
Foreign Language Interface User
Guide and Reference Manual
Version 8.0

1

Copyright and Trademarks
Foreign Language Interface User Guide and Reference Manual

Version 8.0

December 2021

Copyright © 2021 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in all copies and supporting documentation, and that the
name of M.I.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "as is"
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including all implied
warranties of merchantability and fitness. In no event shall M.I.T. be liable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright
and permission notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

2

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and
registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt III, as applicable. Rights reserved under the copyright laws of
the United States.

Address Telephone Fax

LispWorks Ltd
St. John's Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

From North America:
877 759 8839 (toll-free)

From elsewhere:
+44 1223 421860

From North America:
617 812 8283

From elsewhere:
+44 870 2206189

 www.lispworks.com

Copyright and Trademarks

3

www.lispworks.com

Contents

Preface 11

1 Introduction to the FLI 12

1.1 An example of interfacing to a foreign function 12

1.2 Using the FLI to get the cursor position 13

1.3 Using the FLI to set the cursor position 15

1.4 An example of dynamic memory allocation 16

1.5 Summary 16

2 FLI Types 17

2.1 Immediate types 17

2.2 Aggregate types 18

2.3 Parameterized types 23

2.4 Encapsulated types 23

2.5 The void type 24

2.6 Summary 24

3 FLI Pointers 25

3.1 Creating and copying pointers 25

3.2 Pointer testing functions 26

3.3 Pointer dereferencing and coercing 27

3.4 An example of dynamic pointer allocation 28

3.5 More examples of allocation and pointer allocation 29

3.6 Summary 31

4 Defining foreign functions and callables 32

4.1 Foreign callables and foreign functions 32

4.2 Specifying a calling convention. 34

5 Advanced Uses of the FLI 37

5.1 Passing a string to a Windows function 37

5.2 Passing and returning strings 38

5.3 Lisp integers 47

5.4 Defining new types 48

5.5 Using DLLs within the LispWorks FLI 48

5.6 Incorporating a foreign module into a LispWorks image 49

5.7 Block objects in C (foreign blocks) 50

4

5.8 Interfacing to graphics functions 52

5.9 Summary 52

6 Self-contained examples 53

6.1 Foreign block examples 53

6.2 Miscellaneous examples 53

7 Function, Macro and Variable Reference 54

align-of 54

alloca 55

allocate-dynamic-foreign-object 55

allocate-foreign-block 56

allocate-foreign-object 57

cast-integer 59

connected-module-pathname 59

convert-from-foreign-string 61

convert-integer-to-dynamic-foreign-object 62

convert-to-dynamic-foreign-string 62

convert-to-foreign-string 64

copy-pointer 65

decf-pointer 66

define-c-enum 67

define-c-struct 69

define-c-typedef 71

define-c-union 72

define-foreign-block-callable-type 74

define-foreign-block-invoker 75

define-foreign-callable 76

define-foreign-converter 79

define-foreign-forward-reference-type 81

define-foreign-funcallable 82

define-foreign-function 83

define-foreign-pointer 87

define-foreign-type 88

define-foreign-variable 89

define-opaque-pointer 92

dereference 93

disconnect-module 95

enum-symbols 96

enum-symbol-value 96

enum-symbol-value-pairs 96

enum-values 96

enum-value-symbol 96

fill-foreign-object 97

Contents

5

foreign-aref 98

foreign-array-dimensions 100

foreign-array-element-type 100

foreign-array-pointer 101

foreign-block-copy 102

foreign-block-release 103

foreign-function-pointer 104

foreign-slot-names 105

foreign-slot-offset 106

foreign-slot-pointer 107

foreign-slot-type 109

foreign-slot-value 110

foreign-typed-aref 112

foreign-type-equal-p 113

foreign-type-error 114

free 115

free-foreign-block 114

free-foreign-object 115

get-embedded-module 116

get-embedded-module-data 117

incf-pointer 118

install-embedded-module 119

install-embedded-module-delay-delete 120

locale-external-formats 121

make-integer-from-bytes 122

make-pointer 122

malloc 57

module-unresolved-symbols 124

null-pointer 125

null-pointer-p 125

pointer-address 126

pointer-element-size 127

pointer-element-type 128

pointer-element-type-p 129

pointer-eq 130

pointerp 131

pointer-pointer-type 132

print-collected-template-info 133

print-foreign-modules 133

register-module 134

replace-foreign-array 138

replace-foreign-object 140

set-locale 141

set-locale-encodings 142

Contents

6

setup-embedded-module 143

size-of 144

start-collecting-template-info 145

use-sse2-for-ext-vector-type 145

valid-foreign-type-p 146

with-coerced-pointer 147

with-dynamic-foreign-objects 148

with-dynamic-lisp-array-pointer 151

with-foreign-block 152

with-foreign-slots 153

with-foreign-string 154

with-integer-bytes 156

with-local-foreign-block 156

8 Type Reference 158

:boolean 158

:byte 159

:c-array 159

:char 161

:const 161

:double 162

:double-complex 163

:ef-mb-string 163

:ef-wc-string 164

:enum 165

:enumeration 165

:fixnum 166

:float 166

:float-complex 167

:foreign-array 167

foreign-block-pointer 168

:function 169

:int16 170

:int32 170

:int64 170

:int8 170

:int 171

:intmax 170

:intptr 170

:lisp-array 171

:lisp-double-float 173

:lisp-float 173

:lisp-simple-1d-array 174

:lisp-single-float 175

Contents

7

:long 175

:long-long 176

:one-of 177

:pointer 178

:ptr 178

:ptrdiff-t 178

:reference 179

:reference-pass 180

:reference-return 181

released-foreign-block-pointer 181

:short 182

:signed 183

:size-t 184

:ssize-t 184

:struct 185

:time-t 186

:uint16 186

:uint32 186

:uint64 186

:uint8 186

:uintmax 186

:uintptr 186

:union 187

:unsigned 188

vector-char16 189

vector-char2 189

vector-char3 189

vector-char32 189

vector-char4 189

vector-char8 189

vector-double2 190

vector-double3 190

vector-double4 191

vector-double8 191

vector-float16 190

vector-float2 190

vector-float3 190

vector-float4 190

vector-float8 190

vector-int16 190

vector-int2 190

vector-int3 190

vector-int4 190

vector-int8 190

Contents

8

vector-long1 190

vector-long2 190

vector-long3 190

vector-long4 190

vector-long8 190

vector-short16 190

vector-short2 189

vector-short3 189

vector-short32 190

vector-short4 190

vector-short8 190

vector-uchar16 189

vector-uchar2 189

vector-uchar3 189

vector-uchar32 189

vector-uchar4 189

vector-uchar8 189

vector-uint16 190

vector-uint2 190

vector-uint3 190

vector-uint4 190

vector-uint8 190

vector-ulong1 190

vector-ulong2 190

vector-ulong3 190

vector-ulong4 190

vector-ulong8 190

vector-ushort16 190

vector-ushort2 190

vector-ushort3 190

vector-ushort32 190

vector-ushort4 190

vector-ushort8 190

:void 193

:volatile 193

:wchar-t 194

:wrapper 194

9 The Foreign Parser 196

9.1 Introduction 196

9.2 Loading the Foreign Parser 196

9.3 Using the Foreign Parser 196

9.4 Using the LispWorks Editor 198

9.5 Foreign Parser Reference 198

Contents

9

preprocessor 198

preprocessor-format-string 199

preprocessor-include-path 199

preprocessor-options 200

process-foreign-file 200

Glossary 203

Index

Contents

10

Preface

This manual documents the Foreign Language Interface (FLI), which provides a toolkit for the development of interfaces
between Common Lisp and other programming languages, and supersedes the Foreign Function Interface (FFI).

The manual is divided into three sections: a user guide to the FLI which includes illustrative examples indicating how to use
the FLI for a variety of purposes, a reference section providing complete details of the functions, macros, variables and types
that make up the FLI, and a guide to the Foreign Parser.

The user guide section starts by describing the ideas behind the FLI, followed by a few simple examples presenting some of
the more commonly used features of the FLI. The next chapter explains the existing type system, and includes examples
showing how to define new types. This is followed by chapters explaining the FLI implementation of pointers and some of
the more advanced topics. Finally, 6 Self-contained examples enumerates relevant example Lisp source files which are
available in the LispWorks library.

The reference section consists of a chapter documenting the functions and macros that constitute the FLI, and a chapter
documenting the FLI variables and types.

The Foreign Parser section describes a helper tool for generating FLI definitions from a C header file.

Viewing example files

This manual refers to example files in the LispWorks library via a Lisp form like this:

(example-edit-file "fli/foreign-callable-example")

These examples are Lisp source files in your LispWorks installation under lib/8-0-0-0/examples/. You can simply
evaluate the given form to view the example source file.

Example files contain instructions about how to use them at the start of the file.

The examples files are in a read-only directory and therefore you should compile them inside the IDE (by the Editor
command Compile Buffer or the toolbar button or by choosing Buffer > Compile from the context menu), so it does not try
to write a fasl file.

If you want to manipulate an example file or compile it on the disk rather than in the IDE, then you need first to copy the file
elsewhere (most easily by using the Editor command Write File or by choosing File > Save As from the context menu).

11

1 Introduction to the FLI

The Foreign Language Interface (FLI) is an extension to LispWorks which allows you to call functions written in a foreign
language from LispWorks, and to call Lisp functions from a foreign language. The FLI currently supports C (and therefore
also the Win32 API for Microsoft Windows users).

The main problem in interfacing different languages is that they usually have different type systems, which makes it difficult
to pass data from one to the other. The FLI solves the problem of interfacing Lisp with C. It consists of FLI types that have
obvious parallels to the C types and structures, and FLI functions that allow LispWorks to define new FLI types and set their
values. The FLI also contains functions for passing FLI objects to C, and functions for receiving data from C.

To interface to a C++ program from LispWorks, define C stubs which call your C++ entry points, as described in 5.5.2 Using
C++ DLLs. Use the FLI to interface to these C stubs.

1.1 An example of interfacing to a foreign function

The following example shows how to use the FLI to call a C function. The function to interface with,
FahrenheitToCelsius, takes one integer as its argument (the temperature in Fahrenheit) and returns the result as a single
float (the temperature in Celsius).

The example consists of three stages: defining a foreign language interface to the C function, loading the foreign code into
the Lisp image, and calling the C function to obtain the results.

1.1.1 Defining the FLI function

The FLI provides the macro define-foreign-function for creating interfaces to foreign functions. It takes the name of
the function you wish to interface to, the argument types the function accepts, and the result type the function returns.

Given the following C declaration to FahrenheitToCelsius:

float FahrenheitToCelsius(int);

The FLI interface is as follows:

(fli:define-foreign-function
 (fahrenheit-to-celsius "FahrenheitToCelsius" :source)
 ((fahrenheit :int))
 :result-type :float
 :language :ansi-c
)

The first argument to define-foreign-function declares that fahrenheit-to-celsius is the name of the Lisp
function that is generated to interface with the C function FahrenheitToCelsius. The :source keyword is a directive to
define-foreign-function that FahrenheitToCelsius is the name of the C function as seen in the source files. On
some platforms the actual symbol name available in the foreign object file we are interfacing with could include character
prefixes such as "." and "_", and so the :source keyword encoding allows you to write cross-platform portable foreign
language interfaces.

The second argument to define-foreign-function, ((fahrenheit :int)), is the argument list for the foreign
function. In this case, only one argument is required. The first part of each argument descriptor is the lambda argument

12

name. The rest of the argument describes the type of argument we are trying to interface to and how the conversion from Lisp
to C is performed. In this case the foreign type :int specifies that we are interfacing between a Lisp integer and a C type
"int".

The :result-type keyword tells us that the conversion required between the C function and Lisp uses the foreign type
:float. This tells Lisp that C will return a result of type "float", which needs to be converted to a Lisp single-float.

The final keyword argument, :language, specifies which language the foreign function was written in. In this case the
example uses ANSI C. This keyword determines how single-floating point values are passed to and returned from C
functions as described for define-foreign-function.

1.1.2 Loading foreign code

Once an interface has been created, the object code defining those functions (and indeed any variables) must be made
available to LispWorks.

LispWorks for Windows can load Windows Dynamic Link Libraries (.DLL files).

LispWorks for Linux, LispWorks for x86/x64 Solaris and LispWorks for FreeBSD can load shared libraries (typically .so

files).

LispWorks for Macintosh can load Mach-O dynamically-linked shared libraries (typically .dylib files).

Throughout this manual we shall refer to these dynamic libraries as DLLs.

On all platforms the function register-module is the main LispWorks interface to DLL files. It is used to specify which
DLLs are looked up when searching for foreign symbols. Here are example forms to register a connection to a DLL.

On Windows:

(fli:register-module "MYDLL.DLL")

On Linux:

(fli:register-module "mylib.so")

On macOS:

(fli:register-module "mylib.dylib")

Note: It is also possible to embed a DLL in the Lisp image. See 5.6 Incorporating a foreign module into a LispWorks
image.

1.1.3 Calling foreign code

Calling the foreign code is the simplest part of using the FLI. The interface to the C function, defined using
define-foreign-function, is called like any other Lisp function. In our example, the fahrenheit-to-celsius
function takes the temperature in Fahrenheit as its only argument, and returns the temperature in Celsius.

1.2 Using the FLI to get the cursor position

Note: The rest of the examples in this chapter only work in LispWorks for Windows.

The following example shows how to use the FLI to call a C function in a Win32 library. The function we are going to call
returns the screen position of the mouse pointer, or cursor. The example consists of three stages: setting up the correct data

1 Introduction to the FLI

13

types to pass and receive the data, defining and calling a FLI function to call the Win32 function, and collecting the values
returned by the Win32 function to find where the cursor is.

1.2.1 Defining FLI types

The example uses the FLI to find the position of the cursor using the Windows function GetCursorPos, which has the
following C prototype:

BOOL GetCursorPos(LPPOINT)

The LPPOINT argument is a pointer to the POINT structure, which has the following C definition:

typedef struct tagPOINT {
 LONG x;
 LONG y;
} POINT;

First we use the define-c-typedef macro to define a number of basic types which are needed to pass data to and from the
Windows function.

(fli:define-c-typedef bool (:boolean :int))

(fli:define-c-typedef long :long)

This defines two types, BOOL and LONG, which are used to associate a Lisp boolean value (t or nil) with a C boolean of type
int, and a Lisp bignum with a C long. These are required because the Windows function GetCursorPos returns a
boolean to indicate if it has executed successfully, and the cursor's x and y positions are specified in a long format in the
POINT structure.

Next, we need to define a structure for the FLI which is used to get the coordinates of the cursor. These coordinates will
consist of an x and a y position. We use the define-c-typedef macro for this, and the resulting Lisp FLI code has obvious
parallels with the C tagPOINT structure.

(fli:define-c-struct tagpoint
 (x long)
 (y long))

The tagPOINT structure for the FLI, corresponding to the C structure of the same name, has been defined. This now needs to
be further defined as a type for the FLI, using define-c-typedef.

(fli:define-c-typedef point (:struct tagpoint))

Finally, a pointer type to point to the structure is required. It is this FLI pointer which will be passed to the Windows function
GetCursorPos, so that GetCursorPos can change the x and y values of the structure pointed to.

(fli:define-c-typedef lppoint (:pointer point))

All the required FLI types have now been defined. Although it may seem that there is a level of duplicity in the definitions of
the structures, pointers and types in this section, this was necessary to match the data structures of the C functions to which
the FLI will interface. We can now move on to the definition of FLI functions to perform the interfacing.

1 Introduction to the FLI

14

http://www.lispworks.com/documentation/HyperSpec/Body/t_bignum.htm

1.2.2 Defining a FLI function

This next step uses the define-foreign-function macro to define a FLI function, or interface function, to be used to call
the GetCursorPos function. An interface function takes its arguments, converts them into a C format, calls the foreign
function, receives the return values, and converts them into a suitable Lisp format.

(fli:define-foreign-function (get-cursor-position "GetCursorPos")
 ((lp-point lppoint))
 :result-type bool)

In this example, the defined FLI function is get-cursor-position. It takes as its argument a pointer of type lppoint,
converts this to a C format, and calls GetCursorPos. It takes the return value it receives from GetCursorPos and converts
it into the FLI bool type we defined earlier.

We have now defined all the types and functions required to get the cursor position. The next step is to allocate memory for
an instance of the tagPOINT structure using allocate-foreign-object. The following line of code binds location to
a pointer that points to such an instance.

(setq location (fli:allocate-foreign-object :type 'point))

Finally, we can use our interface function get-cursor-position to get the cursor position:

(get-cursor-position location)

1.2.3 Accessing the results

The position of the cursor is now stored in a POINT structure in memory, and location is a pointer to that location. To find
out what values are stored we use the foreign-slot-value accessor, which returns the value stored in the specified field
of the structure.

(fli:foreign-slot-value location 'x)

(fli:foreign-slot-value location 'y)

1.3 Using the FLI to set the cursor position

A similar Windows function, SetCursorPos, can be used to set the cursor position. The SetCursorPos function takes two
LONGs. The following code defines an interface function to call SetCursorPos.

(fli:define-foreign-function (set-cursor-position "SetCursorPos")
 ((x :long)
 (y :long))
 :result-type :boolean)

For example, the cursor position can now be set to be near the top left corner by simply using the following command:

(set-cursor-position 20 20)

For a more extravagant example, define and execute the following function:

(defun test-cursor ()
 (dotimes (x 10)
 (dotimes (d 300)
 (let ((r (/ (+ d (* 300 x)) 10.0)))

1 Introduction to the FLI

15

 (set-cursor-position
 (+ 300 (floor (* r (cos (/ (* d pi) 150.0)))))
 (+ 300 (floor (* r (sin (/ (* d pi) 150.0)))))
)))))

(test-cursor)

1.4 An example of dynamic memory allocation

In the previous example our defined interface function get-cursor-position used the function
allocate-foreign-object to allocate memory for an instance of a POINT structure. This memory is now reserved, with
a pointer to its location bound to the variable location. More detailed information on pointers is available in 3 FLI
Pointers. To free the memory associated with the foreign object requires the use of the function free-foreign-object.

(fli:free-foreign-object location)

There are other methods for dealing with the question of memory management. The following example defines a Lisp
function that returns the x and y coordinates of the cursor without permanently tying up memory for structures that are only
used once.

(defun current-cursor-position ()
 (fli:with-dynamic-foreign-objects ()
 (let ((lppoint (fli:allocate-dynamic-foreign-object
 :pointer-type 'lppoint)))
 (if (get-cursor-position lppoint)
 (values t (fli:foreign-slot-value lppoint 'x)
 (fli:foreign-slot-value lppoint 'y))
 (values nil 0 0)))))

On calling current-cursor-position the following happens:

1. The macro with-dynamic-foreign-objects is called, which ensures that the lifetime of any allocated objects is
within the scope of the code specified in its body.

2. The function allocate-dynamic-foreign-object is called to create an instance of the relevant data structure
required to get the cursor position. Refer to it using the lppoint pointer.

3. The previously defined foreign function get-cursor-position is called with lppoint.

4. Provided the call to GetCursorPos was successful the function foreign-slot-value is called twice, once to return
the value in the x slot and again to return the value in the y slot. If the call was unsuccessful then 0 0 nil is returned.

1.5 Summary

In this chapter an introduction to some of the FLI functions and types was presented. Some examples demonstrating how to
interface LispWorks with Windows and C functions were presented. The first example involved defining a foreign function
using define-foreign-function to call a C function that converts between Fahrenheit and Celsius. The second involved
setting up foreign types, using the FLI macros define-c-typedef and define-c-struct, and defining a foreign
function using the FLI macro define-foreign-function, with which to obtain data from the Windows function
GetCursorPos. The third example consisted of defining a foreign function to pass data to the Windows function
SetCursorPos. A further example illustrated how to manage the allocation of memory for creating instances of foreign
objects more carefully using the FLI macro with-dynamic-foreign-objects.

1 Introduction to the FLI

16

2 FLI Types

A central aspect of the FLI is implementation of foreign language types. FLI variables, function arguments and temporary
objects have predictable properties and structures which are analogous to the properties and structures of the types found in
C. The FLI can translate Lisp data objects into FLI data objects, which are then passed to the foreign language, such as C.
Similarly, data can be passed from C or the Windows functions to the FLI, and then translated into a suitable Lisp form. The
FLI types can therefore best be seen as an intermediate stage in the passing of data between Lisp and other languages.

Here are some of the features and sorts of foreign types:

• Consistency — Foreign types behave in a consistent and predictable manner. There is only one definition for any given
foreign type.

• Parameterized types — these can be created using a deftype-like syntax. The macro define-foreign-type

provides a simple mechanism for creating parameterized types.

• Encapsulated types — the ability to define a new foreign type as an extension to an existing type definition is provided.
All types are converters between Lisp and the foreign language. New types can be defined to add an extra level of
conversion around an existing type. The macro define-foreign-converter and the foreign type :wrapper provide
this functionality.

• Generalized accessors — the FLI does not create named accessors. Instead, several generalized accessors use
information stored within the foreign type in order to access the foreign object. These accessors are
foreign-slot-value, foreign-aref and dereference. This makes it possible to handle type definitions
corresponding to C types defined using unnamed structures, as we do not rely on specialized accessors for the given type.
Also, there is foreign-typed-aref for efficient access in compiled code.

• Documentation for types — foreign type definitions can include documentation strings.

• Specialized type constructors — to make the definition of the Lisp to C interfaces even easier several type constructor
macros are provided to mimic the C type constructors typedef, enum, struct, and union. The new FLI constructors
are define-c-typedef, define-c-enum, define-c-struct and define-c-union. Note that the equivalent
foreign types for most standard C types are already available within the FLI.

• Querying and testing functions — to get the byte size of a foreign type, use size-of. To test for equivalence of foreign
types, use foreign-type-equal-p.

There are two fundamental sorts of FLI types: immediate and aggregate. Immediate types, which correspond to the C
fundamental types, are so called because they are basic data types such as integers, booleans and bytes which have a direct
representation in the computer memory. Aggregate types, which correspond to the C derived types, consist of a combination
of immediate types, and possibly of smaller aggregate types. Examples of aggregate types are arrays and structures. Any user
-defined type is an aggregate type.

2.1 Immediate types

The immediate types are the basic types used by the FLI to convert between Lisp and a foreign language.

The immediate types of the FLI are :boolean, :byte, :char, :const, :double, :double-complex, :enum, :float,
:float-complex, :int, :lisp-double-float, :lisp-float, :lisp-single-float, :long, :pointer, :short,
:signed and :unsigned. For details on each immediate type, see the relevant reference entry.

17

http://www.lispworks.com/documentation/HyperSpec/Body/m_deftp.htm

2.1.1 Integral types

Integral types are the FLI types that represent integers. They consist of the following: :int, :byte, :long, :short,
:signed, :unsigned and :enum, along with integer types converting to types with particular sizes defined by ISO C99
such as :int8, :uint64 and :intmax.

Integral types can be combined in a list for readability and compatibility purposes with the foreign language, although when
translated to Lisp such combinations are usually returned as a Lisp integer, or a fixnum for byte sized combinations. For
example, a C unsigned long can be represented in the FLI as an (:unsigned :long).

2.1.2 Floating point types

The FLI provides several different immediate types for the representation of floating point numbers. They consist of the
following: :float, :double, :lisp-double-float, :lisp-float, and :lisp-single-float. The floating types all
associate equivalent Lisp and C types, except the :lisp-float, which can take a modifier to cause an association between
different floating types. A :lisp-float associates a Lisp float with a C float by default, but a declaration of
(:lisp-float :double) corresponds to a C double, for example.

Note: be sure to use :language :ansi-c when passing float arguments to and from C using
define-foreign-function and so on.

2.1.3 Complex number types

The FLI provides two immediate types for the representation of complex numbers, named :float-complex and
:double-complex, which correspond to the C types float complex and double complex respectively.

2.1.4 Character types

The FLI provides the :char type to interface a Lisp character with a C char.

2.1.5 Boolean types

The FLI provides the :boolean type to interface a Lisp boolean value (t or nil) with a C int (0 corresponding to nil, and
any other value corresponding to t). The :boolean type can be modified to make it correspond with other C types. For
example, (:boolean :byte) would associate a Lisp boolean with a C byte, and (:boolean :long) would associate a
Lisp boolean with a C long. (:boolean :standard) would associate a Lisp boolean with a C99 _Bool.

2.1.6 Pointer types

Pointers are discussed in detail in 3 FLI Pointers. Further details can also be found in the reference entry for :pointer.

2.2 Aggregate types

Aggregate types are types such as arrays, strings and structures. The internal structure of an aggregate type is not transparent
in the way that immediate types are. For example, two structures may have the same size of 8 bytes, but one might partition
its bytes into two integers, whereas the other might be partitioned into a byte, an integer, and another byte. The FLI provides
a number of functions to manipulate aggregate types. A feature of aggregate types is that they are usually accessed through
the use of pointers, rather than directly.

2 FLI Types

18

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

2.2.1 Arrays

The FLI has two predefined array types: the :c-array type, which corresponds to C arrays, and the :foreign-array
type. The two types are the same in all aspects but one: if you attempt to pass a :c-array by value through a foreign
function, the starting address of the array is what is actually passed, whereas if you attempt to pass a :foreign-array in
this manner, an error is raised.

For examples on the use of FLI arrays refer to :c-array and :foreign-array in 8 Type Reference.

2.2.2 Strings

The FLI provides two foreign types to interface Lisp and C strings, :ef-wc-string and :ef-mb-string.

The :ef-mb-string converts between a Lisp string and an external format C multi-byte string. A maximum number of
bytes must be given as a limit for the string size.

The :ef-wc-string converts between a Lisp string and an external format C wide character string. A maximum number of
characters must be given as a limit for the string size.

For more information on converting Lisp strings to foreign language strings see the string types :ef-mb-string,
:ef-wc-string, and the string functions convert-from-foreign-string, convert-to-foreign-string, and
with-foreign-string.

2.2.3 Structures and unions

The FLI provides the :struct and :union types to interface Lisp objects with the C struct and union types.

To define types to interface with C structures, the FLI macro define-c-struct is provided. In the next example it is used
to define a FLI structure, tagpoint:

(fli:define-c-struct tagpoint
 (x :long)
 (y :long)
 (visible (:boolean :byte))

This structure would interface with the following C structure:

typedef struct tagPOINT {
 LONG x;
 LONG y;
 BYTE visible;
} POINT;

The various elements of a structure are known as slots, and can be accessed using the FLI foreign slot functions
foreign-slot-names, foreign-slot-type and foreign-slot-value, and the macro with-foreign-slots. For
example, the next commands set point equal to an instance of tagPOINT, and set the Lisp variable names equal to a list of
the names of the slots of tagPOINT.

(setq point (fli:allocate-foreign-object :type 'tagpoint))

(setq names (fli:foreign-slot-names point))

The next command finds the type of the first element in the list names, and sets the variable name-type equal to it.

(setq name-type (fli:foreign-slot-type point (car names)))

2 FLI Types

19

Finally, the following command sets point-to equal to a pointer to the first element of point, with the correct type.

(setq point-to (fli:foreign-slot-pointer point (car names)
 :type name-type))

The above example demonstrates some of the functions used to manipulate FLI structures. The FLI :union type is similar to
the :struct type, in that the FLI slot functions can be used to access instances of a union. The convenience FLI function
define-c-union is also provided for the definition of specific union types.

2.2.4 Vector types

Vector types are types that correspond to C vector types. These are handled by the C compiler in a special way, and therefore
when you pass or return them to/from foreign code by value you must declare them correctly.

2.2.4.1 Vector type names

The names of the FLI types are designed to best match the types that are defined by Clang, which is used on macOS, iOS and
FreeBSD and is optionally available on other operating systems. For every C/Objective-C type of the form
vector_<type><count>, there is an FLI type of the form fli:vector-<scalar fli type><count>. For example,
the C/Objective-C type vector_double8 is matched by the FLI type fli:vector-double8.

The scalar fli types and their matching Common Lisp types are:

char (signed-byte 8)

uchar (unsigned-byte 8)

short (signed-byte 16)

ushort (unsigned-byte 16)

int (signed-byte 32)

uint (unsigned-byte 32)

long (signed-byte 64)

ulong (unsigned-byte 64)

float single-float

double double-float

The count can be 2, 3, 4, 8, 16 (for elements of 32 bits or less) or 32 (for elements of 16 bits or less). The restrictions mean
that the maximum size of a vector is 64 bytes and the maximum count is 32.

Note that long and ulong are always 64 bits in this context, even on 32-bit where the C type long is 32 bits.

The full list of types:

vector-char2 vector-char3 vector-char4 vector-char8 vector-char16 vector-char32

vector-uchar2 vector-uchar3 vector-uchar4 vector-uchar8 vector-uchar16 vector-uchar32

vector-short2 vector-short3 vector-short4 vector-short8 vector-short16 vector-short32

vector-ushort2 vector-ushort3 vector-ushort4 vector-ushort8 vector-ushort1
6

vector-ushort3
2

vector-int2 vector-int3 vector-int4 vector-int8 vector-int16

2 FLI Types

20

http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm

vector-uint2 vector-uint3 vector-uint4 vector-uint8 vector-uint16

vector-long2 vector-long3 vector-long4 vector-long8

vector-ulong2 vector-ulong3 vector-ulong4 vector-ulong8

vector-float2 vector-float3 vector-float4 vector-float8 vector-float16

vector-double2 vector-double3 vector-double4 vector-double8

In addition, vector-long1 and vector-ulong1 are defined as immediate 64-bit signed and unsigned integers, because
Clang defines them like that.

2.2.4.2 Vector type values

When passing an argument that is declared as any of the FLI vector types, the value needs to be a Lisp vector of the correct
length or a foreign pointer to the FLI vector type.

• For vector-double<count> and vector-float<count>, the Lisp vector must either have element type
double-float or single-float, or have element type t and contain elements of type float.

• For the integer vector types, the Lisp vector must either have an element type that is subtype of the element type of the
FLI vector type, or have element type t and contain elements that fit into the FLI vector.

• If a foreign pointer is passed for an argument that is declared as a FLI vector type, it must point to an object of the FLI
vector type, which must be an exact match, including being correctly signed. The vector is passed by value, not as a
pointer.

When a FLI vector type is passed into Lisp, either because it is a returned value from a foreign function or an argument to a
foreign callable, it is automatically converted to a Lisp vector of the correct length and element type. This also occurs when
accessing a value using foreign-slot-value, foreign-aref and dereference.

2.2.4.3 Using a foreign pointer to a vector type

When you have a foreign pointer to a vector type, you can access individual elements using foreign-aref, or convert the
vector into a Lisp vector using dereference. The reverse operations can be performed using the setf form or
foreign-aref and dereference. For example:

(let ((d4-poi (fli:allocate-foreign-object
 :type 'fli:vector-double4)))
 (setf (fli:dereference d4-poi) #(0d0 1d0 2d0 3d0))
 (format t "Collected values: ~s~%"
 (loop for x below 4
 collect (fli:foreign-aref d4-poi x)))
 (setf (fli:foreign-aref d4-poi 3) -3d0)
 (format t "Dereference after setf: ~s~%"
 (fli:dereference d4-poi)))
=>
Collected values: (0.0D0 1.0D0 2.0D0 3.0D0)
Dereference after setf: #(0.0D0 1.0D0 2.0D0 -3.0D0)

Normally there is no reason to allocate a foreign object for a vector type as in the example above. You would, however,
encounter such a pointer if you have foreign code that calls into Lisp passing it an argument that is a pointer to a vector type,
and your Lisp code needs to set the values in it. In this case, you will need to declare the argument type as
(:pointer vector-double4) and then set it like this:

(fli:define-foreign-callable my-callable
 ((d4-poi (:pointer fli:vector-double4)))
 (let ((lisp-v4 (my-compute-d4-values)))
 (setf (fli:dereference d4-poi) lisp-v4)))

2 FLI Types

21

http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

(defun my-compute-d4-values ()
 (vector 3.5d0 7d0 9d23 0.1d0)))

Note that if you call a function that takes a pointer to a vector type, you can use the FLI types :reference,
:reference-pass and :reference-return to pass and return values without having to explicitly allocate a foreign
pointer. For example, if the C function my_function takes a pointer to vector_double2 and fills it like this:

void my_function (vector_double2* d2_poi) {
 (*d2_poi)[0] = 3.0;
 (*d2_poi)[1] = 4.0;
}

then in Lisp you can call it by:

(fli:define-foreign-function my-function
 ((d2-po1 (:reference-return fli:vector-double2))))

(my-function) ; returns #(3D0 4D0)

2.2.4.4 Notes on foreign vector types

C compilers other than Clang can also define vector types in various ways:

• In GCC, they can be defined using the vector_size attribute, for example, vector_double4 would be defined by:

typedef double vector_double4 __attribute__ ((vector_size (32)));

Note that the size is in bytes, rather than an element count.

• The compiler supplied by ARM has "vector data types", so for example the type float32x4_t matches
vector-float4.

• In Clang, it is possible to define vector types using the GCC syntax, OpenCL syntax, AltiVec syntax and Neon syntax.

On 32-bit x86, vector types can be passed either with or without using SSE2. The Lisp FLI definitions must pass/receive
arguments in the same way as the C compiler that was used to compile the foreign code. On macOS, this is always with
SSE2, so this is not an issue, but on other platforms (Linux, FreeBSD, Solaris) the situation is not clear. What the Lisp
definitions do is controlled by *use-sse2-for-ext-vector-type*.

When using vector-char2 and vector-uchar2 on x86_64 platforms and the C compiler is Clang or a derivative, you
need to check that you have the latest version of the C compiler, because earlier versions of Clang compiled these types
differently from later versions. This affects macOS too because the Xcode C compiler is based on Clang. You can check the
version of the C compiler by executing cc -v in a shell. On macOS, you need to check that you have LLVM 8.0 or later. If
you have Clang, you need to check that you have version 3.9 or later.

On macOS x86_64, the treatment of vector_char2 and vector_uchar2 changed between LLVM 6.0 and 8.0. LispWorks
is compatible with LLVM 8.0. You can check which version of LLVM you have by executing cc -v in a shell.

When a structure is passed by value and it contains one of more fields whose types are vector types, it is also important to
declare the type correctly in Lisp, otherwise the wrong data may be passed. That is because the machine registers that are
used to pass such structures may be different from the registers that are used to pass seemingly equivalent structures that are
defined without vector types. Such structures are commonly used to represent matrices.

2 FLI Types

22

2.3 Parameterized types

The define-foreign-type and define-foreign-converter macros allow the definition of parameterized types. For
example, assume you want to create a foreign type that matches the Lisp type unsigned-byte when supplied with an
argument of one of 8, 16, or 32. The following code achieves this:

(fli:define-foreign-type unsigned-byte (&optional (bitsize '*))
 (case bitsize
 (8 '(:unsigned :byte))
 (16 '(:unsigned :short))
 (32 '(:unsigned :int))
 (otherwise (error "Illegal foreign type (~s ~s)"
 'unsigned-byte bitsize))))

This defines the new foreign type unsigned-byte that can be used anywhere within the FLI as one of:

• (unsigned-byte 8)

• (unsigned-byte 16)

• (unsigned-byte 32)

Specifying anything else returns an error.

2.4 Encapsulated types

With earlier version of the foreign function interface it was not possible to create new foreign types that encapsulated the
functionality of existing types. The only way in which types could be abstracted was to create "wrapper" functions that
filtered the uses of a given type. The FLI contains the ability to encapsulate foreign types, along with the ability to create
parameterized types. This enables you to easily create more advanced and powerful type definitions.

2.4.1 Passing Lisp objects to C

There are occasions when it is necessary to pass Lisp object references through to C and then back into Lisp again. An
example of this is the need to specify Lisp arguments for a GUI action callback.

Using either the foreign type :wrapper or the macro define-foreign-converter a new foreign type can be created that
wraps an extra level of conversion around the Lisp to C or C to Lisp process.

2.4.2 An example

For example, let us assume that we want to pass Lisp object handles through to C and then back to Lisp again. Passing C a
pointer to the Lisp object is not sufficient, as the Lisp object might be moved at any time, for example due to garbage
collection. Instead, we could assign each Lisp object to be passed to C a unique int handle. Callbacks into Lisp could then
convert the handle back into the Lisp object. This example is implemented in two ways: using the :wrapper type and using
define-foreign-converter.

The :wrapper foreign type allows the specification of automatic conversion functions between Lisp and an instance of a FLI
type. Its signature is:

:wrapper fli-type &key lisp-to-foreign foreign-to-lisp

Using :wrapper we can wrap Lisp to C and C to Lisp converters around the converters of an existing type:

(fli:define-foreign-type lisp-object-wrapper ()
 "A mechanism for passing a Lisp object handle to C.

2 FLI Types

23

http://www.lispworks.com/documentation/HyperSpec/Body/t_unsgn_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_unsgn_.htm

 Underlying C type is Lint"
 `(:wrapper :int
 :lisp-to-foreign find-index-for-object
 :foreign-to-lisp find-object-from-index))

If the :lisp-to-foreign and :foreign-to-lisp keyword arguments are not specified, no extra conversion is applied to
the underlying foreign type, causing it to behave like a standard :int type.

See the reference entry for :wrapper for more examples.

A second method uses define-foreign-converter, which is specifically designed for the creation of new converter
types (that is, types which wrap extra levels of conversion around existing types). A simple use of
define-foreign-converter is to only wrap extra levels of conversion around existing Lisp to foreign and foreign to Lisp
converters.

(fli:define-foreign-converter lisp-object-wrapper () object
 :foreign-type :int
 :lisp-to-foreign `(find-index-for-object ,object)
;; object will be the Lisp Object
 :foreign-to-lisp `(find-object-from-index ,object)
;; object will be the :int object
 :documentation "Foreign type for converting from Lisp objects to
integers handles to Lisp objects which can then be manipulated in
C. Underlying foreign type : 'C' int")

The definition of lisp-object-wrapper using define-foreign-converter is very similar to the definition using
:wrapper, and indeed the :wrapper type could be defined using define-foreign-converter.

See the reference entry for define-foreign-converter for more information.

2.5 The void type

The FLI provides the :void type for interfacing with the C void type. In accordance with ANSI C, it behaves like an
unsigned char. In practice you will probably want to interface with a C void *, for which you should use the FLI
construction (:pointer :void).

For an example of interfacing to a void **, see 3.5.2 Allocating a pointer to a pointer to a void.

2.6 Summary

In this chapter the various FLI data types have been examined. FLI types perform a translation on data passed between Lisp
objects and C objects, and there are two main sorts of FLI types: immediate and aggregate. Immediate types have a simple
representation in computer memory, and represent objects such as integers, floating point number and bytes. Aggregate types
have a more complicated structure in memory, and consist of structures, arrays, strings, and unions. Parameterized and
encapsulated types were also discussed. Finally, a number of FLI types that perform specific functions, such as the :void
type and the :wrapper type, were examined.

