
KnowledgeWorks and Prolog User
Guide
Version 8.0

1

Copyright and Trademarks
KnowledgeWorks and Prolog User Guide (Macintosh version)

Version 8.0

December 2021

Copyright © 2021 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in all copies and supporting documentation, and that the
name of M.I.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "as is"
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including all implied
warranties of merchantability and fitness. In no event shall M.I.T. be liable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright
and permission notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

2

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and
registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt III, as applicable. Rights reserved under the copyright laws of
the United States.

Address Telephone Fax

LispWorks Ltd
St. John's Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

From North America:
877 759 8839 (toll-free)

From elsewhere:
+44 1223 421860

From North America:
617 812 8283

From elsewhere:
+44 870 2206189

 www.lispworks.com

Copyright and Trademarks

3

www.lispworks.com

Contents

1 Introduction 8

1.1 KnowledgeWorks 8

1.2 Notation and conventions 10

2 Tutorial 11

2.1 Getting Started 11

2.2 Loading the Tutorial 12

2.3 Running the Tutorial 12

2.4 Browsers 13

2.5 KnowledgeWorks Listener 18

2.6 Debugging 19

2.7 Lisp Integration 21

2.8 Systems 22

2.9 Exiting KnowledgeWorks 23

3 Rules 24

3.1 Forward chaining 24

3.2 Backward Chaining 28

3.3 Common Lisp Interface 30

4 Objects 31

4.1 CLOS objects 31

4.2 Relational Database Objects 32

4.3 KnowledgeWorks Structures 37

5 The Programming Environment 38

5.1 The KnowledgeWorks Listener 38

5.2 The Editor 39

5.3 Clearing KnowledgeWorks 40

5.4 The System Browser 40

5.5 The Class Browser 41

5.6 The Objects Browser 44

5.7 The Rule Browser 46

5.8 Debugging with the Environment 47

5.9 Monitor Windows 47

4

6 Advanced Topics 50

6.1 Control Flow 50

6.2 Optimization 55

6.3 Use of Meta-Classes 58

6.4 Logical Dependencies and Truth Maintenance 59

6.5 Inferencing States 60

7 Reference Guide 62

all-debug 62

any 62

assert 63

clear-all 64

clear-rules 65

conflict-set 65

context 66

current-cycle 67

cut 67

cycle 68

defcontext 68

def-kb-class 70

def-kb-struct 71

def-named-kb-class 72

defrule 73

deftactic 74

destroy-inferencing-state 75

erase 76

fail 76

findall 77

findallset 77

find-inferencing-state 78

fire-rule 79

get-kb-object 80

infer 81

inferencing-state 81

inferencing-state-name 82

in-interpreter 83

instantiation 83

inst-bindings 84

inst-rulename 85

inst-token 85

kb-name 86

kw-class 87

lex 88

Contents

5

-lex 89

list-all-inferencing-states 90

make-inferencing-state 90

make-instance 91

mea 92

-mea 93

named-kb-object 94

no-debug 95

not 95

order 96

-order 97

print-verbose 98

priority 98

-priority 99

recency 100

-recency 101

reset 102

return 102

signal-kb-name-clash 103

specificity 103

-specificity 104

standard-context 105

standard-kb-object 106

start-cycle 106

start-kw 107

test 108

undefcontext 108

undefrule 109

with-rule-actions 110

Appendix A: Common Prolog 111

A.1 Introduction 111

A.2 Syntax 111

A.3 Defining Relations 112

A.4 Using The Logic Interpreter 112

A.5 Accessing Lisp From Common Prolog 114

A.6 Calling Prolog From Lisp 115

A.7 Debugging 119

A.8 Common Prolog Macros 123

A.9 Defining Definite Clause Grammars 123

A.10 Edinburgh Syntax 125

A.11 Graphic Development Environment 126

A.12 Built-in Predicates 126

A.13 Adding Built-in Predicates 129

Contents

6

A.14 Edinburgh Compatibility Predicates 130

Appendix B: Examples 131

B.1 The Tutorial 131

B.2 Explanation Facility 133

B.3 Uncertain Reasoning Facility 137

B.4 Other Examples 140

Appendix C: Implementation Notes 141

C.1 Forward Chainer 141

C.2 Backward Chainer 141

Appendix D: For More Information 143

D.1 General References 143

D.2 The LispWorks manuals 143

Appendix E: Converting Other Systems 145

E.1 OPS5 145

E.2 Prolog 147

Glossary 148

Index

Contents

7

1 Introduction

1.1 KnowledgeWorks

KnowledgeWorks® is a LispWorks® toolkit for building knowledge based systems. It is a multi-paradigm programming
environment which allows developers to express problems in terms of objects, rules, and procedures. This section provides
an historical perspective and an overview of the system.

1.1.1 Background

Broadly speaking, there have been two generations of commercial knowledge based system (KBS) shells. The first
generation of KBS shells were built on top of symbolic programming languages such as Lisp. These shells exhibited a high
degree of flexibility and functionality as a result, but suffered because of their lack of standardization, poor performance, and
inability to communicate with other applications. The second generation of KBS shells were generally written in C to attack
the latter two weaknesses of Lisp-based shells. However these C-based shells are inevitably less flexible, and exacerbate the
standardization issue. Although written in a C (a standard language), each C-based shell must re-invent a range of features
already provided as standard in every Common Lisp implementation, including the object-system and even elementary
structures like lists.

KnowledgeWorks addresses all of these issues by providing a high performance rule-based system for LispWorks. The latter
is a full and efficient Common Lisp implementation including the Common Lisp Object System (CLOS), and foreign
function interfaces to languages such as C, C++, and FORTRAN. Hence KnowledgeWorks constitutes a tightly integrated
multi-paradigm programming environment, allowing all the most powerful features of rule-based, object-oriented and
procedural approaches to be combined without abandoning accepted standards.

1.1.2 Technical Overview

KnowledgeWorks includes:

• High performance inferencing mechanisms:

forward chaining (OPS compatible).

backward chaining (Prolog compatible).

• A powerful standard object system (CLOS).

• A flexible standard procedural language (Common Lisp).

• Metaprotocols for extending the object and rule systems (MOP & MRP — see below).

• Support for multiple independent inferencing operations using inferencing state objects.

• A full set of graphical tools for developing and debugging knowledge bases.

• Built using the CAPI and integrated with the LispWorks IDE.

• Integration within larger applications, possibly following a completely different paradigm.

8

The parts of KnowledgeWorks

KnowledgeWorks rules perform pattern-matching directly over the object base (KnowledgeWorks CLOS objects and
KnowledgeWorks structures). Forward chaining rules use this pattern-matching to perform actions, while backward chaining
rules use it to deduce goals. The actions of forward chaining rules can call backward chaining rules, and the backward
chaining inference engine may also invoke the forward chainer. Forward chaining rules may be grouped to increase the
modularity of the rulebase and to introduce a mechanism for procedural control by explicit invocation of rule groups.

KnowledgeWorks CLOS objects are conventional CLOS objects with the simple addition of a mixin class providing
KnowledgeWorks functionality, and they can be used outside the rulebase as ordinary CLOS objects. Any existing CLOS
code may simply be reused and augmented with rules by adding the mixin to chosen classes.

LispWorks CLOS includes an implementation of the Meta Object Protocol (MOP) which allows the object system to be
extended and customized in a standard way. In the same spirit of self-reflection, KnowledgeWorks rule-based system can be
extended and customized using a Meta Rule Protocol (MRP) which allows meta-interpreters to be defined for rules. Together
these protocols mean that KnowledgeWorks defines a region rather than a point in space of KBS shells, and ensure that
developers are not constrained by the default behavior of the system.

KnowledgeWorks has a comprehensive programming environment that enables rapid development and debugging of
rulebases. Tools are provided that enable the interactive examination of classes and objects. Graphical debugging windows
allow forward and backward chaining rules to be single-stepped and monitored. The full LispWorks programming
environment and tools are also available, for example, the editor which allows rules to be defined and redefined incrementally
and dynamically (see the Editor User Guide). You can include KnowledgeWorks in a delivered runtime application if you
have LispWorks Enterprise Edition, LispWorks for iOS Runtime or LispWorks for Android Runtime. See the Delivery User
Guide for details.

1 Introduction

9

1.2 Notation and conventions

1.2.1 Prolog syntax

Syntax will be presented in BNF. Any other non-standard notation will be explained as used.

::= introduces a definition.

<..> token, or non-terminal symbol.

[..] delimits optional items.

* 0 or more repetitions of the previous token.

+ 1 or more repetitions of the previous token.

| separates alternatives.

1.2.2 Viewing example files

This manual sometimes refers to example files in the LispWorks library via a Lisp form like this:

(example-edit-file "kw/animal/defsystem")

These examples are Lisp source files in your LispWorks installation under lib/8-0-0-0/examples/. You can simply
evaluate the given form to view the example source file.

The examples files are in a read-only directory and therefore you should compile them inside the IDE (by the Editor
command Compile Buffer or the toolbar button or by choosing Buffer > Compile from the context menu), so it does not try
to write a fasl file.

If you want to manipulate an example file or compile it on the disk rather than in the IDE, then you need first to copy the file
elsewhere (most easily by using the Editor command Write File or by choosing File > Save As from the context menu).

1.2.3 Appearance of the graphical tools

Please note that your windows may differ in some respects from the illustrations given in this manual. This is because some
details are controlled by the window manager that you are using, not by LispWorks itself.

The screenshots in this manual show toolbars that may have been customized (using the context menu) so you might see
some differences from your setup.

1 Introduction

10

2 Tutorial

The tutorial is a simple example based on an animal guessing game. In this game the user thinks of an animal and the
program asks yes/no questions. Eventually the program mentions an explicit animal and asks whether it is correct. If so, the
game ends. If it is not correct it will ask what the animal was and ask for a question to distinguish it from its last guess. This
is a trivial example of a learning program. The tutorial assumes a certain familiarity with Lisp, LispWorks and the Common
Lisp Object System (CLOS).

All examples in this chapter assume that you are typing in expressions in a package that uses the KW package, for instance,
KW-USER.

2.1 Getting Started

To run the tutorial, put this form in your LispWorks initialization file (usually called .lispworks):

(require "kw")

Start LispWorks. The LispWorks menu bar and the LispWorks toolbar will appear. Note the position of the KnowledgeWorks
menu, which you will use to access the tools described in this manual.

KnowledgeWorks menu

11

2.2 Loading the Tutorial
KnowledgeWorks Listener

First bring up a KnowledgeWorks Listener by choosing Window > KnowledgeWorks > Listener from the LispWorks menu
bar. The KnowledgeWorks Listener accepts Lisp input as well as KnowledgeWorks input. Enter:

(in-package "KW-USER")

into the KnowledgeWorks Listener, and then change the current directory to that of the animals demo by entering:

(cd (lispworks:example-file "kw/animal/"))

If this fails, check the value of the Lisp variable *lispworks-directory*.

Load the tutorial by typing:

(load "defsystem")

to load the tutorial system definition, and:

(compile-system "ANIMAL" :load t :target-directory (get-temp-file))

to compile and load the rules and object base (CLOS objects). In interpreting these two commands, the KnowledgeWorks
Listener has behaved just like a Lisp Listener. In general, whenever input has no specific KnowledgeWorks interpretation, the
KnowledgeWorks Listener just accepts it as Lisp.

2.3 Running the Tutorial

First run the tutorial example a few times. Think of an animal and type (infer) into the listener. infer is a function which
starts the forward chaining engine. Popup question windows will appear, which require clicking on either Yes or No. If your
animal is guessed correctly, execution will terminate and the listener prompt will reappear. If the final guess is incorrect then:

1. Another popup will ask what the animal was. Type in the name of an animal and press Return (or click on OK). If the
animal is already known to the system this constitutes an error. A confirmer popup will inform you of this; click on
Confirm and execution will terminate.

2 Tutorial

12

2. You will be asked for a question to distinguish your animal from the system's last guess. Type in a question (again
without quotes or double-quotes) and press Return. Execution will terminate.

3. The tutorial may be restarted by typing (infer) again in the listener. This time the system will know about your new
animal and the question that distinguishes it. Every time the rule interpreter finishes, it will return and display in the
listener the number of rules the forward chaining engine fired.

2.4 Browsers

There are a number of browsers for examining the state of KnowledgeWorks. They will be introduced here, and again when
the Programming Environment is discussed in 5 The Programming Environment.

2.4.1 Rule Browser

KnowledgeWorks Rule Browser

This may be obtained by choosing Window > KnowledgeWorks > Rules. The defined forward chaining contexts (or rule
groups) are displayed in a drop-down list at the top. There is also a special pseudo-context for all the backward chaining
rules, which is shown initially. In this case, the only other context is named DEFAULT-CONTEXT. Below that are listed the
rules for the selected context. Choose DEFAULT-CONTEXT from the drop-down list and click on one of the rules, for example
PLAY, and edit it by choosing Rule > Find Source from the menu bar. An editor window will appear showing this rule
definition.

What this rule says is:

(root ?r node ?node)
(not (current-node ? node ?))
-->
((capi:display-message " ANIMAL GUESSING GAME - ~
 think of an animal to continue"))

2 Tutorial

13

(assert (current-node ? node ?node))

which means:

If the node ?node is the root node of the tree of questions, and there is no current node indicating the question about to be
asked, then tell the user to think of an animal and make the root node ?node the current node (so that the top question of the
tree will be asked next). This is the rule that starts the game by instructing: "if you haven't got a question you're about to ask,
ask the topmost question in the tree of questions". The detailed syntax of forward chaining rule definitions will be explained
in 3.1 Forward chaining.

Select "-- All backward rules --" from the drop-down list and bring up a backward chaining rule definition by
clicking on its name in the Rule Browser and choosing Rule > Find Source again. The detailed syntax of backward chaining
rules is in 3.2 Backward Chaining.

2.4.2 Objects Browser

KnowledgeWorks Objects Browser

The Objects Browser is for exploring the contents of the KnowledgeWorks object base. Start it by choosing Window >

2 Tutorial

14

KnowledgeWorks > Objects. The system knows about the CLOS objects that make up the object base. One class of CLOS
objects in this example is the node class so choose NODE from the Preset query/pattern drop-down. All the node objects in
the object base will be displayed in the pane below. Click on one of these objects and the bottom pane will display the slots
and slot values of the object.

To make the display clearer and allow input without explicit package qualifiers, change the package of the Objects Browser.
Do this via LispWorks > Preferences... > Objects Browser > Package. Edit the Package pane so that it says KW-USER and
press OK.

Now change the Query field to read (node ?object animal ?a) and press Return. The animals associated with each
node are displayed. In this game there is a tree of questions with each node object representing a question. Some nodes have
a nil value for the animal slot; these are the non-terminal nodes in the question tree. The program learns your new animals
by adding new nodes to the tree.

Now type ?a into the Pattern field (and press Return). This displays only the animals. The values displayed in the topmost
of the two panes is the Pattern field instantiated with every possible object that matches the Query field. However, if the
Pattern field is empty then the value of the Query field is taken to be the pattern.

Change the Query field to read (and (node ?n animal ?a) (test ?a)) and press Return.

2 Tutorial

15

Objects Browser matching animals

Only the non-nil animals are displayed.

2.4.3 Class Browser

2 Tutorial

16

KnowledgeWorks Class Browser

The Class Browser is obtained by choosing Window > KnowledgeWorks > Classes. This brings up the LispWorks Class
Browser with an initial focus on the class standard-kb-object. Select the Subclasses tab to display the subclasses of
standard-kb-object. Double click on NODE in the subclasses pane to examine the node class used in this tutorial. Select
the Slots tab to display its slots and click on one of the slots in the middle pane, for example the ANIMAL slot. This displays
more information about the slot in the Description pane.

Other useful features of the Class Browser include the Superclasses tab which display a graph of the superclasses; the
Hierarchy tab which displays direct superclasses and subclasses; and the Functions tab which displays the generic functions
or methods defined on a class either directly or through inheritance. For more information about the Class Browser, see the
LispWorks IDE User Guide.

2.4.4 Forward Chaining History

2 Tutorial

17

KnowledgeWorks Forward Chaining History

This is obtained by choosing Window > KnowledgeWorks > FC History. If you have just run the tutorial a window will
appear of which the left column contains the entry DEFAULT-CONTEXT. These are all the contexts (rule groups) the forward
chaining engine has executed (in this case only one). On the right is a detailed breakdown of what happened in each cycle
within this context. You will see the rule names listed down the left, and the cycle numbers along the top. The boxes indicate
which rules fired. In the last cycle, you will see a black box indicating that the rule GAME-FINISHED fired, and a outlined
box for the rule PLAY. This means that the rule PLAY could have fired, but that GAME-FINISHED was preferred.

Note: you can remove the package prefixes from displayed symbols by setting the current package of the FC History tool to
KW-USER, in the same way as you did for the Objects Browser tool (see 2.4.2 Objects Browser).

Look at the definition for GAME-FINISHED (find the source using the Rule Browser) and notice that it contains
:priority 15. This means that the GAME-FINISHED rule has higher priority than the PLAY rule (which has the default
value of 10), and so was preferred. Other methods of conflict resolution are also available.

2.5 KnowledgeWorks Listener

The KnowledgeWorks Listener has already been shown to function as a Lisp Listener. However it extends this with the
ability of the Objects Browser to match objects. When using the Objects Browser the Query pane contained patterns which
could be matched against the Object Base. These same patterns can be entered into the KnowledgeWorks Listener. Enter
(node ?object) into the Listener. This asks "Are there any node objects?". A NODE object will be returned. To ask for
more solutions press the Next button. If there are more you will be shown another, otherwise the listener displays the word
NO and the listener prompt reappears. If you do not want to see any more, just press the Return key.

Try entering some of the other expressions from the Objects Browser, for example
(and (node ?n animal ?a) (test ?a)). If the input is not recognized it is treated as Lisp.

2 Tutorial

18

2.6 Debugging

2.6.1 Monitoring Forward Chaining Rules

KnowledgeWorks Rule Monitor

One of the problems with forward chaining rules is determining why they are (or are not) being matched. To deal with this
KnowledgeWorks has Monitor Windows for forward chaining rules. To bring up a Monitor Window, select the
DEFAULT-CONTEXT in the Rule Browser, click on PLAY and choose Rule > Monitor. Alternatively you can use the context
menu to raise the Rule Monitor window. A Rule Monitor window appears displaying in its upper pane the conditions of the
rule. Both are highlighted meaning they are matched (as single conditions without reference to any variable bindings across
conditions) in the object base. If you select one or more of these conditions, the message will change from "Number of
instantiations matching selected conditions: <n>" to "No instantiations matching selected conditions" depending on whether
objects can be found in the object base to match all the selected conditions at once (this takes account of variables bound
across conditions).

By selecting the All Unfired Instantiations button, you can list any unfired instantiations of the rule. In this case there is one
unfired instantiation. Selecting this in the lower pane and then choosing Instantiations > Inspect raises an Inspector tool
displaying the variable bindings in the instantiation.

You can have any number of monitor windows (though at most one per rule). At times (during rule execution, for example)
the object base may change. Monitor windows can be updated by choosing Window > Refresh from the Rule Monitor menu
bar, or Memory > Update Monitor Windows from the KnowledgeWorks Listener. When you are single-stepping through rules

2 Tutorial

19

(see below) Monitor windows are updated automatically.

2.6.2 Single-Stepping Rules

KnowledgeWorks Gspy Window

Select a rule, say, Y-N-QUESTION, in the Rule Browser and choose Rule > GSpy from the menu bar. This brings up a Spy
Window for the rule. In it you will see the actions of the rule.

Now enter (infer) in the Listener to run the demo again. Execution will stop when this rule fires. A message in the listener
will say that the rule Y-N-QUESTION has been called. Click on the Creep button at the bottom of the Listener to single step
through the rule. Watch the highlight move through the Spy Window as you go. If you still have a Monitor Window for the
PLAY rule it will be updated automatically as you go.

Click on Leap at the bottom of the Listener and it will "leap" to the end of the rule. When you have finished, close the Spy
Window (for example by Window > Close Window) and press Leap in the Listener window to remove the break point and
continue normally.

At any point when rule execution is suspended by this mechanism, the other KnowledgeWorks tools may be used, for
example to examine the object base (with the Objects Browser) or see which rules have fired (with the forward chaining
history). Spy Windows are available for backward chaining rules as well, and they work in exactly the same way (they are set
by selecting the rule in the Rule Browser and choosing Rule > Gspy).

2.6.3 Editing Rule Definitions

2 Tutorial

20

KnowledgeWorks Editor

Let us suppose that when the demo finishes we would like it to ask if we want to play again. Find the definition for
GAME-FINISHED (using the Rule Browser). One line in the definition is commented out with a ; (semi-colon) at the start.
Remove the semi-colon and compile the new definition by choosing Definitions > Compile from the editor menu bar. Press
Space to return to the editor view. This rule will now ask if the user wants to play again and execution will only stop (the
(return) instruction ends execution) if requested. Run the demo to see this happen.

The rule FETCH-NEW-ANIMAL also has a commented-out line (repeat) which will make it repeat its prompt until given an
animal it does not already know. Remove the semi-colon at the start of the line in and compile the new definition of the rule.
Run the demo again and try giving the system an animal it recognizes. It will prompt again. Give it an animal it does not
recognize to finish.

2.7 Lisp Integration

You can save your object base of animals by entering:

(save-animals "my-animal-objs.lisp")

into the Listener. In the file of rules "animal-rules.lisp" look at the function save-animals which does this. Note
how the Lisp code directly uses the same objects as the rules. If we used the Lisp code to modify the slots of the objects the
KnowledgeWorks rule interpreter would keep track.

Note: KnowledgeWorks CLOS objects are ordinary CLOS objects and can be used outside KnowledgeWorks rules.

2 Tutorial

21

2.7.1 The LispWorks IDE

The entire programming environment of the LispWorks IDE is available from the menus on the LispWorks menu bar and the
LispWorks toolbar. See the LispWorks IDE User Guide for more details.

2.8 Systems
KnowledgeWorks System Browser

If you are familiar with LispWorks system definitions, look at the system definition for the animal demo, by evaluating:

(example-edit-file "kw/animal/defsystem")

It contains systems with type :kb-system and :kb-init-system. Examine the components of each system (which can be
source files or subsystems) using the System Browser which is available from the Editor via Esc X Describe System or
File > Browse Parent System.

Systems with type :kb-system are reloaded when the rules are cleared. Systems with type :kb-init-system are reloaded
when the object base is cleared.

Try this out by finding the KnowledgeWorks Listener and choosing Memory > Clear Objects and Rules. Then enter
(load-system "ANIMAL") into the KnowledgeWorks Listener to reload the system animal. Both the files
animal-rules and animal-objs are reloaded. Now choose Memory > Clear Objects and reload the animal system again
and note how only the file animal-objs is reloaded.

2 Tutorial

22

2.9 Exiting KnowledgeWorks

KnowledgeWorks is integrated with LispWorks so you cannot exit from KnowledgeWorks independently. You can close
individual KnowledgeWorks windows by Window > Close Window. You can exit LispWorks by choosing LispWorks > Quit
LispWorks. If you have any unsaved edited files you will be asked whether you wish to save them. There will be a final
confirmation before KnowledgeWorks quits.

2 Tutorial

23

3 Rules

KnowledgeWorks rules are defined as follows:

<rule> ::=
 (defrule <rule-name> <direction> [<doc-string>] <body>)

<direction> ::= {:forward | :backward}

Every rule must have a unique name which must also be distinct from any KnowledgeWorks object class name and from any
context (rule-group) name. The expressions which form the body of a rule have the same syntax and meaning regardless of
whether they occur on the left or right hand side of a forward or backward chaining rule. If doc-string is given, then it should
be a string. The value can be retrieved by calling the function documentation with doc-type rule.

3.1 Forward chaining

3.1.1 Overview

Forward chaining rules consist of a condition part and an action part. The condition part contains conditions which are
matched against the object base. If and only if all the conditions are matched, the rule may fire. If the rule is selected to fire,
the actions it performs are given in the action part of the rule. The process of selecting and firing a rule is known as the
Forward Chaining Cycle, and the forward chaining engine cycles repeatedly until it runs out of rules or a rule instructs it to
stop. KnowledgeWorks forward chaining rules reside in a group of rules, or context, and may have a priority number
associated with them for conflict resolution (choosing which of a set of eligible rules may fire).

3.1.2 Forward Chaining Syntax

Forward chaining rule bodies are defined by:

<body> ::=
 [:context <context-name>]
 [:priority <priority-number>]
 <forward-condition>* --> <expression>*)

where <context-name> is the name of a context which has already been defined (see 3.1.5 Control Flow) defaulting to
default-context, and <priority-number> is a number (see 3.1.5 Control Flow) defaulting to 10.

The syntax for forward-conditions is:

<forward-condition> ::=
 <object-condition>
 | (test <lisp-expr>)
 | (not <forward-condition>+)
 | (logical <forward-condition>+)

<object-condition> ::=
 (<class-name> <variable> [<object-slot-condition>]*)

24

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

<object-slot-condition> ::=
 <slot-name> <term>

<object-condition> is an object-base match where the variables (introduced by "?") in <term> are bound (via
destructuring) to the corresponding data in the slot named by <slot-name>. <variable> is a single variable bound to the
object matched.

Note: "?" on its own denotes an anonymous variable which always matches.

(test <lisp-expr>) is a Lisp test where <lisp-expr> is any Lisp expression using the variables bound by other
conditions, and which must succeed (return non-nil) for the condition to match. Computationally cheap Lisp tests can
frequently be used to reduce the search space created by the object base conditions. Lisp tests, and any functions invoked by
them, should not depend on any dynamic global data structures, as changing such structures (and hence the instantiations of
the rule) will be invisible to the inference engine. Lisp tests can depend on the values of slots in objects matched by
preceding object-base conditions only if the values are bound to variables in the rule using the <object-slot-condition>
syntax. They cannot depend on values obtained by calling slot-value or a reader function.

(not <forward-condition>+) is simply a negated condition. A negated condition never binds any variables outside its
scope. Variables not bound before the negation will remain unbound after it.

(logical <forward-condition>+) is used to indicate clauses that describe the logical dependencies amongst objects.
See 6.4 Logical Dependencies and Truth Maintenancefor more details.

Note that if a forward chaining rule contains any conditions at all then it must contain at least one object base reference of the
form:

(<class-name> <variable> ...)

The syntax for expressions is:

<expression> ::=
 <forward-condition>
 |(erase <variable>)
 |(assert (<class-name> <variable>
 [<slot-name> <term>]*))
 |(context <context-list>)
 |(return)
 |(<lisp-expr> <term>*)
 |<goal>

<forward-condition> is a forward condition which must succeed for execution of the action part of the rule to continue.

(erase <variable>) removes the instance bound to <variable> from the knowledge base. It is an error if <variable>
is bound to anything but a KnowledgeWorks instance.

(assert (<class-name> <variable> [<slot-name> <term>]*)) is an assertion which modifies the contents of
the object base, where if <variable> is unbound a new object of the given class with the given slot-values is created, and if
it is bound, the object to which it is bound has its slots modified to the given values.

(context <context-list>) adds the given list of contexts to the top of agenda (see 3.1.5 Control Flow).

(return) passes control to the top context on the agenda and removes it from the agenda (see 3.1.5 Control Flow).

(<lisp-expr> <term>*) binds the result or results of calling <lisp-expr> to the <term>s with execution of the rule
terminating if any bindings fail (if no <term>s are given execution will always continue).

<goal> may be any backward chaining goal expression (see 3.2 Backward Chaining).

Note that in the action part of a rule, only backward chaining goals and object base matches invoke the backward chainer.

3 Rules

25

http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm

3.1.2.1 Example

(defrule move-train :forward
 :context train
 (train ?train position ?train-pos)
 (signal ?signal position ?signal-pos
 color green)
 (test (= ?signal-pos (1+ ?train-pos)))
-->
 ((format t "~%Train moving to position ~s"
 ?signal-pos))
 (assert (signal ?signal color red))
 (assert (train ?train position ?signal-pos)))

specifies that if there is a train with a green signal directly in front then the train may move on and the signal changes to red.

3.1.3 Defining Forward Chaining Rules

Forward chaining rules may be defined and redefined incrementally. When redefined all the instantiations of the rule are
recreated. This means that during execution of a rulebase the redefinition capability should be used with care as previously
fired instantiations will reappear and may fire again.

When a rule is redefined it inherits its order (with respect to the order conflict resolution tactic) from its initial definition. If
this is not required, the rule should be explicitly undefined before being redefined.

A forward chaining rule may be undefined by entering:

(undefrule <rule-name>)

A warning will be given if the rule does not exist.

3.1.3.1 Example

(undefrule move-train)

3.1.4 The Forward Chaining Interpreter

The forward chaining rule interpreter may be invoked by the Lisp function:

(infer [:contexts <context-list>])

where <context-list> is a list of contexts where control is passed immediately to the first in the list, and the rest are
placed at the top of the agenda. The object base may or may not be empty when the forward chainer is started. The infer
function returns the final cycle number. When not specified, <context-list> defaults to (default-context).

3.1.5 Control Flow

3.1.5.1 The Agenda

The agenda is essentially a stack of rule groups (called contexts) which are still awaiting execution. The initial invocation of
the forward chainer and any subsequent rule can cause contexts to be added to the top of the agenda. During normal
execution the forward chainer simply proceeds down the agenda context by context. When the agenda is empty, passing
control on will terminate the execution of the rule interpreter. This is a proper way to exit the forward chainer.

