off the "recent items" feature, including the menu.

The recent items list can be read and set by text-input-pane-recent-items, or modified by any of
text-input-pane-replace-recent-items, text-input-pane-delete-recent-items,
text-input-pane-append-recent-items, text-input-pane-prepend-recent-items and
text-input-pane-set-recent-items.

The input behavior of text-input-pane with "recent items" is the same is that of other text-input-panes except for the
timing of calls to callback. Note that this refers to the function that is passed with the initarg :callback, so change-
callback is not affected.

By default, each time the user types a character it causes a scheduling of callback some short time later. If the user types
another character before the callback, it is re-scheduled later. The result is that as long as the user types, there are no
callbacks, but once the user stops a callback is generated.

The behavior of callback can be controlled by the initarg value recent-items-mode, which can be one of :explicit,
:delayed or :immediate. :explicit gives the same behavior as a normal text-input-pane, :delayed is the default
described above, and :immediate means doing a callback immediately after each character. In addition, when the user
selects an item from the recent items menu or clicks its Cancel button, the callback is called. In the case of the Cancel button,
the string would be empty.

Examples

(capi:contain (make-instance 'capi:text-input-pane
 :text "Hello world"))

(setq tip (capi:contain
 (make-instance
 'capi:text-input-pane
 :enabled nil)))

(capi:apply-in-pane-process
 tip #'(setf capi:text-input-pane-enabled) t tip)

(capi:apply-in-pane-process
 tip #'(setf capi:text-input-pane-enabled) nil tip)

(capi:apply-in-pane-process
 tip #'(setf capi:text-input-pane-text) "New text" tip)

(capi:contain (make-instance
 'capi:text-input-pane
 :text "Hello world"
 :callback #'(lambda (text interface)
 (capi:display-message

21 CAPI Reference Entries

742

 "Interface ~S's text: ~S"
 interface text))))

This example uses a plist value for the buttons key :cancel to specify that the Cancel button is initially disabled:

(capi:contain
 (make-instance 'capi:text-input-pane
 :buttons
 '(:ok t :cancel (:enabled nil))))

This example shows how to specify a Help button which displays a help message:

(defvar *help-message* "A long help message.")

(capi:contain
 (make-instance 'capi:text-input-pane
 :buttons
 `(:help
 (:title "help window"
 :message ,*help-message*))))

This example shows to specify a button which prompts for a directory:

(capi:contain
 (make-instance 'capi:text-input-pane
 :buttons
 '(:browse-file (:directory t
 :image :std-file-open)
 :ok nil))
 :title "Enter a directory path")

This example illustrates the use of gesture-callbacks. Ctrl+e moves the cursor to the end of the input, Ctrl+a moves it to
the start, and Ctrl+6 does something else:

(capi:contain
 (make-instance
 'capi:text-input-pane
 :gesture-callbacks
 (list
 (cons
 "Ctrl-e"
 #'(lambda (tip)
 (setf (capi:text-input-pane-caret-position tip)
 (length (capi:text-input-pane-text tip)))))
 (cons
 "Ctrl-a"
 #'(lambda (tip)
 (setf (capi:text-input-pane-caret-position tip)
 0)))
 (cons
 "Ctrl-6" 'do-something-else))))

There is a further example here:

(example-edit-file "capi/elements/text-input-pane")

See also

display-pane
editor-pane

21 CAPI Reference Entries

743

multi-line-text-input-pane
set-text-input-pane-selection
text-input-choice
text-input-pane
text-input-pane-complete-text
text-input-pane-copy
text-input-pane-cut
text-input-pane-delete
text-input-pane-in-place-complete
text-input-pane-paste
text-input-pane-selected-text
text-input-pane-selection
title-pane
3.5.2 Text input panes
3.1.4.1 Controlling Mnemonics
3.5 Displaying and entering text
19.3.2 Matching resources for GTK+
9 Adding Toolbars
9.7.1 Toolbar items other than buttons with images
10.6 In-place completion

text-input-pane-append-recent-items
text-input-pane-delete-recent-items
text-input-pane-prepend-recent-items
text-input-pane-replace-recent-items Functions

Summary

Modifies the recent items list in a text-input-pane on Cocoa.

Package

capi

Signatures

text-input-pane-append-recent-items text-input-pane &rest strings

text-input-pane-delete-recent-items text-input-pane &rest strings

text-input-pane-prepend-recent-items text-input-pane &rest strings

text-input-pane-replace-recent-items text-input-pane &rest strings

Arguments

text-input-pane⇓ A text-input-pane with recent items.

strings⇓ Strings.

Description

These functions modify the recent items list in text-input-pane, which must have recent-items (see text-input-pane
initargs :search-field, :recent-items and :recent-items-name).

21 CAPI Reference Entries

744

text-input-pane-append-recent-items appends strings at the end of the recent items, using
text-input-pane-set-recent-items with where = :end.

text-input-pane-delete-recent-items deletes from the recent items any item that matches any of strings (compared
using cl:string-equal), using text-input-pane-set-recent-items with where = :delete.

text-input-pane-prepend-recent-items prepends strings at the beginning of the recent items, using
text-input-pane-set-recent-items with where = :start.

text-input-pane-replace-recent-items uses text-input-pane-set-recent-items with where = :replace,
replacing the recent items in the pane by strings. It has the same effect as (setf text-input-pane-recent-items),
but takes the strings as &rest arguments.

None of these function return a meaningful value.

Notes

text-input-pane-append-recent-items, text-input-pane-delete-recent-items,
text-input-pane-prepend-recent-items and text-input-pane-replace-recent-items are implemented only
on Cocoa.

See also

text-input-pane
text-input-pane-set-recent-items

text-input-pane-complete-text Function

Summary

Calls the completion-function in a text-input-pane.

Package

capi

Signature

text-input-pane-complete-text pane => result

Arguments

pane⇓ A text-input-pane.

Values

result⇓ A string, or nil.

Description

The function text-input-pane-complete-text calls the completion-function of pane with the current text. If this call is
successful, then the text of pane is set to the result, and text-input-pane-complete-text returns this result. Otherwise,
result is nil.

21 CAPI Reference Entries

745

http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm

Note: the completion-function may return a list of completion candidates, in which case
text-input-pane-complete-text prompts the user to select one of the candidates.

See also

text-input-pane

text-input-pane-copy Function

Summary

Copies the selected text in a text-input-pane to the clipboard.

Package

capi

Signature

text-input-pane-copy text-input-pane

Arguments

text-input-pane⇓ An instance of text-input-pane or a subclass.

Description

The function text-input-pane-copy performs the clipboard copy operation on the selected text in text-input-pane. It
does nothing if there is no selection.

See also

clipboard
text-input-pane
text-input-pane-selection
text-input-pane-cut
text-input-pane-delete
text-input-pane-paste

text-input-pane-cut Function

Summary

Cuts the selected text in a text-input-pane to the clipboard.

Package

capi

21 CAPI Reference Entries

746

Signature

text-input-pane-cut text-input-pane

Arguments

text-input-pane⇓ An instance of text-input-pane or a subclass.

Description

The function text-input-pane-cut performs the clipboard cut operation on the selected text in text-input-pane. It does
nothing if there is no selection.

See also

clipboard
text-input-pane
text-input-pane-selection
text-input-pane-copy
text-input-pane-delete
text-input-pane-paste

text-input-pane-delete Function

Summary

Deletes the selected text in a text-input-pane.

Package

capi

Signature

text-input-pane-delete text-input-pane

Arguments

text-input-pane⇓ An instance of text-input-pane or a subclass.

Description

The function text-input-pane-delete deletes the selected text in text-input-pane. It does nothing if there is no selection.

See also

clipboard
text-input-pane
text-input-pane-selection
text-input-pane-cut
text-input-pane-copy
text-input-pane-paste

21 CAPI Reference Entries

747

text-input-pane-in-place-complete Function

Summary

Raises the non-focus completion window.

Package

capi

Signature

text-input-pane-in-place-complete text-input-pane

Arguments

text-input-pane⇓ A text-input-pane.

Description

The function text-input-pane-in-place-complete raises the non-focus completion window.

The pane text-input-pane must have been made with either in-place-completion-function or file-completion. See the
description of this functionality in text-input-pane.

See also

text-input-pane

text-input-pane-paste Function

Summary

Pastes the clipboard text into a text-input-pane.

Package

capi

Signature

text-input-pane-paste text-input-pane

Arguments

text-input-pane⇓ An instance of text-input-pane or a subclass.

Description

The function text-input-pane-paste performs the clipboard paste operation on text-input-pane, replacing any selected

21 CAPI Reference Entries

748

text.

See also

clipboard
text-input-pane
text-input-pane-selection
text-input-pane-cut
text-input-pane-copy
text-input-pane-delete

text-input-pane-recent-items Accessor

Summary

Gets and sets the recent items in a text-input-pane on Cocoa.

Package

capi

Signature

text-input-pane-recent-items text-input-pane => list-of-strings

(setf text-input-pane-recent-items) list-of-strings text-input-pane => list-of-strings

Arguments

text-input-pane⇓ A text-input-pane with recent items.

list-of-strings⇓ A list of strings.

Values

list-of-strings⇓ A list of strings.

Description

The accessor text-input-pane-recent-items gets and sets the recent items in text-input-pane, which must have recent-
items. (see text-input-pane initargs :search-field, :recent-items and :recent-items-name).

The value list-of-strings passed to (setf text-input-pane-recent-items) must be a list of strings.

Notes

text-input-pane-recent-items is implemented only on Cocoa.

text-input-pane-recent-items does not work properly before the pane is displayed.

See also

text-input-pane
text-input-pane-set-recent-items

21 CAPI Reference Entries

749

text-input-pane-selected-text Function

Summary

Returns the selected text in a text-input-pane.

Package

capi

Signature

text-input-pane-selected-text text-input-pane => result

Arguments

text-input-pane⇓ An instance of text-input-pane or a subclass.

Values

result A string or nil.

Description

The function text-input-pane-selected-text returns the selected text in text-input-pane, or nil if there is no
selection.

See also

text-input-pane
text-input-pane-selection
text-input-pane-selection-p

text-input-pane-selection Function

Summary

Returns the bounds of the selection in a text-input-pane.

Package

capi

Signature

text-input-pane-selection pane => start, end

Arguments

pane⇓ A text-input-pane.

21 CAPI Reference Entries

750

Values

start⇓, end⇓ Non-negative integers.

Description

The function text-input-pane-selection returns as multiple values the bounding indexes of the selection in pane. That
is, start is the inclusive index of the first selected character, and end is one greater than the index of the last selected
character.

If there is no selection, then both start and end are the caret position in pane.

See also

set-text-input-pane-selection
text-input-pane
text-input-pane-selected-text
text-input-pane-selection-p

text-input-pane-selection-p Function

Summary

Returns true if there is selected text in a text-input-pane.

Package

capi

Signature

text-input-pane-selection-p pane => selectionp

Arguments

pane⇓ A text-input-pane.

Values

selectionp A boolean.

Description

The function text-input-pane-selection-p returns t if there is a selected region in pane and nil otherwise.

See also

set-text-input-pane-selection
text-input-pane
text-input-pane-selected-text
text-input-pane-selection

21 CAPI Reference Entries

751

text-input-pane-set-recent-items Function

Summary

Sets the recent items in a text-input-pane.

Package

capi

Signature

text-input-pane-set-recent-items text-input-pane strings where

Arguments

text-input-pane⇓ A text-input-pane with recent items.

strings⇓ A list of strings.

where⇓ One of the keywords :replace, :delete, :start and :end, or a non-negative integer.

Description

The function text-input-pane-set-recent-items sets the recent items in text-input-pane, which must have recent
items, that is it must have been created with one of the keyword arguments :search-field, :recent-items or
:recent-items-name. strings must be a list of strings.

text-input-pane-set-recent-items modifies the recent items according to the argument where, which can one of:

:replace The strings replace the recent items in the text-input-pane.

:delete Delete from the recent items any item that matches any of the string (using cl:string-equal).

:start Insert the strings at the beginning of the recent items.

:end Insert the strings at the end of the recent items.

A non-negative integer

Insert the strings at the position indicated by the value. 0 means the same as :start. If the
integer is greater than the length of the current recent items list, the strings are inserted in the end
of the list.

In all cases, if any of the strings is already in the recent-items list (as compared by cl:string-equal), it is first deleted
from the list. This means that passing strings that already exist just moves them around in the list.

Notes

text-input-pane-set-recent-items is a little more efficient than using text-input-pane-recent-items and
(setf text-input-pane-recent-items) but the different is unlikely to be significant.

text-input-pane-set-recent-items does not return a meaningful value.

21 CAPI Reference Entries

752

http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm

See also

text-input-pane
text-input-pane-replace-recent-items
text-input-pane-delete-recent-items
text-input-pane-append-recent-items
text-input-pane-prepend-recent-items

text-input-range Class

Summary

The class text-input-range is a pane for entering a number in a given range. Typically there are up and down buttons at
the side which can used to quickly adjust the value.

Package

capi

Superclasses

titled-object
simple-pane

Initargs

:start An integer specifying the lowest possible value in the range.

:end An integer specifying the highest possible value in the range.

:wraps-p A generalized boolean.

:value An integer specifying the current value in the pane.

:callback A function called when the value is changed by the user.

:change-callback A function called called when the user edits the text in the pane.

:callback-type The type of arguments passed to the callback.

Accessors

text-input-range-start
text-input-range-end
text-input-range-wraps-p
text-input-range-value
text-input-range-callback
text-input-range-change-callback
text-input-range-callback-type

Description

The class text-input-range provides numeric input of integers in a given range (some systems refer to this a spinner or
spin-box).

The range is controlled by the :start and :end initargs. start defaults to 0 and end defaults to 10. The initial value is set
with the argument value (which defaults to 0).

wraps-p controls what happens if the user presses the up or down button until the start or end is reached. If wraps-p is nil,

21 CAPI Reference Entries

753

then it stops at the limit. If wraps-p is true then it wraps around to the other end. The default value of wraps-p is nil.

callback, if non-nil, should be a function to be called whenever the value is changed by the user. The arguments to callback
are specified by callback-type (see the callbacks class for details of possible values, noting that the "data" is the value and
the "item" is the pane itself). The default callback-type is (:item :data). Note that, if the value is changed by the user
editing the text, then change-callback, if supplied, is called as well.

change-callback, if non-nil, should be a function of four arguments, to be called when the user edits the text in the pane. It
should have this signature:

change-callback string pane interface caret-position

where the arguments are interpreted just as for the change-callback of text-input-pane. Note that editing of the text may
or may not change the value in the text-input-range (that is, what text-input-range-value returns). If the value
does change, then callback is called too.

Notes

On Cocoa, change-callback is not called for a cursor move only.

Examples

(capi:contain
 (make-instance 'capi:text-input-range
 :start 0
 :end 100
 :value 42))

(example-edit-file "capi/elements/text-input-range")

See also

text-input-pane
text-input-choice
option-pane

titled-menu-object Class

Summary

A deprecated class retained only for backward compatibility.

Package

capi

Superclasses

menu-object

Subclasses

menu

21 CAPI Reference Entries

754

menu-component
menu-item

Description

The class titled-menu-object is deprecated, and left only for backward compatibility. Use menu-object instead.

See also

menu-object

titled-object Abstract Class

Summary

A mixin class which provides support for decorating a pane with a title and a message.

Package

capi

Superclasses

standard-object

Subclasses

interface
layout
title-pane
display-pane
text-input-pane
toolbar
button-panel
list-panel
option-pane
progress-bar
output-pane
slider

Initargs

:title A title string for the pane (or nil).

:title-args Initargs to the title make-instance.

:title-font The font used for the title.

:title-position The position of the title.

:title-adjust How to adjust the title relative to the pane.

:title-gap The gap between the title and the pane.

:message A message string for the pane (or nil).

:mnemonic-title A string specifying the title and a mnemonic. Applies only to the subclasses specified
below.

21 CAPI Reference Entries

755

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

:message-gap The gap between the message and the pane.

Accessors

titled-object-title
titled-object-title-font
titled-object-message
titled-object-message-font

Description

The abstract class titled-object is a mixin class which provides support for decorating a pane with a title (a piece of text
positioned next to the pane) and with a message (a piece of text below the pane).

The titled pane makes its title decoration from a title-pane and the message decoration from a message-pane.

The text of the title-pane is passed via the titled-object initarg title and the text of the message-pane is passed via
the titled-object initarg message.

The initargs and font for the title-pane are passed via the titled-object initargs title-args and title-font respectively.

title-gap specifies the size in pixels of the gap between the title and the pane. The default value of title-gap is 3.

For subclasses other than interface, the font used for the message can be found by titled-object-message-font and set by
(setf titled-object-message-font).

message-gap specifies the size in pixels of the gap between the message and the pane. The default value of message-gap is 3.

The message is always placed below the pane, but the title's position can be adjusted by specifying title-position which can be
any of the following.

:left Place the title to the left of the pane.

:right Place the title to the right of the pane.

:top Place the title above the pane.

:bottom Place the title below the pane.

:frame Place the title in a frame (like a groupbox) around the pane.

The title-adjust slot is used to adjust the title so that it is left justified, right justified or centered. The value of title-adjust can
be any of the values accepted by the function pane-adjusted-offset, which are :left, :right, :top, :bottom,
:center and :centre.

Note: title-adjust cannot handle both x and y. It is designed for cases like this:

(capi:contain
 (make-instance 'capi:list-panel
 :items '(1 2 3 4 5)
 :title "Temp"
 :title-position :left
 :title-adjust :center
 :title-args
 '(:visible-min-width (:character 12))))

mnemonic-title offers an alternate way to provide the pane's title, and with a mnemonic. It takes effect only for
button-panel, list-panel, list-view, option-pane, output-pane, progress-bar, scroll-bar, slider,
text-input-pane, text-input-range, tree-view and their subclasses, and is interpreted as described for menu.

21 CAPI Reference Entries

756

Note: titles and mnemonic titles can now be added in a grid-layout.

Compatibility note

titled-object corresponds to the LispWorks 4.1 class titled-pane. For backwards compatibility the accessors
titled-pane-title and titled-pane-message, including setf methods, are provided. These simply trampoline to
titled-object-title and titled-object-message, and may not be supported in future releases.

Examples

Try each of these examples to see some of the effects that titled panes can produce. Note that text-input-pane is a
subclass of titled-object, and that it has a default title-position of :left.

(capi:contain (make-instance 'capi:text-input-pane))

(capi:contain (make-instance 'capi:text-input-pane
 :title "Enter some text:"))

(capi:contain (make-instance
 'capi:text-input-pane
 :title "Enter some text:"
 :title-position :top))

(capi:contain (make-instance 'capi:text-input-pane
 :title "Enter some text:"
 :title-position :top
 :title-adjust :center))

(capi:contain (make-instance 'capi:text-input-pane
 :title "Enter some text:"
 :title-position :top
 :title-adjust :right))

(capi:contain (make-instance 'capi:text-input-pane
 :message "A message"))

(capi:contain (make-instance 'capi:text-input-pane
 :message "A message"
 :title "Enter some text:"))

(capi:contain (make-instance 'capi:text-input-pane
 :title "Enter some text:"
 :title-args
 '(:foreground :red)))

See also

message-pane
title-pane
3.1.4.1 Controlling Mnemonics
3.3 Specifying titles

21 CAPI Reference Entries

757

titled-pinboard-object Class

Summary

A pinboard object with a title.

Package

capi

Superclasses

pinboard-object
titled-object

Subclasses

image-pinboard-object

Description

The class titled-pinboard-object provides a pinboard object with a title. The title is regarded as part of the object in
geometry calculations.

Notes

titled-pinboard-object does not allow the value :frame for the titled-object initarg title-position. The values
:top, :bottom, :left and :right are allowed.

Examples

This example creates three instances of titled-pinboard-object and one of item-pinboard-object, all with with a
yellow background. Note that:

1. The title does not have the yellow background in the titled-pinboard-object, as opposed to the
item-pinboard-object. To specify the title background, we pass it in the title-args.

2. The width of the title area is determined by the title, but passing :visible-min-width (and other geometric hints) can
be used to override this.

3. Setting the titled-object-title of the titled-pinboard-object does not reset its width.

(setq tpo1 (make-instance 'capi:titled-pinboard-object
 :graphics-args
 '(:background :yellow)
 :x 10 :y 10
 :width 150 :height 20
 :title "Short"
 :title-position :left
 :title-args
 '(:background :red))
 tpo2 (make-instance 'capi:titled-pinboard-object
 :graphics-args
 '(:background :yellow)
 :x 10 :y 40

21 CAPI Reference Entries

758

 :width 150 :height 20
 :title "Long title"
 :title-position :left)
 tpo3 (make-instance 'capi:titled-pinboard-object
 :graphics-args
 '(:background :yellow)
 :x 10 :y 70
 :width 150 :height 20
 :title "Short"
 :title-position :left
 :title-args
 '(:visible-min-width 100))
 ipo (make-instance 'capi:item-pinboard-object
 :graphics-args
 '(:background :yellow)
 :x 10 :y 100
 :width 150 :height 20
 :text "Item Pinboard"))
(setq pl (capi:contain
 (make-instance 'capi:pinboard-layout
 :visible-min-width 200
 :visible-min-height 200
 :description
 (list tpo1 tpo2 tpo3 ipo))))

(capi:apply-in-pane-process
 pl
 #'(lambda()
 (setf (capi:titled-object-title tpo1)
 "Longer...")))

See also

item-pinboard-object
12.3 Creating graphical objects

title-pane Class

Summary

This class provides a pane that displays a single line of text.

Package

capi

Superclasses

titled-object
simple-pane

Subclasses

message-pane

Initargs

:text The text to appear in the title pane.

21 CAPI Reference Entries

759

Accessors

title-pane-text

Description

The class title-pane provides a pane that displays a single line of text.

The most common use of title-pane is as a title decoration for a pane, and so the class titled-object is provided as a
class that supports placing title panes around itself.

A title-pane with text "Title" is created automatically when a titled-object is created with title "Title".

By default, a title-pane is constrained so that it cannot resize (that is, the values of visible-max-width and visible-max-
height are t). This can be overridden by passing :visible-max-width nil or :visible-max-height nil.

Notes

title-pane does not support the :pane-menu initarg on Microsoft Windows. If you need interaction, use display-pane
or text-input-pane with :pane-menu and :enabled :read-only.

Examples

(setq title-pane (capi:contain
 (make-instance
 'capi:title-pane
 :text "This is a title pane")))

(capi:apply-in-pane-process
 title-pane #'(setf capi:title-pane-text)
 "New title" title-pane)

See also

display-pane
text-input-pane
editor-pane
3 General Properties of CAPI Panes

toolbar Class

Summary

This class provides a pane containing toolbar buttons and panes.

Package

capi

Superclasses

collection
simple-pane
titled-object
toolbar-object

21 CAPI Reference Entries

760

Initargs

:dividerp If t, a divider line is drawn above the toolbar, to separate it from the menu bar. The
default value is nil.

:images A list of images.

:callbacks A list of callback functions.

:names A list of names.

:texts A list of strings.

:tooltips A list of tooltip strings used on Microsoft Windows.

:button-width The width of the toolbar buttons.

:button-height The height of the toolbar buttons.

:stretch-text-p A generalized boolean.

:image-width The width of images in the toolbar.

:image-height The height of images in the toolbar.

:default-image-set An optional image-set object which can be used to specify images. See 5.10.4 image-
list, image-set and image-locator for more details.

:flatp A generalized boolean.

Readers

toolbar-flat-p

Description

The class toolbar inherits from collection, and therefore has a list of items. It behaves in a similar manner to
push-button-panel, which inherits from choice.

The items argument may be used to specify a mixture of toolbar-buttons and toolbar-components, or it may contain
arbitrary objects as items. The list may also contain CAPI panes, which will appear within the toolbar. This is typically used
with text-input-pane, option-pane, and text-input-choice.

For items that are not toolbar buttons or toolbar components, a toolbar button is automatically created, using the appropriate
elements of the images, callbacks, names, texts and tooltips lists. If no image is specified, the item itself is used as the image.
For more information on acceptable values for images, see toolbar-button.

Each of the images, callbacks, names, texts and tooltips lists should be in one-to-one correspondence with the items.
Elements of these lists corresponding to toolbar-button items or toolbar-component items are ignored.

Note: :tooltips is now deprecated. Use the interface help-callback with help-key :tooltip instead.

All toolbar buttons within the item list behave as push buttons. However, toolbar button components may have
:single-selection or :multiple-selection interaction. See toolbar-component for further details.

button-width and button-height specify the size of each button in the toolbar. If a button contains text and stretch-text-p is
true, then the button stretches to the width of the toolbar if needed.

images, if supplied, must specify images all of the same size.

image-width and image-height must match the sub-image dimensions in default-image-set or the dimensions of the images.

flatp specifies whether the toolbar is 'flat' on Cocoa. If flatp is true, then the buttons do not have a visible outline until the
user moves the mouse over them. flatp is only implemented on Cocoa. (On Microsoft Windows, all toolbars are flat. On
Motif, no toolbar is flat.) The default value of flatp is :default.

21 CAPI Reference Entries

761

Notes

1. text-input-pane, option-pane, and text-input-choice and so on cannot contain titles when embedded in a
toolbar.

2. Rather than creating a toolbar explicitly you can add an interface toolbar by supplying the interface initarg
:toolbar-items. This has the advantages that the toolbar is automatically positioned correctly within the window and
has platform-standard behavior such as folding on Cocoa.

See also

collection
image-set
push-button-panel
toolbar-component
5.10.4 image-list, image-set and image-locator
9.9 Non-standard toolbars
13.10 Working with images

toolbar-button Class

Summary

This class is used to create instances of toolbar buttons.

Package

capi

Superclasses

item
toolbar-object

Initargs

:callback A function that is called when the user presses the toolbar button and popup-interface is
non-nil.

:image Specifies the image to use for the toolbar button.

:selected-image Specifies the image to use for the toolbar button when it is selected.

:tooltip An optional string which is displayed, on Microsoft Windows, when the mouse moves
over the button. :tooltip is deprecated.

:help-key An object used for lookup of help. Default value t.

:remapped Links the button to a menu item.

:dropdown-menu A menu or nil.

:dropdown-menu-function

A function of no arguments, or nil.

:dropdown-menu-kind

One of the keywords :button, :only and :delayed.

:popup-interface An interface or nil.

21 CAPI Reference Entries

762

Accessors

toolbar-button-image
toolbar-button-selected-image
toolbar-button-dropdown-menu
toolbar-button-dropdown-menu-function
toolbar-button-dropdown-menu-kind
toolbar-button-popup-interface

Readers

help-key

Description

The class toolbar-button is used to create instances of toolbar buttons.

Toolbar buttons may be placed within toolbars and toolbar components. However, there is usually no need to create toolbar
buttons explicitly; instead, the callbacks and images arguments to toolbar or toolbar-component can be used. To add
tooltips, use the interface help-callback with help-key :tooltip.

In addition, an interface can have its own toolbar buttons, specified by its toolbar-items. No toolbar object is explicitly
needed in that situation.

image and selected-image may each be one of the following:

A pathname or string This specifies the filename of a file suitable for loading with load-image. Currently this must
be a bitmap file.

A symbol The symbol must either have been previously registered by means of a call to
register-image-translation, or be one of the following symbols, which map to standard
images: :std-cut, :std-copy, :std-paste, :std-undo, :std-redo, :std-delete,
:std-file-new, :std-file-open, :std-file-save, :std-print, :std-print-pre,
:std-properties, :std-help, :std-find and :std-replace.

On Microsoft Windows, the following symbols are also recognized for view images:
:view-large-icons, :view-small-icons, :view-list, :view-details,
:view-sort-name, :view-sort-size, :view-sort-date, :view-sort-type,
:view-parent-folder, :view-net-connect, :view-net-disconnect and
:view-new-folder.

Also on Microsoft Windows, these symbols are recognized for history images: :hist-back,
:hist-forward, :hist-favorites, :hist-addtofavorites and :hist-viewtree.

An image object For example, as returned by load-image.

An image locator object.

This allows a single bitmap to be created which contains several button images side by side. See
make-image-locator for more information. On Microsoft Windows, this also allows access
to bitmaps stored as resources in a DLL.

An integer This is a zero-based index into the default-image-set of the toolbar or toolbar component in
which the toolbar button is used.

Each image should be of the correct size for the toolbar. By default, this is 16 pixels wide and 16 pixels high.

help-key is interpreted as described for element.

21 CAPI Reference Entries

763

remapped, if non-nil, should match the name of a menu-item in the same interface as the button. Then, the action of
pressing the button is remapped to selecting that menu-item and calling its callback. The default value of remapped is nil.

Toolbar buttons can be made with an associated dropdown menu by passing the :dropdown-menu or
:dropdown-menu-function initargs.

If dropdown-menu is non-nil then it should be a menu object to display for the button.

If dropdown-menu-function is non-nil then it should be a function which will be called with the toolbar-button as its
single argument. It should return a menu object to display for the button.

dropdown-menu-kind can have the following values:

:button There is a separate smaller button for the dropdown menu next to the main button.

:only There is no main button, only the smaller button for the dropdown.

:delayed There is only one button and the menu is displayed when the user holds the mouse down over the
button for some short delay. If the user clicks on the button then the normal callback is called.

Note: dropdown-menu-kind is not supported for toolbar buttons in the interface toolbar-items list.

popup-interface, if non-nil, should be an interface. When the user clicks on the toolbar button, the interface popup-
interface is displayed near to the button. The normal callback is not called, but you can detect when the interface appears by
using its activate-callback. popup-interface is useful for popping up windows with more complex interaction than a menu can
provide. The default value of popup-interface is nil.

Note: popup-interface is not supported for toolbar buttons in the interface toolbar-items list.

Toolbar buttons can display text, which should be in the data or text slot inherited from item.

Note: display of text in toolbar buttons is implemented only on Motif and Cocoa.

Examples

A callback function:

(defun do-redo (data interface)
 (declare (ignorable data interface))
 (capi:display-message "Doing Redo"))

A simple interface:

(capi:define-interface redo ()
 ()
 (:panes
 (toolbar
 capi:toolbar
 :items
 (list
 (make-instance
 'capi:toolbar-component
 :items
 (list (make-instance
 'capi:toolbar-button
 ;; remap it to the menu item
 :remapped 'redo-menu-item
 :image :std-redo))))))
 (:menu-bar a-menu)
 (:menus
 (a-menu
 "A menu"

21 CAPI Reference Entries

764

 (("Redo" :name 'redo-menu-item
 :selection-callback 'do-redo
 :accelerator "accelerator-y"))))
 (:layouts
 (main
 capi:row-layout
 '(toolbar)))
 (:default-initargs
 :title "Redo"))

In this interface, pressing the toolbar button invokes the menu item callback:

(capi:display (make-instance 'redo))

This last example illustrates the use of :selected-image.

(capi:contain
 (make-instance
 'capi:toolbar
 :items
 (list
 (make-instance
 'capi:toolbar-component
 :interaction :multiple-selection
 :items
 (list (make-instance 'capi:toolbar-button
 :image 0
 :selected-image 1))
))))

See also

item
make-image-locator
menu-item
toolbar
toolbar-component
3.12 Tooltips
9 Adding Toolbars
13.10 Working with images

toolbar-component Class

Summary

A toolbar component is used to group several toolbar buttons together. Each component is separated from the surrounding
components and buttons. Toolbar components are choices, and may be used to implement toolbars on which groups of
buttons have single-selection or multiple-selection functionality.

Package

capi

Superclasses

toolbar-object

21 CAPI Reference Entries

765

choice

Initargs

:images A list of images, in one-to-one correspondence with the items.

:callbacks A list of callback functions, in one-to-one correspondence with the items.

:names A list of names, in one-to-one correspondence with the items.

:texts A list of strings, in one-to-one correspondence with the items.

:tooltips A list of tooltip strings, in one-to-one correspondence with the items.

:default-image-set An optional image-set object which can be used to specify images. See 5.10.4 image-
list, image-set and image-locator for more details.

:selection-function

A function to dynamically compute the selection.

:selected-item-function

A function to dynamically compute the selected item.

:selected-items-function

A function to dynamically compute the selected items.

Description

The class toolbar-component inherits from choice, and hence has a list of items. Its behavior is broadly similar to
button-panel.

items may be used to specify a mixture of toolbar-buttons and toolbar-components, or may contain arbitrary objects
as items. The list may also contain CAPI panes, which will appear within the toolbar. This is typically used with
text-input-pane, option-pane, and text-input-choice.

For items that are not toolbar buttons or toolbar components, a toolbar button is automatically created, using the appropriate
elements of the images, callbacks, names, texts and tooltips lists. If no image is specified, the item itself is used as the image.
For more information on acceptable values for images, see toolbar-button. Elements of images, callbacks, names, texts
and tooltips corresponding to toolbar-button items or toolbar-component items are ignored.

No more than one of selection-function, selected-item-function and selected-items-function should be non-nil. Each defaults
to nil. If one of these is non-nil, it should be a function which is called before the toolbar-component is displayed and
when update-toolbar is called and which determines which items are selected. The function takes a single argument,
which is the interface of the toolbar-component.

selection-function, if non-nil, should return a list of indices suitable for passing to the choice accessor
(setf choice-selection) .

selected-item-function, if non-nil, should return an object which is an item in the toolbar-component, or is equal to such
an item when compared by the toolbar-component's test-function and key-function.

selected-items-function, if non-nil, should return a list of such objects.

Examples

(example-edit-file "capi/elements/toolbar")

See also

toolbar

21 CAPI Reference Entries

766

toolbar-button
3.12 Tooltips
9 Adding Toolbars
13.10 Working with images

toolbar-object Class

Summary

This is a common superclass of all toolbar objects.

Package

capi

Superclasses

standard-object

Subclasses

toolbar
toolbar-button
toolbar-component

Initargs

:enabled If t, the toolbar object is enabled.

:enabled-function A function determining the enabled state.

Accessors

simple-pane-enabled
toolbar-object-enabled-function

Description

The class toolbar-object is a common superclass of all toolbar objects.

Any toolbar object may be disabled, by setting its enabled slot to nil. Disabling a toolbar or toolbar component prevents the
user from interacting with any buttons contained in it.

All toolbar objects may also have an enabled-function specified. This is called whenever update-toolbar is called. If it
returns t, the toolbar object will be enabled; if it returns nil, the object will be disabled.

Notes

The function enabled-function should not display a dialog or do anything that may cause the system to hang. In general this
means interacting with anything outside the Lisp image, including files, databases and so on.

See also

toolbar
toolbar-button

21 CAPI Reference Entries

767

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm

toolbar-component
update-toolbar
9 Adding Toolbars

top-level-interface Generic Function

Summary

Returns the top level interface containing a specified pane.

Package

capi

Signature

top-level-interface pane

Arguments

pane⇓ A simple-pane or a pinboard-object.

Description

The generic function top-level-interface returns the top level interface that contains pane.

See also

top-level-interface-p
interface
element
3.7 Hierarchy of panes

top-level-interface-color-mode Accessor

Summary

A value that indicates the color mode of a top level interface.

Package

capi

Signature

top-level-interface-color-mode interface => color-mode

setf (top-level-interface-color-mode interface) color-mode => color-mode

Arguments

21 CAPI Reference Entries

768

interface⇓ An interface instance.

color-mode nil, a keyword or a string.

Values

color-mode nil, a keyword or a string.

Description

The accessor top-level-interface-color-mode reads or sets the Appearance of interface on Cocoa.
top-level-interface-color-mode has no effect on other platforms.

If color-mode is nil then interface is displayed in the Appearance specified by the System Preferences.

Otherwise, when color-mode is non-nil, it specifies that interface has its own Appearance, overriding the System Preferences.

When color-mode is a keyword, it must be one of the keywords in the following table, and it is mapped to the specified
Cocoa appearance name.

Color mode keywords mapping to Cocoa appearances

Keyword Cocoa appearance name

:light or :aqua NSAppearanceNameAqua

:dark or :dark-aqua NSAppearanceNameDarkAqua

Any other keyword will signal an error.

When color-mode is a string, it specifies the name of a Cocoa appearance, and it is looked up by calling the
appearanceNamed: method of the Cocoa NSAppearance class. It is your responsibility to pass a valid string. If
appearanceNamed: fails to find the appearance, a warning is signalled and the color-mode is ignored.

top-level-interface-color-mode-callback is called when macOS changes the Appearance.

top-level-interface-color-mode returns the desired color mode. Call top-level-interface-dark-mode-p to
determine if interface is currently in dark mode.

Examples

For an example of using color-mode and color-mode-callback, see:

(example-edit-file "capi/applications/interface-color-mode")

See also

top-level-interface-color-mode-callback
top-level-interface-dark-mode-p

21 CAPI Reference Entries

769

top-level-interface-dark-mode-p Function

Summary

Determines if a top level interface is displayed in dark mode.

Package

capi

Signature

top-level-interface-dark-mode-p interface => dark-mode-p

Arguments

interface⇓ An interface instance.

Values

dark-mode-p A Boolean.

Description

The function top-level-interface-dark-mode-p returns true if interface is currently displayed in dark mode and false
otherwise. If interface is not displayed, top-level-interface-dark-mode-p returns false.

On Cocoa, interface is in dark mode if the name of its effective Appearance contains "dark" (ignoring case). That works for
the standard appearances, but may not work for user defined ones. On GTK+ and Microsoft Windows, interface is in dark
mode if its default background color is dark, which is checked summing the RGB values and comparing with 1.5.

Examples

(example-edit-file "capi/applications/interface-color-mode")

See also

interface
top-level-interface-color-mode

top-level-interface-display-state Generic Function

Summary

Returns a value which indicates how the top level interface is displayed.

Package

capi

21 CAPI Reference Entries

770

Signature

top-level-interface-display-state interface => display-state

Arguments

interface⇓ A top level interface or dialog window.

Values

display-state One of :normal, :maximized, :iconic, :hidden or :full-screen.

Description

Top level interfaces and dialogs can be manipulated by the user, such as being iconifed or maximized. The program can
manipulate these windows too. The generic function top-level-interface-display-state returns a value that
indicates the current state of the interface interface. The following values can be returned:

:normal The window is visible and has its normal size.

:maximized The window is visible and has been maximized.

:iconic The window is visible as an icon.

:hidden The window is not visible.

:full-screen The window is full screen (only supported on macOS 10.7 and later). This value is only
applicable when the window-styles list contains the keyword :can-full-screen.

These values can also be passed as the :display-state initarg when making a top level interface.

In addition, the function (setf top-level-interface-display-state) can be used to change the state of a top level
interface. The value can be set to one of the above, or to :restore if the current state is :iconic or :hidden. When set to
:restore, the state will become :normal or :maximized depending on how the interface was visible in the past.

See also

top-level-interface-p
top-level-interface-geometry
set-top-level-interface-geometry
interface
7 Programming with CAPI Windows

top-level-interface-geometry Function

Summary

Returns the geometry of the top level interface.

Package

capi

21 CAPI Reference Entries

771

Signature

top-level-interface-geometry interface => tx, ty, twidth, theight

Arguments

interface⇓ An interface.

Values

tx⇓, ty⇓, twidth, theight

Integers.

Description

The function top-level-interface-geometry returns the coordinates of the given interface in a form suitable for use as
the :best-x, :best-y, :best-width and :best-height initargs to interface. The value of interface should be a top
level interface.

tx and ty are measured from the top-left of the screen rectangle representing the area of the primary monitor (the primary
screen rectangle).

Notes

On Cocoa, the result does not account for the size of the interface toolbar, if present in interface.

Examples

;; Define and display an interface.
(capi:define-interface test ()
 ()
 (:panes (panel capi:list-panel)))

(setq int (capi:display (make-instance 'test)))
;; Now manually position the interface somewhere.

;; Find where the interface is.
(multiple-value-setq (tx ty twidth theight)
 (capi:top-level-interface-geometry int))

;; Now manually close the interface.
;; Create a new interface in the same place.
(setq int
 (capi:display
 (make-instance
 'test
 :best-x tx
 :best-y ty
 :best-width twidth
 :best-height theight)))

See also

top-level-interface-p
top-level-interface-display-state
set-top-level-interface-geometry
interface
4.3 Support for multiple monitors

21 CAPI Reference Entries

772

7 Programming with CAPI Windows
11.6 Querying and modifying interface geometry

top-level-interface-geometry-key Generic Function

Summary

Determines where the geometry of an interface is saved.

Package

capi

Signature

top-level-interface-geometry-key interface => key, product-name

Arguments

interface⇓ A top level interface.

Values

key⇓ A symbol.

product-name⇓ A symbol, a string or a list of strings.

Description

The generic function top-level-interface-geometry-key returns as multiple values a key and a product name, which
determine where the geometry of interface is saved. The saved geometry is used when displaying a future instance.

The supplied method on interface returns the class name of interface as key, and nil as product-name. You can define
methods for your interfaces and products.

key must be a symbol.

product-name is used to derive the product-registry-path.

product-name can be a symbol which was previously defined to have a registry path by
(setf sys:product-registry-path).

product-name can alternatively be a string, which is taken directly as product-registry-path.

product-name can alternatively be a list of strings, denoting multiple path components. These are concatenated together with
the appropriate separator for the platform to give product-registry-path.

The geometry of interface is saved at the path which is constructed by concatenating (with appropriate separators) these
values:

user-path
product-registry-path
"Environment"
(symbol-package #KEY)
(symbol-name #KEY)

21 CAPI Reference Entries

773

where user-path is the registry branch HKEY_CURRENT_USER on Microsoft Windows and the home directory on other
platforms.

Note: for your interface classes for which you want the geometry to be saved, define a method on
top-level-interface-save-geometry-p.

Note: in an image delivered at delivery level 5, symbol names are removed by default. This breaks the saved geometry
mechanism as the registry path is constructed using symbol-name. To make this work in a level 5 delivered image, explicitly
keep the symbol key. See the Delivery User Guide for details.

See also

top-level-interface-save-geometry-p
11.6 Querying and modifying interface geometry

top-level-interface-p Generic Function

Summary

The predicate for top level interfaces.

Package

capi

Signature

top-level-interface-p pane => result

Arguments

pane⇓ A Lisp object.

Values

result A boolean.

Description

The generic function top-level-interface-p returns true if pane is a top level interface.

See also

top-level-interface
top-level-interface-geometry
top-level-interface-display-state
interface
element
3.7 Hierarchy of panes

21 CAPI Reference Entries

774

http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_2.htm

top-level-interface-save-geometry-p Generic Function

Summary

Return true if the geometry of an interface should be saved for use by a future instance.

Package

capi

Signature

top-level-interface-save-geometry-p interface => result

Arguments

interface⇓ A top level interface.

Values

result A boolean.

Description

The generic function top-level-interface-save-geometry-p returns true if the geometry of interface should be saved
for use by a future instance.

The default method (on interface) returns nil.

See also

top-level-interface-geometry-key
11.6 Querying and modifying interface geometry

tracking-pinboard-layout Class

Summary

A pinboard with automatic highlighting.

Package

capi

Superclasses

pinboard-layout

21 CAPI Reference Entries

775

Description

The class tracking-pinboard-layout provides a pinboard which tracks mouse movement by highlighting its objects as
the mouse cursor moves over them.

This functionality is implemented via a :motion specification in the input-model. Therefore, you may not specify :motion

in the input-model of a tracking-pinboard-layout. See output-pane for a description of input-model.

Examples

(example-edit-file "capi/graphics/tracking-pinboard-layout")

tree-view Class

Summary

A tree view is a pane that displays a hierarchical list of items. Each item may optionally have an image and a checkbox.

Package

capi

Superclasses

choice
titled-object
simple-pane

Initargs

:roots A list of the root items.

:children-function Returns the children of an item and hence defines the hierarchy in the tree.

:leaf-node-p-function

Optional function which determines whether an item is a leaf item (that is, has no
children). This is useful if it can be computed faster than the children-function.

:retain-expanded-nodes

Specifies if the tree view remembers whether hidden nodes were expanded.

:expandp-function A designator for a function of one argument, or nil.

:action-callback-expand-p

A boolean. The default value is nil.

:delete-item-callback

A function designator for a function of two arguments.

:right-click-extended-match

Controls the area within which selection by the mouse right button occurs. Default t.

:has-root-line Controls whether the line and expanding boxes of the root items are drawn. Default t.

:checkbox-status Controls whether the tree has checkboxes. If non-nil, the value should be a non-negative
integer less than the length of the image-list, or t. An integer specifies the default initial
status, and t means the same as 2 (that is, by default the checkboxes are checked
initially). The default is nil, meaning no checkboxes. Not implemented on Cocoa.

21 CAPI Reference Entries

776

:checkbox-next-map Controls the change in status when the user clicks on a checkbox. Can be an array, a
function or an integer. Default #(2 2 0). Not implemented on Cocoa.

:checkbox-parent-function

Controls the changes in the ancestors when the status of an item is changed. Not
implemented on Cocoa.

:checkbox-child-function

Controls the changes in the descendants when the status of an item is changed. Not
implemented on Cocoa.

:checkbox-change-callback

A function called when the status of an item is changed interactively. Not implemented on
Cocoa.

:checkbox-initial-status

Specifies the initial status of specific items. Not implemented on Cocoa.

:image-function Returns an image for an item.

:state-image-function

Returns a state image for an item.

:image-lists A plist of keywords and image-list objects.

:use-images Flag to specify whether items have images. Defaults to t.

:use-state-images Flag to specify whether items have state images. Defaults to nil.

:image-width Defaults to 16.

:image-height Defaults to 16.

:state-image-width Defaults to image-width.

:state-image-height

Defaults to image-height.

Accessors

tree-view-roots
tree-view-children-function
tree-view-image-function
tree-view-state-image-function
tree-view-leaf-node-p-function
tree-view-retain-expanded-nodes
tree-view-expandp-function
tree-view-action-callback-expand-p
tree-view-right-click-extended-match
tree-view-has-root-line
tree-view-checkbox-next-map
tree-view-checkbox-parent-function
tree-view-checkbox-child-function
tree-view-checkbox-change-callback
tree-view-checkbox-initial-status

Readers

tree-view-checkbox-status

Description

The class tree-view is a pane that displays a hierarchical list of items. Each item may optionally have an image and a

21 CAPI Reference Entries

777

checkbox.

The tree view pane allows the user to select between items displayed in a hierarchical list. Although it is a choice, only
:single-selection interaction is supported. Use extended-selection-tree-view if you need other selection
interaction styles.

The hierarchy of items in the tree is defined by the children-function, which must be a function taking a single argument (an
item) and returning a list of child items. When an item is expanded, whether programmatically, automatically, or in response
to a user gesture, the system calculates what children this item has by calling the children-function on it.

Both the roots and what children the children-function returns for an item can be any object. However, the list must not
include an object which is cl:eql to another object in the tree. To work sensibly it also needs to be consistent over time, that
is return the same objects each time it is called, unless the state of the entity that the tree represents changes. It should also
be reasonably fast, as the user will be waiting to see the items.

If the tree is supposed to display items that are "the same" in different parts of the tree, you can define a "wrapper", typically
cl:defstruct with a few slots, and return a list of these wrappers (each pointing to the actual object). This wrapping is
also useful for keeping other information related to the display in the tree, for example the string or the image to display, and
maybe cache the children.

If leaf-node-p-function is not supplied, the children-function is also used to decide whether unexpanded nodes are leaf items
or not (and hence whether to display the expanding box). If the children-function is slow, this may slow significantly the
display of large trees. If it is possible to check for the existence of children faster, you should supply leaf-node-p-function to
avoid this slow down.

The default value of children-function is (constantly false), that is no children, and hence only the roots are displayed.

expandp-function controls automatic expansion of nodes (items) in the tree-view. By default, initially only the items
specified by the roots argument are displayed. This initial display can be altered by supplying a function expandp-function
which allows further items to be displayed. If supplied, expandp-function should be a function which is called on the roots
and is called recursively on the children if it returns true. When the user expands a node, expandp-function is called on each
newly created child node, which is expanded if this call returns true, and so on recursively. The default value of expandp-
function is nil so that there is no automatic expansion and only the root nodes are visible initially.

The default value of retain-expanded-nodes is t.

Any item which has children has a small expansion button next to it to indicate that it can be expanded. When the user clicks
on this button, the children items (as determined by the children function) are displayed.

If action-callback-expand-p is true, then the activate gesture expands a collapsed node, and collapses an expanded node. This
expansion and contraction of the node is additional to any supplied action-callback.

delete-item-callback is called when the user presses the Delete key. Two arguments are passed: the tree-view and the
selected item item. Note that, apart from calling the callback, the system does nothing in response to the Delete key. In
particular, if you want to remove the selected item, delete-item-callback needs to do it by changing what the children-function
returns when called on the parent of item. Normally you also need to to call tree-view-update-item with in-parent = t

to actually update the tree on the screen.

Note also that in extended-selection-tree-view (a subclass of tree-view), if the interaction was not explicitly
changed to :single-selection, the second argument to delete-item-callback is a list of the selected items (even when
only one item is selected).

The image-function is called on an item to return an image associated with the item. It can return one of the following:

A pathname or string This specifies the filename of a file suitable for loading with load-image. Currently this must
be a bitmap file.

21 CAPI Reference Entries

778

http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm

A symbol The symbol must have been previously registered by means of a call to
register-image-translation. It can also one of the following symbols, which map to
standard images: :std-cut, :std-copy, :std-paste, :std-undo, :std-redo,
:std-delete, :std-file-new, :std-file-open, :std-file-save, :std-print,
:std-print-pre, :std-properties, :std-help, :std-find and :std-replace.

On Microsoft Windows, the following symbols are also recognized. They map to view images:
:view-large-icons, :view-small-icons, :view-list, :view-details,
:view-sort-name, :view-sort-size, :view-sort-date, :view-sort-type,
:view-parent-folder, :view-net-connect, :view-net-disconnect and
:view-new-folder.

Also on Microsoft Windows, these symbols are recognized. They map to history images:
:hist-back, :hist-forward, :hist-favorites, :hist-addtofavorites and
:hist-viewtree.

An image object For example, as returned by load-image.

An image locator object

This allowing a single bitmap to be created which contains several button images side by side.
See make-image-locator for more information. On Microsoft Windows, it also allows access
to bitmaps stored as resources in a DLL.

An integer This is a zero-based index into the tree-view's image lists. This is generally only useful if the
image list is created explicitly. See image-list for more details.

The state-image-function is called on an item to determine the state image: an additional optional image used to indicate the
state of an item. It can return one of the objects listed above, just as for image-function, or nil to indicate that there is no
state image. See also checkbox-status, which overrides the state-image-function.

If image-lists is specified, it should be a plist containing the following keywords as keys. The corresponding values should be
image-list objects.

:normal Specifies an image-list object that contains the item images. The image-function should
return a numeric index into this image-list.

:state Specifies an image-list object that contains the state images. The state-image-function should
return a numeric index into this image-list.

If right-click-extended-match is nil, the mouse right button gesture within the tree view selects an item only when the cursor
is on the item. Otherwise, this gesture also selects an item to the left or right of the cursor. The default for right-click-
extended-match is t.

If has-root-line is nil, the vertical root line and expanding boxes of the root items are not drawn. This is useful in two cases:

• When the tree view needs to be neater. Note that the user does not have a mouse gesture to expand the root item.
Normally the programmer would compensate for this by making some other gesture call
(setf tree-view-expanded-p).

• If a children-function is not supplied, this can be used to create a pane like a list view with checkboxes (see below for
details of checkboxes). This pane can be handled as if it is a typical choice, except that setting the items is done by
(setf tree-view-roots) or by passing :roots to make-instance. In a typical choice, you would do
(setf collection-items) or pass :items to make-instance.

The default for has-root-line is t.

If the checkbox-status is non-nil then the tree view provides an automatic way of using the state images as checkboxes (except

21 CAPI Reference Entries

779

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

on Cocoa where check boxes are not supported). The state-image is defaulted to a set of images containing checkboxes and
the state-image-function is ignored, but each item has a status that is a non-negative integer no greater than the number of
images in state-image-list. The status specifies which image is displayed alongside item.

When item is expanded in the tree for the first time, the status of each child is set to item's status. The status can be changed
interactively by the user:

• Left mouse button on a checkbox changes its status.

• Space changes the status of all selected items.

The status can also be read and set programmatically (see tree-view-item-checkbox-status).

When the status of an item changes:

• The statuses of its ancestors may change if a checkbox-parent-function was supplied.

• The statuses of an items descendants may change if a checkbox-child-function was supplied.

• A callback given by checkbox-callback-function will be called, if this was supplied.

By default checkboxes have three statuses indicated by images: un-checked(0), gray-checked(1) and checked(2). If an item is
checked or un-checked, then all its descendants have the same status. If an item is gray-checked, then its descendants have
various statuses. When the status of an item changes, all the descendants of that item change to the same status, and all its
ancestors change to gray-checked.

For non-default status-changing behavior, specify checkbox-next-map. The value can be:

• An array of statuses. When the user clicks on item's checkbox, the status of item is used to index into checkbox-next-
map, and the status at that index becomes the new status of item. For example, with the default checkbox-next-map,
checked(0) changes to un-checked(2), gray-checked(1) changes to un-checked(2), and un-checked(2) changes to
checked(0).

• A function of two arguments. The first argument is a list of items and the second argument is their current status (and if
the items have various statuses, the most common is used). checkbox-next-map should return the new status to use.

• An integer: the status is increased by 1, until this integer is reached, at which point the status becomes 0 again.

When the status of an item is changed, the statuses of items above and below it in the tree may also be changed: the system
recurses up and down the tree using checkbox-parent-function and checkbox-child-function respectively.

To recurse upwards, checkbox-parent-function is called on the parent with five arguments: the parent, the parent's status, the
item, the item's status and an flag which is non-nil if all the items at the same level as the item now have the same status:

checkbox-parent-function parent parent-status item item-status all-items-same-p => new-parent-status, recurse-up, recurse-
down

If new-parent-status differs from parent-status, then the status of parent is set to new-parent-status. If recurse-up is non-nil,
then the system recurses up from parent, and if recurse-down is non-nil, the system recurses down. The default checkbox-
parent-function returns (values new-item-status t nil) where new-item-status is item-status if all-items-same-p is non-nil
and 1 otherwise.

To recurse downwards, checkbox-child-function is called on each child with four arguments and the results are used similarly
to those of checkbox-parent-function:

checkbox-child-function child child-status item item-status => new-child-status, recurse-up, recurse-down

The default checkbox-child-function returns (values parent-status nil t).

21 CAPI Reference Entries

780

Note: if an item has never been expanded, then it has no children. If an item has been collapsed, then it has children even
though they are not currently visible.

checkbox-parent-function and checkbox-child-function should not modify the tree in any way.

checkbox-change-callback takes three arguments: the tree, a list of items and their new status:

checkbox-change-callback tree items new-status

This is called after the new statuses of items and their ancestors and descendants have been resolved.

checkbox-initial-status is used the first time that each specified item, which can be anywhere in the tree, appears. The value is
a list of conses of items and their initial statuses, for example ((item1. 2) (item2. 0)). When item is displayed, its
status is set from this list or, if item is not specified, from checkbox-status. Items are removed from the list when they are
displayed and setting the list does not affect the checkbox status of items that have already been displayed. Note that check
boxes are not supported on Cocoa.

The default value of vertical-scroll in a tree-view is t.

Notes

1. Since the items of a tree view are not computed until display time, the choice initarg :selected-item has no effect.
See the examples in interface-display for a way to set the selected item in a tree view.

2. Although tree-view is a subclass of collection, it does its own items handling and you must not access its items
and related slots directly. In particular for tree-view do not pass :items, :items-count-function,
:items-get-function or :items-map-function, and do not use the corresponding accessors.

3. On Microsoft Windows, the system always sets the input focus to the tree-view after its selection-callback returns. If
you need this callback to set the focus elsewhere, call set-pane-focus outside the callback, like this:

(mp:process-send process
 (list 'capi:set-pane-focus pane))

Examples

This example shows how to combine an XML parser with tree-view to display an RSS file.

(example-edit-file "capi/applications/rss-reader")

There are further examples in 20 Self-contained examples.

See also

choice
extended-selection-tree-view
tree-view-ensure-visible
tree-view-expanded-p
tree-view-item-checkbox-status
tree-view-item-children-checkbox-status
tree-view-update-item
1.2.1 CAPI elements
5 Choices - panes with items
13.10 Working with images
17 Drag and Drop

21 CAPI Reference Entries

781

tree-view-ensure-visible Function

Summary

Ensures that an item in a tree-view is visible.

Package

capi

Signature

tree-view-ensure-visible tree-view item

Arguments

tree-view⇓ A tree view.

item⇓ A displayed item of tree-view.

Description

The function tree-view-ensure-visible ensures that an item in a tree view is visible, scrolling the tree view if
necessary.

Note that item must be an item that is displayed in tree-view.

See also

tree-view

tree-view-expanded-p Accessor Generic Function

Summary

Gets and sets the expanded state of an item in a tree-view.

Package

capi

Signature

tree-view-expanded-p tree-view item => value

setf (tree-view-expanded-p tree-view item) value => value

Arguments

tree-view⇓ A tree-view.

item⇓ An item.

21 CAPI Reference Entries

782

value⇓ A boolean.

Values

value⇓ A boolean.

Description

The accessor generic function tree-view-expanded-p is the predicate for whether item is expanded in tree-view. If item
is not in tree-view, the function returns nil.

(setf tree-view-expanded-p) sets the expanded state of item in tree-view to value. If item is not in tree-view, the
function does nothing.

See also

tree-view

tree-view-item-checkbox-status Accessor

Summary

Gets and sets the checkbox status of an item in a tree-view.

Package

capi

Signature

tree-view-item-checkbox-status tree-view item => status

(setf tree-view-item-checkbox-status) status tree-view item => status

Arguments

tree-view⇓ A tree view.

item⇓ An item.

status⇓ A non-negative integer.

Values

status⇓ A non-negative integer.

Description

The accessor tree-view-item-checkbox-status gets and sets the checkbox status of item in tree-view, except on
Cocoa.

(setf tree-view-item-checkbox-status) sets the checkbox status of item in tree-view. status must be an non-
negative integer smaller than the number of images in tree-view's state-image-list.

21 CAPI Reference Entries

783

See also

tree-view
tree-view-item-children-checkbox-status

tree-view-item-children-checkbox-status Function

Summary

Gets the checkbox statuses of a tree-view item's children.

Package

capi

Signature

tree-view-item-children-checkbox-status tree-view item => result

Arguments

tree-view⇓ A tree-view.

item⇓ An item.

Values

result⇓ A list of conses (child . status) where each child is a child of item and status is child's
checkbox status.

Description

The function tree-view-item-children-checkbox-status returns item's children together with their checkbox
statuses, except on Cocoa.

Note that, if item has not been expanded in tree-view, then it has no children and result will be nil.

See also

tree-view
tree-view-item-checkbox-status

tree-view-update-an-item Generic Function

Summary

Updates an item in a tree-view.

Package

capi

21 CAPI Reference Entries

784

Signature

tree-view-update-an-item tree-view item in-parent

Arguments

tree-view⇓ A tree-view.

item⇓ A Lisp object.

in-parent⇓ A boolean.

Description

The generic function tree-view-update-an-item is a synonym for tree-view-update-item, with the same meaning
for tree-view, item and in-parent.

Notes

tree-view-update-an-item is deprecated. Please use tree-view-update-item instead.

See also

tree-view
tree-view-update-item

tree-view-update-item Function

Summary

Updates an item in a tree-view.

Package

capi

Signature

tree-view-update-item tree-view item in-parent

Arguments

tree-view⇓ A tree-view.

item⇓ An item.

in-parent⇓ A boolean.

Description

The function tree-view-update-item updates the item item in tree-view. This includes recomputing the text, images and
children of item. This is useful when the data in tree-view changes, but the entire tree does not need recomputing.

When in-parent is non-nil, tree-view-update-item updates the children of the parent of item. This is useful when item is
actually removed from tree-view, causing the children of its parent to be re-positioned.

21 CAPI Reference Entries

785

See also

tree-view

undefine-menu Macro

Summary

Undefines a menu.

Package

capi

Signature

undefine-menu function-name &rest args

Arguments

function-name⇓ A symbol.

args⇓ Ignored extra arguments.

Description

The macro undefine-menu undefines a menu named function-name that was created with define-menu. args are ignored.

See also

define-menu
menu

unhighlight-pinboard-object Function

Summary

Removes the highlighting from a pinboard-object.

Package

capi

Signature

unhighlight-pinboard-object pinboard object &key redisplay => was-highlighted-p

Arguments

pinboard⇓ A pinboard-layout.

object⇓ A pinboard-object.

21 CAPI Reference Entries

786

redisplay⇓ A generalized boolean.

Values

was-highlighted-p⇓ A boolean.

Description

The function unhighlight-pinboard-object removes the highlighting from a pinboard object if necessary, and then if
redisplay is non-nil it redisplays it. The default value of redisplay is t.

pinboard should be the pinboard-layout of object.

To highlight a pinboard object use highlight-pinboard-object.

The returned value was-highlighted-p is true if object was highlighted before the call.

See also

highlight-pinboard-object
pinboard-object

uninstall-postscript-printer Function

Summary

Uninstalls a Postscript printer definition.

Package

capi

Signature

uninstall-postscript-printer name &key if-does-not-exist deletep

Arguments

name⇓ A string.

if-does-not-exist⇓ One of nil or :error.

deletep⇓ A boolean.

Description

The function uninstall-postscript-printer uninstalls a PostScript printer definition for the given device name.

This applies only on GTK+ and Motif.

if-does-not-exist controls what happens if the named printer does not exist. The default value is :error.

deletep, if true, causes the printer to be removed for subsequent sessions as well as the current session, by deleting the file on
the disk. The default value of deletep is nil.

21 CAPI Reference Entries

787

See also

install-postscript-printer
16.7 Printing on Motif

unmap-typeout Function

Summary

Removes a collector-pane that map-typeout had made visible.

Package

capi

Signature

unmap-typeout collector-pane

Arguments

collector-pane⇓ A collector-pane.

Description

The function unmap-typeout switches collector-pane out from its switchable layout, and brings back the pane that was
there before map-typeout was called.

See also

map-typeout
with-random-typeout
collector-pane

update-all-interface-titles Function

Summary

Updates interface window titles.

Package

capi

Signature

update-all-interface-titles

Description

The function update-all-interface-titles can be used to update all the interface window titles when needed.

21 CAPI Reference Entries

788

This is useful when interface-extend-title may return a new, different, value.

update-all-interface-titles calls update-screen-interface-titles on all the screens.

See also

interface-extend-title
update-screen-interface-titles

update-drawing-with-cached-display
update-drawing-with-cached-display-from-points Functions

Summary

Updates the drawing using the cached display.

Package

capi

Signatures

update-drawing-with-cached-display pane &optional x y width height

update-drawing-with-cached-display-from-points pane x1 y1 x2 y2 &key extend extend-x extend-y

Arguments

pane⇓ An output-pane.

x⇓, y⇓, width⇓, height⇓
Real numbers.

x1⇓, y1⇓, x2⇓, y2⇓, extend⇓, extend-x⇓, extend-y⇓
Real numbers.

Description

The functions update-drawing-with-cached-display and
update-drawing-with-cached-display-from-points update the drawing using the cached display, indicating the
rectangle in which the temp-display-callback (argument to start-drawing-with-cached-display) needs to draw.

These functions must be called in the scope of start-drawing-with-cached-display or
output-pane-free-cached-display. Calls outside this scope have no effect.

pane is the output pane to update. The other arguments specify the rectangle to be updated. The arguments are used in three
ways: first they cause an implicit call to invalidate-rectangle with the appropriate arguments, secondly they define a
mask that is used when calling the temp-display-callback, and third they provide arguments that are passed to the temp-
display-callback.

In the case of update-drawing-with-cached-display, the arguments specify the rectangle in the standard way (the
same way that they are passed to the display-callback). x and y default to 0, width defaults to the width of pane minus x, and
height defaults to the height of pane minus y.

21 CAPI Reference Entries

789

In the case of update-drawing-with-cached-display-from-points, the arguments specify two points, (x1,y1) and
(x2,y2), which are corners of a rectangle. This rectangle is then extended horizontally in both directions by extend-x, and
extended vertically in both directions by extend-y. extend-x and extend-y default to extend, which defaults to 0. The final
result is:

x = (- (min x1 x2) extend-x)
y = (- (min y1 y2) extend-y)
width = (+ (- (max x1 x2) x) extend-x)
height = (+ (- (max y1 y2) y) extend-y)

Both extend-x and extend-y default to extent, which itself defaults to 0.

Notes

Omitting the rectangle (that is, calling update-drawing-with-cached-display with only pane) causes all of the pane
to be redisplayed each time. On slow displays, that may cause the display to be sluggish. On Windows and Cocoa with the
normal settings, it is probably always fast enough, at least with modern machines. On GTK+ it depends on the speed of the
connection to the X server, which in many cases is too slow for medium-size panes.

These calls also take care to redraw the area that was drawn by previous calls to the temp-display-callback, so you do not to
do anything about erasing the results of previous calls.

Examples

This file shows how to use update-drawing-with-cached-display-from-points to redraw an arrowhead shape:

(example-edit-file "capi/output-panes/cached-display")

See also

start-drawing-with-cached-display
redraw-drawing-with-cached-display
12.5 Transient display on output-pane and subclasses

update-interface-title Generic Function

Summary

Updates the title of an interface window.

Package

capi

Signature

update-interface-title interface

Arguments

interface⇓ A CAPI interface.

21 CAPI Reference Entries

790

Description

The generic function update-interface-title updates the title of interface interface. This is useful when
interface-extend-title may return a new, different, value.

You can specialize update-interface-title if needed.

To update all the interface titles, use update-all-interface-titles or update-screen-interface-titles.

See also

interface-extend-title
update-all-interface-titles
update-screen-interface-titles

update-internal-scroll-parameters Function

Summary

Updates the internal scroll parameters.

Package

capi

Signature

update-internal-scroll-parameters pane scroll-dimension scroll-operation scroll-value

Arguments

pane⇓ A pane that supports scrolling.

scroll-dimension⇓ :horizontal, :vertical or :pan.

scroll-operation⇓ :drag, :move, :step or :page.

scroll-value⇓ An integer, or a list of two integers, or a keyword, or a list of two keywords.