2 FLI Types

24

3 FLI Pointers

Pointers are a central part of the C type system, and because Lisp does not provide them directly, one of the core features of
the FLI is a special pointer type that is used to represent C pointers in Lisp. This chapter discusses how to use FLI pointers by
examining some of the functions and macros which allow you to create and manipulate them.

A FLI pointer is a FLI object containing a memory address and a type specification. The implication is that the pointer points
to an object of the type specified at the memory address, although a pointer can point to a memory location not containing an
allocated FLI object, or an object that was allocated with a different type. Pointers can also point to other pointers, and even
to functions.

3.1 Creating and copying pointers

This section discusses how to create a FLI pointer, how to copy it, and where the memory is actually allocated.

3.1.1 Creating pointers

Many FLI functions when called return a pointer to the object created. For example, a form such as:

(fli:allocate-foreign-object :type :int)

will return something similar to the following:

#<Pointer to type :INT = #x007608A0>

This is a FLI pointer object, pointing to an object at address #x007608A0 of type :int. Note that the memory address is
printed in hexadecimal format, but when you use the FLI pointer functions and macros discussed in this chapter, numeric
values are interpreted as base 10 unless you use Lisp reader syntax such as #x.

To use the pointer in the future it needs to be bound to a Lisp variable. This can be done by using setq.

(setq point1 (fli:allocate-foreign-object :type :int)

A pointer can be explicitly created, rather than being returned during the allocation of memory for a FLI object, by using
make-pointer. In the next example a pointer is made pointing to an :int type at the address 100, and is bound to the Lisp
variable point2.

(setq point2 (fli:make-pointer :address 100 :type :int))

For convenience you may wish to define your own pointer types, for example:

(fli:define-foreign-pointer my-pointer-type :int)

(setq point3
 (fli:make-pointer :address 100
 :pointer-type 'my-pointer-type))

point3 contains the same type and address information as point2.

A pointer which holds the address of a foreign symbol, either one which is defined in foreign code or one that is defined in

25

http://www.lispworks.com/documentation/HyperSpec/Body/s_setq.htm

Lisp using define-foreign-callable, can be created either by make-pointer with :symbol-name or
foreign-function-pointer.

3.1.2 Copying pointers

Suppose the Lisp variable point3 is bound to a FLI pointer as in 3.1.1 Creating pointers. To make a copy of the pointer it
is not sufficient to do the following:

(setq point4 point3)

This simply sets point4 to contain the same pointer object as point3. Thus if the pointer is changed using point3, a
similar change is observed when looking in point4. To create a distinct copy of the pointer object you should use
copy-pointer, which returns a new pointer object with the same address and type as the old one, as the following example
shows.

(setq point5 (fli:copy-pointer point3))

3.1.3 Allocation of FLI memory

Foreign objects do take up memory. If a foreign object is no longer needed, it should be deallocated using
free-foreign-object. This should be done only once for each foreign object, regardless of the number of pointer objects
that contain its address. After freeing a foreign object, any pointers or copies of pointers containing its address will give
unpredictable results if the memory is accessed.

FLI memory is allocated using malloc() so it comes from the C heap.

The FLI pointer object itself is a Lisp object, but the memory it points to does not show up in the output of room. Therefore
you must use Operating System tools to see the virtual address size of the program.

3.2 Pointer testing functions

A number of functions are provided for testing various properties of pointers. The most basic, pointerp, tests whether an
object is a pointer. In the following examples the first expression returns nil, because 7 is a number, and not a pointer. The
second returns t because point4 is a pointer.

(fli:pointerp 7)

(fli:pointerp point4)

The address pointed to by a pointer is obtained using pointer-address. For example, the following expression returns the
address pointed to by point4, which was defined to be 100.

(fli:pointer-address point4)

Pointers which point to address 0 are known as null pointers. Passing the Lisp object nil instead of a pointer results in nil

being treated as a null pointer. The function null-pointer-p tests whether a pointer is a null pointer or not. If the pointer
is a null pointer the value t is returned. We know that point4 points to address 100 and is therefore not a null pointer. As a
result, the following expression returns nil.

(fli:null-pointer-p point4)

Another testing function is pointer-eq which returns t if two pointers point to the same address, and nil if they do not. In

3 FLI Pointers

26

http://www.lispworks.com/documentation/HyperSpec/Body/f_room.htm

the previous section we created point3 by making a copy of point1, and so both point to the same address. Therefore the
following expression returns t.

(fli:pointer-eq point1 point3)

Two functions are provided to return information about the object pointed to by a pointer, pointer-element-type and
pointer-element-size. In practice, it is the pointer which holds the information as to the type of the object at a given
memory location—the memory location itself only contains data in the form of bytes. Recall that point1 was defined in the
previous section as a pointer to an :int. As a result the following two lines of code return 4 (the size of an :int) and :int.

(fli:pointer-element-size point1)

(fli:pointer-element-type point1)

The question of pointer types is discussed further in the next section.

3.3 Pointer dereferencing and coercing

The dereference function returns the value stored at the location held by a pointer, provided the type of the object is an
immediate type and not a structure or an aggregate type. For now, you can consider immediate data types to be the simple
types such as :int, :byte, and :char, and aggregate types to consist of structures defined using :struct. Full details
about types are given in 2 FLI Types, and the use of the dereference function with aggregate types is discussed further in
5 Advanced Uses of the FLI.

The dereference function supports the setf function which can therefore be used to set values at the address pointed to by
the pointer. In the following example an integer is allocated and a pointer to the integer is returned. Then dereference and
setf are used to set the value of the integer to 12. Finally, the value of the integer is returned using dereference.

(setq point5 (fli:allocate-foreign-object :type :int))

(setf (fli:dereference point5) 12)

(fli:dereference point5)

The function dereference has an optional :type keyword which can be used to return the value pointed to by a pointer as
a different type. This is known as coercing a pointer. The default value for :type is the type the pointer is specified as
pointing to. In the next example the value at point5 is returned as a Lisp boolean even thought it was set as an :int.
Because the value at point5 is not 0, it is returned as t.

(fli:dereference point5 :type '(:boolean :int))

Recall that at the end of the previous section the function pointer-element-type was demonstrated. What follows is an
example which uses this function to clarify the issue of pointers and types.

The first action consists of allocating an integer, and setting up a pointer to this integer:

(setq pointer-a (fli:allocate-foreign-object :type :int))

Now we use fli:copy-pointer to make a copy of pointer-a, but with the type of the new pointer changed to be a
:byte. We call this pointer pointer-b.

(setq pointer-b (fli:copy-pointer pointer-a :type :byte))

3 FLI Pointers

27

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

We now have two pointers which point to the same memory location, but one thinks it is pointing to an :int, and the other
thinks it is pointing to a :byte. Test this by using the following two commands:

(fli:pointer-element-type pointer-a)

(fli:pointer-element-type pointer-b)

Similar commands using pointer-element-size show that pointer-a is pointing to an element of size 4, and
pointer-b to an element of size 1.

So far we have seen the use of the :type keyword to specify how to set up or dereference a pointer to obtain values in the
format we want. There is, however, a further level of abstraction in pointer typing which uses the :pointer-type keyword
instead of the :type keyword.

The following two commands produce identical pointers, but one uses the :type keyword, and the other uses the
:pointer-type keyword:

(fli:make-pointer :address 0 :type :int)

(fli:make-pointer :address 0 :pointer-type '(:pointer :int))

In the instance above there is no advantage in using the :pointer-type option. However, :pointer-type can be very
useful when used in combination with a defined type, as the next example shows.

Imagine you are writing a program with many statements creating pointers to a certain type, for example :byte, and this is
done using the :type keyword. If half way through coding the type to be pointed to was changed to a :char, every
individual statement would need to be changed. However, if a general pointer type had been defined at the start and all the
statements had used the :pointer-type keyword to refer to that particular type, only one statement would need to be
changed: the initial definition of the pointer type. The following code illustrates this:

(fli:define-c-typedef my-pointer-type (:pointer :byte))

(fli:make-pointer :address 0 :pointer-type 'my-pointer-type)
...
(fli:make-pointer :address 100 :pointer-type 'my-pointer-type)

The above code consists of a definition of a new pointer type, called my-pointer-type, which points to a :byte.
Following it are one hundred lines of code using my-pointer-type. If you decide that all the pointers made should actually
point to a :char, only the first line needs to be changed, as shown below:

(fli:define-c-typedef my-point-type (:pointer :char))

The program can now be re-compiled. The use of :pointer-type with pointers is thus analogous to the use of constants
instead of absolute numbers in programming.

The function pointer-pointer-type returns the pointer type of a foreign pointer.

3.4 An example of dynamic pointer allocation

When a pointer is created, using make-pointer, or due to the allocation of a foreign object, memory is put aside to store the
details of the pointer. However, if a pointer is only needed within the scope of a particular section of code, there is a FLI
macro, with-coerced-pointer, which can be used to create a temporary pointer which is automatically deallocated at the
end of the code. The next example illustrates the use of this macro.

3 FLI Pointers

28

To start with, we need an object to use the temporary pointer on. The following code allocates ten consecutive integers, and
sets their initial values.

(setf array-obj
 (fli:allocate-foreign-object :type :int
 :nelems 10
 :initial-contents
 '(0 1 2 3 4 5 6 7 8 9)))

When the ten integers are created, allocate-foreign-object returns a pointer to the first one. The next piece of code
uses with-coerced-pointer to create a copy of the pointer, which is then used to print out the contents of the ten integers.
At the end of the printing, the temporary pointer is automatically deallocated.

(fli:with-coerced-pointer (temp) array-obj
 (dotimes (x 10)
 (print (fli:dereference temp))
 (fli:incf-pointer temp)))

The above example also illustrates the use of the incf-pointer, which increases the address stored in a pointer by the size
of the object pointed to. There is a similar function called decf-pointer, which decreases the address held by a pointer in a
similar fashion.

3.5 More examples of allocation and pointer allocation

The functions allocate-dynamic-foreign-object, allocate-foreign-object, alloca, and malloc can take the
keyword arguments :type and :pointer-type. It is important to understand the difference between these two arguments.

The :type argument is used to specify the name of the FLI type to allocate. Once such an object has been allocated a foreign
pointer of type (:pointer type) is returned, which points to the allocated type. Without this pointer it would not be
possible to refer to the object.

The :pointer-type argument is used to specify a FLI pointer type. If it is used then the value pointer-type should be of the
form (:pointer type) or be defined as a FLI pointer type. The function then allocates an object of type type, and a pointer
to the object of type type is returned.

3.5.1 Allocating an integer

To allocate an integer in C:

(int *)malloc(sizeof(int))

You can allocate the integer from LispWorks using the :type argument:

(fli:allocate-foreign-object :type :int)
 => #<Pointer to type :INT = #x007E1A60>

Alternatively you can allocate the integer from LispWorks using the :pointer-type argument:

(fli:allocate-foreign-object
 :pointer-type '(:pointer :int))
 => #<Pointer to type :INT = #x007E1A60>

3 FLI Pointers

29

3.5.2 Allocating a pointer to a pointer to a void

Suppose you need to call a C function that takes a void ** argument, defined as follows:

struct arg_struct
{
int val;
};

void func_handle_init(void **h)
{
 struct arg_struct *handle = NULL;
 handle = (struct arg_struct *)malloc(sizeof(struct arg_struct));
 memset(handle, 0, sizeof(struct arg_struct));
 handle->val = 12;
 *h = handle;
}

With this foreign function definition:

(fli:define-foreign-function
 (func-handle-init "func_handle_init"
 :source)
 ((handle (:pointer (:pointer :void))))
 :result-type :void
 :language :ansi-c)

you could simply do:

(setq handle
 (fli:allocate-foreign-object :type :pointer))

(func-handle-init handle)

but do not forget to also free the pointer:

(fli:free-foreign-object handle)

Another approach is to allocate the pointer on the stack. In this case you do not need to free it explicitly:

(fli:with-dynamic-foreign-objects ((handle :pointer))
 (func-handle-init handle))

Yet another approach is to define the foreign function like this:

(fli:define-foreign-function
 (func-handle-init "func_handle_init"
 :source)
 ((:ignore (:reference-return (:pointer :void))))
 :result-type :void
 :language :ansi-c)

Then call the function like this:

(func-handle-init)

and it will return the handle. This works because the :reference-return type allocates the temporary void ** within
the function and returns its contents.

3 FLI Pointers

30

3.6 Summary

In this chapter the use of FLI pointers was examined. A number of FLI functions useful for copying, creating and testing the
properties of a pointer were presented. The use of the dereference function for obtaining the value pointed to by a pointer
was examined, as was the coercing of a pointer—namely dereferencing a pointer to an object in a manner which returns the
value found there as a different type. Finally, an example of the use of the with-coerced-pointer macro was given to
illustrate the use of temporary pointers for efficient memory management.

In the next chapter some advanced topics of the FLI are examined in greater detail.

3 FLI Pointers

31

4 Defining foreign functions and callables

This chapter discusses how to define foreign functions and callables.

4.1 Foreign callables and foreign functions

The two main macros for interfacing LispWorks with a foreign language are define-foreign-callable which defines
Lisp functions that can be called from the foreign language, and define-foreign-function which defines a short linking
function that can call functions in a foreign language.

In 1 Introduction to the FLI we defined a foreign function for calling the Win32 function SetCursorPos. The code for
this example is repeated here.

(fli:define-foreign-function (set-cursor-position "SetCursorPos")
 ((x :long)
 (y :long))
 :result-type :boolean)

A FLI foreign function calling some C code. is an illustration of set-cursor-position, represented by a square, calling
the C code which constitutes SetCursorPos.

A FLI foreign function calling some C code.

The next diagram, C calling a callable function in Lisp., illustrates a callable function. Whereas a foreign function consists
of a Lisp function name calling some code in C, a callable function consists of Lisp code, represented by an oval in the
diagram, which can be called from C.

C calling a callable function in Lisp.

Callable functions are defined using fli:define-foreign-callable, which takes as its arguments, amongst other
things, the name of the C function that will call Lisp, the arguments for the callable function, and a body of code which
makes up the callable function.

To call a Lisp function from C or C++ you need to define it using fli:define-foreign-callable. Then call
fli:make-pointer with the :symbol-name argument and pass the result to C or C++ as a function pointer.

32

For the purpose of creating a self-contained illustration in Lisp, the following Lisp code defines a foreign callable function
that takes the place of the Windows function SetCursorPos.

(fli:define-foreign-callable ("SetCursorPos"
 :result-type :boolean)
 ((x :long) (y :long))
 (capi:display-message
 "The cursor position can no longer be set"))

Supposing you had the above foreign callable defined in a real application, you would use:

(make-pointer :symbol-name "SetCursorPos")

to create a foreign pointer which you pass to foreign code so that it can call the Lisp definition of SetCursorPos.

A FLI foreign function calling a callable function. illustrates what happens when set-cursor-position is called. The
foreign function set-cursor-position (represented by the square) calls what it believes to be the Windows function
SetCursorPos, but the callable function (represented by the oval), also called SetCursorPos, is called instead. It pops up
a CAPI pane displaying the message "The cursor position can no longer be set".

A FLI foreign function calling a callable function.

For more information on calling foreign code see define-foreign-function.

For more information on defining foreign callable functions see 4.1.1 Strings and foreign callables and
define-foreign-callable.

For information on how to create a LispWorks DLL, see "Creating a dynamic library" in the LispWorks® User Guide and
Reference Manual.

For some complete examples of building a LispWorks DLL, then loading and calling it from foreign code, see "Delivering a
dynamic library" in the Delivery User Guide.

4.1.1 Strings and foreign callables

To interface to a C function which takes a pointer to a string form and puts a string in the memory pointed to by result,
declared like this:

void evalx(const char *form, char *result);

you would define in Lisp:

(fli:define-foreign-function evalx
 ((form (:reference-pass :ef-mb-string))
 (:ignore (:reference-return
 (:ef-mb-string :limit 1000)))))

and call:

4 Defining foreign functions and callables

33

(evalx "(+ 2 3)")
=>
"5"

Now suppose instead that you want your C program to call a similar routine in a LispWorks for Windows DLL named
"evaluator", like this:

{
 typedef void (_stdcall *evalx_func_type)(const char *form, char *result);
 HINSTANCE dll = LoadLibrary("evaluator");
 evalx_func_type evalx = (evalx_func_type) GetProcAddress(dll, "evalx");
 char result[1000];
 evalx("(+ 2 3)", result);
 printf("%s\n", result);
}

You would put this foreign callable in your DLL built with LispWorks:

(fli:define-foreign-callable
 ("evalx" :calling-convention :stdcall)
 ((form (:reference :ef-mb-string
 :lisp-to-foreign-p nil
 :foreign-to-lisp-p t))
 (result (:reference (:ef-mb-string :limit 1000)
 :lisp-to-foreign-p t
 :foreign-to-lisp-p nil)))
 (multiple-value-bind (res err)
 (ignore-errors (read-from-string form))
 (setq result
 (if (not (fixnump err))
 (format nil "Error reading: ~a"
 err)
 (multiple-value-bind (res err)
 (ignore-errors (eval res))
 (if (and (not res) err)
 (format nil "Error evaluating: ~a"
 err)
 (princ-to-string res)))))))

Note: you could use :reference-return and :reference-pass in the foreign callable definition, but we have shown
:reference with explicit lisp-to-foreign-p and foreign-to-lisp-p arguments to emphasise the direction of each conversion.

4.2 Specifying a calling convention.

The FLI macros such as define-foreign-function and define-foreign-callable take a keyword
:calling-convention. Apart from on 32-bit Windows and on the ARM architectures, there is only one calling
convention and in most cases you do not need to specify it.

The common case when you need to specify the calling convention is on 32-bit Windows where the default LispWorks calling
convention is __stdcall. This matches the Win32 API functions, but compilers typically produce __cdecl by default
(which is the same as the non-Windows x86 systems).

ARM (both 32-bit and 64-bit) also has more than one calling convention, but it should be rare (in 32-bit) or extremely rare (in
64-bit) that you need to specify the convention. Note however that, on ARM, failing to specify that a function is variadic (by
the keyword :variadic-num-of-fixed) is more likely to cause crashes than on the other architectures.

4 Defining foreign functions and callables

34

4.2.1 Windows 32-bit calling conventions

The Win32 API functions in 32-bit Windows applications are compiled using the __stdcall calling convention, but
compilers normally use __cdecl by default. Thus if you call functions that are not part of the Win32 API from 32-bit
LispWorks then you need to check the calling convention and in most cases you need to specify it as __cdecl by passing
:calling-convention :cdecl. To specify __stdcall, pass :calling-convention :stdcall, which is the default
so is not really needed.

Note that all the other LispWorks architectures, including 64-bit Windows, interpret both :cdecl and :stdcall to mean the
default.

Since whole libraries are normally compiled with the same calling convention, it is usually convenient to define your own
defining macro that expands to the FLI defining macro and passes it the calling convention. For example, LispWorks itself
uses the following defining macro to define foreign calls to the MySQL library:

(defmacro def-mysql-function (&body x)
 `(dspec:def (def-mysql-function ,(car x))
 (define-foreign-function ,@x
 :module 'mysql-library
 :calling-convention :cdecl)))

4.2.2 ARM 32-bit calling conventions

32-bit ARM systems have two calling conventions: hard float and soft float. These calling conventions are binary
incompatible, and operating systems generally support only one or the other. Currently, Android and iOS are both soft float
but Android is now starting to support hard float code, while ARM Linux distributions are now almost always hard float, but
used to be soft float. Moreover, iOS has a calling convention which is soft, and somewhat different from the Android/old-
Linux soft float, so these are also binary incompatible.

Thus LispWorks supports 3 calling conventions:

Soft float conventions:

iOS The calling convention that is used by iOS.

soft Linux The calling convention that is used by Android, and was used by old Linux systems.

Hard float convention:

hard float The calling convention used by newer Linux systems.

When LispWorks compiles a foreign call or callable function, it (by default) generates "tri-compatible" code that can
interface with either hard float, soft Linux or iOS foreign code. At run time, the code checks an internal flag and uses the
appropriate calling convention. The internal flag is set to the correct value on start-up. The tri-compatible code is needed
only for functions where the calling conventions differ, and when 2 or more of the conventions need the same code
LispWorks avoids duplicating code, while remaining compatible with all 3 conventions.

Because of the tri-compatible code, LispWorks binaries (fasl files) are compatible with all the conventions. The compiled
Lisp code is also compatible with all conventions. However, LispWorks executables (including LispWorks as a shared
library) have a small C program that starts Lisp (the "xstarter"), and this is either hard float, soft Linux or iOS. Therefore, a
LispWorks executable can run only on one calling convention, but the code that LispWorks compiles can run on all of them.

In particular, that means that it is possible to compile and build runtimes for Android and iOS on either soft float or hard float
systems, because the runtime is created using the appropriate xstarter for the target OS.

It is possible to tell LispWorks to compile a foreign call or callable function for only one calling convention, by supplying the
keyword :calling-convention with one of these values:

4 Defining foreign functions and callables

35

:ios iOS.

:hard-float hard float.

:soft-linux soft Linux.

:android Android. Currently that is an alias to :soft-linux.

:soft-float Code that selects between :soft-linux and :ios .

All other values generate tri-compatible code.

You are only required to pass :calling-convention when you use a library with a calling convention that does not match
the calling convention of the OS. That should be rare.

Passing :calling-convention also makes the code smaller and slightly faster, but the difference is unlikely to be
significant.

Note that variadic functions (for example printf and sscanf) are always soft float, which means that when compiling calls
to such functions it is essential to specify that they are variadic (by passing :variadic-num-of-fixed) to ensure that
LispWorks does not try to pass the arguments as hard float.

Compatibility note: in LispWorks 7.0, you had to pass :calling-convention :soft-float for variadic functions. This
still works, but passing :variadic-num-of-fixed is more correct and will make it work properly on other architectures,
(in particular 64-bit ARM).

4.2.3 ARM 64-bit calling conventions

There is a standard calling convention for 64-bit ARM (documented by ARM), but iOS uses a slightly different one.
Therefore, there are effectively two calling conventions: the standard one and iOS.

By default, LispWorks compiles code that selects which convention to use at run time. However, the difference between the
conventions is quite minor and affects only a small number of functions, so the code is the same for most functions. Thus the
overhead is quite small and you will not normally have a reason to pass :calling-convention for 64-bit ARM.

You can use the following values with :calling-convention to tell LispWorks to compile for a specific convention:

:ios Compile only the iOS convention.

:standard Compile only the standard convention.

Other values are treated as the default.

Note that all the keywords used for 32-bit ARM (see 4.2.2 ARM 32-bit calling conventions), with the exception of :ios,
are treated as the default on 64-bit ARM.

4.2.4 Fastcall on 32-bit x86 platforms

On 32-bit x86 platforms, the C compilers have a fastcall calling convention. In Visual C and the GNU C compiler, this it is
specified by the __fastcall qualifier. If you call a foreign function that is compiled as a fastcall, you must specify the
calling convention :fastcall.

On other architectures, the calling convention :fastcall is quietly ignored, and the code produced is the same as would be
produced without it.

The calling convention :fastcall cannot be used in foreign callables (calls from foreign code into LispWorks).

4 Defining foreign functions and callables

36

5 Advanced Uses of the FLI

Note: Some of the examples in this chapter only work for LispWorks for Windows.

This is the final chapter of the user guide section of this manual. It provides a selection of examples which demonstrate some
of the more advanced uses of the FLI.

5.1 Passing a string to a Windows function

The following example shows how to define a Lisp function which calls a Win32 API function to change the title of the active
window. It demonstrates the use of define-foreign-function and with-foreign-string to pass a Lisp string to a
Windows function.

The first step involves defining a FLI type to correspond to the Windows hwnd type, which is the window handle type.

(fli:define-c-typedef fli-hwnd
 (:unsigned :long))

The next step consists of the foreign function definitions. The first foreign function returns the window handle of the active
window, by calling the Windows function GetActiveWindow. It takes no arguments.

(fli:define-foreign-function (get-act-window "GetActiveWindow")
 ()
 :result-type fli-hwnd
 :documentation "Returns the window handle of the active window
 for the current thread. If no active window is
 associated with the current thread then it returns 0.")

The next foreign function uses the Windows function SetWindowText to set the text of the active window titlebar. It takes a
window handle and a pointer to a FLI string as its arguments.

(fli:define-foreign-function (set-win-text "SetWindowText" :dbcs)
 ((hwnd fli-hwnd)
 (lpstring :pointer))
 :result-type :boolean
 :documentation "Sets the text of the window titlebar.")

The foreign function set-win-text returns a boolean to indicate whether it has successfully changed the title bar.

The required FLI data types and foreign functions have been defined. What is now required is a Lisp function which uses
them to change the titlebar of the active window. The next function does this:

(defun set-active-window-text (new-text)
 (let ((active-window (get-act-window))
 (external-format (if (string= (software-type)
 "Windows NT")
 :unicode
 :ascii)))
 (unless (zerop active-window)
 (fli:with-foreign-string (new-ptr element-count byte-count
 :external-format external-format)
 new-text
 (declare (ignore element-count byte-count))

37

 (set-win-text active-window new-ptr)))))

The function set-active-window-text takes a Lisp string as its argument, and does the following:

1. It calls the foreign function get-act-window to set the variable active-window to be the handle of the active
window. If no window is active, this will be zero.

2. The variable external-format is set to be :unicode if the operating system is Windows NT or a later system based
on it (which expects strings to be passed to it in Unicode format), otherwise it is set to be :ascii.

3. If active-window is zero, then there is no active window, and the function terminates, returning nil.

4. If active-window is not zero, then it contains a window handle, and the following happens:

The function uses with-foreign-string to convert the Lisp string argument of the function into a FLI string, and a
pointer to the FLI string is allocated, ready to be handed to the foreign function set-win-text that we defined earlier.
The encoding of the string is external-format, which is the encoding suitable for the operating system running on the
computer. Once the window title has been set, with-foreign-string automatically deallocates the memory that was
allocated for the FLI string and the pointer. The function then terminates, returning t.

You can test that this is what happens by entering the command:

(set-active-window-text "A new title for the active window")

See with-foreign-string, for more details on the use of foreign strings.

5.2 Passing and returning strings

5.2.1 Use of Reference Arguments

Lisp and C cannot in general share memory so the FLI needs to make a copied of strings, either temporarily when passing
them to C or as new Lisp objects when returning them.

5.2.2 Passing a string

Use of the :reference-pass type in this example converts the Lisp string to a foreign string on calling, but does not
convert the string back again on return.

Here is the C code for the example. It uses the argument string but returns an integer.

Windows version:

#include <string.h>
#include <ctype.h>

__declspec(dllexport) int __cdecl count_upper(const char *string)
{
 int count;
 int len;
 int ii;
 count = 0;
 len = strlen(string);
 for (ii = 0; ii < len ; ii++)
 if (isupper(string[ii]))
 count++;
 return count;
}

5 Advanced Uses of the FLI

38

Non-Windows version:

#include <string.h>
#include <ctype.h>

int count_upper(const char *string)
{
 int count;
 int len;
 int ii;
 count = 0;
 len = strlen(string);
 for (ii = 0; ii < len ; ii++)
 if (isupper(string[ii]))
 count++;
 return count;
}

Here is the foreign function definition using :reference-pass:

(fli:define-foreign-function (count-upper "count_upper" :source)
 ((string (:reference-pass :ef-mb-string)))
 :result-type :int
 :language :c
 :calling-convention :cdecl)

(count-upper "ABCdef")
=>
3

5.2.3 Returning a string via a buffer

In this example no Lisp string is needed when calling. The :reference-return type converts a foreign string of lowercase
ASCII characters to a Lisp string on return. Here is the C code for the example.

Windows version:

#include <string.h>
#include <stdlib.h>

__declspec(dllexport) void __cdecl random_string(int length, char *string)
{
 int ii;
 for (ii = 0; ii < length ; ii++)
 string[ii] = 97 + rand() % 26;
 string[length] = 0;
}

Non-Windows version:

#include <string.h>
#include <stdlib.h>

void random_string(int length, char *string)
{
 int ii;
 for (ii = 0; ii < length ; ii++)
 string[ii] = 97 + rand() % 26;
 string[length] = 0;
}

5 Advanced Uses of the FLI

39

In this foreign function definition the :reference-return type must specify a size, since memory is allocated for it before
calling the C function. Note also the use of :lambda-list so that the caller does not have to pass a dummy argument for
the returned string, and :result-type nil corresponding to the void declaration of the C function.

(fli:define-foreign-function (random-string
 "random_string"
 :source)
 ((length :int)
 (return-string (:reference-return
 (:ef-mb-string
 :limit 256))))
 :result-type nil
 :lambda-list (length &aux return-string)
 :calling-convention :cdecl)

(random-string 3)
=>
"uxw"

(random-string 6)
=>
"fnfozv"

5.2.4 Modifying a string in a C function

Here is the C code for the example. On return, the argument string has been modified (the code assumes there is enough
space after the string for the extra characters).

Windows version:

#include <stdio.h>
#include <string.h>

__declspec(dllexport) void __cdecl modify(char *string) {
 char temp[256];
 sprintf(temp, "'%s' modified in a C function", string);
 strcpy(string, temp);
}

Non-Windows version:

#include <stdio.h>
#include <string.h>

void modify(char *string) {
 char temp[256];
 sprintf(temp, "'%s' modified in a C function", string);
 strcpy(string, temp);
}

Here are three approaches to calling modify from Lisp:

1. Use a fixed size buffer in define-foreign-function. This uses the :reference type, which automatically allocates
a temporary foreign object, fills it with data converted from the Lisp object, passes a pointer to C and converts the data in the
foreign object back into a new Lisp object on return. Note that the Lisp object passed to the function is not modified. This is
the neatest way, provided you can bound the size of the result string at compile-time.

(fli:define-foreign-function (dff-modify "modify" :source)
 ((string (:reference (:ef-mb-string :limit 256))))
 :calling-convention :cdecl)

5 Advanced Uses of the FLI

40

(dff-modify "Lisp String")
=>
"'Lisp String' modified in a C function"

2. Use a fixed size buffer from with-dynamic-foreign-objects. In this case, we do most of the conversion explicitly
and define the foreign function as taking a :pointer argument. This is a good approach if you don't know the maximum
length when the function is defined, but will know it at compile-time for each call to the function.

(fli:define-foreign-function (wdfo-modify "modify" :source)
 ((string :pointer))
 :calling-convention :cdecl)

(fli:with-dynamic-foreign-objects
 ((c-string (:ef-mb-string :limit 256)
 :initial-element "Lisp String"))
 (wdfo-modify c-string)
 (fli:convert-from-foreign-string c-string))
=>
"'Lisp String' modified in a C function"

3. With a variable size buffer from allocate-dynamic-foreign-object. In this case, we do all of the conversion
explicitly because we need to make an array of the right size, which is only known after the foreign string has been created
(the extra 100 bytes are to allow for what the C function inserts into the string). Note that, in order to support arbitrary
external formats, the code makes no assumptions about the length of the temporary array being the same as the length of the
Lisp string: it does the conversion first using with-foreign-string, which works out the required number of bytes. The
use of with-dynamic-foreign-objects provides a dynamic scope for call to allocate-dynamic-foreign-object -
on exit, the foreign object will be freed automatically.

(fli:with-foreign-string (temp element-count byte-count)
 "Lisp String"
 (fli:with-dynamic-foreign-objects ()
 (let ((c-string (fli:allocate-dynamic-foreign-object
 :type '(:unsigned :byte)
 :nelems (+ byte-count 100))))
 (fli:replace-foreign-object c-string temp :nelems byte-count)
 (wdfo-modify c-string)
 (fli:convert-from-foreign-string c-string))))

5.2.5 Calling a C function that takes an array of strings

Suppose you have a C function declared like this:

extern "C" void foo(const char** StringArray);

To call this from Lisp you need to first allocate the foreign memory for each piece of data, that is the array itself and each
string. Assuming that foo does not capture any of the pointers, you can give this memory dynamic extent as follows:

(defun convert-to-dynamic-foreign-array (strings)
 (let* ((count (length strings))
 (array
 (fli:allocate-foreign-object
 :nelems (1+ count) ; assume NULL terminated
 :type '(:pointer :char))))
 (dotimes (index count)
 (setf (fli:dereference array :index index)
 (fli:convert-to-dynamic-foreign-string
 (elt strings index))))
 (setf (fli:dereference array :index count) nil)

5 Advanced Uses of the FLI

41

 array))

(fli:define-foreign-function (%foo foo)
 ((string-array (:pointer (:pointer :char)))))

(defun foo (strings)
 (fli:with-dynamic-foreign-objects () ; provide a dynamic scope
 (%foo (convert-to-dynamic-foreign-array strings))))

Here is a similar example converting Lisp strings to **char or *char[] which by default allocates using malloc (the value
:static for the allocation argument):

(defun convert-strings-to-foreign-array (strings &key
 (allocation :static))
 (let* ((count (length strings))
 (array (fli:allocate-foreign-object
 :type '(:pointer (:unsigned :char))
 :nelems (1+ count)
 :initial-element nil
 :allocation allocation)))
 (loop for index from 0
 for string in strings
 do (setf (fli:dereference array :index index)
 (fli:convert-to-foreign-string
 string
 :external-format :utf-8
 :allocation allocation)))
 array))

If you call it frequently, then you will probably want to free the array (and the strings inside it). Alternatively, you can give
the array and its strings dynamic scope if the foreign side does not keep a pointer to the data, like this:

(fli:with-dynamic-foreign-objects ()
 (let ((array (convert-strings-to-foreign-array
 strings :allocation :dynamic)))
 (%foo array)))

5.2.6 Foreign string encodings

The :ef-mb-string type is capable of converting between the internal encoding of LispWorks strings (Unicode) and
various encodings that may be expected by the foreign code. The encoding on the foreign side is specified by the
:external-format argument, which takes an External Format specification.. See the LispWorks® User Guide and
Reference Manual for a more detailed description of external formats.

Consider a variant of the last example where the returned string contains characters beyond the ASCII range.

Windows version:

#include <string.h>
#include <stdlib.h>

__declspec(dllexport) void __cdecl random_string2(int length, char *string)
{
 int ii;
 for (ii = 0; ii < length ; ii++)
 string[ii] = 225 + rand() % 26;
 string[length] = 0;
}

Non-Windows version:

5 Advanced Uses of the FLI

42

#include <string.h>
#include <stdlib.h>

void random_string2(int length, char *string)
{
 int ii;
 for (ii = 0; ii < length ; ii++)
 string[ii] = 225 + rand() % 26;
 string[length] = 0;
}

A foreign function defined like random-string above is inadequate by itself here because the default external format is that
for the default C locale, ASCII. This will signal error when it encounters a non-ASCII character code. There are two
approaches to handling non-ASCII characters.

1. Pass an appropriate external format, in this case it is Latin-1:

(fli:define-foreign-function (random-string2
 "random_string2"
 :source)
 ((length :int)
 (return-string (:reference-return
 (:ef-mb-string
 :limit 256
 :external-format :latin-1))))
 :result-type nil
 :lambda-list (length &aux return-string)
 :calling-convention :cdecl)

(random-string2 3)
=>
"òãö"

(random-string2 6)
=>
"óãøççâ"

2. Set the locale, using set-locale. This sets the C locale and switches the FLI to use an appropriate default wherever an
external-format argument is accepted.

(fli:define-foreign-function (random-string
 "random_string2"
 :source)
 ((length :int)
 (return-string (:reference-return
 (:ef-mb-string
 :limit 256))))
 :result-type nil
 :lambda-list (length &aux return-string)
 :calling-convention :cdecl)

On a Windows system with current Code Page for Western European languages:

(fli:set-locale)
=>
(win32:code-page :id 1252)

On a Non-Windows system with a Latin-1/ISO8859-1 default locale:

(fli:set-locale)
=>
:latin-1

5 Advanced Uses of the FLI

43

After the default external-format has been switched:

(random-string 6)
=>
"ðèñçèõ"

If you do not actually wish to set the C locale, you can call set-locale-encodings which merely switches the FLI to use
the specified external formats where an external-format argument is accepted.

5.2.7 Foreign string line terminators

You can specify the line terminator in foreign string conversions via the :eol-style parameter in the external-format
argument.

By default foreign strings are assumed to have lines terminated according to platform conventions: Linefeed on Non-
Windows systems, and Carriage-Return followed by Linefeed on Windows. That is, eol-style defaults to :lf and :crlf

respectively. This means that unless you take care to specify the external format :eol-style parameter, you may get
unexpected string length when returning a Lisp string.

Consider the following C code example on Windows:

#include <string.h>
#include <stdlib.h>
#include <stdio.h>

__declspec(dllexport) int __cdecl crlf_string(int length, char *string)
{
 int ii;
 int jj;
 for (ii = 0; ii < length ; ii++)
 if (ii % 3 == 1) {
 string[ii] = 10;
 printf("%d\n", ii);
 } else
 if ((ii > 0) && (ii % 3 == 0)) {
 string[ii] = 13;
 printf("%d\n", ii);
 } else
 if (ii % 3 == 2) {
 string[ii] = 97 + rand() % 26 ;
 printf("%d\n", ii);
 }
 string[length] = 0;
 return length;
}

Call this C function from Lisp:

(fli:define-foreign-function (crlf-string
 "crlf_string"
 :source)
 ((length :int)
 (return-string (:reference-return
 (:ef-mb-string
 :limit 256
 :external-format :latin-1))))
 :lambda-list (length &aux return-string)
 :calling-convention :cdecl
 :result-type :int)

(multiple-value-bind (length string)

5 Advanced Uses of the FLI

44

 (crlf-string 99)
 (format t "~&C length ~D, Lisp string length ~D~%"
 length (length string)))
=>
C length 99, Lisp string length 67

Each two character CR LF sequence in the foreign string has been mapped to a single LF character in the Lisp string. If you
want to return a Lisp string and not do line terminator conversion, then you must specify the eol-style as in this example:

(fli:define-foreign-function (crlf-string
 "crlf_string"
 :source)
 ((length :int)
 (return-string (:reference-return
 (:ef-mb-string
 :limit 256
 :external-format (:latin-1 :eol-style :lf)))))
 :lambda-list (length &aux return-string)
 :calling-convention :cdecl
 :result-type :int)

(multiple-value-bind (length string)
 (crlf-string 99)
 (format t "~&C length ~D, Lisp string length ~D~%"
 length (length string)))
=>
C length 99, Lisp string length 99

5.2.8 Win32 API functions that handle strings

Functions in the Win32 API that handle strings come in two flavors, one for ANSI strings and one for Unicode strings.
Supported versions of Microsoft Windows support both flavors. The functions are named with a single letter suffix, an A for
the ANSI functions and a W for the Unicode functions. So for example both CreateFileA and CreateFileW exist. In C,
this is finessed by the use of #define in the header files.

