LispWorks IDE User Guide

Version 8.0

Copyright and Trademarks

LispWorks IDE User Guide (Windows version)
Version 8.0

December 2021

Copyright © 2021 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and K nowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in al copies and supporting documentation, and that the
name of M.1.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "asis’
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including al implied
warranties of merchantability and fitness. In no event shall M.I.T. beliable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of |CU software obtained from http://source.icu-project.org and which bears the following copyright
and permission natice:

ICU License- ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.

Permission is hereby granted, free of charge, to any person abtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission naotice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "ASIS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THISNOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright and Trademarks

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and

registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights

The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt 111, as applicable. Rights reserved under the copyright laws of

the United States.

Address

Telephone

Fax

LispWorks Ltd

St. John's Innovation Centre
Cowley Road

Cambridge

CB4 0WS

England

From North America
877 759 8839 (toll-free)

From elsawhere;
+44 1223 421860

From North America
617 812 8283

From elsawhere:
+44 870 2206189

www.lispwor ks.com

www.lispworks.com

Contents

Preface 11

1 Introduction 15

1.1 Mgor tools 15

2 A Short Tutorial 18

2.1 Starting the environment 18

2.2 Creating a Listener 19

2.3 Using the Debugger 20

2.4 Viewing output 21

2.5 Inspecting objects using the Inspector 22
2.6 Examining classes in the Class Browser 24
2.7 Switching between windows 25

2.8 Summary 25

3 Common Features 26

3.1 Displaying tool windows 29
3.2 Setting preferences 33

3.3 Performing editing functions 41
3.4 The Break gesture 43

3.5 The history list 44

3.6 Operating on files 45

3.7 Displaying packages 45

3.8 Performing operations on selected objects 47
3.9 Using different views 49

3.10 Tracing symbols from tools 51
3.11 Linking tools together 51

3.12 Filtering information 52

3.13 Regexp matching 53

3.14 Completion 54

3.15 The Commands menu 56
3.16 Output and Input to/from the standard streams 58
3.17 Examining a window 59

3.18 Specifying the initial tools 59
3.19 System preferences affecting the IDE tools 59

Contents

4 Getting Help 60

4.1 Online manualsin HTML format 60

4.2 Online help for editor commands 62

4.3 Reporting bugs 62

4.4 Registering a new license key 62

4.5 Browsing manuals online using Adobe Reader 63

5 Session Saving 64

5.1 What session saving does 64

5.2 The default session 64

5.3 What is saved and what is not saved 64

5.4 Saving sessions 65

5.5 Redirecting images to a Saved Session image 68
5.6 Non-IDE interfaces and session saving 69

6 Manipulating Graphs 70

6.1 An overview of graphs 70

6.2 Searching graphs 71

6.3 Expanding and collapsing graphs 71
6.4 Moving nodesin graphs 72

6.5 Displaying plans of graphs 72

6.6 Preferences for graphs 73

6.7 Using graphsin your programs 76

7 The Class Browser 78

7.1 Simple use of the Class Browser 78

7.2 Examining slot information 82

7.3 Examining superclasses and subclasses 84
7.4 Examining classes graphically 86

7.5 Examining generic functions and methods 88
7.6 Examining initargs 91

7.7 Examining class precedences 92

8 The Object Clipboard 95

8.1 Placing objects on the Object Clipboard 95
8.2 Browsing clipped objects 96

8.3 Removing objects 97

8.4 Filtering 98

8.5 Using the Object Clipboard with a Listener 98

9 The Compilation Conditions Browser

9.1 Introduction 101
9.2 Examining conditions 101

101

Contents

9.3 Configuring the display 103
9.4 Access to other tools 103

10 The Debugger Tool 104

10.1 Description of the Debugger 105

10.2 What the Debugger tool does 108

10.3 Simple use of the Debugger tool 108

10.4 The stack in the Debugger 109

10.5 An example debugging session 109

10.6 Performing operations on the error condition 111
10.7 Performing operations on stack frames 111
10.8 Performing operations on frame variables 112
10.9 Configuring the debugger tool 112

10.10 The Notifier window 113

10.11 Handling of Cocoa Event Loop hanging 115
10.12 Errorsin CAPI display callbacks 116

11 The Tracer 117

11.1 Introduction 117
11.2 Tracing and Untracing functions 117
11.3 Examining the output of tracing 118

11.4 Example 118

12 The Editor 122

12.1 Displaying and editing files 123

12.2 Displaying output messages in the Editor 125
12.3 Displaying and swapping between buffers 125
12.4 Displaying Common Lisp definitions 127
12.5 Changed definitions 128

12.6 Finding definitions 129

12.7 Setting Editor preferences 130

12.8 Basic Editor commands 133
12.9 Other essential commands 136
12.10 Cutting, copying and pasting using the clipboard 136

12.11 Cutting, copying and pasting using the kill ring 137
12.12 Searching and replacing text 139

12.13 Using Lisp-specific commands 142

12.14 Help with editing 147

13 The Code Coverage Browser 148

13.1 Starting the Code Coverage Browser 148
13.2 Displaying a Code Coverage data 149
13.3 Code Coverage Files List Context Menu 149

13.4 Traverse 150

Contents

13.5 Using the internal data 151
13.6 Creating new Data 151

14 The Function Call Browser 152

14.1 Introduction 152

14.2 Examining functions using the graph views 152
14.3 Examining functions using the text view 155
14.4 Configuring the function call browser 156

14.5 Configuring graph displays 157

14.6 Performing operations on functions 157

15 The Generic Function Browser 158

15.1 Examining information about methods 158
15.2 Examining information about combined methods 161
15.3 Configuring the Generic Function Browser 164
16 The Search Files tool 166
16.1 Introduction 166
16.2 Performing searches 167
16.3 Viewing the results 172
16.4 Modifying the matched lines 173
16.5 Configuring the Search Files tool 173
17 The Inspector 177
17.1 Inspecting the current object 177
17.2 Description of the Inspector tool 178

17.3 Filtering the display 179
17.4 Examining objects 180

17.5 Operating upon objects and items 181
17.6 Configuring the Inspector 185
17.7 Customizing the Inspector 186

17.8 Creating new inspection formats 187

18 The Symbol Browser 190

18.1 Introduction 190
18.2 Description of the Symbol Browser 190
18.3 Configuring the Symbol Browser 193

19 The Interface Builder 195

19.1 Description of the Interface Builder 195
19.2 Creating or loading interfaces 196

19.3 Creating an interface layout 198

19.4 Creating a menu system 201

Contents

19.5 Editing and saving code 204

19.6 Performing operations on objects 206

19.7 Performing operations on the current interface 209
19.8 Performing operations on elements 210

19.9 Example: Using The Interface Builder 211

20 The Listener 223

20.1 The basic features of a Listener 223

20.2 Evaluating simple forms 224

20.3 Re-evaluating forms 225

20.4 The debugger prompt and debugger level 225
20.5 Interrupting evaluation 226

20.6 The History menu 226

20.7 The Expression menu 226

20.8 The Values menu 227

20.9 The Debug menu 227

20.10 Execute mode 228

20.11 Setting Listener preferences 230

20.12 Running Editor formsin the Listener 231
20.13 Switching to and from other tools 231
20.14 Help with editing in the Listener 231

21 The Output Browser 232
21.1 Interactive compilation messages 232

22 The Process Browser 235

22.1 The process list 236

22.2 Process control 236

22.3 Other ways of breaking processes 237
22.4 Updating the Process Browser 237
22.5 Process Browser Preferences 237

23 The Profiler 239

23.1 Introduction 239

23.2 Description of the Profiler 239

23.3 The Profiler menu and Profiler-specific toolbar buttons
23.4 Selecting what to profile 245

23.5 Format of the cumulative results 250

23.6 Interpreting the cumulative results 251

23.7 Configuring the Profiler 251

23.8 Profiling pitfalls 252

23.9 Some examples 253

Contents

24 The Shell and Remote Shell Tools 255

24.1 Introduction 255

24.2 The Shell tool 255

24.3 Command history in the shell 256
24.4 Configuring the shell to run 256
24.5 The Remote Shell tool 256

25 The Stepper 257

25.1 Introduction 257

25.2 Simple examples 258

25.3 The implementation of the Stepper 261
25.4 Stepper controls 261

25.5 Stepper restarts 263

25.6 Breakpoints 264

25.7 Stepping macro forms 267

25.8 Listener area 269

25.9 Configuring the Stepper 269

26 The System Browser 271

26.1 Introduction 271
26.2 A brief introduction to systems 271
26.3 The System Browser 272

26.4 A description of the System Browser 273

26.5 Examining the system tree 273

26.6 Examining systemsin the text view 275

26.7 Generating and executing plans in the preview view 277
26.8 Examining output in the output view 279

26.9 ASDF Integration 280
26.10 Configuring the display 281
26.11 Setting options in the system browser 282

27 The Window Browser 283

27.1 Introduction 283
27.2 Configuring the Window Browser 284
27.3 Performing operations on windows 286

28 The Application Builder 287

28.1 Introduction 287

28.2 Preparing to build your application 288
28.3 Building your application 289

28.4 Editing the script 290

28.5 Troubleshooting 290

28.6 Running the saved application 291

Contents

28.7 Building universal binaries 292
28.8 Using the Application Builder to save a development image
28.9 Configuring the Application Builder 292

29 Remote Debugging 293

29.1 Remote Listeners 293

29.2 Menus in the Remote Debugger and Remote Listener tools
29.3 Editor commands for remote debugging 294

29.4 Configuring Remote Debugging 295

Index

10

292

294

Preface

Conventions used in this manual

This manual assumes that you have at least a basic knowledge of Common Lisp. Many source code examples are used
throughout the manual to illustrate important concepts, but only extensionsto Common Lisp which are specific to the
environment are explained in detail.

This manual does provide a complete description of the windowed devel opment environment available in your Lisp image.
Thisincludes a description of the user interface itself, and a description of how the user interface interacts with Common

Lisp.
This manual refers to example filesin the LispWorks library like this:

(exanmple-edit-file "tool s/ denp-defsys")

These examples are Lisp source filesin your LispWorks installation under | i b/ 8- 0- 0- 0/ exanpl es/ . You can simply
evaluate the given form to view the example source file.

Example files contain instructions about how to use them at the start of thefile.

The examplesfiles are in aread-only directory and therefore you should compile them inside the IDE (by the Editor
command Compile Buffer or the toolbar button or by choosing Buffer > Compile from the context menu), so it does not try
towrite afad file.

If you want to manipulate an example file or compile it on the disk rather than in the IDE, then you need first to copy thefile
elsewhere (most easily by using the Editor command Write File or by choosing File > Save As from the context menu).

Using the mouse

Throughout this manual, actions that you perform using the mouse are described in terms of the gesture used, rather than the
combination of mouse buttons and keys that need to be used to perform the operation. Thisis because the buttons that are
used are highly dependent on the platform you are running your Lisp image on, the operating system you are using, and even
the type of mouse that you have attached to your computer. The mouse gestures available in the environment are described
below.

Select

Thisis by far the most common mouse gesture, and is used for nearly all mouse operationsin the environment. Use the select
gesture to:

* display amenu,
 choose acommand from a menu which is already displayed,

 select itemsfrom alist or graph,

select or deselect atoggle switch,

click on abutton,

position the mouse pointer in a piece of text.

11

Preface

Depending on the characteristics of your operating system, you may also need to use select in order to move the mouse focus
to another window.

If you are using a mouse with several buttons, you can nearly always select by clicking the left-most button, but you should
refer to the documentation for your operating system or window manager if you are unsure. Thisis particularly trueif you are
using a mouse which has been set up for use by aleft-handed person, since it is possible that the function of the mouse
buttons has been reversed.

Multiple select

Multiple selection is used in lists and graphs when you want to select more than one item. You can select several items from
any list or graph in the environment, and there are alarge number of commands which can operate equally well on these
multiple selections.

There are anumber of standard ways of making multiple selectionsin alist or graph, depending on your operating system or
window manager. Check the relevant documentation if you are unsure, or try any of the following:

» Holding down the Shi f t key while selecting an item.
» Holding down the Cont r ol key while selecting an item.
» The middle mouse button (if you have a three-button mouse).

Typically, in lists, holding down the Shi ft key lets you make a contiguous selection, and holding down the Cont r ol key
lets you make a discontiguous selection.

» Toselect ablock of itemsfrom alist, select the first item, hold down the Shi f t key, and then select the last item; the
intervening items are also selected.

» To select several items which do not form ablock, hold down the Cont r ol key while selecting each item individualy.

This behavior istypical in anumber of operating systems or window managers. You are probably familiar with it if you are
familiar with using a mouse.

Double-click

The double-click gesture consists of two select gestures, performed in rapid succession. In generd, any itemin alist, tree or
graph may be double-clicked.

Double-clicking in achoice is usually a shortcut for selecting an item and choosing a common menu command, and the
precise action that takes place depends on the context in which the double-click was performed. Double-clicking can only be
performed on single selections.

In the Editor double-click selects the current Lisp form. Double-clicking and then dragging without releasing the mouse
button increases the selection by forms, either forward or backward. It stops when it reaches the start or end of an enclosing
form.

Triple-click
Thetriple-click gesture consists of three select gestures, performed in rapid succession.

In the Editor this selects the line on GTK+ and Cocoa. Triple-clicking in the Editor (on GTK+ and Cocoa) and then dragging
without releasing the mouse button increases the selection by lines. The triple-click gestureis not currently supported in
LispWorks on Microsoft Windows.

Alternate select

Thisisaless common gesture, and is used almost exclusively within the LispWorks IDE to display a context menu
(sometimes referred to as the "context menu” or the "right button menu™).

If you are using a mouse with several buttons, you should find that you can perform this gesture by clicking the right-most

12

Preface

mouse button. On a Macintosh with a single button mouse, the context menu is raised by holding down the Cont r ol key and
clicking the mouse button. Refer to the documentation for your window manager or operating system if you are unsure.

Choosing menu commands and other controls
Throughout this manual, menu command names and other text |abels are shown in This Bold Font.
Submenus are indicated by use of the > character. Thus, for instance, the instruction:

"Choose File > Open"

means that you should select the File menu on amenu bar, and choose the Open command in the menu that appears.
Similarly:

"Choose Works > Tools > Editor"

means that you should display the Works menu by selecting it, select Tools from this menu to display a submenu, and choose
the Editor command from this submenu.

The sequence can include labels of other GUI elements such as tabs and list items. For example the instruction:
"Choose Preferences... > Environment > General > Use in-place completion”

means that you should select the Preferences... menu item, then select the Environment item in alist within the dialog that
appears, then select the General tab within that dialog, and lastly access the button labelled Use in-place completion.

Using the keyboard

Throughout this manual there are descriptions of commands that you can choose by typing at the keyboard. Thisis especially
true when discussing the built-in editor, which relies heavily on the use of keyboard commands, and the Common Lisp
listener, which uses many of the same commands.

Throughout this manual, keyboard input including the names of keys you pressis shownin Thi s Font .

Keyboard commands generally use a combination of ordinary keys together with the modifier keys Cont rol , Shift,
Escape, Al t, Met a and Conmand (not all of these are available on each platform).

In all cases, the Cont rol , Shi ft, Met a and Command keys should be held down concurrently with the specified letter. For
example:

Ctrl +Sisread as "hold down the Control key and press S'.
Ctrl +Shi ft +Aisread as "hold down the Control and Shift keys and press A".

In the editor in Emacs emulation mode, instead using the Met a (Al t) modifier with akey, the Escape key can be pressed
and released before pressing the key. For example:

Esc Eisread as"pressand release the Escape key, then pressE".
Al t +E isread as "hold down the Alt key and press E".

The two key inputs above are equivalent in Emacs emulation mode. This manual generally refersto Al t when referring to the
editor key strokes.

For more information on using keyboard commands in the built-in editor and the Listener, see 12.1.4 Using keyboard
commands.

13

Preface

Appearance of the graphical tools

The screenshots in this manual show toolbars that may have been customized (using the context menu) so you might see
some differences from your setup.

Your windows may differ in some respects from the illustrations given in this manual. Thisis because some details are
controlled by your window manager and/or operating system, not by LispWorks itself.

14

1 Introduction

This manual gives you a complete guide to the LispWorks IDE development environment. This environment comprises a
large number of window-based tools which have been designed with the Common Lisp developer in mind. The following are
among the features provided by the environment:

A fully functional code Editor specifically designed to make writing Common Lisp source code as swift as possible,
emulating Emacs or Microsoft Windows key styles.

* A Common Lisp Listener for evaluating Common Lisp formsinteractively.

A range of debugging tools including a graphical Debugger, source code Stepper, code Profiler, Tracer, and the
I nspector.

» A range of browsers for examining different objects in your Lisp image, such as the generic functions or CLOS classes
that have been defined.

* A tool for simplifying source code management; vital if you are involved in developing large applications.

» (Microsoft Windows, Linux, x86/x64 Solaris and FreeBSD platforms only) A tool for designing window-based
interfaces to your applications. A point-and-click interface is used to design the interface, and Lisp code is generated for
youl.

* A Shell window that lets you run system utilities (DOS commands on Windows, shell commands on non-Windows
systems) inside LispWorks. Remote shells are also supported on non-Windows systems.

» A Search Filestool that allows you to find text matching aregular expression in files.
» An Object Clipboard that allows you to manage selected and copied objects.
» Saved sessions which can be restarted at alater date, allowing you to resume work after restarting your computer.

Because of the large number of tools available, consistency is avital themein the environment; each tool has a similar look
and feel so that you need only spend a minimum amount of time learning how to use the environment.

In addition, there is a high degree of integration between the tools available. This meansthat it is possible to transfer pieces
of information throughout the environment in alogical fashion; if you create an object in the Listener, you can examine it by
transferring it directly to the Inspector. The class of objects that it belongs to can be examined by transferring it to a Class
Browser, and from there, the generic functions which have methods defined on it can be browsed.

To reflect these themes of consistency and integration, the earlier chaptersin this manual deal with the generic aspects of the
environment, while at the same time introducing you to the more important tools.

1.1 Major tools

The environment supports a wide range of tools which can help you to work on your Lisp source code more quickly and
efficiently. This section gives you a brief introduction to the most important tools.

You can create any of the tools described here by choosing the appropriate command from the Tools menu.

For full details about any of these tools, see the relevant chapter. The second part of this manual covers each of thetoolsin
the order that they are found on the Tools menu.

15

1 Introduction

1.1.1 The Listener

A Common Lisp Listener is provided to let you evaluate Common Lisp forms. Thistool isinvaluable as a method of testing
your code without necessitating compilation or evaluation of whole files of Common Lisp source code.

1.1.2 The Editor

A built-in editor is provided to allow you to develop Common Lisp code. It is based on Emacs, an editor which you may
aready be familiar with. Asan aternative to Emacs keys, the editor offers Microsoft Windows emulation.

The built-in editor offers awide range of functions specifically designed to help you develop Common Lisp code, and it is
fully integrated into the environment so that code being developed isimmediately available for testing.

1.1.3 The Class Browser

Thistool alows you to examine the Common Lisp classes that are defined in your environment. You can look at the
superclasses and subclasses of a given class and see the rel ationships between them, and you can examine the slots available
for each class.

In addition, you can examine the functions and methods defined on a given class, or the precedence list or initargs for the
class.

1.1.4 The Output Browser

The Output Browser collects and displays all output from the environment which may be of use. Thisincludeswarning and
error messages displayed during compilation and output generated by tracing or profiling functions. Many other toolsin the
environment also provide you with an output view, which lets you see any output which is appropriate to that tool.

1.1.5 The Inspector

The Inspector |ets you examine and destructively modify the contents of Common Lisp objects. It is an invaluable tool during
development, since it lets you inspect the state of any part of your data at any stage during execution. Thus, it is easy to see
the value of aglot and, if necessary, alter itsvalue, so that you can test out the effects of such an alteration before you make
the changes necessary in the source code itself.

1.1.6 The Object Clipboard

The Object Clipboard is used to manage multiple Lisp objects. You can select any object in the Object Clipboard for usein
paste operations.

As an example of adding a Lisp object to the Object Clipboard, follow these steps.
1. Evaluate aLisp expression in the Listener window. Itsvalue is printed.
2. Choose the menu command Works > Values > Clip.

The value from the Listener is now in the Object Clipboard.

If you have not already made an Object Clipboard visible, then do so now using the menu command Tools > Object
Clipboard.

The Object Clipboard can be seen in Object Clipboard Tool.

16

1 Introduction

Object Clipboard Tool

‘ Object Clipboard 1

Filter - | |>(M atches 1

Mame Walue

FUMCTIOMN-1 #<Funchon COFY-READTAELE 201 72074

You can use the left mouse button to select any item in the Object Clipboard, then use the context menu (usually invoked by
the right mouse button) to inspect, inspect class, open a Listener, or copy the object.

17

2 A Short Tutorial

This chapter gives you a short tutorial illustrating simple use of some of the major tools in the environment, and attempts to
familiarize you with the way that tools can be used devel oping Common Lisp applications.

Note that some of the examples given in this chapter use symbols taken from the CAPI library. Do not worry if you are not
familiar with the CAPI (if, for instance, you have been using another library, such as CLIM, to develop your applications). It
is not essentia that you fully understand the example code used in order to gain benefit from the tutorial. If you wish to learn
more about the CAPI, you should refer to the CAPI User Guide and Reference Manual which is supplied in electronic form
with your LispWorks software. The Help menu allows you to search all documentation from inside the LispWorks IDE.

To maintain continuity, try to work your way through the whole of this tutorial in one session.

2.1 Starting the environment

To start LispWorks on Microsoft Windows:
1. Click Start on the task bar.
2. From the Start menu, choose All Programs > LispWorks 8.0 > LispWorks.

You should see a splash screen, followed by the podium window. The podium is shown in The podium. A Listener window
will also appear if your image is configured to start one.

The podium

Meru Bar

© LispWorks 7.00 - o[
File Edit Tools Works Debug History Windows Help

O = dBRE %R ™S
Bwpii@ill<afQio L sred

Active Window @ Listener 1 \
",
Active Window Tﬂ-:itﬂrs

The podium window is automatically displayed whenever you start the LispWorks IDE. Its menu bar gives you access to
various commands, aswell as all the other tools in the environment. Itstoolbar gives you quick access to some of the more
convenient menu commands. This screenshot shows the podium as it appears in 'Separate windows sharing a menu bar'
mode.

Like many other applications, the menu bar contains File, Edit, Tools, Windows and Help menus and a LispWorks-specific
menu named Works. The Works menu contains commands that apply to the active window in the LispWorks environment.
The title of the active window is shown in the LispWorks podium, underneath the toolbar.

18

2 A Short Tutorial

The File menu allows you to open afile in an Editor, or print afile, regardless of which window is active. When the Editor or
Listener toal is active, the File menu contains other commands for miscellaneous operations on the file displayed. The Tools
menu gives you accessto all of thetoolsin the LispWorks IDE. The Windows menu lists al the active LispWorks windows
you have running.

Note: If you wish to exit the Lisp image during this tutorial or at any other time, choose File > Exit or pressCtr | +Q.

2.1.1 The Lisp Monitor in the deprecated Motif IDE

This section only applies when using the deprecated Motif IDE.

2.2 Creating a Listener

The Listener tool interactively evaluates the Lisp forms you enter. During atypical session, you evaluate aform in the
Listener, then examine the effects in other tools, returning to the Listener whenever you want to evaluate another form. The
structure of this tutorial reflects this two-stage approach.

A Listener is created when you start the LispWorks IDE. If you don't currently have a Listener (check the windows menu),
start one by choosing Tools > Listener or clicking on in the Podium. This section of the tutorial demonstrates some of its
more useful features. A Listener window isshownin Listener below.

Listener

“% Listener 1

1_1 -

Listener | Qutput

CL-USER 1 > {print 42}

L2
L2

CL-USER 2 > |}

|Heady.

The Listener contains two views: the Listener view and the output view. At the bottom of the Listener is an echo areathat is
visible in either view. The echo areais used to prompt you for information when performing editor commands such as
searching for text. You can switch between the two views by clicking the Listener and Output tabs respectively. You can
evaluate Lisp formsin the Listener view by typing the form, followed by Ret ur n. Any output that is produced is displayed
in the Listener view.

1. Typethefollowing form into the Listener and press Ret ur n.
(+ 12

The result of the evaluation, 3, appears in the Listener, and a new prompt is printed. Notice that the number in the
prompt has been incremented, indicating that aform has been evaluated.

Because you may want to enter a number of very similar forms, commands are provided which make this easy.

19

2 A Short Tutorial

2. Press Met a+P.

The form that you just evaluated is printed at the new prompt. You can press Ret ur n to evaluate this form again, or,
more usefully, you can edit the form slightly before evaluating it.

3. Press Ct r | +B to move the cursor back one space. Now press the Backspace key to delete the number 2, and type 3 in
its place.

You have edited theform (+ 1 2) tocreateanew form, (+ 1 3).
4. Press Ret ur n to evaluate the new form.

Theresult of the evaluation, 4, appearsin the Listener, followed by another new prompt, with the prompt number
incremented once again.

2.3 Using the Debugger

A debugger tool is provided to help track down the cause of problemsin your source code. This section introduces you to
some of the waysin which it can be used.

1. Enter the following definition in the Listener:

(defun test ()
(let ((total 0))
(loop for i below 100 do
(incf total i) when (=i 50) do
(break "We've reached fifty"))))

This function counts from 0 to 99, accumulating the total asit progresses, and forces entry into the debugger when the
count has reached 50.

2. Next, call the function by entering (t est) into the Listener.

Initially, the command line debugger is entered. Thisis a debugger which can be used from within the Listener itself.
More details about what you can do in the command line debugger can be found by typing : ? at the debugger prompt.

3. To enter the debugger tool at this point, choose the menu command Debug > Start GUI Debugger or press # in the
Listener toolbar.

The debugger tool appears, as shown in Debugger tool.

20

2 A Short Tutorial

Debugger tool

Brror condifion. Corindd butions. Del:q.lg;erftan:hran:e.

* Debugging CAP| Execution Listener i E|E|E|

wie've reached fifty

Backrace:

A INVOKE-DEBUGGER
A EBRE&K
A
TOTAL
I
#:|bee-1056]
#:|to-1055]
SYSTEM:: % %L OOP-IT-WARIABLEY:% T
L
I::CAPT-TOP-LEVEL-FUNCTION
I:: INTERACTIVE-PANE-TOP-LOOP
Pt :PROCESS-SG-FUNCTION

(N AR

[[o] [

S1aile ol variables lor
selecied frame.

The debugger tool gives aview of the backtrace (in the Backtrace: pane), showing the functions that are on the stack,
and their internal variables (including any arguments) at the point that the error occurred.

4. In the Backtrace: pane, notice that there is arectangle with cross to the |eft of the word TEST. Thisindicates an
expandable node. Click on this to open up the tree display, showing the local variables used in functiont est . Notice
that the value for i is 50, asyou would expect.

Thereisarow of toolbar buttons at the top of the debugger which let you perform a number of different actions.

5. Choose Restarts > (continue) Return from break. or click on the Continue icon from the toolbar to exit the Debugger
and continue execution.

The debugger disappears from the screen, and the command line debugger in the Listener is exited, leaving you at the Lisp
prompt in the Listener.

2.4 Viewing output

There are many different waysto view output generated by the environment. In many tools, for example, output appears as
soon asit is generated - this happens, for instance, when you compile code in the built-in editor.

At other times, you can view output in atool called the Output Browser. Thistool collects together all the output generated
by the environment, and is particularly useful for viewing output generated by your own processes (which cannot be

21

2 A Short Tutorial

displayed in any other environment tool). The Output Browser displays all the output sent to the default value of the variable
*st andar d- out put *.

1. Evauate the following in the Listener.

(capi:contain
(make-instance 'capi: push-button-panel

citens '(:red :yellow :blue)

:sel ection-call back

(lanmbda (data interface)

(format t

"Pressed button in interface ~S~% dat a=~S~%
interface data))))

Thisisapiece of CAPI code that creates a window with three buttons, labeled RED, YELLOW and BLUE, as shownin
Example CAPI window. Pressing any of these buttons prints the value of the button pressed.

Example CAPI window

“% Container E|E| g'

| TELLOW || ELUE |

2. Click on the Output tab in the Listener.
3. Try clicking on any of the buttons in the window you just created, and look at the output generated.

4. Now try a second example by entering the form below into the Listener at the current prompt (remember to click the
Listener tab in the Listener first).

(capi:contain (make-instance
' capi: text-input-pane
:cal l back #' (lanbda (text interface)
(format t
"You entered: ~S~% text))
ctitle "My Text |nput Pane"))

The object that this code creates is going to demonstrate the Inspector tool. The code above creates a window containing
atext input pane. You can type text directly into atext input pane, and this can be passed, for instance, to other functions
for further processing.

5. Typetheword hel | o into the text input pane and press Ret ur n. Look at the generated output in the output view.

2.5 Inspecting objects using the Inspector

Thevariables*, ** , and ** * hold the results of expressions which have been evaluated in the Listener. * always holds the
result of the last expression evaluated; ** holds the previous value of *, and * * * holds the previous value of ** . These
variables (* in particular) are not only useful in their own right; the environment uses them to pass val ues between different
tools.

1. Make sure the Listener tab isvisible, and type * .

If you have followed this tutorial so far, the text input pane object that you created above isreturned. Thisis because the
capi : cont ai n function returns the object that is being contained. You can easily inspect this object more closely in the
Inspector tool.

2. Choose the menu command Works > Values > Inspect.

22

http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm

2 A Short Tutorial

This creates an Inspector tool which displaysthe capi : t ext - i nput - pane object currently contained in * .

Examining atext input pane in the Inspector

¥ Inspector 1 E| @l E|

Test Input Pane | Local Slots

Filker - X Matches 48

attribute

CAPLACCEPTS-FOCUS-P

| CAPLALLOWS-MEWLIME-F

CAP:BACEGROUMD LCOLOR MWIMDOW
CAP-INTERMALS: CALLBALCE, f< anoryrmous interpreted function
CAPl:CALLBACK-TYPE DATA-IMTERFACE
CAPHMTERMALS:.CARET-POSITION a]

£

|Heady.

TEXT-INPUT-PAMNE: # <CAPLTEXT-INPUT-PAMNE 2071673F =

The commands in the Works > Values menu always act upon the current value of *. This enables you to pass avalue
easily from one tool to another.

The main part of the Inspector isalist of al the slotsin the object being inspected. Thislist shows both the name of each
slot and its current value. Abovethislist isabutton labeled Filter with atext box to itsright. Thislets you filter the
information shown in the main list, which can be useful when you are inspecting objects with alarge number of dots.
The name of the object being inspected appears immediately below the echo area.

3. Click in the Filter text box, type theword t ext .

This restricts the display in the Inspector to only those items which contain the string "text", either in the slot name or in
the dot value.

After using the filter, you can easily see that one of the available slots contains the word hel | o that you typed into the
text input pane.

The Inspector always displays the actual instantiation of a given object (as opposed to a copy of it), so that you can be
certain that any changes to the object itself are reflected in the Inspector.

4. Display the text input pane that you created earlier.

If you can no longer seeit, choose Works > Windows > Container; thisisasimple way to display any of the windows
and tools that you have created so far. (There are actually two windows with this name; if you choose the wrong one first
of al, then just choose the other one.)

5. Click in the text input pane and delete the word hel | 0. Type goodbye and press Ret ur n.

6. Select the Inspector to make it the active window and choose Tools > Refresh.

The description of the text slot now reflects the new value you specified.

7. Close the Inspector by Al t +F4 or by clicking the close button on the title bar.

You can close any window in the environment in thisway, although there are often other ways of closing windows.

23

2 A Short Tutorial

2.6 Examining classes in the Class Browser

This section shows you how to use the Class Browser tool to examine information about the Common Lisp class of any given
object. The examples given use the text input pane object that you created earlier, and show you how you can change the
values of adlot programmatically.

1. Inthe Listener, type* once again.

Notice that the * variable still contains the value of the text input pane object. This means that it is easy to perform
several actions on that object. Notice further that the environment is aware that the object has been changed: the value
returned by * reflects the change to the text dot that you made in the last section.

2. From the Listener, choose Works > Values > Class.

This creates a Class Browser, shown in Examining the class of an object using the Class Browser, which allows you
to examine the class of the object contained in *.

Examining the class of an object using the Class Browser

~% Class Browser 1

| CAPLETEXT-IMPUT-PANE v Xk

Hierarchy | Superclazses Subclasses| Slots |Initarg3 Functions | Precedence
Inchude Inherited Slots

Filter - ' Matches 48

CAPIHMTERMALS:CALLEALE.
CAP::CAaLLBACK-TYPE
CAPIHMTERMALS:CARET-POSITION
CAPIINTERMALS: CHANGE -CALLEALE,

D escrption:

From Clazzes: CAPLTE=T-INPUT-PAME
Slot Mame; CAPIl:CALLBACE-TYPE
Type: T

Iritargs: CALLBACK-TYPE
[witfarm: DATA-IMTERFACE
Readers:
Wfnibers:

Allocation: IMSTAMCE

Ensure that the Slots tab is selected, asin theillustration. In the Class: box, the name of the current Common Lisp class
isprinted. Thelist below the Filter box displays the slots available to the current class, and list labeled Description:
displays the description of any selected slot. The filter works in the same way as the Inspector'sfilter. Thereisaso a
checkbox labeled Include Inherited Slots. Selecting this checkbox lets you switch between displaying all the slots
defined on the current class and al its superclasses, and only those slots defined directly on the current class. By defaullt,
slots defined on any superclasses (inherited slots) are shown in the main area.

3. Filter the display asyou did for the Inspector; click in the Filter box, and thistime type the word f or egr ound.

24

2 A Short Tutorial

Only those slots with the string "foreground"” in their names are displayed.

4. Select the CAPI : : FOREGROUND slot from the list. A description of the slot appears in the description area, including
information such asthe initargs, readers, and writers of the slot.

Notice that the class text input pane has both areader, capi : si npl e- pane- f or egr ound, and awriter,
(setf capi: si npl e- pane-foreground) . We can use thisinformation to programmatically change the text shown
in the text input pane.

5. Type thisform into the Listener:
(setf (capi:sinple-pane-foreground *) :red)

Thetext displayed in the text input pane is displayed in red to reflect the new value you have specified. Notice how you
were able to use the * variable to refer directly to the text input pane object itself.

2.7 Switching between windows

In the previous sections we have introduced several of the mgjor toolsin the LispWorks IDE. You will often want to view one
tool and then swiftly switch to another LispWorks window, and perhaps another. For instance many programmers edit and
evaluate their source code in the Editor tool, then run atest function in the Listener, and return to the Editor to further modify
their code, and so on.

The shortcut key to switch between LispWorks IDE windows on Microsoft Windowsis Cont r ol +Tab. This cycles through
the windows in the order they were created. To cycle through them in reverse order, use Cont r ol +Shi f t +Tab.

Note: There are accelerator keys for most of the tools as described in 3.1.5 Displaying tools using the keyboard.

Note: Use Al t +Tab to switch between Windows applications.

2.8 Summary

In thisintroductory tutorial you have seen how to perform the following actions:
* Start the windowing environment.
» Evaluate and re-evaluate Common Lisp forms using the Listener.

* Invoke the Debugger, follow the backtrace that it produces, and return from the error which caused entry to the
Debugger.

 Collect and display data generated by your own code in the Output Browser.
» Usethe Inspector to examine the current state of an object.

» Usethe Class Browser to find out detailed information about a given class, so that you can make arbitrary programmatic
changes to an instance of that class.

The next two chapters describe elements of the environment which are common to al tools.

Other chaptersin this manual describe the other tools available in the environment. Each chapter is intended to be reasonably
independent of the others, so you can look at them in any order you wish. You are advised to study the chapters on the basic
tools, such as the Inspector, the Class Browser and the Editor first, since a knowledge of these toolsisvital if you want to get
the best out of the environment.

25

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

3 Common Features

The LispWorks IDE has been designed so that its features are consistent throughout, and tools have a uniform look and fedl.
All tools have certain characteristics which look the same, and behave in a consistent manner. By making as many common
features as possible, learning how to use each tool is much simpler.

2 A Short Tutorial, introduced you to some of the major tools in the environment, demonstrating the commonality and high
integration between them, and showing how this can be used to good effect in the development process. This chapter
describes these common features in more detail.

When you start the LispWorks IDE, by default awindow known as the podium appears.
The LispWorks podium

° LispWorks 7.00 - oIEN
File Edit Tools Works Debug History Windows Help

(@ H[smd wOrG BEF

PR W T 3&%\&:- For-rs@reas

Active Window : Listener | Ay |
Fd W i
%
s \ |
& b

i b [

A b1
r kY [

Message pare. Meru bar. Toalbar.

The podium contains a menu bar, atoolbar, and a message pane that shows the active window; that is, the window on which
commands chosen from the Works menu will have effect. Theiconsin the podium's toolbar access the Listener, Editor,
Output Browser, Inspector, Class Browser, Generic Function Browser, Symbol Browser, Object Clipboard, Function Call
Browser, Code Coverage Browser, System Browser, Compilation Conditions Browser, Search Files, Profiler, Tracer, Stepper,
Window Browser, Process Browser, Shell and Application Builder tools. If you hold the mouse over these icons for a
second, the corresponding tool name will appear as floating help text.

The IDE tools have most of these menu items in common with the podium.
The menu bar contains eight menus:
» The Works menu contains commands that operate on the current window.
» The File menu contains commands that open, load, save and compile Lisp files.

» The Edit menu contains commands that copy and paste text and also Lisp objects, find and replace text, and establish
links between tools.

» The Tools menu contains commands to create and configure the LispWorks | DE tools.

» The Debug menu is enabled only when the debugger has been entered in the Listener tool. It contains commands which
perform operations on the current stack frame.

» The History menu accesses the recent events or objects browsed in the active tool window.

26

3 Common Features

e Thewindows menu lists al the current windows in the environment. In MDI mode, it contains standard commands for
arranging your windows. To make any window the active window, choose it from this menu.

» The Help menu contains commands described in 4 Getting Help.

Users aready familiar with Windows will notice that the File menu contains commands available in the File menu of other
applications.

The toolbar provides quick access to some of the more common commands in the menus. LispWor ks podium buttons and
their functions shows each button, together with the menu command it represents.

LispWorks podium buttons and their functions

~u L,
O & d BRE %N ™S
| | | |
File=Tew | File=Save Edit=Copy), Listen | Inspect Refresh Clone
'Filg_'_'.-l,'__flpg_'n Edit=Cut Edit=Faste Find Source Class Preferences

If you run the Windows version of LispWorks in the default Multiple Document Interface (MDI) mode, then the podium
menus and tool icons are located at the top of the MDI window (see M DI Interfacein LispWorksfor Windows.).

This MDI option is the default, but the multiple window interface (familiar to users of LispWorks for Windows 4.1 and
LispWorks on other platforms) can be selected using the Tools > Preferences... menu command.

27

3 Common Features

MDI Interface in LispWorks for Windows

©
Fi

le Edit Tools Works [ebug History Windows Help
D FEY SN T XA Ccl-E
G RwpSHEANCHEQEO?

s e L
LA MK X Y 84"
Ted | Qutput | Buffers | Definitions | Changed Definitions | Find Definitions

My

s load logical host for the editor source code
{load-logical-pathname-translations "EDITOE-SEC™)

;s Configure source finding
§zetf dspec:¥*active—-finders®*
(append dspec:*active-finders*
(list "EDITOR-SRC:EDITOR-TAGS-DE™]))]

CODE-PAGE — lispworks {CL-USER} (Lisp) 316-325 [426] H:\lispworlks

=

o) Listener 1 ElEREE
EmrE e wami T IETE D&
Listener | Qutput

CL-USER 2 > Icles-n:rj_be {get—wurking—dir&ctury].]

$P"C: /WINDOWS/3ystem32/" is a PATHHAME

HOST i

DEVICE HIL

DIRECTORY [:BBSOLUTE "WIHDOWS™ "aystem3Z™)
HAME HIL

TYPE HIL

VEERSICH HIL

Active Window : Editor 1 - lispworks

28

3 Common Features

Even though the MDI interface is the default, this manual will usually show single windows in figuresin order to show more
detail for the specific LispWorks tool under discussion.

Most of the common features in the environment can be found under the File, Edit, Works, History, Windows and Help
menus. Other menus may also be available depending on the current tool. If you are using the MDI LispWorks interface for
Windows, these menus are located in the single main MDI window. (Remember, you can toggle between multiple LispWorks
windows and the MDI interface using Tools > Preferences... > Environment > General > Window Options.) Using the
commands available under these menus you can:

* Moveto any other toal.

 Cut, copy or paste viathe clipboard and the Object Clipboard tool.
 Perform search and replace operations.

* Re-issue aprevious command, or re-examine an object.

 Perform operations such as loading and saving files.

Each menu command operates on the window associated with the menu. In LispWorks for Windows in "All windows
contained within a single main window" (MDI) mode or " Separate windows sharing a menu bar" mode, thereisasingle
menu bar on the podium and one window is aways the "Active Window". The menu commands act on the Active Window.
Its name is displayed at the bottom of the podium. The Active Window can be any window within the LispWorks IDE: even
the podium itself.

In addition, some other conventions have been adopted throughout the LispWorks IDE:

» Many tools have a number of different views: ways of displaying information. Each view is made available by clicking
on adifferent tab in the tool.

« Listsdisplayed in many tools can be filtered in order to hide redundant or uninteresting information.

These features are described in full in this chapter. Please note that subsequent descriptions of individual toolsin the
environment do not include a description of these menus, unless a feature specific to the individual tool is described.

Online help is aso available from the Help menu in any window. These facilities are described in 4 Getting Help.

Many tools allow you to display information in the form of a graph. These graph views behave consistently throughout the
environment, and a description of the graph features offered is given in 6 Manipulating Graphs.

3.1 Displaying tool windows

There are many tools available, and you can display them in anumber of ways.

You can aso control how tools are re-used within the environment. That is, whether an existing Listener window (for
example) israised or anew one created, when you ask for a Listener tool. In this section we will discuss global and per-tool
control of reuse.

3.1.1 Displaying existing windows

Choose the windows menu. This menu containsalist of al the windows currently available in the environment. Choosing
any item from thislist brings the window to the front of the display.

29

3 Common Features

3.1.2 Iconifying existing windows

To iconify awindow, click the minimize box near the right of itstitle bar.

3.1.3 Arranging windows in MDI mode

In LispWorks for Windowsin "All windows contained within a single main window" (MDI) maode, use the commands near
the top of the windows menu such as Cascade and Tile Horizontally to arrange your tool windows within the main window.

3.1.4 Displaying tools using the mouse
To display most tools:

1. Choose the Tools menu.

Most tools in the environment are listed in this menu.
2. Choose the toal you require from the menu.
or:

1. Click the appropriate button on the Podium.

For example, to display a Process Browser, click #.

Thetool is created (if necessary), and displayed. Using this method can be useful you may not remember immediately
whether you have an existing instance of a given tool or not.

3.1.5 Displaying tools using the keyboard

Accelerators are provided for the popular items on the Tools menu. Each tool accelerator is an alphanumeric key together
with platform-specific modifier keys as shown in 3.1.5.1 Tool accelerator keys. You cannot configure these pre-defined tool
accelerators.

You can also use these alphanumeric keys with the I nvoke Tool editor command.

Thereis also akeystroke for switching between tool windows in acyclical fashion, described in 2.7 Switching between
windows.

3.1.5.1 Tool accelerator keys

Note 1: On Microsoft Windows, tool accelerators work only when the editor emulation is Microsoft Windows rather than
Emacs.

Note 2: On Microsoft Windows with the Environment Preference option Separate windows sharing a menu bar, tool
accelerators work only when the podium has the focus.

The accelerator keys for each tool are as shown in Tool accelerators:

30

3 Common Features

Tool accelerators

Tool Name Accelerator

Listener Ctrl +Shift+L
Editor Ctrl+Shift+E
Output Browser Ctrl+Shift+U
I nspector Ctrl +Shift+l

Class Browser

Crl+Shift+C

Generic Function Browser

Ctrl +Shi ft+G

Symbol Browser Ctrl +Shift+S
Object Clipboard Ctrl+Shift+0
Function Call Browser Ctrl+Shi ft+X

Code Coverage Browser

Crl +Shift+V

System Browser

Cirl +Shift+Y

Compilation Conditions Browser

Ctrl +Shift+D

Search Files Ctrl+Shift+F
Profiler None
Tracer Ctrl+Shift+T
Stepper None
Window Browser Ctrl+Shift+w
Process Browser Ctrl +Shift+P
Shell None
Application Builder Ctrl +Shi ft+A
Debugger None

3.1.6 Re-using tool windows

3.1.6.1 Global control of re-use

By default, tools windows are re-used where possible. For example, suppose you already have a Listener window (potentially
iconified) but do not have an Inspector window. When you choose Tools > Listener, the existing Listener is displayed.
When you choose Tools > Inspector, an Inspector is created and displayed.

You can switch off re-use of tool windows. To do this, first raise the Preferences dialog as described in 3.2 Setting
preferences. In the Preferences dialog under Environment > General > Window Options uncheck the Reuse all tools box
and click OK. Now, when you choose Tools > Listener anew Listener is created, regardless of whether one already exists,
and other tools behave in the same way.

The setting of Reuse all tools will be retained for your subsequent LispWorks sessions.

31

3 Common Features

3.1.6.2 Per-window control of re-use

When the Reuse all tools option ison, tools windows are reusable by default. However, it is possible to specify that a
particular instance of atool is not reusable. To make your Inspector not reusable, follow these steps:

1. Ensure that the Reuse all tools option is checked under Tools > Preferences... > Environment > General.

2. In the Inspector window, open the menu Tools > Customize and deselect the Reuse Inspector option. On Microsoft
Windows, the name of the tool follows Reuse in the name of the option.

3. Now try Tools > Inspector. A new Inspector window is created.

The Reuse all tools option is persistent, but the per-tool setting Reuse Inspector applies only to the current instance of the
tool, and it does not affect future sessions.

3.1.7 Menu bar configurations in LispWorks for Windows

By default, the only window in the LispWorks IDE to contain a menu bar is the parent MDI window. The menu commandsin
this menu bar operate on whichever window is currently the Active Window within the LispWorks IDE.

If you prefer each tool to have its own menu bar, choose Tools > Preferences... and under Environment > General > Window
Options select the Separate windows with menu bars option.

If you prefer not to use MDI but to have tools sharing a single menu bar, choose Tools > Preferences... and select the
Separate windows sharing a menu bar option.

The setting in Window Options will be retained for your subsequent LispWorks sessions.

Note: This manual assumes the default MDI option All windows contained within a single main window.

3.1.8 Toolbar configurations

Most tools have toolbars offering one-click access to frequently-used commands. For example, the Editor has a toolbar for
operating on source code.

The Editor's source operations tool bar

‘ -:1} ;i'? {m {&r

You may prefer to remove such toolbars. On Windows you can undock the toolbar by dragging it away from the Editor
window, or you can aso hide it via the context menu anywhere within the toolbar. You can control whether atool displaysits
toolbars by the option Show Toolbar.

To hide toolbars for a particular type of tool:

1. Raise the Preferences dialog as described in 3.2 Setting preferences.

2. Select thetool in the list on the left side of the dialog.
3. Select the General tab on the right side of the dialog.
4. Uncheck Show Toolbar and click OK to confirm the setting.

You can also customize the toolbar by removing rarely-used buttons and adding or removing separators between groups of
buttons. To do this, raise the context menu on the toolbar, choose Customize and make your selections in the Customize
Toolbar diaog.

In MDI mode on Windows, thisdialog is also available viathe Tools > Customize menu.

32

3 Common Features

Note: The functionality of each toolbar is available elsewhere. For example the Editor's source code operations are also
available on the Buffer, Definitions and Expression menus.

3.1.9 Copying windows

Choose Tools > Clone in agiven tool window to make a copy of that tool window. Thisisuseful, for instance, if you wish to
have two different views on an object simultaneously, and allows you to have several copies of atool without having to
change its re-use property using the Tools > Customize menu.

3.1.10 Closing windows
Close any window in the environment using one of the following methods:
* Click the Close button at the top right of the window.
» Click intheicon at thetop left of the window to display the windows control menu, and choose Close.

* If you are using MDI mode, enter the command Ct r | +F4. If you are using one of the multiple windows configurations
asdescribed in 3.1.7 Menu bar configurationsin LispWorksfor Windows, use Al t +F4 to close a window.

3.1.11 Updating windows
To manually update any tool, choose Tools > Refresh or click .

Updating atool is auseful way of making a snapshot of an aspect of the environment that you are interested in. For instance,
imagine you want to compare a number of instances of a CLOS class against a known instance of the same class using the
Inspector. You can do this asfollows:

1. Create an object to inspect, by entering in a Listener:
(make-instance 'capi:text-input-pane)

2. Choose Works > Values > Inspect to view the object in the Inspector.
3. Make sure the Inspector is the active window, and choose Tools > Clone to make a copy of it.

4. In the Listener, enter the same form again to create a second object.

Note: You canuse Esc P in Emacsemulation or Ct r | +Up in Windows emulation to get the previous Listener
command.

5. View the new object in the Inspector asin Step 2. Compare it to the original instance that is still displayed in the clone.

3.2 Setting preferences

Choose Tools > Preferences... or click % to raise the Preferences dialog. Thisdialog is used to specify:

* options affecting the development environment in general such as those described in 3.1.6 Re-using tool windows or the
name of your initialization file, and:

* options specific to each type of tool, such as the Editor tool, Inspector tool and so on.
The tool-specific options are described in the chapter relevant to each tool.

The remainder of this section describes the general environment options. To see these, ensure that Environment is selected in
the list on the left side of the Preferences dialog, and select the General, Emulation, Styles, and File Encodings tabs.

33

3 Common Features

In al casesyour setting is preserved for future use after you click OK to close the Preferences dial og.

3.2.1 General options

The first tab under Environment contains the General options.
The Preferences dialog

BETEE | | Generl | Enation | Siyles | Fie Encodings

& Application Builder Window Options

ig Class Browser @ﬁepamte windows with menu bars:

@Cﬂ'de Coverage Browser () Separate windows sharing a menu bar

g[ﬁnmplla’unn Conditions () All windows contained within a single main window
Debugger

) Editor [] Respond to drag and drop

== Function Call Browser Reuse all tools

BB . . [] Use separate Editor windows for each file

Genen:: Function Browser _ _

h’ Inspector lse recent directony for opening files

ity Listener

[7] Object Clipboard
i) Output Browser
#F Process Browser
=) Profiler
@Search Files

& Shell

B Stepper

54 Symbol Browser
@S}rstem Browser

f = Tracer

| W indow Browser

Use guality drawing

Completion
Ize inplace completion
[] Muto-insert on single file completion

Confirm Before Bxting
(JMever () When modfied buffers (@) Always

Lists

Add a filter to dialog lists longer than:

Use Find Defintions list for maore tems than:

Initialization File

C:\Usersh\dubya® lispworkcs

3.2.1.1 The window options

Select your preferred configuration of windows and menu bar as described in 3.1.7 Menu bar configurationsin LispWorks
for Windows.

3 Common Features

To enable drag and drop of files from other applications (such as the Windows Explorer) to the LispWorks Editor tool, check
the Respond to drag and drop option.

Reuse all tools controls whether LispWorks uses an existing tool rather than starting up a new copy. For example if Reuse all
tools is checked, if an editor is aready open, choosing File > Open and selecting a new file causes the file to be opened in
the existing editor.

Use separate Editor windows for each file controls whether LispWorks will open a separate Editor window for each file (or
editor buffer) that you have in memory. In addition, when Use separate Editor windows for each file is checked, closing an
Editor window will remove the underlying editor buffer from memory, possibly asking if you want to save it. The default
setting is unchecked.

Note: for information about Editor windows, editor buffers and files, see 12.3 Displaying and swapping between buffers.

Check Use recent directory for opening files to make operations such as File > Open use the directory of the file most
recently edited as the default directory in the file dialog. Deselect this option to make the dialog's default directory be the
current working directory. Note that this option does not affect the Editor tool, for which the file dialog always uses the
directory of the currently visible file as the default directory.

Check Use quality drawing to make the LispWorks IDE use quality (anti-aliased) drawing for editor and graph panes. Thisis
the default setting.

3.2.1.2 Controlling completion behavior

In-place completion is enabled by default in the IDE. If you prefer the modal dialog style of completion familiar to users of
LispWorks 5.0 and previous versions, deselect the Use in-place completion option.

When using in-place completion to complete a filename, by default you must always select an item from the in-place
completion window. You can accelerate this interaction by checking the option Auto-insert on single file completion. Then,
if there isjust one possible completion, it is automatically selected and appended to your input.

3.2.1.3 Quitting the environment
Choose File > Exit or press Ct r | +Qto exit LispWorks.

You can control whether LispWorks prompts for confirmation before exiting, using Tools > Preferences..., and then select
Environment in the list on the left side of the Preferences dialog. The Confirm Before Exiting preference has these meanings.

Never LispWorks exitsimmediately.

When modified buffers If there are modified editor buffers, a dialog asks you whether these should be saved before
exiting.

Always A dialog asks you to confirm whether LispWorks should exit.

3.2.1.4 Automatic filters on dialogs

The option Add a filter to dialog lists longer than: affects modal dialogs containing long lists. When the list islonger than
the value of this option, thelist has afilter, which you can use as described in 3.14.3.1 Filtering modal dialog completion.

3.2.1.5 Automatic use of Find Definitions view

The option Use Find Definitions list for more items than: affects the behavior of source location commands such as the
editor commands Find Source and Find Source for Dspec, and the menu command Works > Expression > Find Source.
When the number of source location results exceeds the value of this option, then the results are immediately displayed in the

35

3 Common Features

Find Definitions view of an Editor tool. Thisis particularly useful when you need to locate the definition of a particular
CLOS method from the generic function name.

The Find Definitions view is described in 12.6 Finding definitions.

3.2.1.6 Initialization file

By default LispWorks looks for afile. | i spwor ks to be loaded automatically when LispWorks is started. You should create
an initialization file and add to it Lisp code to initialize the LispWorks image to suit your needs.

The Preferences dialog can be used to specify adifferent initialization file, in the Initialization File area. You can either enter
the path and filename directly into the text input box, or use the *2: button to display afile selection dialog. Clicking on
undoes any alterations entered.

Note: it isup to each user to create and maintain their own personal initialization file. A sample persona initialization fileis
supplied with LispWorks - seethefilel i b/ 8- 0- 0- 0/ conf i g/ a- dot - | i spwor ks. | i sp inthe LispWorks distribution.

3.2.2 Configuring the editor emulation

The second tab under Environment contains the Emulation options.