Description

The function update-internal-scroll-parameters updates the internal scroll parameters of pane (the ones you read
by with-geometry, or get-horizontal-scroll-parameters and get-vertical-scroll-parameters),
according to its arguments. The arguments pane, scroll-dimension, scroll-operation and scroll-value are interpreted the same
way as the arguments to scroll. update-internal-scroll-parameters does not affect the display and does not
perform any drawing.

Notes

update-internal-scroll-parameters is needed only when pane is an output-pane created with initargs
:coordinate-origin :fixed or :coordinate-origin :fixed-graphics (see 12.4 output-pane scrolling). It
normally should not be used when :coordinate-origin is not supplied or :coordinate-origin :scrolled is
supplied (the default).

The other way of setting the scroll parameters is using set-horizontal-scroll-parameters and

21 CAPI Reference Entries

791

set-vertical-scroll-parameters.

update-internal-scroll-parameters is intended to be used in your scroll-callback (see simple-pane and 12.4
output-pane scrolling). It changes the internal parameters in the same way that ordinary scrolling would change them for the
same arguments, so it gives a consistent behavior with the rest of the application. You will still need to draw the appropriate
things in the display-callback.

For example, scrolling needs to update the display based on the values of the scroll parameters before and after the scrolling
happened, you can define a scroll-callback like this:

(defun my-scroll-callback (self scroll-dimension
 scroll-operation
 scroll-value)
 (with-geometry self
 (let ((prev-scroll-x %scroll-x%)
 (prev-scroll-y %scroll-y%))

 (update-internal-scroll-parameters
 self scroll-dimension
 scroll-operation scroll-value)

 (let ((new-scroll-x %scroll-x%)
 (new-scroll-y %scroll-y%))

 (update-display self
 prev-scroll-x prev-scroll-y
 new-scroll-x new-scroll-y)))))

See also

set-horizontal-scroll-parameters
set-vertical-scroll-parameters
simple-pane
output-pane
12.4 output-pane scrolling

update-pinboard-object Function

Summary

Updates the size of a pinboard-object to match its constraints.

Package

capi

Signature

update-pinboard-object object => result

Arguments

object⇓ A pinboard-object.

21 CAPI Reference Entries

792

Values

result A boolean.

Description

The function update-pinboard-object checks the constraints of object, and adjusts its size as necessary. It then forces
the parent layout to redisplay object at its new size. Finally, it returns t if a resize was necessary and nil otherwise.

See also

redraw-pinboard-object
pinboard-object

update-screen-interfaces-hooks Variable

Summary

A list of functions that are called when a CAPI interface is created or destroyed. This variable is deprecated.

Package

capi

Initial Value

nil

Description

The variable *update-screen-interfaces-hooks* contains a list of function designators. Each function the list is
called when an interface interface is created or destroyed.

Each function takes two arguments: the screen and interface.

You should not remove system functions from this variable so take care if setting its value. Only add or delete your own
functions.

Notes

update-screen-interfaces-hooks is deprecated. If you use it, please contact Lisp Support.

update-screen-interface-titles Function

Summary

Updates interface window titles.

Package

capi

21 CAPI Reference Entries

793

Signature

update-screen-interface-titles screen

Arguments

screen⇓ A CAPI screen.

Description

The function update-screen-interface-titles can be used to update the titles of all the interface windows on the
screen screen when needed.

This is useful when interface-extend-title may return a new, different, value.

update-screen-interface-titles calls update-interface-title on all the relevant interfaces.

See also

interface-extend-title
update-interface-title

update-toolbar Function

Summary

Updates a toolbar object.

Package

capi

Signature

update-toolbar self

Arguments

self⇓ A toolbar-object.

Description

The function update-toolbar updates the toolbar object self. It computes the enabled function of self and the enabled
functions of any toolbar components or toolbar buttons contained in it. Each toolbar object is enabled if the enabled function
returns t, and is disabled if it returns nil.

See also

toolbar
toolbar-button
toolbar-component

21 CAPI Reference Entries

794

virtual-screen-geometry Function

Summary

Returns, as multiple values, a screen rectangle covering the full area of all the monitors associated with a screen.

Package

capi

Signature

virtual-screen-geometry screen => x, y, width, height

Arguments

screen⇓ A CAPI screen.

Values

x⇓ An integer.

y⇓ An integer.

width⇓ A positive integer.

height⇓ A positive integer.

Description

The function virtual-screen-geometry returns the "virtual" geometry of the screen screen, which is a screen rectangle
covering the full area of all the monitors that are associated with screen.

The screen rectangle is at coordinates x and y as offsets from the top-left of the primary screen, with dimensions width and
height.

See also

pane-screen-internal-geometry
screen-internal-geometries
screen-monitor-geometries
4.3 Support for multiple monitors
11.6 Querying and modifying interface geometry

with-atomic-redisplay Macro

Summary

Delays the updating of specified panes until all state changes have been performed.

21 CAPI Reference Entries

795

Package

capi

Signature

with-atomic-redisplay (&rest panes) &body body => result*

Arguments

panes⇓ Panes.

body⇓ Lisp forms.

Values

result* Multiple values.

Description

The macro with-atomic-redisplay delays the updating of panes and their descendants until the exit from the
with-atomic-redisplay macro.

The forms in body are evaluated as in implicit progn and the value of the last form is returned.

Most CAPI pane slot writers update the visual appearance of the pane at the point that their state changes, but it is sometimes
necessary to cause all updates to the pane to be left until after they are all completed. The macro with-atomic-redisplay

defers all visible changes to the state of each pane in panes until the end of the scope of the macro.

Notes

1. with-atomic-redisplay does not cause Graphics Ports drawing operations on panes to be deferred.

2. with-atomic-redisplay can be used recursively. The actual display happens when exiting the outermost invocation.

See also

display
simple-pane

with-busy-interface Macro

Summary

Displays an alternate cursor during the execution of some code, on platforms other than Cocoa.

Package

capi

Signature

with-busy-interface (pane &key cursor delay) &body body => result*

21 CAPI Reference Entries

796

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

Arguments

pane⇓ A simple-pane.

cursor⇓ A keyword naming a cursor or a cursor object.

delay⇓ A real number.

body⇓ Lisp forms.

Values

result* Multiple values.

Description

The macro with-busy-interface switches the cursor of the interface containing pane to be the busy cursor, evaluates the
forms in body as an implicit progn, and then restores the cursor. The value of the last form is returned. This is useful when a
piece of code may take significant time to run, and visual feedback should be provided.

cursor specifies the cursor to use while body is running. The default value is :busy. For other allowed values, see
simple-pane.

delay specifies a time in seconds before the cursor is switched, so if body runs in less than delay seconds, then the cursor is
not switched at all. This is usually more useful behavior than switching the cursor immediately. The default value of delay is
0.5.

with-busy-interface must be called in the process of the interface containing pane.

with-busy-interface has no effect on Cocoa.

See also

simple-pane

with-dialog-results Macro

Summary

Displays a dialog and executes a body when the dialog is dismissed.

Package

capi

Signature

with-dialog-results (&rest results) dialog-form &body body => result1, result2

Arguments

results⇓ Variables.

dialog-form⇓ A function call form.

body⇓ Forms.

21 CAPI Reference Entries

797

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

Values

result1 :continuation.

result2 nil.

Description

The macro with-dialog-results is designed to evaluate dialog-form in a special way to allow dialogs on Cocoa to use
window-modal sheets. It is not needed unless you want to make code that is portable to Cocoa. dialog-form should be a
function call form that displays a dialog.

The overall effect is that the forms in body are evaluated with the variables in results bound to the values returned by dialog-
form when the dialog is dismissed.

The dynamic environment in which body is evaluated varies between platforms:

• On Microsoft Windows, GTK+ and Motif, the with-dialog-results macro waits until the dialog has been dismissed
and then evaluates body.

• On Cocoa, dialog-form creates a sheet attached to the active window and the with-dialog-results macro returns
immediately. body is evaluated when the user dismisses the sheet.

dialog-form must be a cons with one of the following two formats:

• (function-name . arguments)

• (apply function-name . arguments)

The function-name is called with all the given arguments, plus an additional pair of arguments, :continuation and a
continuation function created from body. In the first format, the additional arguments are placed after all the given
arguments. In the second format, the additional arguments are placed just before the last of the given arguments (i.e. before
the list of remaining argument to apply).

The continuation function binds the variables in results to its arguments and evaluates body. If there are more arguments than
results variables, the extra arguments are discarded.

This macro is designed for use with function-names such as popup-confirmer or prompt-for-string, which take a
:continuation keyword. You can define your own such functions provided that they call one of the CAPI functions,
passing the received continuation argument.

Examples

On Microsoft Windows, GTK+ and Motif, this displays a dialog, calls record-label-in-database when the user clicks
OK and then returns. On Cocoa, this creates a sheet and returns; record-label-in-database will be called when the
user clicks OK.

(with-dialog-results (new-label okp)
 (prompt-for-string "Enter a label")
 (when okp ; the user clicked in the OK button
 (record-label-in-database new-label)))

Here is an example with skeleton code for using with-dialog-results. Note that the dialog function (choose-file
below) that is called by with-dialog-results must take a continuation keyword argument and pass it to a CAPI
prompting function. Also note that the call to the CAPI prompting function must be the last form in the dialog function.
Forms after the CAPI prompting function will be executed at an indeterminate time, and their values will not be used in the
body of with-dialog-results.

(defun choose-file (&key continuation)

21 CAPI Reference Entries

798

http://www.lispworks.com/documentation/HyperSpec/Body/f_apply.htm

 (print 'in-choose-file)
 (capi:prompt-for-file "Choose File"
 :pathname "~/Desktop/"
 :continuation continuation))

(defun open-file (rep)
 (format t "~%Opening ~a~%" rep))

(defun my-callback ()
 (print 'doing-something-before)
 (capi:with-dialog-results (res ok-p)
 (choose-file)
 (print 'after-choose-file)
 (if ok-p
 (open-file res)
 (print 'cancelled))))

(defun prompt-for-file-working ()
 (capi:contain
 (make-instance
 'capi:push-button
 :text "Click Here"
 :callback-type :none
 :callback 'my-callback)))

(prompt-for-file-working)

See also

display-dialog
popup-confirmer
10 Dialogs: Prompting for Input

with-document-pages Macro

Summary

Executes a body of code repeatedly with a variable bound to the number of the page to be printed each iteration.

Package

capi

Signature

with-document-pages page-var first-page last-page &body body

Arguments

page-var⇓ A symbol (not evaluated).

first-page⇓ A positive integer.

last-page⇓ A positive integer.

body⇓ Lisp forms.

21 CAPI Reference Entries

799

Description

The macro with-document-pages evaluates the forms in body repeatedly, with page-var bound to the number of the page
to print on each iteration. It is used to by applications providing Page on Demand printing.

first-page and last-page are evaluated to yield the page numbers of the first and last pages in the document.

with-document-pages takes care of first-page and last-page when the user sets them in print-dialog, by evaluating
body for the pages that are in the intersection of what user chose and the other arguments.

with-document-pages must be called within the dynamic context of with-print-job.

Notes

The code in body should do the printing by calling standard GRAPHICS-PORTS drawing functions (see 13.4 Drawing
functions), typically also using with-page-transform.

Examples

(example-edit-file "capi/printing/fit-to-page")

(example-edit-file "capi/printing/multi-page")

(example-edit-file "capi/printing/page-on-demand")

See also

print-dialog
with-page
with-print-job
16 Printing from the CAPI—the Hardcopy API

with-external-metafile Macro

Summary

Creates a metafile on disk using Graphics Ports operations.

Package

capi

Signature

with-external-metafile (var &key pane bounds format pathname owner drawing-mode) &body body => nil

Arguments

var⇓ A variable.

pane⇓ A graphics port, or nil.

bounds⇓ A list of four integers. Can also be nil on Microsoft Windows.

21 CAPI Reference Entries

800

format⇓ One of the keywords :enhanced, :enhanced-plus, :enhanced-gdi and :windows.

pathname⇓ A pathname or string.

owner⇓ A graphics port, or nil.

drawing-mode⇓ One of the keywords :compatible and :quality.

body⇓ Code containing Graphic Ports operations that draw to var.

Description

The macro with-external-metafile creates a metafile at the location given by pathname containing records
corresponding to the Graphics Ports operations in body that draw to var.

On Microsoft Windows the metafile is a device-independent format for storing pictures. For more information about
metafiles, see the Microsoft documentation.

On Cocoa and GTK+ the metafile format is PDF.

If pane is nil, the macro binds var to an object of type metafile-port. If pane is non-nil then it must be an instance of
output-pane or a subclass. In this case var is bound to pane, and pane is modified within the dynamic extent of
with-external-metafile so all drawing operations draw to the metafile instead of pane. This can be useful when
reusing existing redisplay code that is written expecting an output-pane. The default value of pane is nil.

If bounds is nil the metafile size will be computed from the drawing done within the body. This value is not allowed on
Cocoa.

If bounds is non-nil (required on Cocoa), it should be a list of integers specifying the coordinate rectangle (x y width height)
that the metafile contains.

pathname specifies the filename of the metafile. If its pathname-type is nil, then the file extension "EMF" is used for an
Enhanced-metafile, or "WMF" for a Windows-metafile.

owner specifies the owner of the metafile, which calls to port-owner will return. This has an effect only when pane is nil.

drawing-mode should be either :compatible which causes drawing to be the same as in LispWorks 6.0, or :quality
which causes all the drawing to be transformed properly, and allows control over anti-aliasing on Microsoft Windows and
GTK+. The default value of drawing-mode is :quality.

For more information about drawing-mode, see 13.2.1 The drawing mode and anti-aliasing.

On Cocoa and GTK+ the metafile format is always PDF as a single page, and format is ignored. format is used only on
Microsoft Windows and it can be one of:

:enhanced Generate an Enhanced-metafile file containing "dual drawing" both in GDI+ and GDI.

:enhanced-plus Generate an Enhanced-metafile file containing drawing only in GDI+.

:enhanced-gdi Generate an Enhanced-metafile file containing drawing only in GDI.

:windows Generate a Windows-metafile.

The default value of format is :enhanced.

When drawing-mode is :compatible (rather than the default value :quality) :enhanced and :enhanced-plus behave
like :enhanced-gdi.

21 CAPI Reference Entries

801

http://www.lispworks.com/documentation/HyperSpec/Body/f_pn_hos.htm

Notes

1. GDI+ gives the best quality, so normally that is what you would want. However some programs may be able to display
only GDI (and not GDI+), which is why the default is dual drawing. This however generates a larger file and is
presumably slightly slower, so if you are sure that the file will be used only by programs that can draw GDI+ emf files
(sometimes called EMF+), you can use format :enhanced-plus.

2. with-external-metafile is not implemented on X11/Motif.

See also

draw-metafile
metafile-port
port-owner
with-internal-metafile
13 Drawing - Graphics Ports

with-geometry Macro

Summary

Helps you to define layouts and create new pinboard-object subclasses.

Package

capi

Signature

with-geometry pane &body body => result*

Arguments

pane⇓ A simple-pane or a pinboard-object.

body⇓ Lisp forms.

Values

result* Multiple values.

Description

The macro with-geometry is used for defining layouts and for creating new pinboard-object subclasses, by providing
access to the geometry of a pane.

with-geometry evaluates the forms in body as an implicit progn while binding the following variables to slots in the
geometry of pane in much the same way as the Common Lisp macro with-slots. Except the special cases which are
mentioned below, these variables are read-only and should not be set.

Four variables define the geometry of the pane. If you define define your own calculate-layout method, it can set these
variables:

%x% An integer specifying the x position of the pane in pixels relative to its parent.

21 CAPI Reference Entries

802

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_slts.htm

%y% An integer specifying the y position of the pane in pixels relative to its parent.

%width% An integer specifying the width in pixels of the pane.

%height% An integer specifying the height in pixels of the pane.

Four variables specify constraints on the pane. If you define your own calculate-constraints method, it can set these
variables:

%min-width% A real number specifying the minimum width of the pane.

%min-height% A real number specifying the minimum height of the pane.

%max-width% A real number specifying the maximum width of the pane.

%max-height% A real number specifying the maximum height of the pane.

The following variables are also bound but apply only to instances of output-pane or layout which have at least one
scroll bar. They can be retrieved by get-horizontal-scroll-parameters and
get-vertical-scroll-parameters. They can be set by set-horizontal-scroll-parameters and
set-vertical-scroll-parameters. These variables should be regarded as read-only inside with-geometry (they are
writable for backwards compatibility only).

%scroll-width% The extent of the horizontal scroll range.

%scroll-height% The extent of the vertical scroll range.

%scroll-horizontal-page-size%

The horizontal scroll page size.

%scroll-horizontal-slug-size%

The width of the scroll bar slug.

%scroll-horizontal-step-size%

The horizontal scroll step size.

%scroll-start-x% The start of the horizontal scroll range.

%scroll-start-y% The start of the vertical scroll range.

%scroll-vertical-page-size%

The vertical scroll page size.

%scroll-vertical-slug-size%

The height of the scroll bar slug.

%scroll-vertical-step-size%

The vertical scroll step size.

%scroll-x% x coordinate of the current scroll position.

%scroll-y% y coordinate of the current scroll position.

The following two variables access the object for which the representation is:

21 CAPI Reference Entries

803

%object% The object whose geometry this is.

%child% The same as %object% (kept for compatibility with LispWorks 3.1).

See also

calculate-constraints
calculate-layout
convert-relative-position
element
get-horizontal-scroll-parameters
get-vertical-scroll-parameters
scroll
set-horizontal-scroll-parameters
set-vertical-scroll-parameters
3.8 Accessing pane geometry
6 Laying Out CAPI Panes
12 Creating Panes with Your Own Drawing and Input

with-internal-metafile Macro

Summary

Creates a metafile in memory using Graphics Ports operations.

Package

capi

Signature

with-internal-metafile (var &key pane bounds format owner drawing-mode) &body body => metafile

Arguments

var⇓ A variable.

pane⇓ A graphics port, or nil.

bounds⇓ A list of four integers. Can also be nil on Microsoft Windows.

format⇓ One of the keywords :enhanced, :enhanced-plus and :enhanced-gdi.

owner⇓ A graphics port, or nil.

drawing-mode⇓ One of the keywords :compatible and :quality.

body⇓ Lisp code.

Values

metafile⇓ A metafile.

Description

The macro with-internal-metafile creates a metafile containing records corresponding to the Graphics Ports

21 CAPI Reference Entries

804

operations in body that draw to var.

with-internal-metafile behaves like with-external-metafile except that an object representing the metafile is
returned, and no file is created on disk.

var, pane, bounds, format, owner, drawing-mode and body are interpreted as for with-external-metafile except that
format cannot have the value :windows.

Note: GDI+ gives the best quality, so normally that what you want. But you cannot put a GDI+ only metafile on the
clipboard, which is why the default is to make a "dual" metafile containing both GDI and GDI+ drawing. If are not going to
put the metafile on the clipboard (by calling set-clipboard with format :metafile) you can use format
:enhanced-plus which is slightly faster and uses less memory.

metafile must be freed after use, by calling free-metafile.

Notes

1. with-internal-metafile is supported on GTK+ only where Cairo is supported (GTK+ version 2.8 and later).

2. On GTK+, the internal metafile is slow to resize, so it is probably not useful when it is frequently resized (that is, drawn
with different width or height).

3. with-internal-metafile is not implemented on X11/Motif.

Examples

(example-edit-file "capi/graphics/metafile")

(example-edit-file "capi/graphics/metafile-rotation")

See also

draw-metafile
free-metafile
port-owner
with-external-metafile
13 Drawing - Graphics Ports

with-output-to-printer Macro

Summary

Binds a stream variable and prints its output.

Package

capi

Signature

with-output-to-printer (stream &key printer tab-spacing interactive jobname) &body body => result*

21 CAPI Reference Entries

805

Arguments

stream⇓ A variable.

printer⇓ A printer or nil.

tab-spacing⇓ An integer.

interactive⇓ A boolean.

jobname⇓ A string.

body⇓ Lisp forms.

Values

result* The values returned by evaluating body.

Description

The macro with-output-to-printer binds the variable stream to a stream object, and prints everything is that is written
to it in the code of body.

If interactive is t then print-dialog is called to select the printer to use. If interactive is nil then printer is used unless it
is nil in which case the current-printer is used. The default value of interactive is t and the default value of printer is
nil.

The values of jobname and tab-spacing are passed to print-text, which is used to actually do the printing. The default
value of tab-spacing is 8 and the default value of jobname is "Text".

See also

current-printer
print-dialog
print-text
16 Printing from the CAPI—the Hardcopy API

with-page Macro

Summary

Binds a variable to either t or nil, and executes a body of code to print a page only if the variable is t.

Package

capi

Signature

with-page (printp) &body body

Arguments

printp⇓ A symbol (not evaluated).

body⇓ Lisp forms.

21 CAPI Reference Entries

806

Description

The macro with-page binds printp to t if a page is to be printed, or nil if it is to be skipped. The forms in body are
evaluated once as in implicit progn, and are expected to draw the document only if printp is t.

Each call to with-page contributes a new page to the document.

with-page must be called within the dynamic context of with-print-job.

Notes

1. with-page does not work on Cocoa.

2. The code in body should do the printing by calling standard GRAPHICS-PORTS drawing functions (see 13.4 Drawing
functions), typically also using with-page-transform.

3. printp can be nil when only part of the document is printed, for example when the user specifies that she wants only
odd pages. When printp is nil, the code in body needs to ensure that the next call to with-page prints the right page.

4. Normally with-document-pages is the preferred method of printing.

See also

with-document-pages
with-page-transform
with-print-job
16 Printing from the CAPI—the Hardcopy API

with-page-transform Macro

Summary

Defines a rectangular region within the coordinate space of an output pane or printer port.

Package

capi

Signature

with-page-transform (x y width height) &body body

Arguments

x⇓, y⇓ Real numbers.

width⇓, height⇓ Positive real numbers.

body⇓ Lisp forms.

Description

The macro with-page-transform evaluates x, y, width and height to define a rectangular region within the coordinate
space of an output pane or printer port. The forms of body are evaluated as an implicit progn with that region mapped onto
the printable area of the page. If the specified rectangle does not have the same aspect ratio as the printable area of the page,

21 CAPI Reference Entries

807

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

then non-isotropic scaling will occur.

Any number of calls to with-page-transform can occur during the printing of a page; for example, it is sometimes
convenient to use a different page transform from that used to print the main body of the page when printing headers and
footers.

Examples

(example-edit-file "capi/graphics/metafile")

(example-edit-file "capi/printing/fit-to-page")

(example-edit-file "capi/printing/multi-page")

(example-edit-file "capi/printing/page-on-demand")

See also

get-printer-metrics
with-document-pages
with-page
16 Printing from the CAPI—the Hardcopy API

with-print-job Macro

Summary

Creates a print job that prints to the specified printer.

Package

capi

Signature

with-print-job (var &key pane jobname printer owner drawing-mode) &body body

Arguments

var⇓ A symbol.

pane⇓ A output-pane or nil.

jobname⇓ A string or nil.

printer⇓ A printer or nil.

owner⇓ An owner window, or nil.

drawing-mode⇓ One of :compatible, :quality or nil.

body⇓ Lisp forms.

21 CAPI Reference Entries

808

Description

The macro with-print-job creates a print job that prints to printer. If printer is not specified, the default printer is used.
The macro binds var to a graphics port object and evaluates the forms in body as an implicit progn. Printing is performed by
these forms using Graphics Ports operations to draw to var.

If pane is non-nil it must be an instance of output-pane or a subclass. In this case var is bound to pane, and pane is
modified within the dynamic extent of the with-print-job so all drawing operations draw to the printer instead of pane.
This can be useful when implementing printing by modifying existing redisplay code that is written expecting an
output-pane. If pane is nil, var is bound to a graphics port of type printer-port, which is alive only inside the body of
with-print-job, and sends any drawing into it to the printer.

jobname is the name of the print job. The default value is nil, meaning that the name "Document" is used.

The actual printing is done by using one of the macros with-document-pages or with-page, within the scope of
with-print-job.

owner specifies the owner of the printer port object, which calls to port-owner will return. This has an effect only when
pane is nil.

drawing-mode should be either :compatible which causes drawing to be the same as in LispWorks 6.0, or :quality
which causes all the drawing to be transformed properly, and allows control over anti-aliasing on Microsoft Windows and
GTK+. If pane is supplied, then pane determines the print job's drawing-mode, otherwise the default value of drawing-mode
is :quality.

For more information about drawing-mode, see 13.2.1 The drawing mode and anti-aliasing.

Examples

(example-edit-file "capi/graphics/metafile")

(example-edit-file "capi/printing/fit-to-page")

(example-edit-file "capi/printing/multi-page")

(example-edit-file "capi/printing/page-on-demand")

See also

port-owner
printer-port-handle
printer-port-supports-p
set-printer-options
with-document-pages
with-page
with-page-transform
16 Printing from the CAPI—the Hardcopy API
13 Drawing - Graphics Ports

21 CAPI Reference Entries

809

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

with-random-typeout Macro

Summary

Binds a stream variable to a collector pane.

Package

capi

Signature

with-random-typeout (stream-variable pane) &body body

Arguments

stream-variable⇓ A symbol (not evaluated).

pane⇓ A pane.

body⇓ Lisp forms.

Description

The macro with-random-typeout binds the variable stream-variable to a collector pane stream associated with pane for
the scope of the macro and evaluates the forms in body as an implicit progn. The collector pane is automatically mapped and
unmapped around the body. If body exits normally, the typeout is not unmapped until the space bar is pressed or the mouse is
clicked.

See also

map-typeout
unmap-typeout
collector-pane

wrap-text Function

Summary

Wraps text for a given character width.

Package

capi

Signature

wrap-text text width &key start end => strings

21 CAPI Reference Entries

810

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

Arguments

text⇓ A string.

width⇓ A positive integer.

start⇓, end⇓ Bounding index designators of text.

Values

strings⇓ A list of strings.

Description

The function wrap-text takes a string text and returns a list of strings, each of which is no longer than width. Together the
strings in strings contain all the non-whitespace characters of text between start and end and are suitable for displaying this
text on multiple lines of length width.

See also

wrap-text-for-pane

wrap-text-for-pane Function

Summary

Wraps text for a given pane.

Package

capi

Signature

wrap-text-for-pane pane text &key external-width visible-width font start end => strings

Arguments

pane⇓ A displayed CAPI pane.

text⇓ A string.

external-width⇓ An integer or nil.

visible-width⇓ An integer or nil.

font⇓ A font object.

start⇓ An integer.

end⇓ An integer or nil.

Values

strings⇓ A list of strings.

21 CAPI Reference Entries

811

Description

The function wrap-text-for-pane takes a string text and returns a list of strings. Together the strings in strings contain all
the non-whitespace characters of text and are suitable for displaying this text on pane. That is, each string has a display
width no greater than the width of pane when drawn using the font of pane. The arguments start and end are used as
bounding index designators for text and characters outside these bounds are ignored.

If visible-width is non-nil then text is wrapped to that width. Otherwise, if external-width is non-nil then text is wrapped as if
the pane had that external width (that is, taking account of any borders in the pane). If both visible-width and external-width
are nil, then the text is wrapped to the current visible width of the pane. The default value of both visible-width and external
-width is nil.

font is used to perform the wrapping calculations. If it is nil (the default), then the graphics-state-font is used for
panes such as output-pane that have a graphics-state and the simple-pane-font is used for other panes.

See also

wrap-text

x-y-adjustable-layout Class

Summary

The class x-y-adjustable-layout provides functionality for positioning panes in a space larger than themselves (for
example, it is used to choose whether to center them, or left justify them).

Package

capi

Superclasses

layout

Subclasses

simple-layout
grid-layout

Initargs

:x-adjust The adjust value for the x direction.

:y-adjust The adjust value for the y direction.

Accessors

layout-x-adjust
layout-y-adjust

Description

The values x-adjust and y-adjust of the slots are used by layouts to decide what to do when a pane is smaller than the space in
which it is being laid out. Typically the values will be a keyword or a list of the form (keyword n) where n is an integer.
These values of adjust are interpreted as by pane-adjusted-position.

21 CAPI Reference Entries

812

:top is the default for y-adjust and :left is the default for x-adjust.

Examples

Note: column-layout is a subclass of x-y-adjustable-layout.

(setq column (capi:contain
 (make-instance
 'capi:column-layout
 :description (list
 (make-instance
 'capi:push-button
 :text "Ok")
 (make-instance
 'capi:list-panel
 :items '(1 2 3 4 5)
)))))

(capi:apply-in-pane-process
 column #'(setf capi:layout-x-adjust) :right column)

(capi:apply-in-pane-process
 column #'(setf capi:layout-x-adjust) :center column)

See also

pane-adjusted-position

21 CAPI Reference Entries

813

22 GRAPHICS-PORTS Reference Entries

The following chapter provides reference entries for the symbols exported from the graphics-ports package. You can use
these to draw graphics in CAPI output panes, which are a kind of graphics port. See 13 Drawing - Graphics Ports for more
information on graphics ports and their associated types.

2pi Constant

Summary

(* 2 pi) as a double-float.

Package

graphics-ports

Description

The constant 2pi is the result of (* 2 cl:pi). It is a cl:double-float.

See also

fpi
pi-by-2

analyze-external-image Function

Summary

Gets the properties of DIB data in an external image.

Package

graphics-ports

Signature

analyze-external-image external-image => width, height, color-table, number

Arguments

external-image⇓ An external-image.

Values

width An integer.

814

http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm

height An integer.

color-table A color table.

number An integer.

Description

The function analyze-external-image returns the width, height, color-table, and number of important colors for the
external image external-image.

The image data in external-image must be in Device Independent Bitmap (DIB) format.

apply-rotation Function

Summary

Modifies a transform such that a rotation of a given number of radians is performed on any points multiplied by the
transform.

Package

graphics-ports

Signature

apply-rotation transform theta => transform

Arguments

transform⇓ A transform.

theta⇓ A real number.

Values

transform A transform.

Description

The function apply-rotation modifies transform such that a rotation of theta radians is performed on any points
multiplied by the transform. Any operations already contained in the transform occur before the new rotation.

The rotation is around the point (0,0).

If theta is positive, then the rotation is clockwise.

apply-rotation returns the transform.

Notes

See graphics-state for details of how a transform is used.

22 GRAPHICS-PORTS Reference Entries

815

Examples

(example-edit-file "capi/graphics/metafile-rotation")

See also

apply-rotation-around-point
apply-scale
apply-translation
graphics-state
transform

apply-rotation-around-point Function

Summary

Modifies a transform such that a specified rotation around a specified point is performed on any points multiplied by the
transform.

Package

graphics-ports

Signature

apply-rotation-around-point transform theta x y => transform

Arguments

transform⇓ A transform.

theta⇓ A real number.

x⇓ A real number.

y⇓ A real number.

Values

transform A transform.

Description

The function apply-rotation-around-point modifies transform such that a clockwise rotation of theta radians around
the point (x,y) is performed on any points multiplied by the transform. Any operations already contained in the transform
occur before the new rotation.

apply-rotation-around-point returns the transform.

Notes

See graphics-state for details of how a transform is used.

22 GRAPHICS-PORTS Reference Entries

816

Examples

(example-edit-file "capi/graphics/rotation-around-point")

There are further examples in 20 Self-contained examples.

See also

apply-rotation
graphics-state
transform

apply-scale Function

Summary

Modifies a transform such that a scaling occurs on any points multiplied by the transform.

Package

graphics-ports

Signature

apply-scale transform sx sy => transform

Arguments

transform⇓ A transform.

sx⇓ A real number.

sy⇓ A real number.

Values

transform A transform.

Description

The function apply-scale modifies transform such that a scaling of sx in x and sy in y is performed on any points
multiplied by the transform. Any operations already contained in the transform occur before the new scaling.

apply-scale returns the transform.

Notes

See graphics-state for details of how a transform is used.

Examples

(example-edit-file "capi/graphics/metafile-rotation")

22 GRAPHICS-PORTS Reference Entries

817

See also

apply-rotation
apply-rotation-around-point
apply-translation
graphics-state
transform

apply-translation Function

Summary

Modifies a transform such that a translation is performed on any points multiplied by the transform.

Package

graphics-ports

Signature

apply-translation transform dx dy => transform

Arguments

transform⇓ A transform.

dx⇓ A real number.

dy⇓ A real number.

Values

transform A transform.

Description

The function apply-translation modifies transform such that a translation of (dx dy) is performed on any points
multiplied by the transform. Any operations already contained in the transform occur before the new translation.

apply-translation returns the transform.

Notes

See graphics-state for details of how a transform is used.

Examples

(example-edit-file "capi/graphics/metafile-rotation")

See also

apply-rotation
apply-rotation-around-point
apply-scale

22 GRAPHICS-PORTS Reference Entries

818

graphics-state
transform

augment-font-description Function

Summary

Returns a font description combining the attributes of a given font description with a set of font attributes.

Package

graphics-ports

Signature

augment-font-description fdesc &rest font-attributes => return

Arguments

fdesc⇓ A font description.

font-attributes⇓ Font attributes.

Values

return⇓ A font description.

Description

The function augment-font-description returns a font description that contains all the attributes of fdesc combined with
font-attributes. The attribute :stock is handled specially: it is omitted from return, unless it is the only attribute specified.

If an attribute appears in both fdesc and font-attributes, the value in font-attributes is used. The contents of fdesc are not
modified.

See also

make-font-description
13 Drawing - Graphics Ports

clear-external-image-conversions Function

Summary

Clears external image conversions for a port.

Package

graphics-ports

22 GRAPHICS-PORTS Reference Entries

819

Signature

clear-external-image-conversions external-image-or-null gp-or-null &key free-image all errorp

Arguments

external-image-or-null⇓
An external image or nil.

gp-or-null⇓ A graphics port or nil.

free-image⇓ A boolean.

all⇓ A boolean.

errorp⇓ A boolean.

Description

The function clear-external-image-conversions clears the external image conversions for a port.

If external-image-or-null is nil, then conversions for all images are cleared. Otherwise, only conversions for external-image
-or-null are cleared.

If gp-or-null is nil all conversions are cleared using the image-color-users. If all is non-nil all conversions for all ports are
cleared using gp-or-null. Conversions are also freed if free-image is non-nil. By default, free-image is t, all is
(null gp-or-null), and errorp is t.

See also

13 Drawing - Graphics Ports

clear-graphics-port Function

Summary

Draws a filled rectangle covering the entire port in the port's background color.

Package

graphics-ports

Signature

clear-graphics-port port

Arguments

port⇓ A graphics port.

Description

The function clear-graphics-port draws a filled rectangle in port covering the entire port in the port's background. All
other graphics state parameters are ignored.

22 GRAPHICS-PORTS Reference Entries

820

clear-graphics-port-state Function

Summary

Sets the graphics state of a port back to its default values.

Package

graphics-ports

Signature

clear-graphics-port-state port

Arguments

port⇓ A graphics port.

Description

The function clear-graphics-port-state sets the graphics state of port back to its default values, which are the ones it
possessed immediately after creation.

See also

graphics-state

clear-rectangle Function

Summary

Draws a rectangle in the port's background color. This function is deprecated.

Package

graphics-ports

Signature

clear-rectangle port x y width height

Arguments

port⇓ A graphics port.

x⇓ A real number.

y⇓ A real number.

width⇓ A real number.

height⇓ A real number.

22 GRAPHICS-PORTS Reference Entries

821

Description

The function clear-rectangle (deprecated) draws the rectangle specified by x, y, width, and height in port using the port's
background color. All other graphics-state parameters are ignored.

clear-rectangle is deprecated because it ignores the graphics state args, which means it does not work properly with
other drawing functions. In particular, it does not work properly in the display-callback of output-pane.

Use instead:

(draw-rectangle pane x y width height
 :filled t
 :foreground color
 :compositing-mode :copy
 :shape-mode :plain)

compositing-mode is needed only when the color has alpha.

foreground is needed only if it is different from the foreground in the graphics state.

Note that draw-rectangle does take into account the transformation in the graphics-state.

See also

draw-rectangle
13 Drawing - Graphics Ports

compress-external-image Function

Summary

Compresses DIB data in an external image.

Package

graphics-ports

Signature

compress-external-image external-image => result

Arguments

external-image⇓ An external-image.

Values

result The difference in bytes between size of the original image and the size of the compressed
version.

Description

The function compress-external-image converts the data of external-image into compressed DIB format.

The image data in external-image must be in Device Independent Bitmap (DIB) format.

22 GRAPHICS-PORTS Reference Entries

822

compute-char-extents Function

Summary

Returns the x coordinates of the end of each of the characters in a string if the string was printed to a graphics port.

Package

graphics-ports

Signature

compute-char-extents port string &optional font => extents

Arguments

port⇓ A CAPI pane.

string⇓ A string.

font⇓ A font.

Values

extents An array of integers.

Description

The function compute-char-extents returns the extents of the characters in string in the font associated with port, or of
font if given. The extents are an array, one element per character, which gives the ending x coordinate of that character if the
string was drawn to port.

Note: To compute the extents of the entire string for a given port or font, use port-string-width or
get-string-extent.

See also

get-string-extent
port-string-width

convert-external-image Function

Summary

Returns an image derived from an external image format.

Package

graphics-ports

22 GRAPHICS-PORTS Reference Entries

823

Signature

convert-external-image gp external-image &key cache force-new => image

Arguments

gp⇓ A CAPI pane.

external-image⇓ An external-image.

cache⇓ A boolean.

force-new⇓ A boolean.

Values

image An image.

Description

The function convert-external-image returns an image derived from external-image . The image is ready for drawing
to gp.

If cache is non-nil image conversions are cached in external-image. The default value of cache is nil.

If force-new is non-nil a new image is always created, and put in the cache. The default value of force-new is nil.

See also

13 Drawing - Graphics Ports

convert-to-font-description Function

Summary

Converts a font-spec to a font description.

Package

graphics-ports

Signature

convert-to-font-description port font-spec => fdesc

Arguments

port⇓ A graphics port.

font-spec⇓ A font description object, font or symbol.

Values

fdesc⇓ A font-description.

22 GRAPHICS-PORTS Reference Entries

824

Description

The function convert-to-font-description converts font-spec to a font description object fdesc for the graphics port
port. If font-spec is a font, then its description is returned. If font-spec is a font description object, then it is returned. If font-
spec is a symbol naming a font alias, then convert-to-font-description converts this alias to a font and returns its font
description. Other platform-specific values of font-spec are also accepted.

See also

font-description
make-font-description

copy-area Function

Summary

Copies a rectangular area from one port to another.

Package

graphics-ports

Signature

copy-area to-port from-port to-x to-y width height from-x from-y &rest args

Arguments

to-port⇓ A graphics port.

from-port⇓ A graphics port.

to-x⇓ A real number.

to-y⇓ A real number.

width⇓ A real number.

height⇓ A real number.

from-x⇓ A real number.

from-y⇓ A real number.

args⇓ graphics-state parameters passed as keyword arguments.

Description

The function copy-area copies a rectangular area from from-port to to-port, taking account of transformations.

In drawing-mode :compatible (old drawing mode), copy-area is exactly the same as copy-pixels.

In drawing-mode :quality (the default), copy-area copies a rectangular area from one port to another. The transform,
mask, mask-transform, compositing-mode and shape-mode from to-port's graphics-state are all used, unless overridden
in args. to-port and from-port need not have the same depth and can be the same object. The corners of the copied rectangle
are (from-x from-y), (from-x+width from-y), (from-x+width from-y+height) and (from-x from-y+height), which are interpreted
as pixel positions in the window coordinates of from-port, that is, they are not transformed by from-port's transform. The top

22 GRAPHICS-PORTS Reference Entries

825

left of the rectangle is copied to (to-x to-y) in to-port's coordinates.

Notes

The main difference between copy-area and copy-pixels in drawing-mode :quality is when copying from a displayed
window.

copy-area always copies using the correct transformation of the target, but that it means that it may copy from an obscured
part of the window and hence copy the wrong thing. copy-pixels generates an exposure event on the target port instead of
copying obscured areas, but to do that it has to ignore the transformation.

Examples

(example-edit-file "capi/graphics/compositing-mode")

See also

copy-pixels
graphics-state
13 Drawing - Graphics Ports

copy-external-image Function

Summary

Returns a copy of an external image.

Package

graphics-ports

Signature

copy-external-image external-image &key new-color-table => new-external-image

Arguments

external-image⇓ An external image.

new-color-table⇓ A color table.

Values

new-external-image An external image.

Description

The function copy-external-image returns a copy of external-image, optionally supplying a new-color-table. An error is
signalled if this is a different size from the existing color-table.

22 GRAPHICS-PORTS Reference Entries

826

copy-pixels Function

Summary

Copies a rectangular area from one port to another.

Package

graphics-ports

Signature

copy-pixels to-port from-port to-x to-y width height from-x from-y &rest args

Arguments

to-port⇓ A graphics port.

from-port⇓ A graphics port.

to-x⇓ A real number.

to-y⇓ A real number.

width⇓ A real number.

height⇓ A real number.

from-x⇓ A real number.

from-y⇓ A real number.

args⇓ graphics-state parameters passed as keyword arguments.

Description

The function copy-pixels copies a rectangular area from from-port to to-port. The transform, mask, mask-transform,
compositing-mode and shape-mode from to-port's graphics-state are all used, unless overridden in args. to-port and
from-port need not have the same depth and can be the same object.

The corners of the copied rectangle are (from-x from-y), (from-x+width from-y), (from-x+width from-y+height) and (from-x
from-y+height), which are interpreted as pixel positions in the window coordinates of from-port, that is, they are not
transformed by from-port's transform. The top left of the rectangle is copied to (to-x to-y) in to-port's coordinates.

When to-port's drawing-mode is :quality the target is generally fully transformed, except that when it copies from a visible
window it may generate expose events when copying from an obscured part, and in drawing-mode :quality it ignores the
transformation in this case.

If to-port's drawing-mode is :compatible then the image is not scaled or rotated. For more information about drawing-
mode, see 13.2.1 The drawing mode and anti-aliasing.

Notes

copy-pixels can be used to draw to an output-pane inside the display-callback of that pane, but it cannot be used to
copy from the output-pane inside its display-callback (the result of such an operation is not defined).

22 GRAPHICS-PORTS Reference Entries

827

See also

copy-area
output-pane
13 Drawing - Graphics Ports

copy-transform Function

Summary

Returns a copy of a transform.

Package

graphics-ports

Signature

copy-transform transform => result

Arguments

transform⇓ A transform.

Values

result A transform.

Description

The function copy-transform returns a copy of transform.

Notes

See graphics-state for details of how a transform is used.

See also

graphics-state
transform

create-pixmap-port Function

Summary

Creates a pixmap port and its window system representation.

Package

graphics-ports

22 GRAPHICS-PORTS Reference Entries

828

Signature

create-pixmap-port port width height &key background foreground collect relative clear drawing-mode => pixmap-
port

Arguments

port⇓ A graphics port for a window.

width⇓ An integer.

height⇓ An integer.

background⇓ A color specification, or nil.

foreground⇓ A color specification, or nil.

collect⇓ A boolean.

relative⇓ A boolean.

clear⇓ A list or t.

drawing-mode⇓ One of the keywords :compatible and :quality.

Values

pixmap-port⇓ A pixmap graphics port.

Description

The function create-pixmap-port creates a pixmap port pixmap-port and its window system representation. port
specifies the color-user, used for color conversions, and its representation may also be used by the library to match the
pixmap port properties. pixmap-port will have dimensions width, height and will use the specified drawing-mode.

background and foreground are used to initialize the graphics-state-background and graphics-state-foreground

of pixmap-port. If background or foreground are nil then the corresponding color from port is used.

If clear is t, then pixmap-port is cleared to its background color, otherwise the initial colors will be non-deterministic. If
clear is a list of the form (x y width height), only that part of pixmap-port is cleared initially. The default value is nil.

If relative is non-nil, then pixmap-port collects pixel coordinates corresponding to the left, top, right, and bottom extremes of
the drawing operations taking place within the body forms, and if these extend beyond the edges of pixmap-port (into
negative coordinates for example) the entire drawing is offset by an amount which ensures it remains within the port. It is as
if the port moves its relative origin in order to accommodate the drawing. If the drawing size is greater than the screen size,
then some of it is lost. The default value is nil.

If collect is non-nil, this causes the drawing extremes to be collected but without having the pixmap shift to accommodate the
drawing, as relative does. The extreme values can be read using the get-bounds function. The default value of collect is
relative.

When pixmap-port is no longer needed, it should be destroyed by calling destroy-pixmap-port. Alternatively, use
with-pixmap-graphics-port to create and destroy the port within a dynamic extent.

See also

get-bounds
destroy-pixmap-port
with-pixmap-graphics-port
13 Drawing - Graphics Ports

22 GRAPHICS-PORTS Reference Entries

829

default-image-translation-table Variable

Summary

The default image translation table.

Package

graphics-ports

Initial Value

The global image translation table.

Description

The variable *default-image-translation-table* contains the default image translation table. It is used if no image
translation table is specified in calls to image translation table functions.

See also

load-image

define-font-alias Function

Summary

Defines an alias for a font.

Package

graphics-ports

Signature

define-font-alias keyword font

Arguments

keyword⇓ A keyword.

font⇓ A font or a font-description object.

Description

The function define-font-alias defines keyword as an alias for font.

Notes

Once a font alias is defined, it can be used to specify the font for a CAPI pane (see simple-pane).

22 GRAPHICS-PORTS Reference Entries

830

See also

13.9 Portable font descriptions

destroy-pixmap-port Function

Summary

Destroys a pixmap port, thereby freeing any window system resources it used.

Package

graphics-ports

Signature

destroy-pixmap-port pixmap-port

Arguments

pixmap-port⇓ A pixmap port.

Description

The function destroy-pixmap-port destroys pixmap-port, freeing any window system resources.

dither-color-spec Function

Summary

Returns t if the color specification for a given pixel should result in a pixel that is on in a 1 bit dithered bitmap.

Package

graphics-ports

Signature

dither-color-spec rgb-color-spec y x => result

Arguments

rgb-color-spec⇓ An RGB specification.

y⇓ An integer.

x⇓ An integer.

Values

result A boolean.

22 GRAPHICS-PORTS Reference Entries

831

Description

The function dither-color-spec returns t if rgb-color-spec should result in a pixel that is on at the point (x y) in a 1-bit
dithered bitmap. The current set of dithers is used in the decision.

Notes

dither-color-spec is deprecated. Dithers do not affect drawing or the anti-aliasing that occurs when drawing in Cocoa.

See also

initialize-dithers
make-dither
with-dither

draw-arc Function

Summary

Draws an arc.

Package

graphics-ports

Signature

draw-arc port x y width height start-angle sweep-angle &rest args &key filled

Arguments

port⇓ A graphics port.

x⇓ A real number.

y⇓ A real number.

width⇓ A real number.

height⇓ A real number.

start-angle⇓ A real number.

sweep-angle⇓ A real number.

args⇓ graphics-state parameters passed as keyword arguments.

filled⇓ A boolean.

Description

The function draw-arc draws an arc contained in the rectangle from (x y) to (x+width y+height) from start-angle to start-
angle+sweep-angle. Both angles are specified in radians. Currently, arcs are parts of ellipses whose major and minor axes are
parallel to the screen axes. When port's drawing-mode is :quality the arc is transformed properly, but if drawing-mode is
:compatible and port has rotation in its transform, the enclosing rectangle is modified to be the external enclosing
orthogonal rectangle of the rotated rectangle. The start angle is rotated. The transform, foreground, background, operation,
pattern, thickness, scale-thickness, mask, shape-mode and compositing-mode from port's graphics-state are all used,

22 GRAPHICS-PORTS Reference Entries

832

unless overridden in args. Additionally on X11/Motif only, stipple is used. When filled is non-nil, a sector is drawn.

See also

draw-arcs
graphics-state
13 Drawing - Graphics Ports

draw-arcs Function

Summary

Draws several arcs.

Package

graphics-ports

Signature

draw-arcs port description &rest args &key filled

Arguments

port⇓ A graphics port.

description⇓ A description sequence.

args⇓ graphics-state parameters passed as keyword arguments.

filled⇓ A boolean.

Description

The function draw-arcs draws several arcs to port as specified by description. This is usually more efficient than making
several calls to draw-arc. description is a repeating sequence of values of the form x y width height start-angle sweep-
angle. See draw-arc for more information, including about how args and filled are used.

See also

draw-arc
graphics-state
13 Drawing - Graphics Ports

draw-character Function

Summary

Draws a character in a given graphics port.

Package

graphics-ports

22 GRAPHICS-PORTS Reference Entries

833

Signature

draw-character port character x y &rest args &key block

Arguments

port⇓ A graphics port.

character⇓ A character.

x⇓ A real number.

y⇓ A real number.

args⇓ graphics-state parameters passed as keyword arguments.

block⇓ A boolean.

Description

The function draw-character draws the character character at (x y) on the port. The transform, foreground, background,
operation, stipple, pattern, mask, mask-transform, font, text-mode and compositing-mode from port's graphics-state are
all used, unless overridden in args.

(x y) specifies the leftmost point of the character's baseline.

block, if true, causes the character to be drawn in a character cell filled with the port's graphics-state background.

Notes

The graphics-state parameter operation is not supported for drawing text on Windows.

See also

graphics-state
13 Drawing - Graphics Ports

draw-circle Function

Summary

Draws a circle.

Package

graphics-ports

Signature

draw-circle port x y radius &rest args &key filled

Arguments

port⇓ A graphics port.

x⇓ A real number.

22 GRAPHICS-PORTS Reference Entries

834

y⇓ A real number.

radius⇓ A real number.

args⇓ graphics-state parameters passed as keyword arguments.

filled⇓ A boolean.

Description

The function draw-circle draws a circle with radius radius centered on (x y). The transform, foreground, background,
operation, thickness, scale-thickness, mask, shape-mode and compositing-mode from port's graphics-state are all used,
unless overridden in args. When filled is non-nil, the circle is filled with the foreground color.

Notes

draw-circle does not work properly under a rotation transform (see make-transform). A workaround is to use a many-
sided polygon drawn by draw-polygon which will be rotated correctly.

Examples

(gp:draw-circle port 100 100 20)

(gp:draw-circle port 100 100 50
 :filled t
 :foreground :green)

See also

graphics-state
12 Creating Panes with Your Own Drawing and Input

draw-ellipse Function

Summary

Draws an ellipse.

Package

graphics-ports

Signature

draw-ellipse port x y x-radius y-radius &rest args &key filled

Arguments

port⇓ A graphics port.

x⇓ A real number.

y⇓ A real number.

22 GRAPHICS-PORTS Reference Entries

835

x-radius⇓ A real number.

y-radius⇓ A real number.

args⇓ graphics-state parameters passed as keyword arguments.

filled⇓ A boolean.

Description

The function draw-ellipse draws an ellipse of the given radii x-radius and y-radius centered on (x y). The transform,
foreground, background, operation, thickness, scale-thickness, mask, shape-mode and compositing-mode from port's
graphics-state are all used, unless overridden in args. When filled is true, the ellipse is filled with the foreground color.

Notes

1. draw-ellipse does not work properly under a rotation transform when port's drawing-mode is :compatible. A
workaround is to use a many-sided polygon drawn by draw-polygon which will be rotated correctly.

2. draw-ellipse does work properly under any transform when port's drawing-mode is :quality.

3. See make-transform for information about rotation transforms.

4. For more information about drawing-mode, see 13.2.1 The drawing mode and anti-aliasing.

Examples

(gp:draw-ellipse port 100 100 20 40)

(gp:draw-ellipse port 100 100 50 10
 :filled t
 :foreground :green)

See also

graphics-state
13 Drawing - Graphics Ports

draw-image Function

Summary

Displays an image on a graphics port at a given position.

Package

graphics-ports

Signature

draw-image port image to-x to-y &rest args &key from-x from-y to-width to-height from-width from-height global-alpha

22 GRAPHICS-PORTS Reference Entries

836

Arguments

port⇓ A graphics port.

image⇓ An image.

to-x⇓, to-y⇓ Real numbers.

args⇓ graphics-state parameters passed as keyword arguments.

from-x⇓, from-y⇓ Real numbers.

to-width⇓, to-height⇓ Real numbers.

from-width⇓, from-height⇓
Real numbers.

global-alpha⇓ A real number in the inclusive range [0,1], or nil.

Description

The function draw-image displays image on the port at to-x to-y. The transform, operation, mask and compositing-mode
from port's graphics-state are all used, unless overridden in args.

The default values of from-x and from-y are 0. from-width and from-height default to the size of image. In addition, to-width
defaults to from-width and to-height defaults to from-height.

When port's drawing-mode is :compatible, graphics state translation is guaranteed to be supported but support for scaling
and rotation are library dependent. Specifically, scaling is supported in the Windows, Cocoa and GTK+ implementations, but
not on X11/Motif.

When port's drawing-mode is :quality, the target coordinates are fully transformed according to the transformation in the
graphics-state.

For more information about drawing-mode, see 13.2.1 The drawing mode and anti-aliasing.

global-alpha, if non-nil, is a blending factor that applies to the whole image, in the Windows and Cocoa implementations,
but not on X11/Motif or GTK+. The value 0 means use only the target (that is, do not draw anything) and the value 1 means
use only the source (that is, normal drawing). Intermediate real values mean use proportions of both the target and source.
The value nil also means normal drawing, and this is the default value.

Notes

On Microsoft Windows, if the image was loaded from a .ico file then draw-image ignores from-x, from-y, from-width, from-
height and the graphics-state operation when drawing the image, and also global-alpha is ignored.

Compatibility note

In LispWorks 6.1 and earlier versions, to-width and to-height defaulted to the size of the image and from-width defaulted to to
-width and from-height defaulted to to-height.

Examples

This example scales an image with various values of from-width, to-width, from-height and to-height. It illustrates the effect
of the default of these value which has changed since LispWorks 6.1:

(example-edit-file "capi/graphics/image-scaling")

Further examples:

22 GRAPHICS-PORTS Reference Entries

837

Draw the whole image at (10 20) without scaling:

(gp:draw-image port image 10 20)

Draw the whole image at (10 20) scaling it to 100x200:

(gp:draw-image port image 10 20
 :to-width 100
 :to-height 200)

Draw a 16x32 pixel rectangle from (60 80) in the image at (10 20) without scaling:

(gp:draw-image port image 10 20
 :from-x 60
 :from-y 80
 :from-width 16
 :from-height 32)

Draw a 16x32 pixel rectangle from (60 80) in the image at (10 20) scaling it to 100x200:

(gp:draw-image port image 10 20
 :from-x 60
 :from-y 80
 :from-width 16
 :from-height 32
 :to-width 100
 :to-height 200)

See also

image
13 Drawing - Graphics Ports

draw-line Function

Summary

Draws a line between two given points.

Package

graphics-ports

Signature

draw-line port from-x from-y to-x to-y &rest args

Arguments

port⇓ A graphics port.

from-x⇓ A real number.

from-y⇓ A real number.

to-x⇓ A real number.

22 GRAPHICS-PORTS Reference Entries

838

to-y⇓ A real number.

args⇓ graphics-state parameters passed as keyword arguments.

Description

The function draw-line draws a line from (from-x from-y) to (to-x to-y).

The transform, foreground, background, operation, pattern, thickness, scale-thickness, dashed, dash, line-end-style, mask,
shape-mode and compositing-mode from port's graphics-state are all used, unless overridden in args. Additionally on
X11/Motif only, stipple is used.

See also

draw-lines
graphics-state
13 Drawing - Graphics Ports

draw-lines Function

Summary

Draws several lines between pairs of two given points.

Package

graphics-ports

Signature

draw-lines port description &rest args

Arguments

port⇓ A graphics port.

description⇓ A description sequence.

args⇓ graphics-state parameters passed as keyword arguments.

Description

The function draw-lines draws several lines to port as specified by description. This is usually more efficient than making
several calls to draw-line. description is a repeating sequence of values of the form x1 y1 x2 y2. See draw-line for more
information, including about how args is used.

See also

draw-line
graphics-state
13 Drawing - Graphics Ports

22 GRAPHICS-PORTS Reference Entries

839

draw-path Function

Summary

Draws a path at a given point, optionally closing it or filling it.

Package

graphics-ports

Signature

draw-path port path x y &rest args &key closed filled fill-rule

Arguments

port⇓ A graphics port.

path⇓ A path specification.

x⇓ A real number.

y⇓ A real number.

args⇓ graphics-state parameters passed as keyword arguments.

closed⇓ A boolean.

filled⇓ A boolean.

fill-rule⇓ One of the keywords :even-odd and :winding.

Description

The function draw-path draws the path path at (x y) in port.

When closed is non-nil, a line is drawn from the last point in the path to the start of the last figure in the path. When filled is
non-nil, the path is filled, otherwise its outline is drawn; closed is ignored if filled is non-nil. The transform, foreground,
background, thickness, scale-thickness, dashed, dash, line-end-style, line-joint-style and mask from port's graphics-state
are all used, unless overridden in args. fill-rule specifies how overlapping regions are filled. Possible values for fill-rule are
:even-odd and :winding.

path is a path specification, which consists of path elements that describe a number of disconnected figures. The origin of the
path is (x y), so all other coordinates within the path are translated relative to that point.

The following formats of path specification are supported:

• A sequence of lists, each of which is a path element as described below.

• A function designator to generate the path elements. Graphics ports calls the function when it wants to obtain the path
elements. The function takes a single argument, which is a function that should be called with each path elements as its
arguments.

The following path elements can be used:

:close Closes the current figure by adding a straight line from the current point to the start point.

22 GRAPHICS-PORTS Reference Entries

840

:move nx ny Closes the current figure and starts a new one at (nx ny).

:line nx ny Adds a straight line to the current figure, from the current point to (nx ny) and makes (nx ny) be
the current point.

:arc ax ay width height start-angle sweep &optional movep

Adds an elliptical arc to the current figure, contained in the rectangle from (ax ay) to (ax+width
ay+width) from start-angle to start-angle+sweep-angle. Both angles are specified in radians and
positive values mean anticlockwise. If movep is nil (the default), then a straight line is also
added from the current point to the start of the arc, otherwise a new figure is started from the start
of the arc. The end of the arc becomes the new current point.

:bezier cx1 cy1 cx2 cy2 nx ny

Adds a cubic Bézier curve to the current figure, from the current point to (nx ny) using control
points (cx1 cy1) and (cx2 cy2).

:rectangle rx ry width height

Adds a self contained figure, a rectangle from (rx ry) to (rx+width ry+width).

:ellipse ex ey x-radius y-radius

Adds a self contained figure, an ellipse of the given radii centered on (ex ey).

:scale sx sy elements

Adds the path elements elements, scaling them by sx and sy.

:rotate theta elements

Adds the path elements elements, rotating them theta radians about the origin. If theta is positive,
then the rotation is clockwise.

:translate dx dy elements

Adds the path elements elements, translating them by dx and dy.

:transform transform elements

Adds the path elements elements, transformed by transform.

Examples

Draws two lines from (40 30) to (140 30) and from (140 30) to (140 130):

(draw-path port '((:line 100 0) (:line 100 100)) 40 30)

Draws an outline triangle with vertices (40 30), (140 30) and (140 130):

(draw-path port '((:line 100 0) (:line 100 100))
 40 30 :closed t)

Draws a filled triangle with vertices (40 30), (140 30) and (140 130):

(draw-path port '((:line 100 0) (:line 100 100))

22 GRAPHICS-PORTS Reference Entries

841

 40 30 :filled t)

Draws a filled triangle exactly as in the previous example but using a function to generate the path elements:

(flet ((generate (fn)
 (funcall fn :line 100 0)
 (funcall fn :line 100 100)))
 (draw-path port #'generate 40 30 :filled t))

Draws 6 copies of a shape consisting of two lines and an arc:

(labels ((generate-1 (fn)
 (funcall fn :line 50 0)
 (funcall fn :line 50 50)
 (funcall fn :arc 0 -50 100 100
 (/ pi -2) (/ pi -2)))
 (generate-6 (fn)
 (dotimes (x 6)
 (funcall fn :rotate (* 2 pi (/ x 6))
 #'generate-1))))
 (draw-path port #'generate-6 80 80))

There are more examples in:

(example-edit-file "capi/graphics/paths")

There are further examples in 20 Self-contained examples.

See also

draw-polygon
draw-line
draw-arc
draw-ellipse
graphics-state
13 Drawing - Graphics Ports

draw-point Function

Summary

Draws a pixel or unit square at a given point.

Package

graphics-ports

Signature

draw-point port x y &rest args

Arguments

port⇓ A graphics port.

22 GRAPHICS-PORTS Reference Entries

842

x⇓ A real number.

y⇓ A real number.

args⇓ graphics-state parameters passed as keyword arguments.

Description

The function draw-point draws a single-pixel point at (x y). The transform, foreground, background, operation, mask,
pattern, shape-mode and compositing-mode from port's graphics-state are all used, unless overridden in args.
Additionally on X11/Motif only, stipple is used.

When drawing-mode is :compatible the output is a single pixel. Note that its position is transformed in the normal way.

When drawing-mode is :quality this draws a unit square as if by draw-rectangle, transformed in the normal way.

See also

draw-points
graphics-state

draw-points Function

Summary

Draws pixels or unit squares at given points.

Package

graphics-ports

Signature

draw-points port description &rest args

Arguments

port⇓ A graphics port.

description⇓ A description sequence.

args⇓ graphics-state parameters passed as keyword arguments.

Description

The function draw-points draws several points in port (as if by draw-point) as specified by description, which is a
sequence of x y pairs. It is usually faster than several calls to draw-point. See draw-point for more information,
including about how args are used.

See also

draw-point

22 GRAPHICS-PORTS Reference Entries

843

draw-polygon Function

Summary

Draws a polygon.

Package

graphics-ports

Signature

draw-polygon port points &rest args &key filled closed fill-rule

Arguments

port⇓ A graphics port.

points⇓ A description sequence.

args⇓ graphics-state parameters passed as keyword arguments.

filled⇓ A boolean.

closed⇓ A boolean.

fill-rule⇓ A keyword.

Description

The function draw-polygon draws a polygon using alternating x and y values in points as the vertices. When closed is true
the edge from the last vertex to the first to be drawn. When filled is true a filled, closed polygon is drawn; closed is ignored if
filled is true.

The transform, foreground, background, operation, thickness, scale-thickness, dashed, dash, line-end-style, line-joint-style,
mask, pattern, shape-mode and compositing-mode from port's graphics-state are all used, unless overridden in args.
Additionally on X11/Motif only, stipple is used.

fill-rule specifies how overlapping regions are filled. Possible values are :even-odd and :winding.

See also

draw-polygons
graphics-state
13 Drawing - Graphics Ports

draw-polygons Function

Summary

Draws several polygons.

22 GRAPHICS-PORTS Reference Entries

844

Package

graphics-ports

Signature

draw-polygons port description &rest args &key filled closed fill-rule

Arguments

port⇓ A graphics port.

description⇓ A sequence of sequences of real numbers.

args⇓ graphics-state parameters passed as keyword arguments.

filled⇓ A boolean.

closed⇓ A boolean.

fill-rule⇓ A keyword.

Description

The function draw-polygons draws several polygons in port. description should be a sequence containing sequences with
alternating x and y values representing the vertices. description consists of groups of points as in draw-polygon.

When closed is true the edge from the last vertex to the first to be drawn.

When filled is true a filled, closed polygons are drawn; closed is ignored if filled is true.

The transform, foreground, background, operation, thickness, scale-thickness, dashed, dash, line-end-style, line-joint-style,
mask, pattern, shape-mode and compositing-mode from port's graphics-state are all used, unless overridden in args.
Additionally on X11/Motif only, stipple is used.

fill-rule specifies how overlapping regions are filled. Possible values are :even-odd and :winding.

Examples

This draws two hexagons, one inside the other:

(gp:draw-polygons oo
 '((150 100 200 100 235 150 200
 200 150 200 115 150)
 (140 90 210 90 250 150
 210 210 140 210 100 150))
 :closed t)

See also

draw-polygon
graphics-state
13 Drawing - Graphics Ports

22 GRAPHICS-PORTS Reference Entries

845

draw-rectangle Function

Summary

Draws a rectangle.

Package

graphics-ports

Signature

draw-rectangle port x y width height &rest args &key filled

Arguments

port⇓ A graphics port.

x⇓ A real number.

y⇓ A real number.

width⇓ A real number.

height⇓ A real number.

args⇓ graphics-state parameters passed as keyword arguments.

filled⇓ A boolean.

Description

The function draw-rectangle draws a rectangle whose corners are (x y), (x+width y), (x+width y+height) and (x y+height).

filled, if non-nil, causes a filled rectangle to be drawn. While the exact results are host-specific, it is intended that a filled
rectangle does not include the lines where the x coordinate is x+width or the y coordinate is y+height while a non-filled
rectangle does. This function works correctly if port's transform includes rotation.

The transform, foreground, background, operation, thickness, scale-thickness, dashed, dash, line-joint-style, mask, pattern,
shape-mode and compositing-mode from port's graphics-state are all used, unless overridden in args. Additionally on
X11/Motif only, stipple is used.

See also

draw-rectangles
graphics-state
13 Drawing - Graphics Ports

22 GRAPHICS-PORTS Reference Entries

846

draw-rectangles Function

Summary

Draws several rectangles.

Package

graphics-ports

Signature

draw-rectangles port description &rest args &key filled

Arguments

port⇓ A graphics port.

description⇓ A description sequence.

args⇓ graphics-state parameters passed as keyword arguments.

filled⇓ A boolean.

Description

The function draw-rectangles draws several rectangles as specified by description. This is usually more efficient than
making several calls to draw-rectangle. description is a repeating sequence of values of the form x y width height.

filled, if true, causes filled rectangles to be drawn. While the exact results are host-specific, it is intended that a filled
rectangle does not include the lines where the x coordinate is x+width or the y coordinate is y+height while a non-filled
rectangle does. This function works correctly if port's transform includes rotation.

