Release Notes and Installation Guide

Version 8.0

Copyright and Trademarks

Release Notes and Installation Guide
Version 8.0

December 2021

Copyright © 2021 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and K nowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in al copies and supporting documentation, and that the
name of M.1.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "asis’
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including al implied
warranties of merchantability and fitness. In no event shall M.I.T. beliable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of |CU software obtained from http://source.icu-project.org and which bears the following copyright
and permission natice:

ICU License- ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.

Permission is hereby granted, free of charge, to any person abtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission naotice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "ASIS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THISNOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright and Trademarks

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and

registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights

The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt 111, as applicable. Rights reserved under the copyright laws of

the United States.

Address

Telephone

Fax

LispWorks Ltd

St. John's Innovation Centre
Cowley Road

Cambridge

CB4 0WS

England

From North America
877 759 8839 (toll-free)

From elsawhere;
+44 1223 421860

From North America
617 812 8283

From elsawhere:
+44 870 2206189

www.lispwor ks.com

www.lispworks.com

Contents

1 Introduction 8

1.1 LispWorks Editions 8

1.2 LispWorks for Mobile Runtime 9
1.3 Evaluation quick guide 9

1.4 Further details 10

1.5 About this Guide 10

2 Installation on macOS 12

2.1 Choosing the Graphical User Interface 12

2.2 Documentation 12

2.3 Software and hardware requirements 12
2.4 Ingtalling LispWorks for Macintosh 13
2.5 Starting LispWorks for Macintosh 16

2.6 Uninstalling LispWorks for Macintosh 17

2.7 Upgrading the LispWorks Edition 17

3 Installation on Windows 18

3.1 Documentation 18

3.2 Installing LispWorks for Windows 18
3.3 Uninstalling LispWorks for Windows 20
3.4 Upgrading the LispWorks Edition 20
3.5 Upgrading to 64-bit LispWorks 20

4 Installation on Linux 21

4.1 Software and hardware reguirements 21
4.2 License agreement 22
4.3 Software delivery and installer formats 22

4.4 Installing LispWorks for Linux 23

4.5 LispWorks looks for alicense key 26
4.6 Running LispWorks 27

4.7 Configuring the image 28

4.8 Printable LispWorks documentation 28
4.9 Uninstalling LispWorks for Linux 28
4.10 Upgrading the LispWorks Edition 28
4.11 Upgrading to 64-bit LispWorks 28

Contents

5 Installation on x86/x64 Solaris 29

5.1 Software and hardware requirements 29

5.2 Software delivery and installer format 30

5.3 Installing LispWorks for x86/x64 Solaris 30
5.4 LispWorks looks for alicense key 32

5.5 Running LispWorks 32

5.6 Configuring the image 32

5.7 Printable LispWorks documentation 33

5.8 Uninstalling LispWorks for x86/x64 Solaris 33
5.9 Upgrading the LispWorks Edition 33

5.10 Upgrading to 64-bit LispWorks 33

6 Installation on FreeBSD 34

6.1 Software and hardware requirements 34
6.2 License agreement 35

6.3 Software delivery and installer format 35
6.4 Installing LispWorks for FreeBSD 35

6.5 LispWorks looks for a license key 37
6.6 Running LispWorks 37

6.7 Configuring the image 38

6.8 Printable LispWorks documentation 38
6.9 Uninstalling LispWorks for FreeBSD 38
6.10 Upgrading the LispWorks Edition 38
6.11 Upgrading to 64-bit LispWorks 38

7 Installation of LispWorks for Mobile Runtime

7.1 Installing LispWorks for Android Runtime 39
7.2 Ingtalling LispWorks for iOS Runtime 39

8 Configuration on macOS 40

8.1 Introduction 40

8.2 License keys 40

8.3 Configuring your LispWorks installation 40
8.4 Saving and testing the configured image 42
8.5 Initializing LispWorks 44

8.6 Loading CLIM 2.0 44

8.7 The Common SQL interface 45

8.8 Common Prolog and KnowledgeWorks 46

9 Configuration on Windows 47

9.1 Introduction 47
9.2 License keys 47
9.3 Configuring your LispWorks installation 47

Contents

9.4 Saving and testing the configured image 48
9.5 Initializing LispWorks 50

9.6 Loading CLIM 2.0 50

9.7 The Common SQL interface 51

9.8 Common Prolog and KnowledgeWorks 51
9.9 Runtime library requirement on Windows 52

10 Configuration on Linux, x86/x64 Solaris & FreeBSD

10.1 Introduction 53

10.2 License keys 53

10.3 Configuring your LispWorks installation 54

10.4 Saving and testing the configured image 55

10.5 Initiaizing LispWorks 56

10.6 Loading CLIM 2.0 56

10.7 The Common SQL interface 57

10.8 Common Prolog and KnowledgeWorks 58

10.9 Documentation on x86/x64 Solaris and FreeBSD 58

11 Troubleshooting, Patches and Reporting Bugs

11.1 Troubleshooting 59

11.2 Troubleshooting on Windows 61

11.3 Troubleshooting on macOS 61

11.4 Troubleshooting on Linux 61

11.5 Troubleshooting on x86/x64 Solaris 62

11.6 Troubleshooting on FreeBSD 63

11.7 Troubleshooting on X11/Motif 63

11.8 Updating with patches 64

11.9 Reporting bugs 66

11.10 Transferring LispWorks to a different machine 69

12 Release Notes 71

12.1 Keeping your old LispWorks installation 71
12.2 Updating your code for LispWorks 8.0 71
12.3 Platform support 71

12.4 GTK+ window system 73

12.5 New CAPI features 74

12.6 Other CAPI and Graphics Ports changes 76
12.7 More new features 76

12.8 IDE changes 83

12.9 Editor changes 85

12.10 Foreign Language interface changes 86
12.11 Objective-C changes 87

12.12 Common SQL changes 87

12.13 KnowledgeWorks changes 88

59

53

Contents

12.14 Application delivery changes 88
12.15 Other changes 89

12.16 Documentation changes 90
12.17 Known Problems 91

12.18 Binary Incompatibility 92

Index

1 Introduction

1.1 LispWorks Editions

LispWorksis availablein several product editions on desktop platforms.
The main differences between the editions are outlined below. Further information can be found at:

www.lispwor ks.com/products

1.1.1 Personal Edition

LispWorks Personal Edition allows you to explore a fully-enabled Common Lisp programming environment and to develop
small- to medium-scale programs for personal and academic use. It includes:

» Native graphical IDE.
 Full Common Lisp compiler.
» COM/Automation APl on Microsoft Windows.
LispWorks Personal Edition has several limitations. These are:
* A heap size limit
» A timelimit of 5 hoursfor each session.
» Thefunctionssave-i mage, del i ver, and| oad- al | - pat ches are not available.

Initialization files are not available.

» HobbyistDV, Professional and Enterprise Edition module loading is not included.
LispWorks Personal Edition has no license fee. Download it from:

www.lispwor ks.com/downloads

1.1.2 Hobbyist Edition

LispWorks 8.0 Hobbyist Edition is available to individual licensees for non-commercial and non-academic use. It isafully-
functional Common Lisp IDE without most of the limitations of the Personal Edition:

* No heap sizelimit.

* No session time limit.

» Thefunctionssave-i mage and| oad- al | - pat ches are available.
* Initialization files are available.

HobbyistDV, Professional and Enterprise Edition module loading is not included. In particular, the function del i ver is
omitted so runtimes cannot be generated.

http://www.lispworks.com/products
http://www.lispworks.com/downloads

1 Introduction

1.1.3 HobbyistDV Edition

LispWorks 8.0 HobbyistDV Edition is available to individual licensees for non-commercial and non-academic use. It hasall
the features of the Hobbyist Edition plus:

» Thefunctiondel i ver alowing generation of non-commercial end-user applications and libraries.

1.1.4 Professional Edition

LispWorks 8.0 Professional Edition includes all the features of the HobbyistDV Edition plus:
 Fully supported commercial product.
» Dédlivery of commercia end-user applications and libraries.
* CLIM 2.0 on X11U/Motif and Windows.

» 30-day free "Getting Started" technical support.

1.1.5 Enterprise Edition

LispWorks 8.0 Enterprise Edition provides further support for the software needs of the modern enterprise. It hasal the
features of the Professional Edition plus.

» Database access through the Common SQL interface.
« Portable distributed computing through CORBA.
» Expert systems programming through KnowledgeWorks and embedded Prolog compiler.

On most platforms you can choose either the 32-bit or 64-bit implementation of LispWorks. These implementations are
licensed separately.

1.2 LispWorks for Mobile Runtime

LispWorks for Android Runtime and LispWorks for iOS Runtime are new products which you can use to build LispWorks
runtimes for inclusion in mobile apps.

1.3 Evaluation quick guide

If you are evaluating LispWorks, then the following notes might prove to be useful.
» LispWorks support (1 i sp- support @i spwor ks. com) will be happy to answer any issues you have.

» The LispWorks distribution contains various examples demonstrating various features of LispWorks. All the examples
areinthedirectory "examples' inside the LispWorks installation.

You can find this directory by evaluating the following in a LispWorks Listener:
(example-file "")

Each example contains comments that explain what it demonstrates.

In many casesit is convenient to copy the example and modify it to do what you want, rather than writing your own code
from scratch.

1 Introduction

« |f you encounter an error that is not obviously abug in your code, it is aways best to produce afull bug report as
described in 11.9.3 Generate a bug report template. Thiswill speed up the resolution of the issue.

* If you have performance issues, you should user oom ext ended- t i me and pr of i | e to narrow the problem. Seethe
LispWorks® User Guide and Reference Manual for details of these diagnostic functions and macros. You should aso
report it to LispWorks support, as LispWorksis efficient in general and we do not expect performance problems.

1.4 Further details

For further information about LispWorks products visit:

www.lispwor ks.com

To purchase LispWorks please follow the instructions at:

www.lispwor ks.com/buy

1.5 About this Guide

This document is an installation guide and release notes for LispWorks 8.0 on macOS, Windows, Linux, x86/x64 Solaris,
FreeBSD platforms and LispWorks for Mobile Runtime. It also explains how to configure LispWorks to best suit your local
conditions and needs.

This guide provides instructions for installing and |oading the modules included with each Edition or add-on product.

Unless explicitly mentioned, instructions in this manual refer to the Hobbyist, HobbyistDV, Professiona and Enterprise
Editions, rather than the Personal Edition or LispWorks for Mobile Runtime which are distributed separately.

1.5.1 Installation and Configuration

Chapters 2 I nstallation on macOS -6 I nstallation on FreeBSD explain in brief and sufficient terms how to complete a
LispWorks installation on macOS, Windows, Linux, x86/x64 Solaris or FreeBSD. Choose the chapter for your platform: 2
Installation on macOS, 3 Installation on Windows, 4 Installation on Linux, 5 Installation on x86/x64 Solaris, or 6
Installation on FreeBSD.

Chapter 7 Installation of LispWorksfor Mobile Runtime briefly mentions installation of LispWorks for Mobile Runtime.

Chapters 8 Configuration on macOS-10 Configuration on Linux, x86/x64 Solaris & FreeBSD explain in detail everything
necessary to configure, run, and test LispWorks 8.0. Choose the chapter for your platform: 8 Configuration on macOS. 9
Configuration on Windows, or 10 Configuration on Linux, x86/x64 Solaris & FreeBSD. This also includes sections on
initializing LispWorks and loading some of the modules. You should have no difficulty configuring, running, and testing
LispWorks using these instructions if you have a basic familiarity with your operating system and Common Lisp.

1.5.2 Troubleshooting

Chapter 11 Troubleshooting, Patches and Reporting Bugs discusses other issues that may arise when installing and
configuring LispWorks. It includes a section that provides answers to problems you may have encountered, sections on the
LispWorks patching system (used to allow bug fixes and private patch changes between releases of LispWorks), and details of
how to report any bugs you encounter.

10

http://www.lispworks.com/documentation/HyperSpec/Body/f_room.htm
http://www.lispworks.com
http://www.lispworks.com/buy

1 Introduction

1.5.3 Release Notes

Chapter 12 Release Notes highlights what is new in this release and special issues for your consideration.

11

2 Installation on macOS

This chapter isan installation guide for LispWorks 8.0 (64-hit) for Macintosh. 8 Configuration on macOS discusses post-
installation and configuration in detail, but this chapter presents the instructions necessary to get LispWorks up and running
on your system.

2.1 Choosing the Graphical User Interface

LispWorks for Macintosh supports three different graphical interfaces. Most users choose the native macOS GUI, but you
can use the X11 GUI option instead, which supports both GTK+ and Motif. (Motif is deprecated, though.)

Different executables and supporting files are supplied for the two GUI options. You need to decide at installation time which
of these you will use, or you can install support for both. If you install just one GUI option and later decide to install the
other, you can simply run the installer again.

LispWorks for Macintosh Personal Edition supports only the native macOS GUI.

2.2 Documentation

The LispWorks documentation set is included in two electronic formats. HTML and PDF. You can chose whether to install it
asdescribed in 2.4 Ingtalling LispWorks for Macintosh.

The HTML format can be used from within the LispWorks IDE viathe Help menu. You will need to have a suitable web
browser installed. You can aso reach the HTML documentation viathe aias

Li spworks 8.0/ HTM. Docunent ati on. ht m If you choose not to install the documentation, you will not be able to
access the HTML Documentation from the LispWorks Help menu.

The PDF format is suitable for printing. Each manual in the documentation set is presented in a separate PDF file in the
LispWorks library under manual / of f | i ne/ pdf . The simplest way to locate these PDF filesisthe dias

Li spworks 8.0/ PDF Docunent ati on. To view and print these files, you will need a PDF viewer such as Preview
(standard on macOS) or Adobe® Reader® (which can be downloaded from the Adobe website at www.adobe.com).

2.3 Software and hardware requirements

LispWorks 8.0 supports Macintosh computers containing Intel CPUs.

An overview of system requirementsis provided in the table System requirements on macOS. The sections that follow
discuss any relevant details.

System requirements on macOS

12

http://www.adobe.com

2 Installation on macOS

Product Hardware Requirements Software Requirements

LispWorks (64-hit) Intel or Apple silicon processor. macOS version 10.6.x or higher for
for Macintosh 338MB of disk space including Intel and 11.5.x or higher for Apple
documentation silicon.

GTK+ 2 (version 2.4 or higher) if you
want to run the GTK+ GUI.

Open Matif 2.3 and Imlib2 1.4.9 if
you want to run the deprecated Motif
GUI.

2.4 Installing LispWorks for Macintosh

2.4.1 Main installation and patches

The LispWorks 8.0 installer contains each of the Editions. Additionally, there may be a patch installer which upgrades
LispWorksto version 8.0.x. You need to compl ete the main installation before adding patches.

2.4.2 Information for Beta testers

Users of LispWorks 8.0 Beta should completely uninstall it (including any patches added to the beta installation) before
installing LispWorks 8.0.

See 2.6 Uninstalling LispWorks for Macintosh for instructions.

2.4.3 Information for users of previous versions

You can install LispWorks 8.0 in the same location as LispWorks 7.1 or previous versions. If you always choose the default
install location, anew folder named Li spWor ks 8.0 (64-bit) will be created alongside the other versions.

2.4.4 Launch the LispWorks installer

The LispWorksinstaller isapkg file, with the following name:

Li spwor ks80-64bi t _I nstal | er. pkg (64-bit Lispworks)

Li spwor ksPer sonal 80_I nst al | er. pkg (LispWorks Personal Edition)

Toinstall LispWorks, launch this file, which should run the macOS Installer application. If this does not happen, right-click
onthfileand choose Open Wth > Installer.

The Introduction page should be displayed. Click Continue to go to the next step.

2.4.5 The Read Me

The Read Me presented next by the installer isaplain text version of this Release Notes and Installation Guide.

13

2 Installation on macOS

2.4.6 The License Agreement

Check the license agreement, then click Continue. You will be asked if you agreeto the license terms. Click the Agree
button only if you accept the terms of the license. If you click Disagree, then the installer will not proceed.

2.4.7 Install Location

All thefilesinstalled with LispWorks are placed in the LispWorks folder, which isnamed Li spworks 8.0 (64-bit), or
Li spwor ks Personal 8. 0 depending on which edition you are installing. The LispWorks folder is placed in the main
Appl i cat i ons folder for use by all users.

Note: The Appl i cat i ons folder may display in the Finder with a name localized for your language version of macOS.

2.4.8 Choose your installation type

The default Standard Install includes the native macOS GUI and the documentation, but you can also customize the install,
for examle to select the X11 GUI option.

Different executables and supporting files are supplied for the two GUI options. If you install just one of these and later
decide to install the other, you can simply run the installer again.

2.4.8.1 The native macOS GUI

If you simply want to install LispWorks for the native macOS GUI, and the documentation, click Install.

2.4.8.2 The X11 GTK+ and Motif GUIs

If you want to use LispWorks with either of the alternative X11 GUISs, click Customize and select the option LispWorks with
X11 IDE under Extra items.

The default X11 GUI is GTK+. Motif isalso available, but is deprecated. You can select Motif at run time.
Note: to run LispWorks with an X11 GUI, you will need both of these installed:

* An X server such as Apple's X11.app, available at www.apple.com.

* Oneof GTK+ 2 (version 2.4 or higher) or Open Motif 2.3.
If you use Open Motif, you will also need Imlib2 version 1.4.9 or later.
None of these are required at the time you install LispWorks, however.
The X11 GUIs are not available for the Personal Edition.

2.4.8.3 The Documentation
If you use the Standard Install the documentation will be installed.

If you do not wish to install the documentation, click Customize and uncheck the LispWorks documentation option under
Standard items.

14

http://www.apple.com

2 Installation on macOS

2.4.9 Installing and entering license data
Now click Install.
You will be prompted for an administrator's name and password.

If you are not installing the LispWorks Personal Edition, then enter your serial number and license key when the installer asks
for these details.

Your license key will be supplied to you in email from Lisp Support or Lisp Sales.

If you have problems with your LispWorks license key, send ittol i sp- keys@ i spwor ks. com showing the complete
output after you enter it, preferably with a screenshot.

2.4.10 LispWorks is added to the Dock

Theinstaller adds LispWorks to the Dock.

2.4.11 Finishing up
You should now see a message confirming that installation of LispWorks was successful. Click the Close button.

Note: LispWorks needsto be able find its library at run time and therefore the LispWorks installation should not be moved
around piecemeal. If you must move it, move the entire LispWorks installation folder. If you simply want to run LispWorks
from somewhere more convenient, then consider adding an alias.

2.4.12 Installing Patches

After completing the main installation of LispWorks, ensure you install the latest patches which are available for download at
www.lispwor ks.com/downloads/patch-selection.html. Patch installation instructions are in the README file
accompanying the patch download.

2.4.13 Obtaining X11 GTK+
LispWorks does not provide GTK+ libraries, so you need to install third-party libraries, such as:

* the gtk+2 package from the Fink Project at www.finkproject.org, or:

* the gtk2 package from MacPorts at www.macports.org.

Note: you need the x11 gtk2 libraries, not GTK-OSX (Quartz).

2.4.14 Obtaining Open Motif and Imlib2

LispWorks 8.0 for Macintosh on X11/Matif requires Open Motif 2.3 and Imlib2 1.4.9.
The Open Motif library for LispWorksis/ usr /1 ocal /1ib/1ibXm 4. dylib.

Lisp Support can supply suitable Motif and Imlib2 librariesif you need them.

Note: The Motif GUI isdeprecated. A GTK+ GUI isavailable.

15

http://www.lispworks.com/downloads/patch-selection.html#lwm
http://www.finkproject.org
http://www.macports.org

2 Installation on macOS

2.5 Starting LispWorks for Macintosh

2.5.1 Start the native macOS LispWorks GUI

Assuming you have installed this option, you can now start LispWorks with the native macOS GUI by double-clicking on the
LispWorksicon in the LispWorks folder.

Note: The LispWorks folder is described in 2.4.7 Install L ocation.

If you added LispWorks to the Dock during installation, you can also start LispWorks from the Dock. If you did not add
LispWorks to the Dock during installation, you can add it ssmply by dragging the LispWorks icon from the Finder to the
Dock.

If you want to create a LispWorks image that does not start the GUI automatically, then see 8.4.5 Saving a non-windowing
image (this option is not available in the Personal Edition).

See 8.3 Configuring your LispWorksinstallation for more information about configuring your LispWorks image for your
own needs.

Note: for the Personal Edition, the folder name and icon name are LispWorks Personal.

2.5.2 Start the GTK+ LispWorks GUI

Assuming you have installed the "LispWorks with X11 IDE" option, and that you have X11 running and GTK+ installed, you
can now start LispWorks with the GTK+ GUI.