The Emulation tab of the Environment Preferences

General = Emulation | Styles | File Encodings
Keys

() Editor keys are like Emacs, Alt is Mata key

(®) Editor keys are like Microsoft Windows, menu bar via Alt key

Cursar Blink Rate
() Mone (® Native () Specfy gpp * Miliseconds

-

Here you can configure the editor to behave according to one of two pre-defined editor input styles (emulations) which
determine how keyboard input is processed and other properties such as the shape of the input cursor. You can also set the
cursor blink rate.

The choice of emulation affects the Editor and other LispWorks tools containing editors such as the Output Browser, Stepper
and Profiler.

3.2.2.1 Choosing the key input style

The Editor and other tools using capi : edi t or - pane offer two key input styles: Emacs emulation or Microsoft Windows
emulation. By default, Emacs emulation is used. To choose an emulation, select Environment > Emulation in the Preferences
dialog as shown in 3.2.2 Configuring the editor emulation and select one of the Editor keys are like... options.

Note: In thisand other manuals, the Emacs keys are generally given. For help with finding keys for editor commands, choose
Help > Editing > Command to Key. Also seethefilesconfi g/ key-bi nds. | i sp andconfi g/ nsw key- bi nds. | i sp
which contain the forms defining the keys for each input style.

36

3 Common Features

3.2.2.2 Specifying a Meta key in LispWorks for Macintosh

This section only applies to LispWorks for Macintosh.

3.2.2.3 Effect of the specified Meta key

With the option Editor keys are like Emacs, Alt is Meta key, then Al t acts as Metawhen the input focusisin any

capi : out put - pane within any IDE tool. Thisincludes the Text area of the Editor tool, the Listener area of the Listener
tool, the Output areas of several tools, the echo area seen near the bottom of all tool windows, and graphs such as the
Superclasses and Subclasses areas of the Class Browser.

3.2.2.4 Setting the cursor blink rate
By default the editor cursor blinks on and off at the usual rate for your computer.

To change the blink rate, select Specify inthe Cursor Blink Rate area. Either scroll to choose the rate in Milliseconds, or
enter an integer between 100 and 2000.

To stop the editor cursor from blinking, select None in the Cursor Blink Rate area.

3.2.3 Setting the editor font, color and other style attributes

The third tab under Environment contains the Styles options.

37

3 Common Features

The Stylestab of the Environment Preferences

General | Emulation = Styles | File Encodings

Editor Font

[] Overide the system default font

Sample:

Main Colors

Pane Kind: Default W

Background: [| Use color: [Soe]

Foreground: [| Use color:

Change the echo area color when not active

Styles Colors And Attributes
Style Name: v
Baclkground: | Mone W

Foreground: | Specified w -

[]Bald [Jkalic []Undedine []Inverse
Restore Defaults

Color parenthesis

By default the editor uses a system default font. You can choose an aternative font and see a sample of it displayed in the
Editor Font area. Click inthe Sample: areato raise afont chooser. After you select the font, the text "Click here to choose
the font" is displayed in your selected font.

To make the LispWorks editor actually use your alternative font, select Override the system default font.

This specifies the font used in Editor and Listener windows and all other tools based on the editor, such as the Shell, Stepper
and Profiler tools.

If you deselect Override the system default font the system remembers your choice of alternative font, but does not actually
useit for display.

3.2.3.1 Changing the main colors of editor panes

You can modify the background and foreground of the Editor and Listener windows, and all other tools based on the editor,
using the Main Colors frame. Note, however, that thiswill override any customization done in the underlying window
system, which or may not be what you want.

First select the kind of editor that you want to modify in the Pane Kind list. Alternatively select Default to specify default
background and foreground, which apply to any editor of akind for which the corresponding value is not set.

38

3 Common Features

The specific kinds are:

Editor The main panesin the Editor tool, and other panes which are also just used for editing, for
example the Code To Profile tab in the Profiler and Source: in the Stepper.

Listener The Listener tool and other listener panes, including in the Debugger, the Inspector and the
Stepper.

Output Any pane that is used for output, including the pane in the Output tab of the Editor, Listener and
System Browser, and the output panes in the Tracer and Application Builder.

Shell The Shell toal.

Echo Echo areas on dl tools.

The colors apply when the echo areais active. If Change the echo area color when not active is
checked, the echo arearevertsto the interface colors when it is inactive.

For each kind of pane, check Use color: alongside Background or Foreground to specify the background and foreground
colors. If Use color: isunchecked, the value is not specified, and alarge cross appears in the color areaon theright. If Use
color: is checked, then the color is set and the color area on the right showsiit. Click in the color areato change the color
using a Color chooser that is raised.

When the LispWorks IDE makes an editor pane, it uses the foreground and background for this kind of paneif they are
specified. If either the foreground or background is not specified (that is, Use color: isunchecked), then it uses the color
specified for the Default pane kind if that is set. Otherwise it uses the default of the window system.

The Change the echo area color when not active checkbox controls whether an echo area changes its colors when it is not
active. When it is checked and an echo area become inactive, the echo area changes its foreground and background to the
colors of thetool. In other cases, echo areas use the colors set under Echo in the Main Colors box of the Preferences dial og,
or in the window system.

3.2.3.2 Setting the text style attributes
By default the LispWorks IDE uses a variety of text stylesto:

» Highlight selected text.

» Digtinguish interactive input in the Listener and Shell tools.

» Distinguish compiler messages in the Output tab or Output Browser.

» Make Lisp code more easily readable with syntax coloring.

* Indicate matching parentheses, easing the writing of correct Lisp forms.
Note: The last two of these features operate only in Lisp mode.

To change the attributes of one or more text styles, first select Environment > Styles in the Preferences dialog as shown in
3.2.3 Setting the editor font, color and other style attributes.

Then, to make Common Lisp symbols appear with red foreground rather than the default purple for example, first select Lisp
Keyword in the Style Name list. Then select Specified alongside Foreground and double-click on the color areato the right.
In the Color chooser that appears, choose the new color and click OK. Now click OK on the Preferences dialog and see the
change in the way your Lisp code is displayed. You may need to force the editor window to redisplay, for example by
scrolling, to see the change take effect.

For each named style, the Foreground and Background each have exactly one of the following values:

39

3 Common Features

None No special formatting.

Default Patform-standard highlighting, as for selected text.

Specified The color specified is used.

Modified The system generates a color which is usable for highlighting.

A large cross appears in the Foreground (Background) color areawhen None, Modified or Default is selected. Thisindicates
that the color is not used for the Foreground (Background).

If you wish to turn off the highlighting of interactive input in the Listener and Shell tools, first select Interactive Input in the
Style Name list. Then uncheck all the attributes and click OK.

To restore al stylesto those in LispWorks as shipped, click Restore Defaults.

Note: the foreground and background colors of windows are set via the system, not in LispWorks. To alter these colors on
Microsoft Windows, use the Windows Control Panel.

The text styles used in syntax coloring have these meanings and default appearance:

Syntax styles

Style Name Use Default appearance
Region Highlight The active region Native highlight
Show Point Matching parentheses : gr een background
Interactive Input Input in a Listener or Shell : r ed foreground
Marked Object 20.10.4 Highlighting of results Underlined
Highlight Editor help such as Describe Bold
Bindings
Completion Dynamic and in-place completions. |Modified background
Transient.
Search Match The matching text during an Inverse
incremental search (as invoked by
Ctrl+S)
Line Wrap Marker Displays the editor's line wrap : pur pl e foreground, modified
marker, where aline iswrapped or background
truncated
Lisp Function Name Namein def un, def macr o, : bl ue foreground
def net hod and def generi ¢ forms
Lisp Comment Comments and feature expressions |: fi rebri ck foreground
Lisp Type Nameindef t ype or otherdef ... |: forest green foreground
form, or lambda list keyword such as
&opt i onal
Lisp Variable Name Namein def var or def par anet er |: dar kgol denr od foreground
forms
Lisp String A string literal : rosybr own foreground
Lisp Keyword def un, def macr o or other definer |: pur pl e foreground
named def . . .

http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmac.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defgen.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_deftp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmac.htm

3 Common Features

Lisp Builtin A keyword symbol : or chi d foreground

Arglist Highlight The current argument in aFunction |Inverse
Arglist Displayer window

Hidden Comment String Replacement string for hidden : gr ay background
comments in folded definitions.

3.2.3.3 Controlling parenthesis coloring

You can control whether the editor colors parenthesesin Lisp code. By default, pairs of matching parens are displayed in the
same color, with a different color for forms at different depths. You can switch off this coloring by deselecting the option
Color parenthesis in the Styles tab of the Environment preferences.

3.2.4 Setting the default encodings
The fourth tab under Environment contains the File Encodings options.

The Editor has defaults for the encodings used when opening and saving files. For many users these defaults will suffice. If
you need to change either, select the Environment > File Encodings tab of the Preferences dialog.

The File Encodings tab of the Preferences dialog

Gereral | Emulation | Styles | File Encodings

Encoding and Line Termination Options
[ripLat

AUTO-DETECT w || AUTO-DETECT v

Clutpuit

LATIM-1 w || LF W
LF
CH
DEFALLT

For example, to make the Editor save Carriage Return Linefeed line-terminated files by default, select CRLF in the Line
Termination Options under Output.

3.3 Performing editing functions

This section discusses commands available in the Edit menu while any window is active. These commands fall into five
areas.

 Undoing changes.
» Using the clipboard.
 Selecting text and abjects.

e Searching for text.

Substituting text.

41

3 Common Features

3.3.1 Undoing changes

You can undo changes made in atool using Edit > Undo. Thisfacility is most useful in the Editor and Listener - see 12.9
Other essential commands for more details.

3.3.2 Using the clipboard

You can use the clipboard to transfer data between tools, or even between the LispWorks IDE and other applications that you
are running. There are three commands available, asfollows:

» Choose Edit > Copy to put the selected item or text from the active pane onto the clipboard.

» Choose Edit > Cut to put the selected item or text from the active pane onto the clipboard and remove it from the active
pane.

» Choose Edit > Paste to replace the selected item or text in the active pane with the contents of the clipboard.
Use of Copy or Cut followed by Paste lets you transfer items between tools, or to different parts of the sametool.

Unlike the clipboard in many other applications, the LispWorks IDE clipboard can contain a Common Lisp object. This
makes the LispWorks IDE clipboard an exceptionally powerful tool, allowing you to pass objects between different toolsin
the environment so that they can be examined in different ways.

If the clipboard contains a Lisp object and you use the Paste command on a pane that only accepts text, then the object's
printed representation will be pasted.

There are several ways to use these commands:

* Inthe Editor, you can Copy chunks of text and Paste them into different places, either within the same file or between
different files. If you have sections of code which are very similar, rather than typing each section out explicitly, just
Paste in the same section as many times as you need and change only the relevant parts. 12.11 Cutting, copying and
pasting using the kill ring describes a number of more sophisticated methods that can be used in the Editor.

* Inthe Class Browser's Hierarchy view (for example), you can Copy a selected class from the Superclasses pane to the
clipboard and then Paste it into another tool. Because the Common Lisp object itself is copied to the clipboard, it is
treated usefully according to the tool. For instance, if you paste it into an Inspector using Edit > Object > Paste Object,
then the classisinspected. If you paste it into an editor however, the class nameis simply pasted as text.

Aswell as the menu commands, you can usethe 4%, Bz and B buttonsin the toolbar, for Cut, Copy and Paste respectively.

Note: You can aso transfer data within the environment using the standard actions commands described in 3.8 Perfor ming
operations on selected obj ects.

3.3.3 Using the Object operations with the clipboard
You can use the clipboard to transfer atool's "primary object" between tools. There are three commands available, as follows:
» Choose Edit > Object > Copy Object to put the selection or "primary object”" onto the clipboard.

» Choose Edit > Object > Cut Object to put the selection or "primary object” onto the clipboard and remove it from the tool
it was copied from.

» Choose Edit > Object > Paste Object to put the contents of the clipboard into the current tool.

Use of Copy Object or Cut Object followed by Paste Object lets you transfer items between tools, or to different parts of the
sametool. There are severa ways to use these commands:

42

3 Common Features

* Inthe Class Browser (for example) you can Copy Object the class to the clipboard and then Paste Object it into another
tool. Because the Common Lisp object itself is copied to the clipboard, it istreated usefully according to the tool. For
instance, if you paste it into an Inspector, it isinspected. If you paste it into an editor however, the class name is ssmply
pasted as text.

» Between any of the tools, you can Cut Object, Copy Object, and Paste Object Common Lisp objects. You can, for
instance, make an instance of aclassin the Listener, inspect it by Values > Inspect, and then Copy Object it in the
Inspector, and then Paste Object it into a Class Browser to examine its class.

* |f you have several Common Lisp objects which you want to keep track of, store them in the Object Clipboard. You can
do this by a Clip command in tools such as the Class Browser, or by Edit > Object > Paste Object in the Object
Clipboard tool. See 8 The Object Clipboard for more information about that tool.

Note: You can also transfer data within the environment using the standard actions commands described in 3.8 Performing
oper ations on selected objects.

the LispWorks IDE also interacts with the standard system clipboard, so that data can be transferred to or from applications
other than Lisp. To do this, the system and the LispWorks IDE clipboards are kept in synchronization all the time, as follows:

» Whenever a Common Lisp object is copied to the LispWorks IDE clipboard, its string representation is copied onto the
system clipboard.

» Whenever astring is copied to the system clipboard, it is copied onto the LispWorks IDE clipboard as a string.

3.3.4 Selecting text and objects

Choose Edit > Select All or Edit > Deselect All to select or deselect all the text in an Editor or Listener window, or al the
itemsin alist or graph. These commands are useful whenever there istoo much information to be able to select itemsone at a
time.

These commands operate on the active pane of the current tool.

3.3.5 Searching for text and objects
You can search for and change text in most tools using Edit > Find..., Edit > Find Next, and Edit > Replace....

Choose Edit > Find... to find an item in the current tool (this might be a piece of text, or afragment of Common Lisp, or an
object, depending on the tool). You must supply an item to find in the dialog that appears.

Choose Edit > Find Next if you want to search for the next occurrence of an item you have already found. This command
does not prompt you for an item to find, and so is only available if you have already found something.

Choose Edit > Replace... if you want to replace one string of text with another. A dialog box prompts you for atext string to
find, and atext string to replace it with. This command is only available in the Editor and the Listener, and is most useful in
the Editor.

These commands operate on the active pane of the current tool.

3.4 The Break gesture

The keyboard Break gestureis Ct r | +Br eak.
This chooses a process that is useful to break, and breaksit.

The process to break is chosen as follows:

3 Common Features

1. If the break gestureis sent to any LispWorks IDE window or other CAPI interface that iswaiting for events, it does
"Interface break", as described bel ow.

2. Otherwiseit checks for a busy processes that is essential for LispWorks to work correctly, or that interacts with the user
(normally that means that some CAPI interface usesit), or that is flagged as wanting interrupts (currently that means a
REPL). If it finds such abusy process, it breaksit.

3. Otherwise it activates or starts the Process Browser. Note that thistool, documented in 22 The Process Browser, can be
used to break any other process.

"Interface break” depends on the interface. For an interface that has another process, notably the Listener with its REPL, it
breaks that other process. For most tools it starts the Process Browser, otherwise just it breaks the interface's process.

3.5 The history list

The history list of atool stores the most recent events which have been carried out in that tool, or the most recent objects
which have been browsed in it.

The History > Items submenu provides alist of these events (or objects), allowing you to repeat any of them (or browse them
again) by choosing them from the menu. This gives you an easy way of repeating formsin the Listener, inspecting objects or
browsing classes again, revisiting searches, and so on.

The menu lists the last ten unique items to have entered the history list of the active window. Because each entry is unique,
some items may have occurred more than ten events ago.

If the editor is the active window, the History > Items submenu lists the buffers currently open.

3.5.1 Repeating events from the history list

The easiest way of repeating an event from the history list isto choose it from the History > Items submenu. There may be
times, though, when this is inconvenient (the items on the list may be too long to be able to distinguish between them easily,
or you might want to repeat an item that occurred more than ten events ago). In such cases, there are three commands which
offer an alternative way of choosing items.

Choose History > Previous to perform the previousitem in the history list of thetool. Thisisusually the most recent event
you have performed, but may not be (if, for instance, the last action was itself an event that was already on the history list).

Choose History > Next to perform the next item in the history list. Thisitem is not usually available unless the last event you
performed involved an item already on the history list.

Note: You can aso usethe & and = buttonsin the toolbar.

3.5.2 Editing the history list

Choose History > Modify to remove items from the History > Items menu. A dialog appearsthat contains al of theitemsin
the current History menu. Select the items you wish to retain, and click OK. Any items which were not selected in the dialog
are removed from the history list.

Note: another way to keep track of items that you're interested in (such as appear in the history lists of varioustools) isto
place them on the Object Clipboard. See 8 The Object Clipboard for more details.

3 Common Features

3.6 Operating on files

The File menu allows you to perform operations on files stored on disk. Some commands are only available for tools which
need to interact with the files you have stored on disk, such as the Listener and Editor.

The default commands available in the File menu are described below. Note that in some tools, the File menu contains
additional commands specific to that tool. Please refer to the relevant chapters for each tool for a description of these
additional commands.

Choose File > New to open anew buffer in the built-in Editor. 1f an Editor window has not yet been created, this command
also creates one. The new buffer is unnamed. Alternatively, you can click the [1 button in the toolbar. This toolbar buttonis
available on appropriate tools, and in the podium as shown in The podium.

Choose File > Open to open an existing file in a new editor buffer. Where appropriate, a dialog appears, allowing you to
choose afilename. If an editor window has not yet been created, this command creates one. Alternatively, you can click the
&= button in the toolbar. Thistoolbar button is available on appropriate tools, and in the LispWorks podium, shown in The
podium.

Choose File > Load to load afile of Lisp source code or afad (binary) file. Choose File > Compile to compile afile of Lisp
source code. Choose File > Compile and Load compile a source file and load the resulting fad file. When appropriate, each
command displays adialog, alowing you to choose the file you want to load or compile.

Choose File > Print to print afile. A dialog alows you to choose afile to print. The current printer can be changed or
configured by using the standard Windows Control Panel.

Choose File > Browse Parent System to view the parent system of the current file in the System Browser. Thiscommand is
only available if the system has already been defined. See 26 The System Browser for a complete description of the System
Browser.

Choose File > Recent Files to raise a submenu listing the last 10 files visited viathe File > Open... and File > Save As...
commands. This allows speedy return to the files you are working on.

Note: As described above, the behavior of each command can vary dlightly according to which tool is active when the
command is chosen. For instance, choosing File > Print in the Editor prints out the displayed file, whereas choosing File >
Print in the Listener prompts you for afile to print.

3.7 Displaying packages

Symbols can be displayed either with their package information attached or not. 1n the LispWorks IDE, symbols are
displayed with the package name attached by default.

For example, suppose you have created a package f oo which includes a symbol named bar and a symbol named baz.
Suppose further that you created a new package f 002, which used the f oo package. This can be done as shown below:

(def package foo (:use "COWON LI SP"))
(def package foo2 (:use "FOO' "COMON LI SP"))

Note that in defining both packages, the common- | i sp package has also been used. It is good practice to use this package, to
ensure that commonly-used symbols are available.

When creating packages which use other packages, exported symbols can be called without having to refer to the package
name.

To illustrate this, let usreturn to our example.

3 Common Features

Two exampl e packages

FOCH FOOz2

baz {oo :baz

We have two packages: f ool and f 002. f 0ol contains symbolsbar and baz. The symbol bar has been exported, whereas
the symbol baz is not exported.

When the current package isf 002, you can refer to bar without using the package name. Thisis becausef 002 usesf ool
and bar isexported. However to refer to baz you must still usethef ool package name likethis: f ool: : baz. Thisis
because baz is not exported.

Note also that when the current package is other than f ool or f 002, you can refer tof ool: bar, but you can only refer to
baz asf ool: : baz.

Package names are usually displayed alongside symbolsin alist. Having a package entry on every line can be unhelpful,
especially if the mgjority of items listed are from the same package. To hide the package names for the symbolsin agiven
type of tool:

1. Raise the Preferences dialog as described in 3.2 Setting preferences.

2. Select thetool typein the list on the left side of the diaog.
3. Uncheck Show Package Names in the General tab.

4. Click OK to confirm your setting.

3.7.1 Specifying a package

If you are working in a particular package, you can adjust the tools to display symbols as you would refer to them from that
package - that is, as the package sees them. This can make listings clearer and, more importantly, can show you which
symbols have been exported from a package.

Doing this changes the process package of the tool. This means that both displayed symbols and symbols typed into the tool
are assumed to be in the package specified. This can be useful in a browser, for example, if you intend to browse a number of
different objects which come from the same package.

To change the process package for a given type of tool:

1. Raise the Preferences dialog as described in 3.2 Setting preferences.

2. Select thetool typein the list on the left side of the diaog.

3. Select the General tab on the right side of the dialog, if necessary.

4. Delete the package name in the Package box, and type in the name of the new package.
5. Click + to confirm this new name.

6. Click OK to make the change.

Note: If you wish, you can partially type the package name and then click . Thisallowsyou to select from alist of all
package names which begin with the partial input you have entered. See 3.14 Completion for detailed instructions on using

46

3 Common Features

completion.

As an example, imagine you are looking at alist of symbolsin the Inspector. You are working in the package f oo, and some
of the symbolsin the Inspector are in that package, while others are in another package. To change the current package of the
Inspector to f oo, follow the instructions bel ow:

1. Raise the Preferences dialog as described in 3.2 Setting preferences.

The Preferences dialog indicates that cormon- | i sp- user isthe current package in this window.
2. Select Inspector in thelist on the left side of the dialog.
3. Inthe Package box on the right side of the dialog, delete conmon- | i sp- user, and typef oo.
4. Click OK to make the change.

In the Inspector all the symbols available from f oo appear without the package prefix f oo. Similarly, all exported symbolsin
packages which f oo uses appear without a package prefix, while all others have an appropriate package prefix.

3.8 Performing operations on selected objects

In any tool, there are a number of operations that you can always perform on the selected objects, irrespective of the type of
objects you have selected. This allows you to perform some powerful operations and also ensures a consistent feel to every
tool in the environment.

In this context the term "selected objects”’ is meant in the widest sense, and can refer to any items selected anywherein atool,
beitinalist of items, or agraph. It can also refer to the tool's current object: that is, the object which is currently being
examined.

These operations are available throughout the environment, and are referred to as standard action commands. As with other
commands that are specific to the active window, standard action commands are usually available from menus on the main
menu bar of the tool you are using. The objects which are operated on by a given standard action command depend on the
menu from which you chose the command.

As an example, consider examining the contents of Common Lisp objects using the Inspector.

The standard action commands for the Inspector are present in two places: the Works > Object menu, and the Works > Slots
menul.

» Choose a standard action command from the Works > Object menu to perform an operation on the Inspector's current
object.

* Choose a standard action command from the Works > Slots menu to perform an operation on the selected components of
the Common Lisp object.

Notice that in the first case, the object operated on is the tool's current object: you do not have to take any further action
before performing the operation.

In the second case, the objects examined represent more specific pieces of information: you need to select them before you
can perform the operation. This, therefore, examines more discrete pieces of information about the current object.

Many tools have one or more submenus like those described above. The first operates on the current object. What that object
is, and hence the name of the submenu in which the commands are to be found, depends on the tool you are using. For
instance, if you are examining classes, the commands can be found in aWorks > Classes menu. If you are examining
methods, they can be found in aWorks > Methods menu.

Some tools contain two or more such menus; precise details are given in the relevant chapters.

Asaguide, if amenu has aplural for aname, the commandsin that menu can be performed on multiple selections. If the

47

3 Common Features

menu name is not pluralized, commands only affect a single selection.

3.8.1 Operations available

The standard action commands available are described below. In these descriptions, the term "current object” refersto the
Lisp object that is being acted upon by the menu command. This depends on the tool being used and the menu in which the
command appears, but should be obvious from the context.

Choose Browse to browse the current object using an appropriate browser. A browser is atool which lets you examine a
particular type of Common Lisp object, and there are alarge number of them available in the environment. Some of the
browsers available are:

» The Class Browser, which lets you examine CLOS classes.

» The Generic Function browser, which lets you examine the generic functions in the environment, and the methods you
have defined on them.

See the appropriate chapters for afull description of each browser; there is a chapter of this manual devoted to each available
browser. The precise name of the Browse menu command reflects the type of browser that is used to examine the selected
object. Thus, if the command isBrowse — Generic Function, a Generic Function Browser is used.

Choose Class to look at the class of the current object in a Class Browser. Alternatively, click on # in thetoolbar. See 7 The
Class Browser for full details about thistool.

Choose Clip to add the current object to the Object Clipboard. See 8 The Object Clipboard for full details about thistool.

Choose Copy to copy the current object to the clipboard, thus making it available for use elsewhere in the environment. Note
that performing this operation on the object currently being examined by the tool (for example, choosing the command from
the Object menu when an Inspector is the active window) has the same effect as choosing Edit > Copy, whereas choosing this
option from other menus (such as a Description menu) copies more discrete information to the clipboard.

Choose Documentation to display the Common Lisp documentation (that is, the result of the function docunent at i on) for
the current object. It isprinted in a help window.

Choose Find Source to search for the source code definition of the current object. Alternatively, click on & in thetoolbar. If
itisfound, thefileis displayed in the Editor: the cursor is placed at the start of the definition. See 12 The Editor for an
introduction to the Editor tool. You can find only the definitions of objects you have defined yourself (those for which you
have written source code) - not those provided by the environment or the Lisp implementation.

Choose Inspect to invoke an Inspector on the current object. Alternatively, click on & inthetoolbar. See 17 The Inspector,
for details about the Inspector. If you are ever in any doubt about which object is operated on by a standard action command,
choose this command.

Choose Listen to paste the current object into the Listener. Alternatively, click on &, inthetoolbar. 20 The Listener
provides you with full details about thistool.

Choose Function Calls to describe the current object in afunction call browser. See 14 The Function Call Browser for more
details.

Choose Generic Function to describe the current object (a generic function or a method) in a Generic Function Browser. If
the current object is amethod, then its generic function is described in the Generic Function Browser and the method is
selected. See 15 The Generic Function Browser for more details.

Choose Browse Symbols Like to display symbols matching the current object in a Symbol Browser. See 18 The Symbol
Browser for more details.

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

3 Common Features

3.9 Using different views

Many toolsin the LispWorks IDE have several different views, each of which can display information which is pertinent to
thetask at hand. You can switch to any of the available views by clicking on the appropriate tab at the top of the tool. When
choosing a different view, the layout of the tool itself changes.

Click tabs to display different views of atool

Click here 1o display 1he The Slols view is
Higrar by wisw. currerdly visible.
-
| /
| ~
Hisrarchy | Superclasses | Subclazses | 017 Inkargz | Funchiors |:_=1".!|‘|!I'|:i':
-
~
-

Click here 1o display
1he Precedence view.

In tools which are browsers, different views allow you to display different pieces of information about the same objects; for
instance, in the Class Browser you can switch from a view which shows you information about the slots in a given Common
Lisp class to one which shows information about the initargs of the class.

In other tools, different views may show you completely different types of related information. For example, in the Listener
you can switch from the Listener view to a view that shows you any output that has been generated by the Listener.

All tools have a default view when you first start them. The default view is the one which you are most likely to make most
use of, or the one which you use first. When you first start the built-in Editor, the default view is the text view. When you
start a Class Browser, the default view shows you the slots available for the current class, as you have already seen.

3.9.1 Sorting items in views
You can sort the items displayed in the main area of any view using the Preferences for a given tool.
To specify the sorting for the Class Browser, for example:

1. Raise the Preferences dialog as described in 3.2 Setting preferences.

2. Select the tool (the Class Browser in this example) in the list on the left. Note that an image representing each tool is
shown alongside the tool names:

49

3 Common Features

Example General Preferences

B LispWaorks: Preferences B
Crromoment ol | Sl Graph | Supenciags Graph | SlotaFundicns
i “ophceion Bulder Toolber
7] Sheow ook
| Code Coverage Drowesr
-ul:‘lfamplr.l:l': Condiione Sar
¥ Debugper 1 Uram e
=] Editar &) [y Hame
+= Funcion Call Browess T By Fackage
3 Senenc Function Erweer
fe Inepecior Cackage
iy Lodmrymr ZOMMON-LIER-LSER 32
] Gt Choboard | Ghqw Fackags Mamee
e Gz Brorvemer
#F Pocess Browesr
) Prdiler
1] e Fils
& Sl
B Stepoe

'\-"I-i: Sypmibn | Broeesss
:.]‘:q'fﬂ—ll Bivrovessn
j'_ Treazen

a'lu'l'l thorer Briroves

i il Canicsd

Select 1he 1ype ol Coormiral 1he sor

ool in 1his parel. order ol a ool
using 1he oplicrs
in1his parel.

Notice that tool Preferences, such as the one shown above, generally have several tabs. In these cases, the options
described in this section are always available in the General tab, so select thistab if necessary.

3. Choose one of the optionsin the Sort areato specify the sort order of itemsin Class Browser windows.
The options available vary according to the tool, but at |east the following will be available:

By Name Sorts symbolsin alist or graph according to the name of each item. The packages that the
symbols are resident in are ignored when this option is used; thus, the symbol vv: al | ocat e
would be listed before aa: vect ori ze.

By Package Sorts symbolsin alist or graph according to the package they are listed in. Thus, all symbolsin
the aa package would be listed together, aswould all symbolsin thevv package. In addition, the
aa package would be listed before the vv package. Within a given package, objects arelisted in
alphabetical order when using thisoption: thus, aa: carry- out - condi ti ons would belisted
beforeaa: vect ori ze.

Unsorted Listsall symbolsin agraph or list in the order in which they are occur naturally in the object
being examined. This can sometimes be a useful option in itself, and is aways the quickest
option available. You may sometimes want to use this option if you are displaying alarge
number of items and you are not filtering those itemsin any way.

The option you specify takes effect when you click OK in the Preferences dialog. Your setting affects existing toolsand is
remembered for use when you create the same type of tool in the future.

50

3 Common Features

Note: There are sometimes other options available in the Sort area of the Preferences dialog, depending on the nature of the
tool. These options are described in the chapter specific to each tool.

Only those views whose main area consists of alist or agraph can be sorted. In particular, the default views of tools such as
the Listener or the Editor, which is an editor window which you can type directly into, cannot be sorted.

3.10 Tracing symbols from tools

For some tools, submenus under the relevant main menus (for example, the Expression menu on the Editor tool) contain a
Trace submenu that allows you to set tracing options for a function, method, macro, or generic function. Thisis auseful
shortcut to thet r ace macro, since it gives you some control over tracing in the environment without having to work directly
at the Common Lisp prompt.

Below, the current function means the currently selected function, method, macro or generic function, or in the case of the
Editor and Listener, the symbol under the cursor.

A Trace submenu generaly has the following commands:
» Choose Trace to trace the current function.

» Choose Trace Inside to trace the current function within the current context. Choosing this command setsthe: i nsi de
optionfor t race.

» Choose Trace with Break to trace the current function, and enter the debugger on entry to it. Choosing this command
setsthe: br eak optiontot.

» Choose Untrace to turn off tracing on the current function.

» Choose Untrace All to turn off tracing on currently traced functions. Note that this does not turn off tracing in the
environment as awhole.

» Choose Show in Tracer to trace the current function and display in the Tracer tool. This offers you more control over
tracing. See 11 The Tracer for details.

» Choose Toggle Tracing to turn al tracing commands in the environment on or off. Choose Toggle Tracing againto
restore the previous tracing state.

3.11 Linking tools together

You can link together pairs of tools, so that changing the information displayed in one tool automatically updates the other.
This can be done for virtually any tool in the LispWorks IDE, and provides asimple way for you to browse information and
see how the state of the Lisp environment changes as you run your code. For instance, you can make between an Inspector
and a Listener so that every time you evaluate aform in the Listener, its value is automatically inspected.

You can also link two copies of the sametool. This can be avery useful way of seeing two views of atool at once. For
instance, you could create a copy of the Class Browser by choosing Tools > Clone, and then link them together. By keeping
one browser in the subclasses view, and the other in the slots view, you can automatically see both the subclasses and the
available dots for agiven class.

Linked tools have a master-slave relationship. One tool (the slave) gets updated automatically, and the other tool (the master)
controls the linking process. To link together any two tools:

1. Select the tool that the link is to be established to. For example, to form alink from an Inspector to a Class Browser to
ensure that a class selected in the Class Browser is automatically inspected, you would use the Edit menu of the Class
Browser.

2. Choose Edit > Link > tool where tool is the title of the tool you wish to link from.

51

http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm

3 Common Features

To break alink, select -- No Link -- instead of a specific tool.

To view al the current links that have been established, choose Edit > Link from > Browse Links... Select any of the links
listed and click on Remove Link(s) to remove them.

3.12 Filtering information
Many tools have views which display information in alist. Iltemsin these lists may be selected, and you can usualy perform

operations on selected items (for instance, by means of the standard action commands, as described in 3.8 Performing
operations on selected objects).

Such lists are often long, including information which you are not interested in. For instance, Common Lisp objects may
contain alarge number of slots, most of which are of no importance to your work.

Most such listsin the LispWorks IDE have afilter area which allows you to hide the uninteresting information. The filter area
isabove thelist, and consists of the Filter pane into which you can enter text, toolbar buttons, and the Matches pane. There
is also afilter modes dropdown menu, described in 3.12.2 Advanced Filtering.

3.12.1 Plain Filtering

This section describes how you can filter list items based on a substring match.

Filter areawith plain match

Filler mades Erler string 1o Click here 10 Mumkber ol
meru filler by here urtier ilems maiching ilems

M Matches 11

Fiter | callback.
CAPIIMTERMALS: CALLBALCE.

CAPl:CALLBACK-TYPE
CAPIHMTERMALS:CHANGE -CALLBALCK,
CAPL:CHAMGE -CALLBACK-TYPE
CAPL:DRAG-CALLBALCK,
CAPL:DROP-CALLBACE.
CAPL:EDITING-CALLBALCE.
CAPl:GESTURE-CALLEBACKS
CAPL:MNAYVIGATION-CALLEACE.
CAPL:SCROLL-CALLBACE,
CAPL:TET-CHANGE -CALLBALK.

Matzhing itfems lisled here.

To use the filter, smply enter text in the box to the right of the Filter modes menu button. Thelist isfiltered automatically as
you type. Only those items that contain the specified string are displayed in the list - all the others are hidden from the
display. The number of itemsthat are listed is printed in the Matches areato the right of the Filter box.

To display all theitemsin alist once again, delete the string in the Filter box or click the 2 button.

3.12.2 Advanced Filtering

This section describes how you can filter list items by aregular expression match rather than a plain string match, make the
match case-sensitive, and how to invert the filter.

52

3 Common Features

To ater the way that the filter operates, select one or more options from the Filter dropdown menu to the left of the filter
pane. You can select this filter modes menu using the mouse, but is more convenient with a keyboard gesture. Each gesture
selects or deselects one filter mode. The keyboard gestures invoking advanced filter modes are shown in Advanced Filter
modes.

Advanced Filter modes

Keyboard gesture Filter mode Description

Crl+Shift+R Regexp Search Filters by regular expression
matching

Ctrl+Shift+E Exclude Matches Excludes items matching the filter

Crl+Shift+C Case Sensitive Filters by a case-sensitive comparison

The choice of items displayed changes according to the content of the filter pane and the selected filter options. The label on
the Filter dropdown changes to indicate your selected filter options.

In the exampleillustrated below, we have inspected the string " Li spWor ks", entered aregular expression which matches
uppercase characters, and pressed Ct r | +Shi ft +RCt r | +Shi f t +Cto select the Regexp Search and Case Sensitive filter
modes.

Filter areawith regular expression match

Brler regular expression

Select filter modes her _ioitler By here.
FiterBC | [&-£] --""'_-_---- ---X Matches 2
V..
4 ww

Now pressCt r | +Shi f t +E to select the Exclude Matches filter option. Only the lowercase characters of the string
"Li spwor ks" aredisplayed inthelist.

Note: For details of the regular expression syntax, see 28.7 Regular expression syntax in the LispWorks® User Guide and
Reference Manual.

Note: The three filter modes are mutually independent.

3.13 Regexp matching

Regular expressions (regexps) can be used when searching and filtering throughout the IDE. See 28.7 Regular expression
syntax in the LispWorks® User Guide and Reference Manual for a description for exactly how LispWorks regexp matching
operates.

3.13.1 Regexp and plain string matching

Sometimes you need to select an option to use regexp matching, as the default behavior uses a plain string comparison. For
example, see 3.12.2 Advanced Filtering.

53

3 Common Features

Other areas always use regexp matching, such as the search target in some modes of the 16 The Search Filestool, and editor
commands with names containing " Regexp" .

3.14 Completion

Where there is afinite set of meaningful text inputs (symbol names, names of existing files or editor commands, and so on)
the IDE helps you to enter your text by offering completion. When you invoke completion, the system takes your partial input
and either:

 extends your partial input to an unambiguous longer (but possibly partial) input, or:
* presents a choice of the possible meaningful inputs.
When your input remains partial, you may repeat the completion gesture.

When you see a choice of the possible meaningful inputs, certain gestures allow you to narrow the choice and quickly select
the desired input, as described in 3.14.2 Selecting the completed input.

3.14.1 Invoking completion

When a command prompts for input in the echo area, the keys Tab, ? and Space can invoke completion, depending on the
context.

In the Editor tool, avariety of completion commands are available. For example, in Emacs emulation Tab invokes the
command I ndent Selection or Complete Symbol. Seethe Editor User Guide for details of this and other editor commands.

In the Shell tool, Tab expands filenames.
In the Listener tool using Emacs emulation, Escape Tab expands filenames.

In many text input panes such asthe Class: field of a Class Browser tool, Up and Down invoke in-place completion while
pressing the button raises a completion dial og.

Also, clicking the - button to the right of atext input pane raises amodal completion dialog, as described in 3.14.3
Completion dialog.

3.14.2 Selecting the completed input

The IDE presents the choice of inputsin one of two ways, described in the next two sections. The option Tools >
Preferences..., and then select Environment in the list on the |eft side of the Preferences dialog. The General tab contains a
check box Use in-place completion controls that whether in-place completion is used.

3.14.2.1 In-place completion

In-place completion presents the choice of complete inputsin a special non-modal window. Example in-place completion
window below shows thisin the context of the editor command Complete Symbol.

3 Common Features

Exampl e in-place completion window

{in-package }

fwith-o

with-open-file
with-open-ztream
with-output-to-fazl-file
with-output-to-string

While thiswindow is visible, most keyboard gestures such as unmodified alphanumeric and punctuation keys are processed
asordinary input, adding to your partial input. This reduces the number of possible completions. Conversely, deleting part of
your input will increase the number of possible completions.

You can navigate the choice with Up and Down and you can select the desired completion at any time with Ret ur n or double-
click. To cancel the attempt to complete, press Escape.

3.14.2.2 Filtering in-place completion

You can reduce the number of displayed completions by adding afilter to the in-place completion window.

To add thefilter, press Ct r | +Ret ur n. To use the filter, type a substring of the desired result. By default, filteringisby a
case-insensitive substring comparison.

Example in-place completion window with filter

{in-package 3

fwith-o

with-open-file
with-open-ztream

TI:II:I

Reqgexp Filker
Exclude Matches
Zase sensitive

You can set filter modes to alter the way that the filter operates, just as described in 3.12.2 Advanced Filtering. Briefly, you
select options from the Filter dropdown menu or with the keyboard gesturesCt r | +Shi ft +R, Ct r | +Shi f t +E and

Ctrl +Shi ft+C. The choice of items displayed changes according to the content of the filter pane and the selected filter
options, and the label on the Filter dropdown changes to indicate your selected filter options.

55

3 Common Features

3.14.3 Completion dialog

When the Use in-place completion option (see 3.14.2 Selecting the completed input) is off, all keyboard completion
gestures raise amodal dialog presenting a choice of completion options.

Also, clicking the % button to the right of atext input pane raises amodal completion dialog.

You can navigate the choice with Up and Down and you can select the desired completion at any time with the Ret ur n key,
double-click, or click the OK button. To cancel the attempt to complete, press Escape.

3.14.3.1 Filtering modal dialog completion

A modal completion dialog automatically has afilter if the number of possible completions exceeds the value of the option
Tools > Preferences... > Environment > General > Add a filter to dialog lists longer than:. By default this option has value
25.

The filter options described above are also available in amodal completion dialog, and are controlled by the same keyboard
gestures, for example Ct r | +Shi f t +R. See 3.12.2 Advanced Filtering for details.

3.15 The Commands menu

The Commands menu is a menu that allows you to invoke the Editor commands that are shown onit, and also to raise the
Editor Commands List tool, which allows you to choose the commands that are shown (see 3.15.1 Editor CommandsList).
Editor commands are documented in the Editor User Guide.

The Commands menu can invoked from the menu bar as Works > Commands in the "editing” tools, including the Editor,
Listener, Debugger, Shell and Output Browser. It can be also invoked from the context menu in any editing pane.

The commands shown on the Commands menu are remembered between invocations of LispWorks.

Note: When the context menu isinvoked by right-click, the execution of the command isinvoked with the buffer point moved
to where the click occurred, and, unless the command moves the buffer point, it is moved back to its original position
afterwards. Therefore commands that use the buffer point may not behave in an obvious way. For example, the command
Forward Character will move the point to one character after the point where you clicked, rather than one character after
where the point was before you clicked.

There are several functions that allow to access the list of commands that are currently in the menu. These are useful when
you want to transfer the list of commands to a different computer or adifferent user. They may be also useful for switching
between different "modes of working" in which you want different commands in the menu.

e | wt ool s: commands- nenu- add- commands adds commands to the menu.

* | wtool s: conmands- nenu- r enove- commands removes commands from the menu.

* | wt ool s: commands- menu- get - conmands returns the list of commands currently in the menu.

3.15.1 Editor Commands List

The Editor Commands List isasimpletool that allows you to browse the Editor commands that are defined, and to add or
remove commands from the Commands menu.

Open the Editor Commands List using Display Commands List... on the Commands menu.

56

3 Common Features

Editor Commands List

(O Editor Commands List - O
Works File Help

Fiter W Matches 596 [|In Menu [| With Keys
Key [nmenu Command name
~
Abbrev Mode
Meta+l Abbreviated Complete Symbal
Abbreviated In-Flace Complete Symbaol
Cirl+] Abort Recursive Edit
Ctd+; Activate Interface
Cir+X + Add Global Word Abbrev
Cir+ Ctr+A Add Mode Word Abbrev
Meta+Ctd+\WW Append Mexd Kil
Append To File

Append to Register
Append to Word Abbrev File
Apropos
Apropos Command
Meta+3 Argument Digit
Auto Fill Linefeed
Auta Fill Mode
Auto Fill Retum
Ay g Cill Crones
"Ebbrev Expand Only™ ™

[Zutoloadsble command e

W

The main area of the Editor Commands List shows all the known Editor commands. If the command has a key binding, then
it is shown in the Key column. Below the main area, there is an area that displays the documentation for the currently
selected command.

The commands that are currently shown on the Commands menu are displayed with a* in the In menu column of the main
area. Double-clicking on acommand adds or removes it from the Commands menu. When acommand is added, it is added
at the top of the menu.

At the top of the main area, there is afilter that allows you to restrict which commands are shown. By default, the filter
searches the text in the panel, so matches both the command name or the key. For example, typing f i | e matches all
commands that contain "file". Typing ct r I matches commands that are bound to a key sequence containing the Control key.
Typing - k matches both commands where the key k is used with a modifier (for example, Ctrl -k kill |ine)andthe
commands which contain un- ki | | intheir name.

The filter also has two additional check buttons. Thefirst one, In Menu, causes the Editor Commands List to show only
commands that are currently in the Commands menu. Thisis particularly useful when the Commands menu becomes too
long and you want to decide which commands to remove from it. The second one With Keys causes the Editor Commands
List to show only commands that are bound to some key sequence.

You can also manipulate the list of commands in the Commands menu programmatically by using the following functions.

commands-menu-add-commands Function

| w- t ool s: conmands- nenu- add- commands commands

The function commands- nenu- add- conmands adds the commands named by commands to the Commands menu.

57

3 Common Features

commands should be allist of strings, which are appended in front of the current list, after removing any matching
commands from the current list.
commands-menu-remove-commands Function

| w-t ool s: commands- nenu-r enbve- commands commands

The function commands- nenu- r enove- comands removes the commands named by commands from the Commands
menu. commands should be alist of strings, or : al | which causes all commands to be removed.
commands-menu-get-commands Function

| w-t ool s: commands- nenu- get - conmands => commands

The function commands- menu- get - conmands returns alist of strings naming the current commands in the Commands
menu. Thelist is new, and can be destructively modified.

The commands shown on the Commands menu is remembered between invocations of LispWorks, so you don't need these
functions if you have afixed list of commands and always use the same computer.

If the list of commands is modifed before the the LispWorks IDE starts, typically by acall to
commands- nenu- add- conmands in aninit file, then LispWorks ignores any commands that it remembered from a previous
run.

Here are some examples.

Sorting the commands in the Commands menu:

(1wt ool s: conmands- nenu- add- comrands
(sort (Ilwtools:comands- menu- get - commands)
"string<))

Generate aform that you add to the Commands menu all the commands that are currently in the Commands menu:

(pprint " (lwtools: conmands- nenu- add- conmmrands
", (I'wtool s: commands- nenu- get - comrands)))

You will typicaly put such aform in your init file on another computer, or give it to another user.

3.16 Output and Input to/from the standard streams

When the LispWorks IDE starts it sets the follow variables:
* hcl : *backgr ound- out put * to np: *backgr ound- st andar d- out put *.
* hcl : *backgr ound- i nput * to a stream that always returns EOF.
* hcl : *backgr ound- query-i o* to astream that interacts with the user using CAPI prompters.

hcl : *backgr ound- out put * isthe default destination of cl : *st andar d- out put *, cl : *t r ace- out put * and
cl:*error-output*.

hcl : *backgr ound- i nput * isthe default sourcecl : *st andar d-i nput *.

hcl : *backgr ound- quer y-i o* isthedefault for cl : *query-i o* andcl : *debug-i o*.

The output sent to np: * backgr ound- st andar d- out put * can be viewed in the Output Browser tool and in the Output tab
of Editor and Listener tools. Seethe entry for hcl : *backgr ound- out put * in the LispWorks® User Guide and Reference
Manual for more details.

58

http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm

3 Common Features

3.17 Examining a window

You can examine any tool window with the Tools > Interface menu.

This menu contains the standard action commands described in 3.8 Perfor ming oper ations on selected objects. Thus,
choose Tools > Interface > Inspect to inspect the capi : i nt er f ace object for the window.

Choose Tools > Interface > Browse - Window to browse the structure of the window object. From here you can browse the
child windows.

For information about the tools mentioned, see 7 The Class Browser and 17 The Inspector and 27 The Window Browser.

3.18 Specifying the initial tools
By default the LispWorks IDE starts up with the Podium and a Listener.

If you want to see other tools each time you start the LispWorks IDE, then you can add action items in your personal
initialization file, or in a saved image.

For example, to start an Editor tool, define an action on the pre-defined "Initialize LispWorks tools" action-list:

(define-action "Initialize Lispwrks tools"
"Make an Editor Tool"
#' (|l anmbda (screen)
(capi:find-interface 'lwtools:editor
:screen screen))
cafter "Create default the tools")

Note: the names of the various tools are exported in the LW TOOLS package.

For more information about action lists, including an example which opens specific filesin the Editor tool, see the
LispWorks® User Guide and Reference Manual.

3.19 System preferences affecting the IDE tools

This section only applies to Lispworks for Macintosh.

59

4 Getting Help

All tools contain a Help menu that gives you accessto avariety of forms of online help. This chapter describes how to use
this online help.

4.1 Online manuals in HTML format

A complete documentation set is provided with LispWorks in the form of HTML files. Assuming that you have installed the
documentation, these files are in the directory which is the result of evaluating thisform:

(sys:lispworks-dir "manual /online/")

The Help menu links directly to these HTML files, allowing you to go straight to the most relevant documentation for the
current context.

No proprietary extensionsto HTML have been used, so you can use any HTML browser to view the documents. The Help
menu drives the following browsers: Netscape, Firefox, Mozilla, Chrome, Microsoft Internet Explorer and Opera.

4.1.1 Getting help on the current symbol

Choose Help > On Symbol... to search for help on the symbol under the point (in an editor-based window) or the current
object of atool. Thisoption displays the Search dialog described in 4.1.3 Sear ching the online manuals, but with options
pre-selected to enable you to search for documentation on the current symbol. Click OK, and the results of the search are
displayed in your HTML browser.

4.1.2 Getting help on the current tool

Choose Help > On Tool... to get help on the current tool. This takes you to the appropriate online chapter of this manual.

4.1.3 Searching the online manuals

Choose Help > Search... to search the online documentation. The Search dialog, shown in Sear ch dialog, appears.

60

4 Getting Help

Search dialog

Brier siring 1o search for here Seleci olher opliore here
=

==

1 Geach far | buttorrpane] —

2 Haow would youlke to s=arch o the
(%) Partial Seaich
(3 Wihala wiard

3 Seach usng:
(O Irdex
(%) Conlents

Menusk Packapes

ENSI Cammen Lizp Standaid s AP

CAP| Relerence Manwal CAF-INTERMALS
AP Lser Guida

CAF-LAYOUT

CLIK 20 User Gude CAF-LIBRARY
COb A utoimatian U s=r Guids sand Asleiencs HManusl CA&R-TOOLEIT | b
| o || cacel |
I
Seleci maruals 1o search here Select packages 1o search here

Thisdiaog lets you specify what you want to search for, and which manuals you want to search in.
Enter a string of text in the Search for area.
There are a number of additional options that you can set if you want:

» Select Whole Word if you want to confine your search to whole words only. Select Partial Search if you want to match
part of aword aswell. By default, partial searches are performed. For example, if Whole Word is selected, searching for

"pane" only matches the word "pane’. If Partial Search is selected, searching for "pane” aso matches "panels’.

* You can choose whether to search the index or the table of contents of any given manual; select Index or Contents as
appropriate. By default, indexes are searched, as these tend to produce the richest information.

Sel ect the manuals you want to search in the Manuals list. If nothing is selected, al manuals are searched. You can select any
number of itemsin thislist.

Select the packages you want to search from the Packages list. If nothing is selected (the default), al packages are searched.
You can select any number of itemsin thislist.

Note that selections made in the Manuals and Packages lists reflect each other. If you choose one or more manuals, the
relevant packages are also selected, and if you choose one or more packages, the relevant manuals are sel ected.

Once you have specified the search options, click OK. The results of the search are displayed in your HTML browser.
4.1.4 Searching the example source files

Choose Help > Search Examples... to search the supplied example source files. Enter the text to search for in the dialog (not
shown here) and click OK.

61

4 Getting Help

The results are displayed in a Search Filestool. See 16 The Search Filestool for information about this tool.

4.1.5 Browsing manuals online
Choose Help > Manuals to select any of the available manuals from a submenu.

If you aready have an HTML browser running, alink to the first page of the manual you chooseis displayed init. If you do
not have a browser running, oneis started for you.

4.1.6 The Lisp Knowledgebase

Choose Help > Lisp Knowledgebase to visit the LispWorks knowledgebase at www.lispwor ks.com. Please search the
knowledgebase for solutions before reporting problems to Lisp Support.

4.1.7 LispWorks Patches

Choose Help > LispWorks Patches to visit the LispWorks patches page at www.lispwor ks.com where you can download the
latest public patches for LispWorks. You must run LispWorks with the latest patch release installed.

4.1.8 Installing private patches in LispWorks for Windows

On Microsoft Windows, choose Help > Install Private Patches... to install private (named) patches. Select the private patch
file with the Add button and edit the pri vat e- pat ches/ | oad. | i sp inthe pane at the bottom to include the loading form
supplied by Lisp Support. Then click Save Changes, which will run a helper application that interacts with the Windows
User Access Control mechanism to allow you to write the files into the protected Program Files directory.

4.1.9 Configuring the browser used

The operating system has a default setting for which application to use to display HTML pages, and thisis the application
that LispWorks uses.

4.2 Online help for editor commands

You can display online help for any available editor command using the commands under Help > Editing. See 12.14 Help
with editing for details.

4.3 Reporting bugs

Choose Help > Report Bug to generate a template for reporting LispWorks bugs. Please complete this template and include it
when you contact Lisp Support.

Before sending areport, please check the instructions at
www.lispwor ks.com/support/bug-report.html.

4.4 Registering a new license key

Choose Help > Register... to install a new license key.

You might have anew license key after upgrading your LispWorks Edition, or if we have granted an extension to your time-
limited evaluation license.

62

http://www.lispworks.com
http://www.lispworks.com
http://www.lispworks.com/support/bug-report.html

4 Getting Help

4.5 Browsing manuals online using Adobe Reader

The LispWorks manuals are also available in PDF (Portable Document Format). These can be found in the LispWorks library
directory | i b/ 8- 0- 0- 0/ manual / of f 1 i ne/ pdf . Theinstaler creates linksto these PDF filesin the Printable
Documentation menu accessible from the Windows Start menu.

You can view these files and print them using Adobe Reader, which can be downloaded freely from the Adobe website at
www.adobe.com.

You may also download the PDF format manuals from the LispWorks website at www.lispwor ks.com/documentation/.

63

http://www.adobe.com
http://www.lispworks.com/documentation/

5 Session Saving

You can save aLispWorks IDE session, which can be restarted at a later date. This allows you to resume work after restarting
your computer.

This chapter describes what session saving does, and how you can configure and use it in the LispWorks IDE.

It is also possible to save a session programmatically, which is described in the LispWorks® User Guide and Reference
Manual, but saving sessionsis primarily intended for users of the LispWorks IDE.

Note: saving sessions usessave- i mage and therefore it is not available in LispWorks Personal Edition.

5.1 What session saving does

When you save a session, LispWorks performs the following three steps:
1. Closing all windows and stopping multiprocessing.
2. Saving an image.
3. Restarting the LispWorks IDE and all of its windows.

If asaved sessionisrun later, then it will redo the last step above, but see 5.3 What is saved and what is not saved for
restrictions.

Sessions are stored on disk as LispWorks images, by default within your personal application support folder (the exact
directory varies between operating systems).

5.2 The default session

Thereis aways a default session, which is used when you run the supplied LispWorks image.
Initially the default session is the one named LispWorks Release.

When you run any other image directly, including a saved session or an image you created with save- i mage, it runsitself
(not the default session).

Saved sessions are platform- and version-specific. In particular, a 32-bit LispWorks saved session cannot be the default
session for 64-bit LispWorks, or vice-versa.

5.3 What is saved and what is not saved

All Lisp code and data that was loaded into the image or was created in it is saved. Thisincludesal editor buffers, the
Listener history and its current package, and thevaluesof cl : *, cl : ** andcl ; ***.

All threads are killed before saving, so any datathat is accessible only through anp: pr ocess object, or by adynamically
bound variable, is not accessible.