The transform, foreground, background, operation, thickness, scale-thickness, dashed, dash, line-joint-style, mask, pattern,
shape-mode and compositing-mode from port's graphics-state are all used, unless overridden in args. Additionally on
X11/Motif only, stipple is used.

See also

draw-rectangle
graphics-state
13 Drawing - Graphics Ports

draw-string Function

Summary

Draws a string with the baseline positioned at a given point.

Package

graphics-ports

22 GRAPHICS-PORTS Reference Entries

847

Signature

draw-string port string x y &rest args &key start end block

Arguments

port⇓ A graphics port.

string⇓ A string.

x⇓ A real number.

y⇓ A real number.

args⇓ graphics-state parameters passed as keyword arguments.

start⇓ A real number.

end⇓ A real number.

block⇓ A boolean.

Description

The function draw-string draws the string string with the baseline starting at (x y). The transform, foreground,
background, operation, stipple, pattern, mask, mask-transform, font, text-mode and compositing-mode from port's
graphics-state are all used, unless overridden in args.

start and end specify which elements of string to draw. The default value of start is 0.

block, if true, causes each character to be drawn in a character cell filled with the background of port's graphics-state.

You can draw with the system highlight by setting graphics-state parameter foreground :color_highlighttext and
background :color_highlight.

Notes

The graphics-state parameter operation is not supported for drawing text on Microsoft Windows.

Examples

(let ((op (capi:contain
 (make-instance 'capi:output-pane
 :background :red))))
 (gp:draw-string op "highlighted"
 10 10
 :graphics-args
 (list :foreground
 :color_highlighttext)))

See also

graphics-state
13 Drawing - Graphics Ports

22 GRAPHICS-PORTS Reference Entries

848

ensure-gdiplus Function

Summary

Ensures GDI+ is present and running, or shuts it down. Needed only when writing FLI graphics code on Windows.

Package

graphics-ports

Signature

ensure-gdiplus &key event-func force shutdown => result

Arguments

event-func⇓ A function, or nil.

force⇓ A boolean.

shutdown⇓ A boolean.

Values

result A boolean.

Description

The function ensure-gdiplus checks that the GDI+ module gdiplus.dll is loaded and that GdiplusStartup has been
called, or shuts down GDI+.

Most users will not need to call ensure-gdiplus. This is because when LispWorks itself uses GDI+, for instance via
read-external-image, it calls ensure-gdiplus automatically, and never shuts GDI+ down.

However, if your code uses GDI+ directly (by calling it through the Foreign Language Interface), then you should call
ensure-gdiplus instead of using GdiplusStartup directly. Then, LispWorks will know that GDI+ has already started.
This is the only circumstance in which you need to call ensure-gdiplus.

Note: ensure-gdiplus is implemented only in LispWorks for Windows.

If shutdown is nil, ensure-gdiplus ensures GDI+ is started, by the following steps:

1. Load the GDI+ module gdiplus.dll, if it is not already loaded.

2. If GDI+ was already started by a previous call to ensure-gdiplus, force is nil, and event-func was either not passed
or is cl:eq to the value that was passed in the previous call to ensure-gdiplus then ensure-gdiplus simply
returns nil.

3. If GDI+ was already started, shut it down.

4. Start GDI+, and return the result of GdiplusStartup. This is 0 for success. For he meaning of other values, see the
documentation of gpStatus in the MSDN.

If shutdown is true, then if GDI+ was started ensure-gdiplus shuts it down, and returns t, otherwise ensure-gdiplus
returns nil. The default value of shutdown is nil.

22 GRAPHICS-PORTS Reference Entries

849

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm

The default value of both event-func and force is nil.

See also

read-external-image

external-image System Class

Summary

A class representing a color image.

Package

graphics-ports

Superclasses

t

Description

The system class external-image provides a representation of a color image that is subject to write-external-image,
read-external-image and convert-external-image operations.

See also

convert-external-image
read-external-image
write-external-image
13 Drawing - Graphics Ports

external-image-color-table Accessor

Summary

Returns a vector containing RGB color specifications of an external image.

Package

graphics-ports

Signature

external-image-color-table external-image => color-table

setf (external-image-color-table external-image) color-table => color-table

Arguments

external-image⇓ An external-image.

22 GRAPHICS-PORTS Reference Entries

850

color-table A color table.

Values

color-table A color table.

Description

The accessor external-image-color-table gets and sets a vector containing RGB color specifications representing the
color table as specified in external-image.

external-image must be a plain external-image. See 13.10 Working with images for details.

If the result is nil, the external image is a 24-bit DIB, with the colors defined in each pixel instead of through a table.

When setting the color-table of an external image, the new color-table must be the same length as the external image's
original color table.

externalize-and-write-image Function

Summary

Externalizes and writes an image to file.

Package

graphics-ports

Signature

externalize-and-write-image gp image destination &key type if-exists errorp x-hot y-hot quality &allow-other-
keys => result

Arguments

gp⇓ A CAPI pane.

image⇓ An image object.

destination⇓ A file namestring, a pathname or an open output stream with element type compatible
with (unsigned-byte 8), i.e. base-char, (signed-byte 8) or
(unsigned-byte 8).

type⇓ One of the keywords :bmp, :jpg, :jpeg, :png and :tiff. Other keywords may be
supported, depending on the platform.

if-exists⇓ One of the keywords :error, :new-version, :rename, :rename-and-delete,
:overwrite, :append and :supersede, or nil.

errorp⇓ A boolean.

x-hot⇓ A non-negative integer.

y-hot⇓ A non-negative integer.

quality⇓ An integer in the range [0,100].

22 GRAPHICS-PORTS Reference Entries

851

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

Values

result⇓ A filename or nil.

Description

The function externalize-and-write-image externalizes and writes an image object to a file or stream.

image should be an image that can be drawn to gp. The bytes of image are written to destination as if by write-sequence.

The output image type can be specified by type. If type is not supplied then the output image type is determined by the file
type of destination.

If type is supplied, it must be a keyword which specifies a known type, as returned by list-known-image-formats with
for-writing-too t. The types :bmp, :jpg, :png and :tiff are known on all platforms (except Motif). Additionally, :jpeg
is an as alias for :jpg.

If type is not supplied, then the file extension of destination is used to "guess" the type. In general it is the extension
uppercased and interned in the keyword package. It also recognizes some special cases:

Image type from file extension: special cases

File extension Image type

"TIF" :tiff

"DIB" :bmp

"JPE" :jpg

"JPEG" :jpg

"JFIF" :jpg

"JP2" :jpg2000

Note: Image type :jpg2000 is implemented on Cocoa only.

errorp controls what happens if externalize-and-write-image does not recognize the type. If errorp is non-nil, it calls
error, otherwise it returns nil. The default value of errorp is t.

if-exists controls what to do if destination already exists, in the same way as the if-exists argument to open. However, unlike
open, the default value of if-exists is :supersede.

x-hot and y-hot are used only when generating a CUR file, which is currently implemented on GTK+ only. They specify the
hotspot coordinates when the image is used as a cursor (in a LispWorks application by load-cursor and
(setf capi:simple-pane-cursor), or in other applications). Their values must be integers within the width/height of
the image. The default value of both x-hot and y-hot is 0.

quality is used for writing a JPG image on GTK+. It must be an integer in the inclusive range [0,100]. High values generate
better images and larger files.

result is destination on success, or nil for an unknown type when errorp is nil. It signals an error in other cases (for
example, failure to open the file because of permissions).

Examples

There is a simple example in:

22 GRAPHICS-PORTS Reference Entries

852

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_seq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm

(example-edit-file "capi/graphics/images-with-alpha")

See also

list-known-image-formats
13 Drawing - Graphics Ports

externalize-image Function

Summary

Returns an external image containing color information from an image.

Package

graphics-ports

Signature

externalize-image gp image &key maximum-colors important-colors type quality &allow-other-keys => external-
image

Arguments

gp⇓ A CAPI pane.

image⇓ An image.

maximum-colors⇓ An integer or nil. The default is nil.

important-colors⇓ An integer or nil.

type⇓ One of the keywords :bmp, :jpg, :jpeg, :png and :tiff. Other keywords may be
supported, depending on the platform.

quality⇓ An integer in the range [0,100].

Values

external-image⇓ An external image.

Description

The function externalize-image returns an external-image containing color information from image, which should
be an image that can be drawn to gp.

If maximum-colors is nil or if the screen has no palette, an external-image using all the colors in image is created.

If maximum-colors is an integer, the external-image containing image will be created using no more than that number of
colors. If the image contains more than maximum-colors colors, then maximum-colors most frequently used colors will be
accurately stored; the remainder will be approximated by nearest colors out of the accurate ones, using internal Color System
parameters as the weighting factors for the color distance.

important-colors is recorded in external-image for later use, and specifies the number of colors required to draw a good
likeness of the image. The default value is the number of colors in the image.

22 GRAPHICS-PORTS Reference Entries

853

If type is supplied, it must be a keyword which specifies a known type, as returned by list-known-image-formats with
for-writing-too t. The types :bmp, :jpg, :png and :tiff are known on all platforms (except Motif). Additionally, :jpeg
is an as alias for :jpg.

quality is used for writing a JPG image on GTK+. It must be an integer in the inclusive range [0,100]. High values generate
better images and larger files.

See also

make-image-from-port
write-external-image
13 Drawing - Graphics Ports

f2pi Constant

Summary

(* 2 pi) as a single-float.

Package

graphics-ports

Description

The constant f2pi is the result of (float (* 2.0 cl:pi) 1.0). It is a cl:single-float.

See also

fpi
fpi-by-2

find-best-font Function

Summary

Returns the best font for a CAPI pane.

Package

graphics-ports

Signature

find-best-font pane fdesc => font

Arguments

pane⇓ A graphic port.

fdesc⇓ A font description.

22 GRAPHICS-PORTS Reference Entries

854

http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm

Values

font A font.

Description

The function find-best-font returns the best font for pane which matches fdesc. When there alternative fonts available
the choice of best font is operating system dependent.

When fdesc contains the attribute :stock with value :system-font or :system-fixed-font, the lookup will always
find a stock font.

By default find-best-font looks only for Truetype fonts in LispWorks 6.1 and later.

Notes

With the default drawing-mode :quality only Truetype fonts are supported. Non-Truetype fonts are supported only when
using drawing-mode :compatible.

Compatibility note

To get the LispWorks 6.0 behavior where non-Truetype fonts are also found, pass :type :wild to
make-font-description.

Examples

(example-edit-file "capi/graphics/catherine-wheel")

See also

find-matching-fonts
make-font-description
prompt-for-font
13 Drawing - Graphics Ports

find-matching-fonts Function

Summary

Returns a list of the font objects available for a pane.

Package

graphics-ports

Signature

find-matching-fonts pane fdesc => fonts

Arguments

pane⇓ A CAPI pane.

22 GRAPHICS-PORTS Reference Entries

855

fdesc⇓ A font description.

Values

fonts A list of fonts.

Description

The function find-matching-fonts returns a list of the font objects available for pane which match the attributes in fdesc.
nil is returned if none match.

When fdesc contains the attribute :stock with value :system-font or :system-fixed-font, the lookup will always
find a stock font.

find-matching-fonts behaves as if the :family, :weight, :slant and :size attributes have value :wild if they are
missing from fdesc.

See also

find-best-font
list-all-font-names
make-font-description
13 Drawing - Graphics Ports

font Type

Summary

An object corresponding to a font in the native system.

Package

graphics-ports

Signature

font

Description

The type font is the type of objects are returned by find-best-font and find-matching-fonts.

font objects are used to specify fonts for drawing, either in the graphics-state of the port or in the drawing functions
themselves. font objects can also be used for querying the actual attributes of the font (ascent, descent and so on) and the
dimensions of character and strings.

Notes

font objects are not externalizable objects.

See also

font-description
find-best-font

22 GRAPHICS-PORTS Reference Entries

856

find-matching-fonts
graphics-state
get-font-ascent
get-font-descent
get-font-width
get-font-height
get-font-average-width
get-char-width
get-char-ascent
get-char-descent
get-character-extent
get-string-extent
compute-char-extents
font-single-width-p
font-fixed-width-p
font-dual-width-p

font-description Function

Summary

Returns a font description object for a given font.

Package

graphics-ports

Signature

font-description font => fdesc

Arguments

font⇓ A font.

Values

fdesc A font description.

Description

The function font-description returns a font description object for font. Using this font description in a later call to
find-matching-fonts or find-best-font on the original pane is expected to return a similar font.

See also

convert-to-font-description
make-font-description
font-description

22 GRAPHICS-PORTS Reference Entries

857

font-description Type

Summary

An object used in CAPI to describe a font.

Package

graphics-ports

Signature

font-description

Description

The type font-description is used for objects that contain a description of a font. The description can be partial, with
only some attributes given values. font-description objects are the normal way of specifying fonts in CAPI.

font-description objects are created or returned by make-font-description, convert-to-font-description,
font-description, merge-font-descriptions and augment-font-description.

font-description objects are used as the font specification for CAPI panes (see simple-pane). They can also be used
directly in calls to find-best-font and find-matching-fonts.

Notes

1. font-description objects do not contain native system dependent values, and are externalizable objects.

2. A font-description cannot be used directly as an argument to draw-string or draw-character, or as the value
of the graphics state parameter font in a graphics-state. These require the result of find-best-font or
find-matching-fonts.

See also

make-font-description
convert-to-font-description
merge-font-descriptions
augment-font-description
font-description-attributes
find-best-font
find-matching-fonts
3 General Properties of CAPI Panes

font-description-attributes Function

Summary

Returns the attributes of a given font description.

22 GRAPHICS-PORTS Reference Entries

858

Package

graphics-ports

Signature

font-description-attributes fdesc => font-attributes

Arguments

fdesc⇓ A font description.

Values

font-attributes A list of font attributes.

Description

The function font-description-attributes returns the attributes of fdesc. The list should not be destructively
modified.

See also

font-description-attribute-value

font-description-attribute-value Function

Summary

Returns the values of a given font attribute in a font description.

Package

graphics-ports

Signature

font-description-attribute-value fdesc font-attribute => value

Arguments

fdesc⇓ A font description.

font-attribute⇓ A font attribute.

Values

value A font attribute value.

Description

The function font-description-attribute-value returns the value of font-attribute in fdesc, or :wild if font-
attribute is not specified in fdesc.

22 GRAPHICS-PORTS Reference Entries

859

See also

font-description-attributes

font-dual-width-p Function

Summary

The predicate for dual-width fonts. This function is deprecated.

Package

graphics-ports

Signature

font-dual-width-p port &optional font => result

Arguments

port⇓ A graphics port.

font⇓ A font object.

Values

result A boolean.

Description

The function font-dual-width-p returns t if font is fixed-width and contains double width characters. Such a font is dual-
width. font defaults to the font associated with port.

See also

font-fixed-width-p

font-fixed-width-p Function

Summary

The predicate for fixed-width fonts.

Package

graphics-ports

Signature

font-fixed-width-p port &optional font => result

22 GRAPHICS-PORTS Reference Entries

860

Arguments

port⇓ A graphics port.

font⇓ A font object.

Values

result A boolean.

Description

The function font-fixed-width-p returns t if font is fixed-width. font defaults to the font associated with port.

Fixed-width is not exactly the same as single-width. A fixed-width font with double width characters is dual-width; other
fixed-width fonts are single-width.

Notes

editor-pane supports variable width fonts on Microsoft Windows, GTK+ and Motif.

See also

font-dual-width-p

font-single-width-p Function

Summary

The predicate for single-width fonts. This function is deprecated.

Package

graphics-ports

Signature

font-single-width-p port &optional font => result

Arguments

port⇓ A graphics port.

font⇓ A font object.

Values

result A boolean.

Description

The function font-single-width-p returns t when all characters in the font specified by font are of the same width. font
defaults to the font associated with port.

22 GRAPHICS-PORTS Reference Entries

861

A single-width font is fixed-width.

See also

font-fixed-width-p
font-dual-width-p

fpi Constant

Summary

pi as a single-float.

Package

graphics-ports

Description

The constant fpi is the result of (float cl:pi 1.0). It is a cl:single-float.

See also

2pi
f2pi
fpi-by-2

fpi-by-2 Constant

Summary

(/ pi 2) as a single-float.

Package

graphics-ports

Description

The constant fpi-by-2 is the result of (float (* 0.5 cl:pi) 1.0). It is a cl:single-float.

See also

fpi
f2pi

22 GRAPHICS-PORTS Reference Entries

862

http://www.lispworks.com/documentation/HyperSpec/Body/v_pi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm

free-image Function

Summary

Frees the library resources allocated with an image.

Package

graphics-ports

Signature

free-image port image

Arguments

port⇓ A CAPI pane.

image⇓ An image.

Description

The function free-image frees the library resources associated with image. This should be done when an image is no
longer needed.

port should be the pane used when the image was created, for example by load-image.

See also

13 Drawing - Graphics Ports
17 Drag and Drop

free-image-access Function

Summary

Frees an Image Access object.

Package

graphics-ports

Signature

free-image-access image-access

Arguments

image-access⇓ An Image Access object.

22 GRAPHICS-PORTS Reference Entries

863

Description

The function free-image-access discards image-access, which should be an Image Access object returned by
make-image-access.

See also

image-access-transfer-from-image
image-access-transfer-to-image
image-access-pixel
make-image-access
13.10.8 Image access

get-bounds Function

Summary

Returns the four values of the currently collected drawing extremes.

Package

graphics-ports

Signature

get-bounds pixmap-port => left, top, right, bottom

Arguments

pixmap-port⇓ A graphics port.

Values

left⇓ An integer.

top⇓ An integer.

right⇓ An integer.

bottom⇓ An integer.

Description

The function get-bounds returns the four values left, top, right, bottom of the currently collected drawing extremes in
pixmap-port. The values can be used to get an image from the port.

Drawing extremes are collected by passing non-nil for the collect or relative arguments to create-pixmap-port or
with-pixmap-graphics-port.

Examples

(with-pixmap-graphics-port (p1 pane width height
 :relative t)
 (with-graphics-rotation (p1 0.123)
 (draw-rectangle p1 100 100 200 120 :filled t

22 GRAPHICS-PORTS Reference Entries

864

 :foreground :red)
 (get-bounds p1)))

produces the following output:

72
112
285
255

See also

create-pixmap-port
make-image-from-port
with-pixmap-graphics-port

get-character-extent Function

Summary

Returns the extent of a character in pixels.

Package

graphics-ports

Signature

get-character-extent port character &optional font => left, top, right, bottom

Arguments

port⇓ A CAPI pane.

character⇓ A character.

font⇓ A font.

Values

left An integer.

top An integer.

right An integer.

bottom An integer.

Description

The function get-character-extent returns the extent in pixels of character in font.

font defaults to the font associated with port.

22 GRAPHICS-PORTS Reference Entries

865

get-char-ascent Function

Summary

Returns the ascent of a character in pixels.

Package

graphics-ports

Signature

get-char-ascent port character font => ascent

Arguments

port⇓ A CAPI pane.

character⇓ A character.

font⇓ A font.

Values

ascent An integer.

Description

The function get-char-ascent returns the ascent in pixels of character in in font.

font defaults to the font associated with port.

get-char-descent Function

Summary

Returns the descent of a character in pixels.

Package

graphics-ports

Signature

get-char-descent port character font => descent

Arguments

port⇓ A CAPI pane.

character⇓ A character.

22 GRAPHICS-PORTS Reference Entries

866

font⇓ A font.

Values

descent An integer.

Description

The function get-char-descent returns the descent in pixels of character in font.

font defaults to the font associated with port.

get-char-width Function

Summary

Returns the width of a character in pixels.

Package

graphics-ports

Signature

get-char-width port character font => width

Arguments

port⇓ A CAPI pane.

character⇓ A character.

font⇓ A font.

Values

width An integer.

Description

The function get-char-width returns the width in pixels of character in font.

font defaults to the font associated with port.

get-enclosing-rectangle Function

Summary

Returns the smallest rectangle enclosing the given points.

22 GRAPHICS-PORTS Reference Entries

867

Package

graphics-ports

Signature

get-enclosing-rectangle &rest points => left, top, right, bottom

Arguments

points⇓ Real numbers.

Values

left A real number.

top A real number.

right A real number.

bottom A real number.

Description

The function get-enclosing-rectangle returns four values, describing the rectangle which exactly encloses the input
points. points must be a (possibly empty) list of alternating x and y values. If no points are given the function returns the null
(unspecified) rectangle, which is four nils.

get-font-ascent Function

Summary

Returns the ascent of a font.

Package

graphics-ports

Signature

get-font-ascent port &optional font => ascent

Arguments

port⇓ A CAPI pane.

font⇓ A font.

Values

ascent An integer.

Description

The function get-font-ascent returns the ascent in pixels of font.

22 GRAPHICS-PORTS Reference Entries

868

font defaults to the font associated with port.

get-font-average-width Function

Summary

Returns the average width of a font in pixels.

Package

graphics-ports

Signature

get-font-average-width port &optional font => average-width

Arguments

port⇓ A CAPI pane.

font⇓ A font.

Values

average-width An integer.

Description

The function get-font-average-width returns average width in pixels of font.

font defaults to the font associated with port.

See also

13 Drawing - Graphics Ports

get-font-descent Function

Summary

Returns the descent in pixels of a font.

Package

graphics-ports

Signature

get-font-descent port &optional font => descent

22 GRAPHICS-PORTS Reference Entries

869

Arguments

port⇓ A CAPI pane.

font⇓ A font.

Values

descent An integer.

Description

The function get-font-descent returns the descent in pixels of font.

font defaults to the font associated with port.

get-font-height Function

Summary

Returns the height of a font.

Package

graphics-ports

Signature

get-font-height port &optional font => height

Arguments

port⇓ A CAPI pane.

font⇓ A font.

Values

height An integer.

Description

The function get-font-height returns the height in pixels of font.

font defaults to the font associated with port.

See also

13 Drawing - Graphics Ports

22 GRAPHICS-PORTS Reference Entries

870

get-font-width Function

Summary

Returns the width of a font.

Package

graphics-ports

Signature

get-font-width port &optional font => width

Arguments

port⇓ A graphics port.

font⇓ A font.

Values

width An integer.

Description

The function get-font-width returns the width in pixels of font.

font defaults to the font associated with port.

See also

13 Drawing - Graphics Ports

get-graphics-state Function

Summary

Returns the graphics-state object for a graphics port. Deprecated, use port-graphics-state instead.

Package

graphics-ports

Signature

get-graphics-state port => state

Arguments

port⇓ A graphics port.

22 GRAPHICS-PORTS Reference Entries

871

Values

state A graphics-state object.

Description

The function get-graphics-state returns the graphics-state object of port. get-graphics-state is deprecated.
Use port-graphics-state instead.

See also

port-graphics-state

get-origin Function

Summary

Returns the coordinate origin of a pixmap graphics port.

Package

graphics-ports

Signature

get-origin pixmap-port => x, y

Arguments

pixmap-port⇓ A graphics port.

Values

x An integer.

y An integer.

Description

The function get-origin returns the coordinate origin or pixmap-port. Normally this is (0 0) but after a series of drawing
function calls with :relative t, the drawing may have been shifted. The values returned by get-origin tell you by how
much. The values are not needed when making images from the port's drawing.

Examples

(with-pixmap-graphics-port (p1 pane width height :relative t)
 (with-graphics-rotation (p1 0.123)
 (draw-rectangle p1 0 0 200 120 :filled t
 :foreground :red)
 (get-origin p1)))

produces:

22 GRAPHICS-PORTS Reference Entries

872

-15
0

get-string-extent Function

Summary

Returns the extent in pixels of a string.

Package

graphics-ports

Signature

get-string-extent port string &optional font => left, top, right, bottom

Arguments

port⇓ A CAPI pane.

string⇓ A string.

font⇓ A font.

Values

left An integer.

top An integer.

right An integer.

bottom An integer.

Description

The function get-string-extent returns the extent in pixels of string in font.

font defaults to the font associated with port.

Note: To compute the horizontal extents of each successive character in a string for a given port or font, use
compute-char-extents.

See also

compute-char-extents

get-transform-scale Function

Summary

Returns the overall scaling factor of a transform.

22 GRAPHICS-PORTS Reference Entries

873

Package

graphics-ports

Signature

get-transform-scale transform => result

Arguments

transform⇓ A transform object.

Values

result A real number.

Description

The function get-transform-scale returns a single number representing the overall scaling factor present in transform.

Notes

See graphics-state for details of how a transform is used.

See also

graphics-state
transform

graphics-port-background
graphics-port-font
graphics-port-foreground
graphics-port-transform Accessors

Summary

Accesses the background, font, foreground or transform in the graphics state of a graphics port.

Package

graphics-ports

Signatures

graphics-port-background port => background

(setf graphics-port-background) background port => background

graphics-port-font port => font

(setf graphics-port-font) font port => font

graphics-port-foreground port => foreground

22 GRAPHICS-PORTS Reference Entries

874

(setf graphics-port-foreground) foreground port => foreground

graphics-port-transform port => transform

(setf graphics-port-transform) transform port => transform

Arguments

port⇓ A graphics port.

background⇓ A color specification, or nil.

font⇓ A font object, or nil.

foreground⇓ A color specification, or nil.

transform⇓ A transform object.

Values

background⇓ A color specification, or nil.

font⇓ A font object, or nil.

foreground⇓ A color specification, or nil.

transform⇓ A transform object.

Description

The accessors graphics-port-background, graphics-port-font, graphics-port-foreground and
graphics-port-transform access the current background, font, foreground or transform in the graphics-state
associated with port. This can be used to set the value by setf.

See the graphics-state entry for the types and acceptable values of the various slots, and information about how they are
used.

See also

graphics-state
port-graphics-state
set-graphics-state
transform
with-graphics-state

graphics-port-mixin Class

Summary

An abstract class supporting Graphics Ports operations.

Package

graphics-ports

22 GRAPHICS-PORTS Reference Entries

875

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

Superclasses

standard-object

Subclasses

output-pane
pixmap-port
printer-port
metafile-port

Description

The class graphics-port-mixin is an abstract class for supporting graphics ports operations. All the classes that support
drawing (generally referred to as "graphics ports") inherit from it.

See also

13 Drawing - Graphics Ports

graphics-state System Class

Summary

The graphics state object, holding default parameters for drawing operations on an associated port.

Package

graphics-ports

Superclasses

t

Accessors

graphics-state-transform
graphics-state-foreground
graphics-state-background
graphics-state-operation
graphics-state-stipple
graphics-state-pattern
graphics-state-thickness
graphics-state-scale-thickness
graphics-state-dashed
graphics-state-dash
graphics-state-fill-style
graphics-state-line-end-style
graphics-state-line-joint-style
graphics-state-mask
graphics-state-mask-x
graphics-state-mask-y
graphics-state-mask-transform
graphics-state-font
graphics-state-text-mode

22 GRAPHICS-PORTS Reference Entries

876

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm

graphics-state-shape-mode
graphics-state-compositing-mode

Description

The system class graphics-state contains the default values of graphics parameters for drawing operations. Each
graphics port has a graphics-state object associated with it. The drawing operations such as draw-ellipse,
draw-rectangle and draw-string can override specific parameters by passing them as keyword arguments.

graphics-state objects are used in the with-graphics-state macro and modified using the accessor functions listed
above. See 13.3.1 Setting the graphics state for examples.

graphics-state contains the following properties:

transform A transform object which determines the coordinate transformation applying to the graphics
port. The default value is the unit transform which leaves the port coordinates unchanged from
those used by the host window system — origin at top left, X increasing to the right and Y
increasing down the screen. Allowed values are anything returned by the transform functions,
described in 13.6 Graphics state transforms.

foreground Determines the foreground color used in drawing functions. The value can be a converted color
(result of convert-color), a color name symbol, a color name string or a color spec object.
Using converted colors results in better performance, because it saves the system from doing the
conversion each time it uses it. The default value is :black. The value
:color_highlighttext is useful for drawing text with the system highlighting.

background Determines the background color used in functions which draw text such as draw-string when
block is true.

On X11/Motif, background also determines the background color used in drawing functions
which use a stipple.

Valid values are the same as for foreground. The default value is :white. The value
:color_highlight is useful for drawing text with the system highlighting.

operation Determines the color combination used in the drawing primitives when the port's drawing-mode
is :compatible. Valid values are 0 to 15, being the same logical values as the op arg to the
Common Lisp function boole. The default value is boole-1. 13.7.1 Combining pixels with
:compatible drawing shows how to use operation.

stipple On X11/Motif stipple is a 1-bit pixmap ("bitmap") or nil (which is the default value). The
bitmap is used in conjunction with the fill-style when drawing. Here, nil means that all pixels
are drawn in the foreground color. A stipple is not transformed by the transform parameter. Its
origin is assumed to coincide with the origin of the port. The stipple is tiled across the drawing.
stipple is ignored if a pattern is given. If no fill-style is given, or it is specified as :solid, when
a stipple is given, then fill-style defaults to :opaque-stippled.

fill-style Determines how the drawing is done. The value should be one of :solid,
:tiled, :opaque-stippled or :stippled. The default value :solid means that the
foreground is used everywhere. :tiled means that the pattern is repeated over across the
drawing.

Additionally on X11/Motif :opaque-stippled means that the stipple bitmap is used with
stipple 1s giving the foreground and 0s the background. :stippled means that the stipple
bitmap is used with foreground where there are 1s and where the are 0s, no drawing is done. If
you specify a stipple but no fill-style, or a fill-style of :solid, it defaults to :opaque-stipple.

22 GRAPHICS-PORTS Reference Entries

877

http://www.lispworks.com/documentation/HyperSpec/Body/f_boole.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_b_1_b.htm

pattern An image the same depth as the port, or nil. If non-nil, pattern is used as the source of color for
drawing instead of the foreground and background parameters. A pattern is not transformed by
the transform parameter. The pattern is tiled across the drawing. When pattern is specified, the
stipple value is ignored.The default value of pattern is nil.

See 13.10 Working with images for information on creating an image.

thickness A number (defaulting to 1) specifying the thickness of lines drawn. If scale-thickness is non-nil,
the value thickness is in port (transformed) coordinates, otherwise thickness is in pixels.

scale-thickness A boolean, defaulting to t which means interpret the thickness parameter in transformed port
coordinates. If scale-thickness is nil, thickness is interpreted in pixels.

dashed A boolean, defaulting to nil. If dashed is t then lines are drawn as a dashed line using dash as
the mark-space specifier.

dash A list of two or more integer, or nil. A list of integers specifies the alternate mark and space
sizes for dashed lines. These mark and space values are interpreted in pixels only. The default
value of dash is (4 4).

line-end-style The value should be one of :butt, :round or :projecting and specifies how to draw the
ends of lines. The default value is :butt.

line-joint-style The value should be one of :bevel, :miter or :round and specifies how to draw the areas
where the edges of polygons meet. The default value is :miter.

mask nil, or a list specifying a shape. The mask clips the drawing, so that drawing occurs only inside
it.

mask should be nil (the default), a list of the form (x y width height), defining a rectangle inside
which the drawing is done or a list of the form (:path path :fill-rule fill-rule) specifying a
path inside which the drawing is done. The mask is not tiled.

In the latter case path should be a path specification (see draw-path). The fill-rule specifies
how overlapping regions are filled. Possible values are :even-odd and :winding. The mask
will be transformed by the mask-transform parameter.

There some examples of path masks in:

(example-edit-file "capi/graphics/paths")

mask-x An integer specifying in window coordinates where in the port the X coordinate of the mask
origin is to be considered to be. The default value is 0.

The mask-x parameter works only when the drawing-mode is :compatible and the platform is
GTK+ or X11/Motif.

mask-x is deprecated.

mask-y An integer specifying in window coordinates where in the port the Y coordinate of the mask
origin is to be considered to be. The default value is 0.

The mask-y parameter works only when the drawing-mode is :compatible and the platform is
GTK+ or X11/Motif.

mask-y is deprecated.

22 GRAPHICS-PORTS Reference Entries

878

mask-transform A transform object which determines the coordinate transformation use for the mask in
drawing-mode :quality.

mask-transform is used only in drawing-mode :quality. It is ignored in drawing-mode
:compatible. The default value is the unit transform, which can also be specified as nil.
Other allowed values include anything returned by the transform functions, described in 13.6
Graphics state transforms. The other allowed value of mask-transform is the keyword
:dynamic which is replaced by the current value of the transform graphics state parameter when
the drawing operation uses the mask.

font Either nil or a font object to be used by the draw-character and draw-string functions.
The default value is nil.

Note that font cannot be a font-description. Use find-best-font to convert a font-
description to a font.

text-mode A keyword controlling the mode of rendering text, most importantly anti-aliasing (see below).

shape-mode A keyword controlling the mode of drawing shapes, that is, anything except text (see below).

compositing-mode A keyword controlling the combining of new drawing with existing drawing (see below).

Each of text-mode and shape-mode can be one of:

:plain No anti-aliasing.

:antialias With anti-aliasing.

:fastest Fastest rendering. The same as :plain except on Windows.

:best Best display.

:default The system default (which is :antialias).

Additionally text-mode can be :compatible, which causes text to be drawn the way it would be drawn if drawing-mode was
:compatible. This makes a difference only on Microsoft Windows, because on other platforms the default text-mode
draws like the :compatible one.

The default of both text-mode and shape-mode is :default.

compositing-mode is a keyword or an integer controlling the compositing mode, that is the way that a new drawing is
combined with the existing value in the target of the drawing to generate the result.

Two values of compositing-mode are supported on all platforms other than Motif:

:over Draw over the existing values. If the source is a solid color, then the result is simply the source.
If the source has alpha value alpha, then it is blended with the destination, with the destination
multiplied by the remainder of the alpha, that is (- 1 alpha).

:copy The source is written to the destination ignoring the existing values. If the source has alpha and
the target does not, that has the effect of converting semi-transparent source to solid.

The default value of compositing-mode is :over.

The value :copy of compositing-mode is especially useful for creating a transparent or semi-transparent pixmap-port,
which can be displayed directly or converted to an image by make-image-from-port.

On Cocoa 10.5 and later and GTK+ 2.8 or later, these additional keyword values of compositing-mode are supported:
:clear, :over, :in, :out, :atop, :dest-over, :dest-in, :dest-out, :dest-atop, :xor and :add. These

22 GRAPHICS-PORTS Reference Entries

879

correspond to the CAIRO_OPERATOR_* operators in Cairo, which are documented in cairographics.org/operators and the
CGBlendMode values which are documented in the CGContext Reference at developer.apple.com.

Note: on GTK+, the "unbounded" operators (:in, :out, :dest-in and :dest-atop) do not work properly for shape
drawings. They can only be used for image drawing and copying operations.

Both Cocoa and GTK+ also allow compositing-mode to be an integer, which is simply passed through to the underlying
system. This allows using modes that are not available via keywords, but it is not portable. For Cocoa, it is a CGBlendMode
as documented in the CGContext Reference. For GTK+ it is cairo_operator_t, as documented in the entry for cairo_t
in the Gnome documentation for Cairo.

Note: For drawing images on Cocoa, only values that corresponding to available keywords work properly.

Notes

1. operation is not supported for drawing text on Microsoft Windows.

2. stipple is supported only on X11/Motif.

3. mask-x and mask-y are supported only on GTK+ and X11/Motif, and only when the drawing-mode is :compatible.

4. pattern is supported only on Microsoft Windows, GTK+ and X11/Motif.

5. operation is not supported by Cocoa/Core Graphics so this slot or argument is ignored on Cocoa.

6. operation is ignored when the port's drawing-mode is :quality.

7. text-mode and shape-mode are supported only on Cocoa, Cairo and GDI+, which are used on Macintosh, GTK and
Windows respectively when the drawing-mode is :quality. For more information about drawing-mode, see 13.2.1 The
drawing mode and anti-aliasing.

Examples

(example-edit-file "capi/graphics/compositing-mode-simple")

(example-edit-file "capi/graphics/compositing-mode")

See also

make-graphics-state
set-graphics-state
with-graphics-state
13 Drawing - Graphics Ports

image System Class

Summary

An abstract image object.

Package

graphics-ports

22 GRAPHICS-PORTS Reference Entries

880

http://cairographics.org/operators/
http://developer.apple.com

Superclasses

t

Accessors

image-height
image-width

Description

The system class image is the abstract image object class. An image can be drawn using draw-image.

image-height and image-width return the image size in pixels.

Notes

On Cocoa and GTK+ you can drag and drop images. See set-drop-object-supported-formats for more information.

See also

convert-external-image
draw-image
load-image
make-image-from-port
make-sub-image
make-scaled-sub-image
read-and-convert-external-image
9 Adding Toolbars
13 Drawing - Graphics Ports
17 Drag and Drop

image-access-height
image-access-width Functions

Summary

Return the dimensions of the underlying image in an Image Access object.

Package

graphics-ports

Signatures

image-access-height image-access => height

image-access-width image-access => width

Arguments

image-access⇓ An Image Access object.

22 GRAPHICS-PORTS Reference Entries

881

Values

height An integer.

width An integer.

Description

The functions image-access-height and image-access-width return the height and width of the underlying image in
image-access.

image-access must be an Image Access object returned by make-image-access.

Notes

It is an error to call image-access-height or image-access-width on an Image Access object that has been freed by
free-image-access.

Examples

(example-edit-file "capi/graphics/image-access")

(example-edit-file "capi/graphics/image-access-alpha")

See also

free-image-access
make-image-access

image-access-pixel Accessor

Summary

Gets and sets the pixels in an Image Access object.

Package

graphics-ports

Signature

image-access-pixel image-access x y => color-rep

(setf image-access-pixel) color-rep image-access x y => color-rep

Arguments

image-access⇓ An Image Access object.

x⇓ An integer.

y⇓ An integer.

color-rep⇓ A color reference.

22 GRAPHICS-PORTS Reference Entries

882

Values

color-rep⇓ A color reference.

Description

The accessor image-access-pixel accesses the converted color at position x, y in the Image Access object image-access.

The converted color color-rep is a color representation like that returned by convert-color. If needed, color-rep can be
converted to an RGB value using unconvert-color. color-rep can contain an alpha value, for images with an alpha
channel, and in that case the values in color-rep are assumed to be premultiplied.

The function (setf image-access-pixel) sets the value of the pixel at position x, y in the Image Access object image-
access.

The color rep has to be a converted color, and if the image has alpha it is assumed to be premultiplied.

image-access must be an Image Access object returned by make-image-access.

Notes

If the result of image-access-pixel on an image with alpha is used elsewhere (for example drawing a string with the
same color), to get the same color you need to un-premultiply it first using color-from-premultiplied. When setting
the color that came from elsewhere in an image with alpha, you will need to premultiply it using
color-to-premultiplied. For images without alpha, premultiplication has no effect.

Examples

(example-edit-file "capi/graphics/image-access")

(example-edit-file "capi/graphics/image-access-alpha")

See also

color-from-premultiplied
color-to-premultiplied
image-access-pixels-from-bgra
image-access-pixels-to-bgra
image-access-transfer-to-image
image-access-transfer-from-image
free-image-access
make-image-access
13.10.8 Image access

image-access-pixels-from-bgra Function

Summary

Copies a vector of pixel values into an Image Access object.

Package

graphics-ports

22 GRAPHICS-PORTS Reference Entries

883

Signature

image-access-pixels-from-bgra image-access vector

Arguments

image-access⇓ An Image Access object.

vector⇓ A vector.

Description

The function image-access-pixels-from-bgra copies all the pixels to the Image Access object image-access from the
vector vector. vector should contain a sequence of integer values in the range 0-255 for blue, green, red and alpha of each
pixel. This function is optimized for the case where vector has element type (unsigned-byte 8). If the image has alpha,
the values in vector are premultiplied.

An error is signalled if vector is not of the correct length for the Image Access object, that is (* 4 width height) where
width and height represent the size of image-access.

image-access must be an Image Access object returned by make-image-access.

Notes

1. If you want to use the values in the vector that was filled from an image with alpha in other places, to get the sample
color you will need to un-premultiply them, either by hand (divide the color values by the alpha), or by making a RGB
color and using color-from-premultiplied.

2. image-access-transfer-to-image must be called after this function (similarly to
(setf image-access-pixel)).

Examples

(example-edit-file "capi/graphics/image-access-bgra")

See also

color-from-premultiplied
image-access-pixel
image-access-pixels-to-bgra

image-access-pixels-to-bgra Function

Summary

Copies pixel values from an Image Access object into a vector.

Package

graphics-ports

Signature

image-access-pixels-to-bgra image-access vector

22 GRAPHICS-PORTS Reference Entries

884

Arguments

image-access⇓ An Image Access object.

vector⇓ A vector.

Description

The function image-access-pixels-to-bgra copies all the pixels in the Image Access object image-access into the
vector vector as a sequence of integer values in the range 0-255 for the blue, green, red and alpha components of each pixel.
This function is optimized for the case where vector has element type (unsigned-byte 8). If the image has alpha, the
values in vector are assumed to be premultiplied.

An error is signalled if vector is not of the correct length for the Image Access object, that is (* 4 width height) where
width and height represent the size of image-access.

image-access must be an Image Access object returned by make-image-access.

Notes

1. When setting values in a vector that is going to be used by image-access-pixels-to-bgra to modify an image with
alpha using colors that came from elsewhere, you need to premultiply them either by hand (multiply the color values by
the alpha), or using color-to-premultiplied.

2. image-access-transfer-from-image must be called before this function (similarly to image-access-pixel).

Examples

(example-edit-file "capi/graphics/image-access-bgra")

See also

color-to-premultiplied
image-access-pixel
image-access-pixels-from-bgra

image-access-transfer-from-image Function

Summary

Gets the pixel values from an image.

Package

graphics-ports

Signature

image-access-transfer-from-image image-access

Arguments

image-access⇓ An Image Access object.

22 GRAPHICS-PORTS Reference Entries

885

Description

The function image-access-transfer-from-image gets the pixel values from an image object, making them accessible
via a corresponding Image Access object image-access.

image-access must be an Image Access object returned by make-image-access.

Notionally image-access-transfer-from-image transfers the pixel data from the window system into image-access,
though it might do nothing on platforms where the window system allows direct access to the pixel data.

You can read the pixel data with image-access-pixel and image-access-pixels-to-bgra.

You can write the pixel data with (setf image-access-pixel) and image-access-pixels-from-bgra.

Examples

(example-edit-file "capi/graphics/image-access")

See also

image-access-transfer-to-image
image-access-pixel
image-access-pixels-from-bgra
image-access-pixels-to-bgra
free-image-access
make-image-access
13.10.8 Image access

image-access-transfer-to-image Function

Summary

Sets the pixel values in an image.

Package

graphics-ports

Signature

image-access-transfer-to-image image-access

Arguments

image-access⇓ An Image Access object.

Description

The function image-access-transfer-to-image sets the pixel values in an image object from the values in a
corresponding Image Access object image-access.

image-access must be an Image Access object returned by make-image-access.

Notionally image-access-transfer-to-image transfers the pixel data from image-access to the window system, though

22 GRAPHICS-PORTS Reference Entries

886

it might do nothing on platforms where the window system allows direct access to the pixel data.

Examples

(example-edit-file "capi/graphics/image-access")

See also

free-image-access
image-access-transfer-from-image
image-access-pixel
make-image-access
13.10.8 Image access

image-freed-p Function

Summary

Determines whether an image has been freed.

Package

graphics-ports

Signature

image-freed-p image => bool

Arguments

image⇓ An image object.

Values

bool A boolean.

Description

The function image-freed-p returns non-nil if image has been freed, and nil otherwise.

image-loader Function

Summary

Returns the image load function.

Package

graphics-ports

22 GRAPHICS-PORTS Reference Entries

887

Signature

image-loader image-id &key image-translation-table => loader

Arguments

image-id⇓ An image identifier.

image-translation-table⇓
An image translation table.

Values

loader An image load function.

Description

The function image-loader returns the image load function that would be called to load the image associated with image-id
in image-translation-table. If image-id is not registered with a load function, the default image load function is returned. The
default value of image-translation-table is *default-image-translation-table*.

See also

register-image-load-function
register-image-translation

image-translation Function

Summary

Returns the translation for an image registered in its image translation table.

Package

graphics-ports

Signature

image-translation image-id &key image-translation-table => translation

Arguments

image-id⇓ An image identifier.

image-translation-table⇓
An image translation table.

Values

translation A translation.

22 GRAPHICS-PORTS Reference Entries

888

Description

The function image-translation returns the translation for image-id registered in image-translation-table. The default
value of image-translation-table is *default-image-translation-table*.

See also

register-image-load-function
register-image-translation

initialize-dithers Function

Summary

Initialize dither objects up to a given order.

Package

graphics-ports

Signature

initialize-dithers &optional order

Arguments

order⇓ An integer.

Description

The function initialize-dithers initializes dither objects up to the given order (size = 2 ^ order).

The default value of order is 3.

Notes

initialize-dither is deprecated. Dithers do not affect drawing or anti-aliasing.

See also

dither-color-spec
make-dither
with-dither

inset-rectangle Function

Summary

Moves the corners of a rectangle inwards by a given amount.

22 GRAPHICS-PORTS Reference Entries

889

Package

graphics-ports

Signature

inset-rectangle rectangle dx dy &optional dx-right dy-bottom

Arguments

rectangle⇓ A list of integers.

dx⇓ An integer.

dy⇓ An integer.

dx-right⇓ An integer.

dy-bottom⇓ An integer.

Description

The function inset-rectangle moves the left, top, right and bottom elements of rectangle inwards towards the center by
the distances dx, dy, dx-right and dy-bottom respectively.

By default, dx-right is dx, and dy-bottom is dy.

inside-rectangle Function

Summary

Determines if a point lies inside a rectangle.

Package

graphics-ports

Signature

inside-rectangle rectangle x y => result

Arguments

rectangle⇓ A list of integers.

x⇓ An integer.

y⇓ An integer.

Values

result A boolean.

Description

The function inside-rectangle returns t if the point (x y) is inside rectangle.

22 GRAPHICS-PORTS Reference Entries

890

rectangle is expected to be ordered; if rectangle is specified by (left top right bottom), then left must be less than right, and
top must be less than bottom. The lines y = bottom and x = right are not considered to be inside the rectangle.

invalidate-rectangle Generic Function

Summary

Invalidates the rectangle associated with the object, which causes it to be redisplayed.

Package

graphics-ports

Signature

invalidate-rectangle object &optional x y width height => result

Arguments

object⇓ An instance of a subclass of graphics-port-mixin or a subclass of
pinboard-object.

x⇓ A real number.

y⇓ A real number.

width⇓ A real number.

height⇓ A real number.

Values

result A boolean.

Description

The generic function invalidate-rectangle invalidates the rectangle associated with object, which causes it to be
redisplayed.

By default, invalidate-rectangle invalidates the whole rectangle, but this can be limited by supplying x, y, width and
height.

The effect of invalidating an area is to cause the area to be redrawn. It has no effect on pixmap-port. When the pane has a
supplied display-callback, this callback is called with an area containing the area specified by the argument to
invalidate-rectangle. However, the call to display-callback is asynchronous, and the system coalesces areas from calls
to invalidate-rectangle and actual expose events, so there is not a one-to-one relation between calls to
invalidate-rectangle and invocations of display-callback.

In general, invalidate-rectangle should not be called inside the display-callback. If it is called, it must be conditional,
otherwise this will cause repeated redisplay.

Notes

With drawing-mode :quality, drawings are done with anti-aliasing, which means that they affect pixels which are not
obviously part of the drawing. For example, drawing a rectangle with x = 10 may affect the pixel at x = 9. This needs to be
taken into account when computing the arguments to invalidate-rectangle.

22 GRAPHICS-PORTS Reference Entries

891

For pinboard objects the recommended way of forcing redraw is redraw-pinboard-object, which takes anti-aliasing into
account.

Examples

(example-edit-file "capi/graphics/plot-offline")

See also

invalidate-rectangle-from-points
validate-rectangle
13 Drawing - Graphics Ports

invalidate-rectangle-from-points Function

Summary

Invalidates a rectangle specified by two points, causing it to be redisplayed.

Package

graphics-ports

Signature

invalidate-rectangle-from-points port x1 y1 x2 y2 &key extend extend-x extend-y

Arguments

port⇓ A graphics port.

x1⇓, y1⇓, x2⇓, y2⇓ Real numbers.

extend⇓, extend-x⇓, extend-y⇓
Real numbers.

Description

The function invalidate-rectangle-from-points invalidates a rectangle in port (by calling
invalidate-rectangle) specified by two points. The coordinates of one point are (x1, y1) and the other (x2, y2) The
points do not have to be ordered.

The keyword arguments specify extending the rectangle: extend-x extends the rectangle in the x dimension in both directions,
and extend-y extends the rectangle in the y dimension in both directions. Both extend-x and extend-y default to extend, which
itself defaults to 0 (that is, no extension).

invalidate-rectangle-from-points does not return a useful value.

See also

invalidate-rectangle

22 GRAPHICS-PORTS Reference Entries

892

invert-transform Function

Summary

Constructs the inverse of a transform.

Package

graphics-ports

Signature

invert-transform transform &optional into => inverse

Arguments

transform⇓ A transform object.

into⇓ A transform object or nil.

Values

inverse A transform object.

Description

The function invert-transform constructs the inverse of transform. If T is transform and T' is its inverse, then TT' = I. If
into is non-nil it is modified to contain T' and returned, otherwise a new transform is constructed and returned.

Notes

See graphics-state for details of how a transform is used.

See also

graphics-state
transform

list-all-font-names Function

Summary

Finds the names of the available fonts.

Package

graphics-ports

Signature

list-all-font-names pane => fdescs

22 GRAPHICS-PORTS Reference Entries

893

Arguments

pane⇓ A graphics port.

Values

fdescs A list of font description objects.

Description

The function list-all-font-names returns a list of partially-specified font description objects which contain the "name"
attributes for each known font that is available for pane.

On Microsoft Windows and Cocoa the "name" attributes are just the :family attribute.

On X11 the "name" attributes are :foundry and :family.

See also

font-description-attributes
find-matching-fonts
13 Drawing - Graphics Ports

list-known-image-formats Function

Summary

Returns the known image formats.

Package

graphics-ports

Signature

list-known-image-formats screen-spec &optional for-writing-too => formats

Arguments

screen-spec⇓ A CAPI object, a plist, or nil.

for-writing-too⇓ A generalized boolean.

Values

formats⇓ A list of keywords.

Description

The function list-known-image-formats returns a list of keywords which specify known image formats.

screen-spec is an object that convert-to-screen can recognize, typically a pane or simply nil.

If for-writing-too is not supplied or is nil, then formats is a list of formats that can be loaded. All the formats in the list can

22 GRAPHICS-PORTS Reference Entries

894

be loaded, but on Cocoa and Windows the list is not exhaustive, and it may be possible to load formats that are not listed.

If for-writing-too is supplied as non-nil, then formats is a list of types that externalize-and-write-image can write. In
this case the list is exhaustive on all platforms, and externalize-and-write-image can write a format if and only if it
appears in the list.

All platforms (except Motif) can read and write :bmp, :jpg, :png and :tiff images, and also recognize :jpeg as an alias
for :jpg, so the list will always include all of these keywords.

See also

convert-to-screen
externalize-and-write-image
13 Drawing - Graphics Ports

load-icon-image Function

Summary

Loads a Windows icon image, and returns the image object.

Package

graphics-ports

Signature

load-icon-image port id &key width height => image

Arguments

port⇓ A graphics port or CAPI object.

id⇓ A keyword, string or pathname.

width⇓ The desired width in pixels, or nil.

height⇓ The desired height in pixels, or nil.

Values

image An image object.

Description

The function load-icon-image loads an icon specified by id which should be either a keyword describing a standard icon,
or a string or a pathname naming a Windows format icon (.ico) file.

The following keyword values of id are recognized:

:sample A rectangle.

:hand A cross in a circle.

:ques A question mark in a bubble.

22 GRAPHICS-PORTS Reference Entries

895

:bang An exclamation mark in a triangle.

:note An 'I' in a bubble.

:winlogo The Windows logo.

:warning Same as :bang.

:error Same as :hand.

:information Same as :note.

load-icon-image returns an image object which can be drawn to port using draw-image and which must be freed using
free-image when no longer needed.

When id specifies a file and width and height are specified, then the most appropriate image is chosen from the icon file and
is scaled accordingly. If width and height are nil the first image in the file is used at its natural size. width defaults to nil

and height defaults to width.

Note: load-icon-image is defined only in LispWorks for Windows.

See also

draw-image
free-image
load-image
13 Drawing - Graphics Ports

load-image Function

Summary

Loads an image and returns the image object.

Package

graphics-ports

Signature

load-image gp id &key cache type editable image-translation-table => image

Arguments

gp⇓ A graphics port.

id⇓ An image identifier, a file, an external-image, or an image.

cache⇓ A boolean.

type⇓ A keyword, or nil.

editable⇓ One of the keywords :with-alpha and :without-alpha, or a boolean.

image-translation-table⇓
An image translation table.

22 GRAPHICS-PORTS Reference Entries

896

Values

image⇓ An image object.

Description

The function load-image loads an image identified by id via image-translation-table using the image load function
registered with it. It returns an image object with the representation slot initialized. gp specifies a graphics port used to
identify the library. It also specifies the resource in which colors are defined and if necessary allocated for the image. If id is
in the table but the translation is not an external image, and the image loader returns an external image as the second value,
that external image replaces the translation in the table. The default value of image-translation-table is
default-image-translation-table.

id can be an image, which is just associated with the port gp and returned if it is a Plain Image or if editable is nil.
Otherwise a new Plain Image object is returned, as described below.

id can also be a string or pathname denoting a file, and in this case the image is loaded according to type, as described below.

cache controls whether the image translation is cached. See the convert-external-image function for more details.

type tells load-image that the image is in a particular graphics format. Currently the only recognized value is :bmp, which
means the image is a Bitmap. Other values of type cause load-image to load the image according to the file type of id, if id
denotes a file, as described for read-external-image. See 13 Drawing - Graphics Ports for a discussion of image
handling. The default value of type is nil.

editable controls whether the image image is a Plain Image suitable for use with the Image Access API. The values of
editable have the following effects:

nil The image is not editable.

:without-alpha The image is editable, but does not have an alpha channel.

t The image is editable, but does not have an alpha channel if the source of the image has an alpha
channel (for example, a TIFF file with alpha channel).

:with-alpha The image is editable and has an alpha channel. It will be fully opaque when loading files
without an alpha channel.

Given an image my-image, call:

(load-image port my-image :editable t)

to create an image guaranteed to work with make-image-access. The default value of editable is nil.

Normally the image is freed automatically, when gp is destroyed. However there are circumstances where you need to
explicitly free an image, for example when you want it to go away before the port. If the image is not freed, a memory leak
occurs.

Note: gp must already be created at the time load-image is called. If you need to delay loading the image, for example if
you are computing the image dynamically, then you can call load-image in the create-callback of the port or even in its first
display-callback.

Compatibility note

In LispWorks 4.4 there is a keyword argument :force-plain with the same effect as :editable. :force-plain is still
accepted in LispWorks 8.0 for backwards compatibility, but you should now use :editable instead.

22 GRAPHICS-PORTS Reference Entries

897

See also

convert-external-image
default-image-translation-table
load-icon-image
make-image
make-image-access
13 Drawing - Graphics Ports

make-dither Function

Summary

Makes a dither matrix of a given size.

Package

graphics-ports

Signature

make-dither size => matrix

Arguments

size⇓ An integer.

Values

matrix A dither matrix.

Description

The function make-dither makes a dither matrix of the given size.

Notes

make-dither is deprecated. Dithers do not affect drawing or anti-aliasing.

See also

dither-color-spec
initialize-dithers
with-dither

make-font-description Function

Summary

Returns a new font description object containing given font attributes.

22 GRAPHICS-PORTS Reference Entries

898

Package

graphics-ports

Signature

make-font-description &rest font-attribute* => fdesc

Arguments

font-attribute*⇓ Keywords and values to initialize a font description.

Values

fdesc⇓ A font description object.

Description

The function make-font-description returns a new font description object containing the given font-attribute* keywords
and values. There is no error checking of the attributes at this point.

The attribute :stock is handled specially: it is omitted from fdesc, unless it is the only attribute specified.

See also

augment-font-description
convert-to-font-description
find-best-font
find-matching-fonts
font-description
merge-font-descriptions

make-graphics-state Function

Summary

Creates a graphics-state object.

Package

graphics-ports

Signature

make-graphics-state &key transform foreground background operation thickness scale-thickness dashed dash line-end-
style line-joint-style mask fill-style stipple pattern mask-x mask-y font text-mode shape-mode compositing-mode mask-transform
=> state

Arguments

transform⇓, foreground⇓, background⇓, operation⇓, thickness⇓, scale-thickness⇓, dashed⇓, dash⇓, line-end-

style⇓, line-joint-style⇓, mask⇓, fill-style⇓, stipple⇓, pattern⇓, mask-x⇓, mask-y⇓, font⇓, text-mode⇓, shape-

mode⇓, compositing-mode⇓, mask-transform⇓

22 GRAPHICS-PORTS Reference Entries

899

See graphics-state for interpretation of the arguments.

Values

state A graphics-state object.

Description

The function make-graphics-state creates a graphics-state object using transform, foreground, background,
operation, thickness, scale-thickness, dashed, dash, line-end-style, line-joint-style, mask, fill-style, stipple, pattern, mask-x,
mask-y, font, text-mode, shape-mode, compositing-mode and mask-transform. Each graphics port has a graphics state
associated with it, but you may want to create your own individual graphics states for use in specialized drawing operations.
Graphics state objects do not consume local resources beyond dynamic memory for the structure (so you can be relaxed about
creating them in some number if you really need to).

See also

graphics-state
set-graphics-state

make-image Function

Summary

Makes a new, empty, image object.

Package

graphics-ports

Signature

make-image port width height &key alpha => image

Arguments

port⇓ A graphics port.

width⇓ A positive integer.

height⇓ A positive integer.

alpha⇓ A generalized boolean.

Values

image⇓ An image object.

Description

The function make-image makes a new blank, editable image object associated with port and of the given width and height.

On Windows and Cocoa, if alpha is true, then the image will have an alpha channel.

22 GRAPHICS-PORTS Reference Entries

900

The initial pixels in image are undefined. image is editable, that is, it is suitable for use with the Image Access API. To set
the pixels, see make-image-access.

See also

load-image
make-image-access

make-image-access Function

Summary

Creates an Image Access object.

Package

graphics-ports

Signature

make-image-access port image => image-access

Arguments

port⇓ A graphics port.

image⇓ An image object.

Values

image-access⇓ An Image Access object.

Description

The function make-image-access returns an Image Access object for the given image image on port.

image can be any image object returned by make-image-from-port. An image object returned by load-image is also
suitable, but only if it is a Plain Image (see below).

image-access is used when reading and writing the pixel values of the image. For an overview of using Image Access objects,
see 13.10.8 Image access.

Notes

1. On some platforms (currently Windows) not every image object is a Plain Image. If needed, forcibly create a Plain
Image suitable for passing to make-image-access as described in load-image.

2. Ensure that you eventually discard image-access, using free-image-access.

Examples

(example-edit-file "capi/graphics/image-access")

22 GRAPHICS-PORTS Reference Entries

901

See also

free-image-access
image-access-transfer-from-image
image-access-transfer-to-image
image-access-height
image-access-pixel
load-image
make-image
13.10.8 Image access

make-image-from-port Function

Summary

Makes an image out of a specified rectangle of a graphics port's contents.

Package

graphics-ports

Signature

make-image-from-port port &optional x y width height => image

Arguments

port⇓ A graphics port.

x⇓ An integer.

y⇓ An integer.

width⇓ An integer.

height⇓ An integer.

Values

image An image.

Description

The function make-image-from-port makes an image out of the specified rectangle of the port's contents. The default is
the whole port, but a region can be specified by supplying x, y, width, and height. The default values of x and y is 0.

Normally the image is freed automatically, when port is destroyed. However there are circumstances where you need to
explicitly free an image, for example when you want it to go away before the port. If the image is not freed, a memory leak
occurs.

See also

externalize-image
13 Drawing - Graphics Ports

22 GRAPHICS-PORTS Reference Entries

902

make-scaled-sub-image Function

Summary

Makes a new image from a scaled part of an image.

Package

graphics-ports

Signature

make-scaled-sub-image port image to-width to-height &key from-x from-y from-width from-height => sub-image

Arguments

port⇓ A graphics port.

image⇓ An image.

to-width⇓ An integer.

to-height⇓ An integer.

from-x⇓ An integer.

from-y⇓ An integer.

from-width⇓ An integer.

from-height⇓ An integer.

Values

sub-image⇓ An image.

Description

The function make-scaled-sub-image makes a new image from the scaled rectangular region of image specified by from-
x, from-y, from-width and from-height. The returned sub-image is associated with port and has size specified by to-width and
to-height.

The default values of from-x and from-y are 0.

The default value of from-width is the width of image.

The default value of from-height is the height of image.

When from-width equals to-width and from-height equals to-height, then this function is equivalent to make-sub-image.

See also

image
make-sub-image
13 Drawing - Graphics Ports
17 Drag and Drop

22 GRAPHICS-PORTS Reference Entries

903

make-sub-image Function

Summary

Makes a new image from part of an image.

Package

graphics-ports

Signature

make-sub-image port image &optional x y width height => sub-image

Arguments

port⇓ A graphics port.

image⇓ An image.

x⇓ An integer.

y⇓ An integer.

width⇓ An integer.

height⇓ An integer.

Values

sub-image An image.

Description

The function make-sub-image makes a new image object from the rectangular region of the supplied image specified by x,
y, width and height, for use with port.

The default values of x and y are 0.

The default value of width is the width of image.

The default value of height is the height of image.

See also

image
make-scaled-sub-image
13 Drawing - Graphics Ports
17 Drag and Drop

22 GRAPHICS-PORTS Reference Entries

904

make-transform Function

Summary

Returns a new transform object initialized according to a set of optional arguments.

Package

graphics-ports

Signature

make-transform &optional a b c d e f => transform

Arguments

a⇓, b⇓, c⇓, d⇓, e⇓, f⇓
Real numbers.

Values

transform A transform object.

Description

The function make-transform returns a new transform object initialized according to the optional args. The default args
make the unit transform.

Default values are as follows: a and d are 1; b, c, e, and f are 0. The transform matrix is:

a b 0
c d 0
e f 1

for generalized two dimensional points of the form (x y 1).

Notes

See graphics-state for details of how a transform is used.

Examples

This transform will cause rotation by pi/4 radians:

(let ((s (sin (/ pi 4)))
 (c (cos (/ pi 4))))
 (gp:make-transform c s (- s) c 0 0))

See also

graphics-state
transform

22 GRAPHICS-PORTS Reference Entries

905

merge-font-descriptions Function

Summary

Returns a font description containing the attributes of two specified font descriptions.

Package

graphics-ports

Signature

merge-font-descriptions fdesc1 fdesc2 => fdesc

Arguments

fdesc1⇓ A font description.

fdesc2⇓ A font description.

Values

fdesc⇓ A font description.

Description

The function merge-font-descriptions returns a font description containing all the attributes of fdesc1 and fdesc2. If an
attribute appears in both fdesc1 and fdesc2, the value in fdesc1 is used. The attribute :stock is handled specially: it is
omitted from fdesc, unless it is the only attribute in fdesc1 and fdesc2.

The contents of fdesc1 and fdesc2 are not modified.

See also

make-font-description
13 Drawing - Graphics Ports

offset-rectangle Function

Summary

Offsets a rectangle by a given distance.

Package

graphics-ports

Signature

offset-rectangle rectangle dx dy

22 GRAPHICS-PORTS Reference Entries

906

Arguments

rectangle⇓ A list of integers.

dx⇓ A real number.

dy⇓ A real number.

Description

The function offset-rectangle offsets rectangle by the distance (dx dy).

rectangle is a list (left top right bottom).

ordered-rectangle-union Function

Summary

Returns the union of two rectangles.

Package

graphics-ports

Signature

ordered-rectangle-union left-1 top-1 right-1 bottom-1 left-2 top-2 right-2 bottom-2 => left, top, right, bottom

Arguments

left-1⇓, top-1⇓, right-1⇓, bottom-1⇓
Real numbers.

left-2⇓, top-2⇓, right-2⇓, bottom-2⇓
Real numbers.

Values

left, top, right, bottom

Real numbers.

Description

The function ordered-rectangle-union returns four values: the left, top, right and bottom of the union of the two
rectangles specified by (left-1 top-1 right-1 bottom-1) and (left-2 top-2 right-2 bottom-2). The caller guarantees that each
input rectangle is ordered, that is, the left values must be smaller or equal to the right values, and the top values must be
greater than or equal to the bottom ones.

See also

rectangle-union

22 GRAPHICS-PORTS Reference Entries

907

pi-by-2 Constant

Summary

(/ pi 2) as a double-float.

Package

graphics-ports

Description

The constant pi-by-2 is the result of (/ cl:pi 2). It is a cl:double-float.

See also

2pi
fpi

pixblt Function

Summary

Copies one area of a graphics port to another area of a different graphics port (deprecated).

Package

graphics-ports

Signature

pixblt to-port operation from-port to-x to-y width height from-x from-y

Arguments

to-port⇓ A graphics port.

operation⇓ A graphics state operation.

from-port⇓ A graphics port.

to-x⇓ A real number.

to-y⇓ A real number.

width⇓ A real number.

height⇓ A real number.

from-x⇓ A real number.

from-y⇓ A real number.

22 GRAPHICS-PORTS Reference Entries

908

http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm

Description

The function pixblt copies one area of from-port to another area of to-port using the specified operation and mask. Both
ports should be the same depth.

The corners of the copied rectangle are (from-x from-y), (from-x+width from-y), (from-x+width from-y+height) and (from-x
from-y+height), which are interpreted as pixel positions in the window coordinates of from-port. The top left of the rectangle
is copied to (to-x to-y) in to-port's coordinates. The graphics port transforms are not used.

operation is ignored when the drawing-mode is :quality (the default). See 13.7.1 Combining pixels with :compatible
drawing for valid values for operation.

pixblt is deprecated, because the :quality drawing-mode does not support operation, and because it ignores the
transformations, which means it does not always work as expected. In particular, it can draw at the wrong place inside the
display-callback of output-pane.

pixblt is deprecated -- use copy-area instead, which does take account of the transform. See also graphics-state

parameter compositing-mode for a way to control how copy-area blends the source and the target.