3 Rules

26

3.1.5.2 Contexts

Contexts are the groups into which rules are partitioned. The context default-context always exists. Contexts are defined
by:

<context> ::=
 (defcontext <context-name>
 [:strategy <CRS>]
 [:auto-return t | nil]
 [:meta <meta-actions>])
 [:documentation <doc-string>])

where <context-name> is a symbol, <CRS> is a conflict resolution strategy defaulting to (priority recency order)

(see below). If :auto-return is set to t (the default) then when the context has no more rules to fire, control passes to the
next context on the agenda, but if it is nil an error occurs (a rule in the context should have issued a (return) instruction
explicitly). The :meta option is necessary only if the default behavior of the context is to be modified and is explained in
6.1.1 Meta Rule Protocol. If :documentation is given, then doc-string should be a string and the value can be retrieved
by calling the function documentation with doc-type context.

3.1.5.3 Conflict Resolution

Every context has its own conflict resolution strategy, specified in the defcontext form. A conflict resolution strategy is an
ordered list of conflict resolution tactics. A conflict resolution tactic may be any of the following:

priority Instantiations of rules with the highest priority are preferred.

-priority Instantiations of rules with the lowest priority are preferred.

recency The most recently created instantiations are preferred.

-recency The least recently created instantiations are preferred.

order Instantiations of rules defined/loaded earliest are preferred. This favors the topmost rules in a
file.

-order Instantiations of rules defined/loaded latest are preferred.

specificity The most specific rules are preferred (specificity is a score where a point is awarded for every
occurrence of a variable after the first, every Lisp test, and every destructuring expression; the
highest score wins).

-specificity The least specific rules are preferred.

mea MEA stands for Means End Analysis. Instantiations are preferred where the object
corresponding to the topmost object-matching condition is more recently modified.

-mea Instantiations are preferred where the object corresponding to the topmost object-matching
condition is less recently modified.

lex LEX stands for LEXicographic. Each instantiation is represented by the (in descending order)
sorted list of the most recently modified cycle numbers of the objects in the instantiation; these
lists are compared place by place with an instantiation being preferred if it first has a larger
number in a particular position, or if it runs out first (hence the analogy with lexicographic
ordering).

-lex The converse of the above.

The tactics are applied successively starting with the left-most until only one instantiation is left or until all tactics have been
applied when it is unspecified which of the resulting set is chosen. For example, using the strategy (priority recency)

3 Rules

27

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

first all the instantiations which are not of the highest priority rule or rules (as given by the rule's priority number) are
discarded and then all instantiations which were not created in the same forward chaining cycle as the most recently created
instantiation will be discarded. If more than one instantiation is left it is unspecified which will be selected to fire.

Note that the strategy (lex specificity) is equivalent to the OPS5 strategy LEX and (mea lex specificity) is
equivalent to the OPS5 strategy MEA, hence the borrowing of these terms. For further information on LEX and MEA in
OPS5 the reader is referred to Programming Expert Systems in OPS5, by Brownston, Farrell, Kant and Martin (published by
Addison-Wesley). However, KnowledgeWorks is not heavily optimized to use the tactics mea, -mea, lex or -lex.

3.1.6 Examples

(defcontext trains
 :strategy (priority recency order)
 :auto-return t)
(defcontext trains)

These two definitions are in fact equivalent.

3.1.6.1 Defining Contexts

A context may be defined and redefined. Redefining a context will clear all the rules in the context.

A context may be undefined and removed by entering:

(undefcontext <context-name>)

3.1.7 Forward Chaining Debugging

Forward chaining debugging may be turned on by typing:

(all-debug)

and off by typing:

(no-debug)

When KnowledgeWorks is started, debugging is on. Debugging allows the actions of forward chaining rules to be single-
stepped like backward chaining rules (see 3.2.7 Backward Chaining Debugging), and also records information on which
objects are modified by which rules. For information on how to use the debugging tools, refer to 5 The Programming
Environment.

3.2 Backward Chaining

3.2.1 Overview

Backward chaining involves trying to prove a given goal by using rules to generate sub-goals and recursively trying to satisfy
those. The KnowledgeWorks backward chaining engine is an extension of the LispWorks Common Prolog system which can
match directly over KnowledgeWorks CLOS objects (the object base). All the standard Common Prolog facilities and built in
predicates are available. For more detailed information the reader is referred to the Appendix A: Common Prolog. Note
that all the different ways of proving a particular goal are defined together in the same form.

3 Rules

28

3.2.2 Backward Chaining Syntax

Backward chaining rule bodies are defined as:

<body> ::= <clause>+
<clause> ::= (<goal> <-- <expression>*)
<goal> ::= (<rule-name> <term>*)

In each sub-clause of the rule, the goal must have the same arity (number of arguments). Within each <term> destructuring
is allowed and variables are introduced by ? (and ? on its own denotes the anonymous variable which always matches).
<expression> is as defined in 3.1.2 Forward Chaining Syntax.

3.2.2.1 Example

(defrule link-exists :backward
 ((link-exists ?town1 ?town2)
 <--
 (or (link ?link town1 ?town1 town2 ?town2)
 (link ?link town2 ?town1 town1 ?town2))
 (cut))((link-exists ?town1 ?town2)
 <--
 (route-exists ?town1 ?town2)))

which says that a link exists between two towns either if there is a link object between them in the object base or if there is a
route between the towns. The route-exists predicate would be defined by another backward chaining rule, or might be in
the Prolog database.

3.2.3 Objects

Backward chaining rules may refer to the object base using the standard
(<class-name> <variable> [<slot-name> <term>]*) syntax, and these expressions are instantiated directly
without creating any sub-goals. The <class-name> of any CLOS class or KnowledgeWorks structure may not coincide with
any backward chaining <rule-name>. The Common Prolog database may be used to record factual information but it is
distinct from the object base in that it may contain variables, and anything in it is inaccessible to the forward chaining rule
preconditions.

3.2.4 Defining Backward Chaining Rules

Backward chaining rules may be defined and redefined incrementally.

3.2.5 The Backward Chaining Interpreter

The backward chaining interpreter can be invoked from Lisp by the following functions:

(any expr-to-instantiate expr-to-prove)

which finds any solution to expr-to-prove and instantiates expr-to-instantiate, and:

(findall expr-to-instantiate expr-to-prove)

finds all the solutions to expr-to-prove, instantiates expr-to-instantiate for each and returns these in a list.

For other interface functions to be called from Lisp the reader is referred to Appendix A: Common Prolog.

3 Rules

29

From the action part of a forward chaining rule the backward chainer is called implicitly when a CLOS match or goal
expression is used. The action part of forward chaining rules and the antecedents of backward chaining rules are syntactically
and semantically identical.

3.2.5.1 Examples

(any '(?x is in (1 2 3)) '(member ?x (1 2 3)))

returns:

(1 is in (1 2 3))

The following expression:

(findall '(?x is in (1 2 3)) '(member ?x (1 2 3)))

returns:

((1 is in (1 2 3))(2 is in (1 2 3))(3 is in (1 2 3)))

3.2.6 Edinburgh Prolog Translator

Edinburgh syntax Prolog files may be compiled and loaded if they are given .pl as a file extension. These are completely
compatible with the KnowledgeWorks backward chaining rules. For more details refer to A.10 Edinburgh Syntax.

3.2.7 Backward Chaining Debugging

Backward chaining debugging follows the Prolog four port model. Backward chaining rules may be "spied" (this is a Prolog
term which corresponds to tracing and single-stepping) which puts a break-point on them and means they can be single-
stepped when they are invoked. When forward chaining debugging is on, the action part of forward chaining rules can be
spied and single-stepped in the same way when they are fired. 5 The Programming Environment, explains this in detail.
The leashing of the ports can be adjusted, details are to be found in A.7 Debugging.

3.3 Common Lisp Interface

Arbitrary Lisp expressions may be called from rules. See 3.1.2 Forward Chaining Syntax.

3 Rules

30

4 Objects

The object base contains KnowledgeWorks CLOS objects (including relational database objects) and KnowledgeWorks
structures. KnowledgeWorks CLOS objects can be treated as ordinary CLOS objects and may be manipulated directly from
Lisp. KnowledgeWorks relational database objects may transparently retrieve their slot values from a relational database
using the LispWorks object-oriented relational database interface.

KnowledgeWorks structures are more efficient but reduced functionality CLOS objects similar in spirit to Lisp structures.
Values in the slots of these objects should not be destructively modified unless these values are themselves KnowledgeWorks
objects. This is because the rule interpreter keeps track of the changes to the slots, and a destructive operation is likely to
bypass this process.

4.1 CLOS objects

A KnowledgeWorks CLOS class may not have a class name which coincides with any rule, context or KnowledgeWorks
structure (See 4.3 KnowledgeWorks Structures). KnowledgeWorks CLOS classes fall into one of two categories, either
unnamed or named. Named objects can be given a name (or they use a default name) and can be referred to by name.
Otherwise, named and unnamed objects have equivalent functionality. CLOS objects may be made by the Common Lisp
function make-instance, taking the same arguments. An unbound slot will return :unbound until set.

Name clashes are arbitrated by *signal-kb-name-clash* and signal an error by default. See the reference manual page.

4.1.1 Unnamed Classes

Unnamed classes may be defined by the macro def-kb-class which takes the same arguments as the defclass macro. It
is identical to using defclass and supplying the KnowledgeWorks mixin standard-kb-object if none of the superclasses
already contains it. The function make-instance may be used to create instances of the class.

4.1.2 Named Classes

A named KnowledgeWorks CLOS class is defined by the macro def-named-kb-class which is syntactically identical to
the Common Lisp defclass macro, and semantically identical with the exception that it adds a KnowledgeWorks mixin
class named-kb-object if none of the superclasses already contains it, and makes the default name for the objects be a
symbol generated from the class name. Classes defined by def-named-kb-class contain a name slot which those defined
by def-kb-class do not.

The function make-instance can be given the initialization argument :kb-name to specify a name. If not specified, a
default name is generated from the name of the class. All names must be distinct as regarded by eq. The function:

(get-kb-object <name>)

retrieves the instance from its name. The function:

(kb-name <object>)

returns the name of the given object.

31

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm

4.1.2.1 Examples

(def-named-kb-class truck ()
 ((location :initarg :location)
 (destination :initarg :destination)))
(make-instance 'truck
 :kb-name 'ford1
 :location 'Cambridge)

creates the instance #<KB-OBJECT FORD1>.

(make-instance 'truck :location 'London)

creates the instance #<KB-OBJECT TRUCK123>, and:

(get-kb-object 'ford1)

returns #<KB-OBJECT FORD1> and:

(kb-name (get-kb-object 'ford1))

returns FORD1. The class definition:

(defclass truck (named-kb-object) ...)

would have been identical except that the second truck would have been given a name such as OBJECT345 rather than
TRUCK123 (as def-named-kb-class overrides the inherited initform for the kb-name slot (gentemp "OBJECT") with a
more specific one (gentemp <class-name>)).

4.2 Relational Database Objects

A CLOS/SQL class may also be given the KnowledgeWorks mixin class, enabling rules to refer to these objects as if there
were no database present. However, their database functionality carries over transparently. For example, consider the case
where a slot in the database class is designated for deferred retrieval from the database. When the rulebase queries the
contents of the slot, a database query will automatically be generated to retrieve and fill in the value of the slot, and the
rulebase will continue as if the value had been there in the first place.

Details of the LispWorks Common SQL interface can be found in the LispWorks® User Guide and Reference Manual.

4.2.1 Example

(sql:def-view-class vehicle
 (standard-db-object standard-kb-object)
 ((vehicle_no :db-kind :key)
 (keeper)
 (owner :db-kind :join
 :db-info (:home-key :keeper
 :foreign-key person_id
 :retrieval :deferred
 :join-class person))))

defines a database class vehicle where the person object in the keeper slot is retrieved from the person table in the
database using the value of the keeper slot as key, only when queried. In the list of superclasses, standard-kb-object
should appear after sql:standard-db-object.

4 Objects

32

4.2.2 Extended Example

The following example is a complete segment of code which allocates person objects to vehicle objects. Note how once the
class definitions have been made, the rules do not in any way reflect the fact that there is an underlying database. The
example output assumes a database initialized by the following SQL statements:

drop table VEHICLE ;
create table VEHICLE
 (PLATE CHAR(8) NOT NULL, MAKE CHAR(20),
 PRICE INTEGER, OWNER CHAR(20));
grant all on VEHICLE to public ;
insert into VEHICLE values
 ('E265 FOO', 'VAUXHALL', 5000, '');
insert into VEHICLE values
 ('XDG 792S', 'ROLLS', 50000, '');
insert into VEHICLE values
 ('F360 OOL', 'FORD', 4000, 'PERSEPHONE');
insert into VEHICLE values
 ('H151 EEE', 'JAGUAR', 15000, '');
insert into VEHICLE values
 ('G722 HAD', 'SKODA', 500, '');

drop table PERSON ;
create table PERSON
 (NAME CHAR(20) NOT NULL, SALARY INTEGER, VEHICLE CHAR(8),
 EMPLOYER CHAR(20)) ;
insert into PERSON values ('FRED', 10000, '', 'IBM');
insert into PERSON values ('HARRY', 20000, '', 'FORD');
insert into PERSON values ('PHOEBE', 5000, '', '');
insert into PERSON values ('TOM', 50000, '', 'ACME');
insert into PERSON values
 ('PERSEPHONE', 15000, 'F360 OOL', 'ICL');

drop table COMPANY ;
create table COMPANY
 (NAME CHAR (20), PRODUCT CHAR(10));
insert into COMPANY values ('IBM', 'COMPUTERS');
insert into COMPANY values ('FORD', 'CARS');
insert into COMPANY values ('ICL', 'COMPUTERS');
insert into COMPANY values ('ACME', 'TEAPOTS');

Below is an example rulebase that analyzes the database and outputs a suggestion as to which vehicle should be allocated to
which person. The full code and the SQL statements to set up the database are included in the examples distributed with
KnowledgeWorks.

(in-package "KW-USER")

;;; the vehicle class maps onto the car table in the
;;; database owner is a join slot which looks up the
;;; owner person object

(sql:def-view-class vehicle
 (sql:standard-db-object standard-kb-object)
 ((number-plate :accessor vehicle-number-plate
 :type (string 8)
 :db-kind :key
 :column plate)
 (make :accessor vehicle-make
 :type (string 20)
 :db-kind :base
 :column make)
 (price :accessor vehicle-price
 :type integer
 :db-kind :base

4 Objects

33

 :column price)
 (owner-name :type (string 20)
 :db-kind :base
 :column owner)
 (owner :accessor vehicle-owner
 :db-kind :join
 :db-info (:home-key owner-name
 :foreign-key name
 :join-class person
 :set nil
 :retrieval :deferred))))

;;; the person class maps onto the person table in the
;;; database
;;; vehicle is a join slot which looks up the owned
;;; vehicle object
;;; company is a join slot which looks up the company
;;; object

(sql:def-view-class person
 (sql:standard-db-object standard-kb-object)
 ((name :accessor person-name
 :type (string 20)
 :db-kind :key
 :column name)
 (salary :accessor person-salary
 :type integer
 :db-kind :base
 :column salary)
 (vehicle-number-plate :type (string 8)
 :db-kind :base
 :column vehicle)
 (vehicle :accessor person-vehicle
 :db-kind :join
 :db-info (:home-key vehicle-number-plate
 :foreign-key number-plate
 :join-class vehicle
 :set nil
 :retrieval :deferred))
 (employer :type (string 20)
 :db-kind :base
 :column employer)
 (company :accessor person-company
 :db-kind :join
 :db-info (:home-key employer
 :foreign-key name
 :join-class company
 :set nil
 :retrieval :deferred))))

;;; the company class maps onto the company table in
;;; the database

(sql:def-view-class company
 (sql:standard-db-object standard-kb-object)
 ((name :accessor company-name
 :type (string 20)
 :db-kind :key
 :column name)
 (product :accessor company-product
 :type (string 10)
 :db-kind :base
 :column product)))

;;; here we assume we have a database connected with
;;; the correct data in it - if we do we retrieve all

4 Objects

34

;;; the person and vehicle objects but company objects
;;; will be retrieved only when needed by querying
;;; the company slot of the person objects

(if sql:*default-database*
 (progn (sql:select 'vehicle)
 (sql:select 'person))
 (format t
 "~%Please connect to a database with
 contents ~ created by file data.sql"))
;;; to store which vehicles a person can drive
(def-kb-struct vehicles-for-person person vehicles)
(defcontext database-example :strategy (priority))

;;; for every person initialize the list of vehicles they
;;; can drive

(defrule init-vehicles-for-person :forward
 :context database-example
 (person ?person vehicle nil)
 -->
 (assert (vehicles-for-person ? person ?person vehicles nil)))

;;; for every vehicle a person can drive which has not yet
;;; been included in the list, add it to the list

(defrule vehicle-for-person :forward
 :context database-example
 (person ?person vehicle nil)
 (vehicle ?vehicle owner nil)
 (vehicles-for-person ?c-f-p
 person ?person
 vehicles ?vehicles)
 (test (not (member ?vehicle ?vehicles)))
 ; has it been included?
 -->
 (vehicle-ok-for-person ?vehicle ?person)
 ; check if ok to drive vehicle
 (assert (vehicles-for-person ?c-f-p vehicles
 (?vehicle . ?vehicles))))

;;; rules expressing what vehicles a person can drive:
;;; if they have no employer they can only drive a
;;; Skoda otherwise they will refuse to drive a Skoda.
;;; anyone will drive a Rolls or a Jaguar.
;;; they'll only drive a Ford or Vauxhall if salary is
;;; less than 40k.

(defrule vehicle-ok-for-person :backward
 ((vehicle-ok-for-person ?vehicle ?person)
 <--
 (person ?person company nil)
 (cut)
 (vehicle ?vehicle make "SKODA"))
 ((vehicle-ok-for-person ?vehicle ?person)
 <--
 (vehicle ?vehicle make "SKODA")
 (cut)
 (fail))
 ((vehicle-ok-for-person ?vehicle ?person)
 <--
 (or (vehicle ?vehicle make "ROLLS")
 (vehicle ?vehicle make "JAGUAR"))
 (cut))
 ((vehicle-ok-for-person ?vehicle ?person)
 <--

4 Objects

35

 (or (vehicle ?vehicle make "VAUXHALL")
 (vehicle ?vehicle make "FORD"))
 (person ?person salary ?salary)
 (test (< ?salary 40000))))

;;; next to rules are just simple allocation rules,
;;; trying out each possibility until one fits

(defrule alloc-vehicles-to-persons :backward
 ((alloc-vehicles-to-persons ?allocs)
 <--
 (alloc-internal nil nil nil ?allocs)))

(defrule alloc-internal :backward
 ((alloc-internal ?done-persons ?done-vehicles
 ?allocs ?allocs)
 <--
 (not (and (vehicles-for-person ? person ?person)
 (not (member ?person ?done-persons))))
 (cut))
 ((alloc-internal ?done-persons ?done-vehicles
 ?allocs-so-far ?allocs)
 <--
 (vehicles-for-person ? person ?person
 vehicles ?vehicles)
 (not (member ?person ?done-persons))
 (member ?vehicle ?vehicles)
 (not (member ?vehicle ?done-vehicles))
 (alloc-internal (?person . ?done-persons)
 (?vehicle . ?done-vehicles)
 ((?person . ?vehicle) . ?allocs-so-far)
 ?allocs)))

;;; find a solution and print it out

(defrule find-solution :forward
 :context database-example
 :priority 5
 (not (not (vehicles-for-person ?)))
 -->
 (alloc-vehicles-to-persons ?solution)
 ((dolist (pair ?solution)
 (format t "~%~A drives ~A"
 (person-name (car pair))
 (vehicle-number-plate (cdr pair))))))

Below is sample output from the rulebase with SQL recording turned on to demonstrate the SQL statements that are
automatically passed to the database by manipulating the objects:

KW-USER 53 > (infer :contexts '(database-example))
(SELECT VEHICLE.PLATE,VEHICLE.MAKE,VEHICLE.PRICE,VEHICLE.OWNER FROM VEHICLE
 WHERE (VEHICLE.PLATE = 'F360 OOL'))
(SELECT VEHICLE.PLATE,VEHICLE.MAKE,VEHICLE.PRICE,VEHICLE.OWNER FROM VEHICLE
 WHERE (VEHICLE.PLATE = ''))
(SELECT VEHICLE.PLATE,VEHICLE.MAKE,VEHICLE.PRICE,VEHICLE.OWNER FROM VEHICLE
 WHERE (VEHICLE.PLATE = ''))
(SELECT
 PERSON.NAME,PERSON.SALARY,PERSON.VEHICLE,PERSON.EMPLOYER
 FROM PERSON WHERE (PERSON.NAME = ''))
(SELECT VEHICLE.PLATE,VEHICLE.MAKE,VEHICLE.PRICE,VEHICLE.OWNER FROM VEHICLE
 WHERE (VEHICLE.PLATE = ''))
(SELECT
 PERSON.NAME,PERSON.SALARY,PERSON.VEHICLE,PERSON.EMPLOYER
 FROM PERSON WHERE (PERSON.NAME = ''))
(SELECT VEHICLE.PLATE,VEHICLE.MAKE,VEHICLE.PRICE,VEHICLE.OWNER FROM VEHICLE

4 Objects

36

 WHERE (VEHICLE.PLATE = ''))
(SELECT
 PERSON.NAME,PERSON.SALARY,PERSON.VEHICLE,PERSON.EMPLOYER
 FROM PERSON WHERE (PERSON.NAME = ''))
(SELECT
 PERSON.NAME,PERSON.SALARY,PERSON.VEHICLE,PERSON.EMPLOYER
 FROM PERSON WHERE (PERSON.NAME = ''))
(SELECT
 PERSON.NAME,PERSON.SALARY,PERSON.VEHICLE,PERSON.EMPLOYER
 FROM PERSON WHERE (PERSON.NAME = 'PERSEPHONE'))
(SELECT COMPANY.NAME,COMPANY.PRODUCT FROM COMPANY
 WHERE (COMPANY.NAME = 'FORD'))
(SELECT COMPANY.NAME,COMPANY.PRODUCT FROM COMPANY
 WHERE (COMPANY.NAME = 'ACME'))
(SELECT COMPANY.NAME,COMPANY.PRODUCT FROM COMPANY
 WHERE (COMPANY.NAME = 'IBM'))
(SELECT COMPANY.NAME,COMPANY.PRODUCT FROM COMPANY
 WHERE (COMPANY.NAME = ''))

HARRY drives E265 FOO
TOM drives XDG 792S
FRED drives H151 EEE
PHOEBE drives G722 HAD
26

4.3 KnowledgeWorks Structures

An optimization for improved performance is to replace CLOS objects by KnowledgeWorks structures when the objects are
not needed outside the rules, or the full power of object-oriented programming is not required. Within rules they behave the
same, although they are not proper CLOS objects. This is discussed in detail in 6.2 Optimization.

4 Objects

37

5 The Programming Environment

The KnowledgeWorks programming environment is designed for the development of rules. KnowledgeWorks applications
will typically contain a mixture of programming styles and so the LispWorks programming environment is available from the
menus on the KnowledgeWorks Podium. This chapter deals with KnowledgeWorks specific tools but see the LispWorks IDE
User Guide for more details on the LispWorks tools.

KnowledgeWorks Menu

All KnowledgeWorks windows can be closed independently of the others by choosing Window > Close Window. You can
switch between windows by choosing Window > window-name.

5.1 The KnowledgeWorks Listener

38

KnowledgeWorks Listener

The KnowledgeWorks Listener is obtained by choosing Window > KnowledgeWorks > Listener. This tool is based on the
LispWorks Common Prolog Logic Listener (see Appendix A: Common Prolog for further details). Input is taken as being a
goal expression to be satisfied unless no predicate of that name and arity (number of arguments) exists in which case it is
taken as a Lisp expression. That is, the input may be either:

<expression>

as defined in 3.1 Forward chaining, or:

<lisp-expr>

with the former interpretation taking priority when ambiguous. Interaction is Prolog-style, so when the bindings which
satisfy a goal are printed, pressing Return terminates execution, and entering ; (semi-colon) and Return (or just clicking
on the Next button at the bottom) looks for the next solution to the goal.

The File, Leashing and Spy menus behave as for the Common Prolog Logic Listener (see Appendix A: Common Prolog)
and the Values, Debug and History menus behave as for the Lisp Listener (see the LispWorks IDE User Guide).

5.2 The Editor

5 The Programming Environment

39

KnowledgeWorks Editor

The KnowledgeWorks Editor is created by choosing Window > KnowledgeWorks > Editor. It is the same as the LispWorks
Editor tool. Please see the LispWorks IDE User Guide for more information on the editor tool and the Editor User Guide for
information on the various editing commands.

5.3 Clearing KnowledgeWorks

The KnowledgeWorks object base (all the KnowledgeWorks CLOS objects and any optimized structures) may be cleared by
choosing Memory > Clear Objects from the KnowledgeWorks Listener, or by calling the function reset.

KnowledgeWorks rules may be cleared by choosing Memory > Clear Rules from the KnowledgeWorks Listener, or by calling
the function clear-rules. Clearing the rules does not remove the default context default-context but all the rules in it
are removed.

KnowledgeWorks object base and rules may be cleared by choosing Memory > Clear Objects and Rules from the
KnowledgeWorks Listener, or by calling the function clear-all. CLOS class definitions remain in effect.

5.4 The System Browser

5 The Programming Environment

40

KnowledgeWorks System Browser

The KnowledgeWorks system browser is obtained by choosing Window > KnowledgeWorks > Systems. It is the same as the
LispWorks System Browser, but includes new types of system:

• :kb-system, which are reloaded when the KnowledgeWorks rules are cleared (see 5.3 Clearing KnowledgeWorks).

• :kb-init-system, which are reloaded when the KnowledgeWorks object base is cleared (see 5.3 Clearing
KnowledgeWorks).

For more information on LispWorks systems, see the Common Defsystem chapter in the LispWorks® User Guide and
Reference Manual. For more information about the System Browser tool, see the LispWorks IDE User Guide.

5.5 The Class Browser

5 The Programming Environment

41

KnowledgeWorks Class Browser

The Class Browser is obtained by choosing Window > KnowledgeWorks > Classes. It is the same as the LispWorks Class
Browser except that:

• It appears with an initial focus on standard-kb-object.

• When looking at a KnowledgeWorks class the Classes menu and context menu contain an Inspect Instances command
which allows you to look at the instances of the class.

5 The Programming Environment

42

Inspecting instances from the Class Browser

This raises an Inspector tool with a list of all the instances.

5 The Programming Environment

43

KnowledgeWorks Instances Inspector

Any of the instances displayed in the lower pane may itself be inspected by double-clicking on it.

Other options available in the Class Browser include:

• Superclasses and Subclasses tabs to draw a graphs of the superclasses or subclasses of the class being looked at.

• Slots and Initargs tabs to show how the instances can be accessed and initialized.

• Functions tab to show the generic functions or methods defined on this class, either directly or by inheritance.

Additionally the Classes menu contains a Browse Metaclass command which browses the class of this class.

Further details can be found in the LispWorks IDE User Guide.

5.6 The Objects Browser

5 The Programming Environment

44

KnowledgeWorks Objects Browser

The Objects Browser is obtained by choosing Window > KnowledgeWorks > Objects. Any <expression> (See 3.1
Forward chaining) may be entered into the Query pane. This expression may be a query about the object base or any
expression for the backward chainer to prove. The Pattern pane contains the pattern to be instantiated for each solution of the
query. If left blank, the pattern used is the query itself.

The Show Inferencing State dropdown allows you to choose which named inferencing state is used to supply the object base
for the query.

The Preset query/pattern pane offers a convenient way to examine instances on a per-class basis. All the instances of a class
class-name known to KnowledgeWorks (either a CLOS class or a KnowledgeWorks structure class) may be examined by
selecting class-name, and all the instances in the object base may be viewed by selecting All classes.

The package used to read and print symbols may be modified by choosing LispWorks > Preferences... > Objects Browser >
Package and entering a package name into the Package pane. Clicking OK will update the tool.

The pane below the query displays all the instantiations of the query, and if the entries refer to an object (so are of the form
(<class-name> <object> ...) or just <object>) double-clicking on them will display the slot names and values, and
information on when the object was created or modified (if debugging is turned on) in the bottom pane. The selected query

5 The Programming Environment

45

item may be inspected by choosing Instantiations > Inspect.

The Objects Browser may be updated by positioning the mouse in either the Query or the Pattern pane and pressing Return

or by choosing Window > Refresh.

5.7 The Rule Browser
KnowledgeWorks Rule Browser

The Rule Browser may be obtained by choosing Window > KnowledgeWorks > Rules. It displays contexts and their rules.
The Contexts pane at the top allows you to select from a drop-down list either a forward chaining context or the special
pseudo-context containing all the backward chaining rules. The Rules pane lists the rules for the selected context.

The Context menu acts on the selected context. Choosing Context > Find Source will bring up the definition of the context in
the file where it was defined, and choosing Context > Gspy will bring up a Spy Window (see 5.8 Debugging with the
Environment) for the context, displaying the meta-interpreter (see 6.1.1 Meta Rule Protocol) for the context if one is
defined. If debugging is turned on a meta-interpreter is always defined. Choosing Context > NoGspy will remove the Spy
Window (see 5.8 Debugging with the Environment).