Follow this session in the X 11 terminal for 64-bit LispWorks (the filenames will be slightly different for 64-bit LispWorks):

bash-3.2$% cd "/ Applications/Li spWwrks 8.0 (64-bit)"
bash-3.2$% ./I1i spworks-8-0-0-nmacos64-uni versal - gtk
Loading text file /Applications/LispWrks 7.1 (64-bit)/Library/lib/8-0-0-0/private-patches/| oad.|
isp
Li spwrks(R): The Common Lisp Progranm ng Environment
Copyright (C) 1987-2021 LispWrks Ltd. Al rights reserved.
Version 8.0.0
Saved by LispWrks as |ispworks-8-0-0-and64-darwi n-gtk, at 02 Aug 2021 15:21
User |w on nachine.lispworks.com
Loading text file /Applications/Li spWwrks 8.0 (64-bit)/Library/lib/8-0-0-0/config/siteinit.lisp
Loading text file /Applications/LispWwrks 8.0 (64-bit)/Library/lib/8-0-0-0/private-patches/| oad
lisp
Loading text file /Users/Iw.Ilispworks

The LispWorks GTK+ IDE should appear.

See 8.3 Configuring your LispWorksinstallation for more information about configuring your LispWorks image for your
own needs.

2.5.3 Start the Motif LispWorks GUI

Assuming you have installed the "LispWorks with X11 IDE" option, and that you have X11 running and Motif and Imlib2
installed, you can use LispWorks with the Motif GUI.

You first must load the Motif GUI into the supplied | i spwor ks- 8- 0- 0- macos64- uni ver sal - gt k image, by:
(require "capi-notif")

This loads the necessary module and makes Motif the default library for CAPI.

16

2 Installation on macOS

Then you can start the LispWorks IDE by calling the function env: st art - envi r onment . You might want to save an image
with the" capi - not i f " module pre-loaded: do thiswith asave-i mage script containing:

(require "capi-notif")

2.6 Uninstalling LispWorks for Macintosh

To uninstall LispWorks you should run the fileuni nst al | . command in the LispWorks folder. This must be run as an
administrator user.

2.7 Upgrading the LispWorks Edition

Some LispWorks features such as Delivery, Common SQL and KnowledgeWorks are not available in al Editions. You can
add these features by upgrading.

After purchasing your upgrade from lisp-sales@lispwor ks.com, select Help > Register... and enter your new license key.

17

mailto:lisp-sales@lispworks.com

3 Installation on Windows

This chapter is an installation guide for LispWorks 8.0 (32-bit) for Windows and LispWorks 8.0 (64-bit) for Windows. 9
Configuration on Windows discusses post-installation and configuration in detail, but this chapter presents the instructions
necessary to get LispWorks up and running on your system.

3.1 Documentation

The LispWorks documentation set is available in two electronic forms; HTML and PDF. You can choose whether to install
either of these.

If you install the HTML documentation, then it can be used from within the the LispWorks IDE viathe Help menu. It isalso
available from the Windows 7 Start menu under Start > All Programs > LispWorks 8.0 > HTML Documentation or on the
Windows 8 start screen.

The PDF format is suitable for printing. Each manual in the documentation set is presented in a separate PDF file, available
from the Start menu under Start > All Programs > LispWorks 8.0 > PDF Documentation. To view and print these files, you
will need a PDF viewer such as Adobe® Reader®. If you do not already have this, it can be downloaded from the Adobe
website.

3.2 Installing LispWorks for Windows

3.2.1 Main installation and patches

The LispWorks 8.0 installer contains each of the Editions. Additionally, there may be a patch installer which upgrades
LispWorksto version 8.0.x. You need to complete the main installation before adding patches.

3.2.2 Visual Studio runtime components and Windows Installer

On systems where this is not present, installing LispWorks will automatically install a copy of the Microsoft.V C80.CRT
component, which contains the Microsoft Visual Studio runtime DLLs needed by LispWorks.

3.2.3 Installing over previous versions

You can install LispWorks 8.0 in the same location as LispWorks 7.1 or previous versions back to LispWorks 4.4.5. Thisis
the default installation location.

You can also ingtall LispWorks 8.0 without uninstalling older versions such as Xanalys LispWorks 4.4 or Xanalys LispWorks
4.3 provided that the chosen installation directory is different.

3.2.4 Information for Beta testers

Users of LispWorks 8.0 Beta should completely uninstall it before installing LispWorks 8.0. Remember to remove any
patches added since the Beta release.

See 3.3 Uninstalling LispWor ks for Windows for instructions.

18

3 Installation on Windows

3.2.5 To install LispWorks

Toinstall LispWorks (32-bit) for Windows run Li spWor ks80- 32bi t . exe. You will have downloaded this from the
x86-wi n32 folder.

Toinstall LispWorks (64-bit) for Windows run Li spWor ks80- 64bi t . exe. You will have downloaded this from the
x64-wi ndows folder.

Follow the instructions on screen and read the remainder of this section.

3.2.5.1 Entering the License Data
Enter your serial number and license key when the installer asks for these detailsin the Customer Information screen.
Your license key will be supplied to you in email from Lisp Support or Lisp Sales.

If you have problems with your LispWorks license key, sendittol i sp- keys@ i spwor ks. com describing what happens
after you enter it, preferably with a screenshot.

Note: the LispWorks Personal Edition installer does not ask you to enter license data.

3.2.5.2 Installation location
By default 32-bit LispWorks installsin All Users spacein C:\ Program Fi | es (x86)\ Li spworks\ .
By default 64-bit LispWorksinstallsin All Users spacein C: \ Progr am Fi | es\ Li sp\Wor ks\ .

Toinstall LispWorks in a non-default location (for example, to ensure it is accessible only by the licensed user on a multi-
user system such as alogin server or remote desktop), select Custom setup in the Setup Type screen. Then click Change... in
the Custom Setup screen and choose the desired location in the Change Current Destination Folder dialog. Do not ssmply
move the LispWorks folder later, asthiswill break the installation.

3.2.5.3 Installing the Documentation
By default all the documentation isinstalled.

If you do not want to install the HTML Documentation, select Custom setup in the Setup Type screen and select This feature
will not be available in the HTML Documentation feature in the Custom Setup screen.

You can aso choose not to install the PDF Documentation, in asimilar way.

You can add the HTML Documentation and the PDF Documentation later, by re-running the installer. The documentation is
a so available at www.lispwor ks.com/documentation.

3.2.5.4 Installing Patches

After completing the main installation of the Professional or Enterprise Edition, ensure you install the latest patches which
are available for download at www.lispwor ks.com/downloads/patch-selection.html.

Patch installation instructions are in the README file accompanying the patch download.

19

http://www.lispworks.com/documentation
http://www.lispworks.com/downloads/patch-selection.html#lww

3 Installation on Windows

3.2.5.5 Starting LispWorks
After installation LispWorks can be invoked from the Start menu or Start screen (on Windows 8).

Note: After installation you must not move or copy the LispWorks folder, since the system records the installation location.
Moreover LispWorks needs to be able find itslibrary at run time and therefore the LispWorks installation should not be
moved around piecemeal. If you simply want to run LispWorks from somewhere more convenient, then consider adding a
shortcut.

3.3 Uninstalling LispWorks for Windows

To uninstall LispWorks:
1. Select Programs and Features in the Control Panel or App & features in Settings on Windows 10.
2. Select LispWorks 8.0 (32-bit) or LispWorks 8.0 (64-bit) and click Uninstall.

Thiswill uninstall LispWorks along with any installed updates. It will not remove any private patches.

3.4 Upgrading the LispWorks Edition

Some LispWorks features such as Delivery, Common SQL and KnowledgeWorks are not available in al Editions. You can
add these features by upgrading.

After purchasing your upgrade from lisp-sales@lispwor ks.com, select Help > Register... and enter your new license key.

3.5 Upgrading to 64-bit LispWorks

To upgrade from 32-bit to 64-bit LispWorks, contact:

lisp-sales@lispwor ks.com

20

mailto:lisp-sales@lispworks.com
mailto:lisp-sales@lispworks.com

4 |nstallation on Linux

This chapter isan installation guide for LispWorks 8.0 (32-bit) for x86/x86_64 Linux, LispWorks 8.0 (64-bit) for x86_64
Linux, LispWorks 8.0 (32-bit) for ARM Linux and LispWorks 8.0 (64-bit) for ARM64 Linux. 10 Configuration on Linux,
x86/x64 Solaris & FreeBSD discusses post-installation and configuration in detail, but this chapter presents the instructions
necessary to get LispWorks up and running on your system.

4.1 Software and hardware requirements

An overview of system requirementsis provided in System requirementson Linux. The sections that follow discuss any
relevant details.

System requirements on Linux

Hardware Requirements Software Requirements

168MB of disk space for Enterprise Edition (32-bit) plus |Any distribution with glibc 2.6 or later for x86/x86_64

documentation and 2.17 or later for ARM/ARM64

182MB of disk space for Enterprise Edition (64-hit) plus | GTK+ 2 (version 2.4 or higher) to run the GTK+ GUI.

documentation Open Motif 2.2.x or 2.3.x and Imlib2 1.4.3 or later to run
the deprecated Motif GUI

Any modern machineislikely to have sufficient RAM to |Firefox or Opera web browser for viewing on-line

run LispWorks as distributed. documentation

4.1.1 GUI libraries

LispWorks 8.0 for Linux requires that the X11 release 6 (or higher) isinstalled. It also requiresthat either GTK+ or Open
Motif with Imlib2 are installed.

The remainder of this section contains the details for each of these distinct GUI options.

4.1.1.1 GTK+
In order for the LispWorks IDE to run "out of the box", GTK+ must be installed on the target machine.

GTK+ 2 (version 2.4 or higher) isrequired.

4.1.1.2 Motif
Open Motif version 2.2 or 2.3 isrequired to run LispWorks with the Motif GUI.

Download and install Open Motif 2.2.x or 2.3.x from your Linux distribution or from www.motifzone.net. Your systems
administrator may be able to help if you do not know how to do this.

You will also need Imlib2 version 1.4.3 or later. Install thisfrom your Linux distribution.
Note: You should be able to run the LispWorks 8.0 Motif GUI and LispWorks 7.x, LispWorks 6.x or LispWorks 5.x

21

http://www.motifzone.net/

4 |nstallation on Linux

simultaneously with Open Motif installed.

4.1.2 Disk requirements

To install without documentation and optional modules, 32-bit LispWorks requires about 45MB and 64-bit LispWorks
requires about 60MB. Installing the documentation adds about 110MB and the optional modules about 15MB. A full
installation of the 64-bit Enterprise Edition with all documentation and optional modules requires about 185MB.

The documentation includes printable PDF format manuals. You may delete any of these that you do not need. They are
available at www.lispwor ks.com/documentation in any case, and the same manuals are also available there in PostScript
format.

4.2 License agreement

Before installing, you must read and agree to the license terms.
To do this download the license script from the link we sent to you.

Now run:

sh Iw -1license. sh

or, if you areinstalling the Personal Edition:

sh I w per-license.sh

Note: You must run this script as the same user that later performstheinstallation. In particular, if you are going to install
LispWorks from the RPM file, you must run the license script while logged on as root.

Enter "yes" if you agreeto the license terms.

4.3 Software delivery and installer formats

LispWorks 8.0 for Linux is supplied as adownload. Two formats are provided:

* Red Hat Package Management (RPM) filesfor x86 and x86_64. RPM isa utility liket ar , except it can actualy install
products after unpacking them. See 4.4.4 Installation from the binary RPM file (x86 and x86_64 only) for more
information.

e tar files.

4.3.1 Contents of the LispWorks distribution
The supplied installers contain all of the relevant modules.
For RPM installations, the RPM package nameis! i spwor ks (or | i spwor ks- per sonal for the Personal Edition).

The Professional and Enterprise Edition modules are in separately installable RPM packages. These are: CLIM 2.0,
KnowledgeWorks, LispWorks ORB, and Common SQL. 1.1 LispWor ks Editions provides Edition details.

For the Professional Edition the separately installable packages are:

|'i spworks-clim

22

http://www.lispworks.com/documentation

4 |nstallation on Linux

and for the Enterprise Edition the separately installable packages are:

i spworks-clim
|'i spwor ks- kw
| i spwor ks- corba
|'i spwor ks-sql

The installation instructions provide the names of the individual distribution files.
4.4 Installing LispWorks for Linux

4.4.1 Main installation and patches

The LispWorks 8.0 installer contains each of the Editions. Additionally, there may be a patch installer which upgrades
LispWorksto version 8.0.x. You need to complete the main installation before adding patches.

4.4.2 Installing over previous versions

You can ingtall LispWorks 8.0 in the same location as LispWorks 7.1 or previous versions.

4.4.3 Information for Beta testers

Users of LispWorks 8.0 Beta should completely uninstall it (including any patches added to the beta installation) before
installing LispWorks 8.0.

See 4.9 Uninstalling LispWorksfor Linux for instructions.

4.4 .4 Installation from the binary RPM file (x86 and x86_64 only)

For installation on ARM and ARM64, see 4.4.5 | nstallation from thetar files,

We recommend that you use RPM 4.3 or later (however see below for problems with - - pr ef i x argument with some
versions of RPM). The distribution files are also provided int ar format in case you do not have a suitable version of RPM or
are using another distribution of Linux.

If you already have LispWorks 8.0 Betainstalled, please uninstall it before installing this product. See 4.9 Uninstalling
LispWorksfor Linux.

Some versions of RPM may cause problems (eg. RPM 3.0). If you get the following message when using the - - pr ef i x
argument:

rpm only one of --prefix or --relocate may be used

try upgrading to RPM 3.0.2 or greater.

Instalation of LispWorks for Linux from the RPM file must be done while you are logged on as root.

4.4.4.1 Installation directories

By default 32-bit LispWorksisinstalled in/ usr/ 1 i b/ Li spWor ks and asymbolic link to the executable is placed in
/usr/bin/lispworks-8-0-0-x86-1inux. Similarly, 64-bit LispWorksisinstaledin/ usr/ i b64/ Li spWr ks and a
symbolic link to the executableis placed in/ usr/ bi n/ | i spwor ks- 8- 0- 0- and64- | i nux. However, the RPM is
relocatable, and the - - pr ef i x option can be used to allow the installation of LispWorksin a non-default directory. The

23

4 |nstallation on Linux

default prefix is/ usr.

Note: RPM version 4.2 has a bug which can hinder secondary installations (CLIM, Common SQL, LispWorks ORB or
KnowledgeWorks) in a user-specified directory. See 11.4.2 RPM _INSTALL_PREFIX not set for aworkaround.

Note: the Personal Edition installsby defaultin/ usr/1i b/ Li spWor ksPer sonal . Do not attempt to to install different
editions in the same location, since some filenames coincide and uninstallation may break.

4.4.4.2 Selecting the correct RPM files

The main RPM file in the LispWorks distribution is named using the following pattern:

| i spwor ks-8. 0-n. arch. rpm

The integer n denotes a build number and will be same in al filesin your distribution. The string arch will be either i 386 for
32-bit LispWorks or x86_64 for 64-bit LispWorks. The text below assumes 32-bit LispWorks.

Note: For the Personal Edition, usel i spwor ks- per sonal - 8. 0-*. i 386. r pmwherever | i spwor ks-8. 0-*.i 386.rpm
ismentioned in this document. See 1.1.1 Personal Edition for more information specific to the Personal Edition.

4.4.4.3 Installing or upgrading LispWorks for Linux
To install or upgrade LispWorks from the RPM file, perform the following steps as root:

1. Follow the instructions under 4.2 License agreement.

2. Locatethe RPM installation filel i spwor ks-8. 0-n. i 386.rpm

3. Install or upgrade LispWorksin the standard RPM way, for example:
rpm--install |ispworks-8.0-n.i386.rpm
This command installs LispWorksin/ usr/ | i b/ Li spWwr ks. A command line of the form:
rpm--install --prefix <directory> |i spworks-8.0-n.i 386.rpm

installs LispWorksin <directory>.

The directory name must be an absolute pathname. Relative pathnames and pathnames including shell-expanded characters
such as. and ~ do not work.

Note: LispWorks needs to be able find itslibrary at run time and therefore the LispWorks installation should not be moved
around piecemeal. If you simply want to run LispWorks from somewhere more convenient, then consider adding a symboalic
link.

See 4.6 Running LispWor ks for instructions on entering your license details.

4.4.4.4 Installing CLIM 2.0

The following module is packaged as a separate RPM file for installation after themain| i spwor ks package. It isavailable
in LispWorks Professional and Enterprise Editions only.

24

4 |nstallation on Linux

File distributions for layered products in Professional and Enterprise Editions

File Distribution Layered Product

i spworks-clim8.0-n.i386.rpm CLIM 2.0

Install this module if required by substituting the above filename into the same commands you used to install the main
I i spwor ks package.

If you used a- - pr ef i x argument when installing LispWorks, then use the same prefix for this module.

4.4.4.5 Installing loadable Enterprise Edition modules

The following modules are packaged as separate RPM files for installation after the main | i spwor ks package.

File distributions for layered products in the Enterprise Edition

File Distribution Layered Product
I'i spworks-clim8.0-n.i386.rpm CLIM 2.0

I'i spwor ks- kw 8. 0-n.i386.rpm KnowledgeWorks
|'i spwor ks-corba-8.0-n.i386.rpm LispWorks ORB
|'i spworks-sql-8.0-n.i386.rpm Common SQL

Install these modules as described in 4.4.4.4 Installing CLIM 2.0.

4.4.4.6 Documentation and saving space

Documentation in HTML and PDF format is provided with all editions. PostScript format is available to download. To obtain
copies of the printable manuals, see 4.8 Printable LispWor ks documentation.

Documentation isinstalled by default inthel i b/ 8- 0- 0- 0/ manual sub-directory of the LispWorks installation directory.

Using RPM, you can save space by choosing not to install the documentation. For example, use the following command (all
ononeline):

rpm--install --excludedocs --prefix <directory> |i spworks-8.0-n.i386.rpm

To install the documentation at alater stage, you need to use the - - r epl acepkgs option:

rpm--install --prefix <directory> --repl acepkgs |ispworks-8.0-n.i386.rpm

4.4.4.7 Installing Patches

After completing the main RPM installation of LispWorks and any modules, ensure you install the latest patches from the
RPM file available for download at www.lispwor ks.com/downloads/patch-selection.html. Patch installation instructions are
in the README file accompanying the patch download.

25

http://www.lispworks.com/downloads/patch-selection.html#lwl

4 |nstallation on Linux

4.4.5 Installation from the tar files

The LispWorks distribution is also provided ast ar files compressed using gzi p for useif you do not have an appropriate
version of RPM to unpack the RPM binary file. The gzipped filesfor LispWorks are as follows:

Files for LispWorks

| w80- x86- i nux. tar.gz 32-bit LispWorks x86 image, modules and examples

| w80-arm | inux.tar.gz 32-bit LispWorks ARM image, modules and examples

| w80- and64-1inux.tar. gz 64-bit LispWorks x86 64 image, modules and examples

| w80- arnb4-1linux.tar. gz 64-bit LispWorks ARM 64 image, modules and examples

| wdoc80- x86- 1 i nux. tar. gz Documentation in HTML and PDF formats for all
architectures

Note: The gzipped files for the LispWorks Personal Edition have similar names.
Toinstall from these files:

1. Follow the instructions under 4.2 License agreement.

2. Use cd to change directory to the location of the downloaded files before running the installation script.

3. Runtheinstallation script | wi -i nstal | . sh (or | Wl per-i nstal | . sh for the Personal Edition). asroot if the
directory specified by the installation directory requires it (the default does).

This script takes - - prefi x and - - excl udedocs arguments like r pmto control the installation directory and amount of
documentation installed.

For example, to install the Personal Edition and documentation in the default location
(fusr/local/lib/LispwrksPersonal) would use:

sh Iwl per-install.sh
Or, toinstall 32-hit LispWorksin/ usr/1i spwor ks, without documentation you would use:

sh Iw -install.sh --excludedocs --prefix /usr/lispworks

Note: the default location under / usr /| ocal is appropriate for this unmanaged (non-RPM) installation.

See 4.6 Running LispWor ks for how to enter your license details.

4.4.5.1 Installing Patches

After completing the maint ar installation of LispWorks, ensure you install the latest patches from thet ar archive available
for download at www.lispwor ks.com/downloads/patch-selection.html. Patch installation instructions are in the README
file accompanying the patch download.

4.5 LispWorks looks for a license key

If you try to run LispWorks without a valid key, it prints a message reporting that no valid key was found, and exits.

For instructions on entering your license key, see 4.6.1 Entering the license data below.

26

http://www.lispworks.com/downloads/patch-selection.html#lwl

4 |nstallation on Linux

For more information about license keys, see 10.2 License keys.

4.6 Running LispWorks

In aRPM installation, assuming the default prefix of / usr, the LispWorks executable islocated in/ usr/ i b/ Li spWr ks
or/usr/1ib64/Li spworks or/usr/lib/Li spwrksPersonal Thereisasoasymboliclink fromthe/ usr/ bin
directory.