See also

copy-area
graphics-state
13 Drawing - Graphics Ports

pixmap-port Class

Summary

The class of pixmap graphics port objects.

Package

graphics-ports

Superclasses

graphics-port-mixin

Description

The class pixmap-port is the class of pixmap graphics port objects which can be used for drawing operations.

See also

create-pixmap-port
destroy-pixmap-port
with-pixmap-graphics-port

22 GRAPHICS-PORTS Reference Entries

909

port-drawing-mode-quality-p Generic Function

Summary

Tests whether a port does quality drawing.

Package

graphics-ports

Signature

port-drawing-mode-quality-p port => result

Arguments

port⇓ A graphics port.

Values

result A boolean.

Description

The generic function port-drawing-mode-quality-p returns true if the graphics port port does quality drawing.

A port does quality drawing if both:

1. It was not made with drawing-mode :compatible.

2. The underlying library supports quality drawing.

Microsoft Windows and Cocoa always support quality drawing, GTK+ supports it from version 2.8 and greater, but Motif
never supports it.

Examples

(example-edit-file "capi/graphics/images-with-alpha")

See also

13.2.1 The drawing mode and anti-aliasing.

port-graphics-state Function

Summary

Returns the graphics-state object for a graphics port.

22 GRAPHICS-PORTS Reference Entries

910

Package

graphics-ports

Signature

port-graphics-state port => state

Arguments

port⇓ A graphics port.

Values

state A graphics-state object.

Description

The function port-graphics-state returns the graphics-state object for port. The individual slots can be accessed
using the accessor functions documented for graphics-state.

See also

graphics-state

port-height Function

Summary

Returns the pixel height of a port.

Package

graphics-ports

Signature

port-height port => result

Arguments

port⇓ A graphics port.

Values

result An integer.

Description

The function port-height returns the pixel height of port.

22 GRAPHICS-PORTS Reference Entries

911

port-owner Function

Summary

Returns the port owner of a graphics port.

Package

graphics-ports

Signature

port-owner graphics-port => owner

Arguments

graphics-port⇓ A graphics port.

Values

owner A graphics port.

Description

The function port-owner returns the port owner of the graphics port graphics-port.

For output-pane the owner is always the pane itself.

For pixmap-port it is the owner of the port that was used when it was made.

For metafile-port the owner can be specified by the keyword argument :owner in the macros
with-internal-metafile and with-external-metafile, otherwise it is the port itself.

For printer-port the owner can be specified by the keyword argument :owner in with-print-job, otherwise it is the
port itself.

port-string-height Function

Summary

Returns the height of a string drawn to a given port in pixels.

Package

graphics-ports

Signature

port-string-height port string => height

22 GRAPHICS-PORTS Reference Entries

912

Arguments

port⇓ A graphics port.

string⇓ A string.

Values

height An integer.

Description

The function port-string-height returns the height in pixels of string when drawn to port. The font used is the font
currently in the port's graphics-state.

port-string-width Function

Summary

Returns the width of a string drawn to a given port in pixels.

Package

graphics-ports

Signature

port-string-width port string => width

Arguments

port⇓ A graphics port.

string⇓ A string.

Values

width An integer.

Description

The function port-string-width returns the width in pixels of string when drawn to port. The font used is the font
currently in the port's graphics-state.

Notes

To compute the horizontal extents of each successive character in a string for a given port or font, use
compute-char-extents.

See also

compute-char-extents

22 GRAPHICS-PORTS Reference Entries

913

port-width Function

Summary

Returns the pixel width of a port.

Package

graphics-ports

Signature

port-width port => width

Arguments

port⇓ A graphics port.

Values

width An integer.

Description

The function port-width returns the pixel width of port.

postmultiply-transforms Function

Summary

Postmultiplies two transforms.

Package

graphics-ports

Signature

postmultiply-transforms transform1 transform2

Arguments

transform1⇓ A transform object.

transform2⇓ A transform object.

Description

The function postmultiply-transforms postmultiplies the partial 3 x 3 matrix represented by transform1 by the partial
3 x 3 matrix represented by transform2, storing the result in transform1. In the result, the translation, scaling and rotation

22 GRAPHICS-PORTS Reference Entries

914

operations contained in transform2 are effectively performed after those in transform1.

transform1 = transform1 . transform2

premultiply-transforms Function

Summary

Premultiplies two transforms.

Package

graphics-ports

Signature

premultiply-transforms transform1 transform2

Arguments

transform1⇓ A transform object.

transform2⇓ A transform object.

Description

The function premultiply-transforms premultiplies the partial 3 x 3 matrix represented by transform1 by the partial
3 x 3 matrix represented by transform2, storing the result in transform1. In the result, the translation, scaling and rotation
operations contained in transform2 are effectively performed before those in transform1.

transform1 = transform2 . transform1

read-and-convert-external-image Function

Summary

Returns an image converted from an external image read from a file.

Package

graphics-ports

Signature

read-and-convert-external-image gp file &key transparent-color-index => image, external-image

Arguments

gp⇓ A CAPI pane.

file⇓ A pathname designator.

22 GRAPHICS-PORTS Reference Entries

915

transparent-color-index⇓
An integer or nil.

Values

image An image.

external-image An external-image.

Description

The function read-and-convert-external-image returns an image converted for use with gp from an external image
read from file. The external image is returned as a second value.

transparent-color-index is interpreted as described for read-external-image.

See also

convert-external-image
external-image
read-external-image
13 Drawing - Graphics Ports

read-external-image Function

Summary

Returns an external image read from a file.

Package

graphics-ports

Signature

read-external-image file &key transparent-color-index type => image

Arguments

file⇓ A pathname designator.

transparent-color-index⇓
An integer, a cons or nil.

type⇓ A keyword, or nil.

Values

image An external image.

Description

The function read-external-image returns an external image read from file.

22 GRAPHICS-PORTS Reference Entries

916

If transparent-color-index is an integer it specifies the index of the transparent color in the color map.

transparent-color-index can also be a cons (index . new-color) where new-color is a color specification that is converted to
the color to use instead of the color at index index in the color map. new-color can also be the keyword :transparent. On
most platforms this makes it truly transparent. On Motif it uses the background of the pane that it is associated with by
load-image.

transparent-color-index works only for images with a color map, that is, those with 256 colors or less. The default value is
nil, meaning that there is no transparent color.

type tells read-external-image that the image is in a particular graphics format. Currently the only recognized value is
:bmp, which means the image is read as a Bitmap. Other values of type cause read-external-image to read the image
according to the file type of file. "bmp" or "dib" mean that the image is read as a Bitmap. Other file types are handled in
Operating System-specific ways. See 13.10 Working with images for details. The default value of type is nil.

Examples

To see the effect of transparent-color-index, do:

1. (example-edit-file "capi/graphics/images")

2. Specify a non-white :background for the viewer pane. Use an image editing tool to find the transparent color index
(183 in this image) and change the call to read-external-image like this:

(gp:read-external-image file
 :transparent-color-index 183)

3. Then compile and run the example, click the Change... button and select the Setup.bmp file.

See also

external-image

rectangle-bind Macro

Summary

Binds four variables to the corners of a rectangle across a body of code.

Package

graphics-ports

Signature

rectangle-bind ((a b c d) rectangle) &body body => result

Arguments

a⇓ A variable.

b⇓ A variable.

c⇓ A variable.

d⇓ A variable.

22 GRAPHICS-PORTS Reference Entries

917

rectangle⇓ A rectangle.

body⇓ A body of code.

Values

result The return value of the last form in body.

Description

The macro rectangle-bind binds the variables a b c d to left top right bottom of rectangle and evaluates the forms in body
as an implicit progn.

rectangle-bottom Macro

Summary

Get and sets the bottom element of a rectangle.

Package

graphics-ports

Signature

rectangle-bottom rectangle => bottom

Arguments

rectangle⇓ A rectangle.

Values

bottom⇓ A real number.

Description

The macro rectangle-bottom returns the bottom element of rectangle. rectangle-bottom can also be used with setf

to set the bottom element of rectangle.

rectangle is a list of numbers (left top right bottom).

rectangle-height Macro

Summary

Returns the height of a rectangle.

Package

graphics-ports

22 GRAPHICS-PORTS Reference Entries

918

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

Signature

rectangle-height rectangle => height

Arguments

rectangle⇓ A rectangle.

Values

height A real number.

Description

The macro rectangle-height returns the difference between the bottom and top elements of rectangle.

rectangle is a list of numbers (left top right bottom).

rectangle-left Macro

Summary

Gets and set the left element of a rectangle.

Package

graphics-ports

Signature

rectangle-left rectangle => left

Arguments

rectangle⇓ A rectangle.

Values

left⇓ A real number.

Description

The macro rectangle-left returns and via setf sets the left element of rectangle. rectangle-left can also be used
with setf to set the left element of rectangle.

rectangle is a list of numbers (left top right bottom).

22 GRAPHICS-PORTS Reference Entries

919

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

rectangle-right Macro

Summary

Gets and sets the right element of a rectangle.

Package

graphics-ports

Signature

rectangle-right rectangle => right

Arguments

rectangle⇓ A rectangle.

Values

right⇓ A real number.

Description

The macro rectangle-right returns and via setf sets the right element of rectangle. rectangle-right can also be
used with setf to set the right element of rectangle.

rectangle is a list of numbers (left top right bottom).

rectangle-top Macro

Summary

Gets and sets the top element of a rectangle.

Package

graphics-ports

Signature

rectangle-top rectangle => top

Arguments

rectangle⇓ A rectangle.

Values

top⇓ A real number.

22 GRAPHICS-PORTS Reference Entries

920

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

Description

The macro rectangle-top returns and via setf sets the top element of rectangle. rectangle-top can also be used with
setf to set the top element of rectangle.

rectangle is a list of numbers (left top right bottom).

rectangle-union Function

Summary

Returns the four values representing a union of two rectangles.

Package

graphics-ports

Signature

rectangle-union left-1 top-1 right-1 bottom-1 left-2 top-2 right-2 bottom-2 => left, top, right, bottom

Arguments

left-1⇓ A real number.

top-1⇓ A real number.

right-1⇓ A real number.

bottom-1⇓ A real number.

left-2⇓ A real number.

top-2⇓ A real number.

right-2⇓ A real number.

bottom-2⇓ A real number.

Values

left A real number.

top A real number.

right A real number.

bottom A real number.

Description

The function rectangle-union returns four values: the left, top, right and bottom of the union of the two rectangles
specified by (left-1 top-1 right-1 bottom-1) and (left-2 top-2 right-2 bottom-2). The values input for the two rectangles are
ordered by this function before it uses them.

See also

ordered-rectangle-union

22 GRAPHICS-PORTS Reference Entries

921

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

rectangle-width Macro

Summary

Returns the difference between the left and right elements of a rectangle.

Package

graphics-ports

Signature

rectangle-width rectangle => width

Arguments

rectangle⇓ A rectangle.

Values

width A real number.

Description

The macro rectangle-width returns the difference between right and left elements of rectangle.

rectangle is a list of numbers (left top right bottom).

rect-bind Macro

Summary

Binds four variables to the elements of a rectangle across a body of code.

Package

graphics-ports

Signature

rect-bind ((x y width height) rectangle) &body body => result

Arguments

x⇓ A variable.

y⇓ A variable.

width⇓ A variable.

height⇓ A variable.

22 GRAPHICS-PORTS Reference Entries

922

rectangle⇓ A rectangle.

body⇓ A body of Lisp code.

Values

result The return value of the last form in body.

Description

The macro rect-bind binds x, y, width and height to the appropriate values from rectangle and evaluates the forms in body
as an implicit progn. rectangle is a list of the form (left top right bottom).

register-image-load-function Function

Summary

Registers one or more image identifiers with an image loading function.

Package

graphics-ports

Signature

register-image-load-function image-id image-load-function &key image-translation-table

Arguments

image-id⇓ An image identifier or a list of image identifiers.

image-load-function⇓ A function.

image-translation-table⇓
An image translation table.

Description

The function register-image-load-function registers one or more image-ids with an image-load-function in image-
translation-table. If image-load-function is nil it causes the default loader to be used in subsequent calls to load-image.
image-id can be a list of identifiers or a single identifier. The default value of image-translation-table is
default-image-translation-table.

See also

default-image-translation-table
load-image

22 GRAPHICS-PORTS Reference Entries

923

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

register-image-translation Function

Summary

Registers an image identifier and image loading function with a translation in an image translation table.

Package

graphics-ports

Signature

register-image-translation image-id translation &key image-translation-table image-load-fn => image-id, image-
load-fn

Arguments

image-id⇓ An image identifier.

translation⇓ An image translation.

image-translation-table⇓
An image translation table.

image-load-fn⇓ An image loading function.

Values

image-id An image identifier.

image-load-fn An image loading function.

Description

The function register-image-translation registers image-id and image-load-fn with translation in image-translation-
table. When load-image is called with second argument image-id, then image-load-fn is called with translation as its
second argument.

If image-load-fn is nil, the default image loader in image-translation-table is used; this converts an external image object or
file to an image.

If translation is nil then image-id is deregistered.

The default value of image-translation-table is *default-image-translation-table*.

See also

default-image-translation-table
load-image
reset-image-translation-table
13 Drawing - Graphics Ports

22 GRAPHICS-PORTS Reference Entries

924

reset-image-translation-table Function

Summary

Clears the image translation table hash tables.

Package

graphics-ports

Signature

reset-image-translation-table &key image-translation-table

Arguments

image-translation-table⇓
An image translation table.

Description

The function reset-image-translation-table clears the image translation table hash tables and set the default image-
load-fn to read-and-convert-external-image. The default value of image-translation-table is
default-image-translation-table.

See also

default-image-translation-table
read-and-convert-external-image
register-image-translation

separation Function

Summary

Returns the distance between two points.

Package

graphics-ports

Signature

separation x1 y1 x2 y2 => dist

Arguments

x1⇓ An integer.

y1⇓ An integer.

22 GRAPHICS-PORTS Reference Entries

925

x2⇓ An integer.

y2⇓ An integer.

Values

dist A real number.

Description

The function separation returns the distance between points (x1 y1) and (x2 y2).

set-default-image-load-function Function

Summary

Sets the default image load function of an image translation table.

Package

graphics-ports

Signature

set-default-image-load-function image-load-function &key image-translation-table

Arguments

image-load-function⇓ An image load function.

image-translation-table⇓
An image translation function.

Description

The function set-default-image-load-function sets the default image load function of image-translation-table to
image-load-function. The initial default image load function is read-and-convert-external-image. The default value
of image-translation-table is *default-image-translation-table*.

See also

default-image-translation-table
read-and-convert-external-image

set-graphics-port-coordinates Function

Summary

Modifies the transform of a port such that the edges of the port correspond to the arguments given.

22 GRAPHICS-PORTS Reference Entries

926

Package

graphics-ports

Signature

set-graphics-port-coordinates port &key left top right bottom

Arguments

port⇓ A graphics port.

left⇓ A real number.

top⇓ A real number.

right⇓ A real number.

bottom⇓ A real number.

Description

The function set-graphics-port-coordinates modifies the transform of the graphics port port permanently such that
the edges of port correspond to the rectangle (left top right bottom).

Notes

The transform is part of the port's graphics state. See graphics-state for details of how it is used.

Examples

The following code:

(set-graphics-port-coordinates port :left -1.0
 :top 1.0
 :right 1.0
 :bottom -1.0)

changes the coordinates of the port so that the point (0 0) is in the exact center of the port and the edges are a unit distance
away, with a right-handed coordinate system.

By default, left and top are 1.

See also

graphics-state

set-graphics-state Function

Summary

Directly alters the graphics-state of a graphics port according to the keyword arguments supplied.

Package

graphics-ports

22 GRAPHICS-PORTS Reference Entries

927

Signature

set-graphics-state port &rest args &key transform foreground background operation stipple pattern fill-style
thickness scale-thickness dashed dash line-end-style line-joint-style mask mask-x mask-y font shape-mode text-mode
compositing-mode mask-transform

Arguments

port⇓ A graphics port.

args⇓ Keywords and values to initialize a graphics-state.

transform⇓, foreground⇓, background⇓, operation⇓, stipple⇓, pattern⇓, fill-style⇓, thickness⇓, scale-thickness⇓,

dashed⇓, dash⇓, line-end-style⇓, line-joint-style⇓, mask⇓, mask-x⇓, mask-y⇓, font⇓, shape-mode⇓, text-mode⇓,

compositing-mode⇓, mask-transform⇓
See graphics-state for interpretation of the arguments.

Description

The function set-graphics-state directly alters the graphics state of port according to the values of the keyword
arguments transform, foreground, background, operation, stipple, pattern, fill-style, thickness, scale-thickness, dashed, dash,
line-end-style, line-joint-style, mask, mask-x, mask-y, font, shape-mode, text-mode, compositing-mode and mask-transform.
Unspecified keywords leave the associated slots unchanged. The keyword arguments args correspond to the slots in the
graphics state, as described in graphics-state.

See also

graphics-state
with-graphics-state
13 Drawing - Graphics Ports

transform Type

Summary

The transform type, defined for transform objects.

Package

graphics-ports

Signature

transform

Description

The type transform is the type defined for transform objects, which are six-element lists of numbers.

Notes

For information about how transforms are used, see graphics-state.

22 GRAPHICS-PORTS Reference Entries

928

See also

graphics-port-transform
6 Laying Out CAPI Panes
13 Drawing - Graphics Ports

transform-area Function

Summary

Transforms a set of points and returns the resulting rectangle.

Package

graphics-ports

Signature

transform-area transform x y width height => rectangle

Arguments

transform⇓ A transform.

x⇓ A real number.

y⇓ A real number.

width⇓ A real number.

height⇓ A real number.

Values

rectangle A rectangle.

Description

The function transform-area transforms the points (x y) and (x+width y+height) using transform and returns the
transformed rectangle as (x y width height) values.

See also

transform

transform-distance Function

Summary

Transforms a distance vector by the rotation and scale of a transform.

22 GRAPHICS-PORTS Reference Entries

929

Package

graphics-ports

Signature

transform-distance transform dx dy => dx2, dy2

Arguments

transform⇓ A transform.

dx⇓ A real number.

dy⇓ A real number.

Values

dx2 A real number.

dy2 A real number.

Description

The function transform-distance transforms the distance (dx dy) by the rotation and scale in transform. The translation
in transform is ignored. The transformed distance is returned as two values.

See also

transform

transform-distances Function

Summary

Transforms a list of alternating distance vectors by a given transform.

Package

graphics-ports

Signature

transform-distances transform distances => result

Arguments

transform⇓ A transform.

distances⇓ A list of pairs of real numbers.

Values

result A list of pairs of real numbers.

22 GRAPHICS-PORTS Reference Entries

930

Description

The function transform-distances transforms a list of alternating (dx dy) pairs in distances by transform. The
transformed distances are returned as a new list.

See also

transform

transform-is-rotated Function

Summary

Returns t if a given transform contains a rotation.

Package

graphics-ports

Signature

transform-is-rotated transform => bool

Arguments

transform⇓ A transform.

Values

bool A boolean.

Description

The function transform-is-rotated returns t if transform contains any rotation.

See also

transform

transform-point Function

Summary

Transforms a point by multiplying it by a transform.

Package

graphics-ports

22 GRAPHICS-PORTS Reference Entries

931

Signature

transform-point transform x y => xnew ynew

Arguments

transform⇓ A transform.

x⇓ A real number.

y⇓ A real number.

Values

xnew A real number.

ynew A real number.

Description

The function transform-point transforms the point (x y) by multiplying it by transform. The transformed point is returned
as two values.

See also

transform

transform-points Function

Summary

Transforms a list of points by a transform.

Package

graphics-ports

Signature

transform-points transform points &optional into => result

Arguments

transform⇓ A transform.

points⇓ A list of pairs of real numbers.

into⇓ A list.

Values

result A list of pairs of real numbers.

22 GRAPHICS-PORTS Reference Entries

932

Description

The function transform-points transforms a list of alternating (x y) pairs in points by multiplying them by transform. If
into is supplied it is modified to contain the result and must be a list the same length as points. If into is not supplied, a new
list is returned.

See also

transform

transform-rect Function

Summary

Returns the transform of two points representing the top-left and bottom-right of a rectangle.

Package

graphics-ports

Signature

transform-rect transform left top right bottom => left2, top2, right2, bottom2

Arguments

transform⇓ A transform.

left⇓ A real number.

top⇓ A real number.

right⇓ A real number.

bottom⇓ A real number.

Values

left2 A real number.

top2 A real number.

right2 A real number.

bottom2 A real number.

Description

The function transform-rect transforms the rectangle represented by the two points (left top) and (right bottom) by
transform.

See also

transform

22 GRAPHICS-PORTS Reference Entries

933

undefine-font-alias Function

Summary

Removes a font alias.

Package

graphics-ports

Signature

undefine-font-alias keyword

Arguments

keyword⇓ A keyword.

Description

The function undefine-font-alias removes the font alias named by keyword.

union-rectangle Macro

Summary

Modifies a rectangle to be a union of itself and another rectangle.

Package

graphics-ports

Signature

union-rectangle rectangle left top right bottom => rectangle

Arguments

rectangle⇓ A rectangle.

left⇓ A real number.

top⇓ A real number.

right⇓ A real number.

bottom⇓ A real number.

Values

rectangle A rectangle.

22 GRAPHICS-PORTS Reference Entries

934

Description

The macro union-rectangle modifies rectangle to be the union of rectangle and the rectangle specified by (left top right
bottom).

unit-transform Variable

Summary

The list (1 0 0 1 0 0).

Package

graphics-ports

Initial Value

(1 0 0 1 0 0)

Description

The variable *unit-transform* holds the list (1 0 0 1 0 0) which is the unit transform I, such that X = XI, where X is
a 3-vector. Graphics ports are initialized with the unit transform in their graphics-state. This means that port coordinate
axes are initially the same as the window axes.

See also

graphics-state

unit-transform-p Function

Summary

Returns t if a given transform is a unit transform.

Package

graphics-ports

Signature

unit-transform-p transform => bool

Arguments

transform⇓ A transform.

Values

bool A boolean.

22 GRAPHICS-PORTS Reference Entries

935

Description

The function unit-transform-p returns t if transform is the unit transform.

Notes

See graphics-state for details of how a transform is used.

See also

graphics-state

unless-empty-rect-bind Macro

Summary

Binds the elements of a rectangle to four variables, and if the rectangle has a non-zero area, executes a body of code.

Package

graphics-ports

Signature

unless-empty-rect-bind ((x y width height) rectangle) &body body => result

Arguments

x⇓ A variable.

y⇓ A variable.

width⇓ A variable.

height⇓ A variable.

rectangle⇓ A rectangle.

body⇓ A body of Lisp code.

Values

result The return value of the last form executed in body.

Description

The macro unless-empty-rect-bind binds x, y, width, and height to the appropriate values from rectangle and if width
and height are both positive, evaluates the forms in body as an implicit progn.

22 GRAPHICS-PORTS Reference Entries

936

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

untransform-distance Function

Summary

Transforms a distance by the rotation and scale of the inverse of a given transform.

Package

graphics-ports

Signature

untransform-distance transform dx dy => x, y

Arguments

transform⇓ A transform.

dx⇓ A real number.

dy⇓ A real number.

Values

x A real number.

y A real number.

Description

The function untransform-distance transforms the distance (dx dy) by the rotation and scale of the effective inverse of
transform. The translation in the inverse transform is ignored. The transformed distance is returned as two values.

Notes

See graphics-state for details of how a transform is used.

See also

graphics-state
transform

untransform-distances Function

Summary

Transforms a list of integer pairs representing distances by the inverse of a transform.

Package

graphics-ports

22 GRAPHICS-PORTS Reference Entries

937

Signature

untransform-distances transform distances => result

Arguments

transform⇓ A transform.

distances⇓ A list of pairs of real numbers.

Values

result A list of pairs of real numbers.

Description

The function untransform-distances transforms a list of alternating (dx dy) pairs in distances by the effective inverse of
transform. Transformed values are returned as a new list.

Notes

See graphics-state for details of how a transform is used.

See also

graphics-state
transform

untransform-point Function

Summary

Transforms a point by multiplying it by the inverse of a given transform.

Package

graphics-ports

Signature

untransform-point transform x y => x2, y2

Arguments

transform⇓ A transform.

x⇓ A real number.

y⇓ A real number.

Values

x2 A real number.

y2 A real number.

22 GRAPHICS-PORTS Reference Entries

938

Description

The function untransform-point transforms the point (x y) by effectively multiplying it by the inverse of transform. The
transformed point is returned as two values.

untransform-points Function

Summary

Transforms a list of points by the inverse of a given transform.

Package

graphics-ports

Signature

untransform-points transform points &optional into => result

Arguments

transform⇓ A transform.

points⇓ A list of pairs of real numbers.

into⇓ A list.

Values

result A list of pairs of real numbers.

Description

The function untransform-points transforms a list of alternating (x y) pairs in points by the effective inverse of
transform. If into is supplied it must be a list the same length as points. If into is not supplied, a new list is returned.

validate-rectangle Generic Function

Summary

Validates the rectangle associated with the object, marks it as already drawn.

Package

graphics-ports

Signature

validate-rectangle object &optional x y width height => result

22 GRAPHICS-PORTS Reference Entries

939

Arguments

object⇓ A instance of a subclass of graphics-port-mixin or a subclass of
pinboard-object.

x⇓ A real number.

y⇓ A real number.

width⇓ A real number.

height⇓ A real number.

Values

result⇓ A boolean.

Description

The generic function validate-rectangle validates the rectangle associated with object and marks it as already drawn.

The given area of object is marked as not needing to be displayed. This can be useful if you want to draw that area
immediately and avoid it being drawn again by the window system. By default validate-rectangle validates the whole
rectangle, but this can be limited by passing the optional arguments.

result is non-nil if the function succeeds and nil if it fails (doing nothing).

Notes

validate-rectangle is not fully implemented on all platforms.

On Windows, it succeeds for all valid values of x, y, width and height.

On Cocoa, it fails if x, y, width and height are passed.

On Motif, it fails in all cases.

See also

invalidate-rectangle

with-dither Macro

Summary

Specifies a dither for use within a specified body of code.

Package

graphics-ports

Signature

with-dither (dither-or-size) &body body => result

22 GRAPHICS-PORTS Reference Entries

940

Arguments

dither-or-size⇓ See Description.

body⇓ A body of Lisp code.

Values

result The return value of the last form executed in body.

Description

The macro with-dither specifies a dither for use within body. dither-or-size can be a dither mask object from
make-dither or a size, in which case a dither of that size is created.

Notes

with-dither is deprecated. Dithers do not affect drawing or anti-aliasing.

See also

dither-color-spec
make-dither
initialize-dithers

with-graphics-mask Macro

Summary

Binds the mask slot of a port's graphics state across the execution of a body of code.

Package

graphics-ports

Signature

with-graphics-mask (port mask &key mask-x mask-y mask-transform) &body body => result

Arguments

port⇓ A graphics port.

mask⇓ nil or a list specifying a shape.

mask-x⇓, mask-y⇓ Integers. These arguments are deprecated.

mask-transform⇓ nil, t, the keyword :dynamic, or a transform.

body⇓ A body of Lisp code.

Values

result The return value of the last form executed in body.

22 GRAPHICS-PORTS Reference Entries

941

Description

The macro with-graphics-mask binds the mask slot of port's graphics-state while evaluating the forms in body as an
implicit progn. The mask can be a rectangular area specified by a list of the form (x y width height) or a path specified by a
list of the form (:path path :fill-rule fill-rule).

mask-x and mask-y are deprecated. They work only when the drawing-mode is :compatible and the platform is GTK+ or
X11/Motif. By default, mask-x and mask-y are both 0.

MASK-TRANSFORM is used to set the mask-transform graphics state parameter. If mask-transform is nil, then mask will
not not transformed. If mask-transform is t, then mask will be transformed by the current graphics state transform at the time
that with-graphics-mask is used. If mask-transform is :dynamic, then mask will be transformed by the graphics state
transform that is in effect when the drawing operation uses the mask. Otherwise mask-transform should be a transform
object. The default value of mask-transform is nil.

Notes

See graphics-state for more details about mask and mask-transform.

Examples

This example file demonstrates the use of mask-transform:

(example-edit-file "capi/graphics/paths")

See also

graphics-state
13.3 Graphics state

with-graphics-post-translation Macro

Summary

Like with-graphics-translation except that the translation is done after applying all existing transforms.

Package

graphics-ports

Signature

with-graphics-post-translation (port dx dy) &body body => result

Arguments

port⇓ A graphics port.

dx⇓ A real number.

dy⇓ A real number.

body⇓ Lisp forms.

22 GRAPHICS-PORTS Reference Entries

942

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

Values

result The value returned by the last form of body.

Description

The macro with-graphics-post-translation is the same as with-graphics-translation, but the translation of
(dx, dy) is done after applying all existing transforms. That means that the translation is "absolute", not transformed. In
contrast, when using with-graphics-translation the translation is transformed by any existing transform(s).

The forms in body are evaluated as an implicit progn with the new transform bound to port.

Examples

This form draws a 40x40 rectangle at (100,100), because the scale is applied to the coordinates of the rectangle, but not to the
translation.

(gp:with-graphics-scale (port 2 2)
 (gp:with-graphics-post-translation (port 100 100)
 (gp:draw-rectangle port 0 0 20 20)))

Compare with this form, using with-graphics-translation instead, which draws a 40x40 rectangle at (200,200),
because the scale applies to the translation too:

(gp:with-graphics-scale (port 2 2)
 (gp:with-graphics-translation (port 100 100)
 (gp:draw-rectangle port 0 0 20 20)))

See also

with-graphics-transform-reset
with-graphics-translation
13.3.1 Setting the graphics state

with-graphics-rotation
with-graphics-scale
with-graphics-translation Macros

Summary

Combines a transformation (rotation, scaling or translation) with the transform of a port for the duration of the macro.

Package

graphics-ports

Signatures

with-graphics-rotation (port angle) &body body => result

with-graphics-scale (port sx sy) &body body => result

with-graphics-translation (port dx dy) &body body => result

22 GRAPHICS-PORTS Reference Entries

943

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

Arguments

port⇓ A graphics port.

angle⇓ A real number.

body⇓ A body of Lisp code.

sx⇓, sy⇓ Real numbers.

dx⇓, dy⇓ Real numbers.

Values

result The return value(s) of the last form executed in body.

Description

The macros with-graphics-rotation, with-graphics-scale and with-graphics-translation combine the
transform associated with port with an additional transform while evaluated the forms in body as an implicit progn. port is
given a new transform obtained by pre-multiplying its current transform with the transform that the macro creates.

with-graphics-rotation creates a transformation that rotates by angle radians. If angle is positive, then the rotation is
clockwise.

with-graphics-scale creates a transformation that scales by sx and sy in the X and Y dimensions.

with-graphics-translation creates a transformation that translates by dx and dy in the X and Y dimensions.

Notes

1. These macros do the same as with-graphics-transform does with an appropriate transform.

2. The transform associated with a graphics port is part of the port's graphics state. See graphics-state for details.

Examples

(example-edit-file "capi/graphics/catherine-wheel")

See also

graphics-state
with-graphics-post-translation
with-graphics-transform
13.6 Graphics state transforms
13.3.1 Setting the graphics state

with-graphics-state Macro

Summary

Binds the graphics state values of a port to a list of arguments and executes a body of code.

22 GRAPHICS-PORTS Reference Entries

944

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

Package

graphics-ports

Signature

with-graphics-state (port &rest args &key state transform foreground background operation stipple pattern fill-
style thickness scale-thickness dashed dash line-end-style line-joint-style mask mask-x mask-y font shape-mode text-mode
compositing-mode mask-transform) body => result

Arguments

port⇓ A graphics port.

args⇓ Keywords and values to initialize a graphics-state.

state⇓ A graphics-state or nil.

transform⇓, foreground⇓, background⇓, operation⇓, stipple⇓, pattern⇓, fill-style⇓, thickness⇓, scale-thickness⇓,

dashed⇓, dash⇓, line-end-style⇓, line-joint-style⇓, mask⇓, mask-x⇓, mask-y⇓, font⇓, shape-mode⇓, text-mode⇓,

compositing-mode⇓, mask-transform⇓
See graphics-state for interpretation of the arguments.

body⇓ A body of Lisp code.

Values

result The return value of the last form executed in body.

Description

The macro with-graphics-state binds the graphics state values for port according to the values of the keyword
arguments transform, foreground, background, operation, stipple, pattern, fill-style, thickness, scale-thickness, dashed, dash,
line-end-style, line-joint-style, mask, mask-x, mask-y, font, shape-mode, text-mode, compositing-mode and mask-transform.
Unspecified keywords leave the associated slots unchanged. The keyword arguments args correspond to the slots in the
graphics state, as described in graphics-state.

If state is non-nil then the graphics-state of port is bound to it before the other keywords are processed.

The forms in body are evaluated as an implicit progn with the new graphics stare bound to port.

For example:

(with-graphics-state (port :thickness 12 :foreground my-color) ...)

Arguments that are not supplied default to the current state of that slot in the graphics-state. stipple is used only on
X11/Motif.

mask-x and mask-y are deprecated. They work only when the drawing-mode is :compatible and the platform is GTK+ or
X11/Motif.

Examples

(setf gstate (make-graphics-state))

(setf (graphics-state-foreground gstate) my-color)

22 GRAPHICS-PORTS Reference Entries

945

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

(with-graphics-state (port :state gstate)
 (draw-rectangle port image-1 100 100))

See also

graphics-state
set-graphics-state
with-graphics-translation
with-graphics-post-translation
with-graphics-scale
with-graphics-rotation
with-graphics-transform
with-graphics-transform-reset
with-graphics-mask
13 Drawing - Graphics Ports

with-graphics-transform Macro

Summary

Combines a given transform with the transform of a port for the duration of the macro.

Package

graphics-ports

Signature

with-graphics-transform (port transform) &body body => result

Arguments

port⇓ A graphics port.

transform⇓ A transform.

body⇓ A body of Lisp code.

Values

result The return value of the last form executed in body.

Description

The macro with-graphics-transform combines the transform associated with port with transform while evaluating the
forms of body as an implicit progn. port is given a new transform obtained by pre-multiplying its current transform with
transform. This has the effect of preceding any translation, scaling and rotation operations specified in the body of the macro
by those operations embodied in transform.

Notes

See graphics-state for details of how a transform is used.

22 GRAPHICS-PORTS Reference Entries

946

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

Examples

(example-edit-file "capi/graphics/metafile-rotation")

See also

graphics-state
transform

with-graphics-transform-reset Macro

Summary

Like with-graphics-transform except that it ignores existing transforms.

Package

graphics-ports

Signature

with-graphics-transform-reset (port &optional transform) &body body => result

Arguments

port⇓ A graphics port.

transform⇓ A transform.

body⇓ Lisp forms.

Values

result The value returned by the last form of body.

Description

The macro with-graphics-transform-reset works the same as with-graphics-transform except that it ignores
existing transforms.

If transform is nil, then body is evaluated without any transform in port (that is, with the unit transform).

Examples

This form ignores the translation, and applies only the explicit transform (which is really just scale), so that the overall effect
is to draw a 30x20 rectangle at (0,0).

(gp:with-graphics-translation (port 100 100)
 (gp:with-graphics-transform-reset (port (gp:make-transform 3 0 0 2 0 0))
 (gp:draw-rectangle port 0 0 10 10)))

Compare with using with-graphics-transform, which applies both the translation and the explicit transform, so that the
overall effect is to draw a rectangle 30x20 at (100,100).

22 GRAPHICS-PORTS Reference Entries

947

(gp:with-graphics-translation (port 100 100)
 (gp:with-graphics-transform (port (gp:make-transform 3 0 0 2 0 0))
 (gp:draw-rectangle port 0 0 10 10)))

See also

with-graphics-post-translation
with-graphics-transform

with-inverse-graphics Macro

Summary

Executes all drawing function calls to a given port within the body of the macro with foreground and background colors
swapped.

Package

graphics-ports

Signature

with-inverse-graphics (port) &body body => result

Arguments

port⇓ A graphics port.

body⇓ A body of Lisp code.

Values

result The return value of the last form executed in body.

Description

The macro with-inverse-graphics evaluates the forms in body as an implicit progn with the foreground and
background slots of the graphics-state of port swapped.

without-relative-drawing Macro

Summary

Evaluates a body of Lisp code with the relative and collect internal variables of the port set to nil.

Package

graphics-ports

22 GRAPHICS-PORTS Reference Entries

948

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

Signature

without-relative-drawing (port) &body body => result

Arguments

port⇓ A graphic port.

body⇓ A body of Lisp code.

Values

result The return value of the last form executed in body.

Description

The macro without-relative-drawing evaluates the forms in body as an implicit progn with the relative and collect
internal variables of the pixmap graphics port port set to nil to turn off the port's collecting of drawing bounds and automatic
shifting of its origins. Use this macro only within a with-pixmap-graphics-port macro.

with-pixmap-graphics-port Macro

Summary

Binds a port to a new pixmap graphics port for the duration of the macro's code body.

Package

graphics-ports

Signature

with-pixmap-graphics-port (port pane width height &key background foreground collect relative clear drawing-
mode) &body body => result

Arguments

port⇓ A graphics port.

pane⇓ An output pane.

width⇓ An integer.

height⇓ An integer.

background⇓ A color specification, or nil.

foreground⇓ A color specification, or nil.

collect⇓ A boolean.

relative⇓ A boolean.

clear⇓ A list or t.

drawing-mode⇓ One of the keywords :compatible and :quality.

body⇓ A body of Lisp code.

22 GRAPHICS-PORTS Reference Entries

949

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

Values

result The return value of the last form executed in body.

Description

The macro with-pixmap-graphics-port binds port to a new pixmap graphics-port.

pane, width, height, background, foreground, collect, relative, clear AND drawing-mode are used as specified by
create-pixmap-port. The forms in body are then evaluated as an implicit progn. port is destroyed when body returns.

Examples

In the code below the background in p2 inherits from p1, so it draws two green rectangles.

(let ((op (capi:contain
 (make-instance 'capi:output-pane
 :background :red))))
 (sleep 0.1)
 (gp:with-pixmap-graphics-port (p1 op 20 30
 :background :green
 :clear t)
 (gp:with-pixmap-graphics-port (p2 p1 20 30 :clear t)
 (gp:copy-pixels op p1 10 10 20 30 0 0)
 (gp:copy-pixels op p2 10 60 20 30 0 0))))

See also

create-pixmap-port
13 Drawing - Graphics Ports

with-transformed-area Macro

Summary

Transforms a rectangle using a port's transform, and binds the resulting values to a variable across the evaluation of the
macro's body.

Package

graphics-ports

Signature

with-transformed-area (points port left top right bottom) &body body => result

Arguments

points⇓ A variable.

port⇓ A graphics port.

left⇓ A real number.

top⇓ A real number.

22 GRAPHICS-PORTS Reference Entries

950

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

right⇓ A real number.

bottom⇓ A real number.

body⇓ A body of Lisp code.

Values

result The return value of the last form executed in body.

Description

The macro with-transformed-area uses port's transform to transform a rectangle specified by left, top, right AND
bottom. Then points is bound to the resulting list of eight values (alternating x and y values for four corner points) while the
forms of body are evaluated as an implicit progn.

with-transformed-point Macro

Summary

Binds a point transformed by a given ports transform to two variables across the body of the macro.

Package

graphics-ports

Signature

with-transformed-point (new-x new-y port x y) &body body => result

Arguments

new-x⇓ A variable.

new-y⇓ A variable.

port⇓ A graphics port.

x⇓ A real number.

y⇓ A real number.

body⇓ A body of Lisp code.

Values

result The return value of the last form executed in body.

Description

The macro with-transformed-point transforms the point given by (x y) using port's transform and new-x and new-y are
bound to the transformed point. The forms in body are then evaluated as an implicit progn with this binding.

22 GRAPHICS-PORTS Reference Entries

951

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

with-transformed-points Macro

Summary

Binds a list of transformed points in a port to a list across the execution of the macro's body.

Package

graphics-ports

Signature

with-transformed-points (points port) &body body => result

Arguments

points⇓ A list of real numbers.

port⇓ A graphics port.

body⇓ A body of Lisp code.

Values

result The return value of the last form executed in body.

Description

The macro with-transformed-points binds points to a new list of x and y values obtained by post-multiplying them by
the current transform of port, and then evaluates the forms in body as am implicit progn. points must be bound to a list of
alternating x and y values representing coordinate points in port.

with-transformed-rect Macro

Summary

Transforms the coordinates of a rectangle and binds them to variables while executing a body of code.

Package

graphics-ports

Signature

with-transformed-rect (nx1 ny1 nx2 ny2 port x1 y1 x2 y2) &body body => result

Arguments

nx1⇓ A variable.

ny1⇓ A variable.

22 GRAPHICS-PORTS Reference Entries

952

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

nx2⇓ A variable.

ny2⇓ A variable.

port⇓ A graphics port.

x1⇓ A real number.

y1⇓ A real number.

x2⇓ A real number.

y2⇓ A real number.

body⇓ A body of Lisp code.

Values

result The return value of the last form executed in body.

Description

The macro with-transformed-rect transforms the coordinates of a rectangle and binds them to four variables for the
duration of the macro's body.

During the evaluation of the forms in body, the two points (x1, y1) and (x2, y2) are transformed by the current transform of
port and the resulting values are bound to the variables nx1, ny1, nx2 and ny2.

write-external-image Function

Summary

Writes external image data to a file.

Package

graphics-ports

Signature

write-external-image external-image destination &key if-exists

Arguments

external-image⇓ An external-image.

destination⇓ A pathname designator.

if-exists⇓ A keyword.

Description

The function write-external-image writes external-image to destination. If destination is a stream, it must be an output
stream with element type compatible with (unsigned-byte 8), that is one of cl:base-char, (signed-byte 8) and
(unsigned-byte 8). If destination is a pathname or namestring the file is opened for output with the correct element type,
and write-external-image writes the bytes to the resulting stream as if by cl:write-sequence.

22 GRAPHICS-PORTS Reference Entries

953

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_seq.htm

if-exists is passed to open when opening file. The default value of if-exists is :error.

See also

externalize-image
13.10.3 External images

22 GRAPHICS-PORTS Reference Entries

954

http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm

23 LW-GT Reference Entries

This chapter provides reference entries for the symbols exported from the lw-gt package. This package is for the Graphic
Tools, which are interfaces which use Graphics Ports and CAPI. These contain the drawing objects, which add a mechanism
to creates a hierarchy of drawing, when a "drawing" is (typically) a simple Graphics Ports drawing operation. The hierarchy
specifies the geometry of each node in the hierarchy, so the whole group drawings can be manipulated as a single object.

To use Graphic Tools, you first need to load the module "graphic-tools", like this:

(require "graphic-tools")

See 14 Graphic Tools drawing objects for an overview of Graphic Tools.

See 1 Introduction to the CAPI for an overview of CAPI, and 13 Drawing - Graphics Ports for more information on
Graphics Ports.

apply-drawing-object Class

Summary

A drawing-object that applies a supplied function to supplied arguments.

Package

lw-gt

Superclasses

drawing-object

Description

The class apply-drawing-object is a drawing-object that applies a supplied function to a list of supplied arguments,
normally preceded by the objects-displayer. Its main usage is for doing the actual drawing.

apply-drawing-objects can be used repeatedly and concurrently in the same or different panes. The ones that are created
by the make-draw-* functions (make-draw-arc and so on) are fixed, but for objects created by make-a-drawing-call,
the supplied function may depend on values that change, and hence needs to be redisplayed when these values change. Use
force-objects-redraw on the root of the hierarchy (an objects-displayer or a pinboard-objects-displayer)
to do that.

See drawing-object for description of the drawing operation.

See also

objects-displayer
pinboard-objects-displayer
position-object
fit-object

955

position-and-fit-object

basic-graph-spec System Class

Summary

Provides a mechanism to simplify generating a graph of a mathematical function which maps x to y.

Package

lw-gt

Superclasses

t

Accessors

basic-graph-spec-function
basic-graph-spec-start-x
basic-graph-spec-step-x
basic-graph-spec-range
basic-graph-spec-color
basic-graph-spec-thickness
basic-graph-spec-name
basic-graph-spec-x-scale
basic-graph-spec-y-scale
basic-graph-spec-x-offset
basic-graph-spec-y-offset
basic-graph-spec-var1
basic-graph-spec-var2
basic-graph-spec-var3
basic-graph-spec-var4
basic-graph-spec-var5
basic-graph-spec-var6

Description

The system class basic-graph-spec provides a mechanism to simplify generating a graph of a mathematical function
which maps x to y. Create it with make-basic-graph-spec.

Notes

1. The basic-graph-spec mechanism is intended to make it simpler to repeatedly compute graphs for a function with
values that may change. It is a thin layer, and you can implement you own version using
generate-graph-from-pairs.

2. basic-graph-spec is a structure type, and can be included in structures your define to extend the functionality.

See also

make-basic-graph-spec
14.2 Higher level - drawing graphs and bar charts

23 LW-GT Reference Entries

956

compound-drawing-object Class

Summary

A drawing-object that draws the "child" drawing-object in its sub-object slot.

Package

lw-gt

Superclasses

drawing-object

Subclasses

geometry-drawing-object

Accessors

compound-drawing-object-sub-object
compound-drawing-object-data

Description

The class compound-drawing-object is a drawing-object that has a "child" drawing-object in its sub-object slot.
The compound-drawing-object draws the "child".

The main usage of compound-drawing-object is through its subclass geometry-drawing-object, which manipulates
the geometry around drawing the objects. See geometry-drawing-object.

It is possible to set the sub-object slot in a compound-drawing-object using
(setf compound-drawing-object-sub-object). This can be done on any thread. This setting does not cause
automatic redisplay of the object. The redisplay happens next the time the hierarchy is redisplayed. You can force the
redisplay by calling force-objects-redraw.

compound-drawing-object should not be made by cl:make-instance. See geometry-drawing-object for how to
make it.

The accessor compound-drawing-object-data can be used to read and set the data slot in the
compound-drawing-object. You can use the data slot to store related information, and it is used by
compute-drawing-object-from-data.

See also

objects-displayer
pinboard-objects-displayer
14.1 Lower level - drawing objects and objects displayers

23 LW-GT Reference Entries

957

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

compute-drawing-object-from-data
recurse-compute-drawing-object Functions

Summary

Use the function and/or data in compound-drawing-objects.

Package

lw-gt

Signatures

compute-drawing-object-from-data object => result

recurse-compute-drawing-object object-or-displayer

Arguments

object⇓ A Lisp object.

object-or-displayer⇓ An objects-displayer, pinboard-objects-displayer, a list, or a
compound-drawing-object.

Values

result A boolean.

Description

The function compute-drawing-object-from-data computes the drawing for an object.

If object is not a compound-drawing-object, then compute-drawing-object-from-data just returns nil.

If object is a compound-drawing-object, then compute-drawing-object-from-data checks if object has a non-nil
value for either function or data. For object to have a non-nil function, this must have been supplied when object was created
(for example when creating geometry-drawing-object). data can be passed during creation or set later by using setf

with compound-drawing-object-data.

If object has a non-nil function, then compute-drawing-object-from-data calls function with data as a single
argument, and uses the result. Otherwise, if object has a non-nil data, compute-drawing-object-from-data calls the
generic function get-drawing-object with data as a single argument, and uses the result. If this result is :no-change,
compute-drawing-object-from-data just returns nil. get-drawing-object has a default method that returns
:no-change.

Otherwise, the result must be a "drawing-object-spec", which means either an instance of (a subclass of) drawing-object
or a list of "drawing-object-specs". compute-drawing-object-from-data then sets the sub-object of the object to the
result, and returns t.

For recurse-compute-drawing-object, object-or-displayer should be an objects-displayer, a
pinboard-objects-displayer, a list, or a compound-drawing-object. For other objects
recurse-compute-drawing-object just returns nil.

recurse-compute-drawing-object recurses the hierarchy starting at object-or-displayer, and for each

23 LW-GT Reference Entries

958

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

compound-drawing-object that it finds calls compute-drawing-object-from-data.

When it finds an objects-displayer or a pinboard-objects-displayer, recurse-compute-drawing-object
also calls force-objects-redraw when it finishes.

These functions can be called on any thread.

Notes

1. The purpose of these functions is to allow creating a tree of drawing-objects that can update itself, by passing the
function argument when making it or defining get-drawing-object and passing the appropriate data. Then the tree
can be told to recompute itself by calling recurse-compute-drawing-object.

2. These functions do not cause redraw, except when recurse-compute-drawing-object is applied to
objects-displayer or pinboard-objects-displayer. You will have to do it yourself by using
force-objects-redraw on the root of the hierarchy or hierarchies which need redrawing.

3. recurse-compute-drawing-object does not check against duplication, so if the same object appears in the
hierarchy more than once, it will be updated repeatedly.

See also

geometry-drawing-object
compound-drawing-object
14.1 Lower level - drawing objects and objects displayers

drawing-object Class

Summary

The root class for drawing objects.

Package

lw-gt

Superclasses

t

Subclasses

compound-drawing-object
apply-drawing-object
string-drawing-object

Description

The class drawing-object is the root class for drawing objects, which are used to create hierarchies of drawings. The
hierarchy is made of compound-drawing-object objects, which group other drawing objects and affect their geometry,
lists of drawing-objects, and leaf drawing objects (currently apply-drawing-object and
string-drawing-object), which actually do the drawing.

A drawing-object is part of the hierarchy when it is in the drawing-object slot of an objects-displayer or a
pinboard-objects-displayer, or it is inside a list which is in a hierarchy, or it is in the sub-object slot of a

23 LW-GT Reference Entries

959

compound-drawing-object. The root of the hierarchy is always an objects-displayer or a
pinboard-objects-displayer. A node in the hierarchy (except the root) is either a drawing-object or a list, which is
collectively called "drawing-object-spec". In a list all the elements must be "drawing-object-specs".

drawing-object can concurrently appear multiple times in the same or different hierarchies, in the same or different panes
and same or different interfaces.

Drawing drawing-objects is always done top-down: the root object draws its drawing-object. Typically this is either a
compound-drawing-object or a list, which will draw their sub-object or elements respectively. Each object which is a
geometry-drawing-object does something to the geometry, that is set up some Graphics Ports transformation, and then
draw all its objects inside this context. For lists the elements are drawn in the same context in which the list is drawn. Leaf
drawing-objects actually draw something.

parent, root, and root pane

When the drawing operation reaches a drawing-object, it is because it is inside the hierarchy inside a
compound-drawing-object or directly inside the hierarchy under an objects-displayer or a
pinboard-objects-displayer. This compound-drawing-object, objects-displayer or
pinboard-objects-displayer is the "parent" of the drawing-object for this drawing operation, and determines its
geometry. During the drawing operation there is also the "root" (the objects-displayer or
pinboard-objects-displayer from which the drawing started), and the "root pane" (the objects-displayer when
the root is an objects-displayer, or the pane of the pinboard-objects-displayer).

Note that "parent", "root" and "root pane" of a drawing-object are transient concepts, and are applicable only inside the
context of a drawing operation of the drawing-object. The same drawing-object may be drawn many times, with
(potentially) different "parent", "root" and "root pane". It can be even drawn concurrently with different "root panes".

Notes

drawing-objects should not be made by cl:make-instance. See the entries for the subclasses for how to make them.

See also

objects-displayer
pinboard-objects-displayer
14.1 Lower level - drawing objects and objects displayers

fit-object
make-absolute-drawing
make-absolute-drawing*
position-object
position-and-fit-object
rotate-object Functions

Summary

Create a geometry-drawing-object, where the sub-object is the drawing-object.

Package

lw-gt

23 LW-GT Reference Entries

960

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

Signatures

fit-object drawing-object intended-width intended-height &key data function => geometry-drawing-object

make-absolute-drawing &rest drawing-objects => geometry-drawing-object

make-absolute-drawing* drawing-objects => geometry-drawing-object

position-object drawing-object &key left-margin left-ratio right-margin right-ratio top-margin top-ratio bottom-margin
bottom-ratio data function => geometry-drawing-object

position-and-fit-object drawing-object intended-width intended-height &key left-margin left-ratio right-margin right-
ratio top-margin top-ratio bottom-margin bottom-ratio data function => geometry-drawing-object

rotate-object drawing-object angle &key left-margin left-ratio bottom-margin bottom-ratio data function => geometry-
drawing-object

Arguments

drawing-object⇓ A "drawing-object-spec".

intended-width⇓, intended-height⇓
Real numbers or nil.

data⇓ Any Lisp object.

function⇓ A function designator or nil.

drawing-objects⇓ A list of "drawing-object-specs".

left-margin⇓, left-ratio⇓
Real numbers or nil.

right-margin⇓, right-ratio⇓
Real numbers or nil.

top-margin⇓, top-ratio⇓
Real numbers or nil.

bottom-margin⇓, bottom-ratio⇓
Real numbers or nil.

angle⇓ A real number or nil.

Values

geometry-drawing-object

A geometry-drawing-object.

Description

The functions fit-object, make-absolute-drawing, make-absolute-drawing*, position-object,
position-and-fit-object and rotate-object are the "geometry" functions. Each creates a
geometry-drawing-object, where the sub-object slot contains drawing-object.

Each drawing-object argument must be a "drawing-object-spec", which means either an instance of (a subclass of)
drawing-object or a list of "drawing-object-specs".

23 LW-GT Reference Entries

961

position-object

When drawing, the geometry-drawing-object created by position-object computes its own position and size based
on the keyword arguments and the position and size of its parent (see drawing-object for the meaning of "parent"). It then
establishes a Graphics Ports translation to translate from its parent's left/bottom corner to its own left/bottom corner, and
draws its sub-object.

left-margin, left-ratio, right-margin, right-ratio, top-margin, top-ratio, bottom-margin and bottom-ratio specify how to
compute the left, right, bottom and top of the positioning object with respect to its parent. For each side, the value is
computed by multiplying the ratio by the relevant dimension (width for left and right, height for top and bottom), and then
add (for left and bottom) or subtract (for right and top) the margin. Note that the vertical coordinate is 0 at the bottom and
increases towards the top.

The default values of right-ratio and top-ratio are 1, and the default values of all the other keyword arguments are 0, making
it compute the same position and size as the parent.

Notes

1. The width and height of a positioning object are not used explicitly, but will be used by any child object that is itself a
geometry-drawing-object.

2. A positioning geometry-drawing-object does not cause any scaling.

3. Calling position-object without passing right and top values is a useful way to just shift objects around, but the
resulting width and height are probably not useful. If drawing-object contains drawing objects that need the width and
height (result of fit-object, position-and-fit-object, or rotate-object), you probably need to set the right
and top too.

fit-object

When drawing, the geometry-drawing-object created by fit-object computes scaling factors for the horizontal and
vertical dimensions by dividing its width and height, which it inherits from its parent, by its intended-width and intended-
height. It then establishes a Graphics Ports scaling transformation with these factors, and draws its sub-object.

position-and-fit-object

position-and-fit-object creates a drawing-object that performs the equivalent of using position-object with
the result of calling fit-object with drawing-object. In other words, it first positions and then fits.

rotate-object

When drawing, the geometry-drawing-object created by rotate-object computes the transform for rotating the
object by angle radians around the point specified by the keyword arguments (default to left-bottom corner). left-margin, left-
ratio, bottom-margin and bottom-ratio are used to compute the center of rotation, using the same algorithm as in
position-object.

rotate-object does not affect the width and height of the drawing, but since the drawing itself is rotated, the direction in
which the width and height apply are rotated too. For example, if you rotate by pi/2, the width is in the vertical dimension
on the screen.

make-absolute-drawing and make-absolute-drawing*

make-absolute-drawing and make-absolute-drawing* create an object that displays drawing-objects in "absolute
mode", which means drawing without scaling or rotation, but still taking account of the translation. When using a metafile,
the absolute drawing is into the metafile. When the metafile is drawn, it normally scales and this scales everything, including
absolute drawings.

23 LW-GT Reference Entries

962

Notes

1. Inside the "absolute" scope, the y increases downwards rather than upwards.

2. An example where absolute drawing is useful is drawing of strings and some associated drawing-objects inside a
larger object, where you want to allow the larger object to scale and rotate and the strings displayed in the correct place,
but you want the strings to be upright and optimal size for readability.

data and function

data argument can be anything, and is stored in the geometry-drawing-object, and can be accessed by
compound-drawing-object-data. It can be used to keep arbitrary data, and is also used by
compute-drawing-object-from-data.

function is used by compute-drawing-object-from-data only. See compute-drawing-object-from-data.

geometry-drawing-object objects can be used repeatedly and concurrently in the same or different panes. The sub-
object can be changed dynamically by using (setf compound-drawing-object-sub-object) from any thread, but if it
is already being displayed, you will need to ensure that they are redrawn. See force-objects-redraw.

See also

drawing-object
compound-drawing-object
objects-displayer
pinboard-objects-displayer
force-objects-redraw
14.1 Lower level - drawing objects and objects displayers

force-objects-redraw Function

Summary

Forces redrawing of objects.

Package

lw-gt

Signature

force-objects-redraw pane

Arguments

pane⇓ An objects-displayer or a pinboard-objects-displayer.

Description

The function force-objects-redraw forces redrawing of the objects in the drawing-object slot of pane.

pane should be either an objects-displayer or a pinboard-objects-displayer. When force-objects-redraw

is called on any other object it silently does nothing.

force-objects-redraw uses apply-in-pane-process, so can be used on any process.

23 LW-GT Reference Entries

963

Notes

In the case of objects-displayer, force-objects-redraw forces redrawing of the drawing-object of the
objects-displayer and the drawing-objects and any pinboard-objects-displayer objects in the description of
the objects-displayer, but does not force redraw of other pinboard-objects. force-objects-redraw is needed
when you set the sub-object slot in any of the drawing-objects inside a hierarchy, because setting does not cause
automatic redrawing.

See also

objects-displayer
pinboard-objects-displayer
14.1 Lower level - drawing objects and objects displayers

generate-bar-chart Function

Summary

Generate a list of drawing-objects which display the bars of a bar chart.

Package

lw-gt

Signature

generate-bar-chart values &key function start-position step-position width orientation colors title-position argument
font base title-color absolute-p => bars

Arguments

values⇓ A list.

function⇓ A function of one or two arguments, depending on argument.

start-position⇓ The position of the first bar.

step-position⇓ The distance between bars.

width⇓ The width of a bar.

orientation⇓ One of the keywords :rightward, :leftward, :downward and :upward.

colors⇓ A list of colors.

title-position⇓ One of the keywords :middle, :top, :bottom, :right and :left, or nil.

argument⇓ A Lisp object.

font⇓ A font specification.

base⇓ The position of the "base" of each bar.

title-color⇓ A color specification.

absolute-p⇓ A boolean.

23 LW-GT Reference Entries

964

Values

bars A list of drawing-objects.

Description

The function generate-bar-chart generates a list of drawing-objects which display the bars of a bar chart.

values is a list giving the values that need displaying. There is a bar for each element in the list.

For each element in values, generate-bar-chart uses the function function to find the length of the bar and a title to add
to it. If argument is non-nil, function is called with two arguments: argument and the element of values. Otherwise, function
is called with one argument, the element. function must return the length of the bar, and optionally the title as a second return
value. The default value of argument is nil.

If function is not supplied, the default function checks if the element is a list, and if it is returns the first element of it as the
length and the second element as the title. If it is not a list it returns it and nil as the second value.

generate-bar-chart then generates a drawing-object that draws the bar, which is a rectangle with length being the
result of the function and width width. The default value of width is 1.

For orientation :upward or :downward, the "length dimension" is vertical, and the "width dimension" is the horizontal, and
the reverse for the other orientations. The default value of orientation is :upward.

The position of the rectangle in the "length dimension" is from base to (+ base length) for orientation :upward and
:leftward, and from base to (- base length) for the other orientations. The default value of base is 0.

start-position and step-position determine the position of the center of the rectangle in the "width dimension". Hence the
position of the n'th rectangle in the "width dimension" is from:

(- (+ #START-POSITION (* (1- n) #STEP-POSITION)) (/ #WIDTH 2))

to:

(+ (+ #START-POSITION (* (1- n) #STEP-POSITION)) (/ #WIDTH 2))

The default value of start-position is 1. The default value of step-position is (* 3 width).

The color of the rectangle is taken from the items of colors in turn, starting again from the beginning when reaching the end.
The default value of colors is (:red :green :blue :yellow :purple).

generate-bar-chart then also computes where the string should appear with respect to the bar, depending on title-
position, generates a drawing object using make-draw-string, passing it font, absolute-p and title-color. title-position nil

means the end of the bar. The default value of font is the font of the pane. absolute-p determines whether the title is drawn in
absolute mode. The default value of absolute-p is t.

See also

drawing-object
14.1 Lower level - drawing objects and objects displayers

23 LW-GT Reference Entries

965

generate-graph-from-pairs Function

Summary

Generates a drawing object which draws lines connecting points.

Package

lw-gt

Signature

generate-graph-from-pairs x-y-pairs &key thickness color x-offset y-offset x-scale y-scale => drawing-object

Arguments

x-y-pairs⇓ A list.

thickness⇓ A positive real number.

color⇓ A Color specification.

x-offset⇓, y-offset⇓ Non-negative real numbers.

x-scale⇓, y-scale⇓ Positive real numbers.

Values

drawing-object A drawing-object.

Description

The function generate-graph-from-pairs generates a "graph", which is a drawing object which draws lines connecting
the points in x-y-pairs.

x-y-pairs must be a list where each element is a list of length 2 specifying a point as a pair of coordinates (x, y).

x-scale, y-scale, x-offset and y-offset are used to scale and offset the graph. Each x value is multiplied by x-scale and then x-
offset is added, and similarly for the y value. The default value of both x-offset and y-offset is 0. The default value of both x-
scale and y-scale is 1.

thickness specifies the thickness of the line, which is not scaled (it passes :scale-thickness nil to
make-draw-lines). thickness defaults to 1.

color specifies the foreground color of the line color defaults to :red.

Notes

generate-graph-from-pairs is a quite thin interface on top of make-draw-lines. If it does not do what you want,
you can easily replace it by your own code.

See also

generate-graph-from-graph-spec
drawing-object

23 LW-GT Reference Entries

966

14.2 Higher level - drawing graphs and bar charts

generate-grid-lines Function

Summary

Generate a grid of lines, to be used for drawing graphs of functions or bar charts.

Package

lw-gt

Signature

generate-grid-lines (&key x-offset y-offset x-spacing y-spacing horizontal-count vertical-count width height thickness
vertical-thickness minor-thickness minor-vertical-thickness left-thickness right-thickness top-thickness bottom-thickness major-x-
step major-y-step color vertical-color major-color major-vertical-color left-color right-color top-color bottom-color) => list

Arguments

x-offset⇓, y-offset⇓ Non-negative real numbers.

x-spacing⇓, y-spacing⇓
Positive real numbers.

horizontal-count⇓, vertical-count⇓
nil or positive integers.

width⇓, height⇓ nil or positive real numbers.

thickness⇓, vertical-thickness⇓, minor-thickness⇓, minor-vertical-thickness⇓, left-thickness⇓, right-thickness⇓, top

-thickness⇓, bottom-thickness⇓
Positive real numbers. Each defaults to 1.

major-x-step⇓, major-y-step⇓
nil or integers.

color⇓, vertical-color⇓, major-color⇓, major-vertical-color⇓, left-color⇓, right-color⇓, top-color⇓, bottom-

color⇓
Colors in the standard definition. Each defaults to :gray.

Values

list A list of drawing-objects.

Description

The function generate-grid-lines generates a grid of lines, to be used for drawing graphs of functions or bar charts.

generate-grid-lines returns a list of drawing-objects which when drawn display a grid of horizontal and vertical
lines, according to the supplied specification.

The grid is made of vertical lines spaced regularly in the horizontal dimension, and horizontal lines spaced regularly in the
vertical dimension. The specification of the graph is conceptual starting from 0 and increasing in both dimensions. This does

23 LW-GT Reference Entries

967

not affect what values the graph shows, because these are defined by the labels which are produced separately (typically by
generate-labels).

x-offset and y-offset specify the offset of the origin of the graph, which means the position of the first horizontal and vertical
line respectively, and where the other horizontal and vertical lines start. The default value of both x-offset and y-offset is 0.

x-spacing and y-spacing specify the gaps in the horizontal and vertical dimensions respectively (that is, the distance between
the lines). The default value of both x-spacing and y-spacing is 1.

horizontal-count and vertical-count specify the numbers of lines in the horizontal and vertical dimensions respectively (that
is, the number of lines).

The length of the horizontal (vertical) lines is computed by the product x-spacing * horizontal-count (y-spacing * vertical-
count).

width and height are used only when horizontal-count or vertical-count respectively is nil, to compute the value of
horizontal-count or vertical-count, by truncating width or height by x-spacing or y-spacing.

major-x-step and major-y-step specify that each major-x-step'th (horizontally) or major-y-step'th (vertically) line is "major",
which means drawn with (potentially) different thickness and color (see below).

thickness, vertical-thickness, minor-thickness, minor-vertical-thickness, left-thickness, right-thickness, top-thickness amd
bottom-thickness specify the thickness of the lines. color, vertical-color, major-color,major-vertical-color, left-color, right-
color, top-color and bottom-color specify the color of the lines. The default values for these arguments are shown in Default
values for *-thickness and *-color arguments to generate-grid-lines:

Default values for *-thickness and *-color arguments to generate-grid-lines

Argument Default value

thickness 1

vertical-thickness thickness

major-thickness thickness

major-vertical-thickness major-thickness

top-thickness major-thickness

bottom-thickness major-thickness

left-thickness major-vertical-thickness

right-thickness major-vertical-thickness

color :gray

vertical-color color

major-color color

major-vertical-color major-color

top-color major-color

bottom-color major-color

left-color major-vertical-color

right-color major-vertical-color

The top-*, bottom-*, left-*, right-* variables specify the values for the outer lines of the grid. The major-* variables specify
the values for the major lines, the other variables specify the values for the ordinary lines. The vertical-* variables specify the
values for the vertical lines, the other variables for the horizontal.