All windows are closed, so any datathat is accessible only within the windowing system is not accessible after saving a
session.

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm

5 Session Saving

The windows are automatically re-opened after saving the session and al Lisp data within the CAPI panes s retained.

External connections (including open files, sockets, COM interfaces and database connections) become invalid when the
saved session is restarted. In the image from which the session was saved, the connections are not explicitly affected but if
these connections are thread-specific, they will be affected because the thread is terminated. In particular, well written code
will typically be closing such connections by an unwind-protect form, which will be executed when the thread is terminated.

All debugging operations are aborted, which aso includes stepping. Debugger and Stepper windows are not re-opened. A
Listener that isin the debugger aborts the debugger and returns to the top level loop. By default, before saving a session,
LispWorks checks for any debugging operations and raises a dialog to confirm that you want to save the session anyway (and
hence abort all these operations). This check can be switched off by unchecking Check for non-restartable interfaces in the
Save Session dialog.

Remote debugging is aborted when a session is saved and Remote Listener windows are not re-opened.
In recreated Shell tools, the command history is recovered but the side effects of those commands are not.

See 13.4.3 Saving a session programmatically in the LispWorks® User Guide and Reference Manual for interfaces allowing
you to control what happens when saving a session.

5.4 Saving sessions

This section describes how you can use the Saved Sessions window to save a session, schedule regular saving, and manage
your saved sessions.

Choose Tools > Saved Sessions... to raise the Saved Sessions window.
The Saved Sessions window

-+ Saved Sessions

Saved Sezzions | 5cheduled

Saved zezzions [* denotes default):

e 1 at lunchtime
lzptforks Releaze

Executable: L'wW-save-B.1.1 Beta-zession-2011-11-158-17-43.exe
Executable Date: 18 Moy 2011 17:44:15
Full Path: C:A\Documents and Settings‘\davefiLocal Settingzibpplication Datat

< | >

Save Mow | | Delete | | Launch | | Set be Default

In the Saved Sessions tab isalist of known saved sessions. The default session is marked with *. If you select a session
(other than LispWorks Release) in the list, you can see details of when and where it was saved in the Details: area.

To save a session from the running image, click the Save Now button, which raises the Save Session dialog (see 5.4.2 The
Save Session dialog and actual saving).

65

5 Session Saving

To launch asession, select it in the list and click the Launch button. This invokes the saved session.

To delete asession, select it in the list and click the Delete button. Note that this does not merely remove it from the list but
permanently deletes the session, deleting the actual file from the disk.

To make a session be the default saved session, select it inthe list and click the Set As Default button. This causes LispWorks
imagesto redirect to this session when they start (see 5.5 Redirecting images to a Saved Session image).

5.4.1 Scheduling automatic session saving

You can set up automatic periodic session saving using the Scheduled tab of the Saved Sessions controller window.
The Scheduled tab of the Saved Sessions window

-+ Saved Sessions E”E'rg'

Saved Seszions | ocheduled

Save sezzions uzing thiz schedule

Dayz of week:

Tirme aof day: 03 = ;00 »

Allow cancellation: | 10w | minutes before zaving

Defaults. ..

Select or deselect Save session using this schedule to switch automatic saving on or off.
You can select daysin the week and a time of the day to do the saving.

When the saving time is reached, the system raises the Save Session dialog and waits for some period of time to allow you to
change the settings, cancel the saving, or confirm it. If the period of time passes without you cancelling, the system proceeds
to do the saving. The period of time to wait is set by the Allow cancellation option.

Click the Defaults... button to raise the Save Session dialog which allows you to set the parameters for the saving. When you
confirm, it does not save the session, but remembers the settings and uses them when doing the automatic saving.

5.4.2 The Save Session dialog and actual saving

Click the Defaults... button in the Scheduled tab of the Saved Sessions controller window to raise the Save Session dialog.

66

5 Session Saving

Setting the defaults for scheduled session saving

) Saved Sessions

Defaults for scheduled session saving:

Session name: | daily

File name:

Prefee: | LW-save

Append: [| Version [«| Weekday [|Date [] Time

Sample: L\W-save-session-Fri

Options
Save in directory:
Vorks-Appdata‘session-saves-2.0 Beta-64dbit', | &

Ilse as default session
Owerwrite existing file
[] Redoad init files when starting session

Check for nonestartable interfaces

oK Cancel

Enter aname for the session in the Session name: box. This name will be displayed in thelist of sessionsin the Saved
Sessions tab of the Saved Sessions controller window.

Under File name: you can define the filename in which to save the image. The name is constructed by a prefix, optionally
followed by one or more of the Version (of LispWorks), the Weekday, the Date or the Time. The full name that would be
used is displayed after Sample:. Note that:

1. The name does not contain the file type. On Microsoft Windowsit adds" . exe" automatically.

2. The Weekday, Date and Time are derived from the moment when the Save Session dialog was raised. They are not
updated.

Under Options: there are additional options:
1. You can change the directory in which to save theimage in the Save in directory: box.

2. You can specify that the saved session is the default session by selecting Use as default session. This means that
LispWorksimages will redirect to it (see 5.5 Redirecting imagesto a Saved Session image).

67

5 Session Saving

3. The saving process can be made to overwrite an existing image if it exists by selecting Overwrite existing file. If thisis
not checked the saving process refuses to save on top of an existing image.

4. You can specify that the saved session will reload the initialization files when it restarts, by selecting Re-load init files
when starting session.

5. You can switch off checking for non-restatable interfaces and Listeners in the debugger (see 5.3 What is saved and what
isnot saved) by unchecking Check for non-restartable interfaces.

By default, the settings in the dialog are remembered as the default settings for future saving sessions. If you want the
settings to apply only to the current saving session, you can uncheck Remember these settings at the bottom of the dialog.

When you click OK to confirm the dialog, the session saving is scheduled.

5.4.3 Saving a session interactively

If you invoked the Save Session dialog from the Save Now button, it appears as described in 5.4.1 Scheduling automatic
session saving except that a default Session name: is provided and there is also an option Remember these settings. If this
is selected, then when you confirm the saving the settings are remembered and used the next time this dialog appears.

Once you click OK to confirm, the saving starts. First al the IDE interfaces are destroyed in away that makes it possible to
resurrect them. Then multiprocessing is stopped. It then saves the LispWorks image. Whileit is saving it prints messages to
the console. Once it finished saving it restarts the IDE and dl itsinterfaces. The pathname of the saved image s printed to
the background output as well.

If there is an error during the saving, you can interact with it viathe console. Thereis arestart "Abort saving and restart the
IDE" to allow you to return to the IDE.

5.5 Redirecting images to a Saved Session image

Redirecting an image means that when the image starts it actually causes another image to start. The ideaisthat you save
your sessions and redirect the release image, so that starting LispWorks from the Start menu or other shortcut will actually
start the saved session.

Only the installation image redirects, or images that were saved from it by using save- i mage with the - bui | d command
line argument. Images that were re-saved using the- i ni t command line argument do not redirect.

Redirection occurs automatically when the default saved session is not the LispWorks Release. The default saved session can
be set by Tools > Saved Sessions... > Saved Sessions > Set As Default. It ismarked by * inthelist. It ispossible to make
the process of saving a session set the default saved session to the newly saved session by selecting it under Options: in the
Save Session dialog, described in 5.4.2 The Save Session dialog and actual saving.

When the redirection switch is on, when the installation image starts it redirects to the default saved session. It doesit after
processing the command line arguments (including - bui | d, - 1 oad and - eval), but before loading any initialization file
(whether the default or those that are passed by - si tei nit or-init). It passesal the command line arguments to the
saved session, followed by few other arguments. Note that this meansthat if you start a redirected image with command line
arguments, it will process the arguments, redirect and then the redirected image will process the arguments too.

Passing the command line argument - | w- no- r edi r ect i on prevents the redirection.

68

5 Session Saving

5.6 Non-IDE interfaces and session saving

If there are CAPI interfaces on the screen (other than the LispWorks IDE) when session saving isinvoked, these interfaces are
destroyed and then displayed again. Note that the display will occur in adifferent thread than the one running the interface
before the saving (which was killed when the interface was destroyed).

If aninterface (or any of its children) contains information that is normally destroyed (in some sense) in the destroy-callback,
this information can be preserved. For the details seecapi : i nt er f ace- pr eser vi ng- st at e- p and
capi:interface-preserve-stat e inthe CAPI User Guide and Reference Manual.

69

6 Manipulating Graphs

Views that use graphs are provided in the Class Browser, Function Call Browser, and Window Browser. These views et you,
for instance, produce a graph of al the subclasses or superclasses of a given class, or the layouts of a given CAPI interface.

In the Class Browser, the subclasses and superclasses views use graphs. The Function Call Browser uses graph views for its
Called By and Calls Into views. Thereisonly one view in the Window Browser, and that uses a graph.

All graphsin the LispWorks IDE can be manipulated in the same way. This chapter gives you a complete description of the
features available.

All graphs have an associated graph layout menu, available by displaying a context menu over the graph itself by using the
alternate select gesture. This menu contains all the commands that are directly relevant to graphs.

6.1 An overview of graphs

An example graph is shown in Example graph pane below. All graphs are laid out by the LispWorks IDE, so that their
elements are displayed in an intuitive and easily visible hierarchy. A graph consists of a number of nodes, linked together by
branches. By default, graphsin the environment are plotted from left to right: for any given node, the node to whichitis
linked on the left is known asits parent, and the nodes to which it is linked on the right are known asiits children. The
originating node of the graph (on the far |eft) isreferred to as the root node, and the outermost nodes of the graph (towards
the right) are referred to as leaf nodes. The root node does not have a parent, and leaf nodes do not have any children.

Example graph pane

E’EII'E hes. Selecied node. loddes .

M‘-._‘ | CAPT : (HECK-BUTTOM - PAKEL
, CAPT : BUTTON-FAMNEL® 4':“’1 : PUSH-BUTTON-PANEL
l-“x__ CAPT : RADIO-BUTTOM-FAKEL
*| #CAPT : DOUBLE-LIST-PANEL
CAPT : GRAPH-PAME®
CAPT - CHoTCEe (47 CAPT: :LIST-PANEL -MIXINo Lea mocks.

| CAPT :MENU-COMPONEN

| CAPT : :OPTIOMN=PAMNE -CHOICE -MIXIKHo
{ CAPT : TAB-LAYOUT

Rood node. CAFT : TOOLBAR = COMPONENT o

CAPL:TREE-VIEWS —s=[APT:EXTENDED-SELECTION-TREE-VIEW

You can select nodes in a graph pane in exactly the same way that you select itemsin alist. Selected nodes are highlighted,
as shown in Example graph pane.

Similarly, you can copy nodes from a graph onto the clipboard in a manner consistent with use of the clipboard in the rest of
the environment. When you copy any selected node onto the clipboard, the Lisp object itself is copied onto the clipboard, so
that it can be transferred into other toolsin the LispWorks IDE.

The string representation of the Lisp object is copied into the system clipboard, so that it can be transferred to other
applications.

70

6 Manipulating Graphs

6.2 Searching graphs

Sometimes graphs can be too large to fit onto the screen at once. In thiscase, it isuseful to be able to search the graph for any
nodes you are interested in. There are two commands which let you do this.

Choose Edit > Find... to find any node in the graph whose name contains a given string. Choose Edit > Find Next to find the
next node in the graph that contains that string. Whenever a matching node is found, it is selected in the graph. If necessary,
the window scrolls so that the selected nodeis visible.

Note that you do not have to specify a complete node name: to find all nodes that include the word "debug" in their name,
just type debug into the dialog. All searches are case insensitive.

A full description of these commands can be found in 3.3.5 Searching for text and objects.

6.3 Expanding and collapsing graphs

You may often find that you are only interested in certain nodes of a graph. Other nodes may be of no interest and it is useful,
especialy in large graphs, to be able to remove their children from the display.

Notice that some nodes have a small circle drawn alongside them, as shown in Expanded and expandable nodes. The circle
indicates that the node is not aleaf node, that is, it has children. Moreover, the circleisfilled black if the node is currently
expanded, and is unfilled if the node is currently expandable (also referred to as collapsed).

6.3.1 Expanding and collapsing by clicking

To collapse or expand any node with children in agraph, click on the circle alongside it. Thus, click on the unfilled circle of
an expandable node to display its children, and click on the filled circle of an expanded node to hide its children.

Expanded and expandable nodes

CAPT : CHECK-BUTTOMN-PANEL
CAPL :BUTTOMN-PANE L é CAPT : PUSH-BUTTON-PANEL
CAPT RADIO-BUTTOMN-PFANEL
CAPL: DOUBLE-LIST-PAKEL
CAFI : GRAPH-PANE® —__

CAPT: :LTST-PANEL -MIXTNG ———__

CAPT : CHOICE® =
CAPT :MENU-COMPONENT === Bxpancible
CAPI: :OPTION-PANE -CHOICE-MIXINe —
CAPT : TAB-LAYOUT T

CAPT : TOOLBAR-COMPONENTe
CAPI : TREE-VIEWNe —=CAPT : EXTENDED-SELECTION-TREE-VIEW

~,

",
AN

Expanded node

For instance, in Expanded and expandable nodes, click on the unfilled circle alongside CAPI: TOOLBAR-COMPONENT
to display its subclasses. Click on thefilled circle to hide them.

6.3.2 Expanding and collapsing by menu commands
You can also collapse or expand nodes using the context menu:

» Choose Expand Nodes to expand the selected node.

71

http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm

6 Manipulating Graphs

» Choose Collapse Nodes to collapse the selected node.

6.4 Moving nodes in graphs

Although the layout of any graph is calculated automatically, you can move any node in a graph manually. This can be useful
if the information in the graph is dense enough that some nodes are overlapping others.

To move the selected node, hold down the Shi f t key and select and drag the node to the desired location.

Moving anode in agraph

1. Beleci node.

e 2. Hold down Shifl key.
® L 'S
e %,
I
3. Selec! and drag node 1o rew location.

At any time, you can choose Reset Graph Layout from the context menu to restore the nodes to their original positions.

6.5 Displaying plans of graphs

Many graphs are too large to be able to display in their entirety on the screen. Aswith any other window, you can use the
scroll barsto display hidden parts of the graph. However, you can aso display a plan view of the entire graph.

To display the plan view of any graph, hold down the Cont r ol key and select the graph, or choose Enter Plan Mode from the
context menu. The graph isreplaced by its plan view, similar to the one shown in Example plan view.

72

6 Manipulating Graphs

Example plan view

Mocks. |
e |
I| —— | [
o . |
/ o = —
I — 1
A o 7 e
—) A |
- | |

_———r— —x\— - --__"---____
Select irside culer reclange

|
I
, Select imside inner reclanges
Boundsry of currert 1o mowve 1he bourdary mrﬁ-e 1o resilze_ﬂ'le boundary of 1he
rormal view.

normal view. nomal view.

Each nodein the origina graph is represented by arectangle in the plan view. The currently selected node is shown as afilled
rectangle, and all other nodes are clear. You can select nodes in the plan view, just as you can in the normal view.

A dotted grid is drawn over the plan view; you can use this grid to ater the section of the graph that is shown in the normal
view. The size and position of the grid represents the portion of the graph that is currently displayed in the normal view.

» To move the grid, so that adifferent part of the graph is shown in the normal view, hold down Shi ft and select and drag

the innermost rectangle of the grid. The entire grid moves with the mouse pointer.

» Toresizethe grid, so that a different proportion of the graph is shown, hold down Shi ft and select and drag the
outermost rectangle of the grid. The entire grid will resize. You can select any part of the grid except the innermost

rectangle to perform this action.
To return to the normal view, hold down Cont r ol and select the graph again, or choose Exit Plan Mode from the context

menu. The part of the graph indicated by the grid in the plan view is displayed.

6.6 Preferences for graphs
A number of graph layout preferences can be set for any tool that uses graphs. You can control settings in the Preferences

dialog. To do this:
1. Display the Preferences dialog either by choosing Graph > Preferences... from the graph layout context menu or by one

of the methods described in 3.2 Setting preferences.
2. Select the relevant tool in the |eft side of the Preferences dialog, and select a graph layout tab on the right.

For example, the graph layout preferences for subclassesin the Class Browser are shown in Layout Preferencesfor the

Subclass Graph.

73

6 Manipulating Graphs

Layout Preferences for the Subclass Graph

Gereral | Subclass Graph | Syuperclazs Graph | Slots/Functions

Layot b &, Expanszion
(¥ Left ta Right Depth | 2
() Right to Left
() Top Down Breadth | MNone
) Bottom L
OB y Plan Mode
[] Fiotation

This section describes the options available in the graph layout tabs of the Preference dialogs for any tool that uses graphs.

6.6.1 Altering the depth and breadth of graphs

For large graphs, you may find that you want to ater the maximum depth and breadth in order to simplify the information
shown. Each graph pane has its own depth and breadth setting, which isused for al graphs drawn in it. These are availablein
the Max Expansion panel of the graph layout tabs in the Preferences dialog.

The depth and breadth of a graph are depicted in Depth and breadth of graphs.

Depth and breadth of graphs
Lepth =3

8,

® ® @ GBreadth=3
~of
.-"d-d-' l

.—.""- Breadth = 2
' |

Choose a number from the Depth list to change the maximum depth of graphsin a given tool. The depth of agraph isthe
number of generations of node which are displayed. Most graphs have a default initial depth of 2, which means that you must
expand any nodes you want to investigate by expanding them yourself. The default valueis 2.

Note that the maximum depth setting isignored for nodes which you have expanded or collapsed. See 6.3 Expanding and
collapsing graphs.

Choose a number from the Breadth list to change the maximum breadth of a given tool. The breadth of a graph is the number
of child nodes which are displayed for each parent. If there are more children than can be displayed (the maximum breadth
setting is less than the number of children for a given node) an extranodeisvisible. Thisnodeislabeled "...", followed by
the number of nodes that are still not displayed. Nonetheless you can expand this node by the Expand Nodes command
allowing you to display the additional children without having to alter the maximum breadth setting for the whole graph. By
default, the maximum breadth is set to None, so that all the children for a node are displayed, no matter how many there are.
An example of thisfeatureis shown in Displaying children hidden by the maximum breadth setting below, where the
maximum breadth has been set to 3.

74

6 Manipulating Graphs

Displaying children hidden by the maximum breadth setting

CAPL:BUTTON-PANEL @
CAPT : DOUBLE-LIST-PANEL
CAPT: CHOICE® CAPT : GRAPH-PANE®

CAPL: i LIST-PANEL-MIXING
l'.'E:!I CAPT : MENU- COMPONENT
I:AF'I G'PTIEIH PANE-CHOICE-MIXINo

.-
l_.-'

-

This nock has been E:cpan:l 1his node 1o reveal 3
expandesd. more nodes (currerdly hidden).

To ensure that all available information is graphed in a given tool, set both the maximum depth and maximum breadth to
None.

6.6.2 Displaying different graph layouts

As aready mentioned, graphs are laid out from left to right by default, but they can be laid out in other orientations. This can
be configured in the Layout panel of the graph layout tab in the Preferences dialog.

Click "Left to Right" to layout a graph from the left of the screen to the right, as shown in Left to right layout. Thisisthe
default orientation for every graph in the environment.

Left to right layout

Click "Right to Left" to layout a graph from the right of the screen to the left, as shown in Right to left layout.
Right to left layout

Click "Top Down" to layout a graph from the top of the screen to the bottom, as shown in Top down layout.

75

6 Manipulating Graphs

Top down layout

A
.
o e
o e
L3

Click "Bottom Up" to layout a graph from the bottom of the screen to the top, as shown in Bottom up layout.

Bottom up layout

D
L .
. e
. e
'\-\.__‘__.-"
A

6.7 Using graphs in your programs

You can read about the CAPI class gr aph- pane in the CAPI User Guide and Reference Manual for detailed API information
for using graphs in your own programs. We will also look at a short examplein this section. The following code listing
defines a callback function and creates a graph-pane object:

(defun node-children (node)
(if (equal node 'pets)
(list 'dog 'parrot)
(i f (equal node 'dog)
(list "Kito 'Qtis 'Sammy ' Teddy)
(if (equal node 'parrot)
(list "Brady)))))

(setqg test-graph
(capi:contain
(make-instance ' capi: graph-pane
:roots '(pets)
:children-function
' node-chi | dren)
: best-wi dth 300
: best - hei ght 400))

The children function node- chi | dr en should returnni | for aleaf node in the graph or alist of child nodes for a non-leaf
node. Sample Graph from a User Program shows the generated graph-pane.

76

6 Manipulating Graphs

Sample Graph from a User Program

* Container

Y
oTIg
DOGe €§§5ﬁmmv
FETS# TEDDY

FPARROT# BRALDY

7 The Class Browser

The Class Browser alows you to examine Common Lisp classes. It contains seven views, allowing you to view class
information in a number of different ways. You can display each view by clicking the appropriate tab. The available views
are asfollows:

The dotsview is used to ook at the slots available to the class browsed. Thisview isrich in information, showing you
details about items such as the readers and writers of the selected dot.

The subclasses view produces a graph of the subclasses of the current class, giving you an easy way to see the
relationship between different classes in the environment.

The superclasses view produces a graph of the superclasses of the current class, giving you an easy way to see the
relationship between different classes in the environment.

The hierarchy view lets you see the immediate superclasses and the immediate subclasses of the current class, using a
text-based interface.

The initargs view allows you to see the initargs of the current class together with information about each initarg. See 7.6
Examining initargs for more details on how you can use this view.

The functions view allows you to see information about the CLOS methods that have been defined on the current class.
See 7.5 Examining generic functions and methods for details on using the information in this view.

The precedence view is used to show the class precedence list for the current class. See 7.7 Examining class
precedences for more details on how you can use this information.

To create a Class Browser, choose Tools > Class Browser or click 3. Alternatively, to invoke a Class Browser onaLisp
object use Al t +X Descri be O ass inan Editor, or choose Class from any submenu that provides the standard action
commands to invoke a Class Browser on the Lisp object referred to by that submenu, or click 85. This automatically browses
the class of the Lisp object. For more information on how the standard action commands refer to objects in the environment,
see 3.8 Perfor ming oper ations on selected objects.

7.1 Simple use of the Class Browser

This section describes some of the basic ways in which you can use the Class Browser by giving some examples. If you wish,
you can skip this section and look at the descriptions of each individual view: these start with 7.2 Examining slot
infor mation.

When examining a class, the slot names of the class are displayed by default.

To examine a class, follow the instructions below:

1

2.

Create a push button panel by entering the following in the Listener:

(capi:contain
(make-instance ' capi: push-button-panel
‘title "Test Buttons"
items '(:one :two :three)))

The push button panel appears on your screen.

With the Listener as the active window, choose Works > Values > Class.

78

7 The Class Browser

Thisinvokes the Class Browser on the button panel. The classcapi : push- but t on- panel isdescribed in the Class
Browser.

Examining classes in the Class Browser

“w Class Browser 1
. = = -
Class |CAPI-PUSH-BUTTON-PANEL v X%

Hierarchy | Superclazzes 5ubclasses| Slots |Initarg3 Functions | Precedence
Include Inherted Slots

Filter - M Matches 64

CAPL:ACTION-CALLBALCK,
CAP:ARMED-IMAGES
AP BACKEGROUND
CAPL:BUTTOM-CLASS

Drezcnption:

From Clazszes: CAPI:SIMPLE-PAME
Slat Mame: CAPL:BACKGROUMND
Type: T
Iritargs: :BACKGROUMD
[rutfarm: MIL
Readers: CAPLSIMPLE-PAME-BACK.GROUMD
Wwhiters: [SETF CAPI:SIMPLE -PAME-BACKGROUMD)
Allocation: [INSTAMCE

Notice that, although you invoked the browser on an object that is an instance of a class, the classitself is described in the
Class Browser. Similarly, if you had pasted the object into an Inspector, the instance of that object would be inspected. Using
the environment, it is very easy to pass Common Lisp objects between different toolsin thisintelligent fashion. This
behavior is achieved using the LispWorks I DE clipboard; see 3.3.3 Using the Object operationswith the clipboard for
details.

See 3.8 Perfor ming operations on selected objects for afull description of the standard action commands available.

7.1.1 Examining slots

A list of the dotsin the current classis printed in the Slots area. By selecting any slot, you can examine it in more detail in
the Description area.

While still examining the capi : push- but t on- panel class, select any dot in the Slots area.

79

7 The Class Browser

Description of aslot

Descnption:

From Clazzes: CAPl:CALLBALCES
Slot Mame: CAPlACTION-CaALLBALCK.
Twpe: T
Initargs: ACTIOMN-CALLBACK,
[ritfarr: MIL
Readers: CAPLCALLBACKS-ACTIOMN-CALLBALCEK.
wehiters: [SETF CAPl:CALLBACE.S-ACTION-CALLBALCE.)
Allocation; IMSTANCE

A description of the dlot is given in the Description area. For details about the information contained in this description, see
7.2.4 Description list.

7.1.2 Examining inherited slots

By default, inherited slots (those slots which are defined in a superclass of the current class, rather than the current class
itself) are listed in the Slots area along with the dots defined in the current class.

1. Deselect the Include Inherited Slots button just above the Filter box to inhibit this listing.

2. While still examining the capi : push- but t on- panel class, click Include Inherited Slots to deselect this option.

No slots are displayed in the Slots area. Thisis because all the dots available to the capi : push- but t on- panel class
are inherited from its superclasses. No sots are defined explicitly on the capi : push- but t on- panel class.

3. Select Include Inherited Slots again, and then select afew dotsin the Slot areain turn.

Notice that the slot description for each dlot tells you which superclass the slot is defined on.

7.1.3 Filtering slot information

The Filter box can be used to filter out information about slots you are not interested in. Thisis especially useful if you are
examining classes which contain alarge number of dlots.

The example below shows you how to create an instance of a CAPI object, and then limit the display in the Class Browser so
that the only slots displayed are those you are interested in:

1. InaListener, create a button object by typing the following:

(capi:contain (nmake-instance 'capi:list-panel
citens ' ("Apple" "Orange" "Pear")))

This creates alist panel object and displaysit on your screen. Thelist panel object isthe current value in the Listener.

2. Make the Listener window active and choose Works > Values > Class to examine the class of the object in the Class
Browser.

3. Click the Slots tab in the Class Browser to switch to the Slots view.

Suppose you are only interested in seeing the callbacks that can be defined in alist panel.

4. Typecal | back inthe Filter box.

80

7 The Class Browser

Using filtersto limit the display in the Class Browser

% Class Browser 1 EHE”E
o=

| CAPLELIST-PAMEL v X

Hierarchy | Superclaszes Sul:u:lasses| Slots |Initarg3 Funchions | Precedence
Include Inhented Slots

Filter + |callback M Matches 3

CAP:ACTION-CALLBALCE,
CaPl:CALLBACK-TYPE
CAP|:DRAG-CALLBALCK,
CAP:DROP-CALLBALCE,

Drescription:

From Clazzes: CAPLCALLBACES
Slot Mame; CAPL:ACTION-CALLBALCE.
Type: T
[ritargs: ACTIOM-CALLBALCE.
[ritform: MIL
Feaders: CAPLCALLBACKS-ACTION-CALLBALCEK.
Wiiters: [SETF CAPLCALLBACKS-ACTION-CALLBALCK)]
Bllozation; IMSTAMCE

You can immediately see the types of callback that are available to CAPI list panel objects. See the CAPI User Guide and
Reference Manual for details about these callbacks.

For more information about using filters, see 3.12 Filtering infor mation.

7.1.4 Examining other classes

There are two ways that you can examine other classes. Thefirst isto type the name of the class you wish to seeinto the
Class text box at the top of the browser. For long class hames, you might find it useful to type just afew characters and then
press Up or Down to invoke in-place completion. Press Ret ur n or click +* and the named class is described.

1. While gtill examining classcapi : | i st - panel , typecapi : push- butt on- panel intothe Class area.
Theclasscapi : push- but t on- panel isdescribed.

Because some class names may be potentially quite long, you can use completion to reduce typing. This allows you to select
from alist of all class names which begin with the partial input you have entered. See 3.14 Completion for detailed
instructions. When you have entered the complete class name, click on « to make this the class being described.

The second way to examine other classesis by using the Superclasses and Subclasses lists available in the hierarchy view.
Click on the Hierarchy tab to display the hierarchy view.

The main part of the hierarchy view consists of two lists:

» The Superclasses list shows all the superclasses of the current class.

8l

7 The Class Browser

* The Subclasses list shows all the subclasses of the current class.
Double-click on any superclass or subclass of the current class to examine it.
1. Double-click on CAPI : BUTTON- PANEL in the Superclasses list.
Thecapi : but t on- panel classisdescribed.
2. Double-click on CAPI : PUSH- BUTTON- PANEL in the Subclasses list.

Thecapi : push-but t on- panel classisdescribed again.

So, using the Hierarchy tab, you can easily look through the related classesin a system.

7.1.5 Sorting information

Aswith many of the other toolsin the LispWorks IDE, you can sort the itemsin any of the lists or graphs of the Class
Browser using the Preferences dialog. Raise this dialog as described in 3.2 Setting preferences, and then select Class
Browser inthelist on the left side.

Setting Class Browser preferences

General | Subclass Graph | Superclazs Graph | Slote/Functions

Sort Package
{@ Unsorted COMMON-LISP-LSER v
*)Bu M
{f"' EI; P::kea - Show Package Names
Toolbar
Shioww T oolbar

Under the General tab, there are three options for sorting items, listed in the Sort panel.

Unsorted Displaysitemsin the order they are defined in.
By Name Sorts items alphabetically by name. Thisisthe default setting.
By Package Sorts items alphabetically by package hame.

For more information on sorting items, see 3.9.1 Sorting itemsin views.

7.2 Examining slot information

When the Class Browser isfirst invoked, the default view isthe slots view. You can also click the Slots tab to swap to it from
another view. The slots view is shown in Examining slotsin the Class Browser.

82

7 The Class Browser

Examining slots in the Class Browser

“w Class Browser 1 |Z||E|[z|
B
Clazs: | CAPI:PUSH-BEUTTON-PANEL v M

Hierarchy | Superclaszes Sul:u:lasses| Slots |Initarg3 Funchions | Precedence
Include Inhented Slots

Filter - M Matches 64

CAPLACTION-CALLBACK
CaPl:ARMED-IMAGES
CAPl:BackGROUMD
CAPL:BUTTOM-CLASS
Drescription:

From Clazzes: CAPLSIMPLE-PAME
Slot Mame; CAPl:BACK.GROLMD
Type: T
[ritargs: BACKGROUMD
[ritform: MIL
Feaders: CAPLSIMPLE-PAME-BACK.GROUMND
Wiiters: [SETF CAPLSIMPLE-PANE-BACKGROUMD]
Bllozation; IMSTAMCE

7.1 Simple use of the Class Browser introduced you to the slots view in the Class Browser. This section gives a complete
description of this view. For completeness, some information may be repeated.

The areas available in the Sots view are described below.

7.2.1 Class box

You enter the name of the class you want to browse in the Class text box. You can type in a class name explicitly, or you can
transfer a classto the Class Browser using the Class standard action command in another tool, or by pasting aclassin
explicitly.

Note: You can use Edit > Paste to paste a class nameinto this area, even if the clipboard currently contains the string
representation of the class name, rather than a class object itself. Thislets you copy class names from other applications
directly into the Class Browser. See 3.3.3 Using the Object operationswith the clipboard for a complete description of the
way the LispWorks IDE clipboard operates, and how it interacts with the system clipboard.

7.2.2 Filter area

The Filter area lets you restrict the information displayed in the Slots list. See 3.12 Filtering infor mation for a description of
how to use the Filter areain any tool, and 7.1.3 Filtering slot infor mation for an example of how to useit in the Class
Browser.

83

7 The Class Browser

7.2.3 Slots list

The main section of the slots view lists the slot names of the current class. Selecting aslot in thislist displays a description of
it in the Description list, and you can operate on any number of selected slots using the commands in the Works > Slots
menu.

The number of items listed in the Slots areais printed in the Matches box.

If Include Inherited Slots is selected, slotsinherited from the superclasses of the current class are listed as well as those
explicitly defined on the current class. Deselect this button to see only those slots defined on the current class. You can aso
configure the default setting of this option. To do this raise the Preferences dialog as described in 3.2 Setting preferences,
then select Class Browser inthelist on the left side of the Preferences dialog, and then select the Slots/Functions tab to see
the Include Inherited Slots option.

7.2.4 Description list

Thislist displays a description of the selected slot. The following information is printed:

From Classes The classes that this slot is defined in.

Slot Name The name of the slot.

Type The dot type.

Initargs Theinitargs, if any, which can be used to refer to the slot.

Initform Theinitform, or initial value, of the slot.

Readers The readers of the slot. These are the names of any functions which can be used to read the

current value of the dot.
Writers The writers of the dot. These aretheset f methods which may be used to change the slot value.
Allocation The allocation of the dlot.

To operate on any of the items displayed in this area, select them and choose a command from the Works > Description
menu. This menu contains the standard action commands described in 3.8 Perfor ming oper ations on selected objects. You
can operate on more than one item at once by making multiple selectionsin this area.

7.2.5 Performing operations on the current class

You can operate on the current class using the commands in the Works > Classes menu. The standard action commands
described in 3.8 Performing oper ations on selected objects are available in this submenu.

Choose Works > Classes > Browse Metaclass to select, and describe in the normal way, the class of the current class.

7.3 Examining superclasses and subclasses

The hierarchy view of the Class Browser lists the immediate superclasses and subclasses of the current class. Thisview can
be useful for navigating the class hierarchy if you want to be able to see both superclasses and subclasses at the same time.

Click on the Hierarchy tab to browse classes with the hierarchy view. The hierarchy view shown in Viewing super class and
subclassinformation in the Class Browser appears.

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

7 The Class Browser

Viewing superclass and subclass information in the Class Browser

% Class Browser 1 EHE”E
- -
| CAPI:CHOICE v M

Higrarchy |Superclasses Subclazzesz | Slots | nitargs | Functions | Precedence

Superclaszes: Subclazzes:
CaAPI:COLLECTIOMN

E.-'-‘aF'I DEILIEILE LIST PAMEL
CAPLGRAPH-FAME
CAPLLIST-FANEL-MI<IM
CAPEMENU-COMPOMNENT
CAPL:OPTION-PANE-CHOICE MM
CAPTAB-LAYOUT
CAP:TOOLBAR-COMPOMENT
CAPLTREE-IEW

Drezcrphion:

FPackage: CAPI
Mame: BUTTOM-PAMNEL
Metaclazs: STAMDARD-CLASS
Aocezzibility: EXTERMAL

The areas available in the hierarchy view are described below.

7.3.1 Class box

Aswith other views in the Class Browser, the name of the class being browsed is given here. See 7.2.1 Class box for more
details.

7.3.2 Superclasses list
This list displays the immediate superclasses of the current class. Double-clicking on any class makesit the current class.

Selecting aclassin thislist displays its description in the Description list.

7.3.3 Subclasses list
Thislist displays the immediate subclasses of the current class. Double-clicking on any class makesit the current class.

Selecting aclassin thislist displays its description in the Description list.

85

7 The Class Browser

7.3.4 Description list

Thislist displays a description of the first class selected in either the Superclasses or Subclasses lists, or the current classiif
thereisno selection in either of these lists. The following information is printed:

Package The name of the package that the selected class is defined in.

Name The name of the selected class.

Metaclass The class of the selected class. The metaclassisthe class of Lisp object that the current class
belongsto.

Accessibility The accessibility of the selected class - whether the symbol is external or internal, as returned by
find-symbol .

To operate on any of the items displayed in this area, select them and choose a command from the Works > Description
menu. This menu contains the standard actions commands described in 3.8 Per forming oper ations on selected objects. You
can operate on more than one item at once by making a multiple selection in this area.

7.3.5 Performing operations on the selected classes or the current class

You can use the Works > Classes menu to perform operations on any number of items selected in either the Subclasses area
or the Superclasses area. If no items are selected, then the current classis operated on by the commands in this submenu. The
standard actions commands described in 3.8 Perfor ming oper ations on selected obj ects are available in this submenu.

Choose Works > Classes > Browse Metaclass to select, and describe in the normal way, the class of the selected classes, or
the current class.

Note: If more than one item is selected, and the command chosen from the Works > Classes menu invokes atool which can
only display one item at atime, then the extraitems are added to the History > Items submenu of the tool, so that you can
easily display them.

7.4 Examining classes graphically

As already mentioned, you can view class relationships graphically using either the superclasses or subclasses views. This
gives an immediate impression of the class hierarchy, but contains no details about information such as slots, readers and
writers.

Click on the Subclasses tab to browse subclasses in a graph, and click on the Superclasses tab to view superclassesin a
graph. Except for the type of information shown, these two views are visually identical. The subclasses view isshown in
Viewing subclasses graphically in the Class Browser .

86

http://www.lispworks.com/documentation/HyperSpec/Body/f_find_s.htm

7 The Class Browser

Viewing subclasses graphically in the Class Browser

“% Class Browser 1

':’1: - I_I} -
| CAPI:CHOICE v X2

Hierarchy | Superclasses | Subclasses |5|Dt3 Initargs | Functions | Precedence

CaPI:CHECK-BUTTON-PAMEL
CAPLBUTTON-PAMEL® CAPIPUSH-BUTTOM-PAMEL
CaPl:RADIO-BUTTOMN-PANEL

CAPEDOUEBLE-LIST-PAMEL

B e R e B el =y — = C AP SIMPLE-NETWORK-FANE
CAPELIST-FPAMEL-MExIN=

CAPI:MEMU-COMPOMENT
CAPE:OPTION-PANE-CHOICE-MII M

CAP:TAB-LAYOUTe

CAPETOOLBAR-COMPOMEMT 2

CAP: TREE-VIEwWe

CAPI:CHOICE+

Drezcription:

FPackage: CAPI
Mame: GRAPH-PAME
Metaclazs: STAMDARD-CLASS
Accezzibiliby EXTERMAL

The areas available in the subclasses and superclasses views are described below.

7.4.1 Class box

Aswith other views in the Class Browser, the name of the class being browsed is shown here. See 7.2.1 Class box for details.

7.4.2 Subclasses and superclasses graphs

The main area of these views is a graph showing either the subclasses or the superclasses of the current class, depending on
the view you have chosen. The generic facilities available to al graph views throughout the environment are available here:
see 6 Manipulating Graphsfor details.

Selecting a node in this displays a description of the classit representsin the Description list.

7.4.3 Description list

This list displays a description of the first class selected in the graph. This gives the same information as the Description list
in the hierarchy and precedence views. See 7.3.4 Description list for details.

87

7 The Class Browser

7.4.4 Performing operations on the selected classes or the current class

You can operate on the selected node in the graph using the commands in the Works > Classes menu. If no node is selected,
then the current class is operated on by the commands in this menu. The standard actions commands described in 3.8
Performing oper ations on selected objects are available in this menu.

Choose Works > Classes > Browse Metaclass to select, and describe in the normal way, the class of the selected classes, or
the current class.

7.4.5 An example

1. Examinethe classcapi : choi ce by typing capi : choi ce into the Class area of the Class Browser and pressing
Ret ur n or clicking on +".

The class is described in the current view.

2. Click on the Subclasses tab in the Class Browser.

The relationships between capi : choi ce and its subclasses are shown in agraph, asin Relationship between
capi : choi ce classand its subclasses.

Relationship between capi : choi ce class and its subclasses

CAPLBUTTOMN-PAMEL®
CaP:DOUBLE-LIST-PAMEL
CAPLGRAPH-PAMES
CaP::LIST-PANEL-MIxIN=
CAPLCHOICE+ CAPEMENU-COMPOMNENT
CaAP:OPTION-PANE-CHOICE -MI<IMe
CAPLTAB-LAYOUT=
CaP:TOOLBAR-COMPOMENT=
CAPLTREE-IE W

By default, the subclasses of the current class are shown in the graph. To expand a non-leaf node in the graph, click on

thecircletoitsright.

3. Expand the CAPI : BUTTON- PANEL node to see the subclasses of this class.

The classes of button panel object available are displayed in the graph, including the push button panel class that you saw
in the examplesin 7.1 Simple use of the Class Browser .

4. To graph the superclasses, click the Superclasses tab.

The relationships between capi : choi ce and its superclasses are shown in agraph, asin Relationship between
capi : choi ce classand its superclasses.

Relationship between capi : choi ce class and its superclasses

|3 CAP:COLLECTION —e=—e CAP:CHOICE

7.5 Examining generic functions and methods

Click the Functions tab to examine information about the generic functions and methods defined on the current class. The
functions view shown in Displaying function infor mation in the Class Browser appears.

88

7 The Class Browser

Displaying function information in the Class Browser

“% Class Browser 1

':’1: - I_I} -
| CAPI:CHOICE v M

Hierarchy | Superclaszes | Subclaszes | Slots Initargs| Functions |F'rece::|enn::e
tethods w | [v] Include Inkerited [v] Include Accessors

Filter - M Matches 182

(METHOD [SETF CAPI:CALLBACKS-ACTIOM-CALLBACK] [T CAPLCALLEBACKS])
[METHOD [SETF CAPLCALLEACKS-CALLBACK-TYFE] [T CAPLCALLBACKES]) —
[METHOD [SETF CAPLCALLEACKS-EXTEMD-CALLBACK] [T CAPLCALLEACES)
[METHOD [SETF CAPLCALLEACKS-RETRACT -CALLBACK] [T CAPLCALLBALCK:
[METHOD [SETF CAPI:CALLBACKS-SELECTION-CALLBACEK] [T CAPLCALLBAC
[METHOD [SETF CAPI:CAPI-OBJECT-CLASS-PROPERTY [T CAPI:CAPI-OBJEL
[METHOD [SETF CAPLCARI-OBJECT-NAME] [T CAPLCARPI-OBJECT]) 3

A TIHLIOD (CETE AL IKMITEORMAL oAl D IETT R IETIrT cAall.—an R Iirm—

4 | b

D escription:

Mame: [METHOD [SETF CAPl:CALLBACK.S-ACTION-CALLBACK) [T CAPI:
Function: #<STANDARD-WRITER-METHOD [SETF CAPI:CALLBACE.S-ACTI
Lambda List: [WALUE CALLBACKS]
Documentation:
Source Files:

This view can be especially useful when used in conjunction with the Generic Function Browser. The areas available are
described below.

7.5.1 Class box

Aswith other views in the Class Browser, the name of the class being browsed is given here. See 7.2.1 Class box for more
details.

7.5.2 Filter box

The Filter box lets you restrict the information displayed in the list of functions or methods. See 3.12 Filtering infor mation
for a description of how to use the Filter box in any tool, and 7.1.3 Filtering slot infor mation for an example of how to use it
in the Class Browser.

7.5.3 List of functions or methods

Thislists either the generic functions with applicable methods for the current class, or the applicable methods for the current
class. Items selected in thislist can be operated on viathe Works > Methods menu, as described in 7.5.6 Oper ations specific
to the current function or method. Double-clicking on afunction or method displays its source code definition in the

89

7 The Class Browser

Editor, if possible.
Select Methods or Generic Functions from the drop-down list box to choose which type of information to list.

If Include Inherited is checked, generic functions or methods inherited from the superclasses of the current class are
displayed.

If Include Accessors is checked, accessor methods/functions are displayed. When Include Accessors is not checked,
methods/functions defined by the: r eader s, : writers and: accessor s slot optionsin def cl ass are omitted from the

display.

You can configure the default settings of these optionsin the Preferences dialog. To do this raise the dialog as described in
3.2 Setting preferences, then select Class Browser in thelist on the left side and then select the Slots/Functions tab to see
the default settings that you can configure.

7.5.4 Description list

Thelist at the bottom of the tool gives a description of the function or method selected in the main list. The following
information is shown:

Name The name of the selected generic function or method.

Function The function which the selected function or method relates to.

Lambda List The lambdal list of the selected generic function or method.

Documentation The Common Lisp documentation for the selected function or method, if any exists.
Source Files The source files for the selected generic function or method.

To operate on any of the items displayed in this area, select them and choose a command from the Works > Description
menu. This submenu contains the standard actions commands described in 3.8 Perfor ming oper ations on selected objects.
You can operate on more than one item at once by making a multiple selection in this area.

7.5.5 Performing operations on the current class

You can operate on the current class using the commands in the Works > Classes menu. The standard action commands
described in 3.8 Performing oper ations on selected objects are available from this submenu.

Choose Works > Classes > Browse Metaclass to select and describe the class of the current class.

7.5.6 Operations specific to the current function or method
In addition to the commands described above, the following commands are available when using the functions view.

The standard action commands described in 3.8 Perfor ming oper ations on selected objects are available from the works >
Methods menu.

Choose Works > Methods > Undefine... to remove the selected functions or methods from the LispWorksimage. You are
prompted before the functions or methods are removed.

Warning: Do not remove system functions and methods, such as those defined for CAPI classes used as examplesin this
chapter.

Choose Works > Methods > Trace to display the Trace submenu available from several tools. This submenu lets you trace the
selected methods or generic functions. A full description of the commands in this submenu is given in 3.10 Tracing symbols
from tools.

90

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

7 The Class Browser

7.6 Examining initargs

Click the Initargs tab to examine information about the initargs of the current class. Theinitargs view shown in Displaying
initarg information in the Class Browser appears.

Displaying initarg information in the Class Browser

Class Browser 1
: .1'= - I_;_I} -
Class: | CAPI:CHOICE v X

Hierarchy | Superclaszes | Subclaszes | Slots ||ﬂit-3'93 |Funn:tin:nn3 Frecedence
Filter - M Matches 68

ACCEPTS-FOCUS-F
ACTION-CALLBACE,
-CALLBACE-TYFPE
DATA-FUMCTION

D escrption:

[nikarg: CALLBACK-TYPE
Drefault [nitarg:
Drefault From Class:
From Clazses; CAPI:CALLBACKS
Slot Mame: CAPl:CALLBACE-TYFE
Type: T
[mitargs: CALLBACK.-TYPE
[ritfarm: MIL
Readers: CAPI:CALLBACKS-CALLBACK-TYFE
wiriters: [SETF CAPLCALLBACKS-CALLBACK-TYPE]
Allocation: INSTANCE

The areas available are described bel ow.

7.6.1 Class box

This area gives the name of the class being browsed. See 7.2.1 Class box for details.

7.6.2 Filter box

The Filter box lets you restrict the information displayed in theinitargs list. See 3.12 Filtering infor mation for a description
of how to use the Filter box in any tool, and 7.1.3 Filtering slot infor mation for an example of how to useit in the Class
Browser.

91

7 The Class Browser

7.6.3 List of initargs
Thisliststhe dlotsin the current class for which initargs have been defined. Selecting an item in thislist displays information

in the Description list. Any items selected can also be operated on viathe Works > Slots menu.

7.6.4 Description list

This area gives a description of the initarg selected in the Initargs area. The following items of information are displayed:

Initarg The name of the selected initarg.

Default Initarg The default value for the selected initarg, if defined with : def aul t -i ni t ar gs.
Default From Class The class providing the default for the initarg.

From Classes The class from which the selected initarg is inherited.

Slot Name The name of the slot to which thisinitarg relates.

Type The type of the selected initarg.

Initargs All initargs applicable to the same dlot.

Initform Theinitform for the slot to which thisinitarg relates.

Readers The readers for the slot to which this initarg relates.

Writers The writers for the ot to which thisinitarg relates.

Allocation The alocation for slot to which thisinitarg relates. See CLOS in the ANSI Common Lisp

specification for details.

Items selected in thislist can be operated on viathe Works > Description menu.

7.6.5 Performing operations on the current class

You can operate on the current class using commands in the Works > Classes menu. The standard action commands
described in 3.8 Performing oper ations on selected objects are available in this submenu.

Choose Works > Classes > Browse Metaclass to select, and describe in the normal way, the class of the current class.

7.7 Examining class precedences

Click the Precedence tag to examine information about the precedence list of the current class. The precedence view shown
in Displaying precedence infor mation in the Class Browser appears.

The precedence list is used to generate the method combinations for a class, and thus can be used to tell you which method
appliesin agiven case.

See 15 The Generic Function Browser for details on examining information about methods.

92

7 The Class Browser

Displaying precedence information in the Class Browser

~ Class Browser 1
A
| CAPI:CHOICE v M

Higrarchy | Superclasses | Subclasses | Slots | Initargs | Functions | Precedence

M Matches 8

CAPI:COLLECTION
CAPL:SIMPLE-ELEMENT
CAPL:BASIC-ELEMENT
CAPCALLBACKS
CaP:CAPI-OBJECT
STANDARD-OBJECT

T

Dezcription:

FPackage: CAPI
Mame: CHOICE
Metaclazs: STAMDARD-CLASS
Accezzibiliby EXTERMAL

The areas available are described bel ow.

7.7.1 Class box

Aswith all other viewsin the Class Browser, the current classis printed in thisarea. See 7.2.1 Class box for full details of its
use.

7.7.2 Filter box

The Filter box lets you restrict the information displayed in the list of precedences. See 3.12 Filtering information for a
description of how to use the Filter box in any tool, and 7.1.3 Filtering slot infor mation for an example of how to useitin
the Class Browser.

7.7.3 List of precedences

Thislist isthe class precedence list of the current class. Precedences are listed highest first. Double-clicking on anitemin
thislist describes that classin the Class Browser.

7.7.4 Description list

This gives the same class description available in the superclasses, subclasses, and hierarchy views. See 7.3.4 Description
list for details.

93

7 The Class Browser

7.7.5 Performing operations on the selected classes or the current class

You can operate on any number of selected itemsin thelist of precedences using the commands in the Works > Classes
menu. If no items are selected, then the current classis operated on by the commands in this submenu. The standard actions
commands described in 3.8 Per for ming oper ations on selected objects are available in this submenu.

Choose Works > Classes > Browse Metaclass to select, and describe in the normal way, the class of the selected classes, or
the current class.

Note: If more than oneitem is selected, and the command chosen from the Works > Classes menu invokes a tool which can
only display oneitem at atime, then the extraitems are added to the History > Items submenu of the tool, so that you can
easily display them.

94

8 The Object Clipboard

The Object Clipboard is a utility that allows you to keep track of multiple Lisp objects as you examine and manipulate them
with the LispWorks IDE tools.

Recall that a Lisp object which isviewed in some tool can be temporarily stored and then pasted into another tool. Seethe
descriptions of the Copy, Cut and Paste commandsin 3.3.3 Using the Object operationswith the clipboard and 3.8.1
Operations available.

The Object Clipboard, and its associated Clip command provides a more powerful mechanism whereby multiple Lisp objects
can be stored ("clipped") and later retrieved.

Note: the Clip command retains a pointer to the clipped object even if you do not have an Object Clipboard tool visible.
When you create the tool, the clipped objects are visibleinit.

To create an Object Clipboard tool, choose Tools > Object Clipboard or click [in the Podium.
The Object Clipboard

“#% Dbject Clipboard 1
Filter - ' Matches 1

Mame Walue
FUMCTIOMN-1 #<Funchon COPY-READTABLE 20172074

The Object Clipboard creates a name for the clipped object based on its type, and shows the object itself in the Value column.

8.1 Placing objects on the Object Clipboard

You can place an object on the Object Clipboard by using the menu command Clip, available in most tools as described
below..

8.1.1 The Listener

To place the current object of a Listener on the Object Clipboard (that is, the value of the variablecl : *), choose Works >
Values > Clip in the Listener.

If your Listener isin the debugger, you can clip the condition object by Debug > Condition > Clip.

8.1.2 The Class Browser

To place aclass from the Class Browser on the Object Clipboard, select the class name in the Hierarchy, Superclasses,
Subclasses or Precedence tab, and choose Works > Classes > Clip.

To place adot definition object from the Class Browser on the Object Clipboard, select the slot name in the Slots tab, and

95

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

8 The Object Clipboard

choose Works > Slots > Clip.

To place amethod or generic function object from the Class Browser on the Object Clipboard, select it in the Functions tab,
and choose Works > Methods > Clip.

8.1.3 The Inspector

To place the currently inspected object in the Inspector on the Object Clipboard, choose Works > Object > Clip.

To place the value in aslot of the currently inspected object, select the dot in the Inspector, and choose Works > Slots > Clip.

8.1.4 The Function Call Browser

To place the current function on the Object Clipboard, choose Works > Function > Clip. If you have selected a function name
in the Function Call Browser, that function is clipped instead.

8.1.5 The Generic Function Browser

To place a method from the Generic Function Browser on the Object Clipboard, select the method and choose Works >
Methods > Clip. For the generic function object itself, choose Works > Function > Clip.

8.1.6 The Debugger

To place the condition object from the Debugger tool on the Object Clipboard, choose Debug > Condition > Clip.

To place the value of avariable in the Debugger's backtrace area on the Object Clipboard, select the variable and choose
Debug > Variables > Clip.

8.1.7 The Stepper

To place the value of avariable in the Stepper's Backtrace tab onto the Object Clipboard, select the variable and choose
Debug > Variables > Clip.

8.1.8 The System Browser

To place the system object from the System Browser onto the Object Clipboard, choose Works > Systems > Clip.

8.1.9 General clipping
To place any CAPI top level window itself on the Object Clipboard, choose Tools > Interface > Clip.

To place data from a Description panel, such asin the Class Browser or in the Tree tab of the Compilation Conditions
Browser, select the desired parts of the Description and choose Works > Description > Clip.

8.2 Browsing clipped objects

For each object in the Object Clipboard, you can can browse it in various tools as described below. First, select the object you
want to browse and note that the Object menu is enabled:

96

8 The Object Clipboard

An object selected in the Object Clipboard

“#% Dbject Clipboard 1

Filter - | |>(M atches 2

Mame Walue

FUMCTIOM-2 #<Closure 2 subfunction of STRUCTLURE:: I,
FUMCTION-1 #<Functon COFY-READTAELE 201 72C7A:

8.2.1 The Inspector

To inspect any object that is on the Object Clipboard, select it and choose Works > Object > Inspect.

8.2.2 The Class Browser

To browse the class of any object that is on the Object Clipboard, select it and choose Works > Object > Class.

8.2.3 The Listener

To paste an object from the Object Clipboard into the Listener, choose Works > Object > Listen.

8.2.4 General browsing

To browse an object that is on the Object Clipboard, select it and choose the Browse command from the Object menu. For
example, if the object is a generic function, the menu command is Works > Object > Browse - Generic Function.

8.2.5 Pasting of clipped objects
Thisis another way to view aclipped object in another tool.
Paste an object from the Object Clipboard into another tool by:
1. Select the object in the Object Clipboard window.
2. Choose Edit > Copy.
3. Make the other tool window active.

4. Choose Edit > Paste.

8.3 Removing objects

To remove an object from the Object Clipboard, select it and choose Edit > Object > Cut Object.
To empty the Object Clipboard, first remove any filter. Then choose Edit > Select All followed by Edit > Object > Cut Object.