There are three ways to handle this:

• Use the A function explicitly, for example:

(define-foreign-function (create-file "CreateFileA")
 ((lpFileName win32:lpcstr) ...))

This will prevent the use of Unicode strings but this is typically only a problem if you are handling mixed language data.
Be sure to use the correct FLI types win32:str, win32:lpcstr and so on when explicitly interfacing to an ANSI
Win32 function.

• Use the W function explicitly, for example:

(define-foreign-function (create-file "CreateFileW")
 ((lpFileName win32:lpcwstr) ...))

This will allow use of Unicode strings. Be sure to use the correct FLI types win32:wstr, win32:lpcwstr and so on
when explicitly interfacing to a Unicode Win32 function.

• Use encoding :dbcs in define-foreign-function and omit the single letter suffix, for example:

(fli:define-foreign-function (create-file "CreateFile" :dbcs)
 ((lpFileName win32:lpctstr) ...))

5 Advanced Uses of the FLI

45

This will cause it to use the Unicode W function implicitly in supported versions of Windows. (In some older operating
systems such as Windows ME, this mechanism would implicitly use the ANSI A function.)

In all cases, as well as calling the correct function, you must encode/decode any string arguments and results correctly, to
match the A or W in the function name. The foreign types win32:tstr, win32:lpctstr and win32:lptstr automatically
switch between ANSI and Unicode strings and correspond to the typical ones found in the Win32 API. For more information
about these foreign types, see their manual pages in the LispWorks® User Guide and Reference Manual.

5.2.9 Mapping nil to a Null Pointer

If you wish a string argument to accept nil and pass it as a null pointer, or to return a null pointer as Lisp value nil, use the
:allow-null argument to the :reference types.

The C function strcap in the following example modifies a string, but also accepts and returns a null pointer if passed.

Windows version:

#include <string.h>
#include <ctype.h>

__declspec(dllexport) void __cdecl strcap(char *string)
{
 int len;
 int ii;
 if (string) {
 len = strlen(string);
 if (len > 0) {
 for (ii = len - 1; ii > 0; ii--)
 if (isupper(string[ii]))
 string[ii] = tolower(string[ii]);
 if (islower(string[0]))
 string[0] = toupper(string[0]);
 }
 }
}

Non-Windows version:

#include <string.h>
#include <ctype.h>

void strcap(char *string)
{
 int len;
 int ii;
 if (string) {
 len = strlen(string);
 if (len > 0) {
 for (ii = len - 1; ii > 0; ii--)
 if (isupper(string[ii]))
 string[ii] = tolower(string[ii]);
 if (islower(string[0]))
 string[0] = toupper(string[0]);
 }
 }
}

With this following foreign function definition:

(fli:define-foreign-function (strcap "strcap" :source)
 ((string (:reference :ef-mb-string)))

5 Advanced Uses of the FLI

46

 :language
 :c
 :calling-convention
 :cdecl)

(strcap "abC")
=>
"Abc"

However (strcap nil) signals error because the :ef-mb-string type expects a string.

Using :allow-null allows nil to be passed:

(fli:define-foreign-function (strcap "strcap" :source)
 ((string (:reference :ef-mb-string :allow-null t)))
 :language
 :c
 :calling-convention
 :cdecl)

(strcap nil)
=>
nil

Note that with-foreign-string, convert-to-foreign-string and convert-from-foreign-string also accept
an :allow-null argument. So another way to call strcap and allow the null pointer is:

(fli:define-foreign-function (strcap "strcap" :source)
 ((string :pointer))
 :language
 :c
 :calling-convention
 :cdecl)

(defun c-string-capitalize (string)
 (fli:with-foreign-string (ptr elts bytes :allow-null t)
 string
 (declare (ignore elts bytes))
 (strcap ptr)
 (fli:convert-from-foreign-string ptr :allow-null t)))

(c-string-capitalize "abC")
=>
"Abc"

(c-string-capitalize nil)
=>
nil

5.3 Lisp integers

Lisp integers cannot be used directly in the FLI unless they are known to be of certain sizes that match foreign types such as
:int.

However, the FLI provides a mechanism to convert any Lisp integer into a foreign array of bytes and to convert that array
back to an equivalent Lisp integer. This would allow the integer to be stored in an database for example and then retrieved
later.

The macro with-integer-bytes and the function convert-integer-to-dynamic-foreign-object generates the
array of bytes and also to determine its length. The function make-integer-from-bytes converts the foreign array back

5 Advanced Uses of the FLI

47

to an integer. The layout of the bytes is unspecified, so these operations must be used for all such conversions.

5.4 Defining new types

The FLI provides the define-foreign-type macro for defining new FLI types, using the basic FLI types that you have
seen in 2 FLI Types. The next example shows you how to define a new array type that only takes an odd number of
dimensions.

(fli:define-foreign-type odd-array (element &rest dimensions)
 (unless (oddp (length dimensions))
 (error "Can't define an odd array with even dimensions - try
adding an extra dimension!"))
 `(:c-array ,element ,@dimensions))

The new array type is called odd-array, and takes a FLI type and a sequence of numbers as its arguments. When trying to
allocate an odd-array, if there are an even number of items in the sequence then an error is raised. If there are an odd
number of items then an instance of the array is allocated. The next command raises an error, because a 2 by 3 array has an
even dimension.

(fli:allocate-foreign-object :type '(odd-array :int 2 3))

However, adding an extra dimension and defining a 2 by 3 by 4 array works:

(fli:allocate-foreign-object :type '(odd-array :int 2 3 4))

For more information on defining types see define-foreign-type.

5.5 Using DLLs within the LispWorks FLI

In order to use functions defined in a dynamically linked library (DLL) within the LispWorks FLI, the functions need to be
exported from the DLL.

5.5.1 Using C DLLs

You can export C functions in three ways:

1. Use a __declspec(dllexport) declaration in the C file.

In this case you should also make the functions use the cdecl calling convention, which removes another level of name
mangling.

2. Use an /export directive in the link command.

3. Use a .def file.

An example of method 2 follows. Let us assume you have the following C code in a file called example.c.

int multiply (int i1, int i2)
 { int result;
 result = i1 * i2 * 500;
 return result;
 }

Then you can create a DLL by, for example, using a 32 bit C compiler such as cl.exe.

5 Advanced Uses of the FLI

48

cl /LD example.c /link /export:multiply

Finally, you should use the LispWorks FLI to define your C function in your Lisp code. This definition should look
something like:

(fli:define-foreign-function (multiply "multiply")
 ((x :int)
 (y :int))
 :result-type :int
 :module :my-dll
 :calling-convention :cdecl)

Note that the define-foreign-function also includes a :calling-convention keyword to specify that the function
we are interfacing to is defined as using the __cdecl calling convention (the default for cl.exe).

5.5.1.1 Testing whether a function is defined

Having loaded your DLLs (with register-module) you may wish to test whether certain functions are now available.

To detect when a C function name is defined, call:

(not (fli:null-pointer-p
 (fli:make-pointer :symbol-name name
 :errorp nil)))

You can also return a list of unresolved foreign symbol names by calling module-unresolved-symbols.

5.5.2 Using C++ DLLs

You must make the exported names match the FLI definitions. To do this:

• If you can alter the C++ code, wrap extern "C" {} around the C++ function definitions, or:

• Create a second DLL with C functions that wrap around each C++ function, and make those C functions accessible as
described in 5.5.1 Using C DLLs.

Note: watch out for the calling convention of the exported function, which must match the :calling-convention in the
FLI definitions.

5.6 Incorporating a foreign module into a LispWorks image

Embedded dynamic modules are dynamically loaded foreign modules which are embedded (that is, the data is stored inside
the LispWorks image). They can then be used at run time.

The formats supported include DLL on Windows, dylib on macOS, and shared object or shared library on other platforms.
See 1.1.2 Loading foreign code for details of the types of modules supported.

You use an embedded dynamic module when you want to integrate foreign code, and that foreign code is not expected to be
available on the end-user's computer. In principle this could also be achieved by supplying the foreign module as a separate
file together with the Lisp image, locating it at run time and loading it with register-module. The embedded dynamic
modules mechanism simplifies this.

The main interface is get-embedded-module, which is called at load time to "intern" the module, and
install-embedded-module which needs to be called at run time to make the foreign code available. It is possible to
incorporate in a fasl file by using get-embedded-module-data and setup-embedded-module instead of
get-embedded-module.

5 Advanced Uses of the FLI

49

Another way to "intern" the module is to define a lw:defsystem system containing a C source file member with the
:embedded-module keyword. When the system is loaded, the value associated with :embedded-module is used to create
the embedded module. You would then call install-embedded-module at run time to make the foreign code available.

5.7 Block objects in C (foreign blocks)

This section applies to LispWorks for Macintosh, only.

Foreign blocks are objects that correspond to the opaque "Block" object in C and derived languages that are introduced in
CLANG and used by Apple Computer, Inc.

A "Block" in C is similar to a closure in Lisp. It encapsulates a piece of code, and potentially some variables (which may be
local), and allows invocation of this code.

LispWorks foreign blocks allows your Lisp program to call into and get called by code that uses blocks.

A foreign block is represented in LispWorks by a foreign pointer with pointer type foreign-block-pointer. Even though
these are foreign pointers, these objects should be regarded as opaque, and should not be manipulated or used except as
described below.

You use a foreign block by passing it to a foreign function that is defined to take a block as an argument, or by invoking a
block that is received from a foreign function. The argument type needs to be specified as foreign-block-pointer.

When a foreign function invokes a block which was created in Lisp (or a copy of it), this invocation calls a Lisp function
which the programmer supplied to the creating function or macro. When Lisp invokes a block that came from foreign code, it
invokes some (unknown) foreign code.

Blocks can be used to run code via the Grand Central Dispatch mechanism (GCD) in macOS (see Apple documentation).
There is a simple example in:

(example-edit-file "fli/grand-central-dispatch")

5.7.1 Calling foreign code that receives a block as argument

To call foreign code that needs a block as an argument, the Lisp program needs to create the blocks. You do this in two steps:

1. At load time, define a "type" by using the macro define-foreign-block-callable-type. This "type" corresponds
to the "signature" in C.

2. At run time, generate the block, for example by calling allocate-foreign-block with the "type". Alternatively use
one of the macros with-foreign-block and with-local-foreign-block. When generating the block, you also
pass an arbitrary Lisp function that gets called when the block (or a copy of it) is invoked.

Foreign blocks created by allocate-foreign-block are released when appropriate by free-foreign-block.

Foreign block pointers created by allocate-foreign-block are of type foreign-block-pointer and print with
"lisp-foreign-block-pointer".

For examples see:

(example-edit-file "fli/foreign-blocks")

and:

(example-edit-file "fli/grand-central-dispatch")

5 Advanced Uses of the FLI

50

5.7.2 Operations on foreign blocks

You might obtain a foreign pointer of type foreign-block-pointer that was passed as an argument to another foreign
block, to a callable defined by define-foreign-callable or returned by a foreign function.

The foreign block can be invoked by defining an invoker (at load time) using define-foreign-block-invoker, and
calling the invoker. If you need to keep the block after returning to the caller, you normally need to copy it by
foreign-block-copy. If you copy a block, once you are finished with it, you should release it by
foreign-block-release.

For examples of this see:

(example-edit-file "fli/invoke-foreign-block")

5.7.3 Scope of invocation

In principle, in the general case each of these is not defined:

• The time at which the code that the block encapsulates is invoked. In particular, even after a block is released (freed), the
same code may be invoked by a copy of the block.

• In which thread the code is invoked.

• How many invocations can occur in parallel. In other words, whether it is invoked serially or concurrently.

The implementation of foreign blocks copes with all of these, that is it can work concurrently on any thread and after the
block was released/freed, as long as there are live copies of it (except with blocks created by
with-local-foreign-block). However, whether the code inside the block can cope with it is dependent on the code.
This needs to be considered when creating blocks.

Specific foreign functions that take blocks as argument should be documented to state the scope of invocation. Apple's
documentation commonly states whether the code is invoked concurrently or serially. In some functions the caller can decide
when it calls the function whether the code can be executed concurrently or not. If you pass the block to a function that is
documented to execute it serially, or you can tell it to do it, then you can assume that function that you made the block with is
not going to be called concurrently from the block. Otherwise it must be able to cope with concurrent calls from the blocks.

Whether the code may be invoked on another thread or after the function that took the block returned is not normally
documented. In many cases it can be deduced with confidence: when you dispatch a block to a queue (for example
dispatch_after and similar functions, see the Apple documentation) it clearly can be invoked from another threads after
the function returns. In the case of qsort_b (see Apple documentation and the example in
(example-edit-file "fli/foreign-blocks")) we can be sure that the code will not be invoked after qsort_b
returned, because the arguments to the block are based on the data (first argument to qsort_b), and qsort_b and its callees
cannot be guaranteed that the data is still valid once qsort_b returned. On the other hand, we cannot be sure that the block
is not invoked on another thread(s) before qsort_b returns. Currently it is probably always called in the same thread where
qsort_b was called, but the interface does not guarantee it.

Thus when you create a foreign block in Lisp, the following considerations apply to the Lisp function function that you
supply:

• In most cases, function needs to cope with being called in any thread, and hence cannot rely on the dynamic
environment. Normally it is impossible to deduce that function will not be called on another thread, so it can be
guaranteed only when the function to which the block is passed is documented to guarantee it.

Note: that is the only situation in which it is really valid to use with-local-foreign-block.

5 Advanced Uses of the FLI

51

• function may need to be able to cope with being called at any time, unless it is documented or deducible from the
interface that it can be called only within the scope of the caller. It may be possible to deduce the time limit on a call
from the way the block is used.

• The function needs to be able to cope with being called concurrently, unless the documentation of the user of the blocks
says that it does not, or you can tell that it is going to be called only on one thread.

5.8 Interfacing to graphics functions

This section applies to LispWorks for Windows, only.

If you use graphics functionality via the FLI on Microsoft Windows be aware that you may need to call the function
gp:ensure-gdiplus. See the CAPI User Guide and Reference Manual for a detailed explanation.

This condition does not apply on non-Windows platforms.

5.9 Summary

In this chapter a number of more advanced examples have been presented to illustrate various features of the FLI. The use of
the FLI to pass strings dynamically to Win32 API functions was examined, as was the definition of new FLI types and the use
of callable functions and foreign functions, including code using blocks.

The next two chapters form the reference section of this manual. They provide reference entries for the functions, macros,
and types which make up the FLI.

5 Advanced Uses of the FLI

52

6 Self-contained examples

This chapter enumerates the set of examples in the LispWorks library relevant to the content of this manual. Each example
file contains complete, self-contained code and detailed comments, which include one or more entry points near the start of
the file which you can run to start the program.

To run the example code:

1. Open the file in the Editor tool in the LispWorks IDE. Evaluating the call to example-edit-file shown below will
achieve this.

2. Compile the example code, by Ctrl+Shift+B.

3. Place the cursor at the end of the entry point form and press Ctrl+X Ctrl+E to run it.

4. Read the comment at the top of the file, which may contain further instructions on how to interact with the example.

6.1 Foreign block examples

This section lists the examples illustrating the use of foreign blocks, which is described in 5.7 Block objects in C (foreign
blocks).

These examples apply to LispWorks for Macintosh only:

(example-edit-file "fli/foreign-blocks")

(example-edit-file "fli/grand-central-dispatch")

(example-edit-file "fli/invoke-foreign-block")

6.2 Miscellaneous examples

(example-edit-file "fli/foreign-callable-example")

53

7 Function, Macro and Variable Reference

align-of Function

Summary

Returns the alignment in bytes of a foreign type.

Package

fli

Signature

align-of type-name => alignment

Arguments

type-name⇓ A foreign type whose alignment is to be determined.

Values

alignment The alignment of the foreign type type-name in bytes.

Description

The function align-of returns the alignment in bytes of the foreign language type named by type-name.

Examples

The following example shows types with various alignments.

(fli:align-of :char)
=>
1

(fli:align-of :int)
=>
4

(fli:align-of :double)
=>
8

(fli:align-of :pointer)
=>
4

54

See also

allocate-foreign-object
free-foreign-object

allocate-dynamic-foreign-object
alloca Functions

Summary

Allocates memory for an instance of a foreign object within the scope of a with-dynamic-foreign-objects macro.

Package

fli

Signatures

allocate-dynamic-foreign-object &key type pointer-type initial-element initial-contents fill nelems size-slot =>
pointer

alloca &key type pointer-type initial-element initial-contents fill nelems size-slot => pointer

Arguments

type⇓ A FLI type specifying the type of the object to be allocated. If type is supplied, pointer-
type must not be supplied.

pointer-type⇓ A FLI pointer type specifying the type of the pointer object to be allocated. If pointer-type
is supplied, type must not be supplied.

initial-element⇓ The initial value of the newly allocated objects.

initial-contents⇓ A list of values to initialize the contents of the newly allocated objects.

fill⇓ An integer between 0 to 255.

nelems⇓ An integer specifying how many copies of the object should be allocated. The default
value is 1.

size-slot⇓ A symbol naming a slot in the object.

Values

pointer A pointer to the specified type or pointer-type.

Description

The function allocate-dynamic-foreign-object allocates memory for a new instance of an object of type type or an
instance of a pointer object of type pointer-type within the scope of the body of the macro
with-dynamic-foreign-objects.

initial-element, initial-contents, fill, nelems and size-slot initialize the allocated instance as if by
allocate-foreign-object.

Once this macro has executed, the memory allocated using allocate-dynamic-foreign-object is therefore
automatically freed for other uses.

7 Function, Macro and Variable Reference

55

The function alloca is a synonym for allocate-dynamic-foreign-object.

Examples

A full example using with-dynamic-foreign-objects and allocate-dynamic-foreign-object is given in 1.4 An
example of dynamic memory allocation.

See also

allocate-foreign-object
with-dynamic-foreign-objects
1.4 An example of dynamic memory allocation
3.5 More examples of allocation and pointer allocation
5.2.4 Modifying a string in a C function

allocate-foreign-block Function

Summary

Allocates a foreign block, in LispWorks for Macintosh.

Package

fli

Signature

allocate-foreign-block type function &rest extra-arguments => foreign-block

Arguments

type⇓ A symbol.

function⇓ A Lisp function.

extra-arguments⇓ Arguments.

Values

foreign-block A Lisp-allocated foreign-block-pointer.

Description

The function allocate-foreign-block allocates a foreign block of type type such that when the foreign block is is
invoked it calls the function function with the arguments given to the block followed by extra-arguments (if any).

type is a symbol which must have been defined as a type using define-foreign-block-callable-type.

function is any Lisp function, but see the 5.7.3 Scope of invocation for potential limitations.

The resulting foreign block lives indefinitely, until it is freed by free-foreign-block, and can be used repeatedly and
concurrently. It cannot be garbage collected, so if your program repeatedly allocates foreign blocks, you need to free them by
calls to free-foreign-block. The macro with-foreign-block does this for you.

extra-arguments allows you to (roughly speaking) "close over" some values to the function, but they are read-only. If the

7 Function, Macro and Variable Reference

56

function needs to set values, you can either pass some objects and set slots inside them, or make the function a real Lisp
closure.

Notes

The result of allocate-foreign-block prints with "lisp-foreign-block-pointer".

allocate-foreign-block is implemented in LispWorks for Macintosh only.

See also

define-foreign-block-callable-type
free-foreign-block
with-foreign-block
5.7 Block objects in C (foreign blocks)

allocate-foreign-object
malloc Functions

Summary

Allocates memory for an instance of a foreign object.

Package

fli

Signatures

allocate-foreign-object &key type pointer-type initial-element initial-contents fill nelems size-slot allocation =>
pointer

malloc &key type pointer-type initial-element initial-contents fill nelems size-slot allocation => pointer

Arguments

type⇓ A FLI type specifying the type of the object to be allocated. If type is supplied, pointer-
type must not be supplied.

pointer-type⇓ A FLI pointer type specifying the type of the pointer object to be allocated. If pointer-type
is supplied, type must not be supplied.

initial-element⇓ The initial value of the newly allocated objects.

initial-contents⇓ A list of values to initialize the contents of the newly allocated objects.

fill⇓ An integer between 0 to 255.

nelems⇓ An integer specifying how many copies of the object should be allocated. The default
value is 1.

size-slot⇓ A symbol naming a slot in the object.

allocation⇓ A keyword, either :dynamic or :static.

7 Function, Macro and Variable Reference

57

Values

pointer⇓ A pointer to the specified type or pointer-type.

Description

The function allocate-foreign-object allocates memory for a new instance of an object of type type or an instance of a
pointer object of type pointer-type.

If allocation is :static then memory is allocated in the C heap and must be explicitly freed using free-foreign-object

once the object is no longer needed.

If allocation is :dynamic, then allocate-foreign-object allocates memory for the object and pointer within the scope
of the body of with-dynamic-foreign-objects. This is equivalent to using allocate-dynamic-foreign-object.

The default value of allocation is :static.

An integer value of fill initializes all the bytes of the object. If fill is not supplied, the object is not initialized unless initial-
element or initial-contents is passed.

If initial-contents is supplied and its length is less than nelems, then the remaining elements are not initialized.

If initial-contents is supplied and its length is greater than nelems, then the length of initial-contents overrides nelems. This is
a common case where initial-contents is supplied and nelems is omitted (and hence defaults to 1).

size-slot can be used to initialize a slot in a struct or union type to the size of the object in bytes. If size-slot is supplied then it
must be the name of a slot in that type. The slot named by size-slot is set to the size of the object in bytes. This occurs after
fill, initial-element and initial-contents are processed. If nelems is greater than 1, then the slot named by size-slot is initialized
in each element. If size-slot is not supplied, then no such setting occurs.

The function malloc is a synonym for allocate-foreign-object.

Notes

When allocation is :static, memory allocated by allocate-foreign-object is in the C heap. Therefore pointer (and
any copy) cannot be used after save-image or deliver.

Examples

In the following example a structure is defined and an instance with a specified initial value of 10 is created with memory
allocated using allocate-foreign-object. The dereference function is then used to get the value that point points
to, and finally it is freed.

(fli:define-c-typedef LONG :long)

(setq point (fli:allocate-foreign-object
 :type 'LONG
 :initial-element 10))

(fli:dereference point)

(fli:free-foreign-object point)

See also

allocate-dynamic-foreign-object

7 Function, Macro and Variable Reference

58

free-foreign-object
3 FLI Pointers

cast-integer Function

Summary

Casts an integer to a given type.

Package

fli

Signature

cast-integer integer type => result

Arguments

integer⇓ A Lisp integer.

type⇓ A foreign type.

Values

result A Lisp integer.

Description

The function cast-integer casts the integer integer to the foreign type type.

type must be a FLI integer type, either primitive or derived.

Examples

(format nil "~B"
 (fli:cast-integer -1 '(:unsigned :int)))
=>
"11111111111111111111111111111111"

See also

:signed
:unsigned

connected-module-pathname Function

Summary

Returns the real pathname of a connected module.

7 Function, Macro and Variable Reference

59

Package

fli

Signature

connected-module-pathname name => pathname

Arguments

name⇓ A string or symbol.

Values

pathname A pathname or nil.

Description

The function connected-module-pathname returns the real pathname of the connected module registered with name
name.

If no module name is registered, or if the module name is not connected, then connected-module-pathname returns nil.

Examples

(fli:connected-module-pathname "gdi32")
=>
#P"C:/WINNT/system32/GDI32.dll"

(fli:register-module :user-dll
 :real-name "user32"
 :connection-style :immediate)
=>
:user-dll

(fli:connected-module-pathname :user-dll)
=>
#P"C:/WINNT/system32/USER32.dll"

(fli:disconnect-module :user-dll)
=>
t

(fli:connected-module-pathname :user-dll)
=>
nil

See also

disconnect-module
register-module

7 Function, Macro and Variable Reference

60

convert-from-foreign-string Function

Summary

Converts a foreign string to a Lisp string.

Package

fli

Signature

convert-from-foreign-string pointer &key external-format length null-terminated-p allow-null => string

Arguments

pointer⇓ A pointer to a foreign string.

external-format⇓ An external format specification.

length⇓ The length of the string to convert.

null-terminated-p⇓ If t, it is assumed the string terminates with a null character. The default value for null-
terminated-p is t.

allow-null⇓ A boolean. The default is false.

Values

string A Lisp string, or nil.

Description

The function convert-from-foreign-string, given a pointer to a foreign string, converts the foreign string to a Lisp
string. The pointer does not need to be of the correct type, as it will automatically be coerced to the correct type as specified
by external-format.

external-format is interpreted as by with-foreign-string. The names of available external formats are listed in section
26.6 External Formats to translate Lisp characters from/to external encodings in the LispWorks® User Guide and Reference
Manual.

Either length or null-terminated-p must be non-nil. If null-terminated-p is true and length is not specified, it is assumed that
the foreign string to be converted is terminated with a null character.

If allow-null is true and pointer is a null pointer then nil is returned. Otherwise, an error is signalled if pointer is a null
pointer.

See also

convert-to-foreign-string
set-locale
set-locale-encodings
with-foreign-string
26.6 External Formats to translate Lisp characters from/to external encodings in the LispWorks® User Guide and Reference
Manual

7 Function, Macro and Variable Reference

61

5.2.4 Modifying a string in a C function
5.2.9 Mapping nil to a Null Pointer

convert-integer-to-dynamic-foreign-object Function

Summary

Converts a Lisp integer to foreign bytes.

Package

fli

Signature

convert-integer-to-dynamic-foreign-object integer => pointer, length

Arguments

integer⇓ An integer.

Values

pointer⇓ A foreign pointer.

length⇓ An integer.

Description

The function convert-integer-to-dynamic-foreign-object makes a dynamic foreign object containing the bytes of
integer and returns pointer pointing to the first byte of that object and length which is the number of bytes in that object. The
layout of the bytes is unspecified, but the bytes and the length are sufficient to reconstruct integer by calling
make-integer-from-bytes.

See also

5.3 Lisp integers
with-integer-bytes
make-integer-from-bytes

convert-to-dynamic-foreign-string Function

Summary

Converts a Lisp string to a foreign string within the scope of the body of a with-dynamic-foreign-objects macro.

Package

fli

7 Function, Macro and Variable Reference

62

Signature

convert-to-dynamic-foreign-string string &key external-format null-terminated-p allow-null => pointer, length,
byte-count

Arguments

string⇓ A Lisp string.

external-format⇓ An external format specification.

null-terminated-p⇓ If t, the foreign string terminates with a null character. The default value is t.

allow-null⇓ A boolean. The default is nil.

Values

pointer⇓ A FLI pointer to the foreign string.

length The length of the string (including the terminating null character if there is one).

byte-count The number of bytes in the converted string.

Description

The function convert-to-dynamic-foreign-string converts a Lisp string to a foreign string, and returns a pointer to
the string and the length of the string. The memory allocation for the string and pointer is within the scope of the body of a
with-dynamic-foreign-objects command.

external-format is interpreted as by with-foreign-string. The names of available external formats are listed in section
26.6 External Formats to translate Lisp characters from/to external encodings in the LispWorks® User Guide and Reference
Manual.

null-terminated-p specifies whether the foreign string is terminated with a null character. It defaults to t.

If allow-null is non-nil and string is nil then a null pointer pointer is returned. Otherwise, an error is signalled if string is
nil.

See also

allocate-dynamic-foreign-object
convert-from-foreign-string
convert-to-foreign-string
set-locale
set-locale-encodings
with-dynamic-foreign-objects
with-foreign-string
26.6 External Formats to translate Lisp characters from/to external encodings in the LispWorks® User Guide and Reference
Manual
5.2.5 Calling a C function that takes an array of strings

7 Function, Macro and Variable Reference

63

convert-to-foreign-string Function

Summary

Converts a Lisp string to a foreign string.

Package

fli

Signature

convert-to-foreign-string string &key external-format null-terminated-p allow-null into limit allocation => pointer,
length, byte-count

Arguments

string⇓ A Lisp string.

external-format⇓ An external format specification.

null-terminated-p⇓ If t, the foreign string terminates with a null character. The default value is t.

allow-null⇓ A boolean. The default is nil.

into⇓ A foreign array, a foreign pointer or nil. The default is nil.

limit⇓ A non-negative fixnum, or nil. The default is nil.

allocation⇓ A keyword, either :dynamic or :static. The default is :static.

Values

pointer⇓ A FLI pointer to the foreign string.

length⇓ The length of the foreign string (including the terminating null character if there is one).

byte-count⇓ The number of bytes in the foreign string.

Description

The function convert-to-foreign-string converts a Lisp string to a foreign string, and returns a pointer to the string.

external-format is interpreted as by with-foreign-string. The names of available external formats are listed in section
26.6 External Formats to translate Lisp characters from/to external encodings in the LispWorks® User Guide and Reference
Manual.

null-terminated-p specifies whether the foreign string is terminated with a null character. It defaults to t.

If allow-null is non-nil and string is nil then a null pointer pointer is returned. Otherwise, an error is signalled if string is
nil.

If into is nil, then a new foreign string is allocated according to allocation, and limit is ignored.

If into is a FLI pointer to a integer type, then limit must be a fixnum and up to limit elements are filled with elements
converted from the characters of string. The size of the integer type must equal the foreign size of external-format.

7 Function, Macro and Variable Reference

64

If into is a FLI array of integers or a pointer to a FLI array of integers, up to limit elements are filled with elements converted
from the characters of string. If limit is nil, then the dimensions of the array are used. The size of the array element type
must equal the foreign size of external-format.

If allocation is :dynamic, then convert-to-foreign-string allocates memory for the string and pointer within the
scope of the body of with-dynamic-foreign-objects and additional values, length and byte-count are returned. This is
equivalent to using convert-to-dynamic-foreign-string. Otherwise, the allocation is static and length and byte-count
are not returned.

See also

convert-from-foreign-string
set-locale
set-locale-encodings
with-foreign-string
26.6 External Formats to translate Lisp characters from/to external encodings in the LispWorks® User Guide and Reference
Manual
5.2.5 Calling a C function that takes an array of strings

copy-pointer Function

Summary

Returns a copy of a pointer object.

Package

fli

Signature

copy-pointer pointer &key type pointer-type => copy

Arguments

pointer⇓ A pointer to copy.

type⇓ A FLI type descriptor.

pointer-type⇓ A FLI pointer type descriptor.

Values

copy⇓ A copy of pointer.

Description

The function copy-pointer returns a copy of pointer.

If type is supplied, then it is used as the FLI type that copy points to. Alternatively, if pointer-type is supplied, then it must be
a FLI pointer type and it is used as the pointer type of copy. If neither type nor pointer-type are supplied then the type of
copy is the same as pointer. An error is signalled if both type and pointer-type are supplied.

7 Function, Macro and Variable Reference

65

Examples

In the following example a pointer point1 is created, pointing to a :char type. The variable point2 is set equal to point1

using setq, whereas point3 is set using copy-pointer. When point1 is changed using incf-pointer, point2
changes as well, but point3 remains the same.

(setq point1 (fli:allocate-foreign-object
 :type :char))

(setq point2 point1)

(setq point3 (fli:copy-pointer point1))

(fli:incf-pointer point1)

The results of this can be seen by evaluating point1, point2, and point3.

The reason for this behavior is that point1 and point2 are Lisp variables containing the same foreign pointer object, a
pointer to a char, whereas point3 contains a copy of the foreign pointer object.

See also

make-pointer
with-coerced-pointer
3.1.2 Copying pointers

decf-pointer Function

Summary

Decreases the address held by a pointer.

Package

fli

Signature

decf-pointer pointer &optional delta => pointer

Arguments

pointer⇓ A FLI pointer.

delta⇓ An integer. The default is 1.

Values

pointer The pointer passed.

Description

The function decf-pointer decreases the address held by pointer. If delta is not given the address is decreased by the size

7 Function, Macro and Variable Reference

66

http://www.lispworks.com/documentation/HyperSpec/Body/s_setq.htm

of the type pointed to by pointer. The address can be decreased by a multiple of the size of the type by specifying a value for
delta. If the size of the type is 0 then an error is signalled.

The function decf-pointer is often used to move a pointer through an array of values.

Examples

In the following example an array with 10 entries is defined. A copy of the pointer to the array is made, and is incremented
and decremented.

(setq array-obj
 (fli:allocate-foreign-object :type :int
 :nelems 10
 :initial-contents '(0 1 2 3 4 5 6 7 8 9)))

(setq point1 (fli:copy-pointer array-obj))

(dotimes (x 9)
 (print (fli:dereference point1))
 (fli:incf-pointer point1))

(dotimes (x 9)
 (fli:decf-pointer point1)
 (print (fli:dereference point1)))

See also

incf-pointer
3.4 An example of dynamic pointer allocation

define-c-enum Macro

Summary

Defines a FLI enumerator type specifier corresponding to the C enum type.

Package

fli

Signature

define-c-enum name-and-options &rest enumerator-list => list

name-and-options ::= name | (name option*)

option ::= (:foreign-name foreign-name) | (:forward-reference-p forward-reference-p)

enumerator-list ::= {entry-name | (entry-name entry-value)}*

Arguments

enumerator-list⇓ Symbols, possibly with integer values, constituting the enumerator type.

name⇓ A symbol naming the new enumeration type specifier.

foreign-name⇓ A string specifying the foreign name of the type.

7 Function, Macro and Variable Reference

67

forward-reference-p⇓ A boolean.

entry-name⇓ A symbol.

entry-value⇓ An integer value for an entry-name.

Values

list The list (:enum name).

Description

The macro define-c-enum is used to define a FLI enumerator type specifier, which corresponds to the C enum type. It is a
convenience function, as an enumerator type could also be defined using define-foreign-type.

The FLI type specifier is named by name, with optional foreign name foreign-name.

Each entry in enumerator-list can either consist of a symbol entry-name, in which case the first entry has an integer value of
0, or of a list of a symbol entry-name and its corresponding integer value entry-value.

When forward-reference-p is true, the new type specifier is defined as a forward reference type and descriptions can be
empty. See define-foreign-forward-reference-type.

Examples

In the following example a FLI enumerator type specifier is defined, and the corresponding definition for a C enumerator type
follows.

(define-c-enum colors red green blue)

enum colors { red, green, blue};

The next example illustrates how to start the enumerator value list counting from 1, instead of from the default start value of
0.

(define-c-enum half_year (jan 1) feb mar apr may jun)

enum half_year { jan = 1, feb, mar, apr, may, jun }

See also

define-c-struct
define-c-typedef
define-c-union
define-foreign-type
enum-symbol-value
2 FLI Types

7 Function, Macro and Variable Reference

68

define-c-struct Macro

Summary

Defines a FLI structure type specifier corresponding to the C struct type.

Package

fli

Signature

define-c-struct name-and-options &rest descriptions => list

name-and-options ::= name | (name option*)

option ::= (:foreign-name foreign-name) | (:forward-reference-p forward-reference-p)

descriptions ::= {slot-description | byte-packing | aligned}*

slot-description ::= (slot-name slot-type)

byte-packing ::= (:byte-packing nbytes)

aligned ::= (:aligned nbytes)

Arguments

name⇓ A symbol naming the new structure type specifier.

foreign-name⇓ A string specifying the foreign name of the structure.

forward-reference-p⇓ A boolean.

byte-packing⇓ A list specifying byte packing for the subsequent slots.

slot-name⇓ A symbol naming the slot.

slot-type⇓ The foreign type of the slot.

nbytes⇓ The number of 8-bit bytes to pack.

Values

list The list (:struct name).

Description

The macro define-c-struct is used to define a FLI structure type specifier, which corresponds to the C struct type. It is
a convenience function, as a structure type could also be defined using define-foreign-type.

A structure is an aggregate type, or collection, of other FLI types. The types contained in a structure are referred to as slots,
and can be accessed using the foreign-slot-type and foreign-slot-value functions.

The FLI type specifier is named by name, with optional foreign name foreign-name.

Each slot-description is a list of a symbol slot-name and a corresponding FLI type descriptor slot-type which is the type of the
slot named by slot-name.

7 Function, Macro and Variable Reference

69

Some C compilers support pragmas such as:

#pragma pack(1)

which causes fields in a structure to be aligned on a byte boundary even if their natural alignment is larger. This can be
achieved from Lisp by specifying suitable byte-packing forms in the structure definition, as in the example below. Each byte-
packing form specifies the packing for each slot-description that follows it in the define-c-struct form. It is important to
use the same packing as the C header file containing the foreign type.

An aligned form specifies that the next slot must be aligned on nbytes bytes. Note that this affects only the alignment of the
next slot. It does not affect the length of the slot, or the alignment of other slots. You will need this when the slot is made to
be aligned, for example in gcc a slot defined like this:

int slot_name __attribute__ ((aligned (16))) ;

needs to be aligned on 16 bytes, even though the native alignment of the type int is 4.

When forward-reference-p is true, the new type specifier is defined as a forward reference type and descriptions can be
empty. See define-foreign-forward-reference-type.

Notes

foreign-name, specifying the foreign name, is supported only for documentation purposes.

Examples

The first example shows a C structure definition and the corresponding FLI definition:

struct a-point {
 int x;
 int y;
 byte color;
 char ident;
};

(fli:define-c-struct a-point (x :int)
 (y :int)
 (color :byte)
 (ident :char))

The second example shows how you might retrieve data in Lisp from a C function that returns a structure:

struct 3dvector
{
 float x;
 float y;
 float z;
 }

static 3dvector* vector;

3dvector* fn ()
{
 return vector;
 }

(fli:define-c-struct 3dvector
 (x :float)
 (y :float)
 (z :float))

7 Function, Macro and Variable Reference

70

(fli:define-foreign-function fn ()
 :result-type (:pointer (:struct 3dvector)))

(let ((vector (fn)))
 (fli:with-foreign-slots (x y z) vector
 (values x y z)))

Finally an example to illustrate byte packing. This structure will require 4 bytes of memory because the field named a-short
will be aligned on a 2 byte boundary and hence a byte will be wasted after the a-byte field:

(fli:define-c-struct foo ()
 (a-byte (:unsigned :byte))
 (a-short (:unsigned :short)))

After adding byte-packing, the structure will require only 3 bytes:

(fli:define-c-struct foo
 (:byte-packing 1)
 (a-byte (:unsigned :byte))
 (a-short (:unsigned :short)))

See also

define-c-enum
define-c-typedef
define-c-union
define-foreign-type
foreign-slot-names
foreign-slot-type
foreign-slot-value
2 FLI Types

define-c-typedef Macro

Summary

Defines FLI type specifiers corresponding to type specifiers defined using the C typedef command.

Package

fli

Signature

define-c-typedef name-and-options type-description => name

name-and-options ::= name | (name option*)

option ::= (:foreign-name foreign-name)

Arguments

type-description⇓ An FLI type descriptor.

name⇓ A symbol naming the new FLI type.

7 Function, Macro and Variable Reference

71

foreign-name⇓ A string specifying the foreign name of the type.

Values

name The name of the new FLI type.