The Rule menu acts on the rule selected in the lower pane. All rules may be edited by choosing Rule > Find Source. Spy
Windows can be brought up or removed by choosing Rule > Gspy. Forward chaining rules may have Monitor Windows (see
5.8 Debugging with the Environment) brought up or removed by choosing Rule > Monitor (this command is disabled when
a backward chaining rule has been selected). These are explained in 5.8 Debugging with the Environment.

The package used for displaying symbols may be modified by choosing LispWorks > Preferences... > Rule Browser >
Package and entering a package name into the Package area. Clicking OK will update the tool.

5 The Programming Environment

46

5.8 Debugging with the Environment

5.8.1 Spy Windows

KnowledgeWorks Gspy Window

Spy Windows display graphically the actions or subgoals a rule (either forward or backward chaining) will invoke when it
fires. A Spy Window may be obtained by selecting a rule in the Rule Browser and choosing Rule > Gspy or choosing Gspy
from the context menu.or by choosing Spy > Gspy in the KnowledgeWorks Listener. Spying can be cancelled by closing the
Spy Window or by choosing Spy > NoSpy or Spy > NoSpy All from the KnowledgeWorks Listener.

Selecting one of the graph nodes in the top pane of the Spy Window displays the full text of the box in the pane below.
Choosing Gspy from the context menu brings up a Spy Window for the goal in the box.

When the rule being displayed fires, execution stops and the buttons at the bottom of the KnowledgeWorks Listener allow the
rule to be single-stepped. Clicking on the Creep button steps through the rule, and Leap advances to the end of the rule
(unless any of the intervening goals invoke another rule which has been spied). When single-stepping, a highlight marks the
action or goal being performed. When execution is suspended in this manner, any of the KnowledgeWorks tools or browsers
may be used.

More details on single stepping through rules are in Appendix A: Common Prolog.

5.9 Monitor Windows

5 The Programming Environment

47

KnowledgeWorks Rule Monitor

Monitor Windows allow the preconditions of forward chaining rules to be monitored. They may be obtained by choosing
Rule > Monitor or by choosing Spy > Monitor Rule from the KnowledgeWorks Listener.

The top part of the window is the Select instantiations pane, as described below. The lower part displays a list of either fired
or unfired instantiations. This list is not kept up to date if the rulebase is executing with debugging turned off. To examine a
binding in a displayed instantiation, select the corresponding line and choose Instantiations > Inspect. This shows the objects
themselves in a LispWorks Inspector tool, so double-clicking on one of the entries will cause that entry to be inspected. See
the LispWorks IDE User Guide for more details.

The Show Inferencing State dropdown allows you to choose which named inferencing state is used to find the instantiations.

When the All Unfired Instantiations button is selected, the unfired instantiations are displayed.

When the Matching Selected Conditions button is selected, the instantiations that match all of the selected preconditions are
displayed. The topmost shows the preconditions of the rule. Any conditions that are matched by the object base are
highlighted. This highlighting means the condition is matched without reference to any of the other conditions. A message
indicates the number of instantiations matching the highlighted preconditions. A group of preconditions matched individually
(hence highlighted) may not be matched together if, for instance, variables were bound across them.

If a rule has the conditions, for example:

(person ?person1 father ?person)
(person ?person2 son ?person)

5 The Programming Environment

48

(test (not (eq ?person nil)))

these would be displayed in the top pane of the Rule Monitor Window. The first two would be highlighted if the object base
contained a person object. But instantiations would only be displayed if there was a person object with the same father
value as some (other) person object has son.

The selection of conditions may be toggled by left-clicking. So in the above example the last condition could be selected also
by clicking on it, and there would be no instantiations displayed if the only consistent value of ?person was nil.

5.9.1 Forward Chaining History

KnowledgeWorks Forward Chaining History

The Forward Chaining History may be viewed by choosing Window > KnowledgeWorks > FC History. This displays the
rules which the forward chaining engine has fired. The left pane lists sequentially the contexts which have been executed,
with the cycle number in which they were entered. These can be clicked on to show in the right pane, the history for that
context. The rules in it are listed down the left, and the cycle numbers along the top, forming a two dimensional grid.

Each position in the grid indicates the status of the rule in that cycle. A colored box indicates that the rule fired. A half-
colored box indicates that the rule fired, but that the invocation of the backward chainer on the right-hand side failed at some
point. There can only be one colored or half-colored box per cycle. An outlined box indicates that the rule was in the conflict
set but was not chosen to fire. Absence of any icon indicates that the rule was not even in the conflict set.

If the forward chaining history is displayed while a rule is executing (for example, while the rule is being single stepped) a
half-colored box is displayed as execution is not complete.

The Rule menu can be used in the same way as in the Rule Browser, described in 5.7 The Rule Browser. It applies to the
selected rule in the FC Cycles pane.

The Show Inferencing State dropdown allows you to choose which named inferencing state is examined.

This tool is not available when debugging is turned off.

5 The Programming Environment

49

6 Advanced Topics

6.1 Control Flow

6.1.1 Meta Rule Protocol

The meta rule protocol (MRP) reifies the internal actions of the forward chainer in terms of backward chaining goals. This
allows the user to debug, modify, or even replace the default behavior of the forward chainer. The basic hooks into the
Forward Chaining Cycle provided by the MRP include conflict resolution and rule firing. Each context may have a meta-rule
defined for it which behaves as a meta-interpreter for that context. For example, if no meta-rule is defined for a context it
behaves as if it were using the following meta-rule:

(defrule ordinary-context :backward
 ((ordinary-context)
 <--
 (start-cycle)
 (instantiation ?instantiation)
 (fire-rule ?instantiation)
 (cut)
 (ordinary-context)))

This rule describes the actions of the forward chaining cycle for this context. Firstly start-cycle performs some internal
initializations and updates the conflict set. It is essential that this is called at the start of every cycle. Next the preferred
instantiation is selected from the conflict set by the call to instantiation and is stored in the variable ?instantiation.
The rule corresponding to this is fired (by fire-rule) and the recursive call to ordinary-context means that the cycle is
repeated. The cut is also essential as it prevents back-tracking upon failure. Failure occurs when there are no more
instantiations to fire (the instantiation predicate fails) and this causes control to be passed on as normal.

A meta-rule may be assigned to a context with the :meta keyword of the defcontext form. The argument of the :meta
keyword is the list of actions to be performed by the context. For example, a context using the above ordinary meta-
interpreter can be defined by:

(defcontext my-context :meta ((ordinary-context)))

This implicitly defines the rule:

(defrule my-context :backward
 ((my-context)
 <--
 (ordinary-context)))

and whenever this context is invoked, the rule of the same name is called. The context could equally well have been defined
as:

(defcontext my-context :meta
 ((start-cycle)
 (instantiation ?instantiation)
 (fire-rule ?instantiation)
 (cut)
 (my-context)))

50

Sometimes it is useful to manipulate the entire conflict set. For this purpose the action (conflict-set ?conflict-set)

will return the entire conflict set in the given variable, in the order specified by the context's conflict resolution strategy. The
actions:

(conflict-set ?conflict-set)
(member ?instantiation ?conflict-set)

are equivalent to:

(instantiation ?instantiation)

although the latter is more efficient.

Now that the user has access to the instantiations of rules, functions are provided to examine them.

6.1.1.1 Functions defined on Instantiations

The following functions may be called on instantiations:

(inst-rulename instantiation)

which returns the name of the rule of which this is an instantiation.

(inst-token instantiation)

which returns the list of objects (the token) which match the rule. These appear in reverse order to the conditions they match.

(inst-bindings instantiation)

which returns an a-list of the variables matched in the rule and their values.

6.1.1.2 A Simple Example

This meta-rule displays the conflict set in a menu to the user and asks for one to be selected by hand on each cycle. Note that
we have to check both that there were some instantiations available, and that the user selected one (rather than clicking on the
Abort button).

(defrule manual-context :backward
 ((manual-context)
 <--
 (start-cycle)
 (conflict-set ?conflict-set)
 (test ?conflict-set)
 ; are there any instantiations?
 ((select-instantiation ?conflict-set)
 ?instantiation)
 (test ?instantiation)
 ; did the user pick one?
 (fire-rule ?instantiation)
 (cut)
 (manual-context)))

where the function select-instantiation could be defined as:

(defun select-instantiation (conflict-set)
 (tk:scrollable-menu conflict-set

6 Advanced Topics

51

 :title "Select an Instantiation:"
 :name-function #'(lambda (inst)
 (format nil "~S: ~S"
 (inst-rulename inst)
 (inst-bindings inst))))

Now a context could be defined by:

(defcontext a-context :strategy ()
 :meta ((manual-context)))

6.1.1.3 A Simple Explanation Facility

Meta-rules can also be used to provide an explanation facility. A full implementation of the explanation facility described
here is included among the examples distributed with KnowledgeWorks, and is given also in B.2 Explanation Facility.

Suppose we have a rule about truck scheduling of the form:

(defrule allocate-truck-to-load :forward
 (load ?l size ?s truck nil destination
 ?d location ?loc)
 (test (not (eq ?d ?loc)))
 (truck ?t capacity ?c load nil location ?loc)
 (test (> ?c ?s))
 -->
 (assert (truck ?t load ?l))
 (assert (load ?l truck ?t)))

and we wish to add an explanation by entering a form like:

(defexplain allocate-truck-to-load
 :why ("~S has not reached its destination
 ~S and ~ does not have a truck
 allocated, ~ ~S does not have a load
 allocated, and ~ with capacity ~S is
 able to carry the load, ~ and both
 are at the same place ~S"
 ?l ?d ?t ?c ?loc)
 :what ("~S is scheduled to carry ~S to ~S"
 ?t ?l ?d)
 :because ("A customer requires ~S to be
 moved to ~S" ?l ?d))

where the :why form explains why the rule is allowed to fire, the :what form explains what the rule does and the :because
gives the ultimate reason for firing the rule.

The stages in the implementation are as follows:

• Define a macro called defexplain to store the explanation information in, say, a hash-table keyed against the rule
name.

• Define a function add-explanation takes an instantiation, fetches the explanation information from the hash-table and
the variable bindings in the instantiation, and adds the generated explanations to another global data structure,
something like:

(defun add-instantiation (inst)
 (let ((explain-info
 (gethash (inst-rulename inst)
 explain-table)))
 (when explain-info

6 Advanced Topics

52

 (do-the-rest explain-info
 (inst-bindings inst))))))

• Implement graphical tools to browse the resulting explanations.

• Define a meta-interpreter for which will produce explanations, for example:

(defrule explain-context :backward
 ((explain-context)
 <--
 (start-cycle)
 (instantiation ?inst)
 ((add-explanation ?inst))
 (fire-rule ?inst)
 (cut)
 (explain-context)))

6.1.1.4 Reasoning with Certainty Factors

Another application of meta-rules is in the manipulation of uncertainty. A full implementation of the uncertain reasoning
facility described below is included among the examples distributed with KnowledgeWorks, and also in B.3 Uncertain
Reasoning Facility.

In this example, we wish to associate a certainty factor with objects in a manner similar to the MYCIN system (see Rule-
Based Expert Systems, B. G. Buchanan and E. H. Shortliffe, Addison-Wesley 1984). When we assert an "uncertain" object
we wish it to acquire the certainty factor of the instantiation which is firing. We define the certainty factor of an instantiation
to be the certainty factor of all the objects making up the instantiation multiplied together. Additionally, we wish rules to have
an implication strength associated with them which is a multiplicative modifier to the certainty factor obtained by newly
asserted uncertain objects. The general approach is as follows:

• Define global variables *c-factor* to hold the certainty factor of the current instantiation and *implic-strength*

to hold the implication strength of the rule, and a class of "uncertain" KnowledgeWorks objects:

(def-kb-class uncertain-kb-object ()
 ((c-factor :initform (* *c-factor* *implic-strength*)
 :accessor object-c-factor)))

The uncertain objects should contain this class as a mixin.

• Define a function to obtain the certainty factor of instantiations:

(defun inst-c-factor (inst)
 (reduce '* (inst-token inst) :key 'object-c-factor))

• Define a conflict resolution tactic to prefer either more or less certain instantiations (See 6.1.2 User-definable Conflict
Resolution for details).

• Define a meta-rule to set the global certainty factor to the certainty factor of the instantiation about to fire:

(defrule uncertain-context :backward
 ((uncertain-context)
 <--
 (start-cycle)
 (instantiation ?inst)
 ((setq *c-factor* (inst-c-factor ?inst)))
 (fire-rule ?inst)
 (cut)
 (uncertain-context)))

6 Advanced Topics

53

• Define a function implication-strength which sets the variable *implic-strength* so that rules may set their
implication strength by calling the action:

((implication-strength <number>))

A rule could be defined similarly to:

(defrule my-rule :forward
 (my-class ?obj1)
 (my-class ?obj2)
 -->
 ((implication-strength 0.6))
 (assert (my-class ?obj3)))

where the certainty factor of the new object ?obj3 will automatically become:

(* (object-c-factor ?obj1) (object-c-factor ?obj2) 0.6)

While this is an extremely simplistic version of uncertain reasoning, it suggests how a more elaborate treatment might be
approached.

6.1.2 User-definable Conflict Resolution

A conflict resolution strategy is a list of conflict resolution tactics. A conflict resolution tactic is a function which takes as
arguments two rule instantiations, and returns t if and only if the first is preferred to the second, otherwise nil. A conflict
resolution tactic may be defined by:

(deftactic <tactic-name> {<type>} <lambda-list> [<doc-string] <body>)

where <tactic-name> is the name of the tactic and of the function being defined which implements it, and
<lambda-list> is a two argument lambda-list. <type> may be either :static or :dynamic, defaulting to :dynamic. A
dynamic tactic is one which looks into the objects which match the rule to make up the instantiation; a static one does not.
For example, a tactic which prefers instantiations which match, say, truck objects to instantiations which do not could be
defined as static. However, if it looks into the slot values of the truck object it should be defined as dynamic. Static tactics are
treated more efficiently but wrongly declaring a tactic as static will lead to incorrect conflict resolution. If doc-string is
given, then it should be a string. The value can be retrieved by calling the function documentation with doc-type
function.

It is an absolute requirement that there exist no instantiations for which:

(<tactic-name> <instantiation1> <instantiation2>)

and:

(<tactic-name> <instantiation2> <instantiation1>)

both return t. Consequently, for any single given instantiation:

(<tactic-name> <instantiation> <instantiation>)

must return nil.

The function which defines a conflict resolution tactic should be computationally cheap as it is used repeatedly and frequently
to compare many different pairs of instantiations.

6 Advanced Topics

54

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm

6.1.2.1 Examples

The following tactic prefers instantiations with truck objects to ones without:

(deftactic prefer-trucks :static (inst1 inst2)
 (flet ((truck-p (obj) (typep obj 'truck)))
 (and (some #'truck-p (inst-token inst1))
 (notany #'truck-p (inst-token inst2)))))

Note that this tactic would be incorrect if we did not check that the second instantiation does not refer to any trucks
(otherwise it would always return t if both instantiations contain trucks). It can safely be declared as static as it does not look
into the slots of the objects which make up the instantiation.

This tactic implements alphabetical ordering on rule names:

(deftactic alphabetical-rulename :static (inst1 inst2)
 (string< (symbol-name (inst-rulename inst1))
 (symbol-name (inst-rulename inst2))))

This tactic prefers instantiations which bind the variable ?x to zero:

(deftactic prefer-?x=0 :dynamic (inst1 inst2)
 (flet ((fetch-?x (inst)
 (cdr (assoc '?x (inst-bindings inst)))))
 (and (eql 0 (fetch-?x inst1))
 (not (eql 0 (fetch-?x inst2))))))

Note that again we must not forget to check that ?x is not zero in the second instantiation. This tactic must be declared
dynamic as ?x must have been instantiated from the slots of one of the matched objects.

The final tactic is for the example of uncertain reasoning and implements a method of preferring "more certain"
instantiations:

(deftactic certainty :dynamic (inst1 inst2)
 (> (inst-c-factor inst1) (inst-c-factor inst2)))

This tactic must be dynamic if the certainty factors of objects can be modified after creation. If this is forbidden the tactic
could be defined as static. Then the context defined by:

(defcontext my-context :strategy (priority certainty))

will prefer instantiations of rules with higher priority or, if this does not discriminate sufficiently, instantiations which are
"more certain".

6.2 Optimization

6.2.1 Forward Chaining

6.2.1.1 KnowledgeWorks Structures

A CLOS class may be replaced by a structure for increased speed when all the power of CLOS is not needed. Within the rule
interpreter the structure behaves like a CLOS class which:

• Has an initform of nil for each slot.

6 Advanced Topics

55

• Has the keyword version of the slot name as initarg for each slot.

• Has only single inheritance.

• Has no methods defined on it.

• Should not be modified from Lisp after its creation.

A KnowledgeWorks structure is defined by the macro:

(def-kb-struct <class-spec> <slot-spec>*)

where the arguments are the same as for defstruct except that in <class-spec> only the options :include and
:print-function are allowed. A structure may only be included in a KnowledgeWorks structure if it too is a
KnowledgeWorks structure defined by def-kb-struct. All the functions normally provided by defstruct (accessors, a
predicate etc.) are generated. An instance of the structure class may be created by the generic function:

(make-instance <class-name>
 {<slot-specifier> <value>}*)

where <slot-specifier> is the keyword version of the slot name, as with any structures, and <value> is the value the
slot is to take, otherwise defaulting to the value specified in the def-kb-struct form. If created from Lisp by any means
other than make-instance (for example, by the automatically defined make-<structure-name> constructor), the
inference engine will not know about the structure.

Once created, structures must not be modified directly from Lisp as this will corrupt the state of the forward chaining
inference engine. For example:

(def-kb-struct train position speed)
(def-kb-struct signal position color)
(make-instance 'train :position 0 :speed 80)
(make-instance 'signal :position 10 :color 'red)

defines KnowledgeWorks structures for trains and signals and makes an instance of each. Note that they are not fully-fledged
CLOS objects but are analogous to working memory elements in OPS5.

6.2.1.2 Efficient Forward Chaining Rule Preconditions

Forward chaining rules are more efficient if the more restrictive preconditions (that is, the ones which will have fewer
matches) are written first. Computationally cheap Lisp tests should be used wherever possible as they reduce the search space
of the rule interpreter. The Lisp tests should where possible be broken into sufficiently small pieces that they can be applied
as early on as possible.

For example, the precondition fragment:

(train ?t position ?p1)
(test (> ?p1 5))
(signal ?s position ?p2)
(test (> ?p2 6))

is better than:

(train ?t position ?p1)
(signal ?s position ?p2)
(test (and (> ?p1 5) (> ?p2 5)))

because in the first example the Lisp tests can be applied directly to the trains and signals respectively before looking at

6 Advanced Topics

56

http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

combinations of trains and signals, whereas in the second case all the combinations must be produced before the Lisp test can
be applied. Simply separating the tests is enough for the rule compiler to apply them to the right object base matches — the
precise order of the tests is unimportant.

6.2.1.3 Profiling

You can use the profiler to profile forward chaining rules. See set-up-profiler in the LispWorks® User Guide and
Reference Manual.

6.2.2 Conflict Resolution

6.2.2.1 Use of Contexts

The single most significant way to improve conflict resolution time is to divide the rulebase up into contexts. The time taken
by conflict resolution is dependent on the total number of instantiations of all the rules in the context so the fewer rules in
each context, the more efficient conflict resolution will be.

6.2.2.2 Optimization of the Strategy

A conflict resolution strategy may be optimized by combining the constituent tactics in a more effective manner. There are
three different types of conflict resolution tactic:

• Rule-defined (meaning the tactic relies only on the rule of the instantiation and on nothing else), including priority,
-priority, order, -order, specificity and -specificity.

• Static (meaning the tactic does not look into the slots of the matched objects which make up the instantiation), including
recency and -recency.

• Dynamic (meaning the tactic may look into the objects making up the instantiation), including mea, -mea, lex and
-lex.

KnowledgeWorks is best able to optimize rule-defined tactics and least able to optimize dynamic tactics. The optimizations
for a particular type of tactic can only be applied if it is preceded only by tactics which can be optimized to the same degree
(or better). For example, in the strategy (recency priority), the tactic priority would only be optimized as a static
tactic. In the strategy (priority mea recency), priority can be optimized as a rule-defined tactic but recency will
be treated as a dynamic tactic.

Some final points to bear in mind:

• Tactics which tend to prefer existing instantiations over newer ones (for example -mea, -lex and -recency) will
degrade performance.

• recency and lex have similar functionality but recency is more efficient.

6.2.3 Backward Chaining

6.2.3.1 Pattern Matching

The KnowledgeWorks Backward Chainer indexes clauses for a backward rule based on the first argument. If the first
arguments to backward rule clauses are distinct non-variables, the backward chainer can pre-select possible matching clauses
for a call.

For example, in the following rule:

6 Advanced Topics

57

(defrule age-of :backward
 ((age-of charlie 30) <--)
 ((age-of william 25) <--)
 ((age-of james 28) <--))

The call: (age-of james ?x) would jump directly to the third clause and bind ?x to 28 without trying the other two.

The call: (age-of tom ?x) would fail immediately without doing any pattern matching.

Clauses are distinguished first by the types and then the values of their first arguments.

6.2.3.2 Tail Recursion

The KnowledgeWorks Backward Chainer supports the transformation of "tail-recursive" calls into jumps. Thus, stack
overflow can be avoided without resorting to "repeat, fail" loops in most cases. For example, given the definition:

(defrule run-forever :backward
 ((run-forever)
 <--
 (run-forever)))

the call: (run-forever) will run forever without generating a stack overflow. Note that this optimization is not limited to
recursive calls to the same rule. The last call of any rule will be compiled as a jump, drastically reducing stack usage.

6.2.3.3 Cut

The use of "cut" is a well known performance enhancement for Prolog-style rules. In KnowledgeWorks it does more than
reduce the time spent in search. When a "cut" is invoked, all the stack space between the initial call to the containing rule and
the current stack location is reclaimed immediately, and can have a significant impact on the total space requirements of a
program.

6.3 Use of Meta-Classes

Objects of meta-classes other than standard-class may be made available to KnowledgeWorks by including the
KnowledgeWorks mixin standard-kb-object. This requires:

• The existence of a validate-superclass method allowing standard-kb-object (meta-class standard-class)
to be a superclass of the class being defined with a different meta-class.

• That the meta-class in question does not implement any particularly strange behavior on slot access, for example, if
querying a slot value results in setting it.

6.3.1 Example

A meta-class standard-kb-class could be defined as a KnowledgeWorks class. New KnowledgeWorks classes (or even
ordinary non-KnowledgeWorks classes) could be defined with this meta-class. KnowledgeWorks could then reason about the
instances of the classes and about the class objects themselves. The code below implements this:

(def-kb-class standard-kb-class (standard-class) ())
(defmethod validate-superclass
 ((class standard-kb-class)
 (superclass standard-class))
 t)
(def-kb-class foo () ((slot))
 (:metaclass standard-kb-class))

6 Advanced Topics

58

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/lw70/MOP/mop/dictionary.html#validate-superclass
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm

Then when the following rule fires:

(defrule find-kb-class :forward
 (standard-kb-class ? clos::name ?n)
 -->
 ((format t "~%I can reason about class ~s" ?n)))

it will output:

I can reason about class FOO

6.4 Logical Dependencies and Truth Maintenance

When a rule creates an object that depends on a specific set of preconditions, it is sometimes necessary to erase that object
when those preconditions no longer hold. This is an example of truth maintenance.

KnowledgeWorks provides a mechanism to track logical dependencies between objects and preconditions which cause any
dependent objects to be erased automatically. This is achieved using a logical clause in a forward chaining rule, with a
precondition of the form:

(logical <forward-condition>+)

The enclosed forward conditions in this clause are matched as normal, but if the rule fires and creates new objects (by
assert or make-instance) then these objects are associated with the enclosed conditions. If the conditions are found to be
false in the future, then the created objects are erased automatically (see erase).

NB: There can be at most one logical clause in a rule (though it can contain multiple subclauses) and it must be the first
clause in the rule. Other clauses can follow the logical clause, but they are not part of the logical dependency.

6.4.1 Example

Given the following classes and rules:

(def-kb-class number-object ()
 ((value :initarg :value)))

(def-kb-class have-some-large-numbers ()
 ())

(defrule notice-a-large-number :forward
 (logical (number-object ? value ?value)
 (test (> ?value 100)))
 -->
 (assert (have-some-large-numbers ?)))

then a have-some-large-numbers object will be created when a number larger than 100 exists:

(setq n1 (make-instance 'number-object :value 10))
(infer)
(any '?x '(have-some-large-numbers ?x)) ==> false
(setf (slot-value n1 'value) 200) ; this is large
(infer)
(any '?x '(have-some-large-numbers ?x)) ==> true

In addition, when the large number becomes smaller, the have-some-large-numbers object will be erased again:

6 Advanced Topics

59

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

(setf (slot-value n1 'value) 55)
(infer)
(any '?x '(have-some-large-numbers ?x)) ==> false

because a logical dependency was tracked between the preconditions:

(number-object ? value ?value)
(test (> ?value 100)

and the have-some-large-numbers object.

6.5 Inferencing States

An inferencing state represents all the state needed to run the forward chaining interpreter, including the object base, the
current cycle number and the set of unfired instantiations. It does not include rule or context definitions or any backward
chaining state information.

6.5.1 Creating and Maintaining Inferencing States

Inferencing states are first-class objects that can be created and destroyed as required. Each inferencing state must have a
unique name (as compared with eql) and initially there is a single inferencing state named :default.

The function make-inferencing-state makes a new empty inferencing state. Inferencing states must be destroyed with
destroy-inferencing-state when no longer needed, to release the memory that they use.

Inferencing states can be found using the function find-inferencing-state and the function
list-all-inferencing-states can be used to make a list of all known inferencing states.

6.5.2 The Current Inferencing State

The value of the variable *inferencing-state* is known as the current inferencing state. Its value can be changed before
calling KnowledgeWorks functions, but should not be changed within the body of a rule.

Some operations, such as object creation, slot modification, reset and infer only affect the current inferencing state.
Backward chaining operations that match the object base only find objects from the current inferencing state.

Operations that change rules or contexts, such as defrule and clear-all, affect all inferencing states.

6.5.3 Uses of Inferencing States

In many cases, a single inferencing state is sufficient and the initial inferencing state named :default can be used without
any special effort.

To allow several independent inferencing operations to be performed simultaneously, multiple inferencing states must be
managed explicitly. Some typical situations are described below.

6.5.3.1 Multiple threads

By binding *inferencing-state* around all KnowledgeWorks operations in a thread's main function as in the example
below, its value can be unique to each thread.

(defun test-1-counter (name)
 (let* ((*inferencing-state* nil)
 (step (1+ (random 10)))

6 Advanced Topics

60

http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm

 (limit (* step (+ 2000 (random 100)))))
 (unwind-protect
 (progn
 (setq *inferencing-state*
 (make-inferencing-state name))
 (make-instance 'counter
 :value limit
 :step step)
 (infer))
 (destroy-inferencing-state *inferencing-state*))))

(mp:process-run-function (format nil "Test ~D" index)
 '()
 'test-1-counter
 (gensym)

6.5.3.2 Interleaved in a Single Thread

By binding *inferencing-state* around specific KnowledgeWorks operations in a function as in the example below,
multiple inferencing states can be maintained within a single thread.

(defun test-stepping-single-context ()
 (let ((state1 (make-inferencing-state 'state1))
 (state2 (make-inferencing-state 'state2)))
 (unwind-protect
 (progn
 (let ((*inferencing-state* state1))
 (make-instance 'step-controller
 :kb-name 'stepper-one-a))
 (let ((*inferencing-state* state2))
 (make-instance 'step-controller
 :kb-name 'stepper-one-b))
 (loop repeat 10
 do
 (let ((*inferencing-state* state1))
 (infer))
 (let ((*inferencing-state* state2))
 (infer))))
 (destroy-inferencing-state state1)
 (destroy-inferencing-state state2))))

6 Advanced Topics

61

7 Reference Guide

The symbols documented in the following pages are all external in the KW package unless stated otherwise. They are listed
in alphabetical order.

all-debug Function

Summary

Turns debugging facilities on.

Package

kw

Signature

all-debug

Description

The function all-debug turns on all KnowledgeWorks debugging facilities. This means that rules and contexts can be
single stepped and monitored, and a record is kept of whenever objects are created or modified.

This should be called before compiling any rules or contexts that are to be debugged.

Examples

(all-debug)

See also

no-debug

any Function

Summary

Return the first match of a backward chaining goal.

Package

kw

62

Signature

any pattern-to-instantiate goal-to-prove => result, successp

Arguments

pattern-to-instantiate⇓
A list or symbol.

goal-to-prove⇓ Any backward chaining goal.

Values

result nil or a value matching pattern-to-instantiate.

successp A boolean.

Description

The function any starts the backward chaining inference engine to look for any set of bindings which satisfy goal-to-prove.
Using those bindings, pattern-to-instantiate is instantiated and returned.

Two values are returned. The second value indicates with t that a proof was found, or with nil that no proof exists. In the
former case, the first value is the instantiated version of pattern-to-instantiate, in the latter case, the first value is nil.