Note: if you close the Object Clipboard window, the objectsin it are not removed from the Object Clipboard. They are
preserved and displayed in a subsequently created Object Clipboard windows.

97

8 The Object Clipboard

8.4 Filtering

You can use the Filter box of the Object Clipboard in the standard way to reduce the number of clipped objects displayed.

For example to see only the method objects in the Object Clipboard, enter "method" in the Filter box.
Use of the Filter box in the Object Clipboard

 Object Clipboard 1 (=13

Filter - |methn:u:| |>(t atches 4

M ame W alue
STaMDARD-METHOD-2 B<5TANDARD-METHOD CAPI:SIM

STANDARD-METHOD- #<5TANDARD-METHOD CAPI:SIM
sTaNDARD-READER-METHOD-2 #<5TANDARD-READER-METHOD
sTaMNDARD-READER-METHOD-1 #<5TANDARD-READER-METHOD

{ >

For more information about filtering, see 3.12 Filtering infor mation.

8.5 Using the Object Clipboard with a Listener

Here we place several objects on the Object Clipboard. Then we link the Object Clipboard with a Listener tool, giving a
convenient way to manipulate these abjectsin turn.

In the Listener:

1. Enter:

(capi:contain

(meke-instance ' capi: di spl ay- pane
:text "Display Pane"
s background : green))

A green display paneis displayed.

2. Ensure that the Listener window is active, so that the Works > Values menu is enabled. Choose Works > Values > Clip to
place the display pane on the Object Clipboard.

3. Enter:

(capi:contain

(make-instance 'capi: editor-pane
:text "Editor Pane"
- background :yellow))

A yellow editor paneis displayed.
4. Return to the Listener and choose Works > Values > Clip to place the editor pane on the Object Clipboard.
5. Enter:

(capi:contain

98

8 The Object Clipboard

(make-i nstance 'capi: graph-pane))
A graph paneis displayed.
6. Return to the Listener and choose Works > Values > Clip to place the graph pane on the Object Clipboard.

Now choose Tools > Object Clipboard or click {1 in the Podium. Notice that this creates an Object Clipboard tool if you do
not already have one. The Object Clipboard shows the objects you just clipped, and the most recently clipped object appears
at thetop. It should look like CAPI panesin the Object Clipboard.

CAPI panesin the Object Clipboard

"% Object Clipboard 1 M=1Ed
Filter - | |>(b atches 3

Mame Walue

GRAPH-PAME-1 #<CAPLGRAPH-PAME [31 terns] 2008230 F
EDITOR-FPANE-1 #<CAPLEDITOR-PAME 200CD563:
DISPLAY-PAME-T H<CARLDISPLAY-PANE Z21844BBE:

In the Listener choose Edit > Link from and select the Object Clipboard in the submenu. Now, whenever you select an object
in the Object Clipboard, it is also pasted into the Listener - that is, it becomes the value of *. We use this link to manipulate
the CAPI pane objectsin the Listener.

1. In the Object Clipboard select DISPLAY -PANE-1. Thisraisesthe linked Listener window and pastes the display pane
object.

2. Enter in the Listener:

(capi : appl y-i n- pane- process
* #' (setf capi: sinple-pane-background) :red *)

The display pane background becomes red.

3. In the Object Clipboard select EDITOR-PANE-1. Thisraisesthe linked Listener window and pastes the editor pane
object.

4. Inthe Listener choose History > Previous or use Esc P, and press Ret ur n, to enter the same command again:

(capi : appl y-i n- pane- process
* #' (setf capi: sinple-pane-background) :red *)

The editor pane background also becomes red.

5. In the Object Clipboard select GRAPH-PANE-1. Thisraisesthe linked Listener window and pastes the graph pane
object.

6. Enter in the Listener:

(capi : appl y-i n- pane- process
* #' (setf capi:graph-pane-roots) '(2 3) *)

The graph paneis altered.

99

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

8 The Object Clipboard

Notice how linking the Listener with the Object Clipboard allows you to manipulate the clipped objects in turn viathe value
of *.

100

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

9 The Compilation Conditions Browser

9.1 Introduction

The Compilation Conditions Browser gives you an interface to the warning and error conditions you are likely to encounter
when compiling your source code. It allows you to see the relationship between different errors or warnings encountered
during compilation, and gives you immediate access to the source code which produced them.

You can use it to view the conditions signaled during compilation of files from any part of the environment: whether you are
compiling files using the System Browser or the Editor, any ensuing conditions can be displayed in the Compilation
Conditions Browser. The Compilation Conditions Browser requires the source code to come from afile.

The Compilation Conditions Browser has three views.
» The All Conditions view, which shows all conditions grouped by file name.
» TheErrors view, which shows al errors grouped by file name.
» The Output view, which can be used to display the output messages in the environment.

To create a Compilation Conditions Browser, you can choose Tools > Compilation Conditions Browser or click € inthe
Podium.

A more common way to create a Compilation Conditions Browser isto press Ret ur n when the Output tab (of any tool)
reports compilation conditions. See 12.13.4.1 Compiling in memory for details.

9.2 Examining conditions

The All Conditions view is visible when the Compilation Conditions Browser isfirst invoked. The tool appears as shown in
The Compilation Conditions Browser.

101

9 The Compilation Conditions Browser

The Compilation Conditions Browser

% Compilation Conditions Browser 1

All Conditions |Err|:|r3 Dutput

= [Fi\capitenysrcoubput-browser-conditions. lisp
B FGRAPH-MAME*® assumed special in SET)
i) is bound but not referenced
& Caling FLOOR Find Saurce
£} Implementation level caling 54 Hide Delete argurnents
A FGRAPH-MNAME* assumed spec
3% More than three arguments in RECTIOMN *

4 b

D escription:

Condition: @ is bound but not referenced

Clazz: COMDITIONS: :SIMPLE-STYLEwWARMING
Definition: FACTORP

File: F:\capienvharchoutput-browser-conditionz. lizp

There are three tabs. These show the same information, in different ways:

* All Conditions - default view that shows all conditionsin atree representation, grouped by filename. Each itemin the
tree can be expanded to show the conditions that were generated during compilation of that file. Selecting a compilation
message in the tree view causes the data for the selected message to be shown in the Description area. Double-clicking
on an item (or using Find Source on the context menu, asillustrated above) shows the source code of the condition in an
Editor, highlighting the nearest subform to where the condition occurred. After doing this, Ctr1 +X * (backquote) can
be used to find the source of the next condition shown in the browser.

* Errors - shows all errorsin atree representation, grouped by filename. You can perform the same operations in this view
asin All Conditions.

* Output - shows the raw compilation output. You will see this same output in the tool that performed the compilation.

The description areain the All Conditions and Errors views of the Compilation Conditions Browser shows a description of

any item selected in the conditions area. The description contains details of the selected condition. The following information
is shown:

Condition The error condition for the selected item in the message area.

Class The class of the selected condition.

Definition The name of the form in which the condition was signaled.

File The name of thefile that contains the Lisp source code that caused the selected condition.

Items selected in this area may be examined using the Works > Description menu which allows avariety of LispWorks tools
to be invoked on the selected item in the description area.

102

9 The Compilation Conditions Browser

9.3 Configuring the display

The manner in which t he Compilation Conditions Browser displays information can be customized using the Preferences
dialog. To do this, raise the dialog as described in 3.2 Setting preferences and then select Compilation Conditions inthelist
on the left side of the Preferences dialog. The General tab is shown:

The Compilation Conditions Browser General preferences

General | Dizplay
Fackage
COMKOM-LISP-USER v 3‘?

Show Package Names

Toolbar
Show Toolbar

Here you can select or deselect Show Package Names to toggle display of packagesin al referencesto symbols, and you can
use the Package box to specify the current package when displaying symbols.

Setting a suitable package and turning off display of package names can greatly simplify a complicated list.

Select of deselect Show Toolbar to control whether Compilation Condition Browser tools have a toolbar.

9.3.1 Display preferences

The Display tab of the Compilation Conditions Browser preferences appears asin The Compilation Conditions Browser
Display preferences.

The Compilation Conditions Browser Display preferences

General | Display

Pathrnames
() Show Full Pathnane

(%) Show Leaf Pathname

Thistab includes the pathnames selection area, which has two radio buttons.
Check Show Full Pathname to show the full pathname of al files displayed. Thisisthe default setting.

Check Show Leaf Pathname to show just the filename of al files displayed, and omit the full pathname.

9.4 Access to other tools

The Compilation Conditions Browser is integrated with the other tools allowing intuitive interaction.

You can easily find the source the generated a condition, as described in 9.2 Examining conditions.

Items selected in the Description area may be examined using the Works > Description menu. See 3.8.1 Oper ations
available for more information on the operations available from this menu. Additionally, double-clicking on part of the
description displaysit in an Inspector or Class Browser, as appropriate.

103

10 The Debugger Tool

When developing source code, mistakes may prevent your programs from working properly, or even at all. Sometimes you
can see what is causing a bug in a program immediately, and correcting it istrivial. For example, you might make a spelling
mistake while typing, which you may instantly notice and correct.

More often, however, you need to spend time studying the program and the errorsit signalled before you can debug it. Thisis
especially likely when you are developing large or complex programs.

A Debugger tool is provided to make this process easier. Thistool isagraphical front-end to the command line debugger
which is supplied with your Lisp image. In order to get the best use from the Debugger toal, it is helpful if you are familiar
with the command line debugger supplied. See the LispWorks® User Guide and Reference Manual for a description of the
command line debugger.

The Debugger tool can be used to inspect programs which behave in unexpected ways, or which contain Common Lisp forms
which are syntactically incorrect.

There are two ways that you can invoke the Debugger tool:

« If you evaluate code that signals an error in a Listener, the command line debugger is entered automatically. At this
point, choose Debug > Start GUI Debugger or click the # button in the Listener toolbar to invoke the Debugger tool.

« If you run code that signals an error from another source (for example, as aresult of running a windowed application, or
compiling code in afile of source code), by default a Notifier window appears. Click on the Debug button in the Notifier
window to invoke the Debugger tool.

For more information about the Notifier window, including the way to bypassit, see 10.10 The Notifier window.

Here is a short example introducing the Debugger tool:

1. Define the following function in the Listener.

(defun thing (nunber)
(/ nunber 0))

This function which attempts to divide a number given as an argument by zero.

2. Now call thisfunction asfollows:
(thing 12)
Thecall tot hi ng invokes the command line debugger.

3. Choose Debug > Start GUI Debugger or click the # button to invoke the Debugger tool. Natice that the window title
contains the name of the process being debugged.

4. For now, click the Abort button & in the Debugger toolbar to return to the top level loop in the Listener.

The command line debugger can be entered by signaling an error in interpretation or execution of a Common Lisp form. For
each error signaled, afurther level of the debugger is entered. Thus, if, while in the debugger, you execute code which
signals an error, alower level of the debugger is entered. The number in the debugger prompt is incremented to reflect this.

Note that you can also invoke the command line debugger by tracing a function and forcing a break on entry to or exit from
that function. Seethe tutorial chapter (2.3 Using the Debugger) for the example code used in Debugger tool and Debugger

104

10 The Debugger Tool

tool

10.1 Description of the Debugger

By default the debugger tool appears as shown in Debugger tool below.
Debugger tool

BError condifion. Corirol bulioms. Debugger backirace.
'l‘ i
{

¥ Debugging CAPI Execution Listener 1 g@g|
() {:] '[;l + :

Conditior:

A INVOKE-DEBUGGER
A ERRCR
Al
A THING
e MHUMEER. 12
A Evwal
A CAPL:CAPI-TOP-LEVEL-FUNCTION
A CAPL:INTERACTIVE-PANE-TOP-LOCP
A MP::PROCESS-SG-FUNCTION

1]
]
1]
=

(38 S i R ET

S1ale ol variables 1or Echo area.
selecied frame.

The debugger tool has two areas, and atoolbar. These are described below. If you invoke the debugger tool by clicking
Debug in anotifier window, the tool also contains alistener pane. This provides you with a useful way of evaluating
Common Lisp forms interactively in the context of the error.

10.1.1 Condition box
This area displays the error condition which caused entry to the debugger. You cannot edit the text in this box.

The error condition can be operated on by commands in the Debug > Condition menu. See 10.6 Perfor ming oper ations on
the error condition for details.

10.1.2 Backtrace area

The backtrace area displays the function calls on the execution stack. Each treeroot or list item in the backtrace area
represents a stack frame associated with afunction call.

Double-clicking on any stack frame finds and displays the source code definition for that function in the Editor, if thisis
known. Any frame selected in this area can be operated on using the commands in the Debug > Frame menu, which isalso

105

10 The Debugger Tool

available as the context menu. See 10.7 Perfor ming operations on stack framesfor details.

The backtrace is displayed either in atree or alist, with the behaviors described bel ow.

You can choose which type of display it uses by the Frames and Arguments preference, described in 10.9 Configuring the
debugger tool.

10.1.2.1 Frames and Variables in a tree

When the Frames and Arguments preference has the value Tree-view, the Debugger appears as shown in Variablesin the
Debugger tree view below.

Each expandable root node in the Backtrace: tree represents a stack frame associated with afunction call. You can operate on
the frame as described in 10.1.2 Backtrace area.

Expanding a stack frame node displays any variables associated with that function call. You can double click on any variable
to inspect it using the Inspector tool. Any items selected in this area can be operated on using the commands in the Debug >
Variables menu: see 10.8 Performing operations on frame variables for details.

Variables in the Debugger tree view

% Debugging CAP| Execution Listener 1 g@]gl
- ra) (m) (=) £ X ENEE

Condition:

Divizion-by-zero caused by / of [1 0).

Backlrace:

A INVOKE-DEEUGGER
A ERROR

A
A DIVIDER
A

ZERO 0

& ONE 1

O TWo 2
A EvAL

|Heady.

Each call frameisaroot in the tree with a X icon and has several kinds of subnode:
* A subnode with ayellow disc < icon represents anormal lexical variable.
» A subnode with ared disc # icon represents a closure variable (either from an outer scope or used by an inner scope).
* A subnode with apurple disc # icon represents a specia variable.
* A subnode with a cyan disc @ icon represents some other frame.

Double-click on a), icon to show the source of that function, if available, in the Editor. Double-click on any of the disc
iconsto show that variable in the Inspector.

106

10 The Debugger Tool

10.1.2.2 Frames and Variables in two lists

When the Frames and Arguments preference has the value Two list-panels, the Debugger appears as shown in below.

Debugger tool with two list-panels

Comnd butlors. Error condiion. Debugger backirace.
Debugging CAPI Execution Listener 1 E|E|E|

) () ()

Canditiar:

CAPI:CAPI-TOPLEVEL-FU | Documentation
CAPI:INTERACTIVE-PANE | Inspect Function
MP::PROCESS-5G-FUNCTI

ocal varables: Restart Frarme

NUMBER 12 Restart Frame Stepping
Return From Frame
Ereak On Return From Frame

Trace

Stale of variables 1or Echoarea. Conlex! meru operales on selecied
selecied frame. irame or variable.

Each item in the Backtrace: list represents a stack frame associated with afunction call. You can operate on the frame as
described in 10.1.2 Backtrace area.

A second list titled Local variables: shows the local variables of the frame which is selected in the Backtrace: list. You can
operate on the variables similarly to the backtrace tree - double click on avariable to inspect it or use the commandsin the
Debug > Variables menu, which is al'so available as the context menu.

Note: with Two list-panels, only the local variables of the current frame are displayed.

10.1.3 Toolbar buttons

At the top of the debugger tool isarow of buttons, as described below. Click:
* = to break the current execution.
* = toreturn from the debugger and invoke the continue restart.

» @& toreturn from the debugger and invoke the abort restart.

107

10 The Debugger Tool

* % tosdlect the previous stack frame in the backtrace area.

* % tosdect the next stack frame in the backtrace area.

* |E to print the backtrace in the Listener.

* = toprint the variable bindings of the current frame in the Listener.
» 32 tofind the source code for the current stack frame.

If you hold the mouse cursor stationary over any button for about one second, then help text appears that identifies the button.

10.1.4 Bypassing the Notifier window

If you prefer a Debugger tool to appear immediately, without the intermediate Notifier window, set
ent er - debugger - di rect | y toatrue value.

10.2 What the Debugger tool does

The Debugger tool provides a number of important facilities for inspecting programs.

Common Lisp, like most programming languages, uses a stack to store data about programs during execution. The Debugger
tool allows you to inspect and change this stack to help get your programs working properly.

You can use it to trace backwards through the history of function calls on the stack, to seeif the program behaves as expected,
and locate points at which things have gone wrong.

You can aso inspect variables within those functions, again to verify that the program is doing what is expected of it.

The Debugger tool also alows you to change variables on the stack. Thisis useful when testing possible solutions to the
problems caused by abug. You can run a bugged program, and then test fixes within the Debugger tool by altering values of
variables, and then resume execution of the program.

10.3 Simple use of the Debugger tool

When you enter the Debugger tool, the Condition area displays a message describing the error. The Debug > Restarts menu
lists a number of restart options, which offer you different ways to continue execution.

1. For example, type the name of avariable which you know is unbound (say f ubar) at the Listener prompt.
2. Click # in the Listener toolbar or choose Debug > Start GUI Debugger to enter the Debugger tool.

3. Select the Debug > Restarts menu to display the options available.

A number of restarts are displayed that offer you different waysin which to proceed. These are the same options as those
displayed at the command line debugger before you invoked the debugger tool.

Two special restarts can be chosen: the abort and continue restarts. These are indicated by the prefixes (abort) and
(continue) respectively. Asashortcut, you can use the Abort & or Continue & toolbar buttons to invoke them, instead
of choosing the appropriate menu command.

In the case of the continue restart, different operations are performed in different circumstances. In this example, you can
evaluate the form again. If you first set the variable to some value, and then invoke the continue restart, the debugger is
exited.

4. In the Listener, set the value of f ubar asfollows:

(setq fubar 12)

108

10 The Debugger Tool

5. Click Continue & in the debugger tool.

The debugger tool disappears, and the command line debugger is exited in the Listener, and the value 12 isreturned; the
correct result if the variable had been bound in the first place.

You can also click Abort & to invoke the abort restart. This restart always exits the current level of the debugger and returns
to the previous one, ignoring the error which caused the present invocation of the debugger.

In general, you should use the continue restart if you have fixed the problem and want to continue execution, and the abort
restart if you want to ignore the problem completely and stop execution.

10.4 The stack in the Debugger

As already mentioned, the debugger tool allows you to examine the state of the execution stack, which is shown in the
Backtrace area. This area consists of a sequence of stack frames. A stack frame is a description of some part of a program, or
something relating to the program, which is packaged into a block of memory and placed on the stack during program
execution. These frames are not directly readable without the aid of the debugger.

There can be frames on the stack representing active function invocations, special variable bindings, restarts, and system-
related code. In particular, the execution stack has acall frame for each active function call. That is, it storesinformation
describing calls of functions which have been entered but not yet exited. Thisincludes information such as the arguments
with which the functions were called. By default, only call frames for active function calls are displayed in the Backtrace
area. See 10.9 Configuring the debugger tool for details of how to display other types of call frame.

Thetop of the stack contains the most recently-created frames (and so the innermost calls), and the bottom of the stack
contains the oldest frames (and so the outermost calls). You can examine a call frame to find the name of afunction, and the
names and values of its arguments, and local variables.

10.5 An example debugging session

To better understand how you can make use of the debugger, try working through the following example session. In this
example, you define the factorial function, save the definition to afile on disk, compile that file and then call the function
erroneously.

1. Choose File > New or click on .

A new fileis created and displayed in the Editor. If you have not aready invoked the Editor, it is started for you
automatically.

2. Inthe new file, define the function f ac to calculate factorial numbers.

(defun fac (n)
(if (=n1) 1
(* n(fac (- n 1)))))

3. ChooseFile > Save or click on & and enter a filename when prompted.

4. Choose File > Compile and Load to compile the file and load the resulting fadl file.

The Editor switches to the output view while compilation takes place. When prompted, press Space to return to the text
view. Thef ac function is now defined and available for you to use.

5. Inthe Listener, call f ac erroneously with a string argument.
(fac "turtle")

LispWorks notices the error: The arguments of = should be numbers, and one of them is not.

109

10 The Debugger Tool

6. Choose Debug > Start GUI Debugger or click & to invoke the Debugger tool.

Take a moment to examine the backtrace that is printed in the Backtrace area.

7. Starting from the selected frame, expand or select the next three frames in the Backtrace areain turn to examine the state
of the variables which were passed to the functionsin each call frame. Pay particular attention to the f ac function.

The error displayed in the Condition box informs you that the = function is called with two arguments. the integer 1 and
the string "turtle". Clearly, one of the arguments was not the correct type for =, and this has caused entry into the
debugger. However, the arguments were passed to = by f ac, and so thereal problem liesin the f ac function.

In this case, the solution isto ensure that f ac generates an appropriate error if it is given an argument which is not an
integer.

8. Double-click on the line FAC in the Backtrace area of the debugger tool.

The Editor appears. The subform within the definition of f ac which actually caused the error is highlighted. Double-
clicking on aline in the Backtrace areais a shortcut for choosing Debug > Frame > Find Source or using the ¥& button.
If the Debugger can find the erroneous subform, thisis highlighted, otherwise the definition itself is highlighted if it can
be found.

9. Edit the definition of the f ac function so that an extrai f statement is placed around the main clause of the function. The
definition of f ac now reads as follows:

(defun fac (n)
(if (integerp n)
(if (=n1) 1
(* n(fac (- n 1))))

(print "Error: argument nust be an integer")))

The function now checks that the argument it has been passed is an integer, before proceeding to evaluate the factorial. If
an integer has not been passed, an appropriate error message is generated.

10Choose File > Save and File > Compile and Load again, to save, recompile and load the new definition.

11Click on the Abort button in the debugger tool, to destroy the tool and return the Listener to the top level loop.

12In the Listener, type another call to f ac, once again specifying a string as an argument. Note that the correct error
message is generated. You will seeit twice, because f ac prints the message and then the Listener prints the return value
of f ac.

This next part of the example shows you how you can use the various restarts which are listed as commands in the Restarts
menu.

1. Call f ac again with a new argument, but this time type the word | engt h incorrectly.

(fac (legnth "turtle"))

2. Choose Debug > Start GUI Debugger or click # to invoke the debugger tool.

You can spot immediately what has gone wrong here, so the simplest strategy isto return avalue to use.

3. Choose Debug > Restarts > Return some values from the form (LEGNTH "turtle").

You are prompted for aform to be evaluated.

4. Enter 6 in the dialog and click OK. Thisisthe value that would have been returned from the correct call to
(length "turtle").

110

http://www.lispworks.com/documentation/HyperSpec/Body/s_if.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_length.htm

10 The Debugger Tool

Having returned the correct value from (1 ength "turtl e"), f ac iscalled with the correct argument and returns the value
720.

10.6 Performing operations on the error condition

You can perform operations on the error condition that caused entry into the debugger using the commands available in the
Debug > Condition menu.

The standard action commands are available in the Debug > Condition menu. For more details about these commands, see
3.8 Performing oper ations on selected objects.

Choose Debug > Condition > Report Bug to generate a bug report template.

10.7 Performing operations on stack frames

Any frame in the Backtrace list can be operated on using commands in the Debug > Frame menu. Thismenu is also available
as a popup from the backtrace areaitself. The commands available allow you to operate on the function displayed in the
selected frame.

10.7.1 Source location, documentation, inspect and method combination for the current
frame

Choose Debug > Frame > Find Source to search for the source code definition of the object pointed to by the current frame.
If itisfound, thefileis displayed in the Editor: the cursor is placed at the start of the definition or at the subform which cause
the error, if known. Theformis highlighted. See 12 The Editor for an introduction to the Editor.

Choose Debug > Frame > Documentation to display the Common Lisp documentation for the object pointed to by the current
frame, if any exists. Note that thisis the result of the Common Lisp function docunent at i on, hot the supplied manuals. It
isprinted in a special Output Browser window.

Choose Debug > Frame > Inspect Function to display an Inspector tool showing the selected frame's function.

Choose Debug > Frame > Method Combination to display a Generic Function Browser tool in the Method Combinations
view for the arguments in the selected frame. This command is only available when the selected frame is a call to a standard
method. See 15.2 Examining infor mation about combined methods for information about using the Method Combinations
view.

10.7.2 Restarts and returning from the frame

Choose Debug > Frame > Restart Frame to continue execution from the selected restart frame. The action that is taken when
choosing this command is printed with each restart frame in the Backtrace area. Note that restart frames must be listed for
this command to be available: see 10.9.1 Configuring the call frames displayed for details.

Choose Debug > Frame > Restart Frame Stepping to step through execution from the selected restart frame. This frame
becomes the active frame in a Stepper tool. See 25 The Stepper for information about using the Stepper toal.

Choose Debug > Frame > Return from Frame to resume execution from the selected frame. A dialog prompts for avalueto
return from the selected frame. Previously entered values are available viaa dropdown in this dialog. This option allows you
to continue execution smoothly after you have corrected the error which caused entry into the debugger.

Choose Debug > Frame > Break On Return from Frame to trap execution when it returns from the selected frame. This
command prints a message telling you that the trap has been set, and when Lisp returns from the frame it calls br eak,
allowing you to enter the debugger again.

111

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_break.htm

10 The Debugger Tool

10.7.3 Tracing the function in the frame

Choose Debug > Frame > Trace to display the standard Trace menu. Thislets you trace the function in the selected framein a
variety of ways. see 3.10 Tracing symbols from toolsfor details.

10.8 Performing operations on frame variables

You can perform operations on a variable selected in the Variables area by the standard action commands which are available
in the Debug > Variables menu or from the context menu on the variables list itself. For more details about these commands,
see 3.8 Perfor ming oper ations on selected objects.

Choose Debug > Variables > Set... to set the value of avariable selected in the Variables area. A dialog prompts you to enter
aform which is evaluated to yield the new value for the variable. Previously entered forms are available viaa dropdown in
this dialog. The Common Lisp variable * is bound to the current value of the variable in the frame.

10.9 Configuring the debugger tool

You can control the behavior and appearance of the debugger using the Preferences dial og.

To do this, raise the Preferences dialog by one of the methods described in 3.2 Setting preferences and select Debugger in
the list on the left side of the dialog.

Debugger Preferences

General | Debugger | Remote

View Frame Package

[Bindings COMMON-LISP-USER | & 72
Eﬁ?ﬂzg Show Package Mames

[] Hidden Symbols Options

[| Restarts

| Abort VWhen Cl d
[Invisible Functions [Abo en Liose

Frames and Arguments

(® Treeview () Two list-panels

10.9.1 Configuring the call frames displayed

By default, the call frame for each active function call in the backtrace islisted in the Backtrace area. There are a number of
other types of call frame which are hidden by default. Display call frames of these types by selecting them in the View Frame
panel of the debugger Preferences:

Bindings Displays all the binding framesin the Backtrace list.
Catchers Lists the catch frames in the Backtrace list.
Handlers Liststhe handler frames in the Backtrace list.
Hidden Symbols Lists any hidden symbolsin the Backtrace list.

112

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

10 The Debugger Tool

Restarts Listsal the restart framesin the Backtrace list. Each restart frameislisted, with the restart
action to be taken given in brackets. To restart execution at any restart frame, select the frame,
and choose Debug > Frame > Restart Frame.

Invisible Functions Listsall invisible frames (such as the call to the error function itself) in the Backtrace list.

Note that all these commands can be toggled: choosing any command switches the display option on or off, depending on its
current state. By default, all the options are off when the debugger isfirst invoked.

10.9.2 Displaying package information

Aswith other tools, you can configure the way package names are displayed in the debugger tool in the Package box of the
Debugger Preferences.

Check show Package Names to turn the display of package namesin the Backtrace and Variables lists on and off.

Specify a package name in the text box to change the process package of the debugger tool. You can use completion to reduce
typing: click on “ to which allows you to select from alist of al package names which begin with the partial input you have
entered. See 3.14 Completion for detailed instructions.

By default, the current package is the same as the package from which the error was generated.

10.9.3 Behavior on closing the Debugger
By default, when you close the Debugger window it attempts to abort, that isto call the abort restart.

Uncheck the Abort When Closed option only if you want to turn off this behavior.

10.9.4 Frames and variables display

To choose to view frames and variables in two lists rather than one tree, select the value Two list-panels in the Frames and
Variables option.

10.9.5 Remote debugging options
The Remote tab is described in 29.4 Configuring Remote Debugging.

10.10 The Notifier window

When an error is signalled in processes other than the Listener REPL, by default a Notifier window appears. This shows the
error message, and allows you to choose how to proceed by offering the restarts and other options.

113

10 The Debugger Tool

The Notifier window

- LispWorks

Meszage:

Error in process ""Evaluate foo"

The wariable FOO iz unbound.

Restartz:

Try esvaluating

_ g FOO again.

Specifp a value to uge thiz time inztead of ey
Specify a value to zet FOO ta.

[abort] Cluit process.

aluating FOO.

Report Bug | | Debug | | Ok | | Abart

The Notifier window has three main areas.

The Message: areadisplays the error message.

The Restarts: area contains alist of available restarts. To invoke arestart, select it in thelist and click OK, or double-click on

itinthelist.

The row of buttons at the bottom of the Notifier window operate as follows:

Report Bug

Debug
Abort

OK

Prompts for basic information about the bug and then creates an Editor tool containing atemplate
bug form with a stack backtrace and other information. Use thisif you believe you have found a
bug and wish to report it to Lisp Support. Visit www.lispwor ks.com/suppor t/bug-report.html
for more information about reporting bugs.

Raises a Debugger tool, as described earlier in this chapter.
Invokes the abort restart.

Invokes the restart which is selected in the Restarts: list.

Some processes cannot be debugged in the LispWorks IDE. Errorsin these processes are handled slightly differently in the
Notifier window which has these two buttons:

Debug Snapshot

Get Backtrace

Creates a snapshot Debugger. This contains a copy of the stack backtrace which you can examine
as described in this chapter. However it is less interactive in that you cannot take any restart or
return from aframe. For more information see " Snapshot debugging of startup errors” in the
LispWorks® User Guide and Reference Manual.

Creates an Editor tool containing the stack backtrace.

In this case there is no Debug button.

On Cocoathereis aprocess named "Cocoa Event Loop”. When there is an error in this process, the Notifier has an additional
pane called Error handling in Cocoa event loop.

TheError handling in Cocoa event loop allows you to control the behavior of the Cocoa Event Loop process. Thisis useful

114

http://www.lispworks.com/support/bug-report.html

10 The Debugger Tool

when you get in a situation where something causes repeated errors in the Cocoa Event Loop, which makes it very difficult to
find what the problem is. In general, you should change these settings only when you are in this kind of situation, enter the
snapshot Debugger and debug the problem, and when you exit the snapshot Debugger the settings are automatically reset to
the normal settings.

If you change the settings, and either did not enter the snapshot Debugger or unchecked the Restore normal error processing
when snapshot debugger exits button, you should restart LispWorks once you figured out what the problem is.

Buttons at the top of the Error handling in Cocoa event loop pane give you three options:
Process errors normally

Thisisthe normal setting.

Ignore errors in explicit events

"explicit events' means events that are generated inside Lisp, hormally when another process
wants to tell the event loop to do something. A typical example are callsto

capi : appl y-i n- pane- pr ocess and related functions. This option allows you to ignore such
errors.

Ignore all errors Ignore al errorsin the Cocoa Event Loop.

By default, if you enter the snapshot Debugger, once you exit the normal error handling isrestored. Note that the automatic
restoration does not happen if you do not enter the snapshot Debugger. The Restore normal error processing when
snapshot debugger exits button allows you to override this default. You should not unset the button unlessit isreally
needed.

Note: in some cases there will be arestart which can be used to block the repeated errors. The most common exampleis
errorsinside a display-callback, which will include arestart that removes the display-callback. If thereis such arestart, itis
better to use it than setting the Cocoa Event Loop error handling.

10.11 Handling of Cocoa Event Loop hanging

This section applies to LispWorks for Macintosh only.

The Cocoa GUI is handled in one process (the "Cocoa Event Loop™) and therefore code that makes this process wait (for
examplenp: process-wai t, cl : sl eep, np: mai | box- r ead) causes the entire GUI to hang. In general, such functions
should not be used on the Cocoa Event Loop (which includes callbacks), unless the wait is very short.

The situation is especially bad if the Cocoa Event L oop iswaiting for another process, and then that other process gets an
error. In this case, the other process will try to display anotifier window, and wait for the Cocoa Event Loop to do it, and
thereis a deadlock.

To avoid this problem, the LispWorks IDE has a mechanism that uses a timer and checks for just hanging. The mechanism
checks, and if it looks like the main process hangs, it interruptsit. That causes a notifier window to appear, the GUI to
update, and you can then check what went wrong.

In general, you should fix your code to avoid hanging of the Cocoa Event Loop.
Thismechanismisin force only in the LispWorks IDE. Delivered applications need to avoid such hanging.
The mechanism is controlled by two parameters:

Notifier break interval

115

http://www.lispworks.com/documentation/HyperSpec/Body/f_sleep.htm

10 The Debugger Tool

If anotifier triesto display and the Cocoa Event Loop did not respond in thisinterval, the Cocoa
Event Loop isinterrupted. That causes two notifiersto appear: first anotifier for the Cocoa
Event Loop stating that it was interrupted because it hangs and there was an error on another
process, and then the notifier that initially tried to display. You can then deal with the situation.

Check interval The check to determine the above happens each check interval.

10.12 Errors in CAPI display callbacks

Errorsin CAPI display callbacks are problematic for the Debugger tool, because they can be invoked repeatedly. In order to
handle this situation, the display of a CAPI pane where an error occurs in a display-callback (a "broken" pane) is normally
disabled until the Debugger tool exits. Therefore while debugging such errors some panes will not be displayed correctly.

Thisissue can a so occur with focus related callbacks, such as editing-callback in capi : t ext - i nput - pane.

If it is not easy to fix the problem, exiting the Debugger tool alows the error to happen again. To prevent this, in some cases
there is arestart to disable the display of the broken pane permanently. Once this happens, the pane is not displayed correctly.

Once you fix the error, you can restore the display by capi : pane-r est or e- di spl ay, or by finding it in the Window
Browser tool, and selecting the menu command Works > Windows > Enable Display.

116

11 The Tracer

11.1 Introduction

The Tracer tool is adebugging aid which gives you an interface to the LispWorkst r ace facilities. These allow you to follow
the execution of particular functions and help you identify where errors occur during execution.

To create a Tracer, choose Tools > Tracer or click z: inthe Podium. Alternatively, atracer can be created or displayed from
within many other tools by choosing the command Trace > Show in Tracer in any menu whose commands operate on a
traceable symbol.

The Tracer has three views:
» The Trace State view allows you to trace and untrace functions and change trace options for each function.

» The Output Data view records all tracing eventsin atree structure and allows you to examine the arguments and results
of each function call.

e The Output Text view shows al tracing eventsin textual format.

11.2 Tracing and Untracing functions

The Trace State view has a Trace pane where you can enter afunction name. Press Ret ur n or click the + button to trace that
function.

The Traced Functions pane shows the list of functions that are currently traced. When some functions are selected, the Works
> Function menu contains the standard commands described in 3.8 Perfor ming oper ations on selected objects. Aswith
other tools, choose Edit > Select All and Edit > Deselect All to select and deselect all the functions listed in the Traced
Functions area.

The Selected Options area shows the trace options for a function selected in the Traced Functions pane. The trace options
alow you to restrict or expand upon the information printed during atrace and can be modified by double-clicking on the
item in the Traced Functions pane which raises the Trace Options dialog. For information about the trace options, see the
section "Tracing options" in the LispWorks® User Guide and Reference Manual. Note that the options only apply to the first
selected function. Each traced function has its own, independent, set of options.

The Tracing Enabled button can be used to turn all tracing off, while retaining the tracing state, and switch it back on again.
The Untrace button untraces the functions selected in the Traced Functions pane.
The Untrace All button untraces all functions.

In addition, the Tracer tool will track changes to the set of traced functions that are made from other tools, for example calls
tothe macrost r ace and unt r ace or the Trace submenu described in 3.10 Tracing symbols from tools.

11.2.1 Tracing methods

You can trace methods (primary and auxiliary) within a generic function by entering the method dspec. For example, enter:

(method my-function :before (integer))

117

http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm

11 The Tracer

in the Trace pane to trace the : bef or e method of the generic function ny- f unct i on that specializes on the classi nt eger .

11.3 Examining the output of tracing

When you call afunction that istraced, LispWorks collects information about the arguments it was called with and the values
that it returned. Thisinformation is printed to the trace output stream, which might be the Listener or the Background
Output. In addition, if a Tracer tool is on the screen, the information is shown in its Output Text view and collected in its
Output Dataview in atree format.

11.3.1 The Output Data view
Each call isanodein thetree with a X icon. Double-click on it to show the source of that function, if available, in the Editor.
A call node has several kinds of subnode:

» The subnode with a £ icon shows the arguments passed to the function. Double-click on it to show the argumentsin the
Inspector. Expanding this node shows each argument with its name (if known) as a subnode with ayellow < icon.
Double-clicking on one of the arguments shows that argument in the Inspector.

* The subnode with a € icon shows the value or values returned from the function. Double-click on it to show the values
in the Inspector. Expanding this node shows each value as a subnode with a < icon. Double-clicking on one of the
values shows that value in the Inspector.

* Any subnodes with a X icon show calls to traced functions within the parent function.

» Subnodes marked with a @ represent folded data. These are older calls which are hidden automatically to reduce clutter.
Expand this node to reveal the folder data.

* A subnode with a 4 icon represents an uncaught throw (control transfer) along with the catch tag. Expanding this node
shows each thrown value as a subnode with a < icon.

You can collapse the tree by clicking on the *. toolbar button.
You can clear the trace output data from the display by clicking on the ¥: toolbar button.

You can restore the last cleared output data by clicking on the & toolbar button.

11.3.2 The Output Text view

This simply displays the textual trace outpuit.

11.4 Example
This section shows an exampl e of tracing two functions and examining the output.
Define the following functions:

(defun foo (x y) (bar y x))

(defun bar (x y) (values (vector x y) (list y x)))

in aListener and start the Tracer tool. The trace these functions by entering f oo into the Trace pane of the Tracer and
pressing Ret ur n or clicking the + button. Notice that the symbol nhame appearsin the Traced Functions: area.

Do the same for bar .

118

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm

11 The Tracer

For longer function names, you might find it useful to type just afew characters and then press Up or Down to invoke in-place
completion.

The Trace State view showing bar and f oo

+ Tracer 1

X @
Trace State | Output Data | Output Text |

Trace: || v X ?1?
Tracing Enabled | Untrace || Untrace All | [+] Collect Trace Output

Traced Functions:

BAR
FOO

Selected optiohs:

Then call:

(foo 100 200)

in the Listener. You will see output something like this printed in the Listener.

CL-USER 1 > foo 100 200

0 FOO > ...
>> X : 100
>> Y : 200
1 BAR > ...

>> X : 200
>> Y : 100
1 BAR < ...

<< VALUE-0 : #(200 100)
<< VALUE-1 : (100 200)
0 FOO < ...
<< VALUE-0 : #(200 100)
<< VALUE-1 : (100 200)
#(200 100)
(100 200)

CL- USER 2 >

Note: the format of the output is affected by the value of *t r ace- ver bose*.

Now switch to the Output Text view of the Tracer and you will similar output.

119

11 The Tracer

The Output Text view

* Tracer 1

KN g
| Trace State | Output Data | Output Text

8 FOD > ...
>> X 188
>> ¥ - 288
1 BAR > ...

>> X - 288
>> ¥ 188
1 BAR < ...
<{ UALUE-@ #{200 1008)
<< UALUE-1 (188 24a8)

B FOD € ...

<< UALUE-8 : #{280 1088)

Now switch to the Output Data view of the Tracer, which will looks like this:
The Output Data view

' Tracer 1
ﬁ ""..H H Cater eall to
- foo

Trace 5tate| Dutput D ata | Output TE:-ct|
= }l W ."';'I.'E‘LH'[‘IL‘TIIZE-

& Arguments 100 200 o Foo

= A Called BAR

= nrgumeM

& Yalues #{200 100) (100 200) [nner call
& Values #{200 100) {100 200} \ ter bar

Values
returned by

foo

The node that is labeled Arguments 100 200 contains the arguments to the function f oo. Double-click on this node to show

120

11 The Tracer

those arguments in an | nspector.

The first node that is labeled Values #(200 100) (100 200) contains the values returned by bar . Expand this node to reveal the
two values. Double-click on one of the values nodes to inspect it. You can also see that these values were in turn returned by
f 00, as shown by the second node that is labeled Values #(200 100) (100 200).

121

12 The Editor

The environment has atext editor which is designed specifically to make writing Lisp source code easier. By default it
emulates the GNU Emacstext editor, and you should refer to the Editor User Guide supplied with your software, for afull
description of the extensive range of functions and commands available. It can also emulate a Microsoft Windows style text
editor.

The Editor features a comprehensive set of menus, aswell as a number of different views, and itsinterface is consistent with
the other toolsin the environment. This chapter gives a complete description of these aspects of the Editor, aswell as giving
you agenera overview of how the Editor isused. If you have not used Emacs before, this chapter tellsyou all you need to
know to get started.

The Editor isintegrated with the other tools and offers a wide range of operations. The most commonly used of these can
accessed using menu commands. The full range of editor commands is accessed via the keyboard commands described in
more detail in the Editor User Guide. These operations range from simple tasks such as navigating around afile, to more
complex actions which have been specifically designed to ease the task of writing Lisp code.

By becoming familiar with the menu commands available, you can learn to use the Editor effectively in avery short space of
time, before moving on to more advanced operations.

Like many other tools, the Editor offers a number of different views, which you can switch between using the tabs at the top
of the Editor window. Unlike other tools, one view in particular is used more often than any other.

» The Text view isthe most commonly used view in the Editor. Thisletsyou read and edit text files which are stored in
your filesystem.

» The Output view shows output messages. Compiler messages are highlighted and you can easily locate the source code
that generated them.

* You can edit many different files at once in the same Editor. The Buffers view provides a quick way of navigating
between different files that you have open.

» The Definitions view is a convenient way of seeing the classes, functions, macros, variables and so on that are defined in
the current file.

* Filesmay contain many definitions. The Find Definitions view lets you search for particular definitions of interest across
many files.

You can create an Editor using any of the following methods:
» Choose Tools > Editor. Notice that you are not actually editing afile immediately when you create an Editor like this.
* Choose File > Open..., or click on 2 in the toolbar, and choose a filename in the dialog that appears.
» Choose File > Recent Files and choose a filename from the submenu that appears.

» Make the Listener the active window, and pressCt r | +X Ct r| +F. Type in the name of afile that you want to edit. If the
fileis not in the current directory, enter the full pathname, including its drive. UNC pathnames are also recognized. This
invokes the Wfind File editor command.

* Choose the command Find Source (available on various menus, for example Debug > Frame in the Debugger tool), or
click on »2 or # to display source code in an Editor tool.

» Usethe keyboard accelerator described in 3.1.5 Displaying tools using the keyboar d.

122

12 The Editor

Note: this chapter assumes you are using the default Emacs emulation. Thus one way to open afile is with the keystrokes
Ctrl+X Ctrl+F asdescribed above. If you use Microsoft Windows keys, you would use instead the keystroke Ct r | +O.

You can always discover which key to use for a particular editor command, or conversely which command isinvoked by a
particular key. See 12.14 Help with editing for details.

A further way to edit afileisto drag it (using the mouse) from another drag and drop enabled application such asthe
Windows Explorer, and drop it into the an Editor tool. Thisfunctionality is disabled by default because it requires |oading of
modules. You can enable it asdescribed in 3.2.1.1 The window options.

12.1 Displaying and editing files

The Text view is the default view in the Editor, and is the one which you will become most familiar with. In thisview, a
buffer containing the text of the current file is displayed, and you can move around it and change its contents as you wish,
then save it back to the original file (assuming that you have permission to write to it). The Text view is automatically
displayed when you first invoked the Editor, and you can click on the Text tab to switch back to it from any other view. Text
view in the Editor below shows an Editor in the Text view with afile open.

Text view in the Editor

% Editor 1 - editor. lisp
- - @ oo [Y %

Tent COutput | Buffers | Definitionz | Changed Defintionz | Find Definitions

{in-package 3

{defun fact (n)
{if {(zerop n)
1
{* n (fact (1- n})))}

CODE-PAGE -- editarlisp {CL-USER} [Lisp) O-7 [7] F:\capiteryhsrcheditor izp

|Heady.

The Text view has three areas, described bel ow.

12.1.1 The toolbar

The Editor toolbar offers easy access to commands which operate on source code. In the Text view it allows you to set
breakpoints, and macroexpand, compile or evaluate code.

The Editor toolbar also contains the standard history toolbar. Thisis enabled in every view of the Editor tool.

12.1.2 The editor window

The editor window is the main part of the Editor. The text of the current fileis shown in thisarea. A block cursor denotes the
current position in the filesin Emacs emulation. In Microsoft Windows editor emulation, a vertical line cursor appearsin the
active editor window. Text is entered into the file at this position when you type or paste.

123

12 The Editor

To move the cursor to a particular point in the file, you can use any combination of the following methods:
» Position the cursor by moving the mouse pointer and selecting the point at which you want to place the cursor.
« |f thefileistoo large to display all of it in the editor window, use the scroll bars to move up and down thefile.
» Useany of the numerous keyboard commands that are available for navigating within afile.

If you are unfamiliar with the Editor, you can use the first two methods to begin with. Asyou become more familiar, you will
find it is often quicker to use the keyboard commands described in the Editor User Guide. Some of the most basic
commands are a so described in this chapter, in 12.8 Basic Editor commands.

12.1.3 The echo area

Underneath the editor window is an echo area, identical to the echo areain the other tools. Thisis used by the Editor to
display status messages, and to request more information from you when necessary. The echo areais contained in every view
in the Editor.

Whenever you invoke a command which requires further input (for instance, if you search afile for a piece of text, in which
case you need to specify the text you want to search for), you are prompted for that input in the echo area. Type any
information that is needed by the Editor, and the characters you type are displayed ("echoed") in the echo area.

For many commands, you can save time by using completion. When you have partially specified input in the echo area, you
can press akey (usually Tab, ? or Space, depending on the command) and the Editor attempts to complete what you have
typed. If it cannot complete your partial input uniquely, awindow appears which lists all the possible aternatives and allows
you to select the desired completion. See 3.14 Completion for detailed instructions.

For example, suppose you have threefilesin the current directory, t est 1. i sp, test 2. l i spandtest 3. i sp, and you
want to editt est 2. | i sp using keyboard commands. TypeCtrl +X Ctrl +F, thentypet est and press Tab. A list appears
which shows all threefiles. To editt est 2. | i sp, double-click on theitem markedt est 2. 1 i sp inthislist. For longer lists,
the completion GUI helps you to quickly reduce the choice. See 3.14 Completion for details.

To see when completion is appropriate and when it is not, experiment by pressing the Tab key when typing in the echo area.
Asarule, if there are afinite number of things you could meaningfully enter, then completion is appropriate. Thus, when
opening afile already on disk, completion is appropriate (there is a finite number of filesin the current directory). When
specifying a string to search for, however, completion is not appropriate (you could enter any string).

12.1.4 Using keyboard commands

A full description of the keyboard commands available in the Editor is beyond the scope of this manual, and you are advised
to study the Editor User Guide to gain afull appreciation of the capabilities of the Editor. However, of necessity, certain
basic keyboard commands are discussed in this chapter. See 12.8 Basic Editor commands of this manual for a brief
introduction to some of the most important ones. The menu commands available are described throughout the rest of this
chapter.

Aswith other keyboard commands used in the environment, the keyboard commands used in the Editor are invoked by using
acombination of the modifier keys Cont r ol , Shi ft, Escape, Al t and Conmand (not all of these are available on each
platform), in conjunction with ordinary keys. Some of the commands available perform the same, or asimilar task as amenu
command.

Each keyboard command in the editor is actually a shortcut for an extended editor command. You can invoke any extended
command by typing its command name in full, preceded by the keyboard command Al t +X. Thus, to invoke the extended
command Visit Tags File, type Al t +X visit tags fil e followed by Ret ur n. Caseisnot significant in these commands,
and completion (described in 3.14 Completion) may be used to avoid the need to type long command names out in full.

This method is often useful if you are not certain what the keyboard shortcut is, and there are many extended commands
which do not have keyboard shortcuts at all.

124

12 The Editor

Many of the keyboard commands described in this chapter and in the Editor User Guide also work in the Listener. Feel free
to experiment in the Listener with any of the keyboard commands that are described.

12.2 Displaying output messages in the Editor

Aswith several other tools, the Editor provides an Output view which can be used to examine any output messages which
have been generated by the environment. Click on the Output tab to switch to thisview. See 21 The Output Browser, for
more information about this view.

12.3 Displaying and swapping between buffers

The contents of the editor window is the buffer. Technically speaking, when you edit afile, for example by File > Open..., its
contents are copied into a buffer which is then displayed in the window. You actually edit the contents of the buffer, and
never the file. When you save the buffer, for example by File > Save, its contents are copied back to the actual file on disk.
Working in thisway ensures that there is always a copy of the file on disk - if you make a mistake, or if your computer
crashes, the last saved version of thefileis aways on disk, ensuring that you do not lose it completely.

Because of this distinction, the term buffer is used throughout, when referring to the text in the window.

An Editor can only have one editor window, although there can be many buffers open at once. This means that you can edit
more than one file at once, although only one buffer can be displayed at atime in the window - any others remain hidden.

When you close a buffer, for example with the menu command File > Close or thekey Ct r | +X K, the buffer is removed.
Thisis different to the system command Close or Ct r | +F4 which closes the window and does not affect the buffer.

The diagram below shows the distinctions between the window, buffers and files on disk.

Distinctions between the window, buffers, and files on disk

Editor Window
- lj
7 5
i .' |

{ ! l
o I|' " .‘_r

{
A A

™,
!
Bullers

v
- .
,-:.-: A = Files on disk

:HF j.L =

The Buffers view allows you to display alist of all the buffersthat are currently open in the Editor, and allows you to navigate
between them. Click on the Buffers tab to switch to thisview, or pressCtr | +X Ctr| +B. The Editor appears as shownin
Listing buffersin the Editor below.

125

12 The Editor

Listing buffersin the Editor

¥ Editor 1 - editor. lisp

@ - ® i W W @

Teut I:Iutput| Buffers |Definitin:un3 Changed Defintionz | Find Defintions

Filker -

M Matches B

Mame kMade

- “Meszages Buffer®
- editor lizp
- frames-and-vanablez-in-debugger-tree.lizp Lisp
- Main

athela lizp
- output-browser-conditions. lizp

Lizp
Lizp

Fundarmental

Fundamental 1]

Pathnar
MIL

Size
1349
204 GMocalh
MIL
C:MProgre
F:\capihe
>

25537
743

The Buffers view has two areas, described below.

12.3.1 Filter area

You can use this area to restrict the number of buffers displayed in the Buffers area. For example you could display just the
Lisp sourcefiles (that is, those with filetypel i sp) by entering . | i sp asshown in Filtering the bufferslist in the Editor.

Filtering the bufferslist in the Editor

% Editor 1 - editor. lisp

@ - ® i W W%
Test

Dutput| Buffers |Definitin::r'|3 Chaniged Definitions | Find Definitions

izl

Filter -

M Matches 4

Mame

- editorlizp :
- frames-and-vanablez-in-debugger-tree lizp Lizp
athella. lizp

- output-browser-conditionz. lizp Lizp

Lisp 25537

Size Pathhame

a04

Ll Mocalhdochhahe
C:MProgram Filezhl
F:hcapihenviarchc

743

You can filter by regular expression matching, and you can exclude matches and make the filtering case-insensitive. See 3.12

Filtering information for the details.

126

12 The Editor

12.3.2 Buffers area

Each item in the Buffers area list represents an editor buffer. Properties of the buffer such asits size (in bytes) and its mode
are displayed. Seethe Editor User Guide for information about editor modes.

Double-click on any buffer to display it in the Editor's Text view.

Buffers selected in the Buffers area can be operated on by commands in the Works > Buffers menu, which is also available as
the context menu. The associated files can be operated on by commandsin the Works > File menu. For example, to save
multiple buffers, select them the Buffers area and choose Works > File > Save. See 12.13 Using L isp-specific commands for
more details.

12.3.3 Editor tool solely as buffers list
You can use a particular Editor tool solely as abufferslist.

To do this, set an Editor tool to be non-reusable by switching off the option Tools > Customize > Reuse Editor. Then select
the Buffers tab or pressCtr 1 +X Ctrl +B.

This Editor tool will continue to display the bufferslist and will not be re-used by operations which want to display a buffer,
or list definitions, and so on. Other Editor tools will be used, and created as necessary, for those operations.

Note: You can aso set an option to display a bufferslist (like a cut-down version of the Buffers view) in the Text view. See
12.7.2.2 Bufferslist option.

12.4 Displaying Common Lisp definitions

The Definitions view lists al the Common Lisp definitions which can be found in the current buffer. Open afile containing
several defining forms, such as the Othello game example in exanpl es/ capi / appl i cati ons/ ot hel | 0. |i sp. and then
click on the Definitions tab. The Editor appears as shown in Examining Common Lisp definitionsin the Editor below.

Examining Common Lisp definitions in the Editor

“% Editor 1 - othello. lisp

=T - @) W 3

Temt Output | Buffers | Definitions | Changed Definitions | Find Definitions
Filker - M Matches 61

[DEFMETHOD [SETF OTHELLO-SUUARE-FIECE] :AFTER [T OTHELLO-S &
[DEFYAR "ALGORITHMS®

[DEFYAR "OTHELLO-DIRECTIONST

[DEFYAR "PLAY-DELAY)

ALGORITHM-FOR-FLAYER
ALL-BEUT-MEXT-TO-UNTAKEN-CORNER-MOVES

ALL-CORMER-MOVES

All DOCCIDIC kAT /CC COD DI ANED

£

The Definitions view has two areas, described bel ow.

127

12 The Editor

12.4.1 Filter box

You can use this area to restrict the number of definitions displayed in the definitions area. See 3.12 Filtering infor mation
for details about how to use the Filter box in atool.

12.4.2 Definitions area

Double-click on any definition in this areato display its source code in the Editor's Text view. Definitions selected in this area
can be operated on using commands in the Editor's Works > Definitions menu, which is also available as the context menu.
See 12.13.10 Other facilities for complete details of the commands available.

12.5 Changed definitions

The Changed Definitions view alows you to see which definitions have been edited in the current session.

Edit some of the definitionsin the Othello game example in exanpl es/ capi / appl i cati ons/ ot hel | 0. | i sp and then
click on the Changed Definitions tab. The Editor appears as shown in The Changed Definitionsview in the Editor below.