Description

The macro define-c-typedef is used to define FLI type specifiers, which corresponds to those defined using the C
function typedef. It is a convenience function, as types can also be defined using define-foreign-type.

The FLI type specifier is named by name, with optional foreign name foreign-name.

type-description is not evaluated and the FLI type name will have no parameters.

Notes

foreign-name, specifying the foreign name, is supported only for documentation purposes.

Examples

In the following example three types are defined using the FLI function define-c-typedef, and the corresponding C
definitions are then given.

(fli:define-c-typedef intptr (:pointer :int))
(fli:define-c-typedef bar (:struct (one :int)))

These are the corresponding C typedef definitions:

typedef int *intptr;
typedef struct (int one;) bar;

See also

define-c-enum
define-c-struct
define-c-union
define-foreign-type
2 FLI Types

define-c-union Macro

Summary

Defines a FLI union type corresponding to the C union type.

Package

fli

Signature

define-c-union name-and-options &rest slot-descriptions => list

7 Function, Macro and Variable Reference

72

name-and-options ::= name | (name option*)

option ::= (:foreign-name foreign-name) | (:forward-reference-p forward-reference-p)

slot-descriptions ::= {slot-description}*

slot-description ::= (slot-name slot-type)

Arguments

name⇓ A symbol naming the new union type descriptor.

foreign-name⇓ A string specifying the foreign name of the type.

forward-reference-p⇓ A boolean.

slot-name⇓ A symbol naming the slot.

slot-type⇓ The FLI type of the slot.

Values

list The list (:union name).

Description

The macro define-c-union is used to define a FLI union type specifier, which corresponds to the C union type. It is a
convenience function, as a union type could also be defined using define-foreign-type.

A union is an aggregate type, or collection, of other FLI types. The types contained in a union are referred to as slots, and
can be accessed using the foreign-slot-type and foreign-slot-value functions.

The FLI type specifier is named by name, with optional foreign name foreign-name.

Each slot-description is a list of a symbol slot-name and a corresponding FLI type descriptor slot-type which is the type of the
slot named by slot-name.

When forward-reference-p is true, the new type specifier is defined as a forward reference type and descriptions can be
empty. See define-foreign-forward-reference-type.

Notes

foreign-name, specifying the foreign name, is supported only for documentation purposes.

Examples

In the following example a union is defined using define-c-union, and the corresponding C code is given.

(fli:define-c-union a-point (x :int)
 (color :byte)
 (ident :char))

union a-point {
 int x;
 byte color;
 char ident;
};

7 Function, Macro and Variable Reference

73

See also

define-c-enum
define-c-struct
define-c-typedef
define-foreign-type
2 FLI Types

define-foreign-block-callable-type Macro

Summary

Defines a type for foreign blocks, in LispWorks for Macintosh.

Package

fli

Signature

define-foreign-block-callable-type name result-type arg-types => name

Arguments

name⇓ A symbol.

result-type⇓ A foreign type specifier.

arg-types⇓ A list of foreign type specifiers.

Values

name Symbol.

Description

The macro define-foreign-block-callable-type defines a type for foreign blocks.

name specifies the name of the type. It must not be the same as the name of a define-foreign-callable.

result-type specifies the type of the result of the foreign block.

arg-types specifies the types of the arguments that a block of type name takes. These must correspond to the arguments types
with which the block is called from the foreign call.

Note that arg-types specifies the types for a call from foreign code into Lisp, which affects the way :reference-return

and :reference-pass are used. If the block is called from the foreign code with a pointer and you want to treat it as pass-
by-reference, you need to use :reference-return (like define-foreign-callable does). See the qsort_b example in:

(example-edit-file "fli/foreign-blocks")

define-foreign-block-callable-type returns name.

7 Function, Macro and Variable Reference

74

Notes

define-foreign-block-callable-type is implemented in LispWorks for Macintosh only.

See also

allocate-foreign-block
with-foreign-block
with-local-foreign-block
5.7 Block objects in C (foreign blocks)

define-foreign-block-invoker Macro

Summary

Defines an invoker of a foreign block, in LispWorks for Macintosh.

Package

fli

Signature

define-foreign-block-invoker the-name args &key lambda-list documentation result-type language no-check calling-
convention

Arguments

the-name⇓ A symbol.

args⇓ A lambda list.

lambda-list⇓ The lambda list to be used for the defined Lisp function.

documentation⇓ A string.

result-type⇓ A foreign type.

language⇓ The language in which the foreign source code is written. The default is :ansi-c.

no-check⇓ A boolean.

calling-convention⇓ Specifies the calling convention used.

Description

The macro define-foreign-block-invoker defines an invoker of a foreign block.

It defines the-name to be a function that can be used to invoke foreign blocks which takes arguments that match args. The
block is then invoked by simply calling the function the-name with the block and arguments:

(the-name block arg1 arg2 ...)

The block argument is of type foreign-block-pointer.

define-foreign-block-invoker is very similar to define-foreign-funcallable and
define-foreign-function, which specify how documentation, result-type, language, no-check and calling-convention

7 Function, Macro and Variable Reference

75

are used.

Notes

The lambda list of the invoker is (block . args). When lambda-list is supplied, define-foreign-block-invoker
inserts in front of the supplied lambda-list an additional argument for the block. Therefore a supplied lambda-list must not
include an argument for the block. Similarly a supplied lambda-list in define-foreign-funcallable should not include
an argument for the function.

define-foreign-block-invoker returns the-name.

define-foreign-block-invoker is implemented in LispWorks for Macintosh only.

Examples

(example-edit-file "fli/foreign-blocks")

(example-edit-file "fli/invoke-foreign-block")

See also

define-foreign-funcallable
define-foreign-function
foreign-block-pointer
5.7 Block objects in C (foreign blocks)

define-foreign-callable Macro

Summary

Defines a Lisp function which can be called from a foreign language.

Package

fli

Signature

define-foreign-callable (foreign-name &key encode language result-type result-pointer no-check calling-convention)
({arg}*) &body body => lisp-name

arg ::= arg-name | (arg-name arg-type)

language ::= :c | :ansi-c

Arguments

foreign-name⇓ A string or symbol naming the Lisp callable function created.

encode⇓ One of :source, :object, :lisp or dbcs.

language⇓ The language in which the foreign calling code is written. The default is :ansi-c.

result-type⇓ The FLI type of the Lisp foreign callable function's return value which is passed back to
the calling code.

7 Function, Macro and Variable Reference

76

result-pointer⇓ A variable which will be bound to a foreign pointer into which the result should be written
when the result-type is an aggregate type.

no-check⇓ A boolean.

calling-convention⇓ Specifies the calling convention used on Windows and ARM.

arg The arguments of the Lisp foreign callable function. Each argument can consist either of
an arg-name, in which case LispWorks assumes it is an :int, or an arg-name and an arg-
type, which is a FLI type.

body⇓ A list of forms which make up the Lisp foreign callable function.

arg-name⇓ A Lisp symbol.

arg-type⇓ A FLI type.

Values

lisp-name A string or symbol naming the Lisp callable function created.

Description

The macro define-foreign-callable defines a Lisp function that can be called from a foreign language, for example
from a C function. When the C function is called, data passed to it is converted to the appropriate FLI representation, which
is translated to an appropriate Lisp representation for the Lisp part of the function. Once the callable function exits, any
return values are converted back into a FLI format to be passed back to the calling language.

When you use :reference with :lisp-to-foreign-p t as an arg-type, you need to set arg-name to the value that you
want to return in that reference. That value is then converted and stored into the pointer supplied by the calling foreign
function. This is done after the visible body of your define-foreign-callable form returns.

If no-check is nil, the result of the foreign callable function, produced by body, is checked to see if matches result-type, and
an error is raised if they do not match. If no-check is t then this check is not done and the effect will be undefined if the types
do not match.

calling-convention is ignored on platforms other than Windows and ARM, where there is no calling convention issue. On 32-
bit Windows, :stdcall is the calling convention used to call Win32 API functions and matches the C declarator
"__stdcall". This is the default value. :cdecl is the default calling convention for C/C++ programs and matches the C
declarator "__cdecl". See 4.2.1 Windows 32-bit calling conventions for details.

On ARM platforms, there is also more than one calling convention, but normally you do not need to specify it. See 4.2.2
ARM 32-bit calling conventions and 4.2.3 ARM 64-bit calling conventions for details.

When result-type is an aggregate type, an additional variable is bound in the body to allow the value of the function to be
returned (the value returned by the body is ignored). This argument is named after result-pointer or is named
result-pointer in the current package if unspecified. While the body is executing, the variable will be bound to a foreign
pointer that points to an object of the type result-type. The body must set the slots in this foreign object in order for the value
to be returned to the caller.

To make a function pointer referencing a foreign callable named "Foo", use:

(make-pointer :symbol-name "Foo")

By default, LispWorks performs automatic name encoding to translate foreign-name. If you want to explicitly specify an
encoding, encode can be one of the following:

:source foreign-name is the name of the function in the foreign source code. This is the default value of
encode when foreign-name is a string.

7 Function, Macro and Variable Reference

77

:object foreign-name is the literal name of the function in the foreign object code.

:lisp If foreign-name is a Lisp symbol, it must be translated and encoded. This is the default value of
encode if foreign-name is a symbol.

:dbcs A suffix is automatically appended to the function name depending on the Windows operating
system that LispWorks runs in. The suffix is "A" for Windows 95-based systems and "W" for
Windows NT-based systems.

Notes

1. For a delivered application where the string name of your foreign callable is not passed in dll-exports, be aware that a
call to make-pointer like that above will not retain the foreign callable in a delivered application. Internally a Lisp
symbol named |%FOREIGN-CALLABLE/Foo| is used so you could retain that explicitly (see the Delivery User Guide
for details, and take care to specify the package). However it is simpler to name the foreign callable with your Lisp
symbol, and pass that to make-pointer. This call will keep your foreign callable in the delivered application:

(make-pointer :symbol-name 'foo :functionp t)

2. If you specify any of the FLI float types :float, :double, :lisp-float, :lisp-single-float and so on, then the
value of language should be :ansi-c.

Compatibility note

64-bit integer types such as (:long :long), :int64 and :uint64 are now supported for arg-type in
define-foreign-callable in 32-bit LispWorks. In 32-bit LispWorks 6.1 and earlier versions, these types could only be
used by define-foreign-function.

Examples

The following example demonstrates the use of foreign callable. A foreign callable function, square, is defined, which takes
an integer as its argument, and returns the square of the integer.

(fli:define-foreign-callable
 ("square" :result-type :int)
 ((arg-1 :int)) (* arg-1 arg-1))

The foreign callable function, square, can now be called from a foreign language. We can mimic a foreign call by using the
define-foreign-function macro to define a FLI function to call square.

(fli:define-foreign-function (call-two "square")
 ((in-arg :int)) :result-type :int)

The call-two function can now be used to call square. The next command is an example of this.

(call-two 9)

This last example shows how the address of a foreign callable can be passed via a pointer object, which is how you use
foreign callables in practice. The foreign library in this example is libgsl:

(fli:define-foreign-callable ("gsl-error-handler")
 ((reason (:reference-return :ef-mb-string))
 (file (:reference-return :ef-mb-string))
 (lineno :integer)
 (gsl-errno :integer))
 (error

7 Function, Macro and Variable Reference

78

 "Error number ~a inside GSL [file: ~a, lineno ~a]: ~a"
 gsl-errno file lineno reason))

(fli:define-foreign-function gsl-set-error-handler
 ((func :pointer))
 :result-type :pointer)

To set the error handler, you would do:

(gsl-set-error-handler
 (fli:make-pointer :symbol-name "gsl-error-handler"))

See also

define-foreign-function
define-foreign-variable
make-pointer
4 Defining foreign functions and callables
5.7.2 Operations on foreign blocks

define-foreign-converter Macro

Summary

Defines a new FLI type specifier that converts to or from another type specifier.

Package

fli

Signature

define-foreign-converter type-name lambda-list object-names &key foreign-type foreign-to-lisp lisp-to-foreign
predicate tested-value error-form documentation => type-name

object-names ::= object-name | (lisp-object-name foreign-object-name)

Arguments

type-name⇓ A symbol naming the new FLI type.

lambda-list⇓ A lambda list which is the argument list of the new FLI type.

object-names⇓ A symbol or a list of two symbols.

foreign-type⇓ A macro expansion form that evaluates to a FLI type descriptor.

foreign-to-lisp⇓ A macro expansion form to convert between Lisp and the FLI.

lisp-to-foreign⇓ A macro expansion form to convert between the FLI and Lisp.

predicate⇓ A macro expansion form to check whether a Lisp object is of this type.

tested-value⇓ A macro expansion form to give an error if a Lisp object is not of this type.

error-form⇓ A macro expansion form to give an error if predicate returns false.

documentation⇓ A string.

7 Function, Macro and Variable Reference

79

object-name⇓, lisp-object-name⇓, foreign-object-name⇓
Lisp symbols.

Values

type-name The name of the new FLI converter type.

Description

Note: this macro is for advanced use of the FLI type system. See define-foreign-type for simple aliasing of FLI type
descriptors.

The macro define-foreign-converter defines a new FLI type specifier type-name that wraps another FLI type specifier
and optionally performs data conversion and type checking. The string documentation is associated with type-name with the
define-foreign-type documentation type.

The lambda list of the new FLI type specifier is lambda-list and its variables are available for use in foreign-type, foreign-to-
lisp, lisp-to-foreign, predicate and tested-value.

If object-names is a symbol object-name, then it provides the name of a variable for use in all of the macro expansion forms.
Otherwise object-names should be a list of the form (lisp-object-name foreign-object-name), where lisp-object-name provides
the name of a variable for use in lisp-to-foreign, predicate and tested-value forms and foreign-object-name provides the name
of a variable for use in foreign-to-lisp.

When the new FLI type is used, foreign-type is evaluated to determine the underlying FLI type descriptor to be converted. It
can use variables bound by lambda-list, but not object-names.

When type-name is used to convert a foreign value to Lisp (for example when as the result-type in
define-foreign-function), foreign-to-lisp is evaluated to determine how the conversion should be made. It works like a
macro expansion function, so should return a form that converts the foreign value, which will be bound to object-name (or
foreign-object-name). It can use variables bound by lambda-list.

When type-name is used to convert a Lisp value to a foreign value (for example in the argument list of
define-foreign-function), the type of the Lisp value can be checked before conversion using tested-value and
predicate and then converted using lisp-to-foreign as detailed below.

If tested-value is specified, it is used as a macro expansion function that returns a form that must return object-name (or lisp-
object-name) if it is of the required type or give an error. It can use variables bound by lambda-list, but not object-names.

Otherwise, if predicate is specified, it is used as a macro expansion function that returns a form that must return true if object
-name (or lisp-object-name) is of the required type. If predicate is specified, then error-form can be specified as a macro
expansion function that signals an error about object-name (or lisp-object-name) not being of the required type. If error-form
is omitted, a default error is signaled. Both predicate and error-form can use variables bound by lambda-list, but not object-
names.

If both tested-value and predicate are omitted, then no type checking is performed.

After type checking, lisp-to-foreign is used as a macro expansion function that returns a form that converts the Lisp object
object-name (or lisp-object-name) to the underlying FLI type foreign-type. It can use variables bound by lambda-list, but not
object-names.

Examples

This defines a FLI type (real-double lisp-type), which allows any real value in Lisp to be passed to foreign code as a
double precision float. When a foreign value is converted to Lisp, it is coerced to type:

7 Function, Macro and Variable Reference

80

(fli:define-foreign-converter real-double (lisp-type)
 object
 :foreign-type :double
 :foreign-to-lisp `(coerce ,object ',lisp-type)
 :lisp-to-foreign `(coerce ,object 'double-float)
 :predicate `(realp ,object))

This defines a FLI type int-signum, which uses -1, 0 and 1 for values on the foreign side. There is no foreign-to-lisp form
specified, so it will return these values to Lisp too:

(fli:define-foreign-converter int-signum () object
 :foreign-type :int
 :lisp-to-foreign `(signum ,object))

This defines a FLI type (bigger-in-lisp n), which is an integer type for values that are n bigger in Lisp than on the
foreign side.

(fli:define-foreign-converter bigger-in-lisp
 (&optional (n 1))
 object
 :foreign-type :int
 :foreign-to-lisp `(+ ,object ,n)
 :lisp-to-foreign `(- ,object ,n)
 :predicate `(integerp ,object))

(fli:with-dynamic-foreign-objects ((x :int 10))
 (fli:dereference x :type '(bigger-in-lisp 2))) => 12

See also

define-foreign-type
define-opaque-pointer
:wrapper
2.3 Parameterized types

define-foreign-forward-reference-type Macro

Summary

Defines a FLI type specifier if it is not already defined.

Package

fli

Signature

define-foreign-forward-reference-type type-name lambda-list &body forms => type-name

Arguments

type-name⇓ A symbol naming the new FLI type.

lambda-list⇓ A lambda list which is the argument list of the new FLI type.

forms⇓ One or more Lisp forms which provide a definition of the new type.

7 Function, Macro and Variable Reference

81

Values

type-name The name of the FLI type.

Description

The macro define-foreign-forward-reference-type defines a new FLI type called type-name, unless type-name is
already defined. This macro is useful when a type declaration is needed but the full definition is not yet available.

lambda-list and forms are used as in define-foreign-type.

See also

define-foreign-type
define-opaque-pointer

define-foreign-funcallable Macro

Summary

Defines a Lisp function which, when passed a pointer to a foreign function, calls it.

Package

fli

Signature

define-foreign-funcallable the-name args &key lambda-list documentation result-type language no-check calling-
convention variadic-num-of-fixed => the-name

args ::= ({arg}*)

Arguments

the-name⇓ A symbol naming the Lisp function.

lambda-list⇓ The lambda list to be used for the defined Lisp function.

documentation⇓ A documentation string for the foreign function.

result-type⇓ A foreign type.

language⇓ The language in which the foreign source code is written. The default is :ansi-c.

no-check⇓ A boolean.

calling-convention⇓ Specifies the calling convention used.

variadic-num-of-fixed⇓
nil or a non-negative integer.

arg⇓ Argument specifier as in define-foreign-function.

Values

the-name A symbol naming the Lisp function.

7 Function, Macro and Variable Reference

82

Description

The macro define-foreign-funcallable is like define-foreign-function, but creates a function with an extra
argument at the start of the argument list for the address to call.

See define-foreign-function for how the-name, lambda-list, documentation, result-type, language, no-check, calling-
convention, variadic-num-of-fixed and arg are used.

Examples

Define a caller for this shape:

(fli:define-foreign-funcallable
 call-with-string-and-int
 ((string (:reference-pass :ef-mb-string))
 (value :int)))

Call printf. Note that the output goes to console output which is hidden by default:

(let ((printf-func
 (fli:make-pointer :symbol-name "printf")))
 (call-with-string-and-int
 printf-func "printf called with %d" 1234))

See also

define-foreign-function

define-foreign-function Macro

Summary

Defines a Lisp function which acts as an interface to a foreign function.

Package

fli

Signature

define-foreign-function name ({arg}*) &key lambda-list documentation result-type result-pointer language no-
check calling-convention module variadic-num-of-fixed => lisp-name

name ::= lisp-name | (lisp-name foreign-name [encoding])

encoding ::= :source | :object | :lisp | :dbcs

arg ::= arg-name | (arg-name arg-type) | (:constant value value-type) | &optional | &key | ((arg-name
default) arg-type) | (:ignore arg-type)

language ::= :c | :ansi-c

Arguments

lambda-list⇓ The lambda list to be used for the defined Lisp function.

7 Function, Macro and Variable Reference

83

documentation⇓ A string.

result-type⇓ A foreign type.

result-pointer⇓ The name of the keyword argument that is added to the lambda-list of the Lisp function
when result-type is an aggregate type.

language⇓ The language in which the foreign source code is written. The default is :ansi-c.

no-check⇓ A boolean.

calling-convention⇓ Specifies the calling convention used.

module⇓ A symbol or string naming the module in which the foreign symbol is defined.

variadic-num-of-fixed⇓
nil or a non-negative integer.

lisp-name⇓ A symbol naming the defined Lisp function.

foreign-name⇓ A string or a symbol specifying the foreign name of the function.

arg-name⇓ A variable.

arg-type⇓ A foreign type name.

value⇓ A Lisp object.

value-type⇓ A foreign type name.

default⇓ A Lisp object.

Values

lisp-name A symbol naming the defined Lisp function.

Description

The macro define-foreign-function defines a Lisp function lisp-name which acts as an interface to a foreign language
function, for example a C function. When the Lisp function is called its arguments are converted to the appropriate foreign
representation before being passed to the specified foreign function. Once the foreign function exits, any return values are
converted back from the foreign format into a Lisp format.

encoding specifies how lisp-name is translated into the function name in the foreign object code. Its values are interpreted as
follows:

:source foreign-name is the name of the function in the foreign source code. This is the default value of
encoding when foreign-name is a string.

:object foreign-name is the literal name of the function in the foreign object code.

:lisp If foreign-name is a Lisp symbol, it must be translated and encoded. This is the default value of
encoding if foreign-name is a symbol.

:dbcs A suffix is automatically appended to the function name depending on the Windows operating
system that LispWorks runs in. The suffix is "A" for Windows 95-based systems and "W" for
Windows NT-based systems.

The number and types of the arguments of lisp-name must be given. Lisp arguments may take any name, but the types must
be accurately specified and listed in the same order as in the foreign function, unless otherwise specified using lambda-list.

If arg is a symbol arg-name, then define-foreign-function assumes that it is of type :int. Otherwise arg-type or
value-type specifies the foreign type of the argument.

7 Function, Macro and Variable Reference

84

If arg is of the form (:constant value value-type) then value is always passed through to the foreign code, and arg is
omitted from the lambda list of lisp-name.

If arg is &optional or &key, then the lambda list of the Lisp function lisp-name will contain these lambda-list-keywords
too. Any argument following &optional or &key can use the
((arg-name default) arg-type) syntax to provide a default value default for arg-name.

If arg is of the form (:ignore arg-type) then nil is always passed through to the foreign code and arg is omitted from the
lambda list of lisp-name. This is generally only useful when arg-type is a :reference-return type, where the value nil
will be ignored.

If documentation is supplied then it is set as the function documentation for lisp-name.

When language is :ansi-c the foreign code is expected to be written in ANSI C. In particular single floats are passed
through as single-floats whereas language :c causes them to be passed through as double floats. Similarly :c causes double
floats to be returned from C and :ansi-c causes a single-floats to be returned. In both cases the type returned to Lisp is
determined by result-type.

If no-check is nil, then the types of the arguments provided when lisp-name is called are compared with the expected types
and an error is raised if they do not match. If no-check is t then this check is not done and the effect will be undefined if the
types do not match. If the compilation safety level is set to 0 then no-check defaults to t, otherwise it defaults to nil.

lambda-list allows you to define the order in which the Lisp function lisp-name takes its arguments to be different from the
order in which the foreign function takes them, and to use standard lambda list keywords such as &optional even if they do
not appear in args. If lambda-list is not supplied, the lambda list of lisp-name is generated from the list of args.

If arg-type is a struct then the value arg-name can be either a foreign struct object or a pointer to a foreign struct object.

The :reference, :reference-pass and :reference-return types are useful with define-foreign-function. It
is fairly common for a C function to return a value by setting the contents of an argument passed by reference (that is, as a
pointer). This can be handled conveniently by using the :reference-return type, which dynamically allocates memory
for the return value and passes a pointer to the C function. On return, the pointer is dereferenced and the value is returned as
an extra multiple value from the Lisp function.

The :reference-pass type can be used to automatically construct an extra level of pointer for an argument. No extra
results are returned.

The :reference type is like :reference-return but allows the initial value of the reference argument to be set.

result-type optionally specifies the type of the foreign function's return value. When result-type is an aggregate type, an
additional keyword argument is placed in the lambda-list of the Lisp function. This keyword is named after result-pointer or
is called :result-pointer if unspecified. When calling the Lisp function, a foreign pointer must be supplied as the value
of this keyword argument, pointing to an object of type result-type. The result of the foreign call is written into this object
and the foreign pointer is returned as the primary value from the Lisp function. This allows the caller to maintain control over
the lifetime of this object (in C this would typically be stored in a local variable). If result-type is :void or is omitted, then
no value is returned.

calling-convention is ignored on some platforms, where there is no calling convention issue. On 32-bit Windows, :stdcall
is the calling convention used to call Win32 API functions and matches the C declarator "__stdcall". This is the default
value. :cdecl is the default calling convention for C/C++ programs and matches the C declarator "__cdecl". See 4.2.1
Windows 32-bit calling conventions for details.

On ARM platforms, there is also more than one calling convention, but normally you do not need to specify it. See 4.2.2
ARM 32-bit calling conventions and 4.2.3 ARM 64-bit calling conventions for details.

On 32-bit x86 platforms (including 32-bit Windows), the :fastcall calling convention can be use (see 4.2.4 Fastcall on 32
-bit x86 platforms for details).

If module is the name of a module registered using register-module then that module is used to look up the symbol.

7 Function, Macro and Variable Reference

85

http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm

Otherwise module should be a string, and a module named module is automatically registered and used to look up the
symbol. Such automatically-registered modules have connection-style :manual - this prevents them being used by other
define-foreign-function forms which do not specify a module.

When variadic-num-of-fixed a non-negative integer, it specifies that the foreign function that it is calling is variadic (like
printf). The integer must be the number of fixed arguments that the foreign function takes. For printf, for example, you
need to pass :variadic-num-of-fixed 1, and for sprintf you need :variadic-num-of-fixed 2. When variadic-
num-of-fixed is nil (the default), then the function is specified to be not variadic. Calls to variadic function without using
variadic-num-of-fixed work on some platforms, but not all. Thus you should always use it when calling variadic functions.

Compatibility notes

In LispWorks 4.4 and previous versions, the default value for language is :c. In LispWorks 5.0 and later, the default value is
:ansi-c.

The :fastcall calling-convention was added in LispWorks 7.1.

variadic-num-of-fixed was added in LispWorks 7.1.

Examples

A simple example of the use of define-foreign-function is given in 1.2.2 Defining a FLI function. More detailed
examples are given in 5 Advanced Uses of the FLI.

Here is an example using the :reference-return type.

Non-Windows version:

int cfloor(int x, int y, int *remainder)
{
 int quotient = x/y;
 *remainder = x - y*quotient;
 return quotient;
}

Windows version:

__declspec(dllexport) int __cdecl cfloor(int x, int y, int *remainder)
{
 int quotient = x/y;
 *remainder = x - y*quotient;
 return quotient;
}

In this foreign function definition the main result is the quotient and the second return value is the remainder:

(fli:define-foreign-function cfloor
 ((x :int)
 (y :int)
 (rem (:reference-return :int)))
 :result-type :int)

(cfloor 11 5 t)
=>
2,1

This example illustrates a use of the lambda list keyword &optional and a default value for the optional argument:

(define-foreign-function one-or-two-ints

7 Function, Macro and Variable Reference

86

http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm

 ((arg-one :int)
 &optional
 ((arg-two 42) :int)))

The call (one-or-two-ints 1 2) passes 1 and 2.

The call (one-or-two-ints 1) passes 1 and 42.

See also

define-foreign-callable
define-foreign-funcallable
define-foreign-variable
register-module
4 Defining foreign functions and callables

define-foreign-pointer Macro

Summary

Defines a new FLI pointer type.

Package

fli

Signature

define-foreign-pointer name-and-options points-to-type &rest slots => type-name

name-and-options ::= type-name | (type-name (option*))

option ::= (option-name option-value)

Arguments

points-to-type⇓ A foreign type.

slots⇓ Slots of the new type.

type-name⇓ A symbol naming the new FLI type.

option-name⇓ :allow-null or a defstruct option.

option-value⇓ A symbol.

Values

type-name The name of the new FLI pointer type.

Description

The macro define-foreign-pointer defines two things:

• An FLI pointer type type-name, which is a pointer to points-to-type.

• A Lisp type specifier type-name that is a foreign pointer.

7 Function, Macro and Variable Reference

87

http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm

The option :allow-null takes an option-value of either t or nil, defaulting to nil. It controls whether the type type-name
accepts nil.

The other allowed values for option-name are the defstruct options :conc-name, :constructor, :predicate,
:print-object, :print-function. In each case the symbol supplied as option-value provides the corresponding option
for type-name.

slots is a list of defstruct slot-descriptions which become slots in type-name.

When LispWorks makes a foreign pointer of type type-name, then an object of Lisp type type-name is made instead of a
foreign pointer object. This is useful if you want to associate extra Lisp data with the foreign pointer object, using slots.

See also

3.1.1 Creating pointers

define-foreign-type Macro

Summary

Defines a new FLI type specifier.

Package

fli

Signature

define-foreign-type name-and-options lambda-list &body forms => name

name-and-options ::= name | (name option*)

option ::= (:foreign-name foreign-name)

Arguments

lambda-list⇓ A lambda list which is the argument list of the new FLI type.

forms⇓ One or more Lisp forms which provide a definition of the new type.

name⇓ A symbol naming the new FLI type.

foreign-name⇓ A string specifying the foreign name of the type.

Values

name The name of the new FLI type.

Description

The macro define-foreign-type defines a new FLI type called name, with optional foreign name foreign-name.

When name is used as a foreign type, forms are evaluated as an implicit progn with the variables in lambda-list bound to the
arguments of the foreign type. The value returned by forms is used as the definition of the foreign type. This is similar to how
deftype works for Lisp type specifiers.

7 Function, Macro and Variable Reference

88

http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_deftp.htm

Notes

foreign-name, specifying the foreign name, is supported only for documentation purposes.

Examples

In the following example an integer array type specifier is defined. Note that the type takes a list as its argument, and uses
this to determine the size of the array.

(fli:define-foreign-type :int-array (dimensions)
 `(:c-array :int ,@dimensions))

(setq number-array (fli:allocate-foreign-object
 :type '(:int-array (2 2))))

In the next example a boolean type, called :bool, with the same size as an integer is defined.

(fli:define-foreign-type :bool () `(:boolean :int))

(fli:size-of :bool)

See also

define-c-typedef
define-foreign-converter
define-foreign-forward-reference-type
foreign-type-equal-p
2 FLI Types
5.4 Defining new types

define-foreign-variable Macro

Summary

Defines a Lisp function to access a variable in foreign code.

Package

fli

Signature

define-foreign-variable the-name &key type accessor language no-check module => lisp-name

the-name ::= lisp-name | (lisp-name foreign-name [encoding])

encoding ::= :source | :object | :lisp | :dbcs

accessor ::= :value | :address-of | :read-only | :constant

language ::= :c | :ansi-c

7 Function, Macro and Variable Reference

89

Arguments

the-name Names the Lisp function which is used to access the foreign variable.

type⇓ The FLI type corresponding to the type of the foreign variable to which Lisp is interfacing.
The default is :int.

language⇓ The language in which the foreign source code for the variable is written. The default is
:ansi-c.

no-check⇓ A boolean.

module⇓ A string or symbol naming the module in which the foreign variable is defined.

lisp-name⇓ A symbol naming the Lisp accessor.

foreign-name⇓ A string or a symbol specifying the foreign name of the variable.

Values

lisp-name A symbol naming the Lisp accessor.

Description

The macro define-foreign-variable defines a Lisp accessor lisp-name which can be used to get and set the value of a
variable defined in foreign code.

accessor specifies what kind of accessor is generated for the variable. It can be one of the following:

:value The value of the foreign variable is returned directly and is the default when type is a non-
aggregate type. If type is an aggregate type, then a copy of the object is allocated using
allocate-foreign-object, and the copy is returned. In general, it is more useful to use
accessor :address-of for aggregate types, to allow the original aggregate to be updated.

:address-of Returns an FLI pointer pointing to the foreign variable.

:read-only Ensures that no setf expander is defined for the variable, which means that its value can be
read, but it cannot be set.

:constant Is like :read-only and will return a constant value. For example, this is more efficient for a
variable that always points to the same string.

If the foreign variable has a type corresponding to an FLI aggregate type, then accessor must be supplied (there is no default).

encoding controls how the Lisp variable name is translated to match the foreign variable name in the foreign DLL. encoding
can be one of the following:

:source Tells LispWorks that foreign-name is the name of the variable in the foreign source code. This is
the default value of encoding when foreign-name is a string.

:object Tells LispWorks that foreign-name is the literal name of the variable in the foreign object code.

:lisp Tells LispWorks that if foreign-name is a Lisp symbol, it must be translated and encoded. This is
the default value of encoding if foreign-name is a symbol.

:dbcs Modifies the variable name on Windows, as described for define-foreign-function.

If no-check is nil, then the type of the value is provided to the setf expander for lisp-name is compared with type and an
error is raised if it does not match. If no-check is t then this check is not done and the effect will be undefined if the type
does not match. If the compilation safety level is set to 0 then no-check defaults to t, otherwise it defaults to nil.

7 Function, Macro and Variable Reference

90

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

Notes

If you specify any of the FLI float types :float, :double, :lisp-float, :lisp-single-float and so on, then the
value of language should be :ansi-c.

module is processed as for define-foreign-function.

Examples

The following example illustrates how to use the FLI to define a foreign variable, given the following C variable in a DLL:

int num;

The first example defines a Lisp variable, num1, to interface with the C variable num.

(fli:define-foreign-variable (num1 "num") :type :int)

The following commands return the value of num, and increase its value by 1:

(num1)

(incf (num1))

In the next example, the Lisp variable num2 interfaces with num in a read-only manner.

(fli:define-foreign-variable (num2 "num")
 :type :int :accessor :READ-ONLY)

In this case, the next command still returns the value of num, but the second command raises an error, because num2 is read-
only.

(num2)

(incf (num2))

The final example defines a Lisp variable, num3, which accesses num through pointers.

(fli:define-foreign-variable (num3 "num")
 :type :int :accessor :address-of)

As a result, the next command returns a pointer to num, and to obtain the actual value stored by num, num3 needs to be
dereferenced.

(num3)

(fli:dereference (num3))

See also

define-foreign-callable
define-foreign-function

7 Function, Macro and Variable Reference

91

define-opaque-pointer Macro

Summary

Defines an opaque foreign pointer type.

Package

fli

Signature

define-opaque-pointer pointer-type structure-type

Arguments

pointer-type⇓ A symbol.

structure-type⇓ A symbol.

Description

The macro define-opaque-pointer defines an opaque foreign pointer type named pointer-type and foreign structure type
with a name based on structure-type. An opaque pointer is a pointer to a structure which does not have a structure
description. It is the equivalent to the C declaration:

typedef struct structure-type *pointer-type;

An opaque pointer is useful for dealing with pointers that are returned by foreign functions and are then passed to other
foreign functions. It checks the type of the foreign pointer, and thus prevents passing pointers of the wrong type.

Examples

Using the C standard file* pointer:

(fli:define-opaque-pointer file-pointer file)

(fli:define-foreign-function fopen
 ((name (:reference-pass :ef-mb-string))
 (mode (:reference-pass :ef-mb-string)))
 :result-type file-pointer)

(fli:define-foreign-function fgetc
 ((file file-pointer))
 :result-type :int)

(fli:define-foreign-function fclose
 ((file file-pointer)))

(fli:define-foreign-function fgets
 ((string
 (:reference-return (:ef-mb-string :limit 200)))
 (:constant 200 :int)
 (file file-pointer))
 :result-type (:pointer-integer :int)
 :lambda-list (file &aux string))

7 Function, Macro and Variable Reference

92

(defun print-a-file (name)
 (let ((file-pointer (fopen name "r")))
 (if (fli:null-pointer-p file-pointer)
 (error "failed to open ~a" name)
 (unwind-protect
 (loop (multiple-value-bind (res line)
 (fgets file-pointer)
 (when (zerop res) (return))
 (princ line)))
 (fclose file-pointer)))))

See also

define-foreign-type

dereference Accessor

Summary

Accesses and returns the value of a foreign object.

Package

fli

Signature

dereference pointer &key index type copy-foreign-object => value

setf (dereference pointer &key index type copy-foreign-object) value => value

Arguments

pointer⇓ An instance of a FLI pointer.

index⇓ An integer.

type⇓ A foreign type.

copy-foreign-object⇓ One of t, nil or :error.

value The value of the dereferenced object at pointer.

Values

value The value of the dereferenced object at pointer.

Description

The accessor dereference accesses and returns the value of the FLI object pointed to by pointer.

If index is supplied, dereference assumes that pointer points to one element in an array of object, and returns the element
with index index in the array.

If type is supplied, then dereference assumes that pointer points to an object of that type, overriding the type in pointer
itself.

7 Function, Macro and Variable Reference

93

copy-foreign-object is only used when the type of pointer (or type if supplied) is an aggregate type, because objects of these
types cannot be converted to a Lisp value. If copy-foreign-object is t, dereference makes a copy of the aggregate object
pointed to by pointer and returns the copy. If copy-foreign-object is nil, dereference returns the aggregate object directly.
If copy-foreign-object is :error (the default) then dereference signals an error.

The value of an object at pointer can be changed using the setf form of dereference. See the examples section for an
example of this.

An error is signaled if pointer is a null pointer. You can use null-pointer-p to detect null pointers.

Compatibility note

64-bit integer types such as (:long :long), :int64 and :uint64 are now supported for type in dereference in 32-bit
LispWorks. In 32-bit LispWorks 6.1 and earlier versions, these types could only be used by define-foreign-function.

Examples

In the following example a LONG type is defined and an instance, pointed to by point, with a specified initial value of 10 is
created with memory allocated using allocate-foreign-object. The dereference function is then used to get the
value that point points to.

(fli:define-c-typedef LONG :long)

(setq point (fli:allocate-foreign-object
 :type 'LONG
 :initial-element 10))

(fli:dereference point)

Finally, the value of the object of type LONG is changed to 20 using the setf form of dereference.

(setf (fli:dereference point) 20)

In the next example, a boolean FLI type is defined, but is accessed as a char.

(fli:define-c-typedef BOOL (:boolean :int))

(setq point2 (fli:allocate-foreign-object :type 'BOOL))

(fli:dereference point2 :type :char)

See also

allocate-foreign-object
free-foreign-object
foreign-slot-value
null-pointer-p
2 FLI Types
3.3 Pointer dereferencing and coercing
5.2.5 Calling a C function that takes an array of strings

7 Function, Macro and Variable Reference

94

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

disconnect-module Function

Summary

Disconnects the DLL associated with a registered module.

Package

fli

Signature

disconnect-module name &key verbose remove => result

Arguments

name⇓ A symbol or string.

verbose⇓ nil, t or an output stream.

remove⇓ A boolean.

Values

result nil, t or :removed.

Description

The function disconnect-module disconnects the DLL associated with a registered module specified by name and
registered with register-module.

When disconnecting, if verbose is a stream, then disconnect-module will send disconnection information to that stream.
If verbose is t, this is interpreted as standard output. The default value of verbose is nil.