Inat ar instalation, assuming the default prefix of / usr /1 ocal , the LispWorks executable islocated in
/fusr/local/lib/LispWwrksor/usr/local/lib64/LispWrksor/usr/local/lib/Li spWrksPersonal .

In both cases, the LispWorks executable should not be moved without being resaved, because it needsto be able to locate the
corresponding library directory on startup.

The LispWorks executable is named as shown here:.

| i spwor ks- per sonal - 8- 0- 0- x86- | i nux Personal Edition

|'i spwor ks- 8- 0-0-x86-1i nux 32-bit LispWorks on x86

| i spwor ks- 8- 0- 0- amd64- | i nux 64-bit LispWorks on x86_64
| i spwor ks-8-0-0-armlinux 32-hit LispWorks on ARM

|'i spwor ks- 8-0-0-ar n64-1 i nux 64-bit LispWorks on ARM64

When you run LispWorks, the splashscreen should appear, followed by the LispWorks Podium and a Listener. See 11.1
Troubleshooting for details if this does not happen.

4.6.1 Entering the license data

When you run LispWorks for the first time, you will need to enter your license details. This should be done as follows (all on
one line) using the appropriate LispWorks executable from the table above (32-hit LispWorks on x86 in this example):

| i spworks-8-0-0-x86-1inux --Iwicenseserial SERIALNUMBER --1w i censekey LICENSEKEY

where SERIALNUMBER and LICENSEKEY are the strings supplied with LispWorks. A message:

Li spworks license installed successfully.

should be printed and thereafter you can run LispWorks without those command line arguments.
Your license key will be supplied to you in email from Lisp Support or Lisp Sales.

If you have problems with your LispWorks license key, sendittol i sp- keys@ i spwor ks. com showing the complete
output after you enter it.

Note: the LispWorks Personal Edition does not ask you to enter license data.

27

4 |nstallation on Linux

4.7 Configuring the image

You can now configure your LispWorks image to suit your needs and load modules as necessary. For instructions, see 10
Configuration on Linux, x86/x64 Solaris & FreeBSD.

4.8 Printable LispWorks documentation

In adefault installation, thel i b/ 8- 0- 0- 0/ manual / of f | i ne directory contains PDF format versions of the manuals.

Thesefiles are also available from www.lispwor ks.com/documentation.

PostScript format versions of the manuals are also available for download.

4.9 Uninstalling LispWorks for Linux
A RPM installation of LispWorks can be uninstalled in the usual way, for example by executing this command, as root:

rpm--erase |ispworks-8.0

If patches have been added via RPM, then you will first need to uninstall that package, which will be named
| i spwor ks- pat ches8. 0. The same appliesto additional RPM packages such as| i spwor ks- sql .

If patches have been added from at ar archive, you will need to remove them by hand.

If you installed LispWorks from thet ar archives, simply do:

rm-rf Jusr/local/lib/LispWrks

4.10 Upgrading the LispWorks Edition

Some LispWorks features such as Delivery, Common SQL and KnowledgeWorks are not available in al Editions. You can
add these features by upgrading.

After purchasing your upgrade from lisp-sales@lispwor ks.com, select Help > Register... and enter your new license key.

4.11 Upgrading to 64-bit LispWorks

To upgrade from 32-bit to 64-bit LispWorks, contact:

lisp-sales@lispwor ks.com

28

http://www.lispworks.com/documentation
mailto:lisp-sales@lispworks.com
mailto:lisp-sales@lispworks.com

5 Installation on x86/x64 Solaris

This chapter is an installation guide for LispWorks 8.0 (32-hit) for x86/x64 Solaris and LispWorks 8.0 (64-bit) for x86/x64
Solaris. 10 Configuration on Linux, x86/x64 Solaris & FreeBSD discusses post-installation and configuration in detail, but
this chapter presents the instructions necessary to get LispWorks up and running on your system.

5.1 Software and hardware requirements

An overview of system requirementsis provided in System requirements on x86/x64 Solaris. The sections that follow
discuss any relevant details.

System requirements on x86/x64 Solaris

Hardware Requirements Software Requirements

For 32-bit LispWorks, 157MB of disk space Solaris 10 (release 5/08 or later), Solaris 11, or
OpenSolaris (release 2009.06 or later)

For 64-bit LispWorks, 171IMB of disk space GTK+ 2 (version 2.4 or higher) to run the GTK+ GUI.

Motif 2.1 and Imlib to run the deprecated Motif GUI

Any modern machineislikely to have sufficient RAM to |Firefox or Opera web browser for viewing on-line
run LispWorks as distributed. documentation

5.1.1 GUI libraries

LispWorks 8.0 for x86/x64 Solaris requires that the X11 release 6 (or higher) isinstalled. It also requiresthat either GTK+ or
Motif with Imlib are installed.

The remainder of this section contains the details for each of these distinct GUI options.

5.1.1.1 GTK+
In order for the LispWorks IDE to run "out of the box", GTK+ must be installed on the target machine.

GTK+ 2 (version 2.4 or higher) isrequired.

5.1.1.2 Motif
Motif 2.1 or higher is required to run LispWorks with the Motif GUI.

The Matif libraries are installed as part of the SUNWmfrun package. It is usually preinstalled on Solaris 10 and is available
for download from Sun for OpenSolaris.

You will also need Imlib (not Imlib2). Imlib version 1.9.13 or later is recommended. Contact Lisp Support if you need this.

29

5 Installation on x86/x64 Solaris

5.1.2 Disk requirements

32-bit LispWorks requires about 130MB to install.
64-bit LispWorks requires about 140MB to install.

The installation includes about 70MB of documentation.

The documentation includes printable PDF format manuals. You may delete any of these that you do not need. They are
available at www.lispwor ks.com/documentation in any case, and the same manuals are also available there in PostScript
format.

5.2 Software delivery and installer format

LispWorks 8.0 for x86/x64 Solarisis supplied as a standard package file to download.

There are two variants, 32-hit LispWorks and 64-bit LispWorks, so be sure to download the one for which you have
purchased alicense:

5.2.1 Contents of the LispWorks distribution

All of the LispWorks modules are contained in a single package file. Your license key will control which modules can be
used.

The package name for 32-bit LispWorksis Li spWr ks80- 32bi t .

The package name for 64-bit LispWorksisLi spWor ks80- 64bi t .

5.2.2 Personal Edition distribution

You can install the LispWorks Personal Edition by downloading it from www.lispwor ks.com/downloads.

The package for the Personal EditionisLi spwr ksPer sonal 80- 32bi t .
5.3 Installing LispWorks for x86/x64 Solaris

5.3.1 Main installation and patches

The LispWorks 8.0 installer contains each of the Editions. Additionally, there may be a patch installer which upgrades
LispWorksto version 8.0.x. You need to compl ete the main installation before adding patches.

5.3.2 Installing over previous versions

You can ingtall LispWorks 8.0 in the same location as Lisp\Works 7.1 or previous versions.

5.3.3 Information for Beta testers

Users of LispWorks 8.0 Beta should completely uninstall it (including any patches added to the beta installation) before
installing LispWorks 8.0.

See 5.8 Uninstalling LispWor ks for x86/x64 Solaris for instructions.

30

http://www.lispworks.com/documentation
http://www.lispworks.com/downloads

5 Installation on x86/x64 Solaris

5.3.4 Installation directories

32-bit LispWorksisinstaled by default in/ opt / Li spWr ks/ 1i b/ Li spwor ks and a symbolic link to the executableis
placedin/ opt / Li spWr ks/ bi n/ i spwor ks- 8- 0-0-x86-sol ari s.

64-bit LispWorksisinstalled by default in/ opt / Li spWor ks/ | i b/ and64/ Li spWor ks and asymbolic link to the
executableisplaced in/ opt / Li spWr ks/ bi n/ | i spwor ks- 8- 0- 0- and64- sol ari s.

LispWorks Personal Editionisinstalled by defaultin/ opt / Li spWorks/ 1i b/ Li spWor ksPer sonal and asymbolic link to
the executableisplaced in/ opt / Li spWor ks/ bi n/ 1 i spwor ks- per sonal - 8- 0- 0- x86-sol ari s.

Note: LispWorks needsto be able find its library at run time and therefore the LispWorks installation should not be moved
around piecemeal. If you simply want to run LispWorks from somewhere more convenient, then consider adding a symbolic
link.

5.3.5 Selecting the correct software package file

The 32-bit LispWorks software package fileis called Li spwr ks80- 32bi t .

The 64-bit LispWorks software package fileis called Li spWor ks80- 64bi t .

The Personal Edition software package fileis caled Li spwor ksPer sonal 80- 32bi t .

Note: the software may be supplied in a compressed format with a. gz extension. Uncompressit using gunzi p.

5.3.6 Installing the package file
To install LispWorks, perform the following steps as root:
1. Locate the software package file.
2. Install or upgrade LispWorks in the standard way, for example:
pkgadd -d Li spWrks80-32bit all
for 32-bit LispWorks, or:
pkgadd -d Li spWrks80-64bit all
for 64-bit LispWorks.

3. Thelicense terms are presented. Enter "yes" if you agree to them.

See 5.5 Running LispWor ks for instructions on entering your license serial number and key.

5.3.7 Installing Patches

After completing the main installation of LispWorks, ensure you install the latest patches from the package file available for
download at www.lispwor ks.com/downloads/patch-selection.html. Patch installation instructions are in the README file
accompanying the patch download.

31

http://www.lispworks.com/downloads/patch-selection.html#lws

5 Installation on x86/x64 Solaris

5.4 LispWorks looks for a license key

If you try to run LispWorks without a valid key, it prints a message reporting that no valid key was found, and exits.

For instructions on entering your license key, see 5.5.1 Entering the license data below.

For more information about license keys, see 10.2 License keys.

5.5 Running LispWorks

Run LispWorks (al variants) from the directory / opt / Li spWor ks/ bi n.

The LispWorks executable is named as shown here:

| i spwor ks- per sonal - 8-0-0-x86-sol ari s Personal Edition
|'i spwor ks-8-0-0-x86-sol ari s 32-bit LispWorks
| i spwor ks- 8- 0-0-and64-sol ari s 64-bit LispWorks

This executabl e should not be moved without being resaved because it needs to be able to locate the corresponding library
directory on startup.

When you run LispWorks, the splashscreen should appear, followed by the LispWorks Podium and a Listener. See 11.1
Troubleshooting for detailsif this does not happen.

5.5.1 Entering the license data

When you run LispWorks for the first time, you will need to enter your license details. This should be done as follows (all on
oneline):

| i spwor ks-8-0-0-x86-solaris --lwicenseserial SERIALNUMBER --1w i censekey LICENSEKEY

where SERIALNUMBER and LICENSEKEY are the strings supplied with LispWorks. A message:

Li spworks license installed successfully.

should be printed and thereafter you can run LispWorks without those command line arguments.
Your license key will be supplied to you in email from Lisp Support or Lisp Sales.

If you have prablems with your LispWorks license key, sendittol i sp- keys@ i spwor ks. com showing the complete
output after you enter it.

Note: the LispWorks Personal Edition does not ask you to enter license data.

5.6 Configuring the image

You can now configure your LispWorks image to suit your needs and |oad modules as necessary. For instructions, see 10
Configuration on Linux, x86/x64 Solaris & FreeBSD.

32

5 Installation on x86/x64 Solaris

5.7 Printable LispWorks documentation

In adefault installation, thel i b/ 8- 0- 0- O/ manual / of f | i ne directory contains PDF format versions of the manuals.

Thesefiles are also available at www.lispwor ks.com/documentation/.

PostScript format versions of the manuals are also available for download.

5.8 Uninstalling LispWorks for x86/x64 Solaris

To uninstall LispWorks, perform the following steps as root:

1. If patches for LispWorks 8.0 have been installed then you will need to uninstall the patch package, by:
pkgrm -n Li spWr ksPat ches80- 32bi t
or:
pkgrm -n Li spWr ksPat ches80- 64bi t
2. Then uninstall the main software package containing LispWorks 8.0 by executing:
pkgrm -n Li spWr ks80- 32bi t
or:

pkgrm -n Li spWr ks80- 64bi t

5.9 Upgrading the LispWorks Edition

Some LispWorks features such as Delivery, Common SQL and KnowledgeWorks are not available in al Editions. You can
add these features by upgrading.

After purchasing your upgrade from lisp-sales@lispwor ks.com, select Help > Register... and enter your new license key.

5.10 Upgrading to 64-bit LispWorks

To upgrade from 32-bit to 64-bit LispWorks, contact:

lisp-sales@lispwor ks.com

33

http://www.lispworks.com/documentation/
mailto:lisp-sales@lispworks.com
mailto:lisp-sales@lispworks.com

6 Installation on FreeBSD

This chapter is an installation guide for LispWorks 8.0 (32-hit) for FreeBSD and LispWorks 8.0 (64-hit) for FreeBSD. 10
Configuration on Linux, x86/x64 Solaris & FreeBSD discusses post-installation and configuration in detail, but this
chapter presents the instructions necessary to get LispWorks up and running on your system.

6.1 Software and hardware requirements

An overview of system requirementsis provided in System requirementson FreeBSD. The sections that follow discuss any
relevant details.

System requirements on FreeBSD

Hardware Requirements Software Requirements

168MB of disk space for 32-bit LispWorks plus FreeBSD 10.x, or later with compat10x

documentation (if you want to run LispWorks on older versions of
FreeBSD, then please contact Lisp Support)

182MB of disk space for 64-hit LispWorks plus GTK+ 2 (version 2.4 or higher) to run the GTK+ GUI.

documentation Open Motif 2.3.x and Imlib2 1.4.9 or later to run the
deprecated Motif GUI

Any modern machineislikely to have sufficient RAM to |Firefox or Opera web browser for viewing on-line

run LispWorks as distributed. documentation

6.1.1 GUI libraries
LispWorks 8.0 for FreeBSD requires that the X 11 release 6 (or higher) isinstalled.
LispWorks 8.0 also requires that either GTK+ or Open Motif with Imlib2 are installed.

The remainder of this section contains the details for each of these distinct GUI options.

6.1.1.1 GTK+
In order for the LispWorks IDE to run "out of the box", GTK+ must be installed on the target machine.

GTK+ 2 (version 2.4 or higher) isrequired.

6.1.1.2 Motif

Open Matif version 2.3 isrequired to run LispWorks with the Matif GUI.

Install Open Motif 2.3.x from the FreeBSD distribution or portstree. Your systems administrator may be able to help if you
do not know how to do this.

You will aso need Imlib2 version 1.4.9 or later. Install this from the FreeBSD distribution or ports tree.

34

6 Installation on FreeBSD

6.1.2 Disk requirements

32-hit LispWorks requires about 160MB to install, and 64-bit LispWorks needs 180MB. Thisincludes 110MB of
documentation.

The documentation includes printable PDF format manuals. You may delete any of these that you do not need. They are
available at www.lispwor ks.com/documentation in any case, and the same manuals are also available there in PostScript
format.

6.2 License agreement

Before installing, you must read and agree to the license terms.
To do this download the license script from the link we sent to you.

Now run:
sh Iwf-1license. sh

or, if you areinstalling the Personal Edition:

sh I wfper-license.sh

Note: You must run this script as the same user that later performs the installation.

Enter "yes' if you agree to the license terms.

6.3 Software delivery and installer format

LispWorks 8.0 for FreeBSD is supplied as a standard package file, in pkg(8) format, to download.

6.3.1 Contents of the LispWorks distribution

All of the LispWorks modules are contained in a single package file. Your license key will control which modules can be
used.

The package name for 32-bit LispWorks is lispwor ks80-32bit.
The package name for 64-bit LispWorks is lispwor ks80-64bit.

6.3.2 Personal Edition distribution

You can install the LispWorks Persona Edition by downloading it from www.lispwor ks.com/downloads.

The package name for the Personal Edition is lispwor ks80-per sonal.

6.4 Installing LispWorks for FreeBSD

6.4.1 Main installation and patches

The LispWorks 8.0 installer contains each of the Editions. Additionally, there may be a patch installer which upgrades
LispWorksto version 8.0.x. You need to complete the main installation before adding patches.

35

http://www.lispworks.com/documentation
http://www.lispworks.com/downloads

6 Installation on FreeBSD

6.4.2 Installing over previous versions

You can ingtall LispWorks 8.0 in the same location as LispWorks 7.1 or previous versions.

6.4.3 Information for Beta testers

Users of LispWorks 8.0 Beta should completely uninstall it (including any patches added to the beta installation) before
installing LispWorks 8.0.

See 6.9 Uninstalling LispWorks for FreeBSD for instructions.

6.4.4 Installation directories

By default LispWorksisinstalledin/ usr/ 1 ocal / | i b/ Li spwr ks. A symboalic link to the 32-bit executable is placed in
lusr/local/bin/lispworks-8-0-0-x86-freebsd. A symboalic link to the 64-bit executableisplaced in
[usr/bin/lispworks-8-0-0-and64-freebsd.

Note: the Personal Edition by default installsin/ usr /1 ocal /1i b/ Li spWor ksPer sonal . Do not attempt to to install
different editions in the same location, since some filenames coincide and uninstallation may break.

6.4.5 Selecting the correct software package file

The 32-bit LispWorks software package fileis called:
|'i spworks80-32bit-8.0.txz

The 64-bit LispWorks software package fileis called:
|'i spworks80-64bit-8.0.txz

The Personal Edition software packagefileis called:

| i spwor ks80- personal -8. 0.t xz

6.4.6 Installing LispWorks for FreeBSD
To install LispWorks, perform the following steps as root:

1. Follow the instructions under 6.2 License agreement.

2. Locate the software packagefile.

3. Ingtall or upgrade LispWorks in the standard way, for example:
pkg add |i spwor ks80-32bit-8.0.txz

Thiscommand installs LispWorksin/ usr /1 ocal /| i b/ Li spWr ks.

Note: LispWorks needsto be able find its library at run time and therefore the LispWorks installation should not be moved
around piecemeal. If you simply want to run LispWorks from somewhere more convenient, then consider adding a symbolic
link.

See 6.6 Running LispWorks for instructions on entering your license details.

36

6 Installation on FreeBSD

6.4.7 Installing Patches

After completing the main installation of LispWorks, ensure you install the latest patches from the package file available for
download at www.lispwor ks.com/downloads/patch-selection.html. Patch installation instructions are in the README file
accompanying the patch download.

6.5 LispWorks looks for a license key

If you try to run LispWorks without a valid key, it prints a message reporting that no valid key was found, and exits.

For instructions on entering your license key, see 6.6.1 Entering the license data below.

For more information about license keys, see 10.2 License keys.

6.6 Running LispWorks

The LispWorks executable islocated inthe/ usr /1 ocal /1 i b/ Li spWor ks or/usr/ | ocal /1i b/ Li spwr ksPer sonal
directory of the installation (assuming the default prefix of / usr/ | ocal) and should not be moved without being resaved
because it needs to be able to locate the corresponding library directory on startup. Thereisaso asymbolic link from the
/usr /1 ocal / bi n directory.

The LispWorks executable is named as shown here:.

| i spwor ks- per sonal - 8- 0- 0- x86-f r eebsd Personal Edition
|'i spwor ks- 8- 0-0-x86-freebsd 32-bit LispWorks
| i spwor ks- 8-0-0-and64-freebsd 64-bit LispWorks

When you run LispWorks, the splashscreen should appear, followed by the LispWorks Podium and a Listener. See 11.1
Troubleshooting for detailsif this does not happen.

6.6.1 Entering the license data

When you run LispWorks for the first time, you will need to enter your license details. This should be done as follows (all on
oneline):

| i spwor ks-8-0-0-x86-freebsd --1wicenseserial SERIALNUMBER --Iw i censekey LICENSEKEY

where SERIALNUMBER and LICENSEKEY are the strings supplied with LispWorks. A message:

Li spWworks license installed successfully.

should be printed and thereafter you can run LispWorks without those command line arguments.
Your license key will be supplied to you in email from Lisp Support or Lisp Sales.

If you have problems with your LispWorks license key, sendittol i sp- keys@ i spwor ks. com showing the complete
output after you enter it.

Note: the LispWorks Personal Edition does not ask you to enter license data.

37

http://www.lispworks.com/downloads/patch-selection.html#lwf

6 Installation on FreeBSD

6.7 Configuring the image

You can now configure your LispWorks image to suit your needs and load modules as necessary. For instructions, see 10

Configuration on Linux, x86/x64 Solaris & FreeBSD.

6.8 Printable LispWorks documentation

In adefault installation, thel i b/ 8- 0- 0- 0/ manual / of f | i ne directory contains PDF format versions of the manuals.

Thesefiles are also available at www.lispwor ks.com/documentation/.

PostScript format versions of the manuals are also available for download.

6.9 Uninstalling LispWorks for FreeBSD

To uninstall LispWorks, perform the following steps as root:
1. If patches have been installed, then you will first need to uninstall that package:

pkg del ete |ispworks80- pat ches-32bit
or:
pkg del ete |ispworks80- pat ches- 64bit
2. Then uninstall the main software package containing LispWorks 8.0:
pkg del ete |ispworks80-32bit
or.

pkg del ete |i spwor ks80- 64bi t

6.10 Upgrading the LispWorks Edition

Some LispWorks features such as Delivery, Common SQL and KnowledgeWorks are not available in al Editions. You can

add these features by upgrading.