The Changed Definitions view in the Editor

“» Editor 1 - othello. lisp M=1[c3
. {ml 1-1.*

. - - @ 0 :
Temt Output | Buffers Definitin:nn3| Changed Definbions |Fin|:| Definitionz

Show definitions changed zince: | Firgt Edit w

Filker - M Matches 7

[DEFVYAR “PLAY-DE LAY

oL GORITHM-FOR-PLAYER
[DEFCLASS OTHELLO-SRUARE]
PLAY-BOTH-PLAYERS
FPLAY-MOWVE-FOR-FLAYER
REMOWVE-PLAY-TIMER
UPDATE-OTHELLO-EOARD

Notice that the Changed Definitions view is similar to the Definitions view. The Editor's Works > Definitions menu, and the
filter box, can be used on definitions listed here in the same way as in the Definitions view.

12.5.1 Setting the reference point for changed definitions

The Changed Definitions view has an additional arealabelled Show definitions changed since:. Thisalows you to change
the reference point against which the current buffer is compared when computing the changes.

The reference point can be;

First Edit The state of the buffer just before you first edited it in the current LispWorks session. Thisisthe
initial reference point.

Last Save The state of the buffer when you last saved it to file.

128

12 The Editor

Last Compile The state of the buffer when you last compiled it.

Select from the Show definitions changed since: popup list to change the reference point.
Setting the reference point in the Changed Definitions view.

% Editor 1 - othello. lisp
. - - - @ 0 W W%

Temt Output | Buffers Definitin:nn3| Changed Definbions |Fin|:| Definitionz

Show definitions changed zince: | Firgt Edit w

- Firzt Edit
Fiter - Lazt Save
[DEFwAR “PLAY-DELAY™ Lazt Compile
ALGORITHM-FOR-FLAYER
[DEFCLASS OTHELLO-SQUARE]
FLAY-BOTH-PLAYERS
FL&Y-MOWE-FOR-PLAYER
REMOVE-PLAY-TIMER
UPDATE-OTHELLO-EQARD

M Matches 7

When you alter the reference point, the list of changed definitions is recomputed.

Thelist of changed definitions is computed using the editor command Buffer Changed Definitions. See the Editor User
Guide for more information about this and related commands.

12.6 Finding definitions

Use the Find Definitions view to locate definitions recorded by the system with a given name. Firstly click on & to ensure
you have compiled the buffer displaying the Othello example. Then enter the name of the definition you are searching for in

the name box and press Ret ur n or click on + to display alist of matches together with their locations. Double-click on a
match to display the source.

129

12 The Editor

Displaying matches in the Find Definitions view

“#% Editor 1 - othello. lisp
. & - ' 0 H. {mi 1-&

Text | Cutput | Buffers | Definitions | Changed DefinitiDml Find Definitions
Mame: | CHOOSE-MOVE-FOR-PLAYER| v X %

Filter - M Matches 8

Drefirition
[DEFGEMERIC CHOOSE-MOVE-FOR-PLAYER)
(METHOD CHOOSE-MOWE-FOR-PLAYER [[ECIL MIMIMIZE-OPPOMEMTS
(METHOD CHOOSE-MOWE-FOR-PLAYER [[EQL LEAST-PIECES-&WwWARE
(METHOD CHOOSE-MOWE-FOR-PLAYER [[EQIL MOST-FIECES-&WARE - »

4 b

'8 definitions matching CHOOSE-HMOVE-FOR-PLAYER

In addition, after using the editor command Find Sour ce (bound to Al t +.) or other source location commands, you can
invoke the Find Definitions view to display a complete list of the matches with the editor command Al t +X View Source
Search.

Further, the option Use Find Definitions list for more items than: controls automatic use of this view, as described in 3.2.1.5
Automatic use of Find Definitions view.

12.7 Setting Editor preferences

You can configure several aspects of the Editor tool, including:
» How items are listed in Buffers and Definitions views.
» Whether alist of buffersis displayed in the Text view.
» Whether the Editor toolbar is displayed.

These editor-specific options are described in 12.7.2 Controlling options specific to the Editor.

12.7.1 Controlling other aspects of the Editor

Other configuration options affect the Editor but also apply to other toolsin the LispWorks IDE which are based on
capi : edi t or - pane. These options control:

» The choice of Emacs or Microsoft Windows editor key input.
» The cursor style and blink rate.

e Thefont.

Thetext styles used for selected text and Lisp syntax coloring.

» Automatic use of the Find Definitions view by the source |ocation commands.

The default encodings used when opening and saving files.

130

12 The Editor

» Whether parentheses are colored in Lisp code.

You set these options via Tools > Preferences... > Environment. These Environment options are described in 3.2 Setting
preferences, which you should read for afull appreciation of the options affecting your Editor tools.

12.7.2 Controlling options specific to the Editor
This section describes options affecting only the Editor tool.

To configure these choose Tools > Preferences... and select Editor in thelist on the left side of the Preferences dialog. This
displays these optionsin the General tab:

Editor Preferences General tab

(General | Editor Options
Toaolbar

Show Toolbar

Buffer list
[] Display a list of buffers in every Editor window

Sort
() Unsorted
(@) By Name
() By Package
() By Type
Fackage
COMMOM-LISP-USER v 2:1?
Show Package Names

Any changes you make are applied and saved for future use when you choose OK to dismiss the Preferences dialog.
12.7.2.1 Controlling toolbar display

You can control whether Editor tools display toolbars such as the source operations and history toolbars by the option Show
Toolbar, asdescribed in 3.1.8 Toolbar configurations.

12.7.2.2 Buffers list option

Control whether Editor windows display alist of buffersin the Text view by the option Display a list of buffers in every
Editor window.

The bufferslist facilitates speedy switching between buffers while editing. You can filter the bufferslist in the usual way if
needed.

131

12 The Editor

12.7.2.3 Sorting items in lists

By default, items in the buffers and various definitions views are sorted alphabetically according to their name. The options
in the Sort panel in the Editor Preferences allow you to change this, as follows:

Unsorted Leavesitemsin these lists unsorted. For views which list definitions, choosing this option lists
definitions in the order in which they appear in the source code.

By Name Sort according to the item name. Thisisthe default setting.
By Package Sort according to the buffer package or the package of the definition’'s name.
By Type Sorts items according to the type of the definition, or the attributes of the buffer.

12.7.2.4 Displaying package information

Aswith many other tools, you can configure the way package names are displayed in the Editor. Because of the nature of this
tool, you need to be alittle more aware of the precise nature of these commandsin order to avoid confusion. This
information can be configured using the Package box of the Editor Preferences shown in Editor Preferences General tab.

Click Sshow Package Names to toggle display of package namesin the main areas of the buffers and various definitions
views.

Type a package name into the text field to change the current package in the Editor. You can use completion to reduce typing,
by clicking “: which alows you to select from alist of all package names which begin with the partial input you have
entered. See 3.14 Completion for detailed instructions. When you have entered the complete name, click the v button to
confirm the package name.

Note that this does not change the package currently displayed; it merely changes the Editor's notion of "where" itisin the
environment, and thisin turn affects the way symbols are printed in the buffers and various definitions views.

By default, the current package is CL- USER.

12.7.3 Other Editor options

The Editor Options tab contains miscellaneous options for the Editor:
Editor Preferences Editor Options tab

Genergl | Editor Options

Color BExqpanded Forms
Expanded Form Case Upcase W

Hidden Comment String

Query replace file save buffer (@) No () Yes () Confirm

Use Color Expanded Form to control whether expanded forms that are printed by the commands M acr oexpand Form and
Walk Form are colored. Use Expanded Form Case to control the case of these forms.

Use Hidden Comment String to set the replacement string for hidden comments in folded definitions. See 4.14 Definition
folding in the Editor User Guide for an explanation of defintion folding. If Hidden Comment String is empty, then thereis no

132

12 The Editor

replacement string. The style of the replacement string for hidden comment can be changed via Preferences... >
Environment > Styles > Styles Colors And Attributes.

Use the buttons following Query replace file save buffer to control whether the Editor's query replace commands
automatically save the modified editor buffersto disk at the end (Yes), ask you whether to save them (Confirm) or leave them
in memory (No). To save the buffersin memory, see 12.8.1 Opening, saving and printing files.

12.8 Basic Editor commands

This section deals with some of the most basic commands available in the Editor. It describes how to perform simplefile
management, how to move around a buffer, and tells you about some other more general commands available.

12.8.1 Opening, saving and printing files
When you first start up the Editor, the first thing you must do is open afile.

Usefileextensions. | i sp or . | sp for Common Lisp files. The Editor recognizes these extensions and places the buffer in
Lisp mode. Lisp mode provides special features for usein Lisp editing, as described in 12.13.1 Lisp mode.

You can create anew Lisp buffer by choosing File > New or clicking on [1. The new file is automatically in Lisp mode, and
the buffer is called "Unnamed". When you try to save this buffer, the Editor prompts you for afilename.

Asyou have aready seen, you can open an existing file by choosing File > Open... or clicking on =. A dialog appears from
which you can select afileto edit.

To save afile, choose File > Save or click on . If the file has not been saved before (that is, if you created the file by
choosing File > New and thisis the first time you have saved the file), you are prompted for adirectory and a filename.

You can also save afile by using the keyboard command Ct r 1 +X Ctrl +S.

If you want to make a copy of the file (save the file under a different name) choose File > Save As... and specify anamein the
dialog that appears.

Choose File > Revert to Saved to revert back to the last saved version of the file. This replaces the contents of the current
buffer with the version of that file which was last saved on disk. This command is useful if you make a number of
experimental changes which you want to abandon.

Aswell as saving whole filesto disk, you can save any part of afile to disk under a different filename. To do this:

1. Select aregion of text by clicking and holding down the select mouse button, and dragging the pointer across the region
of text you want to save. Thetext is highlighted as you drag the pointer acrossit.

2. With the text still highlighted, choose File > Save Region As....
3. In the echo area, specify the name of afile to save the selected text to.
Note that the selected text is copied into the new file, rather than moved; it is still available in the original buffer.

To find out more about selecting regions of text, see 12.11.1 Marking the region. To find out more about operating on
regions of text, see 12.13 Using L isp-specific commands.

To print the file in the current buffer to your default printer, choose File > Print.... The printer can be changed or configured
by using the standard Windows Control Panel.

133

12 The Editor

12.8.2 Moving around files

This section describes how you can move the cursor around the buffer. There are avariety of commands, allowing you to
move sideways, up, or down by one character, or by a number of characters.

To move directly to any point in the buffer, position the pointer and click the left mouse button. If necessary, use the scroll
bars to reveal sections of the buffer which are not visible in the window.

You can either use the arrow keys, or the keyboard commands shown below to move the cursor in any direction by one
character.

Moving the cursor by one character

Cirl+P

T
!

Cirl+E] 44— —¥ Cirfl+F

Cirl+N

The keyboard commands below move to the beginning or end of the line, or the top or bottom of the buffer.

Keyboard commands for basic movement within an editor buffer

[} Chrl4E

PressCir | +V or the Page Down key to scroll down one screenful of text.

PressEsc Vor Al t +V or the Page Up key to scroll up one screenful of text.

You should ensure that you learn the keyboard commands described above, since they make navigation in a buffer much
easier.

12.8.3 Inserting and deleting text

The editor provides a sophisticated range of commands for cutting text which are described in 12.11 Cutting, copying and
pasting using thekill ring. However, the two basic commands for deleting text which you should remember are as follows:

 To erase the previous character, use the Backspace key.
» To erase the next character, use Ct r | +Dor the Del et e key if available.

You can insert text into a buffer by typing characters, or by pasting (see 12.11 Cutting, copying and pasting using theKill
ring) or by inserting the contents of afile.

134

12 The Editor

By default, when typing in a buffer, any charactersto the right of the cursor are moved further to the right. If you wish to
overwrite these characters, rather than preserve them, pressthe | nsert key. To return to the default behavior, just press the
I nsert key once more.

To insert the contents of one file into another, choose File > Insert.... A dialog appears so that you can choose afile to insert,
and thisis then inserted into the current buffer, starting from the current position of the cursor.

12.8.4 Using several buffers

As mentioned above, you can have as many buffers open at once as you like. Repeated use of File > Open... or
Ctrl+X Cirl +F just creates extra buffers.

Because the Editor can only display one buffer at atime, you can use either menu commands or keyboard commands to swap
between buffers.

Each item in the History > Items submenu is an open buffer. To swap to a given buffer, choose it from the menu, anditis
displayed in the editor window.

Alternatively, click on the Bufferstab to swap to the Buffers view; see 12.3 Displaying and swapping between buffersfor
details.

To use the keyboard, type Ct r I +X B. You are prompted for the name of the buffer you wish to display. The last buffer you
displayed is chosen by default, and islisted in the echo areain brackets, as shown below.

Sel ect Buffer: (test.lisp):

To swap to the buffer shown in brackets, just press Ret ur n. To swap to another buffer, type in the name of that buffer.
Remember that completion (press Tab) can help.

To close the buffer that is currently displayed, choose File > Close, or in Microsoft Windows editor emulation pressCt r | +W
ortypeCtrl +X K.

* If you useFile > Close, the current buffer is closed.

e If youuseCtrl +X K, you can close any buffer, not just the current one. Type a buffer name in the echo area, or press
Ret ur n to close the current buffer.

Note: If you attempt to close any buffer which you have changed but not yet saved, a dialog appears, giving you the
opportunity to cancel the operation.

To save al the buffersin the Editor, choose File > Save All.... A dialog appears which lists each modified buffer. By defaullt,
each buffer is selected, indicating that it isto be saved. If there are any buffers that you do not want to save, deselect them by
clicking on them. The dialog has four buttons, as follows:

* Click Yes to save the selected buffers.
* Click All to save all the listed buffers.
* Click No to save none of the listed buffers.
* Click Ccancel to cancel the operation.
Thisdialog is also displayed if there are any unsaved files when you exit the environment.

Sometimes you may find that being able to display only one buffer in the window simply does not give you enough
flexibility. For instance, you may have several buffers open, and you may want to look at two different buffers at once. Or
you may have a very large buffer, and want to look at the beginning and end of it at the same time.

You can do any of these by creating a new Editor window. Choose Tools > Clone or pressCt r | +X 2 or click the [button.

135

12 The Editor

This creates a copy of your original Editor. The new Editor displays the same buffer as the original one.

« If you want to look at two different sections of this buffer at once, simply move to the section that you want to look at in
one of the Editors.

« |f you want to look at a different buffer, use the History > Items submenu or the keyboard commands described above to
switch buffers.

Changes made to a buffer are automatically reflected across al editor windows - the buffer may be displayed in two different
windows, but thereis still only one buffer. This meansthat it isimpossible to save two different versions of the same file on
disk.

12.9 Other essential commands

Finally, there are three basic functions which you should add to your stock of familiar commands.

12.9.1 Aborting commands

To abort any command which requires you to type information at the echo area, type Ct r | +Gat any point up to where you
would normally press Ret ur n. For instance, if youtypeCtrl +X Ctrl +F inorder to open afile, and then decide against it,
type Ct r | +Ginstead of specifying afilename.

If you are using Microsoft Windows editor emulation, press Esc to abort acommand.

12.9.2 Undoing commands

If you choose Edit > Undo the last editor action performed is undone. Successive use of Edit > Undo revokes more actions
(rather than undoing the last Undo command, as is the case with many other editors).

When using Emacs emulation you can undo viathe Emacs keystroke Ct r | +_. Thus, to undo the last five words typed, press
Ctrl+_fivetimes.

If you are using Microsoft Windows editor emulation, press Ct r | +Z to undo.

12.9.3 Repeating commands
To perform the same command n times, type Ct r | +U n followed by the command you want to perform.
For instance, to move forward 10 characters, typeCtrl +U 10 Ctrl +F.

If you are using Microsoft Windows editor emulation, type Ct r | +* n followed by the command.

12.10 Cutting, copying and pasting using the clipboard

The Editor provides the standard methods of cutting, copying and pasting text using the clipboard. To select aregion of text,
click and hold down the select button, and drag the pointer across the region you want to select: thetext is highlighted using
the Region Highlight text style as you select it.

Choose Edit > Select All to select all the text in the buffer, and Edit > Deselect All if you want to deselect it.
Once you have selected aregion use either of the following commands:

» Choose Edit > Copy to copy the region to the clipboard. Thisleaves the selected region unchanged in the editor buffer.

136

12 The Editor

» Choose Edit > Cut to delete the region from the current buffer, and place it in the LispWorks IDE clipboard. This
removes the selected region from the buffer.

Choose Edit > Paste to copy text from the clipboard into the current buffer. The text is placed at the current cursor position.

These commands are also available from the context menu in the editor window, which is usually invoked by clicking the
right mouse button.

The Editor also provides a much more sophisticated system for cutting, copying and pasting text, as described below.

12.11 Cutting, copying and pasting using the Kill ring

The Editor provides a sophisticated range of commands for cutting or copying text onto a specia kind of clipboard, known as
thekill ring, and then pasting that text back into your Editor later on. There are three steps in the process, as follows:

» Marking aregion of text.
« Cutting or copying the text in that region to place it in the kill ring.

* Pasting the text from the kill ring back into a buffer.

12.11.1 Marking the region

First of al, you need to mark aregion of text in the current buffer which you want to transfer into the kill ring. There are two
ways that you can do this:

» Select the text you want to copy or cut using the mouse. Click and hold down the Select mouse button, and drag the
pointer across the region you want to mark.

The selected text is highlighted using the Region Highlight text style.

» Using keyboard commands.

To mark the region with the keyboard, place the cursor at the beginning of the text you want to mark, press
C r| +Space, and move the cursor to the end of the region you want to mark, using keyboard commands to do so.
Unlike marking with the mouse, this does not highlight the region.

Because the Editor does not highlight the marked region when you use keyboard commands, a useful Emacs key to remember
isCtrl+X Crl +X. Pressing this exchanges the current cursor position with the start of the marked region and highlights
theregion. PressCtr | +X O r | +X asecond time to return the cursor to its original position and |eave the region marked.

PressCtr | +G(or Esc in Microsoft Windows emulation) to remove the highlighting in aregion.

12.11.2 Cutting or copying text
Once you have marked the region, you need to transfer the text to the kill ring by either cutting or copying it.

Cutting text moves it from the current buffer into the kill ring, and deletes it from the current buffer, whereas copying just
places a copy of the text in thekill ring.

* Choose Edit > Cut or pressCt r | +Wto cut the text. In Microsoft Windows emulation thekey isCtr | +X.
» Choose Edit > Copy or press Al t +Wto copy thetext. In Microsoft Windows emulation thekey isCtr | +C.

Notice that these commands transfer the selected text to the LispWorks IDE clipboard as well asthekill ring. Thisis so that
the selected text can be transferred into other tools, or even into other applications.

The selected text is also transferred to the system clipboard.

137

12 The Editor

12.11.3 Pasting text
Once you have an item in the kill ring, you can paste it back into a buffer as many times asyou like.

* PressCtrl +Y to paste the text in the kill ring back into the buffer. In Microsoft Windows emulation thekey isCtr | +V.

Note that you must use the keyboard command if you wish to paste the item that is in the kill ring (as opposed to the item
in the LispWorks IDE clipboard).

With many editors you can only do this with one item at atime. The clipboard is only able to contain one item, and so it is
the only one available for pasting back into the text.

However, the kill ring allows you to keep many items. Any of these items can be pasted back into your document at any time.
Every time you cut or copy something, it is added to the kill ring, so you accumulate more itemsin the kill ring as your
Session progresses.

Consider the following example. In Kill ring with threeitems, the kill ring contains three items; the wordsf act ori al ,
f unct i on and macr o respectively.

Kill ring with three items

™,
e NEo W

- - i

.
| ., -
e |

| ll'rmlcl::l.nu ri'l:h:hriﬂlll.l
|l". & .I.'
O | S
Sl
First, theword f act ori al was cut from the current buffer (this would remove it from the buffer). Next, theword f uncti on
was copied (which would leave it in the buffer but add a copy of it to the kill ring), and lastly, the word macr o was cut.

Note the concept of the kill ring rotating (thisiswhy it isknown asaring). Every time anew item isadded (at the top, in
these figures), the others are all shunted around in a counter-clockwise direction.

Whenever you perform a paste, the current item in the kill ring - the word macr o in this case - is copied back into the buffer
wherever the cursor currently is. Note that the current itemis not removed from the kill ring.

Pasting from the kill ring

What you have seen so far does exactly the same thing as the standard clipboard. True, al three items have been kept in the
kill ring, but they are of no useif you cannot actually get at them.

The Emacs key to do thisisAl t +Y or Esc Y. Thisrotatesthekill ring in the opposite direction - thus making the previous
item the current one - and pastes it into the buffer in place of theitem just pasted. In Pasting from theKill ring, the word
macr o would be replaced with the word f unct i on.

You can use Al t +Y asmany times asyou like. For instance, if you actually wanted to paste the word f act ori al inthe
document, pressing Al t +Y would replace the word f unct i on with theword f act ori al .

138

http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm

12 The Editor

Rotating the kill ring

f'-_--%"j;fff_— x’;}r ey
.-I_.-"‘l. -H'\-\. o E_.-"’ .__,.'-A,, = o~ HE{{__-""
A function = flactana \)f'f—,-'
[f |

factany H-.'r'-:\m: -
R l\\j[_i"l

If you pressed Al t +Y athird time, the kill ring would have rotated completely, and macr o would have been the current item
once again.

Note: You can never use Al t +Y without having used Ct r | +Y immediately beforehand.
Hereisasummary of theway Ct r | +Y and Al t +Y work:
e Ctrl +Y pastesthe current item in the kill ring into the buffer.

» Al t +Y rotatesthekill ring back one place, and then pastes the current item into the buffer, replacing the previously
pasted item.

12.12 Searching and replacing text

The Editor provides awide range of facilities to search for and replace text. The examples below introduce you to the basic
principles; please refer to the Editor User Guide for a complete description of the facilities available.

12.12.1 Searching for text

The simplest way of searching for text in a buffer isto use the commands available in the menu bar:
1. Choose Edit > Find... to search for text in the current buffer.
2. Type astring to search for in the dialog that appears.

3. Click the Find Next button.

139

12 The Editor

Use of the Find dialog in the Editor

@ Find - =
Find what: |with-slots W Find Next
[From Top Direction Cancel

[| Wrap Around (Jlp @ Down

® ol %
Ted Output | Buffers I Definttions I Changed Definitions I Find Definitions

"zame" rS

[{("Hew™ - "play-game

—type :interface

—function #"i{lambda (3elf)
[(with-3lots (t=

%1}

bl

H
mu

m 0 0
a1}
=
|
&

m m o

imer) gelf
[not timer)) =

131
[rdefault-initargs :confirm-destrov-callback "=
interface-dead))

{defun interface-dead (self)
(Rl (timer) self
(When timer
[mp:unschedule-timer timer)
{getg timer mil)})

t) W

CODE-PAGE — ponglisp {CL-USER} (Lisp) 84-38 [211] C:\Program Files {x86)
Eeady.

The cursor is placed immediately after the next occurrence in the current buffer of the string you specified. To search the
buffer from the start, rather than the current point, check From Top and click Find Next. To search upwards, select Up in the

Direction panel and click Find Next. To search again for a string that you previously searched for, select the string from the
Find what list and click Find Next.

To dismissthe Find dialog, click Cancel.

After you have used the Find dialog, you can use Edit > Find Next to find the next occurrence of the last string for which you
searched using the dialog, without raising the dialog again.

140

12 The Editor

12.12.2 Incremental searches

PressCt r | +S to perform an incremental search (in which every character you type further refines the search). A prompt
appears in the echo area, asking you to type a string to search for. Assoon asyou start typing, the search commences.

Consider the following example: open the file exanpl es/ capi / appl i cati ons/ ot hel | 0. 1i sp. You want to search for
the word "defmethod” in the buffer.

1. PressCtrl +S.

The following prompt appearsin the echo area.

| - Sear ch:

2. Typetheletter d.

The prompt in the echo area changes to:
| -Search: d

The cursor moves to the first occurrence of "d" after its current position.
3. Typetheletter e.
The prompt in the echo area changes to:

| -Search: de

The cursor moves to the first occurrence of "de".

4. Typetheletter f .

The prompt in the echo area changes to:
| - Search: def

The cursor moves to the first occurrence of "def".

This continues until you stop typing, or until the Editor failsto find the string you have typed in the current buffer. If at any
point this does occur, the prompt in the echo area changes to reflect this. For instance, if your file contains the word "defun”
but no word beginning "defm", the prompt changes to:

Failing |-Search: defm

as soon as you type m

12.12.3 Replacing text

You can search for text and replace it with other text using the Edit > Replace... menu item. Type a string to search for and a
string to replace it with in the Replace dialog that appears, and click Find Next. The cursor is placed immediately after the
next occurrence in the current buffer of the string you specified. To replace this occurrence and locate the next one, click
Replace. To leave this occurrence asit is and locate the next one, click Find Next. Note that this type of searching is not
incremental.

For instance, assume you wanted to replace every occurrence of "equal" to "equalp”.

1. Choose Edit > Replace....
The Replace dialog appears.
141

12 The Editor

2. Typeequal intheFind what box:
3. Typeequal p inthe Replace with box and click Find Next.
The search will stop at every occurrence of "equal™ after the current cursor position:
* If you want to replace this occurrence, click Replace.
« |f you do not want to replace this occurrence, click Find Next.
« If you want to replace this occurrences and all later occurrences, click Replace All.
« |f you want to abandon the operation altogether, click Cancel.

Note: Both Edit > Find... and Edit > Replace... start searching from the current position in the buffer. When the end of the
buffer is reached, you are asked whether to start again at the beginning. To start from the top of the buffer initially, check the
From Top option before searching.

12.13 Using Lisp-specific commands

One of the main benefits of using the built-in editor is the large number of keyboard and menu commands available which can
work directly on Lisp code. Aswell as editing facilities which work intelligently in a buffer containing Lisp code, there are
easily-accessible commands which load, evaluate or compile, and run your code in any part of a buffer.

Other tools in the LispWorks IDE are integrated with the Editor. So for example you can find the source code definition of an
object being examined in a browser, or set breakpointsin your code, or flag symbolsin editor buffers for specific actions
such as tracing or lambdal list printing.

This section provides an introduction to the Lisp-specific facilities that are available using menu commands. For afull
description of the extended editor commands, please refer to the Editor User Guide.

All of the commands described below are available in the Editor's Works > Buffers, Works > Definitions, and Works >
Expression menus. They operate on the current buffers, definitions, or expression, the choice of which is affected by the
current view.

12.13.1 Lisp mode

Some aspects of the LispWorks editor behave differently depending on which "mode" the buffer is using (see the Editor User
Guide for information about editor modes). These include syntax coloring and parenthesis matching. which operate only in
Lisp mode and are described in 3.2.3.2 Setting the text style attributes. Also, certain commands such as those for
indentation operate specially in Lisp mode.

To make a new buffer suitable for Lisp code, you can use the New Buffer command or the File > New menu item, both of
which start the buffer in Lisp mode.

If your Lisp source files are saved with an extension . | i sp or . | sp, then the editor will automatically open theminalLisp
mode buffer.

12.13.2 Current buffers, definitions and expression

In the Text view, the current buffer is the currently visible buffer, and the Buffers menu acts on this. The current expression is
the symbol over which the cursor is positioned, or the one immediately before the cursor if it isnot on asymbol. The current
definition is the definition in which that current symbol occurs. For example:

(defun test ()
(test2))

142

http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm

12 The Editor

In the function shown above, if the cursor were placed on the letter "€" of t est 2, the current expression would be the symbol
t est 2, and the current definition would bet est .

In the Buffers view, the current buffer(s) are al the selected buffers. The Definitions and Expression menus are not available.

In the Definitions, Changed Definitions and Find Definitions views, the current definitions are al the selected definitions.
The Buffers and Expression menus are not available.

In each view, the Buffers, Definitions and Expression menu commands act on the current buffer(s), definition(s) or
expression.

12.13.3 Evaluating code

When you are editing Lisp code, you may want to evaluate part or all of the buffer in order to test the code. The easiest way
to do thisis using menu commands, athough there are keyboard commands which allow you to evaluate Lisp in the Editor as
well.

There are three menu commands which allow you to evaluate Lisp in the current buffer.

Choose Works > Buffers > Evaluate to evaluate all the code in the current buffer. If you are in the Buffers view, then this
command evaluates the code in all the selected buffers.

Choose Works > Expression > Evaluate Region to evaluate the Lisp code in the current region. You must make sure you
have marked a region before choosing this command; see 12.11.1 Marking the region. Whether you use the mouse or
keyboard commands to mark a region does not matter. 1f you have afew Lisp forms that you want to evaluate, but do not
want to evaluate the whole buffer, you should use this command.

Choose Works > Definitions > Evaluate or click @ in the toolbar to evaluate the current definition. In the Text view thisisa
little like evaluating the marked region, except that only the current definition is evaluated, whereas working with a marked
region lets you evaluate several. This command is useful if you have a single function in the current buffer which you want to
test without taking the time to evaluate the whole buffer or mark aregion.

In the various definitions views, this command evaluates the code for al the selected definitions.

To load the file associated with the current buffer, choose File > Load. To load multiple files associated with buffers, select
them in the Buffers view and choose File > Load. If thereisnot a current buffer, the menu command File > Load... is
available, which prompts for afile to load.

12.13.4 Compiling code

You can also compile Lisp code in an editor buffer in much the same way that you can evaluate it. Code can be compiled in
memory or to afile.

12.13.4.1 Compiling in memory

Choose Works > Buffers > Compile or click & in the toolbar to compile al the code in the current buffer.
Choose Works > Expression > Compile Region to compile the Lisp code in the current region.

Choose Works > Definitions > Compile or click @ in the toolbar to compile the current definition.

During compilation, the Editor tool temporarily displays compiler output in the Output tab. Once compilation has finished,
you can press Space to display the current buffer once again.

Additionally, if any conditions were signalled during the compilation, you can view these in the Compilation Conditions
Browser by pressing Ret ur n. You can also locate the source code that generated a message via the context menu, as
described in 21.1 Inter active compilation messages.

143

12 The Editor

You can review the output at any time by clicking the Output tab of the Editor.

12.13.4.2 Compiling to a file

To compile the file associated with the current buffer, choose File > Compile. To compile multiple files associated with
buffers, select them in the Buffers view and choose File > Compile. If thereis not a current buffer, the menu command File >
Compile... isavailable, which prompts for afile to compile.

Note: thiscommand calls the Common Lisp function conpi | e-fi | e; it creates the fadl file but does not load it. You can
useFile > Load to later load the fadl.

To compile afile (or files) and load the resulting fadl file(s) with a single command, choose File > Compile and Load. If there
is not a current buffer, the menu command File > Compile and Load... isavailable.

12.13.5 Argument list information

PressCtrl +° to show information about the operator in the current form, in a displayer window on top of the Editor. The
displayer shows the operator and its arguments, and tries to highlight the argument at the cursor position using the style
" Arglist Highlight" .

While the displayer isvisible:
e Ctrl+/ controls whether the documentation string of the operator is also shown.
* Ctrl ++ movesthe displayer up.

e Ctrl +- movesthe displayer down.

12.13.6 Breakpoints

A breakpoint causes execution of Lisp code to stop when it is reached, and the LispWorks IDE displays the stack and the
source code in a Stepper Tool. See 25.6 Breakpoints for information about using breakpoints with the Stepper Tool.

A breakpoint can be at the start, function call or return point of aform.

12.13.6.1 Setting breakpoints
To set abreakpoint, for example at the call to + in one of your functions:
1. Open thefile containing the call in an Editor tool.

2. Ensure the definition isindented. You can use the Lisp mode command Indent Form (Al t +Ct r | +Qin Emacs
emulation).

3. Ensure the definition is compiled.
4. Position the cursor on the symbol +.

5. Choose the menu command Works > Expression > Toggle Breakpoint, or click @ inthe Editor toolbar, or run the editor
command Toggle Breakpoint. The symbol + is highlighted red indicating that a breakpoint is set.

When the breakpoint is reached, a Stepper tool isinvoked, allowing you to step through the code, add further breakpoints,
and so on. See 25 The Stepper for more information about the Stepper tool.

144

http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm

12 The Editor

12.13.6.2 Editing breakpoints

To edit the Conditional or Printing properties of a breakpoint, choose the menu command Works > Expression > Edit
Breakpoints and proceed as described in 25.6.4 Editing breakpoints.

To visit the source code where a breakpoint was set, choose the menu command Works > Expression > Edit Breakpoints,
select a breakpoint and press the Goto Source button. This cancels the dialog and then displays the source containing the
breakpoint.

12.13.6.3 Removing breakpoints

To remove a breakpoint under the cursor, click @ in the toolbar. Equivalently choose the menu command Works >
Expression > Toggle Breakpoint or run the editor command Toggle Breakpoint.

Where you wish to remove one or more breakpoints without finding them in the source, choose Works > Expression > Edit
Breakpoints, select a breakpoint or breakpoints in the Breakpointslist, and click Remove.

12.13.6.4 Reloading code with breakpoints
A message like this:

Retain 1 breakpoint fromloaded file...

means that a breakpoint is set in a buffer while you have loaded that buffer's underlying file from disk, for example by menu
commands File > Load or File > Compile And Load. Loading thefile re-evaluates al of its forms, but the IDE does not have a
way to reset the breakpoints in these forms automatically. Therefore it asks you what to do.

Answer Yes to add breakpoints to the newly loaded definitions. Answer No to remove the breakpoints.

12.13.7 Tracing symbols and functions

A wide variety of tracing operations are available in the Works > Buffers, Works > Definitions and Works > Expression
menus. The scope of each operation depends on which menu the command is chosen from.

Choose Trace from either the Works > Buffers, Works > Definitions or Works > Expression menus to display a menu of trace
commands that you can apply to the current region or expression, or the currently selected buffers or definitions, as
appropriate. Note that you can select several items in the buffers and definitions views.

See 3.10 Tracing symbols from tools for full details of the tracing facilities available in the Editor.

12.13.8 Packages

It isimportant to understand how the current package (that is, the value of the Common Lisp variable * package*) is
determined when running Lisp operations such as evaluation or compilation commandsin a buffer. Usually it is obvious:
most Lisp source fileshave asinglei n- package form. The Editor uses the specified package as the current package when
you evaluate or compile code in that buffer, or perform some other operation that depends on the current package.

However it is possible for a source file to contain multiplei n- package forms, or none at all. In this case, the Editor uses a
suitable binding for the current package depending on the location in the buffer, as described below. This means that you do
not have to worry about setting the package explicitly before evaluating part of a buffer, and that operations within a buffer
use the expected current package.

145

http://www.lispworks.com/documentation/HyperSpec/Body/v_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm

12 The Editor

12.13.8.1 The primary package

Each buffer has a package associated with it, known as the primary package. Thisis set when the buffer is created, and is
displayed in the message area at the bottom of the Editor window. The primary package provides a default, used when the
current package cannot be determined by other means.

If the buffer is created by opening afile containing ani n- package form, that package is the primary package. If there are
multiplei n- package forms, the primary package is taken from the first of these forms. If thereisnoi n- package form,
the primary package is CL- USER.

You can set the primary package if needed with the editor command Set Buffer Package. See the Editor User Guide for
details.

12.13.8.2 The current package for Lisp operations

When evaluating or compiling an entire buffer, the Editor usesi n- package forms as they appear in the code. For any code
that precedes thefirst i n- package form, or when thereisnoi n- package form, the code is evaluated or compiled in the
primary package.

When evaluating or compiling aregion of the current buffer (as opposed to al of it), the Editor usesi n- package formsas
they appear in the region. For any code that precedes the first i n- package form of the region, or when thereis no

i n- package formintheregion at al, the Editor searches for the previousi n- package form in the buffer. If thisisfound,
it determines the current package, otherwise the primary package is used.

When evaluating or compiling a definition, and for operations such as symbol completion at the cursor point, the Editor
searches for the previousi n- package formin the buffer. If thisisfound, it determines the current package, otherwise the
primary package is used.

12.13.9 Indentation of forms

The Editor provides facilities for indenting your code to help you seeits structure. These facilities are available only in Lisp
mode. The Emacskey Al t +Ct r | +Qindents the current Lisp form, and the Tab key indents asingle line.

You can customize Lisp mode indentation by using the Defindent command, see the Editor User Guide for details.

See 12.13.1 Lisp mode for more information about Lisp mode.

12.13.10 Other facilities

A number of other Lisp-specific facilities are available using the menus in the Editor.

If the current buffer is associated with afile that is part of a system as defined by def syst em choose File > Browse Parent
System to browse the system it is part of in the System Browser. See 26 The System Browser for more information about
thistool.

Choose Works > Definitions > Undefine... to remove the current definitions from your Lisp image. Similarly, choose Works >
Buffers > Undefine... to remove the definitionsin the current buffer or selected buffers. By selecting itemsin the Buffers
view, or the various definitions views, you can control over the definitions which can be removed with one command. Both
of these commands prompt you for confirmation with a second chance to modify the list of definitionsto remove.

Choose Works > Definitions > Generic Function to describe the current definition in a Generic Function Browser. See 15
The Generic Function Browser for more details.

Standard action commands can be found on the Works > Expression menu, allowing you to perform a number of operations
on the current expression. See 3.8 Perfor ming oper ations on selected objectsfor full details.

146

http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm

12 The Editor

Choose Works > Expression > Arguments to print the lambdal list of the current expression in the echo areq, if itisa
function, generic function or method. Thisisthe same as using the Emacs key command Al t +=, except that the current
expression is automatically used.

Choose Works > Expression > Value to display the value of the current expression in the echo area.

Choose Works > Expression > Macroexpand or click & in the toolbar to macroexpand the current form. The
macroexpansion is printed in the Output tab, in the same way that compilation output is shown. Note how ani n- package
form containing the current package is printed with the macroexpansion, meaning that you can preform afurther
macroexpansion. Press Space when the cursor is at the end of the output window to return to the Text tab.

Choose Works > Expression > Walk to recursively macroexpand the current form.

12.14 Help with editing

Two help commands are available which are specific to the Editor and any tools which use editor windows.

Choose Help > Editing > Key to Command and type a key sequence to display a description of the function it is bound to, if
any.

Choose Help > Editing > Command to Key and supply an editor command name to see the key sequenceit is bound to, if any.

147

http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm

13 The Code Coverage Browser

The Code Coverage Browser helps you to work on a large number of source files from which you have collected code
coverage information. See the LispWorks® User Guide and Reference Manual for the steps to generate this data.

Thetool displaysalist of the filesin the data with some code coverage statistics, and allows you to open the filesin the
Editor with or without code coverage coloring.

To facilitate working on many files, the tool alows you to save copies of the datawhich contain only a subset of the files. For
example, you may decide that you have finished with some of the files, save a subset excluding these files and start next time
using this new subset. Another possible use is when ateam works on the data: you can create subsets of the files for each
person to work on.

Thetool also alows you to traverse (examine) al occurrences of a specific state, for example all occurrences of uncovered
code.

13.1 Starting the Code Coverage Browser

To start the tool choose Tools > Code Coverage Browser or click & in the Podium. If the LispWorks image has internal code
coverage data (that is, some files compiled with code coverage were loaded), the tool initially displays this data. You can

load and display saved code coverage data by using Works > Code Coverage > Load Data.... This menu command raises a
file dialog, in which you need to select afile containing code coverage data, which was created by either

hcl : save- current - code- cover age or hcl : save- code- cover age- dat a.

Note: the tool does not merge code coverage data. It displaysthe latest data that was selected.

The Code Coverage Browser retains a history of code coverage datathat it has displayed. You can revisit these using the «
and = toolbar buttons or the History menu (see 3.5 The history list). If you intend to do that be sure to give each code
coverage data a useful name, so you can easily select the one that you want.

The Code Coverage Browser displaying internal data

() Code Coverage Browser 1 - Internal - B
Works File Edit Code Coverage Traverse History Help

b = B -~
Fitter - ' Matches 4
Relative Path Run Time Mumber Run Time Mot Called Run Time Mot Covered Run Time Called
pong lisp g 100.0% {8} 1000% {8 0.0% {0}
othella lisp 70 100.0% {70} 100.0% {70} 0.0% 10}

3 12.5% {1} 375% {3}
halloons lisp 16 175% {6} heZ2% {9 625% {10}

148

13 The Code Coverage Browser

13.2 Displaying a Code Coverage data

The Code Coverage Browser displays the data as alist, where each line corresponds to afile. Each line starts with arelative
path, which is currently alwaysthecl : fi |l e- nanest ri ng of thefile, followed by columns showing statistics about code
coveragein thisfile, and ends with the full cl : t r uenane of thefile asrecorded in the data. You can configure which
columns are actually displayed via Tools > Preferences... > Code Coverage Browser > Files List.

The statistics columns are divided into "Run Time" and "All" columns, which correspond to the information returned when
using the keyword : runt i me or : al | when accessing hcl : code- cover age-fil e-stats. Ingeneral "Run Time"
excludes code that is normally executed only at compile time or load time. The numbers in the statistics columns are numbers
of "lambdas" (pieces of code). Seethe entry for hcl : code- cover age-fil e- st at s inthe LispWorks® User Guide and
Reference Manual for more details. By default, only the "Run Time" columns are displayed.

For each of "Run Time" or "All", there are 4 columns:

Number Number of lambdas.

Not Called Number and percentage of lambdas that have never been called.

Not Covered Number and percentage of lambdas that have been called, but not completely covered.
Called Number and percentage of lambdas that have been called.

By default, only the Run Time Not Called and Run Time Not Covered columns are displayed, based on the assumption that
these are the most useful ones.

For columns that display both number and percentage, the number is the number of lambdas, and the percentageisthis
number as a percentage of the total number of lambdas. You can configure which of the number or percentageisthe
"leading" value viaTools > Preferences... > Code Coverage Browser > Files List > Sort By, by selecting Percent or
Number. Thisalso affects the sorting. You can also configure it to display only one of the percentage or the number by
deselecting Display Both Percent And Number in the Files List tab.

By default, the tool displays al the filesin the specified code coverage data. You can restrict which files are displayed by
several mechanisms:

» Thelist has a standard filter above it, which alows filtering on the displayed text. Since the default display contains the
truename, this gives you an easy way of filtering by filenames or directories. For example, if you want to see only the
filesindirectory di r - a, just type/ di r - a/ inthefilter. Note that the filter also supports regular expressions. See 3.12
Filtering information for full details of using the standard filter.

» You can explicitly hide files by using the context menu (see 13.3 Code Coverage FilesList Context Menu). Thisis
useful when you are no longer interested in code coverage for a specific source file.

* InTools > Preferences... > Code Coverage Browser > Files List, you can select afilter such asRun Time Uncovered.
Only files containing lambdas matching the filter are shown.

13.3 Code Coverage Files List Context Menu

The first itemsin the context menu alow you to open the first selected file, using the Editor tool. There are three waysto
open thefile:

Open With Color Open the file for editing as usual, and add Code Coverage coloring. This corresponds to calling
hcl : edi t or - col or - code- cover age with: for-edi ting t. You canthen edit thefile as
usual.

Open Open the file in the usual way without any code coverage information.

149

http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_tn.htm

13 The Code Coverage Browser

Open With Counters Open a specia buffer (with a different name from the filename) with the code of the file, add
code coverage coloring and also counters. This corresponds to calling
hcl : edi t or - col or - code- cover age with: for-edi ti ng nil. Thebuffer is made read-
only initially. Adding counters means that the buffer contains extra characters, and it is therefore
not useful to edit it, though you can make it writable and/or save it if thisis useful. Note that the
buffer name is constructed by appending " - code- cover age" to the filename, and thiswill be
the default filename when you save it. Note that if thisfile is opened again with
:for-editing nil, ether from thetool or other call to
hcl : edi t or - col or - code- cover age, the previous special buffer is automatically deleted (see
hcl : edi t or - col or - code- cover age).

You can configure the coloring viaTools > Preferences... > Code Coverage Browser > Coloring. The four check buttons
correspondto the: col or - cover ed, : col or - uncover ed, : runti me-onl y and : conment - count er s keyword
argumentsin hcl : edi t or - col or - code- cover age, and setting them sets the default values for these keywords.

By default, opening the file opens the file matching the truename that is recorded in the code coverage data and is displayed
by default in the last column. You can change that by creating pathname mapping, which maps some root pathname to
another one. You do that viaTools > Preferences... > Code Coverage Browser > Pathname Mapping. If both of the Map
from: and To: strings are not empty, the tool finds the pathname to use by first computing a relative pathname of truename
relative to the Map From: pathname map-from, and then merging it with the To: pathname to, that is:

(mer ge- pat hnanes (enough-nanestring truename map-from) to)

The next 4 items in the context menu operate on all of the selected files:

Mark Done Mark the selected files as Done. Marking changes the color in which the line for the fileis
displayed, and can be hidden by Hide Done, but otherwise has no effect.

Mark Not Done Mark the selected files as Not Done.
Hide Selected Hide (remove from the list) the selected files.

The remaining items in the context menu operate on the list of files as awhole:

Hide Done Hide the files that are marked as Done.
Unhide Others Show al the hidden files.
Traverse Implements the traverse operation. See 13.4 Traver se.

13.4 Traverse

Traversing allows you to examine all the occurrences of some state in the currently displayed list of files, starting from the
first selected file. You start traversing choosing an item from the Works > Code Coverage > Traverse menu with the state you
want to traverse. Thismenu is also available on the context menu.

The first form with the state that you selected is displayed in an Editor. You can traverse to the next such form by using the
editor command Code Cover age Goto Next, which by defaultisboundto Ctrl +X #. You can skip the remaining forms
in the current file by giving a prefix argument to Code Cover age Got o Next , for example by the key sequence

Crl+U Crl +X #.

A message is displayed when there is no further matching forms. If you try again, it restarts the traverse from the beginning.

Forms are displayed in the same way as the Open With Color context menu item. Note that even though code coverageis by
"lambdas" (pieces of code), the traverseis by top level forms. Hence going to the first/next form means going to the first/next
top level form whose compiled code produced alambda that matches the state.

150

13 The Code Coverage Browser

The traverse state is global, and there is only one state at any one time. Starting a new traverse forgets the previous state. The
traverse state is independent of the tool once it started, except that the coloring parameters can be changed by using Tools >
Preferences... > Code Coverage Browser > Coloring.

13.5 Using the internal data

When started, the Code Coverage Browser uses the internal code coverage data (that is, the data for files that have been
|loaded with code coverage) if there is such data. You can revert to using this at any time by using the menu command Works
> Code Coverage > Use Internal Data.

The statistics that are displayed when using the internal data are computed once and are not updated as the data changes. |If
more statistics have been collected, update the data using the Refresh toolbar button & or Tools > Refresh.

When opening afile from the list, the tool updates from the current counts, and then opens the file, so both the tool and the
coloring correspond to the state at the time you open thefile.

13.6 Creating new Data

You can create (and optionally save) code coverage data containing a subset of the files currently listed by using Works >
Code Coverage > Copy To New Data.... Thismenu command raises a dialog where you enter the name of the new data,
select the criterion for including afile, and specify whether the new data becomes the current data, whether it is added to the
history, and whether it is saved.

The criterion for including files can be Only selected files, Only displayed files, or All files. Thelist of displayed files differs
from thelist of all files when your filter excludes some of them, as described in 13.2 Displaying a Code Cover age data.

Clicking OK creates the new data containing a copy of the information for the included files. The new datais independent of
the old data and does not share any of its structure. Depending on your selections in the dialog, the new data may be made
the current data, added to history and saved. If you selected to save, you are prompted for afilenameto saveit in. The saving
isdone by using hcl : save- code- cover age- dat a.

151

14 The Function Call Browser

14.1 Introduction

The Function Call Browser gives you away to view a user-defined function in the Lisp image together with the functions that
cal it or the functionsit calls.

It has three views.

» The Called By view alows you to examine a graph of the functions which call the function being browsed. Thisisthe
default view.

» The Calls Into view allows you to examine a graph of the functions which are called by the function being browsed.
» The Text view lets you see immediate callers and callees of the browsed function using lists rather than a graph.

To create a Function Call Browser, choose Tools > Function Call Browser or click < inthe Podium. Alternatively, select a
function in another tool, and choose Function Calls from the appropriate actions menu to browse the selected function in the
Function Call Browser. Finally, in an editor executing Al t +X Li st CallersorAlt+X List Callees calsupa
Function Call Browser on the current function.

Note: the cross references between function calls are generated by the compiler, hence you can use the Function Call
Browser only for compiled code. Moreover, the compiler setting to generate cross references must be on when you compile
your code. Switch it on by evaluating:

(toggl e- sour ce-debuggi ng t)

When cross referencing is on, this line appears in the output of the compiler:

Cross referencing is on

14.2 Examining functions using the graph views

There are two graph views in the Function Call Browser. The Called By view isthe default view. The Function Call Browser
appears asin Viewing functionsusing the " Called By" view.

152

14 The Function Call Browser

Viewing functions using the "Called By" view

“% Function Call Browser 1

Function: |HMAME-FOR-PLAYER

Show functions from packages: | All

Test Called By | Calls Into

PLAY-SHUARE
o START-GAME

& DISPLAY-CURRENT-SCORE
o DISPLAY-FINAL-SCORE

YAME-FOR-PLAYER

Function Description

|Heady.

In this view, the Function Call Browser has five areas.

14.2.1 Function area

The Function area displays the name of the function being examined, and here you can enter the name of another function to
examine. You can use completion to reduce typing. This allowsyou to select from alist of all functionsin the current
package whose names begin with the partial input you have entered. Invoke completion by Up, Down or click the 2 button.
See 3.14 Completion for detailed instructions. When you have entered the complete function name, click + to confirm your
choice.

14.2.2 Show functions control

The popup list Show functions from packages allows you to restrict the functions displayed based on their package. It
affectsthe display in all views. Below, the current package means the synbol - package of the function currently being
examined in the Function Call Browser. The options are:

All Display all the functions known to the compiler.

Current and Used Display only those functions in the current package or packages on the package use list of the
current package.

Current and Standard Display only those functionsin the current package or the standard packages COMMON- LI SP,
HCL and LI SPWORKS.

Current Display only functionsin the current package.

14.2.3 Graph area

A graph of all the callers of the function is displayed in agraph in the Called By view. The graph area of the Calls Into view
issimilar, but the graph displayed is of the functions called by the function being browsed.

Note that if source level debugging is off, or the function was not compiled, there is no information to display here. To turn

153

http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_3.htm

14 The Function Call Browser

on source level debugging, call:
(toggl e- sour ce-debuggi ng t)

The generic facilities available to all graph viewsin the LispWorks IDE are available here; see 6 Manipulating Graphs for
details.

14.2.4 Echo area

The echo area of the Function Call Browser is similar to the echo area of the podium. It displays messages concerning the
Function Call Browser.

14.2.5 The function description button

Clicking on Function Description >> changes the view of the Function Call Browser to include more information on the
function being browsed. The browser appears asin The Function Call Browser in function description mode.

The Function Call Browser in function description mode

% Function Call Browser 1 |Z”E|r5__(|

:|CORMER-PIECE-F

Show funchions from packages:

Called By | Callz Inta
}j oAl L-CORMER-MOVES

NEXT-TO-CORNER-PIECE-P — bl s s

Mame: CORMER-FIECE-F
Function: #<Function CORMER-PIECE-P 219 FC42
Lambda Lizt: [PIECE GAME]
Source Files: C:\Program FileshLizpwforkzhibhe-0-0-0hexamples'.capiapplicationshot

£

Dlocurmentation:

The predicate for whether a square iz a cormer sguare.

Function Description <«

|Heady.

Two further panes appear. Note that the function description button has now changed to Function Description << and that
clicking on it restores the view of the Function Call Browser.

The extra panes are a function description area, and a documentation area.

154

14 The Function Call Browser

14.2.5.1 Function description area

The Function Description area gives a description of the function selected in the main area, or, if nothing is selected, the
current function (as displayed in the Function area). The following items of information are displayed:

Name The name of the function.

Function The function object.

Lambda List The lambda list of the function.

Source Files The source filein which the function is defined, if any.

You can operate on any of the itemsin this area using the commands in the Works > Description menu, which is also
available as the context menu. This contains the standard actions described in 3.8 Perfor ming oper ations on selected
objects.

14.2.5.2 Documentation area

The Documentation area shows the documentation for the function selected in the main area as returned by the Common Lisp
function docunent at i on. If no function is selected, the documentation for the current function is shown.

14.3 Examining functions using the text view

Click on the Text tab to see atextual display of the callees and callers of afunction. This view has the advantage that both
callees and callers can be seen simultaneousdly. It is very similar to the text view in the Class Browser, as described in 7.1.4
Examining other classes. When in the text view, the Function Call Browser appears as shown in Viewing functions using
thetext view.

Viewing functions using the text view

“% Function Call Browser 1

.
Function; | CORMER-PIECE-P

Show functions from packages: | Al

Test | Called By | Calls Into
LCalled bw: Callz inta:

ALL-CORMER-MOVES "
ME=T-TO-CORMER-FIECE-F -
1-
DSPEC.DEF
EC
SLOT-YALUE
£

The function area, show functions from packages area, function description area and echo area are asin the graph views.

155

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

14 The Function Call Browser

14.3.1 Called By area
The Called By arealists those functions which the current function calls.

To make any function in thislist be the current function, double-click on it.

14.3.2 Calls Into area
The Calls Into arealists those functions which call the current function.

To make any function in this list be the current function, double-click on it.

14.4 Configuring the function call browser

The Function Call Browser can be configured using the preferences dialog. Select Tools > Preferences... or click & to
display the dialog, and select Function Call Browser in thelist on the |eft side of the dialog which appears. This displays
these options:

The function call browser preferences

General | Called By Layout | Callz Into Layout

Sart Package
{Q Unsorted COMMON-LISP-LSER v
*) By M
{:-"' EI; Paa:kea o Show Package Names
Toolbar
Showw T oolbar

14.4.1 Sorting entries

The functions displayed in each tab of the Function Call Browser can be sorted in a number of ways.
Choose By Name to sort entries according to the function name. Thisisthe default setting.

Choose By Package to sort functions according to their package.

Choose Unsorted to leave functions unsorted.

14.4.2 Displaying package information
Aswith other tools, you can configure the way package names are displayed in the Function Call Browser.

Choose Show Package Names to turn on and off the display of package namesin the Text, Called By, Calls Into and
Description areas.

See 3.7 Displaying packages for more information about using Show Package Names.

156

14 The Function Call Browser

14.5 Configuring graph displays

The preferences can also be used to configure how the Function Call Browser displays graphical information in the Called By
and Calls Into views. Click onthe Called By Layout tab or the Calls Into Layout tab in the Preferences. Both views perform
the same operations on the relevant Function Call Browser view.

A layout view in the Function Call Browser preferences

General | Called By Lavout | Callz Into Layout

Layout b ax. Expanzion

() Left to Right Depth | 2
(%) Right to Leit

() Top Down Breadth| 40

J Bottarm U
=2 i Plan tode
[Ratatior

14.5.1 Graph layout settings

The layout radio buttons are used to set the direction in which the graph is displayed. The default setting is Left to Right.