If remove is nil then after disconnection the module will be in the same state as it was when first registered by
register-module, that is, lookups for foreign symbols can still automatically reconnect the DLL. If remove is non-nil then
name is removed from the list of registered modules. Any foreign symbols which refer to the module will then be reset as
unresolved symbols. The default value of remove is nil.

disconnect-module returns t if it actually disconnected the module, which means it unloaded the foreign module, but has
not removed the module. It returns :removed when it also removed the module. Note that when disconnect-module is
supplied with a non-nil remove, it may still decline to remove the module if there are symbols which are explicitly associated
withe the module (for example by by passing :module to define-foreign-function). nil is returned if it fails to find
the module, or it was not already connected before the call and was not removed by the call.

See also

register-module

7 Function, Macro and Variable Reference

95

enum-symbol-value
enum-value-symbol
enum-values
enum-symbols
enum-symbol-value-pairs Functions

Summary

Finds values and symbols in a FLI enumerator type.

Package

fli

Signatures

enum-symbol-value enum-type symbol => value

enum-value-symbol enum-type value => symbol

enum-values enum-type => values

enum-symbols enum-type => symbols

enum-symbol-value-pairs enum-type => pairs

Arguments

enum-type⇓ A FLI enumerator type defined by define-c-enum.

symbol⇓ A symbol.

value⇓ An integer.

Values

value An integer or nil.

symbol A symbol or nil.

values A list.

symbols A list.

pairs A list of conses.

Description

The function enum-symbol-value returns the value value of symbol symbol in the FLI enumerator type enum-type, or nil
if enum-type does not contain symbol.

The function enum-value-symbol returns the symbol symbol in the FLI enumerator type enum-type at value value, or nil
if value is out of range for enum-type.

The functions enum-values, enum-symbols and enum-symbol-value-pairs respectively return a list of the values,

7 Function, Macro and Variable Reference

96

symbols and pairs for enum-type, where a pair is a cons of symbol and value.

enum-type must be defined by define-c-enum.

Examples

(fli:define-c-enum colors red green blue)
=>
(:ENUM COLORS)

(fli:enum-symbol-value 'COLORS 'red)
=>
0

(fli:enum-value-symbol 'COLORS 0)
=>
RED

(fli:define-c-enum half_year (jan 1) feb mar apr may jun)
=>
(:ENUM HALF_YEAR)

(fli:enum-symbol-value 'HALF_YEAR 'feb)
=>
2

(fli:enum-value-symbol 'HALF_YEAR 2)
=>
FEB

(fli:enum-symbol-value-pairs 'HALF_YEAR)
((JAN . 1) (FEB . 2) (MAR . 3) (APR . 4) (MAY . 5) (JUN . 6))

See also

define-c-enum

fill-foreign-object Function

Summary

Fills a foreign object, given a pointer to it.

Package

fli

Signature

fill-foreign-object pointer &key nelems byte => pointer

Arguments

pointer⇓ A foreign pointer.

nelems⇓ A non-negative integer. The default is 1.

7 Function, Macro and Variable Reference

97

byte⇓ An integer. The default is 0.

Values

pointer The foreign pointer.

Description

The function fill-foreign-object fills the pointer pointer with the value byte. If nelems is greater than 1, an array of
objects starting at pointer is filled.

Examples

(fli:with-dynamic-foreign-objects ()
 (let ((pp (fli:allocate-dynamic-foreign-object
 :type :char
 :initial-element 66
 :nelems 6)))
 (fli:fill-foreign-object pp :nelems 3 :byte 65)
 (loop for i below 6 collect
 (fli:dereference pp :type :char :index i))))
=>
(#\A #\A #\A #\B #\B #\B)

See also

replace-foreign-object

foreign-aref Accessor

Summary

Accesses and returns the value at a specified point in an array.

Package

fli

Signature

foreign-aref array &rest subscripts => value

setf (foreign-aref array &rest subscripts) value => value

Arguments

array⇓ A FLI array or a pointer to a FLI array.

subscripts⇓ A list of valid array indices for array.

value An element of array.

Values

value An element of array.

7 Function, Macro and Variable Reference

98

Description

The accessor foreign-aref accesses an element in array specified by subscripts and returns its value if the element is an
immediate type. If it is an aggregate type, such as a :struct, :union, or :c-array, an error is signaled. The function
foreign-array-pointer should be used to get access to such embedded aggregate data.

The value of an element in an array can be changed using the setf form of foreign-aref. See the examples section for an
example of this.

Examples

In the first example, a 3 by 3 integer array is created, and the setf form of foreign-aref is used to set all the elements to
42.

(setq array1 (fli:allocate-foreign-object
 :type '(:c-array :int 3 3)))

(dotimes (x 3)
 (dotimes (y 3)
 (setf (fli:foreign-aref array1 x y)
 42)))

Next, foreign-aref is used to dereference the value at position 2 2 in array1. Remember that the count for the indices
of an array start at 0.

(fli:foreign-aref array1 2 2)

In the following example, an array of arrays of integers is created. When an element is dereferenced, a copy of an array of
integers is returned.

(setq array2 (fli:allocate-foreign-object
 :type '(:c-array (:c-array :int 3) 3)))

(fli:foreign-array-pointer array2 2)

The array returned can be bound to the variable array3, and accessed using foreign-aref again. This time an integer is
returned.

(setq array3 *)

(fli:foreign-aref array3 1)

See also

2 FLI Types
foreign-array-dimensions
foreign-array-element-type
foreign-array-pointer
foreign-typed-aref

7 Function, Macro and Variable Reference

99

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

foreign-array-dimensions Function

Summary

Returns a list containing the dimensions of an array.

Package

fli

Signature

foreign-array-dimensions array-or-type => dimensions

Arguments

array-or-type⇓ A FLI array, a pointer to a FLI array or the name of a FLI array type.

Values

dimensions A list containing the dimensions of array-or-type.

Description

The function foreign-array-dimensions returns a list containing the dimensions of array-or-type.

Examples

In the following example an instance of a 3 by 4 array is created, and these dimensions are returned using the
foreign-array-dimensions function.

(setq array1 (fli:allocate-foreign-object
 :type '(:c-array :int 3 4)))

(fli:foreign-array-dimensions array1)

See also

foreign-aref
foreign-array-element-type
foreign-array-pointer

foreign-array-element-type Function

Summary

Returns the type of the elements of an array.

7 Function, Macro and Variable Reference

100

Package

fli

Signature

foreign-array-element-type array-or-type => type

Arguments

array-or-type⇓ A FLI array, a pointer to a FLI array or the name of a FLI array type.

Values

type The type of the elements of array-or-type.

Description

The function foreign-array-element-type returns the type of the elements of array-or-type.

Examples

In the following example a 3 by 4 array with integer elements is defined, and the foreign-array-element-type function
is used to confirm that the elements of the array are indeed integers.

(setq array1 (fli:allocate-foreign-object
 :type '(:c-array :int 3 4)))

(fli:foreign-array-element-type array1)

See also

foreign-aref
foreign-array-dimensions
foreign-array-pointer

foreign-array-pointer Function

Summary

Returns a pointer to a specified element in an array.

Package

fli

Signature

foreign-array-pointer array &rest subscripts => pointer

Arguments

7 Function, Macro and Variable Reference

101

array⇓ A FLI array or a pointer to a FLI array.

subscripts⇓ A list of valid array indices for array.

Values

pointer A pointer to the element at position subscripts in array.

Description

The function foreign-array-pointer returns a pointer to an element in array specified by subscripts. You can then use
dereference or foreign-slot-value to access the value.

Examples

In this example a 3 by 2 array of integers is created, and a pointer to the element at position 2 0 is returned using
foreign-array-pointer.

(setq array1 (fli:allocate-foreign-object
 :type '(:c-array :int 3 2)))

(setq array-ptr (fli:foreign-array-pointer array1 2 0))

The setf form of dereference can now be used to set the value pointed to by array-ptr.

(setf (fli:dereference array-ptr) 42)

See also

foreign-aref
foreign-array-dimensions
foreign-array-element-type

foreign-block-copy Function

Summary

Makes a copy of a foreign block, in LispWorks for Macintosh.

Package

fli

Signature

foreign-block-copy foreign-block => new-foreign-block

Arguments

foreign-block⇓ A foreign block pointer.

7 Function, Macro and Variable Reference

102

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

Values

new-foreign-block⇓ A foreign block pointer.

Description

The function foreign-block-copy makes and returns a copy of the foreign block foreign-block. It corresponds to the C
function _Block_copy.

foreign-block can be any foreign block.

The result of the copy is another foreign block with an indefinite scope, which has the same attributes as foreign-block. In
other words, invoking the copy invokes the same function.

The new foreign block cannot be garbage collected. It should be freed when you are finished with it by
foreign-block-release.

foreign-block-copy is not expected to be commonly useful. You need it when you get passed a block and you want to
use it outside the scope of the call in which it was passed, unless it is documented that the block is global.

Notes

1. If you use new-foreign-block with a function that is documented to release the block, you must not call
foreign-block-release on it. However, we do not expect this situation to happen, because a proper interface will
only free blocks that it allocates.

2. foreign-block-copy is implemented in LispWorks for Macintosh only.

See also

foreign-block-release
5.7 Block objects in C (foreign blocks)

foreign-block-release Function

Summary

Releases a foreign block, like _Block_release, in LispWorks for Macintosh.

Package

fli

Signature

foreign-block-release foreign-block

Arguments

foreign-block⇓ A foreign block pointer.

Description

The function foreign-block-release releases a foreign block. It corresponds to the C function _Block_release.

7 Function, Macro and Variable Reference

103

foreign-block must be the result of foreign-block-copy. In particular, it is an error to call foreign-block-release on
the result of allocate-foreign-block.

Notes

1. In principle, you can also use foreign-block-release on foreign blocks that you received from foreign code, if the
interface says that you need to release them. However, we do not expect this to happen, because proper interface will
always free blocks that it allocates or copies.

2. After the call to foreign-block-release, foreign-block is of type released-foreign-block-pointer.

3. foreign-block-release has no useful return value.

4. foreign-block-release is implemented in LispWorks for Macintosh only.

5. To free a foreign block that was allocated by Lisp, use free-foreign-block.

See also

foreign-block-copy
free-foreign-block
released-foreign-block-pointer
5.7 Block objects in C (foreign blocks)

foreign-function-pointer Function

Summary

Returns a FLI pointer with its address set to the address of a foreign symbol.

Package

fli

Signature

foreign-function-pointer symbol-name => pointer

Arguments

symbol-name⇓ A string or a symbol.

Values

pointer A FLI pointer.

Description

The function foreign-function-pointer returns a FLI pointer with its address set to the address of a foreign symbol,
which can be either a symbol defined in a foreign library or a foreign callable.

symbol-name needs to be a name of a foreign symbol specifying a foreign function, either a string naming a symbol defined
in a foreign library, or a symbol naming a foreign callable (defined by define-foreign-callable).

foreign-function-pointer returns a FLI pointer with its address set to the address of the symbol. If the symbol is not

7 Function, Macro and Variable Reference

104

defined yet an error is signaled.

The pointer that is returned is associated with the symbol and is returned in further calls to foreign-function-pointer

with the same argument. The pointer must not be modified by functions like incf-pointer.

When a saved image is restarted all the pointers that have been returned by foreign-function-pointer are updated to
reflect the current address of their symbol (which may be different in the new invocation).

Notes

1. The pointer is not updated if the module containing the symbol is disconnected and registered again.

2. Only the pointer itself is updated, but not any copies of it. foreign-function-pointer is very similar to calling
make-pointer with symbol-name, with the following differences:

• The result of foreign-function-pointer is updated on image restart.

• foreign-function-pointer returns the same pointer for the same symbol-name each time, so modifying the
pointer will break it.

• foreign-function-pointer allocates only in the first call for each symbol. In contrast, make-pointer
allocates a pointer in each call.

• foreign-function-pointer keeps the pointer, so if you want to use it only once, make-pointer is better.

3. foreign-function-pointer is especially useful for creating pointers for passing the address of foreign callables to
foreign code in situations where the same address is used repeatedly.

See also

define-foreign-callable
make-pointer
3.1.1 Creating pointers

foreign-slot-names Function

Summary

Returns a list of the slot names in a foreign structure.

Package

fli

Signature

foreign-slot-names object => slot-names

Arguments

object⇓ A foreign object or a pointer to a foreign object.

Values

slot-names A list containing the slot names of object.

7 Function, Macro and Variable Reference

105

Description

The function foreign-slot-names returns a list containing the slot names of object, whose foreign type was defined by
define-c-struct. If object is not a structure, an error is signaled.

Examples

In the following example a structure with three slots is defined, an instance of the structure is made, and
foreign-slot-names is used to return a list of the slot names.

(fli:define-c-struct POS
 (x :int)
 (y :int)
 (z :int))

(setq my-pos (fli:allocate-foreign-object :type 'POS))

(fli:foreign-slot-names my-pos)

See also

2.2.3 Structures and unions
define-c-struct
foreign-slot-value

foreign-slot-offset Function

Summary

Returns the offset of a slot in a FLI object.

Package

fli

Signature

foreign-slot-offset object-or-type slot-name => offset

Arguments

object-or-type⇓ A foreign object, a pointer to a foreign object, or a foreign structure or union type.

slot-name⇓ A symbol or a list of symbols identifying the slot to be accessed, as described for
foreign-slot-value.

Values

offset The offset, in bytes, of the slot slot-name in the FLI object object.

Description

The function foreign-slot-offset returns the offset, in bytes, of the slot slot-name in object-or-type. The offset is the

7 Function, Macro and Variable Reference

106

number of bytes from the beginning of the object to the start of the slot. For example, the offset of the first slot in any FLI
object is 0.

Examples

The following example defines a structure, creates an instance of the structure pointed to by dir, and then finds the offset of
the third slot in the object.

(fli:define-c-struct compass
 (east :int)
 (west (:c-array :char 20))
 (north :int)
 (south :int))

(fli:foreign-slot-offset 'compass 'north)

(setq dir (fli:allocate-foreign-object :type 'compass))

(fli:foreign-slot-offset dir 'north)

See also

foreign-slot-value
foreign-slot-pointer
size-of

foreign-slot-pointer Function

Summary

Returns a pointer to a specified slot of an object.

Package

fli

Signature

foreign-slot-pointer object slot-name &key type object-type => pointer

Arguments

object⇓ A foreign object, or a pointer to a foreign object.

slot-name⇓ A symbol or a list of symbols identifying the slot to be accessed, as described for
foreign-slot-value.

type⇓ A foreign type.

object-type⇓ The FLI structure type that contains slot-name.

Values

pointer A pointer to the slot identified by slot-name.

7 Function, Macro and Variable Reference

107

Description

The function foreign-slot-pointer returns a foreign pointer to the slot slot-name in object.

If type is supplied, then foreign-slot-pointer assumes that the slot contains an object of that type, overriding the type
in the structure definition.

If object-type is supplied then foreign-slot-pointer assumes that object is of the that type and the compiler might be
able to optimize the access to the slot. If object-type is not supplied, then the object type is determined dynamically from
object.

Examples

In the following example a structure type called compass is defined. An instance of the structure is allocated using
allocate-foreign-object, pointed to by point1. Then foreign-slot-pointer is used to get a pointer, called
point2, to the second slot of the foreign object.

(fli:define-c-struct compass
 (west :int)
 (east :int))

(setq point1 (fli:allocate-foreign-object :type
 'compass))

(setq point2 (fli:foreign-slot-pointer point1 'east
 :type :int))

The :type keyword can be used to return the value stored in the slot as a different type, providing the type is compatible. In
the next example, point3 is set to be a pointer to the same address as point2, but it expects the value stored there to be a
boolean.

(setq point3 (fli:foreign-slot-pointer point1 'east
 :type '(:boolean :int)))

Using dereference the value can be set as an integer using point2 and read as a boolean using point3.

(setf (fli:dereference point2) 0)

(fli:dereference point3)

(setf (fli:dereference point2) 1)

(fli:dereference point3)

See also

2.2.3 Structures and unions
decf-pointer
incf-pointer
make-pointer
foreign-slot-value
foreign-slot-offset

7 Function, Macro and Variable Reference

108

foreign-slot-type Function

Summary

Returns the type of a specified slot of a foreign object.

Package

fli

Signature

foreign-slot-type object-or-type slot-name => type

Arguments

object-or-type⇓ A foreign object, a pointer to a foreign object, or a foreign structure or union type.

slot-name⇓ A symbol or a list of symbols identifying the slot whose type is to be returned. The value
is interpreted as described for foreign-slot-value.

Values

type The type of slot-name.

Description

The function foreign-slot-type returns the type of the slot slot-name in object-or-type.

Examples

In the following example two new types, east and west are defined. Then a new structure, compass, is defined, with two
slots. An instance of the structure is created, and foreign-slot-type is used to get the type of the first slot of the
structure.

(fli:define-c-typedef east (:boolean :int))

(fli:define-c-typedef west :long)

(fli:define-c-struct compass
 (x east)
 (y west))

(fli:foreign-slot-type 'compass 'x)

(setq dir (fli:allocate-foreign-object :type 'compass))

(fli:foreign-slot-type dir 'x)

See also

2.2.3 Structures and unions
foreign-slot-names
foreign-slot-value

7 Function, Macro and Variable Reference

109

foreign-slot-value Accessor

Summary

Returns the value of a slot in a foreign object.

Package

fli

Signature

foreign-slot-value object slot-name &key type object-type copy-foreign-object => value

setf (foreign-slot-value object slot-name &key type object-type copy-foreign-object) value => value

Arguments

object⇓ Either an instance of or a pointer to a FLI structure.

slot-name⇓ A symbol or a list of symbols identifying the slot to be accessed.

type⇓ A foreign type.

object-type⇓ The FLI structure type that contains slot-name. If this is passed, the compiler might be
able to optimize the access to the slot. If this is omitted, the object type is determined
dynamically from object.

copy-foreign-object⇓ One of t, nil or :error.

value The value of the slot slot-name in the FLI object object is returned.

Values

value The value of the slot slot-name in the FLI object object is returned.

Description

The accessor foreign-slot-value accesses and returns the value of a slot in a specified object. An error is signaled if the
slot is an aggregate type and copy-foreign-object is not supplied as t or nil. Use foreign-slot-pointer to access such
aggregate slots.

If slot-name is a symbol then it names the slot of object to be accessed. If slot-name is a list of symbols, then these symbols
name slots in nested structures starting with the outermost structure object, as in the inner/middle/outer example below.

If type is supplied, then foreign-slot-value assumes that the slot contains an object of that type, overriding the type in
the structure definition.

copy-foreign-object is only used when the type of the slot (or type if supplied) is an aggregate type, because objects of these
types cannot be converted to a Lisp value. If copy-foreign-object is t, foreign-slot-value makes a copy of the aggregate
object in the slot and returns the copy. If copy-foreign-object is nil, foreign-slot-value returns the aggregate object
directly. If copy-foreign-object is :error (the default) then foreign-slot-value signals an error.

If object-type is supplied then foreign-slot-value assumes that object is of the that type and the compiler might be able
to optimize the access to the slot. If object-type is not supplied, then the object type is determined dynamically from object.

7 Function, Macro and Variable Reference

110

The setf form of foreign-slot-value can be used to set the value of a slot in a structure, as shown in the example
below.

Compatibility note

64-bit integer types such as (:long :long), :int64 and :uint64 are now supported for type in foreign-slot-value

in 32-bit LispWorks. In 32-bit LispWorks 6.1 and earlier versions, these types could only be used by
define-foreign-function.

Examples

In the following example a foreign structure is defined, an instance of the structure is made with my-pos pointing to the
instance, and foreign-slot-value is used to set the y slot of the object to 10.

(fli:define-c-struct POS
 (x :int)
 (y :int)
 (z :int))

(setq my-pos (fli:allocate-foreign-object :type 'POS))

(setf (fli:foreign-slot-value my-pos 'y) 10)

The next forms both return the value of the y slot at my-pos, which is 10.

(fli:foreign-slot-value my-pos 'y)

(fli:foreign-slot-value my-pos 'y :object-type 'pos)

See section 9.7 Optimizing your code in the LispWorks® User Guide and Reference Manual in the LispWorks® User Guide
and Reference Manual section "Optimizing your code" for an example showing how to inline foreign slot access.

This example accesses a slot in nested structures:

(fli:define-c-struct inner
 (v1 :int)
 (v2 :int))

(fli:define-c-struct middle
 (i1 (:struct inner))
 (i2 (:struct inner)))

(fli:define-c-struct outer
 (m1 (:struct middle))
 (m2 (:struct middle)))

(fli:with-dynamic-foreign-objects
 ((obj (:struct outer)))
 (setf (fli:foreign-slot-value obj '(m1 i2 v1)) 99))

See also

2.2.3 Structures and unions
foreign-slot-pointer
foreign-slot-offset
dereference

7 Function, Macro and Variable Reference

111

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

with-foreign-slots

foreign-typed-aref Accessor

Summary

Accesses a foreign array and can be compiled to efficient code.

Package

fli

Signature

foreign-typed-aref type array index => value

setf (foreign-typed-aref type array index) value => value

Arguments

type⇓ A type specifier.

array⇓ A foreign pointer.

index⇓ A non-negative integer.

value An element of array.

Values

value An element of array.

Description

The accessor foreign-typed-aref accesses a foreign array and is compiled to efficient code when compiled at safety 0. It
corresponds to sys:typed-aref which accesses Lisp vectors.

type must evaluate to a supported element type for foreign arrays. In 32-bit LispWorks these types are double-float,
single-float, (unsigned-byte 32), (signed-byte 32), (unsigned-byte 16), (signed-byte 16),
(unsigned-byte 8), (signed-byte 8) and sys:int32. In 64-bit LispWorks type can also be
(unsigned-byte 64), (signed-byte 64) and sys:int64.

array is a foreign pointer to a FLI array. Memory can be allocated with:

(fli:allocate-foreign-object
 :type :double
 :nelems
 (ceiling byte-size
 (fli:size-of :double)))

to get sufficient alignment for any call to foreign-typed-aref.

In the case the memory is allocated by the operating system the best approach is to reference it from Lisp by a pointer type, to
avoid making a :c-array foreign type dynamically.

index should be a valid byte index for array. If index is declared to be of type fixnum then the compiler will optimize it

7 Function, Macro and Variable Reference

112

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm

slightly better. Some parts of the FLI (for example, allocate-foreign-object) assume fixnum sizes so it is best to use
fixnums only.

Notes

Efficient access to a Lisp vector object is also available. See sys:typed-aref in the LispWorks® User Guide and
Reference Manual.

See also

2 FLI Types
foreign-aref

foreign-type-equal-p Function

Summary

Determines whether two foreign types are the same underlying foreign type.

Package

fli

Signature

foreign-type-equal-p type1 type2 => result

Arguments

type1⇓ A foreign type.

type2⇓ A foreign type.

Values

result A boolean.

Description

The function foreign-type-equal-p returns true if type1 and type2 are the same underlying foreign type, and false
otherwise.

Examples

(fli:define-foreign-type aa () '(:signed :byte))
=>
aa

(fli:define-foreign-type bb () '(:signed :char))
=>
bb

(fli:foreign-type-equal-p 'aa 'bb)
=>
t

7 Function, Macro and Variable Reference

113

http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm

(fli:foreign-type-equal-p 'bb :char)
=>
nil

See also

2 FLI Types
define-foreign-type

foreign-type-error Condition Class

Summary

The class of errors signaled when an object does not match a foreign type.

Package

fli

Superclasses

type-error

Description

The condition class foreign-type-error is used for errors signaled when an object does not match a foreign type.

free-foreign-block Function

Summary

Frees a foreign block that was allocated by Lisp, in LispWorks for Macintosh.

Package

fli

Signature

free-foreign-block foreign-block

Arguments

foreign-block⇓ A Lisp-allocated foreign-block-pointer.

Description

The function free-foreign-block frees a foreign block that was allocated by Lisp.

foreign-block must be a result of a call to allocate-foreign-block. It is an error to call free-foreign-block on the

7 Function, Macro and Variable Reference

114

http://www.lispworks.com/documentation/HyperSpec/Body/e_tp_err.htm

result of foreign-block-copy or on a foreign block coming from foreign code.

Note that the function that was passed to allocate-foreign-block may still be invoked after free-foreign-block,
because the block may have been copied. See the discussion in 5.7.3 Scope of invocation.

It is an error to call free-foreign-block more than once on the same foreign-block.

free-foreign-block has no useful return value.

Notes

1. To free a foreign block that was allocated by foreign code, use foreign-block-release.

2. free-foreign-block is implemented in LispWorks for Macintosh only.

See also

allocate-foreign-block
with-foreign-block
5.7 Block objects in C (foreign blocks)

free-foreign-object
free Functions

Summary

Deallocates the space in memory pointed to by a pointer.

Package

fli

Signatures

free-foreign-object pointer => null-pointer

free pointer => null-pointer

Arguments

pointer⇓ A pointer to the object to de-allocate.

Values

null-pointer A pointer with address zero.

Description

The free-foreign-object function deallocates the space in memory pointed to by pointer, which frees the memory for
other uses. The address of pointer is the start of a block of memory previously allocated by allocate-foreign-object.

If pointer is a null pointer then free-foreign-object takes no action.

The function free is a synonym for free-foreign-object.

7 Function, Macro and Variable Reference

115

Examples

In the following example a boolean type is defined and an instance is created with memory allocated using
allocate-foreign-object. The function free-foreign-object is then used to free up the memory used by the
boolean.

(fli:define-c-typedef BOOL (:boolean :int))

(setq point (fli:allocate-foreign-object :type 'BOOL))

(fli:free-foreign-object point)

See also

allocate-foreign-object
1.4 An example of dynamic memory allocation
3.1.3 Allocation of FLI memory

get-embedded-module Function

Summary

Gets a foreign module from a file and sets up an embedded dynamic module.

Package

fli

Signature

get-embedded-module name filename

Arguments

name⇓ A symbol.

filename⇓ A pathname specifier for a file containing a dynamic foreign module.

Description

The function get-embedded-module gets the foreign module in filename and sets up an embedded dynamic module named
name.

Notes

1. get-embedded-module is called at load time and has no effect except to set up the embedded module. To actually use
the code in the module, you need to call install-embedded-module at run time.

2. The effect of get-embedded-module persists after save-image and deliver.

3. The module should not have dependencies on other non-standard modules, otherwise install-embedded-module
may fail to install it.

7 Function, Macro and Variable Reference

116

4. To incorporate an embedded module into a fasl file (that is, to load it at compile time) you need to use both
get-embedded-module-data (at compile time) and setup-embedded-module (at load time), instead of
get-embedded-module.

5. get-embedded-module does not return a useful value.

See also

install-embedded-module
get-embedded-module-data
setup-embedded-module
5.6 Incorporating a foreign module into a LispWorks image

get-embedded-module-data Function

Summary

Returns a foreign module as a Lisp object suitable for use at run time, possibly via a fasl file.

Package

fli

Signature

get-embedded-module-data filename => data

Arguments

filename⇓ A pathname specifier for a file containing a dynamic foreign module.

Values

data A Lisp object containing the data of the foreign module.

Description

The function get-embedded-module-data returns the foreign module in filename as a Lisp object suitable as argument to
setup-embedded-module, but also externalizable, that is the compiler can put it in a fasl file.

Notes

1. get-embedded-module-data is useful when you need to incorporate a foreign dynamic module in a fasl file, which is
itself useful when the fasl is loaded on the run time computer. In the usual situation when the fasl is loaded on the same
computer where it is compiled, get-embedded-module is more convenient, and replaces both
get-embedded-module-data and setup-embedded-module.

2. To incorporate the module in a fasl file, get-embedded-module-data must be called at compile time, which is
typically done either by doing it at read time with #. or using a macro. The result is then used as argument to
setup-embedded-module at load time. Examples of both approaches are shown below.

3. To actually use the code in the module, install-embedded-module must be called at run time with the name of the
module (my-embedded-module-name in the examples below).

7 Function, Macro and Variable Reference

117

4. The module should not have dependencies on other non-standard modules, otherwise install-embedded-module
may fail to install it.

Examples

Calling get-embedded-module-data at read time with #. :

(setup-embedded-module 'my-embedded-module-name
 #.(get-embedded-module-data
 (my-locate-the-foreign-module)))

Calling get-embedded-module-data via a macro. Note that there is no backquote or quote, so the code is executed by by
the compiler:

(defmacro my-get-embedded-module-data ()
 (let ((pathname (my-locate-the-foreign-module)))
 (get-embedded-module-data pathname))

(setup-embedded-module 'my-embedded-module-name
 (my-get-embedded-module-data))

See also

install-embedded-module
get-embedded-module
setup-embedded-module
5.6 Incorporating a foreign module into a LispWorks image

incf-pointer Function

Summary

Increases the address held by a pointer.

Package

fli

Signature

incf-pointer pointer &optional delta => pointer

Arguments

pointer⇓ A FLI pointer.

delta⇓ An integer. The default value is 1.

Values

pointer The pointer passed.

7 Function, Macro and Variable Reference

118

Description

The function incf-pointer increases the address held by pointer. If delta is not given the address is increased by the size
of the type pointed to by pointer. The address can be increased by a multiple of the size of the type by specifying a delta. If
the size of the type is 0 then an error is signalled.

The function incf-pointer is often used to move a pointer through an array of values.

Examples

In the following example an array with 10 entries is defined. A copy of the pointer to the array is made, and is incremented
and decremented.

(setq array-obj
 (fli:allocate-foreign-object :type :int
 :nelems 10
 :initial-contents '(0 1 2 3 4 5 6 7 8 9)))

(setq point1 (fli:copy-pointer array-obj))

(dotimes (x 9)
 (print (fli:dereference point1))
 (fli:incf-pointer point1))

(dotimes (x 9)
 (fli:decf-pointer point1)
 (print (fli:dereference point1)))

See also

decf-pointer
3.4 An example of dynamic pointer allocation

install-embedded-module Function

Summary

Installs an embedded dynamic module.

Package

fli

Signature

install-embedded-module name &key delay-delete

Arguments

name⇓ A symbol.

delay-delete⇓ A boolean.

7 Function, Macro and Variable Reference

119

Description

The function install-embedded-module installs the embedded dynamic module name.

name must be a name of an embedded dynamic module that was set up either by get-embedded-module or
setup-embedded-module.

install-embedded-module installs the module, which means making its code available to be used in Lisp, as if
register-module was called with the original module.

The module is written to a temporary file that is deleted by LispWorks.

Note: You should consult LispWorks Support before using delay-delete.

delay-delete controls the time of deletion of the temporary file that is created by install-embedded-module. It defaults to
the value of *install-embedded-module-delay-delete*, which defaults to nil. If delay-delete is nil, the
temporary file is deleted during the call to install-embedded-module. If delay-delete is non-nil, the file is deleted only
when LispWorks exists. On Windows it always behave as if delay-delete is non-nil.

Deleting the file immediately is better in most cases, because it means that the file is not left in the filesystem if LispWorks
does not exit cleanly (for example if POSIX kill is used). However, some debugging code may try to find the temporary
file, in which case you can delay the deletion.

Notes

1. install-embedded-module must be called at run time, normally during the initialization of the application.

2. The effect of install-embedded-module does not persist after save-image or deliver.

3. install-embedded-module can be called repeatedly with the same name. The subsequent calls in the same
invocation of the application do not have any effect.

4. install-embedded-module does not return a useful value.

See also

get-embedded-module
get-embedded-module-data
setup-embedded-module
install-embedded-module-delay-delete
5.6 Incorporating a foreign module into a LispWorks image

install-embedded-module-delay-delete Variable

Summary

Default for the keyword delay-delete in install-embedded-module.

Package

fli

Initial Value

nil

7 Function, Macro and Variable Reference

120

Description

The variable *install-embedded-module-delay-delete* is used as the default value for the keyword delay-delete in
install-embedded-module. See install-embedded-module for more details.

See also

install-embedded-module

locale-external-formats Variable

Summary

Provides a mapping from locale names to encodings.

Package

fli

Initial Value

Not specified.

Description

The variable *locale-external-formats* contains the mapping from locale names to external formats that
set-locale uses to set the correct defaults for FLI. The value is an alist with elements of the form:

(locale multi-byte-ef wide-character-ef)

The locale names are given as strings. If the first character of the string is #*, then that entry matches any locale having the
rest of the string as a suffix. If the last character of the string is #*, then that entry matches any locale having the rest of the
string as a prefix. Either external format may be given as nil, in which case the corresponding foreign type cannot be used
without specifying an external format.

Notes

locale-external-formats is used only on non-Windows platforms. On Windows, the external formats are based on
the Windows Code Page.

See also

:ef-mb-string
:ef-wc-string
set-locale

7 Function, Macro and Variable Reference

121

make-integer-from-bytes Function

Summary

Converts foreign bytes back to a Lisp integer.

Package

fli

Signature

make-integer-from-bytes pointer length => integer

Arguments

pointer⇓ A foreign pointer.

length⇓ An integer.

Values

integer⇓ An integer.

Description

The function make-integer-from-bytes converts length bytes starting at pointer into the Lisp integer integer. The bytes
and length must have been generated by with-integer-bytes or convert-integer-to-dynamic-foreign-object.

See also

5.3 Lisp integers
with-integer-bytes
convert-integer-to-dynamic-foreign-object

make-pointer Function

Summary

Creates a pointer to a specified address.

Package

fli

Signature

make-pointer &key address type pointer-type symbol-name functionp module encoding => pointer

7 Function, Macro and Variable Reference

122

Arguments

address⇓ The address pointed to by the pointer to be created.

type⇓ The type of the object pointed to by the pointer to be created.

pointer-type⇓ The type of the pointer to be made.

symbol-name⇓ A string or a symbol.

functionp⇓ A boolean.

module⇓ A symbol or string naming a module, or nil.

encoding⇓ One of :source, :object, :lisp or :dbcs.

Values

pointer⇓ A pointer to address.

Description

The function make-pointer creates a pointer of a specified type pointing to a given address address, or optionally to a
function or foreign callable.

symbol-name is either a string containing the name of a foreign symbol defined in a DLL, or a string or symbol naming a
foreign callable defined by define-foreign-callable.

Either address or symbol-name must be supplied, otherwise make-pointer signals an error.

Note that in many cases, especially when :symbol-name is used with a symbol defined by define-foreign-callable,
foreign-function-pointer would be better than using make-pointer with :symbol-name.

If type is supplied, then it is used as the FLI type that pointer points to. Alternatively, if pointer-type is supplied, then it must
be a FLI pointer type and it is used as the pointer type of pointer. An error is signalled if both type and pointer-type are
supplied.

If type or pointer-type are not supplied, then functionp can be used. If functionp is t, then pointer is a pointer to type
:function. This is the default value. If functionp is nil, then pointer is a pointer to type :void.

encoding controls how symbol-name is processed. The values are interpreted like the encode argument of
define-foreign-callable. The default value of encoding is :source if symbol-name is a string and :lisp if symbol-
name is a symbol.

In the case of a pointer to a foreign callable or foreign function, module can be supplied to ensure that the pointer points to
the function in the correct DLL if there are other DLLs containing functions with the same name. module is processed as by
define-foreign-function.

Examples

In the following example a module is defined, and the variable setpoint is set equal to a pointer to a function in the
module.

(fli:register-module :user-dll :real-name "user32")

(setq setpoint
 (fli:make-pointer :symbol-name "SetCursorPos"
 :module :user-dll)

7 Function, Macro and Variable Reference

123

See also

3 FLI Pointers
4.1 Foreign callables and foreign functions
copy-pointer
define-foreign-callable
foreign-function-pointer
register-module
with-coerced-pointer

module-unresolved-symbols Function

Summary

Returns foreign symbol names that cannot be resolved.

Package

fli

Signature

module-unresolved-symbols &key module => list

Arguments

module⇓ nil, :all, or a string. The default is :all.

Values

list⇓ A list of strings.

Description

The function module-unresolved-symbols returns a list of foreign symbol names, each of which cannot be resolved in
the currently known modules.

If module is nil, then list includes only those names not associated with a module.

If module is :all, then list includes the unresolved names in all modules and those not associated with a module.

If module is a string, then it names a module and list contains only the unresolved symbols associated with that module.

See also

5.5.1.1 Testing whether a function is defined
register-module

7 Function, Macro and Variable Reference

124

null-pointer Variable

Summary

A null pointer.

Package

fli

Initial Value

The result of calling (make-pointer :address 0 :type :void).

Description

The variable *null-pointer* contains a (:pointer :void) with address 0.

This provides a simple way to pass a null pointer when needed.

Examples

(fli:pointer-address fli:*null-pointer*)
=>
0

(fli:null-pointer-p fli:*null-pointer*)
=>
T

See also

pointer-address
null-pointer-p
:pointer

null-pointer-p Function

Summary

Tests a pointer to see if it is a null pointer.

Package

fli

Signature

null-pointer-p pointer => result

7 Function, Macro and Variable Reference

125

Arguments

pointer⇓ A FLI pointer.

Values

result⇓ A boolean.

Description

The function null-pointer-p is used to determine if a pointer is a null pointer. A null pointer is a pointer pointing to
address 0.

If pointer is a null pointer (that is, a pointer pointing to address 0) then result is true, otherwise null-pointer-p returns
false.

Examples

In the following example a pointer to an :int is defined, and tested with null-pointer-p. The pointer is then freed,
becoming a null pointer, and is once again tested using null-pointer-p.

(setq point (fli:allocate-foreign-object :type :int))

(fli:null-pointer-p point)

(fli:free-foreign-object point)

(fli:null-pointer-p point)

See also

3.2 Pointer testing functions
5.5.1.1 Testing whether a function is defined
null-pointer
pointer-address
pointer-eq

pointer-address Function

Summary

Returns the address of a pointer.

Package

fli

Signature

pointer-address pointer => address

7 Function, Macro and Variable Reference

126

Arguments

pointer⇓ A FLI pointer.

Values

address A non-negative integer.

Description

The function pointer-address returns the address of pointer as an integer.

Examples

In the following example a pointer is defined, and its address is returned using pointer-address.

(setq point (fli:allocate-foreign-object :type :int))

(fli:pointer-address point)

See also

3.2 Pointer testing functions
null-pointer-p
pointer-eq

pointer-element-size Function

Summary

Returns the size in bytes of a foreign object or a foreign type.

Package

fli

Signature

pointer-element-size pointer-or-type => size

Arguments

pointer-or-type⇓ A FLI pointer to a foreign object or the name of a FLI pointer type.

Values

size⇓ A non-negative integer.

Description

The function pointer-element-size returns the size, in bytes, of the object or type specified.

If pointer-or-type is an FLI pointer, size is the size, in bytes, of the object pointed to by pointer-or-type.

7 Function, Macro and Variable Reference

127

If pointer-or-type is the name of a FLI pointer type, size is the size, in bytes, of the elements of that type.