23 LW-GT Reference Entries

968

Notes

1. To actually be displayed, the result of generate-grid-lines must be in a hierarchy which is rooted in an
objects-displayer or a pinboard-objects-displayer.

2. The result of generate-grid-lines is a list of drawing-object, so it is a valid "drawing-object-spec". It will be
typically be grouped together with some other "drawing-object-specs", for example labels for the graph, by simply
listing them, and then positioned and fitted by passing it to position-object or fit-object or
position-and-fit-object.

3. The function generate-labels is intended to be useful to generate the labels.

4. x-offset and y-offset are useful for leaving space for the labels.

5. The units of the numbers that in the location of the lines are abstract, not pixels, and will typically correspond to the units
of the data that the graph displays. They will be in pixels only if there is no fitting around the graph. For example, if you
make the grid from 0 to 9 in the x dimension, and then fit to natural-width 10, that is you pass the result, or an object
that contains the result in its hierarchy, to fit-object with the natural-width 10, the graph will take 90% of the width
of the geometry-drawing-object that fit-object generated, whatever that is.

See also

drawing-object
generate-graph-from-graph-spec
14.2 Higher level - drawing graphs and bar charts

generate-labels Function

Summary

Return the labels of a graph of a function.

Package

lw-gt

Signature

generate-labels horizontal-p start step range &key print-function decimal-point color x-adjust y-adjust absolute-p =>
labels

Arguments

horizontal-p⇓ A boolean.

start⇓ A real number.

step⇓ A real number.

range⇓ A positive real number.

print-function⇓ nil, or a function of one argument which takes a real and returns a string.

decimal-point⇓ An integer or nil.

color⇓ A color specification in the Color system.

x-adjust⇓, y-adjust⇓ nil, a number, or one of the keywords :center and :end-align.

23 LW-GT Reference Entries

969

absolute-p⇓ A boolean.

Values

labels⇓ A list of drawing-objects.

Description

The function generate-labels returns a list labels of drawing-objects, which are supposed to be the labels of a graph
of a function.

generate-labels generates a list of drawing objects, which draw strings representing numbers and positioned in regular
intervals in one dimension and fixed value in the other dimension.

horizontal-p specifies the dimension. When horizontal-p is true, the objects are placed in a row with regular horizontal
intervals, otherwise they are spaced in a column with regular vertical intervals.

start determines the lowest value, range determines the range of values, and step determines the distance between
neighbouring values. When step is negative, start is on the right (or top) and the values increase from right to left (or top to
bottom).

For each value, generate-labels generates a string. If print-function is a function, it is called with the value and must
return the string. Otherwise generate-labels makes the string using decimal-point and the value as follows:

(format nil "~,vf" decimal-point value)

It then uses make-draw-string to generate a drawing-object, adjusting the position by x-adjust horizontally and y-
adjust vertically and using color as the foreground color and make it "absolute mode" depending on absolute-p. It then
positions the object (using position-object) at the right place. The default value of x-adjust is :center if horizontal-p is
true, and :end-align otherwise. The default value of y-adjust is -1 if horizontal-p is true, and :center otherwise. The
default value of color is :black.

generate-labels returns a list of drawing-objects, which is a valid "drawing-object-spec".

Notes

1. generate-labels will typically be used in conjunction with generate-grid-lines.

2. generate-labels is quite a simple function. If it does not do what you want, you can improve it easily by writing
your own version.

3. The defaults for x-adjust and y-adjust are what you typically use when the labels are at the left and bottom of the graph.
To put the labels somewhere else in the graph, use position-object on labels to move it around. If you want the
labels at the top, change y-adjust to 0 when passing horizontal-p true (so the labels are above the line), and then use
position-object with bottom-margin the height of the grid to move the whole row of labels:

(position-object (generate-labels ... :y-adjust 0)
 :bottom-margin grid-height)

To move the column to the right, change x-adjust to nil and use left-margin.

4. The size on the screen would normally be scaled by using fit-object on the result.

See also

fit-object

23 LW-GT Reference Entries

970

position-object
generate-grid-lines
drawing-object
14.2 Higher level - drawing graphs and bar charts

geometry-drawing-object Class

Summary

A drawing-object which when drawn changes the geometry of the drawing.

Package

lw-gt

Superclasses

compound-drawing-object

Description

The class geometry-drawing-object is a drawing-object which when drawn changes the geometry of the drawing by
establishing a Graphics Ports transformation, and then draws the sub-object (slot inherited from
compound-drawing-object) in this context.

See also

compound-drawing-object

make-a-drawing-call
make-draw-arc
make-draw-circle
make-draw-ellipse
make-draw-line
make-draw-lines
make-draw-polygon
make-draw-rectangle Functions

Summary

Create and return an apply-drawing-object.

Package

lw-gt

23 LW-GT Reference Entries

971

Signatures

make-a-drawing-call function arguments &optional pass-pane-p => apply-drawing-object

make-draw-arc x y width height start-angle sweep-angle &rest args => apply-drawing-object

make-draw-circle x y radius &rest args => apply-drawing-object

make-draw-ellipse x y x-radius y-radius &rest args => apply-drawing-object

make-draw-line from-x from-y to-x to-y &rest args => apply-drawing-object

make-draw-lines lines &rest args => apply-drawing-object

make-draw-polygon points &rest args => apply-drawing-object

make-draw-rectangle x y width height &rest args => apply-drawing-object

Arguments

function⇓ A function designator.

arguments⇓ A list.

pass-pane-p⇓ A generalized boolean.

x⇓, y⇓, width⇓, height⇓, start-angle⇓, sweep-angle⇓
Real nunbers.

args⇓ Other drawing function arguments.

radius⇓, x-radius⇓, y-radius⇓
Real numbers.

from-x⇓, from-y⇓, to-x⇓, to-y⇓
Real numbers.

lines⇓ A sequence of real numbers of the form x1 y1 x2 y2.

points⇓ A sequence of real numbers of the form x y.

Values

apply-drawing-object An apply-drawing-object.

Description

Each of the functions make-a-drawing-call, make-draw-line, make-draw-lines, make-draw-polygon,
make-draw-ellipse, make-draw-circle, make-draw-rectangle and make-draw-arc creates and returns an
apply-drawing-object.

For make-a-drawing-call, the drawing is done by applying the function function to arguments. When pass-pane-p is
true, function is applied to the "root pane" (see drawing-object) followed by arguments. function should typically draw
something, but it does not have to, and may do other things. The default value of pass-pane-p is true.

For the other functions, the drawing is done using the corresponding Graphics Ports function:

make-draw-arc draw-arc

make-draw-circle draw-circle

make-draw-ellipse draw-ellipse

23 LW-GT Reference Entries

972

make-draw-line draw-line

make-draw-lines draw-lines

make-draw-polygon draw-polygon

make-draw-rectangle draw-rectangle

x, y, width, height, start-angle, sweep-angle, args, radius, x-radius, y-radius, from-x, from-y, to-x, to-y, lines and points are
interpreted as for the corresponding Graphics Ports function (except that y is interpreted from the bottom, see below).

Once created, the drawing object can be used in the drawing-object slot of an objects-displayer or a
pinboard-objects-displayer, but more commonly it would be passed to one of the positioning/fitting functions
(position-object, fit-object and so on), which will position and scale it with, by drawing the object inside a context
of Graphics Ports transformation.

At the top level, the y coordinate is reversed, so y is measured from the bottom of the objects-displayer or
pinboard-objects-displayer, as opposed to the default for Graphics Ports which is from the top down. A fitting object
in the hierarchy may change that.

apply-drawing-objects can be used repeatedly and concurrently in the same or different panes. The ones that are created
by the make-draw-* functions are fixed, but for objects created by make-a-drawing-call, the supplied function may
depend on values that change, and hence needs to be redisplayed when these values change. Use force-objects-redraw
on the root of the hierarchy (an objects-displayer or a pinboard-objects-displayer) to do that.

See drawing-object for description of the drawing operation.

See also

objects-displayer
pinboard-objects-displayer
position-object
fit-object
position-and-fit-object
14.1 Lower level - drawing objects and objects displayers

make-basic-graph-spec
basic-graph-spec-p
copy-basic-graph-spec
generate-graph-from-graph-spec Functions

Summary

Create a basic-graph-spec object.

Package

lw-gt

Signatures

make-basic-graph-spec function start-x step-x range &key color thickness name x-offset y-offset x-scale y-scale var1
var2 var3 var4 var5 var6 => basic-graph-spec

23 LW-GT Reference Entries

973

basic-graph-spec-p object => boolean

copy-basic-graph-spec basic-graph-spec => basic-graph-spec

generate-graph-from-graph-spec basic-graph-spec => drawing-object

Arguments

function⇓ A function of two arguments x and y.

start-x⇓, step-x⇓, range⇓
Real numbers.

color⇓ A color specification in the Color system.

thickness⇓ A positive real numbers.

name⇓ A Lisp object.

x-offset⇓, y-offset⇓, x-scale⇓, y-scale⇓
Real numbers.

var1⇓, var2⇓, var3⇓, var4⇓, var5⇓, var6⇓
Lisp objects.

object⇓ A Lisp object.

basic-graph-spec⇓ A basic-graph-spec object.

Values

basic-graph-spec A basic-graph-spec object.

boolean A boolean.

drawing-object A drawing-object.

Description

The function make-basic-graph-spec creates a basic-graph-spec object. This object can be modified by the
basic-graph-spec-* accessors. The function generate-graph-from-graph-spec generates the graph using the
current values in the basic-graph-spec object, which is a drawing-object which when drawn draws the graph, which
means drawing a line between each two successive points.

function must be a function of two arguments: the basic-graph-spec and the x value. It needs to return the corresponding
y value.

start-x, step-x and range define which x values to use: the first value is start-x, and then increase by step-x until the x is
greater than (+ start-x range). For each x value, generate-graph-from-graph-spec calls function with basic-graph-
spec and the x value to generate the y value.

x-scale and y-scale (default to 1) are used to scale the x and y after calling function, by multiplying the x and y by x-scale and
y-scale respectively.

x-offset and y-offset (default to 0) are used to translate the scaled values of x and y by adding x-offset and y-offset to the scaled
x and y.

The scaled and transformed pair x, y define a point. generate-graph-from-graph-spec then generates a
drawing-object that draws a line between each two successive points.

thickness and color specify the thickness and the color of the lines. The lines are drawn with scale-thickness nil.

23 LW-GT Reference Entries

974

name, var1, var2, var3, var4, var5 AND var6 are arbitrary values, which you can use to store anything that the function
needs to compute the y value. The system does not read or write them.

The function copy-basic-graph-spec can be used to copy a basic-graph-spec.

The fimctopm basic-graph-spec-p is the predicate, which returns true if object is a basic-graph-spec and false
otherwise.

See also

basic-graph-spec
generate-graph-from-pairs
drawing-object
14.2 Higher level - drawing graphs and bar charts

make-draw-string Function

Summary

Creates a string-drawing-object.

Package

lw-gt

Signature

make-draw-string string font-descriptor &rest arguments &key x-adjust y-adjust absolute &allow-other-keys =>
string-drawing-object

Arguments

string⇓ A string.

font-descriptor⇓ A font-description object, an integer or nil.

arguments⇓ Other keyword arguments for draw-string.

x-adjust⇓, y-adjust⇓ One of the keywords :end-align and :center, or a number.

absolute⇓ A generalized boolean.

Values

string-drawing-object A string-drawing-object.

Description

The function make-draw-string creates a string-drawing-object, which draws the string using draw-string.

string is the string to draw.

font-descriptor can be a font-description specifying the font to use. It can also be an integer specifying the size only, which
is equivalent to:

(gp:make-font-description :size font-descriptor)

23 LW-GT Reference Entries

975

font-descriptor can also be nil meaning using the default font of the root pane.

When absolute is non-nil, the string is drawn in "absolute mode", which means ignoring scaling and rotation. The default
value of absolute is nil.

x-adjust and y-adjust specify adjustment to the position of the string. The adjustments are done independently vertically and
horizontally. The drawing point is the left/corner of the current geometry (inherited from the parent). If x-adjust and y-adjust
are not supplied, the string is drawn at the drawing point. Note that this means that the descent part is below this point. If x-
adjust and/or y-adjust are supplied, they can be one of:

:end-align Align the "end" (right side or top) of the string with the drawing point.

:center Align the center of the string with the drawing point.

A number Multiply by the average width (x-adjust) or height (y-adjust) of the font and add to the drawing
point.

Any other value of x-adjust or y-adjust is regarded as no adjustment. Adjustments are applied in the same scope as drawing
the string, which means they are scaled or not depending on the value absolute. However, the y direction still increases
upwards when computing the y adjustment.

arguments can also contain all the keyword arguments that draw-string takes, but :font is overridden by font-descriptor.

See drawing-object about the drawing operation and the meaning of "parent" and "root pane".

See also

drawing-object
14.1 Lower level - drawing objects and objects displayers

make-pinboard-objects-displayer Function

Summary

Creates a pinboard-objects-displayer.

Package

lw-gt

Signature

make-pinboard-objects-displayer drawing-object &rest args &key use-metafile natural-width natural-height
&allow-other-keys => pinboard-objects-displayer

Arguments

drawing-object⇓ A "drawing-object-spec".

args⇓ Initargs for pinboard-object.

use-metafile⇓ A generalized boolean.

natural-width⇓, natural-height⇓
Integers.

23 LW-GT Reference Entries

976

Values

pinboard-objects-displayer

A pinboard-objects-displayer.

Description

The function make-pinboard-objects-displayer creates a pinboard-objects-displayer, which is a subclass of
pinboard-object. The pinboard-objects-displayer draws the drawing-object drawing-object.

drawing-object must be a "drawing-object-spec", which means either an instance of (a subclass of) drawing-object or a
list of "drawing-object-specs".

use-metafile specifies whether to use an internal metafile. When use-metafile is true the pinboard-objects-displayer
draws the objects to a metafile, and then draws the metafile to the screen. natural-width and natural-height determine the size
of the metafile to use. They are ignored if use-metafile is false. The default value of use-metafile is t.

The default value of natural-width x natural-height is 800 x 600.

args can contain all the initargs of pinboard-object. In particular, all the geometry initargs can be used to define the
initial geometry. The geometry can be changed later by (setf capi:static-layout-child-geometry) and the related
functions.

See also

drawing-object
objects-displayer
pinboard-objects-displayer
14.1 Lower level - drawing objects and objects displayers

objects-displayer Class

Summary

A subclass of pinboard-layout, which adds displaying of hierarchial objects.

Package

lw-gt

Superclasses

pinboard-layout

Initargs

:drawing-object A drawing-object or a list (see Description below).

:use-metafile A generalized boolean.

:natural-width Integers.

Accessors

objects-displayer-objects

23 LW-GT Reference Entries

977

Description

The class objects-displayer is a subclass of pinboard-layout that in addition to pinboard-objects can also have
"drawing objects" which contain hierarchies of graphics. These objects are created by the make-draw-* functions and the
positioning functions (position-and-fit-object, position-object, fit-object). An objects-displayer can
also have in its description pinboard-objects-displayers, which can also contain hierarchies of drawings.

drawing-object is either a "drawing-object-spec", which is an instance of a subclass of drawing-object, or a list of
"drawing-object-specs". The value can be modified later by (setf objects-displayer-drawing-object). The
drawing objects in the objects slot are displayed after any pinboard-objects in the layout-description of pane (if any) are
displayed. If it is a list, they are displayed according to the order in the list. This is implemented via a display-callback, so
you cannot use :display-callback in an objects-displayer.

Objects which are the result of the positioning functions are being positioned and scaled again when the
objects-displayer is resized, before being displayed.

use-metafile specifies whether the drawing of the objects should be done via a metafile. When using a metafile, the objects
are first drawn to an internal metafile, which is then drawn to the pane. The result is another scaling (between the size of the
metafile and the size of pane). Note that means that objects that are drawn in their "absolute" size (not inside a fitting object,
or explicitly absolute) are resized at that stage. Drawing via a metafile makes resizing better and faster.

When use-metafile is true, natural-width and natural-height define the size of the metafile to create in pixels. For objects that
are supposed to be drawn in their absolute size, that will affect how much they are actually resized. The default value of use-
metafile is true. The default value of natural-width x natural-height is 800 x 600.

Objects in the drawing-object list or inside the hierarchy inside any of these objects may change, which may require
redisplaying it. The function force-objects-redraw can be used to force redrawing all the objects.

Notes

The drawing via the metafile is applicable only to the drawing objects, not to the pinboard-objects in the layout-
description of the pane.

See also

position-object
fit-object
position-and-fit-object
make-draw-line
make-draw-lines
make-draw-arc
make-draw-polygon
make-draw-ellipse
make-draw-circle
make-draw-rectangle
force-objects-redraw
14.1 Lower level - drawing objects and objects displayers

pinboard-objects-displayer Class

Summary

A pinboard-object which draws its drawing-object.

23 LW-GT Reference Entries

978

Package

lw-gt

Superclasses

pinboard-object

Accessors

pinboard-objects-displayer-objects

Description

The class pinboard-objects-displayer draws its drawing-object.

Like other pinboard-objects, to be displayed a pinboard-objects-displayer needs to be added to the description of
a pinboard-layout, using the standard CAPI interface of pinboard-layout, that is :description passed to
cl:make-instance, (setf capi:layout-description), or manipulate-pinboard.

When displayed, a pinboard-objects-displayer draws its drawing-object. If it was created with use-metafile t (see
make-pinboard-objects-displayer), it draws to a metafile of the size indicated by natural-width and natural-height,
and then draws the metafile to the screen using its own geometry as the target rectangle. Otherwise it may draw to the screen
or use a pixmap cache.

The drawing-object in the pinboard-objects-displayer can be changed by
(setf pinboard-objects-displayer-drawing-object), which automatically forces it to be redisplayed. If any of
the objects inside the hierarchy below the drawing-object changes, there is no forced redisplay. You need to use
force-objects-redraw on the pinboard-objects-displayer (or the parent objects-displayer) to redisplay.

See also

make-pinboard-objects-displayer

string-drawing-object Class

Summary

A drawing-object which draws its string.

Package

lw-gt

Superclasses

drawing-object

Description

The class string-drawing-object draws its string. Instances are created by make-draw-string. See
make-draw-string for the details.

string-drawing-object objects can be used repeatedly and concurrently in the same or different panes.

23 LW-GT Reference Entries

979

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

See also

make-draw-string

23 LW-GT Reference Entries

980

24 COLOR Reference Entries

This chapter describes symbols available in the color package.

apropos-color-alias-names Function

Summary

Returns color aliases containing a given string.

Package

color

Signature

apropos-color-alias-names substring => list

Arguments

substring⇓ A string.

Values

list A list of symbols.

Description

The function apropos-color-alias-names returns a list of symbols whose symbol-names contain substring and which
are defined as aliases in the color-database defining color aliases. By convention these are in the keyword package.

Examples

In this example, a color alias is defined for the color indianred1. apropos-color-alias-names only returns this alias,
rather than both the alias and the original color, despite the similarity in the names.

CL-USER 8 > (color:define-color-alias :myindianred1
 :indianred1)
(#S(COLOR-ALIAS COLOR :INDIANRED1))

CL-USER 9 > (color:apropos-color-names "INDIANRED1")
(:INDIANRED1 :MYINDIANRED1)

CL-USER 10 > (color:apropos-color-alias-names "INDIANRED1")
(:MYINDIANRED1)

CL-USER 11 >

981

See also

apropos-color-names
apropos-color-spec-names
get-all-color-names
15 The Color System

apropos-color-names Function

Summary

Returns colors and color aliases containing a given string.

Package

color

Signature

apropos-color-names substring => list

Arguments

substring⇓ A string.

Values

list A list of symbols.

Description

The function apropos-color-names returns a list of symbols whose symbol-names contain substring and which are
present in the color-database defining color aliases. By convention these are in the keyword package.

Examples

COLOR-4> (color:apropos-color-names "RED")
 (:ORANGERED3 :ORANGERED1 :INDIANRED3 :INDIANRED1
 :PALEVIOLETRED :RED :INDIANRED :INDIANRED2
 :INDIANRED4 :ORANGERED :MEDIUMVIOLETRED
 :VIOLETRED :ORANGERED2 :ORANGERED4 :RED1 :RED2 :RED3
 :RED4 :PALEVIOLETRED1 :PALEVIOLETRED2 :PALEVIOLETRED3
 :PALEVIOLETRED4 :VIOLETRED3 :VIOLETRED1 :VIOLETRED2
 :VIOLETRED4)

See also

apropos-color-alias-names
apropos-color-spec-names
get-all-color-names
15 The Color System

24 COLOR Reference Entries

982

apropos-color-spec-names Function

Summary

Returns colors containing a given string.

Package

color

Signature

apropos-color-spec-names substring => list

Arguments

substring⇓ A string.

Values

list A list of symbols.

Description

The function apropos-color-spec-names returns a list of symbols whose symbol-names contain substring and which are
defined as original entries in the color-database defining color aliases. By convention these are in the keyword package.

Examples

CL-USER 14 > (color:define-color-alias :mygray100 :gray100)
(#S(COLOR-ALIAS COLOR :GRAY100))

CL-USER 15 > (color:apropos-color-names "GRAY100")
(:MYGRAY100 :GRAY100)

CL-USER 16 > (color:apropos-color-spec-names "GRAY100")
(:GRAY100)

CL-USER 17 >

See also

apropos-color-alias-names
apropos-color-names
get-all-color-names
15 The Color System

24 COLOR Reference Entries

983

color-alpha Function

Summary

Returns the alpha component of a color specification.

Package

color

Signature

color-alpha color-spec &optional default => alpha

Arguments

color-spec⇓ A color specification.

default⇓ A number between 0 and 1.

Values

alpha The alpha component of color-spec.

Description

The function color-alpha returns the alpha component on color-spec, which is a color specification in any model.

If color-spec does not have an alpha component, then default is returned.

The default value of default is 1.0.

See also

make-hsv
make-rgb
make-gray

color-blue
color-green
color-red
color-hue
color-saturation
color-value Functions

Summary

Returns the associated component of a color specification.

24 COLOR Reference Entries

984

Package

color

Signatures

color-blue color-spec => color-component

color-green color-spec => color-component

color-red color-spec => color-component

color-hue color-spec => color-component

color-saturation color-spec => color-component

color-value color-spec => color-component

Arguments

color-spec⇓ A color specification.

Values

color-component A color component from the appropriate color model.

Description

These functions return the specified component of color-spec.

If color-spec is not from the appropriate color model (:rgb in the case of color-red, color-green and color-blue,
and :hsv in the case of color-hue, color-saturation and color-value) then the component is calculated.

Examples

CL-USER 31 > (color:make-rgb 1.0s0 0.0s0 0.0s0)
#(:RGB 1.0S0 0.0S0 0.0S0)

CL-USER 32 > (color:color-red *)
1.0S0

CL-USER 33 > (color:color-green **)
0.0S0

CL-USER 34 > (color:color-value ***)
1.0S0

CL-USER 35 >

See also

make-hsv
make-rgb
make-gray
color-model
color-level

24 COLOR Reference Entries

985

color-database Variable

Summary

The current color-database.

Package

color

Initial Value

The colors are in the file config/colors.db.

Description

The variable *color-database* is the current color-database.

Examples

To replace the current color database with a new one, do the following:

(setf color:*color-database* (color:make-color-db))

See also

delete-color-translation
read-color-db
load-color-database
15.4 Loading the color database

color-from-premultiplied Function

Summary

Transforms a color to its un-premultiplied version.

Package

color

Signature

color-from-premultiplied color => result

Arguments

color⇓ A color-spec.

24 COLOR Reference Entries

986

Values

result A color-spec.

Description

The function color-from-premultiplied transforms a color, which is assumed to be premultiplied, to its un-
premultiplied version.

color should be a color-spec (see 15.1 Color specs).

If color is RGB with alpha it is transformed to its RGB un-premultiplied version. Otherwise color is returned without a
change.

Notes

You get premultiplied colors when using Image Access, either by unconverting (using unconvert-color) the result of
image-access-pixel, or by reading the values from the vector that is filled by image-access-pixels-from-bgra.

See also

color-to-premultiplied
image-access-pixel
image-access-pixels-to-bgra
image-access-pixels-from-bgra
13.10.8 Image access

color-level Function

Summary

Returns the gray level of a color specification.

Package

color

Signature

color-level color-spec => gray-level

Arguments

color-spec⇓ A color specification.

Values

gray-level Color component from the :gray model.

Description

The function color-level return the gray level of color-spec. If color-spec is not from the :gray model, the component is
calculated.

24 COLOR Reference Entries

987

Examples

CL-USER 2 > (color:make-gray 0.66667s0)
#(:GRAY 0.66667S0)

CL-USER 3 > (color:color-level *)
0.66667S0

CL-USER 4 >

See also

make-hsv
make-rgb
make-gray
color-model
color-blue
15.3 Color models

color-model Function

Summary

Returns the model of a color-spec.

Package

color

Signature

color-model color-spec => color-model

Arguments

color-spec⇓ A color specification.

Values

color-model :gray, :rgb, or :hsv.

Description

The function color-model returns the model of color-spec.

Examples

CL-USER 29 > (color:make-gray 0.66667s0)
#(:GRAY 0.66667S0)

CL-USER 30 > (color:color-model *)
:GRAY

CL-USER 31 >

24 COLOR Reference Entries

988

See also

make-hsv
make-rgb
make-gray
color-blue
color-level
15.1 Color specs

colors= Function

Summary

Tests to see if two colors are equal.

Package

color

Signature

colors= color1 color2 &optional tolerance => bool

Arguments

color1⇓ A color specification.

color2⇓ A color specification.

tolerance⇓ A tolerance level within which color1 and color2 may vary. The default value is
0.001s0.

Values

bool t if the two colors are equal within the given tolerance, nil otherwise.

Description

The function colors= return t if color1 and color2 are equal, within the tolerance tolerance.

See also

ensure-color
ensure-rgb
convert-color
15 The Color System

24 COLOR Reference Entries

989

color-to-premultiplied Function

Summary

Transform a color to its premultiplied version.

Package

color

Signature

color-to-premultiplied color => result

Arguments

color⇓ A color-spec.

Values

result A color-spec.

Description

The function color-to-premultiplied transforms a color to its premultiplied version, which is needed when modifying
images using Image Access.

color must be a color-spec, such as the result of a call to make-rgb (see 15.1 Color specs).

If color does not have an alpha component, it is returned without a change. If it does have alpha, it is transformed to RGB if
needed, and premultiplied, returning a premultiplied RGB color.

Notes

You need to premultiply when setting pixels using Image Access in an image with alpha. The result is unconverted, so when
using image-access-pixel it still needs to be converted (by convert-color).

See also

color-from-premultiplied
image-access-pixel
image-access-pixels-to-bgra
image-access-pixels-from-bgra
13.10.8 Image access

24 COLOR Reference Entries

990

color-with-alpha Function

Summary

Adds a specified alpha component to a color.

Package

color

Signature

color-with-alpha color alpha => color-spec

Arguments

color⇓ A color specification.

alpha⇓ A real in the inclusive range [0,1].

Values

color-spec⇓ A color specification, or nil.

Description

The function color-with-alpha returns a color like the argument color but with alpha component alpha.

color needs to be a color specification, either a keyword naming a color (a member of the result of calling
get-all-color-names), or a color-spec (for example the result of make-rgb).

alpha must be a real in the inclusive range [0,1], otherwise an error is signaled. alpha = 0 means color-spec is transparent,
alpha = 1 means it is solid.

color-with-alpha returns a color-spec, or nil if color is not recognized.

See also

get-all-color-names
make-rgb
15.1 Color specs

convert-color Function

Summary

Return the representation of a color specification on a given graphics port.

Package

color

24 COLOR Reference Entries

991

Signature

convert-color port color &key errorp => color-rep

Arguments

port⇓ A graphics port.

color⇓ A color specification.

errorp⇓ A generalize boolean.

Values

color-rep⇓ Representation of color on port.

Description

The function convert-color returns the representation of color on the given graphics port port.

If errorp is t (the default), then convert-color checks for errors. Otherwise nil might be returned.

Notes

color-rep might be a "pixel" value, which corresponds to an index into the default colormap. It is more efficient to use the
result of convert-color in place of its argument in drawing function calls, but the penalty is the risk of erroneous colors
being displayed should the colormap or the colormap entry be changed.

See also

colors=
ensure-color
ensure-rgb
unconvert-color
13.10.8 Image access
15 The Color System

define-color-alias Function

Summary

Lets you define an alias for a color specification or alias.

Package

color

Signature

define-color-alias name color &optional if-exists => name

Arguments

name⇓ The name of the new alias.

24 COLOR Reference Entries

992

color⇓ A color specification for the new alias.

if-exists⇓ One of :replace, :error or :ignore.

Values

name The name of the new alias.

Description

The function define-color-alias defines name to be a color alias for color, which may be another color alias or a color
spec.

When color is a color spec rather than another color name, the entry is better described as a "color translation" rather than a
"color alias". In particular, calling get-color-alias-translation on name will just return name. get-color-spec
with name will return color.

if-exists controls what happens in name is already a known alias:

:replace Replace any existing alias.

:error Raise an error if alias is already defined.

:ignore Ignore redefinition of an alias.

if-exists defaulrs to :replace.

Examples: 1

CL-USER 16 > (color:define-color-alias :mygray :darkslategray)
:mygray

CL-USER 17 > (color:define-color-alias :mygray :darkslategray
 :error)

Error: :MYGRAY names an existing alias for #(:RGB 0.1843133S0 0.309803S0 0.309803S0)
 1 (continue) Replace :MYGRAY with the alias :DARKSLATEGRAY
 2 Continue, without redefining alias :MYGRAY
 3 Try a new name for the alias, instead of :MYGRAY
 4 (abort) Return to level 0.
 5 Return to top loop level 0.
 6 Destroy process.

Type :c followed by a number to proceed or type :? for other options

CL-USER 18 : 1 >

Examples: 2

CL-USER 19 > (color:define-color-alias :lispworks-blue
 (color:make-rgb 0.70s0 0.90s0 0.99s0))
:lispworks-blue

CL-USER 20 >

See also

get-color-alias-translation
get-color-spec

24 COLOR Reference Entries

993

15 The Color System

define-color-models Macro

Summary

Defines all the color models.

Package

color

Signature

define-color-models model-descriptors => color-models

Arguments

model-descriptors⇓ A list, each element being a model-descriptor.

Values

color-models The color models defined.

Description

The macro define-color-models defines the color models in model-descriptors.

A model descriptor has the syntax:

(model-name component-descr*)

A component-descr is a list:

(component-name lowest-value highest-value)

The default color models are defined by the following form:

(color:define-color-models ((:rgb (red 0.0 1.0)
 (green 0.0 1.0)
 (blue 0.0 1.0))
 (:hsv (hue 0.0 5.99999)
 (saturation 0.0 1.0)
 (value 0.0 1.0))
 (:gray (level 0.0 1.0))))

If you want to keep existing color models, add your new ones to this list: only one define-color-models form is
recognized. The form should be compiled.

Examples

To replace the HSV color model with a CMYK model, while retaining the other color models:

(define-color-models ((:rgb (red 0.0 1.0)

24 COLOR Reference Entries

994

 (green 0.0 1.0)
 (blue 0.0 1.0))
 (:cmyk (cyan 0.0 1.0)
 (magenta 0.0 1.0)
 (yellow 0.0 1.0)
 (black 0.0 1.0)
 (:gray (level 0.0 1.0))))

See also

15 The Color System

delete-color-translation Function

Summary

Removes an entry from the color-database.

Package

color

Signature

delete-color-translation color-name

Arguments

color-name⇓ A defined color spec or alias.

Description

The function delete-color-translation removes the entry for color-name from the curent color-database. Both
original entries and aliases can be removed.

See also

load-color-database
color-database
read-color-db
15 The Color System

ensure-color Function

Summary

Return a color specification in the model of a supplied color spec.

Package

color

24 COLOR Reference Entries

995

Signature

ensure-color color-spec match-color-spec => result

Arguments

color-spec⇓ A color specification.

match-color-spec⇓ A color specification.

Values

result⇓ A color specification.

Description

The function ensure-color returns a color specification for color-spec, in the color model of match-color-spec. This
allows you to convert color specifications from one model to another with having to explicitly state the color model.

If color-spec has an alpha component, then result has that same alpha component.

Examples

(ensure-color (make-rgb 1 1 0 0.75) (make-hsv 0 0 0))
=>
#(:HSV 1 1 1 0.75)

See also

convert-color
colors=
ensure-model-color
15 The Color System

ensure-model-color Function

Summary

Converts a color specification to a given model.

Package

color

Signature

ensure-model-color color-spec model => result

Arguments

color-spec⇓ A color specification.

model⇓ A color-model (:rgb, :hsv or :gray).

24 COLOR Reference Entries

996

Values

result⇓ A color specification.

Description

The function ensure-model-color returns a color specification for color-spec in the color model specified by model.

If color-spec has an alpha component, then result has that same alpha component.

Examples

(ensure-model-color (make-rgb 1 1 0 0.75) :hsv)
=>
#(:HSV 1 1 1 0.75)

See also

convert-color
colors=
ensure-color
ensure-rgb
15 The Color System

ensure-rgb
ensure-hsv
ensure-gray Functions

Summary

Returns a color specification for a particular model.

Package

color

Signatures

ensure-rgb color-spec => result

ensure-hsv color-spec => result

ensure-gray color-spec => result

Arguments

color-spec⇓ A color specification.

Values

result⇓ A color specification.

24 COLOR Reference Entries

997

Description

The functions ensure-rgb, ensure-hsv and ensure-gray each return a color specification matching the supplied color-
spec, but in the appropriate model.

If color-spec is in the same model, it is just returned. Otherwise a new color specification for that model is calculated. Thus,
ensure-rgb returns a color specification in the RGB color model, whatever color model is used in color-spec.

If color-spec has an alpha component, then result has that same alpha component.

Examples

(ensure-hsv (make-rgb 1 1 0 0.75))
=>
#(:HSV 1 1 1 0.75)

(ensure-gray (make-rgb 0 0 1 0.75))
=>
#(:GRAY 0.33333302S0 0.75)

See also

convert-color
colors=
ensure-color
ensure-model-color
15.3 Color models

get-all-color-names Function

Summary

Returns a list of all color-names in the color database.

Package

color

Signature

get-all-color-names &optional sort => color-names

Arguments

sort⇓ If t, sort list of color names alphanumerically. By default, this is nil.

Values

color-names A list of all color names in the color database.

Description

The function get-all-color-names returns a list of all color-names in the color database. By convention these are

24 COLOR Reference Entries

998

symbols in the keyword package. The returned list is alphanumerically sorted on the symbol-names if sort is non-nil.

See also

apropos-color-names
apropos-color-spec-names
apropos-color-alias-names
15 The Color System

get-color-alias-translation Function

Summary

Return the ultimate color name associated a color alias.

Package

color

Signature

get-color-alias-translation color-alias => color-name

Arguments

color-alias⇓ A defined color alias.

Values

color-name The color name associated with color-alias.

Description

The function get-color-alias-translation returns the ultimate color name associated with color-alias.

Examples

CL-USER 23 > (color:define-color-alias :lispworks-blue
 (color:make-rgb 0.70s0 0.90s0 0.99s0))
:lispworks-blue

CL-USER 24 > (color:define-color-alias
 :color-background :lispworks-blue)
:color-background

CL-USER 25 > (color:define-color-alias
 :listener-background :color-background)
:listener-background

CL-USER 26 > (color:get-color-alias-translation
 :listener-background)
:LISPWORKS-BLUE

CL-USER 27 > (color:get-color-alias-translation
 :color-background)
:LISPWORKS-BLUE

24 COLOR Reference Entries

999

CL-USER 28 >

See also

define-color-alias
get-color-spec
15 The Color System

get-color-spec Function

Summary

Returns the color-spec for a color.

Package

color

Signature

get-color-spec color => color-spec

Arguments

color⇓ A defined color specification, color alias, or an original color name.

Values

color-spec A color specification.

Description

The function get-color-spec returns the color-spec for color, which can be a color-spec, a color-alias, or an original color
name.

Examples

CL-USER 28 > (color:define-color-alias :lispworks-blue
 (color:make-rgb 0.70s0 0.90s0 0.99s0))
(#S(COLOR-ALIAS COLOR #(:RGB 0.699999S0 0.9S0 0.99S0)))

CL-USER 29 > (color:define-color-alias
 :color-background :lispworks-blue)
(#S(COLOR-ALIAS COLOR :LISPWORKS-BLUE))

CL-USER 30 > (color:define-color-alias
 :listener-background :color-background)
(#S(COLOR-ALIAS COLOR :COLOR-BACKGROUND))

CL-USER 31 > (color:get-color-spec :listener-background)
#(:RGB 0.699999S0 0.9S0 0.99S0)

CL-USER 32 > (color:get-color-spec :color-background)
#(:RGB 0.699999S0 0.9S0 0.99S0)

24 COLOR Reference Entries

1000

CL-USER 33 > (color:get-color-spec :lispworks-blue)
#(:RGB 0.699999S0 0.9S0 0.99S0)

CL-USER 34 > (color:get-color-spec
 #(:RGB 0.70s0 0.90s0 0.99s0))
#(:RGB 0.699999S0 0.9S0 0.99S0)

CL-USER 35 >

See also

define-color-alias
get-color-alias-translation
15 The Color System

load-color-database Function

Summary

Loads a color database.

Package

color

Signature

load-color-database data

Arguments

data⇓ A description of a color database.

Description

The function load-color-database loads the color database with color definitions contained in data, which should have
been obtained via the functions read-color-db. The colors thus defined may not be replaced by color aliases.

See also

color-database
delete-color-translation
read-color-db
15 The Color System

make-gray Function

Summary

Returns a color specification in the gray model.

24 COLOR Reference Entries

1001

Package

color

Signature

make-gray level &optional alpha => color-spec

Arguments

level⇓ A color component used to define the gray level required.

alpha⇓ A number between 0 and 1, or nil.

Values

color-spec A color specification.

Description

The function make-gray returns a color-spec in the :gray model with component level.

Note that short-floats are used for the component; this results in the most efficient color conversion process. However, any
floating point number type can be used.

alpha indicates the alpha value of the color. 0 means it is transparent, 1 means it is solid. If alpha is nil or not specified then
the color does not have an alpha component and it is assumed to be solid.

Examples

CL-USER 25 > (color:make-gray 0.66667s0)
#(:GRAY 0.66667S0)

See also

make-hsv
make-rgb
color-model
color-blue
color-level
color-alpha
15.1 Color specs

make-hsv Function

Summary

Returns a color specification in the hue-saturation-value model.

Package

color

24 COLOR Reference Entries

1002

Signature

make-hsv hue saturation value &optional alpha => color-spec

Arguments

hue⇓ A hue component.

saturation⇓ A saturation component.

value⇓ A value component.

alpha⇓ A number between 0 and 1, or nil.

Values

color-spec A color specification.

Description

The function make-hsv return a color-spec in the :hsv model with components hue, saturation and value.

Note that short-floats are used for each component; this results in the most efficient color conversion process. However, any
floating-point number type can be used.

alpha indicates the alpha value of the color. 0 means it is transparent, 1 means it is solid. If alpha is nil or not specified then
the color does not have an alpha component and it is assumed to be solid.

Examples

CL-USER 27 > (color:make-hsv 1.2s0 0.5s0 0.9s0)
#(:HSV 1.2S0 0.5S0 0.9S0)

See also

make-rgb
make-gray
color-model
color-blue
color-level
color-alpha
15.1 Color specs

make-rgb Function

Summary

Returns a color specification in the red-green-blue model.

Package

color

24 COLOR Reference Entries

1003

Signature

make-rgb red green blue &optional alpha => color-spec

Arguments

red⇓ A red component.

green⇓ A green component.

blue⇓ A blue component.

alpha⇓ A number between 0 and 1, or nil.

Values

color-spec A color specification.

Description

The function make-rgb returns a color-spec in the :rgb model with components red, green and blue.

Note that short floats are used for each component; this results in the most efficient color conversion process. However, any
floating point number type can be used.

alpha indicates the alpha value of the color. 0 means it is transparent, 1 means it is solid. If alpha is nil or not specified then
the color does not have an alpha component and it is assumed to be solid.

Examples

The object returned by the following call defines the color red in the RGB model:

CL-USER 25 > (color:make-rgb 1.0s0 0.0s0 0.0s0)
#(:RGB 1.0S0 0.0S0 0.0S0)

See also

make-hsv
make-gray
color-model
color-blue
color-level
color-alpha
15.1 Color specs

read-color-db Function

Summary

Reads the color definitions contained in a file.

Package

color

24 COLOR Reference Entries

1004

Signature

read-color-db &optional file => color-database

Arguments

file⇓ A filename or pathname containing the color definitions to be read.

Values

color-database⇓ A database definition.

Description

The function read-color-db reads color definitions from file. file defaults to the default color definitions file in the
LispWorks library.

The format of the file is:

#(:RGB 1.0s0 0.980391s0 0.980391s0) snow
#(:RGB 0.972548s0 0.972548s0 1.0s0) GhostWhite
...

Each line contains a color definition which consists of a color-spec and a name. The names are converted to uppercase and
interned in the keyword package. Whitespace in names is preserved.

color-database can be passed to load-color-database.

See also

load-color-database
color-database
delete-color-translation
15 The Color System

unconvert-color Function

Summary

Returns a color specification for a color representation.

Package

color

Signature

unconvert-color port color-rep => color

Arguments

port⇓ A graphics port.

color-rep⇓ A color representation on port.

24 COLOR Reference Entries

1005

Values

color A color specification.

Description

The function unconvert-color returns a color specification corresponding to the color representation color-rep on the
Graphics Port port.

If color-rep is a color specification, a symbol or a color alias, then it is simply returned since the color system can interpret
these directly.

Otherwise color-rep is assumed to be a color representation on port, like those returned by convert-color and
image-access-pixel, and a corresponding RGB value is returned.

See also

convert-color
image-access-pixel
13.10.8 Image access

24 COLOR Reference Entries

1006

Index

A

abort-callback function 213

abort-dialog function 213 10.5.2 : Using display-dialog 124

abort-exit-confirmer function 215

abstract classes

graph-object 385

titled-object 755 3.1.4.1 : Controlling Mnemonics 38, 3.3 : Specifying titles 40

:accelerator initarg 8.8 : Alternative menu items 104, menu-item 491

Accelerators 8.7 : Accelerators in menus 103, interface-keys-style 426

accepts-focus-p generic function 215

:accepts-focus-p initarg 3.1.5 : Focus 39, collection 267, element 354

accessor generic functions

list-panel-enabled 454

list-panel-filter-state 455

list-panel-unfiltered-items 458

pane-initial-focus 545

pinboard-object-graphics-arg 564

scroll-if-not-visible-p 657 7.4.3 : Automatic scrolling 94

static-layout-child-position 725

static-layout-child-size 726

tree-view-expanded-p 782

accessors

application-interface-application-menu cocoa-default-application-interface 261

application-interface-dock-menu cocoa-default-application-interface 261

application-interface-message-callback cocoa-default-application-interface 261

basic-graph-spec-color basic-graph-spec 956

basic-graph-spec-function basic-graph-spec 956

basic-graph-spec-name basic-graph-spec 956

basic-graph-spec-range basic-graph-spec 956

basic-graph-spec-start-x basic-graph-spec 956

basic-graph-spec-step-x basic-graph-spec 956

basic-graph-spec-thickness basic-graph-spec 956

basic-graph-spec-var1 basic-graph-spec 956

basic-graph-spec-var2 basic-graph-spec 956

basic-graph-spec-var3 basic-graph-spec 956

1007

basic-graph-spec-var4 basic-graph-spec 956

basic-graph-spec-var5 basic-graph-spec 956

basic-graph-spec-var6 basic-graph-spec 956

basic-graph-spec-x-offset basic-graph-spec 956

basic-graph-spec-x-scale basic-graph-spec 956

basic-graph-spec-y-offset basic-graph-spec 956

basic-graph-spec-y-scale basic-graph-spec 956

browser-pane-before-navigate-callback browser-pane 227

browser-pane-debug browser-pane 227

browser-pane-document-complete-callback browser-pane 227

browser-pane-internet-explorer-callback browser-pane 227

browser-pane-navigate-complete-callback browser-pane 227

browser-pane-navigate-error-callback browser-pane 227

browser-pane-new-window-callback browser-pane 227

browser-pane-status-text-change-callback browser-pane 227

browser-pane-title-change-callback browser-pane 227

browser-pane-update-commands-callback browser-pane 227

button-alternate-callback push-button 616

button-armed-image button 235

button-cancel-p button 235

button-default-p button 235

button-disabled-image button 235

button-enabled button 235

button-image button 235

button-press-callback push-button 616

button-selected button 235

button-selected-disabled-image button 235

button-selected-image button 235

callbacks-action-callback callbacks 243

callbacks-callback-type callbacks 243

callbacks-extend-callback callbacks 243

callbacks-retract-callback callbacks 243

callbacks-selection-callback callbacks 243

capi-object-name 18.5 : Object properties and name 195, capi-object 247

capi-object-plist 18.5 : Object properties and name 195, capi-object 247

capi-object-property 248 18.5 : Object properties and name 195

choice-selected-item 254 5.10.2 : Selections 69

choice-selected-items 256 5.10.2 : Selections 69

choice-selection 5.3.8 : Double list panel 64, 5.10.2 : Selections 69, choice 251

cocoa-view-pane-init-function cocoa-view-pane 264

Index

1008

cocoa-view-pane-view-class cocoa-view-pane 264

collection-items 5.11.1 : Accessing items 71, 7.5 : Updating pane contents 94, collection 267

collection-print-function collection 267

collection-test-function collection 267

component-name 276

compound-drawing-object-data compound-drawing-object 957

compound-drawing-object-sub-object compound-drawing-object 957

display-pane-text 3.5.1 : Display panes 43, display-pane 312

docking-layout-controller docking-layout 318

docking-layout-divider-p docking-layout 318

docking-layout-docking-test-function docking-layout 318

docking-layout-items docking-layout 318

docking-layout-pane-docked-p 320

docking-layout-pane-visible-p 320

drawn-pinboard-object-display-callback drawn-pinboard-object 329

drop-object-collection-index 334 17.3.2 : Dropping in a choice 192

drop-object-collection-item 335 17.3.2 : Dropping in a choice 192

drop-object-drop-effect 336

editor-pane-change-callback editor-pane 342

editor-pane-composition-face editor-pane 342

editor-pane-enabled editor-pane 342

editor-pane-fixed-fill editor-pane 342

editor-pane-line-wrap-face 3.5.3.2 : Additional editor-pane functions 46, editor-pane 342

editor-pane-line-wrap-marker 3.5.3.2 : Additional editor-pane functions 46, editor-pane 342

editor-pane-text 3.5.3.2 : Additional editor-pane functions 46, 7.5 : Updating pane contents 94, 11.4 : Connecting an interface
to an application 135, editor-pane 342

editor-pane-wrap-style editor-pane 342

element-parent 3.7 : Hierarchy of panes 46, element 354

element-widget-name 19.3.2.1 : Resources on GTK+ 197, element 354

external-image-color-table 850

filled ellipse 360, rectangle 626

filtering-layout-matches-text filtering-layout 367

filtering-layout-state filtering-layout 367

form-title-adjust form-layout 375

form-title-gap form-layout 375

form-vertical-adjust form-layout 375

form-vertical-gap form-layout 375

graph-edge-from 5.6.3 : Accessing the topology of the graph 67, graph-edge 383

graph-edge-to 5.6.3 : Accessing the topology of the graph 67, graph-edge 383

graphics-port-background 874

Index

1009

graphics-port-font 874

graphics-port-foreground 874

graphics-port-transform 874

graphics-state-background graphics-state 876

graphics-state-compositing-mode graphics-state 876

graphics-state-dash graphics-state 876

graphics-state-dashed graphics-state 876

graphics-state-fill-style graphics-state 876

graphics-state-font graphics-state 876

graphics-state-foreground graphics-state 876

graphics-state-line-end-style graphics-state 876

graphics-state-line-joint-style graphics-state 876

graphics-state-mask graphics-state 876

graphics-state-mask-transform graphics-state 876

graphics-state-mask-x graphics-state 876

graphics-state-mask-y graphics-state 876

graphics-state-operation graphics-state 876

graphics-state-pattern graphics-state 876

graphics-state-scale-thickness graphics-state 876

graphics-state-shape-mode graphics-state 876

graphics-state-stipple graphics-state 876

graphics-state-text-mode graphics-state 876

graphics-state-thickness graphics-state 876

graphics-state-transform graphics-state 876

graph-pane-direction 391 5.6.2 : Controlling the layout 67

graph-pane-layout-function 5.6.2 : Controlling the layout 67, graph-pane 385

graph-pane-roots 5.6 : Graph panes 65, graph-pane 385

image-access-pixel 882 13.10.8 : Image access 171

image-height 13.10.6 : Querying image dimensions 170, image 880

image-pinboard-object-image image-pinboard-object 402

image-width 13.10.6 : Querying image dimensions 170, image 880

interface-activate-callback interface 409

interface-confirm-destroy-function interface 409

interface-create-callback interface 409

interface-default-toolbar-states 9.6.1 : User-customization of toolbars 112, interface 409

interface-destroy-callback interface 409

interface-document-modified-p 422

interface-drag-image interface 409

interface-geometry-change-callback interface 409

interface-help-callback interface 409

Index

1010

interface-iconify-callback interface 409

interface-iconize-callback interface 415

interface-menu-bar-items interface 409

interface-message-area interface 409, interface 415

interface-override-cursor interface 409

interface-pathname interface 409

interface-pointer-documentation-enabled interface 409

interface-title 3.3.2.1 : Window titles 41, 11.5.2 : Controlling the interface title 136, interface 409

interface-toolbar-items interface 409

interface-toolbar-state 431 9.6.2 : Changing an interface toolbar programmatically 112

interface-toolbar-states interface 409

interface-tooltips-enabled interface 409

item-collection item 436

item-data 3.10 : Button elements 49, item 436

item-print-function 3.10 : Button elements 49, item 436

item-selected item 436

item-text 3.10 : Button elements 49, item 436

labelled-line-text-background labelled-line-pinboard-object 441

labelled-line-text-foreground labelled-line-pinboard-object 441

layout-description 6.7 : Changing layouts and panes within a layout 90, layout 442

layout-ratios column-layout 274, row-layout 645

layout-x-adjust x-y-adjustable-layout 812

layout-x-gap grid-layout 395

layout-x-ratios grid-layout 395

layout-y-adjust x-y-adjustable-layout 812

layout-y-gap grid-layout 395

layout-y-ratios grid-layout 395

list-panel-image-function list-panel 447

list-panel-items-and-filter 456

list-panel-keyboard-search-callback list-panel 447

list-panel-right-click-selection-behavior list-panel 447

list-panel-state-image-function list-panel 447

list-view-auto-arrange-icons list-view 459

list-view-auto-reset-column-widths list-view 459

list-view-columns list-view 459

list-view-image-function list-view 459

list-view-state-image-function list-view 459

list-view-subitem-function list-view 459

list-view-subitem-print-functions list-view 459

Index

1011

list-view-view list-view 459

menu-image-function menu 486

menu-items menu 486

menu-popup-callback menu-object 494

menu-title menu-object 494

menu-title-function menu-object 494

objects-displayer-objects objects-displayer 977

ole-control-user-component 521

option-pane-enabled option-pane 522

option-pane-enabled-positions option-pane 522

option-pane-image-function option-pane 522

option-pane-popup-callback option-pane 522

option-pane-separator-item option-pane 522

option-pane-visible-items-count option-pane 522

output-pane-cached-display-user-info 532

output-pane-composition-callback output-pane 525

output-pane-create-callback output-pane 525

output-pane-destroy-callback output-pane 525

output-pane-display-callback output-pane 525

output-pane-focus-callback output-pane 525

output-pane-input-model 12.2.1.10 : Processing user input 146, output-pane 525

output-pane-resize-callback output-pane 525

output-pane-scroll-callback output-pane 525

pane-layout 6.7 : Changing layouts and panes within a layout 90, button-panel 238, interface 409

pinboard-object-activep pinboard-object 559

pinboard-object-graphics-args pinboard-object 559

pinboard-object-pinboard pinboard-object 559

pinboard-objects-displayer-objects pinboard-objects-displayer 978

pinboard-pane-position 566

pinboard-pane-size 567

popup-menu-button-menu popup-menu-button 575

popup-menu-button-menu-function popup-menu-button 575

range-callback range-pane 622

range-end range-pane 622

range-orientation range-pane 622

range-slug-end range-pane 622

range-slug-start range-pane 622

range-start range-pane 622

reuse-interfaces-p 637

rich-text-pane-change-callback rich-text-pane 638

Index

1012

rich-text-pane-limit rich-text-pane 638

rich-text-pane-text rich-text-pane 638

scroll-bar-line-size scroll-bar 655

scroll-bar-page-size scroll-bar 655

shell-pane-command shell-pane 689

simple-pane-background simple-pane 693

simple-pane-cursor 3.1.6 : Mouse cursor 39, simple-pane 693

simple-pane-drag-callback simple-pane 693

simple-pane-drop-callback simple-pane 693

simple-pane-enabled simple-pane 693, toolbar-object 767

simple-pane-font simple-pane 693

simple-pane-foreground simple-pane 693

simple-pane-scroll-callback simple-pane 693

slider-print-function slider 705

stacked-tree-empty-tree-string stacked-tree 710

stacked-tree-item-function stacked-tree 710

stacked-tree-item-menu-function stacked-tree 710

stacked-tree-root stacked-tree 710

stacked-tree-width-ratio 718

static-layout-child-geometry 724

switchable-layout-visible-child 6.6.1 : Switchable layouts 85, switchable-layout 729

tab-layout-visible-child-function tab-layout 731

text-input-pane-buttons-enabled text-input-pane 736

text-input-pane-callback text-input-pane 736

text-input-pane-change-callback text-input-pane 736

text-input-pane-completion-function text-input-pane 736

text-input-pane-confirm-change-function text-input-pane 736

text-input-pane-editing-callback text-input-pane 736

text-input-pane-enabled text-input-pane 736

text-input-pane-max-characters text-input-pane 736

text-input-pane-navigation-callback text-input-pane 736

text-input-pane-recent-items 749

text-input-pane-text text-input-pane 736

text-input-range-callback text-input-range 753

text-input-range-callback-type text-input-range 753

text-input-range-change-callback text-input-range 753

text-input-range-end text-input-range 753

text-input-range-start text-input-range 753

text-input-range-value text-input-range 753

text-input-range-wraps-p text-input-range 753

Index

1013

titled-object-message titled-object 755

titled-object-message-font interface 415, titled-object 755

titled-object-title 11.4 : Connecting an interface to an application 135, titled-object 755

titled-object-title-font titled-object 755

title-pane-text title-pane 759

toolbar-button-dropdown-menu toolbar-button 762

toolbar-button-dropdown-menu-function toolbar-button 762

toolbar-button-dropdown-menu-kind toolbar-button 762

toolbar-button-image toolbar-button 762

toolbar-button-popup-interface toolbar-button 762

toolbar-button-selected-image toolbar-button 762

toolbar-object-enabled-function toolbar-object 767

top-level-interface-color-mode 768

top-level-interface-color-mode-callback interface 409

top-level-interface-external-border interface 409

top-level-interface-transparency interface 409

tree-view-action-callback-expand-p tree-view 776

tree-view-checkbox-change-callback tree-view 776

tree-view-checkbox-child-function tree-view 776

tree-view-checkbox-initial-status tree-view 776

tree-view-checkbox-next-map tree-view 776

tree-view-checkbox-parent-function tree-view 776

tree-view-children-function tree-view 776

tree-view-expandp-function tree-view 776

tree-view-has-root-line tree-view 776

tree-view-image-function tree-view 776

tree-view-item-checkbox-status 783

tree-view-leaf-node-p-function tree-view 776

tree-view-retain-expanded-nodes tree-view 776

tree-view-right-click-extended-match tree-view 776

tree-view-roots tree-view 776

tree-view-state-image-function tree-view 776

:action-callback initarg 5.3.3 : Deselection, retraction, and actions 63, 5.6 : Graph panes 66, 5.10.3 : Callbacks in
choices 69, callbacks 243

:action-callback-expand-p initarg tree-view 776

:activate-callback initarg interface 409

activate-pane function 216

:activep initarg pinboard-object 559

active-pane-copy function 217

Index

1014

active-pane-copy-p function 217

active-pane-cut function 217

active-pane-cut-p function 217

active-pane-deselect-all function 217

active-pane-deselect-all-p function 217

active-pane-paste function 217

active-pane-paste-p function 217

active-pane-select-all function 217

active-pane-select-all-p function 217

active-pane-undo function 217

active-pane-undo-p function 217

ActiveX ole-control-pane 518

:added-filters initarg filtering-layout 367

:adjust initarg column-layout 274, row-layout 645

:adjust item in :buttons initarg text-input-pane 741

:after-input-callback initarg 3.5.3.1 : Editor pane callbacks 45, 20.11 : editor-pane examples 208, editor-pane 342

:alternate-callback initarg push-button 616

:alternating-background initarg 5.3.5 : Images and appearance 63, 5.4.2 : Images and appearance 64, list-panel 447

:alternative initarg 8.8 : Alternative menu items 104, menu-item 491

:alternative-action-callback initarg 5.10.3 : Callbacks in choices 69, callbacks 243

analyze-external-image function 814

anti-aliasing editor-pane 345, graph-pane 387, output-pane 526, simple-print-port 704, with-external-
metafile 801, with-print-job 809, graphics-state 879

supported platforms graphics-state 880

text on GTK+ pinboard-layout 557

text on Microsoft Windows pinboard-layout 557

append-items generic function 219

application-interface-application-menu accessor cocoa-default-application-interface 261

application-interface-dock-menu accessor cocoa-default-application-interface 261

application-interface-message-callback accessor cocoa-default-application-interface 261

Application menu 3.9.3 : Cocoa views and application interfaces 48, cocoa-default-application-interface 261

for LispWorks applications 8.14 : The Application menu 107

:application-menu initarg cocoa-default-application-interface 261

apply-drawing-object class 955

apply-in-pane-process function 219 4.1 : The correct thread for CAPI operations 54, 7 : Programming with CAPI Windows 91

apply-in-pane-process-if-alive function 221 4.1 : The correct thread for CAPI operations 54, 7 : Programming with CAPI
Windows 91

apply-in-pane-process-wait-multiple function 221

apply-in-pane-process-wait-single function 221

apply-rotation function 815

Index

1015

apply-rotation-around-point function 816

apply-scale function 817

apply-translation function 818

apropos-color-alias-names function 981 15.2 : Color aliases 182

apropos-color-names function 982 15.2 : Color aliases 182

apropos-color-spec-names function 983 15.2 : Color aliases 182

:armed-image initarg button 235

:armed-images initarg button-panel 238

arrow-pinboard-object class 222

attach-interface-for-callback function 224

attach-simple-sink function 224

attach-sink function 225

augment-font-description function 819 13.9.1 : Font attributes and font descriptions 167

:auto-arrange-icons initarg list-view 459

:automatic-resize initarg 12.3 : Creating graphical objects 148, pinboard-object 559, simple-pane 693

:auto-menus initarg 8.11 : The Edit menu on Cocoa 106, interface 409

:auto-reset-column-widths initarg list-view 459, multi-column-list-panel 503

B

:background initarg 3.1.2 : Background and foreground colors 37, simple-pane 693

background graphics state parameter graphics-state 877

balloon help 3.12 : Tooltips 51

basic-graph-spec system class 956 14.2 : Higher level - drawing graphs and bar charts 178

basic-graph-spec-color accessor basic-graph-spec 956

basic-graph-spec-function accessor basic-graph-spec 956

basic-graph-spec-name accessor basic-graph-spec 956

basic-graph-spec-p function 973

basic-graph-spec-range accessor basic-graph-spec 956

basic-graph-spec-start-x accessor basic-graph-spec 956

basic-graph-spec-step-x accessor basic-graph-spec 956

basic-graph-spec-thickness accessor basic-graph-spec 956

basic-graph-spec-var1 accessor basic-graph-spec 956

basic-graph-spec-var2 accessor basic-graph-spec 956

basic-graph-spec-var3 accessor basic-graph-spec 956

basic-graph-spec-var4 accessor basic-graph-spec 956

basic-graph-spec-var5 accessor basic-graph-spec 956

basic-graph-spec-var6 accessor basic-graph-spec 956

basic-graph-spec-x-offset accessor basic-graph-spec 956

basic-graph-spec-x-scale accessor basic-graph-spec 956

basic-graph-spec-y-offset accessor basic-graph-spec 956

Index

1016

basic-graph-spec-y-scale accessor basic-graph-spec 956

beep-pane function 226 18.2.2 : Beep 194

:before-input-callback initarg 3.5.3.1 : Editor pane callbacks 45, 20.11 : editor-pane examples 208, editor-pane 342

:before-navigate-callback initarg browser-pane 227

:best-height initarg 12.1 : Displaying graphics 139, interface 409

:best-width initarg 12.1 : Displaying graphics 139, interface 409

:best-x initarg interface 409

:best-y initarg interface 409

bezier curve draw-path 840

boole function 13.7.1 : Combining pixels with :compatible drawing 165

break gesture

on Cocoa 19.2.1 : The break gesture 196

on GTK+ 19.3.1 : The break gesture 197

on Microsoft Windows 19.1.2 : The break gesture 196

on Motif 19.4.2 : The break gesture 199

:browse-file item in :buttons initarg text-input-pane 740

browser-pane class 227 3.9.1 : Browser pane 47

browser-pane-available-p function 231

browser-pane-before-navigate-callback accessor browser-pane 227

browser-pane-busy function 232

browser-pane-debug accessor browser-pane 227

browser-pane-document-complete-callback accessor browser-pane 227

browser-pane-go-back function 232

browser-pane-go-forward function 232

browser-pane-internet-explorer-callback accessor browser-pane 227

browser-pane-navigate function 232

browser-pane-navigate-complete-callback accessor browser-pane 227

browser-pane-navigate-error-callback accessor browser-pane 227

browser-pane-new-window-callback accessor browser-pane 227

browser-pane-property-get generic function 234

browser-pane-property-put generic function 234

browser-pane-refresh function 232

browser-pane-set-content function 232

browser-pane-status-text-change-callback accessor browser-pane 227

browser-pane-stop function 232

browser-pane-successful-p function browser-pane 227

browser-pane-title function browser-pane 227

browser-pane-title-change-callback accessor browser-pane 227

browser-pane-update-commands-callback accessor browser-pane 227

Index

1017

browser-pane-url function browser-pane 227

bubble help 3.12 : Tooltips 51

:buffer initarg editor-pane 342

:buffer-modes initarg editor-pane 342

:buffer-name initarg 3.5.3.2 : Additional editor-pane functions 46, collector-pane 272, editor-pane 342

built-in scrolling get-scroll-position 382

button class 235

button-alternate-callback accessor push-button 616

button-armed-image accessor button 235

button-cancel-p accessor button 235

:button-class initarg button-panel 238

button-default-p accessor button 235

button-disabled-image accessor button 235

button-enabled accessor button 235

:button-height initarg toolbar 760

button-image accessor button 235

button-panel class 238 5.2 : Button panel classes 57

button panels 5.2 : Button panel classes 57

orientation 5.2.1 : Push button panels 58

prompting with 10.2.3 : Prompting for an item in a list 118

button-press-callback accessor push-button 616

buttons

check 3.10.2 : Check buttons 50

push 3.10.1 : Push buttons 50

radio 3.10.3 : Radio buttons 50

:buttons initarg 3.5.2 : Text input panes 43, text-input-pane 736

button-selected accessor button 235

button-selected-disabled-image accessor button 235

button-selected-image accessor button 235

:button-width initarg toolbar 760

Bézier curve draw-path 840

C

calculate-constraints generic function 241 6 : Laying Out CAPI Panes 74, 6.4.1 : Width and height hints 80

calculate-layout generic function 242 6 : Laying Out CAPI Panes 74

:callback initarg 3.5.2 : Text input panes 43, 3.10 : Button elements 49, button 235, button 236, filtering-
layout 367, menu-object 494, range-pane 622, scroll-bar 655, text-input-pane 736, text-input-
range 753, toolbar-button 762

:callback-data-function initarg menu-object 494

:callback-object initarg filtering-layout 367

callbacks

description of 2.3 : Linking code into CAPI elements 36

Index

1018

for buttons button 236

general properties 3.4 : Callbacks 42

graph panes 5.6 : Graph panes 66

in choices 5.10.3 : Callbacks in choices 69

in interfaces 11.4 : Connecting an interface to an application 134

passing different variables attach-interface-for-callback 224

used for choices 5.3.3 : Deselection, retraction, and actions 62

using callback functions 3 : General Properties of CAPI Panes 37

callbacks class 243 3.4 : Callbacks 42, 5 : Choices - panes with items 57

:callbacks initarg 5.2.5 : Programming button panels 59, button-panel 238, toolbar 760, toolbar-
component 765

callbacks-action-callback accessor callbacks 243

callbacks-callback-type accessor callbacks 243

callbacks-extend-callback accessor callbacks 243

callbacks-retract-callback accessor callbacks 243

callbacks-selection-callback accessor callbacks 243

:callback-type initarg 3.4 : Callbacks 42, 5.10.3 : Callbacks in choices 70, callbacks 243, tab-layout 731, text
-input-pane 736, text-input-range 753

call-editor generic function 245 3.5.3.1 : Editor pane callbacks 45, 10.6.1.1 : Invoking in-place completion in text-input-pane and
editor-pane 126, 11.4 : Connecting an interface to an application 135