Any subgoals that match the object base will only find objects from the current inferencing state.

Examples

(any '(?x is in (1 2 3)) '(member ?x (1 2 3)))

returns (1 IS IN (1 2 3)), T.

(any '(?truck is a truck) '(truck ?truck))

returns (#<TRUCK TRUCK5> IS A TRUCK), T.

See also

findall

assert Backward Chaining Goal

Summary

Creates or modifies objects in the object base.

Package

kw

Signature

assert (class-name variable {slot-and-term}*)

7 Reference Guide

63

slot-and-term ::= (slot-name term)

Arguments

class-name⇓ The name of a class.

variable⇓ A variable beginning with ?.

slot-name⇓ The name of a slot in class-name.

term⇓ An expression.

Description

The backward chaining goal assert creates or modifies objects in the object base.

class-name must be the name of a class of objects known to KnowledgeWorks. Each term is an expression composed of Lisp
data structures and KnowledgeWorks variables.

If variable is unbound a new instance of class-name is created with each named slot-name initialized to the value of the
corresponding term.

If variable is bound, that bound instance has its named slots modified to contain the values of term corresponding to each slot
-name. It is an error if the bound object is not of the named class.

It is an error to put an unbound variable into a slot of an object in the object base.

Only objects in the current inferencing state will be affected.

Examples

(assert (truck ?truck driver ?driver))
(assert (possible-trucks ? trucks (?truck . ?trucks))

See also

erase

clear-all Function

Summary

Clears all contexts, rules and objects.

Package

kw

Signature

clear-all

Description

The function clear-all clears all contexts, rules and objects. The list of KnowledgeWorks classes remains unaffected. The

7 Reference Guide

64

default context default-context is not removed, but all rules in it are.

The function affects all inferencing states.

Examples

(clear-all)

See also

clear-rules
reset

clear-rules Function

Summary

Clears all contexts and rules.

Package

kw

Signature

clear-rules

Description

The function clear-rules clears contexts and rules. The list of KnowledgeWorks classes and the object base remains
unaffected. The default context default-context is not removed, but all rules in it are.

This function affects all inferencing states.

Examples

(clear-rules)

See also

clear-all
reset

conflict-set Backward Chaining Goal

Summary

Finds the current meta-interpreter rule instantiations.

7 Reference Guide

65

Package

kw

Signature

conflict-set variable

Arguments

variable⇓ An unbound KnowledgeWorks variable introduced by ?.

Description

The backward chaining goal conflict-set is only relevant when writing a meta-interpreter for a context. conflict-set
binds variable to the list of all existing rule instantiations in the currently executing context. This list is in the order preferred
by the conflict resolution strategy for the context.

Examples

(conflict-set ?conflict-set)

See also

instantiation
fire-rule

context Backward Chaining Goal

Summary

Adds new contexts to the agenda.

Package

kw

Signature

context context-list

Arguments

context-list⇓ A list of context names.

Description

The backward chaining goal context adds new contexts context-list on top of the agenda (the context stack). The current
context is not changed. It is an error if the named contexts do not exist.

If context-list contains variables, then they must be already bound.

7 Reference Guide

66

Examples

(context (my-context))
(context (?x ?y)) ; if ?x ?y bound to context names

See also

return

current-cycle Function

Summary

Returns the current forward chaining cycle number.

Package

kw

Signature

current-cycle => cycle-number

Values

cycle-number An integer.

Description

The function current-cycle returns the current cycle number of the forward chaining rule interpreter in the current
inferencing state. If the forward chaining rule interpreter is not running, then it returns the total number of cycles executed by
the forward chaining rule interpreter the last time it ran. If the forward chaining rule interpreter has not run at all, then it
return zero.

See also

inferencing-state

cut Backward Chaining Goal

Summary

The standard prolog predicate that stops backtracking.

Package

kw

Signature

cut

7 Reference Guide

67

Description

The backward chaining goal cut is a standard prolog predicate. When first called it succeeds and freezes certain choices
made by the backward chainer up to this point. It may no longer attempt to resatisfy any of the goals between the start of
clause and the cut, and it may not attempt to use any other clauses to satisfy the same goal.

Examples

(defrule nice :backward
 ((nice ?x)
 <--
 (rottweiler ?x)
 (cut)
 (fail))
 ((nice ?x) <--))

implements "everything is nice unless it is a rottweiler". First the backward chainer will attempt to prove (nice fido) with
the first clause. If fido is a rottweiler the cut then prevents the backward chainer from using the second clause which says
"everything is nice". The fail ensures that (nice fido) fails.

See also

fail

cycle Symbol Macro

Summary

Deprecated.

Package

kw

Description

The symbol macro *cycle* is deprecated. New code should use current-cycle.

Prior to LispWorks 5.0, *cycle* was a variable.

See also

current-cycle

defcontext Macro

Summary

Defines a context.

7 Reference Guide

68

Package

kw

Signature

defcontext context-name &key refractoriness auto-return strategy meta documentation

Arguments

context-name⇓ The name of the context being defined.

refractoriness⇓ A boolean.

auto-return⇓ A boolean.

strategy⇓ A list of symbols.

meta⇓ A list of actions.

documentation⇓ A string.

Description

The macro defcontext defines a context named context-name. If a context of that name already exists then it, and all the
rules in it, are first removed.

If refractoriness is nil then a rule instantiation remains eligible to fire again after firing once. If refractoriness is t (the
default) then each rule instantiation will only fire once.

auto-return indicates, when there are no more rules to be fired in the context, whether to signal an error or simply to pass
control to the next context on the agenda. The default value t passes control on without an error.

strategy is the conflict resolution strategy for the context, consisting of a list of tactic names.

meta is a list of actions which make up the optional meta-interpreter for the context.

If documentation is supplied, then it should be a string. The value can be retrieved by calling the function documentation

with doc-type context.

Examples

(defcontext my-context :strategy (priority recency))
(defcontext another-context :strategy (order)
 :meta ((start-cycle)
 (instantiation ?inst)
 (fire-rule)
 (cut)
 (another-context)))

See also

standard-context
-lex
lex
-mea
mea
-order
order

7 Reference Guide

69

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

-priority
priority
-recency
recency
-specificity
specificity

def-kb-class Macro

Summary

Defines a class for use in the object base.

Package

kw

Signature

def-kb-class class-name superclass-list slot-descriptions &rest options => class

Arguments

class-name⇓ A symbol.

superclass-list⇓ A list of symbols.

slot-descriptions⇓ A list of defclass slot descriptions.

options⇓ defclass options.

Values

class The named class object.

Description

The macro def-kb-class defines a new CLOS class name class-name, as defclass does. However, if none of the
superclasses in superclass-list is a subclass of standard-kb-object, then standard-kb-object is added to the list of
superclasses.

slot-descriptions and options are used as in the standard defclass macro.

Examples

(def-kb-class vehicle () ((driver :initarg :driver)))
(def-kb-class truck (vehicle)
 ((load :accessor truck-load)))

See also

def-named-kb-class
def-kb-struct

7 Reference Guide

70

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

def-kb-struct Macro

Summary

Defines a structure class for use in the object base.

Package

kw

Signature

def-kb-struct name-and-options {slot-description}* => name

name-and-options ::= name | (name {option}*)

option ::= (:include superclass) | (:print-function print-function)

Arguments

slot-description⇓ A defstruct slot description.

name⇓ A symbol.

superclass⇓ A symbol.

print-function⇓ A symbol or a lambda expression.

Values

name The name of the structure class.

Description

The macro def-kb-struct defines a KnowledgeWorks structure class name name. Objects of these classes are analogous
to Lisp structures except that they may be used in rules similarly to CLOS objects.

If superclass is supplied then name will inherit from superclass, which must be KnowledgeWorks structure class.

print-function and slot-description are used as in defstruct.

Examples

(def-kb-struct start)
(def-kb-struct (named-kb-struct
 (:print-function print-named-kb-struct))
 (name (gensym 'named-kb-struct)))

(def-kb-struct (possible-trucks-for-load
 (:include named-kb-struct))
 load trucks)

7 Reference Guide

71

http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm

See also

def-kb-class

def-named-kb-class Macro

Summary

Defines a class of named objects for use in the object base.

Package

kw

Signature

def-named-kb-class class-name superclass-list slot-descriptions &rest options => class

Arguments

class-name⇓ A symbol.

superclass-list⇓ A list of symbols.

slot-descriptions⇓ A list of defclass slot descriptions.

options⇓ defclass options.

Values

class The named class object.

Description

The macro def-named-kb-class defines a new CLOS class name class-name, as defclass does. However, if none of the
superclasses in superclass-list is a subclass of named-kb-object, then named-kb-object is added to the list of
superclasses. The class inherits a name slot called kb-name, with accessor kb-name and default initialization form
(:initform) that generates a symbol from the class name using (gentemp class-name).

slot-descriptions and options are used as in the standard defclass macro.

Examples

(def-named-kb-class vehicle ()
 ((driver :initarg :driver)))
(def-named-kb-class truck (vehicle)
 ((load :accessor truck-load)))

See also

def-kb-class
def-kb-struct
get-kb-object
kb-name
named-kb-object

7 Reference Guide

72

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

defrule Macro

Summary

Defines a rule.

Package

kw

Signature

defrule rule-name direction &optional doc-string &body body => rule-name

Arguments

rule-name⇓ A symbol.

direction⇓ Either :forward or :backward.

doc-string⇓ An optional string.

body⇓ Forms as described in 3 Rules.

Values

rule-name A symbol.

Description

The macro defrule defines a rule named rule-name (which must be distinct from any other rule name, context name or
KnowledgeWorks class name). If direction is :forward a forward chaining rule is defined, if :backward a backward
chaining rule is defined. If doc-string is given, then it should be a string. The value can be retrieved by calling the function
documentation with doc-type rule.

A full description of body is given in 3 Rules.

Examples

(defrule move-train :forward :context trains
 (train ?train position ?train-pos)
 (signal ?signal position ?signal-pos color green)
 (test (= ?signal-pos (1+ ?train-pos)))
 -->
 ((format t "~%Train moving to ~S" ?signal-pos))
 (assert (signal ?signal color red))
 (assert (train ?train position ?signal-pos)))
(defrule link-exists :backward
 ((link-exists ?town1 ?town2)
 <--
 (or (link ?link town1 ?town1 town2 ?town2)
 (link ?link town2 ?town1 town1 ?town2))
 (cut))
 ((link-exists ?town1 ?town2)
 <--
 (route-exists ?town1 ?town2)))

7 Reference Guide

73

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

deftactic Macro

Summary

Defines a tactic function for use in context strategies.

Package

kw

Signature

deftactic tactic-name type lambda-list &body body => tactic-name

Arguments

tactic-name⇓ A symbol.

type⇓ Either :static or :dynamic.

lambda-list⇓ A two argument lambda list.

body⇓ A function body.

Values

tactic-name A symbol.

Description

The macro deftactic defines a new conflict resolution tactic named tactic-name.

type is the type of the tactic, which may be :static if body does not look into the slots of the objects making up the
instantiation, otherwise :dynamic.

lambda-list specifies two variable, which will be bound to two instantiation objects and when the forms of body are
evaluated. body should return non-nil if and only if the first instantiation object is preferred to the second.

deftactic also defines a function named tactic-name and body can be preceded by a documentation string.

The newly defined tactic may be used as any in-built tactic.

Examples

(deftactic prefer-trucks :static (inst1 inst2)
 (flet ((truck-p (obj) (typep obj 'truck)))
 (and (some #'truck-p (inst-token inst1))
 (notany #'truck-p (inst-token inst2)))))

The new tactic may be used in a defcontext form:

(defcontext my-context :strategy (prefer-trucks))

7 Reference Guide

74

See also

inst-bindings
inst-token
inst-rulename
defcontext

destroy-inferencing-state Function

Summary

Destroys an inferencing state.

Package

kw

Signature

destroy-inferencing-state name-or-state

Arguments

name-or-state⇓ Any object.

Description

The function destroy-inferencing-state destroys an inferencing state named by name-or-state.

If name-or-state is and inferencing state, then it is destroyed. Otherwise, any inferencing state with that name (as compared
using eql) is destroyed.

It is an error to destroy the current inferencing state.

Examples

(destroy-inferencing-state 'my-state)

See also

find-inferencing-state
inferencing-state
inferencing-state-name
list-all-inferencing-states
make-inferencing-state

7 Reference Guide

75

http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm

erase Backward Chaining Goal

Summary

Erases an object from the object base.

Package

kw

Signature

erase variable

Arguments

variable⇓ A a KnowledgeWorks object.

Description

The backward chaining goal erase erases an object from the object base.

variable must be bound to a KnowledgeWorks CLOS object or a KnowledgeWorks structure.

The given object is removed from the object base of the current inferencing state.

Examples

(erase ?x) ; ?x bound to an object

See also

assert

fail Backward Chaining Goal

Summary

The standard prolog predicate that always fails.

Package

kw

Signature

fail

7 Reference Guide

76

Description

The backward chaining goal fail always fails. It is sometimes used with cut.

Examples

(defrule nice :backward
 ((nice ?x)
 <--
 (rottweiler ?x)
 (cut)
 (fail))
 ((nice ?x) <--))

implements "everything is nice unless it is a rottweiler".

See also

cut

findall
findallset Functions

Summary

Return all matches of a backward chaining goal.

Package

kw

Signatures

findall pattern-to-instantiate goal-to-prove => list

findallset pattern-to-instantiate goal-to-prove => set

Arguments

pattern-to-instantiate⇓
A list or symbol.

goal-to-prove⇓ Any backward chaining goal.

Values

list A list.

set⇓ A list.

Description

The function findall starts the backward chaining inference engine to look for all sets of bindings which satisfy goal-to-
prove. For each of those bindings, pattern-to-instantiate is instantiated and collected to return a list. The value is nil if

7 Reference Guide

77

nothing goal-to-prove cannot be satisfied.

Any subgoals that match the object base will only find objects from the current inferencing state.

The function findallset is like findall but set will not have any duplicates (as compared by equal).

Examples

(findall '(?x is in (1 2 3)) '(member ?x (1 2 3)))

returns:

((1 IS IN (1 2 3))
 (2 IS IN (1 2 3))
 (3 IS IN (1 2 3)))

(findall '(?truck is a truck) '(truck ?truck))

returns:

((#<TRUCK TRUCK1> IS A TRUCK)
 (#<TRUCK TRUCK2> IS A TRUCK))

See also

any

find-inferencing-state Function

Summary

Finds a known inferencing state.

Package

kw

Signature

find-inferencing-state name &key if-does-not-exist => state

Arguments

name⇓ Any object.

if-does-not-exist⇓ Either :error or :create.

Values

state An inferencing state.

7 Reference Guide

78

http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm

Description

The function find-inferencing-state finds and returns an inferencing state named by name.

If an inferencing state with the same name already exists (as compared using eql), it is returned.

Otherwise, the value of if-does-not-exist determines what happens:

:error A continuable error is signaled. Invoking the continue restart creates and returns a new
inferencing state.

:create A new inferencing state is created and returned.

Examples

(find-inferencing-state 'my-state)

See also

destroy-inferencing-state
inferencing-state
inferencing-state-name
list-all-inferencing-states
make-inferencing-state

fire-rule Backward Chaining Goal

Summary

Fires the given meta-interpreter rule instantiation.

Package

kw

Signature

fire-rule instantiation

Arguments

instantiation⇓ An instantiation object.

Description

The backward chaining goal fire-rule is only relevant when writing a meta-interpreter for a context. fire-rule fires the
given rule instantiation instantiation. It is an error if the passed object is not an instantiation object.

Examples

(fire-rule ?instantiation)

7 Reference Guide

79

http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_contin.htm

See also

start-cycle
instantiation
defcontext
standard-context

get-kb-object Function

Summary

Finds a named object in the object base.

Package

kw

Signature

get-kb-object object-name => object

Arguments

object-name⇓ A symbol.

Values

object A KnowledgeWorks CLOS object.

Description

The function get-kb-object returns the KnowledgeWorks object named object-name in the object base of the current
inferencing state. If there is no such object an error results.

Classes of named objects can be defined using the macro def-named-kb-class.

Examples

(get-kb-object 'fred)

See also

def-named-kb-class
kb-name

7 Reference Guide

80

infer Function

Summary

Runs the forward chaining inferencing engine.

Package

kw

Signature

infer &key contexts => cycle-count

Arguments

contexts⇓ A list of context names, default to (default-context).

Values

cycle-count⇓ An integer.

Description

The function infer runs the forward chaining inference engine in the current inferencing state, with contexts as the initial
agenda. The first rules to fire will be from the first context listed in contexts until control is passed on.

The value returned as cycle-count is the total number of cycles executed (given in current-cycle).

Examples

(infer :contexts '(my-context another-context))

See also

current-cycle

inferencing-state Variable

Summary

The current inferencing state.

Package

kw

Initial Value

An empty inferencing state named :default.

7 Reference Guide

81

Description

The value of the variable *inferencing-state* is the current inferencing state for many KnowledgeWorks functions.

This variable can be bound to a particular inferencing state before calling other KnowledgeWorks functions, but should not be
changed within the body of a rule.

See also

current-cycle
destroy-inferencing-state
find-inferencing-state
inferencing-state-name
list-all-inferencing-states
make-inferencing-state

inferencing-state-name Function

Summary

Returns the name of an inferencing state.

Package

kw

Signature

inferencing-state-name state => name

Arguments

state⇓ An inferencing state.

Values

name Any object.

Description

The function inferencing-state-name returns the name of state.

Examples

(inferencing-state-name *inferencing-state*)

See also

find-inferencing-state
inferencing-state
list-all-inferencing-states
make-inferencing-state

7 Reference Guide

82

in-interpreter Variable

Summary

Allows code to detect when it is running in a rule.

Package

kw

Initial Value

nil

Description

The variable *in-interpreter* is bound to t if the code executing has been called (directly or indirectly) from the
forward chaining rule interpreter. Otherwise it bound to nil. The value should not be changed.

instantiation Backward Chaining Goal

Summary

Find the next meta-interpreter rule instantiation that will fire.

Package

kw

Signature

instantiation variable

Arguments

variable⇓ An unbound variable introduced by ?.

Description

The backward chaining goal instantiation is only relevant when writing a meta-interpreter for a context.
instantiation binds variable to the next preferred instantiation from the conflict set of the currently executing context.

This goal may be satisfied repeatedly each time returning the next instantiation. When no instantiations are left, it fails.

Examples

(instantiation ?instantiation)

7 Reference Guide

83

See also

conflict-set
inst-bindings
inst-rulename
inst-token
start-cycle
fire-rule
defcontext
standard-context

inst-bindings Function

Summary

Returns the bindings in a rule instantiation.

Package

kw

Signature

inst-bindings instantiation => bindings

Arguments

instantiation⇓ An instantiation object.

Values

bindings An association list.

Description

The function inst-bindings returns an association list of the variables and their bindings in instantiation. The variables
are those produced by the condition part of the forward chaining rule.

Examples

For an instantiation of a rule with the precondition:

(object ? color ?color-value size ?size)

the value returned by:

(inst-bindings inst)

might be:

((?color-value . :red) (?size . 20))

7 Reference Guide

84

See also

conflict-set
deftactic
inst-rulename
inst-token
instantiation

inst-rulename Function

Summary

Returns the rule name of a rule instantiation.

Package

kw

Signature

inst-rulename instantiation => rulename

Arguments

instantiation⇓ An instantiation object.

Values

rulename A symbol which is the name of a rule.

Description

The function inst-rulename returns the rule name of instantiation (the name of the rule of which this is an instantiation).

See also

conflict-set
inst-bindings
deftactic
inst-token
instantiation

inst-token Function

Summary

Returns the token of a rule instantiation.

Package

kw

7 Reference Guide

85

Signature

inst-token instantiation => token

Arguments

instantiation⇓ An instantiation object.

Values

token⇓ A list of objects.

Description

The function inst-token returns the token of instantiation. token is the list of objects that match the condition part of the
forward chaining rule. This list of objects is in reverse order to the order in which the conditions appear in the rule.

Examples

If the forward chaining conditions are:

(train ?train)
(signal ?signal)

then the token will have the form (signal-object train-object).

See also

conflict-set
deftactic
inst-rulename
inst-bindings
instantiation

kb-name Generic Function

Summary

Returns the name of an object.

Package

kw

Signature

kb-name object => name

Arguments

object⇓ A KnowledgeWorks named CLOS object.

7 Reference Guide

86

Values

name A symbol.

Description

The generic function kb-name returns the name of object. It is an error if object is not a named object. Classes of named
objects can be defined using the macro def-named-kb-class.

Examples

(kb-name (get-kb-object 'fred)) ; returns FRED

See also

def-named-kb-class
get-kb-object
named-kb-object

kw-class Backward Chaining Goal

Summary

Matches all KnowledgeWorks class names.

Package

kw

Signature

kw-class term

Arguments

term⇓ Any backward chaining term.

Description

The backward chaining goal kw-class matches all KnowledgeWorks class names. It can act as a generator and can be
resatisfied. It succeeds when term is a symbol which is the name of a KnowledgeWorks class. If term is an unbound variable
it generates the names of the KnowledgeWorks classes.

Examples

(kw-class truck) ; succeeds if truck is a KW class

(kw-class ?class)
 ; ?class is bound to the name of a KW class

7 Reference Guide

87

See also

def-kb-class
def-kb-struct
def-named-kb-class

lex Conflict Resolution Tactic / Function

Summary

Implements the lex tactic.

Package

kw

Signature

lex instantiation1 instantiation2 => result

Arguments

instantiation1⇓ An instantiation object.

instantiation2⇓ An instantiation object.

Values

result A boolean.

Description

The conflict resolution tactic / function lex implements the LEX tactic. It returns true if and only if instantiation1 is
preferred to instantiation2 by the conflict resolution tactic lex, otherwise false. The function is intended to be used primarily
by including it in the conflict resolution strategy for a context.

Examples

(defcontext my-context1 :strategy (lex))
(defcontext my-context2 :strategy (priority lex))

See also

3.1.5.3 Conflict Resolution
defcontext
deftactic
-lex
instantiation
conflict-set
fire-rule

7 Reference Guide

88

-lex Conflict Resolution Tactic / Function

Summary

Implements the -lex tactic.

Package

kw

Signature

-lex instantiation1 instantiation2 => result

Arguments

instantiation1⇓ An instantiation object.

instantiation2⇓ An instantiation object.

Values

result A boolean.

Description

The conflict resolution tactic / function -lex returns true if and only if instantiation1 is preferred to instantiation2 by the
conflict resolution tactic -lex, otherwise false. The function is intended to be used primarily by including it in the conflict
resolution strategy for a context.

Examples

(defcontext my-context1 :strategy (-lex))
(defcontext my-context2 :strategy (priority -lex))

See also

3.1.5.3 Conflict Resolution
defcontext
deftactic
lex
instantiation
conflict-set
fire-rule

7 Reference Guide

89

list-all-inferencing-states Function

Summary

Returns a list of all the known inferencing states.

Package

kw

Signature

list-all-inferencing-states => states

Values

states A list of inferencing states.

Description

The function list-all-inferencing-states returns a list of all the known inferencing states. Inferencing states become
known when they are make and are known until they are destroyed.

Examples

(list-all-inferencing-states)

See also

destroy-inferencing-state
find-inferencing-state
inferencing-state
inferencing-state-name
make-inferencing-state

make-inferencing-state Function

Summary

Makes a new inferencing state.

Package

kw

Signature

make-inferencing-state name &key set-current-p if-exists => state

7 Reference Guide

90

Arguments

name⇓ Any object.

set-current-p⇓ A boolean.

if-exists⇓ Either :error, :supersede or :overwrite.

Values

state An inferencing state.

Description

The function make-inferencing-state returns an inferencing state named by name.

If an inferencing state with the same name already exists (as compared using eql), then the value of if-exists determines what
happens:

:error A continuable error is signaled. Invoking the continue restart causes the existing inferencing
state to be returned.

:supersede The existing inferencing state is destroyed and a new one is returned.

:overwrite The existing inferencing state is returned.

If set-current-p is non-nil, then *inferencing-state* is set to new inferencing state.

Examples

(make-inferencing-state 'my-state)

See also

destroy-inferencing-state
find-inferencing-state
inferencing-state
inferencing-state-name
list-all-inferencing-states

make-instance Generic Function

Summary

Makes a CLOS or KnowledgeWorks structure object.

Package

common-lisp

Signature

make-instance class &rest initargs => object

7 Reference Guide

91

http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_contin.htm

Arguments

class⇓ A class object or a symbol.

initargs⇓ Initialization arguments for the object.

Values

object A new instance of class.

Description

The generic function make-instance makes a new instance of the class class.

If class is a CLOS class then the behavior is as specified by make-instance in the Common Lisp standard.

If class is a KnowledgeWorks structure class, then initargs are the same as those for the automatically defined constructor
function of the structure.

The object is added to the object base of the current inferencing state.

Examples

(make-instance 'start)
(make-instance 'driver :location 'London
 :kb-name 'fred)

See also

def-kb-class
def-kb-struct
def-named-kb-class

mea Conflict Resolution Tactic / Function

Summary

Implements the mea tactic.

Package

kw

Signature

mea instantiation1 instantiation2 => result

Arguments

instantiation1⇓ An instantiation object.

instantiation2⇓ An instantiation object.

7 Reference Guide

92

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

Values

result A boolean.

Description

The conflict resolution tactic / function mea returns true if and only if instantiation1 is preferred to instantiation2 by the
conflict resolution tactic mea, otherwise false. The function is intended to be used primarily by including it in the conflict
resolution strategy for a context.

Examples

(defcontext my-context1 :strategy (mea))
(defcontext my-context2 :strategy (priority mea))

See also

3.1.5.3 Conflict Resolution
defcontext
deftactic
-mea
instantiation
conflict-set
fire-rule

-mea Conflict Resolution Tactic / Function

Summary

Implements the -mea tactic.

Package

kw

Signature

-mea instantiation1 instantiation2 => result

Arguments

instantiation1⇓ An instantiation object.

instantiation2⇓ An instantiation object.

Values

result A boolean.

Description

The conflict resolution tactic / function -mea returns true if and only if instantiation1 is preferred to instantiation2 by the
conflict resolution tactic -mea, otherwise false. The function is intended to be used primarily by including it in the conflict

7 Reference Guide

93

resolution strategy for a context.

Examples

(defcontext my-context1 :strategy (-mea))
(defcontext my-context2 :strategy (priority -mea))

See also

3.1.5.3 Conflict Resolution
defcontext
deftactic
mea
instantiation
conflict-set
fire-rule

named-kb-object Class

Summary

A class that provides named objects.

Package

kw

Superclasses

standard-kb-object

Initargs

:kb-name The name of the object. The default is computed by calling gentemp with the name of the
class.

Description

The class named-kb-object is the mixin class for named KnowledgeWorks CLOS objects.

Subclasses of named-kb-object are typically defined using the macro def-named-kb-class.

Examples

(defclass driver (named-kb-object)
 ((location) (allocated-truck)))

See also

get-kb-object
kb-name
def-named-kb-class
standard-kb-object

7 Reference Guide

94

http://www.lispworks.com/documentation/HyperSpec/Body/f_gentem.htm

no-debug Function

Summary

Turns debugging facilities off.

Package

kw

Signature

no-debug

Description

The function no-debug turns off all KnowledgeWorks debugging facilities. This means that rules and contexts cannot be
single stepped or monitored, and no record is kept of when objects are created or modified. Execution speed of the rulebase is
improved, and memory requirements reduced.

This should be called before compiling any rules or contexts that are to be optimized.

Examples

(no-debug)

See also

all-debug

not Backward Chaining Goal

Summary

A goal that is satisfied when another goal fails.

Package

kw

Signature

not {condition}*

Arguments

condition⇓ Any backward chaining goal.

7 Reference Guide

95

Description

If the backward chaining goal not is used in a backward chaining clause, it succeeds if condition fails. In this usage, only
one condition is allowed.

If not is used in a forward chaining pre-condition, it succeeds if any condition contained within it fail. In this usage, each
condition may only contain expressions normally allowed in forward chaining pre-conditions (object base references and lisp
tests). See 3.1.2 Forward Chaining Syntax for more details.

Examples

(not (truck ?truck driver ?driver) (test ?driver))

See also

test

order Conflict Resolution Tactic / Function

Summary

Implements the order tactic.

Package

kw

Signature

order instantiation1 instantiation2 => result

Arguments

instantiation1⇓ An instantiation object.

instantiation2⇓ An instantiation object.

Values

result A boolean.

Description

The conflict resolution tactic / function order returns true if and only if instantiation1 is preferred to instantiation2 by the
conflict resolution tactic order, otherwise false. The function is intended to be used primarily by including it in the conflict
resolution strategy for a context.

Examples

(defcontext my-context1 :strategy (order))
(defcontext my-context2 :strategy (priority order))

7 Reference Guide

96

See also

3.1.5.3 Conflict Resolution
defcontext
deftactic
-order
instantiation
conflict-set
fire-rule

-order Conflict Resolution Tactic / Function

Summary

Implements the -order tactic.

Package

kw

Signature

-order instantiation1 instantiation2 => result

Arguments

instantiation1⇓ An instantiation object.

instantiation2⇓ An instantiation object.

Values

result A boolean.