After purchasing your upgrade from lisp-sales@lispwor ks.com, select Help > Register... and enter your new license key.

6.11 Upgrading to 64-bit LispWorks

To upgrade from 32-bit to 64-bit LispWorks, contact:

lisp-sales@lispwor ks.com

38

http://www.lispworks.com/documentation/
mailto:lisp-sales@lispworks.com
mailto:lisp-sales@lispworks.com

/ Installation of LispWorks for Mobile
Runtime

This chapter describes installation of LispWorks 8.0 for Android Runtime and LispWorks 8.0 for iOS Runtime.

7.1 Installing LispWorks for Android Runtime

We will send you instructions when you get alicense for LispWorks for Android Runtime.

Note: Normally you would first develop and debug your program using LispWorks on a desktop platform, for example
LispWorks for Linux. You will then build aruntime library using LispWorks for Android Runtime and incorporate it in an
Android project (see "Android interface” in the Lisp\Works® User Guide and Reference Manual) before testing it on an
Android device.

7.2 Installing LispWorks for iOS Runtime

We will send you instructions when you get alicense for LispWorks for iOS Runtime.

Note: Normally you would first develop and debug your program using LispWorks for Macintosh. You will then build a
runtime library using LispWorks for iOS Runtime and incorporate it in an Xcode project (see "iOS interface” in the
LispWorks® User Guide and Reference Manual) before testing it on an iOS device or the iOS Simulator on macOS.

39

8 Configuration on macOS

8.1 Introduction

This chapter explains how to get LispWorks up and running, having already installed the files into an appropriate folder. If
you have not done this, refer to 2 Installation on macOS.

It is more useful to have an image customized to suit your particular environment and work needs. You can do this—setting
useful pathnames, loading libraries, and so on—and then save the image to create another that will be configured as you
require whenever you start it up.

This chapter covers the following topics:

e 8.2Licensekeys

» 8.3 Configuring your LispWorksinstallation

» 8.4 Saving and testing the configured image

8.5 Initializing LispWorks

8.6 Loading CLIM 2.0

8.7.1 Loading Common SQL

» 8.8 Common Prolog and KnowledgeWorks

8.2 License keys

LispWorks is protected against unauthorized copying and use by a simple key mechanism. LispWorks will not start up until it
finds afile containing avalid key.

Theimage looks for afilel wl i cense in the following places, in order:
* |n the current working directory (folder).
* Inthe directory containing the LispWorks executable.
e IntheLi brary/1ib/8-0-0-0/confi g subdirectory of the LispWorks installation directory.

When thefilel wl i cense isfound, it must contain avalid key for the current machine. If you try to run LispWorks without a
valid key, amessage will be printed to the consol e reporting that no valid key was found, and LispWorks will exit.

8.3 Configuring your LispWorks installation

Once you have successfully installed and run LispWorks, you can configure it to suit your local conditions and needs,
producing an image that is set up the way you want it to be every time you start it up.

8 Configuration on macOS

8.3.1 Levels of configuration

There are two levels of configuration:
» Configuring and resaving the image, thereby creating a new image that is exactly as you want it at startup.
» Configuring certain aspects of LispWorks asit starts up.

These two levels are available for good reason: while some configuration details may be of useto all LispWorks users on
your machine (for instance, having a particular library built into the image where before it was only load-on-demand) others
may be amatter of personal preference (for instance how many editor windows are allowed on-screen, or the colors of tool
windows).

In thefirst case, you use edited copies of filesin theconf i g folder to achieve your aims.

In the second case, you make entriesin your initiaization file. Thisisafile read every time LispWorks starts up, and it can
contain any valid Common Lisp code. (Most of the configurable settings in LispWorks can be controlled from Common
Lisp.) By default thefileiscaled . | i spwor ks and isin your home directory. Your initialization file can be changed via
LispWorks > Preferences... from the LispWorks IDE.

8.3.2 Configuring images for the different GUIs
If you have installed both the LispWorks images, for native macOS and for GTK+, you will want to configure two images.

If necessary your Lisp configuration and initialization files can run code for one image or the other by conditionalization on
thefeature: cocoa. The native macOS LispWorksimage has: cocoa on *f eat ur es* while the GTK+ LispWorks image
does not, and has: gt k.

8.3.3 Configuration files available

There are four sample configuration filesin LispWorks library containing settings you can changein order to configure
images:

* config/configure.lisp

e config/siteinit.lisp

e private-patches/load.lisp

e config/a-dot-lispworks.lisp

confi g/ configure.lispispreloaded into theimage beforeit is shipped. It contains settings governing fundamental
issues like where to find the LispWorks run time folder structure, and so on. You can override these settings in your saved
image or in your initialization file. You should read through confi gure. lisp.

config/siteinit.lisp containsany formsthat are appropriate to the whole site but which are to be loaded afresh each
timetheimageis started. The samplesi t ei ni t. I i sp file distributed with LispWorks contains only the form:

(1 oad-al | - pat ches)

On startup, theimage loadssi t ei ni t. | i sp and your initialization file, in that order. The command line options
-siteinit and-init canbeused to specify loading of different files or to suppress them altogether. See the examplein
8.4 Saving and testing the configured image, below, and 8.5 I nitializing LispWorks for further details.

private- patches/| oad. | i spisloaded by | oad- al | - pat ches, and should contain forms to load any private (named)
patches that Lisp Support might send you.

config/a-dot-1lispworks.|ispisasample persond initiaization file. You might like to copy thisinto afile

41

http://www.lispworks.com/documentation/HyperSpec/Body/v_featur.htm

8 Configuration on macOS

~/ . 1i spwor ks inyour home directory and edit it to create your own initialization file.

Bothconfigure.lispanda-dot-I|ispworks.|isp arepreloaded into theimage beforeit is shipped, so if you are happy
with the settings in these files, you need not change them. See the examplein 8.4 Saving and testing the configured image,
below, and 8.5 I nitializing LispWor ks for further details.

8.4 Saving and testing the configured image

It is not usually necessary to save an image merely to preload patches and your configuration, because these load very quickly
on modern machines.

However, if you want to save an image to reduce startup time for a complex configuration (such as large application code) or
to save a non-windowing image, then proceed as described in this section.

8.4.1 Create a configuration file

Make acopy of confi g/ configure.lispcaled/tnp/ my-configuration.!lisp. Whenyou have made the desired
changesinny-confi gurati on. | i sp you can save anew LispWorks image as described in 8.4.2 Create and use a save-
image script.

8.4.2 Create and use a save-image script

1. Create a configuration and saving script / t np/ save- confi g. | i sp containing:

(i n-package "CL- USER")

(1 oad-al | - pat ches)

(load "/tnp/ my-configuration.lisp")

#+: cocoa

(save-image-wi t h-bundl e "/ Applications/M LispWwrks/LW)
#-:cocoa

(save-image "ny-1lispworks-gtk")

2. Change directory to the directory containing the LispWorks image to configure. For the native macOS/Cocoa LispWorks
image:

% cd "/ Applications/LispWrks 8.0 (64-bit)/LispWrks (64-bit).app/ Contents/MacCOS"
or for the X11/GTK+ LispWorks image:

% cd "/ Applications/LispWwrks 8.0 (64-bit)"

3. Start the supplied image passing the configuration script the build file. For example enter one of the following
commands (on one line of input):

% ./1ispworks-8-0-0-nmacos64-universal -build /tnp/save-config.lisp
or:
% ./1ispworks-8-0-0-nacos64-universal-gtk -build /tnp/save-config.lisp

If theimage will not run at this stage, it is probably not finding avalid key.

Saving the image takes some time.

You can now usethe new My Li spWor ks/ LW app application bundle or themy- | i spwor ks- gt k image by starting it just

42

8 Configuration on macOS

asyou did the supplied LispWorks. The supplied LispWorks is not required after the configuration process has been
successfully completed.

Do not try to save a new image over an image that is currently running. Instead, save an image under a unique name, and
then, if necessary, replace the new image with the old one after the call to save- i mage has returned.

8.4.3 What to do if no image is saved

If no new image is saved, then there is some error while loading the build script. To see the error message, run the command
with output redirected to afile, for example:

% ./1ispworks-8-0-0-nacos64-universal -build /tnp/save-config.lisp > /tnp/output.txt

Look inthefile/ t np/ out put . t xt .

8.4.4 Testing the newly saved image
You should now test the new LispWorks image. To test a configured LispWorks, do the following:
1. If you are using an X11/GTK+ image, change directory to/ t np.

2. When using X11, verify that your DI SPLAY environment variableis correctly set and that your machine has permission
to connect to the display.

3. Start up the new image, by entering the path of the X11/GTK+ executable or by double-clicking on the LispWorksicon
in the macOS Finder.

The window-based environment should now initialize—during initialization awindow displaying a copyright notice will
appear on the screen.

You may wish to work through some of the examplesin the LispWorks® User Guide and Reference Manual, to further
check that the configured image has been successfully built.

4. Test the load-on-demand system. In the Listener, type:
CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load the inspector from the | oad- on- demand
Library directory.

You can quit the inspector by typing : g.

8.4.5 Saving a non-windowing image

For some purposes such as scripting it is convenient to have a LispWorks image that does not start the graphical programming
environment.

To save an image which does not automatically start the GUI, use a script as described in 8.4.2 Create and use a save-image
script but passthe: envi r onment argument to save- i mage. For example:

(save-image "ny-tty-lispworks" :environnent nil)

8 Configuration on macOS

8.5 Initializing LispWorks

When LispWorks starts up, it looks for an initialization fileto load. The name of thefileisheldin*ini t-fil e- nane*, and
is~/.1ispworks by default. The'~' denotes your home directory, indicated as Home in the Finder. Theinitialization file
may contain any valid Lisp code.

You can load a different initialization file using the option - i ni t in the command line, for example:

% "/ Appl i cations/Li spWwrks 8.0 (64-bit)/LispWrks (64-bit).app/Contents/MacOS/|i spworks-8-0-0-
macos64-universal™ -init my-lisp-init

(where %denotes the Unix shell prompt) would make LispWorks load ny- 1 i sp-i nit. | i sp astheinitiadization file instead
of that named by *i nit-fil e- nanme*.

Theloading of the siteinit file (located by default at confi g/ si teinit. i sp)issimilarly controlled by the-si tei nit
command lineargument or *site-init-fil e-name*.

You can start an image without loading any personal or siteinitialization file by passing a hyphento the-i ni t and
-siteinit argumentsinstead of afilename:

% "/ Applications/LispWwrks 8.0 (64-bit)/LispWwrks (64-bit).app/Contents/MacQOS/ | i spwor ks-8-0-0-
macos64-universal" -init - -siteinit -

This starts the LispWorks image without loading any initialization file. It is often useful to start the image in this way when

trying to repeat a suspected bug. You should always start the image without the default initialization files if you are intending
to resaveit.

In all cases, if the filename is present, and is not a hyphen, LispWorks triesto load it asanormal file by calling | oad. If the
load fails, LispWorks prints an error report.

8.6 Loading CLIM 2.0

CLIM 2.0 is supported on the X11/Motif GUI.
Load CLIM 2.0into the "LispWorks for X11 IDE" image with:

(require "clint)
and the CLIM demos with:
(require "climdenn")
A configuration file to save an image with CLIM 2.0 prel oaded would look something like this:

(i n-package "CL-USER")

(1 oad- al | - pat ches)

(require "clint)

(save-image "/path/to/climlispworks")

To run the demo software, enter the following in alistener:

(require "climdenn")
(cli mdeno: start-denp)

Note: CLIM is not supported by the LispWorks native macOS image and cannot be loaded into it.

44

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

8 Configuration on macOS

Note: CLIM is not supported under GTK+.

Note: Do not attempt to load CLIM viathe clim loader filesin the clim distribution. Thiswill cause CLIM patches to not be
loaded. Use(require "clint).

8.7 The Common SQL interface

The Common SQL interface requires ODBC or one of the supported database types listed in section " Supported Databases"
of the LispWorks® User Guide and Reference Manual.

8.7.1 Loading Common SQL

To load Common SQL enter, for example:
(require "odbc")
or:
(require "oracle")
Initialize the database type at run time, for example:
(sql:initialize-database-type :database-type :odbc)
or.

(sql:initialize-database-type :database-type :oracle)

See the LispWorks® User Guide and Reference Manual for further information.

8.7.2 Supported databases

Common SQL on macOS has been tested with DBM S Postgres 7.2.1, MySQL 5.0.18, Oracle Instant Client 10.2.0.4, ODBC
driver PSQLODBC development code, and IODBC as supplied with macOS.

8.7.3 Special considerations when using Common SQL

8.7.3.1 Location of .odbc.ini

The current release of macOS comes with an ODBC driver manager from IODBC, including a GUI interface. IODBC
attempts to put the file. odbc. i ni filein anon-standard location. This causes problems at least with the PSQLODBC driver
for PostgreSQL, because PSQLODBC expectsto find . odbc. i ni in either the users's home directory or the current
directory. There may be similar problems with other drivers. Thereforethefile. odbc. i ni should be placed in its standard
place~/ . odbc. i ni . The |IODBC driver manager |0oks there too, so it will work.

8.7.3.2 Errors using PSQLODBC

The PSQLODBC driver, when it does not find any of the Servername, Database or Usernamein . odbc. i ni , returns the
wrong error code. Thistellsthe calling function that the user cancelled the login dialog.

Therefore, if Common SQL reports that the user cancelled when trying to connect, you need to check that you have got

45

8 Configuration on macOS

Servername, Database and Username, with the correct case, in the section for the datasource in the . odbc. i ni file.

Note: Username may alternatively be given in the connect string.

8.7.3.3 psqlODBC version

Common SQL was tested with the development version of psglODBC (that is downloaded from CV'S), with the version
changed to 3. Contact Lisp Support if you need help using Common SQL with psglODBC.

8.7.3.4 Locating the Oracle, MySQL or PostgreSQL client libraries

For database-type: or acl e, : nysql and: post gresql, if theclient library is not installed in a standard place, its directory
must be added to the environment variable DYLD_LIBRARY _PATH (see the OS manua entry for dyld).

8.8 Common Prolog and KnowledgeWorks
Common Prolog is bundled with KnowledgeWorks rather than with LispWorks. KnowledgeWorks is |oaded by using:

(require "kw')

See the KnowledgeWbrks and Prolog User Guide for further instructions.

46

9 Configuration on Windows

9.1 Introduction

This chapter explains how to get LispWorks up and running, having already installed it If you have not done this, refer to 3
Installation on Windows.

It is more useful to have an image customized to suit your particular environment and work needs. You can do this—setting
useful pathnames, loading libraries, and so on—and then save the image to create another that will be configured as you
require whenever you start it up.

This chapter covers the following topics:

* 9.2 Licensekeys

» 9.3 Configuring your LispWorksinstallation

* 9.4 Saving and testing the configured image

9.5 Initializing LispWorks

9.6 Loading CLIM 2.0

9.7 The Common SQL interface

» 9.8 Common Prolog and KnowledgeWorks

9.2 License keys

LispWorks is protected against unauthorized copying and use by a simple key protection mechanism. LispWorks will not
start up until it finds avalid key.

The image looks for avalid license key in the Windows registry.

If you try to run LispWorks without avalid key, it will prompt for aserial number and key.

9.3 Configuring your LispWorks installation

Once you have successfully installed and run LispWorks, you can configure it to suit your local conditions and needs,
producing an image that is set up the way you want it to be every time you start it up.

9.3.1 Levels of configuration

There are two levels of configuration: configuring and resaving the image, thereby creating a new image that is exactly as
you want it at startup, and configuring certain aspects of LispWorks asit starts up.

These two levels are available for good reason: while some configuration details may be of useto all LispWorks users on
your site (for instance, having a particular library built in to the image where before it was only |oad-on-demand) others may
be a matter of personal preference (for instance how many editor windows are allowed on-screen, or the colors of tool
windows).

47

9 Configuration on Windows

In thefirst case, you use edited copies of filesinthe conf i g folder to achieve your aims.

In the second case, you make entriesin your initialization file. Thisisafile read every time LispWorks starts up, and it can
contain any valid Common Lisp code. (Most of the configurable settings in LispWorks can be controlled from Common
Lisp.) Your initialization file can be changed viaTool s > Pref erences. .. intheLispWorks IDE.

9.3.2 Configuration files available

There are four sample configuration filesin LispWorks library containing settings you can changein order to configure
images:

» config/configure.lisp

e config/siteinit.lisp

e private-patches/load.lisp

e config/a-dot-lispworks.lisp

confi g/ configure.lispispreloaded into theimage beforeit is shipped. It contains settings governing fundamental
issues like where to find the LispWorks run time folder structure, and so on. You can override these settings in your saved
image or in your initialization file. You should read through confi gure. lisp.

config/siteinit.lisp containsany formsthat are appropriate to the whole site but which are to be loaded afresh each
timetheimageis started. The samplesi tei ni t. I i sp file distributed with LispWorks contains only the form:

(1 oad-al | - pat ches)

On startup, theimage loadssi t ei ni t. | i sp and your initialization file, in that order. The command line options
-siteinit and-init canbeused to specify loading of different files or to suppress them altogether. See the examplein
9.4 Saving and testing the configured image, below, and 9.5 I nitializing LispWorks for further details.

private- patches/| oad. | i spisloaded by | oad- al | - pat ches, and should contain forms to load any private (named)
patches that Lisp Support might send you.

config/a-dot-1ispworks.|ispisasample persona initiaization file. You might like to copy this somewhere
convenient and edit it to create your own initialization file.

Bothconfigure.lispanda-dot-Ilispworks.|isp arepreloaded into theimage beforeit is shipped, so if you are happy
with the settings in these files, you need not change them. See the example in 9.4 Saving and testing the configured image,
below, and 9.5 I nitializing LispWor ks for further details.

9.4 Saving and testing the configured image

It is not usually necessary to save an image merely to preload patches and your configuration, because these load very quickly
on modern machines.

However, if you want to save an image to reduce startup time for a complex configuration (such as large application code) or
to save a non-windowing image, then proceed as described in this section.

9.4.1 Create a configuration file

Make acopy of confi g\ configure.|ispcaledC: \tenp\ny-configuration.lisp. Whenyou have made any
desired changesin my- conf i gurati on. | i sp you can save anew LispWorksimage, as described in 9.4.2 Create and use
a save-image script.

9 Configuration on Windows

9.4.2 Create and use a save-image script

1. Create a configuration and saving script C. \ t enp\ save- confi g. | i sp, containing:

(i n-package "CL-USER")

(1 oad-al | - pat ches)

(load "C./tenmp/ my-configuration.lisp")
(save-image "ny-1lispworks")

2. Change directory to the LispWorks installation directory, for example:

C
cd %PROGRAMFI LES% Li spWor ks

3. Start the supplied image using the configuration script as the build file. For example:

C.\Program Fil es (x86)\Li spWr ks>l i spworks-8-0-0-x86-w n32. exe -build C\tenp\save-config.lisp

If the image will not run at this stage, it is probably not finding avalid key.
Saving the image takes some time.

You can now use the new ny- | i spwor ks. exe image from the Windows Explorer, or you may choose to add a shortcut. The
supplied image is not required after the configuration process has been successfully completed.

Do not try to save a new image over an image that is currently running. Instead, save an image under a unique name, and
then, if necessary, replace the new image with the old one after the call to save- i mage has returned.

9.4.3 What to do if no image is saved

If the LispWorks splash screen appears briefly but no image is saved, then there is some error while loading the build script.
To see the error message, run the command with output redirected to afile, for example:

C.\Program Fi |l es (x86)\Li spWrks>li spworks-8-0-0-x86-wi n32.exe -build C\tenmp\save-config.lisp >
C.\t enp\ out put . t xt

Look inthefilec: \'t enp\ out put . t xt.

9.4.4 Testing the newly saved image
You should now test the new LispWorks image. To test a configured version of LispWorks, do the following:

1. Start up the new image.

The window-based environment should now initialize—during initialization a window displaying a copyright notice will
appear on the screen.

You may wish to work through some of the examplesin the LispWorks® User Guide and Reference Manual, to further
check that the configured image has been successfully built.

2. Test the load-on-demand system. In the Listener, type:
CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load the inspector from the | oad- on- denand

49

9 Configuration on Windows

directory.

You can quit the inspector by typing : q.

9.4.5 Saving a non-windowing image

For some purposes such as scripting it is convenient to have a LispWorks image that does not start the graphical programming
environment.

To save an image which does not automatically start the GUI, use a script as described in 9.4.2 Create and use a save-image
script but passthe: envi r onment argument to save- i mage. For example:

(save-image "ny-tty-lispworks" :environnent nil)

9.5 Initializing LispWorks

When LispWorks starts up, it looks for an initialization fileto load. The name of thefileisheldin*i nit-fil e- name*, and
is~/ . 1i spwor ks by default. You can usecl : par se- nanest ri ng to see the expansion of this path. The file may contain
any valid Lisp code.