14.5.2 Graph expansion settings

The Max. Expansion settings determine how much of the graph to display. The default depth value is 2 - this ensures that
only functions that directly call (or are directly called by) are shown in the graph. If this value were set to 3, for example,
then functions that call afunction that calls the function being browsed would also be displayed.

The breadth value has a default value of 40, and sets how many functions are displayed at each level of the graph.

14.5.3 Plan mode settings
The Rotation checkbox determines whether the graph layout can be rotated when in plan mode. By default it is unchecked.

You can enter plan mode when displaying a graph by selecting Enter Plan Mode from the context menu. If rotation is enabled
and the plan is smaller than the graph, you can rotate the plan by holding down the Shi ft key and moving the mouse left or
right.

14.6 Performing operations on functions

A number of operations can be performed on functions selected in the Text area (when in the Text view) or in the Called By
or Calls Into areas, or on the current function (when there are no functions selected elsewhere).

The Works > Function menu gives you access to the standard actions described in 3.8 Performing oper ations on selected
objects.

The Works > Function > Trace submenu gives you the ability to trace and untrace the functions selected in the Text, Called
By and Calls Into views.

157

15 The Generic Function Browser

The Generic Function Browser allows you to examine the generic functions in the Lisp image, together with any methods that
have been defined on them. It has two views which alow you to browse different types of information:

» The methods view, which shows you a description of the generic function and the methods defined on it. Thisisthe
default view.

» The method combinations view, which lets you examine the list of method combinations for any generic function.
To create a Generic Function Browser, choose Tools > Generic Function Browser or click £& in the Podium.

Other ways to create a Generic Function Browser are:

* If the current object in atool is a generic function or method, choose the Generic Function standard action command
from the appropriate menu.

» Usethe editor command Al t +X Describe Generic Function.

« If thereisamethod on the debugger stack, you can display the Method Combination viathe Debug > Frame menu of a
Debugger tool.

15.1 Examining information about methods

When the Generic Function Browser isfirst displayed, the default view is the methods view. You can aso choose it explicitly
by clicking on the Methods tab of the Generic Function Browser.

The methods view is shown in Generic function browser below.

158

15 The Generic Function Browser

Generic function browser

“# Generic Function Browser 1

Funchion: | CAPEDRAW-PINBOARD-OBJECT

Methods | Method Combinations
Filker = 2 Matches 15

[METHOD CaPl:.DREaAW-PINBOARD-OBJECT [CAP:GRAPH-PANE CAPIE-FANDABLE-ITEM A
(METHOD CAaP:DEAW-PINBOARD-OBJECT [T CAPLARROW-PINBOARD-OBJECT)

[METHOD CAPLDRAW-PINBOARD-OBJECT :AROUND [T CAPI:DOUBLE-HEADED-ARROW
[METHOD CAPLDRAW-PINBOARD-OBJECT [T CAFLDRAWMN-PINBEOARD-OBJECT])

[METHOD CaPl:DRAW-PINBOARD-OBJECT [T CAPLELLIPSE]

£

Descrphion:

tethod: #<5TANMDARD-METHOD CaPl:DR&W-PIMBOARD-OBJECT MIL [T CaPLARRDW-F
Lambda Lizt: [CAPIOUTPUT-PAME CaPI:SELF RkEY = 5 WIADTH :HEIGHT #alLLOw -0THER-
Combination; STANDARD

£ b
|Heady.

The methods view has four main sections, described bel ow.

15.1.1 Function area

The Function: box shows the name of the generic function you are examining. To browse a generic function, you can enter
its name directly into the Function: box. You can also paste the generic function from another tool in one of two ways:

» Choose Edit > Copy or the standard action command Copy in another tool to copy the generic function to the clipboard,
then choose Edit > Paste in the Generic Function Browser to transfer the generic function in.

» Choose the standard action command Generic Function in the other tool to display the generic function in the Generic
Function Browser in one action.

When entering the name of a function, you can use completion to reduce typing. This allowsyou to select from alist of all
generic functions whose names are accessible in the current package and begin with the partial input you have entered.
Invoke completion by pressing Up or Down, or by clicking the “?: button. The methods are listed immediately. See 3.14
Completion for more information about completion. If you enter the generic function name directly without using
completion, click +* to confirm the name.

Note: You can use Edit > Paste to paste in ageneric function, even if the LispWorks IDE clipboard currently contains the
string representation of the function, rather than the function itself. Thislets you copy in generic functions from other
applications, aswell as from the environment. See 3.3.3 Using the Object operationswith the clipboard for a complete
description of the way the LispWorks IDE clipboard operates, and how it interacts with the system clipboard.

You can operate on the current generic function using the commands in the Generic Function Browser's Works > Function
menu. See 15.1.5 Performing operations on the current function or selected methods for details.

159

15 The Generic Function Browser

15.1.2 Filter area

The Filter lets you restrict the list of methods displayed. See 3.12 Filtering infor mation for details about how to use the
Filter area.

15.1.3 Methods list
This area displays the methods defined on the generic function.

» Selecting amethod in thislist displays its description in the Description list.

» Double-clicking on a method displays its source code definition in the editor, if it is available.
The number of itemslisted in the list of methods is printed in the Matches box.

You can operate on any number of selected methods in this area using the commands in the Generic Function Browser's
Works > Methods menu. See 15.1.5 Perfor ming oper ations on the current function or selected methods for details.

15.1.4 Description list

The Description list shows a description of the method selected in the list of methods, or of the generic function itself if no
method is selected.

The following information is listed:

Method The method abject that is selected in the list of methods.
LambdaList The lambdallist of the generic function.
Combination The class of method combination for the generic function.

To operate on any of the items displayed in this area, select them and choose a command from the Works > Description
menu. This menu contains the standard action commands described in 3.8 Perfor ming oper ations on selected objects. You
can operate on more than one item at once by making a multiple selection in this area.

15.1.5 Performing operations on the current function or selected methods

You can use the Works > Function and Works > Methods menus to access commands that operate on the current generic
function or the selected methods. These commands are similar to commands available in other tools, and so you should find
them familiar.

The following commands are available from either the Works > Function or Works > Methods menus:

» The standard action commands let you perform a number of operations on the selected methods or the current function.
For details on the commands available, see 3.8 Perfor ming oper ations on selected objects.

» Choose Undefine... to undefine the current generic function or the selected methods so that they are no longer available
inthe Lisp image. Choosing Undefine... on a method undefines the method function and removes it from the methods of
the generic function. However, the generic function can still be called with its different method selection.

» The Trace submenu gives you the ability to trace and untrace the current generic function or the selected methods. See
3.10 Tracing symbols from tools for details about the commands available in this submenu.

160

15 The Generic Function Browser

15.2 Examining information about combined methods

The method combinations view lets you examine information about the combined methods of the current generic function.
You supply asignature and Generic Function Browser displays the combined methods of the generic function together with
the arguments that match that method combination point.

Method combinations show you the calling order of methods. They use the class precedence lists of the classes on which the
methods of a generic function operate. Being able to view these combinations gives you a simple way of seeing how before,
after, and around methods are used in a particular generic function.

You can display this view by clicking the Method Combinations tab of a Generic Function Browser, or from the Debugger
tool by choosing Debug > Frame > Method Combination in aframe containing a standard method. The method combinations
view is shown in Generic function browser displaying method combinations below.

Generic function browser displaying method combinations

% Generic Function Browser 1

Function: | CAP1:DR&wW-PINBEOARD-OBJECT v X2

Methods | Methiod Combinations
Argumentz Types: | [T CAPLARROW-FINBOARD-OBJECT] v | Sighatures. . |

FROGHM
CALL-METHOD
[METHOD CAP:DRAW-PINBOARD-OBJECT :EEFORE [T CAPI:PINEOARD-OBJECT])
CALL-METHOD
[METHOD CAP:DRAW-PINBOARD-OBJECT [T CAP:ARROW-PINEOARD-OBJECT]
[METHOD CaFl.DREAW-FINBOARD-OBJECT [T CAPLLIME-FINEOARD-OBJECT]]
[METHOD CaPlDREAW-FINBOARD-OBJECT [T CaFlPINEOARD-OBJECT])

D ezcrption:

Method: #<STANDARD-METHOD CAP:DRAW-PINMBOARD-OBJECT MIL [T CAPLARRDW-F
Lambda List: [CAPEOUTPUT-PAMNE CAPL:SELF &KEY 3= % AWIDTH :HEIGHT &aLLOw-O0THER-t
Combination; STANDARD
£ >

|Heady.

The method combinations view has a number of main sections, described bel ow.

15.2.1 Function box

Aswith the methods view, the name of the generic function being browsed is shown here. See 15.1.1 Function area for
details.

15.2.2 Signatures button

Click Signatures... to display the Method Signatures dialog shown in M ethod Signatures dialog. This dialog lists the
signatures for the methods defined on the current generic function. The signature of a method shows the types of the
arguments.

161

15 The Generic Function Browser

Method Signatures dialog

% Method Signatures

Restricted Clags:

Sighatures
Filter = | arrow M Matches 3

T CAFlEARROW-FINBEOARD-OBJECT
(T CAPI:DOUBLE-HEADED-ARROW/-PINEDARD-OBJECT]

[T CAPLLABELLED-ARROW -FINBOARD-OBJELCT]

ak. || Cancel || Apply

To list the method combinations of any defined method in the Generic Function Browser, select its signature from the list in
the Signatures panel of the Method Signatures dialog and click OK.

You can restrict the signatures displayed using Filter box in the usual way.

You can also restrict the display with the Restricted Class box. See 15.2.6 Restricting displayed signatures by class for
details.

15.2.3 Arguments types box

The Arguments Types: box is used to specify asignature, in order to see the method combinations. You can specify a
signature here by either:

» Choosing a signature using the Method Signatures dialog, as described in 15.2.2 Signatur es button.

* Typing the signature list directly and clicking +".

The method combinations for the relevant method are displayed in the list of method combinations.

15.2.4 List of method combinations

Themain list in the method combinations view shows method combinations for the signature specified in the Arguments
Types: box.

162

15 The Generic Function Browser

» Selecting any method in the list displays its description in the Description: list.
» Double-clicking on any method in the list displays its source code definition in the editor, if it isavailable.

You can operate on any number of selected methods in this area using the commands in the Works > Methods menu. See
15.1.5 Performing operations on the current function or selected methods for details.

15.2.5 Description list

The Description list displays a description of any method selected in the list of method combinations. The same items of
information are shown as in the methods view; see 15.1.4 Description list.

To operate on any of the items displayed in this area, select them and choose a command from the Works > Description
menu. This menu contains the standard commands described in 3.8 Perfor ming oper ations on selected objects. You can
operate on more than one item at once by making a multiple selection.

15.2.6 Restricting displayed signatures by class

The Method Signatures dialog was introduced in 15.2.2 Signatures button. You can display this dialog by clicking
Signatures... in the Generic Function Browser.

By default, the Method Signatures dialog displays the signatures of all methods defined on the generic function. When there
are many methods, or when the distinction between different classesis not clear, this can be confusing.

To simplify the display, you can restrict the signatures displayed to a chosen class and its superclasses. To do this, enter the
name of the chosen classinto the Restricted Class box. You can click - which allows you to select from alist of all class
names which begin with the partial input you have entered. See 3.14 Completion for detailed instructions. Aswith similar
text input panesin the IDE, click + to confirm your choice, » to cancel the current setting.

163

15 The Generic Function Browser

Restricting the signatures by class

% Method Signatures

Restricted Clags:
CaPlaRROW-PINBOARD-OBJECT| v X EF‘?

Sighatures restricted to ARROW-PINBOARD-OBJECT
Filter = M Matches 3

i I:&F'ILINE PINEDﬂHDDBJEET] |
(T CAPI:PINBOARD-OBJECT]

ak. || Cancel || Apply

Once you have made a choice, only those signatures that contain the specified class or one of its superclasses are listed in the
Signatures restricted to... panel of the dialog. Thissimplified display is useful when there are alarge number of complicated
signatures.

Be aware of the difference between this approach and the use of the Argument box in the Signatures panel. Restricting
signatures confines the signatures offered in the dialog by means of the class of the signatures.

Click X to display the signatures for all methods defined once again.

15.3 Configuring the Generic Function Browser

Choose Tools > Preferences... or click &, and then select Generic Function Browser in the list on the |eft side of the
Preferences dialog.

Using the optionsin the Sort panel, you can sort the items in the Generic Function Browser as you can in many of the other
toolsin the LispWorks IDE.

Unsorted Displaysitemsin the order they are defined in.

By Method Qualifier Sorts items by the CLOS qudiifier of the method. This groups together any : bef ore, : after,
and : ar ound methods.

By Name Sorts items alphabetically by name. Thisisthe default setting.

164

15 The Generic Function Browser

By Package Sorts items alphabetically by package name.

For more information on sorting items, see 3.9.1 Sorting itemsin views.

You can also set the process package of the Generic Function Browser, and choose to hide package names in the display,
using the Package box. See 3.7 Displaying packages for full details.

You can aso control whether the Generic Function Browser displays the history toolbar by the option Show Toolbar, as
described in 3.1.8 Toolbar configurations.

165

16 The Search Files tool

16.1 Introduction

The Search Files tool gives you a convenient way of performing searches on directories, individual files or systems. You can
create a Search Files tool by choosing Tools > Search Files or clicking & in the Podium or use the keyboard accelerator
described in 3.1.5 Displaying tools using the keyboard. You can also start context-dependent searches, for example by
choosing Edit > Search Files... or Works > Systems > Search Files..., or from editor command such as Al t +X Search Files.

Out of necessity, this chapter makes some references to other tools in the environment which you may not yet be familiar
with. However, this chapter does not assume any prior knowledge of these tools.

The Search Files tool

“% Search Files 1

_ _ Flain Directaory
Search Specifications
Regexp Search Sting: | defmethod [] Case zensitive

Filenames Pattern: |;piwfork syibhE-0-0-04exampleshcapiv™ isp | B[] all files

Filter - X Matches 162 [| Hide edited

balloonzlizp {1} C:“Program FiIes“-.Lisp'w'u:urks"-.lil:n"-.E-D-El-D“-.e:-:amples"-.n::-h

chatlizp {2} C:\Program Files\Lizptaf arksSiBSE-0-0-0hexarmpleshcapit
cocoa-application izp {1} C:\Program Files\Lizpt/ork s5ibSE-0-0-04ex
othellalisp {10} C:%Program Files\LispforkssibsE-0-0-0%exampleshc:
remote-debugger lisp {47 C:\Program FilestLispiwforkssibsG-0-0-0%exe
rich-text-editor lisp - {3} C:\Program FilessLispiwork s ibsG-0-0-0%examp
simple-sprmboal-browser lisp {5} C:%Program Files\Lispia/orks5ib%6-0-0-0
optior-pane.lizp {1} C:\Program Files\Lizpfark s\ iBSE-0-0-0hexample
grid-mpllisp {85} C:\Program Files\Lispwork s ib4E-0-0-0%exampleshs
scroll-barlizp {13 C:\Program FileshLizptwfork s5iBSE-0-0-0hexamples'ic s

Bl
+-El
+El
Bl
+-El
+El
Bl
+-El
+El
B

Finished: 163 matches in 27 files (searched &3 files)

The Search Files tool has the following areas:

» Thetoolbar contains a dropdown list that chooses the kind of search to perform (Plain Directory was used in the
screenshot above). There are also buttons to start and stop a search, and to perform a query replace operation on the
matched lines.

166

16 The Search Files tool

» The Search Specifications arealets you specify what to search for and where to search. Thisareaisfilled in or partly
filled in automatically when you start a context-dependent search. You can aso enter suitable values directly, or modify
the existing values.

» Thefilter arealets you restrict the search results displayed in the main area.
» The main area displays the results of the last search in atree. You can expand each file to showed the matched lines

within it.

16.2 Performing searches

You can use the Search Files tool in two different ways.

* You can enter details of where to search and what to search for directly into the tool and click the & button. Thisis
described in more detail in 16.2.1 Entering Sear ch Specifications directly.

* You can use an Editor command or menu command that starts a context-dependent search. Thisis described in more
detail in 16.2.2 Using context-dependent sear ches.

All kinds of search other than Grep use a LispWorks regular expression (regexp). For details of the syntax of LispWorks
regular expressions see "Regular expression searching" in the Editor User Guide.

All kinds of search other than Grep actually operate on editor buffers (see 12.3 Displaying and swapping between buffers)
rather than files. The Search Filestool creates buffers when needed, which involves some overhead. Thereforeif you are
searching alarge number of files (or anumber of large files) which are not already opened in the Editor, a Grep search is best
because it operates directly on the files.

While the tool is searching, you can examine the results but you cannot change the search specifications. To stop a search,
click the & button in the toolbar.

16.2.1 Entering Search Specifications directly

To enter the search specifications directly, decide which kind of search to perform from the dropdown list in the toolbar and
then fill in the boxes in the Search Specifications area. The different search kinds are described below. You can aso hide the
search specifications by choosing Hide Search Area from the dropdown list in the toolbar.

16.2.1.1 Plain Directory searches

A Plain Directory search is used to search for a particular regexp in al files whose names match a particular pattern. Enter
the regexp in the Regexp Search String box and enter a set of filename patternsin the Filenames pattern box. You can press
Up or Down in the Filenames pattern box to complete physical directory components, as described in 3.14 Completion.

The filename pattern should be a complete filename and can use the following syntax to make it match more than onefile:
» Use* within the pattern to match any sequence of charactersin adirectory or file name.
» Use** within the directory part of the pattern to match any number of subdirectories.

Here are some examples of filename patterns:

*ox Matches all filesin the root directory.

subdir/*. txt Matches al t xt filesinroot/ subdi r.

exanpl es/**/*.1isp Matchesalllisp filesinroot/ exanpl es and its subdirectories. Thisissimilar to the pattern
shown in The Sear ch Filestool.

167

http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm

16 The Search Files tool

**[*zork*/*. bnp Matches all bnp filesin any directory under the root directory that contains zor k in its name.

See also the Match flat file-namestring option in 16.5.1 Search Parameter s for additional information.

If afilename pattern isa directory then al filesin that directory are searched.
Check Case sensitive to make the search match only the case of letters exactly as entered.

Check All files to ignore any list of File Types in the Preferences.

16.2.1.2 Root and Patterns searches

A Root and Patterns search is used to search for a particular regexp in al files whose names match one or more patterns
within adirectory. Enter the regexp in the Regexp Search String box, the starting directory in the Root Directory box, and a
set of filename patternsin the Pattern List box.

You can press Up or Down in the Root Directory box to complete physical directory components, as described in 3.14
Completion.

A Roots and Patterns search

“% Search Files 1

= - Root and Patterns IZE" LE'C E:

Search Specifications

Regexp Search Sting: |FARAMETER LCasze senzitive
Foot Directary: | C:APROGRAM FILESSLISPWORKSSLIBNS-0-0| B[] &l files

Pattern Lizt: | 22" pem ; capidl®4 lizp

Filter - M Matches: 2 [] Hide edited

—E| dh_param_512.pem {2} CAPROGRAM FILESWLISPWwWORESSLIBSE-0-0-C
- 7
= 4

Finished: 2 matches in 1 files (searched 11 files)

You can search subdirectories by including directory components (including wild components) in the Pattern List box.

Multiple filename patterns can be entered, separated by semicolons. Spaces before and after each pattern are ignored. Each
filename pattern should be a complete filename and can use the following syntax to make it match multiple files:

» Use* within the pattern to match any sequence of charactersin adirectory or file name.
» Use** within the directory part of the pattern to match any number of subdirectories.

* Use{nanel, nane2, ...} tomatch any one of namel, name2 and so on. Spaces before and after each name are
ignored.

168

http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm

16 The Search Files tool

Here are some examples of pattern lists:
i mages/*.* ; icons/*.*
{i mages,icons}/*.*

Both of these patterns match all filesin theroot/ i mages and theroot/ i cons directories.
**[{images, icons}/sunrise.{bmp,jpg,]jpeag}
**[images/sunrise.{bnp,jpg,jpeg} ; **/icons/sunrise.{bnp,jpg,]jpeg}

Both of these patterns match all fileswith the name sunri se. bnp, sunri se. j pg or sunri se. j peg in adirectory named
i cons ori mages, anywherein the root directory.

{maj , m n}or-events/{*-nane, date}/*.txt
maj or -event s/ {*-name, date}/.txt ; mnor-events/{*-nane, date}/.txt

{maj ,m n}or-events/date/*.txt ; {maj,mn}or-events/*-name/*.txt

Each of these three patterns matches al . t xt fileswhich arein adirectory dat e or adirectory that endswith - nane in the
maj or - event s or mi nor - event s directories.

See also the Match flat file-namestring option in 16.5.1 Sear ch Parameter s for additional information.

If afilename pattern is adirectory then all filesin that directory are searched.
Check Case sensitive to make the search match only the case of letters exactly as entered, asillustrated above.

Check All files to ignore any list of File Types in the Preferences.

16.2.1.3 System Search

A System Search is used to search for a particular regexp in all the files referenced by a LispWorks def syst emdefinition.
Enter the regexp in the Regexp Search String box and the system names in the System Names box. Multiple system names
can be entered, separated by semicolons.

Check Case sensitive to make the search match only the case of letters exactly as entered.

You can also do a System Search in a"system" defined by another source code manager such as ASDF, if you have
configured LispWorks appropriately. See 26.9 ASDF | ntegration for the details.

16.2.1.4 Known Definitions searches

You can use the Search Files tool to search in all files known to contain definitions. To do this, select Known Definitions in
the dropdown list in the toolbar. Then complete your other search specifications and click the & button.

169

16 The Search Files tool

A Known Definitions search

“% Search Files 1

k.o Definitions l:E" Q'C j:

Search Specifications
Fegexp Search Sting: | defur [] Case zensitive

Searching in: recorded definitions, loaded tagz databazes

Filter - X Matchesz 1,636 [| Hide edited

+-[E] abbrev.lisp {5} C:\Program Files\LispiaorkssibAsE-0-0-0% srcheditar,

+[E] auto-zavelisp 119} C:\Program Files\Lisphfork shibsE-0-0-0hzrcheditar,
+-E| bufferlizp {103} C:\Pragram Files\LispiaforksSibMNE-0-0-0% srcheditar’,
+E| cmodelizp {12} C:\Program Files\Lispia/orkssibsE-0-0-0hsrcheditart, #

Finished: 1686 matches in 82 files (searched 91 files)

A file is known to contain definitions in one of two ways.

A filewasloaded and executed a defining form which was recorded by the source location system. The associated source
files are searched when the list value of the variable dspec: *act i ve- fi nder s* contains the keyword : i nt er nal .

» Thefileisrecorded as alocation in atags database. Such files are searched when the list value of the variable
dspec: *acti ve-fi nder s* contains the path of the tags database.

See "Dspecs. Tools for Handling Definitions” in the LispWorks® User Guide and Reference Manual for more information
about definition recording and tags databases.

16.2.1.5 Searching editor buffers

You can use the Search Filestool to search in al currently open editor buffers. To do this, select Opened Buffers in the
dropdown list in the toolbar. Then complete your other search specifications and click the & button.

16.2.1.6 Grep searches

A Grep search is used to run an external program to search files and show the results in the tool. Enter the working directory
for the external program in the Root Directory box and the complete command line of the external program in the Grep
Command box.

170

16 The Search Files tool

A Grep search

“% Search Files 1

rE [rep v| € & 3
Search Specifications

Root Directary: | rogram FileshLizpwfork zhibhE-0-0-0hexamples.capiJapoutsh, li_"_
Grep Command: |m Files\Lisptforks\ibse-0-0-0%etcharep -n defmethiod * lizp ML

Filter X Matches 9 [] Hide edited

—E| bufferlayoutlizp {3} C:\Program Files\Lispiafark s\ ibSE-0-0-0hexanmple -
= 47 [defrmethiod capiinterpret-descrption [[zelf butfer-layout] desc int
= Bl : [defmethod capicalculate-constraintz [[zelf buffer-layout])
= 129 : [defmethod capi:calculate-lapout [[zelf buffer-layout] « pwidth b

—E] switchablelizp {1} C:“Program Files\Lisp'ork s\ ibSE-0-0-04examples'
= B3 [defmethod inhialize-instance :after [[zelf switchable-layouts-test]

Finished: 9 matches in 3 files

The external program istypically grep. exe, but other programs can be used as long as they print the matched linesin this
format:

filenane:|line-nunber |ine-text

When using grep. exe you generally need to pass the - n option and the filename argument NUL to force it to print the file
and line number in al cases. Thisisdone automatically when you invoke the Search Files tool by the Editor command Grep.

16.2.2 Using context-dependent searches

Context dependent searches take some information from the current window and invoke the Search Filestool to perform the
search. There are various Editor commands and menu commands that start a context-dependent search, as described below.

16.2.2.1 Context-dependent searches using Editor commands

Search Files Prompts for a search string and directory pattern and then performs a Plain Directory or Root
and Patterns search. If an existing Search Filestool is reused by this command and was last
doing aRoot and Patterns search, then the directory pattern is split to fill the boxes. Otherwise,
aPlain Directory search is performed using the directory pattern. If the directory pattern endsin
adash, then the default pattern is added to the end (see 16.5.1 Search Parameters).

Sear ch Files M atching Patterns

Prompts for a search string, root directory and set of filename patterns and then performs a Root
and Patterns search.

Search System Prompts for a search string and system name and then performs a System Search.

171

16 The Search Files tool

Grep Prompts for command line arguments to passto grep. exe and then performs a Grep search. The
grep command is created from these arguments, with a- n option and the filename argument
/ dev/ nul | asmentioned in 16.2.1.6 Grep sear ches.

16.2.2.2 Context-dependent searches using menu commands
Edit > Search Files...

Opens a Search Filestool in for aPlain Directory or Root and Patterns search, using the
directory associated with the current tool (in particular, the directory of the buffer displayed in an
Editor tool).

If an existing Search Filestool isreused by this command and was last doing a Root and
Patterns search, then the directory is placed in the Root Directory box. Otherwise, the directory
is placed in the Filename Patterns box for aPlain Directory search with the default pattern added
to the end (see 16.5.1 Search Parameters).

Works > Systems > Search Files...

Prompts for aregexp and performs a System Search in the currently selected system.

16.2.2.3 Search History

The Search Files tool keeps a history of previous searches and their results. You can revisit these searches using the & and =
buttons as described in 3.5 The history list.

16.3 Viewing the results

The results of a search are displayed in the main area of the tool, grouped by file. The file name, the number of matchesin
that file and the directory are shown. Select afile and expand it to see the line number and text of each line of that file that
matches. You can configure the tool to expand the items as they are added as shown in 16.5.2 Display.

When there are no matches to display, the Search Files tool displays a message which mentions the number of files searched.

16.3.1 Displaying in an Editor

Double-click on the filename to open an Editor tool showing that file and show the first match in that file. Similarly, double-
click on the line number to show that line in the Editor. Items that have been edited are shown with a different icon. You can
change an item to show as edited or not edited using the Mark Edited and Mark Not Edited commands on the context menu.

The Editor command Next Search Match can be used to move to the next item in the last Search Filestool that you used.

16.3.2 Linking to an Editor

You can arrange for an Editor tool to immediately display one of the search matches when you select it. To do this, choose
Link to Editor from the context menu in the main area of the Search Filestool. To remove the link, choose Link to Editor
from the context menu again.

Note: thisisequivalent to using Edit > Link from > Search Files 1 in the Editor tool.

172

16 The Search Files tool

16.3.3 Filtering the results

Use the Filter areato restrict the displayed results by a plain string match or aregular expression match, as described in 3.12
Filtering information.

Thefilter applies to the text in the match, not to the line number or file names.

16.3.4 Hiding certain results

When there are many resultsit can be useful to hide some which you know to be uninteresting. Select the lines you wish to
hide, raise the context menu and choose Hide (or pressthe Del et e key).

To restore hidden lines to the display, choose Unhide Others from the context menu.

16.4 Modifying the matched lines

After a search you might want to perform a replace operation within the matches, for example to rename afunction or add a
missing package prefix throughout your source code.

Todothis, click 2 or choose Query Replace... from the context menu in the results area to raise the Query replace in
matched lines dialog.

The Query replace in matched lines dialog

3 Query replace in matched lines
Regexp to replace: | prompt for
Replace by: capi:prompt-for
Save buffers: (® No () Yes () Corfirm
QK Cancel Change without confimation

Enter aregular expression to replace in the Regexp to replace: box. Enter the replacement text in the Replace by: box, and
click OK.

For each of the matched lines that also matches the regular expression, an Editor tool displays the file with a prompt in the
Echo Area. Type'y' or 'n' to make the replacement or not, for each match in turn.

The Save buffers buttons choose whether to automatically save the modified editor buffersto disk at the end (Yes), ask you
whether to save them (Confirm) or leave them in memory (No). To save the buffersin memory, see 12.8.1 Opening, saving
and printingfiles.

16.5 Configuring the Search Files tool

Various aspects of the Search Files tool's behavior and display can be configured. To do this, select Tools > Preferences...
and then select Search Files in thelist on the left side of the Preferences dialog.

173

16 The Search Files tool

16.5.1 Search Parameters

In the Search Parameters view of the Search Files preferences you can configure some aspects of searching operations.
Setting Search Parameter Preferences

General | Search Parameters | Display | File Types

Fattern

Pattern to add when na file name iz zpecified:
* lisp ;)

[] Match flat fle-namestring

Lirnitz
b aximum file zize to search:
1000000 L

 axirnurmn number of matches:
1000 W

Enter afile name pattern to add when invoking the tool from an Editor command in the Pattern to add when no file name is
specified box.

Check Match flat file-namestring if you want the tool to match filename component of patterns as aflat string, rather than a
name and type. If thisoption is not selected, then any text after thefinal . in the filename is treated as the type and is only
matched by similar text after the. in the pattern. For example, when Match flat file-namestring is not selected, the pattern
dir/ * p matchesi nt er p. exe, wherethe namei nt er p endswith p but does not matchfil e. | i sp, wherethenamefil e
endswith e. Conversely, when Match flat file-namestring is selected, dir/ * p matchesfil e. | i sp, where the file-namestring
file.lispendswithp, but doesnot matchi nt er p. exe, where the file-namestring i nt er p. exe endswithe.

You can specify alimit on the size of filesto search in the Maximum file size to search box. Thislimit represents the
maximum file size in bytes, and typical values can be selected from the dropdown list. If larger files are found during a
search, they are skipped and amessage . . . fi | es ski pped because they are bigger than... appearsatthetop
of the resultsin the main area.

You can specify alimit on the number of matches displayed by the tool in the Maximum number of matches box. Typical
values can be selected from the dropdown list. If more matches are found during a search, you are asked whether to stop
searching.

16.5.2 Display

You can configure the display of search results using the Display view.

174

16 The Search Files tool

Setting Display Preferences

General | Search Parameters | Dizplay | File Types
tdatch Line Color

Match linez are dizplaved ik thiz caolor

| Chooze...

Edited Line Calar
Edited lines are dizplaged in thiz colar

| Chooze...

Hesultz
Diizplay a filter
Expand items to izt the matches az they are found

Files shown: | “with separate filename and directaon w

Choose a color to display the text of unedited lines that show amatch in afile.
Choose a color to display the text of edited lines that show amatch in afile.
Check Display a filter to display a box that can be used to restrict which results are displayed. This shown by default.

Check Expand items to list the matches as they are found to cause the items grouped under each file to be expanded while
the search isrunning. The default isto leave them collapsed, alowing you to expand them yourself.

Under Files shown: you can choose how the name of each matching fileis displayed in the main results area. The values are:
With separate filename and directory

Displays the filename at the start and the complete directory name at the end.
As complete names Displays the full name of the file.

Relative to the search root

Displays the name of thefile relative to the root directory specified in the search parameters.

16.5.3 File Types

You can add specify which file typesto search in the File Types view.

175

16 The Search Files tool

Setting File Types Preferences

General | Search Parameters | Display | File Types
Exclude or [nclude Files by Mame

() e exclude list (%) Usze include list

E =clude files that match thesze patterns:

Include only files that match these patterms:

*lizp lzp Tl

Check Use exclude list if you want to exclude certain file types even though they match the pattern in the Search
Specifications boxes. Enter the patterns to exclude in the Exclude box, with multiple patterns separated by whitespace.

Check Use include list if you want to only include certain file types, even if the pattern in the Search Specifications should
alow other types. Enter the patternsto include in the Include box, with multiple patterns separated by whitespace.

You cannot choose both of these options simultaneously.

16.5.4 The External Grep Program

By default, for Grep searchesthetool runs grep on non-Windows platforms and a specific supplied gr ep. exe on Microsoft
Windows. The actual searching utility used can be configured with the variable | w: * gr ep- conmand* .

The arguments passed to the searching utility are constructed using the values of | w. *gr ep- fi xed- ar gs* and
| w. *gr ep- conmand- f or mat *. It is not be necessary to alter the default values unless you use a non-default value of
| w. *gr ep- command* or have a non-standard grep installed.

See the LispWorks® User Guide and Reference Manual for details of these Search Files tool configuration variables.

176

17 The Inspector

The Inspector isatool for examining objectsin your Lisp image. You can also use the Inspector to modify the contents of
objects, wherethisis possible.

To raise an Inspector window, choose Tools > Inspector or click & inthe Podium.

17.1 Inspecting the current object

It is sometimes more natural to invoke an Inspector on some object you are analysing. You can do thisin severa ways,
including using the Inspect menu command.

1. To create an example object, in the Listener, evaluate:
(make-instance 'capi:list-panel :itenms '(1 2 3 4))
2. Choose Works > Values > Inspect from the Listener's menu bar to see the Inspector tool window illustrated in I nspector.
Note that you have not displayed thel i st - panel on screen yet. You will do that in afew minutes.

Another way to inspect the current object (that is, the value of cl : *) inthe Listener isthe keystroke Ct rI +C Ctrl +I .

A general way to inspect the current object in most of the LispWorks toolsisto click the & button.

177

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

17 The Inspector
I nspector

“#% Inspector 1

List Panel | Local Slats

Filtker = H Matches 53

Attribute Walue

CAPL:GEOMETRY-CACHE H<CAPI:PANE-GEOMETRY ~
CAPEHELP-KEY T

CAPLHIMT-TABLE [INTERMNAL-MAS-HEIGHT T
CAPIIMTERMALS:HORIZOMTAL-SCROLL T

CaP:IMAGE-FUNMCTION MIL

CAPLIMAGE-LISTS MIL
CAPLIMNITIAL-FOCUS-TEM MIL
CAPIHIMTERMALS:INTERACTION SINGLE-SELECTION
CAPLEINTERFACE MIL
CAPl:INTERMAL-BORDER MIL
CaPl:ITEMS-CALLBACE. MIL
CAPIHMTERMALSITEMS-COUMNT-FUMNCTION LEMGTH
CAPIHMTERMALSITEMS-GET-FUNCTION SVREF

£

|Heady.

LIST-PAMEL: # <CAPL:LIST-PANEL [4 items] 20097016 =

17.2 Description of the Inspector tool

The Inspector has the following areas:

» At thetop of the Inspector, the tab of the main view shows the type of the object being inspected. There may be other
views depending on the type of this object. For classinstances, thereisaLlocal Slots view.

» A Filter area provides away of filtering out those parts of an object that you are not interested in.

» A ligt of attributes and values shows the contents of the object.

17.2.1 Adding a Listener to the Inspector

A small listener pane can be added to the Inspector tool, allowing you to evaluate Common Lisp formsin context, without
having to switch back to the main Listener tool itself. To add the listener pane to the Inspector, choose Show Listener from
the context menu in the attributes and values area.

178

17 The Inspector

17.3 Filtering the display

Sometimes an object may contain so many items that the list is confusing. If this happens, use the Filter box to limit the
display to only those items you are interested in.

This example below (continued from 17.1 Inspecting the current object) shows you how to filter the attributes list so that
the only slots displayed are those you are interested in.

Typer ep in the Filter box.
Using filtersto limit the display in the Inspector

“#% Inspector 1

List Parel | Local Slots

Filtker = |rep M Matches 2

Attribute
CAPI-IMTERMALS: ITEMS-EEPRESEHTATION #[1 2 3 4)
CAPI-IMTERMNALS:REPRESENTATION

|Heady.

LIST-PAMEL: # <CAPL:LIST-PANEL [4 items] 20097016 =

You can immediately see the slots with names that include "rep”. The names of the dlots, together with their slot values for
the object being inspected, are displayed in the attributes list. For example, the representation slot currently containsni | .

17.3.1 Updating the display

In some circumstances your object might get modified while you are inspecting it, so you should be aware that the inspector
display might need to be refreshed. To see this in the example continued from 17.3 Filtering the display:

1. Inthe Listener tool call (capi : contai n *), wherethe value of * should bethel i st - panel instance that you are
inspecting.

2. In the Inspector choose the command Tools > Refresh or click the [button. The Inspector should now appear asin The
filtered inspector display, refreshed below.

179

17 The Inspector

The filtered inspector display, refreshed

“#% Inspector 1

List Panel | Local Slots
Filter = |re M Matches 2

Attribute Walue

CAPIHMTERMALSITEMS-REFRESENTATION #1235 4]
CAPIHIMTERMALS:REPRESEMTATION H<Representation CAPWIN32-L

|Heady.

LIST-PAMEL: # <CAPL:LIST-PAMNEL [4 items] 21B40C36 =

Notice that the representation ot no longer hasvalueni | . Thel i st - panel instance has been modified by calling
capi : cont ai n, and the Inspector has been updated to show the new slot value.

17.4 Examining objects

The attributes and values list is the most interesting part of the Inspector. Each item in thislist describes an attribute of the
inspected object by displaying its name (the first field in each entry) and the printed representation of its value (the second
field). For example, the inspection of a CLOS object yields alist of its slots and their values. The description is called an
inspection.

When inspecting instances of CLOS classes, you can choose to display only those slots which are local to the class. By
default, al slots are displayed, including those inherited from superclasses of the class of the inspected object.

Continuing from the example 17.3.1 Updating the display:

1. Click > to remove the filter.
2. Select the Local Slots tab.
Severa dotsdefined locally for al i st - panel arelisted.

180

17 The Inspector

Inspector showing local slots of a CLOS instance

“#% Inspector 1

Lizt Panel | Local Slots

Filtker = M Matches 4

Attribute WValue

CAPLRIGHT-CLICK-SELECTION-BEHAVIOR :MO-CHAMGE
CAPL:SEARCH-CASE-SENSITIVE-P MIL
CAP:SEARCH-STRIMG-FUNCTION MIL
CaAPl:SEARCH-STRING-START MIL

|Heady.

LIST-PAMEL (lacal sloks only): #<CAPT:LIST-PAMEL [4 items] 2164DC36 =

Aswell as CLOS instances, other objects including lists and hash tables have multiple views available in the Inspector. For
example, alist can beviewed asaplist, aist, consor list if it has the appropriate structure.

17.5 Operating upon objects and items

The Works > Object and Works > Slots submenus allow you to perform the standard action commands on either the object
being inspected, or the dot values selected in the main list. The commands available are largely identical in both menus, and
so are described together in this section.

17.5.1 Examination operations

The standard action commands are available in both the Works > Object and Works > Slots menus, allowing you to perform a
variety of operations on the current object or any items selected in the list. For full details of the standard action commands,
see 3.8 Perfor ming oper ations on selected objects.

17.5.1.1 Example

Consider the following example, where a closure is defined:

(let ((test-button (nake-instance 'capi:button)))
(defun is-button-enabled ()
(capi: button-enabl ed test-button)))

This has defined the functioni s- but t on- enabl ed, which isaclosure over the variablet est - but t on, where the value of
t est - but t on isaninstance of the capi : but t on class.

1. Enter the definition of the closure shown above into a Listener.

2. Choose Works > Values > Inspect.

The Inspector examines the symbol i s- but t on- enabl ed.

3. Click on the FUNCTI ON slot to select the closure.

181

17 The Inspector

4. Choose Works > Slots > Inspect to inspect the value in the selected dlot.

The closure is inspected.

17.5.1.2 Recursive inspection

You can also double-click on an item in the attributes list to inspect its value. Most users find this the most convenient way to
recursively inspect objects.

To return to the previous inspection, choose History > Previous or click ¢ in the toolbar.

17.5.2 Examining attributes

The Works > Slots > Attributes submenu allows you to apply the standard action commands (described in 3.8.1 Oper ations
available) to the attributes rather than the values of those attributes.

For example, the Works > Slots > Attributes > Inspect command causes the Inspector to view the attributes, rather than the
values, of the selected dlots. Thisis useful when inspecting hash tables or lists, since the attributes (keys) might be composite
objects themselves.

17.5.3 Tracing slot access

The Works > Slots > Trace submenu provides four commands. When inspecting a CLOS object, code which accesses the
selected slot may be traced using these commands.

Break on Access causes a break to the debugger if the slot is accessed for read or write, either by a defined accessor or by
sl ot - val ue.

Break on Read causes a break to the debugger if the slot is accessed for read, either by a defined accessor or by
sl ot - val ue.

Break on Write causes a break to the debugger if the slot is accessed for write, either by a defined accessor or by
sl ot - val ue.

Untrace turns off tracing on the selected dlot.

The Works > Object > Trace submenu provides the same four options, but these commands control the tracing of all the slots
in the object.

17.5.4 Manipulation operations
Aswell as examining objects in the Inspector, you can destructively modify the contents of any composite object.

This sort of activity is particularly useful when debugging; you might inspect an object and see that it contains incorrect
values. Using the options available you can modify the valuesin the slots, before continuing execution of a program.

Choose Works > Slots > Set to change the value of any selected slots. A dialog appears into which you can type a new value
for the items you have selected. Previously entered values are available via a dropdown in this dial og.

Choose Works > Slots > Paste to paste the contents of the clipboard into the currently selected items.

182

http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm

17 The Inspector

17.5.4.1 Example

This example takes you through the process of creating an object, examining its contents, and then modifying the object.

1. Create a button as follows:

(setqg buttonl (rake-instance 'capi:button))

N

. Choose Works > Values > Inspect in the Listener to inspect the button in the Inspector.

w

. Inthe Listener, use the CAPI accessor but t on- enabl ed to find out whether but t on1 is enabled.
(capi : button-enabl ed buttonl)

Thisreturnst . So we see buttons are enabled by default. The next step is to destructively modify but t onl sothatitis
not enabled, but first we will make the Inspector display alittle simpler.

4. Choose Tools > Preferences... and select Inspector in thelist on the left side of the Preferences dialog. You can now
change the current package of Inspector tools.

5. Inthe Package box, replace the default package name with CAPI and click OK.
This changes the process package of the Inspector to the CAPI package, and the package name disappears from all the
dotslisted. This makesthe display alot easier to read.

6. In the Inspector, type enabl ed into the Filter box.
Button aobjects have alarge number of slots, and so it is easier to filter out the slots that you do not want to see than to
search through the whole list. After applying thefilter, only one slot islisted.

7. Select the dot enabl ed.

8. Choose the Works > Slots > Set... menu item.

A diaog appears into which you can type anew value for the slot enabl ed.

Entering anew slot value

“% Inspector 1 E|

Enter form [to be evaluated) for selected items:

il w

| ak. | | Cancel

9. Note that previously entered forms are available via adropdown in thisdialog. Enter ni | (or select it from the history)
and click on OK.

The attributes and values area shows the new value of the enabl ed dot.

10Click on the 2 button. This removes the filter and displays al the slots once again.

11To confirm that the change happened, type the following in the Listener. You should be able to recall the last command
using Al t +P or History > Previous.

(capi : button-enabl ed buttonl)

183

17 The Inspector

Thisnow returnsni |, as expected.

The next part of this example shows you how you can modify the sots of an abject by pasting in the contents of the
clipboard. This example shows you how to modify thet ext and f ont of but t onl.

12Type the following into the Listener and then press Ret ur n:

"Hello World!"

13Choose Works > Values > Copy to copy the string to the clipboard.

14Select the TEXT dot of but t on1 in the Inspector.

15Choose Works > Slots > Paste to pastethe” Hel | o Wor | d! " string intothet ext dot of butt onl.

Thissetsthet ext dot of but t on1 to the string.

16Enter the following into the Listener and press Ret ur n:

(let ((font (capi:sinple-pane-font buttonl)))
(if font
(gp: find-best-font
buttonl
(apply ' gp: make-font-description
(append (list :size 30)
(gp:font-description-attributes
(gp: font-description
(capi : sinpl e-pane-font buttonl))))))
(gp: make-font-description :size 30)))

Thisform simply calculates alarge font object suitable for the button object.

17Choose Works > Values > Copy to copy the font to the clipboard.

18Select the FONT dot of but t on1 in the Inspector.

19Choose Works > Slots > Paste to paste the font into the f ont slot of but t on1.

20Confirm the effect of these changes by displaying the button object. To do this, choose Works > Object > Listen.

This transfers the button object back into the Listener. As feedback, the string representation of the object is printed in
the Listener above the current prompt. The object is automatically transferred to the * variable so that it can be operated
on.

21In the Listener, type the following:

(capi:contain *)

This displays awindow containing the button object. Note that the text now reads "Hello World!", as you would expect, and
that the font size is larger than the default size size for buttons. Note further that you cannot click on the button; it is not

184

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

17 The Inspector

enabled. Thisis because you modified the setting of the enabl ed slot in the earlier part of this example.

17.5.5 Copying in the Inspector

You can easily copy objects in the inspector, ready for pasting into other tools.
To copy the inspected object itself use Works > Object > Copy.

To copy aslot value use Works > Slots > Copy.

To copy an attribute use Works > Slots > Attributes > Copy.

Similarly you can use Works > Object > Clip, Works > Slots > Clip or Works > Slots > Attributes > Clipto place the object
itself, adlot value or an attribute on the Object Clipboard, so that you can conveniently retrieve them later. See 8 The Object
Clipboard for details.

17.6 Configuring the Inspector

The Inspector Preferences allows you to set different display options including the standard options for sorting itemsin the
main list, displaying package information and controlling display of the Inspector toolbar, together with some additional
options specific to the Inspector. To do this, raise the Preferences dialog using one of the methods described in 3.2 Setting
preferences and select Inspector in thelist on the left side of the dialog.

The General tab of the Inspector Preferences

General | Listener

Sort Fackage
guﬂﬂﬂﬂed COMMOM-LISPUSER | v 2
JBy It
O E!ﬁ hznr?'ue Show Package Mames
O By Package Toolbar
Showw T oolbar
b sirnLarn
[ternz A0
Attribute Length | 100 "

Choose the sort option that you require from those listed in the Sort panel:

By Item Sorts items al phabetically according to the printed representation of the item.

By Name Sorts items a phabetically according to their names. Thisis the default setting.

By Package Sorts items alphabetically according to the packages of the name field.

Unsorted Leavesitems unsorted. Thisdisplaysthem in the order they were originally defined.

In the Package box, specify the name of the process package for the Inspector. Select Show Package Names if you want
package names to be displayed in the Inspector. See 3.7 Displaying packages for more details.

The Maximum panel contains optionsto let you configure the amount of information displayed in the Inspector.

Choose avaue from the Attribute Length drop-down list box to limit the length of any attributes displayed in the main list

185

17 The Inspector

(that is, the contents of the first column in thelist). The default value is 100 characters, and the minimum allowable value is
20 characters.

Choose avalue from the items drop-down list box to limit the number of items displayed in the main list. By default, 500
items are shown.

If you inspect an object that has more than the maximum number of items, then the excess items are grouped together in alist
which itself becomes the last item displayed in the main list. Double-clicking on this inspects the remaining items for the
object.

If necessary, the Inspector splits any remaining itemsinto several lists, al linked together in this fashion. For instance, if you
limit the maximum number of itemsto 10, and inspect an object with 24 items, the Inspector displays the first 10, together
with an 11th entry, which is alist containing the next ten items. Double-clicking on this shows the next ten items, together
with an 11th entry, which isalist containing the last four items. Thisisillustrated in Displaying an object with moreitems
than can be displayed below.

Displaying an object with more items than can be displayed

CEETLITRFTS-MT I - H™"
CEZL §Har=iR H
V'l solalE ARMLLGHENT Y Haa
Casl::CIrime HIL
ChET: 0TS TRATTOT HZ
CERT-TITE=HEL GTHATSE T
CE=L) | FIH H
LW SRS g LECHE L Ty Hoa
Casl: tGECETRV-[alEE ROCHFL: o PAME-GECHETTE [ZT1L<HLL ot Z1L HIL I0FIDZE
ChET: (RS F-CRILTACE HIL
PRI CICKFT:cHTET-TAT™E i BS-PTET T HTT-ITTHET =Tk
) ,
|l"lh L Caml o EITT TABLE [HECRID T (ZIW HECRLD TEST SELCHT (ZA WOTH T
| e 1 AP =CETZRHALS : HIRTIONTAL-SCR0LL XI5
k- CLFTITETOETECR HTL

L I HTFRTLL-RIELTE TT.
o4 oA ATE AL
_,r‘"I 5 IZA FOEMT MIL|
. i £ IZA LIST MIL

I
);"- F LPT O ERANIGIE -HAFE BTi
" 3 Pamfor BLGALLL Ve akEnlk S0k
e DDLU VAL LSTESHALZ:TEST “Hy Dicplumy Dam™ 0 LD (oAF2iUSTATZT 21000

010 jCRTD-INTESMALE:TEST "By Dizpley Da=x™)
1 U1l jERFT: dTROMTED NIL]
VIE jRRTT-TETESHAL S TERTTOAL- 575000 110

h
I\
|I e M,
)

h :
"N'\'H.)))’/ L 1 H feld_Ehko-HLHIEH oA

17.7 Customizing the Inspector

The Inspector Preferences provides two additional optionsin the listener view.

The Listener tab of the Inspector Preferences

General | Listener

Automatically inspect liztener values.
Eind ¥ to the cument inspector object.

These options control the interaction between the listener pane of the Inspector, if it has one, and the Inspector itsalf.

See 17.2.1 Adding a Listener to the Inspector for details of how to add alistener pane in the Inspector.

Check Bind $ to the current inspector object to bind the variable $ to the current object in the Inspector in the listener.

186

17 The Inspector

Check Automatically inspect listener values to inspect listener values automatically.

Both these options are checked by defaullt.

17.8 Creating new inspection formats

There is a default inspection format for each Lisp object.

The Inspector tool can be customized by adding new inspection formats. To do this, you need to define new methods on the
generic function get - i nspect or - val ues.

get -i nspect or - val ues takes two arguments. object and mode, and returns 5 values: names, values, getter, setter and
type.

object The object to be inspected.

mode This argument should be either ni | or eql to some other symbol. The default format for
inspecting any object isitsni | format. Theni | format isdefined for all Lisp objects, but it
might not be sufficiently informative for your classes and it may be overridden.

names The dot-names of object.

values The values of the dots corresponding to names. The Inspector displays the names and valuesin
two columns in the scrollable pane.

getter Thisiscurrently ignored. Useni | .

setter Thisisafunction that takes four arguments: an object (of the same class as object), a dot-name,

an index (the position of the slot-name in names, counting from 0), and finally anew-value. (Itis
usual to ignore either the slot-name or the index.) This function should be able to change the
value of the appropriate slot of the given object to the new-value.

type Thisisthe message to be displayed in the message area of the Inspector. Thisistypicaly either
mode or - if modeisni | - then the name of the class of object.

17.8.1 Example

Consider the following implementation of doubly-linked lists.

(i n-package "DLL")

(defstruct (dlIl (:constructor construct-dll)
(:print-function print-dll))
previ ous-cel |
val ue
next-cell)

(defun make-dll (& est list)
(loop with first-cell
for element in |ist
for previous = nil then cell
for cell = (construct-dll :previous-cell cell
:val ue el enment)
doi ng
(i f previous
(setf (dll-next-cell previous) cell)
(setqg first-cell cell))
finally

187

http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm

17 The Inspector

(return first-cell)))

efun print- st ream dept
def i di 1 (dll d h
(decl are (ignore depth))
(format stream "#<dll-cell ~A>" (dll-value dll)))

You can inspect asingle cell by inspecting the following object:

(dlI::make-dll "mary" "had" "a" "little" "lanmb")
The resulting Inspector showsthreedots: di | : : previ ous-cel | withvaueni |, val ue with value" mary" and
dli I::next-cell withvalue#<dl|-cell had>.

In practice, you are more likely to want to inspect the whole doubly-linked list in one window. To do this, define the
following method on get - i nspect or - val ues.

(i n-package "DLL")

(defun dll-root (object)
(loop for try = object then next
for next = (dll-previous-cell try)
whi | e next
finally
(return try)))

(defun dll-cell (object number)
(l oop for count to nunber
for cell = object then (dll-next-cell cell)
finally
(return cell)))

(def met hod | w: get -i nspector-val ues ((object dll)
(rmode (eql 'followlinks)))
(let ((root (dll-root object)))

(val ues
(loop for cell = root then (dll-next-cell cell)
for count fromoO
while cell
col l ecting count)
(loop for cell = root then (dll-next-cell cell)
while cell

collecting (dll-value cell))
nil
(1 anmbda (obj ect key index new-val ue)
(decl are (ignore key))
(setf (dll-value (dll-cell (dll-root object) index)) newvalue))
"FOLLOW LI NKS")))

Inspecting the same object with the new method defined displays a new tab in the Inspector Follow Links. This showsfive
dots, numbered from 0 to 4 with values" mar y" "had" "a" "little" and"| anb".

The following example adds another method to get - i nspect or - val ues which inspects cells rather than their value dots.
The cells are displayed in aFollow Cells tab of Inspector. The setter updates the next - cel | . Use this new mode to inspect
the" | anb" cell - that is, double-clink on the" | anmb" cell in the Follow Cells tab - and then set itsnext - cel | dlot to
(make-dl I "with" "mnt" "sauce").

(i n-package "DLL")

188

17 The Inspector

(def met hod | w. get -i nspector-val ues
((object dil) (node (eql '"followcells)))
(let ((root (dll-root object)))

(val ues
(loop for cell =root then (dil-next-cell cell)
for count fromoO
while cell
col l ecting count)
(loop for cell =root then (dil-next-cell cell)
while cell

collecting cell)
ni
#' (1l anbda (obj ect key index new val ue)
(declare (ignore key))
(setf (dll-next-cell (dll-cell (dll-root object) index)) newvalue))
"FOLLOW CELLS")))

The extended sentence can now be inspected inthef ol | ow | i nks mode.

189

18 The Symbol Browser

18.1 Introduction

The Symbol Browser allows you to view symbolsin your LispWorks image found by a match on symbol names, in a manner
anal ogous to the Common Lisp function apr opos but with additional functionality.

You can restrict the search to specified packages. You can then filter the list of found symbols based on their symbol name,
restrict it to those symbols with function or variable definitions and so on, and restrict it based on the symbols' accessibility.