:cancel-button initarg button-panel 238

cancel-button image identifier text-input-pane 741

:cancel-function item in :buttons initarg text-input-pane 740

:cancel item in :buttons initarg text-input-pane 740

:cancel-p initarg button 235

can-use-metafile-p function 246

CAPI

basic objects 1.2.1 : CAPI elements 32

description of 1.1 : What is the CAPI? 32

linking code into 2.3 : Linking code into CAPI elements 36

using the 2.1 : Using the CAPI package 34

capi-object class 247

capi-object-name accessor 18.5 : Object properties and name 195, capi-object 247

capi-object-plist accessor 18.5 : Object properties and name 195, capi-object 247

capi-object-property accessor 248 18.5 : Object properties and name 195

CAPI process display 305

:caret-position initarg text-input-pane 736

:change-callback initarg 3.5.3.1 : Editor pane callbacks 45, editor-pane 342, filtering-layout 367, rich-text
-pane 638, text-input-pane 736, text-input-range 753

:change-callback-type initarg text-input-pane 736

:character-format initarg rich-text-pane 638

Index

1019

charts and graphs

self-contained examples 20.20 : Graphic Tools examples 212

:checkbox-change-callback initarg tree-view 776

:checkbox-child-function initarg tree-view 776

:checkbox-initial-status initarg tree-view 776

:checkbox-next-map initarg tree-view 776

:checkbox-parent-function initarg tree-view 776

:checkbox-status initarg tree-view 776

check-button class 249 3.10.2 : Check buttons 50, 5.2 : Button panel classes 57

check-button-panel class 250 5.2 : Button panel classes 57, 5.2.3 : Check button panels 58, 5.10.1 : Interaction 69

check button panels 5.2.3 : Check button panels 58

check buttons 3.10.2 : Check buttons 50

:child initarg simple-pinboard-layout 702

children

of a layout 6 : Laying Out CAPI Panes 73

:children-function initarg 5.6 : Graph panes 65, graph-pane 385, tree-view 776

choice class 251 5 : Choices - panes with items 57

:choice-class initarg 10.2.3 : Prompting for an item in a list 118

choice-initial-focus-item function choice 251

choice-interaction function 5.10.1 : Interaction 69, choice 251

choices 5 : Choices - panes with items 57

callbacks available 5.10.3 : Callbacks in choices 69

description of 5 : Choices - panes with items 57

general properties 5.10 : General properties of choices 69

relationship to menus 5.9 : Menu components 68

choice-selected-item accessor 254 5.10.2 : Selections 69

choice-selected-item-p function 255

choice-selected-items accessor 256 5.10.2 : Selections 69

choice-selection accessor 5.3.8 : Double list panel 64, 5.10.2 : Selections 69, choice 251

choice-update-item function 258

classes

apply-drawing-object 955

arrow-pinboard-object 222

browser-pane 227 3.9.1 : Browser pane 47

button 235

button-panel 238 5.2 : Button panel classes 57

callbacks 243 3.4 : Callbacks 42, 5 : Choices - panes with items 57

capi-object 247

check-button 249 3.10.2 : Check buttons 50, 5.2 : Button panel classes 57

check-button-panel 250 5.2 : Button panel classes 57, 5.2.3 : Check button panels 58, 5.10.1 : Interaction 69

choice 251 5 : Choices - panes with items 57

Index

1020

cocoa-default-application-interface 261 3.9.3 : Cocoa views and application interfaces 48

cocoa-view-pane 264 3.9.3 : Cocoa views and application interfaces 47

collection 267 5 : Choices - panes with items 57

collector-pane 272

color-screen 273

column-layout 274 5.2.1 : Push button panels 58, 6.1 : Organizing panes in columns and rows 74, 11.3 : Adapting the
example 132

compound-drawing-object 957 14.1 : Lower level - drawing objects and objects displayers 174

creating your own 12 : Creating Panes with Your Own Drawing and Input 139

display-pane 312 3.5.1 : Display panes 42

docking-layout 318

document-container 321

document-frame 322 6.6.7 : Multiple-Document Interface (MDI) 88

double-headed-arrow-pinboard-object 323

double-list-panel 324

drawing-object 959 14.1 : Lower level - drawing objects and objects displayers 174

drawn-pinboard-object 329 12.3.4 : An example pinboard object 151

echo-area-pane 340

editor-pane 342 3.5.3 : Editor panes 44, 10.6 : In-place completion 125, 10.6.2.2 : Editor panes 127, 11.4 : Connecting an
interface to an application 135, 13.1.1 : Creating instances 159

element 354

ellipse 360

expandable-item-pinboard-object 366

extended-selection-tree-view 366 5.4.1 : Tree interaction 64

filtering-layout 367

foreign-owned-interface 374

form-layout 375

geometry-drawing-object 971 14.1 : Lower level - drawing objects and objects displayers 174

graph-edge 383

graphics-port-mixin 875

graph-node 383

graph-pane 385 5.6 : Graph panes 65, 13.1.1 : Creating instances 159

grid-layout 395 3.1.4.1 : Controlling Mnemonics 38, 6.2.1 : Grid layouts 77

image-list 401 5.3.5 : Images and appearance 63, 5.4.2 : Images and appearance 64

image-pinboard-object 402

image-set 403

interactive-pane 406 3.9.6.2 : Interactive panes 49

interface 409 1.2.1 : CAPI elements 32, 3.3.2.1 : Window titles 41, 3.12.2 : Tooltips for collections, elements and menu
items 52, 6 : Laying Out CAPI Panes 73, 11.1 : The define-interface macro 129

item 436

item-pinboard-object 440 12.3 : Creating graphical objects 148

labelled-arrow-pinboard-object 440

Index

1021

labelled-line-pinboard-object 441

layout 442

line-pinboard-object 444

listener-pane 445 3.9.6.3 : Listener panes 49

list-panel 447 3.1.4.1 : Controlling Mnemonics 38, 5.3 : List panels 60, 10.6.1.2 : Keyboard input handling while the in-place
window is displayed 126

list-view 459

menu 486 1.2.1 : CAPI elements 32, 8.1 : Creating a menu 98, 8.10 : Menus with images 105

menu-component 489 1.2.1 : CAPI elements 32, 8.3 : Grouping menu items together 99

menu-item 491 1.2.1 : CAPI elements 32, 8.4 : Creating individual menu items 101, 8.9.1 : Dialogs and disabled menu
items 105

menu-object 494

message-pane 498

metafile-port 499

mono-screen 502

multi-column-list-panel 503

multi-line-text-input-pane 507 3.5.2 : Text input panes 44

non-focus-list-interface 508

objects-displayer 977 14.1 : Lower level - drawing objects and objects displayers 175

ole-control-component 513 3.9.2 : OLE embedding and control 47

ole-control-doc 515

ole-control-frame 515

ole-control-pane 518 3.9.2 : OLE embedding and control 47

ole-control-pane-simple-sink 521

option-pane 522 3.1.4.1 : Controlling Mnemonics 38, 5.7 : Option panes 68

output-pane 525 3.5.3.2 : Additional editor-pane functions 46, 3.12.1 : Tooltips for output panes 51, 6.4.1 : Width and height
hints 79, 8.12 : Popup menus for panes 106, 12 : Creating Panes with Your Own Drawing and Input 139, 12.4 : output-pane
scrolling 154, 13.1 : Introduction 159, 13.1.1 : Creating instances 159, 16 : Printing from the CAPI - the Hardcopy API 186

password-pane 555

pinboard-layout 556 3.12.1 : Tooltips for output panes 51, 6.2.3 : Pinboard layouts 78, 12.3 : Creating graphical
objects 146, 12.3.1 : Buffered drawing 148, 13.1.1 : Creating instances 159

pinboard-object 559 6 : Laying Out CAPI Panes 73, 12.3 : Creating graphical objects 147

pinboard-objects-displayer 978 14.1 : Lower level - drawing objects and objects displayers 175

pixmap-port 909

popup-menu-button 575

printer-port 583 16.5 : Printing a page 187

progress-bar 589 3.9.4 : Slider, Progress bar and Scroll bar 48

push-button 616 3.10.1 : Push buttons 50, 5.2 : Button panel classes 57

push-button-panel 617 5.2 : Button panel classes 57, 5.2.1 : Push button panels 57

radio-button 620 3.10.3 : Radio buttons 50

radio-button-panel 621 5.2 : Button panel classes 57, 5.2.2 : Radio button panels 58, 5.10.1 : Interaction 69

range-pane 622 3.9.4 : Slider, Progress bar and Scroll bar 48

rectangle 626

Index

1022

rich-text-pane 638 3.6 : Displaying rich text 46

right-angle-line-pinboard-object 644

row-layout 645 5.2.1 : Push button panels 58, 6.1 : Organizing panes in columns and rows 74

screen 647

scroll-bar 655 3.9.4 : Slider, Progress bar and Scroll bar 48

shell-pane 689

simple-layout 691

simple-network-pane 692

simple-pane 693 6 : Laying Out CAPI Panes 73

simple-pinboard-layout 702

slider 705 3.9.4 : Slider, Progress bar and Scroll bar 48

sorted-object 707

stacked-tree 710 5.5 : Stacked trees 65

static-layout 723

string-drawing-object 979

switchable-layout 729

tab-layout 731 6.6.2 : Tab layouts 85

text-input-choice 735

text-input-pane 736 3.1.4.1 : Controlling Mnemonics 38, 3.5.2 : Text input panes 43, 6 : Laying Out CAPI Panes 73, 10.6
: In-place completion 125, 10.6.2.1 : Text input panes 127

text-input-range 753

titled-menu-object 754

titled-pinboard-object 758

title-pane 759 3.3 : Specifying titles 40

toolbar 760 9 : Adding Toolbars 108, 9.9 : Non-standard toolbars 114

toolbar-button 762 3.12.3 : Tooltips for toolbar buttons 52

toolbar-component 765 3.12.3 : Tooltips for toolbar buttons 52, 9.2.1 : Grouping toolbar buttons 109

toolbar-object 767

tracking-pinboard-layout 775

tree-view 776 5.4 : Trees 64, 5.4.1 : Tree interaction 64, 5.4.2 : Images and appearance 64

x-y-adjustable-layout 812

class options

:coclass define-ole-control-component 300

:default-initargs 11.2 : An example interface 130, 11.3 : Adapting the example 132

:definition define-interface 293

:interfaces define-ole-control-component 300

:layouts define-interface 293

:menu-bar 8.2 : Presenting menus 99, define-interface 293

:menus define-interface 293

:panes define-interface 293

:source-interfaces define-ole-control-component 300

Index

1023

clear-external-image-conversions function 819 13.10.3.1 : Converting an external image 169

clear-graphics-port function 820

clear-graphics-port-state function 821

clear-rectangle function 821

clip 13.3 : Graphics state 162, 13.4.4 : Paths 164, graphics-state 878, with-graphics-mask 941

clipboard function 259 18.6 : Clipboard 195

clipboard-empty function 260 18.6 : Clipboard 195

clipping 13.3 : Graphics state 162, 13.4.4 : Paths 164, graphics-state 878, with-graphics-mask 941

clone generic function 261

:close-callback initarg ole-control-pane 518

Close menu command display-non-focus-message 311

CLUE 1.3 : The history of the CAPI 33

clues 3.12 : Tooltips 51

CLX 1.3 : The history of the CAPI 33

:coclass class option define-ole-control-component 300

cocoa-default-application-interface class 261 3.9.3 : Cocoa views and application interfaces 48

Cocoa Event Loop process display 305

Cocoa view class 3.9.3 : Cocoa views and application interfaces 47

cocoa-view-pane class 264 3.9.3 : Cocoa views and application interfaces 47

cocoa-view-pane-init-function accessor cocoa-view-pane 264

cocoa-view-pane-view function 265 3.9.3 : Cocoa views and application interfaces 47

cocoa-view-pane-view-class accessor cocoa-view-pane 264

collect-interfaces generic function 266

collection class 267 5 : Choices - panes with items 57

:collection initarg item 436

collection-find-next-string generic function 269

collection-find-string generic function 270

collection-items accessor 5.11.1 : Accessing items 71, 7.5 : Updating pane contents 94, collection 267

collection-items-count-function function collection 267

collection-items-get-function function collection 267

collection-items-map-function function collection 267

collection-last-search generic function 271

collection-print-function accessor collection 267

collections

description of 5 : Choices - panes with items 57

collection-search generic function 271

collection-test-function accessor collection 267

collector-pane class 272

collector panes 3.9.6.1 : Collector panes 48

collector-pane-stream function collector-pane 272

Index

1024

color-alpha function 984

color-blue function 984

color-database variable 986

color-from-premultiplied function 986

:color-function initarg list-panel 447, stacked-tree 710

color-green function 984

color-hue function 984

color-level function 987

:color-mode initarg interface 409

:color-mode-callback initarg interface 409

color-model function 988 15.1 : Color specs 181

color-red function 984

colors

prompting for 10.2.6 : Prompting for colors 120

:colors initarg stacked-tree 710

colors= function 989 15.3 : Color models 183

color-saturation function 984

color-screen class 273

color-to-premultiplied function 990

color-value function 984

color-with-alpha function 991 15.1 : Color specs 181

:column-function initarg multi-column-list-panel 503

column-layout class 274 5.2.1 : Push button panels 58, 6.1 : Organizing panes in columns and rows 74, 11.3 : Adapting the
example 132

:columns initarg 5.3.7 : Multi-column list panels 63, grid-layout 395, list-view 459, multi-column-list-
panel 503

:combine-child-constraints initarg switchable-layout 729, tab-layout 731

combo box 5.7 : Option panes 68

combo boxes 5.7 : Option panes 68

:command initarg shell-pane 689

complete-button image identifier text-input-pane 741

:complete-do-action initarg text-input-pane 736

complete-in-place function 10.6.2.2 : Editor panes 127

:completion-function initarg text-input-pane 736

:completion item in :buttons initarg text-input-pane 740

component-name accessor 276

:component-name initarg ole-control-pane 518

:compositing-mode initarg 20.2 : Graphics examples 203

compositing-mode graphics state parameter 13.7.2 : Combining pixels with :quality drawing 165, graphics-state 879

:composition-callback initarg 12.2.4 : Composition of characters 146, output-pane 525, output-pane-stop-
composition 537

Index

1025

:composition-face initarg editor-pane 342

compound-drawing-object class 957 14.1 : Lower level - drawing objects and objects displayers 174

compound-drawing-object-data accessor compound-drawing-object 957

compound-drawing-object-sub-object accessor compound-drawing-object 957

compress-external-image function 822

compute-char-extents function 823

compute-drawing-object-from-data function 958 14.1 : Lower level - drawing objects and objects displayers 177

Confirm Before Exiting confirm-quit 277, set-confirm-quit-flag 665

:confirm-change-function initarg text-input-pane 736

:confirm-destroy-function initarg interface 409

confirmer-pane function 276

confirm-quit function 277

confirm-yes-or-no function 278 10.1 : Some simple dialogs 116

constants

2pi 814

f2pi 854

fpi 862

fpi-by-2 862

pi-by-2 908

contain function 279 2.2 : Creating a window 35, 4.1 : The correct thread for CAPI operations 54, 12.3 : Creating graphical
objects 148, 18.1 : Development functions 194

container 6.6.7 : Multiple-Document Interface (MDI) 88

container special slot 6.6.7 : Multiple-Document Interface (MDI) 88, document-frame 322

context menu 8.12 : Popup menus for panes 106, 9.6.1 : User-customization of toolbars 112, 20.12 : Menu examples 208, display-
popup-menu 315, docking-layout 319, interface 415, menu 486

continuation function, dialog

creating with-dialog-results 798

using display-dialog 307, page-setup-dialog 538, popup-confirmer 571, print-dialog 580, prompt-for
-confirmation 592, prompt-for-directory 593, prompt-for-file 595, prompt-for-files 597, prompt-
for-form 599, prompt-for-forms 601, prompt-for-integer 602, prompt-for-string 606, prompt-for-
symbol 607, prompt-for-value 609, prompt-with-list 610, prompt-with-message 615

:controller initarg 6.6.6 : Docking layout 88, docking-layout 318

convert-color function 991 13.10.8 : Image access 171, 15.3 : Color models 183

convert-external-image function 823 13.10.5 : Making an image that is suitable for drawing 170

convert-relative-position function 281

convert-to-font-description function 824

convert-to-screen function 281 19.3.2.1 : Resources on GTK+ 197, 19.3.2.2 : Resources for CAPI/GTK+
applications 197, 19.4.1.1 : Using Motif on Linux, FreeBSD and x86/x64 Solaris 198, 19.4.1.2 : Using Motif on Macintosh 198

:coordinate-origin initarg 12.4.2 : Internal scrolling 155, output-pane 525

copy

defining operation for your interface class 7.6 : Edit actions on the active element 96

operation on active element 7.6 : Edit actions on the active element 95

Index

1026

copy-area function 825 13.1 : Introduction 159

copy-basic-graph-spec function 973

copy-external-image function 826

copy-pixels function 827

copy-transform function 828

count-collection-items generic function 283

:create-callback initarg 7.1 : Initialization 91, interface 409, ole-control-component 513, output-
pane 525

create-dummy-graphics-port function 284

create-pixmap-port function 828 13.1.1 : Creating instances 159, 13.2.1 : The drawing mode and anti-aliasing 162

creating menus 8 : Creating Menus 98

creating submenus 8.1 : Creating a menu 98

creating toolbars 9 : Adding Toolbars 108

current-dialog-handle function 285 18.7 : Handles 195

current-document generic function 286

current-pointer-position function 286

current-popup function 287

current-printer function 288 16.1 : Printers 186

current-process-send function 4.1 : The correct thread for CAPI operations 54

:cursor initarg 3.1.6 : Mouse cursor 39, simple-pane 693

cursor format

on Cocoa load-cursor 462

on GTK+ load-cursor 462

on Microsoft Windows load-cursor 462

cut

defining operation for your interface class 7.6 : Edit actions on the active element 96

operation on active element 7.6 : Edit actions on the active element 95

D

dashed graphics state parameter graphics-state 878

dash graphics state parameter graphics-state 878

:data initarg 2.2 : Creating a window 35, 3.10 : Button elements 49, 3.10.1 : Push buttons 50, item 436

:data callback type 5.10.3 : Callbacks in choices 70

:data-function initarg 20.9 : Choice examples 206

:data-interface callback type 5.10.3 : Callbacks in choices 70

:debug initarg browser-pane 227

:default initarg layout 442

:default-button initarg button-panel 238

default-editor-pane-line-wrap-marker variable 288

:default-image-set initarg toolbar 760, toolbar-component 765

default-image-translation-table variable 830 image-translation 889

Index

1027

:default-initargs class option 11.2 : An example interface 130, 11.3 : Adapting the example 132

default-library function 289

default-non-focus-message-timeout variable 290

default-non-focus-message-timeout-extension variable 290

:default-p initarg button 235

default settings

selections 5.3.4 : Selections in a list 63

:default-toolbar-states initarg interface 409

defclass macro 11.1 : The define-interface macro 129, 11.2.1 : How the example works 130, 12.1 : Displaying graphics 139

define-color-alias function 992 15.2 : Color aliases 181

define-color-models macro 994 15.5 : Defining new color models 184

define-command macro 291

define-font-alias function 830

define-interface macro 293 11.1 : The define-interface macro 129

arguments supplied to 11.2.1 : How the example works 130

define-layout macro 297

define-menu macro 298

define-ole-control-component macro 299 3.9.2 : OLE embedding and control 47

:definition class option define-interface 293

defpackage macro 2.1 : Using the CAPI package 34

delete-color-translation function 995 15.2 : Color aliases 181, 15.4 : Loading the color database 184

:delete-item-callback initarg tree-view 776

deliver function 7.7.5 : Quitting applications 97, 13.10.3 : External images 169

:depth initarg screen 647

:description initarg 6 : Laying Out CAPI Panes 73, 6.1 : Organizing panes in columns and rows 74, 12.3 : Creating graphical
objects 147, interpret-description 434, layout 442, tab-layout 731, tab-layout 732

description of the CAPI 1.1 : What is the CAPI? 32

destroy generic function 301 7.7.3 : Closing windows 96

destroy button

removal interface 413

:destroy-callback initarg interface 409, ole-control-component 513, output-pane 525

destroy-dependent-object generic function 302

destroy-pixmap-port function 831

detach-simple-sink function 302

detach-sink function 303

dialog continuation function

creating with-dialog-results 798

using display-dialog 307, page-setup-dialog 538, popup-confirmer 571, print-dialog 580, prompt-for
-confirmation 592, prompt-for-directory 593, prompt-for-file 595, prompt-for-files 597, prompt-
for-form 599, prompt-for-forms 601, prompt-for-integer 602, prompt-for-string 606, prompt-for-
symbol 607, prompt-for-value 609, prompt-with-list 610, prompt-with-message 615

Index

1028

dialogs

aborting abort-dialog 213

creating your own 10.5 : Creating your own dialogs 122

description of 10 : Dialogs: Prompting for Input 115

in front 10.4 : Dialog Owners 122

modal 10.3 : Window-modal Cocoa dialogs 121

owners 10.4 : Dialog Owners 122

:directories-only initarg text-input-pane 736

:disabled-image initarg button 235

:disabled-images initarg button-panel 238

display function 304 2.2 : Creating a window 35, 2.2 : Creating a window 35, 4.1 : The correct thread for CAPI
operations 54, 19.4.1.1 : Using Motif on Linux, FreeBSD and x86/x64 Solaris 198, 19.4.1.2 : Using Motif on Macintosh 198

display callback 12.1 : Displaying graphics 139

:display-callback initarg 13.10.5 : Making an image that is suitable for drawing 170, drawn-pinboard-
object 329, output-pane 525, objects-displayer 978

display-dialog function 305 10.4.2 : Specifying the owner 122, 10.5.2 : Using display-dialog 124, 10.5.3 : Modal and non-
modal dialogs 125

display-errors macro 308

displaying text on screen 3.5.1 : Display panes 42

display-message function 308 2.3 : Linking code into CAPI elements 36, 10.1 : Some simple dialogs 115

display-message-for-pane function 309

display-message-on-screen function display-message-for-pane 309

display-non-focus-message function 310

display-pane class 312 3.5.1 : Display panes 42

display panes 3.5.1 : Display panes 42

display-pane-selected-text function 313

display-pane-selection function 313

display-pane-selection-p function 314

display-pane-text accessor 3.5.1 : Display panes 43, display-pane 312

display-popup-menu function 315 8.13 : Displaying menus programmatically 107

display-replacable-dialog function 316

:display-state initarg interface 409

display-tooltip generic function 317

dither-color-spec function 831

:dividerp initarg toolbar 760

:divider-p initarg docking-layout 318

dividers 6.6.3 : Dividers and separators 87

:docking-callback initarg docking-layout 318

docking-layout class 318

docking-layout-controller accessor docking-layout 318

docking-layout-divider-p accessor docking-layout 318

Index

1029

docking-layout-docking-test-function accessor docking-layout 318

docking-layout-items accessor docking-layout 318

docking-layout-orientation function docking-layout 318

docking-layout-pane-docked-p accessor 320

docking-layout-pane-visible-p accessor 320

:docking-test-function initarg docking-layout 318

Dock menu 3.9.3 : Cocoa views and application interfaces 48, cocoa-default-application-interface 261

:dock-menu initarg cocoa-default-application-interface 261

document changed

on Cocoa 11.5.3 : Indicating a changed document 137, interface-document-modified-p 422

:document-complete-callback initarg browser-pane 227

document-container class 321

document-frame class 322 6.6.7 : Multiple-Document Interface (MDI) 88

document-frame-container function document-frame 322

document modified

on Cocoa 11.5.3 : Indicating a changed document 137, interface-document-modified-p 422

document unsaved

on Cocoa 11.5.3 : Indicating a changed document 137, interface-document-modified-p 422

double buffering 13.1 : Introduction 159

double-headed-arrow-pinboard-object class 323

:double-head-predicate initarg double-headed-arrow-pinboard-object 323

double-list-panel class 324

Drag and drop

coordinates drop-object-pane-x 338

dragging 17.2 : Dragging 189, drag-pane-object 326

dropping 17.3 : Dropping 191

effect drop-object-allows-drop-effect-p 333, drop-object-drop-effect 336

formats drop-object-provides-format 339, set-drop-object-supported-formats 668

in an output-pane 20.1 : Output pane examples 202

object drop-object-get-object 337

overview 17.1 : Overview of drag and drop 189

self-contained examples 20.5 : Drag and Drop examples 205

temporary display start-drawing-with-cached-display 721, start-drawing-with-cached-display 721

visual feedback while dragging 20.1 : Output pane examples 201

:drag-callback initarg 17.2.1 : Dragging values from a choice 189, simple-pane 693

:drag-image initarg interface 409

drag-pane-object function 326 17.2.3 : Dragging values from an output-pane 190

draw-arc function 832 13.4.2 : Simple lines 163

draw-arcs function 833 13.4.2 : Simple lines 163

draw-character function 833 13.4.1 : Text 163

Index

1030

draw-circle function 834

draw-ellipse function 835 13.4.3 : Simple shapes 163

draw-image function 836 13.10 : Working with images 168, 13.10.1 : Image formats supported for reading from disk and
drawing 168

drawing bar charts 14.2 : Higher level - drawing graphs and bar charts 178

drawing graphs 14.2 : Higher level - drawing graphs and bar charts 178

:drawing-mode initarg output-pane 525

drawing-object class 959 14.1 : Lower level - drawing objects and objects displayers 174

:drawing-object initarg objects-displayer 977

draw-line function 838 13.4.2 : Simple lines 163

draw-lines function 839 13.4.2 : Simple lines 163

draw-metafile function 327

draw-metafile-to-image function 328

drawn-pinboard-object class 329 12.3.4 : An example pinboard object 151

drawn-pinboard-object-display-callback accessor drawn-pinboard-object 329

draw-path function 840 13.4.4 : Paths 164

draw-pinboard-layout-objects function 330

draw-pinboard-object generic function 331

draw-pinboard-object-highlighted generic function 332

draw-point function 842 12.2 : Receiving input from the user 140

draw-points function 843

draw-polygon function 844 13.4.3 : Simple shapes 163

draw-polygons function 844 13.4.3 : Simple shapes 163

draw-rectangle function 846 13.4.3 : Simple shapes 163

draw-rectangles function 847 13.4.3 : Simple shapes 163

draw-string function 847 13.4.1 : Text 163

:draw-with-buffer initarg output-pane 525

:drop-callback initarg 17.2.3 : Dragging values from an output-pane 190, simple-pane 693

drop-down list box 5.7 : Option panes 68

:dropdown-menu initarg toolbar-button 762

:drop-down-menu initarg 20.12 : Menu examples 208

:dropdown-menu-function initarg toolbar-button 762

:dropdown-menu-kind initarg toolbar-button 762

drop-object-allows-drop-effect-p function 333

drop-object-collection-index accessor 334 17.3.2 : Dropping in a choice 192

drop-object-collection-item accessor 335 17.3.2 : Dropping in a choice 192

drop-object-drop-effect accessor 336

drop-object-get-object function 337 17.3.1 : The drop callback 192

drop-object-pane-x function 338 17.3.4 : Dropping in an output-pane 193

drop-object-pane-y function 338 17.3.4 : Dropping in an output-pane 193

Index

1031

drop-object-provides-format function 339 17.3.1 : The drop callback 192

E

:echo-area initarg 3.5.3 : Editor panes 44, editor-pane 342

echo-area-cursor-inactive-style variable 340

echo-area-pane class 340

:edge-pane-function initarg graph-pane 385

:edge-pinboard-class initarg graph-pane 385

Edit > Copy menu command 8.7.1 : Standard default accelerators 104

Edit > Cut menu command 8.7.1 : Standard default accelerators 104

Edit > Find... menu command 8.7.1 : Standard default accelerators 104

Edit > Paste menu command 8.7.1 : Standard default accelerators 104

Edit > Redo menu command 8.7.1 : Standard default accelerators 104

Edit > Replace... menu command 8.7.1 : Standard default accelerators 104

Edit > Select All menu command 8.7.1 : Standard default accelerators 104

Edit > Undo menu command 8.7.1 : Standard default accelerators 104

:editing-callback initarg text-input-pane 736

Edit menu 8.11 : The Edit menu on Cocoa 106

edit operations

defining for your interface class 7.6 : Edit actions on the active element 96

on active element 7.6 : Edit actions on the active element 95

editor-cursor-active-style variable 340

editor-cursor-color variable 341

editor-cursor-drag-style variable 341

editor-cursor-inactive-style variable 342

editor-pane class 342 3.5.3 : Editor panes 44, 10.6 : In-place completion 125, 10.6.2.2 : Editor panes 127, 11.4 :
Connecting an interface to an application 135, 13.1.1 : Creating instances 159

subclasses 3.9.6 : Stream panes 48

editor-pane-blink-rate generic function 347 3.5.3.2 : Additional editor-pane functions 46

editor-pane-buffer function 348

editor-pane-change-callback accessor editor-pane 342

editor-pane-composition-face accessor editor-pane 342

editor-pane-composition-selected-range-face-plist variable 349

editor-pane-default-composition-callback function 350 3.5.3.2 : Additional editor-pane functions 46

editor-pane-default-composition-face variable 351

editor-pane-enabled accessor editor-pane 342

editor-pane-fixed-fill accessor editor-pane 342

editor-pane-line-wrap-face accessor 3.5.3.2 : Additional editor-pane functions 46, editor-pane 342

editor-pane-line-wrap-marker accessor 3.5.3.2 : Additional editor-pane functions 46, editor-pane 342

editor-pane-native-blink-rate function 351 3.5.3.2 : Additional editor-pane functions 46

editor panes 3.5.3 : Editor panes 44

Index

1032

editor-pane-selected-text function 352 3.5.3.2 : Additional editor-pane functions 46

editor-pane-selected-text-p function 353 3.5.3.2 : Additional editor-pane functions 46

editor-pane-stream generic function 353

editor-pane-text accessor 3.5.3.2 : Additional editor-pane functions 46, 7.5 : Updating pane contents 94, 11.4 : Connecting an
interface to an application 135, editor-pane 342

editor-pane-wrap-style accessor editor-pane 342

editor-window generic function 354

element class 354

:element callback type 5.10.3 : Callbacks in choices 70

element-container function 358

element-interface function element 354

element-interface-for-callback generic function 358

element-parent accessor 3.7 : Hierarchy of panes 46, element 354

elements

creating your own 12 : Creating Panes with Your Own Drawing and Input 139

generic properties of 3.1 : Generic properties 37

element-screen function 359

element-widget-name accessor 19.3.2.1 : Resources on GTK+ 197, element 354

ellipse class 360

:empty-tree-string initarg stacked-tree 710

:enabled initarg 3.5.3.2 : Additional editor-pane functions 46, 3.10.1 : Push buttons 50, button 235, editor-
pane 342, option-pane 522, simple-pane 693, text-input-pane 736, toolbar-object 767

:enabled-function initarg 8.9 : Disabling menu items 105, menu-object 494, toolbar-object 767

:enabled-function-for-dialog initarg 8.9.1 : Dialogs and disabled menu items 105, menu-item 491

:enabled-positions initarg option-pane 522

:enabled-slot initarg menu-object 494

:enable-pointer-documentation initarg interface 409

:enable-tooltips initarg interface 409

:end initarg range-pane 622, text-input-range 753

end-pane-drag-operation function 722

:end-x initarg 12.3 : Creating graphical objects 147, line-pinboard-object 444

:end-y initarg 12.3 : Creating graphical objects 147, line-pinboard-object 444

ensure-area-visible function 360

ensure-color function 995 15.3 : Color models 183

ensure-gdiplus function 849

ensure-gray function 997

ensure-hsv function 997

ensure-interface-screen function 361

ensure-model-color function 996 15.3 : Color models 183

ensure-rgb function 997

Index

1033

Escape key popup-confirmer 571

:evaluate keyword argument 10.2.7 : Prompting for Lisp objects 120

event handler

key strokes 12.2.1 : Detailed description of the input model 141, output-pane 527

mouse click 12.2.1 : Detailed description of the input model 141, output-pane 527

mouse gestures 12.2.1 : Detailed description of the input model 141, output-pane 527

mouse move 12.2.1 : Detailed description of the input model 141, output-pane 527

event handlers 12.2 : Receiving input from the user 140

execute-with-interface function 361 4.1 : The correct thread for CAPI operations 54, 7 : Programming with CAPI Windows 91

execute-with-interface-if-alive function 363 4.1 : The correct thread for CAPI operations 54, 7 : Programming with CAPI
Windows 91

exit-confirmer function 364 10.5 : Creating your own dialogs 122, 10.5.1 : Using popup-confirmer 123

exit-dialog function 365 10.5.1 : Using popup-confirmer 123, 10.5.2 : Using display-dialog 124

expandable-item-pinboard-object class 366

:expandp-function initarg tree-view 776

:extend-callback initarg 5.3.3 : Deselection, retraction, and actions 63, 5.6 : Graph panes 66, 5.10.3 : Callbacks in
choices 69, callbacks 243

extended selection

specifying 5.10.1 : Interaction 69

using on different platforms 5.10.1 : Interaction 69

:extended-selection interaction style 5.3.1 : List interaction 61, 5.3.2 : Extended selection 61, 5.10.1 : Interaction 69

extended-selection-tree-view class 366 5.4.1 : Tree interaction 64

extension gesture 5.3.2 : Extended selection 61

:external-border initarg interface 409

external constraints 6.4.1 : Width and height hints 79

external image

dimensions 13.10.6 : Querying image dimensions 170

from displayed window 13.10.9 : Creating external images from Graphics Ports operations 172

from on-screen window 13.10.9 : Creating external images from Graphics Ports operations 172

width and height 13.10.6 : Querying image dimensions 170

external-image system class 850 13.10 : Working with images 167

external-image-color-table accessor 850

externalize-and-write-image function 851 13.10.2 : Image formats supported for writing to disk 168

externalize-image function 853 13.10.3.1 : Converting an external image 169

:external-max-height initarg 6.4.1 : Width and height hints 80, element 354, pinboard-object 559

:external-max-width initarg 6.4.1 : Width and height hints 79, element 354, pinboard-object 559

:external-min-height initarg 6.4.1 : Width and height hints 79, element 354, pinboard-object 559

:external-min-width initarg 6.4.1 : Width and height hints 79, element 354, pinboard-object 559

F

f2pi constant 854

Index

1034

File > Close menu command 8.7.1 : Standard default accelerators 104

File > Exit menu command 8.7.1 : Standard default accelerators 104

File > New menu command 8.7.1 : Standard default accelerators 104

File > Open... menu command 8.7.1 : Standard default accelerators 104

File > Print... menu command 8.7.1 : Standard default accelerators 104

File > Save menu command 8.7.1 : Standard default accelerators 104

:file-completion initarg 10.6.2.1 : Text input panes 127, text-input-pane 736

:filename initarg rich-text-pane 638

files

prompting for 10.2.4 : Prompting for files 119

filled accessor ellipse 360, rectangle 626

:filled initarg ellipse 360, rectangle 626

fill-style graphics state parameter graphics-state 877

:filter initarg 5.3.6 : Filters 63, filtering-layout 368, list-panel 447

:filter-added-filters initarg list-panel 447

:filter-automatic-p initarg list-panel 447

:filter-callback initarg list-panel 447

:filter-change-callback-p initarg list-panel 447

:filter-help-string initarg list-panel 447

filtering-layout class 367

filtering-layout-matches-text accessor filtering-layout 367

filtering-layout-match-object-and-exclude-p function 369

filtering-layout-state accessor filtering-layout 367

:filter-matches-title initarg list-panel 447

:filter-short-menu-text initarg list-panel 447

find-best-font function 854 13.9 : Portable font descriptions 166

find-graph-edge generic function 370

find-graph-node generic function 371

finding panes

interfaces define-interface 293

find-interface generic function 372

find-matching-fonts function 855 13.9 : Portable font descriptions 166

find-pane define-interface 293

find-string-in-collection generic function 373

fit-object function 960 14.2 : Higher level - drawing graphs and bar charts 178

:fit-size-to-children initarg static-layout 723

:fixed-fill initarg editor-pane 342

:flag initarg editor-pane 342

:flatp initarg toolbar 760

Index

1035

focus

for keyboard gestures 3.1.5 : Focus 39

for keyboard input 3.1.5 : Focus 39

keyboard input on Cocoa interface 414

mouse events on Cocoa interface 414

moving to a new pane activate-pane 216

setting to a pane pane-got-focus 544, set-pane-focus 680

:focus-callback initarg output-pane 525

folding toolbars 9 : Adding Toolbars 108

font type 856

:font initarg 3.1.3 : Fonts 37, simple-pane 693

font-description function 857

font-description type 858

font-description-attributes function 858

font-description-attribute-value function 859

font-dual-width-p function 860

font-fixed-width-p function 860

font graphics state parameter graphics-state 879

fonts 3.1.3 : Fonts 37

attributes 13.9.1 : Font attributes and font descriptions 166

font descriptions 13.9 : Portable font descriptions 166

lookup 13.9.2 : Fonts 167

prompting for 10.2.5 : Prompting for fonts 120

font-single-width-p function 861

force-objects-redraw function 963 14.1 : Lower level - drawing objects and objects displayers 177

force-screen-update function 373

force-update-all-screens function 374

:foreground initarg 3.1.2 : Background and foreground colors 37, simple-pane 693

foreground graphics state parameter graphics-state 877

foreign-owned-interface class 374

form-layout class 375

form-title-adjust accessor form-layout 375

form-title-gap accessor form-layout 375

form-vertical-adjust accessor form-layout 375

form-vertical-gap accessor form-layout 375

fpi constant 862

fpi-by-2 constant 862

frame 3.3.2.2 : Titles for elements 41, titled-object 756

free-image function 863 13.10 : Working with images 168, 13.10.5 : Making an image that is suitable for drawing 170

free-image-access function 863 13.10.8 : Image access 171

Index

1036

free-metafile function 376

free-sound function 377 18.2.1 : Sound API 194

:from initarg graph-edge 383

full screen windows on Cocoa interface 414

functions

abort-callback 213

abort-dialog 213 10.5.2 : Using display-dialog 124

abort-exit-confirmer 215

activate-pane 216

active-pane-copy 217

active-pane-copy-p 217

active-pane-cut 217

active-pane-cut-p 217

active-pane-deselect-all 217

active-pane-deselect-all-p 217

active-pane-paste 217

active-pane-paste-p 217

active-pane-select-all 217

active-pane-select-all-p 217

active-pane-undo 217

active-pane-undo-p 217

analyze-external-image 814

apply-in-pane-process 219 4.1 : The correct thread for CAPI operations 54, 7 : Programming with CAPI Windows 91

apply-in-pane-process-if-alive 221 4.1 : The correct thread for CAPI operations 54, 7 : Programming with CAPI
Windows 91

apply-in-pane-process-wait-multiple 221

apply-in-pane-process-wait-single 221

apply-rotation 815

apply-rotation-around-point 816

apply-scale 817

apply-translation 818

apropos-color-alias-names 981 15.2 : Color aliases 182

apropos-color-names 982 15.2 : Color aliases 182

apropos-color-spec-names 983 15.2 : Color aliases 182

attach-interface-for-callback 224

attach-simple-sink 224

attach-sink 225

augment-font-description 819 13.9.1 : Font attributes and font descriptions 167

basic-graph-spec-p 973

beep-pane 226 18.2.2 : Beep 194

boole 13.7.1 : Combining pixels with :compatible drawing 165

browser-pane-available-p 231

Index

1037

browser-pane-busy 232

browser-pane-go-back 232

browser-pane-go-forward 232

browser-pane-navigate 232

browser-pane-refresh 232

browser-pane-set-content 232

browser-pane-stop 232

browser-pane-successful-p browser-pane 227

browser-pane-title browser-pane 227

browser-pane-url browser-pane 227

can-use-metafile-p 246

choice-initial-focus-item choice 251

choice-interaction 5.10.1 : Interaction 69, choice 251

choice-selected-item-p 255

choice-update-item 258

clear-external-image-conversions 819 13.10.3.1 : Converting an external image 169

clear-graphics-port 820

clear-graphics-port-state 821

clear-rectangle 821

clipboard 259 18.6 : Clipboard 195

clipboard-empty 260 18.6 : Clipboard 195

cocoa-view-pane-view 265 3.9.3 : Cocoa views and application interfaces 47

collection-items-count-function collection 267

collection-items-get-function collection 267

collection-items-map-function collection 267

collector-pane-stream collector-pane 272

color-alpha 984

color-blue 984

color-from-premultiplied 986

color-green 984

color-hue 984

color-level 987

color-model 988 15.1 : Color specs 181

color-red 984

colors= 989 15.3 : Color models 183

color-saturation 984

color-to-premultiplied 990

color-value 984

color-with-alpha 991 15.1 : Color specs 181

complete-in-place 10.6.2.2 : Editor panes 127

compress-external-image 822

Index

1038

compute-char-extents 823

compute-drawing-object-from-data 958 14.1 : Lower level - drawing objects and objects displayers 177

confirmer-pane 276

confirm-quit 277

confirm-yes-or-no 278 10.1 : Some simple dialogs 116

contain 279 2.2 : Creating a window 35, 4.1 : The correct thread for CAPI operations 54, 12.3 : Creating graphical
objects 148, 18.1 : Development functions 194

convert-color 991 13.10.8 : Image access 171, 15.3 : Color models 183

convert-external-image 823 13.10.5 : Making an image that is suitable for drawing 170

convert-relative-position 281

convert-to-font-description 824

convert-to-screen 281 19.3.2.1 : Resources on GTK+ 197, 19.3.2.2 : Resources for CAPI/GTK+ applications 197, 19.4.1.1 :
Using Motif on Linux, FreeBSD and x86/x64 Solaris 198, 19.4.1.2 : Using Motif on Macintosh 198

copy-area 825 13.1 : Introduction 159

copy-basic-graph-spec 973

copy-external-image 826

copy-pixels 827

copy-transform 828

create-dummy-graphics-port 284

create-pixmap-port 828 13.1.1 : Creating instances 159, 13.2.1 : The drawing mode and anti-aliasing 162

current-dialog-handle 285 18.7 : Handles 195

current-pointer-position 286

current-popup 287

current-printer 288 16.1 : Printers 186

current-process-send 4.1 : The correct thread for CAPI operations 54

default-library 289

define-color-alias 992 15.2 : Color aliases 181

define-font-alias 830

delete-color-translation 995 15.2 : Color aliases 181, 15.4 : Loading the color database 184

deliver 7.7.5 : Quitting applications 97, 13.10.3 : External images 169

destroy-pixmap-port 831

detach-simple-sink 302

detach-sink 303

display 304 2.2 : Creating a window 35, 2.2 : Creating a window 35, 4.1 : The correct thread for CAPI
operations 54, 19.4.1.1 : Using Motif on Linux, FreeBSD and x86/x64 Solaris 198, 19.4.1.2 : Using Motif on Macintosh 198

display-dialog 305 10.4.2 : Specifying the owner 122, 10.5.2 : Using display-dialog 124, 10.5.3 : Modal and non-modal
dialogs 125

display-message 308 2.3 : Linking code into CAPI elements 36, 10.1 : Some simple dialogs 115

display-message-for-pane 309

display-message-on-screen display-message-for-pane 309

display-non-focus-message 310

display-pane-selected-text 313

display-pane-selection 313

Index

1039

display-pane-selection-p 314

display-popup-menu 315 8.13 : Displaying menus programmatically 107

display-replacable-dialog 316

dither-color-spec 831

docking-layout-orientation docking-layout 318

document-frame-container document-frame 322

drag-pane-object 326 17.2.3 : Dragging values from an output-pane 190

draw-arc 832 13.4.2 : Simple lines 163

draw-arcs 833 13.4.2 : Simple lines 163

draw-character 833 13.4.1 : Text 163

draw-circle 834

draw-ellipse 835 13.4.3 : Simple shapes 163

draw-image 836 13.10 : Working with images 168, 13.10.1 : Image formats supported for reading from disk and drawing 168

draw-line 838 13.4.2 : Simple lines 163

draw-lines 839 13.4.2 : Simple lines 163

draw-metafile 327

draw-metafile-to-image 328

draw-path 840 13.4.4 : Paths 164

draw-pinboard-layout-objects 330

draw-point 842 12.2 : Receiving input from the user 140

draw-points 843

draw-polygon 844 13.4.3 : Simple shapes 163

draw-polygons 844 13.4.3 : Simple shapes 163

draw-rectangle 846 13.4.3 : Simple shapes 163

draw-rectangles 847 13.4.3 : Simple shapes 163

draw-string 847 13.4.1 : Text 163

drop-object-allows-drop-effect-p 333

drop-object-get-object 337 17.3.1 : The drop callback 192

drop-object-pane-x 338 17.3.4 : Dropping in an output-pane 193

drop-object-pane-y 338 17.3.4 : Dropping in an output-pane 193

drop-object-provides-format 339 17.3.1 : The drop callback 192

editor-pane-buffer 348

editor-pane-default-composition-callback 350 3.5.3.2 : Additional editor-pane functions 46

editor-pane-native-blink-rate 351 3.5.3.2 : Additional editor-pane functions 46

editor-pane-selected-text 352 3.5.3.2 : Additional editor-pane functions 46

editor-pane-selected-text-p 353 3.5.3.2 : Additional editor-pane functions 46

element-container 358

element-interface element 354

element-screen 359

end-pane-drag-operation 722

ensure-area-visible 360

Index

1040

ensure-color 995 15.3 : Color models 183

ensure-gdiplus 849

ensure-gray 997

ensure-hsv 997

ensure-interface-screen 361

ensure-model-color 996 15.3 : Color models 183

ensure-rgb 997

execute-with-interface 361 4.1 : The correct thread for CAPI operations 54, 7 : Programming with CAPI Windows 91

execute-with-interface-if-alive 363 4.1 : The correct thread for CAPI operations 54, 7 : Programming with CAPI
Windows 91

exit-confirmer 364 10.5 : Creating your own dialogs 122, 10.5.1 : Using popup-confirmer 123

exit-dialog 365 10.5.1 : Using popup-confirmer 123, 10.5.2 : Using display-dialog 124

externalize-and-write-image 851 13.10.2 : Image formats supported for writing to disk 168

externalize-image 853 13.10.3.1 : Converting an external image 169

filtering-layout-match-object-and-exclude-p 369

find-best-font 854 13.9 : Portable font descriptions 166

find-matching-fonts 855 13.9 : Portable font descriptions 166

fit-object 960 14.2 : Higher level - drawing graphs and bar charts 178

font-description 857

font-description-attributes 858

font-description-attribute-value 859

font-dual-width-p 860

font-fixed-width-p 860

font-single-width-p 861

force-objects-redraw 963 14.1 : Lower level - drawing objects and objects displayers 177

force-screen-update 373

force-update-all-screens 374

free-image 863 13.10 : Working with images 168, 13.10.5 : Making an image that is suitable for drawing 170

free-image-access 863 13.10.8 : Image access 171

free-metafile 376

free-sound 377 18.2.1 : Sound API 194

general-handle-event 4.1 : The correct thread for CAPI operations 54

generate-bar-chart 964 14.2 : Higher level - drawing graphs and bar charts 178

generate-graph-from-graph-spec 973 14.2 : Higher level - drawing graphs and bar charts 178

generate-graph-from-pairs 966 14.2 : Higher level - drawing graphs and bar charts 178

generate-grid-lines 967 14.2 : Higher level - drawing graphs and bar charts 178

generate-labels 969 14.2 : Higher level - drawing graphs and bar charts 178

get-all-color-names 998 15.2 : Color aliases 182

get-bounds 864

get-character-extent 865

get-char-ascent 866

get-char-descent 866

Index

1041

get-char-width 867

get-color-alias-translation 999 15.2 : Color aliases 181

get-color-spec 1000 15.1 : Color specs 180

get-constraints 378 6 : Laying Out CAPI Panes 74

get-enclosing-rectangle 867

get-font-ascent 868

get-font-average-width 869

get-font-descent 869

get-font-height 870

get-font-width 871

get-graphics-state 871

get-horizontal-scroll-parameters 379

get-origin 872

get-page-area 380 16.5.1 : Establishing a page transform 187

get-printer-metrics 381 16.5.1 : Establishing a page transform 187

get-string-extent 873

get-transform-scale 873

get-vertical-scroll-parameters 379

graph-node-height 5.6.3 : Accessing the topology of the graph 67, graph-node 383

graph-node-in-edges 5.6.3 : Accessing the topology of the graph 67, graph-node 383

graph-node-out-edges 5.6.3 : Accessing the topology of the graph 67, graph-node 383

graph-node-width 5.6.3 : Accessing the topology of the graph 67, graph-node 383

graph-node-x 5.6.3 : Accessing the topology of the graph 67, graph-node 383

graph-node-y 5.6.3 : Accessing the topology of the graph 67, graph-node 383

graph-object-element graph-object 385

graph-object-object graph-object 385

graph-pane-edges 392

graph-pane-nodes 393

graph-pane-object-at-position 393

help-key collection 267, element 354, menu-item 491, toolbar-button 762

hide-interface 399

hide-pane 399

highlight-pinboard-object 400

image-access-height 881

image-access-pixels-from-bgra 883 13.10.8 : Image access 171

image-access-pixels-to-bgra 884 13.10.8 : Image access 171

image-access-transfer-from-image 885 13.10.8 : Image access 171

image-access-transfer-to-image 886 13.10.8 : Image access 171

image-access-width 881

image-freed-p 887

image-loader 887

Index

1042

image-translation 888

initialize-dithers 889

inset-rectangle 889

inside-rectangle 890

installed-libraries 404

install-postscript-printer 405

interactive-pane-stream interactive-pane 406

interactive-pane-top-level-function interactive-pane 406

interface-customize-toolbar 419 9.6.1 : User-customization of toolbars 112

interface-display-title 421

interface-iconified-p 425

interface-preserving-state-p 429

interface-visible-p 432

interface-window-styles interface 409

invalidate-pane-constraints 434

invalidate-rectangle-from-points 892

invert-transform 893

invoke-command 435

invoke-untranslated-command 435

itemp 438

line-pinboard-object-coordinates 445

list-all-font-names 893 13.9 : Portable font descriptions 166

listener-pane-insert-value 446

list-known-image-formats 894 13.10.1 : Image formats supported for reading from disk and drawing 168, 13.10.2 : Image
formats supported for writing to disk 168

list-panel-search-with-function 457

load-color-database 1001 15.4 : Loading the color database 183

load-cursor 462

load-icon-image 895 13.10.1 : Image formats supported for reading from disk and drawing 168, 13.10.5 : Making an image that is
suitable for drawing 170

load-image 896 13.10.5 : Making an image that is suitable for drawing 170

load-sound 464 18.2.1 : Sound API 194

lower-interface 466

make-absolute-drawing 960 14.1 : Lower level - drawing objects and objects displayers 174

make-absolute-drawing* 960 14.1 : Lower level - drawing objects and objects displayers 174

make-a-drawing-call 971 14.1 : Lower level - drawing objects and objects displayers 174

make-basic-graph-spec 973 14.2 : Higher level - drawing graphs and bar charts 178

make-container 467 18.1 : Development functions 194

make-dither 898

make-docking-layout-controller 468

make-draw-arc 971

make-draw-circle 971

Index

1043

make-draw-ellipse 971

make-draw-line 971

make-draw-lines 971

make-draw-polygon 971

make-draw-rectangle 971

make-draw-string 975

make-font-description 898

make-foreign-owned-interface 469

make-general-image-set 470

make-graphics-state 899

make-gray 1001 15.1 : Color specs 181

make-hsv 1002 15.1 : Color specs 181

make-icon-resource-image-set 471

make-image 900

make-image-access 901 13.10.8 : Image access 171

make-image-from-port 902 13.7.2 : Combining pixels with :quality drawing 165, 13.10.5 : Making an image that is suitable for
drawing 170

make-image-locator 472

make-instance 2 : Getting Started 34

make-menu-for-pane 472 8.12 : Popup menus for panes 106

make-pinboard-objects-displayer 976

make-resource-image-set 475

make-rgb 1003 15.1 : Color specs 181

make-scaled-general-image-set 476

make-scaled-image-set 477

make-scaled-sub-image 903 13.10.5 : Making an image that is suitable for drawing 170

make-sorting-description 478

make-sub-image 904 13.10.5 : Making an image that is suitable for drawing 170

make-transform 905

map-typeout 485

menu-object-enabled menu-object 494

merge-font-descriptions 906 13.9.1 : Font attributes and font descriptions 167

modify-editor-pane-buffer 499 3.5.3.2 : Additional editor-pane functions 46

modify-multi-column-list-panel-columns 500

modify-stacked-tree 501

non-focus-list-add-filter 507

non-focus-list-remove-filter 507

non-focus-list-toggle-enable-filter 509

non-focus-list-toggle-filter 507

non-focus-maybe-capture-gesture 509

objects-displayer 14.2 : Higher level - drawing graphs and bar charts 178

offset-rectangle 906

Index

1044

ole-control-add-verbs 512

ole-control-close-object 513

ole-control-component-pane ole-control-component 513

ole-control-i-dispatch 516

ole-control-insert-object 517

ole-control-ole-object 518

ole-control-pane-frame 520

ordered-rectangle-union 907

output-pane-cache-display 532

output-pane-coordinate-origin output-pane 525

output-pane-draw-from-cached-display 533

output-pane-free-cached-display 534

output-pane-graphics-options output-pane 525

output-pane-stop-composition 536

page-setup-dialog 538 16.1 : Printers 186

pane-can-restore-display-p 541 18.4 : Restoring display while debugging 194

pane-close-display 542

pane-descendant-child-with-focus 543

pane-drag-operation-update 722

pane-modifiers-state 547 18.3 : Modifier keys state 194

pane-restore-display 550 18.4 : Restoring display while debugging 194

pane-screen-internal-geometry 551 4.3 : Support for multiple monitors 55, 11.6 : Querying and modifying interface
geometry 137

pane-supports-menus-with-images 553 8.10 : Menus with images 105

password-pane-overwrite-character password-pane 555

pinboard-object-highlighted-p 565

pinboard-objects-displayer 14.2 : Higher level - drawing graphs and bar charts 178

pixblt 908

play-sound 568 18.2.1 : Sound API 194

popup-confirmer 569 10.5 : Creating your own dialogs 122, 10.5.1 : Using popup-confirmer 123, 10.5.3 : Modal and non-
modal dialogs 125

popup-menu-force-popdown 576 8.13 : Displaying menus programmatically 107

port-graphics-state 910

port-height 911

port-owner 912

port-string-height 912

port-string-width 913

port-width 914

position-and-fit-object 960 14.1 : Lower level - drawing objects and objects displayers 174, 14.2 : Higher level - drawing
graphs and bar charts 178

position-object 960 14.1 : Lower level - drawing objects and objects displayers 174, 14.2 : Higher level - drawing graphs and bar
charts 178

postmultiply-transforms 914

Index

1045

premultiply-transforms 915

print-dialog 579 10.4.2 : Specifying the owner 122, 16.1 : Printers 186, print-dialog 579

print-editor-buffer 580 3.5.3.2 : Additional editor-pane functions 46, 16.6 : Other printing functions 187

printer-configuration-dialog 581 16.7.3 : Adding and removing printers 188

printer-metrics-device-height printer-metrics 582

printer-metrics-device-width printer-metrics 582

printer-metrics-dpi-x printer-metrics 582

printer-metrics-dpi-y printer-metrics 582

printer-metrics-height printer-metrics 582

printer-metrics-left-margin printer-metrics 583

printer-metrics-max-height printer-metrics 583

printer-metrics-max-width printer-metrics 583

printer-metrics-min-left-margin printer-metrics 583

printer-metrics-min-top-margin printer-metrics 583

printer-metrics-paper-height printer-metrics 583

printer-metrics-paper-width printer-metrics 583

printer-metrics-top-margin printer-metrics 583

printer-metrics-width printer-metrics 582

printer-port-handle 584

printer-port-supports-p 584

print-file 586 16.6 : Other printing functions 187

print-rich-text-pane 587

print-text 588 16.6 : Other printing functions 187

process-pending-messages 589

process-send 4.1 : The correct thread for CAPI operations 54

prompt-for-color 590 10.2.6 : Prompting for colors 120

prompt-for-confirmation 591 10.1 : Some simple dialogs 116

prompt-for-directory 592 10.2.4 : Prompting for files 120

prompt-for-file 594 10.2.4 : Prompting for files 119, 10.4.2 : Specifying the owner 122

prompt-for-files 596

prompt-for-font 598 10.2.5 : Prompting for fonts 120

prompt-for-form 598 10.2.7 : Prompting for Lisp objects 120

prompt-for-forms 600

prompt-for-integer 601 10.2.2 : Prompting for numbers 117, 10.5.1 : Using popup-confirmer 123

prompt-for-items-from-list 603

prompt-for-number 604 10.2.2 : Prompting for numbers 117

prompt-for-string 605 10.2.1 : Prompting for strings 116, 10.4.2 : Specifying the owner 122

prompt-for-symbol 606 10.2.7 : Prompting for Lisp objects 121

prompt-for-value 608

prompt-with-list 609 10.2.3 : Prompting for an item in a list 117

prompt-with-list-non-focus 612 10.6.2.3 : Other CAPI panes 128

Index

1046

prompt-with-message 615 2.3 : Linking code into CAPI elements 36

quit cocoa-default-application-interface 263

quit-interface 618 7.7.3 : Closing windows 96

raise-interface 622

range-set-sizes 623

read-and-convert-external-image 915 13.10.5 : Making an image that is suitable for drawing 170

read-color-db 1004 15.4 : Loading the color database 183

read-external-image 916

read-sound-file 624 18.2.1 : Sound API 194

record-dependent-object 625

rectangle-union 921

recurse-compute-drawing-object 958 14.1 : Lower level - drawing objects and objects displayers 177

redisplay-element 627

redisplay-menu-bar 629

redraw-drawing-with-cached-display 630

redraw-pinboard-layout 631 4.2 : Redisplay 55

redraw-pinboard-object 631 4.2 : Redisplay 55

register-image-load-function 923

register-image-translation 924 13.10.4 : Registering images 170

remove-capi-object-property 633 18.5 : Object properties and name 195

replace-dialog 634

reset-image-translation-table 925

rich-text-pane-character-format 639

rich-text-pane-operation 641

rich-text-pane-paragraph-format 643

rich-text-version 644

rotate-object 960 14.1 : Lower level - drawing objects and objects displayers 176

sample 3 : General Properties of CAPI Panes 37

save-image 13.10.3 : External images 169

screen-active-interface 648

screen-active-p 649

screen-depth screen 647

screen-height screen 647

screen-height-in-millimeters screen 647

screen-interfaces document-container 321, screen 647

screen-internal-geometries 650 4.3 : Support for multiple monitors 55, 11.6 : Querying and modifying interface
geometry 137

screen-internal-geometry 651 4.3 : Support for multiple monitors 55, 11.6.1 : Support for multiple monitors 137

screen-logical-resolution 652

screen-monitor-geometries 652 4.3 : Support for multiple monitors 55, 11.6 : Querying and modifying interface geometry 137

screen-number screen 647

Index

1047

screens 653

screen-width screen 647

screen-width-in-millimeters screen 647

selection 659 18.6 : Clipboard 195

selection-empty 660 18.6 : Clipboard 195

separation 925

set-application-interface 660

set-application-themed 19.1.1 : Using Windows themes 196

set-clipboard 662 18.6 : Clipboard 195

set-composition-placement 663

set-confirm-quit-flag 664

set-default-editor-pane-blink-rate 665 3.5.3.2 : Additional editor-pane functions 46

set-default-image-load-function 926

set-default-interface-prefix-suffix 666 3.3.2.1 : Window titles 41

set-default-use-native-input-method 667

set-drop-object-supported-formats 668 17.3.1 : The drop callback 191

set-editor-parenthesis-colors 670 3.5.3.2 : Additional editor-pane functions 46

set-geometric-hint 671 6.4 : Specifying geometry hints 79

set-graphics-port-coordinates 926

set-graphics-state 927 13.3.1 : Setting the graphics state 163

set-hint-table 671 6.4 : Specifying geometry hints 79, 6.5.3 : Changing the constraints 84

set-horizontal-scroll-parameters 672 6.4.1 : Width and height hints 79

set-interactive-break-gestures 673

set-interface-pane-name-appearance 674 18.8 : Setting the font and colors for specific panes in specific interfaces. 195

set-interface-pane-type-appearance 674 18.8 : Setting the font and colors for specific panes in specific interfaces. 195

set-list-panel-keyboard-search-reset-time 676

set-object-automatic-resize 677

set-printer-metrics 680 16.5.1 : Establishing a page transform 187

set-printer-options 681 16.1 : Printers 186

set-rich-text-pane-character-format 683

set-rich-text-pane-paragraph-format 685

set-selection 686 18.6 : Clipboard 195

set-vertical-scroll-parameters 672 6.4.1 : Width and height hints 79

show-interface 690

show-pane 691

simple-pane-handle 700 18.7 : Handles 195

simple-pane-horizontal-scroll simple-pane 693

simple-pane-vertical-scroll simple-pane 693

simple-pane-visible-border simple-pane 693

simple-pane-visible-height 700 3.8 : Accessing pane geometry 47

simple-pane-visible-size 701 3.8 : Accessing pane geometry 47

Index

1048

simple-pane-visible-width 702 3.8 : Accessing pane geometry 47

simple-print-port 703 13.1.1 : Creating instances 159, 16.6 : Other printing functions 187

slider-show-value-p slider 705

slider-start-point slider 705

slider-tick-frequency slider 705

slot-value 2 : Getting Started 34

sorted-object-sorted-by 708

sort-object-items-by 709

stacked-tree-decrease-font-height 715

stacked-tree-default-color-function 715

stacked-tree-history-backward 716

stacked-tree-history-forward 716

stacked-tree-increase-font-height 715

stacked-tree-item-at-point 717

stacked-tree-zoom-by-factor 719

start-drawing-with-cached-display 720

start-gc-monitor 721

start-pane-drag-operation 722

stop-gc-monitor 727

stop-sound 728 18.2.1 : Sound API 194

switchable-layout-combine-child-constraints switchable-layout 729

tab-layout-combine-child-constraints tab-layout 731

tab-layout-image-function tab-layout 731

tab-layout-panes 733

tab-layout-visible-child 734

text-input-pane-append-recent-items 744

text-input-pane-caret-position text-input-pane 736

text-input-pane-complete-text 745

text-input-pane-copy 746

text-input-pane-cut 746

text-input-pane-delete 747

text-input-pane-delete-recent-items 744

text-input-pane-in-place-complete 748

text-input-pane-paste 748

text-input-pane-prepend-recent-items 744

text-input-pane-replace-recent-items 744

text-input-pane-selected-text 750

text-input-pane-selection 750

text-input-pane-selection-p 751

text-input-pane-set-recent-items 752

toolbar-flat-p toolbar 760

Index

1049

top-level-interface-dark-mode-p 770

top-level-interface-geometry 771 4.3 : Support for multiple monitors 55, 7.2.1 : Positioning CAPI windows 92, 11.6 :
Querying and modifying interface geometry 137

top-level-interface-geometry-display-state 7.7.2 : Iconifying and restoring windows 96

transform-area 929

transform-distance 929

transform-distances 930

transform-is-rotated 931

transform-point 931

transform-points 932

transform-rect 933

tree-view-checkbox-status tree-view 776

tree-view-ensure-visible 782

tree-view-item-children-checkbox-status 784

tree-view-update-item 785 4.2 : Redisplay 55

unconvert-color 1005 13.10.8 : Image access 171

undefine-font-alias 934

unhighlight-pinboard-object 786

uninstall-postscript-printer 787

unit-transform-p 935

unmap-typeout 788

unrecord-dependent-object 625

untransform-distance 937

untransform-distances 937

untransform-point 938

untransform-points 939

update-all-interface-titles 788

update-drawing-with-cached-display 789

update-drawing-with-cached-display-from-points 789

update-internal-scroll-parameters 791 12.4.2 : Internal scrolling 156

update-pinboard-object 792

update-screen-interface-titles 793

update-toolbar 794

virtual-screen-geometry 795 4.3 : Support for multiple monitors 55, 11.6.1 : Support for multiple monitors 137

wrap-text 810

wrap-text-for-pane 811

write-external-image 953

G

:gap initarg column-layout 274, row-layout 645

general-handle-event function 4.1 : The correct thread for CAPI operations 54

Index

1050

generate-bar-chart function 964 14.2 : Higher level - drawing graphs and bar charts 178

generate-graph-from-graph-spec function 973 14.2 : Higher level - drawing graphs and bar charts 178

generate-graph-from-pairs function 966 14.2 : Higher level - drawing graphs and bar charts 178

generate-grid-lines function 967 14.2 : Higher level - drawing graphs and bar charts 178

generate-labels function 969 14.2 : Higher level - drawing graphs and bar charts 178

generic functions

accepts-focus-p 215

append-items 219

browser-pane-property-get 234

browser-pane-property-put 234

calculate-constraints 241 6 : Laying Out CAPI Panes 74, 6.4.1 : Width and height hints 80

calculate-layout 242 6 : Laying Out CAPI Panes 74

call-editor 245 3.5.3.1 : Editor pane callbacks 45, 10.6.1.1 : Invoking in-place completion in text-input-pane and editor-
pane 126, 11.4 : Connecting an interface to an application 135

clone 261

collect-interfaces 266

collection-find-next-string 269

collection-find-string 270

collection-last-search 271

collection-search 271

count-collection-items 283

current-document 286

destroy 301 7.7.3 : Closing windows 96

destroy-dependent-object 302

display-tooltip 317

draw-pinboard-object 331

draw-pinboard-object-highlighted 332

editor-pane-blink-rate 347 3.5.3.2 : Additional editor-pane functions 46

editor-pane-stream 353

editor-window 354

element-interface-for-callback 358

find-graph-edge 370

find-graph-node 371

find-interface 372

find-string-in-collection 373

get-collection-item 377

get-scroll-position 382

graph-node-children 384

graph-pane-add-graph-node 389

graph-pane-delete-object 389

graph-pane-delete-objects 390

graph-pane-delete-selected-objects 391

Index

1051

graph-pane-select-graph-nodes 394

graph-pane-update-moved-objects 395

interactive-pane-execute-command 408

interface-display 420 7.1 : Initialization 91, 13.9.2 : Fonts 167, 13.10.5 : Making an image that is suitable for drawing 170

interface-editor-pane 422

interface-extend-title 423 3.3.2.1 : Window titles 41

interface-geometry 424

interface-keys-style 425

interface-match-p 427

interface-menu-groups 428

interface-preserve-state 429

interface-reuse-p 430

interpret-description 433 6 : Laying Out CAPI Panes 73

invalidate-rectangle 891

item-pane-interface-copy-object 438

locate-interface 465

make-pane-popup-menu 473 8.12 : Popup menus for panes 106

manipulate-pinboard 480

map-collection-items 482

map-pane-children 482

map-pane-descendant-children 484

merge-menu-bars 497

move-line 502

non-focus-terminate 511

non-focus-update 511

output-pane-resize 535

over-pinboard-object-p 537

pane-adjusted-offset 539

pane-adjusted-position 540

pane-got-focus 543

pane-has-focus-p 544

pane-interface-copy-object 546

pane-interface-copy-p 546

pane-interface-cut-object 546

pane-interface-cut-p 546

pane-interface-deselect-all 546

pane-interface-deselect-all-p 546

pane-interface-paste-object 546

pane-interface-paste-p 546

pane-interface-select-all 546

pane-interface-select-all-p 546

Index

1052

pane-interface-undo 546

pane-interface-undo-p 546

pane-popup-menu-items 548 8.12 : Popup menus for panes 106

pane-string 552

parse-layout-descriptor 554

pinboard-layout-display 558

pinboard-object-at-position 563

pinboard-object-overlap-p 565

port-drawing-mode-quality-p 910

print-capi-button 577

print-collection-item 578

redisplay-collection-item 627 4.2 : Redisplay 55

redisplay-interface 628 4.2 : Redisplay 55, 10.5.1 : Using popup-confirmer 124

reinitialize-interface 632

remove-items 634

replace-items 635

report-active-component-failure 636

scroll 654 7.4.1 : Programmatic scrolling 92

search-for-item 658

set-button-panel-enabled-items 661

set-display-pane-selection 668

set-pane-focus 680

set-scroll-position scroll 655

set-text-input-pane-selection 687

set-top-level-interface-geometry 688 7.2 : Resizing and positioning 91

sorted-object-sort-by 708

switchable-layout-switchable-children 730

top-level-interface 768

top-level-interface-display-state 770

top-level-interface-geometry-key 773

top-level-interface-p 774

top-level-interface-save-geometry-p 775

tree-view-update-an-item 784

update-interface-title 790

validate-rectangle 939

generic properties of elements 3.1 : Generic properties 37

:geometry-change-callback initarg interface 409

geometry-drawing-object class 971 14.1 : Lower level - drawing objects and objects displayers 174

geometry of interfaces 11.6 : Querying and modifying interface geometry 137

geometry of interfaces, querying 4.3 : Support for multiple monitors 55

Index

1053

geometry of layouts, specifying 6.5 : Constraining the size of layouts 83

geometry slots

%child% with-geometry 804

%height% with-geometry 803

%max-height% with-geometry 803

%max-width% with-geometry 803

%min-height% with-geometry 803

%min-width% with-geometry 803

%object% with-geometry 804

%scroll-height% with-geometry 803

%scroll-horizontal-page-size% with-geometry 803

%scroll-horizontal-slug-size% with-geometry 803

%scroll-horizontal-step-size% with-geometry 803

%scroll-start-x% with-geometry 803

%scroll-start-y% with-geometry 803

%scroll-vertical-page-size% with-geometry 803

%scroll-vertical-slug-size% with-geometry 803

%scroll-vertical-step-size% with-geometry 803

%scroll-width% with-geometry 803

%scroll-x% with-geometry 803

%scroll-y% with-geometry 803

%width% with-geometry 803

%x% with-geometry 802

%y% with-geometry 803

:gesture-callbacks initarg filtering-layout 367, text-input-pane 736

get-all-color-names function 998 15.2 : Color aliases 182

get-bounds function 864

get-character-extent function 865

get-char-ascent function 866

get-char-descent function 866

get-char-width function 867

get-collection-item generic function 377

get-color-alias-translation function 999 15.2 : Color aliases 181

get-color-spec function 1000 15.1 : Color specs 180

get-constraints function 378 6 : Laying Out CAPI Panes 74

get-enclosing-rectangle function 867

get-font-ascent function 868

get-font-average-width function 869

get-font-descent function 869

Index

1054

get-font-height function 870

get-font-width function 871

get-graphics-state function 871

get-horizontal-scroll-parameters function 379

get-origin function 872

get-page-area function 380 16.5.1 : Establishing a page transform 187

get pane

interface define-interface 293

get-pane define-interface 293

get-printer-metrics function 381 16.5.1 : Establishing a page transform 187

get-scroll-position generic function 382

get-string-extent function 873

get-transform-scale function 873

get-vertical-scroll-parameters function 379

graph-edge class 383

graph-edge-from accessor 5.6.3 : Accessing the topology of the graph 67, graph-edge 383

graph-edge-to accessor 5.6.3 : Accessing the topology of the graph 67, graph-edge 383

graphics

automatic redrawing 12.1 : Displaying graphics 139, 13.1.2 : Pixmaps and Metafiles 160, 13.5 : How to draw to an on-screen port 164

creating permanent displays 13.1.2 : Pixmaps and Metafiles 160, 13.5 : How to draw to an on-screen port 164

displaying 12.1 : Displaying graphics 139

display your own drawings 12.1 : Displaying graphics 139

:graphics-args initarg 12.3 : Creating graphical objects 147, pinboard-object 559