You can load a different initialization file using the option - i ni t in the command line, for example (all on oneline):
C.\ Program Fi | es\ Li spWr ks>l i spwor ks- 8-0-0-x86-wi n32.exe -init ny-lisp-init

would make LispWorksload ny-1i sp-init.|isp astheinitidization fileinstead of that named by *i ni t-fi | e- name*.

The loading of the siteinit file (located by default at confi g\ si tei nit.|isp)issimilarly controlled by the-siteinit
command line argument or
site-init-file-name.

You can start an image without loading any personal or siteinitialization file by passing a hyphento the-i ni t and
-siteinit argumentsinstead of afilename:

C.\Program Fi | es\Li spWr ks>l i spwor ks- 8-0- 0-x86-w n32.exe -init - -siteinit -
This starts the LispWorks image without loading any initiaization file. It is often useful to start the image in this way when

trying to repeat a suspected bug. You should always start the image without the default initiaization filesif you are intending
to resaveit.

In all cases, if thefilenameis present, and is not a hyphen, LispWorks triesto load it as anormal file by calling | oad. If the
load fails, LispWorks prints an error report.

9.6 Loading CLIM 2.0
Load CLIM 2.0 into LispWorks 8.0 with:
(require "clint)
and the CLIM demos with:
(require "climdeno")

rather than the clim loader filesin the clim distribution (which were the entry pointsin LispWorks 3).

50

http://www.lispworks.com/documentation/HyperSpec/Body/f_pars_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

9 Configuration on Windows

A configuration file to save an image with CLIM 2.0 preloaded would look something like this:

(i n-package "CL- USER")

(1 oad-al | - pat ches)

(require "clint)

(save-image "C \\path\\to\\climlispworks")

9.6.1 Running the CLIM demos

To run the demo software, enter the following in alistener:

(require "climdeno")
(climdeno: start - deno)

Thisdisplays amenu listing al the demos. Choose the demo you wish to see. More information about the demosisin section
"The CLIM demos" of the Common Lisp Interface Manager 2.0 User's Guide.

9.7 The Common SQL interface

The Common SQL interface requires ODBC or one of the supported database types listed in section " Supported databases” of
the LispWorks® User Guide and Reference Manual.

9.7.1 Loading the Common SQL interface

To load the Common SQL interface to use ODBC enter:
(require "odbc")
and at run time call:
(sql:initialize-database-type :database-type :odbc)

and then you can connect to any installed ODBC datasource.

To load the Common SQL interface to use MySQL, enter:
(require "mysqgl ™)

and at run time call:
(sql:initialize-database-type :database-type :nysql)

See the LispWorks® User Guide and Reference Manual for further information.

9.8 Common Prolog and KnowledgeWorks
Common Prolog is bundled with KnowledgeWorks rather than with LispWorks. KnowledgeWorks is loaded by using:
(require "kw")

See the KnowledgeWorks and Prolog User Guide for further instructions.

51

9 Configuration on Windows

9.9 Runtime library requirement on Windows

LispWorks for Windows requires the Microsoft Visual Studio runtime library msvcr 80. dl | . The LispWorksinstaller
installsthisDLL if it isnot present.

Applications you build with LispWorks for Windows also require this DLL, so you must ensure it is available on target
machines.

52

10 Configuration on Linux, x86/x64 Solaris
& FreeBSD

10.1 Introduction

This chapter explains how to get LispWorks up and running on Linux, x86/x64 Solaris or FreeBSD, having already installed
it. If you have not done this, refer to 4 Installation on Linux, 5 Installation on x86/x64 Solaris, or 6 | nstallation on
FreeBSD.

It is more useful to have an image customized to suit your particular environment and work needs. You can do this—setting
useful pathnames, loading libraries, and so on—and then save the image to create another that will be configured as you
require whenever you start it up.

This chapter covers the following topics:

» 10.2 License keys

10.3 Configuring your LispWorksinstallation

10.4 Saving and testing the configured image

10.5 Initializing LispWorks

10.6 Loading CLIM 2.0

10.7 The Common SQL interface

10.8 Common Prolog and K nowledgeWorks

10.2 License keys

LispWorks is protected against unauthorized copying and use by a simple key protection mechanism. LispWorks will not
start up until it finds afile containing avalid key.

Theimage looks for afilel wl i cense in the following places, in order:
* In the current working directory.
* Inthe directory containing the LispWorks executable.
* Inthel i b/ 8- 0- 0- 0/ conf i g subdirectory of the LispWorks installation directory.

When thefilel wl i cense isfound, it must contain avalid key for the current machine. If you try to run LispWorks without a
valid key, amessage will be printed reporting that no valid key was found, and LispWorks will exit.

53

10 Configuration on Linux, x86/x64 Solaris & FreeBSD

10.3 Configuring your LispWorks installation

Once you have successfully installed and run LispWorks, you can configure it to suit your local conditions and needs,
producing an image that is set up the way you want it to be every time you start it up.

10.3.1 Levels of configuration

There are two levels of configuration: configuring and resaving the image, thereby creating a new image that is exactly as
you want it at startup, and configuring certain aspects of LispWorks asit starts up.

These two levels are available for good reason: while some configuration details may be of useto all LispWorks users on
your site (for instance, having a particular library built in to the image where before it was only load-on-demand) others may
be a matter of personal preference (for instance how many editor windows are allowed on-screen, or the colors of tool
windows).

In the first case, you use edited copies of filesin the conf i g directory to achieve your aims.

In the second case, you make entriesin your initiaization file. Thisisafile read every time LispWorks starts up, and it can
contain any valid Common Lisp code. (Most of the configurable settings in LispWorks can be controlled from Common
Lisp.) By default thefileiscaled . | i spwor ks and isin your home directory. Your initialization file can be changed via
Tool s > Preferences... intheLispWorksIDE.

10.3.2 Configuration files available

There are four sample configuration files in LispWorks library containing settings you can change in order to configure
images.

e config/configure.lisp

e config/siteinit.lisp

e private-patches/load.lisp

e config/a-dot-lispworks.lisp

confi g/ configure.lispispreloaded into theimage beforeit is shipped. It contains settings governing fundamental
issues like where to find the LispWorks run time folder structure, and so on. You can override these settingsin your saved
image or in your initiaization file. You should read through confi gure. i sp.

config/siteinit.lisp containsany formsthat are appropriate to the whole site but which are to be loaded afresh each
timetheimageisstarted. Thesamplesi tei nit. i sp file distributed with LispWorks contains only the form;

(1 oad-al | - pat ches)

On startup, theimage loadssi t ei nit. | i sp and your initialization file, in that order. The command line options
-siteinit and-init canbeused to specify loading of different files or to suppress them altogether. See the examplein
10.4 Saving and testing the configured image, below, and 10.5 Initializing LispWor ks for further details.

private-patches/| oad. |ispisloaded by | oad- al | - pat ches, and should contain formsto load any private (hamed)
patches that Lisp Support might send you.

confi g/ a-dot-1ispworks.|ispisasample personal initialization file. You might like to copy thisinto afile
~/ . I'i spwor ks inyour home directory and edit it to create your own initialization file.

Bothconfigure.lispanda-dot-Iispworks.|isp arepreloaded into theimage beforeit is shipped, soif you are happy
with the settings in these files, you need not change them. See the examplein 10.4 Saving and testing the configured
image, below, and 10.5 I nitializing LispWor ks for further details.

54

10 Configuration on Linux, x86/x64 Solaris & FreeBSD

10.4 Saving and testing the configured image

It is not usually necessary to save an image merely to preload patches and your configuration, because these load very quickly
on modern machines.

However, if you want to save an image to reduce startup time for a complex configuration (such as large application code) or
to save a non-windowing image, then proceed as described in this section.

10.4.1 Create a configuration file

Make acopy of confi g/ configure.lispcaled/tnp/ny-configuration.!isp. Whenyou have made any desired
changesinmy- confi guration. | i sp you can save anew LispWorksimage, as described in 10.4.2 Create and use a save-
image script.

10.4.2 Create and use a save-image script

1. Create a configuration and saving script / t np/ save- confi g. | i sp, containing:

(i n-package "CL- USER")

(1 oad-al | - pat ches)

(load "/tnp/ my-configuration.lisp")
(save-image "ny-1lispworks")

2. Change directory to the LispWorks installation directory, for example:

% cd /usr/local/lib/LispWrks

3. Start the supplied image using the configuration script as the build file. For example:
% | i spwor ks-8-0-0-x86-1inux -build /tnp/save-config.lisp

If the image will not run at this stage, it is probably not finding avalid key.
Saving the image takes some time.

You can now use the new ny- | i spwor ks image by starting it just as you did the supplied image. The supplied image is not
required after the configuration process has been successfully completed.

Do not try to save a new image over an image that is currently running. Instead, save an image under a unique name, and
then, if necessary, replace the new image with the old one after the call to save- i nage has returned.

10.4.3 Testing the newly saved image
You should now test the new LispWorks image. To test a configured version of LispWorks, do the following:
1. Change directory to/ t np.

2. Verify that your DI SPLAY environment variable is correctly set and that your machine has permission to connect to the
display.

3. Start up the new image.

The window-based environment should now initialize—during initialization awindow displaying a copyright notice will
appear on the screen.

You may wish to work through some of the examplesin the LispWorks® User Guide and Reference Manual, to further

55

10 Configuration on Linux, x86/x64 Solaris & FreeBSD

check that the configured image has been successfully built.

4. Test thel oad- on- denand system. In the Listener, type:
CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load the inspector from the | oad- on- denand
directory.

You can quit the inspector by typing : g.

10.4.4 Saving a non-windowing image

For some purposes such as scripting it is convenient to have a LispWorks image that does not start the graphical programming
environment.

To save an image which does not automatically start the GUI, use a script as described in 10.4.2 Create and use a save-
image script but passthe: envi r onment argument to save- i mage. For example:

(save-image "ny-tty-lispworks" :environnent nil)

10.5 Initializing LispWorks

When LispWorks starts up, it looks for an initialization fileto load. The name of thefileisheldin*i nit-fil e- name*, and
is~/ . 1i spwor ks by default. ~ denotes your home directory. The file may contain any valid Lisp code.

You can load a different initialization file using the option - i ni t in the command line, for example:
% | i spworks-8-0-0-x86-linux -init ny-lisp-init

would make LispWorksload ny-1i sp-init.|isp astheinitidization fileinstead of that named by *i ni t-fi | e- narme*.

The loading of the siteinit file (located by default at confi g/ siteinit.|isp)issimilarly controlled by the-siteinit
command line argument or
site-init-file-name.

You can start an image without loading any personal or siteinitialization file by passing a hyphento the-i ni t and
-siteinit argumentsinstead of afilename:

% | i spworks-8-0-0-x86-linux -init - -siteinit -
This starts the LispWorks image without loading any initiaization file. It is often useful to start the image in this way when

trying to repeat a suspected bug. You should always start the image without the default initiaization filesif you are intending
to resaveit.

In all cases, if thefilenameis present, and is not a hyphen, LispWorks triesto load it as anormal file by calling | oad. If the
load fails, LispWorks prints an error report.

10.6 Loading CLIM 2.0
Load CLIM 2.0 into LispWorks 8.0 with:

(require "clint)

56

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

10 Configuration on Linux, x86/x64 Solaris & FreeBSD

and the CLIM demos with:

(require "climdenn")
rather than the clim loader filesin the clim distribution (which were the entry pointsin LispWorks 3).
A configuration file to save an image with CLIM 2.0 prel oaded would look something like this:

(i n-package "CL-USER")

(1 oad- al | - pat ches)

(require "clint)

(save-image "/path/to/climlispworks")

10.6.1 Running the CLIM demos

To run the demo software, enter the following in alistener:

(require "climdenn")
(cli mdeno: start-denp)

This displays amenu listing al the demos. Choose the demo you wish to see. More information about the demosisin section
"The CLIM demos" of the Common Lisp Interface Manager 2.0 User's Guide.

10.7 The Common SQL interface

The Common SQL interface requires ODBC or one of the supported database types listed in section " Supported databases” of
the LispWorks® User Guide and Reference Manual.

10.7.1 Loading the Common SQL interface

To load the Common SQL interface to use ODBC enter:
(require "odbc")
and at run time call:
(sql:initialize-database-type :database-type :odbc)

and then you can connect to any installed ODBC datasource.

To load the Common SQL interface to use MySQL, enter:
(require "nysql")

and at run time call:
(sql:initialize-database-type :database-type :nysql)

See the LispWorks® User Guide and Reference Manual for further information.

57

10 Configuration on Linux, x86/x64 Solaris & FreeBSD

10.8 Common Prolog and KnowledgeWorks
Common Prolog is bundled with KnowledgeWorks rather than with LispWorks. KnowledgeWorks is |oaded by using:

(require "kw")

See the KnowledgeWbrks and Prolog User Guide for further instructions.

10.9 Documentation on x86/x64 Solaris and FreeBSD

Except where explicitly mentioned, information stated as specific to LispWorks for Linux also applies to LispWorks for
x86/x64 Solaris and LispWorks for FreeBSD.

58

11 Troubleshooting, Patches and Reporting
Bugs

This chapter discusses other issues that arise when installing and configuring LispWorks. It provides solutions for possible
problems you may encounter, and it discusses the patch mechanism and the procedure for reporting bugs.

11.1 Troubleshooting

This section describes some of the most common problems that can occur on any platform during installation or
configuration.

11.1.1 License key errors
LispWorks looks for avalid license key when it is started up. If a problem occurs at this point, LispWorks exits.
These are the possible problems:
 LispWorks cannot find or read the key.
* Thekey isincorrect.
* Your license has expired, making the key no longer valid.
On Linux, x86/x64 Solaris and FreeBSD, thisis also a possible cause of the problem:
» The machine name has changed since LispWorks was installed.

On macOS, Linux, x86/x64 Solaris and FreeBSD, the key is expected to be stored in a keyfile, and an appropriate error
message is printed at the terminal for each case. If this message does not help you to resolve the problem, report it to Lisp
Support and include the terminal output.

On Windows, the key is expected to be stored in the Windows registry. If you cannot resolve the problem, export your
HKEY_LOCAL_MACHINE\SOFTWARE\LispWorks registry tree and include this with your report to Lisp Support.

11.1.2 Failure of the load-on-demand system
Module files are in the modules directory | i b/ 8- 0- 0- 0/ | oad- on- denmand under *| i spwor ks-di rect ory*.

If loading files on demand fails to work correctly, check that the modules directory is present. If it is not, perhaps your
LispWorks installation is corrupted.

Do not remove any files from the modul es directory unless you are really certain they will never be required.

The supplied image contains atrigger which causes* 1 i spwor ks- di r ect or y* to be set on startup and hence you should
not need to change its value. Subsequently saved images do not have this trigger.

59

11 Troubleshooting, Patches and Reporting Bugs

11.1.3 Build phase (delivery-time) errors

A common cause of errors seen while building (delivering) an application is running part of the application’s run time
initialization, or something else that assumes the application is already running.

One error sometimes seenis” Not yet mul ti processi ng. " and other likely build phase errorsinclude those arising from
code that assumes something about the run time environment.

Such initializations should be done at the start of the run time phase, as described in " Separate run time initializations from
the build phase" in the Delivery User Guide.

11.1.4 Memory requirements

To run the full LispWorks system, with its GUI, you will need around 30MB of swap space for the image and whatever else
IS necessary to accommodate your application.

We recommend that you routinely check the size of your image using cl : r oom whether you see warning messages or not.

When running alarge image, you may occasionally see:

<**> Failed to enlarge nenory

printed to the standard output.

The message means that the LispWorks image is close to the limit: it attempted to expand one of the GC generations, but
there was not enough swap space to accommodate the resulting growth in image size. When this happens, the garbage
collector isinvoked. It will usually manage to free the required space, but if it cannot then crashes may result. Therefore you
should take action to reduce allocation or increase available memory when you see this message.

Check the size of the image, both by cl : r oomand by OS facilities (such as ps or t op on *nix, Task Manager on Windows)
to seeif al the sizes are as expected. If there are large discrepancies, check them.

Occasionally, however, continued demand for additional memory will end up exhausting resources. You will then see the
message above repeatedly, and there will be little or no other activity apparent in the image. At this point you should restart
the image, or increase swap space. In cases where externa libraries are mapped above LispWorks and inhibit its growth, you
may be able to relocate LispWorks, as described under " Startup relocation” in the LispWorks® User Guide and Reference
Manual.

11.1.5 Corrupted LispWorks executable

Programs which attempt to clean up your machine by automatically removing data they identify as unnecessary may
accidentally corrupt your LispWorks executable, because they do not understand its format. Thiswill prevent LispWorks
from starting.

Examples arethe pr el i nk cron job on Linux and CleanMyMac on Macintosh. These particular programs should no longer
affect LispWorks, but there may be similar utilitiesin use.

If corruption occurs check if it has been caused by a clean-up utility. If thisisthe case, firstly configure your clean-up utility
to ignore LispWorks, and then reinstall LispWorks.

60

http://www.lispworks.com/documentation/HyperSpec/Body/f_room.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_room.htm

11 Troubleshooting, Patches and Reporting Bugs

11.2 Troubleshooting on Windows

This section describes some of the most common problems that can occur during installation or configuration of LispWorks
for Windows.

11.2.1 Private patches not loaded on Windows 7, 8 & 10

Modify pri vat e- pat ches\ | oad. | i sp only viathe menu command Help > Install Private Patches... to avoid problems
with redirected files.

If your LispWorks installation isin the %°r ogr anfi | es%folder and you edit pri vat e- pat ches\ | oad. | i sp directly,
then Windows starts to use a redirected private copy of | oad. | i sp. Help > Install Private Patches... will not update this
copy, and thus your new patches will not be loaded.

If this occurs, the solution is to delete the redirected copy of | oad. | i sp from your user profile space. On Windows 8 the
locationislikethis:

C.\ Users\| w\ AppDat a\ Local \ Virtual Store\ Program Fil es (x86)\Li spWrks\I|ib\8-0-0-0\private-patches\

11.3 Troubleshooting on macOS

This section describes some of the most common problems that can occur during installation or configuration of LispWorks
for Macintosh.

If you're using the LispWorks image with the X11/Motif GUI, seeaso 11.7 Troubleshooting on X11/M ctif below for issues
specific to X11/Moatif.

11.3.1 Uninstall requires administrator on macOS

You must be logged on an as administrator in order to run uni nst al | . conmand to uninstall LispWorks. Thisis because it
uses the sudo command.

11.4 Troubleshooting on Linux

This section describes some of the most common problems that can occur during installation or configuration of LispWorks
for Linux.

See also 11.7 Troubleshooting on X11/M otif below for issues specific to X11/Moatif.

11.4.1 Processes hanging

Some versions of Linux have a broken pthreads library. To workaround this set the environment variable
LD ASSUME_KERNEL=2.4.19 before running LispWorks. LD_ASSUME_KERNEL allows using older versions of
pthreads, some of which do not work.

LispWorks 8.0 supports any Linux distribution with glibc 2.6 or |ater.

11.4.2 RPM_INSTALL_PREFIX not set

On Linux, during installation of CLIM, Common SQL, LispWorks ORB or KnowledgeWorks from a secondary rpm file you
may see amessage similar to this:

61

11 Troubleshooting, Patches and Reporting Bugs

rpm--install tnp/lispworks-clim8.0-1.i386.rpm

Envi ronnent variabl e RPM I NSTALL_PREFI X not set, setting it to /usr

Li spworks installation not found in /usr.

error: Y%re(lispworks-clim8.0-1) scriptlet failed, exit status 1

error: install: %re scriptlet failed (2), skipping lispworks-clim8.0-1
#

Thisisonly a problem when LispWorks itself wasinstalled in a non-default location (that is, using the - - pr ef i x RPM
option). You would then want to supply that same - - pr ef i x value when installing the secondary rpm. A bug in RPM means
that arequired environment variable RPM | NSTALL_PREFI X is not set automatically to the supplied value. We have seen
thisbug in RPM version 4.2, as distributed with Red Hat 8 and 9.

The workaround isto set this environment variable explicitly before installing the secondary rpm. For example, if LispWorks
wasinstaled like this:

rpm--install --prefix /usr/lisp |ispworks-8.0-1.i386.rpm

then you would add CLIM like this (in C shell):

setenv RPM | NSTALL_PREFI X /usr/lisp
rpm--install --prefix /usr/lisp |ispworks-clim8.0-1.i386.rpm

11.4.3 Using multiple versions of Motif on Linux

The version of Open Motif required by LispWorks 8.0 with the Motif GUI may not be compatible with other applications
(including LispWorks 4.2). 1t is however compatible with LispWorks 7.1, LispWorks 6.x, LispWorks 5.x, LispWorks 4.4 and
4.3, so you for example you should be able to run LispWorks 8.0 and LispWorks 7.1 simultaneously with either Open Motif
installed.