The Symbol Browser also displays information about each selected symbol and allows you to perform operations on the
symbol or objects associated with it, including transferring these to other tools in the LispWorks IDE by using standard
commands.

To raise a Symbol Browser, choose Tools > Symbol Browser or click & in the Podium.

Also the editor command Al t +X Apr opos raises a Symbol Browser tool using the supplied substring to match symbol
names.

Also the standard action command Browse Symbols Like is available in Context menus and also in the Works > Expression
menu of editor-based tools. This command raises a Symbol Browser using the current symbol to match symbol names.

18.2 Description of the Symbol Browser

190

http://www.lispworks.com/documentation/HyperSpec/Body/f_apropo.htm

18 The Symbol Browser

The Symbol Browser

" Symbol Browser 1

Search Sethings

Begexp: |[OPEM v X
S hiow

Tupe: | Al A oceszzibility: | Select Packages... |

Filter - X Matches: 185

Home Package M ame

DEBEG FRINT-OPEM-FRAMES™

DEG COFY-0PEM-FRAME
GET-OPEM-FRAME
MakE-OFEM-FRAME

OPEM-FRAME-

Home Package: DBG [Internall
Mame: DBG:GET-0PEM-FRAME
Defirtions DEFUM
Function: #<Function DBEG::GET-OPEMN-FRAME 2092ED D&
Lambda Lizt: [SP LIMIT]

Docurmentation:

Build an open frame and zkip until we encounter the end of the stack or the beginning
af the frame

The Symbol Browser has five main areas.

18.2.1 Search Settings
The main search setting is the Regexp: box.

Enter astring or regular expression in the Regexp: box and press Ret ur n or click the + button. Thiswill match symbol
names of interned symbolsin asimilar way to apr opos, except that it is a case-insensitive regular expression match.

The remainder of this section describes the other search settings.

18.2.1.1 Packages

By default symbolsin al packages are listed, but you can restrict the search to certain packages by clicking the Select
Packages... button. Thisraises adialog which you usein just the same way as the Profiler's Selected Packages dialog - see
23.4.1.2 Choosing packages for instructions.

191

http://www.lispworks.com/documentation/HyperSpec/Body/f_apropo.htm

18 The Symbol Browser

When you have selected packages only those symbols whose home package is amongst the selected packages are shown,
unless Accessibility (see 18.2.1.3 Accessibility) is set to All, in which case symbolsinherited by the selected packages are
also shown.

18.2.1.2 Type

By default all symbols found are displayed but you can restrict thisto functions, classes, structures, variables, constants,
keywords or others (meaning the complement of all these subsets). If you wish to see, for instance, only those symbols with a
function or macro definition then select Functions in the Type option pane.

18.2.1.3 Accessibility

You can aso restrict the display to just those symbols which are present, external or internal in their home package. Select
the appropriate item in the Accessibility option pane:

All Show all accessible symbolsin the selected packages.
Present Show all present symbolsin the selected packages.

Externals Only Show only external symbolsin the selected packages.
Internals Only Show only internal symbolsin the selected packages.

18.2.2 Filter area

Thefilter areaallows you to filter the display of the symbolslist in the same way as other tools. See 3.12 Filtering
information for details.

18.2.3 Symbols list

The symbols list displays the matched symbol names alongside the name of their home package. You can sort the list by
clicking on the Home Package or Name header at the top of each column.

On Microsoft Windows the foreground text of unselected itemsin the symbolslist is colored according to definitions on the
symbol, asfollows:

Green fbound, and also declared special
Purple fbound, and also a class

Red fbound

Blue declared special

White declared special, and a class
Orange aclass

Black no definition

Select an item in the symbols list to display information about the symbol in the Description and Documentation areas, or to
perform an operation on it. You may select multiple symbols, but in this case only the description and documentation for the
first selected symbol is displayed.

You can transfer the selected symbol or symbolsto other tools, for example by Works > Symbol > Listen or Works > Symbol
> Inspect.

192

18 The Symbol Browser

To unintern the selected symbol or symbols, choose Works > Symbol > Unintern....

18.2.4 Description area

When you select an item in the Symbols list, various properties of that symbol are displayed in the Description area as
appropriate. These can include:

Home Package The name of the symbol's home package and an indication of whether it is external or internal.
Name The symbol name

Definitions The dspec class names for any definitions known to the system.

Visible In The names of the packages (other than the home package) that the symbol isvisiblein.
Function The function or macro function.

Lambda List The lambdalist of the function or macro, if known to the system.

Plist The symbol plist, if non-nil.

Value The value of avariable or constant.

Class The class name, representing the class object.

Select an item in the Description list to perform an operation on it. For example, if the symbol has a class definition, you can
select the Class: item and do Works > Description > Listen to transfer the class object to the Listener tool.

18.2.5 Documentation area
When you select an item in the Symbols list, documentation known to the system is displayed in the Documentation area.

Note: the documentation shown isthat returned by the Common Lisp function docunent at i on.

18.3 Configuring the Symbol Browser

Using the Symbol Browser Preferences, shown in Symbol Browser Preferences below, you can configure some properties
of thetool. Choose Tools > Preferences... or click # and select Symbol Browser in the list on the left side of the Preferences
diaog.

Symbol Browser Preferences

General
Sort Fackage
© Unsarted COMMON-LISP-USER v %
g El; E::;age Show Package Mames
Toolbar
Showw T oolbar

To configure the default sort order for the Symbols list, select Unsorted, By Name or By Package under Sort.

To configure the display of package namesin the Description area, alter the Package settings as described in 3.7 Displaying
packages.

193

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

18 The Symbol Browser

You can control whether the Symbol Browser displays the history toolbar by the option Show Toolbar, as described in 3.1.8
Toolbar configurations.

Click oK in the Preferences dialog to see your changes in the Symbol Browser tool and save them for future use.

194

19 The Interface Builder

The Interface Builder helps you to construct graphical user interfaces (GUIs) for your applications. You design and test each
window or dialog in your application, and the Interface Builder generates the necessary source code to create the windows
you have designed.

You then need to add callbacks to the generated code to connect each window to your application routines.

Asyou create each window, it is automatically displayed and updated on-screen, so that you can see what you are designing
without having to typein, evaluate, or compile large sections of source code.

Aswell as making code development significantly faster, the Interface Builder allows you to try out different GUI designs,
making it easier to ensure that the final design best suits your users' needs.

Note: the Interface Builder is intended for testing interface designs and for generation of theinitial versions of the source
code that implements your design. It is not suitable for the complete development of complex interfaces. Eventually you
should work on the source code directly using the Editor tool (see 12 The Editor).

Note: the Interface Builder is available on Windows, Linux, x86/x64 Solaris and FreeBSD platforms only.

19.1 Description of the Interface Builder

The Interface Builder has three views that help you to design a window.
» Thelayouts view is used to specify the elements in each window or dialog of an application.
» The menusview is used to create menus and menu items for each window of an application.
» The code view lets you examine the source code that is automatically generated as you create an interface.

The Interface Builder has its own menu bar, containing commands that let you work with aloaded interface, or any of its
components.

To create an Interface Builder, choose Tools > Interface Builder from the podium.

195

19 The Interface Builder

The Interface Builder

‘% Interface Builder 1

Interface Object

Interface:; |INTERFACE-

Layouts | Menus | Code

Layouts | Basic Panes | Text Input Panes | Graph Panes | Editor Panes | Flange Panes | Buttons | Pinboard Objects | Interfaces

’ Column “ Filtering “ Finboard “ Simple ” Static H Tab]
| Docking || Gid || Bow || SiplePinboard || Switchable |
ﬂﬂeady.

Because the Interface Builder generates source code which uses the CAPI library, this chapter assumes at least a minimum
knowledge of the CAPI. Seethe CAPI User Guide and Reference Manual for details.

A complete example showing you how to use the Interface Builder to design an interface, and how to integrate the design
with your own code, isgiven ininthe last section of this chapter (see 19.9 Example: Using The Interface Builder). You
are strongly advised to work through this example after reading this chapter, or in conjunction with it.

19.2 Creating or loading interfaces

In the context of this chapter, an interface refers to any single window which is used in an application. Thus, an editor, an
Open File dialog, or aconfirmer containing an error message are al examples of interfaces. The GUI for acomplete
application is liable to comprise many interfaces. You can load as many different interfaces into the Interface Builder asyou
like, although you can only work on one interface at once. More formally, the classcapi : i nt er f ace isthe superclass of all
CAPI interface classes, which isthe set of classes used to create elements for on-screen display. You can load any code
which defines instances of this class and its subclasses into the Interface Builder.

Once you have invoked the Interface Builder, you can create new interfaces, or load any that have already been savedin a
previous session. You must load or create at |east one interface before you can proceed.

19.2.1 Creating a new interface

When you first start the Interface Builder, anew interfaceis created for you automatically. You can also choose File > New or
click on [to create anew interface. A blank window, known as the interface skeleton, appears on-screen, as shown in
Skeleton window. The interface skeleton contains no layouts or panes, or menus.

196

19 The Interface Builder

Skeleton window

“w Interface-1

You can use File > New to create as many interfaces as you want; they are all displayed as soon as you create them. Since
you can only work on one interface at atime, use the History > Items submenu or the ¢ and = toolbar buttons to switch
between different interfaces that are currently loaded in the Interface Builder.

Asan dternative, type the name of an interface directly into the Interface text box and press Ret ur n to create anew
interface, or to switch to an interface which is already loaded.

19.2.2 Loading existing interfaces

In the Interface Builder, choose File > Open... or click (2 to load an existing interface. You can load any CAPI interface,
whether it is one that you have designed using the Interface Builder, or one that has been hand-coded using the CAPI. You
can load as many interfaces as you want, and then use the History > Items submenu to swap between the loaded interfaces
when working on them.

To load one or more existing interfaces:
1. Ensure the Interface Builder is the active window, and choose File > Open....
A file prompter dialog appears.

2. Choose afile of Common Lisp source code.

You should choose afile that contains the source code for at least one CAPI interface. If the file does not contain any
such definitions, a dialog appears informing you of this.

Once you have chosen a suitablefile, for example the LispWorks library file
exanpl es/ capi / buttons/ buttons. |isp, adiaog appearslisting al the interface definitions that have been found
in the file, as shown in Choosing which interfacesto load into the Interface Builder. Thislets you choose which

197

19 The Interface Builder

interface definitions to load into the Interface Builder. By default, al the definitions are selected. You can select as many
or as few of the listed interfaces as you like; the All or None buttons can help to speed your selection. Click Cancel to
cancel loading the interfaces altogether.

Choosing which interfaces to load into the Interface Builder

% Interface Builder 1

Load interffaces fram file:

: k.

Irmage-Buttan-E =ample

Image-Buttor-E Rarmple-2 Al
Mone
Cancel

3. Select just the Button-Test interface and click OK to load it into the Interface Builder.

Note: the File > Open... command in other tools does not display thisdialog. To load an interface definition, ensure the
Interface Builder window is active.

19.3 Creating an interface layout

The default view in the Interface Builder is the layouts view, as shown in Displaying the layoutsin the I nterface Builder.
You use this view to specify the entire GUI, with the exception of the menus. Click the Layouts tab to swap to this view from
any other in the Interface Builder.

198

19 The Interface Builder

Displaying the layouts in the Interface Builder

‘% Interface Builder 1

Interface Object
. -
Interface: |\ BUTTOM-TEST

Layouts | Menus | Code

Puizh-Button
R < Radio-Button
Check-Buttan
Puzh-Button-Fanel
Check-Button-Panel
R adio-Button-Fanel
Op

Button-T est Default-Lapoute

Layouts | Basic Panes | Text Input Panes | Graph Panes | Editor Panes | Flange Panes | Buttons | Pinboard Objects | Interfaces

’ Column “ Filtering “ Finboard “ Simple ” Static H Tab]
| Docking || Gid || FRow || SimplePinboard || Switchable |
ﬂﬂeady.

The Interface Builder has three sectionsin the layouts view.

19.3.1 Interface box

The interface text box displays the name of the current interface; the interface that you are currently working on. Note that
there may be several other interfaces loaded into the Interface Builder, but only one can be current.

To switch to another loaded interface, or to create a new interface, type the name of the interface into this area and press
Ret ur n. You might find it useful to type just afew characters and then press Up or Down to invoke in-place completion. The
interface you specify appears and its layouts are shown in the Interface Builder.

19.3.2 Graph area

Thisareadisplays, in graph form, the CAPI elements of the current interface.

The context menu allows you to insert CAPI elements and al so gives you access to the standard graph commands described in
6 Manipulating Graphs.

By default, the graph islaid out from left to right. The main interface name is shown at the extreme left, and the layouts and
elements defined for that interface are shown to the right. The hierarchy of the layouts (that is, which elements are contained
in which layouts, and so on) isimmediately apparent in the graph.

An item selected in the graph can be operated on by commands in the Object menu in the Interface Builder's menu bar. This
menu contains the standard action commands described in 3.8 Perfor ming oper ations on selected objects, aswell asa
number of other commands described throughout this chapter.

To remove alayout or pane from your interface definition, select it in the graph area and choose Edit > Cut or pressthe %
toolbar button.

199

19 The Interface Builder

19.3.3 Button panels

At the bottom of the Interface Builder is atab layouts, each tab of which contains a number of buttons. These tabs list the
classes of CAPI elements that can be used in the design of your interface.

 Click the Layouts tab to see the different types of layout that you can use in an interface. Thisisthe default tab and is
displayed when you first switch to the layouts view. All other elements must be contained in layouts in order for them to
be displayed.

» There arefive different types of Panestab: Basic, Text Input, Graph, Editor and Range. Click on each tab to see the
different types of pane that you can use in an interface. Note that Basic Panes includes Divider, allowing you to add
dividers to column and row layouts.

 Click the Buttons tab to see the different types of button that you can use in an interface.
* Click the Pinboard Objects tab to see the different types of pinboard object that you can use in an interface.

 Click the Interfaces tab to see a number of types of pre-defined interface objects that you can use in an interface. These
are interfaces which are already used in the LispWorks IDE, and which may be useful in your own applications.

The precise list of items available depends on the package of the current interface. To change this package, choose Interface
> Package... and specify a package namein the dialog that appears. You must specify a package which already existsin the

Lisp image.

Note: The package of the current interface is not necessarily the same as the current package of the Interface Builder. Like al
other toals, the Interface Builder has its own current package, which affects the display of symbol names throughout the tool;
see 3.7.1 Specifying a package for details. By contrast, the package of the current interface is the package in which the
interface is actually defined. The window elements which are available for the current interface depend on the visibility of
symbolsin that package. By default, both the package of the current interface and the current package of the Interface
Builder are set to CL- USER by defaullt.

An element chosen from any of these areas can be operated on by commands in the Object menu. This menu contains the
standard action commands described in 3.8 Perfor ming oper ations on selected objects.

19.3.4 Adding new elements to the layout

To add anew element to the layout, click the relevant button in any of the tabsin the button panel. The element is added as
the child of the currently selected graph node. If nothing is currently selected, the element is added as the child of the last
selected node.

Because construction of the interface layout is performed by selecting CAPI elements directly, you must be familiar with the
way that these elements are used in the construction of an interface.

For instance, the first element to add to an interfaceislikely to be a CAPI layout element, such as an instance of the

row | ayout classor col um- | ayout class. Not surprisingly, these types of element can be found in the Layoutstab of the
button panel. Elements such as buttons or panes (or other layouts) are then added to this layout. In order to generate CAPI
interfaces, it isimportant to understand that all window elements must be arranged inside alayout element in this way.

When you add an element to the design, two windows are updated:
» Thegraphinthe layout view is updated to reflect the position of the new element in the hierarchy.
» Theinterface skeleton is updated; the element that has been added appears.

When you add an item, an instance of that classis created. By default, the values of certain attributes are set so that the
element can be displayed and the hierarchy layout updated in a sensible way. This typically means that name and title
attributes are initialized with the name of the element that has been added, together with a numeric suffix. For instance, the
first output pane that is added to an interface is called Qut put - Pane- 1. You should normally change these attribute values

200

19 The Interface Builder

to something more sensible, as well as set the values of other attributes. See 19.6 Perfor ming oper ations on obj ects for
details about this.

For a practical introduction to the process of creating an interface using the Interface Builder, see 19.9 Example: Using The
Interface Builder.

19.3.5 Removing elements from a layout

To remove an element from alayout, select it in the graph area of the Layouts view and choose Edit > Cut or pressthe %
toolbar button.

19.3.6 Creating different views

If you are familiar with other tools in the LispWorks IDE, you know the importance of different views for an individual tool.
The Interface Builder itself provides separate views for looking at the layouts, the menu system, and the code produced for
each interface. You can achieve thisin your own applications by adding a tab layouts to your interface.

By default, the first layout created is the default view for the interface. By specifying, elsewhere in the interface, callbacks
which display the other layouts, you can design a mechanism which allows you to switch between views, within the same
interface. Thisishow all the toolsin the LispWorks IDE have been designed; the callbacks specified for menu itemsin the
View menu allow different layouts to be displayed within the same interface.

19.3.7 Inheriting parts of the layout

If you are designing an interface which uses different layouts to produce a number of views, you may want different viewsto
share some elements; for instance, the same list panel, or even awhole layout, can appear in several different views. Thisis
done by creating separate objects of the same type, and then altering the attributes of one so that they match the attributes of
the one which you want to inherit.

For instance, to inherit adisplay pane called DI SPLAY- PANE- 1:
1. Ensure that DI SPLAY- PANE- 1 has already been created in the interface.
2. Select the layout that you want the inherited display pane to appear in.
3. Create anew display pane by selecting the correct item in the Panes area and pressing Return.
4. Change the attributes of the new display pane so that they match the attributes of DI SPLAY- PANE- 1.

The fact that two layouts now contain the same display pane is reflected in the graph. For details on how to change the
attributes of an object, see 19.6.4 Setting the attributes for the selected object.

19.4 Creating a menu system

The menus view of the Interface Builder can be used to define a menu system for the current interface. Click the Menus tab
to switch to the menus view from any other view in the Interface Builder. The Interface Builder appears as shown in
Displaying the menu structure of an interface.

201

19 The Interface Builder

Displaying the menu structure of an interface

“% Interface Builder 1

Interface Object

. & -
Interface: BUTTOM-TEST

Layouts | Menuz | Code

Button-T este kenu-Bar

The menus view has two areas, together with six buttons which are used to create different menu elements. Aswith layouts,
it isimportant to understand how CAPI menus are constructed. See the CAPI User Guide and Reference Manual for details.

19.4.1 Interface box

This box isidentical to the Interface box in the layouts view. See 19.3.1 I nterface box for details.

19.4.2 Graph area

The graph areain the menus view is similar to the graph areain the layouts view. It displays, in graph form, the menu system
that has been defined for the current interface. Menu items are displayed as the children of menus or menu components,
which in turn are displayed as the children of other menus, or of the entire menu bar.

Like the layouts view, a new menu element is added as the child of the currently selected item in the graph, or the last
selected element if nothing is currently selected.

19.4.3 Adding menu bars
A single menu bar is created in any new interface by default. This appearsin the graph area as a child of the entire interface.

If you decide to delete the menu bar for any reason, use the Menu Bar button to create a new one.

19.4.4 Adding menus

To add amenu, click Menu on the button bar at the bottom of the Interface Builder. Each menu must be added as the child of
the menu bar, or as the child of another menu or menu component. In the first case, the new menu is visible on the main
menu bar of the interface. Otherwise, it appears as a submenu of the relevant menu.

Newly created menus cannot be selected in the interface skeleton until menu items or components are added to them.

By default, new menus are called MENU- 1, MENU- 2 and so on, and appear in the interface skeleton as Menu-1, Menu -2 and
so on, asrelevant. See 19.6 Perfor ming operations on objects for details on how to change these default names.

202

19 The Interface Builder

19.4.5 Adding menu items

To add amenu item to the current interface, click Iitem on the button bar. Each menu item must be added as the child of either
amenu or amenu component. If added as the child of a menu component, new items have atype appropriate to that
component; see 19.4.6 Adding menu components for details.

By default, new menu items are named | TEM 1, | TEM 2, and so on, and are displayed in the interface skeleton as Item-1,
Item-2 and so on, asrelevant. See 19.6 Perfor ming oper ations on objects for details on how to change these default names.

19.4.6 Adding menu components

Menu components are an intermediate layer in the menu hierarchy between menus and menu items, and are used to organize
groups of related menu items, so as to provide a better structure in a menu system.

There are three types of menu component which can be defined using CAPI classes:
 Standard menu components.
» Radio components.

» Check components.

19.4.6.1 Standard menu components

A standard menu component can be used to group related menu commands that would otherwise be placed as direct children
of the menu bar they populate. This offers several advantages.

» Related menu items (such as Cut, Copy, and Paste) are grouped with respect to their code definitions, aswell astheir
physical location in an interface. This encourages alogical structure which makes for a good design.

» Using standard menu components to group related items is particularly useful when re-arranging a menu system. Groups
of items may be moved in one action, rather than moving each item individually.

» Grouping items together using standard menu components adds a separator which improves the physical appearance of
any menu.

Click Component in the button bar to add a standard menu component to the current interface. Menu components must be
added as the children of amenu. Menu components are not visible in the interface skeleton until at least one item or submenu
has been added, using the item or Menu buttons.

Menu items added to a standard menu component appear as standard menu items in that component.

19.4.6.2 Radio components

A radio component is a special type of menu component, in which one, and only one, menu itemis active at any time. For
any radio component, capi : i t em sel ect ed awaysreturnst for oneitem, and ni | for al the others. The menu item that
was selected last isthe one that returnst .

Radio components are used to group together items, only one of which may be chosen at atime.

Click Radio Component in the button bar of the Interface Builder to add a radio component to the current interface. Radio
components must be added as the children of amenu, and, like standard menu components, are not visible in the interface
skeleton until items have been added. To add an item to aradio component, click item. New items are automatically of the
correct type for radio components. Note that you cannot add a submenu as an item in aradio component.

The way that a selected radio component is indicated on-screen depends on the operating system or window manager you are
running; for example it may be a dot or tick to the left of the selected item. On some systems, adiamond button is placed to

203

19 The Interface Builder

the left of every item, and thisis depressed for theitem which is currently selected.

Like standard menu components, separators divide radio components from other items or componentsin a given menu.

19.4.6.3 Check components

Like radio components, check components place constraints on the behavior of their child items when selected. For each item
in a check component, capi : i t em sel ect ed either returnst or ni | , and repeatedly selecting a given item toggles the
value that isreturned. Thus, check components alow you to define groups of menu items which can be turned on and off
independently.

An example of acheck component in the LispWorks IDE are the commands in the Tools > Customize menu, available from
any window in the environment.

Click Check Component in the button bar of the Interface Builder to add a check component to the current interface. Like
other components, check components must be added as the children of a menu, and are not visible until items have been
added. Usethe Item button to add an item to a check component; it is automatically given the correct menu type. Note that
you cannot add a submenu as an item in aradio component.

Like radio components, the way that check components are indicated on-screen depend on the window manager or operating
system being used. A tick to the left of any items which are "switched on" istypical. Alternatively, a square button to the left
of check component items (depressed for items which are on) may be used.

19.4.7 Removing menu objects

To remove a menu abject from your interface definition, select it in the Graph area of the Menus view and choose Edit > Cut
or pressthe % toolbar button.

19.5 Editing and saving code

Asyou create an interface in the Interface Builder, source code for the interface is generated. You can use the code view to
examine and, if you want, edit this code. You can aso save the source code to disk for use in your application. This section
discusses how to edit and save the code generated by the Interface Builder, and discusses techniques which let you use the
Interface Builder in the most effective way.

19.5.1 Integrating the design with your own code

Asyour GUI evolves from design into the implementation phase, you will need to integrate code generated by the Interface
Builder with your own code to produce aworking application.

At one extreme, you can attempt to specify the entire GUI for an application using the Interface Builder: even callbacks,
keyboard accelerators for menu items, and so on. Thisway the source code for the entire GUI would be generated
automatically. However, thisis not the recommended approach.

Instead you should use the Interface Builder for the basic design and initial code generation only. Once you have created an
interface skeleton for your window or dialog that you are happy with, augment the automatically-generated source code with
hand-written code. At this stage, you will use the Editor tool, rather than the Interface Builder, to develop that window or
diaog.

204

19 The Interface Builder

19.5.2 Editing code

Click the Code tab to switch to the code view. You can use this view to display and edit the code that is generated by the
Interface Builder. The Interface Builder appears as shown in Displaying sour ce codein the I nterface Builder.

Displaying source code in the Interface Builder

“% Interface Builder 1
Interface Object

-

: _‘}
Interface: BUTTOM-TEST|

Layouts | Menus | Code

flcapi:define-interface button-test ()

()

(
{push-button

capi:push-button

"button-selection-callback
"button-action-callback
‘button-extend-callback

'button-retract-callback)
{radio-button
capi:radio-button

|Heady.

Like the other views in the Interface Builder, an Interface: box at the top of the code view displays the name of the current
interface. See 19.3.1 Interface box for details.

Therest of thisview is dedicated to an editor window that displays the code generated for the interface. Like other editor
windows in the LispWorks IDE, all the keyboard commands available in the built-in editor are availablein the Code area.

19.5.3 Saving code

There are several ways to save the code generated by the Interface Builder into files of source code. Any files that you save
are also displayed as buffersin the editor.

Choose File > Save or click [to save the current interface. If it has already been saved to afile, the new version is saved to
the samefile. If the interface has not been saved before, you are prompted for a filename. After saving, thefileisdisplayed
in the editor.

Choose File > Save As... to save the current interface to a specific file. This command always prompts you for afilename; if

205

19 The Interface Builder

the interface has not been saved before, this command isidentical to File > Save, and if the interface has already been saved,
this command saves a copy into the file you specify, regardless of the file it was originally saved in. After saving, thefileis
displayed in the editor.

Choose File > Save All to save all of the interfaces that have been modified. A dialog allows you to specify precisely which
interfaces to save. Choosing this command is analogous to choosing File > Save individually for each of the interfaces you
want to save. If there are any interfaces which have not been saved previously, you are prompted for filenames for each one.

Choose File > Revert to Saved to revert the current interface to the last version saved.

Choose File > Close to close the current interface. You are prompted to save any changesif you have not already done so.
The interface name is removed from the History > Items submenu.

Individual interface definitions are saved in an intelligent fashion. You can specify the same filename for any number of
interfaces without fear of overwriting existing data. Interface definitions which have not already been saved in agiven file are
added to the end of that file, and existing interface definitions are replaced by their new versions. Source code which does
not relate directly to the definition of an interface isignored. In thisway, you can safely combine the definitions for several
interfaces in one file, together with other source code which might be unrelated to the user interface for your application.

Conversely, when loading interfaces into the environment (using File > Open or &), you do not have to specify filenames
which only contain definitions of interfaces. The Interface Builder scans a given file for interface definitions, |oads the
definitions that you request, and ignores any other code that isin thefile. See 19.2.2 L oading existing interfaces for details
on loading interfaces into the Interface Builder.

This approach to saving and loading interface definitions ensures that your working practices are not restricted in any way
when you use the Interface Builder to design a GUI. You have complete control over the management of your source files,
and are free to place the source code definitions for different parts of the GUI wherever you want; the Interface Builder can
load and save to the files of your choice without failing to load interface definitions and without overwriting parts of the
source cade which do not relate directly to the GUI.

19.6 Performing operations on objects

There are alarge number of operations you can perform on any object selected in the graph of either the layouts view or the
menus view. These operations allow you to refine the design of the current interface.

The techniques described in this section apply to an object selected in either the layouts view or the menus view. Any
changes made are automatically reflected in both the Interface Builder and the interface skeleton.

19.6.1 Editing the selected object

Asin any other tool in the LispWorks IDE , you can use the commands in the Edit menu to edit the object currently selected
in any graph of the Interface Builder. See 3.3 Performing editing functions for full details on the commands available.

19.6.2 Browsing the selected object

Asin other tools, you can transfer any object selected in the graph into a number of different browsers for further
examination. The standard action commands that let you do this are available in the Object menu. See 3.8 Performing
operations on selected objects for details.

19.6.3 Rearranging components in an interface

Rearranging the components of an interface in the most appropriate way is an important part of interface design. This might
involve rearranging the layouts and window elementsin an interface, or it might involve rearranging the menu system.

206

19 The Interface Builder

The main way to rearrange the components of an interface (either the layouts or the menu components) is to use the cut, copy
and paste functions available, as described below.

To move any object (together with its children, if there are any):

1. Select the object in agraph in the Interface Builder (either the layouts view or the menus view, depending on the type of
objects you are rearranging).

2. Choose Edit > Cut or press #.

The selected object, and any children, are transferred to the clipboard. The objects are removed from the graph in the
Interface Builder, and the interface skeleton.

3. Select the object that you want to be the parent of the object you just cut.

You must make sure you select an appropriate object. For instance, in the Layouts view you must make sure you do not
select a window element such as a button panel or output window, since window elements cannot have children. Instead,
you should praobably select alayout.

4. Choose Edit > Paste or press [@.

The objects that you transferred to the clipboard are pasted back into the interface design as the children of the newly selected
object. The changeisimmediately visible in both the graph and the interface skeleton.

Note: You can copy whole areas of the design, rather than moving them, by selecting Edit > Copy or press Bz instead of Edit
> Paste. Thisisuseful if you have anumber of similar areasin your design.

The menu commands Object > Raise and Object > Lower can be used to raise or lower the position of an element in the
interface. This effects the position of the element in the interface skeleton, the layout or menu hierarchy, and the source code
definition of the interface. Note that these commands are available from the menu bar in the Interface Builder, rather than
from the podium.

19.6.4 Setting the attributes for the selected object

Choose Object > Attributes from the Interface Builder's menu bar to display the Attributes dialog for the selected object. This
isshown in Setting the attributes of the selected object. You can also double-click on an object to display this dialog.

The Attributes dialog lets you set any of the attributes available to the selected object, such as symbol names, titles, and
callbacks. This gives you a high degree of control over the appearance of any object in the interface.

207

19 The Interface Builder

Setting the attributes of the selected object

% Interface Builder 1 r>__<|

Attributes for Check-Button-Fanel:
Easzic |.-’-'u:|~.fanc:ed || Title || Callbacks || Geometmy || Style |

Force Window Handle: -

Help K.ew

Help K.eys:

Images:

Indicatar:
[temsz: | check 1" "check 2 "check 3"

F.en Functior:

Layout Args:

Layout Clazs:
Mame: CHECK-BUTTOM-FAMEL

Mames:

FPane Menu:

Frint Function:
Reader:
Scroll [f Naot Yizible P

Selected Dizabled Images:

Selected Images:

Selected ltem:

W

aF. | | Cancel

The precise list of attributes displayed in the dialog depends on the class of the object that you selected in the graph of the
Interface Builder.

To set an attribute, type its value into the appropriate text box in the Attributes dialog. Click OK to dismiss the Attributes
dialog when you have finished setting attribute values.

Because of the large number of attributes which can be set for any class of abject, the Attributes dialog shows the attributesin
six general categories, asfollows:

» Basic attributes.

» Advanced attributes.
* Title attributes.

* Callbacks attributes.

208

19 The Interface Builder

» Geometry attributes.

» Style attributes.

19.6.4.1 Basic attributes

These are the attributes that you are most likely to want to specify new values for. Thisincludes the following information,
depending on the class of the selected object:

» The name of the object.
» Theitemsavailable (for list panels).
» The orientation and borders (for layouts).

» Thetext representation (for menu items).

19.6.4.2 Advanced attributes

This category lets you specify more advanced attributes of the selected object, such asits property list.

19.6.4.3 Title attributes

This category lets you specify the title attributes of the selected object. These attributes affect the way an object istitled on-
screen.

19.6.4.4 Callbacks attributes

This category lets you specify any of the callback types available for the selected abject. Many objects do not require any
callbacks, and many require several.

19.6.4.5 Geometry attributes

This category lets you control the geometry of the selected object, by specifying any of the available height and width
attributes. Geometry attributes are not available for menu objects.

19.6.4.6 Style attributes

This category lets you specify advanced style settings for the selected object. Thisincludes the following attributes:
» Thefont used to display itemsin alist.
» The background and foreground colors of an object.

e The mnemonic used for amenu item.

19.7 Performing operations on the current interface

You can perform a number of operations on the current interface, using the commands in the Interface menu in the Interface
Builder.

209

19 The Interface Builder

19.7.1 Setting attributes for the current interface

Choose Interface > Attributes to set any of the attributes for the current interface. An Attributes dialog similar to that shown
in Setting the attributes of the selected object appears. You set attributes for the current interface in exactly the same way
asyou do for any selected object in the interface. See 19.6.4 Setting the attributes for the selected object for details.

19.7.2 Displaying the current interface

As already mentioned, an interface skeleton is automatically displayed when you load an interface into the Interface Builder,
and any changes you make to the design are immediately reflected in the skeleton. There are al'so a number of commands
which give you more control over the way that the interface appears on-screen as you work on its design.

Choose Interface > Raise to bring the interface skeleton to the front of the display. This command is very useful if you have a
large number of windows on-screen, and want to locate the interface skeleton quickly.

Choose Interface > Regenerate to force a new interface skeleton to be created. The existing interface skeleton is removed
from the screen and anew one appears. This command is useful if you have changed the size of the window, and want to see
what the default sizeis; thisis especially applicableif you have atered the geometry of any part of the interface while
specifying attribute values.

Regenerating the interface is also useful if you set an interface attribute which does not cause the interface skeleton to be
updated automatically. This can happen, for instance, if you change the default layout of the interface, which you might want
to specify if an interface has several views.

Many interfacesin a GUI are used in the final application as dialogs or confirmers. For such interfaces, the interface skeleton
is not necessarily be the most accurate method of display. Choose Interface > Display as Dialog or Interface > Confirmer to
display the current interface as a dialog or as a confirmer, as appropriate. Dialogs are displayed without a menu bar, and with
minimal window decoration, so that the window cannot be resized. Confirmers are similar to dialogs, but have OK and
Cancel buttons added to the bottom of the interface. To remove adiaog, click inits Close box.

19.7.3 Arranging objects in a pinboard layout

Most types of layout automatically place their children, so that you do not have to be concerned about the precise
arrangement of different objectsin an interface. Pinboard and static layouts, however, allow you to place objects anywhere
within the layout.

Objects which are added to a pinboard layout using the Interface Builder have borders drawn around them in the interface
skeleton. You can interactively resize and place such objects by selecting and dragging these borders with the mouse.

When you have rearranged the objects in a pinboard layout to your satisfaction, choose Interface > Display Borders. This
turns off the border display, allowing you to see the appearance of the final interface.

Note: You can only move and resize objects in a pinboard layout when borders are displayed in the interface skeleton.
Choosing Interface > Display Borders toggles the border display.

19.8 Performing operations on elements

You can transfer any element selected in either the Layouts or Menus views into a number of different browsers for further
examination. Thisis done using the standard actions commands that are available in the Object menu. See 3.8 Performing
oper ations on selected objectsfor details. These commands are a useful way of finding out more information about the
CAPI objects you use in an interface.

210

19 The Interface Builder

19.9 Example: Using The Interface Builder

This example shows you how to use the Interface Builder to design asimpleinterface. It explains how to create the layout
and the menu system, and demonstrates some of the attributes that you can set. Finally, the interfaceis saved to afile, and
combined with some other simple code to produce a working example. You are strongly advised to read the preceding
sections of this chapter before (or in conjunction with) this section. It isalso useful, though not essential, if you are familiar
with the editor (12 The Editor), the listener (20 The Listener), and Common Lisp systems.

Thefinal interface created is shown in Exampleinterface. It consists of a column layout which contains a graph pane, a
display pane, and alist panel.

Example interface

% Example Interface [Z][E|El

Selection

Selection: | 5ix selected

One

Twio

Three

Four

Five
S

Seven
Eight

Any select action performed in either the graph pane or the list panel is described in the display pane. Thisincludesthe
following actions:

» Selecting any item.
» Deselecting any item.
» Extending the selection (by selecting more than one item).

Double-clicking any item in either the graph pane or the list panel displays a dialog which shows which item you double-
clicked.

Lastly, there are menu commands available which display, in adialog, the current selection in either pane. Choose Selection

> Graph to see the currently selected items in the graph pane, and choose Selection > List Panel to see the currently selected
itemsin thelist panel.

211

19 The Interface Builder

19.9.1 Creating the basic layout

This section shows you how to create the basic layout for your interface, without specifying any attributes. Normally, this
stage would take you only afew seconds. The processis described in detail here, to illustrate the way that the Interface
Builder ensures that the most appropriate item is selected in the graphs of both the layouts and menus views, so asto
minimize the steps you need to take when creating an interface.

1
2.

Create an Interface Builder, if you do not already have one.

Choose File > New or click on the 1 toolbar button.

A new, empty, interface skeleton appears.

. If the layouts view is not displayed, click the Layouts tab in the Interface Builder.

To begin, you need to add the main column layout to the interface using the buttons panels at the bottom of the Interface
Builder. The Layouts tab at the bottom of the Interface Builder (as distinct from the Layouts tab you use to switch to the
layouts view), lists the different types of layout that you can add to an interface.

. Click Column in the button panel.

A column layout object is added as a child of the interface object. Nothing appears in the interface skeleton yet, sincea
column layout is a container for other window objects, and cannot itself be displayed. Note that the column layout
remains selected in the layout graph. Thisis because column layouts are objects which can themselves have children,
and the Interface Builder assumes that you are going to add some children next.

. In the button panel, click the Graph Panes tab, and then click Graph to add a graph pane to the interface.

The graph pane object is added as the child of the column layout, and a graph pane appears in the interface skeleton.

. Next, click the Basic Panes tab and then click Display.

. Next, click List Panel.

The objects that you specify are added to the interface, and the interface skeleton is updated accordingly. Note that the
column layout object remains selected throughout. You have now created the basic layout for the interface.

Next, suppose that you decide to add atitle to the left of the display pane. You might want to do this to make it clear what
information is being shown in the display pane.

To do this, you can create a new row layout, add atitle pane to it, and then move the existing display pane into this new row-
layout. In addition, you must reorganize some of the elements in the interface.

1. Ensure that Col urm- Layout - 1 isstill selected in the Layout hierarchy area.

The new row layout needs to be added as a child of the column layout.

. Inthe button panel at the bottom of the Interface Builder, click the Layouts tab to display the available layouts once

more.

. Click on Row.

Notice that the new row layout remains selected, ready for you to add objectsto it.

. Click the Basic Panes tab again, and click Title.

Next, you must move the display pane you have aready created, so that it is contained in the new row layout.

. Inthe Layout hierarchy area, select Di spl ay- Pane- 1 and choose Edit > Cut.

. Select Row Layout - 1 and choose Edit > Paste.

The items have already been placed in the row layout in the positions you want them. However, the row layout itself has

212

19 The Interface Builder

been added to the bottom of the interface; you want it to be in the same position as the display pane you initialy created.
To do this, move the list panel to the bottom of the interface.

7. Select Li st - Panel - 1 and choose Object > Lower from the menu bar on the Interface Builder itself.

You have now finished creating the layout for the example interface. The next step isto name the elements of the interfacein
asensible fashion.

19.9.2 Specifying attribute values

Asyou have already seen, the Interface Builder assigns default names such as Row Layout - 1 to the elements you add to an
interface; you usually want to replace these with your own names. In addition, there are probably titles that you want to add
to the interface; you can see the default titles that have been created by looking at the interface skeleton. The next stage of
the example shows you how to change these default names and titles.

Changing the name or title of an element is actually just a case of changing the value assigned to an attribute of that element,
as described in 19.6.4 Setting the attributes for the selected object. You would normally assign values to a number of
different attributes at once, rather than concentrating on the names and titles of elements. The exampleis structured in this
way to give you an idea of the sort of working practices you might find it useful to adopt when generating interface code.

To recap, the layout hierarchy of the example interface is shown in Layout hierarchy of the example interface. To ensure
that you can understand this layout easily in the future, it isimportant to assign meaningful names and titles to the elementsiit
contains now.

Layout hierarchy of the example interface

Graph-Pane-1

o

Interface-1
Ligt-Fanel-1
1. Select thel nt er f ace- 1 object and then use the Interface > Attributes menu item to show the attributes dialog.

The Attributes dialog appears as shown in Attributes dialog for the example interface.

213

19 The Interface Builder

Attributes dialog for the example interface

¥ Interface Builder 1

X]

Attributes for [nterface-1:

Easzic |.-’-'u:|~.fanc:ed Title Callbacks | Geometmy | Shyle

Enable Tooltips:
Enabled:

E=ternal Barder:

|

Force Window Handle:

Help Key:

teszage Area:
Mame: | INTERFALCE-T

Overmde Cursor;

Dwner:

Fane Menu:

scroll 1F Mot VYisible P
Title: | "Interface-1"

Title Font:

Toolbar Items:

Toolbar Hame:

Toolbar States:
Toolbar Title:
Top Level Hoak:

W
Trancnarsnmr —

ak. | | Canicel

Notice that the Name attribute of the interface has the value | NTERFACE- 1, and the Title attribute has the value
"Interface-1".

Note: If thisis not the first interface you have created in the current session, the number is different.
2. Delete the value in the Name: text box, and typei b- exanpl e.
3. Deletethe valuein the Title: text box, and type" Exanpl e I nterface".

4. Click OK to dismiss the Attributes dialog and update the interface.

The name of the interface is now displayed as| b- Exanpl e in the Layout hierarchy area, and the title of the interface
skeleton changesto Exanpl e | nterface.

Note: Caseis not significant in the Name attribute, because it isa Common Lisp symbol, but it is significant in the Title
attribute, which isastring.

214

19 The Interface Builder

5. Select the Col unm- Layout - 1 element. Double-click to display its Attributes dialog (you will now find this more
convenient than using the Object > Attributes menu item). Change the value of its Name attribute to mai n- | ayout and
click OK.

Now change the names of the other objectsin the interface.

6. Select the graph pane and change its Name attribute to gr aph, and its Interaction attribute to : ext ended- sel ecti on.
Click OK.

7. Select the list panel and change its Name attributeto | i st , and its Interaction attribute to : ext ended- sel ecti on. Do
not click OK yet.

The value of the Interaction attribute allows you to select several items from the list panel and the graph pane, using the
appropriate method for your platform.

8. Change the Items attribute of the list panel to the following list of strings:

"("One" "Two" "Three" "Four" "Five" "Six" "Seven" "Eight")

9. Click OK.
The row layout you created contains objects which are used solely to display information.

10Select the row layout object and change its Name attribute to di spl ay- | ayout .

11Change the Adjust attribute of di spl ay- | ayout to: cent er. Click OK.

This value of the Adjust attribute centers the title pane and the display pane vertically in the row layout, which ensures
their texts line up along the same baseline.

In the working example, the di spl ay- | ayout object isgoing to show information about the current selection, so you
need to change the names and titles of the objects it contains accordingly.

12Select the title pane and change its Name attribute to sel ecti on-ti t| e andits Text attribute to " Sel ecti on: ". Click
OK.

13Select the display pane and change its Name attributeto sel ect i on- t ext , and its Text attribute to
"Di spl ays current sel ection". Click OK.

This specifies atext string that is displayed when the interfaceisinitially created. This string disappears as soon as you
perform any action in the interface.

The layout hierarchy is now as shown in Layout hierarchy with names specified. The names that you have assigned to the
different objects in the interface make the purpose of each element more obvious.

Layout hierarchy with names specified

Graph
: : Selection-Title
Ib-E e b ain-L [] Dizplay-L p .
mample ain-Layoll izplay-Layou -{:SEEDUDH-TEH
List

19.9.3 Creating the menu system

Next, you need to create a menu system for the example interface. This section shows you how to create the basic objects
which compriseit.

215

http://www.lispworks.com/documentation/HyperSpec/Body/a_list.htm

19 The Interface Builder

1. Click the Menus tab in the Interface Builder to switch to the menus view.

A menu bar is created automatically when you create a new interface. To create the menu system for the example
interface, you need to add a menu which contains two items.

2. Select the Menu- Bar object in the Menu hierarchy area.

3. Click the Menu button (near the bottom of the Interface Builder) to create the menu, then click Item twice to create the
two items in the menu.

Notice that, asin the layouts view, an object remains selected if it can itself have children. This meansthat creating the
basic menu structure is avery quick process.

Next, you need to name the objects you have created. Aswith the layouts, thisis achieved by specifying attribute values.

4. Make sure that the Menu- 1 menu is still selected, and use the Object > Attributes menu command to display its
Attributes diaog.

5. Changeits Name attribute to sel ect i on- nenu. Do not click OK yet.

Aswell as specifying the Name attribute for the menu you created, you need to change the Title attribute of each object
you created. To do this, you must ensure that the appropriate attribute categories are displayed in the Attributes dialog.

6. Click on the Title tab in the Attributes dialog.

The Attributes dialog changes to appear as shown in Displaying title attributesfor a menu.

216

19 The Interface Builder

Displaying title attributes for a menu

% Interface Builder 1

Attributes for Selection-kMenu:

Basic .-“-'-.::Ivanc:e::l| Title |Eal||:nan::k3 Geornetry | 4 *

Mremoric Title:
Title: | "Menu-1"

ak. | | Canicel

7. Inthe Title tab view of the Attributes dialog, change the Title attribute to " Sel ect i on". Click OK.

The Title attribute is used to specify the title of the menu that appears in the interface itself; note the change in the
interface skeleton.

Next, you need to change the attributes of the two menu items.
8. Selectthe" It em 1" object and press Ret ur n.
9. In the Attributes dialog, change the Title attribute to " G- aph" and the Name attribute to gr aph- command. Click OK.

10Double-click onthe" I t em 2" object to display its Attributes dialog and change the Title attribute to " Li st Panel "
and the Name attributeto | i st - panel - command. Click OK.

You have now finished the basic definition of the menu system for your example interface.

217

19 The Interface Builder

19.9.4 Specifying callbacks in the interface definition

The interface that you have designed contains a complete description of the layouts and menus that are available, but does not
yet specify what any of the various elements do. To do this, you need to specify callbacks in the interface definition. Asyou
might expect, thisis done by setting attribute values for the appropriate elements in the interface.

In this example, the callbacks that you supply are callsto other functions, the definitions for which are assumed to be
available in a separate source code file, and are discussed in 19.9.6 Defining the callbacks. Note that you do not have to take
this approach; you can just as easily specify callback functions within the interface definition itself, using lambda notation.

It is up to you whether you do this within the Interface Builder, or by loading the code in the editor. If you choose the former,
note that it may be easier to use the code view, rather than typing lambda functions into the Attributes dialog.

19.9.4.1 Specifying layout callbacks and other callback information

This section shows you how to specify all the callbacks necessary for each element in the example interface, together with
other attributes that are required for correct operation of the callback functions. You need to specify attribute values for the
display pane, the list panel and the graph pane.

1. If necessary, click the Layouts tab at the top of the Interface Builder to display the layouts view.
2. Select Sel ecti on- Text inthelayout hierarchy and display the Attributes dialog.

3. Set the Reader attributeto sel ecti on-reader and click OK.
This reader alows the display pane to be identified by the callback code.
For the list panel, you need to specify four callbacks and a reader.

4. Select Li st inthe layout hierarchy and display its Attributes dialog.

5. Set the Reader attributeto | i st - r eader . Do not click OK yet.

Like the display pane, this reader is necessary so that the list panel can beidentified by the callback code.

6. Next, you need to specify the following four types of callback (make sure you click the Callbacks tab):

Selection callback The function that is called when you select alist item.

Extend callback The function that is called when you extend the current selection.
Retract callback The function that is called when you deselect alist item.

Action callback The function that is called when you double-click on alist item.

Set the following attributes of the list panel:

Selection-Callback to' updat e- sel ecti on- sel ect
Extend-Callback t0o' updat e- sel ecti on- ext end
Retract-Callback t0' updat e- sel ecti on-retract
Action-Callback to' di spl ay- sel ecti on-in-di al og

Click OK when done.

7. Select the Gr aph graph pane and display its Attributes dialog.

For the graph pane, you need to set the same four callbacks, aswell as areader, and two other attributes that are
important for the callback code to run correctly.

8. Set the following attributes of the graph pane.

Selection-Callback to' updat e- sel ecti on- sel ect
Extend-Callback t0' updat e- sel ecti on- ext end

218

19 The Interface Builder

Retract-Callback t0' updat e- sel ecti on-retract
Action-Callback to' di spl ay- sel ecti on-in-di al og

9. Set the Reader attributeto gr aph-r eader.

10Before you set the next callback, evaluate this form:

(defun children-function (x)
(when (< x 8)
(list (* x2) (1+ (* x 2)))))

Now set the Children-Function attributeto ' chi | dr en-f uncti on.

The children function defines what is drawn in the graph, and so isvital for any graph pane. It is called when displaying
the prototype interface, so it is best to define it before setting this attribute.

11Click OK to dismiss the Attributes dialog..

19.9.4.2 Specifying menu callbacks

The callbacks that are necessary for the menu system are much simpler than for the layouts; the example interface only
contains two menu commands, and they only require one callback each.

1. Click the Menus tab to switch to the menus view.

2. Choosethe" Gr aph" menu item, display its Attributes dialog and change the Callback attribute to
" di spl ay- gr aph-sel ecti on. Click OK.

3. Choosethe" Li st Panel " menuitem, display its Attributes dialog and change the Callback attribute to
" di spl ay-1ist-sel ection. Click OK.

19.9.5 Saving the interface

If you have followed this example from the beginning, the interface is now completely specified. You can now save the
source code definitionin afile.

1. Choose File > Save or click [to save the interface definition. Choose a directory in the dialog that appears, and specify
thefilenamei b- exanpl e. | i sp inthe "File name" text box.

Thefilei b- exanpl e. | i sp isdisplayed in an Editor tool.

19.9.6 Defining the callbacks
This section shows you how to create the callback functions you need to define in order to complete the working example.
1. In an Editor tool, choose File > New or click [1 to create a new file.

2. Choose File > Save or click [to save thefile. Saveit in the same directory you saved i b- exanpl e. | i sp, and call this
new filei b- cal | backs. | i sp.

3. In the editor, specify the package for the callback definitions by typing the following into thei b- cal | backs. I'i sp file:
(i n-package " COWDON- LI SP- USER")
4. Enter the function definitions given in the rest of this section.

219

19 The Interface Builder

5. Choose File > Save or click [to save the file when you have entered all the function definitions.
The functions that you need to define in thisfile are divided into the following categories:

* Callbacks to update the display pane.

» Callbacksto display datain adiaog.

+ Callbacks for menu items.

» Other miscellaneous functions.

19.9.6.1 Callbacks to update the display pane

One main function, updat e- sel ect i on, servesto update the display pane whenever selections are made in the graph pane
or the list panel.

(defun update-selection (type data interface)
(setf (capi:display-pane-text (selection-reader interface))
(format nil "~A ~A" data type)))

The following three functions are the callbacks specified whenever a select, retract or extend action is performed in either the
list panel or the graph pane. Each function is named according to the type of callback it isused for, and it simply calls
updat e- sel ect i on with an additional argument denoting the callback type.

(defun updat e-sel ection-sel ect (& est args)
(apply 'update-selection "selected" args))

(defun update-sel ection-retract (& est args)
(apply 'update-selection "desel ected" args))

(defun updat e-sel ection-extend (& est args)
(apply 'update-sel ection "extended" args))

19.9.6.2 Callbacks to display data in a dialog

Aswith updat e- sel ecti on, one main function servesto display the data from any action in adialog.

(defun display-in-dialog (type data interface)
(capi : di spl ay- message
"~S: ~A ~S"
(capi:interface-title interface) type data))

Thefunction di spl ay- sel ecti on-i n-di al og isthe action callback for both the graph pane and the list panel. It calls
di spl ay-i n-di al og, specifying one of the required arguments.

(defun di spl ay-sel ection-in-dialog (& est args)
(apply 'display-in-dialog "selected" args))

Note: Although only one action callback is specified in the example interface, the relevant functions have been defined in this
modular way to allow for the possibility of extending the interface. For instance, you may decide at alater date that you want
to display the information for an extended selection in adialog, rather than in the display pane. You could do this by defining
anew callback which callsdi spl ay-i n-di al og, passing it an appropriate argument.

220

19 The Interface Builder

19.9.6.3 Callbacks for menu items

Both menu items in the interface need a callback function. Aswith other callback functions, these are specified by defining a
general callback, di spl ay- pane- sel ecti on, which displays, in adialog, the current selection of any pane.

(defun displ ay- pane-sel ection (reader data interface)
(declare (ignore data))
(capi: display-nmessage "~S: ~S sel ect ed"”
(capi : capi - obj ect - nane
(funcall reader interface))
(capi: choice-sel ected-itens
(funcall reader interface))))

The following two functions call di spl ay- pane- sel ect i on, passing the reader of a pane as an argument. These functions
are specified as the callbacks for the two menu items.

(defun di spl ay-graph-sel ection (& est args)
(apply 'display-pane-sel ection 'graph-reader args))

(defun display-list-selection (& est args)
(apply 'display-pane-selection 'list-reader args))

Aswith the other callback functions, specifying the callbacksin thisway allows for easy extension of the example.

19.9.6.4 Other miscellaneous functions

Graph panes require a function which is used to plot information, called the children function. The value of the ROOTS
attribute of a graph is passed as an argument to the children function in order to start the plot. The example interface uses the
following simple children function. You already defined thisif you have followed the example, but add it also in

i b-cal |l backs.lisp:

(defun children-function (x)
(when (< x 8)
(list (* x 2) (1+ (* x 2)))))

Note: The ROOTS attribute of a graph pane has a default value of (1) . Thisis generated automatically by the Interface
Builder.

Finally, thefunctiont est - i b- exanpl e isused to create an instance of the example interface.

(defun test-ib-exanple ()
(capi:display (nmake-instance 'ib-exanple
: best - hei ght 300
:best-wi dth 200)))

19.9.7 Creating a system

If you have followed this example from the beginning, the interface and its callbacks are now completely specified. Next, you
can create a Common Lisp system which integrates the interface definition with the callback code.

1. Choose File > New or click [1. This creates a new, unnamed file in the editor.

2. Typethefollowing form into this new file:

(def system i b-test
(: package "CL-USER")

221

19 The Interface Builder

:menbers ("ib-call backs" "ib-exanple"))

Thisform creates asystem called i b- t est that contains two members; i b- exanpl e. | i sp (thefile containing the
interface definition) and i b- cal | backs. | i sp (thefile containing the callback code).

3. ChooseFile > Save or click [to save the new file. Save it in the same directory that you saved thei b- exanpl e. | i sp
andi b-cal | backs. | i sp files, and call thisfiledef sys. | i sp.

19.9.8 Testing the example interface
You have now finished specifying the example interface and its callback functions, so you can test it.

1. ChooseFile > Save or click I to savei b- exanpl e. | i sp, i b-cal | backs. | i sp, and def sys. | i sp if you have not
already done so.