Description

The conflict resolution tactic / function -order returns true if and only if instantiation1 is preferred to instantiation2 by the
conflict resolution tactic -order, otherwise false. The function is intended to be used primarily by including it in the conflict
resolution strategy for a context.

Examples

(defcontext my-context1 :strategy (-order))
(defcontext my-context2 :strategy (priority -order))

See also

3.1.5.3 Conflict Resolution
defcontext
deftactic
order
instantiation
conflict-set

7 Reference Guide

97

fire-rule

print-verbose Variable

Summary

Controls how much information is printed for an object.

Package

kw

Initial Value

nil

Description

The variable *print-verbose* controls how much information is printed for an object.

Normally objects in KnowledgeWorks are printed out in a brief form similar to ordinary CLOS objects. If
print-verbose is set to t then all the slots and slot values are shown in its printed representation. Note that circularities
cannot be detected.

priority Conflict Resolution Tactic / Function

Summary

Implements the priority tactic.

Package

kw

Signature

priority instantiation1 instantiation2 => result

Arguments

instantiation1⇓ An instantiation object.

instantiation2⇓ An instantiation object.

Values

result A boolean.

Description

The conflict resolution tactic / function priority returns true if and only if instantiation1 is preferred to instantiation2 by
the conflict resolution tactic priority, otherwise false. The function is intended to be used primarily by including it in the

7 Reference Guide

98

conflict resolution strategy for a context.

Examples

(defcontext my-context1 :strategy (priority))
(defcontext my-context2 :strategy (recency priority))

See also

3.1.5.3 Conflict Resolution
defcontext
deftactic
-priority
instantiation
conflict-set
fire-rule

-priority Conflict Resolution Tactic / Function

Summary

Implements the -priority tactic.

Package

kw

Signature

-priority instantiation1 instantiation2 => result

Arguments

instantiation1⇓ An instantiation object.

instantiation2⇓ An instantiation object.

Values

result A boolean.

Description

The conflict resolution tactic / function -priority returns true if and only if instantiation1 is preferred to instantiation2 by
the conflict resolution tactic - -priority, otherwise false. The function is intended to be used primarily by including it in
the conflict resolution strategy for a context.

Examples

(defcontext my-context1 :strategy (-priority))
(defcontext my-context2 :strategy (recency -priority))

7 Reference Guide

99

See also

3.1.5.3 Conflict Resolution
defcontext
deftactic
priority
instantiation
conflict-set
fire-rule

recency Conflict Resolution Tactic / Function

Summary

Implements the recency tactic.

Package

kw

Signature

recency instantiation1 instantiation2 => result

Arguments

instantiation1⇓ An instantiation object.

instantiation2⇓ An instantiation object.

Values

result A boolean.

Description

The conflict resolution tactic / function recency returns true if and only if instantiation1 is preferred to instantiation2 by the
conflict resolution tactic recency, otherwise false. The function is intended to be used primarily by including it in the
conflict resolution strategy for a context.

Examples

(defcontext my-context1 :strategy (recency))
(defcontext my-context2 :strategy (priority recency))

See also

3.1.5.3 Conflict Resolution
defcontext
deftactic
-recency
instantiation
conflict-set

7 Reference Guide

100

fire-rule

-recency Conflict Resolution Tactic / Function

Summary

Implements the -recency tactic.

Package

kw

Signature

-recency instantiation1 instantiation2 => result

Arguments

instantiation1⇓ An instantiation object.

instantiation2⇓ An instantiation object.

Values

result A boolean.

Description

The conflict resolution tactic / function -recency returns true if and only if instantiation1 is preferred to instantiation2 by
the conflict resolution tactic -recency, otherwise false. The function is intended to be used primarily by including it in the
conflict resolution strategy for a context.

Examples

(defcontext my-context1 :strategy (recency))
(defcontext my-context2 :strategy (priority recency))

See also

3.1.5.3 Conflict Resolution
defcontext
deftactic
recency
instantiation
conflict-set
fire-rule

7 Reference Guide

101

reset Function

Summary

Clears all objects from the object base.

Package

kw

Signature

reset

Description

The function reset clears all KnowledgeWorks objects (both KnowledgeWorks CLOS objects and KnowledgeWorks
structures) from the object base of the current inferencing state.

The list of KnowledgeWorks classes remains unaffected.

Examples

(reset)

See also

clear-all
clear-rules

return Backward Chaining Goal

Summary

Removes the top-most context from the agenda.

Package

kw

Signature

return

Description

The backward chaining goal return takes the topmost context on the agenda and makes it the current context, discarding the
previous current context. When called from within a rule, rule execution continues to the end and the next rule to fire will be
from the new current context.

7 Reference Guide

102

Examples

(return)

See also

context

signal-kb-name-clash Variable

Summary

Controls the behavior if name clashes occur in object creation.

Package

kw

Initial Value

:error

Description

The variable *signal-kb-name-clash* determines behavior when creating a new named KB object with the same name
as an existing KB object.

The possible values are:

:error Signals a error Continuing will replace the old object with the new object.

:warn Signals a warning and replaces the old object with the new object.

:quiet Replaces the old object with the new object.

specificity Conflict Resolution Tactic / Function

Summary

Implements the specificity tactic.

Package

kw

Signature

specificity instantiation1 instantiation2 => result

Arguments

instantiation1⇓ An instantiation object.

7 Reference Guide

103

instantiation2⇓ An instantiation object.

Values

result A boolean.

Description

The conflict resolution tactic / function specificity returns true if and only if instantiation1 is preferred to instantiation2
by the conflict resolution tactic specificity, otherwise false. The function is intended to be used primarily by including it
in the conflict resolution strategy for a context.

Examples

(defcontext my-context1 :strategy (specificity))
(defcontext my-context2
 :strategy (priority specificity))

See also

3.1.5.3 Conflict Resolution
defcontext
deftactic
-specificity
instantiation
conflict-set
fire-rule

-specificity Conflict Resolution Tactic / Function

Summary

Implements the -specificity tactic.

Package

kw

Signature

-specificity instantiation1 instantiation2 => result

Arguments

instantiation1⇓ An instantiation object.

instantiation2⇓ An instantiation object.

Values

result A boolean.

7 Reference Guide

104

Description

The conflict resolution tactic / function -specificity returns true if and only if instantiation1 is preferred to instantiation2
by the conflict resolution tactic -specificity, otherwise false. The function is intended to be used primarily by including
it in the conflict resolution strategy for a context.

Examples

(defcontext my-context1 :strategy (-specificity))
(defcontext my-context2
 :strategy (priority -specificity))

See also

3.1.5.3 Conflict Resolution
defcontext
deftactic
specificity
instantiation
conflict-set
fire-rule

standard-context Backward Chaining Goal

Summary

The standard meta-interpreter context.

Package

kw

Signature

standard-context

Description

The backward chaining goal standard-context is the built-in goal that implements a meta-interpreter for the default
(normal) behavior of a context. It is as if defined by the rule:

(defrule standard-context :backward
 ((standard-context)
 <--
 (start-cycle)
 (instantiation ?instantiation)
 (fire-rule ?instantiation)
 (cut)
 (standard-context)))

Examples

(defcontext my-context1
 :meta (((format t "~%Entering context MY-CONTEXT1"))

7 Reference Guide

105

 (standard-context)))

See also

defcontext
start-cycle
instantiation
fire-rule

standard-kb-object Class

Summary

A class of objects for use in the object base.

Package

kw

Superclasses

standard-object

Description

The class standard-kb-object is the mixin class for (unnamed) KnowledgeWorks CLOS objects.

Subclasses of standard-kb-object are typically defined using the macro def-kb-class.

Examples

(defclass driver (standard-kb-object)
 ((location) (allocated-truck)))

See also

def-kb-class
named-kb-object

start-cycle Backward Chaining Goal

Summary

Used in the meta-interpreter to start the cycle.

Package

kw

7 Reference Guide

106

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm

Signature

start-cycle

Description

The backward chaining goal start-cycle is only relevant when writing a meta-interpreter for a context. start-cycle
must be called at the start of every forward chaining cycle as it performs some essential housekeeping.

Examples

(start-cycle)

See also

fire-rule
instantiation
defcontext
standard-context

start-kw Function

Summary

Starts the KnowledgeWorks programming environment.

Package

kw

Signature

start-kw &key host

Arguments

host⇓ A string.

Description

The function start-kw starts the KnowledgeWorks programming environment from the initial prompt when the
KnowledgeWorks image is started. If the LispWorks IDE is already running, start-kw adds the KnowledgeWorks menu so
that the podium becomes the KnowledgeWorks Podium.

On GTK+ and Motif the environment is displayed on the machine specified by host, defaulting to the machine on which the
KnowledgeWorks image is running. Other platforms ignore host.

Examples

(start-kw)

7 Reference Guide

107

test Backward Chaining Goal

Summary

Evaluates a Lisp form as a backward chaining goal.

Package

kw

Signature

test lisp-form

Arguments

lisp-form⇓ A single Lisp form.

Description

The backward chaining goal test succeeds if and only if lisp-form returns a non-nil value. Any currently bound variables
may be used in the lisp form.

test can also be used as a forward chaining pre-condition, as described in 3.1.2 Forward Chaining Syntax.

Examples

(test (> ?c 10))
(test (not (and (eq ?a ?b) (member ?b ?c))))

undefcontext Macro

Summary

Removes a named context and its rules.

Package

kw

Signature

undefcontext context-name &rest ignore

Arguments

context-name⇓ A symbol which names a context.

ignore⇓ Ignored arguments.

7 Reference Guide

108

Description

The macro undefcontext removes the context named context-name and all the rules in it.

ignore is not used and is only provided so that "un" may be prepended to a context definition in an editor buffer and evaluated
to remove the context.

Examples

(undefcontext my-context)

See also

defcontext

undefrule Macro

Summary

Removes a rule.

Package

kw

Signature

undefrule rule-name &rest ignore

Arguments

rule-name⇓ A symbol which names a rule.

ignore⇓ Ignored arguments.

Description

The macro undefrule removes the rule named rule-name and any unfired instantiations of that rule.

ignore is not used and is only provided so that "un" may be prepended to a rule definition in an editor buffer and evaluated to
remove the rule.

Examples

(undefrule my-rule1)

See also

defrule

7 Reference Guide

109

with-rule-actions Macro

Summary

Allows rule syntax to be embedded in Lisp code.

Package

kw

Signature

with-rule-actions bound-variables &body body => successp

Arguments

bound-variables⇓ A list of variables (each starting with ?).

body⇓ A rule body.

Values

successp⇓ A boolean.

Description

The macro with-rule-actions macro enables rule syntax to be embedded within Lisp.

body is executed just as if it were the right hand side of a forward or backward chaining rule. All variables in body (each
starting with ?) are taken to be unbound unless found in the list bound-variables, in which case its value is taken from the
Lisp variable of the same name. with-rule-actions is similar to the function any but can be compiled for efficiency.

successp is t if the body succeeds (that is, all clauses are successfully executed) or nil if any of the clauses fail.

Any subgoals that match the object base will only find objects from the current inferencing state.

Examples

(defun my-fn (?x)
 "prints all the lists which append to give ?x and
 then returns NIL"
 (with-rule-actions (?x)
 (append ?a ?b ?x)
 ((format t "~%~S and ~S append to give ~S"
 ?a ?b ?x))
 (fail)))

See also

any

7 Reference Guide

110

Appendix A: Common Prolog

A.1 Introduction

A.1.1 Overview

Common Prolog is a logic programming system within Common Lisp. It conforms closely to Edinburgh Prolog and at the
same time integrates well with Lisp. The basic syntax of Common Prolog is Lisp-like, but an Edinburgh syntax translator is
included that provides the ability to use pre-existing code. The implementation of Common Prolog was motivated by the
desire to use the logic programming paradigm without having to give up the advantages of a Lisp development environment.
Common Prolog is tightly integrated with Lisp and can be easily used in a mixed fashion with Lisp definitions even within
the same source file. Common Prolog predicates are compiled into Lisp functions which may then be compiled by a standard
Lisp compiler. Substantial effort has gone into providing a powerful debugging environment for Common Prolog, so that it
can be used when building serious applications. The implementation of Common Prolog is based loosely on the Warren
Abstract Machine (WAM) modified to take advantage of a Lisp environment's built in support for control flow and memory
allocation. (For more details of the WAM, see An Abstract Prolog Instruction Set, by David H D Warren, Technical Note
309, SRI International, October 1983.)

A.1.1.1 Starting Common Prolog

Common Prolog may be loaded into an image with the function call:

(require "prolog")

This will load the Common Prolog system. If Common Prolog will be used extensively, it may be worthwhile to save an
image with it pre-loaded. Alternatively, you may simply insert the call above into your LispWorks initialization file (usually
.lispworks).

For information about saving an image and the LispWorks initialization file, see the Release Notes and Installation Guide.

Note: If you load KnowledgeWorks, then Common Prolog is loaded as part of this.

A.2 Syntax

Common Prolog uses a Lisp-like syntax in which variables are prefixed with "?" and normal Lisp prefix notation is used.
Goals are represented as either lists or simple vectors e.g. (reverse (1 2 3) ?x) or #(member ?x (1 2 3)). A
symbol beginning with ? may be escaped by prefixing another ?.i.e. ?foo is the variable named foo; ??foo is the symbol
?foo.

The definition of append/3 from Prolog:

append([], X, X).
append([U|X], Y, [U|Z]) :-
 append(X, Y, Z)

translates to:

111

(defrel append
 ((append () ?x ?x))
 ((append (?u . ?x) ?y (?u . ?z))
 (append ?x ?y ?z)))

Unlike many Lisp-based logic systems, Common Prolog uses simple vectors to represent Prolog structured terms. Thus,
functor, arg, and =.. all behave in a standard fashion:

(arg 2 (foo 3 4) (3 4))
(arg 2 #(foo 3 4) 4)
(functor (foo 3 4) \. 2)
(functor #(foo 3 4) foo 2)
(=.. #(foo 3 4) (foo 3 4))
(=.. (foo 3 4) (\. foo (3 4)))

A.3 Defining Relations

The normal method of defining relations in Common Prolog is to use the defrel macro:

(defrel <relation name>
 [(declare declaration*)]
 <clause1>
 .
 .
 <clauseN>)

where each <clause> is of the form:

(<clause-head>
 <subgoal1>
 .
 .
 <subgoalN>)

and declarations may include: (mode arg-mode*) and any of the normal Lisp optimization declarations. Mode
declarations determine how much clause indexing will be done on the predicate and can also streamline generated code for a
predicate that will only be used in certain ways. A mode declaration consists of the word "MODE" followed by a mode spec
for each argument position of the predicate. The possible argument mode specs are:

? Generate completely general code for this arg and don't index on it.

?* Generate completely general code and index.

+ Generate code assuming this argument will be bound on entry and index.

- Generate code assuming this argument will be unbound on entry and don't index.

The default mode specs are ?* for the first argument and ? for all the rest.

A.4 Using The Logic Interpreter

The Common Prolog system comes with a built-in read-query-print loop similar to a Prolog interpreter loop. To run it,
make sure the common-prolog package is accessible and type: (rqp). You will be presented with the prompt: ==>. At this
point you may type in goal expressions, for example:

|==> (append ?x ?y (1 2))
|

Appendix A: Common Prolog

112

|?X = NIL
|?Y = (1 2)

Now Common Prolog is waiting for you to indicate whether or not you wish more solutions. If you press Return, you will
get the message OK and return to the top level:

|?X = NIL
|?Y = (1 2)<RETURN>
|
|OK.
|
|==>

A.4.1 Multiple Solutions

If you hit ; (semicolon) following the retrieval of a solution, the system will attempt to resatisfy your goal:

|?X = NIL
|?Y = (1 2);
|
|?X = (1)
|?Y = (2);
|
|?X = (1 2)
|?Y = NIL;
|
|NO.
|
|==>

When no more solutions remain, NO. is displayed and you are back at the top level.

A.4.2 Multiple Goals

To request the solution of multiple goals, use: (and <goal1> ... <goalN>).

For example:

|==> (and (member ?x (2 3)) (append (?x) (foo) ?y))
|
|X = 2
|Y = (2 FOO)
|
|OK.
|
|==>

A.4.3 Definitions

It is possible to type logic definitions directly into the interpreter. The resulting Lisp code will be compiled in memory and
you may use the definition immediately, for example.:

|==> (defrel color
| ((color red))
| ((color blue))
| ((color green)))
|
|<... various compilation messages ...>

Appendix A: Common Prolog

113

|
|YES.
|OK.
|
|==> (color ?x)
|
|?X = RED

A.4.4 Exiting the Interpreter

The Common Prolog interpreter may be exited by typing:

|==> (halt)

A.5 Accessing Lisp From Common Prolog

It is apparent from the Common Prolog syntax that the first element of any valid goal expression must be a symbol. Common
Prolog takes advantage of this fact and gives a special interpretation to a goal with a list in the first position. A list in the car
of a goal is treated as a Lisp expression with normal Lisp evaluation rules. Any logic variables in the expression are
instantiated with their values. (They must be bound). The rest of the goal expression should be a list of expressions to be
unified with the values returned by the Lisp evaluation. Any extra values returned are ignored, and any extra expressions in
the tail of a goal are unified with new unbound variables.

A.5.1 Examples

|==> ((print "foo"))
|
|"foo"
|YES.
|
|==> (and (= ?x 3) ((* ?x ?x) ?y))
 ; Note that "?y" is unified with 9

|?X = 3
|?Y = 9
|
|==> ((* 3 3) 10)

|NO.
|
|==> ((floor 3 4) ?x ?y)
|
|?X = 0
|?Y = 3

|==> ((floor 3 4) ?x)
|
|?X = 0
|
|==> ((* 3 4) ?x ?y)
|
|?X = 12
|?Y = ?0
 ; note that system generated variables look like:
 ; ?<integer>

Appendix A: Common Prolog

114

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

|==> ((typep 3 'integer) ?x)
|
|?X = T
|
|==> ((typep 3 'integer) t)
|
|YES.
|
|==> (and ((floor 5 3) ?x) ((floor 4 3) ?x))
|
|?X = 1
|
|==> ((cons 3 4) (?x . ?y))
|
|?X = 3
|?Y = 4
|
|==> (and (= ?op *) ((list ?op 3 4) ?y) (call (?y ?z)))
|
|?OP = *
|?Y = (* 3 4)
|?Z = 12
|
|==> (and (defrel fact
| ((fact 0 1))
| ((fact ?x ?y)
| ((- ?x 1) ?w)
| (fact ?w ?z)
| ((* ?z ?x) ?y)))
| (fact 10 ?result))
|
|?X = ?0
|?Y = ?1
|?W = ?2
|?Z = ?3
|?RESULT = 3628800

A.6 Calling Prolog From Lisp

There are several entry points provided for calling Prolog from Lisp. The main interface function is called logic and has
numerous options. The basic form is:

(logic <goal>
 :return-type <return-type>
 :all <all-type>
 :bag-exp <bag-exp>)

The keyword arguments are interpreted as follows:

:return-type describes what to do with a solution when one is found. Possible values of :return-type are:

:display Display variable bindings and prompt user (the option used by the read-query-print loop).

:fill Instantiate the goal expression and return it.

:bag Instantiate <bag-exp> and return it.

:alist Return an alist of variables and bindings.

The default is :fill.

:all tells what to do with multiple solutions. Possible values of :all are:

Appendix A: Common Prolog

115

nil Return the first solution.

:values Return multiple solutions as multiple values.

:list Return a list of the solutions.

:bag-exp is an expression that should be instantiated with the bindings from a solution. This is only meaningful if
:return-type is :bag.

A.6.1 Examples

(logic '(color ?x) :return-type :display)

writes:

?X = RED<wait for input>

(logic '(color ?x) :return-type :fill)

returns:

(COLOR RED)
T

(logic '(color ?x) :return-type :alist)

returns:

((?X . RED))
T

(logic '(color ?x) :all :list)

returns:

((COLOR RED) (COLOR BLUE) (COLOR GREEN))
T

(logic '(color ?x)
 :return-type :bag
 :bag-exp '(?x is a color)
 :all :values)

returns:

(RED IS A COLOR)
(BLUE IS A COLOR)
(GREEN IS A COLOR)

Appendix A: Common Prolog

116

A.6.2 Interface Functions

There are three additional ways to call logic, which are described in this section.

A.6.2.1 any, findall and findallset

Three simple interface functions call logic. They are any, findall, and findallset. Each takes two arguments: a result
expression to instantiate and a goal expression. any returns the first solution found. findall returns all solutions.
findallset returns all solutions deleting duplicates.

Assuming the definitions for fact and color from the previous examples.

|(any '(?x is the factorial of 5) '(fact 5 ?x))

returns:

|
|(120 IS THE FACTORIAL OF 5)
|

|(findall '(?x is a color) '(color ?x))

returns:

|
|((RED IS A COLOR) (BLUE IS A COLOR)
 (GREEN IS A COLOR))
|

|(findall '?y '(or (= ?y 5) (= ?y 5)))

returns:

|
|(5 5)
|
|(findallset '?y '(or (= ?y 5) (= ?y 5)))

returns:

|
|(5)

findall and findallset will hang if a goal expression generates an infinite solution set.

More powerful all solution predicates (bagof and setof) are available from within Common Prolog.

A.6.2.2 deflogfun

A different interface is available for predicates which will be called often from Lisp. The macro deflogfun may be used to
generate normal Lisp functions that run with precompiled goals.

(deflogfun break-up (y) (append ?a ?b y) (?a ?b))

then:

Appendix A: Common Prolog

117

(break-up '(foo bar baz))

returns:

(NIL (FOO BAR BAZ))
T

(break-up '(foo bar baz) :all :values)

returns:

(NIL (FOO BAR BAZ))
((FOO) (BAR BAZ))
((FOO BAR) (BAZ))
((FOO BAR BAZ) NIL)

(break-up '(foo bar baz) :all :list)

returns:

((NIL (FOO BAR BAZ))
 ((FOO) (BAR BAZ))
 ((FOO BAR) (BAZ))
 ((FOO BAR BAZ) NIL))
T

The generated function works like the Lisp functions any and findall, returning solutions to a prolog expression.

The form:

(deflogfun name args sample-expr return-expr)

defines a Lisp function called name, whose lambda list is the list args. The function will also take a keyword argument :all.
If the function is called with :all nil (the default), then it returns the first solution, like any. If the function is called with
:all t, then it returns a list of all the solutions, like findall. If the function is called with :all :values, then it returns
multiple values, with one value per solution.

The sample-expr is like the second argument to any, that is, it is the prolog query expression. The return-expr is like the first
argument to clog:any, that is, it defines how the result will be formed from the results of the query. If any of the symbols
mention in args appears in sample-expr or return-expr, then its value is substituted. All other symbols in sample-expr and
return-expr remain unchanged.

A.6.2.3 with-prolog

A final interface mechanism is with-prolog, which allows you to embed prolog into an arbitrary lisp function. Lisp
variables are referenced in Prolog using "?.<name>".

(defun palindromep (x)
 (with-prolog
 (append ?a (?b . ?c) ?.x) ; note "?.x" reference
 (or (reverse ?a ?c)
 (reverse ?a (?b . ?c)))))

(palindromep '(yes no maybe))

returns:

Appendix A: Common Prolog

118

NIL

(palindromep '(yes no maybe no yes))

returns:

T

The body of a with-prolog returns t if it succeeds and a non-local exit is not executed. It returns nil on failure.

A.7 Debugging

Common Prolog provides a standard 4-port debugging model (call exit redo fail).

Tracing, Spy Points, Leashing, and Interactive Debugging are each discussed separately in this section.

A.7.1 Tracing

Exhaustive tracing is available with Common Prolog through the use of: (trace). After executing (trace), all goals will
be displayed until control is returned to the top level loop, nodebug is executed or notrace is executed.

A.7.1.1 Tracing rules

You can turn on tracing for backward chaining from Lisp by running:

(clog:logic '(and (clog:unleash) (trace)))

There are no command line tools for tracing forward chaining rules directly, but the RHS of each rule is run using a backward
chaining rule with the same name, so they also appear when you trace backward chaining.

You could also add tracing to forward rules by defining a Meta Rule Protocol, for example like the explanation facility
described in 6.1.1.3 A Simple Explanation Facility.

A.7.2 Spy Points

Spy points are the most important debugging facility in Common Prolog. They are used in the same way trace is used in
Lisp. After executing (spy foo), all events associated with satisfying foo goals will be traced and the user will enter a
debugging command loop at every port (see A.7.4 Interactive Debugging below). A user can also specify (spy (foo 3)),
(spy (foo bar)), or (spy ((foo 3) bar)) to place spy points on foo goals with arity 3, on all predicates for foo
and bar, or on foo with arity 3 and all predicates for bar respectively. Spy points are turned off with (nospy <spypoints>).
If no spy points are mentioned, nospy will turn off all spy points.

A.7.3 Leashing

Leashing allows the user to control execution while tracing for goals that are not spied. Spied goals cause execution to enter a
debugging command loop whenever they are reached. Leashing provides the same functionality for unspied goals. A user
may choose to enter a debugging command loop at any subset of ports by using (leash events) where events may be: call,
redo, exit or fail. Leashing may be turned off using (unleash).

Appendix A: Common Prolog

119

http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm

A.7.4 Interactive Debugging

When Common Prolog execution enters a debugging command loop, the user has many options, which may be listed with ?,
for example:

|==> (spy member)
|
|((MEMBER 2))
|YES.
|OK.
|
|==> (member 3 ?x)
|
|[1] CALL: (MEMBER 3 ?0)? ? <- user types ?
|
|(c)reep - turn on exhaustive tracing
|(s)kip - skip until another port is
| reached for this goal
|(l)eap - turn off tracing until a spy
| point or this goal is reached
|(b)reak - enter a recursive
| read/query/print loop
|(d)isplay - display a listing for the
| current goal
|(q)uit - quit to top level
|(r)etry - try to satisfy this goal again
|(f)ail - cause the current goal to fail
|(a)bort - exit Common Prolog
|? - display this information
|
|?
|
|In a little more detail...
|
|creep - causes exhaustive tracing of the
| next goal
|skip - ignores spy points and executes
| without displaying anything until
| this goal is reached again
| either at an exit, fail,
| or redo port
|leap - turns off exhaustive tracing until
| a spy point or this goal is
| reached
|break - enters a recursive interpreter loop
| so that the user may query
| values, redefine a predicate, etc.
|display - uses "listing" to display the
| listing of the current goal
|quit - returns to the top level interpreter
| loop
|retry - causes execution to return to the
| call port of this goal as if
| this goal had just been reached for
| the first time.
|fail - causes execution to jump to the fail
| port of this goal
|abort - completely exit Common Prolog

Continuing the example:

|d <- user selects display
|
|Compiled procedure:

Appendix A: Common Prolog

120

|
|(DEFREL MEMBER
| ((MEMBER ?X (?X . ?)))
| ((MEMBER ?X (? . ?Y)) (MEMBER ?X ?Y))) ? c
| ...user selects creep

|[1] EXIT: (MEMBER 3 (3 . ?0))? r
| ...user selects retry
|
|[1] CALL: (MEMBER 3 ?0)? f <-user selects fail
|
|[1] FAIL: (MEMBER 3 ?0)? r <- one more time
|
|[1] CALL: (MEMBER 3 ?0)? s <- skip
|
|[1] EXIT: (MEMBER 3 (3 . ?0))? l <- leap

|?X = (3 . ?0); <- more solutions
|
|[1] REDO: (MEMBER 3 (3 . ?0))? c <- creep
|
|[2] CALL: (MEMBER 3 ?0)? b <- break
|
|
|==> (nospy)
|
|NIL <- current spylist
|YES.
|OK.
|
|==> (halt) <- return to original execution
|? l <- leap
|
|?X = (?0 3 . ?1)<cr>
|
|OK.