Whileit is not supported for LispWorks 5.1 and later versions, you can still use Lesstif for LispWorks 5.0 and earlier - see the
Installation Guide for that version for details.

You may wish to maintain multiple versions of the Motif/Lesstif librariesin order to run various applications simultaneoudly.
However, because the filenames of the libraries can conflict, this can only be done by installing libraries in non-standard
locations.

When alibrary has been installed in a non-standard location, you can set the environment variable LD_LI BRARY_PATHto
alow an application to find that library. Specifically, if <motiflibdir> denotes the directory containing the Motif 2.2 or 2.3
filel i bXm so then set LD LI BRARY_PATHto include <motiflibdir>.

Note: to find out which version of libXm your LispWorks 8.0 image is actually using, look in the bug form. See 11.9.3
Generate a bug report template for instructions on generating the bug form.

11.5 Troubleshooting on x86/x64 Solaris

This section describes some of the most common problems that can occur during installation or configuration of LispWorks
for x86/x64 Solaris.

See also 12.17.1 Problemswith CAPI on GTK+ and 11.7 Troubleshooting on X11/M otif.

11.5.1 GTK+ version

GTK+ 2 (version 2.4 or higher) isrequired to run the LispWorks image as distributed.

62

11 Troubleshooting, Patches and Reporting Bugs

11.6 Troubleshooting on FreeBSD

This section describes some of the most common problems that can occur during installation or configuration of LispWorks
for FreeBSD.

See dso 11.7 Troubleshooting on X11/M otif below for issues specific to X11/Maotif.

11.7 Troubleshooting on X11/Motif

This section describes some of the most common problems that can occur using the LispWorks X11/Motif GUI, whichis
available on Linux, FreeBSD and macOS.

11.7.1 Problems with the X server

Running under X11/Motif, LispWorks may print a message saying that it is unable to connect to the X server. Check that the
server isrunning, and that the machine the image is running on is authorized to connect to it. (See the manual entry for
command xhost (1) .)

On macOS, if you attempt to start the LispWorks X11/Motif GUI in Terminal .app, an error message
Fai l ed to open display N Lisprinted. Instead, run LispWorksin X11.app.

11.7.2 Problems with fonts on Motif

LispWorks may print a message saying that it is unable to open afont and is using a default instead. The environment will
still run but it may not always use the right font.

LispWorks comes configured with the fonts most commonly found with the target machine type. However the fonts supplied
vary between implementations and installations. The fonts available on a particular server can be determined by using the

xl sfont s(1) command. Fonts are chosen based on the X 11 resources. See 11.7.6 X11/Motif resources for more
information.

It may be necessary to change the fonts used by LispWorks.

11.7.3 Problems with colors

Running under X11, on starting up the environment, or any tool within it, LispWorks may print a message saying that a
particular color could not be allocated.

This problem can occur if your X color map isfull. If thisisthe case, LispWorks cannot alocate al the colors that are
specified in the X 11 resources.

This may happen if you have many different colors on your screen, for instance when displaying a picture in the root window
of your display.

Colors are chosen based on the X 11 resources. See 11.7.6 X11/M otif resources for more information.

To remove the problem, you can then change the resources (for example, by editing the file mentioned in 11.7.6 X 11/M otif
resour ces) to reduce the number of colors LispWorks allocates.

11.7.4 Motif mnemonics and Alt

Mnemonic processing on Motif always uses nod1, so we disable mnemonicsif that isLisp's Met a modifier to alow the
Emacs-style editor to work. (The accelerator code uses the same keyboard mapping check as the mnemonics so Al t
accelerators would also get disabled if you had them.)

63

11 Troubleshooting, Patches and Reporting Bugs

11.7.5 Non-standard X11/Motif key bindings

On X11U/Motif, if you want Emacs-stylekeysCtrl-n, Cirl-p inLispWorkslist panels such as the Editor's buffers view,
add the following to the X11 resources (see 11.7.6 X11/M otif resour ces):

! Enable Ctrl-n, Ctrl-p in list panels

Li spwor ks* XLi st . transl ati ons: #override\ n\
Ctrl<Key>p : ListPrevitem()\n\
Ctrl <Key>n : ListNextltem()

11.7.6 X11/Motif resources

When using X11/Motif, LispWorks reads X 11 resources in the normal way, using the application class Lispworks. Thefile
app- def aul t s/ Li spwor ks is used to supply fallback resources. You can copy parts of thisfileto ~/ Li spwor ks or some
other configuration-specific location if you wish to change these defaults, and similarly for app- def aul t s/ GcMoni t or .

11.7.7 Motif installation on macOS

When attempting to starting the LispWorks X11/Motif GUI when the required version of Motif is not installed, LispWorks
prints the error message:

Error: Could not register handle for external nodule X-UTILITIES:: CAPI X11
dyl d: /Applications/LispWrks 8.0/I1ispworks-8-0-0-nmacos64-universal-gtk can't open library: /usr/lo
cal/lib/libXm4.dylib (No such file or directory, errno = 2)

Ensure you install Motif as described in 2.4.8.2 The X11 GTK+ and Motif GUIs. Restart X11.app and LispWorks after
installation of Motif.

11.8 Updating with patches

We sometimes issue patches for LispWorks by email or download.

11.8.1 Extracting simple patches
Save the email attachment to your disk.

See 11.8.3.2 Private patches bel ow about location of your private patches.

11.8.2 If you cannot receive email
If your site has neither email nor ftp access, and you want to receive patches, you should contact Lisp Support to discuss a
suitable medium for their transmission.

11.8.3 Different types of patch

There are two types of patch sent out by Lisp Support, and they must be dealt with in different ways.

11 Troubleshooting, Patches and Reporting Bugs

11.8.3.1 Public patches

Public patches are general patches made available to al LispWorks customers. These are typically released in bundles of
multiple different patch files; each file has a number asits name. For example:

pat ches\ syst eml 0001\ 0001. of asl (for x86 W ndows)

pat ches/ syst em’ 0001/ 0001. uf asl (for x86 Li nux)

pat ches/ syst em’ 0001/ 0001. sfasl (for x86 Sol ari s)

pat ches/ syst em’ 0001/ 0001. ffasl (for x86 FreeBSD)

pat ches/ syst em’ 0001/ 0001.rfasl (for 32-bit ARM Li nux and Androi d)
pat ches/ syst eml 0001\ 0001. 640f asl (for x64 W ndows)

pat ches/ syst em’ 0001/ 0001. 64uf asl (for and64 Li nux)

pat ches/ syst em’ 0001/ 0001. 64xfasl (for Intel Macintosh)

pat ches/ syst em’ 0001/ 0001. 64yfasl (for Apple silicon Macintosh and i OS Simnul ator)
pat ches/ syst em’ 0001/ 0001. 64sfasl (for amd64 Sol ari s)

pat ches/ syst em’ 0001/ 0001. 64f fasl (for amd64 FreeBSD)

pat ches/ syst em’ 0001/ 0001. 64rfasl (for 64-bit ARM Li nux and i OS)
pat ches/ syst em’ 0001/ 0001. 64xcfasl (for 64-bit i OS Simul ator)

On receipt of anew patch bundle your system manager should update each local installation according to the installation
instructions supplied with the patch bundle. Thiswill add files to the patches subdirectory and increment the version number
displayed by LispWorks.

You should consider saving a new image with the latest patches pre-loaded, as described in 8.4 Saving and testing the
configured image (macOS), 9.4 Saving and testing the configured image (Windows) or 10.4 Saving and testing the
configured image (Linux, x86/x64 Solaris or FreeBSD).

11.8.3.2 Private patches

LispWorks patches are generally released in cumulative bundles. Occasionally Lisp Support may send you individual patch
binaries named for example ny- pat ch to address a problem or implement a new feature in advance of bundled (‘public’)
patch releases. Such patches have real names, rather than numbers, and must be loaded once they have been saved to disk.
You will need to ensure that LispWorks will load your private patches on startup, after public patches have been loaded.

Private patch loading is controlled by thefile:

lib/8-0-0-0/private-patches/load.lisp
pri vat e- pat ches/ isthe default location for private patches, and patch loading instructions sent to you will assume this

location. Therefore, on receipt of a private patch my- pat ch. uf asl , the simplest approach isto place it here. For example,
on macOS:

<install>/ Li spWorks 8.0 (64-bit)/Library/lib/8-0-0-0/private-patches/ ny-patch. 64xf asl

On Windows (but see note below about the Install Private Patches... command):

<install>l i b\ 8- 0- 0- O\ pri vat e- pat ches\ ny- pat ch. of asl

On Linux:

<install>/ i b/ 8- 0-0-0/ pri vat e- pat ches/ ny- pat ch. uf asl

You will receive a Lisp form needed to load such a patch, such as:

(LOAD- ONE- PRI VATE- PATCH " ny- pat ch" : SYSTEM

65

11 Troubleshooting, Patches and Reporting Bugs

Thisform should be added to thef | et form in thefile:

private-patches/|oad.lisp

immediately after the commented example there. | oad- al | - pat ches loads thisfile, and hence all the private patches listed
therein.

You may choose to save a reconfigured image with the new patch loaded - for details see the instructionsin 8.4 Saving and
testing the configured image (macOS), 9.4 Saving and testing the configured image (Windows), or 10.4 Saving and
testing the configured image (Linux, x86/x64 Solaris or FreeBSD). You can aternatively choose to load the patch file on
startup. The option you choose will depend on how many people at your site will need access to the new patch, and how
many will need access to an image without the patch |oaded.

Note: On Windows, the correct way to install private patchesis using the menu item Help > Install Private Patches.... Select
the private patch file with the Add button and edit the pri vat e- pat ches/ | oad. | i sp inthelower pane to include the
loading form supplied by Lisp Support immediately after the commented example there. Then click Save Changes, which
will run a helper application that interacts with the Windows User Access Control mechanism to allow you to write the files
into the protected Program Files folder.

11.9 Reporting bugs

If you discover abug, in either the software or the documentation, you can submit a bug report by any of the following
routes.

* emall

 fax

 paper mail (post)
* telephone

The addresses are listed in 11.9.8 Send the bug report. Please note that we much prefer email.

11.9.1 Check for existing fixes

Before reporting a bug, please ensure that you have the latest patches installed and loaded. Visit
www.lispwor ks.com/downloads/patch-selection.html for the latest patch release.

If the bug persists, check the Lisp Knowledgebase at www.lispwor ks.com/support/ for information about the problem - we
may aready have fixed it or found workarounds.

If you need informal advice or tips, try joining the LispWorks users mailing list. Details are at
www.lispwor ks.com/support/lisp-hug.html.

11.9.2 Performance Issues

If the problem is poor performance, you should user oom ext ended-t i me and pr of i | e to check what actually happens.
See the LispWorks® User Guide and Reference Manual for details of these diagnostic functions and macros.

If this does not help you to resolve the problem, submit areport to Lisp Support (see next section) and attach the output of the
diagnostics.

66

http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm
http://www.lispworks.com/downloads/patch-selection.html
http://www.lispworks.com/support/
http://www.lispworks.com/support/lisp-hug.html
http://www.lispworks.com/documentation/HyperSpec/Body/f_room.htm

11 Troubleshooting, Patches and Reporting Bugs

11.9.3 Generate a bug report template

Whatever method you want to use to contact us, choose Help > Report Bug from any tool, or use the command
Met a+X Report Bug, or at aLisp prompt, use: bug- f or m for example:

:bug-form"foo is broken" :filename "bug-report-about-foo.txt"

All three methods produce a report template you can fill in. In the GUI environment we prefer you use the Report Bug
command - do this from within the debugger if an error has been signalled.

The bug report template captures details of the Operating System and Lisp you are running, as well as a stack backtrace if
your Lisp isin the debugger. There may be delaysif you do not provide this essential information.

If the issue you are reporting does not signal an error, or for some other reason you are not able to supply a backtrace, we still
want to see the bug report template generated from the relevant LispWorks image.

11.9.4 Add details to your bug report

Under 'Urgency' tell us how urgent theissueisfor you. We classify reports as follows:

ASAP A bug or missing feature that is stopping progress. Probably needs a private patch, possibly
under a support contract, unless a workaround can be found.

Current Release Either afix in the next patch bundle or as a private patch, possibly under a support contract.

Next Release A fix would be nice in the next minor release.

Future Release An item for our wishlist.

None Probably not a bug or feature request.

Tell usif the bug is repeatable. Add instructions on how to reproduce it to the 'Description’ field of the bug report form.

Include any other information you think might be relevant. This might be your code which triggers the bug. In this case,
please send us a self-contained piece of code which demonstrates the problem (this is much more useful than code
fragments).

Include the output of the Lisp image. In general it isnot useful to edit the output, so please send it as-is. Where output files
arevery large (> 2MB) and repetitive, the first and last 200 lines might be adequate.

If the problem depends on a source or resource file, please include that file with the bug report.

If the bug report fallsinto one of the categories below, please also include the results of a backtrace after carrying out the
extra steps requested:

« If the problem seems to be compiler-related, set * conpi | er - br eak- on-error* tot, and try again.

* If the problem seemsto berelated to er r or or conditions or related functionality, traceer r or and
condi ti ons: coerce-to-condition, andtry again.

« |If the problem isin the LispWorks IDE, and you are receiving too many notifiers, set
dbg: *ful | -wi ndowi ng- debuggi ng* toni | and try again. Thiswill cause the console version of debugger to be
used instead.

* If the problem occurs when compiling or loading alarge system, call (t oggl e- sour ce- debuggi ng ni |) and try
again.

« If you ever receive any unexpected terminal output starting with the characters <* * >, please send al of the
output—however much thereis of it.

67

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

11 Troubleshooting, Patches and Reporting Bugs

Note: terminal output isthat writtento *t er mi nal -i o*. Normally thisis not visible when running the macOS native
GUI or the Windows GUI, though it is displayed in a Terminal.app or MS-DOS window if necessary.

11.9.5 Reporting crashes

Very occasionally, there are circumstances where it is not possible to generate a bug report form from the running Lisp which
has the bug. For example, a delivered image may lack the debugger, or the bug may cause lisp to crash completely. In such
circumstances:

1. Itisstill useful for usto see abug report form from your lisp image so that we can see your system details. Generate the
form before your code is loaded or abroken call is made, and attach it to your report.

2. Create afileini t. i sp which loads your code that |eads to the crash.

3. Run LispWorkswithi ni t . | i sp astheinitialization file and with output redirected to afile. For example, on macOS:

% "/ Applications/LispWwrks 8.0 (64-bit)/LispWrks (64-bit).app/Contents/MacQOS/|i spworks-8-0-0-
macos64-universal" -init init.lisp > |w out

where %denotes a Unix shell prompt.

On Windows:
C:\> "Program Fil es\ Li spWorks\ | i spworks-8-0-0-x86-wi n32.exe" -init init.lisp > |w out

where C:\> denotes the prompt in a MS-DOS command window.

On Linux:
% /usr/bin/lispworks-8-0-0-x86-linux -init init.lisp > |w out

where %denotes a Unix shell prompt.

4. Attachthe |l w. out fileto your report. In general it isnot useful to edit the output of your Lisp image, so please send it
as-is. Where output files are very large (> 2MB) and repetitive, the first and last 200 lines might be adequate.

11.9.6 Log Files

If your application writes alog file, add this to your report. If your application does not write alog file, consider adding it,
since alog isalways useful. The log should record what the program is doing, and include the output of (r oonj periodically,
say every five minutes.

You can make the application write a bug form to alog file automatically by making your error handlers call
dbg: | og- bug- form

11.9.7 Reporting bugs in delivered images

Some delivered executables lack the debugger. It isstill useful for usto see abug report template from your Lisp image that
was used to build the delivered executable. If possible, load your code and call (require "delivery") then generatethe
template.

For bugs in delivered LispWorks images, the best approach isto start with avery simple call todel i ver, at level 0 and with
the minimum of delivery keywords (: i nterface : capi and: mul ti processi ng t at most). Then deliver at increasingly
severe levels. Add delivery keywords to address specific problems you find (see the Delivery User Guide.for details.
However, please note that you are not expected to need to add more than 6 or so delivery keywords. do contact usif you are
adding more than this.)

68

http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

11 Troubleshooting, Patches and Reporting Bugs

11.9.8 Send the bug report

Email isusually the best way. Send your report to:
| i sp-support @i spworks. com

When we receive a bug report, we will send an automated acknowledgment, and the bug will be entered into the LispWorks
bug management system. The automated reply has a subject line containing for example:

(Lisp Support Call #12345)

Please be sure to include that cookie in the subject line of all subsequent messages concerning your report, to allow Lisp
Support to track it.

If you cannot use email, please either:
» Fax to +44 870 2206189.
 Post to Lisp Support, LispWorks Ltd, St John's Innovation Centre, Cowley Road, Cambridge, CB4 OWS, England.
» Telephone: +44 1223 421860.

Note: It isvery important that you include a stack backtrace in your bug report wherever applicable. See 11.9.3 Generate a
bug report template for details. You can always get a backtrace from within the debugger by entering : bb at the debugger
prompt.

11.9.9 Sending large files

Note: Please check with Lisp Support in advance if you are intending to send very large (> 2MB) files via email.

11.9.10 Information for Personal Edition users

We appreciate feedback from users of LispWorks Personal Edition, and often we are able to provide advice or workarounds if
you run into problems. However please bear in mind that this free product is unsupported. For informal advice and tips, try
joining the LispWorks users mailing list. Details are at www.lispwor ks.com/support/lisp-hug.html.

11.10 Transferring LispWorks to a different machine

This section lists the steps necessary to transfer LispWorks license to another machine.
1. Install LispWorks on your new machine.
2. Add latest patch bundle.

3. If you received private patches (named patch files, inthel i b/ 8- 0- 0- 0/ pri vat e- pat ches directory) for this version
of LispWorks, move them and your pri vat e- pat ches/ | oad. | i sp fileto the corresponding location in the new
installation.

4. Test the new installation by running LispWorks and check the patch banner in the output of Help > Report Bug. It should
be identical to the original installation. If it differs, check that the public patches have been installed and that you private
patches have been moved to the new pri vat e- pat ches folder along with thel oad. | i sp file.

Please note that the LispWorks EULA restricts multiple installations so you may need to remove the original installation.
Check your license agreement if you are unsure: the text of the shrinkwrap agreement isin the file
lib/8-0-0-0/1icense.txt.

69

http://www.lispworks.com/support/lisp-hug.html

11 Troubleshooting, Patches and Reporting Bugs

Instructions for uninstalling LispWorks are in the per-platform chapters of this manual:

» 2.6 Uninstalling LispWorks for Macintosh

3.3 Uninstalling LispWorks for Windows

4.9 Uninstalling LispWorksfor Linux

5.8 Uninstalling LispWorksfor x86/x64 Solaris

6.9 Uninstalling LispWorksfor FreeBSD

Some operating systems provide ways to copy software to another machine. A copied LispWorks installation will not run.
Please contact Lisp Support if you want to install your license to a copied installation of LispWorks.

70

12 Release Notes

12.1 Keeping your old LispWorks installation

You can install LispWorks 8.0 in the same directory as previous versions such as LispWorks 7.1. Thisis because most of the
8.0files are stored in asubdirectory called | i b/ 8- 0- 0- 0.

Binaries produced by cl : conpi | e-fi | e in previous versions of LispWorks do not load into a LispWorks 8.0 image. You
must recompile all your code with the LispWorks 8.0 compiler.

12.2 Updating your code for LispWorks 8.0

Check through these rel ease notes for things you need to update in code that already worksin LispWorks 7.1.

If you are updating code that works only in versions earlier than LispWorks 7.1, then you should also consult earlier release
notes, which are available at www.lispwor ks.com/documentation.

12.2.1 Conditionalizing code for different versions of LispWorks

When conditionalizing code for different versions of LispWorks, make your code work in the latest version and then
conditionalize with feature expressions if hecessary, depending on which previous versions of LispWorks you want to
support.

For example, use#- | i spwor ks7 rather than #+1 i spwor ks8. This makesit more likely that the code will work without
changes when LispWorks 9 is released in future.

Use only documented features. For an example see "Conditionalization for LispWorks versions' in the entry for *features* in
the LispWorks® User Guide and Reference Manual.

12.3 Platform support

12.3.1 LispWorks for Macintosh supports Apple silicon Macs natively

LispWorks for Macintosh now supports Apple silicon based Macs natively using the arm64 architecture. The supplied images
are now universal binaries.

12.3.2 LispWorks for Macintosh is always 64-bit

LispWorks for Macintosh is only released as a 64-bit application now because Apple have dropped support for 32-bit
applications since macOS, 10.15 Catalina.

12.3.3 Runtimes for Android

LispWorks for Android Runtime supports 64-bit ARM devices now (the ar n64- v8a ABI), aswell as x86 and x86_64
devices (designed mainly for the Android Emulator when running on a computer with an Intel CPU).