Next, you need to load thei b- t est system into the environment.
2. In the editor, make sure that thefile def sys. | i sp isvisible, and choose File > Load to load it and define the system.

3. Inthe Listener, type the following form.
(1 oad-system 'ib-test)

Thei b- t est system, together with its members, isloaded.

4. To test the interface, type the following form into the listener.
(cl-user::test-ib-exanple)

A fully functional instance of the example interface is created for you to experiment with, as shown in Example interface.

222

20 The Listener

The Listener isatool that lets you evaluate Common Lisp expressions interactively and immediately see the results. Itis
useful for executing short pieces of Common Lisp, and extensive use is made of it in the examples given in this manual. This
chapter describes al the facilities of the Listener.

20.1 The basic features of a Listener

A Listener is created automatically when you start the LispWorks IDE. You can also create a Listener yourself by choosing
Tools > Listener or click on , in the Podium.

Listener

Taks. Iain area.
Break Corlirue Abor Backirace GUI debugger

Cutput

CL-TUSER 1 > (break "EEE’}Z"'I
|

test |'I |
1 {continue} Return Ii':rnnh:-real'.
2 {sbort) Rerurn toftop |lcu:|p lewdl 0.

Type sbng-form "< ecLT>
or other options.

for a bupg I'ED:#["E- CEmplate or i I

Tywpe :b for backtrace or :lllc <option| numbqr> to proceed.
I
I

CL-USER 2 : 1 > [} f
-

Debugger Prewious MNexi Friri Fird Bcho area.
prompgl frame frame bindnge source

In the Listener view, the main area of the Listener contains a prompt at the left side of the window.

Rather like the command line prompt in a DOS command window, this prompt helps you identify the point in the Listener at
which anything you type is evaluated. It may also contain other useful information, by default thisis the current package and
the current number in the command history list. If your Listener isin the debugger, as Listener, the prompt aso contains a
colon followed by an integer indicating how many debugger levels have been entered.

In this chapter, the prompt is shown in most examples simply as PROMPT >.

You can click the Output tab to display the output view of the Listener; thisview displays any output that is created by the
Listener, or any child processes created from the Listener..

223

20 The Listener

Aswith other tools, commands available in the Works menu of the LispWorks podium are specific to the Listener, when it is
the active window.

To familiarize yourself with the Listener, follow the instructions in the rest of this chapter, which forms a short lesson. Note
that, depending on the nature of the image you are using, and the configuration that the image has been saved with, the
messages displayed by Lisp may be different to those shown here.

20.2 Evaluating simple forms

1. Typethe number 12 at the prompt, and press Ret ur n.

In general, assume that you should press Ret ur n after typing something at the prompt, and that you should type at the
current prompt (that is, the one at the bottom of the screen). In fact, the latter is not always necessary; 20.10 Execute
mode describes how to move the cursor to different places, and thus you may not always be on the current prompt.

Any Common Lisp form entered at the prompt is evaluated and its results are printed immediately below in the Listener.

When Common Lisp evaluates a number, the result is the number itself, and so 12 is printed out:

PROMPT > 12
12

PROMPT >

When results are printed in the Listener, they start on the line following the last line of input. The 12 has been printed
immediately below the first prompt, and below that, another prompt has been printed.

2. Type* at the current prompt.

PROMPT > *
12

PROMPT >

Thevariable* aways has asits value the result of the previous expression; in this case, 12, which was the result of the
expression typed at the first prompt. For afull description, see the Common Lisp Hyper Spec. Thisisan HTML version
of the ANSI Common Lisp standard which is supplied with LispWorks.

3. Type(setq val 12) atthe current prompt.

PROMPT > (setq val 12)
12

PROMPT >

The expression setsthe variable val to 12. Theresult of evaluating the form isthe value to which val has been set, and
thus the Listener prints 12 below the form typed at the prompt.

Thisis exactly the same behavior as before, when you typed a number it was evaluated and the result printed in the
Listener. What is different thistime, of course, isthat Lisp has been told to "remember” that 12 is associated with val .

4. Typeval .
Theformisevaluated and 12 is printed below it.

5. Type(+ val val val).

The form, which computes the sum of threeval s, is evaluated, and 36 is printed below it.

224

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm

20 The Listener

20.3 Re-evaluating forms

If you changeval to some other number, and want to know the sum of three val sagain, you can avoid re-typing the form
which computesit. To see how thisis done, follow the instructions bel ow.

1. Type(setq val 1).
Thevariableval isnow setto 1.

2. Press Al t +P or choose History > Previous or click .

PROMPT > (setq val 1)

The form you previously typed appears at the prompt. At this point, you could edit this form and press Ret ur n to
evaluate the edited form. For the moment, just carry on with the next instruction.

3. Press Al t +P again, and then press Ret ur n.

PROMPT > (+ val val val)
3

PROMPT >

Pressing Al t +P a second time displayed the second to last form that you evaluated. Thistime, pressing Ret ur n immediately
afterwards simply re-evaluates the form. Note that you could have edited the recalled form before evaluating it. You can use
Al t +P repeatedly, recalling any form that you have evaluated in the current session.

This time the form evaluates to the number 3, because the value of val was changed in the interim.

20.4 The debugger prompt and debugger level

When you get an error by evaluating aform in the Listener, LispWorks enters the debugger. The first debugger prompt
contains a colon followed by the integer 1, indicating that Lisp is 1 level deep in the debugger.

Subsequent errors in the debugger increment the debugger level:

CL-USER 57 > (/ 1 0)

Error: Division-by-zero caused by / of (1 0).
1 (continue) Return a value to use.
2 Supply new argunents to use.
3 (abort) Return to level O.
4 Return to top |l oop level O.

Type :b for backtrace or :c <option nunber> to proceed.
Type :bug-form "<subject>" for a bug report tenplate or :? for other options.

CL-USER 58 : 1 > (/ 2 0)

Error: Division-by-zero caused by / of (2 0).
(continue) Return a value to use.

Supply new argunents to use.

(abort) Return to level 1.

Return to debug | evel 1.

Return to level O.

Return to top loop |evel O.

oOUhwWNBRE

Type :b for backtrace or :c <option nunber> to proceed.
Type :bug-form "<subject>" for a bug report tenplate or :? for other options.

225

20 The Listener

CL-USER 59 : 2 >

After fixing the cause of an error you should exit from the debugger, for example by entering : a to invoke the abort restart. If
you do not exit, then the next time you get an error you will be nested more deeply in the debugger, which is usually not
desirable. Try to avoid this.

Note: If you reach debugger level 9 then LispWorks opens a console window to run the debugger (because it assumes that the
IDE is broken). In this situation you can enter the : t op command and then minimize the console window to restore the IDE
Listener. Closing the console window will terminate LispWorks without any warning.

20.5 Interrupting evaluation

The button «+ interrupts evaluation in the Listener. The break gesture key stroke Ct r | +Br eak can aso be used.

Thisis useful for stopping execution in the middle of aloop, or for debugging. When the interrupt is processed, the debugger
is entered, with a continue restart available.

If the Listener is not evaluating aform, then the Process Browser will be opened allowing you to interrupt a background
process.

20.6 The History menu

The forms and commands typed at previous prompts are stored in the history list of the Listener. It is so named because it
records all the forms and commands you have typed into the Listener. Many other command line systems have a similar
concept of a history. Each form or command in the history is known as an event.

You can obtain alist of up to the last ten eventsin the history by displaying the History > Items menu. To bring a previous
event to the prompt, choose it from this menu.

For more information about history listsin the LispWorks IDE, see 3.5 The history list.

20.7 The Expression menu

The Works > Expression menu lets you perform operations on the current expression, that is, the symbol in which the cursor
currently lies. It behaves in exactly the same way as the Works > Expression menu in the Editor tool. See 12.13.2 Current
buffers, definitions and expression for details.

Choose Works > Expression > Class to look at the class of the current expression in a Class Browser. See 7 The Class
Browser for full details about thistool.

Choose Works > Expression > Find Source to search for the source code definition of the current expression. If the definition
isfound, the fileis displayed in the editor and the definition is highlighted. See 12 The Editor for an introduction to the
editor. Note that you can find only the definitions of symbols you have defined yourself - those for which you have evaluated
or compiled the source code - not those provided by the system.

Choose Works > Expression > Documentation to display the Common Lisp documentation (that is, the result of the function
docunent at i on) for the current expression. If such documentation exists, it is printed in a help window.

Choose Works > Expression > Arguments to print the lambdal list of the current expression in the echo areg, if itisa
function, generic function or method. Thisis similar to using the keystroke Al t +=, except that the current expression is
automatically used.

Choose Works > Expression > Value to display the value of the current expression in the echo area.

Choose Works > Expression > Inspect Value to inspect the value of the current expression in the Inspector tool. If the value

226

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

20 The Listener

isni | , amessageis printed in the echo area.

Choose Works > Expression > Toggle Breakpoint to add or remove a stepper breakpoint on the current expression. See for
information about using the Stepper tool.

Choose Works > Expression > Evaluate Region to evaluate the Lisp code in the current region. You must make sure you
have marked a region before choosing this command; see 12.11.1 Marking the region. Whether you use the mouse or
keyboard commands to mark a region does not matter.

Choose Works > Expression > Compile Region to compile the Lisp code in the current region.

Choose Works > Expression > Macroexpand to macroexpand the current form. The macroexpansion is printed in the output
view, which is displayed automatically. Click the Output tab to redisplay the output at any time.

Choose Works > Expression > Walk to walk the current form. This performs a recursive macroexpansion on the form. The
macroexpansion is printed in the output view, which is displayed automatically. Click the Output tab to redisplay the output
a any time.

Choose Works > Expression > Trace to display a menu of trace commands which can be applied to the current expression.
See 3.10 Tracing symbols from tools for full details.

Choose Works > Expression > Function Calls to browse the current expression in a Function Call Browser. See 14 The
Function Call Browser for more details.

Choose Works > Expression > Generic Function to browse the current expression in a Generic Function Browser. This
command is only available if the current expression is a generic function. See 15 The Generic Function Browser for more
details.

Choose Works > Expression > Browse Symbols Like to view symbols containing the current expression in a Symbol
Browser. Thiscommand is analogousto cl : apr opos. See 18 The Symbol Browser for more details.

20.8 The Values menu

The Works > Values menu lets you perform operations on the results of the last expression entered at the Listener prompt.
The values returned from this expression are referred to as the current values.

The menu is not available if the most recent input was not a Common Lisp form. Thisis because the evaluation of the last
expression entered must have produced at |east one value to work on.

The Works > Values menu gives you access to the standard action commands described in 3.8 Per for ming oper ations on
selected objects.

Note that the most commonly used of the standard action commands are available from the toolbar. For instance, to inspect
the current values, click the & button.

20.9 The Debug menu

This menu allows you to perform command line debugger operations upon the current stack frame. The menu is only
available when the debugger has been invoked by some activity within the Listener.

Some of the most commonly-used command line debugger commands are available from the Debug menu. You can also
invoke the debugger tool from this menu.

Choose Debug > Restarts to display a submenu containing all the possible restarts for the debugger, including the abort and
continue restarts. Choose any of the commands on this submenu to invoke the appropriate restart. Note that the continue and
abort restarts are also available on the tool bar.

227

http://www.lispworks.com/documentation/HyperSpec/Body/f_apropo.htm

20 The Listener

Choose Debug > Listener > Backtrace to produce a backtrace of the error.
Choose Debug > Listener > Bindings to display information about the current stack frame.

Choose Debug > Frame > Find Source to find the source code definition of the function at the current call frame and display
itinan editor.

Choose Debug > Listener > Next to move to the next call frame in the stack.
Choose Debug > Listener > Previous to moveto the previous call framein the stack.

Choose Debug > Start GUI Debugger to invoke a debugger tool on the current error. See 10 The Debugger Tool, for full
details about using thistool.

Choose Debug > Report Bug to report abug in LispWorks.

You can also invoke any of the commands from this menu by typing keyboard commands into the Listener itself. Seethe
LispWorks® User Guide and Reference Manual for more details.

20.10 Execute mode

The Listener is actually a specia type of editor window, which isrunin a mode known as execute mode. This means that, as
well as the normal keyboard commands available to the editor, a number of additional commands are avail able which are
especially useful when working interactively.

20.10.1 History commands

These commands are useful in the common situation where you need to repeat a previously entered command, or enter a
variant of it.

History First EmacsKey Sequence: Ctrl +C <

Replaces the current command by the first command.

History Kill Current EmacsKey Sequence: Ctrl +C Cirl +K

Kills the current command when in alistener.

History Last EmacsKey Sequence: Ctrl +C >

Replaces the current command by the last command.

History Next Emacs Key Sequence: Al t +NorCtrl +C Ctrl +N

Displays the next event on the history list. That is, it replaces the current command by the next
one. Thisisnot available if you are at the end of the history list. In Microsoft Windows editor
emulation, thisHistory Next command isbound to Ct r | +Down.

History Previous EmacsKey Sequence: Alt+PorCrl +C Crl +P

Displays the previous event on the history list: that is, it replaces the current command by the
previous one. In Microsoft Windows editor emulation, this History Previous command is bound
toCtrl +Up.

228

20 The Listener

History Search Emacs Key Sequence: Al t+RorCtrl +C Ctrl +R

Searches for a previous command containing a given string, which it prompts for, and replaces
the current command with it.

History Search from Input
Emacs Key Sequence: None

Searches the history list using current input. That is, it searches for a previous command
containing the string entered so far, and replaces the current command with it.

Repeated uses step back to previous matches.

History Select Emacs Key Sequence: Ctrl +C Cirl +F
Presents alist of itemsin the command history, and replaces the current command with the
selection.

History Yank EmacsKey Sequence: Ctrl +C Cirl +Y

Inserts the previous command into the current one, when in alistener.

20.10.2 Debugger commands

These commands are useful when in the debugger in the Listener:

Debugger Backtrace Emacs Key Sequence: Al t +Shi ft+B
Gets a backtrace when in the debugger.

Debugger Abort Emacs Key Sequence: Al t +Shi ft +A
Abortsin the debugger.

Debugger Continue Emacs Key Sequence: Al t +Shi ft +C
Continues in the debugger.

Debugger Previous Emacs Key Sequence; Al 't +Shi ft +P
Displays the previous frame in the debugger.

Debugger Next Emacs Key Sequence: Al t +Shi ft+N
Displays the next frame in the debugger.

Debugger Edit Emacs Key Sequence: Al t +Shi ft +E
Edits the current frame in the debugger.

Debugger Print Emacs Key Sequence: Al t +Shi ft +V

Prints the variables of the current frame in the debugger.

229

20 The Listener

20.10.3 Miscellaneous Listener commands
Here are more commands, with their Execute mode key bindings, which are useful in the Listener.
Inspect Star Emacs Key Sequence: Ctrl +C Cirl +l

Inspects the current value (that is, the value of the Common Lisp variable *).

Inspect Variable Emacs Key Sequence: None

Inspects the value of an editor variable, which is prompted for.

Throw to Top Leve Emacs Key Sequence: Al t +K

Abandons the current input.

For more details about other keyboard commands available in the editor, see 12 The Editor, and the Editor User Guide.

20.10.4 Highlighting of results

The results of expression evaluation in the Listener are output as marked objects (except for trivial objects). That means they
have a specia style, and you can operate on them by using the context menu and choosing items from the Marked Object
submenu, with items like the Works > Values menu.

Note that, for the latest results, you also can also use Works > Values menu in the menu bar. However, the Works > Values
menu is applicable only to the latest results, and if there is more than one result (the form that was evaluated returned
multiple values), then it is applied to the list of the latest results. The Marked Object submenu of the context menu is
applicable to al the results in the Listener, and to each result individually.

The style used to display marked objectsis called Marked Object and can be changed via Preferences... > Environment >
Styles > Styles Colors And Attributes. By default, marked objects are underlined.

Thefunction pri n1- mar ked- obj ect can be used to print objects as marked objects in the Listener or Background Output
streams.

prinl-marked-object Function

| wt ool s: prinl-nmarked-object object &opti onal output-stream => object

The function pri nl1- mar ked- obj ect printsany Lisp object object to the stream designator output-stream similarly to
prinl, but when output-streamis a Listener or Background Output stream, it outputs object as a marked object. output-
stream defaults to the value of * st andar d- out put *.

prinl- mar ked- obj ect limitsthe length of the output to 2000000 (million) characters.
20.11 Setting Listener preferences

To set options for the Listener tool choose Tools > Preferences... or click &, and select Listener in the list on the left side of
the Preferences dial og.

230

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_pr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm

20 The Listener

The Listener tab of the Listener Preferences

GE-'I'IE-'IEI' Listener

Initial stack size: [N W
Use syrtax colorng intially

The Listener tab allows you to set the size of the stack used in the Listener's evaluation process. By default, this process has a
stack of size determined by the value of the variable syst em *sg- def aul t - si ze*. If you find you are getting stack
overflow errorsin correct code that you enter at the Listener prompt, then increase the stack size. This setting takes effect for
subsequently created Listener windows and LispWorks sessions.

The Listener tab aso allows you to control whether syntax coloring is applied to theinput in a Listener when it first started
by checking Use syntax coloring initially. You can turn it off or on within the Listener using the Editor command Font L ock
Mode.

The other configurable aspects of the Listener are shared with the Editor and other tools, including:
» Emulation, including key input and cursor styles.
» Thefont.
» Thetext styles used to highlight selected text, color code and input, and so on.

To alter these, raise the Preferences dialog, select Environment in the list on the left side, and choose the Emulation or Styles
tab. See 3.2 Setting preferences for a description of these options.

20.12 Running Editor forms in the Listener

Suppose that you have code displayed in an Editor tool and you want a convenient way to run it in the Listener. Perhapsyou
need to capture the return value, or perhaps ou want to test several variants by evaluating edited versions of that code. The
editor command Evaluate Last Form in Listener isuseful in these cases.

20.13 Switching to and from other tools

To switch quickly from the Listener to another window, use Cont r ol +Tab. To return to the Listener, use
Cont rol +Shi ft +Tab.

These shortcuts cycle through al the windows in turn, and they work in any of the LispWorks IDE windows.

You might also find the tool accelerator keys useful. See 3.1.5.1 Tool accelerator keys.

20.14 Help with editing in the Listener

Two help commands are available to provide you with more information about editor commands which can be used in the
Listener.

Choose Help > Editing > Key to Command and type a key sequence to display a description of the extended editor command
it isbound to, if any.

Choose Help > Editing > Command to Key and supply an extended editor command to see the key sequence it is bound to, if
any.

For more details about the keyboard commands and extended editor commands available, see 12 The Editor.

231

21 The Output Browser

The Output Browser is asimple tool that displays the output generated by your programs, and by operations such as
macroexpansion, compilation and tracing. You can create one by choosing Tools > Output Browser or clicking «» in the
Podium or as described in 3.1.5 Displaying tools using the keyboard. The Output Browser shows the Output Browser.

The Output Browser

" Output Browser 1 g@ﬁ'

{CAPI :DEFINE-IHNTERFACE TEAT-INPUT-CHOICE-TEST)
: (SUBFUNCTION {METHOD CAPI::INITIALIZE-INTERFACE :-AFTER (*?
TEST-INPUT-CHOICE-TEST)) (CAPI:DEFINE-IHNTERFACE TEST-IHPUT?*
—-CHOICE-TEST))
{CAPI :DEFINE-IHNTERFACE TEAT-INPUT-CHOICE-TEST)
TEXT-INPUT-CHOICE-SHOW-STRIHG
TEST-INPUT-CHOICE-HEW-STRIHG
TEXT-INPUT-CHOICE-IHUERT
TEST-INPUT-CHOICE-POPPIHG-UP
TEST-TEXT-INPUT-CHOICE

-——- Press space to continue -—-—-

The Output Browser has one main area that displays the output from the environment. Output usually consists mostly of
compilation, trace and macroexpansions, but can also include compiler explanations and output from other tools, such asthe
Profiler. Themain areais actually an editor window, so all the usual editor keyboard commands can be used init. See 12 The
Editor for more details about these operations.

The Output Browser isinvaluable when you are developing code, because it collects any output generated by your code. An
example of how to do thisis given in 2.4 Viewing output.

Many other tools in the LispWorks IDE contain an output view, which you can display by clicking their Output tab. The
Output tab collects all the output generated by that tool. For instance, the System Browser has an Output tab that displays
compilation messages. The Editor tool's Output tab additionally displays macroexpansions. Note that the Output Browser is
the only tool which displays any output from your own code without any need for further action on your part.

Note: The Output Browser (and the Output tab of sometools) displays only the output from . By default, processes not
associated with the tools write their output to the terminal stream.

21.1 Interactive compilation messages

Compilation messages are highlighted in the output, with errors, warnings and optimization hints each displayed in a unique
style. When the editor's cursor is within a compilation message, choose Find Source in the context menu to display the
source code where the condition occurred, in an Editor tool.

232

21 The Output Browser

Compilation messages and the use of the context menu

% Output Browser 1 E'E'
L)

;33 Cross referencing is off
= (TOP-LEVEL-FORH 8)
;: (TOP-LEUEL-FORH 1)

;33%%* Warning in (TOP-LEVEL-FORHM 2): *GRAPH-M:
AHE* assumed special in SET(

: (TOP-LEVEL-FORH 2}

;::%%* Warning in FACTORP: Q is bound but not »
referenced

;:— Calling FLOOR

;53— Implementation lewvel calling SYSTEM::ZERDx»
PSOTHER with 1 argumentf

; FACTORP

; FACTORS

: PRIMEP

;5:%%% Warning in (DEFUA e GRAPH-HAME
E* assumed special Find Source
;: (DEFUAR =GRAPH=)

*x++++ Error in (TOP-LEUEL-FORH 7):

More than three arguments in IF: (IF (CAPI:G:x
RAPH-PANE-DIRECTION =GRAPH=#=) :BACKWARDS (CAPI:»
SIMPLE-PANE-BACKGROUND =GRAPH=) :-YELLOW).

; **x 1 error detected, no fasl file produced.

;33 Compilation finished with 3 warnings, 1 ers

ror, 2 notes.

-——- Press Space to continue, or press Return =
to view errors and warnings ---—-

You can also raise a Compilation Conditions Browser tool to view the errors and warnings directly from the output view, by
pressing Ret ur n as mentioned in the output shown above.

Another way to visit the source code where the condition occurred is the editor's Edit Recognized Sour ce command which is
boundto Ct r1 +X , (comma) in Emacs emulation.

21.1.1 Compilation message styles

Thetext styles used to highlight compilation messagesin the output have these meanings and default appearance:

233

21 The Output Browser

Compilation message styles

Style Name Use Default appearance
Compiler Note Optimization hints : magent a foreground
Compiler Warning Warnings and other messages : or ange3 foreground
Compiler Error Errors : r ed foreground

Compiler explanations are optimization hints generated by compiling code with the : expl ai n declaration. See the
LispWorks® User Guide and Reference Manual for a description of the : expl ai n declaration.

Note: You can changes the styles used to display compilation messages via Preferences... > Environment > Styles > Styles
Colors And Attributes.

234

22 The Process Browser

The Process Browser allows you to view and control the processes in the LispWorks multiprocessing model. See the
LispWorks® User Guide and Reference Manual for more information about multiprocessing.

Note: Each individual window in the LispWorks IDE runs as a distinct processin the LispWorks multiprocessing model.
Each of these isimplemented as a Windows thread.

To create a Process Browser, choose Tools > Process Browser or click # in the Podium.

The Process Browser

“% Process Browser 1

o B EE FRR

Filter - M Matches 9

M ame Friority Status

Lizterer 1 GOOOOO0D W ating for events

Editor 1 BOQOO000 *waiting for events

Output Browser 1 BOOQ00O00 FRunning

Lizpt/orkz B.0.0 BO000000 W aiting far esents

CAP| Execution Listener 1 1 “wWaiting for input
Background execute 2 Waiting for job to execute
Crebugger process Wwhaiting for input
Background execute 1 Whaiting for job to execute
The idle process A3EET0AE Wailting

The Process Browser consists of amain areain which all the current processes in the environment are listed, and a Filter area
which you can use to restrict the information displayed in the main area.

Like other filter areas, you can enter a string or aregular expression in the Filter to limit the display to only those items which
match your input, or the complement of this. See 3.12 Filtering infor mation for more information about using the Filter
area.

235

22 The Process Browser

Process browser

E citor 1
Outpast Broveser 1

Background execute 2 Waiting for job to execute
Debugger process Waiting for mput
Backgiound execute 1 Wading for job to execute
The idle process - Wadng

Ready.

Thetoolbar buttons are labelled in Process browser. These buttons provide the same actions as the Process context menu:
Break, Stop, Unstop, Terminate, Debug, Inspect and Listen.

22.1 The process list

The main areacontains alist of all the current processesin the Lisp image. Properties of each process are shown in the
columns Name, Priority and Status.

If you have many processes running, you can use the filter areato only list processes containing a given string. For example,
if you enter "Running" in the filter area, and click on + then only processes that have the word "Running" in their description
will be shown.

The processes displayed in the main area can be sorted by clicking the relevant button above each column. For example, to
sort all listed processes by process priority, click on the Priority title button.

22.2 Process control

The Works > Processes menu contains commands that let you control the execution of processes in the Lisp image. These
same commands are available using the toolbar buttons at the top of the Process Browser window or by using the context
menu. (Use the left mouse button or the arrow keys to select a process; the context menu is usually accessed by the right
mouse button.) Process commands act on the process that has been selected in the processlist. You can select a process by
clicking on the line in the process list that contains the process name and status information or by using Tab and the arrow
keysto navigate to that line.

236

22 The Process Browser

Choose Works > Processes > Break to break the selected process. This breaks Lisp and gives you the opportunity to follow
any of the normal debugger restarts.

Choose Works > Processes > Terminate to terminate (kill) the selected process.

Choose Works > Processes > Stop to stop the selected process. The process can be started again by choosing Works >
Processes > Unstop.

Choose Works > Processes > Unstop to restart a process which has been stopped using Works > Processes > Stop.

Choose Works > Processes > Inspect to call up an Inspector tool to inspect the selected process. See 17 The Inspector for
more information on inspecting objects and processes.

Choose Works > Processes > Listen to make the selected process be the value of * in aListener tool. See 20 The Listener
for more information on using the Listener tool.

Choose Processes > Remote Debug to debug the current process in a Debugger tool.See 10 The Debugger Tool for more
information on using the Debugger tool.

Note: do not attempt to break, terminate, stop or debug system processes. This may make your environment unusable.

22.3 Other ways of breaking processes

In the Listener tool, you can break the evaluation process as described in 20.5 I nterrupting evaluation.

You can break a process by calling the function np: pr ocess- br eak.

22.4 Updating the Process Browser

The Process Browser updates itself automatically when anew processis created and when a process terminates.

In theinitial configuration the Process Browser does not automatically update on any other event, so changes such as
processes sleeping and waking are not noticed immediately. There are two ways to ensure such changes are visible in the
Process Browser:

» You can do Tools > Refresh to view the latest status displayed for each process, or:

» The Process Browser can be made to update automatically, as described in 22.5 Process Browser Preferences.

22.5 Process Browser Preferences

To display the Process Browser preferences, choose Tools > Preferences... or click &, and select Process Browser in thelist
on the left side of the Preferences dialog.

You can control whether the Process Browser displays the process operations toolbar by the option Show Toolbar on the
General tab, as described in 3.1.8 Toolbar configurations.

You can make the Process Browser update automatically at a predetermined frequency by setting the option Update
Frequency, asillustrated in the figure below. The update periods are in seconds.

237

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

22 The Process Browser

Configuring the Process Browser to update automatically

General| lpdating |

lpdate Frequency

M ewer W

MHewer
2
]
10

The option Automatic Update Delay determines adelay period (in seconds) after each automatic update of the Process
Browser. Any automatic update during thistime is delayed until the end of the delay period.

Automatic updates occur when process are created, die or stop and when the scheduler affects the status of aprocess. That is
quite often too frequent to be useful. Automatic Update Delay limits the update to a reasonabl e frequency. To see the effect,
make sure the Process Browser is visible and run the following form with different settings of the delay:

(dotinmes (x 1000)
(np: process-run-function
(format nil "Process ~d" x)

()
"sl eep
(/' x 200)))

238

23 The Profiler

23.1 Introduction

The Profiler provides away of monitoring Lisp functions during the execution of your code. It islikely that you can make
your code more efficient using the data that the Profiler displays.

The Profiler helps you to identify functions which are called frequently or are particularly slow. You should concentrate your
optimization efforts on these routines.

The Profiler gives you an easy way of choosing which functions you wish to profile, which code you want to run while
profiling, and provides you with a straightforward display of the results of each profile.

When code is being profiled, the Lisp process running that code is interrupted regularly at a specified time interval. At each
interruption, the Profiler scans the execution stack and records the name of every function found, including a note of the
function at the top of the stack. Moreover, a snapshot of the stack is recorded at each interruption, so we know not merely
how many times we reach a function call, but also how we reached that call.

When profiling stops (that is, when the code being profiled has stopped execution) the Profiler presents the data that it has
collected.

To create a Profiler, choose Tools > Profiler or click & in the Podium.

In the next section, we assume you are profiling a call to the function f oo defined as follows:

(i n-package "CL- USER")

(defun baz (1)
(dotines (i 1)))

(defun quux (1)
(dotines (i 1)))

(defun bar (n 1)
(dotimes (i n)
(baz 1))
(dotimes (i n)
(quux (floor | 2))))

(defun foo (n 1)
(bar n 1))

23.2 Description of the Profiler

There are four tabs in the main body of thetool. The first three tabs (Call Tree, Cumulative and Stacked Tree) display the
current profiler information in the tool in different ways. The fourth tab (Code To Profile), contains an editor-pane where you
can type code and then profileit.

Note that the profiler information in the tool may come from various sources. It may be aresult of profiling the codein the
Code To Profile tab or choosing Works > Profiler > Start Profiling... or it can be the result of importing profiler information
using the itemsin the Works > Profiler menu.

239

23 The Profiler

The Echo area alows interaction with editor commands, as in other tools.
The Profiler

o g d&

Call Tree | Cumulative | Stacked Tree | Code To Profile

¢+ Ingert code to prefile.
Wtoo 1000 100000

Beady.
All processes: 100.0% (12 calls)

23.2.1 Call Tree

The Call Tree tab shows a graph of functions called by the top level function call that was profiled. Each node represents a
function call. The graph edges are labelled according to the proportion of time spent in each function call. For examplein
The Profiler, of al the time spent in function bar , most was spent in baz and the rest in quux. Thisallows you to see which
branches of the code dominate the total time spent.

When optimizing your code you will want to concentrate on the calls which take alarge proportion of thetime. The least
significant parts of the graph are removed from the display according to the percentage in the Hide calls below (%) box. You
can adjust this percentage simply by entering an integer and pressing Ret ur n.

When analysing the call tree to find the most significant branches, single callees (that is, functions which account for all of
the time spent by their caller) are not interesting. You can adjust the call tree to omit these functions from the displayed graph
by checking the Collapse singletons box.

A Description area optionally shows a description of afunction in the profile data. You can show the description by clicking
on the Description >> button. The name, function object, lambda list, documentation string and source files of the selected
function are displayed. The context menu in the description area allows further operations. Hide the description areaif you
wish by clicking on the Description << button.

240

23 The Profiler

The Profiler's Call Tree adjusted

el dd TS
Call Tree | Cumulative | Stacked Tree | Code To Profile

Description == Collapse singletons Hide calls below (72) Showing whole tree

Profiling for Profiler 1 s =W it = 11V

Beady.
Profiled at 2017/09/07 17:16:57 - Profiler invoked 12 times. Top of stack known 100% of the time.

23.2.2 Options in the context menu for viewing parts of the call graph

The context menu in the Call Tree and the Stacked Tree tabs allow you to view a subset of the call treein various ways based
on the selected node.

Choosing Set Node As Root makes the selected node be the root of the displayed tree.

Choosing Set Function As Root makes the function associated with the selected node be the root of the displayed tree, by
merging all subtrees starting at the outermost occurrences of that function. Nodes above the outermost occurrences are not

displayed.

Note that the branches in the displayed tree for the selected function are merged across all branches in the whole tree for
matching functions and caller chains. For example, suppose the profiler sometimes saw function A calling function V calling
function W, (A>V>W), and at other times saw B>V>W>X, and other times saw C>V>Y >W. In the whole tree, each of these
call chainswill be on separate branches because they start with different functions (A, B and C). However, if you set the
function V to be root of the tree, then underneath there will two children: one for W with a child X (merging the occurrences
of V>W in A>V>W and B>V>W>X) and one for Y with achild W (for the occurrence of V>Y in C>V>Y>W.).

Choosing Show Calls To Function [Inverted] creates an inverted tree with the function at itsroot. The children of the inverted
tree are the callers of that function and the branches are merged as for Set Function As Root tree. An inverted treeis a useful
way for exploring why afunction seemsto be on the stack more than expected.

Choosing Show calls to allocation functions [inverted] shows an inverted tree where the allocation functions are the roots,
making it easier to see where allocation happens.

Choose Show Whole Tree to display the entire call tree again.

241

23 The Profiler

Notes: These menusitems set new values in the panes (the roots in the graph of the Call Tree tab and root in the stacked tree
of the Stacked Tree tab). They reset the history of scroll/zoom states in stacked tree. Using the History menu to move
between trees always resets to the whole tree. Currently there is no history of subtree settings.

23.2.3 Cumulative Results

The Profiler's Cumulative Results view

- FgFTF
Cumulative | Stacked Tree | Code To Profile

Fiter + || X Matches 11

Stavd-:... Top... Mame

12 (100%) 0 SYSTEM:EINVOKE
12 (100%) 0 SYSTEM:%ZEVAL
12 (100%) 0 BAR
12 (1007%) 0 MP::PROCESS-5G-FUNCTION
12 (100%) 0 SYSTEM:%%FIRST-CALL-TO-5TACK
12 (100%) 0 SYSTEM:[%FOREIGN-CALLABLE thread_initial_function|
12 (100%) 0 LISPWORKS-TOOLS::PROFILER-PROFILE-CODE-ALX
12 (100%) 0 SYSTEM::PROFILER-EVAL-PROFILING
8(67%) 8(67%) BAZ
4(33%) 4(33%) QUUX

e e e e e e e Y e e e |)

Beady.
Profiled at 2017/09/07 17:16:57 - Profiler invoked 12 times. Top of stack known 100% of the time.

The Cumulative tab shows aggregated information about each function that includes the following information:

» The number of times each function was found on the stack by the profiler, both in absolute terms and as a percentage of
the total number of scans of the stack.

» The number of times each function was found on the top of the stack, both in absolute terms and as a percentage of the
total number of scans of the stack.

With a suitable profiler setup it also shows:
» The number of times each function being profiled was called.

Note: by default the Profiler does not count function calls, because this can distort results significantly in SMP LispWorks.
Therefore the Call# column shows O for each function. To make the Profiler count calls, check Call counter in the dialog
described in 23.4 Selecting what to profile:

The Filter box lets you restrict the display of information in the Results area.

242

23 The Profiler

23.2.4 Stacked Tree
The Profiler's Stacked Tree view

e | FgddF
| Call Tree | Cumulative | Stacked Tree | Code To Profile |

Description > [] Collapse singletons Hide calls below (%) Showing whole tree

SYSTEM:|%FOREIGN-CALLABLEhread_initial_function| 100%
SYSTEM:: % %FIRST-CALL-TO-STACK 100% -
MP::PROCESS-5G-FUNCTION 100% - -
LISPWORKS-TOOLS:PROFILER-PROFILE-CODE-ALX 100%
SYSTEM::PROFILER-EVAL-PROFILING 100%

EVAL 1007% - -

SYSTEM: % EVAL 100% -

SYSTEM:: % INVOKE 100% -

BAR 1007% - -

BAZ BT - -

BEeady.
Profiled at 2017/09/07 17:16:57 - Profiler invoked 12 times. Top of stack known 100% of the time.

Theresults can also be displayed in capi : st ack-t r ee pane. Seethe documentation for capi : st acked-t r ee for details
on how it worksin the general. Thiscapi : st acked-t r ee displays the same tree asthe graph in Call Tree. When the tree
changes for any reason, both panes change to display the new tree. In particular, when using the context menu to display only
part of the tree, both panes display the same part.

In the Stacked Tree tab, the root node represents the total for all processes. Note that when profiling more than one process,
the percentage for al processes will typically be higher than 100%. The children of the root node are the processes that were
profiled, which correspond to the root nodesin Call Tree tab.

The Stacked Tree in generd is easier to navigate than the Call Tree because it is more compact and has useful options for
zooming into specific regions.

The context menu in the Stacked Tree tab alow you to view a subset of the call tree in various ways based on the selected
node, as described in 23.2.2 Optionsin the context menu for viewing parts of the call graph.

A Description area optionally shows a description of afunction in the profile data. You can show the description by clicking
on the Description >> button. The name, function object, lambda list, documentation string and source files of the selected
function are displayed. The context menu in the description area allows further operations. Hide the description areaif you
wish by clicking on the Description << button.

243

23 The Profiler

23.2.5 Code To Profile

Use the large text box in the Code To Profile tab to enter the Lisp source code that you wish to profile. Thistext areais
actually an editor window, similar to those described in 12.8 Basic Editor commands.

Code may be placed in this window in three ways.
» Typeit directly into the window.
 Pasteit in from other editor windows in the environment.
* Pasteit in from other applications.

Specify the package in which you want to run the code to be profiled using the Package box in the General tab of the Profiler
Preferences. To seethis, choose Tools > Preferences... or click &, and select Profiler in the list on the left side of the dialog.
If you are unsure, full details on how to do this can be found in 3.7.1 Specifying a package. Like all other toolsin the
LispWorks IDE, the Prafiler can have a particular package associated with it; the default package is CL- USER.

You can then profileit, using either by clicking the Profile & toolbar button or the Works > Profiler > Profile the 'Code To
Profile' menu item. This reads one form from the text box, evaluates it while profiling and then displays the make the result
the current profiler information in the tool.

Note: The Code To Profile tab only profiles the thread that is evaluating the form. It does not profile other threads. To profile
multiple threads, choose Works > Profiler > Start Profiling... as described in 23.3 The Profiler menu and Pr ofiler -specific
toolbar buttons.

By default, the Profiler switchesto the Stacked Tree tab after profiler finishes. You can change this using the buttons under
When Code To Profile finishes profiling in the Profiler Preferences (see 23.7 Configuring the Profiler).

23.3 The Profiler menu and Profiler-specific toolbar buttons

The Works > Profiler menu lets you modify the Profiler tool.

» Choosing Read Profiler Tree From File... reads a profiler tree from afile that you select. Normally this should have
. tree extension. Thefileis opened and the profiler triesto read a profiler tree from it. If successful, then the tree
becomes the current tree in the tool and is displayed.

Profiler tree files would normally be created either by calling hcl : save-current-profil er-tree or by choosing
Save Profiler tree. from the Works > Profiler menu. In principle, they may be generated in some other way, provided
that they match the format that is described in "Profiler tree file format" in the LispWorks® User Guide and Reference
Manual.

» Choosing Save Profiler Tree... saves the current tree to afile that you specify. If the file name does not have an
extension, the Profiler adds. t r ee (thesameashcl : save-current-profiler-tree).

Note the name of the tree is written to the file as well, so you may want to set the name beforehand by choosing Name
the current tree....

» Choosing Import Current Internal Tree imports the current internal profiler tree into the tool and displaysit. The internal
treeis set either by acall to hcl : st op- profil i ng with: suspend ni | (whichisthe default), or when
hcl : profi | e returns successfully.

Note that the current internal tree isthe sametreethat hcl : save-current -profil er-tree saves.

» Choosing Start Profiling... raises a dialog to configure profiling parameters and starts the profiler by calling
hcl : start-profiling. Theinitial settingsin the dialog are from the previous time you raised it and clicked OK.

Use Stop Profiling and Import to stop profiling.
Note: profiling isaglobal operation, i.e. there can be only one profile operation at the same time, and it uses the last

244

23 The Profiler

global setting of profiler parameters.

You cannot click OK in the configuration dialog until you select some processes. Check the All processes box to profile
all processes or choose specific processes by clicking the Select processes button and optionally check the New
processes box to include processes created while profiling is running aswell. This correspondsto the: pr ocesses
argumenttohcl : start-profiling.

Check Profile waiting processes or Ignore processes inside a foreign call to collect information from processes when
they are waiting or inside aforeign call.

This action can also be done by clicking the Start Profiling & toolbar button.

» Choosing Stop Profiling and Import stops the profiler by calling hcl : st op- pr of i | i ng and then imports the profiler
tree, which makes it current, displayed tree in the tool.

This action can also be done by clicking the Stop Profiling & toolbar button.
* Choosing Name The Current Tree... allows you to give the current tree a name.

The nameis displayed in the message area at the bottom of the tool, is listed in the History menu, and is used when
saving thetree to afile.

» Choosing Set Profiling Parameters... alows you to select what is shown in the profiler. See 23.4 Selecting what to
profile for more details.

This action can aso be done by clicking the Set Up Profiler &' toolbar button.

Compatibility note: Thisitem replaces the Symbols... and Packages... buttons that used to be in the Code To Profile
frame of the Profiler in LispWorks 7.0 and earlier releases.

» Choosing Profile the 'Code To Profile' reads aform from the editor pane in the Code To Profile tab, and profilesit, in the
same way that hcl : profi | e does. The results of the profiling then become the current profiler information in the tool
and is displayed in the other tabs.

This action can also be done by clicking the Profile ¢ toolbar button.

Compatibility note: Thisitem replaces the Profile button that used to bein the Code To Profile framein LispWorks 7.0
and earlier releases.

23.4 Selecting what to profile

245

23 The Profiler

The Profiler's Set Profiling Parameters dialog

Select arguments for SET-UP-PROFILER
Select packages:

@Al ()Mone () Selected

Choose packages (none selected)

Select symbols: MNone selected

Interval: | 10000

[] Profile GC code
[] Call counter
[] Show unknown frames

Select KW contexts: | All

Choosing Works > Profiler > Set Profiling Parameters... or clicking the Set Up Profiler &' toolbar button allows you to select
what is shown in the profiler, asfor the function hcl : set - up- profi | er described in the LispWorks® User Guide and
Reference Manual.

You can select values for keyword arguments of set - up-profiler:

Select packages : packages

Select symbols : synmbol s

Interval sinterval

Profile GC code 1 gc

Call Counter :cal |l -counter

Show unknown frames : show unknown- f r anes
Select KW contexts : kw contexts

You cannot click OK in the dialog until you select at least one package, symbol or KW context.

Note that "symbols" are actually function dspecs (see "Function dspecs' in the LispWorks® User Guide and Reference
Manual), so can also beset f functions and method names. KW contexts can be profiled only when KnowledgeWorksis
loaded.

Once you click the OK button, hcl : set - up- profi | er iscalled with the keywords listed above and the values that you
have selected. See the documentation for hcl : set - up- profi |l er for details.

The effect of hcl : set - up- profi | er isglobal and persistent, that is any profile operation in the same session (including

246

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

23 The Profiler

any calstohcl : profileandhcl:start-profiling)will usethe settings from the last call to
hcl : set - up-profil er. Thususing Set Profiling Parameters... and calling hcl : set - up- pr ofi | er will have the same
effect.

Typically it isonly useful to select packages (and if you use KnowledgeWorks, maybe KW contexts). If you want to select
symbols, it is easier to type them in an editor, or write afunction that computes the list, and then calls
hcl : set -up- profil er explicitly.

In the packages selection, checking All or None passesthe keyword : al | or : none respectively asthe value of : packages.
Checking Selected passes alist of packages, which you can choose by clicking the "Choose packages..” button. When
Selected is checked, if no packageis chosen, the dialog for choosing packages is raised immediately. In the Select KW
contexts selection, checking All passest asthevalueof : kw- cont ext s.

23.4.1 Choosing the functions to profile

It is possible to keep track of every function called when running code, but this involves significant effort in determining
which functions are suitable for profiling and in keeping track of the results. To minimize this effort you should specify
which functions you want to profile. The profiler checks that these functions have indeed got function definitions and are
therefore suitable for profiling. For more information on the types of function that can be profiled, see 23.8 Profiling pitfalls.

There are two ways of specifying functions that you want to profile:
» Choose which individual functions you want to profile.

» Choose whole packages, al of whose functions are profiled.

23.4.1.1 Choosing individual functions

Click the button to the right of Select symbols to specify alist of Lisp functions that you want to profile. The dialog shown
in Select Symbolsto Profile dialog appears.

247

23 The Profiler

Select Symbolsto Profile dialog

Select symbols for SET-UP-PROFILER:

New Symbol: || v X %
Selected symbals:

poix .|
FOO
BAR
BAZ

Thisdiaog displays the list of functions to be profiled.
* To add afunction to thelist, enter its name in the New Symbol text box and click .
» To remove afunction from the list, select it from the list and click Remove.
» To remove several functions, select them all before clicking Remove.

Click OK when you have finished choosing symbols.

Note: while entering the function name in the New Symbol text box you can click click #: to use completion. This allows

you to select from alist of al symbol names which begin with the partial input you have entered. See 3.14 Completion for
detailed instructions.

23.4.1.2 Choosing packages

You may often want to profile every function in a package, or if you do not know which symbolsto profile, you will want
profile all symbolsin all packages.

You can select which packages to profile using the buttons in the Select packages area. Check the All button, which isinitia
setting, to profile all symbolsin all packages. Check the None button if you only want to select specific symbols to profile.
Check the Selected button if you want to choose specific packages to profile, which will display adialog as shown in Select

Packagesto Profiledialog. If Selected isalready checked, then click the Choose packages button to change the selected
packages.

248

23 The Profiler

Select Packages to Profile dialog

Select packages for SET-UP-PROFILER:

Package: i Al

IUnselected Packages: Selected Packages:

EXTERNAL-FORMAT COMMON-LISP
COMMON-LISP-USER User Only
FLIINTERMNALS
FOREIGN User and CL
GRAPHICS-PORTS
HARLEQUIN-COMMON-L User and Standard
HARF

HQN-WEB

INS

KEYWORD
LISPWORKS
LISPWORKS-TOOLS
LOOP

LOWW64

LW-GT

LWW-XP

MP

PARSERGEN

RAW

REG

£

Mone

The main part of thisdialog consists of two lists:
» The Unselected Packages list shows packages in the Lisp image whose functions are not to be profiled.
» The Selected Packages list shows packages in the Lisp image whaose functions are to be profiled.

A global function will be profiled if its symbol is visible in one of the selected packages.

To modify the Selected Packages list:
1. Consider whether one of these buttons offers what you need, or closeto it:

All Selects all packages.

Note: There are significant processing overheads when profiling al functionsin all packages,
and the results you get may include much unwanted information.

User Only Adds the "user" packages, which means packages that are not part of the LispWorks

implementation, or packages that are part of the implementation but you are allowed to add
definitions to them. Includes the CL-USER package.

User and CL Adds the "user" and CL packages.

249

23 The Profiler

User and Standard Adds the "user" packages along with those packages that are used by default (from the value of
hcl : *def aul t - package- use-1i st*, whichinitially includes CL, HCL and LW).

Note: The Profiler tool assumes that packages not named in the value of
packages-f or -war n- on-redefi ni ti on are user-defined.

2. Add to your Selected Packages list if necessary. You can add a single package in one of three ways.
» Type the package name in the Select Package box and press Ret ur n or click v, or:
 Select the package in the Unselected Packages list and click on the >>> button, or:
» Double-click on the package in the Unselected Packages list.
3. Remove packages from the Selected Packages list if necessary. You can remove a single package in one of two ways:
» Select the package in the Selected Packages list and click on the <<< button, or:

» Double-click on the package in the Selected Packages list.

Also you can click the None button to clear the list of selected packages. Note that if you only want to profile afew
functions, you should do this by checking the None button in the main dialog and selecting symbols as described in
23.4.1.1 Choosing individual functions.

4. Finaly, click OK to dismiss the dialog when you have finished selecting the packages whose functions you want to
profile, or click Cancel to cancel the operation. This aso dismisses the dialog.

23.5 Format of the cumulative results

After you have run the profile, afour column tableis printed in the large list in the Cumulative tab of the Results area. These
columns are laid out as follows:

Call# The call count of each function, that is, the number of times it was called during execution of the
code.
Stack#(%) The number of times the function was found on the stack when the Lisp process was interrupted.

The parenthesized figure shows the percentage of time the function was found on the stack.

Top#(%) The number of times the function was found on the top of the stack when the Lisp process was
interrupted. Again, the figure in brackets shows the percentage of time the function was found on
top of the stack.

Name The name of the function.
You can order the itemsin the list by clicking on the relevant heading button.

Selecting any item in the list displays a description of that function in the Description area. In addition, an item selected in
the main list can be acted upon by any relevant commandsin the Works > Function menu (or, equivalently, the main list's
context menu). For instance, if you select a generic function in the main list and choose Works > Function > Generic
Function, you can view the generic function in a Generic Function Browser. Thisis consistent with many of the other toolsin
the environment.

The context menu also allows you to show the selected function in atree. By default, the Profiler switches to the Stacked
Tree tab to show the tree. You can change this using the buttons under When Code To Profile finishes profiling in the Profiler
Preferences (see 23.7 Configuring the Profiler).

» Choosing Set Function As Root makes the function associated with the selected node be the root of the displayed tree,
by merging all subtrees starting at the outermost occurrences of that function.

250

23 The Profiler

» Choosing Calls To Function [Inverted] creates an inverted tree with the function at itsroot. The children of the inverted
tree are the callers of that function and the branches are merged asfor Set Function As Root tree. Aninverted treeisa
useful way for exploring why a function seems to be on the stack more than expected.

Double-clicking on an item in the Description list invokes an Inspector on the selected item. In addition, an item selected in

this area may be acted on by any relevant commands in the Works > Description menu, asis the case with many other tools

in the environment. For instance, choose Works > Description > Copy to copy the item selected in the Description list to the
clipboard. See 3.8 Performing operations on selected objects for details on the commands avail able.

23.6 Interpreting the cumulative results

The most important columnsin the Cumulative tab are those showing call count (Call#) and number of times on the top of the
stack (Stack#). Looking solely at the number of times afunction isfound on the stack (Stack#) can be misleading, because
functions which are on the stack are not necessarily using up much processing time. However, functions which are
consistently found on the top of the stack are likely to have a significant execution time. Similarly the functions that are
called most often are likely to have the most significant effect on the program as awhole.

23.7 Configuring the Profiler
You can configure the Profiler using the Preferences dialog. To do this, choose Tools > Preferences... or click & to display
this dialog, and then select Profiler in the list on the |eft side of the dialog.

Profiler Preferences

General
Toolbar
Show Toolbar

Automatic switching
When setting a root in the Cumulative tab:

(®) Switch to Stacked Tree
() Switch to Call Tree

() Do Mot Switch

When Code To Profile finishes profiling:
(®) Switch to Stacked Tree

() Switch to Call Tree

() Switch to Cumulative

() Do Mot Switch

Fackage
COMMON-LISP-USER v ,7.:3?
Show Package Mames

251

23 The Profiler

23.7.1 Behavior of the Cumulative tab

You can change what happens after choosing Set Function As Root or Calls To Function [Inverted] from the context menuin
the Cumulative tab. The options under When setting a root in the Cumulative tab are:

Switch to Stacked Tree
Switch to the Stacked Tree tab.
Switch to Call Tree Switch to the Call Tree tab.

Do Not Switch The Cumulative Results tab remainsvisible.

23.7.2 Behavior after profiling finishes

You can change what happens when profiling in the Code To Profile tab finishes. The options under When Code To Profile
finishes profiling are:

Switch to Stacked Tree

Switch to the Stacked Tree tab.
Switch to Call Tree Switch to the Call Tree tab.
Switch to Cumulative Switch to the Cumulative tab.

Do Not Switch The Code To Profile tab remains visible.

23.8 Profiling pitfalls

It is generally only worth profiling code which has been compiled. If you profile interpreted code, the interpreter itself is
profiled, and this skews the results for the actual Lisp program.

Macros cannot be profiled because they are expanded during the compilation process.

23.8.1 Effects of random sampling

Always bear in mind that the numbers produced are from random samples, so you should be careful when interpreting their

meaning. The rate of sampling is always coarse in comparison to the function call rate, so it is possible for strange effects to
occur and significant eventsto be missed. For example, resonance may occur when an event always occurs between regular
sampling times. In practice, however, thisis not usually a problem.

23.8.2 Recursive functions

Recursive functions need special attention. A recursive function may well be found on the stack in more than one place
during one interrupt. The profiler counts each occurrence of the function, and so the total number of times afunction isfound
on the stack may be greater than the number of times the stack is examined.

23.8.3 Structure accessors

You must take care when profiling structure accessors. These compile down into a call to a closure, of which thereis one for
al structure setters and one for all structure getters. Thereforeit is not possible to profile individual structure setters or getters
by name.

252

23 The Profiler

23.8.4 Consequences of restricted profiling

Even if you configure the Profiler to profile all the known functions of an application, it is possible that less than 100% of the
timeis spent monitoring the top function. Thisis because an internal system function could be on the top of the stack at the
time of the interrupt.

If you configure the Profiler to omit certain functions then these will not be displayed in the Results area, and so the display
may not match what you expect from your source code.

23.8.5 Effect of compiler optimizations

With certain compiler settings code can be optimized such that the Profiler data does not appear to match your source code.
For example when atail call is optimized, the tail-called function appears in the call tree as a child of the parent of the caller,
rather than as achild of itscaller (just asin the debugger stack). Similarly code using f uncal | or appl y may yield
confusing results. To prevent tail-call optimization, use compiler setting debug 3.

23.8.6 Effect of compiler transforms
The compiler may transform some functions such that they are present in the source code but not in the compiled code.
For example, the compiler transforms this source expression:
(menmber '"x '"(x y z) :test # eq)
into this compiled expression:
(memg "x " (xy z))

Therefore function meng will appear instead of nenber in the profile results.

Similarly, you cannot profile inlined functions.

23.9 Some examples

The examples below demonstrate different ways in which the profiler can be configured and code profiled so as to produce
different sets of results. In each example, the following piece of code is profiled:

(dotinmes (x 1000)
(capi : nake- cont ai ner
(make-instance 'capi:title-pane
ctext "Title")))

Thisis asimple form which makes some CAPI objects.
1. Create a Profiler tool if you have not already done so.
2. Copy the code above into the box in the Code to Profile panel.

3. Choose Tools > Preferences... or click &, select Profiler in the list on the left side of the dialog, and then select the
General tab. Now you can change the package of the Profiler.

253

http://www.lispworks.com/documentation/HyperSpec/Body/f_funcal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_apply.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_member.htm

23 The Profiler

Profiler Preferences

General

Fackage
COMMOM-LISP-USER v ??

Show Package Mames

Toolbar

Showe Toolbar
4. Inthe Profiler Preferences, replace the default package in the Package text box with CAPI and click +.