:graphics-options initarg output-pane 525

graphics-port-background accessor 874

graphics-port-font accessor 874

graphics-port-foreground accessor 874

graphics-port-mixin class 875

graphics ports 13 : Drawing - Graphics Ports 159

drawing functions 13.6.2 : Drawing on screen 165

pixmap 13.8 : Pixmap graphics ports 166

graphics-port-transform accessor 874

graphics state 13.2 : Features 161

graphics-state system class 876 13.2.1 : The drawing mode and anti-aliasing 161, 13.3 : Graphics state 162

graphics-state-background accessor graphics-state 876

graphics-state-compositing-mode accessor graphics-state 876

graphics-state-dash accessor graphics-state 876

graphics-state-dashed accessor graphics-state 876

graphics-state-fill-style accessor graphics-state 876

graphics-state-font accessor graphics-state 876

Index

1055

graphics-state-foreground accessor graphics-state 876

graphics-state-line-end-style accessor graphics-state 876

graphics-state-line-joint-style accessor graphics-state 876

graphics-state-mask accessor graphics-state 876

graphics-state-mask-transform accessor graphics-state 876

graphics-state-mask-x accessor graphics-state 876

graphics-state-mask-y accessor graphics-state 876

graphics-state-operation accessor graphics-state 876

graphics state parameters 13.3 : Graphics state 162

graphics-state-pattern accessor graphics-state 876

graphics-state-scale-thickness accessor graphics-state 876

graphics-state-shape-mode accessor graphics-state 876

graphics-state-stipple accessor graphics-state 876

graphics-state-text-mode accessor graphics-state 876

graphics-state-thickness accessor graphics-state 876

graphics-state-transform accessor graphics-state 876

graphics tools 14 : Graphic Tools drawing objects 174

Graphic Tools

higher level 14.2 : Higher level - drawing graphs and bar charts 178

lower level 14.1 : Lower level - drawing objects and objects displayers 174

self-contained examples 20.20 : Graphic Tools examples 212

graph-node class 383

graph-node-children generic function 384

graph-node-height function 5.6.3 : Accessing the topology of the graph 67, graph-node 383

graph-node-in-edges function 5.6.3 : Accessing the topology of the graph 67, graph-node 383

graph-node-out-edges function 5.6.3 : Accessing the topology of the graph 67, graph-node 383

graph-node-width function 5.6.3 : Accessing the topology of the graph 67, graph-node 383

graph-node-x function 5.6.3 : Accessing the topology of the graph 67, graph-node 383

graph-node-y function 5.6.3 : Accessing the topology of the graph 67, graph-node 383

graph-object abstract class 385

graph-object-element function graph-object 385

graph-object-object function graph-object 385

graph-pane class 385 5.6 : Graph panes 65, 13.1.1 : Creating instances 159

implementation of 12.3.3 : The implementation of graph panes 149

graph-pane-add-graph-node generic function 389

graph-pane-delete-object generic function 389

graph-pane-delete-objects generic function 390

graph-pane-delete-selected-objects generic function 391

graph-pane-direction accessor 391 5.6.2 : Controlling the layout 67

Index

1056

graph-pane-edges function 392

graph-pane-layout-function accessor 5.6.2 : Controlling the layout 67, graph-pane 385

graph-pane-nodes function 393

graph-pane-object-at-position function 393

graph-pane-roots accessor 5.6 : Graph panes 65, graph-pane 385

graph panes

callbacks 5.6 : Graph panes 66

graph-pane-select-graph-nodes generic function 394

graph-pane-update-moved-objects generic function 395

grid

example 20.13 : Miscellaneous examples 209

prototype implementation 20.13 : Miscellaneous examples 209

grid-layout class 395 3.1.4.1 : Controlling Mnemonics 38, 6.2.1 : Grid layouts 77

groupbox 3.3.2.2 : Titles for elements 41, titled-object 756

GTK+ 19.3.2.1 : Resources on GTK+ 197

resources 19.3.2.1 : Resources on GTK+ 197

GTK+ resources convert-to-screen 282, convert-to-screen 283, element 356, set-interactive-break-
gestures 674

H

hardcopy API 16 : Printing from the CAPI - the Hardcopy API 186

:has-root-line initarg tree-view 776

:has-title-column-p initarg grid-layout 395

:head initarg arrow-pinboard-object 222

:head-breadth initarg arrow-pinboard-object 222

:head-direction initarg arrow-pinboard-object 222

:header-args initarg multi-column-list-panel 503

:head-graphics-args initarg arrow-pinboard-object 222

:head-length initarg arrow-pinboard-object 222

:height initarg screen 647

help

context help interface 414

help-callback interface 412

:help-callback initarg 3.12.2 : Tooltips for collections, elements and menu items 52, interface 409

:help item in :buttons initarg text-input-pane 741

help-key function collection 267, element 354, menu-item 491, toolbar-button 762

:help-key initarg 3.12.2 : Tooltips for collections, elements and menu items 52, collection 267, element 354, menu-
item 491, toolbar-button 762

:help-keys initarg button-panel 238

:help-string initarg filtering-layout 367

hide-interface function 399

Index

1057

hide-pane function 399

hierarchy of layouts 12.3 : Creating graphical objects 147

hierarchy of menus 8.5 : The CAPI menu hierarchy 101

:highlight initarg stacked-tree 710

highlight-pinboard-object function 400

:highlight-style initarg pinboard-layout 556

hints 3.12 : Tooltips 51, 6.5 : Constraining the size of layouts 83

:hist-addtofavorites image symbol list-panel 451, toolbar-button 763, tree-view 779

:hist-back image symbol list-panel 451, toolbar-button 763, tree-view 779

:hist-favorites image symbol list-panel 451, toolbar-button 763, tree-view 779

:hist-forward image symbol list-panel 451, toolbar-button 763, tree-view 779

:hist-viewtree image symbol list-panel 451, toolbar-button 763, tree-view 779

:horizontal-scroll initarg 3.1.1 : Scroll bars 37, 3.9.4 : Slider, Progress bar and Scroll bar 48, 6.1 : Organizing panes in
columns and rows 76, 12.4 : output-pane scrolling 154, scroll-bar 656, simple-pane 693

HTML

displaying 3.9.1 : Browser pane 47

HWND current-dialog-handle 285, simple-pane-handle 700

I

:iconify-callback initarg interface 409

:ignore-file-suffices initarg text-input-pane 736

image system class 880 13.10 : Working with images 167

:image initarg button 235, image-pinboard-object 402, toolbar-button 762

image-access-height function 881

image-access-pixel accessor 882 13.10.8 : Image access 171

image-access-pixels-from-bgra function 883 13.10.8 : Image access 171

image-access-pixels-to-bgra function 884 13.10.8 : Image access 171

image-access-transfer-from-image function 885 13.10.8 : Image access 171

image-access-transfer-to-image function 886 13.10.8 : Image access 171

image-access-width function 881

image-freed-p function 887

:image-function initarg 5.3.5 : Images and appearance 63, 5.4.2 : Images and appearance 64, 5.7.1 : Option panes with
images 68, 8.10 : Menus with images 105, double-list-panel 324, list-panel 447, list-
view 459, menu 486, option-pane 522, tab-layout 731, tree-view 776

image-height accessor 13.10.6 : Querying image dimensions 170, image 880

:image-height initarg double-list-panel 324, image-list 401, list-panel 447, toolbar 760, tree-
view 776

image identifiers

cancel-button text-input-pane 741

complete-button text-input-pane 741

ok-button text-input-pane 741

image-list class 401 5.3.5 : Images and appearance 63, 5.4.2 : Images and appearance 64

Index

1058

:image-lists initarg 5.3.5 : Images and appearance 63, 5.4.2 : Images and appearance 64, 5.10.4 : image-list, image-set and
image-locator 70, list-panel 447, list-view 459, option-pane 522, tab-layout 731, tree-view 776

image-loader function 887

image-locator type 402

image-pinboard-object class 402

image-pinboard-object-image accessor image-pinboard-object 402

images

alpha channel 20.2 : Graphics examples 203

copying and pasting 20.1 : Output pane examples 202

pixel-by-pixel editing 20.2 : Graphics examples 203

scaling 20.2 : Graphics examples 203

supported formats 13.10.1 : Image formats supported for reading from disk and drawing 168, 13.10.2 : Image formats supported for writing
to disk 168

:images initarg button-panel 238, toolbar 760, toolbar-component 765

image-set class 403

:image-sets initarg image-list 401

:image-state-function initarg double-list-panel 324

image-translation function 888

image-width accessor 13.10.6 : Querying image dimensions 170, image 880

:image-width initarg double-list-panel 324, image-list 401, list-panel 447, toolbar 760, tree-
view 776

index of selected item 5.3.4 : Selections in a list 63, 5.10.2 : Selections 69, choice 251

:init-function initarg cocoa-view-pane 264

:initial-constraints initarg 6.4.3 : Initial constraints 82, element 354

:initial-focus initarg 3.1.5.1 : Initial focus 39, interface 409, layout 442

:initial-focus-item initarg 3.1.5.1 : Initial focus 39, choice 251

initialize-dithers function 889

:initial-value initarg 10.2.1 : Prompting for strings 117

in-place completion

in applications 10.6.2 : Programmatic control of in-place completion 127

user interface 10.6.1 : In-place completion user interface 125

:in-place-completion-function initarg 10.6.2.1 : Text input panes 127, text-input-pane 736

:in-place-filter initarg 10.6.2.1 : Text input panes 127, text-input-pane 736

input focus 3.1.5 : Focus 39, accepts-focus-p 215

:input-model initarg 12.2 : Receiving input from the user 140, 20.1 : Output pane examples 201, output-pane 525

:insert-callback initarg ole-control-pane 518

InsertMenus interface-menu-groups 428

inset-rectangle function 889

inside-rectangle function 890

installed-libraries function 404

install-postscript-printer function 405

Index

1059

integers

prompting for 10.2.2 : Prompting for numbers 117

interaction

general properties 5.10.1 : Interaction 69

in lists 5.3.1 : List interaction 61

:interaction initarg 5.3.1 : List interaction 61, 5.9 : Menu components 68, 5.10.1 : Interaction 69, 8.3 : Grouping menu items
together 100, 10.2.3 : Prompting for an item in a list 118, button 235, choice 251

interactions

for choice choice 252

interaction styles button 236

interactive-pane class 406 3.9.6.2 : Interactive panes 49

interactive-pane-execute-command generic function 408

interactive panes 3.9.6.2 : Interactive panes 49

interactive-pane-stream function interactive-pane 406

interactive-pane-top-level-function function interactive-pane 406

interactive-stream interactive-pane 407

interactive-stream-stream interactive-pane 407

interactive-stream-top-level-function interactive-pane 407

interface class 409 1.2.1 : CAPI elements 32, 3.3.2.1 : Window titles 41, 3.12.2 : Tooltips for collections, elements and menu
items 52, 6 : Laying Out CAPI Panes 73, 11.1 : The define-interface macro 129

:interface initarg element 354

interface-activate-callback accessor interface 409

:interface callback type 5.10.3 : Callbacks in choices 70

interface-confirm-destroy-function accessor interface 409

interface-create-callback accessor interface 409

interface-customize-toolbar function 419 9.6.1 : User-customization of toolbars 112

interface-default-toolbar-states accessor 9.6.1 : User-customization of toolbars 112, interface 409

interface-destroy-callback accessor interface 409

interface-display generic function 420 7.1 : Initialization 91, 13.9.2 : Fonts 167, 13.10.5 : Making an image that is suitable
for drawing 170

interface-display-title function 421

interface-document-modified-p accessor 422

interface-drag-image accessor interface 409

interface-editor-pane generic function 422

interface-extend-title generic function 423 3.3.2.1 : Window titles 41

interface-geometry generic function 424

interface-geometry-change-callback accessor interface 409

interface-help-callback accessor interface 409

interface-iconified-p function 425

interface-iconify-callback accessor interface 409

interface-iconize-callback accessor interface 415

Index

1060

interface-keys-style generic function 425

interface-match-p generic function 427

interface-menu-bar-items accessor interface 409

interface-menu-groups generic function 428

interface-message-area accessor interface 409, interface 415

interface-override-cursor accessor interface 409

interface-pathname accessor interface 409

interface-pointer-documentation-enabled accessor interface 409

interface-preserve-state generic function 429

interface-preserving-state-p function 429

interface-reuse-p generic function 430

interfaces

defining 11.1 : The define-interface macro 129

description of 11.1 : The define-interface macro 129

geometry 11.6 : Querying and modifying interface geometry 137

layouts, specifying 11.2.1 : How the example works 131

menus, specifying 11.3.1 : Adding menus 133

panes, specifying 11.2.1 : How the example works 131

specifying geometry 4.3 : Support for multiple monitors 55

title, specifying 11.2 : An example interface 130

:interfaces class option define-ole-control-component 300

:interfaces initarg screen 647

interface-title accessor 3.3.2.1 : Window titles 41, 11.5.2 : Controlling the interface title 136, interface 409

interface-toolbar-items accessor interface 409

interface-toolbar-state accessor 431 9.6.2 : Changing an interface toolbar programmatically 112

interface-toolbar-states accessor interface 409

interface-tooltips-enabled accessor interface 409

interface-visible-p function 432

interface-window-styles function interface 409

:internal-border initarg simple-pane 693

internal constraints 6.4.1 : Width and height hints 80

:internal-max-height initarg 6.4.1 : Width and height hints 80, element 354, pinboard-object 559

:internal-max-width initarg 6.4.1 : Width and height hints 80, element 354, pinboard-object 559

:internal-min-height initarg 6.4.1 : Width and height hints 80, element 354, pinboard-object 559

:internal-min-width initarg 6.4.1 : Width and height hints 80, element 354, pinboard-object 559

internal scrolling output-pane 527

:internet-explorer-callback initarg browser-pane 227

interpret-description generic function 433 6 : Laying Out CAPI Panes 73

Interrupt playing a MIDI file stop-sound 728

invalidate-pane-constraints function 434

Index

1061

invalidate-rectangle generic function 891

invalidate-rectangle-from-points function 892

invert-transform function 893

invoke-command function 435

invoke-untranslated-command function 435

item class 436

item-collection accessor item 436

item-data accessor 3.10 : Button elements 49, item 436

:item-function initarg stacked-tree 710

:item-menu-function initarg stacked-tree 710

itemp function 438

item-pane-interface-copy-object generic function 438

item-pinboard-object class 440 12.3 : Creating graphical objects 148

item-print-function accessor 3.10 : Button elements 49, item 436

:item-print-functions initarg 5.3.7 : Multi-column list panels 63, multi-column-list-panel 503

:items initarg 5.2.5 : Programming button panels 59, 8.4 : Creating individual menu items 101, collection 267, docking-
layout 318, extended-selection-tree-view 366, menu 486, menu-component 489, tab-
layout 731, tree-view 781

:items-count-function initarg collection 267, extended-selection-tree-view 366, tree-view 781

item-selected accessor item 436

:items-function initarg define-interface 294, menu 486, menu-component 489

:items-get-function initarg collection 267, extended-selection-tree-view 366, tree-view 781

:items-map-function initarg collection 267, extended-selection-tree-view 366, tree-view 781

item-text accessor 3.10 : Button elements 49, item 436

K

:keep-selection-p initarg choice 251

:keyboard-search-callback initarg 5.3.9 : Searching by keyboard input 64, 20.9 : Choice examples 207, list-
panel 447

key press 12.2 : Receiving input from the user 140

key press event handler 12.2.1 : Detailed description of the input model 141, output-pane 527

key-press events 12.2.1 : Detailed description of the input model 141, output-pane 527

L

labelled-arrow-pinboard-object class 440

labelled-line-pinboard-object class 441

labelled-line-text-background accessor labelled-line-pinboard-object 441

labelled-line-text-foreground accessor labelled-line-pinboard-object 441

:label-style initarg filtering-layout 367

:large-image-height initarg list-view 459

:large-image-width initarg list-view 459

Index

1062

layout class 442

:layout initarg interface 409

:layout-args initarg button-panel 238

:layout-class initarg 5.2.1 : Push button panels 58, button-panel 238

layout-description accessor 6.7 : Changing layouts and panes within a layout 90, layout 442

:layout-function initarg graph-pane 385

layout-ratios accessor column-layout 274, row-layout 645

layouts

children 6 : Laying Out CAPI Panes 73

combining different 6.3 : Combining different layouts 78

description of 6 : Laying Out CAPI Panes 73

introduction to 2.2 : Creating a window 35

layout hierarchy 12.3 : Creating graphical objects 147

self-contained examples 20.16 : Layout examples 210

specifying geometry 6.5 : Constraining the size of layouts 83

specifying size of panes in 6.1 : Organizing panes in columns and rows 76

:layouts class option define-interface 293

:layouts interface option 11.1 : The define-interface macro 129

layout-x-adjust accessor x-y-adjustable-layout 812

:layout-x-adjust initarg graph-pane 385

layout-x-gap accessor grid-layout 395

layout-x-ratios accessor grid-layout 395

layout-y-adjust accessor x-y-adjustable-layout 812

:layout-y-adjust initarg graph-pane 385

layout-y-gap accessor grid-layout 395

layout-y-ratios accessor grid-layout 395

:leaf-node-p-function initarg tree-view 776

letters

underlined in menus and titles 3.1.4 : Mnemonics 38

line-end-style graphics state parameter graphics-state 878

line-joint-style graphics state parameter graphics-state 878

line-pinboard-object class 444

line-pinboard-object-coordinates function 445

:line-size initarg scroll-bar 655

:line-wrap-face initarg editor-pane 342

:line-wrap-marker initarg editor-pane 342

:link-callback initarg rich-text-pane 638

Lisp forms

prompting for 10.2.7 : Prompting for Lisp objects 120

LispWorks as ActiveX control define-ole-control-component 299, ole-control-component 513

Index

1063

list-all-font-names function 893 13.9 : Portable font descriptions 166

listener-pane class 445 3.9.6.3 : Listener panes 49

listener-pane-insert-value function 446

listener panes 3.9.6.3 : Listener panes 49

list items, specifying 5.3 : List panels 60

list-known-image-formats function 894 13.10.1 : Image formats supported for reading from disk and drawing 168, 13.10.2 :
Image formats supported for writing to disk 168

list-panel class 447 3.1.4.1 : Controlling Mnemonics 38, 5.3 : List panels 60, 10.6.1.2 : Keyboard input handling while the in-
place window is displayed 126

list-panel-enabled accessor generic function 454

list-panel-filter-state accessor generic function 455

list-panel-image-function accessor list-panel 447

list-panel-items-and-filter accessor 456

list-panel-keyboard-search-callback accessor list-panel 447

list-panel-right-click-selection-behavior accessor list-panel 447

list panels 5.3 : List panels 60

list-panel-search-with-function function 457

list-panel-state-image-function accessor list-panel 447

list-panel-unfiltered-items accessor generic function 458

lists

actions in 5.3.3 : Deselection, retraction, and actions 62

deselection in 5.3.3 : Deselection, retraction, and actions 62

extended selection in 5.3.1 : List interaction 61

extended selections 5.3.2 : Extended selection 61

interaction in 5.3.1 : List interaction 61

multiple selection in 5.3.1 : List interaction 61

prompting with 10.2.3 : Prompting for an item in a list 117

retraction in 5.3.3 : Deselection, retraction, and actions 62

single selection in 5.3.1 : List interaction 61

list-view class 459

list-view-auto-arrange-icons accessor list-view 459

list-view-auto-reset-column-widths accessor list-view 459

list-view-columns accessor list-view 459

list-view-image-function accessor list-view 459

list-view-state-image-function accessor list-view 459

list-view-subitem-function accessor list-view 459

list-view-subitem-print-functions accessor list-view 459

list-view-view accessor list-view 459

:list-visible-min-height initarg double-list-panel 324

:list-visible-min-width initarg double-list-panel 324

load-color-database function 1001 15.4 : Loading the color database 183

Index

1064

load-cursor function 462

load-icon-image function 895 13.10.1 : Image formats supported for reading from disk and drawing 168, 13.10.5 : Making an image
that is suitable for drawing 170

load-image function 896 13.10.5 : Making an image that is suitable for drawing 170

load-sound function 464 18.2.1 : Sound API 194

locate-interface generic function 465

lookup pane

interface define-interface 293

lookup-pane define-interface 293

lower-interface function 466

M

macOS Dock 3.9.3 : Cocoa views and application interfaces 48, cocoa-default-application-interface 261, pane-screen-
internal-geometry 552

macros

defclass 11.1 : The define-interface macro 129, 11.2.1 : How the example works 130, 12.1 : Displaying graphics 139

define-color-models 994 15.5 : Defining new color models 184

define-command 291

define-interface 293 11.1 : The define-interface macro 129

define-layout 297

define-menu 298

define-ole-control-component 299 3.9.2 : OLE embedding and control 47

defpackage 2.1 : Using the CAPI package 34

display-errors 308

rectangle-bind 917

rectangle-bottom 918

rectangle-height 918

rectangle-left 919

rectangle-right 920

rectangle-top 920

rectangle-width 922

rect-bind 922

undefine-menu 786

union-rectangle 934

unless-empty-rect-bind 936

with-atomic-redisplay 795 4.2.1 : Atomic redisplay 55

with-busy-interface 796

with-dialog-results 797 10.3.2 : A dialog which is window-modal on Cocoa 121

with-dither 940

with-document-pages 799 16.3 : Handling pages - page on demand printing 186

with-external-metafile 800 13.1.1 : Creating instances 159

with-geometry 802 3.8 : Accessing pane geometry 47

Index

1065

with-graphics-mask 941

with-graphics-post-translation 942

with-graphics-rotation 943

with-graphics-scale 943

with-graphics-state 944 13.3.1 : Setting the graphics state 162

with-graphics-transform 946

with-graphics-transform-reset 947

with-graphics-translation 943

with-internal-metafile 804 13.1.1 : Creating instances 159

with-inverse-graphics 948

with-output-to-printer 805 16.6 : Other printing functions 187

without-relative-drawing 948

with-page 806 16.4 : Handling pages - page sequential printing 187

with-page-transform 807 16.5.1 : Establishing a page transform 187

with-pixmap-graphics-port 949 13.1.1 : Creating instances 159, 13.10.9 : Creating external images from Graphics Ports
operations 172

with-print-job 808 13.1.1 : Creating instances 159, 16.1 : Printers 186

with-random-typeout 810

with-transformed-area 950

with-transformed-point 951

with-transformed-points 952

with-transformed-rect 952

make-absolute-drawing function 960 14.1 : Lower level - drawing objects and objects displayers 174

make-absolute-drawing* function 960 14.1 : Lower level - drawing objects and objects displayers 174

make-a-drawing-call function 971 14.1 : Lower level - drawing objects and objects displayers 174

make-basic-graph-spec function 973 14.2 : Higher level - drawing graphs and bar charts 178

make-container function 467 18.1 : Development functions 194

make-dither function 898

make-docking-layout-controller function 468

make-draw-arc function 971

make-draw-circle function 971

make-draw-ellipse function 971

make-draw-line function 971

make-draw-lines function 971

make-draw-polygon function 971

make-draw-rectangle function 971

make-draw-string function 975

make-font-description function 898

make-foreign-owned-interface function 469

make-general-image-set function 470

make-graphics-state function 899

Index

1066

make-gray function 1001 15.1 : Color specs 181

make-hsv function 1002 15.1 : Color specs 181

make-icon-resource-image-set function 471

make-image function 900

make-image-access function 901 13.10.8 : Image access 171

make-image-from-port function 902 13.7.2 : Combining pixels with :quality drawing 165, 13.10.5 : Making an image that is
suitable for drawing 170

make-image-locator function 472

make-instance function 2 : Getting Started 34

make-menu-for-pane function 472 8.12 : Popup menus for panes 106

make-pane-popup-menu generic function 473 8.12 : Popup menus for panes 106

make-pinboard-objects-displayer function 976

make-resource-image-set function 475

make-rgb function 1003 15.1 : Color specs 181

make-scaled-general-image-set function 476

make-scaled-image-set function 477

make-scaled-sub-image function 903 13.10.5 : Making an image that is suitable for drawing 170

make-sorting-description function 478

make-sub-image function 904 13.10.5 : Making an image that is suitable for drawing 170

make-transform function 905

manipulate-pinboard generic function 480

map-collection-items generic function 482

map-pane-children generic function 482

map-pane-descendant-children generic function 484

map-typeout function 485

mask 13.3 : Graphics state 162, 13.4.4 : Paths 164

mask graphics state parameter graphics-state 878

mask-transform graphics state parameter graphics-state 879

mask-x graphics state parameter, deprecated graphics-state 878

mask-y graphics state parameter, deprecated graphics-state 878

:matches-title initarg filtering-layout 367

Matching resources 19.3.2 : Matching resources for GTK+ 197, 19.4.3 : Matching resources for X11/Motif 199

:max-characters initarg text-input-pane 736

:max-height initarg 6.4.1 : Width and height hints 81

maximum-moving-objects-to-track-edges variable 485

:maximum-recent-items initarg text-input-pane 736

:max keyword argument 10.2.2 : Prompting for numbers 117

:max-level initarg stacked-tree 710

:max-width initarg 6.4.1 : Width and height hints 81

MDI 6.6.7 : Multiple-Document Interface (MDI) 88, 11 : Defining Interface Classes - top level windows 129, convert-to-
screen 281, current-document 286, document-frame 322, element-container 358

Index

1067

menu class 486 1.2.1 : CAPI elements 32, 8.1 : Creating a menu 98, 8.10 : Menus with images 105

:menu initarg popup-menu-button 575

:menu-bar class option 8 : Creating Menus 98, 8.2 : Presenting menus 99, define-interface 293

:menu-bar interface option 11.1 : The define-interface macro 129, 11.3.1 : Adding menus 133

:menu-bar-items initarg 8 : Creating Menus 98, 8.1 : Creating a menu 98, interface 409

menu-component class 489 1.2.1 : CAPI elements 32, 8.3 : Grouping menu items together 99

:menu-function initarg popup-menu-button 575

menu hierarchy 8.5 : The CAPI menu hierarchy 101

menu-image-function accessor menu 486

menu-item class 491 1.2.1 : CAPI elements 32, 8.4 : Creating individual menu items 101, 8.9.1 : Dialogs and disabled menu
items 105

menu-items accessor menu 486

menu-object class 494

menu-object-enabled function menu-object 494

menu-popup-callback accessor menu-object 494

menus

components 5.9 : Menu components 68

context 8.12 : Popup menus for panes 106, 9.6.1 : User-customization of toolbars 112, display-popup-menu 315, docking-
layout 319, interface 415, menu 486

creating 8 : Creating Menus 98

creating submenus 8.1 : Creating a menu 98

description of 8 : Creating Menus 98

disabling items in 8.9 : Disabling menu items 105

Edit 8.11 : The Edit menu on Cocoa 106

grouping items together 8.3 : Grouping menu items together 99

individual items in 8.4 : Creating individual menu items 101

menu hierarchy 8.5 : The CAPI menu hierarchy 101

nesting 8.1 : Creating a menu 99

Right button 8.12 : Popup menus for panes 106, 9.6.1 : User-customization of toolbars 112, display-popup-
menu 315, docking-layout 319, interface 415, menu 486

specifying alternative items 8.8 : Alternative menu items 104

:menus class option define-interface 293

:menus interface option 11.1 : The define-interface macro 129, 11.3.1 : Adding menus 133

menu-title accessor menu-object 494

menu-title-function accessor menu-object 494

merge-font-descriptions function 906 13.9.1 : Font attributes and font descriptions 167

merge-menu-bars generic function 497

:message initarg titled-object 755

:message-area initarg interface 409

:message-callback initarg cocoa-default-application-interface 261

:message-gap initarg titled-object 755

Index

1068

message-pane class 498

metafile-port class 499

metafiles 20.2 : Graphics examples 203

Microsoft Windows

Multiple-Document Interface 6.6.7 : Multiple-Document Interface (MDI) 88

themes 19.1.1 : Using Windows themes 196

MIDI files

interrupting stop-sound 728

:min-column-width initarg grid-layout 395

:min-height initarg 6.4.1 : Width and height hints 81

:min keyword argument 10.2.2 : Prompting for numbers 117

:min-row-height initarg grid-layout 395

:min-width initarg 6.4.1 : Width and height hints 81

:mnemonic initarg 3.1.4.1 : Controlling Mnemonics 38, 3.10.4 : Mnemonics in
buttons 51, button 235, menu 486, menu 487, menu-item 491

:mnemonic-escape initarg button 235, button-panel 238, menu 486, menu-item 491

:mnemonic-items initarg button-panel 238

mnemonics 3.1.4 : Mnemonics 38

in a button-panel 5.2.4 : Mnemonics in button panels 59

in menus 8.6 : Mnemonics in menus 103

:mnemonics initarg 5.2.4 : Mnemonics in button panels 59, button-panel 238

:mnemonic-text initarg 3.10.4 : Mnemonics in buttons 51, button 235

:mnemonic-title initarg 3.1.4.1 : Controlling Mnemonics 38, button-panel 238, menu 486, menu-
item 491, titled-object 755

modal dialogs 10.3 : Window-modal Cocoa dialogs 121, display-dialog 307, popup-confirmer 571, with-dialog-
results 798

modify-editor-pane-buffer function 499 3.5.3.2 : Additional editor-pane functions 46

modify-multi-column-list-panel-columns function 500

modify-stacked-tree function 501

mono-screen class 502

Motif

resources 19.4.3.1 : Resources on X11/Motif 199

Motif resources element 356

:motion-callback initarg stacked-tree 710

mouse clicks 12.2.1 : Detailed description of the input model 141, output-pane 527

mouse coordinates current-pointer-position 286

mouse cursor

tracking 12.3.6 : Tracking pinboard layout 153

mouse events 12.2.1 : Detailed description of the input model 141, output-pane 527

mouse position current-pointer-position 286

move-line generic function 502

Index

1069

multi-column-list-panel class 503

multi-line-text-input-pane class 507 3.5.2 : Text input panes 44

Multiple Document Interface 11 : Defining Interface Classes - top level windows 129, convert-to-screen 281, current-
document 286, document-frame 322, element-container 358

:multiple-selection interaction style 5.3.1 : List interaction 61, 5.9 : Menu components 68, 5.10.1 : Interaction 69, 8.3 :
Grouping menu items together 100, button 236

multi-touch support 12.2.1.8 : Touch mappings 143

N

:name initarg capi-object 247

:names initarg toolbar 760, toolbar-component 765

:natural-width initarg objects-displayer 977

:navigate-complete-callback initarg browser-pane 227

:navigate-error-callback initarg browser-pane 227

:navigation-callback initarg text-input-pane 736

New in LispWorks 7.0

apply-drawing-object class 955

as-dialog argument to contain contain 279

basic-graph-spec system class 956

basic-graph-spec-p function 973

browser-pane-available-p function 231

Cached Display interface output-pane 526

color-from-premultiplied function 986

color-to-premultiplied function 990

compound-drawing-object class 957

compute-drawing-object-from-data function 958

copy-basic-graph-spec function 973

create-dummy-graphics-port function 284

default-non-focus-message-timeout variable 290

default-non-focus-message-timeout-extension variable 290

destroy-dependent-object generic function 302

display-non-focus-message function 310

drawing-object class 959

draw-pinboard-layout-objects function 330

editor-pane supports variable-width fonts on Cocoa editor-pane 345

example combining an XML parser with tree-view to display an RSS file tree-view 781

fit-object function 960

force-objects-redraw function 963

full screen windows on Cocoa interface 414, top-level-interface-display-state 771

generate-bar-chart function 964

generate-graph-from-graph-spec function 973

generate-graph-from-pairs function 966

Index

1070

generate-grid-lines function 967

generate-labels function 969

geometry-drawing-object class 971

graphics-port-mixin class 875

graphic tools 23 : LW-GT Reference Entries 955

:image-function initarg for double-list-panel double-list-panel 324

:image-height initarg for double-list-panel double-list-panel 324

image-locator type 402

:image-state-function initarg for double-list-panel double-list-panel 324

:image-width initarg for double-list-panel double-list-panel 324

input-model of output-pane supports modifier changes 12.2.1 : Detailed description of the input model 141, output-pane 527

invalidate-rectangle-from-points function 892

:list-visible-min-height initarg for double-list-panel double-list-panel 324

:list-visible-min-width initarg for double-list-panel double-list-panel 324

make-absolute-drawing function 960

make-absolute-drawing* function 960

make-a-drawing-call function 971

make-basic-graph-spec function 973

make-draw-arc function 971

make-draw-circle function 971

make-draw-ellipse function 971

make-draw-line function 971

make-draw-lines function 971

make-draw-polygon function 971

make-draw-rectangle function 971

make-draw-string function 975

make-pinboard-objects-displayer function 976

metafile-port class 499

modify-multi-column-list-panel-columns function 500

multi-touch support 12.2.1.8 : Touch mappings 143

:name initarg 18.5 : Object properties and name 195

objects-displayer class 977

object-sort-caller argument to make-sorting-description make-sorting-description 478

output-pane-cached-display-user-info accessor 532

output-pane-cache-display function 532

output-pane-draw-from-cached-display function 533

output-pane-free-cached-display function 534

output-pane-resize generic function 535

output-pane-stop-composition function 536

pane-can-restore-display-p function 541

pane-modifiers-state function 547

Index

1071

pane-restore-display function 550

pinboard-layout-display generic function 558

pinboard-object-highlighted-p function 565

pinboard-objects-displayer class 978

popup-menu-force-popdown function 576

port-owner function 912

position-and-fit-object function 960

position-object function 960

predicate for availability of browser-pane browser-pane 231

printer-port class 583

prompt for a directory from a text-input-pane button text-input-pane 740, text-input-pane 743

record-dependent-object function 625

recurse-compute-drawing-object function 958

redraw-drawing-with-cached-display function 630

rotate-object function 960

:selected-items-filter initarg for double-list-panel double-list-panel 324

:selected-items-title initarg for double-list-panel double-list-panel 324

start-drawing-with-cached-display function 720

:state-image-height initarg for double-list-panel double-list-panel 325

:state-image-width initarg for double-list-panel double-list-panel 324

static-layout-child-geometry accessor 724

string-drawing-object class 979

touch gestures 12.2.1.8 : Touch mappings 143

touchscreen and trackpad gestures 12.2.1.8 : Touch mappings 143

transparent-color-index supports replacement and transparency read-external-image 917

unrecord-dependent-object function 625

:unselected-items-filter initarg for double-list-panel double-list-panel 324

:unselected-items-title initarg for double-list-panel double-list-panel 324

update-drawing-with-cached-display function 789

update-drawing-with-cached-display-from-points function 789

User guide chapter "Adding Toolbars" preface 29

User guide chapter "Self-contained examples" preface 29

New in LispWorks 7.1

apply-in-pane-process-if-alive function 221

apply-in-pane-process-wait-multiple function 221

apply-in-pane-process-wait-single function 221

browser-pane-busy function 232

browser-pane-go-back function 232

browser-pane-go-forward function 232

browser-pane-navigate function 232

browser-pane-refresh function 232

Index

1072

browser-pane-set-content function 232

browser-pane-stop function 232

end-pane-drag-operation function 722

make-scaled-sub-image function 903

modify-stacked-tree function 501

pane-drag-operation-update function 722

set-interface-pane-name-appearance function 674

set-interface-pane-type-appearance function 674

stacked-tree class 710

stacked-tree-decrease-font-height function 715

stacked-tree-default-color-function function 715

stacked-tree-history-backward function 716

stacked-tree-history-forward function 716

stacked-tree-increase-font-height function 715

stacked-tree-item-at-point function 717

stacked-tree-width-ratio accessor 718

stacked-tree-zoom-by-factor function 719

start-pane-drag-operation function 722

update-internal-scroll-parameters function 791

New in LispWorks 8.0

:added-filters initarg for filtering-layout filtering-layout 367

added-filters-values return value for filtering-layout-match-object-and-exclude-p filtering-layout-match-
object-and-exclude-p 370

:color-mode-callback initarg for interface interface 410

:color-mode initarg for interface interface 410

:filter-added-filters initarg for list-panel list-panel 447

:link-callback initarg for rich-text-pane rich-text-pane 638

redisplay-element function 627

:scroll-bar-type initarg for simple-pane simple-pane 693

top-level-interface-color-mode accessor 768

top-level-interface-dark-mode-p function 770

Newly documented in LispWorks 7.0

:owner argument to with-external-metafile with-external-metafile 801

:owner argument to with-internal-metafile with-internal-metafile 804

:new-window-callback initarg browser-pane 227

:node-pane-function initarg graph-pane 385

:node-pinboard-class initarg graph-pane 385

:no-highlight initarg 12.3 : Creating graphical objects 148, pinboard-object 559

:none callback type 5.10.3 : Callbacks in choices 70

non-focus-list-add-filter function 507

Index

1073

non-focus-list-interface class 508

non-focus-list-remove-filter function 507

non-focus-list-toggle-enable-filter function 509

non-focus-list-toggle-filter function 507

non-focus-maybe-capture-gesture function 509

non-focus-terminate generic function 511

non-focus-update generic function 511

:no-selection interaction style 5.9 : Menu components 68, 5.10.1 : Interaction 69, button 236

:number initarg screen 647

O

objects-displayer class 977 14.1 : Lower level - drawing objects and objects displayers 175

objects-displayer function 14.2 : Higher level - drawing graphs and bar charts 178

objects-displayer-objects accessor objects-displayer 977

offscreen 13.1 : Introduction 159

off screen 13.1 : Introduction 159

off-screen 13.1 : Introduction 159

offset-rectangle function 906

ok-button image identifier text-input-pane 741

:ok-check keyword argument 10.2.2 : Prompting for numbers 117, 10.2.7 : Prompting for Lisp objects 121, 10.5.1 : Using popup-
confirmer 124

:ok item in :buttons initarg text-input-pane 740

OLE control define-ole-control-component 299, ole-control-component 513

ole-control-add-verbs function 512

ole-control-close-object function 513

ole-control-component class 513 3.9.2 : OLE embedding and control 47

ole-control-component-pane function ole-control-component 513

ole-control-doc class 515

ole-control-frame class 515

ole-control-i-dispatch function 516

ole-control-insert-object function 517

ole-control-ole-object function 518

ole-control-pane class 518 3.9.2 : OLE embedding and control 47

:ole-control-pane initarg ole-control-pane-simple-sink 521

ole-control-pane-frame function 520

ole-control-pane-simple-sink class 521

ole-control-user-component accessor 521

OLE embedding define-ole-control-component 299, ole-control-component 513

onscreen 13.1 : Introduction 159

on screen 13.1 : Introduction 159

on-screen 13.1 : Introduction 159

Index

1074

operation graphics state parameter 13.2.1 : The drawing mode and anti-aliasing 161, graphics-state 877

option-pane class 522 3.1.4.1 : Controlling Mnemonics 38, 5.7 : Option panes 68

option-pane-enabled accessor option-pane 522

option-pane-enabled-positions accessor option-pane 522

option-pane-image-function accessor option-pane 522

option-pane-popup-callback accessor option-pane 522

option panes 5.7 : Option panes 68

option-pane-separator-item accessor option-pane 522

option-pane-visible-items-count accessor option-pane 522

ordered-rectangle-union function 907

ordinary scrolling output-pane 527

organizing panes 6.1 : Organizing panes in columns and rows 74

:orientation initarg docking-layout 318, grid-layout 395, range-pane 622

:orientation item in :buttons initarg text-input-pane 741

output-pane class 525 3.5.3.2 : Additional editor-pane functions 46, 3.12.1 : Tooltips for output panes 51, 6.4.1 : Width and
height hints 79, 8.12 : Popup menus for panes 106, 12 : Creating Panes with Your Own Drawing and Input 139, 12.4 : output-
pane scrolling 154, 13.1 : Introduction 159, 13.1.1 : Creating instances 159, 16 : Printing from the CAPI - the Hardcopy
API 186

output-pane-cached-display-user-info accessor 532

output-pane-cache-display function 532

output-pane-composition-callback accessor output-pane 525

output-pane-coordinate-origin function output-pane 525

output-pane-create-callback accessor output-pane 525

output-pane-destroy-callback accessor output-pane 525

output-pane-display-callback accessor output-pane 525

output-pane-draw-from-cached-display function 533

output-pane-focus-callback accessor output-pane 525

output-pane-free-cached-display function 534

output-pane-graphics-options function output-pane 525

output-pane-input-model accessor 12.2.1.10 : Processing user input 146, output-pane 525

output-pane-resize generic function 535

output-pane-resize-callback accessor output-pane 525

output-pane-scroll-callback accessor output-pane 525

output-pane-stop-composition function 536

over-pinboard-object-p generic function 537

:override-cursor initarg interface 409

:overwrite-character initarg password-pane 555

P

page-setup-dialog function 538 16.1 : Printers 186

:page-size initarg scroll-bar 655

Index

1075

pane-adjusted-offset generic function 539

pane-adjusted-position generic function 540

:pane-args keyword argument 10.2.3 : Prompting for an item in a list 118

pane-can-restore-display-p function 541 18.4 : Restoring display while debugging 194

:pane-can-scroll deprecated initarg output-pane 529

pane-close-display function 542

pane-descendant-child-with-focus function 543

pane-drag-operation-update function 722

:pane-function initarg ole-control-component 513

pane-got-focus generic function 543

pane-has-focus-p generic function 544

pane-initial-focus accessor generic function 545

pane-interface-copy-object generic function 546

pane-interface-copy-p generic function 546

pane-interface-cut-object generic function 546

pane-interface-cut-p generic function 546

pane-interface-deselect-all generic function 546

pane-interface-deselect-all-p generic function 546

pane-interface-paste-object generic function 546

pane-interface-paste-p generic function 546

pane-interface-select-all generic function 546

pane-interface-select-all-p generic function 546

pane-interface-undo generic function 546

pane-interface-undo-p generic function 546

panel

button layout 5.2.1 : Push button panels 58

pane-layout accessor 6.7 : Changing layouts and panes within a layout 90, button-panel 238, interface 409

panels

button 5.2 : Button panel classes 57

check button 5.2.3 : Check button panels 58

list 5.3 : List panels 60

push button 5.2.1 : Push button panels 57

radio button 5.2.2 : Radio button panels 58

:pane-menu initarg 8.12 : Popup menus for panes 106, simple-pane 693, title-pane 760

pane-modifiers-state function 547 18.3 : Modifier keys state 194

pane-popup-menu-items generic function 548 8.12 : Popup menus for panes 106

pane-restore-display function 550 18.4 : Restoring display while debugging 194

panes

accessing 11.3 : Adapting the example 132

collector 3.9.6.1 : Collector panes 48

creating your own 12 : Creating Panes with Your Own Drawing and Input 139

Index

1076

default title position 3.3.2.2 : Titles for elements 41

display 3.5.1 : Display panes 42

editor 3.5.3 : Editor panes 44

finding 11.3 : Adapting the example 132

graphs 5.6 : Graph panes 65

interactive 3.9.6.2 : Interactive panes 49

listener 3.9.6.3 : Listener panes 49

lookup 11.3 : Adapting the example 132

option 5.7 : Option panes 68

organizing 6.1 : Organizing panes in columns and rows 74

sizing 6.1 : Organizing panes in columns and rows 76

stream 3.9.6 : Stream panes 48

text input 3.5.2 : Text input panes 43

title 3.3.1 : Title panes 40

:panes class option define-interface 293

pane-screen-internal-geometry function 551 4.3 : Support for multiple monitors 55, 11.6 : Querying and modifying interface
geometry 137

:panes interface option 11.1 : The define-interface macro 129

pane-string generic function 552

pane-supports-menus-with-images function 553 8.10 : Menus with images 105

:paragraph-format initarg rich-text-pane 638

:parent initarg element 354

parse-layout-descriptor generic function 554

password-pane class 555

password-pane-overwrite-character function password-pane 555

paste

defining operation for your interface class 7.6 : Edit actions on the active element 96

operation on active element 7.6 : Edit actions on the active element 95

path draw-path 840

:pathname initarg interface 409

:pathname keyword argument 10.2.4 : Prompting for files 119

pattern graphics state parameter graphics-state 878

pi-by-2 constant 908

pinboard

buffered display 12.3.1 : Buffered drawing 148

double buffering 12.3.1 : Buffered drawing 148

flickering 12.3.1 : Buffered drawing 148

:pinboard initarg pinboard-object 559

pinboard-layout class 556 3.12.1 : Tooltips for output panes 51, 6.2.3 : Pinboard layouts 78, 12.3 : Creating graphical
objects 146, 12.3.1 : Buffered drawing 148, 13.1.1 : Creating instances 159

pinboard-layout-display generic function 558

Index

1077

pinboard-object class 559 6 : Laying Out CAPI Panes 73, 12.3 : Creating graphical objects 147

pinboard-object-activep accessor pinboard-object 559

pinboard-object-at-position generic function 563

pinboard-object-graphics-arg accessor generic function 564

pinboard-object-graphics-args accessor pinboard-object 559

pinboard-object-highlighted-p function 565

pinboard-object-overlap-p generic function 565

pinboard-object-pinboard accessor pinboard-object 559

pinboard objects 12.3 : Creating graphical objects 146

creating your own 12.3.4 : An example pinboard object 151

pinboard-objects-displayer class 978 14.1 : Lower level - drawing objects and objects displayers 175

pinboard-objects-displayer function 14.2 : Higher level - drawing graphs and bar charts 178

pinboard-objects-displayer-objects accessor pinboard-objects-displayer 978

pinboard-pane-position accessor 566

pinboard-pane-size accessor 567

pixblt function 908

pixmap-port class 909

play-sound function 568 18.2.1 : Sound API 194

:plist initarg capi-object 247

:popdown-callback initarg option-pane 522

:popup-callback initarg 20.12 : Menu examples 208, menu-object 494, option-pane 522, text-input-
choice 735

popup-confirmer function 569 10.5 : Creating your own dialogs 122, 10.5.1 : Using popup-confirmer 123, 10.5.3 : Modal and
non-modal dialogs 125

:popup-interface initarg toolbar-button 762

popup menu 20.12 : Menu examples 208

popup-menu-button class 575

popup-menu-button-menu accessor popup-menu-button 575

popup-menu-button-menu-function accessor popup-menu-button 575

popup-menu-force-popdown function 576 8.13 : Displaying menus programmatically 107

portable font descriptions 13.9 : Portable font descriptions 166

port-drawing-mode-quality-p generic function 910

port-graphics-state function 910

port-height function 911

port-owner function 912

port-string-height function 912

port-string-width function 913

port-width function 914

position-and-fit-object function 960 14.1 : Lower level - drawing objects and objects displayers 174, 14.2 : Higher level -
drawing graphs and bar charts 178

:position item in :buttons initarg text-input-pane 741

Index

1078

position-object function 960 14.1 : Lower level - drawing objects and objects displayers 174, 14.2 : Higher level - drawing graphs
and bar charts 178

postmultiply-transforms function 914

ppd-directory variable 577

premultiply-transforms function 915

:press-callback initarg push-button 616

printable area with-page-transform 807

print-capi-button generic function 577

print-collection-item generic function 578

print-dialog function 579 10.4.2 : Specifying the owner 122, 16.1 : Printers 186, print-dialog 579

print-editor-buffer function 580 3.5.3.2 : Additional editor-pane functions 46, 16.6 : Other printing functions 187

printer-configuration-dialog function 581 16.7.3 : Adding and removing printers 188

printer-metrics system class 582

printer-metrics-device-height function printer-metrics 582

printer-metrics-device-width function printer-metrics 582

printer-metrics-dpi-x function printer-metrics 582

printer-metrics-dpi-y function printer-metrics 582

printer-metrics-height function printer-metrics 582

printer-metrics-left-margin function printer-metrics 583

printer-metrics-max-height function printer-metrics 583

printer-metrics-max-width function printer-metrics 583

printer-metrics-min-left-margin function printer-metrics 583

printer-metrics-min-top-margin function printer-metrics 583

printer-metrics-paper-height function printer-metrics 583

printer-metrics-paper-width function printer-metrics 583

printer-metrics-top-margin function printer-metrics 583

printer-metrics-width function printer-metrics 582

printer-port class 583 16.5 : Printing a page 187

printer-port-handle function 584

printer-port-supports-p function 584

printer-search-path variable 585

print-file function 586 16.6 : Other printing functions 187

print function 5 : Choices - panes with items 57

:print-function initarg 3.10 : Button elements 49, 5 : Choices - panes with items 57, 20.9 : Choice
examples 206, collection 267, item 436, slider 705, tab-layout 731

printing

on multiple pages 20.19 : Printing examples 211

self-contained examples 20.19 : Printing examples 211

print-rich-text-pane function 587

print-text function 588 16.6 : Other printing functions 187

Index

1079

process

CAPI display 305

Cocoa Event Loop display 305

process-pending-messages function 589

process-send function 4.1 : The correct thread for CAPI operations 54

progress-bar class 589 3.9.4 : Slider, Progress bar and Scroll bar 48

:progress-callback initarg browser-pane 227

prompt-for-color function 590 10.2.6 : Prompting for colors 120

prompt-for-confirmation function 591 10.1 : Some simple dialogs 116

prompt-for-directory function 592 10.2.4 : Prompting for files 120

prompt-for-file function 594 10.2.4 : Prompting for files 119, 10.4.2 : Specifying the owner 122

prompt-for-files function 596

prompt-for-font function 598 10.2.5 : Prompting for fonts 120

prompt-for-form function 598 10.2.7 : Prompting for Lisp objects 120

prompt-for-forms function 600

prompt-for-integer function 601 10.2.2 : Prompting for numbers 117, 10.5.1 : Using popup-confirmer 123

prompt-for-items-from-list function 603

prompt-for-number function 604 10.2.2 : Prompting for numbers 117

prompt-for-string function 605 10.2.1 : Prompting for strings 116, 10.4.2 : Specifying the owner 122

prompt-for-symbol function 606 10.2.7 : Prompting for Lisp objects 121

prompt-for-value function 608

prompt-with-list function 609 10.2.3 : Prompting for an item in a list 117

prompt-with-list-non-focus function 612 10.6.2.3 : Other CAPI panes 128

prompt-with-message function 615 2.3 : Linking code into CAPI elements 36

:protected-callback initarg rich-text-pane 638

push-button class 616 3.10.1 : Push buttons 50, 5.2 : Button panel classes 57

push-button-panel class 617 5.2 : Button panel classes 57, 5.2.1 : Push button panels 57

push button panels

creating 5.2.1 : Push button panels 57

push buttons 3.10.1 : Push buttons 50

Q

quit function cocoa-default-application-interface 263

quit-interface function 618 7.7.3 : Closing windows 96

R

radio-button class 620 3.10.3 : Radio buttons 50

radio-button-panel class 621 5.2 : Button panel classes 57, 5.2.2 : Radio button panels 58, 5.10.1 : Interaction 69

radio button panels

creating 5.2.2 : Radio button panels 58

radio buttons 3.10.3 : Radio buttons 50

Index

1080

raise-interface function 622

range-callback accessor range-pane 622

range-end accessor range-pane 622

range-orientation accessor range-pane 622

range-pane class 622 3.9.4 : Slider, Progress bar and Scroll bar 48

range-set-sizes function 623

range-slug-end accessor range-pane 622

range-slug-start accessor range-pane 622

range-start accessor range-pane 622

:ratios initarg column-layout 274, row-layout 645

read-and-convert-external-image function 915 13.10.5 : Making an image that is suitable for drawing 170

read-color-db function 1004 15.4 : Loading the color database 183

:reader slot option 11.3 : Adapting the example 132

read-external-image function 916

read-sound-file function 624 18.2.1 : Sound API 194

:recent-items initarg text-input-pane 736

:recent-items-mode initarg text-input-pane 736

:recent-items-name initarg text-input-pane 736

record-dependent-object function 625

rectangle class 626

rectangle-bind macro 917

rectangle-bottom macro 918

rectangle-height macro 918

rectangle-left macro 919

rectangle-right macro 920

rectangle-top macro 920

rectangle-union function 921

rectangle-width macro 922

rect-bind macro 922

recurse-compute-drawing-object function 958 14.1 : Lower level - drawing objects and objects displayers 177

red Close button

on Cocoa 11.5.3 : Indicating a changed document 137, interface-document-modified-p 422

redisplay

efficiency issues 4.2 : Redisplay 55

of choices 4.2 : Redisplay 55

of items 4.2 : Redisplay 55

of pinboards 4.2 : Redisplay 55

of several updates together 4.2.1 : Atomic redisplay 55

redisplay-collection-item generic function 627 4.2 : Redisplay 55

redisplay-element function 627

Index

1081

redisplay-interface generic function 628 4.2 : Redisplay 55, 10.5.1 : Using popup-confirmer 124

redisplay-menu-bar function 629

redraw-drawing-with-cached-display function 630

redraw-pinboard-layout function 631 4.2 : Redisplay 55

redraw-pinboard-object function 631 4.2 : Redisplay 55

register-image-load-function function 923

register-image-translation function 924 13.10.4 : Registering images 170

reinitialize-interface generic function 632

:remapped initarg toolbar-button 762

remove-capi-object-property function 633 18.5 : Object properties and name 195

remove-items generic function 634

:reorderable-columns initarg multi-column-list-panel 503

replace-dialog function 634

replace-items generic function 635

report-active-component-failure generic function 636

reset-image-translation-table function 925

resizable

dialogs interface 414

elements element 356

windows interface 411

:resize-callback initarg output-pane 525, output-pane-resize 536

resizing element 356, interface 411, interface 414

resolution

of display screen-logical-resolution 652

of printer get-printer-metrics 381

Resources

GTK+ 19.3.2.1 : Resources on GTK+ 197

X11/Motif 19.4.3.1 : Resources on X11/Motif 199

:retain-expanded-nodes initarg tree-view 776

:retract-callback initarg 3.10 : Button elements 49, 3.10.2 : Check buttons 50, 5.3.3 : Deselection, retraction, and
actions 62, 5.6 : Graph panes 66, 5.10.3 : Callbacks in choices 69, button 236, callbacks 243

Return key popup-confirmer 571

reuse-interfaces-p accessor 637

rich-text-pane class 638 3.6 : Displaying rich text 46

rich-text-pane-change-callback accessor rich-text-pane 638

rich-text-pane-character-format function 639

rich-text-pane-limit accessor rich-text-pane 638

rich-text-pane-operation function 641

rich-text-pane-paragraph-format function 643

rich-text-pane-text accessor rich-text-pane 638

Index

1082

rich-text-version function 644

right-angle-line-pinboard-object class 644

Right button menu 8.12 : Popup menus for panes 106, 9.6.1 : User-customization of toolbars 112, display-popup-
menu 315, docking-layout 319, interface 415, menu 486

right-button menu 20.12 : Menu examples 208

:right-click-extended-match initarg tree-view 776

:right-click-selection-behavior initarg list-panel 447

:root initarg stacked-tree 710

:roots initarg 5.6 : Graph panes 65, graph-pane 385, tree-view 776

rotate-object function 960 14.1 : Lower level - drawing objects and objects displayers 176

row-layout class 645 5.2.1 : Push button panels 58, 6.1 : Organizing panes in columns and rows 74

:rows initarg grid-layout 395

S

save-image function 13.10.3 : External images 169

:save-name initarg ole-control-pane 518

scale

for a printer get-printer-metrics 381

scale-thickness graphics state parameter graphics-state 878

scaling

while printing with-page-transform 807

screen

usable region of screen-internal-geometry 651

screen class 647

screen-active-interface function 648

screen-active-p function 649

screen-depth function screen 647

screen-height function screen 647

screen-height-in-millimeters function screen 647

screen-interfaces function document-container 321, screen 647

screen-internal-geometries function 650 4.3 : Support for multiple monitors 55, 11.6 : Querying and modifying interface
geometry 137

screen-internal-geometry function 651 4.3 : Support for multiple monitors 55, 11.6.1 : Support for multiple monitors 137

screen-logical-resolution function 652

screen-monitor-geometries function 652 4.3 : Support for multiple monitors 55, 11.6 : Querying and modifying interface
geometry 137

screen-number function screen 647

screens function 653

screentips 3.12 : Tooltips 51

screen-width function screen 647

screen-width-in-millimeters function screen 647

Index

1083

scroll generic function 654 7.4.1 : Programmatic scrolling 92

scroll-bar class 655 3.9.4 : Slider, Progress bar and Scroll bar 48

scroll-bar-line-size accessor scroll-bar 655

scroll-bar-page-size accessor scroll-bar 655

scroll bars

programmatic control 7.4.1 : Programmatic scrolling 92

specifying 3.1.1 : Scroll bars 37

:scroll-bar-type initarg simple-pane 693

scroll-callback output-pane 527

:scroll-callback initarg 12.4.1 : Ordinary scrolling 154, 20.1 : Output pane examples 202, output-pane 525

:scroll-height initarg 6.4.1 : Width and height hints 79, 12.4.1 : Ordinary scrolling 154, simple-pane 693

:scroll-horizontal-page-size initarg simple-pane 693

:scroll-horizontal-slug-size initarg simple-pane 693

:scroll-horizontal-step-size initarg simple-pane 693

scroll-if-not-visible-p accessor generic function 657 7.4.3 : Automatic scrolling 94

:scroll-if-not-visible-p initarg simple-pane 693

scrolling 20.1 : Output pane examples 202

built-in get-scroll-position 382

internal output-pane 527

ordinary output-pane 527

:scroll-initial-x initarg simple-pane 693

:scroll-initial-y initarg simple-pane 693

:scroll-start-x initarg simple-pane 693

:scroll-start-y initarg simple-pane 693

:scroll-vertical-page-size initarg simple-pane 693

:scroll-vertical-slug-size initarg simple-pane 693

:scroll-vertical-step-size initarg simple-pane 693

:scroll-width initarg 6.4.1 : Width and height hints 79, 12.4.1 : Ordinary scrolling 154, simple-pane 693

:search-field initarg 3.5.2 : Text input panes 44, text-input-pane 736

search-for-item generic function 658

:selected initarg 3.10.3 : Radio buttons 50, button 235, item 436

:selected-disabled-image initarg button 235

:selected-disabled-images initarg button-panel 238

:selected-function initarg menu-item 491

:selected-image initarg button 235, toolbar-button 762

:selected-images initarg button-panel 238

:selected-item initarg 5.7 : Option panes 68, 5.10.2 : Selections 69, choice 251, tree-view 781

:selected-item-function initarg menu-component 489, toolbar-component 765

:selected-items initarg 5.10.2 : Selections 69, choice 251

Index

1084

:selected-items-filter initarg double-list-panel 324

:selected-items-function initarg menu-component 489, toolbar-component 765

:selected-items-title initarg double-list-panel 324

selecting nth item 5.3.4 : Selections in a list 63, 5.10.2 : Selections 69, choice 251

selection function 659 18.6 : Clipboard 195

:selection initarg 5.10.2 : Selections 69, choice 251

:selection-callback initarg 3.10 : Button elements 49, 5.3 : List panels 60, 5.3.3 : Deselection, retraction, and
actions 62, 5.6 : Graph panes 66, 5.10.3 : Callbacks in choices 69, 11.4 : Connecting an interface to an
application 135, button 236, callbacks 243, tab-layout 731

selection-empty function 660 18.6 : Clipboard 195

:selection-function initarg menu-component 489, toolbar-component 765

selection gesture 5.3.2 : Extended selection 61

selections 5.3.1 : List interaction 61

default settings 5.3.4 : Selections in a list 63

extending 5.3.2 : Extended selection 61

general properties 5.10.2 : Selections 69

specifying multiple 5.10.1 : Interaction 69

Self-contained examples

alpha channel 20.2 : Graphics examples 202

animation 20.4 : Examples using timers to implement "animation" 204

charts and graphs 20.20 : Graphic Tools examples 212

choices 20.9 : Choice examples 206

Cocoa-specific 20.7 : Cocoa-specific examples 205

combining pixels when drawing 20.2 : Graphics examples 202

complete CAPI applications 20.8 : Examples of complete CAPI applications 206

dialogs and prompts 20.10 : Examples of dialogs and prompts 208

Drag and drop 20.5 : Drag and Drop examples 205

Drawing a chart 20.2 : Graphics examples 203

Drawing based on dynamic computation: without hanging the GUI 20.2 : Graphics examples 203

draw-path 20.2 : Graphics examples 203

editor panes 20.11 : editor-pane examples 208

graphics transforms 20.2 : Graphics examples 202

graphic tools 20.20 : Graphic Tools examples 212

graphs 20.6 : Graph examples 205

GTK+-specific 20.14 : GTK+ specific examples 209

highlighting objects in an output-pane 20.1 : Output pane examples 202

highlighting pinboard objects 20.3 : Pinboard examples 204

image editing 20.2 : Graphics examples 202

image transparency 20.2 : Graphics examples 202

layouts 20.16 : Layout examples 210

menus 20.12 : Menu examples 208

metafiles 20.2 : Graphics examples 202

Motif-specific 20.15 : Motif specific examples 209

Index

1085

output-pane 20.1 : Output pane examples 201

paths 20.2 : Graphics examples 202

pinboard-layout 20.1 : Output pane examples 201

pinboards 20.3 : Pinboard examples 204

printing 20.19 : Printing examples 211

selecting objects in an output-pane 20.1 : Output pane examples 202

selecting pinboard objects 20.3 : Pinboard examples 204

static-layout 20.1 : Output pane examples 201

tooltips 20.17 : Tooltip examples 210

various pane classes 20.18 : Examples illustrating other pane classes 210

separation function 925

:separator-item initarg option-pane 522

separators 6.6.3 : Dividers and separators 87

:separators initarg list-panel 447

set-application-interface function 660

set-application-themed function 19.1.1 : Using Windows themes 196

set-button-panel-enabled-items generic function 661

set-clipboard function 662 18.6 : Clipboard 195

set-composition-placement function 663

set-confirm-quit-flag function 664

set-default-editor-pane-blink-rate function 665 3.5.3.2 : Additional editor-pane functions 46

set-default-image-load-function function 926

set-default-interface-prefix-suffix function 666 3.3.2.1 : Window titles 41

set-default-use-native-input-method function 667

set-display-pane-selection generic function 668

set-drop-object-supported-formats function 668 17.3.1 : The drop callback 191

set-editor-parenthesis-colors function 670 3.5.3.2 : Additional editor-pane functions 46

set-geometric-hint function 671 6.4 : Specifying geometry hints 79

set-graphics-port-coordinates function 926

set-graphics-state function 927 13.3.1 : Setting the graphics state 163

set-hint-table function 671 6.4 : Specifying geometry hints 79, 6.5.3 : Changing the constraints 84

set-horizontal-scroll-parameters function 672 6.4.1 : Width and height hints 79

set-interactive-break-gestures function 673

set-interface-pane-name-appearance function 674 18.8 : Setting the font and colors for specific panes in specific
interfaces. 195

set-interface-pane-type-appearance function 674 18.8 : Setting the font and colors for specific panes in specific
interfaces. 195

set-list-panel-keyboard-search-reset-time function 676

set-object-automatic-resize function 677

set-pane-focus generic function 680

set-printer-metrics function 680 16.5.1 : Establishing a page transform 187

Index

1086

set-printer-options function 681 16.1 : Printers 186

set-rich-text-pane-character-format function 683

set-rich-text-pane-paragraph-format function 685

set-scroll-position generic function scroll 655

set-selection function 686 18.6 : Clipboard 195

set-text-input-pane-selection generic function 687

set-top-level-interface-geometry generic function 688 7.2 : Resizing and positioning 91