Examples

In the following example a pointer to an integer is created. Then the size in bytes of the integer is returned using
pointer-element-size.

(setq point (fli:allocate-foreign-object :type :int))

(fli:pointer-element-size point)

See also

3.2 Pointer testing functions
pointer-element-type
size-of

pointer-element-type Function

Summary

Returns the type of the foreign object pointed to by a FLI pointer.

Package

fli

Signature

pointer-element-type pointer-or-type => type

Arguments

pointer-or-type⇓ A FLI pointer to a foreign object or the name of a FLI pointer type.

Values

type⇓ The name of a FLI pointer type.

Description

The function pointer-element-type returns the type of the foreign object specified, or the element type of the foreign
type specified.

If pointer-or-type is a FLI pointer, type is the type of the foreign object pointed to by pointer-or-type.

If pointer-or-type is the name of a FLI pointer type, type is the type of the elements of that FLI pointer type.

Examples

In the following example a pointer to an integer is defined, and pointer-element-type is used to confirm that the pointer
points to an integer.

7 Function, Macro and Variable Reference

128

(setq point (fli:allocate-foreign-object :type :int))

(fli:pointer-element-type point)

In the next example a new type, happy, is defined. The pointer point is set to point to an instance of happy, and
pointer-element-type is used to find the type of the object pointed to by point.

(fli:define-c-typedef happy :long)

(setq point (fli:allocate-foreign-object :type 'happy))

(fli:pointer-element-type point)

See also

3.2 Pointer testing functions
foreign-slot-type
pointer-element-size
pointer-element-type-p

pointer-element-type-p Function

Summary

Tests whether a FLI pointer matches a given element type.

Package

fli

Signature

pointer-element-type-p pointer type => result

Arguments

pointer⇓ A FLI pointer to a foreign object.

type⇓ A foreign type.

Values

result A boolean.

Description

The function pointer-element-type-p returns true if the element type of the foreign object pointed to by pointer has the
same underlying type as type.

Examples

7 Function, Macro and Variable Reference

129

(setq point (fli:allocate-foreign-object :type :int))
=>
=> #<Pointer to type :INT = #x007F3970>

(fli:pointer-element-type-p point :signed)
->
t

See also

3.2 Pointer testing functions
pointer-element-type

pointer-eq Function

Summary

Test whether two pointers point to the same memory address.

Package

fli

Signature

pointer-eq pointer1 pointer2 => boolean

Arguments

pointer1⇓ A FLI pointer.

pointer2⇓ A FLI pointer.

Values

boolean A boolean.

Description

The function pointer-eq tests whether pointer1 points to the same address as pointer2 and returns t if they do, and nil if
they do not.

Examples

In the following example a pointer, point1, is defined, and point2 is set equal to it. Both are then tested to see if they are
equal to each other using pointer-eq. Then point2 is defined to point to a different object, and the two pointers are tested
for equality again.

(setq point1 (fli:allocate-foreign-object :type :int))

(setq point2 point1)

(fli:pointer-eq point1 point2)

7 Function, Macro and Variable Reference

130

(setq point2 (fli:allocate-foreign-object :type :int))

(fli:pointer-eq point1 point2)

See also

3.2 Pointer testing functions
null-pointer-p
pointerp

pointerp Function

Summary

Tests whether an object is a pointer or not.

Package

fli

Signature

pointerp pointer => result

Arguments

pointer⇓ An object that may be a FLI pointer.

Values

result⇓ A boolean.

Description

The function pointerp tests whether the argument pointer is a pointer.

result is t if pointer is a pointer, otherwise nil is returned.

Examples

In the following example a pointer, point, is defined, and an object which is not a pointer is defined. Both are tested using
pointerp.

(setq point (fli:allocate-foreign-object :type :int))

(setq not-point 7)

(fli:pointerp point)

(fli:pointerp not-point)

7 Function, Macro and Variable Reference

131

See also

3.2 Pointer testing functions
null-pointer-p
pointer-address
pointer-eq

pointer-pointer-type Function

Summary

Returns the pointer type of a FLI pointer.

Package

fli

Signature

pointer-pointer-type pointer => pointer-type

Arguments

pointer⇓ A FLI pointer.

Values

pointer-type The pointer type of pointer.

Description

The function pointer-pointer-type returns the pointer type of the foreign pointer pointer.

Examples

(setq point (fli:allocate-foreign-object :type :int))
=>
#<Pointer to type :INT = #x007F3DF0>

(fli:pointer-pointer-type point)
=>
(:POINTER :INT)

(fli:free-foreign-object point)
=>
#<Pointer to type :INT = #x00000000>

See also

3.3 Pointer dereferencing and coercing
make-pointer

7 Function, Macro and Variable Reference

132

print-collected-template-info Function

Summary

Prints the FLI Template information in the image.

Package

fli

Signature

print-collected-template-info &key output-stream => nil

Arguments

output-stream⇓ An output stream designator. The default is nil, meaning standard output.

Description

The FLI converters require pieces of compiled code known as FLI templates, and sometimes your delivered application will
need extra templates not included in LispWorks as shipped.

The function print-collected-template-info prints the information about FLI templates that has been collected.
These must be compiled and loaded into your application. The output is printed to output-stream.

See the Delivery User Guide for further details.

See also

start-collecting-template-info

print-foreign-modules Function

Summary

Prints the foreign modules loaded into the image by register-module.

Package

fli

Signature

print-foreign-modules &optional stream verbose => nil

Arguments

stream⇓ An output stream.

verbose⇓ A generalized boolean.

7 Function, Macro and Variable Reference

133

Description

The function print-foreign-modules prints a list of the foreign modules loaded via register-module, to the stream
stream.

The default value of stream is the value of *standard-output*.

verbose is ignored.

See also

register-module

register-module Function

Summary

Informs LispWorks of the presence of a dynamic library.

Package

fli

Signature

register-module name &key connection-style lifetime real-name file-name dlopen-flags => name

Arguments

name⇓ A symbol or string specifying the Lisp name the module will be registered under.

connection-style⇓ A keyword determining when the connection to the dynamic library is made. One of
:automatic , :manual or :immediate. The default value is :automatic.

lifetime⇓ A keyword specifying the lifetime of the connection. One of :indefinite or
:session. The default value is :indefinite.

real-name⇓ Deprecated. Use file-name instead.

file-name⇓ A pathname designator or nil.

dlopen-flags⇓ Controls use of dlopen on non-Windows platforms. One of t (the default), nil,
:local-now, :global-now, :global-lazy, :local-lazy, or a fixnum.

Values

name A symbol or string specifying the Lisp name the module will be registered under.

Description

The function register-module explicitly informs LispWorks of the presence of a DLL or shared object file, referred to
here as a dynamic library. Functions such as make-pointer and define-foreign-function have a module keyword
which can be used to specify which module the function refers to.

The main use of modules is to overcome ambiguities that can arise when two different dynamic libraries have functions with
the same name.

7 Function, Macro and Variable Reference

134

http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm

If an application is delivered after calling register-module, then the application attempts to reload the module on startup
but does not report any errors. Therefore it is strongly recommended that you call register-module during initialization of
your application, rather than at compile time or build time. Loading the module at run time allows you to:

• Report loading errors to the user or application error log.

• Compute the path (as described below), if needed.

• Make the loading conditional, if needed.

You should compute and supply the appropriate full path if possible.

name is used for explicit look up from the :module keyword of functions such as define-foreign-function. If name is
a symbol, then file-name should also be supplied to provide a filename. file-name defaults to the deprecated argument real-
name, which defauls to nil. If file-name is nil then name must be a string that specifies the actual name of the dynamic
library to connect to.

The naming convention for the module name can contain the full pathname for the dynamic library. For example, a pathname
such as:

#P"C:/MYPRODUCT/LIBS/MYLIBRARY.DLL"

is specified as:

"C:\\MYPRODUCT\\LIBS\\MYLIBRARY.DLL"

On Windows, if the module is declared without an extension, ".DLL" is automatically appended to the name. To declare a
name without an extension it must end with the period character ("."). On other platforms, you should provide the extension,
since there is more than one library format. Typical would be .so on Linux, x86/x64 Solaris or FreeBSD and .dylib on
macOS.

If a full pathname is not specified for the module, then it is searched for.

On Windows the following directories (in the given order) are searched:

1. The directory of the executable.

2. The Windows system directory (as specified by GetSystemDirectory).

3. The 16-bit system directory.

4. The Windows directory (as specified by GetWindowsDirectory).

5. The current directory. This step can be made to happen earlier, though this is considered less safe as described in the
Microsoft documentation.

6. Directories specified by the PATH environment variable.

The simplest approach is usually to place the DLL in the same directory as the LispWorks executable or application.
However if you really need different directories then be sure to call register-module at run time with the appropriate
pathname.

On Linux, FreeBSD and Solaris the search is conducted in this order:

1. Directories on the user's LD_LIBRARY_PATH environment variable.

2. The list of libraries known to the operating system (for example, in /etc/ld.so.cache on Linux).

3. /usr/lib, followed by /lib.

7 Function, Macro and Variable Reference

135

On macOS, the search is conducted in this order:

1. Directories on the user's LD_LIBRARY_PATH environment variable.

2. Directories on the user's DYLD_LIBRARY_PATH environment variable.

3. ~/lib

4. /usr/local/lib

5. /usr/lib

If connection-style is :automatic then the system automatically connects to a dynamic library when it needs to resolve
currently undefined foreign symbols.

If connection-style is :manual then the system only connects to the dynamic library if the symbol to resolve is explicitly
marked as coming from this module via the :module keyword of functions such as define-foreign-function.

If connection-style is :immediate then the connection to the dynamic library is made immediately. This checks that the
library can actually be loaded before its symbols are actually needed: an error is signalled if loading fails.

If lifetime is :session then the module is disconnected when Lisp starts up.

You should load only libraries of the correct architecture into LispWorks. You will need to obtain a 32-bit dynamic library for
use with 32-bit LispWorks and similarly you need a 64-bit dynamic library for use with 64-bit LispWorks. (If you build the
dynamic library, pass -m32 or -m64 as appropriate to cc.) You can conditionalize the argument to register-module as in
the example below.

Note: On Linux, you may see a spurious "No such file or directory" error message when loading a dynamic library of the
wrong architecture. The spurious message might be localized.

Note: static libraries are not supported. For example, on Linux evaluating this form:

(fli:register-module "libc.a"
 :real-name "/usr/lib/libc.a"
 :connection-style :immediate)

would result in an error like this:

Could not register handle for external module "libc"
/usr/lib/libc.a : invalid ELF header

The problem is that libc.a is a static library. Instead, do:

(fli:register-module "libc.so"
 :real-name "libc.so.6"
 :connection-style :immediate)

Note that :real-name is given a relative path in this case, because libc is a standard library on Linux and it is best to let
the operating system locate it.

dlopen-flags has an effect only on non-Windows platforms. It controls the value that is passed to dlopen as second argument
when the module is connected.

The keyword values of dlopen-flags correspond to combinations of RTLD_* constants (see /usr/include/dlfcn.h). The
values t and nil mean the same as :local-lazy.

A fixnum value means pass this value dlopen-flags to dlopen without checking. It is the responsibility of the caller to get it
right in this case.

7 Function, Macro and Variable Reference

136

Compatibility note:

In LispWorks 7.1 and earlier versions, dlopen-flags defaults to nil on macOS, which caused it to use the older interfaces
instead of dlopen. Since LispWorks 8.0, this is no longer supported.

Notes

1. It is strongly recommended that you call register-module during initialization of your application, rather than at
compile time or build time.

2. When developing with foreign code in LispWorks, the utilities provided in the Editor are useful - see 9.4.2 Compiling
and Loading Foreign Code with the Editor.

Examples

In the following example on Windows, the user32 DLL is registered, and then a foreign function called set-cursor-pos

is defined to explicitly reference the SetCursorPos function in the user32 DLL.

(fli:register-module :user-dll :real-name "user32")

(fli:define-foreign-function (set-cursor-pos
 "SetCursorPos")
 ((x :long)
 (y :long))
 :module :user-dll)

This example on Linux loads the shared library even though its symbols are not yet needed. An error is signalled if loading
fails:

(fli:register-module "libX11.so"
 :connection-style :immediate)

This example loads a module from the same directory as the Lisp executable, by executing this code at run time:

(fli:register-module
 modulename
 :file-name
 (merge-pathnames "modulefilename.dylib"
 (lisp-image-name)))

In this last example a program which runs in both 32-bit LispWorks and 64-bit LispWorks loads the correct library for each
architecture:

(fli:register-module #+:lispworks-32bit "mylib32"
 #+:lispworks-64bit "mylib64")

See also

5.6 Incorporating a foreign module into a LispWorks image
connected-module-pathname
define-foreign-function
make-pointer
module-unresolved-symbols
print-foreign-modules

7 Function, Macro and Variable Reference

137

replace-foreign-array Function

Summary

Copies the contents of one foreign or Lisp array into another.

Package

fli

Signature

replace-foreign-array to from &key start1 start2 end1 end2 allow-sign-mismatch => to

Arguments

to⇓ A foreign array, foreign pointer or a Lisp array.

from⇓ A foreign array, foreign pointer or a Lisp array.

start1⇓, start2⇓, end1⇓, end2⇓
Integers.

allow-sign-mismatch⇓ A boolean, default value nil.

Values

to A foreign array, foreign pointer or a Lisp array.

Description

The function replace-foreign-array copies the contents of the array specified by from into another array specified by
to. The arrays element types must have the same size and both be either signed or unsigned. When allow-sign-mismatch is
nil (the default), the array element types must also match for sign, that is they must be either both signed or both unsigned.
When allow-sign-mismatch is non-nil, the array element types do not need to match.

The argument to is destructively modified by copying successive elements into it from from. Elements of the subsequence of
from bounded by start2 and end2 are copied into the subsequence of to bounded by start1 and end1. If these subsequences
are not of the same length, then the shorter length determines how many elements are copied; the extra elements near the end
of the longer subsequence are not involved in the operation.

Each of to and from can be one of the following:

A Lisp array The start and end are handled in the same way as Common Lisp sequence functions. The array
must be "raw", which means either an integer array of length 8, 16, 32 or 64 bits, or an array of
one of cl:base-char, lw:bmp-char, cl:single-float and cl:double-float. For
matching with the other argument, the latter are considered as "unsigned", with size 8, 16, 32
and 64 bits respectively. Note that arrays with element type cl:character are not allowed.

A foreign array The start and end are handled in the same way as Common Lisp sequence functions.

A pointer to a foreign array

The start and end are handled in the same way as Common Lisp sequence functions.

7 Function, Macro and Variable Reference

138

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

A pointer to any other foreign object

In this case, the pointer is assumed to point to an array of such objects. Start and end are used as
indices into that array, but without any bounds checking.

Compatibility note:

In LispWorks 6.1 and earlier versions you can use an array of lw:simple-char, that is lw:text-string, because
lw:simple-char was limited to the range that is now lw:bmp-char and had width of 16.

In LispWorks 7.0 and later versions lw:simple-char is a synonym for cl:character, and thus arrays of
lw:simple-char (that is, lw:text-string) cannot be used in replace-foreign-array.

Examples

This example demonstrates copying from a foreign pointer to a Lisp array.

An initial array filled with 42:

(setq lisp-array
 (make-array 10
 :element-type '(unsigned-byte 8)
 :initial-element 42))

A foreign pointer to 10 consecutive unsigned chars:

(setq foreign-array
 (fli:allocate-foreign-object
 :type '(:unsigned :char)
 :nelems 10
 :initial-contents '(1 2 3 4 5 6 7 8 9 10)))

Copy some of the unsigned char into the Lisp array. Without :start2 and :end2, only the first unsigned char would be
copied:

(fli:replace-foreign-array
 lisp-array foreign-array
 :start1 3
 :start2 5 :end2 8)
=>
#(42 42 42 6 7 8 42 42 42 42)

This example demonstrates copying from a foreign array to a Lisp array.

A pointer to a foreign array of 10 unsigned chars:

(setq foreign-array
 (fli:allocate-foreign-object
 :type
 '(:c-array (:unsigned :char) 10)))

(dotimes (i 10)
 (setf (fli:foreign-aref foreign-array i) (1+ i)))

Copy part of the foreign array into the Lisp array:

(fli:replace-foreign-array
 lisp-array foreign-array :start1 7)

7 Function, Macro and Variable Reference

139

http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

=>
#(42 42 42 6 7 8 42 1 2 3)

See also

allocate-foreign-object
copy-pointer
make-pointer
replace-foreign-object

replace-foreign-object Function

Summary

Copies the contents of one foreign object into another.

Package

fli

Signature

replace-foreign-object to from &key nelems => pointer

Arguments

to⇓ A foreign object or a pointer to a foreign object.

from⇓ A foreign object or a pointer to a foreign object.

nelems⇓ An integer.

Values

pointer A pointer to the object specified by from.

Description

The function replace-foreign-object copies the contents of the foreign object specified by from into another foreign
object specified by to. Block copying on an array of elements can also be performed by supplying the number of elements to
copy using nelems.

Examples

In the following object two sets of ten integers are defined. The object from-obj contains the integers from 0 to 9. The
object to-obj contains random values. The replace-foreign-object function is then used to copy the contents of
from-obj into to-obj.

(setf from-obj
 (fli:allocate-foreign-object
 :type :int
 :nelems 10
 :initial-contents
 '(0 1 2 3 4 5 6 7 8 9)))

7 Function, Macro and Variable Reference

140

(setf to-obj
 (fli:allocate-foreign-object
 :type :int
 :nelems 10))

(fli:replace-foreign-object to-obj from-obj :nelems 10)

See also

5.2.4 Modifying a string in a C function
allocate-foreign-object
fill-foreign-object
copy-pointer
make-pointer
replace-foreign-array

set-locale Function

Summary

Sets the C locale and the default for FLI string conversions.

Package

fli

Signature

set-locale &optional locale => c-locale

Arguments

locale⇓ A string, the locale name.

Values

c-locale A string naming the C locale, or nil..

Description

The function set-locale can be called to set the C locale; if you set the locale in any other way, then Lisp might not do the
right thing when passing strings and characters to C. It calls setlocale to tell the C library to switch and then calls
set-locale-encodings to tell the FLI what conversions to do when passing strings and characters to C. locale should be
a locale name; if not passed, it defaults according to the OS conventions.

If set-locale fails to set the C locale, a warning is signaled, nil is returned and the FLI conversion defaults are not
modified.

Examples

On a Windows system:

(fli:set-locale "English_UK")

7 Function, Macro and Variable Reference

141

=>
"English_United Kingdom.1252"

On a Linux system:

(fli:set-locale)
=>
"en_US"

See also

convert-from-foreign-string
convert-to-foreign-string
:ef-mb-string
:ef-wc-string
locale-external-formats
set-locale-encodings
with-foreign-string

set-locale-encodings Function

Summary

Tells the FLI what default conversions to use when passing strings and characters to C.

Package

fli

Signature

set-locale-encodings mb wc => mb

Arguments

mb⇓ An external format specification.

wc⇓ An external format specification, or nil.

Values

mb An external format specification.

Description

The function set-locale-encodings changes the default encodings used by those FLI functions and types which convert
strings and characters and accept an :external-format argument.

mb is set as the external format for multi-byte encodings.

If wc is non-nil, then it is set as the external format for wide-character encodings, such as :ef-wc-string.

set-locale calls set-locale-encodings after successfully setting the C locale.

7 Function, Macro and Variable Reference

142

See also

convert-from-foreign-string
convert-to-foreign-string
:ef-mb-string
:ef-wc-string
set-locale
with-foreign-string

setup-embedded-module Function

Summary

Sets up an embedded dynamic module.

Package

fli

Signature

setup-embedded-module name data

Arguments

name⇓ A symbol.

data⇓ A Lisp object containing the data of the foreign module.

Description

The function setup-embedded-module sets up an embedded dynamic module named name using data.

data must be a result of a call to get-embedded-module-data.

Notes

1. setup-embedded-module is called at load time and has no effect except to set up the embedded module. To actually
use the code in the module, you need to call install-embedded-module at run time.

2. The effect of setup-embedded-module persists after save-image and deliver.

3. See get-embedded-module-data for more discussion and examples.

4. setup-embedded-module does not return a useful value.

See also

install-embedded-module
get-embedded-module-data
get-embedded-module
5.6 Incorporating a foreign module into a LispWorks image

7 Function, Macro and Variable Reference

143

size-of Function

Summary

Returns the size in bytes of a foreign type.

Package

fli

Signature

size-of type-name => size

Arguments

type-name⇓ A foreign type whose size is to be determined.

Values

size The size of the foreign type type-name in bytes.

Description

The function size-of returns the size in bytes of the foreign language type named by type-name.

Examples

This example returns the size of the C integer type (usually 4 bytes on supported platforms):

(fli:size-of :int)

This example returns the size of a C array of 10 integers:

(fli:size-of '(:c-array :int 10))

The function size-of can also be used to determine the size of a structure:

(fli:define-c-struct POS
 (x :int)
 (y :int)
 (z :int))

(fli:size-of 'POS)

See also

2 FLI Types
allocate-foreign-object
free-foreign-object

7 Function, Macro and Variable Reference

144

start-collecting-template-info Function

Summary

Nullifies the FLI Template information in the image.

Package

fli

Signature

start-collecting-template-info => nil

Description

The FLI converters require pieces of compiled code known as FLI templates, and sometimes your delivered application will
need extra templates not included in LispWorks as shipped.

The function start-collecting-template-info throws away any information about FLI templates that has been
collected. Call it when you want to start collecting to create a definitive set of template information.

See the Delivery User Guide for further details.

See also

print-collected-template-info

use-sse2-for-ext-vector-type Variable

Summary

32-bit x86 specific: control whether to pass/receive vector type arguments/results using SSE2.

Package

fli

Initial Value

t on macOS, nil on other platforms.

Description

On 32-bit x86 platforms, the variable *use-sse2-for-ext-vector-type* controls whether the code that is generated by
foreign interface definitions that pass or receive vector type arguments or results (see 2.2.4 Vector types) uses SSE2 to pass
or receive these arguments or results.

SSE2 is a feature of the x86 CPU, which was introduced by Intel in 2001, and is supported by all new x86 CPUs. However,
the C compiler can still pass arguments without using SSE2 for backwards compatibility. The Lisp definitions must
pass/receive arguments in the same way that as the C compiler that compiled the foreign code they call/are called from.

7 Function, Macro and Variable Reference

145

On macOS, code always uses SSE2, so *use-sse2-for-ext-vector-type* is set to t initially and you should not
change it. On other platforms (Linux, FreeBSD, Solaris) the situation is less clear.

use-sse2-for-ext-vector-type affects the code at macro expansion time, so if you use compile-file and later
load the compiled file, the value of *use-sse2-for-ext-vector-type* at the time of compile-file determine what
the code does. When evaluating the definition, the value at the time of evaluating the definition determines what the code
does.

Notes

On FreeBSD, the default C compiler is Clang, which currently (Dec 2016 in FreeBSD 10.3) does not use SSE2 by default,
and therefore matches what LispWorks does by default.

On other platforms, or using other compilers or newer versions of Clang, if you use vector types then you will need to check
what the C compiler does. If you have any doubt, contact LispWorks support.

See also

2.2.4 Vector types

valid-foreign-type-p Function

Summary

Checks if the argument is a valid foreign type.

Package

fli

Signature

valid-foreign-type-p type => boolean

Arguments

type⇓ A Lisp object.

Values

boolean A boolean.

Description

The function valid-foreign-type-p returns true if type is a valid foreign type and returns false otherwise.

An object is a valid foreign type if it matches any of the types which are described in chapter 2 FLI Types.

See also

2 FLI Types

7 Function, Macro and Variable Reference

146

http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm

with-coerced-pointer Macro

Summary

Executes forms with a variable bound to a dynamic-extent copy of an FLI pointer, possibly with a different type.

Package

fli

Signature

with-coerced-pointer (coerced-pointer &key type pointer-type) pointer &body body => last

Arguments

coerced-pointer⇓ A variable bound to a copy of pointer.

type⇓ The type of the object pointed to by the temporary pointer. This keyword can be used to
access the data at the pointer as a different type.

pointer-type⇓ The pointer type of the temporary pointer.

pointer⇓ A FLI pointer of which a copy is made.

body⇓ A list of forms to be executed across the scope of the temporary pointer binding.

Values

last The value of the last form in body.

Description

The macro with-coerced-pointer makes a temporary copy of a pointer, and executes a list of forms which may use the
copy across the scope of the macro. Once the macro has terminated the memory allocated to the copy of the pointer is
automatically freed.

The macro with-coerced-pointer evaluates body with coerced-pointer bound to a dynamic-extent copy of the FLI
pointer pointer.

coerced-pointer points to the same foreign object as pointer.

If type is specified, then it must be a FLI type specifying the type that coerced-pointer points to. Alternatively, if pointer-type
is specified, then it must be a FLI pointer type specifying the pointer type of coerced-pointer. If neither type nor pointer-type
are specified then the type is the same as pointer.

You can use with-coerced-pointer in a similar way to casting a pointer type in C. You can also use it make a temporary
FLI pointer that can be changed using incf-pointer or decf-pointer, without affecting pointer.

Note that coerced-pointer has dynamic-extent, so you should not use it after returning from body.

Examples

In the following example an array of ten integers is defined, pointed to by array-obj. The macro
with-coerced-pointer is used to return the values stored in the array, without altering array-obj, or permanently tying

7 Function, Macro and Variable Reference

147

up memory for a second pointer.

(setf array-obj
 (fli:allocate-foreign-object :type :int
 :nelems 10
 :initial-contents
 '(0 1 2 3 4 5 6 7 8 9)))

(fli:with-coerced-pointer (temp) array-obj
 (dotimes (x 10)
 (print (fli:dereference temp))
 (fli:incf-pointer temp)))

See also

3.4 An example of dynamic pointer allocation
allocate-dynamic-foreign-object
free-foreign-object
with-dynamic-foreign-objects

with-dynamic-foreign-objects Macro

Summary

Does the equivalent of dynamic-extent for foreign objects.

Package

fli

Signature

with-dynamic-foreign-objects bindings &body body => last

bindings ::= (binding*)

binding ::= (var foreign-type &key initial-element initial-contents fill nelems size-slot)

Arguments

body⇓ Forms to be executed with bindings in effect.

var⇓ A symbol to be bound to a pointer to a foreign object.

foreign-type⇓ A foreign type descriptor.

initial-element⇓ The initial value of the newly allocated objects.

initial-contents⇓ A list of values to initialize the contents of the newly allocated objects.

fill⇓ An integer between 0 to 255.

nelems⇓ An integer specifying how many copies of the object should be allocated. The default
value is 1.

size-slot⇓ A symbol naming a slot in the object.

7 Function, Macro and Variable Reference

148

http://www.lispworks.com/documentation/HyperSpec/Body/d_dynami.htm

Values

last The value of the last form in body.

Description

The macro with-dynamic-foreign-objects binds variables according to the list bindings, and then evaluaed the forms
in body as an implicit progn. Each element of bindings is a list which caused var to be bound to a pointer to a locally
allocated instance of foreign-type.

initial-element, initial-contents, fill, nelems and size-slot initialize the allocated instance as if by
allocate-foreign-object.

The lifetime of the bound foreign objects, and hence the allocation of the memory they take up, is within the scope of the
with-dynamic-foreign-objects function.

Any object created with allocate-dynamic-foreign-object within body will automatically be deallocated once the
scope of the with-dynamic-foreign-objects function has been left.

Compatibility note

There is an alternative syntax for binding with an optional initial-element which is the only way to supply an initial element
in LispWorks 5.0 and previous versions. Like this:

binding ::= (var foreign-type &optional initial-element)

This alternative syntax is deprecated in favor of the keyword syntax for binding defined above, which is supported in
LispWorks 5.1 and later.

Examples

This example shows the use of with-dynamic-foreign-objects with an implicitly created pointer.

Windows version:

typedef struct {
 int one;
 float two;
} foo ;

__declspec(dllexport) void __cdecl init_alloc(foo *ptr, int a, float b)
{
 ptr->one = a;
 ptr->two = b;
};

Non-Windows version:

typedef struct {
 int one;
 float two;
} foo ;

void init_alloc(foo * ptr, int a, float b)
{
 ptr->one = a;
 ptr->two = b;
};

7 Function, Macro and Variable Reference

149

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

Here are the FLI definitions interfacing to the above C code:

(fli:define-c-typedef (foo (:foreign-name "foo"))
 (:struct (one :int) (two :float)))

(fli:define-foreign-function (init-alloc "init_alloc")
 ((ptr (:pointer foo))
 (a :int)
 (b :float))
 :result-type :void
 :calling-convention :cdecl)

Try this test function which uses with-dynamic-foreign-objects to create a transient foo object and pointer:

(defun test-alloc (int-value float-value &optional (level 0))
 (fli:with-dynamic-foreign-objects ((object foo))
 (init-alloc object int-value float-value)
 (format t "~%Level - ~D~& object : ~S~& slot one : ~S~& slot two : ~S~&"
 level object
 (fli:foreign-slot-value object 'one)
 (fli:foreign-slot-value object 'two))
 (when (> int-value 0)
 (test-alloc (1- int-value)
 (1- float-value) (1+ level)))
 (when (> float-value 0)
 (test-alloc (1- int-value)
 (1- float-value) (1+ level)))))

(test-alloc 1 2.0)
=>
Level - 0
 object : #<Pointer to type FOO = #x007E6338>
 slot one : 1
 slot two : 2.0

Level - 1
 object : #<Pointer to type FOO = #x007E6340>
 slot one : 0
 slot two : 1.0

Level - 2
 object : #<Pointer to type FOO = #x007E6348>
 slot one : -1
 slot two : 0.0

Level - 1
 object : #<Pointer to type FOO = #x007E6340>
 slot one : 0
 slot two : 1.0

Level - 2
 object : #<Pointer to type FOO = #x007E6348>
 slot one : -1
 slot two : 0.0

A further example using with-dynamic-foreign-objects and a pointer created explicitly by
allocate-dynamic-foreign-object is given in 1.4 An example of dynamic memory allocation.

See also

5.2.4 Modifying a string in a C function
allocate-dynamic-foreign-object
free-foreign-object

7 Function, Macro and Variable Reference

150

with-coerced-pointer

with-dynamic-lisp-array-pointer Macro

Summary

Creates a dynamic-extent foreign pointer which points to the data in a given Lisp array while the forms are executed.

Package

fli

Signature

with-dynamic-lisp-array-pointer (pointer-var lisp-array &key start type) &body body => last

Arguments

pointer-var⇓ A variable to be bound to the foreign pointer.

lisp-array⇓ A static or pinned Lisp array (a string or a byte/single-float/double-float array).

start⇓ An index into the Lisp array.

type⇓ A foreign type. The default is :void.

body⇓ A list of forms.

Values

last The value of the last form in body.

Description

The macro with-dynamic-lisp-array-pointer enables the data in a Lisp array to be shared directly with foreign code,
without making a copy. A dynamic-extent pointer to the array's data can be used within body wherever the :pointer foreign
type allows.

with-dynamic-lisp-array-pointer creates a dynamic extent foreign pointer, with element type type, which is
initialized to point to the element of lisp-array at index start. The default value of start is 0.

This foreign pointer is bound to pointer-var, the forms of body are executed and the value of the last form is returned.

Pointers created with this macro must be used with care. There are three restrictions:

1. lisp-array must be static or pinned, for example allocated as shown below.

2. The pointer has dynamic extent and lisp-array is guaranteed to be preserved only during the execution of body. If you
keep the value of the pointer, you must also preserve lisp-array, that is you must ensure it is not garbage-collected.

3. Lisp strings and arrays are not null-terminated, therefore foreign code must only access the data of lisp-array up to its
known length.

Examples

An example of using a static array:

7 Function, Macro and Variable Reference

151

(let ((vector
 (make-array 3 :element-type '(unsigned-byte 8)
 :initial-contents '(65 77 23)
 :allocation :static)))
 (fli:with-dynamic-lisp-array-pointer
 (ptr vector :start 1 :type '(:unsigned :byte))
 (fli:dereference ptr)))
=>
77

An example of using a pinned array:

(let ((vector
 (make-array 3 :element-type '(unsigned-byte 8)
 :initial-contents '(65 77 23)
 :allocation :pinnable)))
 (with-pinned-objects (vector)
 (fli:with-dynamic-lisp-array-pointer
 (ptr vector :start 1 :type '(:unsigned :byte))
 (fli:dereference ptr))))
=>
77

See also

:lisp-array
:lisp-simple-1d-array
with-pinned-objects

with-foreign-block Macro

Summary

Allocates a foreign block, executes code and frees the block, in LispWorks for Macintosh.

Package

fli

Signature

with-foreign-block (foreign-block-var type function &rest extra-args) &body body => results

Arguments

foreign-block-var⇓ A symbol.

type⇓ A symbol naming a foreign block type defined using
define-foreign-block-callable-type.

function⇓ A Lisp function.

extra-args⇓ Arguments for function.

body⇓ Lisp forms.

7 Function, Macro and Variable Reference

152

Values

results The results of body.

Description

The macro with-foreign-block allocates a foreign block using type, function and extra-args in the same way as
allocate-foreign-block. It then binds foreign-block-var to the foreign block, execute the code of body and frees the
foreign block using free-foreign-block, using unwind-protect.

with-foreign-block is a convenient way to ensure that you do not forget to free the foreign block.

Notes

If the foreign block is copied in the code of body, the copy may be invoked, and hence the function called, after exiting this
macro. See the discussion in 5.7.3 Scope of invocation.

with-foreign-block returns the results of body.

with-foreign-block is implemented in LispWorks for Macintosh only.

See also

allocate-foreign-block
free-foreign-block
with-local-foreign-block
5.7 Block objects in C (foreign blocks)

with-foreign-slots Macro

Summary

Allows convenient access to the slots of a foreign structure.

Package

fli

Signature

with-foreign-slots slots-and-options form &body body

slots-and-options ::= (slots &key object-type) | slots

slots ::= (slot-spec*)

slot-spec ::= slot-name | (variable-name slot-name &key copy-foreign-object)

Arguments

form⇓ A form evaluating to an instance of (or a pointer to) a FLI structure.

body⇓ Forms to be executed.

object-type⇓ A FLI structure type.

7 Function, Macro and Variable Reference

153

http://www.lispworks.com/documentation/HyperSpec/Body/s_unwind.htm

slot-name⇓ A symbol.

variable-name⇓ A symbol.

copy-foreign-object⇓ t, nil or :error.

Description

The macro with-foreign-slots is analogous to the Common Lisp macro with-slots. Within body, each slot-name (or
variable-name) evaluates to the result of calling foreign-slot-value on form with that slot. setf can be used to set the
foreign slot value.

If the first syntax of slots-and-options is used, then object-type is passed as the value of the :object-type keyword
argument in all the generated calls to foreign-slot-value. If the second syntax of slots-and-options is used, no object-
type is passed.

Each slot-spec can either be a symbol slot-name naming a slot in the object, which will be also be used in body, or a list of
variable-name, a symbol naming a slot, and a plist of options. In this case copy-foreign-object is passed as the value of the
:copy-foreign-object keyword argument in the generated call to foreign-slot-value. The default value of copy-
foreign-object is :error.

The with-foreign-slots form returns the value of the last form in body.

Examples

(fli:define-c-struct abc
 (a :int)
 (b :int)
 (c :int))
=>
(:STRUCT ABC)

(setf abc (fli:allocate-foreign-object :type 'abc))
=>
#<Pointer to type (:STRUCT ABC) = #x007F3BE0>

(fli:with-foreign-slots (a b c) abc
 (setf a 6 b 7 c (* a b)))
=>
42

(fli:foreign-slot-value abc 'c)
=>
42

See also

2.2.3 Structures and unions
foreign-slot-value

with-foreign-string Macro

Summary

Converts a Lisp string to a foreign string, binds variables to a pointer to the foreign string, the number of elements in the
string, and the number of bytes taken up by the string, then executes a list of forms, and finally de-allocates the foreign string
and pointer.

7 Function, Macro and Variable Reference

154

http://www.lispworks.com/documentation/HyperSpec/Body/m_w_slts.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

Package

fli

Signature

with-foreign-string (pointer element-count byte-count &key external-format null-terminated-p allow-null) string
&body body => last

Arguments

pointer⇓ A symbol bound to a pointer to the foreign string.

element-count⇓ A symbol bound to the number of elements in the foreign string.

byte-count⇓ A symbol bound to the number of bytes occupied by the foreign string. If the element size
of the string is equal to one byte, then byte-count will be the same as element-count.

external-format⇓ An external format specification.

null-terminated-p⇓ If t, the foreign string is terminated by a null character. The null character is included in
the value of element-count.

allow-null⇓ A boolean. The default is nil.

string⇓ The Lisp string to convert.

body⇓ A list of forms to be executed.

Values

last The value of the last form in body.

Description

The macro with-foreign-string is used to dynamically convert a Lisp string to a foreign string and execute a list of
forms using the foreign string. The macro first converts string, a Lisp string, into a foreign string. The symbol pointer is
bound to a pointer to the start of the string, the symbol element-count is set equal to the number of elements in the string, and
the symbol byte-count is set equal to the number of bytes the string occupies. Then the list of forms specified by body is
executed. Finally, the memory allocated for the foreign string and pointer is de-allocated.

external-format is used to specify the encoding of the foreign string. It defaults to a format appropriate for C string of type
char*. For Unicode encoded strings, specify :unicode. If you want to pass a string to the Win32 API, known as STR in the
Win32 API terminology, specify *multibyte-code-page-ef*, which is a variable holding the external format
corresponding to the current Windows multi-byte code page. To change the default, call set-locale or
set-locale-encodings. The names of available external formats are listed in section 26.6 External Formats to translate
Lisp characters from/to external encodings in the LispWorks® User Guide and Reference Manual.

null-terminated-p specifies whether the foreign string is terminated with a null character. It defaults to t. If the string
terminates in a null character, it is included in the value of element-count.

If allow-null is non-nil, then if string is nil a null pointer is passed.

See also

5.2.4 Modifying a string in a C function
5.1 Passing a string to a Windows function
26.6 External Formats to translate Lisp characters from/to external encodings in the LispWorks® User Guide and Reference
Manual

7 Function, Macro and Variable Reference

155

convert-to-foreign-string
set-locale
set-locale-encodings
with-dynamic-foreign-objects

with-integer-bytes Macro

Summary

Converts a Lisp integer to foreign bytes while executing a body of code.

Package

fli

Signature

with-integer-bytes (pointer length) integer &body body => last

Arguments

pointer⇓ A variable to be bound to the foreign pointer.

length⇓ A variable to be bound to the length in bytes.

integer⇓ An integer.

body⇓ Forms to be executed.

Values

last The value of the last form in body.

Description

The macro with-integer-bytes evaluates the forms in body with pointer bound to a dynamic foreign object containing
the bytes of integer and length bound to the number of bytes in that object. The layout of the bytes is unspecified, but the
bytes and the length are sufficient to reconstruct integer by calling make-integer-from-bytes.