71

http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm
http://www.lispworks.com/documentation

12 Release Notes

The exampl e script run-lw-android.sh now builds 4 images. 32-bit and 64-bit for each of ARM and x86.
Support for Android SDK 23 "text relocations" has been added.

Thefunction hcl : del i ver -t o- andr oi d- pr oj ect now supports Android Studio 3 and no longer supports Eclipse. The
: usi ng- ndk keyword has been removed.

Theclassesinthecom | i spwor ks Java package are now provided by thel i spwor ks. aar file that distributed with
LispWorks. In previous releases, they were provided by thefilel i spworks. j ar.

12.3.4 Runtimes for iOS
LispWorks for iOS Runtime now only supports 64-bit devices, because that is what Apple supports.
You can now create iOS Simulator and iOS device runtimes from an Apple silicon Mac (and without needing to use QEMU).

The way that you include the Lisp runtime in an X Code project has changed slightly (see 17 i0S interface in the LispWorks®
User Guide and Reference Manual for details).

12.3.5 FreeBSD 12.x support

LispWorks 8.0 supports FreeBSD 12.x and later and is supplied as a standard package file, in pkg(8) format. Older versions
of FreeBSD are not supported.

12.3.6 SPARC Solaris and AIX no longer supported
LispWorks 8.0 is not supported on SPARC Solarisor AlX.

12.3.7 Running on 64-bit machines

Asfar aswe know each of the 32-bit LispWorks implementations runs correctly in the 32-bit subsystem of the corresponding
64-bit platform.

12.3.8 Code signing LispWorks images

12.3.8.1 Signing of the distributed executable
On macOS, the LispWorks application bundle is signed in the name of LispWorks Ltd.
On Microsoft Windows, the LispWorks Personal Edition executableis signed in the name of LispWorks Ltd.

Other LispWorks editions are not signed, because of the complications around image saving and delivery that this would lead
to.

12.3.8.2 Signing your development image

On Microsoft Windows and macOS you can sigh a development image saved using hcl : save- i nage withthe: split
argument. On macOS, the: spl i t argument should have value: r esour ces.

72

12 Release Notes

12.3.8.3 Signing your runtime application

On Microsoft Windows and macOS you can sign a runtime executable or dynamic library which was saved using
I i spworks: del i ver withthe: split argument.

12.3.8.4 Required runtime entitlements on Apple silicon Macs

LispWorks for Macintosh requires certain runtime entitlements to run on Apple silicon Macs. See 13.3.7 Saving images and
delivering on Apple silicon Macs in the LispWorks® User Guide and Reference Manual for details.

12.3.9 macOS universal binaries are supported again

The supplied LispWorks (64-bit) for Macintosh images are now universal binaries, which run the correct native architecture
on arm64 (Apple silicon) and x86_64 (Intel) Macintosh computers by default.

A running Lisp image only supports one architecture, chosen when the image was started. On ax86_64 based Macintosh,
thisis aways the x86_64 architecture. On an arm64 Macintosh, a running LispWorks image can be either the native arm64
architecture or the x86_64 architecture (using Rosetta 2).

Functions such assave- i mage and del i ver create an image containing only the running architecture and functions that
operate on fadl filessuch asconpi | e-fi | e and | oad only support the running architecture.

To build auniversal binary application from LispWorks 8.0 for Macintosh, you will need to install LispWorks on an arm64
(Apple silicon) Macintosh computer.

Thefunctionshcl : save- uni versal -from scri pt, hcl : creat e- uni ver sal - bi nary,
hcl : bui | di ng- mai n-archi tecture-pandhcl: buil di ng-uni versal -i nt ermedi at e- p are either new or non
longer deprecated and can be used to control building a universal binary.

12.3.10 macOS images are now split into two files by default

The supplied LispWorks (64-bit) for Macintosh images are now split, which means that the Lisp heap is split into a separate
file, named by adding . | wheap to the name of the executable. In the appliction bundle, thisis stored in the Resour ces
directory.

In addition, the split argument to save- i mage and del i ver now defaultsto : def aul t, which causes the new image to be
split by default on macOS.

12.4 GTK+ window system

LispWorks uses GTK + as the default window system for CAPI and the LispWorks IDE on Linux, FreeBSD and x86/x64
Solaris. GTK+ is also supported on macOS as an aternative to Cocoa. LispWorks requires GTK+ 2 (version 2.4 or higher).

A few known problems are documented on 12.17.1 Problemswith CAPI on GTK+.

12.4.1 Using Motif instead of GTK+
Use of Motif with LispWorks on Linux, FreeBSD, x86/x64 Solaris and macOS is deprecated, but it is available by:

(require "capi-notif")

To use LispWorks 8.0 with Motif you also need Imlib2 (on Linux, FreeBSD and macOS) or Imlib (on Solaris) installed, as
described earlier in this manual.

73

http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

12 Release Notes

12.4.2 X11/Motif requires Imlib2 except on Solaris

LispWorks 8.0 requires Imlib2 1.4.3 or later to use the Motif GUI on Linux, FreeBSD and macOS. Some older versions of
LispWorks required Imlib, which isa different library and is still required on Solaris.

12.5 New CAPI features

See the CAPI User Guide and Reference Manual for more details of these, unless directed otherwise. This section is not
relevant to LispWorks for Mobile Runtime.

12.5.1 New thread-safe function to force a redisplay part of an capi:output-pane

The new function capi : r edi spl ay- el ement can be used to force part of an capi : out put - pane to be redisplayed. It's
first argument can be an capi : out put - pane or acapi : pi nboar d- obj ect and it isequivalent to calling
gp: i nval i dat e-rect angl e, except that it can be called from any thread.

12.5.2 Row and column separators in list panels

Theclassescapi : i st-panel andcapi: nul ti-col um-1i st-panel now support visible separators between rows or
columns by the new : separ at or s initarg, with valueni | (the default), : bot h, t, : hori zontal or:vertical.

12.5.3 Support for reorderable columns in capi:multi-column-list-panel on GTK

Theclasscapi : nul ti-col um-1i st - panel supports reorderable columns on GTK by the new initarg
: reor der abl e- col utms and the: r eor der abl e keyword in the column specification. Reorderable columns can be
reordered by dragging their header.

12.5.4 New :x-adjust initarg for capi:multi-column-list-panel

Theclasscapi : nul ti-col utm-1i st - panel hasanew initarg: x- adj ust, which provides the default value of the
: adj ust keyword in the column specifications. Its value must be alist of the same length asthe : col umms initarg.

12.5.5 Specifying the initial selection in capi:prompt-with-list

To specify theinitial selectionincapi : pronpt -wi t h-1i st, you can supply the keyword arguments: sel ect i on,
:sel ected-itemor: sel ect ed-itens. These keywords were present in previous releases but not documented.

12.5.6 Menus can now display with both images and text on Microsoft Windows

The class capi : menu now supports display of both images and text on Microsoft Windows, like it did in previous rel eases
for GTK+ and Cocoa.

12.5.7 Support for dark themes in capi:interface

Theclasscapi : i nt er f ace hasnew initargs: col or - node and : col or - node- cal | back and accessors
capi :top-level -interface-col or-node and capi : t op-1 evel -i nterface- col or - node- cal | back to support
dark themes and application-defined changes based on the theme.

The new function capi : t op- 1 evel -i nt er f ace- dar k- node- p can be used to detect when an interface is using a dark
themes.

74

12 Release Notes

12.5.8 Support for dark themes in capi:set-editor-parenthesis-colors

The function capi : set - edi t or - par ent hesi s- col or s now has akeyword argument : dar k- backgr ound- col or s,
whichisalist of colorsto use for parentheses when the background is dark.

12.5.9 Support for dark themes in capi:stacked-tree

The default colors used by the classcapi : st acked- t r ee change when adark theme isused. If specify colors or color-
function, then you may need to take special action.

12.5.10 New capi:rich-text-pane callback on Windows called when the user clicks a link

Theclasscapi : ri ch-text - pane hasanew initarg : | i nk- cal | back, which isafunction to be called if the text contains
ahyperlink and the user click onit. Thisis only implemented on Windows.

12.5.11 Adding additional filters in capi:list-panel and capi:filtering-layout

Theclasscapi : |i st-panel hasanewinitarg:filter-added-filters,whichaddsadditiona filtersthat apply to the
items of the panel.

Theclasscapi: filtering-1ayout hasanew initarg: added-fil t er s that does the same thing.

Thefunctioncapi : fil tering-I|ayout-mat ch- obj ect - and- excl ude- p returns an extravalue, whichisalist of the
added filters that have been selected by the user.

12.5.12 Coordinates for keyboard events in the input model take account of scrolling

The callbacksin the input-model of acapi : out put - pane are caled with the coordinates of the pointer. In previous
releases, the coordinates that are passed to callbacks of characters and keys did not take into account scrolling on some
platforms. On the other hand, callbacks associated with mouse events (button clicks and motion) alwaystook scrolling into
account. In LispWorks 8.0, the coordinates that are passed to callbacks of characters and keys always take into account of
scrolling the same way as mouse event callbacks.

That means that, by default (when : pane-can-scrol | isnil inancapi : out put - pane), the coordinates that the
callbacks get when the pointer is on some graphic element match the coordinates that were used to draw the element
(assuming there is no graphics transform).

12.5.13 capi:current-pointer-position always takes account of scrolling in capi:output-
pane

The coordinates that the function capi : current - poi nt er - posi ti on returnswhen called with acapi : out put - pane
now take account of scrolling on all platforms. In previous releases, some platforms did not take account of scrolling.

12.5.14 Forcing scroll bars to be visible on macOS

Theclasscapi : out put - pane hasanew initarg : scrol | - bar - t ype that allows you to force the scroll barsto be visible
on macOS regardless of the setting in the System Preferences.

75

12 Release Notes

12.6 Other CAPI and Graphics Ports changes

This section is not relevant to LispWorks for Mobile Runtime.

12.6.1 Drawing to an output-pane outside the display-callback

Code that drawsto an capi : out put - pane should only be called from within the pan€e's: di spl ay- cal | back. On some
platforms, notably macOS Big Sur and later, drawing from other contexts will not work.

12.7 More new features

For details of these, see the documentation in the LispWorks® User Guide and Reference Manual, unless amanual is
referenced explicitly.

12.7.1 Package-local nicknames

LispWorks now supports package-local nicknames, with the same interface as other Common Lisp implementations. This
includes the new functions hcl : add- package- | ocal - ni cknane, hcl : package- | ocal - ni cknanes,

hcl : package- | ocal | y- ni cknaned- by-1i st, hcl : renove- package- | ocal - ni ckname and the defpackage option
:local-nicknames.

12.7.2 Support for pinning objects while in foreign code

The new macro hcl : wi t h- pi nned- obj ect s can be used to prevent certain types of object from being moved by the
garbage collector while in foreign code.

The value of the allocation keyword argument to cl : make- ar r ay can be: pi nnabl e to make an array that can be pinned
using hcl : wi t h- pi nned- obj ect s.

The function syst em make-t yped- ar ef - vect or takes anew keyword argument allocation which gives you control of
where the new vector is allocated.

12.7.3 Specialized complex number array representations

LispWorks now supports a specialized array representation for (conpl ex si ngl e-fl oat) and

(conpl ex doubl e-float).

12.7.4 Double-float complex number optimization in the compiler

The compiler now optimizes arithmetic for values of type (conpl ex doubl e-fl oat).

12.7.5 The console now supports external formats on non-Windows platforms

Characters read and written viathe console (*t er mi nal - i 0*) are now encoded in an external format that is determined by
the operating environment. See 27.16 The console external format in the LispWorks® User Guide and Reference Manual.

The new function hcl : set - consol e- ext er nal - f or mat can be used to override this.

76

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

12 Release Notes

12.7.6 Encoding file names on non-Windows platforms based on locale

LispWorks now checks the POSIX locale variables to determine the external format in which file names should be encoded.
See 27.14.1 Encoding of file names and strings in OS interface functions in the LispWorks® User Guide and Reference
Manual for details.

12.7.7 Operating system interfaces on non-Windows based on locale

Thevaluesin the function | i spwor ks: envi r onnment - var i abl e and the command line arguments and environment
variablesin the functionssyst em cal | - syst em syst em cal | - syst em showi ng- out put , syst em open- pi pe and
syst em run-shel | - conmand are now encoded using the same external format as file names, as described in 27.14.1
Encoding of file names and strings in OS interface functions in the LispWorks® User Guide and Reference Manual .

The command line arguments of LispWorks (see 27.4 The Command Linein the LispWorks® User Guide and Reference
Manual) are decoded using the same external format.

This change should not affect arguments and values that contain only ASCII characters.

12.7.8 system:open-pipe and system:run-shell-command work with external formats

The functionssyst em open- pi pe and syst em r un- shel | - command have a new keyword argument, exter nal-format,
which isthe external format to use. On non-Windows platforms, when neither the external-format nor the element-type are
supplied, the external format defaults to the format specified by the POSIX environemnt variables LC_ALL, LC_CTYPE or
LANG. If you usesyst em open- pi pe in previous versions of LispWorks without supplying element-type and you want it to
continue to not process the data using an external format, then supply element-type with base- char if you want code to
work on all versions of LispWorks.

12.7.9 Specifying a timeout for system:pipe-exit-status

The function syst em pi pe- exi t - st at us has anew keyword argument, timeout, which gives the maximum time to wait
for the exit status. This overrides the wait argument, which is deprecated now.

12.7.10 system:run-shell-command can now return a signal number

On non-Windows platforms, the function syst em r un- shel | - command with non-nil value for wait now returns a second
value indicating the signal number that terminated the command if any.

12.7.11 Support for the GB18030 character encoding

LispWorks now supports the GB18030 character encoding with by the: gb18030 external-format. See 26.6 External Formats
to trandlate Lisp characters from/to external encodingsin the LispWorks® User Guide and Reference Manual.

12.7.12 Configurable named services for remote debugging

The ports used for remote debugging can now be controlled by registering named service. See 3.7.6 TCP port usagein
remote debugging in the LispWorks® User Guide and Reference Manual for more details.

12.7.13 Error handling and callbacks when starting remote debugging

Thefunctionsdbg: st art -i de-r enot e- debuggi ng- server anddbg: start-client-renote-debuggi ng-server

now have keyword arguments announce and error like conm st art - up- server.

77

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

12 Release Notes

Thefunction dbg: st art -i de-r enot e- debuggi ng- ser ver aso has aconnection-callback which is called with
arguments to indicate if the connection was successful.

12.7.14 Using SSL for remote debugging

Thefunctionsdbg: i de- connect - r enot e- debuggi ng, dbg: st art -i de-r enot e- debuggi ng- ser ver,

dbg: confi gur e- r enot e- debuggi ng- spec and dbg: start-cli ent -renot e- debuggi ng- ser ver and the macro
dbg: wi t h- r enot e- debuggi ng- spec now havea: ssl keyword that allows SSL to be used for remote debugging
connections.

12.7.15 Using IPv6 for remote debugging

Thefunctionsdbg: i de- connect - r enot e- debuggi ng, dbg: st art -i de-r enot e- debuggi ng- ser ver,

dbg: confi gur e- r enot e- debuggi ng- spec and dbg: start-cli ent -renot e- debuggi ng- ser ver and the macro
dbg: wi t h- r enot e- debuggi ng- spec now havea: i pv6é keyword that allows |Pv6 to be used for remote debugging
connections.

12.7.16 Identifying object allocation in the profiler

Thenew functionhcl : profiler-tree-to-all ocati on-functi ons printsatreeof function calls where the roots are
alocation functions, making it easier to see where allocation happens.

12.7.17 Ignoring time in the garbage collector during profiling

The gc argument to the function hcl : set - up- prof i | er hasnew value: excl ude which causes the profiler to ignore
samples that are taken GC operation isin progress.

12.7.18 Version checking in compile-file-if-needed

hcl : conpi l e-fil e-if-needed now checksthat the version of the fasl file matches the version of the image and
recompileif it does not match.

12.7.19 OpenSSL version defaults to 1.1 on Windows
The default OpenSSL DLL namesin LispWorks for Windows are now those from OpenSSL 1.1.

12.7.20 Support for SSL using Apple Security Framework
LispWorks now supports (and defaults to) using the Apple Security Framework to implement SSL on macOS and iOS.

To allow the choice of SSL implementation to be made at run time and to allow code to specify configuration options that
work with either implementation, a new concept called SSL Abtract Contexts has been added. The new system class
conm ssl - abstract - cont ext represents these contexts, which can be created by the new functions

conm cr eat e- ssl - server - cont ext and conm cr eat e- ssl -cl i ent - cont ext . The new function

reset - ssl -abstract - cont ext can be used to clear any cached informationin aconm ssl - abstract - cont ext .

The new accessor conm ssl - def aul t - i npl enent at i on can be used to control which SSL implementation is used and
the new function conm ssl - i npl enent at i on- avai | abl e- p can be used to check if an implementation is available.

The function conm ensur e- ssl can been extended to take an : i npl enent at i on keyword, which specifies the
implementation to initialize.

78

12 Release Notes

The functions conm open-t cp- st ream conm at t ach-ssl ,

conm cr eat e- async- i o- st at e- and- connect ed-t cp- socket , conm socket - st r eamand
conm accept -t cp- connecti ons- creati ng- async-i o- st at es have been extended to take a
conm ssl - abstract - cont ext asthe: ssl - ct x argument.

The new FLI type conm ssl - cont ext - r ef represents Apple Security Framework contexts.

The function comm set - veri fi cati on- node has been extended to take aconm ssl - cont ext - r ef asthe sdl-ctx
argument.

12.7.21 Specifying and accessing SSL certificates

The new function conm ssl - connecti on-read-certifi cat es specifies certificates for a SSL conection (a
conm socket - st reamor aconm async-i o- st at e) by reading them from afile.

The new function comm ssl - connect i on- get - peer-certifi cat es- dat a can be used to get data about the certificate
from a SSL connection.

The new functionsconm ssl - connect i on- copy- peer-certificates,conmrel ease-certificates-vector,
comm rel ease-certificate,commget-certificate-data,conmget-certificate-comon-nane and
comm get-certificate-serial-nunber canbe used by expertsto access certificates directly. These certificates are
foreign pointers of typeconm sec-certi fi cat e-ref inthe Apple Security Framework and comm x509- poi nter in
OpenSSL.

12.7.22 SSL certificate generalized time API

The new type conm gener al i zed- ti me and new functionsconm gener al i zed-ti ne- p,
conm nake- general i zed-ti me, conm general i zed-ti nme-pprint,conm generalized-tine-stringand
conm par se- pri nt ed- general i zed-ti me can be used to manipulate generalized times, as used in SSL certificates.

12.7.23 Reading DH parameters from a file

The new function conm ssl - connecti on-r ead- dh- par ans-fi | e reads a DH parametersfile.

12.7.24 Detecting the SSL protocol version

The new function conm ssl - connect i on- pr ot ocol - ver si on returns the SSL protocol version that is being used by a
connection.

12.7.25 comm:open-tcp-stream now returns information about errors

When the function conm open-t cp- st r eamreturnsni | due to an error making the TCP connection, it now also returns a
second value, whichisacondi ti on that givesinformation about the error.

12.7.26 Listen on the same port with more than one socket

Thefunctionsconm st art - up- ser ver and conm accept -t cp- connecti ons-creati ng- async-i o- st at es havea
new keyword reuseport, which allows you to listen on the same port by multiple sockets, by using the socket option
SO _REUSEPORT.

79

http://www.lispworks.com/documentation/HyperSpec/Body/e_cnd.htm

12 Release Notes

12.7.27 New function to close a socket handle

The new function conm cl ose- socket - handl e can be used to close a native socket handle.

12.7.28 Newly documented customization for socket I/O error signaling

The function conm socket - er r or existed in previous versions of LispWorks but is now documented. You can implement
methods specialized on your own subclasses comm socket - st r eamto customize signalling for socket 1/0 errors.

12.7.29 New condition classes in the socket interface

Errors relating to certain problems when using sockets are now signaled with the new condition classes
comnm socket-i o-error, conm socket-create-error,conmssl-verification-failureand
conm ssl - handshake-ti neout .

12.7.30 New condition classes in the Java interface

The Javainterface can now signal two new condition classes| w-j i : j obj ect - cal | - met hod- err or and
wji:java-programerror.

12.7.31 Calling static or non-static methods in the Java interface

Thenew function| w-j i : j obj ect - cal I - met hod can be used to call a non-static Java method and the new function
Iwji:call-java-static-nethod canbeusedto call astatic Java method. These functions are useful when a static and
non-static method with the same name exist in aclass, becausel w-j i : cal | -j ava- net hod (which also calls the non-static
method in this case) would be ambiguous.

Themacrol w-ji: define-java-call er andthefunctionl w-ji: setup-java-cal |l er have anew keyword argument
static-p that controls the same thing.