Another example:

|==> (defrel reverse
| ((reverse () ()))
| ((reverse (?x . ?y) ?z)
| (reverse ?y ?w)
| (append ?w (?x) ?z)))
|<noise..>
|
|?X = ?0
|?Y = ?1
|?Z = ?2
|?W = ?3
|
|OK.

|==> (defrel append
| ((append () ?x ?x))
| ((append (?u . ?x) ?y (?u . ?z))
| (append ?x ?y ?z)))
|<noise..>

|?X = ?0
|?U = ?1
|?Y = ?2

Appendix A: Common Prolog

121

|?Z = ?3
|
|OK.

|==> (unleash)
|
|YES.
|OK.
|
|==> (trace)
|
|YES.
|OK.

|==> (reverse (1 2 3) ?x)
|
|[1] CALL: (REVERSE (1 2 3) ?0)
|[2] CALL: (REVERSE (2 3) ?0)
|[3] CALL: (REVERSE (3) ?0)
|[4] CALL: (REVERSE NIL ?0)
|[4] EXIT: (REVERSE NIL NIL)
|[5] CALL: (APPEND NIL (3) ?0)
|[5] EXIT: (APPEND NIL (3) (3))
|[3] EXIT: (REVERSE (3) (3))
|[6] CALL: (APPEND (3) (2) ?0)
|[7] CALL: (APPEND NIL (2) ?0)
|[7] EXIT: (APPEND NIL (2) (2))
|[6] EXIT: (APPEND (3) (2) (3 2))
|[2] EXIT: (REVERSE (2 3) (3 2))
|[8] CALL: (APPEND (3 2) (1) ?0)
|[9] CALL: (APPEND (2) (1) ?0)
|[10] CALL: (APPEND NIL (1) ?0)
|[10] EXIT: (APPEND NIL (1) (1))
|[9] EXIT: (APPEND (2) (1) (2 1))
|[8] EXIT: (APPEND (3 2) (1) (3 2 1))
|[1] EXIT: (REVERSE (1 2 3) (3 2 1))
|?X = (3 2 1);

|[1] REDO: (REVERSE (1 2 3) (3 2 1))
|[8] REDO: (APPEND (3 2) (1) (3 2 1))
|[9] REDO: (APPEND (2) (1) (2 1))
|[10] REDO: (APPEND NIL (1) (1))
|[10] FAIL: (APPEND NIL (1) ?0)
|[9] FAIL: (APPEND (2) (1) ?0)
|[8] FAIL: (APPEND (3 2) (1) ?0)
|[2] REDO: (REVERSE (2 3) (3 2))
|[6] REDO: (APPEND (3) (2) (3 2))
|[7] REDO: (APPEND NIL (2) (2))
|[7] FAIL: (APPEND NIL (2) ?0)
|[6] FAIL: (APPEND (3) (2) ?0)
|[3] REDO: (REVERSE (3) (3))
|[5] REDO: (APPEND NIL (3) (3))
|[5] FAIL: (APPEND NIL (3) ?0)
|[4] REDO: (REVERSE NIL NIL)
|[4] FAIL: (REVERSE NIL ?0)
|[3] FAIL: (REVERSE (3) ?0)
|[2] FAIL: (REVERSE (2 3) ?0)
|[1] FAIL: (REVERSE (1 2 3) ?0)
|NO.

Appendix A: Common Prolog

122

A.8 Common Prolog Macros

Macros may be defined within the logic system using the form:

(defrelmacro <name> <arg-list> <body>)

which is effectively the same as a Common Lisp defmacro. Logic macros are expanded before variable translation so that
logic variables may be treated as atoms. defrelmacro forms must have a fixed number of arguments. This allows different
predicates with the same name but different arities to be defined. If you want to define a special form with an arbitrary
number of arguments, use defrel-special-form-macro.

A.8.1 Example

(defrelmacro append3 (x y z w)
 (let ((iv (make-internal-var)))
 `(and (append ,x ,y ,iv)
 (append ,iv ,z ,w))))

==> (append3 (1) (2) (3) ?y)

?Y = (1 2 3)

A.9 Defining Definite Clause Grammars

The defgrammar macro can be used to define a definite clause grammar (DCG), which is a relation that determines whether
the start of a list of tokens (a sentence) matches a particular grammar. The remaining tokens in the list become the sentence
tail.

The relation has the form:

(<grammar name> <sentence> <sentence tail> <extra argument>*)

where the <extra argument> items are terms defined below.

The syntax of the defgrammar macro is:

(defgrammar <grammar name>
 <rule>*)

<rule> ::= (<lhs> <rhs>*)

<lhs> ::= <grammar name>
 | (<grammar name> <term>*)
 | ((<grammar name> <term>*) <newterm>*)

<rhs> ::= <atom>
 | <var>
 | (<other grammar name> <term>*)
 | <lisp clause>
 | (call <term>)
 | (cut)

<lisp clause> ::= (<non-atomic lisp form> <term>*)

<non-atomic lisp form> ::= (<lisp function name> <lisp arg>*)

Appendix A: Common Prolog

123

http://www.lispworks.com/documentation/HyperSpec/Body/m_defmac.htm

<grammar name> is the same symbol as the one naming the defgrammar.

<other grammar name> is a symbol naming another defgrammar.

<atom> is an atom, which forms the words of the sentence to be matched.

<var> is a variable reference.

<term> and <newterm> are any Common Prolog logic expression, including a variable.

<lisp function name> is a symbol naming a Lisp function.

<lisp arg> is any Lisp form, which is evaluated and passed to the function.

Within the <lhs>, extra arguments can be added by specifying <term>s. Every <rule> must specify the same
<grammar name> as the defgrammar form and have the same number of extra arguments.

If the <lhs> specifies <newterm> forms, then they are pushed onto start of the sentence tail if the rule matches. This
corresponds to the "pushback lists" or "right-hand context" in traditional Prolog DCG syntax.

The meaning of the various <rhs> items is as follows:

• <atom> matches that atom in the sentence.

• <var> is unified with the next item in the sentence.

• (<other grammar name> <term>*) calls the grammar relation <other grammar name> on the rest of the
sentence. The optional <term> arguments are passed to the relation as its extra arguments.

• <lisp clause> evaluates the <non-atomic lisp form> as a Lisp form and unifies the values that it returns with
the <term>s that follow it.

• (call <term>) calls <term> as a normal Prolog relation.

• (cut) calls the normal Prolog cut relation.

The phrase predicate can be used to call a DCG.

A.9.1 Examples

Here are some examples of using defgrammar.

A.9.1.1 Example 1: A simple definition.

This example shows the Common Prolog translation of the grammar shown at the top of
http://cs.union.edu/~striegnk/learn-prolog-now/html/node59.html.

(defgrammar gram-det
 (gram-det the)
 (gram-det a))

(defgrammar gram-n
 (gram-n woman)
 (gram-n man))

(defgrammar gram-v
 (gram-v shoots))

(defgrammar gram-np
 (gram-np (gram-det) (gram-n)))

Appendix A: Common Prolog

124

(defgrammar gram-vp
 (gram-vp (gram-v) (gram-np))
 (gram-vp (gram-v)))

(defgrammar gram-s
 (gram-s (gram-np) (gram-vp)))

Note the use of symbols for terminals and lists for non-terminals. They all use the first form of the <lhs> and have no extra
terms on the <rhs>, so all of the relations are binary.

The following will both succeed and bind ?x to the list (foo bar):

(clog:any '?x '(gram-s (a woman shoots foo bar) ?x))
(clog:any '?x '(gram-s (a woman shoots the man foo bar) ?x))

A.9.1.2 Example 2: Using extra arguments.

(defgrammar one-of
 ((one-of ?word) ?word))

(defgrammar two-of
 ((two-of ?word) (one-of ?word) (one-of ?word)))

Each of these defines a 3-ary relation, whose extra argument is the word to match. When the relations are called, the word
will typically be bound to a symbol from the sentence to match.

The following will succeed and bind ?x to the list (foo bar):

(clog:any '?x '(two-of (start start foo bar) ?x start))

The following will both fail because the sentences do not begin with two start symbols:

(clog:any '?x '(two-of (not-start start foo bar) ?x start))
(clog:any '?x '(two-of (start not-start foo bar) ?x start))

A.10 Edinburgh Syntax

Common Prolog provides a translator from Edinburgh syntax to allow users to port pre-existing code.

The consult predicate operates only on .pl files:

• consult('xxx.pl') means consult file xxx.pl.

• consult('xxx'). means find a file named xxx.pl and consult it.

The reconsult predicate can operate on a Lisp source file, since compile_and_reconsult('xxx.pl') produces a Lisp
binary file xxx.?fasl. That is, reconsult will load fasl and lisp files as well as .pl files:

• reconsult('xxx.pl') means reconsult file xxx.pl.

• reconsult('xxx') means look for a file named xxx.?fasl and load it, or if none found, look for xxx.pl and
reconsult it, or if none found look for xxx.lisp and load it, or load xxx.

Loading a compiled file is equivalent to reconsult.

compile_and_reconsult compiles a file and reconsults the result.

Appendix A: Common Prolog

125

Edinburgh syntax may also be used to interact with Common Prolog through the use of a different read-query-print loop. To
use Edinburgh syntax, use (erqp) instead of (rqp) to start your command loop.

A.11 Graphic Development Environment

Common Prolog includes a graphic environment, consisting of a specialized listener and graphic debugging tools. With the
debugging tools it is possible to step through a program at the source level and control the 4-port debugger using the mouse.
Call trees for predicates may also be displayed and manipulated.

The specialized listener provides mouse control over:

• File editing, compiling, consulting and reconsulting.

• Debugging control flow (creep, leap, skip, etc.).

• Leashing of debugging ports.

• The addition and deletion of spy points.

The Logic Listener interaction is similar to a normal Lisp Listener and will accept normal Lisp expressions except that:

1. Any expression that can be interpreted as Common Prolog will be handled by the Logic subsystem.

2. If a line consisting of just `?-' is entered, the Logic Listener will go into an Edinburgh (erqp) loop.

A.12 Built-in Predicates

The built-in predicates listed in the table below are exported from the common-prolog (clog) package.

/== (?x ?y) same as Prolog \==

= (?x ?y) standard Prolog

=.. (?x ?y) standard Prolog

== (?x ?y) standard Prolog

@< (?x ?y) same as Prolog except all variables sort as identical

@=< (?x ?y) ditto

@> (?x ?y) ditto

@>= (?x ?y) ditto

append (?x ?y ?z) standard Prolog

arg (+index +term ?value) standard Prolog

asserta (+exp) standard Prolog

assertz (+exp) standard Prolog

atomic (?x) standard Prolog

bagof (?exp
(+goal . +ex-vars)
?bag)

standard Prolog (unusual syntax)*

call (+exp) standard Prolog

clause (+head ?tail) standard Prolog

Appendix A: Common Prolog

126

debug () cause debugging information to be saved for each call
whether it is spied or not

debugging () display a list of all spied goals

defdetrel
(+name &rest +clauses)

define a relation and declare it to be deterministic

defgrammar
(+name &rest +rules)

define a grammar rule

defrel
(+name &rest +clauses)

define a relation

defrelmacro
(+name +args &rest +body)

define a logic macro

defrel-special-form-macro
(+name +args &rest +body)

like defrelmacro but can have &rest in +args. Use of
this form will shadow all predicates named +name

regardless of arity.

deterministic (+name) declare the relation called ?name to be deterministic

erase (+ref) delete the predicate with database reference ?ref from
the database

fail () standard Prolog

findall
(?exp +goal ?result)

generate all solutions to ?goal and instantiate ?exp with
the values. Return a list in ?result.

findallset
(?exp +goal ?result)

same as findall/3 but removes duplicates

functor
(?term ?functor ?arity)

standard Prolog

halt () exit Common Prolog

integer (?x) standard Prolog

is (?result +exp) standard Prolog

keysort (+in ?out) standard Prolog except uses alist style cons pairs

leash (+event-spec) cause the interpreter to pause and ask for input when one
of the leashed events is traced. An event-spec is one of:
call, exit, redo or fail, or a list of ports.

listing
(+name &optional +arity)

display a listing of the named predicate or listings for
each arity if no arity is specified

member (?x ?y) standard Prolog

nodebug () leave debug mode (cease saving debug info for non-
spied goals)

nonvar (?x) standard Prolog

nospy (+args) remove +args from the list of spied goals. +args may be
a predicate name or a list of predicate names. Unspy all
goals if +args is nil

not (+x) standard Prolog

notrace () turn off exhaustive tracing for debugged goals

Appendix A: Common Prolog

127

once (+exp) satisfy +exp as a goal once, then fail on retrying even if
+exp has more solutions: this can be used to make a call
deterministic so that the compiler can perform last call
optimization

output-defrels
(+name ?defrels)

return a list of defrel expressions derived from the
dynamic clauses associated with ?name

read-term (?term) read in a term

recorda (+exp ?val ?ref) standard Prolog

recorded (+term ?val ?ref) standard Prolog

recordz (+exp ?val ?ref) standard Prolog

repeat () standard Prolog

retract (+clause) standard Prolog

setof (?exp
(+goal . +ex-vars)
?bag)

standard Prolog (unusual syntax)*

sort (+in ?out) standard Prolog

spy (+args) spy +args. +args may be a predicate name or a list of
predicate names. If arity is not mentioned for a predicate
name, predicates of all arities with that name are spied.

trace () turn on tracing for debugged goals, also turn on
debugging for the next top level goal

translate-vars
(?intern ?extern)

translate back and forth between internal and external
variable representations. Can be used to pretty up the
writing of terms containing variables

true () standard Prolog

unleash (+event-spec) Undo leashing for +event-spec. +event-spec may be
a port or a list of ports. If +event-spec is nil, all
ports are unleashed.

var (?x) standard Prolog

phrase +exp ?list standard Prolog way to call a grammar rule

phrase +exp ?list ?tail standard Prolog way to call a grammar rule

* setof and bagof in standard Prolog use a special syntax for existentially quantified variables, for example:

?- setof(X, Y^foo(X,Y), Z).

In Common Prolog, this would look like:

==> (setof ?x ((foo ?x ?y) ?y) ?z)

So, a goal with no existentially quantified variables is nested in an extra set of parentheses:

==> (bagof ?x ((bar ?x)) ?z)

Appendix A: Common Prolog

128

A.13 Adding Built-in Predicates

Common Prolog provides several special forms for adding new predicates written in Lisp. Each one is described below, with
an example.

A.13.1 The defdetpred form

The syntax of this form is:

(defdetpred <name> <num-args> <body>)

which defines a simple predicate that just runs Lisp code and does not have to unify any variables. Arguments are referenced
with: (special-arg <num>). The body succeeds by default, but if a failure case arises, use:
(detpred-fail <name> <num-args>).

For example:

(defdetpred my-integer 1
 (unless (integerp (special-arg 0))
 (detpred-fail my-integer 1)))

A.13.2 The defdetunipred form

The syntax of this form is:

(defdetunipred <name> <num-args> <unifier1 unifier2>
 <aux-vars> <body>)

defdetunipred is used when the defined predicate needs to unify values with arguments (or unify in general). The body is
executed and, if successful, (that is, detpred-fail has not been called) unification is performed on the two unifiers. (If
more than two items need to be unified, cons up lists of items to unify).

For example:

(defdetunipred my-arg 3 (temp1 temp2)
 (temp1 temp2 index term value)
 (setf index (special-arg 0)
 term (special-arg 1)
 value (special-arg 2))
 (unless (and (numberp index)
 (plusp index)
 (or (and (term-p term)
 (< index (length term)))
 (and (consp term)
 (< index 3))))
 (detpred-fail my-arg 3))
 (if (consp term)
 (setf temp1 (if (= index 1)
 (car term)
 (cdr term)))
 (setf temp1 (term-ref term index)))
 (setf temp2 value))

Appendix A: Common Prolog

129

A.14 Edinburgh Compatibility Predicates

The following predicates all have their standard Edinburgh definitions (note that these are written as Lisp symbols, so \ is a
Lisp escape character, meaning that \\+ is the Edinburgh definition named \+):

-->
->
/
//
<<
=
=
=<
>>
?-
@<
@>
@>=
\,
\.
\:-
\:=
\;
\\
\\+
/\\
\\/
\\=
\\==
^
current-op
display
get
get0
is
name
nl
put
see
seeing
seen
skip
tell
telling
told
ttynl
ttyput
write
writeq
|is|

Appendix A: Common Prolog

130

Appendix B: Examples

B.1 The Tutorial

The code for the tutorial (2 Tutorial) is reproduced for easy reference.

; -*-mode : lisp ; package : kw-user -*-

(in-package kw-user)

;;; ---------------- OBJECT DEFINITIONS ------------

(def-kb-class node ()
 ((animal :initform nil :accessor node-animal
 :initarg :animal)
 (question :initform nil :accessor node-question
 :initarg :question)
 (yes-node :initform nil :accessor node-yes-node
 :initarg :yes-node)
 (no-node :initform nil :accessor node-no-node
 :initarg :no-node)))

(def-kb-class root ()
 ((node :initform nil :accessor root-node
 :initarg :node)))

(def-kb-struct current-node node)
(def-kb-struct game-over node animal answer)

;;; -------------- FORWARD CHAINING RULES -------------

;;; if there is no question we are about to ask then
;;; ask the question which is the root question of the
;;; question tree

(defrule play :forward
 (root ?r node ?node)
 (not (current-node ? node ?))
 -->
 ((tk:send-a-message
 (format nil " ANIMAL GUESSING GAME - ~
 think of an animal to continue")))
 (assert (current-node ? node ?node)))
;;; ask a yes/no question - these are non-leaf questions

(defrule y-n-question :forward
 (current-node ?current node ?node)
 (node ?node animal nil question ?q yes-node ?y-n
 no-node ?n-n)
 -->
 ((tk:confirm-yes-or-no ?q) ?answer)
 (erase ?current)
 ((find-new-node ?answer ?y-n ?n-n) ?new-current)
 (assert (current-node ? node ?new-current)))

(defun find-new-node (answer yes-node no-node)
 (if answer yes-node no-node))

131

;;; ask an animal question - these a leaf questions

(defrule animal-question :forward
 (current-node ?current node ?node)
 (node ?node animal ?animal question nil)
 -->
 ((tk:confirm-yes-or-no
 (format nil "Is it a ~a?" ?animal)) ?answer)
 (erase ?current)
 (assert (game-over ? node ?node animal ?animal
 answer ?answer)))

;;; add new nodes to the tree for the new animal and
;;; the question that distinguishes it

(defrule new-question :forward
 :priority 20
 (game-over ? node ?node animal ?animal answer nil)
 -->
 (fetch-new-animal ?new-animal)
 ((tk:popup-prompt-for-string
 (format nil "Tell me a question for which the ~
 answer is yes for a ~a and no for a ~a"
 ?new-animal ?animal)) ?question)
 (assert (node ?yes-node question nil
 animal ?new-animal))
 (assert (node ?no-node question nil animal ?animal))
 (assert (node ?node animal nil yes-node ?yes-node
 no-node ?no-node question ?question)))

;;; game is over

(defrule game-finished :forward
 :priority 15
 (game-over ?g)
 -->
 (erase ?g)
; (test (not (tk:confirm-yes-or-no "Play again?")))
 (return))

;;; --------------- BACKWARD CHAINING ----------------

;;; prompt user for new animal

(defrule fetch-new-animal :backward
 ((fetch-new-animal ?new-animal)
 <--
; (repeat)
 ((string-upcase
 (tk:popup-prompt-for-string
 "What was your animal?"))
 ?new-animal)
 (not (= ?new-animal "NIL"))
 ; check if abort was pressed
 (or
 (does-not-exist-already ?new-animal)
 (and ((tk:send-a-message "Animal exists already"))
 (fail)))))

;;; check if a node already refers to this animal

(defrule does-not-exist-already :backward
 ((does-not-exist-already ?animal)
 <--
 (node ? animal ?animal)
 (cut)

Appendix B: Examples

132

 (fail))
 ((does-not-exist-already ?animal)
 <--))

;;; --------------- SAVING THE ANIMAL BASE ------------

;;; writes out code which when loaded reconstructs the
;;; tree of questions

(defun save-animals (filename)
 (let* ((start-node (any `?node `(root ? node ?node)))
 (code `(make-instance `root
 :node ,(node-code start-node)))
 (*print-pretty* t))
 (with-open-file
 (stream filename :direction :output
 :if-exists :supersede)
 (write `(in-package kw-user) :stream stream)
 (write-char #\Newline stream)
 (write code :stream stream))
 nil))

(defun node-code (node)
 (when node
 `(make-instance `node
 :question ,(node-question node)
 :animal `,(node-animal node)
 :yes-node ,(node-code (node-yes-node node))
 :no-node ,(node-code (node-no-node node)))))

B.2 Explanation Facility

Below is the complete code implementing the simple explanation facility of 6.1.1.3 A Simple Explanation Facility. The
implementation principle is exactly as described.

;;; ---------- A SIMPLE EXPLANATION FACILITY ---------

(in-package kw-user)

; connects rule to explanation definitions
(defvar *explanation-table*
 (make-hash-table :test #'eq))

; explanation generated at run time
(defvar *explanation* nil)

;;; the next four definitions make up the defexplain
;;; macro for each of the why, what and because
;;; definitions we create a function which we can call
;;; at run time on the bindings of the instantiation to
;;; generate the explanation text - this will be
;;; reasonably efficient

(defun is-var (expr)
 "is this a variable (i.e. starts with ?)"
 (and (symbolp expr)
 (eql (char (symbol-name expr) 0) #\?)))

(defun find-vars (expr)
 "returns a list of all the variables in expr"
 (if (consp expr)
 (append (find-vars (car expr))
 (find-vars (cdr expr)))

Appendix B: Examples

133

 (if (is-var expr) (list expr) nil)))

(defun make-explain-func (explain-stuff)
 "generates a function to generate explanation text at
 run time"
 (let* ((explain-string (car explain-stuff))
 (explain-args (cdr explain-stuff))
 (vars (remove-duplicates
 (find-vars explain-args))))
 `#'(lambda (bindings)
 (let ,(mapcar
 #'(lambda (v)
 `(,v (cdr (assoc `,v bindings))))
 vars)
 (format nil ,explain-string
 ,@explain-args)))))

(defmacro defexplain (rulename &key why what because)
 "puts an entry for the rule in the explanation table"
 `(setf (gethash `,rulename *explanation-table*)
 (list ,(make-explain-func why)
 ,(make-explain-func what)
 ,(make-explain-func because))))

;;; next two definitions generate an explanation for
;;; each instantiation that fires and stores it away in
;;; *explanation*

(defun add-explanation (inst)
 "generate an explanation for firing this
 instantiation"
 (let ((explain-info
 (gethash (inst-rulename inst)
 explanation-table)))
 (when explain-info
 (do-the-rest explain-info (inst-bindings inst)))))

(defun do-the-rest (explain-info bindings)
 "creates explanation text derived from explain
 functions and bindings"
 (let ((why-func (first explain-info))
 (what-func (second explain-info))
 (because-func (third explain-info)))
 (push `(,*cycle* ,(inst-rulename inst)
 ,(funcall why-func bindings)
 ,(funcall what-func bindings)
 ,(funcall because-func bindings))
 explanation)))))

;;; meta-interpreter for explanation contexts
;;; before firing the rule generate explanation for
;;; this cycle

(defrule explain-context :backward
 ((explain-context)
 <--
 (start-cycle)
 (instantiation ?inst)
 ((add-explanation ?inst))
 (fire-rule ?inst)
 (cut)
 (explain-context)))

;;; simple text output of the explanation

(defun explain (&optional cycle)

Appendix B: Examples

134

 "print out either the whole explanation or just for
 one cycle"
 (if cycle (explain-cycle (assoc cycle *explanation*))
 (dolist (cycle-entry (reverse *explanation*))
 (explain-cycle cycle-entry))))

(defun explain-cycle (entry)
 "print this explanation entry"
 (if entry
 (let ((cycle (first entry))
 (rulename (second entry))
 (why (third entry))
 (what (fourth entry))
 (because (fifth entry)))
 (format t "~2%~a: ~a~%~a~%~a~%~a"
 cycle rulename why what because))
 (format t "~2%No explanation for this cycle")))

;;; we could make a really smart tool here, but to give
;;; the general idea...

(defun explain-an-action ()
 (let ((item
 (tk:scrollable-menu
 (reverse *explanation*)
 :title "Which action do you want
 explained?"
 :name-function #'(lambda (x) (fourth x)))))
 (if item (tk:send-a-message (fifth item)))))

;;; starting the rule interpreter should clear any old
;;; explanation

(defadvice (infer rest-explanation :before)
 (&rest args)
 (unless *in-interpreter* (setq *explanation* nil)))

Below are some example rules using the explanation facility. They are taken from the Monkey and Banana Example
distributed with KnowledgeWorks. The classes used in the example are monkey, object and goal.

(defrule mb7 :forward
 :context mab
 (goal ?g status active type holds object ?w)
 (object ?o1 kb-name ?w at ?p on floor)
 (monkey ?m at ?p holds nil)
 -->
 ((format t "~%Grab ~s" ?w))
 (assert (monkey ?m holds ?w))
 (assert (goal ?g status satisfied)))

(defexplain mb7
 :why ("Monkey is at the ~s which is on the floor" ?w)
 :what ("Monkey grabs the ~s" ?w)
 :because ("Monkey needs the ~s somewhere else" ?w))

(defrule mb12 :forward
 :context mab
 :context mab
 (goal ?g status active type walk-to object ?p)
 (monkey ?m on floor at ?c holds nil)
 (test (not (eq ?c ?p)))
 -->
 ((format t "~%Walk to ~s" ?p))
 (assert (monkey ?m at ?p))
 (assert (goal ?g status satisfied)))

Appendix B: Examples

135

(defexplain mb12
 :why ("Monkey is on the floor holding nothing")
 :what ("Monkey walks to ~s" ?p)
 :because ("Monkey needs to do something with an
 object at ~s" ?p))

(defrule mb13 :forward
 :context mab
 (goal ?g status active type walk-to object ?p)
 (monkey ?m on floor at ?c holds ?w)
 (test (and ?w (not (eq ?c ?p))))
 (object ?o1 kb-name ?w)
 -->
 ((format t "~%Walk to ~s" ?p))
 (assert (monkey ?m at ?p))
 (assert (object ?o1 at ?p))
 (assert (goal ?g status satisfied)))

(defexplain mb13
 :why ("Monkey is on the floor and is holding the ~s"
 ?w)
 :what ("Monkey walks to ~s with the ~s" ?p ?w)
 :because ("Monkey wants the ~s to be at ~s" ?w ?p))

(defrule mb14 :forward
 :context mab
 (goal ?g status active type on object floor)
 (monkey ?m on ?x)
 (test (not (eq ?x `floor)))
 -->
 ((format t "~%Jump onto the floor"))
 (assert (monkey ?m on floor))
 (assert (goal ?g status satisfied)))

(defexplain mb14
 :why ("Monkey is on ~s" ?x)
 :what ("Monkey jumps onto the floor")
 :because ("Monkey needs to go somewhere"))

(defrule mb17 :forward
 :context mab
 (goal ?g status active type on object ?o)
 (object ?o1 kb-name ?o at ?p)
 (monkey ?m at ?p holds nil)
 -->
 ((format t "~%Climb onto ~s" ?o))
 (assert (monkey ?m on ?o))
 (assert (goal ?g status satisfied)))

(defexplain mb17
 :why ("Monkey is at the location of the ~s" ?o)
 :what ("Monkey climbs onto the ~s" ?o)
 :because ("Monkey wants to be on top of the ~s" ?o))

(defrule mb18 :forward
 :context mab
 (goal ?g status active type holds object nil)
 (monkey ?m holds ?x)
 (test ?x)
 -->
 ((format t "~%Drop ~s" ?x))
 (assert (monkey ?m holds nil))
 (assert (goal ?g status satisfied)))

(defexplain mb18

Appendix B: Examples

136

 :why ("Monkey is holding the ~s" ?x)
 :what ("Monkey drops the ~s" ?x)
 :because ("Monkey wants to do something for which he
 can't hold anything"))

B.3 Uncertain Reasoning Facility

Below is the complete code which implements the uncertain reasoning facility of 6.1.1.4 Reasoning with Certainty Factors.
The implementation is exactly as described with a few extra considerations to check the rule interpreter is running before
returning an uncertain value, that the objects have a certainty-factor slot and so on.

;;; -----SIMPLE REASONING WITH UNCERTAINTY FACTORS ----

(in-package kw-user)

;;; default certainty factor
(defvar *c-factor* 1)

;;; implication strength of a rule
(defvar *implication-strength* 1)

(defun default-c-factor ()
 "if the forward chainer is not running, certainty
 factor is just 1"
 (if *in-interpreter*
 (* *implication-strength* *c-factor*)
 1))

;;; uncertain objects need a slot to store their
;;; `probability' this slot defaults to the value
;;; returned by default-c-factor

(def-kb-class uncertain-kb-object ()
 ((c-factor :initform (default-c-factor)
 :initarg :c-factor)))

(defun object-c-factor (obj)
 "if an object has no uncertainty slot, return 1 (i.e.
 certain)"
 (if (slot-exists-p obj `c-factor)
 (slot-value obj `c-factor)
 1))

(defun inst-c-factor (inst)
 "the certainty factor of an instantiation"
 (token-c-factor (inst-token inst)))

(defun token-c-factor (token)
 "the certainty factor of an ANDed list of objects
 (just multiply them)"
 (reduce `* (mapcar `object-c-factor token)))

(defun implication-strength (val)
 "for a rule to set the implication strength"
 (setq *implication-strength* val))

;;; this function increases the certainty of the object
;;; which is the first argument by an amount dependent
;;; on the combined certainty of the remaining
;;; arguments

(defun add-evidence (obj &rest token)
 "increments the certainty of obj based on the

Appendix B: Examples

137

 certainty of token"
 (let ((c-f (slot-value obj `c-factor)))
 (setf (slot-value obj `c-factor)
 (+ c-f
 (* (- 1 c-f) *implication-strength*
 (token-c-factor token))))))

;;; this tactic is dynamic as the certainty factor slot
;;; gets changed by calling add-evidence

(deftactic certainty :dynamic (i1 i2)
 "a conflict resolution tactic to prefer more certain
 instantiations"
 (> (inst-c-factor i1) (inst-c-factor i2)))

;;; Before firing a rule this meta-interpreter just
;;; sets the value of *c-factor* to the certainty of
;;; the instantiation so that any new uncertain objects
;;; made get this (times *implication-strength*) as
;;; their certainty. Also sets *implication-strength*
;;; to 1 as a default in case the rule does not set it.

(defrule uncertain-context :backward
 ((uncertain-context)
 <--
 (start-cycle)
 (instantiation ?inst)
 ((progn (setq *c-factor* (inst-c-factor ?inst))
 (setq *implication-strength* 1)))
 (fire-rule ?inst)
 (cut)
 (uncertain-context)))

Below are some example rules using this facility for a simple car maintenance problem.