See also

5.3 Lisp integers
convert-integer-to-dynamic-foreign-object
make-integer-from-bytes

with-local-foreign-block Macro

Summary

Allocates a foreign block, executes code and frees the block, in LispWorks for Macintosh.

7 Function, Macro and Variable Reference

156

Package

fli

Signature

with-local-foreign-block (foreign-block-var type function &rest extra-args) &body body => results

Arguments

foreign-block-var⇓ A symbol.

type⇓ A symbol naming a foreign block type defined using
define-foreign-block-callable-type.

function⇓ A Lisp function.

extra-args⇓ Arguments for function

body⇓ Lisp forms.

Values

results The results of body.

Description

The macro with-local-foreign-block allocates a foreign block using type, function and extra-args in the same way as
allocate-foreign-block, but with dynamic extent. It then binds foreign-block-var to the foreign block and executes the
code of body.

with-local-foreign-block can be used only if the code in body can be guaranteed not to invoke the block or a copy of it
either outside the scope of with-local-foreign-block or in another thread. Unless you can be sure of that, you need to
use with-foreign-block.

with-local-foreign-block returns the results of body.

with-local-foreign-block can be a little faster than with-foreign-block.

Notes

with-local-foreign-block is implemented in LispWorks for Macintosh only.

See also

allocate-foreign-block
free-foreign-block
with-foreign-block
5.7 Block objects in C (foreign blocks)

7 Function, Macro and Variable Reference

157

8 Type Reference

:boolean FLI Type Descriptor

Summary

Converts between a Lisp boolean value and a C representation of a boolean value.

Package

keyword

Syntax

:boolean &optional encapsulates

Arguments

encapsulates⇓ An integral type or :standard.

Description

The FLI type :boolean converts between a Lisp boolean value and a C representation of a boolean value. encapsulates
specifies the size of the value from which the boolean value is obtained, which defaults to :int. For example, if a byte is
used in C to represent a boolean, the size to map across for the FLI will be one byte, but if an int is used, then the size will
be four bytes. If encapsulates is :standard, then the type maps to the _Bool type in the C99 language definition.

A value of 0 in C represents a nil boolean value in Lisp, and a non-zero value in C represents a t boolean value in Lisp.

Examples

In the following three examples, the size of a :boolean, a (:boolean :int) and a (:boolean :byte) are returned.

(fli:size-of :boolean)

(fli:size-of '(:boolean :int))

(fli:size-of '(:boolean :byte))

See also

size-of
2.1.5 Boolean types

158

:byte FLI Type Descriptor

Summary

Converts between a Lisp integer with a C signed char.

Package

keyword

Syntax

:byte

Description

The FLI type :byte converts between a Lisp integer type and a C signed char type.

See also

:char
:short
2.1.1 Integral types

:c-array FLI Type Descriptor

Summary

Converts between a FLI array and a C array type.

Package

keyword

Syntax

:c-array type &rest dimensions

Arguments

type⇓ The type of the elements of the array.

dimensions⇓ A sequence of the dimensions of the new array.

Description

The FLI type :c-array converts between FLI arrays and the C array type. In C, pointers are used to access the elements of
an array. The implementation of the :c-array type takes this into account, by automatically dereferencing any pointers
returned when accessing an array using foreign-aref.

When using the :c-array type in the specification of an argument to define-foreign-function, a pointer to the array

8 Type Reference

159

is passed to the foreign function, as specified by the C language. You are allowed to call the foreign function with a FLI
pointer pointing to an object of type type instead of a FLI array.

When using the :c-array type in other situations, it acts as an aggregate type like :foreign-array. In particular,
:c-array with more than one dimension is an array containing embedded arrays, not an array of pointers.

dimensions is the dimensions of the array.

Notes

1. :c-array uses the C convention that the first index value of an array is 0.

2. Only use the :c-array type when the corresponding C code uses an array with a constant declared size. If you need a
dynamically sized array, then use a pointer type, allocate the array using the nelems argument to
allocate-foreign-object or with-dynamic-foreign-objects and use dereference to access the elements.
The pointer type is more efficient than making :c-array types dynamically with different dimensions because the FLI
caches information about every different FLI type descriptor that is used.

Examples

The following code defines a 3 by 3 array of integers:

(setq aaa (fli:allocate-foreign-object
 :type '(:c-array :int 3 3)))

The type of this is equivalent to the C declaration:

int aaa[3][3];

The next example defines an array of arrays of bytes:

(setq bbb (fli:allocate-foreign-object
 :type '(:c-array (:c-array :byte 3) 2)))

The type of this is equivalent to the C declaration:

int bbb[2][3];

Note the reversal of the 3 and 2.

See foreign-aref and foreign-array-pointer for more examples on the use of arrays.

See also

foreign-aref
:foreign-array
foreign-array-pointer
2.2.1 Arrays

8 Type Reference

160

:char FLI Type Descriptor

Summary

Converts between a Lisp character type and a C char type.

Package

keyword

Syntax

:char

Description

The FLI type :char converts between a Lisp character and a C char type.

Notes

If you want an integer on the Lisp side, rather than a character, then you should use (:signed :char) or
(:unsigned :char).

See also

:byte
:signed
:unsigned
2.1.4 Character types

:const FLI Type Descriptor

Summary

Corresponds to the C const type.

Package

keyword

Syntax

:const &optional type

Arguments

type⇓ The type of the constant. The default is :int.

8 Type Reference

161

http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

Description

The FLI type :const corresponds to the C const type qualifier. The behavior of a :const is exactly the same as the
behavior of its type, and it is only included to ease the readability of FLI code and for naming conventions.

Examples

In the following example a constant is allocated and set equal to 3.141.

(setq pi1 (fli:allocate-foreign-object
 :type '(:const :float)))

(setf (fli:dereference pi1) 3.141))

See also

:volatile
2.1 Immediate types

:double FLI Type Descriptor

Summary

Converts a Lisp double float to a C double.

Package

keyword

Syntax

:double

Description

The FLI type :double converts between a Lisp double float and the C double type.

Compatibility Note

In LispWorks 4.4 and previous on Windows and Linux platforms, all Lisp floats are doubles. In later versions, there are three
disjoint Lisp float types in 32-bit LispWorks and two in 64-bit LispWorks, on all platforms.

See also

:float
2.1.2 Floating point types

8 Type Reference

162

:double-complex FLI Type Descriptor

Summary

Converts a Lisp double float complex number to a C double complex.

Package

keyword

Syntax

:double-complex

Description

The FLI type :double-complex converts between a Lisp (complex double-float) and the C double complex type.

See also

:float-complex
2.1.3 Complex number types

:ef-mb-string FLI Type Descriptor

Summary

Converts between a Lisp string and a C multi-byte string.

Package

keyword

Syntax

:ef-mb-string &key limit external-format null-terminated-p

Arguments

limit⇓ The maximum number of bytes of the C multi-byte string.

external-format⇓ An external format specification.

null-terminated-p⇓ A boolean controlling the null termination byte.

Description

The FLI type :ef-mb-string converts between a Lisp string and a C multi-byte string. The C string may have a maximum
length of limit bytes. limit can be omitted in cases where a new foreign string is being allocated.

external-format is used to specify the encoding of the foreign string. It defaults to an encoding appropriate for C string of
type char*. If you want to pass a string to the Windows API, known as STR in the Windows API terminology, specify

8 Type Reference

163

win32:*multibyte-code-page-ef*, which is a variable holding the external format corresponding to the current
Windows multi-byte code page. To change the default, call set-locale or set-locale-encodings.

If null-terminated-p is non-nil, a NULL byte is added to the end of the string.

Notes

If you want to pass a string argument by reference but also allow conversion from Lisp nil to a null pointer, specify the
:reference type :allow-null argument, for example:

(:reference-pass :ef-mb-string :allow-null t)

See also

:ef-wc-string
:reference
set-locale
set-locale-encodings
2.2.2 Strings

:ef-wc-string FLI Type Descriptor

Summary

Converts between a Lisp string and a C wide-character string.

Package

keyword

Syntax

:ef-wc-string &key limit external-format null-terminated-p

Arguments

limit⇓ The maximum number of characters of the C wide-character string.

external-format⇓ An external format specification.

null-terminated-p⇓ A boolean controlling the null termination byte.

Description

The FLI type :ef-wc-string converts between a Lisp string and a C wide-character string. The C string may have a
maximum length of limit characters. limit can be omitted in cases where a new foreign string is being allocated.

external-format is used to specify the encoding of the foreign string. It defaults to an encoding appropriate for C string of
type wchar_t*. For Unicode encoded strings, specify :unicode. If you want to pass a string to the Windows API, known
as WSTR in the Windows API terminology, also specify :unicode. To change the default, call set-locale or
set-locale-encodings.

If null-terminated-p is non-nil, a NULL word is added to the end of the string.

8 Type Reference

164

See also

:ef-mb-string
set-locale
set-locale-encodings
2.2.2 Strings

:enum
:enumeration FLI Type Descriptors

Summary

Converts between a Lisp symbol and a C enum.

Package

keyword

Syntax

:enum &rest enum-constants

:enumeration &rest enum-constants

enum-constants ::= {entry-name | (entry-name entry-value)}*

Arguments

enum-constants⇓ A sequence of one or more symbols naming the elements of the enumeration.

entry-name⇓ A symbol naming an element of the enumeration.

entry-value⇓ An integer specifying the value of entry-name.

Description

The FLI type :enum converts between a Lisp symbol and the C enum type. Each entry in enum-constants can either consist
of a symbol entry-name, in which case the first entry has a value 0, or of a list of a symbol entry-name and its corresponding
integer value entry-value.

:enumeration is a synonym for :enum.

Examples

See define-c-enum, for an example using the :enum type.

See also

define-c-enum
2.1.1 Integral types

8 Type Reference

165

:fixnum FLI Type Descriptor

Summary

Converts between a Lisp fixnum and a 32 bit raw integer.

Package

keyword

Syntax

:fixnum

Description

The FLI type :fixnum converts between a Lisp fixnum and a 32 bit integer in C.

See also

2.1.1 Integral types

:float FLI Type Descriptor

Summary

Converts a Lisp single float to a C float.

Package

keyword

Syntax

:float

Description

The FLI type :float converts between a Lisp single float and the C float type.

Compatibility note

In LispWorks 4.4 and previous on Windows and Linux platforms, all Lisp floats are doubles. In later versions, there are three
disjoint Lisp float types in 32-bit LispWorks and two in 64-bit LispWorks, on all platforms.

See also

:double
2.1.2 Floating point types

8 Type Reference

166

:float-complex FLI Type Descriptor

Summary

Converts a Lisp single float complex number to a C float complex.

Package

keyword

Syntax

:float-complex

Description

The FLI type :float-complex converts between a Lisp (complex single-float) and the C float complex type.

See also

:double-complex
2.1.3 Complex number types

:foreign-array FLI Type Descriptor

Summary

Converts between a FLI array and a foreign array type.

Package

keyword

Syntax

:foreign-array type dimensions

Arguments

type⇓ The type of the elements of the array.

dimensions⇓ A list containing the dimensions of the array.

Description

The FLI type :foreign-array converts between FLI arrays and the foreign array type. It creates an array with the
dimensions specified in dimensions, of elements of the type specified by type.

The :foreign-array type is an aggregate type. In particular, :foreign-array with more than one dimension is an array
containing embedded arrays, not an array of pointers.

8 Type Reference

167

Notes

Only use the :foreign-array type when the corresponding foreign code uses an array with a constant declared size. If you
need a dynamically sized array, then use a pointer type, allocate the array using the nelems argument to
allocate-foreign-object or with-dynamic-foreign-objects and use dereference to access the elements. The
pointer type is more efficient than making :foreign-array types dynamically with different dimensions because the FLI
caches information about every different FLI type descriptor that is used.

Examples

The following code defines a 3 by 4 foreign array with elements of type :byte.

(setq farray (fli:allocate-foreign-object
 :type '(:foreign-array :byte (3 4))))

The type of this is equivalent to the C declaration:

signed char array2[3][4];

See also

:c-array
foreign-aref
foreign-array-pointer
2.2.1 Arrays

foreign-block-pointer FLI Type Descriptor

Summary

The foreign type corresponding to the opaque "Block" object in C and derived languages.

Package

fli

Syntax

foreign-block-pointer

Description

The FLI type foreign-block-pointer corresponds to the opaque "Block" object in C and derived languages that are
introduced in CLANG and used by Apple.

A foreign block pointer should be regarded as opaque, and should not be manipulated or used except as described in 5.7
Block objects in C (foreign blocks).

Notes

A foreign block that is allocated directly by the Lisp side (for example by allocate-foreign-block or
with-foreign-block) prints as "lisp-foreign-block-pointer".

foreign-block-pointer is implemented in LispWorks for Macintosh only.

8 Type Reference

168

See also

allocate-foreign-block
define-foreign-block-callable-type
define-foreign-block-invoker
foreign-block-copy
foreign-block-release
free-foreign-block
released-foreign-block-pointer
with-foreign-block
with-local-foreign-block
5.7 Block objects in C (foreign blocks)

:function FLI Type Descriptor

Summary

Converts between Lisp and the C function type.

Package

keyword

Syntax

:function &optional args-spec return-spec &key calling-convention

Arguments

args-spec⇓ A list of foreign types.

return-spec⇓ A foreign type.

calling-convention⇓ A keyword naming the calling convention.

Description

The FLI type :function allows for conversion from the C function type. It is typically used in conjunction with the
:pointer type to reference an existing foreign function.

args-spec and return-spec specify the argument types and return type respectively.

calling-convention is as described for define-foreign-function.

Examples

The following code lines present a definition of a pointer to a function type, and a corresponding C definition of the type. The
function type is defined for a function which takes as its arguments an integer and a pointer to a void, and returns an integer
value.

(:pointer (:function (:int (:pointer :void)) :int))

int (*)(int, void *)

8 Type Reference

169

See also

:pointer

:int8
:int16
:int32
:int64
:intmax
:intptr FLI Type Descriptors

Summary

The signed sized integer types.

Package

keyword

Syntax

:int8

:int16

:int32

:int64

:intmax

:intptr

Description

FLI types are defined for integers of particular sizes. These are equivalent to the types defined by ISO C99. For example,
Lisp :int8 is ISO C99 int8_t.

The types have these meanings:

:int8 8-bit signed integer.

:int16 16-bit signed integer.

:int32 32-bit signed integer.

:int64 64-bit signed integer.

:intmax The largest type of signed integer available.

:intptr A signed integer the same size as a pointer.

See also

:uint8

8 Type Reference

170

2.1.1 Integral types

:int FLI Type Descriptor

Summary

Converts between a Lisp integer and a C int type.

Package

keyword

Syntax

:int

Description

The FLI type :int converts between an Lisp integer and a C int type. It is equivalent to the :signed and
(:signed :int) types.

See also

:signed
2.1.1 Integral types

:lisp-array FLI Type Descriptor

Summary

A foreign type which passes the address of a Lisp array direct to C.

Package

keyword

Syntax

:lisp-array &optional type

Arguments

type⇓ A list. The default is nil.

Description

The FLI type :lisp-array accepts a Lisp array and passes a pointer to the first element of that array. The Lisp array may
be non-simple.

It is vital that the garbage collector does not move the Lisp array, hence :lisp-array checks that the array is statically
allocated, or allocated pinnable and pinned using with-pinned-objects.

8 Type Reference

171

Note also that the Lisp garbage collector does not know about the array in the C code. Therefore, if the C function retains a
pointer to the array, then you must ensure the Lisp object is not collected, for example by retaining a pointer to it in Lisp.

The argument type, if non-nil, is a list (element-type &rest dimensions) and is used to check the element type and
dimensions of the Lisp array passed.

Examples

This C function fills an array of doubles from an array of single floats.

Windows version:

__declspec(dllexport) void __cdecl ProcessFloats(int count, float * fvec, double * dvec)
{
 for(--count ; count >= 0 ; count--) {
 dvec[count] = fvec[count] * fvec[count];
 }
}

Non-Windows version:

void ProcessFloats(int count, float * fvec, double * dvec)
{
 for(--count ; count >= 0 ; count--) {
 dvec[count] = fvec[count] * fvec[count];
 }
}

The following Lisp code demonstrates the use of :lisp-array in a call to ProcessFloats:

(fli:define-foreign-function (process-floats
 "ProcessFloats")
 ((count :int)
 (fvec :lisp-array)
 (dvec :lisp-array)))

(defun test-process-floats (length)
 (let ((f-vector
 (make-array length
 :element-type 'single-float
 :initial-contents
 (loop for x below
 length
 collect
 (coerce x 'single-float))
 :allocation :static))
 (d-vector
 (make-array length
 :element-type 'double-float
 :initial-element 0.0D0
 :allocation :static)))
 (process-floats length f-vector d-vector)
 (dotimes (x length)
 (format t "f-vector[~D] = ~A; d-vector[~D] = ~A~%"
 x (aref f-vector x)
 x (aref d-vector x)))))

Now:

(test-process-floats 3)

8 Type Reference

172

prints:

single-array[0] = 0.0; double-array[0] = 0.0
single-array[1] = 1.0; double-array[1] = 1.0
single-array[2] = 2.0; double-array[2] = 4.0

See also

:lisp-simple-1d-array
with-dynamic-lisp-array-pointer
with-pinned-objects

:lisp-double-float FLI Type Descriptor

Summary

A synonym for :double.

Package

keyword

Syntax

:lisp-double-float

Description

The FLI type :lisp-double-float is the same as the FLI :double type.

See also

:double
2.1.2 Floating point types

:lisp-float FLI Type Descriptor

Summary

Converts between any Lisp float and the C double type or the C float type.

Package

keyword

Syntax

:lisp-float &optional float-type

float-type ::= :single | :double

8 Type Reference

173

Arguments

float-type⇓ Determines the C type to convert to. The default is :single.

Description

The FLI type :lisp-float converts between any Lisp float and either the C float or the C double type. The default is to
convert to the C float type, but by specifying :double for float-type, conversion occurs between any Lisp float and the C
double type.

See also

:double
:float
2.1.2 Floating point types

:lisp-simple-1d-array FLI Type Descriptor

Summary

A foreign type which passes the address of a Lisp simple vector direct to C.

Package

keyword

Syntax

:lisp-simple-1d-array &optional type

Arguments

type⇓ A list. The default is nil.

Description

The FLI type :lisp-simple-1d-array accepts a Lisp simple vector and passes a pointer to the first element of that vector.

The Lisp vector must be simple. That is, it does not have a fill pointer, is not adjustable, and it is not a displaced array.

It is vital that the garbage collector does not move the Lisp vector, hence :lisp-simple-1d-array checks that the vector
is statically allocated or allocated pinnable, in which case it is pinned implicitly as if by with-pinned-objects.

The argument type, if non-nil, is a list (element-type &rest dimensions) and is used to check the element type and
dimensions of the Lisp array passed.

See also

:lisp-array
with-dynamic-lisp-array-pointer

8 Type Reference

174

:lisp-single-float FLI Type Descriptor

Summary

A synonym for :float.

Package

keyword

Syntax

:lisp-single-float

Description

The FLI type :lisp-single-float is the same as the FLI :float type.

See also

:float
2.1.2 Floating point types

:long FLI Type Descriptor

Summary

Converts between a Lisp integer and a C long.

Package

keyword

Syntax

:long &optional integer-type

integer-type ::= :int | :double | :long

Arguments

Description

The FLI type :long converts between the Lisp integer type and the C long type. See A comparison between Lisp and
C long types for comparisons between Lisp and C long types.

8 Type Reference

175

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm

A comparison between Lisp and C long types

Lisp type FLI type C type

integer :long long

integer :long :int long

integer :long :double long double

integer :long :long
:long-long

long long

See also

:int
:long-long
:short
2.1.1 Integral types

:long-long FLI Type Descriptor

Summary

Converts between a Lisp integer and a signed C long long.

Package

keyword

Syntax

:long-long

Description

The FLI type :long-long converts between the Lisp integer type and the C long long type.

Notes

This is supported only on platforms where the C long long type is the same size as the C long type.

See also

:long
2.1.1 Integral types

8 Type Reference

176

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm

:one-of FLI Type Descriptor

Summary

Converts between Lisp and C types of the same underlying type.

Package

keyword

Syntax

:one-of &rest types

Arguments

types⇓ A list of types sharing the same underlying type.

Description

The FLI type :one-of is used to allocate an object which can be one of a number of types specified by types. The types
must have the same underlying structure, which means they must have the same size and must be referenced in the same
manner. The FLI :one-of type is useful when a foreign function returns a value whose underlying type is known, but whose
exact type is not.

Examples

In the following example, a :one-of type is allocated.

(setq thing (fli:allocate-foreign-object
 :type '(:one-of :ptr :int :unsigned)))

If thing is set to be 100 using dereference, it is taken to be an object of type :int, as this is the first element in the
sequence of types defined by :one-of which matches the type of the number 100.

(setf (fli:dereference thing) 100)

However, if thing is now dereferenced, it is returned as a pointer to the address 100 (Or hex address 64), as there is no
method for determining the type of thing, and therefore the first element in the list of :one-of is used.

(fli:dereference thing)

See also

:union

8 Type Reference

177

:pointer
:ptr FLI Type Descriptors

Summary

Defines a C-style FLI pointer to an object of a specified type.

Package

keyword

Syntax

:pointer type

:ptr type

Arguments

type⇓ The type of FLI object pointed to by the pointer.

Description

The FLI type :pointer is part of the FLI implementation of pointers. It defines a C-style pointer to an object of type.
Passing nil instead of a pointer is treated the same as passing a null pointer (that is, a pointer to address 0).

:ptr is a synonym for :pointer.

For more details on pointers, including examples on pointer coercion, dereferencing, making, and copying see 3 FLI
Pointers.

See also

copy-pointer
dereference
make-pointer
null-pointer
2.1.6 Pointer types

:ptrdiff-t FLI Type Descriptor

Summary

Converts between a Lisp integer and an ISO C ptrdiff_t.

Package

keyword

8 Type Reference

178

Syntax

:ptrdiff-t

Description

The FLI type :ptrdiff-t converts between a Lisp integer and an ISO C ptrdiff_t type, which is an signed integer
representing the difference in bytes between two pointers.

:reference FLI Type Descriptor

Summary

Passes a foreign object of a specified type by reference, and automatically dereferences the object.

Package

keyword

Syntax

:reference type &key allow-null lisp-to-foreign-p foreign-to-lisp-p

Arguments

type⇓ The type of the object to pass by reference.

allow-null⇓ A boolean.

lisp-to-foreign-p⇓ If non-nil, allow conversion from Lisp to the foreign language. The default value is t.

foreign-to-lisp-p⇓ If non-nil, allow conversion from the foreign language to Lisp. The default value is t.

Description

The FLI type :reference is essentially the same as a :pointer type, except that :reference is automatically
dereferenced when it is processed.

The :reference type is useful as a foreign function argument. When a function is called with an argument of the type
(:reference type), an object of type is dynamically allocated across the scope of the foreign function, and is automatically
de-allocated once the foreign function terminates. The value of the argument is not copied into the temporary instance of the
object if lisp-to-foreign-p is nil, and similarly, the return value is not copied back into a Lisp object if foreign-to-lisp-p is
nil.

If allow-null is non-nil and the input argument is nil then a null pointer is passed instead of a reference to an object
containing nil. allow-null defaults to nil.

Notes

If the argument is of an aggregate type and foreign-to-lisp-p is true, then a malloc'd copy is made which you should later free
explicitly. It is usually better to use:pointer, make the temporary foreign object using
with-dynamic-foreign-objects and then copy whatever slots you need into a normal Lisp object on return.

8 Type Reference

179

Examples

In the following example an :int is allocated, and a pointer to the integer is bound to the Lisp variable number. Then a
pointer to number, called point1, is defined. The pointer point1 is set to point to number, itself a pointer, but to an :int.

(setq number (fli:allocate-foreign-object :type :int))

(setf (fli:dereference number) 42)

(setq point1 (fli:allocate-foreign-object
 :type '(:pointer :int)))

(setf (fli:dereference point1) number)

If point1 is dereferenced, it returns a pointer to an :int. To get at the value stored in the integer, we need to dereference
twice:

(fli:dereference (fli:dereference point1))

However, if we dereference point1 as a :reference, we only have to dereference it once to get the value:

(fli:dereference point1 :type '(:reference :int))

See also

:reference-pass
:reference-return

:reference-pass FLI Type Descriptor

Summary

Passes an object from Lisp to the foreign language by reference.

Package

keyword

Syntax

:reference-pass type &key allow-null

Arguments

type⇓ The type of the object to pass by reference.

allow-null⇓ A boolean.

Description

The FLI type :reference-pass is equivalent to:

8 Type Reference

180

http://www.lispworks.com/documentation/HyperSpec/Body/t_number.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_number.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_number.htm

(:reference :lisp-to-foreign-p t
 :foreign-to-lisp-p nil)

See :reference for the details of how type and allow-null are used.

See also

:reference
:reference-return

:reference-return FLI Type Descriptor

Summary

Passes an object from the foreign language to Lisp by reference.

Package

keyword

Syntax

:reference-return type &key allow-null

Arguments

type⇓ The type of the object to return by reference.

allow-null⇓ A boolean.

Description

The FLI type :reference-return is equivalent to:

(:reference :lisp-to-foreign-p nil
 :foreign-to-lisp-p t)

See :reference for the details of how type and allow-null are used.

See also

:reference
:reference-pass

released-foreign-block-pointer FLI Type Descriptor

Summary

The type of foreign blocks that have been released.

8 Type Reference

181

Package

fli

Syntax

released-foreign-block-pointer

Description

The FLI type released-foreign-block-pointer is the type of released foreign blocks.

The system marks foreign blocks that have been released by foreign-block-release as being of foreign type
released-foreign-block-pointer.

See also

foreign-block-pointer
foreign-block-release

:short FLI Type Descriptor

Summary

Converts between a Lisp fixnum type and a C short type.

Package

keyword

Syntax

:short &optional integer-type

integer-type ::= :int

Arguments

integer-type If specified, must be :int, which associates a Lisp fixnum with a C int.

Description

The FLI type :short associates a Lisp fixnum with a C short.

The FLI types :short, (:short :int), (:signed :short), and (:signed :short :int) are equivalent.

See also

:int
:signed
2.1.1 Integral types

8 Type Reference

182

http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm

:signed FLI Type Descriptor

Summary

Converts between a Lisp integer and a foreign signed integer.

Package

keyword

Syntax

:signed &optional integer-type

integer-type ::= :byte | :char | :short | :int | :long | :long :int | :short :int

Arguments

integer-type⇓ The type of the signed integer.

Description

The FLI type :signed converts between a Lisp integer and a foreign signed integer. The optional integer-type argument
specifies other kinds of signed integer types. See Table A comparison of Lisp and C signed types for a comparison between
Lisp and C signed types.

A comparison of Lisp and C signed types

Lisp type FLI type C type

integer :signed signed int

fixnum :signed :byte signed char

fixnum :signed :char signed char

fixnum :signed :short signed short

integer :signed :int signed int

integer :signed :long signed long

fixnum :signed :short :int signed short

integer :signed :long :int signed long

See also

cast-integer
:unsigned
2.1.1 Integral types

8 Type Reference

183

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm

:size-t FLI Type Descriptor

Summary

Converts between a Lisp integer and an ISO C size_t.

Package

keyword

Syntax

:size-t

Description

The FLI type :size-t converts between a Lisp integer and an ISO C size_t type, which is an unsigned integer representing
the size of an object in bytes.

See also

:ssize-t

:ssize-t FLI Type Descriptor

Summary

Converts between a Lisp integer and the platform-specific ssize_t type.

Package

keyword

Syntax

:ssize-t

Description

The FLI type :ssize-t converts between a Lisp integer and a platform-specific ssize_t type, which is a signed integer
representing the size of an object in bytes.

See also

:size-t

8 Type Reference

184

:struct FLI Type Descriptor

Summary

Converts between a FLI structure and a C struct.

Package

keyword

Syntax

:struct &rest slots

slots ::= {symbol | (symbol slot-type)}*

slot-type ::= type | (:bit-field integer-type size)

Arguments

slots A sequence of one or more slots making up the structure.

symbol⇓ A symbol naming the slot.

type⇓ The slot type. If no type is given it defaults to an :int.

integer-type⇓ An integer type. Only :int, (:unsigned :int) and (:signed :int) are guaranteed
to work on all platforms.

size⇓ An integer specifying a number of bits for the field.

Description

The FLI type :struct is an aggregate type, and converts between a FLI structure and a C struct type. The FLI structure
consists of a collection of one or more slots. Each slot has a name symbol and a type type. A structure can also contain bit
fields, which are integers of type integer-type with size bits.

The foreign-slot-names, foreign-slot-type, and foreign-slot-value functions can be used to access and
change the slots of the structure. The convenience FLI function define-c-struct is provided to simplify the definition of
structures.

Examples

In the following example a structure for passing coordinates to Windows functions is defined.

(fli:define-c-struct tagPOINT (x :long) (y :long))

An instance of the structure is allocated and bound to the Lisp variable place.

(setq place
 (fli:allocate-foreign-object :type 'tagPOINT))

Finally, the x slot of place is set to be 4 using fli:foreign-slot-value.

(setf (fli:foreign-slot-value place 'x) 4)

8 Type Reference

185

See also

define-c-struct
foreign-slot-names
foreign-slot-offset
foreign-slot-pointer
foreign-slot-type
foreign-slot-value
2.2.3 Structures and unions

:time-t FLI Type Descriptor

Summary

Converts between a Lisp integer and the platform-specific time_t type.

Package

keyword

Syntax

:time-t

Description

The FLI type :time-t converts between a Lisp integer and an ISO C time_t type, which is an integer type used for storing
system time values.

:uint8
:uint16
:uint32
:uint64
:uintmax
:uintptr FLI Type Descriptors

Summary

The unsigned sized integer types.

Package

keyword

Syntax

:uint8

:uint16

8 Type Reference

186

:uint32

:uint64

:uintmax

:uintptr

Description

FLI types are defined for integers of particular sizes. These are equivalent to the types defined by ISO C99. For example,
Lisp :uint8 is ISO C99 uint8_t.

The types have these meanings:

:uint8 8-bit unsigned integer.

:uint16 16-bit unsigned integer.

:uint32 32-bit unsigned integer.

:uint64 64-bit unsigned integer.

:uintmax The largest type of unsigned integer available.

:uintptr An unsigned integer the same size as a pointer.

See also

:int8
2.1.1 Integral types

:union FLI Type Descriptor

Summary

Converts between a FLI union and a C union type.

Package

keyword

Syntax

:union &rest slots

slots ::= {symbol | (symbol type)}*

Arguments

slots A sequence of one or more slots making up the union.

symbol⇓ A symbol naming the slot.

type⇓ The slot type. If no type is given, it defaults to an :int.

8 Type Reference

187

Description

The FLI type :union is an aggregate type, and converts between a FLI union and a C union type. The FLI union consists of
a collection of one or more slots, only one of which can be active at any one time. The size of the whole union structure is
therefore equal to the size of the largest slot. Each slot has a name symbol and a type type.

The foreign-slot-names, foreign-slot-type, and foreign-slot-value functions can be used to access and
change the slots of the union. The convenience FLI function define-c-union is provided to simplify the definition of
unions.

Examples

In the following example a union type with two slots is defined.

(fli:define-c-union my-number
 (small :byte) (large :int))

An instance of the union is allocated and bound to the Lisp variable length.

(setq length
 (fli:allocate-foreign-object :type 'my-number))

Finally, the small slot of the union is set equal to 24.

(setf (fli:foreign-slot-value length 'small))

See also

define-c-union
foreign-slot-names
foreign-slot-offset
foreign-slot-pointer
foreign-slot-type
foreign-slot-value
2.2.3 Structures and unions

:unsigned FLI Type Descriptor

Summary

Converts between a Lisp integer and a foreign unsigned integer.

Package

keyword

Syntax

:unsigned &optional integer-type

integer-type ::= :byte | :char | :short | :int | :long | :long :int | :short :int

8 Type Reference

188

Arguments

integer-type⇓ The type of the unsigned integer.

Description

The FLI type :unsigned converts between a Lisp integer and a foreign unsigned integer. The optional integer-type argument
specifies other kinds of unsigned integer types. See Table A comparison of Lisp and C unsigned types for a comparison
between Lisp and C unsigned types.

A comparison of Lisp and C unsigned types

Lisp type FLI type C type

integer :unsigned unsigned int

fixnum :unsigned :byte unsigned char

fixnum :unsigned :char unsigned char

fixnum :unsigned :short unsigned short

integer :unsigned :int unsigned int

integer :unsigned :long unsigned long

fixnum :unsigned :short :int unsigned short

integer :unsigned :long :int unsigned long

See also

cast-integer
:signed
2.1.1 Integral types

vector-char2
vector-char3
vector-char4
vector-char8
vector-char16
vector-char32
vector-uchar2
vector-uchar3
vector-uchar4
vector-uchar8
vector-uchar16
vector-uchar32
vector-short2
vector-short3

8 Type Reference

189

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm

vector-short4
vector-short8
vector-short16
vector-short32
vector-ushort2
vector-ushort3
vector-ushort4
vector-ushort8
vector-ushort16
vector-ushort32
vector-int2
vector-int3
vector-int4
vector-int8
vector-int16
vector-uint2
vector-uint3
vector-uint4
vector-uint8
vector-uint16
vector-long1
vector-long2
vector-long3
vector-long4
vector-long8
vector-ulong1
vector-ulong2
vector-ulong3
vector-ulong4
vector-ulong8
vector-float2
vector-float3
vector-float4
vector-float8
vector-float16
vector-double2

8 Type Reference

190

vector-double3
vector-double4
vector-double8 FLI Type Descriptors

Summary

Convert between Lisp vectors and C vector types.

Package

fli

Syntax

vector-char2

vector-char3

vector-char4

vector-char8

vector-char16

vector-char32

vector-uchar2

vector-uchar3

vector-uchar4

vector-uchar8

vector-uchar16

vector-uchar32

vector-short2

vector-short3

vector-short4

vector-short8

vector-short16

vector-short32

vector-ushort2

vector-ushort3

vector-ushort4

vector-ushort8

vector-ushort16

vector-ushort32

vector-int2

8 Type Reference

191

vector-int3

vector-int4

vector-int8

vector-int16

vector-uint2

vector-uint3

vector-uint4

vector-uint8

vector-uint16

vector-long1

vector-long2

vector-long3

vector-long4

vector-long8

vector-ulong1

vector-ulong2

vector-ulong3

vector-ulong4

vector-ulong8

vector-float2

vector-float3

vector-float4

vector-float8

vector-float16

vector-double2

vector-double3

vector-double4

vector-double8

Description

See 2.2.4 Vector types for a full description.

8 Type Reference

192

:void FLI Type Descriptor

Summary

Represents the C void type.

Package

keyword

Syntax

:void

Description

The FLI type :void represents the C void type. It can only be used in a few limited circumstances, as the:

• result-type of a define-foreign-function, define-foreign-funcallable or define-foreign-callable
form. In this case, it means that no values are generated.

• element type of a :pointer type, that is (:pointer :void). Any FLI pointer can be converted to this type, for
example when used like this as the argument type in define-foreign-function.

• element type of a FLI pointer when memory is not being allocated, for example in a call to make-pointer. It is an
error to dereference a FLI pointer with element type :void (but with-coerced-pointer can be used).

• expansion of a define-c-typedef or define-foreign-type form. The type defined in this way can only be used
in situations where :void is allowed.

See also

:pointer
2.5 The void type

:volatile FLI Type Descriptor

Summary

Corresponds to the C volatile type.

Package

keyword

Syntax

:volatile &optional type

Arguments

8 Type Reference

193

type⇓ The type of the volatile. The default is :int.

Description

The FLI type :volatile corresponds to the C++ volatile type. The behavior of a :volatile is exactly the same as the
behavior of its type, and it is only included to ease the readability of FLI code and for naming conventions.

See also

:const

:wchar-t FLI Type Descriptor

Summary

Converts between a Lisp character and a C wchar_t.

Package

keyword

Syntax

:wchar-t

Description

The FLI type :wchar-t converts between a Lisp character and a C wchar_t type.

:wrapper FLI Type Descriptor

Summary

Allows the specification of automatic conversion functions between Lisp and an instance of a FLI type.

Package

keyword

Syntax

:wrapper foreign-type &key lisp-to-foreign foreign-to-lisp

Arguments

foreign-type⇓ The underlying type to wrap.

lisp-to-foreign⇓ Code specifying how to convert between Lisp and the FLI.

foreign-to-lisp⇓ Code specifying how to convert between the FLI and Lisp.

8 Type Reference

194

Description

The FLI type :wrapper allows for an extra level of conversion between Lisp and a foreign language through the FLI. With
the :wrapper type you can use lisp-to-foreign and foreign-to-lisp to specify conversion functions from and to an instance of
another type foreign-type. Whenever data is passed to the object, or received from the object it is passed through the
conversion function. See below for an example of a use of :wrapper to pass values to an :int as strings, and to receive
them back as strings when the pointer to the :int is dereferenced.

Examples

In the following example an :int is allocated with a wrapper to allow the :int to be accessed as a string.

(setq wrap (fli:allocate-foreign-object
 :type '(:wrapper :int
 :lisp-to-foreign read-from-string
 :foreign-to-lisp prin1-to-string)))

The object pointed to by wrap, although consisting of an underlying :int, is set with dereference by passing a string,
which is automatically converted using the Lisp function read-from-string. Similarly, when wrap is dereferenced, the
value stored as an :int is converted using prin1-to-string to a Lisp string, which is the returned. The following two
commands demonstrate this.

(setf (fli:dereference wrap) "#x100")

(fli:dereference wrap)

The first command sets the value stored at wrap to be 256 (100 in hex), by passing a string to it. The second command
dereferences the value at wrap, but returns it as a string. The pointer wrap can be coerced to return the value as an actual
:int as follows:

(fli:dereference wrap :type :int)

See also

2.4 Encapsulated types

8 Type Reference

195

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_fro.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm

9 The Foreign Parser

9.1 Introduction

The Foreign Parser automates the generation of Foreign Language Interface defining forms, given files containing C
declarations.

The result does often need some editing, due to ambiguities in C.

9.1.1 Requirements

The Foreign Parser requires a C preprocessor, so you must have a suitable preprocessor installed on your machine.

By default LispWorks invokes cl.exe (VC++) on Windows and cc on other platforms. If you have this installed, then make
sure it is on your PATH.

On Windows, if you don't have cl.exe, download the VC++ toolkit from Microsoft.

Preprocessors known to work with LispWorks are:

• Microsoft Visual Studio's cl.exe.