:setup-callback-argument initarg menu-object 494

set-vertical-scroll-parameters function 672 6.4.1 : Width and height hints 79

shape-mode graphics state parameter 13.2.1 : The drawing mode and anti-aliasing 161, rectangle 626, graphics-state 879

shell-pane class 689

shell-pane-command accessor shell-pane 689

show-interface function 690

show-pane function 691

:show-value-p initarg slider 705

simple-layout class 691

simple-network-pane class 692

simple-pane class 693 6 : Laying Out CAPI Panes 73

simple-pane-background accessor simple-pane 693

simple-pane-cursor accessor 3.1.6 : Mouse cursor 39, simple-pane 693

simple-pane-drag-callback accessor simple-pane 693

simple-pane-drop-callback accessor simple-pane 693

simple-pane-enabled accessor simple-pane 693, toolbar-object 767

simple-pane-font accessor simple-pane 693

simple-pane-foreground accessor simple-pane 693

simple-pane-handle function 700 18.7 : Handles 195

simple-pane-horizontal-scroll function simple-pane 693

simple-pane-scroll-callback accessor simple-pane 693

simple-pane-vertical-scroll function simple-pane 693

simple-pane-visible-border function simple-pane 693

simple-pane-visible-height function 700 3.8 : Accessing pane geometry 47

simple-pane-visible-size function 701 3.8 : Accessing pane geometry 47

simple-pane-visible-width function 702 3.8 : Accessing pane geometry 47

simple-pinboard-layout class 702

simple-print-port function 703 13.1.1 : Creating instances 159, 16.6 : Other printing functions 187

single selection

specifying 5.10.1 : Interaction 69

:single-selection interaction style 5.3.1 : List interaction 61, 5.9 : Menu components 68, 5.10.1 : Interaction 69, 8.3 :
Grouping menu items together 100, button 236

:sinks initarg ole-control-pane 518

Index

1087

slider class 705 3.9.4 : Slider, Progress bar and Scroll bar 48

slider-print-function accessor slider 705

slider-show-value-p function slider 705

slider-start-point function slider 705

slider-tick-frequency function slider 705

slot-value function 2 : Getting Started 34

:slug-end initarg range-pane 622

:slug-start initarg range-pane 622

:small-image-height initarg list-view 459

:small-image-width initarg list-view 459

:sort-descriptions initarg sorted-object 707

sorted-object class 707

sorted-object-sort-by generic function 708

sorted-object-sorted-by function 708

sort-object-items-by function 709

Sound API 18.2.1 : Sound API 194

:source-interfaces class option define-ole-control-component 300

Spaces on macOS 4.3 : Support for multiple monitors 56

special slots

container 6.6.7 : Multiple-Document Interface (MDI) 88, document-frame 322

windows-menu 6.6.7 : Multiple-Document Interface (MDI) 88, document-frame 322

stacked-tree class 710 5.5 : Stacked trees 65

stacked-tree-decrease-font-height function 715

stacked-tree-default-color-function function 715

stacked-tree-empty-tree-string accessor stacked-tree 710

stacked-tree-history-backward function 716

stacked-tree-history-forward function 716

stacked-tree-increase-font-height function 715

stacked-tree-item-at-point function 717

stacked-tree-item-function accessor stacked-tree 710

stacked-tree-item-menu-function accessor stacked-tree 710

stacked-tree-root accessor stacked-tree 710

stacked-tree-width-ratio accessor 718

stacked-tree-zoom-by-factor function 719

standard image symbols

:std-copy list-panel 451, toolbar-button 763, tree-view 779

:std-cut list-panel 451, toolbar-button 763, tree-view 779

:std-delete list-panel 451, toolbar-button 763, tree-view 779

:std-file-new list-panel 451, toolbar-button 763, tree-view 779

:std-file-open list-panel 451, toolbar-button 763, tree-view 779

Index

1088

:std-file-save list-panel 451, toolbar-button 763, tree-view 779

:std-find list-panel 451, toolbar-button 763, tree-view 779

:std-help list-panel 451, toolbar-button 763, tree-view 779

:std-paste list-panel 451, toolbar-button 763, tree-view 779

:std-print list-panel 451, toolbar-button 763, tree-view 779

:std-print-pre list-panel 451, toolbar-button 763, tree-view 779

:std-properties list-panel 451, toolbar-button 763, tree-view 779

:std-redo list-panel 451, toolbar-button 763, tree-view 779

:std-replace list-panel 451, toolbar-button 763, tree-view 779

:std-undo list-panel 451, toolbar-button 763, tree-view 779

:start initarg range-pane 622, text-input-range 753

start-drawing-with-cached-display function 720

start-gc-monitor function 721

start-pane-drag-operation function 722

:start-point initarg slider 705

:start-x initarg 12.3 : Creating graphical objects 147, line-pinboard-object 444

:start-y initarg 12.3 : Creating graphical objects 147, line-pinboard-object 444

:state-image-function initarg 5.3.5 : Images and appearance 63, 5.4.2 : Images and appearance 64, list-
panel 447, list-view 459, tree-view 776

:state-image-height initarg double-list-panel 324, list-panel 447, list-view 459, tree-view 776

:state-image-width initarg double-list-panel 324, list-panel 447, list-view 459, tree-view 776

static-layout class 723

static-layout-child-geometry accessor 724

static-layout-child-position accessor generic function 725

static-layout-child-size accessor generic function 726

:status-text-change-callback initarg browser-pane 227

:std-copy image symbol list-panel 451, tree-view 779

:std-cut image symbol list-panel 451, tree-view 779

:std-delete image symbol list-panel 451, tree-view 779

:std-file-new image symbol list-panel 451, tree-view 779

:std-file-open image symbol list-panel 451, tree-view 779

:std-file-save image symbol list-panel 451, tree-view 779

:std-find image symbol list-panel 451, tree-view 779

:std-help image symbol list-panel 451, tree-view 779

:std-paste image symbol list-panel 451, tree-view 779

:std-print image symbol list-panel 451, tree-view 779

:std-print-pre image symbol list-panel 451, tree-view 779

:std-properties image symbol list-panel 451, tree-view 779

:std-redo image symbol list-panel 451, tree-view 779

Index

1089

:std-replace image symbol list-panel 451, tree-view 779

:std-undo image symbol list-panel 451, tree-view 779

stipple graphics state parameter graphics-state 877

stop-gc-monitor function 727

stop-sound function 728 18.2.1 : Sound API 194

stream

panes 3.9.6 : Stream panes 48

:stream initarg collector-pane 272

streams collector-pane 273

:stretch-text-p initarg toolbar 760

string-drawing-object class 979

strings

prompting for 10.2.1 : Prompting for strings 116

subclasses

finding 3.3.2 : Specifying titles directly 41

subclasses, finding 3.3.2 : Specifying titles directly 41

:subitem-function initarg list-view 459

:subitem-print-functions initarg list-view 459

switchable-layout class 729

switchable-layout-combine-child-constraints function switchable-layout 729

switchable-layout-switchable-children generic function 730

switchable-layout-visible-child accessor 6.6.1 : Switchable layouts 85, switchable-layout 729

symbols

prompting for 10.2.7 : Prompting for Lisp objects 121

system classes

basic-graph-spec 956 14.2 : Higher level - drawing graphs and bar charts 178

external-image 850 13.10 : Working with images 167

graphics-state 876 13.2.1 : The drawing mode and anti-aliasing 161, 13.3 : Graphics state 162

image 880 13.10 : Working with images 167

printer-metrics 582

system clipboard API 18.6 : Clipboard 195

T

tab-layout class 731 6.6.2 : Tab layouts 85

tab-layout-combine-child-constraints function tab-layout 731

tab-layout-image-function function tab-layout 731

tab-layout-panes function 733

tab-layout-visible-child function 734

tab-layout-visible-child-function accessor tab-layout 731

tabstops accepts-focus-p 215

:temp new value for :buffer-name initarg 3.5.3.2 : Additional editor-pane functions 46

Index

1090

:test-function initarg collection 267

text

displaying 3.5 : Displaying and entering text 42, 3.6 : Displaying rich text 46

displaying on screen 3.5.1 : Display panes 42

editing 3.5 : Displaying and entering text 42, 3.6 : Displaying rich text 46

entering 3.5 : Displaying and entering text 42, 3.6 : Displaying rich text 46

:text initarg 3.1.3 : Fonts 37, 3.5.1 : Display panes 42, 3.5.2 : Text input panes 43, 3.10 : Button elements 49, 3.10.3 : Radio
buttons 50, display-pane 312, editor-pane 342, filtering-layout 367, item 436, rich-text-
pane 638, text-input-pane 736, title-pane 759

:text-background initarg labelled-line-pinboard-object 441

:text-change-callback initarg text-input-pane 736

:text-foreground initarg labelled-line-pinboard-object 441

text-input-choice class 735

text-input-pane class 736 3.1.4.1 : Controlling Mnemonics 38, 3.5.2 : Text input panes 43, 6 : Laying Out CAPI
Panes 73, 10.6 : In-place completion 125, 10.6.2.1 : Text input panes 127

text-input-pane-append-recent-items function 744

text-input-pane-buttons-enabled accessor text-input-pane 736

text-input-pane-callback accessor text-input-pane 736

text-input-pane-caret-position function text-input-pane 736

text-input-pane-change-callback accessor text-input-pane 736

text-input-pane-complete-text function 745

text-input-pane-completion-function accessor text-input-pane 736

text-input-pane-confirm-change-function accessor text-input-pane 736

text-input-pane-copy function 746

text-input-pane-cut function 746

text-input-pane-delete function 747

text-input-pane-delete-recent-items function 744

text-input-pane-editing-callback accessor text-input-pane 736

text-input-pane-enabled accessor text-input-pane 736

text-input-pane-in-place-complete function 748

text-input-pane-max-characters accessor text-input-pane 736

text-input-pane-navigation-callback accessor text-input-pane 736

text-input-pane-paste function 748

text-input-pane-prepend-recent-items function 744

text-input-pane-recent-items accessor 749

text-input-pane-replace-recent-items function 744

text input panes 3.5.2 : Text input panes 43

text-input-pane-selected-text function 750

text-input-pane-selection function 750

text-input-pane-selection-p function 751

text-input-pane-set-recent-items function 752

Index

1091

text-input-pane-text accessor text-input-pane 736

text-input-range class 753

text-input-range-callback accessor text-input-range 753

text-input-range-callback-type accessor text-input-range 753

text-input-range-change-callback accessor text-input-range 753

text-input-range-end accessor text-input-range 753

text-input-range-start accessor text-input-range 753

text-input-range-value accessor text-input-range 753

text-input-range-wraps-p accessor text-input-range 753

:text-limit initarg rich-text-pane 638

text-mode graphics state parameter 13.2.1 : The drawing mode and anti-aliasing 161, graphics-state 879

:texts initarg toolbar 760, toolbar-component 765

:the initarg list-panel 447

thickness graphics state parameter graphics-state 878

:tick-frequency initarg slider 705

tips 3.12 : Tooltips 51

:title initarg 3.3.2 : Specifying titles directly 41, 11.2 : An example interface 130, 11.5.2 : Controlling the interface
title 136, interface 409, menu-object 494, titled-object 755

:title-adjust initarg form-layout 375, titled-object 755

:title-args initarg titled-object 755

title bar

removal interface 413

:title-change-callback initarg browser-pane 227

titled-menu-object class 754

titled-object abstract class 755 3.1.4.1 : Controlling Mnemonics 38, 3.3 : Specifying titles 40

titled-object-message accessor titled-object 755

titled-object-message-font accessor interface 415, titled-object 755

titled-object-title accessor 11.4 : Connecting an interface to an application 135, titled-object 755

titled-object-title-font accessor titled-object 755

titled-pane titled-object 757

titled-pane-message titled-object 757

titled-pane-title titled-object 757

titled-pinboard-object class 758

:title-font initarg 3.3.2.2 : Titles for elements 41, titled-object 755

:title-function initarg menu-object 494

:title-gap initarg form-layout 375, titled-object 755

title-pane class 759 3.3 : Specifying titles 40

title panes 3.3.1 : Title panes 40

title-pane-text accessor title-pane 759

:title-position initarg 3.3.2.2 : Titles for elements 41, 6.1 : Organizing panes in columns and rows 75, titled-
object 755

Index

1092

titles

changing 3.3.2.2 : Titles for elements 41, 11.5.2 : Controlling the interface title 136

changing interactively 3.3.2.2 : Titles for elements 41

for elements 3.3.2.2 : Titles for elements 41

for interfaces 3.3.2.1 : Window titles 41, 11.5.2 : Controlling the interface title 136

for windows 3.3.2.1 : Window titles 41, 11.5.2 : Controlling the interface title 136

specifying 3.3 : Specifying titles 40

specifying directly 3.3.2 : Specifying titles directly 41

:to initarg graph-edge 383

toolbar

customize 3.11 : Adding a toolbar to an interface 51

folding 3.11 : Adding a toolbar to an interface 51

toolbar class 760 9 : Adding Toolbars 108, 9.9 : Non-standard toolbars 114

toolbar-button class 762 3.12.3 : Tooltips for toolbar buttons 52

toolbar-button-dropdown-menu accessor toolbar-button 762

toolbar-button-dropdown-menu-function accessor toolbar-button 762

toolbar-button-dropdown-menu-kind accessor toolbar-button 762

toolbar-button-image accessor toolbar-button 762

toolbar-button-popup-interface accessor toolbar-button 762

toolbar buttons 3.11 : Adding a toolbar to an interface 51

toolbar-button-selected-image accessor toolbar-button 762

toolbar-component class 765 3.12.3 : Tooltips for toolbar buttons 52, 9.2.1 : Grouping toolbar buttons 109

toolbar-flat-p function toolbar 760

:toolbar-items initarg 9 : Adding Toolbars 108, interface 409, toolbar 762

toolbar-object class 767

toolbar-object-enabled-function accessor toolbar-object 767

toolbars 3.11 : Adding a toolbar to an interface 51, 20.18 : Examples illustrating other pane classes 211

adding 9 : Adding Toolbars 108

description of 9 : Adding Toolbars 108

disabling items in 9.8 : Disabling toolbar items 114, 9.9 : Non-standard toolbars 114

folding on Cocoa 9 : Adding Toolbars 108

grouping items together 9.2.1 : Grouping toolbar buttons 109, 9.6.1 : User-customization of toolbars 112

:toolbar-states initarg interface 409

:toolbar-title initarg simple-pane 693

:tooltip initarg toolbar-button 762

tooltips 3.12 : Tooltips 51, 20.1 : Output pane examples 202

self-contained examples 20.17 : Tooltip examples 210

:tooltips initarg 3.12.3 : Tooltips for toolbar buttons 52, 9.5 : Specifying tooltips for toolbar
buttons 111, toolbar 760, toolbar-component 765

:top-level-function initarg interactive-pane 406

:top-level-hook initarg interface 409

Index

1093

top level interface 11 : Defining Interface Classes - top level windows 129

top-level-interface generic function 768

top-level-interface-color-mode accessor 768

top-level-interface-color-mode-callback accessor interface 409

top-level-interface-dark-mode-p function 770

top-level-interface-display-state generic function 770

top-level-interface-external-border accessor interface 409

top-level-interface-geometry function 771 4.3 : Support for multiple monitors 55, 7.2.1 : Positioning CAPI
windows 92, 11.6 : Querying and modifying interface geometry 137

top-level-interface-geometry-display-state function 7.7.2 : Iconifying and restoring windows 96

top-level-interface-geometry-key generic function 773

top-level-interface-p generic function 774

top-level-interface-save-geometry-p generic function 775

top-level-interface-transparency accessor interface 409

top level window 11 : Defining Interface Classes - top level windows 129

touch input 12.2.1.8 : Touch mappings 143

touchscreen 12.2.1.8 : Touch mappings 143

touch-screen 12.2.1.8 : Touch mappings 143

touchscreen gestures 12.2.1.8 : Touch mappings 143

tracking-pinboard-layout class 775

trackpad 12.2.1.8 : Touch mappings 143

track-pad 12.2.1.8 : Touch mappings 143

trackpad gestures 12.2.1.8 : Touch mappings 143

transform type 928

transform-area function 929

transform-distance function 929

transform-distances function 930

transform graphics state parameter graphics-state 877

transform-is-rotated function 931

transform-point function 931

transform-points function 932

transform-rect function 933

:transparency initarg interface 409

tree-view class 776 5.4 : Trees 64, 5.4.1 : Tree interaction 64, 5.4.2 : Images and appearance 64

tree-view-action-callback-expand-p accessor tree-view 776

tree-view-checkbox-change-callback accessor tree-view 776

tree-view-checkbox-child-function accessor tree-view 776

tree-view-checkbox-initial-status accessor tree-view 776

tree-view-checkbox-next-map accessor tree-view 776

tree-view-checkbox-parent-function accessor tree-view 776

Index

1094

tree-view-checkbox-status function tree-view 776

tree-view-children-function accessor tree-view 776

tree-view-ensure-visible function 782

tree-view-expanded-p accessor generic function 782

tree-view-expandp-function accessor tree-view 776

tree-view-has-root-line accessor tree-view 776

tree-view-image-function accessor tree-view 776

tree-view-item-checkbox-status accessor 783

tree-view-item-children-checkbox-status function 784

tree-view-leaf-node-p-function accessor tree-view 776

tree-view-retain-expanded-nodes accessor tree-view 776

tree-view-right-click-extended-match accessor tree-view 776

tree-view-roots accessor tree-view 776

tree-view-state-image-function accessor tree-view 776

tree-view-update-an-item generic function 784

tree-view-update-item function 785 4.2 : Redisplay 55

Truetype fonts 13.2.1 : The drawing mode and anti-aliasing 161

:type initarg right-angle-line-pinboard-object 644

types

font 856

font-description 858

image-locator 402

transform 928

U

unconvert-color function 1005 13.10.8 : Image access 171

undefine-font-alias function 934

undefine-menu macro 786

underlined letters 3.1.4 : Mnemonics 38

unhighlight-pinboard-object function 786

:uniform-size-p initarg column-layout 274, row-layout 645

uninstall-postscript-printer function 787

union-rectangle macro 934

unit-transform variable 935

unit-transform-p function 935

unless-empty-rect-bind macro 936

unmap-typeout function 788

unrecord-dependent-object function 625

:unselected-items-filter initarg double-list-panel 324

:unselected-items-title initarg double-list-panel 324

Index

1095

untransform-distance function 937

untransform-distances function 937

untransform-point function 938

untransform-points function 939

update-all-interface-titles function 788

:update-commands-callback initarg browser-pane 227

update-drawing-with-cached-display function 789

update-drawing-with-cached-display-from-points function 789

update-interface-title generic function 790

update-internal-scroll-parameters function 791 12.4.2 : Internal scrolling 156

update-pinboard-object function 792

update-screen-interfaces-hooks variable 793

update-screen-interface-titles function 793

update-toolbar function 794

:url initarg browser-pane 227

:use-images initarg list-panel 447, tree-view 776

use-in-place-completion variable 10.6.1.1 : Invoking in-place completion in text-input-pane and editor-pane 125

:use-large-images initarg list-view 459

:use-metafile initarg objects-displayer 977

:use-native-input-method initarg 12.2.3 : Native input method 146, editor-pane 345, output-pane 525

:user-component initarg ole-control-pane 518

user input 10 : Dialogs: Prompting for Input 115

:use-small-images initarg list-view 459

:use-state-images initarg list-panel 447, list-view 459, tree-view 776

using callback functions 3 : General Properties of CAPI Panes 37

using the CAPI 2.1 : Using the CAPI package 34

V

validate-rectangle generic function 939

:value initarg stacked-tree 710, text-input-range 753

:value-function keyword argument 10.5.1 : Using popup-confirmer 123

values

prompting for 10.2 : Prompting for values 116

variables

color-database 986

default-editor-pane-line-wrap-marker 288

default-image-translation-table 830 image-translation 889

default-non-focus-message-timeout 290

default-non-focus-message-timeout-extension 290

echo-area-cursor-inactive-style 340

editor-cursor-active-style 340

Index

1096

editor-cursor-color 341

editor-cursor-drag-style 341

editor-cursor-inactive-style 342

editor-pane-composition-selected-range-face-plist 349

editor-pane-default-composition-face 351

maximum-moving-objects-to-track-edges 485

ppd-directory 577

printer-search-path 585

unit-transform 935

update-screen-interfaces-hooks 793

use-in-place-completion 10.6.1.1 : Invoking in-place completion in text-input-pane and editor-pane 125

:vertical-adjust initarg form-layout 375

:vertical-gap initarg form-layout 375

:vertical-scroll initarg 3.1.1 : Scroll bars 37, 3.9.4 : Slider, Progress bar and Scroll bar 48, 6.1 : Organizing panes in columns
and rows 76, 12.4 : output-pane scrolling 154, scroll-bar 656, simple-pane 693

:view initarg list-view 459

:view-class initarg cocoa-view-pane 264

:view-details image symbol list-panel 451, toolbar-button 763, tree-view 779

:view-large-icons image symbol list-panel 451, toolbar-button 763, tree-view 779

:view-list image symbol list-panel 451, toolbar-button 763, tree-view 779

:view-net-connect image symbol list-panel 451, toolbar-button 763, tree-view 779

:view-net-disconnect image symbol list-panel 451, toolbar-button 763, tree-view 779

:view-new-folder image symbol list-panel 451, toolbar-button 763, tree-view 779

:view-parent-folder image symbol list-panel 451, toolbar-button 763, tree-view 779

:view-small-icons image symbol list-panel 451, toolbar-button 763, tree-view 779

:view-sort-date image symbol list-panel 451, toolbar-button 763, tree-view 779

:view-sort-name image symbol list-panel 451, toolbar-button 763, tree-view 779

:view-sort-size image symbol list-panel 451, toolbar-button 763, tree-view 779

:view-sort-type image symbol list-panel 451, toolbar-button 763, tree-view 779

virtual-screen-geometry function 795 4.3 : Support for multiple monitors 55, 11.6.1 : Support for multiple monitors 137

:visible-border initarg simple-pane 693

:visible-child initarg switchable-layout 729

:visible-child-function initarg tab-layout 731, tab-layout 732

visible constraints 6.4.1 : Width and height hints 80

:visible-items-count initarg option-pane 522, text-input-choice 735

:visible-max-height initarg 6.4.1 : Width and height hints 80, element 354, pinboard-object 559

:visible-max-width initarg 6.4.1 : Width and height hints 80, element 354, pinboard-object 559

:visible-min-height initarg 6.4.1 : Width and height hints 80, element 354, pinboard-object 559

:visible-min-width initarg 6.4.1 : Width and height hints 80, element 354, pinboard-object 559

Index

1097

W

WAV sound files load-sound 465

:widget-name initarg 19.3.2 : Matching resources for GTK+ 197, element 354

:width initarg screen 647

windoid interface 414

Window handle current-dialog-handle 285, simple-pane-handle 700

window-modal dialogs 10.3 : Window-modal Cocoa dialogs 121, display-dialog 307, popup-confirmer 571, with-
dialog-results 798

Windows history image symbols

:hist-addtofavorites list-panel 451, toolbar-button 763, tree-view 779

:hist-back list-panel 451, toolbar-button 763, tree-view 779

:hist-favorites list-panel 451, toolbar-button 763, tree-view 779

:hist-forward list-panel 451, toolbar-button 763, tree-view 779

:hist-viewtree list-panel 451, toolbar-button 763, tree-view 779

windows-menu 6.6.7 : Multiple-Document Interface (MDI) 88, document-frame 322

windows-menu special slot 6.6.7 : Multiple-Document Interface (MDI) 88, document-frame 322

Windows themes 19.1.1 : Using Windows themes 196

:window-styles initarg interface 409, option-pane 522

Windows view image symbols

:view-details list-panel 451, toolbar-button 763, tree-view 779

:view-large-icons list-panel 451, toolbar-button 763, tree-view 779

:view-list list-panel 451, toolbar-button 763, tree-view 779

:view-net-connect list-panel 451, toolbar-button 763, tree-view 779

:view-net-disconnect list-panel 451, toolbar-button 763, tree-view 779

:view-new-folder list-panel 451, toolbar-button 763, tree-view 779

:view-parent-folder list-panel 451, toolbar-button 763, tree-view 779

:view-small-icons list-panel 451, toolbar-button 763, tree-view 779

:view-sort-date list-panel 451, toolbar-button 763, tree-view 779

:view-sort-name list-panel 451, toolbar-button 763, tree-view 779

:view-sort-size list-panel 451, toolbar-button 763, tree-view 779

:view-sort-type list-panel 451, toolbar-button 763, tree-view 779

Windows XP themes 19.1.1 : Using Windows themes 196

window title

removal interface 413

window titles 3.3.2.1 : Window titles 41, 11.5.2 : Controlling the interface title 136

with-atomic-redisplay macro 795 4.2.1 : Atomic redisplay 55

with-busy-interface macro 796

with-dialog-results macro 797 10.3.2 : A dialog which is window-modal on Cocoa 121

with-dither macro 940

with-document-pages macro 799 16.3 : Handling pages - page on demand printing 186

Index

1098

with-external-metafile macro 800 13.1.1 : Creating instances 159

with-geometry macro 802 3.8 : Accessing pane geometry 47

with-graphics-mask macro 941

with-graphics-post-translation macro 942

with-graphics-rotation macro 943

with-graphics-scale macro 943

with-graphics-state macro 944 13.3.1 : Setting the graphics state 162

with-graphics-transform macro 946

with-graphics-transform-reset macro 947

with-graphics-translation macro 943

with-internal-metafile macro 804 13.1.1 : Creating instances 159

with-inverse-graphics macro 948

with-output-to-printer macro 805 16.6 : Other printing functions 187

without-relative-drawing macro 948

with-page macro 806 16.4 : Handling pages - page sequential printing 187

with-page-transform macro 807 16.5.1 : Establishing a page transform 187

with-pixmap-graphics-port macro 949 13.1.1 : Creating instances 159, 13.10.9 : Creating external images from Graphics Ports
operations 172

with-print-job macro 808 13.1.1 : Creating instances 159, 16.1 : Printers 186

with-random-typeout macro 810

with-transformed-area macro 950

with-transformed-point macro 951

with-transformed-points macro 952

with-transformed-rect macro 952

Works > Refresh menu command 8.7.1 : Standard default accelerators 104

Works menu

in CAPI objects 2.2 : Creating a window 35

workspaces on Linux 4.3 : Support for multiple monitors 56

:wraps-p initarg text-input-range 753

:wrap-style initarg editor-pane 342

wrap-text function 810

wrap-text-for-pane function 811

write-external-image function 953

X

X11

resources 19.3.2.1 : Resources on GTK+ 197, 19.4.3.1 : Resources on X11/Motif 199

:x initarg 12.3 : Creating graphical objects 147, element 354, pinboard-object 559

:x-adjust initarg 6.2.1 : Grid layouts 77, multi-column-list-panel 503, x-y-adjustable-layout 812

:x-gap initarg grid-layout 395, simple-network-pane 692

:x-ratios initarg 6.1 : Organizing panes in columns and rows 76, grid-layout 395

Index

1099

X resources

fallback resources 19.3.2.2 : Resources for CAPI/GTK+ applications 197, 19.4.3.2 : Resources for CAPI/Motif applications 199

in delivered applications 19.3.2.2 : Resources for CAPI/GTK+ applications 197, 19.4.3.2 : Resources for CAPI/Motif applications 199

:x-uniform-size-p initarg grid-layout 395

X window ID current-dialog-handle 285, simple-pane-handle 700

X Window System

display convert-to-screen 281

fallback resources convert-to-screen 281

x-y-adjustable-layout class 812

Y

:y initarg 12.3 : Creating graphical objects 147, element 354, pinboard-object 559

:y-adjust initarg 6.2.1 : Grid layouts 77, x-y-adjustable-layout 812

:y-gap initarg grid-layout 395, simple-network-pane 692

:y-ratios initarg 6.1 : Organizing panes in columns and rows 76, grid-layout 395

:y-uniform-size-p initarg grid-layout 395

Z

Z-order

of interfaces collect-interfaces 266

of pinboard-objects pinboard-layout 557

Numerics

2pi constant 814

Non-alaphanumerics

"alive" interface

definition execute-with-interface-if-alive 363

"alive" pane

definition apply-in-pane-process-if-alive 221

%child% geometry slot with-geometry 804

%height% geometry slot with-geometry 803

%max-height% geometry slot with-geometry 803

%max-width% geometry slot with-geometry 803

%min-height% geometry slot with-geometry 803

%min-width% geometry slot with-geometry 803

%object% geometry slot with-geometry 804

%scroll-height% geometry slot with-geometry 803

%scroll-horizontal-page-size% geometry slot with-geometry 803

%scroll-horizontal-slug-size% geometry slot with-geometry 803

%scroll-horizontal-step-size% geometry slot with-geometry 803

%scroll-start-x% geometry slot with-geometry 803

Index

1100

%scroll-start-y% geometry slot with-geometry 803

%scroll-vertical-page-size% geometry slot with-geometry 803

%scroll-vertical-slug-size% geometry slot with-geometry 803

%scroll-vertical-step-size% geometry slot with-geometry 803

%scroll-width% geometry slot with-geometry 803

%scroll-x% geometry slot with-geometry 803

%scroll-y% geometry slot with-geometry 803

%width% geometry slot with-geometry 803

%x% geometry slot with-geometry 802

%y% geometry slot with-geometry 803

Index

1101

	CAPI User Guide and Reference Manual
	Copyrights and Trademarks
	Contents
	Preface
	1 Introduction to the CAPI
	1.1 What is the CAPI?
	1.2 The CAPI model
	1.2.1 CAPI elements

	1.3 The history of the CAPI

	2 Getting Started
	2.1 Using the CAPI package
	2.2 Creating a window
	2.3 Linking code into CAPI elements

	3 General Properties of CAPI Panes
	3.1 Generic properties
	3.1.1 Scroll bars
	3.1.2 Background and foreground colors
	3.1.3 Fonts
	3.1.4 Mnemonics
	3.1.4.1 Controlling Mnemonics
	3.1.4.2 Mnemonics on Microsoft Windows

	3.1.5 Focus
	3.1.5.1 Initial focus
	3.1.5.2 Querying the focus
	3.1.5.3 Setting the focus dynamically

	3.1.6 Mouse cursor

	3.2 Base classes
	3.3 Specifying titles
	3.3.1 Title panes
	3.3.2 Specifying titles directly
	3.3.2.1 Window titles
	3.3.2.2 Titles for elements

	3.4 Callbacks
	3.5 Displaying and entering text
	3.5.1 Display panes
	3.5.2 Text input panes
	3.5.3 Editor panes
	3.5.3.1 Editor pane callbacks
	3.5.3.2 Additional editor-pane functions

	3.6 Displaying rich text
	3.7 Hierarchy of panes
	3.8 Accessing pane geometry
	3.9 Special kinds of windows
	3.9.1 Browser pane
	3.9.2 OLE embedding and control
	3.9.3 Cocoa views and application interfaces
	3.9.4 Slider, Progress bar and Scroll bar
	3.9.5 Text input range
	3.9.6 Stream panes
	3.9.6.1 Collector panes
	3.9.6.2 Interactive panes
	3.9.6.3 Listener panes

	3.9.7 Shell pane

	3.10 Button elements
	3.10.1 Push buttons
	3.10.2 Check buttons
	3.10.3 Radio buttons
	3.10.4 Mnemonics in buttons

	3.11 Adding a toolbar to an interface
	3.12 Tooltips
	3.12.1 Tooltips for output panes
	3.12.2 Tooltips for collections, elements and menu items
	3.12.3 Tooltips for toolbar buttons

	3.13 Screens

	4 General Considerations
	4.1 The correct thread for CAPI operations
	4.2 Redisplay
	4.2.1 Atomic redisplay

	4.3 Support for multiple monitors

	5 Choices - panes with items
	5.1 Items
	5.2 Button panel classes
	5.2.1 Push button panels
	5.2.2 Radio button panels
	5.2.3 Check button panels
	5.2.4 Mnemonics in button panels
	5.2.5 Programming button panels

	5.3 List panels
	5.3.1 List interaction
	5.3.2 Extended selection
	5.3.3 Deselection, retraction, and actions
	5.3.4 Selections in a list
	5.3.5 Images and appearance
	5.3.6 Filters
	5.3.7 Multi-column list panels
	5.3.8 Double list panel
	5.3.9 Searching by keyboard input

	5.4 Trees
	5.4.1 Tree interaction
	5.4.2 Images and appearance

	5.5 Stacked trees
	5.6 Graph panes
	5.6.1 Changing the graphics in the graph
	5.6.2 Controlling the layout
	5.6.3 Accessing the topology of the graph

	5.7 Option panes
	5.7.1 Option panes with images

	5.8 Text input choice
	5.9 Menu components
	5.10 General properties of choices
	5.10.1 Interaction
	5.10.2 Selections
	5.10.3 Callbacks in choices
	5.10.4 image-list, image-set and image-locator

	5.11 Operations on collections (choices) and their items
	5.11.1 Accessing items
	5.11.2 Efficient manipulation of collection items
	5.11.3 Searching in a collection

	6 Laying Out CAPI Panes
	6.1 Organizing panes in columns and rows
	6.2 Other types of layout
	6.2.1 Grid layouts
	6.2.2 Simple layouts
	6.2.3 Pinboard layouts

	6.3 Combining different layouts
	6.4 Specifying geometry hints
	6.4.1 Width and height hints
	6.4.1.1 Priority of constraints

	6.4.2 Hint values formats
	6.4.3 Initial constraints

	6.5 Constraining the size of layouts
	6.5.1 Default Constraints
	6.5.2 Constraint Formats
	6.5.2.1 Character constraints
	6.5.2.2 String constraints

	6.5.3 Changing the constraints

	6.6 Other pane layouts
	6.6.1 Switchable layouts
	6.6.2 Tab layouts
	6.6.3 Dividers and separators
	6.6.4 Static layout
	6.6.5 Interface toolbars
	6.6.6 Docking layout
	6.6.7 Multiple-Document Interface (MDI)
	6.6.7.1 MDI example

	6.7 Changing layouts and panes within a layout

	7 Programming with CAPI Windows
	7.1 Initialization
	7.2 Resizing and positioning
	7.2.1 Positioning CAPI windows

	7.3 Geometric queries
	7.4 Scrolling
	7.4.1 Programmatic scrolling
	7.4.2 Scroll values and initialization keywords
	7.4.3 Automatic scrolling

	7.5 Updating pane contents
	7.5.1 Updating windows in real time

	7.6 Edit actions on the active element
	7.7 Manipulating top-level windows
	7.7.1 Visibility and focus
	7.7.2 Iconifying and restoring windows
	7.7.3 Closing windows
	7.7.4 Finding interfaces
	7.7.5 Quitting applications
	7.7.6 Preserving information when saving an IDE session

	8 Creating Menus
	8.1 Creating a menu
	8.2 Presenting menus
	8.3 Grouping menu items together
	8.4 Creating individual menu items
	8.5 The CAPI menu hierarchy
	8.6 Mnemonics in menus
	8.7 Accelerators in menus
	8.7.1 Standard default accelerators

	8.8 Alternative menu items
	8.9 Disabling menu items
	8.9.1 Dialogs and disabled menu items

	8.10 Menus with images
	8.11 The Edit menu on Cocoa
	8.12 Popup menus for panes
	8.13 Displaying menus programmatically
	8.14 The Application menu

	9 Adding Toolbars
	9.1 Creating a toolbar button
	9.2 Creating a toolbar with several buttons
	9.2.1 Grouping toolbar buttons
	9.2.2 Implicitly-created buttons

	9.3 Specifying the image for a toolbar button
	9.3.1 Specifying images for a group of toolbar buttons

	9.4 Specifying toolbar callbacks
	9.4.1 Sharing toolbar callbacks with menu items
	9.4.2 Other types of callback for a toolbar button

	9.5 Specifying tooltips for toolbar buttons
	9.6 Modifying toolbars
	9.6.1 User-customization of toolbars
	9.6.2 Changing an interface toolbar programmatically

	9.7 Advanced toolbar features
	9.7.1 Toolbar items other than buttons with images
	9.7.2 Alternative interaction in a toolbar
	9.7.3 Toolbar buttons with menus

	9.8 Disabling toolbar items
	9.9 Non-standard toolbars
	9.9.1 Changing a non-standard toolbar dynamically

	10 Dialogs: Prompting for Input
	10.1 Some simple dialogs
	10.2 Prompting for values
	10.2.1 Prompting for strings
	10.2.2 Prompting for numbers
	10.2.3 Prompting for an item in a list
	10.2.4 Prompting for files
	10.2.5 Prompting for fonts
	10.2.6 Prompting for colors
	10.2.7 Prompting for Lisp objects

	10.3 Window-modal Cocoa dialogs
	10.3.1 The :continuation argument
	10.3.2 A dialog which is window-modal on Cocoa

	10.4 Dialog Owners
	10.4.1 The default owner
	10.4.2 Specifying the owner

	10.5 Creating your own dialogs
	10.5.1 Using popup-confirmer
	10.5.2 Using display-dialog
	10.5.3 Modal and non-modal dialogs
	10.5.4 Getting the current dialog

	10.6 In-place completion
	10.6.1 In-place completion user interface
	10.6.1.1 Invoking in-place completion in text-input-pane and editor-pane
	10.6.1.2 Keyboard input handling while the in-place window is displayed
	10.6.1.3 Performing a completion
	10.6.1.4 Interaction while the in-place window is displayed

	10.6.2 Programmatic control of in-place completion
	10.6.2.1 Text input panes
	10.6.2.2 Editor panes
	10.6.2.3 Other CAPI panes

	11 Defining Interface Classes - top level windows
	11.1 The define-interface macro
	11.2 An example interface
	11.2.1 How the example works

	11.3 Adapting the example
	11.3.1 Adding menus

	11.4 Connecting an interface to an application
	11.5 Controlling the appearance of the top level window
	11.5.1 Window styles
	11.5.2 Controlling the interface title
	11.5.3 Indicating a changed document

	11.6 Querying and modifying interface geometry
	11.6.1 Support for multiple monitors
	11.6.2 Saving and restoring top-level geometry

	12 Creating Panes with Your Own Drawing and Input
	12.1 Displaying graphics
	12.2 Receiving input from the user
	12.2.1 Detailed description of the input model
	12.2.1.1 Gesture Spec mappings
	12.2.1.2 Character mappings
	12.2.1.3 Button mappings
	12.2.1.4 Modifier change mappings
	12.2.1.5 Key mappings
	12.2.1.6 Motion mappings
	12.2.1.7 Command mappings
	12.2.1.8 Touch mappings
	12.2.1.9 Notes about touch mappings
	12.2.1.10 Processing user input

	12.2.2 Commands - aliases
	12.2.3 Native input method
	12.2.4 Composition of characters

	12.3 Creating graphical objects
	12.3.1 Buffered drawing
	12.3.2 Finding pinboard objects from coordinates
	12.3.3 The implementation of graph panes
	12.3.4 An example pinboard object
	12.3.5 Simple pinboard layout
	12.3.6 Tracking pinboard layout

	12.4 output-pane scrolling
	12.4.1 Ordinary scrolling
	12.4.2 Internal scrolling

	12.5 Transient display on output-pane and subclasses

	13 Drawing - Graphics Ports
	13.1 Introduction
	13.1.1 Creating instances
	13.1.2 Pixmaps and Metafiles

	13.2 Features
	13.2.1 The drawing mode and anti-aliasing

	13.3 Graphics state
	13.3.1 Setting the graphics state

	13.4 Drawing functions
	13.4.1 Text
	13.4.2 Simple lines
	13.4.3 Simple shapes
	13.4.4 Paths

	13.5 How to draw to an on-screen port
	13.6 Graphics state transforms
	13.6.1 Generalized points
	13.6.2 Drawing on screen

	13.7 Combining source and target pixels
	13.7.1 Combining pixels with :compatible drawing
	13.7.2 Combining pixels with :quality drawing

	13.8 Pixmap graphics ports
	13.8.1 Relative drawing in pixmap graphics ports

	13.9 Portable font descriptions
	13.9.1 Font attributes and font descriptions
	13.9.2 Fonts
	13.9.3 Font aliases

	13.10 Working with images
	13.10.1 Image formats supported for reading from disk and drawing
	13.10.2 Image formats supported for writing to disk
	13.10.3 External images
	13.10.3.1 Converting an external image
	13.10.3.2 Transparency and the alpha channel

	13.10.4 Registering images
	13.10.5 Making an image that is suitable for drawing
	13.10.6 Querying image dimensions
	13.10.7 Drawing images
	13.10.8 Image access
	13.10.8.1 Pre-multiplied pixel values in images

	13.10.9 Creating external images from Graphics Ports operations

	14 Graphic Tools drawing objects
	14.1 Lower level - drawing objects and objects displayers
	14.2 Higher level - drawing graphs and bar charts

	15 The Color System
	15.1 Color specs
	15.2 Color aliases
	15.3 Color models
	15.4 Loading the color database
	15.5 Defining new color models

	16 Printing from the CAPI - the Hardcopy API
	16.1 Printers
	16.1.1 Standard shortcut keys in printer dialogs

	16.2 Print jobs
	16.3 Handling pages - page on demand printing
	16.4 Handling pages - page sequential printing
	16.5 Printing a page
	16.5.1 Establishing a page transform

	16.6 Other printing functions
	16.7 Printing on Motif
	16.7.1 Printer definition files
	16.7.2 PPD files
	16.7.3 Adding and removing printers

	17 Drag and Drop
	17.1 Overview of drag and drop
	17.1.1 Drag and drop with other applications
	17.1.2 Drag and drop within a CAPI application

	17.2 Dragging
	17.2.1 Dragging values from a choice
	17.2.1.1 Example: dragging from a tree

	17.2.2 Dragging within an output-pane
	17.2.3 Dragging values from an output-pane
	17.2.3.1 Dragging editor-pane text

	17.2.4 Data formats
	17.2.5 Dragging a Cocoa title bar image

	17.3 Dropping
	17.3.1 The drop callback
	17.3.2 Dropping in a choice
	17.3.2.1 Example: dropping in a list

	17.3.3 Dropping text in an editor-pane
	17.3.4 Dropping in an output-pane

	17.4 Limitations of CAPI drag and drop

	18 Miscellaneous functionality
	18.1 Development functions
	18.2 Sounds
	18.2.1 Sound API
	18.2.2 Beep

	18.3 Modifier keys state
	18.4 Restoring display while debugging
	18.5 Object properties and name
	18.6 Clipboard
	18.7 Handles
	18.8 Setting the font and colors for specific panes in specific interfaces.

	19 Host Window System-specific issues
	19.1 Microsoft Windows-specific issues
	19.1.1 Using Windows themes
	19.1.2 The break gesture

	19.2 Cocoa-specific issues
	19.2.1 The break gesture
	19.2.2 The Cocoa application interface

	19.3 GTK+-specific issues
	19.3.1 The break gesture
	19.3.2 Matching resources for GTK+
	19.3.2.1 Resources on GTK+
	19.3.2.2 Resources for CAPI/GTK+ applications
	19.3.2.3 X resources for in-place completion windows

	19.4 Motif-specific issues
	19.4.1 Using Motif
	19.4.1.1 Using Motif on Linux, FreeBSD and x86/x64 Solaris
	19.4.1.2 Using Motif on Macintosh

	19.4.2 The break gesture
	19.4.3 Matching resources for X11/Motif
	19.4.3.1 Resources on X11/Motif
	19.4.3.2 Resources for CAPI/Motif applications

	19.5 CAPI communication with host window system - libraries

	20 Self-contained examples
	20.1 Output pane examples
	20.2 Graphics examples
	20.3 Pinboard examples
	20.4 Examples using timers to implement "animation"
	20.5 Drag and Drop examples
	20.6 Graph examples
	20.7 Cocoa-specific examples
	20.8 Examples of complete CAPI applications
	20.9 Choice examples
	20.10 Examples of dialogs and prompts
	20.11 editor-pane examples
	20.12 Menu examples
	20.13 Miscellaneous examples
	20.14 GTK+ specific examples
	20.15 Motif specific examples
	20.16 Layout examples
	20.17 Tooltip examples
	20.18 Examples illustrating other pane classes
	20.19 Printing examples
	20.20 Graphic Tools examples

	21 CAPI Reference Entries
	abort-callback
	abort-dialog
	abort-exit-confirmer
	accepts-focus-p
	activate-pane
	active-pane-copy
	active-pane-copy-p
	active-pane-cut
	active-pane-cut-p
	active-pane-deselect-all
	active-pane-deselect-all-p
	active-pane-paste
	active-pane-paste-p
	active-pane-select-all
	active-pane-select-all-p
	active-pane-undo
	active-pane-undo-p
	append-items
	apply-in-pane-process
	apply-in-pane-process-if-alive
	apply-in-pane-process-wait-multiple
	apply-in-pane-process-wait-single
	arrow-pinboard-object
	attach-interface-for-callback
	attach-simple-sink
	attach-sink
	beep-pane
	browser-pane
	browser-pane-available-p
	browser-pane-busy
	browser-pane-go-back
	browser-pane-go-forward
	browser-pane-navigate
	browser-pane-property-get
	browser-pane-property-put
	browser-pane-refresh
	browser-pane-set-content
	browser-pane-stop
	button
	button-panel
	calculate-constraints
	calculate-layout
	callbacks
	call-editor
	can-use-metafile-p
	capi-object
	capi-object-property
	check-button
	check-button-panel
	choice
	choice-selected-item
	choice-selected-item-p
	choice-selected-items
	choice-update-item
	clipboard
	clipboard-empty
	clone
	cocoa-default-application-interface
	cocoa-view-pane
	cocoa-view-pane-view
	collect-interfaces
	collection
	collection-find-next-string
	collection-find-string
	collection-last-search
	collection-search
	collector-pane
	color-screen
	column-layout
	component-name
	confirmer-pane
	confirm-quit
	confirm-yes-or-no
	contain
	convert-relative-position
	convert-to-screen
	count-collection-items
	create-dummy-graphics-port
	current-dialog-handle
	current-document
	current-pointer-position
	current-popup
	current-printer
	default-editor-pane-line-wrap-marker
	default-library
	default-non-focus-message-timeout
	default-non-focus-message-timeout-extension
	define-command
	define-interface
	define-layout
	define-menu
	define-ole-control-component
	destroy
	destroy-dependent-object
	detach-simple-sink
	detach-sink
	display
	display-dialog
	display-errors
	display-message
	display-message-for-pane
	display-non-focus-message
	display-pane
	display-pane-selected-text
	display-pane-selection
	display-pane-selection-p
	display-popup-menu
	display-replacable-dialog
	display-tooltip
	docking-layout
	docking-layout-pane-docked-p
	docking-layout-pane-visible-p
	document-container
	document-frame
	double-headed-arrow-pinboard-object
	double-list-panel
	drag-pane-object
	draw-metafile
	draw-metafile-to-image
	drawn-pinboard-object
	draw-pinboard-layout-objects
	draw-pinboard-object
	draw-pinboard-object-highlighted
	drop-object-allows-drop-effect-p
	drop-object-collection-index
	drop-object-collection-item
	drop-object-drop-effect
	drop-object-get-object
	drop-object-pane-x
	drop-object-pane-y
	drop-object-provides-format
	echo-area-cursor-inactive-style
	echo-area-pane
	editor-cursor-active-style
	editor-cursor-color
	editor-cursor-drag-style
	editor-cursor-inactive-style
	editor-pane
	editor-pane-blink-rate
	editor-pane-buffer
	editor-pane-composition-selected-range-face-plist
	editor-pane-default-composition-callback
	editor-pane-default-composition-face
	editor-pane-native-blink-rate
	editor-pane-selected-text
	editor-pane-selected-text-p
	editor-pane-stream
	editor-window
	element
	element-container
	element-interface-for-callback
	element-screen
	ellipse
	end-pane-drag-operation
	ensure-area-visible
	ensure-interface-screen
	execute-with-interface
	execute-with-interface-if-alive
	exit-confirmer
	exit-dialog
	expandable-item-pinboard-object
	extended-selection-tree-view
	filtering-layout
	filtering-layout-match-object-and-exclude-p
	find-graph-edge
	find-graph-node
	find-interface
	find-string-in-collection
	force-screen-update
	force-update-all-screens
	foreign-owned-interface
	form-layout
	free-metafile
	free-sound
	get-collection-item
	get-constraints
	get-horizontal-scroll-parameters
	get-page-area
	get-printer-metrics
	get-scroll-position
	get-vertical-scroll-parameters
	graph-edge
	graph-node
	graph-node-children
	graph-object
	graph-pane
	graph-pane-add-graph-node
	graph-pane-delete-object
	graph-pane-delete-objects
	graph-pane-delete-selected-objects
	graph-pane-direction
	graph-pane-edges
	graph-pane-nodes
	graph-pane-object-at-position
	graph-pane-select-graph-nodes
	graph-pane-update-moved-objects
	grid-layout
	hide-interface
	hide-pane
	highlight-pinboard-object
	image-list
	image-locator
	image-pinboard-object
	image-set
	installed-libraries
	install-postscript-printer
	interactive-pane
	interactive-pane-execute-command
	interface
	interface-customize-toolbar
	interface-display
	interface-display-title
	interface-document-modified-p
	interface-editor-pane
	interface-extend-title
	interface-geometry
	interface-iconified-p
	interface-keys-style
	interface-match-p
	interface-menu-groups
	interface-preserve-state
	interface-preserving-state-p
	interface-reuse-p
	interface-toolbar-state
	interface-visible-p
	interpret-description
	invalidate-pane-constraints
	invoke-command
	invoke-untranslated-command
	item
	itemp
	item-pane-interface-copy-object
	item-pinboard-object
	labelled-arrow-pinboard-object
	labelled-line-pinboard-object
	layout
	line-pinboard-object
	line-pinboard-object-coordinates
	listener-pane
	listener-pane-insert-value
	list-panel
	list-panel-enabled
	list-panel-filter-state
	list-panel-items-and-filter
	list-panel-search-with-function
	list-panel-unfiltered-items
	list-view
	load-cursor
	load-sound
	locate-interface
	lower-interface
	make-container
	make-docking-layout-controller
	make-foreign-owned-interface
	make-general-image-set
	make-icon-resource-image-set
	make-image-locator
	make-menu-for-pane
	make-pane-popup-menu
	make-resource-image-set
	make-scaled-general-image-set
	make-scaled-image-set
	make-sorting-description
	manipulate-pinboard
	map-collection-items
	map-pane-children
	map-pane-descendant-children
	map-typeout
	maximum-moving-objects-to-track-edges
	menu
	menu-component
	menu-item
	menu-object
	merge-menu-bars
	message-pane
	metafile-port
	modify-editor-pane-buffer
	modify-multi-column-list-panel-columns
	modify-stacked-tree
	mono-screen
	move-line
	multi-column-list-panel
	multi-line-text-input-pane
	non-focus-list-add-filter
	non-focus-list-interface
	non-focus-list-remove-filter
	non-focus-list-toggle-enable-filter
	non-focus-list-toggle-filter
	non-focus-maybe-capture-gesture
	non-focus-terminate
	non-focus-update
	ole-control-add-verbs
	ole-control-close-object
	ole-control-component
	ole-control-doc
	ole-control-frame
	ole-control-i-dispatch
	ole-control-insert-object
	ole-control-ole-object
	ole-control-pane
	ole-control-pane-frame
	ole-control-pane-simple-sink
	ole-control-user-component
	option-pane
	output-pane
	output-pane-cached-display-user-info
	output-pane-cache-display
	output-pane-draw-from-cached-display
	output-pane-free-cached-display
	output-pane-resize
	output-pane-stop-composition
	over-pinboard-object-p
	page-setup-dialog
	pane-adjusted-offset
	pane-adjusted-position
	pane-can-restore-display-p
	pane-close-display
	pane-descendant-child-with-focus
	pane-drag-operation-update
	pane-got-focus
	pane-has-focus-p
	pane-initial-focus
	pane-interface-copy-object
	pane-interface-copy-p
	pane-interface-cut-object
	pane-interface-cut-p
	pane-interface-deselect-all
	pane-interface-deselect-all-p
	pane-interface-paste-object
	pane-interface-paste-p
	pane-interface-select-all
	pane-interface-select-all-p
	pane-interface-undo
	pane-interface-undo-p
	pane-modifiers-state
	pane-popup-menu-items
	pane-restore-display
	pane-screen-internal-geometry
	pane-string
	pane-supports-menus-with-images
	parse-layout-descriptor
	password-pane
	pinboard-layout
	pinboard-layout-display
	pinboard-object
	pinboard-object-at-position
	pinboard-object-graphics-arg
	pinboard-object-highlighted-p
	pinboard-object-overlap-p
	pinboard-pane-position
	pinboard-pane-size
	play-sound
	popup-confirmer
	popup-menu-button
	popup-menu-force-popdown
	ppd-directory
	print-capi-button
	print-collection-item
	print-dialog
	print-editor-buffer
	printer-configuration-dialog
	printer-metrics
	printer-port
	printer-port-handle
	printer-port-supports-p
	printer-search-path
	print-file
	print-rich-text-pane
	print-text
	process-pending-messages
	progress-bar
	prompt-for-color
	prompt-for-confirmation
	prompt-for-directory
	prompt-for-file
	prompt-for-files
	prompt-for-font
	prompt-for-form
	prompt-for-forms
	prompt-for-integer
	prompt-for-items-from-list
	prompt-for-number
	prompt-for-string
	prompt-for-symbol
	prompt-for-value
	prompt-with-list
	prompt-with-list-non-focus
	prompt-with-message
	push-button
	push-button-panel
	quit-interface
	radio-button
	radio-button-panel
	raise-interface
	range-pane
	range-set-sizes
	read-sound-file
	record-dependent-object
	rectangle
	redisplay-collection-item
	redisplay-element
	redisplay-interface
	redisplay-menu-bar
	redraw-drawing-with-cached-display
	redraw-pinboard-layout
	redraw-pinboard-object
	reinitialize-interface
	remove-capi-object-property
	remove-items
	replace-dialog
	replace-items
	report-active-component-failure
	reuse-interfaces-p
	rich-text-pane
	rich-text-pane-character-format
	rich-text-pane-operation
	rich-text-pane-paragraph-format
	rich-text-version
	right-angle-line-pinboard-object
	row-layout
	screen
	screen-active-interface
	screen-active-p
	screen-internal-geometries
	screen-internal-geometry
	screen-logical-resolution
	screen-monitor-geometries
	screens
	scroll
	scroll-bar
	scroll-if-not-visible-p
	search-for-item
	selection
	selection-empty
	set-application-interface
	set-button-panel-enabled-items
	set-clipboard
	set-composition-placement
	set-confirm-quit-flag
	set-default-editor-pane-blink-rate
	set-default-interface-prefix-suffix
	set-default-use-native-input-method
	set-display-pane-selection
	set-drop-object-supported-formats
	set-editor-parenthesis-colors
	set-geometric-hint
	set-hint-table
	set-horizontal-scroll-parameters
	set-interactive-break-gestures
	set-interface-pane-name-appearance
	set-interface-pane-type-appearance
	set-list-panel-keyboard-search-reset-time
	set-object-automatic-resize
	set-pane-focus
	set-printer-metrics
	set-printer-options
	set-rich-text-pane-character-format
	set-rich-text-pane-paragraph-format
	set-selection
	set-text-input-pane-selection
	set-top-level-interface-geometry
	set-vertical-scroll-parameters
	shell-pane
	show-interface
	show-pane
	simple-layout
	simple-network-pane
	simple-pane
	simple-pane-handle
	simple-pane-visible-height
	simple-pane-visible-size
	simple-pane-visible-width
	simple-pinboard-layout
	simple-print-port
	slider
	sorted-object
	sorted-object-sort-by
	sorted-object-sorted-by
	sort-object-items-by
	stacked-tree
	stacked-tree-decrease-font-height
	stacked-tree-default-color-function
	stacked-tree-history-backward
	stacked-tree-history-forward
	stacked-tree-increase-font-height
	stacked-tree-item-at-point
	stacked-tree-width-ratio
	stacked-tree-zoom-by-factor
	start-drawing-with-cached-display
	start-gc-monitor
	start-pane-drag-operation
	static-layout
	static-layout-child-geometry
	static-layout-child-position
	static-layout-child-size
	stop-gc-monitor
	stop-sound
	switchable-layout
	switchable-layout-switchable-children
	tab-layout
	tab-layout-panes
	tab-layout-visible-child
	text-input-choice
	text-input-pane
	text-input-pane-append-recent-items
	text-input-pane-complete-text
	text-input-pane-copy
	text-input-pane-cut
	text-input-pane-delete
	text-input-pane-delete-recent-items
	text-input-pane-in-place-complete
	text-input-pane-paste
	text-input-pane-prepend-recent-items
	text-input-pane-recent-items
	text-input-pane-replace-recent-items
	text-input-pane-selected-text
	text-input-pane-selection
	text-input-pane-selection-p
	text-input-pane-set-recent-items
	text-input-range
	titled-menu-object
	titled-object
	titled-pinboard-object
	title-pane
	toolbar
	toolbar-button
	toolbar-component
	toolbar-object
	top-level-interface
	top-level-interface-color-mode
	top-level-interface-dark-mode-p
	top-level-interface-display-state
	top-level-interface-geometry
	top-level-interface-geometry-key
	top-level-interface-p
	top-level-interface-save-geometry-p
	tracking-pinboard-layout
	tree-view
	tree-view-ensure-visible
	tree-view-expanded-p
	tree-view-item-checkbox-status
	tree-view-item-children-checkbox-status
	tree-view-update-an-item
	tree-view-update-item
	undefine-menu
	unhighlight-pinboard-object
	uninstall-postscript-printer
	unmap-typeout
	unrecord-dependent-object
	update-all-interface-titles
	update-drawing-with-cached-display
	update-drawing-with-cached-display-from-points
	update-interface-title
	update-internal-scroll-parameters
	update-pinboard-object
	update-screen-interfaces-hooks
	update-screen-interface-titles
	update-toolbar
	virtual-screen-geometry
	with-atomic-redisplay
	with-busy-interface
	with-dialog-results
	with-document-pages
	with-external-metafile
	with-geometry
	with-internal-metafile
	with-output-to-printer
	with-page
	with-page-transform
	with-print-job
	with-random-typeout
	wrap-text
	wrap-text-for-pane
	x-y-adjustable-layout

	22 GRAPHICS-PORTS Reference Entries
	2pi
	analyze-external-image
	apply-rotation
	apply-rotation-around-point
	apply-scale
	apply-translation
	augment-font-description
	clear-external-image-conversions
	clear-graphics-port
	clear-graphics-port-state
	clear-rectangle
	compress-external-image
	compute-char-extents
	convert-external-image
	convert-to-font-description
	copy-area
	copy-external-image
	copy-pixels
	copy-transform
	create-pixmap-port
	default-image-translation-table
	define-font-alias
	destroy-pixmap-port
	dither-color-spec
	draw-arc
	draw-arcs
	draw-character
	draw-circle
	draw-ellipse
	draw-image
	draw-line
	draw-lines
	draw-path
	draw-point
	draw-points
	draw-polygon
	draw-polygons
	draw-rectangle
	draw-rectangles
	draw-string
	ensure-gdiplus
	external-image
	external-image-color-table
	externalize-and-write-image
	externalize-image
	f2pi
	find-best-font
	find-matching-fonts
	font
	font-description
	font-description
	font-description-attributes
	font-description-attribute-value
	font-dual-width-p
	font-fixed-width-p
	font-single-width-p
	fpi
	fpi-by-2
	free-image
	free-image-access
	get-bounds
	get-character-extent
	get-char-ascent
	get-char-descent
	get-char-width
	get-enclosing-rectangle
	get-font-ascent
	get-font-average-width
	get-font-descent
	get-font-height
	get-font-width
	get-graphics-state
	get-origin
	get-string-extent
	get-transform-scale
	graphics-port-background
	graphics-port-font
	graphics-port-foreground
	graphics-port-mixin
	graphics-port-transform
	graphics-state
	image
	image-access-height
	image-access-pixel
	image-access-pixels-from-bgra
	image-access-pixels-to-bgra
	image-access-transfer-from-image
	image-access-transfer-to-image
	image-access-width
	image-freed-p
	image-loader
	image-translation
	initialize-dithers
	inset-rectangle
	inside-rectangle
	invalidate-rectangle
	invalidate-rectangle-from-points
	invert-transform
	list-all-font-names
	list-known-image-formats
	load-icon-image
	load-image
	make-dither
	make-font-description
	make-graphics-state
	make-image
	make-image-access
	make-image-from-port
	make-scaled-sub-image
	make-sub-image
	make-transform
	merge-font-descriptions
	offset-rectangle
	ordered-rectangle-union
	pi-by-2
	pixblt
	pixmap-port
	port-drawing-mode-quality-p
	port-graphics-state
	port-height
	port-owner
	port-string-height
	port-string-width
	port-width
	postmultiply-transforms
	premultiply-transforms
	read-and-convert-external-image
	read-external-image
	rectangle-bind
	rectangle-bottom
	rectangle-height
	rectangle-left
	rectangle-right
	rectangle-top
	rectangle-union
	rectangle-width
	rect-bind
	register-image-load-function
	register-image-translation
	reset-image-translation-table
	separation
	set-default-image-load-function
	set-graphics-port-coordinates
	set-graphics-state
	transform
	transform-area
	transform-distance
	transform-distances
	transform-is-rotated
	transform-point
	transform-points
	transform-rect
	undefine-font-alias
	union-rectangle
	unit-transform
	unit-transform-p
	unless-empty-rect-bind
	untransform-distance
	untransform-distances
	untransform-point
	untransform-points
	validate-rectangle
	with-dither
	with-graphics-mask
	with-graphics-post-translation
	with-graphics-rotation
	with-graphics-scale
	with-graphics-state
	with-graphics-transform
	with-graphics-transform-reset
	with-graphics-translation
	with-inverse-graphics
	without-relative-drawing
	with-pixmap-graphics-port
	with-transformed-area
	with-transformed-point
	with-transformed-points
	with-transformed-rect
	write-external-image

	23 LW-GT Reference Entries
	apply-drawing-object
	basic-graph-spec
	basic-graph-spec-p
	compound-drawing-object
	compute-drawing-object-from-data
	copy-basic-graph-spec
	drawing-object
	fit-object
	force-objects-redraw
	generate-bar-chart
	generate-graph-from-graph-spec
	generate-graph-from-pairs
	generate-grid-lines
	generate-labels
	geometry-drawing-object
	make-absolute-drawing
	make-absolute-drawing*
	make-a-drawing-call
	make-basic-graph-spec
	make-draw-arc
	make-draw-circle
	make-draw-ellipse
	make-draw-line
	make-draw-lines
	make-draw-polygon
	make-draw-rectangle
	make-draw-string
	make-pinboard-objects-displayer
	objects-displayer
	pinboard-objects-displayer
	position-and-fit-object
	position-object
	recurse-compute-drawing-object
	rotate-object
	string-drawing-object

	24 COLOR Reference Entries
	apropos-color-alias-names
	apropos-color-names
	apropos-color-spec-names
	color-alpha
	color-blue
	color-database
	color-from-premultiplied
	color-green
	color-hue
	color-level
	color-model
	color-red
	colors=
	color-saturation
	color-to-premultiplied
	color-value
	color-with-alpha
	convert-color
	define-color-alias
	define-color-models
	delete-color-translation
	ensure-color
	ensure-gray
	ensure-hsv
	ensure-model-color
	ensure-rgb
	get-all-color-names
	get-color-alias-translation
	get-color-spec
	load-color-database
	make-gray
	make-hsv
	make-rgb
	read-color-db
	unconvert-color

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Numerics
	Non-alaphanumerics