;;; ---------------- SOME EXAMPLE RULES ---------------
;;; to run: (run-diagnose)

(def-kb-struct start)
(def-kb-class symptom (uncertain-kb-object)
 ((type :initarg :type)))
(def-kb-class fault (uncertain-kb-object)
 ((type :initarg :type)))
(def-kb-class remedy (uncertain-kb-object)
 ((type :initarg :type)))

;;; this context sets up the initial hypotheses and
;;; gathers evidence this does not need the meta
;;; -interpreter as that's only necessary for
;;; transparent assignment of certainty factors to new
;;; objects

(defcontext diagnose :strategy ())

(defrule start-rule :forward
 :context diagnose
 (start ?s)
 -->
 (assert (symptom ? type over-heat c-factor 1))
 (assert (symptom ? type power-loss c-factor 1))
 (assert (fault ? type lack-of-oil c-factor 0.5))
 (assert (fault ? type lack-of-water c-factor 0))
 (assert (fault ? type battery c-factor 0))
 (assert (fault ? type unknown c-factor 0))
 (context (cure)))

Appendix B: Examples

138

 ; next context onto agenda

(defrule diagnose1 :forward
 :context diagnose
 (symptom ?s type over-heat)
 (fault ?f type lack-of-water)
 -->
 ((implication-strength 0.9))
 ((add-evidence ?f ?s)))

(defrule diagnose2 :forward
 :context diagnose
 (symptom ?s type overheat)
 (fault ?f type unknown)
 -->
 ((implication-strength 0.1))
 ((add-evidence ?f ?s)))

(defrule diagnose3 :forward
 :context diagnose
 (symptom ?s type wont-start)
 (fault ?f type battery)
 -->
 ((implication-strength 0.9))
 ((add-evidence ?f ?s)))

(defrule diagnose4 :forward
 :context diagnose
 (symptom ?s type wont-start)
 (fault ?f type unknown)
 -->
 ((implication-strength 0.1))
 ((add-evidence ?f ?s)))

(defrule diagnose5 :forward
 :context diagnose
 (symptom ?s type power-loss)
 (fault ?f type lack-of-oil)
 -->
 ((implication-strength 0.9))
 ((add-evidence ?f ?s)))

(defrule diagnose6 :forward
 :context diagnose
 (symptom ?s type power-loss)
 (fault ?f type unknown)
 -->
 ((implication-strength 0.1))
 ((add-evidence ?f ?s)))

;;; any two distinct symptoms strengthens the
;;; hypothesis that there's something more serious
;;; going wrong

(defrule diagnose7 :forward
 :context diagnose
 (symptom ?s1 type ?t1)
 (symptom ?s2 type ?t2)
 (test (not (eq ?t1 ?t2)))
 (fault ?f type unknown)
 -->
 ((add-evidence ?f ?s1 ?s2)))

;;; here we need the meta-interpreter to assign the
;;; right certainty factors to the remedy objects. Also
;;; use certainty as a conflict resolution tactic to

Appendix B: Examples

139

;;; print the suggested remedies out in order

(defcontext cure :strategy (priority certainty)
 :meta ((uncertain-context)))

(defrule cure1 :forward
 :context cure
 (fault ?f type unknown)
 -->
 ((implication-strength 0.1))
 (assert (remedy ? type cross-fingers))
 ((implication-strength 0.9))
 (assert (remedy ? type go-to-garage)))

(defrule cure2 :forward
 :context cure
 (fault ?f type lack-of-oil)
 -->
 (assert (remedy ? type add-oil)))

(defrule cure3 :forward
 :context cure
 (fault ?f type lack-of-water)
 -->
 (assert (remedy ? type add-water)))

(defrule cure4 :forward
 :context cure
 (fault ?f type battery)
 -->
 (assert (remedy ? type new-battery)))

(defrule print-cures :forward
 :context cure
 :priority 5
 (remedy ?r type ?t)
 -->
 ((format t "~%Suggest remedy ~a with certainty-factor
 ~a" ?t (slot-value ?r `c-factor))))

(defun run-diagnose ()
 (reset)
 (make-instance `start)
 (infer :contexts `(diagnose)))

B.4 Other Examples

Other examples distributed with KnowledgeWorks include:

• Truck — a largely forward chaining truck scheduling example.

• Spill — an outline of a chemical spillage diagnosis system.

• Whist — a windowing example which plays whist.

Appendix B: Examples

140

Appendix C: Implementation Notes

C.1 Forward Chainer

C.1.1 Forward Chaining Algorithm

The KnowledgeWorks forward chaining engine is based on the RETE algorithm (see Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem by Forgy in Artificial Intelligence 19, September 1982). A data flow
network representing the conditions of the forward chaining rules (a RETE network) is maintained and this keeps lists of the
instantiations and partial instantiations of rules. This structure is modified at run time as objects change. The RETE
algorithm relies on the tacit assumption that during the forward chaining cycle relatively few objects change (hence there are
relatively few changes to be made to the network each cycle), and in these cases gives a huge increase in performance speed.

C.1.2 CLOS and the Forward Chainer

CLOS objects acquire KnowledgeWorks functionality from the standard-kb-object mixin. Object creation and
modification hooks defined on this mixin enable the RETE network to track the objects. Objects are indexed into the RETE
network by class and modifications propagated only where any changes to the slots of the object are relevant.

One potential problem is that as KnowledgeWorks CLOS objects are designed for use in ordinary code, performance could
deteriorate seriously as every time an object is changed the RETE network must be amended. For this reason changes to
CLOS objects are merely remembered as they are made. The stored set of changes is flushed at the start of every forward
chaining cycle, so the penalty for using KnowledgeWorks objects is really only paid when the forward chainer is running.

C.1.3 Forward Chaining and the Backward Chainer

For more uniform semantics throughout KnowledgeWorks, the right hand side of KnowledgeWorks forward chaining rules
are executed directly by the backward chainer, as is the default meta-interpreter for a context which has no meta-interpreter
specially defined. When compiled with debugging turned off, in many cases the backward chainer can be optimized out
leaving raw Lisp code.

C.2 Backward Chainer

C.2.1 Backward Chaining Algorithm

The KnowledgeWorks backward chaining system is an extended Prolog written entirely in Lisp and based loosely on the
Warren Abstract Machine (WAM). (see An Abstract Prolog Instruction Set by David H.D. Warren, Technical Note 309
SRI International October 1983). High performance is achieved by compiling each Prolog clause into a Lisp function and
handling the Prolog control flow with continuation passing. This approach removes the need for interpretation and provides
easy integration with CLOS.

141

C.2.2 Term Structure

In order to provide compatibility with Edinburgh Prolog, the KnowledgeWorks backward chaining system treats Prolog
structured terms differently from lists. Structured terms whose functors are not `.' are stored as simple vectors with the
functor as element 0 (for example, the term: foo(bar) is equivalent to #(foo bar)).

C.2.3 The Binding Trail

The variable binding trail for the backward chainer is stored in a simple vector but may overflow into list structure if the trail
grows larger than the size of the vector: (30000). The system will continue to function normally when this happens but may
slow down slightly and do more consing. (Note: We have never written a program that causes this to happen other than
deliberately produced testing programs).

Appendix C: Implementation Notes

142

Appendix D: For More Information

D.1 General References

D.1.1 Forward Chaining

• Programming Expert Systems in OPS5, An Introduction to Rule-Based Programming by Lee Brownston, Robert Farrell,
Elaine Kant and Nancy Martin (Addison-Wesley). While being specifically on OPS5, this text covers most aspects of
forward chaining in considerable detail.

D.1.2 Backward Chaining and Prolog

• The Art of Prolog, by Leon Sterling and Ehud Shapiro (MIT Press).

• The Craft of Prolog, by Richard A. O'Keefe (MIT Press). This is a more advanced text.

D.1.3 Uncertain Reasoning

• Rule-Based Expert Systems, by B. G. Buchanan and E. H. Shortliffe (Addison-Wesley). This text covers specifically the
MYCIN system.

D.1.4 Expert Systems

• Building Expert Systems, by Frederick Hayes-Roth, Donald A. Waterman and Douglas B. Lenat (Addison-Wesley).
This text focuses more on the issues involved in designing an expert system.

D.1.5 Lisp and CLOS

• Common LISPcraft, by Robert Wilensky (Norton). An introductory text on Lisp.

• Common Lisp the Language, Second Edition, by Guy. L. Steele Jr. (Digital Press). This is the complete reference book
on Common Lisp.

• Object-Oriented Programming in Common Lisp, by Sonya E. Keene (Addison-Wesley). An introductory text on CLOS
for programmers.

• The Art of the Metaobject Protocol, by Gregor Kiczales, Jim des Rivieres and Daniel G. Bobrow (MIT Press). This is
the only proper guide to the CLOS Metaobject Protocol.

D.2 The LispWorks manuals

In addition to the KnowledgeWorks and Prolog User Guide, the LispWorks manual set includes the following manuals which
might be helpful while using KnowledgeWorks:

• The LispWorks® User Guide and Reference Manual describes the language-level features and tools available in
LispWorks, along with detailed information on the functions, macros, variables and classes.

143

• The LispWorks IDE User Guide describes the LispWorks IDE, the user interface for LispWorks. the LispWorks IDE is a
set of windowing tools that let you develop and test Common Lisp code more easily and quickly.

• The Editor User Guide describes the keyboard commands and programming interface to the the LispWorks IDE editor
tool.

• The Release Notes and Installation Guide explains how to install LispWorks, configure it and start it running. It also
contains a set of release notes that documents last minute issues that could not be included in the main manual set.

These books are all available in HTML and PDF formats.

Commands in the Help menu of any of the the LispWorks IDE tools give you direct access to the online documentation in
HTML format. Details of how to use these commands can be found in the LispWorks IDE User Guide.

Please let us know at lisp-support@lispworks.com if you find any mistakes in the LispWorks documentation, or if you
have any suggestions for improvements.

Appendix D: For More Information

144

Appendix E: Converting Other Systems

E.1 OPS5

OPS5 rulebases may be readily converted into KnowledgeWorks rulebases. The main OPS5 forms needing conversion are:

• literalize into def-kb-struct or def-kb-class. For example:

(literalize employee name father-name mother-name)

could become:

(def-kb-struct employee name father-name mother-name)

• strategy into a defcontext form with the right conflict resolution strategy. For example:

(strategy lex)

could become:

(defcontext ops5 :strategy (lex specificity))

and:

(strategy mea)

could become:

(defcontext ops5 :strategy (mea lex specificity))

In OPS5 you cannot have different conflict resolution strategies for different sets of rules. The KnowledgeWorks context
mechanism for passing control is much clearer and more powerful than, for instance, the use of the MEA strategy as sole
control mechanism in OPS5.

• p into defrule. For example, the OPS5 rule:

(p recognize-pair
 (employee ^name <parent>)
 (employee ^name <child> ^mother-name <parent>)
 -->
 (make pair))

will become:

(defrule recognize-pair :forward
 (employee ? name ?parent)
 (employee ? name ?child mother-name ?parent)
 -->
 (assert (pair ?)))

As an extended example below are given some OPS5 rules from the Monkey and Banana problem (see Appendix B:

145

Examples):

(strategy mea)
(literalize monkey
 name at on holds)
(literalize object
 name at weight on)
(literalize goal
 status type object to)
(literalize start)

(p mb1
 (goal ^status active ^type holds ^object <w>)
 (object ^name <w> ^at <p> ^on ceiling)
 -->
 (make goal ^status active ^type move ^object ladder
 ^to <p>))

(p mb4
 {(goal ^status active ^type holds ^object <w>) <goal>}
 (object ^name <w> ^at <p> ^on ceiling)
 (object ^name ladder ^at <p>)
 {(monkey ^on ladder ^holds nil) <monkey>}
 -->
 (write (crlf) Grab <w>)
 (modify <goal> ^status satisfied)
 (modify <monkey> ^holds <w>))

(p mb8
 (goal ^status active ^type move ^object <o> ^to <p>)
 (object ^name <o> ^weight light ^at <> <p>)
 -->
 (make goal ^status active ^type holds ^object <o>))

In KnowledgeWorks this could be:

(defcontext ops5 :strategy (mea lex specificity))

(def-named-kb-class monkey ()
 ((at :initform nil)
 (on :initform nil)
 (holds :initform nil)))

(def-named-kb-class object ()
 ((at :initform nil)
 (weight :initform nil)
 (on :initform nil)))

(def-kb-struct goal status type object to)
(def-kb-struct start)

(defrule mb1 :forward
 :context ops5
 (goal ? status active type holds object ?w)
 (object ? name ?w at ?p on ceiling)
 -->
 (assert (goal ? status active type move object ladder
 to ?p)))

(defrule mb4 :forward
 :context ops5
 (goal ?g status active type holds object ?w)
 (object ? name ?w at ?p on ceiling)
 (object ? name ladder at ?p)
 (monkey ?m on ladder holds nil)

Appendix E: Converting Other Systems

146

 -->
 ((format t "~%Grab ~S" ?w))
 (assert (goal ?g status satisfied))
 (assert (monkey ?m holds ?w)))

(defrule mb8 :forward
 :context ops5
 (goal ? status active type move object ?o to ?p)
 (object ? name ?o weight light at ?q)
 (test (not (eq ?q ?p)))
 -->
 (assert (goal ? status active type holds object ?o)))

E.2 Prolog

Please refer to A.10 Edinburgh Syntax.

Appendix E: Converting Other Systems

147

Glossary
agenda

A stack of rule groups (or contexts). Control can be passed to the next context on the agenda.

arity

The number of arguments (to a function, rule condition etc.)

backward chaining

The process of reasoning backward from postulated goals to determine if their preconditions can be satisfied. If these
preconditions are satisfied the postulated goals are considered true.

browsers

Windows which allow you to look freely through different parts of the system.

class

In object-oriented programming, classes define classes with the same attributes (slots) and behavior (methods).
Instances of these classes are created during the execution of a program which represent concrete examples of the
abstract class descriptions.

conflict resolution strategy

The method(s) used to decide which of a set of eligible rules will fire. A conflict resolution strategy is a list of conflict
resolution tactics which are applied in sequence to the conflict set to determine which instantiation is to fire.

conflict resolution tactic

A single predicate used to decide whether one instantiation is to be preferred to another. They may be combined into a
conflict resolution strategy.

conflict set

The set of instantiations of rules which at a given time are matched by the object base.

contexts

Groups of rules in a knowledge base.

destructuring

The ability to match an expression against a piece of data where variables in the expression are bound to the
corresponding parts of the data if the structure of the expression and the data agree. For example, (?x . ?y) can match
(1 2 3) with ?x binding to 1 and ?y to (2 3).

forward chaining

The process of reasoning forward from known facts to perform arbitrary actions and to deduce new facts.

148

forward chaining cycle

The process of matching the conditions of rules against the object base to produce a set of rules eligible to fire (the
conflict set), selecting one of those (conflict resolution) and firing it (performing its actions).

inference engine

The part of the system which is responsible for rule-firing, either in backward or forward chaining mode.

inferencing state

A collection of information that the inferencing engine uses.

instantiation

An instantiation of a rule is the set of objects against which a rule matches. A rule may have no instantiations (if it is
not matched at all by the object base) or many instantiations (each referring to a different set of objects).

knowledge based systems

A system which encodes the knowledge for a problem domain in high-level forms, usually facts and rules. The
software architecture separates the knowledge from the inference mechanism used to deduce new knowledge.

LispWorks

An advanced Common Lisp programming environment, which serves as the infrastructure for KnowledgeWorks.

meta object protocol (MOP)

Describes how the Common Lisp Object System is implemented in terms of itself. Hence CLOS may be used to
modify its own behavior.

meta rule protocol (MRP)

Allows you to debug, modify or replace the default behavior of forward chaining rules in the system in terms of
backward chaining goals.

object base

The set of CLOS objects which KnowledgeWorks can reason over ("knows about").

object-oriented

Programming paradigm in which structures within the language are organized as classes of objects which have
attributes (slots) and behavior (methods) associated with them.

objects

The KnowledgeWorks® object base contains KnowledgeWorks CLOS objects, which may for efficiency be replaced by
KnowledgeWorks structures.

structures

A CLOS class can be replaced by a structure class in cases where speed is important and the code must be optimized,
and when the full power of CLOS is not required. The structure is then analogous to the CLOS object.

Glossary

149

toolkit

A collection of complementary software or utilities (such as KnowledgeWorks®) with a common application focus.

Glossary

150

Index

A

action 1.1.2 : Technical Overview 9, 3.1.1 : Overview 24, 3.2.5 : The Backward Chaining Interpreter 30

add-explanation 6.1.1.3 : A Simple Explanation Facility 52

Advanced Topics

main chapter 6 : Advanced Topics 50

agenda 3.1.5.1 : The Agenda 26

all-debug function 62 3.1.7 : Forward Chaining Debugging 28

any function 62 3.2.5 : The Backward Chaining Interpreter 29, A.6.2.1 : any, findall and findallset 117

append A.12 : Built-in Predicates 126

arg A.2 : Syntax 112, A.12 : Built-in Predicates 126

arity 3.2.2 : Backward Chaining Syntax 29, 5.1 : The KnowledgeWorks Listener 39

assert 3.1.2 : Forward Chaining Syntax 25

assert backward chaining goal 63 6.4 : Logical Dependencies and Truth Maintenance 59

asserta A.12 : Built-in Predicates 126

assertion 3.1.2 : Forward Chaining Syntax 25

assertz A.12 : Built-in Predicates 126

atomic A.12 : Built-in Predicates 126

B

backward chaining 1.1.2 : Technical Overview 8, 2.4.1 : Rule Browser 14, 3 : Rules 24, 3.2 : Backward Chaining 28, 6.2.3 :
Backward Chaining 57

debugging 3.2.7 : Backward Chaining Debugging 30

definition of rules 3.2.4 : Defining Backward Chaining Rules 29

implementation notes C.2 : Backward Chainer 141

interpreter 3.2.5 : The Backward Chaining Interpreter 29

syntax 3.2.2 : Backward Chaining Syntax 29

backward chaining goals

assert 63 6.4 : Logical Dependencies and Truth Maintenance 59

conflict-set 65

context 66

cut 67

erase 76 6.4 : Logical Dependencies and Truth Maintenance 59

fail 76

fire-rule 79 6.1.1 : Meta Rule Protocol 50

instantiation 83 6.1.1 : Meta Rule Protocol 50, 6.1.1 : Meta Rule Protocol 51

kw-class 87

not 95

151

return 102

standard-context 105

start-cycle 106 6.1.1 : Meta Rule Protocol 50

test 108

bagof A.12 : Built-in Predicates 126

browsers 2.4 : Browsers 13

class 2.4.3 : Class Browser 16, 5.5 : The Class Browser 41

object 2.4.2 : Objects Browser 14, 2.6.2 : Single-Stepping Rules 20, 5.6 : The Objects Browser 44

rule 2.4.1 : Rule Browser 13, 2.6.1 : Monitoring Forward Chaining Rules 19, 5.7 : The Rule Browser 46

system 5.4 : The System Browser 40

C

C 1.1.1 : Background 8

call A.12 : Built-in Predicates 126

certainty factor 6.1.1.4 : Reasoning with Certainty Factors 53

certainty factors 6.1.1.4 : Reasoning with Certainty Factors 53, 6.1.2.1 : Examples 55

c-factor 6.1.1.4 : Reasoning with Certainty Factors 53

chaining 1.1.2 : Technical Overview 8

class def-named-kb-class 72

class browser 5.5 : The Class Browser 41

classes 2.4.3 : Class Browser 16

named 4.1.2 : Named Classes 31

named-kb-object 94 4.1.2 : Named Classes 31

relational database 4.2 : Relational Database Objects 32

standard-class 6.3 : Use of Meta-Classes 58

standard-db-object 4.2.1 : Example 32

standard-kb-object 106 4.2.1 : Example 32, 5.5 : The Class Browser 42, 6.3 : Use of Meta-Classes 58, def-kb-
class 70

unnamed 4.1.1 : Unnamed Classes 31

clause A.12 : Built-in Predicates 126

clear 5.3 : Clearing KnowledgeWorks 40

clear-all function 64 5.3 : Clearing KnowledgeWorks 40, 6.5.2 : The Current Inferencing State 60

clear-rules function 65 5.3 : Clearing KnowledgeWorks 40

CLOS 1.1.1 : Background 8, 1.1.2 : Technical Overview 9, 2 : Tutorial 11, 2.2 : Loading the Tutorial 12, 2.4.2 : Objects
Browser 14, 2.7 : Lisp Integration 21, 3 : Rules 24, 3.2.1 : Overview 28, 5.3 : Clearing KnowledgeWorks 40, 6.2.1.1 :
KnowledgeWorks Structures 55

class categories in KnowledgeWorks 4.1 : CLOS objects 31

classes in KnowledgeWorks 4.1 : CLOS objects 31

objects in 1.1.2 : Technical Overview 9, 4.1 : CLOS objects 31

CLOS mixin class 1.1.2 : Technical Overview 9

CLOS/SQL class 4.2 : Relational Database Objects 32

Common Lisp Interface 3.3 : Common Lisp Interface 30

Index

152

Common Lisp Object System (CLOS) 1.1.1 : Background 8, 2 : Tutorial 11

Common Prolog main chapter Appendix A: : Common Prolog 111

condition 3.1.1 : Overview 24

syntax 3.1.2 : Forward Chaining Syntax 24

conflict resolution 2.4.4 : Forward Chaining History 18, 3.1.1 : Overview 24, 3.1.5.2 : Contexts 27, 3.1.5.3 : Conflict Resolution 27

optimizing 6.2.2 : Conflict Resolution 57

strategy 6.1.2 : User-definable Conflict Resolution 54

tactics 3.1.5.3 : Conflict Resolution 27, 6.1.2 : User-definable Conflict Resolution 54, 6.2.2.2 : Optimization of the Strategy 57

use of contexts 6.2.2.1 : Use of Contexts 57

user definable 6.1.2 : User-definable Conflict Resolution 54

conflict resolution strategy 6.1.2 : User-definable Conflict Resolution 54

conflict resolution tactic 3.1.5.3 : Conflict Resolution 27, 6.1.2 : User-definable Conflict Resolution 54

conflict resolution tactic / functions

lex 88 3.1.5.3 : Conflict Resolution 27

-lex 89 3.1.5.3 : Conflict Resolution 27, 6.2.2.2 : Optimization of the Strategy 57

mea 92 3.1.5.3 : Conflict Resolution 27

-mea 93 3.1.5.3 : Conflict Resolution 27, 6.2.2.2 : Optimization of the Strategy 57

order 96 3.1.5.2 : Contexts 27, 3.1.5.3 : Conflict Resolution 27

-order 97 3.1.5.3 : Conflict Resolution 27

priority 98 3.1.5.2 : Contexts 27, 3.1.5.3 : Conflict Resolution 27

-priority 99 3.1.5.3 : Conflict Resolution 27

recency 100 3.1.5.2 : Contexts 27, 3.1.5.3 : Conflict Resolution 27

-recency 101 3.1.5.3 : Conflict Resolution 27, 6.2.2.2 : Optimization of the Strategy 57

specificity 103 3.1.5.3 : Conflict Resolution 27

-specificity 104 3.1.5.3 : Conflict Resolution 27

conflict-set backward chaining goal 65

context 3.1.2 : Forward Chaining Syntax 25, 6.1.1 : Meta Rule Protocol 50

context backward chaining goal 66

context definition 3.1.6.1 : Defining Contexts 28

contexts 2.4.1 : Rule Browser 13, 3.1.5.1 : The Agenda 26, 3.1.5.2 : Contexts 27

control

flow of 3.1.5 : Control Flow 26, 6.1 : Control Flow 50

creep 2.6.2 : Single-Stepping Rules 20, 5.8.1 : Spy Windows 47

current-cycle function 67

cut 6.2.3.3 : Cut 58

cut backward chaining goal 67

cycle

of forward chaining 3.1.1 : Overview 24

cycle symbol macro 68

Index

153

D

DCG A.9 : Defining Definite Clause Grammars 123

debug A.12 : Built-in Predicates 127

debugger

in Prolog A.7 : Debugging 119

debugging 1.1.2 : Technical Overview 8, 2.6 : Debugging 19, 3.1.7 : Forward Chaining Debugging 28, 5.8 : Debugging with the
Environment 47, A.12 : Built-in Predicates 127

backward chaining 3.2.7 : Backward Chaining Debugging 30

forward chaining 3.1.7 : Forward Chaining Debugging 28

default-context 3.1.4 : The Forward Chaining Interpreter 26, 5.3 : Clearing KnowledgeWorks 40, clear-all 65, clear-
rules 65

defclass macro def-kb-class 70, def-named-kb-class 72

defclass macro in LispWorks 4.1.2 : Named Classes 31

defcontext macro 68 3.1.5.2 : Contexts 27, 3.1.5.3 : Conflict Resolution 27, 3.1.6 : Examples 28, 6.1.1 : Meta Rule
Protocol 50

defdetpred A.13.1 : The defdetpred form 129

defdetrel A.12 : Built-in Predicates 127

defdetunipred A.13.2 : The defdetunipred form 129

defexplain 6.1.1.3 : A Simple Explanation Facility 52, 6.1.1.3 : A Simple Explanation Facility 52

defgrammar A.9 : Defining Definite Clause Grammars 123, A.12 : Built-in Predicates 127

Defining Contexts 3.1.6.1 : Defining Contexts 28

Definite Clause Grammars A.9 : Defining Definite Clause Grammars 123

def-kb-class macro 70 4.1.1 : Unnamed Classes 31, 4.1.2 : Named Classes 31, 6.1.1.4 : Reasoning with Certainty
Factors 53, 6.3.1 : Example 58, 6.4.1 : Example 59

def-kb-struct macro 71 6.2.1.1 : KnowledgeWorks Structures 56

def-named-kb-class macro 72 4.1.2 : Named Classes 31

defrel A.2 : Syntax 111, A.12 : Built-in Predicates 127

defrelmacro A.8 : Common Prolog Macros 123, A.12 : Built-in Predicates 127

defrel-special-form-macro A.12 : Built-in Predicates 127

defrule macro 73 3 : Rules 24, 3.1.2.1 : Example 26, 3.2.2.1 : Example 29, 6.1.1 : Meta Rule Protocol 50, 6.1.1.4 :
Reasoning with Certainty Factors 53, 6.2.3.1 : Pattern Matching 57, 6.2.3.2 : Tail Recursion 58, 6.3.1 : Example 59, 6.4.1 :
Example 59, 6.5.2 : The Current Inferencing State 60

defstruct macro 6.2.1.1 : KnowledgeWorks Structures 56

deftactic macro 74 6.1.2 : User-definable Conflict Resolution 54

def-view-class in LispWorks 4.2.1 : Example 32

destroy-inferencing-state function 75 6.5.1 : Creating and Maintaining Inferencing States 60

deterministic A.12 : Built-in Predicates 127

documentation strings 3 : Rules 24, 3.1.5.2 : Contexts 27, 6.1.2 : User-definable Conflict
Resolution 54, defcontext 69, defrule 73, deftactic 74

dynamic conflict resolution 6.2.2.2 : Optimization of the Strategy 57

E

Edinburgh Prolog 3.2.6 : Edinburgh Prolog Translator 30

Index

154

Edinburgh Syntax A.10 : Edinburgh Syntax 125

compatible predicates A.14 : Edinburgh Compatibility Predicates 130

editor 5.2 : The Editor 39

editor window 2.4.1 : Rule Browser 13

environment

graphic environment in Prolog A.11 : Graphic Development Environment 126

erase 3.1.2 : Forward Chaining Syntax 25, A.12 : Built-in Predicates 127

erase backward chaining goal 76 6.4 : Logical Dependencies and Truth Maintenance 59

explanations 6.1.1.3 : A Simple Explanation Facility 52

expression

syntax 3.1.2 : Forward Chaining Syntax 25

F

fail A.12 : Built-in Predicates 127

fail backward chaining goal 76

field

pattern 2.4.2 : Objects Browser 15, 5.6 : The Objects Browser 45

query 5.6 : The Objects Browser 45

findall function 77 3.2.5 : The Backward Chaining Interpreter 29, A.6.2.1 : any, findall and findallset 117, A.12 : Built-in
Predicates 127

findallset function 77 A.6.2.1 : any, findall and findallset 117, A.12 : Built-in Predicates 127

find-inferencing-state function 78 6.5.1 : Creating and Maintaining Inferencing States 60

fire-rule backward chaining goal 79 6.1.1 : Meta Rule Protocol 50

forward chaining 1.1.2 : Technical Overview 8, 2.3 : Running the Tutorial 12, 3 : Rules 24, 6.2.1 : Forward Chaining 55, 6.2.1.2 :
Efficient Forward Chaining Rule Preconditions 56

cycle 3.1.1 : Overview 24, 6.1.1 : Meta Rule Protocol 50, 6.1.1 : Meta Rule Protocol 50

debugging 3.1.7 : Forward Chaining Debugging 28

history 2.4.4 : Forward Chaining History 17, 5.9.1 : Forward Chaining History 49

implementation notes C.1 : Forward Chainer 141

interpreter 3.1.4 : The Forward Chaining Interpreter 26

rule definition 3.1.3 : Defining Forward Chaining Rules 26

syntax 3.1.2 : Forward Chaining Syntax 24

functions

all-debug 62 3.1.7 : Forward Chaining Debugging 28

any 62 3.2.5 : The Backward Chaining Interpreter 29, A.6.2.1 : any, findall and findallset 117

clear-all 64 5.3 : Clearing KnowledgeWorks 40, 6.5.2 : The Current Inferencing State 60

clear-rules 65 5.3 : Clearing KnowledgeWorks 40

current-cycle 67

destroy-inferencing-state 75 6.5.1 : Creating and Maintaining Inferencing States 60

findall 77 3.2.5 : The Backward Chaining Interpreter 29, A.6.2.1 : any, findall and findallset 117, A.12 : Built-in Predicates 127

findallset 77 A.6.2.1 : any, findall and findallset 117, A.12 : Built-in Predicates 127

find-inferencing-state 78 6.5.1 : Creating and Maintaining Inferencing States 60

get-kb-object 80 4.1.2 : Named Classes 31

Index

155

infer 81 2.3 : Running the Tutorial 12, 2.6.2 : Single-Stepping Rules 20, 3.1.4 : The Forward Chaining Interpreter 26, 6.5.2 :
The Current Inferencing State 60

inferencing-state-name 82

inst-bindings 84 6.1.1.1 : Functions defined on Instantiations 51

inst-rulename 85 6.1.1.1 : Functions defined on Instantiations 51

inst-token 85 6.1.1.1 : Functions defined on Instantiations 51

list-all-inferencing-states 90 6.5.1 : Creating and Maintaining Inferencing States 60

make-inferencing-state 90 6.5.1 : Creating and Maintaining Inferencing States 60

no-debug 95 3.1.7 : Forward Chaining Debugging 28

reset 102 5.3 : Clearing KnowledgeWorks 40, 6.5.2 : The Current Inferencing State 60

start-kw 107

functor A.2 : Syntax 112, A.12 : Built-in Predicates 127

G

generic functions

kb-name 86 4.1.2 : Named Classes 31

make-instance 91 4.1 : CLOS objects 31, 4.1.1 : Unnamed Classes 31, 4.1.2 : Named Classes 31, 6.2.1.1 :
KnowledgeWorks Structures 56, 6.4 : Logical Dependencies and Truth Maintenance 59

validate-superclass 6.3 : Use of Meta-Classes 58

get-kb-object function 80 4.1.2 : Named Classes 31

goals 1.1.2 : Technical Overview 9

graphical tools 1.1.2 : Technical Overview 8

H

halt A.12 : Built-in Predicates 127

history 2.4.4 : Forward Chaining History 17

forward chaining 2.4.4 : Forward Chaining History 17, 5.9.1 : Forward Chaining History 49