• cc

• gcc

To use a preprocessor other than the default, set the variable foreign-parser:*preprocessor*, for example:

(setf foreign-parser:*preprocessor* "gcc")

9.2 Loading the Foreign Parser

The Foreign Parser is in a loadable module foreign-parser.

Load it by:

(require "foreign-parser")

9.3 Using the Foreign Parser

The interface is the function foreign-parser:process-foreign-file.

Suppose we wish to generate the FLI definitions which interface to the C example from 5.2.4 Modifying a string in a C
function. The header file test.h needs to be slightly different depending on the platform.

Windows version:

__declspec(dllexport) void __cdecl modify(char *string)

196

Non-Windows version:

void modify(char *string)

1. Load the Foreign Parser:

(require "foreign-parser")

2. Now generate prototype FLI definitions:

(foreign-parser:process-foreign-file
 "test.h"
 :case-sensitive nil)
=>
;;; Output dff file #P"test-dff.lisp"
;;; Parsing source file "test.h"

;;; Process-foreign-file : Preprocessing file

;;; Process-foreign-file : Level 1 parsing

;;; Process-foreign-file : Selecting foreign forms
NIL

3. You should now have a Lisp file test-dff.lisp containing a form like this:

(fli:define-foreign-function
 (modify "modify" :source)
 ((string (:pointer :char)))
 :result-type
 :void
 :language
 :c
 :calling-convention
 :cdecl)

4. This edited version passes a string using :ef-mb-string:

(fli:define-foreign-function
 (modify "modify" :source)
 ((string (:reference (:ef-mb-string :limit 256))))
 :result-type
 :void
 :language
 :c
 :calling-convention
 :cdecl)
=>
MODIFY

5. Create a DLL containing the C function.

6. Load the foreign code by:

(fli:register-module "test.dll")

or:

(fli:register-module "/tmp/test.so")

9 The Foreign Parser

197

7. Call the C function from LISP:

(modify "Hello, I am in LISP")
=>
NIL
"'Hello, I am in LISP' modified in a C function"

9.4 Using the LispWorks Editor

The LispWorks Editor's C Mode offers a convenient alternative to using foreign-parser:process-foreign-file

directly as above. It also allows you to generate and load a C object file.

To use this, you should be familiar with the LispWorks Editor as described in the LispWorks IDE User Guide and the Editor
User Guide.

9.4.1 Processing Foreign Code with the Editor

1. Open the file test.h in the LispWorks Editor. Note that the buffer is in C Mode, indicated by "(C)" in the mode line.

2. Use the menu command Buffer > Evaluate, or equivalently run Meta+X Evaluate Buffer.

3. A new buffer named test.h (C->LISP) is created. It contains the prototype FLI definition forms generated by
foreign-parser:process-foreign-file.

4. You can now edit the Lisp forms if necessary (note that your new buffer is in Lisp mode) and save them to file. Follow
the previous example from Step 4.

9.4.2 Compiling and Loading Foreign Code with the Editor

1. Open the file test.c in the LispWorks Editor. Note that the buffer is in C Mode, indicated by "(C)" in the mode line.

2. Use the menu command Buffer > Compile, or equivalently run Meta+X Compile Buffer.

3. Your C file is compiled with the same options as lw:compile-system would use, and the object file is loaded. The
object file name is printed in the Output tab. It is written in your temporary directory (see create-temp-file) and
deleted after register-module is called on it.

9.5 Foreign Parser Reference

preprocessor Variable

Summary

The default value for the preprocessor used by process-foreign-file.

Package

foreign-parser

Initial Value

"cc" on Non-Windows systems and "cl" on Windows.

9 The Foreign Parser

198

Description

The variable *preprocessor* provides the default value for the preprocessor used by process-foreign-file.

See also

preprocessor-options
process-foreign-file

preprocessor-format-string Variable

Summary

Provides the default value for the preprocessor-format-string used by process-foreign-file.

Package

foreign-parser

Initial Value

On Windows:

"\"~A\" /nologo /E ~A ~{/D~A ~}~{/I\"~A\" ~}/Tc \"~A\""

On Non-Windows systems:

"~A -E ~A ~{-D~A~ ~}~{-I~A ~}\"~A\""

Description

The variable *preprocessor-format-string* provides the default value for the preprocessor-format-string used by
process-foreign-file.

See also

process-foreign-file

preprocessor-include-path Variable

Summary

Provides the default value for the preprocessor-include-path used by process-foreign-file.

Package

foreign-parser

Initial Value

nil

9 The Foreign Parser

199

Description

The variable *preprocessor-include-path* provides the default value for the preprocessor-include-path used by
process-foreign-file.

See also

process-foreign-file

preprocessor-options Variable

Summary

Provides the default preprocessor-options passed to the preprocessor used by process-foreign-file.

Package

foreign-parser

Initial Value

nil

Description

The variable *preprocessor-options* provides the default preprocessor-options passed to the preprocessor used by
process-foreign-file.

See also

preprocessor
process-foreign-file

process-foreign-file Function

Summary

Parses foreign declarations to create Lisp FLI definition.

Package

foreign-parser

Signature

process-foreign-file source &key dff language preprocess preprocessor preprocessor-format-string preprocessor-options
include-path case-sensitive package

Arguments

source⇓ One or more filenames.

9 The Foreign Parser

200

dff⇓ A filename.

language⇓ A keyword.

preprocess⇓ A boolean.

preprocessor⇓ A string.

preprocessor-format-string⇓
A string.

preprocessor-options⇓ A string.

include-path⇓ A list.

case-sensitive⇓ See description.

package⇓ A package designator or nil.

Description

The function process-foreign-file takes a file or files of foreign declarations — usually header files — and parses
them, producing `dff' files of Lisp definitions using define-foreign-function, define-foreign-variable,
define-foreign-type, and so on, providing a Lisp interface to the foreign code.

source gives the name of the header files or file to be processed. The name of a file consists of source-file-name and source-
file-type (typically .h).

dff is an output file which will contain the Lisp foreign function definitions. The default value is nil, in which case the dff
file will be source-file-name-dff.lisp. (See source, above.)

language specifies the language the header files are written in. Currently the supported languages are :c (standard K&R C
header files) and :ansi-c. The default value is :ansi-c.

preprocess, when non-nil, runs the preprocessor on the input files. The default value is t.

preprocessor-format-string should be a format string which is used to make a preprocessor command line. The format
arguments are a pathname or string giving the preprocessor executable, a list of strings giving the preprocessor options, a list
of strings giving macro names to define, a list of pathnames or strings contain the include path, and a source pathname. On
Windows, the default contains options needed for VC++. The default is the value of *preprocessor-format-string*.

preprocessor is a string containing the pathname of the preprocessor program. By default this is the value of
preprocessor.

preprocessor-options is a string containing command line options to be passed to the preprocessor if it is called. By default
this is the value of *preprocessor-options*.

include-path should be a list of pathnames or strings that will be added as the include path for the preprocessor. The default is
the value of *preprocessor-include-path*.

case-sensitive specifies whether to maintain case sensitivity in symbol names as in the source files. Values can be:

t The names of all Lisp functions and classes created are of the form |name|. This is the default
value.

nil All foreign names are converted to uppercase and an error is signalled if any name clashes occur
as a result of this conversion. For example, OneTwoTHREE becomes ONETWOTHREE.

:split-name Attempts to split the name up into something sensible. For example, OneTwoTHREE becomes
ONE-TWO-THREE.

9 The Foreign Parser

201

:prefix Changes lowercase to uppercase and concatenates the string with the string held in
sys:*prefix-name-string*. For example, OneTwoTHREE becomes
FOREIGN-ONETWOTHREE.

(:user-routine function-name)

Enables you to pass your own function for name formatting. Your function must take a string
argument and return a string result. It is not advised to use destructive functions (for example,
nreverse) as this may cause unusual side effects.

If case-sensitive takes any other value, names are not changed.

package is used to generate an in-package form at the start of the output (dff) file. The name of the package designated by
package is used in this form. The default value of package is the value of *package*.

Note that in some cases the derived Lisp FLI definitions will not be quite correct, due to an ambiguity in C. char* can mean
a pointer to a character, or a string, and in many cases you will want to pass a string. Therefore, process-foreign-file
is useful for generating prototype FLI definitions, especially when there are many, but you do need to check the results when
char* is used.

See also

register-module
preprocessor
preprocessor-options

9 The Foreign Parser

202

http://www.lispworks.com/documentation/HyperSpec/Body/f_revers.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pkg.htm

Glossary
aggregate type

Any FLI type which is made up of other FLI types. This can be either an array of instances of a given FLI type, or a
structured object.

Arrays, string, structure, and unions are all aggregate types. Pointers are not aggregates.

callable function

A Lisp function, defined with the FLI macro define-foreign-callable, which can be called from a foreign
language.

coerced pointer

A coerced pointer is a pointer that is dereferenced with the :type key in order to return the value pointed to as a
different type than specified by the pointer type. For example, a pointer to a byte can be coerced to return a boolean on
dereferencing.

FLI

The Foreign Language Interface, which consists of the macros, functions, types and variables defined in the fli
package.

FLI code

Code written in Lisp using the functions, macros and types in the fli package.

FLI function

A function in the fli package used to interface Lisp with a foreign language.

FLI type

A data type specifier in the fli package used to define data objects that interface between Lisp and the foreign
language. For example, a C long might be passed to LispWorks through an instance of the FLI type :long, from
which it is transferred to a Lisp integer.

foreign callable function

See callable function.

foreign function

A Lisp function, defined using the FLI macro define-foreign-function, which calls a function written in a
foreign language. A foreign function contains no body, consisting only of a name and a list of arguments. The function
in the foreign language provides the body of the foreign function.

foreign language

A language to which Lisp can be interfaced using the FLI. Currently the FLI interfaces to C, and therefore also the
Win32 API functions.

203

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm

immediate type

See scalar type.

pointer

A FLI type consisting of an address and a type specification. A pointer normally points to the memory location of an
instance of the type specified, although there might not actually be an allocated instance of the type at the pointer
location.

A pointer is a boxed foreign object because it contains type information about the type it is pointing to (so that we can
dereference it). In 'C' a pointer can be represented by a single register.

scalar type

A FLI type that is not an aggregate type. The FLI type maps directly to a single foreign type such as integer, floating
point, enumeration and pointer.

wrapper

A description of the :wrapper FLI type which "wraps" around an object, allowing data to be passed to or obtained
from the object as though it was of a different type. A wrapper can be viewed as a set of conversion functions defined
on the object which are automatically invoked when the wrapped object is accessed.

Glossary

204

Index

A

accessors

dereference 93

foreign-aref 98

foreign-slot-value 110

foreign-typed-aref 112

aggregate FLI types 2 : FLI Types 17, 2.2 : Aggregate types 18

aggregate types 2 : FLI Types 17

align-of function 54

alloca function 55

allocate-dynamic-foreign-object function 55

allocate-foreign-block function 56

allocate-foreign-object function 57

allocating memory dynamically 1.4 : An example of dynamic memory allocation 16, allocate-foreign-object 58

Android 4.2.2 : ARM 32-bit calling conventions 35

B

Block object 5.7 : Block objects in C (foreign blocks) 50

:boolean FLI type descriptor 158

:byte FLI type descriptor 159

C

C 5.7 : Block objects in C (foreign blocks) 50

calling from Lisp 1.1.1 : Defining the FLI function 12, 5.7.1 : Calling foreign code that receives a block as argument 50

calling from Lisp with a block 5.7.1 : Calling foreign code that receives a block as argument 50

calling into Lisp 4.1 : Foreign callables and foreign functions 32

C++

calling from Lisp 1.1.1 : Defining the FLI function 12, 5.7.1 : Calling foreign code that receives a block as argument 50

calling from Lisp with a block 5.7.1 : Calling foreign code that receives a block as argument 50

calling into Lisp 4.1 : Foreign callables and foreign functions 32

calling convention

specifying 4.2 : Specifying a calling convention. 34

:c-array FLI type descriptor 159

cast-integer function 59

C code

declarations 9.1 : Introduction 196

205

:char FLI type descriptor 161

CLANG 5.7 : Block objects in C (foreign blocks) 50

condition classes

foreign-type-error 114

connected-module-pathname function 59

:connection-style

argument to register-module register-module 134

:const FLI type descriptor 161

convert-from-foreign-string function 61

convert-integer-to-dynamic-foreign-object function 62

convert-to-dynamic-foreign-string function 62

convert-to-foreign-string function 64

copy-pointer function 65

D

decf-pointer function 66

define-c-enum macro 67

define-c-struct macro 69

define-c-typedef macro 71

define-c-union macro 72

define-foreign-block-callable-type macro 74

define-foreign-block-invoker macro 75

define-foreign-callable macro 76 4.1 : Foreign callables and foreign functions 32, 4.1.1 : Strings and foreign callables 34

define-foreign-converter macro 79

define-foreign-forward-reference-type macro 81

define-foreign-funcallable macro 82

define-foreign-function macro 83 4.1 : Foreign callables and foreign functions 32

define-foreign-pointer macro 87 3.1.1 : Creating pointers 25

define-foreign-type macro 88 2 : FLI Types 17

define-foreign-variable macro 89

define-opaque-pointer macro 92

defining FLI functions 1.2.2 : Defining a FLI function 15

defining FLI types 1.2.1 : Defining FLI types 14

defining forms

ambiguity process-foreign-file 202

automated generation 9.1 : Introduction 196

defsystem macro 5.6 : Incorporating a foreign module into a LispWorks image 50

dereference accessor 93

disconnect-module function 95

DLLs

exporting functions from 5.5 : Using DLLs within the LispWorks FLI 48

Index

206

documentation strings 2 : FLI Types 17

:double FLI type descriptor 162

:double-complex FLI type descriptor 163

dynamic memory allocation 1.4 : An example of dynamic memory allocation 16

E

:ef-mb-string FLI type descriptor 163

:ef-wc-string FLI type descriptor 164

Embedded dynamic modules 5.6 : Incorporating a foreign module into a LispWorks image 49

:embedded-module member option for defsystem

type : cfile 5.6 : Incorporating a foreign module into a LispWorks image 50

:enum FLI type descriptor 165

:enumeration FLI type descriptor 165

enum-symbols function 96

enum-symbol-value function 96

enum-symbol-value-pairs function 96

enum-values function 96

enum-value-symbol function 96

environment variable

DYLD_LIBRARY_PATH register-module 136

LD_LIBRARY_PATH register-module 135, register-module 136

PATH register-module 135

F

fill-foreign-object function 97

:fixnum FLI type descriptor 166

FLI functions

defining 1.2.2 : Defining a FLI function 15

FLI templates print-collected-template-info 133, start-collecting-template-info 145

FLI type constructors 2 : FLI Types 17

FLI type descriptors

:boolean 158

:byte 159

:c-array 159

:char 161

:const 161

:double 162

:double-complex 163

:ef-mb-string 163

:ef-wc-string 164

:enum 165

:enumeration 165

Index

207

:fixnum 166

:float 166

:float-complex 167

:foreign-array 167

foreign-block-pointer 168 5.7 : Block objects in C (foreign blocks) 50

:function 169

:int16 170

:int32 170

:int64 170

:int8 170

:int 171

:intmax 170

:intptr 170

:lisp-array 171

:lisp-double-float 173

:lisp-float 173

:lisp-simple-1d-array 174

:lisp-single-float 175

:long 175

:long-long 176

lpcstr 5.2.8 : Win32 API functions that handle strings 45

lpctstr 5.2.8 : Win32 API functions that handle strings 46

lpcwstr 5.2.8 : Win32 API functions that handle strings 45

lptstr 5.2.8 : Win32 API functions that handle strings 46

:one-of 177

:pointer 178

:ptr 178

:ptrdiff-t 178

:reference 179

:reference-pass 180

:reference-return 181

released-foreign-block-pointer 181

:short 182

:signed 183

:size-t 184

:ssize-t 184

str 5.2.8 : Win32 API functions that handle strings 45

:struct 185

:time-t 186

tstr 5.2.8 : Win32 API functions that handle strings 46

:uint16 186

Index

208

:uint32 186

:uint64 186

:uint8 186

:uintmax 186

:uintptr 186

:union 187

:unsigned 188

vector-char16 189

vector-char2 189

vector-char3 189

vector-char32 189

vector-char4 189

vector-char8 189

vector-double2 190

vector-double3 190

vector-double4 191

vector-double8 191

vector-float16 190

vector-float2 190

vector-float3 190

vector-float4 190

vector-float8 190

vector-int16 190

vector-int2 190

vector-int3 190

vector-int4 190

vector-int8 190

vector-long1 190

vector-long2 190

vector-long3 190

vector-long4 190

vector-long8 190

vector-short16 190

vector-short2 189

vector-short3 189

vector-short32 190

vector-short4 190

vector-short8 190

vector-uchar16 189

vector-uchar2 189

vector-uchar3 189

Index

209

vector-uchar32 189

vector-uchar4 189

vector-uchar8 189

vector-uint16 190

vector-uint2 190

vector-uint3 190

vector-uint4 190

vector-uint8 190

vector-ulong1 190

vector-ulong2 190

vector-ulong3 190

vector-ulong4 190

vector-ulong8 190

vector-ushort16 190

vector-ushort2 190

vector-ushort3 190

vector-ushort32 190

vector-ushort4 190

vector-ushort8 190

:void 193

:volatile 193

:wchar-t 194

:wrapper 194

wstr 5.2.8 : Win32 API functions that handle strings 45

FLI types

aggregate 2 : FLI Types 17, 2.2 : Aggregate types 18

defining 1.2.1 : Defining FLI types 14

defining new types 5.4 : Defining new types 48

immediate 2 : FLI Types 17

:float FLI type descriptor 166

:float-complex FLI type descriptor 167

foreign-aref accessor 98

:foreign-array FLI type descriptor 167

foreign-array-dimensions function 100

foreign-array-element-type function 100

foreign-array-pointer function 101

foreign-block-copy function 102

foreign-block-pointer FLI type descriptor 168 5.7 : Block objects in C (foreign blocks) 50

foreign-block-release function 103

Foreign blocks 5.7 : Block objects in C (foreign blocks) 50

Index

210

foreign callable

defining 4.1 : Foreign callables and foreign functions 32

passing and returning strings 4.1.1 : Strings and foreign callables 33

foreign-function-pointer function 104

Foreign Parser 9.1 : Introduction 196

foreign-slot-names function 105

foreign-slot-offset function 106

foreign-slot-pointer function 107

foreign-slot-type function 109

foreign-slot-value accessor 110

foreign-typed-aref accessor 112

foreign-type-equal-p function 113

foreign-type-error condition class 114

free function 115

free-foreign-block function 114

free-foreign-object function 115

:function FLI type descriptor 169

functions

align-of 54

alloca 55

allocate-dynamic-foreign-object 55

allocate-foreign-block 56

allocate-foreign-object 57

cast-integer 59

connected-module-pathname 59

convert-from-foreign-string 61

convert-integer-to-dynamic-foreign-object 62

convert-to-dynamic-foreign-string 62

convert-to-foreign-string 64

copy-pointer 65

decf-pointer 66

disconnect-module 95

enum-symbols 96

enum-symbol-value 96

enum-symbol-value-pairs 96

enum-values 96

enum-value-symbol 96

fill-foreign-object 97

foreign-array-dimensions 100

foreign-array-element-type 100

foreign-array-pointer 101

Index

211

foreign-block-copy 102

foreign-block-release 103

foreign-function-pointer 104

foreign-slot-names 105

foreign-slot-offset 106

foreign-slot-pointer 107

foreign-slot-type 109

foreign-type-equal-p 113

free 115

free-foreign-block 114

free-foreign-object 115

get-embedded-module 116

get-embedded-module-data 117

incf-pointer 118

install-embedded-module 119

make-integer-from-bytes 122

make-pointer 122

malloc 57

module-unresolved-symbols 124

null-pointer-p 125

pointer-address 126

pointer-element-size 127

pointer-element-type 128

pointer-element-type-p 129

pointer-eq 130

pointerp 131

pointer-pointer-type 132

print-collected-template-info 133

print-foreign-modules 133

process-foreign-file 200

register-module 134

replace-foreign-array 138

replace-foreign-object 140

set-locale 141

set-locale-encodings 142

setup-embedded-module 143

size-of 144

start-collecting-template-info 145

valid-foreign-type-p 146

Index

212

G

GCD 5.7 : Block objects in C (foreign blocks) 50

gdi+ 5.8 : Interfacing to graphics functions 52

gdiplus 5.8 : Interfacing to graphics functions 52

get-embedded-module function 116

get-embedded-module-data function 117

Grand Central Dispatch 5.7 : Block objects in C (foreign blocks) 50

graphics functions 5.8 : Interfacing to graphics functions 52

I

immediate FLI types 2 : FLI Types 17

incf-pointer function 118

install-embedded-module function 119

install-embedded-module-delay-delete variable 120

:int16 FLI type descriptor 170

int32 type foreign-typed-aref 112

:int32 FLI type descriptor 170

int64 type foreign-typed-aref 112

:int64 FLI type descriptor 170

:int8 FLI type descriptor 170

:int FLI type descriptor 171

:intmax FLI type descriptor 170

:intptr FLI type descriptor 170

iOS 4.2.2 : ARM 32-bit calling conventions 35

L

languages supported 1 : Introduction to the FLI 12

:lifetime

argument to register-module register-module 134

Linux 4.2.2 : ARM 32-bit calling conventions 35

Lisp

calling from C 4.1 : Foreign callables and foreign functions 32

calling from C++ 4.1 : Foreign callables and foreign functions 32

calling into C 1.1.1 : Defining the FLI function 12, 5.7.1 : Calling foreign code that receives a block as argument 50

calling into C++ 1.1.1 : Defining the FLI function 12, 5.7.1 : Calling foreign code that receives a block as argument 50

calling into C with a block 5.7.1 : Calling foreign code that receives a block as argument 50

calling into C++ with a block 5.7.1 : Calling foreign code that receives a block as argument 50

:lisp-array FLI type descriptor 171

:lisp-double-float FLI type descriptor 173

:lisp-float FLI type descriptor 173

:lisp-simple-1d-array FLI type descriptor 174

Index

213

:lisp-single-float FLI type descriptor 175

locale-external-formats variable 121

:long FLI type descriptor 175

:long-long FLI type descriptor 176

lpcstr FLI type descriptor 5.2.8 : Win32 API functions that handle strings 45

lpctstr FLI type descriptor 5.2.8 : Win32 API functions that handle strings 46

lpcwstr FLI type descriptor 5.2.8 : Win32 API functions that handle strings 45

lptstr FLI type descriptor 5.2.8 : Win32 API functions that handle strings 46

M

macros

define-c-enum 67

define-c-struct 69

define-c-typedef 71

define-c-union 72

define-foreign-block-callable-type 74

define-foreign-block-invoker 75

define-foreign-callable 76 4.1 : Foreign callables and foreign functions 32, 4.1.1 : Strings and foreign callables 34

define-foreign-converter 79

define-foreign-forward-reference-type 81

define-foreign-funcallable 82

define-foreign-function 83 4.1 : Foreign callables and foreign functions 32

define-foreign-pointer 87 3.1.1 : Creating pointers 25

define-foreign-type 88 2 : FLI Types 17

define-foreign-variable 89

define-opaque-pointer 92

defsystem 5.6 : Incorporating a foreign module into a LispWorks image 50

with-coerced-pointer 147

with-dynamic-foreign-objects 148

with-dynamic-lisp-array-pointer 151

with-foreign-block 152

with-foreign-slots 153

with-foreign-string 154

with-integer-bytes 156

with-local-foreign-block 156

make-integer-from-bytes function 122

make-pointer function 122

malloc function 57

memory allocation 1.4 : An example of dynamic memory allocation 16, 3.1.3 : Allocation of FLI memory 26

module-unresolved-symbols function 124

Index

214

N

New in LispWorks 7.0

64-bit integer FLI types supported in 32-bit LispWorks define-foreign-callable 78, dereference 94, foreign-slot-
value 111

foreign-function-pointer function 104

hard-float and soft-float calling conventions for ARM platforms 4.2.2 : ARM 32-bit calling conventions 35

released-foreign-block-pointer FLI type descriptor 181

replace-foreign-array function 138

Store a foreign module in a Lisp image with defsystem member option :embedded-module 5.6 : Incorporating a foreign module into a
LispWorks image 50

New in LispWorks 7.1

ARM 64-bit platform 4.2.3 : ARM 64-bit calling conventions 36

fastcall calling convention for 32-bit x86 platforms 4.2.4 : Fastcall on 32-bit x86 platforms 36

iOS calling convention for ARM 32-bit platforms 4.2.2 : ARM 32-bit calling conventions 35

specifying variadic foreign functions define-foreign-function 86

use-sse2-for-ext-vector-type variable 145

:variadic-num-of-fixed keyword define-foreign-function 86

vector types 2.2.4 : Vector types 20

New in LispWorks 8.0

delay-delete argument to install-embedded-module install-embedded-module 119

:double-complex FLI type descriptor 163

:float-complex FLI type descriptor 167

install-embedded-module-delay-delete variable 120

valid-foreign-type-p function 146

null-pointer variable 125

null-pointer-p function 125

null pointers 3.2 : Pointer testing functions 26

O

:one-of FLI type descriptor 177

P

:pointer FLI type descriptor 178

pointer-address function 126

pointer-element-size function 127

pointer-element-type function 128

pointer-element-type-p function 129

pointer-eq function 130

pointerp function 131

pointer-pointer-type function 132

pointers 3 : FLI Pointers 25

coercing 3.3 : Pointer dereferencing and coercing 27

copying 3.1.2 : Copying pointers 26

Index

215

creating 3.1.1 : Creating pointers 25

dereferencing 3.3 : Pointer dereferencing and coercing 27

dynamically allocating 3.4 : An example of dynamic pointer allocation 28

null pointers 3.2 : Pointer testing functions 26

test functions for 3.2 : Pointer testing functions 26

preprocessor variable 198 9.1.1 : Requirements 196

preprocessor-format-string variable 199

preprocessor-include-path variable 199

preprocessor-options variable 200

print-collected-template-info function 133

print-foreign-modules function 133

process-foreign-file function 200

:ptr FLI type descriptor 178

:ptrdiff-t FLI type descriptor 178

R

:reference FLI type descriptor 179

:reference-pass FLI type descriptor 180

:reference-return FLI type descriptor 181

register-module function 134

released-foreign-block-pointer FLI type descriptor 181

replace-foreign-array function 138

replace-foreign-object function 140

S

Self-contained examples

foreign blocks 6.1 : Foreign block examples 53

miscellaneous examples 6.2 : Miscellaneous examples 53

set-locale function 141

set-locale-encodings function 142

setup-embedded-module function 143

:short FLI type descriptor 182

:signed FLI type descriptor 183

size-of function 144

:size-t FLI type descriptor 184

:ssize-t FLI type descriptor 184

start-collecting-template-info function 145

str FLI type descriptor 5.2.8 : Win32 API functions that handle strings 45

strings

modifying in C 5.2.4 : Modifying a string in a C function 40

passing to C 5.1 : Passing a string to a Windows function 37, 5.2.2 : Passing a string 38

returning from C 5.2.3 : Returning a string via a buffer 39

Index

216

:struct FLI type descriptor 185

T

templates, FLI print-collected-template-info 133, start-collecting-template-info 145

:time-t FLI type descriptor 186

tstr FLI type descriptor 5.2.8 : Win32 API functions that handle strings 46

type constructors 2 : FLI Types 17

types

int32 foreign-typed-aref 112

int64 foreign-typed-aref 112

U

:uint16 FLI type descriptor 186

:uint32 FLI type descriptor 186

:uint64 FLI type descriptor 186

:uint8 FLI type descriptor 186

:uintmax FLI type descriptor 186

:uintptr FLI type descriptor 186

:union FLI type descriptor 187

:unsigned FLI type descriptor 188

use-sse2-for-ext-vector-type variable 145

V

valid-foreign-type-p function 146

variables

install-embedded-module-delay-delete 120

locale-external-formats 121

null-pointer 125

preprocessor 198 9.1.1 : Requirements 196

preprocessor-format-string 199

preprocessor-include-path 199

preprocessor-options 200

use-sse2-for-ext-vector-type 145

vector-char16 FLI type descriptor 189

vector-char2 FLI type descriptor 189

vector-char3 FLI type descriptor 189

vector-char32 FLI type descriptor 189

vector-char4 FLI type descriptor 189

vector-char8 FLI type descriptor 189

vector-double2 FLI type descriptor 190

vector-double3 FLI type descriptor 190

vector-double4 FLI type descriptor 191

Index

217

vector-double8 FLI type descriptor 191

vector-float16 FLI type descriptor 190

vector-float2 FLI type descriptor 190

vector-float3 FLI type descriptor 190

vector-float4 FLI type descriptor 190

vector-float8 FLI type descriptor 190

vector-int16 FLI type descriptor 190

vector-int2 FLI type descriptor 190

vector-int3 FLI type descriptor 190

vector-int4 FLI type descriptor 190

vector-int8 FLI type descriptor 190

vector-long1 FLI type descriptor 190

vector-long2 FLI type descriptor 190

vector-long3 FLI type descriptor 190

vector-long4 FLI type descriptor 190

vector-long8 FLI type descriptor 190

vector-short16 FLI type descriptor 190

vector-short2 FLI type descriptor 189

vector-short3 FLI type descriptor 189

vector-short32 FLI type descriptor 190

vector-short4 FLI type descriptor 190

vector-short8 FLI type descriptor 190

vector-uchar16 FLI type descriptor 189

vector-uchar2 FLI type descriptor 189

vector-uchar3 FLI type descriptor 189

vector-uchar32 FLI type descriptor 189

vector-uchar4 FLI type descriptor 189

vector-uchar8 FLI type descriptor 189

vector-uint16 FLI type descriptor 190

vector-uint2 FLI type descriptor 190

vector-uint3 FLI type descriptor 190

vector-uint4 FLI type descriptor 190

vector-uint8 FLI type descriptor 190

vector-ulong1 FLI type descriptor 190

vector-ulong2 FLI type descriptor 190

vector-ulong3 FLI type descriptor 190

vector-ulong4 FLI type descriptor 190

vector-ulong8 FLI type descriptor 190

vector-ushort16 FLI type descriptor 190

vector-ushort2 FLI type descriptor 190

Index

218

vector-ushort3 FLI type descriptor 190

vector-ushort32 FLI type descriptor 190

vector-ushort4 FLI type descriptor 190

vector-ushort8 FLI type descriptor 190

:void FLI type descriptor 193

:volatile FLI type descriptor 193

W

:wchar-t FLI type descriptor 194

with-coerced-pointer macro 147

with-dynamic-foreign-objects macro 148

with-dynamic-lisp-array-pointer macro 151

with-foreign-block macro 152

with-foreign-slots macro 153

with-foreign-string macro 154

with-integer-bytes macro 156

with-local-foreign-block macro 156

:wrapper FLI type descriptor 194

wstr FLI type descriptor 5.2.8 : Win32 API functions that handle strings 45

Index

219

	Foreign Language Interface User Guide and Reference Manual
	Copyrights and Trademarks
	Contents
	Preface
	1 Introduction to the FLI
	1.1 An example of interfacing to a foreign function
	1.1.1 Defining the FLI function
	1.1.2 Loading foreign code
	1.1.3 Calling foreign code

	1.2 Using the FLI to get the cursor position
	1.2.1 Defining FLI types
	1.2.2 Defining a FLI function
	1.2.3 Accessing the results

	1.3 Using the FLI to set the cursor position
	1.4 An example of dynamic memory allocation
	1.5 Summary

	2 FLI Types
	2.1 Immediate types
	2.1.1 Integral types
	2.1.2 Floating point types
	2.1.3 Complex number types
	2.1.4 Character types
	2.1.5 Boolean types
	2.1.6 Pointer types

	2.2 Aggregate types
	2.2.1 Arrays
	2.2.2 Strings
	2.2.3 Structures and unions
	2.2.4 Vector types
	2.2.4.1 Vector type names
	2.2.4.2 Vector type values
	2.2.4.3 Using a foreign pointer to a vector type
	2.2.4.4 Notes on foreign vector types

	2.3 Parameterized types
	2.4 Encapsulated types
	2.4.1 Passing Lisp objects to C
	2.4.2 An example

	2.5 The void type
	2.6 Summary

	3 FLI Pointers
	3.1 Creating and copying pointers
	3.1.1 Creating pointers
	3.1.2 Copying pointers
	3.1.3 Allocation of FLI memory

	3.2 Pointer testing functions
	3.3 Pointer dereferencing and coercing
	3.4 An example of dynamic pointer allocation
	3.5 More examples of allocation and pointer allocation
	3.5.1 Allocating an integer
	3.5.2 Allocating a pointer to a pointer to a void

	3.6 Summary

	4 Defining foreign functions and callables
	4.1 Foreign callables and foreign functions
	4.1.1 Strings and foreign callables

	4.2 Specifying a calling convention.
	4.2.1 Windows 32-bit calling conventions
	4.2.2 ARM 32-bit calling conventions
	4.2.3 ARM 64-bit calling conventions
	4.2.4 Fastcall on 32-bit x86 platforms

	5 Advanced Uses of the FLI
	5.1 Passing a string to a Windows function
	5.2 Passing and returning strings
	5.2.1 Use of Reference Arguments
	5.2.2 Passing a string
	5.2.3 Returning a string via a buffer
	5.2.4 Modifying a string in a C function
	5.2.5 Calling a C function that takes an array of strings
	5.2.6 Foreign string encodings
	5.2.7 Foreign string line terminators
	5.2.8 Win32 API functions that handle strings
	5.2.9 Mapping nil to a Null Pointer

	5.3 Lisp integers
	5.4 Defining new types
	5.5 Using DLLs within the LispWorks FLI
	5.5.1 Using C DLLs
	5.5.1.1 Testing whether a function is defined

	5.5.2 Using C++ DLLs

	5.6 Incorporating a foreign module into a LispWorks image
	5.7 Block objects in C (foreign blocks)
	5.7.1 Calling foreign code that receives a block as argument
	5.7.2 Operations on foreign blocks
	5.7.3 Scope of invocation

	5.8 Interfacing to graphics functions
	5.9 Summary

	6 Self-contained examples
	6.1 Foreign block examples
	6.2 Miscellaneous examples

	7 Function, Macro and Variable Reference
	align-of
	alloca
	allocate-dynamic-foreign-object
	allocate-foreign-block
	allocate-foreign-object
	cast-integer
	connected-module-pathname
	convert-from-foreign-string
	convert-integer-to-dynamic-foreign-object
	convert-to-dynamic-foreign-string
	convert-to-foreign-string
	copy-pointer
	decf-pointer
	define-c-enum
	define-c-struct
	define-c-typedef
	define-c-union
	define-foreign-block-callable-type
	define-foreign-block-invoker
	define-foreign-callable
	define-foreign-converter
	define-foreign-forward-reference-type
	define-foreign-funcallable
	define-foreign-function
	define-foreign-pointer
	define-foreign-type
	define-foreign-variable
	define-opaque-pointer
	dereference
	disconnect-module
	enum-symbols
	enum-symbol-value
	enum-symbol-value-pairs
	enum-values
	enum-value-symbol
	fill-foreign-object
	foreign-aref
	foreign-array-dimensions
	foreign-array-element-type
	foreign-array-pointer
	foreign-block-copy
	foreign-block-release
	foreign-function-pointer
	foreign-slot-names
	foreign-slot-offset
	foreign-slot-pointer
	foreign-slot-type
	foreign-slot-value
	foreign-typed-aref
	foreign-type-equal-p
	foreign-type-error
	free
	free-foreign-block
	free-foreign-object
	get-embedded-module
	get-embedded-module-data
	incf-pointer
	install-embedded-module
	install-embedded-module-delay-delete
	locale-external-formats
	make-integer-from-bytes
	make-pointer
	malloc
	module-unresolved-symbols
	null-pointer
	null-pointer-p
	pointer-address
	pointer-element-size
	pointer-element-type
	pointer-element-type-p
	pointer-eq
	pointerp
	pointer-pointer-type
	print-collected-template-info
	print-foreign-modules
	register-module
	replace-foreign-array
	replace-foreign-object
	set-locale
	set-locale-encodings
	setup-embedded-module
	size-of
	start-collecting-template-info
	use-sse2-for-ext-vector-type
	valid-foreign-type-p
	with-coerced-pointer
	with-dynamic-foreign-objects
	with-dynamic-lisp-array-pointer
	with-foreign-block
	with-foreign-slots
	with-foreign-string
	with-integer-bytes
	with-local-foreign-block

	8 Type Reference
	:boolean
	:byte
	:c-array
	:char
	:const
	:double
	:double-complex
	:ef-mb-string
	:ef-wc-string
	:enum
	:enumeration
	:fixnum
	:float
	:float-complex
	:foreign-array
	foreign-block-pointer
	:function
	:int16
	:int32
	:int64
	:int8
	:int
	:intmax
	:intptr
	:lisp-array
	:lisp-double-float
	:lisp-float
	:lisp-simple-1d-array
	:lisp-single-float
	:long
	:long-long
	:one-of
	:pointer
	:ptr
	:ptrdiff-t
	:reference
	:reference-pass
	:reference-return
	released-foreign-block-pointer
	:short
	:signed
	:size-t
	:ssize-t
	:struct
	:time-t
	:uint16
	:uint32
	:uint64
	:uint8
	:uintmax
	:uintptr
	:union
	:unsigned
	vector-char16
	vector-char2
	vector-char3
	vector-char32
	vector-char4
	vector-char8
	vector-double2
	vector-double3
	vector-double4
	vector-double8
	vector-float16
	vector-float2
	vector-float3
	vector-float4
	vector-float8
	vector-int16
	vector-int2
	vector-int3
	vector-int4
	vector-int8
	vector-long1
	vector-long2
	vector-long3
	vector-long4
	vector-long8
	vector-short16
	vector-short2
	vector-short3
	vector-short32
	vector-short4
	vector-short8
	vector-uchar16
	vector-uchar2
	vector-uchar3
	vector-uchar32
	vector-uchar4
	vector-uchar8
	vector-uint16
	vector-uint2
	vector-uint3
	vector-uint4
	vector-uint8
	vector-ulong1
	vector-ulong2
	vector-ulong3
	vector-ulong4
	vector-ulong8
	vector-ushort16
	vector-ushort2
	vector-ushort3
	vector-ushort32
	vector-ushort4
	vector-ushort8
	:void
	:volatile
	:wchar-t
	:wrapper

	9 The Foreign Parser
	9.1 Introduction
	9.1.1 Requirements

	9.2 Loading the Foreign Parser
	9.3 Using the Foreign Parser
	9.4 Using the LispWorks Editor
	9.4.1 Processing Foreign Code with the Editor
	9.4.2 Compiling and Loading Foreign Code with the Editor

	9.5 Foreign Parser Reference
	preprocessor
	preprocessor-format-string
	preprocessor-include-path
	preprocessor-options
	process-foreign-file

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