I

Implementation Notes

appendix Appendix C: : Implementation Notes 141

implication strength 6.1.1.4 : Reasoning with Certainty Factors 53

implic-strength 6.1.1.4 : Reasoning with Certainty Factors 53, 6.1.1.4 : Reasoning with Certainty Factors 54

infer function 81 2.3 : Running the Tutorial 12, 2.6.2 : Single-Stepping Rules 20, 3.1.4 : The Forward Chaining
Interpreter 26, 6.5.2 : The Current Inferencing State 60

inference engine 1.1.2 : Technical Overview 9

inferencing-state variable 81 6.5.2 : The Current Inferencing State 60

inferencing-state-name function 82

inferencing states

creating and maintaining 6.5.1 : Creating and Maintaining Inferencing States 60

current 6.5.2 : The Current Inferencing State 60, *inferencing-state* 81

definition of 6.5 : Inferencing States 60

interleaved 6.5.3.2 : Interleaved in a Single Thread 61

multiple threads 6.5.3.1 : Multiple threads 60

Index

156

uses 6.5.3 : Uses of Inferencing States 60

in-interpreter variable 83

inspector

instances 5.5 : The Class Browser 42

instantiation backward chaining goal 83 6.1.1 : Meta Rule Protocol 50, 6.1.1 : Meta Rule Protocol 51

instantiations 6.1.1.1 : Functions defined on Instantiations 51

inst-bindings function 84 6.1.1.1 : Functions defined on Instantiations 51

inst-rulename function 85 6.1.1.1 : Functions defined on Instantiations 51

inst-token function 85 6.1.1.1 : Functions defined on Instantiations 51

integer A.12 : Built-in Predicates 127

interface functions in Prolog A.6.2 : Interface Functions 117

interpreter

backward chaining 3.2.5 : The Backward Chaining Interpreter 29

forward chaining 3.1.4 : The Forward Chaining Interpreter 26

Introduction

main chapter 1 : Introduction 8

is A.12 : Built-in Predicates 127

K

kb-name generic function 86 4.1.2 : Named Classes 31

:kb-name initarg 4.1.2 : Named Classes 31, named-kb-object 94

keysort A.12 : Built-in Predicates 127

keyword

:backward 3 : Rules 24

:forward 3 : Rules 24

:meta 6.1.1 : Meta Rule Protocol 50

:priority 2.4.4 : Forward Chaining History 18

Knowledge Based Systems (KBS) 1.1.1 : Background 8, 1.1.2 : Technical Overview 9

KnowledgeWorks 1.1 : KnowledgeWorks 8

backward chaining engine 3.2.1 : Overview 28

clearing 5.3 : Clearing KnowledgeWorks 40

CLOS objects 3.2.1 : Overview 28, 4 : Objects 31

Converting Other Systems Into, Appendix E: : Converting Other Systems 145

generic functions 5.5 : The Class Browser 44

historical perspective 1.1.1 : Background 8

inspector 5.5 : The Class Browser 42

instances 5.5 : The Class Browser 42

listener 5.1 : The KnowledgeWorks Listener 38

loading files 2.2 : Loading the Tutorial 12

mixin class 4.2 : Relational Database Objects 32

object base 3.2.1 : Overview 28

objects 3.2.3 : Objects 29

Index

157

rule development 5 : The Programming Environment 38

rule monitor 5.7 : The Rule Browser 46, 5.9 : Monitor Windows 47

rules in 3 : Rules 24

running the tutorial 2.3 : Running the Tutorial 12

spy window 5.7 : The Rule Browser 46

structures 4.3 : KnowledgeWorks Structures 37, 6.2.1.1 : KnowledgeWorks Structures 55

technical overview 1.1.2 : Technical Overview 8

tools 2.6.2 : Single-Stepping Rules 20

Use of Meta-Classes 6.3 : Use of Meta-Classes 58

kw-class backward chaining goal 87

L

leap 2.6.2 : Single-Stepping Rules 20, 5.8.1 : Spy Windows 47

leash A.12 : Built-in Predicates 127

leashing A.7 : Debugging 119

lex conflict resolution tactic / function 88 3.1.5.3 : Conflict Resolution 27

-lex conflict resolution tactic / function 89 3.1.5.3 : Conflict Resolution 27, 6.2.2.2 : Optimization of the Strategy 57

Lisp 1.1.1 : Background 8, 2 : Tutorial 11, 3.1.2 : Forward Chaining Syntax 25, 3.3 : Common Lisp Interface 30, 4 : Objects 31

integration of 2.7 : Lisp Integration 21

LispWorks 1.1 : KnowledgeWorks 8, 2 : Tutorial 11, 2.8 : Systems 22, 3.2.1 : Overview 28

accessing Lisp from Prolog A.5 : Accessing Lisp From Common Prolog 114

availability in KnowledgeWorks 5 : The Programming Environment 38

calling Prolog A.6 : Calling Prolog From Lisp 115

Common Prolog Logic Listener 5.1 : The KnowledgeWorks Listener 39

SQL interface 4.2 : Relational Database Objects 32

LispWorks IDE 2.7.1 : The LispWorks IDE 22

list-all-inferencing-states function 90 6.5.1 : Creating and Maintaining Inferencing States 60

listener 2.3 : Running the Tutorial 12, 5.1 : The KnowledgeWorks Listener 38

listing A.12 : Built-in Predicates 127

loading files 2.2 : Loading the Tutorial 12

logic A.6 : Calling Prolog From Lisp 115

logical 3.1.2 : Forward Chaining Syntax 25, 6.4 : Logical Dependencies and Truth Maintenance 59

logic interpreter A.4 : Using The Logic Interpreter 112

logic listener A.11 : Graphic Development Environment 126

M

macro

in Prolog A.8 : Common Prolog Macros 123

macros

defclass def-kb-class 70, def-named-kb-class 72

defcontext 68 3.1.5.2 : Contexts 27, 3.1.5.3 : Conflict Resolution 27, 3.1.6 : Examples 28, 6.1.1 : Meta Rule Protocol 50

def-kb-class 70 4.1.1 : Unnamed Classes 31, 4.1.2 : Named Classes 31, 6.1.1.4 : Reasoning with Certainty
Factors 53, 6.3.1 : Example 58, 6.4.1 : Example 59

Index

158

def-kb-struct 71 6.2.1.1 : KnowledgeWorks Structures 56

def-named-kb-class 72 4.1.2 : Named Classes 31

defrule 73 3 : Rules 24, 3.1.2.1 : Example 26, 3.2.2.1 : Example 29, 6.1.1 : Meta Rule Protocol 50, 6.1.1.4 : Reasoning
with Certainty Factors 53, 6.2.3.1 : Pattern Matching 57, 6.2.3.2 : Tail Recursion 58, 6.3.1 : Example 59, 6.4.1 :
Example 59, 6.5.2 : The Current Inferencing State 60

defstruct 6.2.1.1 : KnowledgeWorks Structures 56

deftactic 74 6.1.2 : User-definable Conflict Resolution 54

undefcontext 108 3.1.6.1 : Defining Contexts 28

undefrule 109 3.1.3 : Defining Forward Chaining Rules 26

with-rule-actions 110

make-inferencing-state function 90 6.5.1 : Creating and Maintaining Inferencing States 60

make-instance generic function 91 4.1 : CLOS objects 31, 4.1.1 : Unnamed Classes 31, 4.1.2 : Named Classes 31, 6.2.1.1 :
KnowledgeWorks Structures 56, 6.4 : Logical Dependencies and Truth Maintenance 59

mea conflict resolution tactic / function 92 3.1.5.3 : Conflict Resolution 27

-mea conflict resolution tactic / function 93 3.1.5.3 : Conflict Resolution 27, 6.2.2.2 : Optimization of the Strategy 57

member A.12 : Built-in Predicates 127

menu button

creep 2.6.2 : Single-Stepping Rules 20, 5.8.1 : Spy Windows 47

leap 2.6.2 : Single-Stepping Rules 20, 5.8.1 : Spy Windows 47

menu item

browse 2.4.3 : Class Browser 16

class browser 2.4.3 : Class Browser 16

Classes 2.4.3 : Class Browser 17

clear 5.3 : Clearing KnowledgeWorks 40

context 5.7 : The Rule Browser 46

FC History 2.4.4 : Forward Chaining History 18

Inspect 5.6 : The Objects Browser 46

Instantiations 5.6 : The Objects Browser 46

KnowledgeWorks 2.2 : Loading the Tutorial 12, 2.4.2 : Objects Browser 14, 2.4.3 : Class Browser 17, 2.4.4 : Forward Chaining
History 18, 5.6 : The Objects Browser 45, 5.7 : The Rule Browser 46

Listener 2.2 : Loading the Tutorial 12

Objects 2.4.2 : Objects Browser 14, 5.6 : The Objects Browser 45

Rules 2.4.1 : Rule Browser 13, 5.7 : The Rule Browser 46

:meta keyword 6.1.1 : Meta Rule Protocol 50

meta-interpreter 6.1.1 : Meta Rule Protocol 50

Meta Object Protocol (MOP) 1.1.2 : Technical Overview 9

metaprotocols 1.1.2 : Technical Overview 8

meta-rule 6.1.1 : Meta Rule Protocol 50

Meta Rule Protocol (MRP) 1.1.2 : Technical Overview 9, 6.1.1 : Meta Rule Protocol 50

mixin 1.1.2 : Technical Overview 9, 4.1.1 : Unnamed Classes 31, 4.1.2 : Named Classes 31

monitor window 2.6.1 : Monitoring Forward Chaining Rules 19, 5.9 : Monitor Windows 47

MYCIN 6.1.1.4 : Reasoning with Certainty Factors 53

Index

159

N

named classes 4.1.2 : Named Classes 31

named-kb-object class 94 4.1.2 : Named Classes 31

node 2.4.1 : Rule Browser 13

nodebug A.12 : Built-in Predicates 127

no-debug function 95 3.1.7 : Forward Chaining Debugging 28

nonvar A.12 : Built-in Predicates 127

nospy A.12 : Built-in Predicates 127

not 3.1.2 : Forward Chaining Syntax 25, A.12 : Built-in Predicates 127

not backward chaining goal 95

notrace A.12 : Built-in Predicates 127

O

object 3.2.3 : Objects 29

browser 2.6.2 : Single-Stepping Rules 20, 5.6 : The Objects Browser 44

certainty factor 6.1.1.4 : Reasoning with Certainty Factors 53

named 4.1 : CLOS objects 31

object base 2.6.1 : Monitoring Forward Chaining Rules 19, 4.3 : KnowledgeWorks Structures 37

and inferencing states 6.5 : Inferencing States 60

clearing 5.3 : Clearing KnowledgeWorks 40

main chapter 4 : Objects 31

uncertainty 6.1.1.4 : Reasoning with Certainty Factors 53, 6.1.1.4 : Reasoning with Certainty Factors 53

object browser 2.4.2 : Objects Browser 14

object system 1.1.2 : Technical Overview 8

once A.12 : Built-in Predicates 128

OPS5 6.2.1.1 : KnowledgeWorks Structures 56, E.1 : OPS5 145

optimization 6.2 : Optimization 55

optimization of KnowledgeWorks 4.3 : KnowledgeWorks Structures 37

order conflict resolution tactic / function 96 3.1.5.2 : Contexts 27, 3.1.5.3 : Conflict Resolution 27

-order conflict resolution tactic / function 97 3.1.5.3 : Conflict Resolution 27

output-defrels A.12 : Built-in Predicates 128

P

pattern 2.4.2 : Objects Browser 15, 5.6 : The Objects Browser 45

matching 6.2.3.1 : Pattern Matching 57

phrase A.12 : Built-in Predicates 128

popup 2.3 : Running the Tutorial 12

Preferences... command 2.4.2 : Objects Browser 15, 5.6 : The Objects Browser 45, 5.7 : The Rule Browser 46

print-verbose variable 98

priority conflict resolution tactic / function 98 3.1.5.2 : Contexts 27, 3.1.5.3 : Conflict Resolution 27

-priority conflict resolution tactic / function 99 3.1.5.3 : Conflict Resolution 27

Index

160

procedural language 1.1.2 : Technical Overview 8

programming environment

main chapter 5 : The Programming Environment 38

Prolog 3.2.1 : Overview 28, 3.2.6 : Edinburgh Prolog Translator 30, E.2 : Prolog 147

accessing Lisp A.5 : Accessing Lisp From Common Prolog 114

adding built in predicates A.13 : Adding Built-in Predicates 129

built in predicates A.12 : Built-in Predicates 126

calling from LispWorks A.6 : Calling Prolog From Lisp 115

cut 6.2.3.3 : Cut 58

debugging A.7 : Debugging 119

Edinburgh Syntax A.10 : Edinburgh Syntax 125

exiting the interpreter A.4.4 : Exiting the Interpreter 114

graphic environment A.11 : Graphic Development Environment 126

interface functions A.6.2 : Interface Functions 117

leashing A.7 : Debugging 119

logic interpreter A.4 : Using The Logic Interpreter 112

logic listener A.11 : Graphic Development Environment 126

macros A.8 : Common Prolog Macros 123

main chapter Appendix A: : Common Prolog 111

overview A.1.1 : Overview 111

predicates compatible with Edinburgh syntax A.14 : Edinburgh Compatibility Predicates 130

retrieving multiple solutions in A.4.1 : Multiple Solutions 113

specifying multiple goals in A.4.2 : Multiple Goals 113

spy points A.7 : Debugging 119

syntax A.2 : Syntax 111

tracing A.7 : Debugging 119

Q

query 5.6 : The Objects Browser 45

R

read-query-print loop A.4 : Using The Logic Interpreter 112

read-term A.12 : Built-in Predicates 128

recency conflict resolution tactic / function 100 3.1.5.2 : Contexts 27, 3.1.5.3 : Conflict Resolution 27

-recency conflict resolution tactic / function 101 3.1.5.3 : Conflict Resolution 27, 6.2.2.2 : Optimization of the Strategy 57

recorda A.12 : Built-in Predicates 128

recorded A.12 : Built-in Predicates 128

recordz A.12 : Built-in Predicates 128

relational database classes 4.2 : Relational Database Objects 32

repeat A.12 : Built-in Predicates 128

reset function 102 5.3 : Clearing KnowledgeWorks 40, 6.5.2 : The Current Inferencing State 60

retract A.12 : Built-in Predicates 128

Index

161

return 3.1.2 : Forward Chaining Syntax 25, 3.1.5.2 : Contexts 27

return backward chaining goal 102

rule 3 : Rules 24

action 3.1.1 : Overview 24

backward chaining 3.2.4 : Defining Backward Chaining Rules 29

browser 2.6.1 : Monitoring Forward Chaining Rules 19

condition 3.1.1 : Overview 24

definition of forward chaining 3.1.3 : Defining Forward Chaining Rules 26

editing definitions 2.6.3 : Editing Rule Definitions 20

groups 2.4.4 : Forward Chaining History 18

implication strength 6.1.1.4 : Reasoning with Certainty Factors 53

single-stepping 2.6.2 : Single-Stepping Rules 20

rulebase 4.2 : Relational Database Objects 32

rule browser 5.7 : The Rule Browser 46

rule-defined conflict resolution 6.2.2.2 : Optimization of the Strategy 57

rule monitor 5.7 : The Rule Browser 46, 5.9 : Monitor Windows 47

rule preconditions 6.2.1.2 : Efficient Forward Chaining Rule Preconditions 56

Rules

main chapter 3 : Rules 24

S

setof A.12 : Built-in Predicates 128

signal-kb-name-clash variable 103

sort A.12 : Built-in Predicates 128

specificity conflict resolution tactic / function 103 3.1.5.3 : Conflict Resolution 27

-specificity conflict resolution tactic / function 104 3.1.5.3 : Conflict Resolution 27

spy A.12 : Built-in Predicates 128

spy points A.7 : Debugging 119

spy window 2.6.2 : Single-Stepping Rules 20, 5.7 : The Rule Browser 46, 5.8.1 : Spy Windows 47

standard-class class 6.3 : Use of Meta-Classes 58

standard-context backward chaining goal 105

standard-db-object class 4.2.1 : Example 32

standard-kb-class 6.3.1 : Example 58

standard-kb-object class 106 4.2.1 : Example 32, 5.5 : The Class Browser 42, 6.3 : Use of Meta-Classes 58, def-kb-
class 70

start-cycle backward chaining goal 106 6.1.1 : Meta Rule Protocol 50

start-kw function 107

static conflict resolution 6.2.2.2 : Optimization of the Strategy 57

structures 4.3 : KnowledgeWorks Structures 37, 5.3 : Clearing KnowledgeWorks 40, 6.2.1.1 : KnowledgeWorks Structures 55

subclasses 2.4.3 : Class Browser 17

symbol macros

cycle 68

Index

162

syntax

backward chaining 3.2.2 : Backward Chaining Syntax 29

expression 3.1.2 : Forward Chaining Syntax 25

forward-condition 3.1.2 : Forward Chaining Syntax 24

of forward chaining 3.1.2 : Forward Chaining Syntax 24

syntax of Prolog A.2 : Syntax 111

system browser 5.4 : The System Browser 40

systems 2.8 : Systems 22

T

tactic 3.1.5.3 : Conflict Resolution 27, deftactic 74

Tail Recursion 6.2.3.2 : Tail Recursion 58

test backward chaining goal 108

trace A.12 : Built-in Predicates 128

in Prolog A.7 : Debugging 119

translate-vars A.12 : Built-in Predicates 128

true A.12 : Built-in Predicates 128

truth maintenance 3.1.2 : Forward Chaining Syntax 25, 6.4 : Logical Dependencies and Truth Maintenance 59

Tutorial

main chapter 2 : Tutorial 11

U

undefcontext macro 108 3.1.6.1 : Defining Contexts 28

undefrule macro 109 3.1.3 : Defining Forward Chaining Rules 26

unleash A.12 : Built-in Predicates 128

unnamed classes 4.1.1 : Unnamed Classes 31

V

validate-superclass generic function 6.3 : Use of Meta-Classes 58

var A.12 : Built-in Predicates 128

variables

inferencing-state 81 6.5.2 : The Current Inferencing State 60

in-interpreter 83

print-verbose 98

signal-kb-name-clash 103

W

window

browser 2.4 : Browsers 13

editor 2.4.1 : Rule Browser 13, 5.2 : The Editor 39

listener 2.2 : Loading the Tutorial 12, 2.3 : Running the Tutorial 12, 5.1 : The KnowledgeWorks Listener 38

monitor 2.6.1 : Monitoring Forward Chaining Rules 19, 5.9 : Monitor Windows 47

popup 2.3 : Running the Tutorial 12

spy 2.6.2 : Single-Stepping Rules 20, 5.7 : The Rule Browser 46, 5.8.1 : Spy Windows 47

Index

163

subclasses 2.4.3 : Class Browser 17

with-prolog A.6.2.3 : with-prolog 118

with-rule-actions macro 110

Non-alaphanumerics

* 1.2.1 : Prolog syntax 10

+ 1.2.1 : Prolog syntax 10

/== A.12 : Built-in Predicates 126

<..> 1.2.1 : Prolog syntax 10

= A.12 : Built-in Predicates 126

=.. A.2 : Syntax 112, A.12 : Built-in Predicates 126

::= 1.2.1 : Prolog syntax 10

== A.12 : Built-in Predicates 126

@< A.12 : Built-in Predicates 126

@=< A.12 : Built-in Predicates 126

@> A.12 : Built-in Predicates 126

@>= A.12 : Built-in Predicates 126

[..] 1.2.1 : Prolog syntax 10

| 1.2.1 : Prolog syntax 10

Index

164

	KnowledgeWorks and Prolog User Guide
	Copyrights and Trademarks
	Contents
	1 Introduction
	1.1 KnowledgeWorks
	1.1.1 Background
	1.1.2 Technical Overview

	1.2 Notation and conventions
	1.2.1 Prolog syntax
	1.2.2 Viewing example files
	1.2.3 Appearance of the graphical tools

	2 Tutorial
	2.1 Getting Started
	2.2 Loading the Tutorial
	2.3 Running the Tutorial
	2.4 Browsers
	2.4.1 Rule Browser
	2.4.2 Objects Browser
	2.4.3 Class Browser
	2.4.4 Forward Chaining History

	2.5 KnowledgeWorks Listener
	2.6 Debugging
	2.6.1 Monitoring Forward Chaining Rules
	2.6.2 Single-Stepping Rules
	2.6.3 Editing Rule Definitions

	2.7 Lisp Integration
	2.7.1 The LispWorks IDE

	2.8 Systems
	2.9 Exiting KnowledgeWorks

	3 Rules
	3.1 Forward chaining
	3.1.1 Overview
	3.1.2 Forward Chaining Syntax
	3.1.2.1 Example

	3.1.3 Defining Forward Chaining Rules
	3.1.3.1 Example

	3.1.4 The Forward Chaining Interpreter
	3.1.5 Control Flow
	3.1.5.1 The Agenda
	3.1.5.2 Contexts
	3.1.5.3 Conflict Resolution

	3.1.6 Examples
	3.1.6.1 Defining Contexts

	3.1.7 Forward Chaining Debugging

	3.2 Backward Chaining
	3.2.1 Overview
	3.2.2 Backward Chaining Syntax
	3.2.2.1 Example

	3.2.3 Objects
	3.2.4 Defining Backward Chaining Rules
	3.2.5 The Backward Chaining Interpreter
	3.2.5.1 Examples

	3.2.6 Edinburgh Prolog Translator
	3.2.7 Backward Chaining Debugging

	3.3 Common Lisp Interface

	4 Objects
	4.1 CLOS objects
	4.1.1 Unnamed Classes
	4.1.2 Named Classes
	4.1.2.1 Examples

	4.2 Relational Database Objects
	4.2.1 Example
	4.2.2 Extended Example

	4.3 KnowledgeWorks Structures

	5 The Programming Environment
	5.1 The KnowledgeWorks Listener
	5.2 The Editor
	5.3 Clearing KnowledgeWorks
	5.4 The System Browser
	5.5 The Class Browser
	5.6 The Objects Browser
	5.7 The Rule Browser
	5.8 Debugging with the Environment
	5.8.1 Spy Windows

	5.9 Monitor Windows
	5.9.1 Forward Chaining History

	6 Advanced Topics
	6.1 Control Flow
	6.1.1 Meta Rule Protocol
	6.1.1.1 Functions defined on Instantiations
	6.1.1.2 A Simple Example
	6.1.1.3 A Simple Explanation Facility
	6.1.1.4 Reasoning with Certainty Factors

	6.1.2 User-definable Conflict Resolution
	6.1.2.1 Examples

	6.2 Optimization
	6.2.1 Forward Chaining
	6.2.1.1 KnowledgeWorks Structures
	6.2.1.2 Efficient Forward Chaining Rule Preconditions
	6.2.1.3 Profiling

	6.2.2 Conflict Resolution
	6.2.2.1 Use of Contexts
	6.2.2.2 Optimization of the Strategy

	6.2.3 Backward Chaining
	6.2.3.1 Pattern Matching
	6.2.3.2 Tail Recursion
	6.2.3.3 Cut

	6.3 Use of Meta-Classes
	6.3.1 Example

	6.4 Logical Dependencies and Truth Maintenance
	6.4.1 Example

	6.5 Inferencing States
	6.5.1 Creating and Maintaining Inferencing States
	6.5.2 The Current Inferencing State
	6.5.3 Uses of Inferencing States
	6.5.3.1 Multiple threads
	6.5.3.2 Interleaved in a Single Thread

	7 Reference Guide
	all-debug
	any
	assert
	clear-all
	clear-rules
	conflict-set
	context
	current-cycle
	cut
	cycle
	defcontext
	def-kb-class
	def-kb-struct
	def-named-kb-class
	defrule
	deftactic
	destroy-inferencing-state
	erase
	fail
	findall
	findallset
	find-inferencing-state
	fire-rule
	get-kb-object
	infer
	inferencing-state
	inferencing-state-name
	in-interpreter
	instantiation
	inst-bindings
	inst-rulename
	inst-token
	kb-name
	kw-class
	lex
	-lex
	list-all-inferencing-states
	make-inferencing-state
	make-instance
	mea
	-mea
	named-kb-object
	no-debug
	not
	order
	-order
	print-verbose
	priority
	-priority
	recency
	-recency
	reset
	return
	signal-kb-name-clash
	specificity
	-specificity
	standard-context
	standard-kb-object
	start-cycle
	start-kw
	test
	undefcontext
	undefrule
	with-rule-actions

	Appendix A: Common Prolog
	A.1 Introduction
	A.1.1 Overview
	A.1.1.1 Starting Common Prolog

	A.2 Syntax
	A.3 Defining Relations
	A.4 Using The Logic Interpreter
	A.4.1 Multiple Solutions
	A.4.2 Multiple Goals
	A.4.3 Definitions
	A.4.4 Exiting the Interpreter

	A.5 Accessing Lisp From Common Prolog
	A.5.1 Examples

	A.6 Calling Prolog From Lisp
	A.6.1 Examples
	A.6.2 Interface Functions
	A.6.2.1 any, findall and findallset
	A.6.2.2 deflogfun
	A.6.2.3 with-prolog

	A.7 Debugging
	A.7.1 Tracing
	A.7.1.1 Tracing rules

	A.7.2 Spy Points
	A.7.3 Leashing
	A.7.4 Interactive Debugging

	A.8 Common Prolog Macros
	A.8.1 Example

	A.9 Defining Definite Clause Grammars
	A.9.1 Examples
	A.9.1.1 Example 1: A simple definition.
	A.9.1.2 Example 2: Using extra arguments.

	A.10 Edinburgh Syntax
	A.11 Graphic Development Environment
	A.12 Built-in Predicates
	A.13 Adding Built-in Predicates
	A.13.1 The defdetpred form
	A.13.2 The defdetunipred form

	A.14 Edinburgh Compatibility Predicates

	Appendix B: Examples
	B.1 The Tutorial
	B.2 Explanation Facility
	B.3 Uncertain Reasoning Facility
	B.4 Other Examples

	Appendix C: Implementation Notes
	C.1 Forward Chainer
	C.1.1 Forward Chaining Algorithm
	C.1.2 CLOS and the Forward Chainer
	C.1.3 Forward Chaining and the Backward Chainer

	C.2 Backward Chainer
	C.2.1 Backward Chaining Algorithm
	C.2.2 Term Structure
	C.2.3 The Binding Trail

	Appendix D: For More Information
	D.1 General References
	D.1.1 Forward Chaining
	D.1.2 Backward Chaining and Prolog
	D.1.3 Uncertain Reasoning
	D.1.4 Expert Systems
	D.1.5 Lisp and CLOS

	D.2 The LispWorks manuals

	Appendix E: Converting Other Systems
	E.1 OPS5
	E.2 Prolog

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Non-alaphanumerics