12.7.32 Making a non-virtual call to a method in the Java interface

Themacrol w-ji: define-java-call er andthefunctionl w-ji: setup-java-cal | er have anew keyword argument
non-virtual-p that makes the call non-virtual. Note that thisis not normal Java behaviour, and may lead to surprising effects.

Thenew functionl w-ji: call -java-non-virtual - met hod can also be used for this.

12.7.33 lw-ji:define-java-caller and Iw-ji:setup-java-caller can now return Iw-ji:jobject

Themacrol wj i : define-java-caller andthefunctionl w-ji: setup-java-cal | er have anew keyword argument
return-jobject that controls whether to return aLisp object or al w-j i : j obj ect when the method signature return value
typeisj ava. l ang. String orjava. |l ang. Obj ect .

12.7.34 Specifying a Java class loader for Lisp proxy objects
Thefunctions!| w-j i : make-1i sp-proxy and| w-ji: make-Ili sp-proxy-wi th-overrides haveanew keyword

argument class-loader to overridethe d assLoader to pass as the first argument to the Java method
Pr oxy. newPr oxyl nst ance when making the Lisp proxy.

80

12 Release Notes

12.7.35 Access to JNI jvalue objects

The new FLI type descriptor | w-j i : j val ue corresponds to the JNI C typej val ue. The new functions
Iwji:jvalue-store-jboolean,|wji:jvalue-store-jbyte,lwji:jvalue-store-jchar,
Iwji:jvalue-store-jshort,Iwji:jvalue-store-jint,lwji:jvalue-store-jlong,
Iwji:jvalue-store-jfloat,Iwji:jvalue-store-jdoubleandlwji:jval ue-store-jobject canbeusedto

setvaluesinal wj i : j val ue. Intypical usage of the Javainterface, you will not needtousel w-j i : j val ue at all.

12.7.36 Getting a backtrace from a Java throwable object

Thenew function| w-j i : get -t hr owabl e- backt race- st ri ngs can be used to get the backtrace from a Java
t hr onabl e object.

12.7.37 lw-ji:create-instance-jobject-list is now exported from lw-ji

Thefunction| w-j i : create-instance-jobject-Iist that wasdocumented in previous releases is now exported from
thel wj i package. It was missing due to a bug.

12.7.38 Controlling aspects of LispWorks initialization on Android

The new Javamethodscom | i spwor ks. Manager . set Runt i neLi spHeapDi r,

com | i spwor ks. Manager . set Li spTenpDi r andcom | i spwor ks. Manager . set O assLoader can be used to control
aspects of how LispWorks initializes on Android. You should consult LispWorks support if you believe you need to use
these.

12.7.39 New error codes from the InitLispWorks C function

The C function | ni t Li spWor ks has two new error codes, -1408 and -1409.

12.7.40 Stricter meaning of the :link-transparency argument to cl:directory

In LispWorks 8.0 and newer, if thefi | e- nanest ri ng of its pathname argument is a symbolic link pointing to a directory
and its link-transparency argument isni | , thendi r ect ory returnsit asafile. In previous versions of LispWorks, it was
returned asadirectory. Callingfi | e-di rect ory- p on such alink still returnstrue, so if you need to check if itisa
directory or not, then you need to check first. The simplest way isto check that f i | e- namest ri ng returnsni | .

12.7.41 Checking whether a file is a symbolic link

The new function hel : fil e-1i nk- p can be used to check whether afileisasymboalic link.

12.7.42 Reading a file into an array of bytes

The new function hcl : fi | e- bi nar y- byt es can be used to create an array of bytes from the contents afile.

12.7.43 cl:read-sequence and cl:write-sequence now depend on cl:stream-element-type

The Common Lisp functioncl : r ead- sequence andcl : wi t e- sequence now usecl : stream el ement -t ype to
detect character and binary streams. Prior to LispWorks 8.0, there was specialized behaviour for

f undanent al - char act er - out put - st r eamand f undanent al - bi nar y- out put - st r eamthat was used to choose
between character and binary 1/0.

8l

http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_dir.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_seq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_seq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stm_el.htm

12 Release Notes

12.7.44 Specializing cl:read-sequence and cl:write-sequence is now documented

Thestream st ream read- sequence andstream stream w it e- sequence are now documented as the methods
called by cl : read- sequence andcl : wri t e- sequence respectively. These methods existed prior to LispWorks 8.0 but
were not documented and the supplied methods have changed as described in 12.7.43 cl:read-sequence and cl:write-
sequence now depend on cl:stream-element-type.

12.7.45 New functions to compare strings without checking the length

The new functionhcl : string=-1imtedandhcl:string-equal-1intedsmplify comparison of strings where you
do not know the length of them.

12.7.46 Newly documented macro if-let

Themacrol i spworks:if-Ilet iflikecl:if butasobindsavariableto the value of the test form. It is newly documented
in LispWorks 8.0, but has been avail able since LispWorks 6.0.

12.7.47 Scheduling a repeating timer relative to the current time

If one of the functionsnp: schedul e-ti nmer, np: schedul e-tiner-rel ative, np: schedul e-tiner-mlliseconds
and np: schedul e-timer-rel ative-nilliseconds iscalledwithatimer that is not scheduled or has already expired
and the absol ute-expiration-time or relative-expiration-time argument isni | and the repeat-time argument is non-nil, then the
timer is scheduled to the current time plus repeat-time. In previous versions, thiswould have signaled an error.

12.7.48 hcl:get-temp-directory no longer returns a truename

Thefunction hcl : get - t enp- di r ect or y now returns a pathname with the name and type components set toni | . In
previous releases, it returned atruename, with these components set to : unspeci fi c.

12.7.49 Source location for macros that group other definition

The macro dspec: def i ne-f or m par ser can now be used to define aform parser for a macro that acts like an implicit
pr ogn. Such macros (for example, eval - when) are used in a source file to wrap other definitionsin thefile, but do not have
aname themselves.

12.7.50 The precompiled-regexp system class

The system class| i spwor ks: preconpi | ed-r egexp and its predicatel i spwor ks: pr econpi | ed- r egexp- p have been
added.

Instances of | i spwor ks: preconpi | ed- r egexp represent a precompiled regular expression. They are produced by the
function| i spwor ks: preconpi | e-r egexp, and are used by the functions| i spwor ks: fi nd- r egexp-i n-string,
I'i spwor ks: regexp-find-synbol s, |ispworks: count -regexp-occurrences and

edi tor: regul ar - expr essi on-sear ch.

12.7.51 "Lax whitespace" regexp searching

Thefunctions| i spwor ks: fi nd-regexp-in-string,|ispworks: count-regexp-occurrences and
I i spwor ks: preconpi | e-regexp takes a new keyword argument space-string.

When space-string is non-nil, then a"Lax whitespace" search is performed. That means that any sequence of space
charactersin the pattern are effectively replaced by the regexp specified by space-string. See the documentation for

82

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_seq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_seq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_if.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_eval_w.htm

12 Release Notes

I'i spworks: find-regexp-in-string for moredetails.

12.7.52 New arguments to the parser function defined by defparser
The parser function defined by par ser gen: def par ser now takes two keyword arguments:;
* message-stream specifies a stream for outputting messages that are produced during the parsing.
* return-match-tree-p allows the function to return a match tree describing the matches during the parsing.

See 21.3 Functions defined by defparser in the LispWorks® User Guide and Reference Manual for details.

12.7.53 New system class gesture-spec

The new system classsyst em gest ur e- spec has been added. The concept of gesture specs existed prior to Lisp\Works
8.0, but syst em gest ur e- spec was an internal undocumented symbol.

12.7.54 Limiting the number of splits in split-sequence

Thefunctions| i spwor ks: split-sequence, |ispworks:split-sequence-if and

I i spworks: split-sequence-if-not haveanew : count keyword which limitsthe number of times that the sequenceis
split.

12.7.55 Writing messages to system log files

The new functionshcl : wite-to-system | ogandhcl:format-to-system | og canbe used to write messages to the
operating system log files.

12.8 IDE changes

This section describes new features and other changes in the LispWorks Integrated Devel opment Environment (IDE).

See the LispWorks IDE User Guide for details of the features mentioned. This section is not relevant to LispWorks for Mobile
Runtime.

12.8.1 Support for Dark mode on macOS

the LispWorks IDE now supports Dark mode in the default Cocoa interface on macOS.

12.8.2 Configurable external format for the Shell tool

On non-Windows platforms, the external format that is used for communicating with the shell in the Shell tool can be set in
the preferences dialog. By default, the external format defaults to the format specified by the POSIX environemnt variables
LC ALL, LC CTYPE or LANG

Note that the above affect only Shell windows which are created after any change is made. Existing windows are not affected.

12.8.3 A Commands menu has been added

Thereisanow a Commands menu, both in the menu bar of editing interfaces (or the Works menu on Windows) and in the
context menu of editing panes. You can use the Commands menu to invoke Editor commands of your choice, thus making
commands that you frequently find useful available by mouse clicks. You can control which commands appear on the menu

83

12 Release Notes

by choosing Commands > Display Command List....

12.8.4 Showing IDE interfaces in the Windows Browser

There is now a checkbox on the Components tab of the preferences for the Window Browser that controls whether to show
IDE interfaces or not. Deselecting it makesit easier to find your interfaces in the graph.

12.8.5 The Works menu when displaying user-defined interfaces on Windows

On non-Windows platforms, when you display one your own interfaces while running the LispWorks IDE, it gets an extra
menu called Works, which alows you to perform development operations. This menu is not added in delivered applications.

On Windows, the addition of the menu was inconsistent. In LispWorks 8.0, the Works menu is added to your interfaces on
Windows as well, except when the LispWorks IDE is set to Separate windows sharing a menu bar in the preferences or for
interfaces inside an MDI window.

Note that you can stop the addition of the Works menu in the LispWorks IDE by passing : aut o- menus ni | when creating
the interface.

12.8.6 Identifying object allocation in the Profiler tool

The Profiler tool has a new menu item Show calls to allocation functions [inverted] in the context menu of the Call Tree and
Stacked Tree tabs to show an inverted tree where the alocation functions are the roots, making it easier to see where
allocation happens.

12.8.7 The Profiler automatically displays the results after profiling

The Profiler tool now switches automatically to the Stacked Tree tab after profiling finishes. This can be controled by the
new When Code To Profile finishes profiling: option in the Profiler tool's preferences.

12.8.8 New operations in the Cumulative tab of the Profiler

The context menu in the Cumulative tab of the Profiler now allows you to show the selected function as the root of atree or
show the calls to the function as an inverted tree. The treeis shown in the Call Tree or Stacked Tree tabs according to the set
of When setting a root in the Cumulative tab: in the Preferences dialog.

12.8.9 Building universal binaries on macOS with the Application Builder

You can build a universal binary on an arm64 (Apple silicon) Macintosh computer, using the same script as was used to build
anormal ("thin") image.

12.8.10 Customizing the string used for hidden comments in folded definitions

The string used for hidden comments in folded definitions can be customized in the Editor Options tab of the Editor's
Preferences dialog. See 4.14 Definition folding in the Editor User Guide for an explanation of defintion folding.

The style of the replacement string for hidden comments can be changed via Preferences... > Environment > Styles > Styles
Colors And Attributes.

12 Release Notes

12.8.11 Operating on previous results in the Listener

The results of expression evaluation in the Listener are output as marked objects (except for trivial objects). That means they
have a specia style, and you can operate on them by using the context menu and choosing items from the Marked Object
submenu.

The style used to display marked objects is called Marked Object and can be changed via Preferences... > Environment >
Styles > Styles Colors And Attributes.

12.9 Editor changes

This section describes new features and other changes in the LispWorks editor, which is used in the Editor tool of the
LispWorks IDE.

See the Editor User Guide for details of these changes. This section is not relevant to LispWorks for Mobile Runtime.

12.9.1 Lax whitespace matches

Search commands in the Editor can now be configured to search for whitespace in a"lax" way like in GNU Emacs. This
means that any sequence of spaces in the search string will match any consecutive whitespace in the text.

The new editor variablesedi t or : i sear ch- | ax- whi t espace, edi t or: i sear ch-regexp- | ax- whi t espace,
edi tor:repl ace-1 ax-whitespace and edi t or: repl ace-regexp- | ax- whi t espace control the default state of lax
whitespace matching in various operations.

For incremental searches, you can toggle between lax and exact whitespace matching for the current operation by typing
Meta-s #\Space.

The new editor variable edi t or : sear ch- whi t espace- r egexp contains the regexp used to match whitespace in lax mode.

12.9.2 Unique buffer names based on the directory of the file

When you open more than one file with a given name but in different directories, the editor hasto ensure that the buffers have
unigue names. In previous releases, the first buffer was named after the file and subsequent buffers were named after the file
with an additional suffix <n>, wherenwas 2, 3, 4 etc.

In LispWorks 8.0, the editor still uses the name of the fileis that is unique and otherwise renames all buffer with conflicting
names to be unique. By default, the unique buffer name has a suffix <dirs> where dirsincludes enough of the directory name
to make it unique.

The new function edi t or : set - buf f er - nanme- di rect ory-del i ni t er s can be used to control how the buffer nameis
adjusted for files that have the same name, or switch back to the numerical suffix used in previous releases.

12.9.3 Definition folding

The editor now supports "definition folding", which means making the body of a definition invisible, as well as the preceding
lines up to the previous definition, Currently the implementation applies only to Lisp definitions. A line starting with an
open bracket is regarded as the begining of a Lisp definition, and the matching closing bracket isits end. The folding only
affects the way the text in the buffer is displayed on the screen, and have no effect on the buffer contents.

The new editor commands The new editor commands Fold Buffer Definitions, , Unfold Buffer Definitions and and Toggle
Current Definition Folding change the definition folding of the current buffer.

85

12 Release Notes

12.9.4 Indentation of loop

Uses of the extended | oop form are now indented by the Editor based on the clause structure. For example:

(loop for index bel ow 10
when (foo index)
do (print index))

12.9.5 Control how files are loaded

The new function edi t or : set - pat hname- | oad- f unct i on alows you to set a specific function that will be called when
loading files with a given type using the Editor command allows you to set a specific function that will be called when
loading files with a given type using the Editor command L oad File and the File > Load menu item in the LispWorks IDE.

12.9.6 Reverting a buffer with a different external format

Sometimes the editor uses the wrong external format when you open afile. The new editor command Sometimes the editor
uses the wrong external format when you open afile. The new editor command Revert Buffer With External For mat
allows you to reopen the file after selecting a specific external format.

12.9.7 Toggling between the main and Output tabs in a Listener or Editor
The editor command The editor command | nvoke Tool can now be used to toggle between the main and Output tabsin a
Listener or Editor by using the character for thetool itself (I or e respectively).

12.9.8 Editor Ctrl+[and Ctrl+] key bindings in Windows emulation mode

When Editor key are like Microsoft Windows, menu bar via Alt key is checked in the Environment > Emulation preferences,
the keyboard shortcuts Ct r | +[and Ct r | +] now perform Beginning of Defun and End of Defun respectively.

12.10 Foreign Language interface changes

See the Foreign Language Interface User Guide and Reference Manual for details of these changes.

12.10.1 :allow-null now defaults to ni | for foreign strings as documented

Thefunctionfli: convert-fromforeign-string now givesan error when the pointer isanull pointer and the allow-
null argument istrue. In previous releases, anull pointer was always convertedtoni | . Pass: al | ownul |t if you want
the previous behavior.

Thefunctionsfli:convert-to-foreign-stringandfli:convert-to-dynanic-foreign-stringnowgivean
error when the string isni | and the allow-null argument isfalse. In previousreleases, ni | converted to aforeign string with
length 0. Pass a Lisp string with length O if you want the previous behavior.

12.10.2 Checking for a valid foreign type

Thefunctionfli: vali d-foreign-type-p hasbeen added as a predicate to check if its argument isavalid foreign type.

86

http://www.lispworks.com/documentation/HyperSpec/Body/m_loop.htm

12 Release Notes

12.10.3 flizincf-pointer and fli:decf-pointer signal an error for types of size 0
Thefunctionsfli:incf-pointer andfli: decf-pointer now signa an error if the type pointed to by the argument has
size O (for example, avoi d type).

12.10.4 Support for the C99 _Bool type (stdbool.h)

Theforeign type : bool ean now supports the C99 _Bool by using the form (: bool ean : st andard).

12.10.5 Control of when fli:install-embedded-module deletes it temporary file

Thefunctionfli:install-enbedded- nodul e now has a keyword argument delay-del ete that controls the time of
deletion of the temporary file that is created for the module. A new variable
fli:*install-enbedded- nodul e- del ay- del et e* isused as the default value for the keyword.

12.10.6 Use of dlopen on macOS

LispWorks now uses dl open to load foreign modules on macOS, like on other non-Windows platforms. The default value of
the: dl open- f | ags argument to the functionf 1 i : r egi st er - nodul e isnow t on al platforms.

12.11 Objective-C changes

This section applies only to Macintosh and iOS platforms. See the LispWorks Objective-C and Cocoa Interface User Guide
and Reference Manual for details.

12.11.1 objc:can-invoke-p can now be used with the result of current-super

The function obj c: can- i nvoke- p can now be called with the result of obj c: cur r ent - super in an Objective-C method
implementation to seeif the superclass implements a method.

12.11.2 objc:objc-bool on Macs based on Apple silicon

On Macs based on Apple silicon, the Objective-C BOOL typeisthe C99 Bool type, whereas on Intel-based Macsitisa
signed byte. The effect of this changeislimited, but you may need to add extra Foreign Language | nterface templates to your
application if you have any that use the FLI type obj c: obj c- bool . See 10.6.1 Foreign Language Interface templatesin the
Délivery User Guide for details of how to do this.

12.11.3 The :darwin-lw-objc foreign module has been removed

If you call obj c: ensure-objc-initialized explicitly when initializing your application, then you should not include
: darwi n- 1 w obj c inthelist supplied to the : modul es argument in LispWorks 8.0. Previous releases needed this foreign
module in applications that use the CAPI, but the module has been removed and written in Lisp.

12.12 Common SQL changes

87

12 Release Notes

12.12.1 New helper functions and macro for prepared statements

The new functionssql : pr epar ed- st at ement - set - and- execut e,

sql : prepar ed- st at enent - set - and- execut e*, sql : pr epar ed- st at enent - set - and- quer y and

sql : prepar ed- st at enent - set - and- quer y* can be used to set the variables of asql : pr epar ed- st at enent and
then execute or query using it.

The new macro sql : wi t h- pr epar ed- st at enent execute codes with a variable bound to anew pr epar ed- st at enent
and destroys it afterwards.

12.12.2 Calling connect with :if-exists and without :name

An error issignaled now if the name argument to the function sql : connect isnot supplied and the if-exists argument is
supplied with any value except : new. Thisis because there is no way to find an existing connection unless name is supplied.

12.12.3 New condition class signaled by connect

The new condition classsql : sgl -fai | ed-t o-connect -error canbesignaled by sqgl : connect for afailureto connect
to a SQL database server. It typically indicates an incorrect connection specification such as a bad user name.

12.12.4 Some missing LOB functions are now exported

Thefunctionssql : or a- | ob- get - chunk-si ze andsgl : ora-1 ob-fil e- set - nane are now exported. They have been
documented since LispWorks 5.0, but the symbols were not exported.

They were missing due to a bug.

12.13 KnowledgeWorks changes

This section applies only when you have alicense to run KnowledgeWorks. See the KnowledgeWorks and Prolog User Guide
for details, unlessamanual is referenced explicitly.

12.13.1 New phrase predicate

A phr ase predicate has been added to Common Prolog, which is the standard Prolog way to call arule defined with
def gr amer .

12.14 Application delivery changes

See the Delivery User Guide for more details of the changes mentioned in this section.

12.14.1 New values for the :interrupt-function keyword

Additional values: qui t, : i gnor e and: br eak have been added to the :interrupt-function | i spwor ks: del i ver keyword.

88

12 Release Notes

12.15 Other changes

12.15.1 Changes in *features*
:lispworks8.0amd: | i spworks8arepresent, : i spworks7.1and:1ispworks7 arenot.

For afull description including information about the features used to distinguish new LispWorks implementations and
platforms, seethe entry for cl : *f eat ur es* in the LispWorks® User Guide and Reference Manual.

12.15.2 ASDF version
The supplied ASDF is now version 3.3.5.

Note that this version of ASDF no longer exportsui op: def un* and ui op: def generi c*. If you are using an older
version of the ser apeumlibrary (from Quicklisp or github) that uses ui op: def un* then will need to update your copy.

12.15.3 The loop macro no longer allows "finally do" or "finally return”

The| oop macro no longer allowsther et ur n or do loop keywords to be part of thef i nal | y clause. Previous releases of
LispWorks supported this as an undocumented extension to ANSI Common Lisp.

To be compliant with all versions of LispWorks, change:

(loop ... finally do (form)
(loop ... finally return (form)
(loop named foo ... finally return (form)
to:
(loop ... finally (form)
(loop ... finally (return (form))
(loop named foo ... finally (return-fromfoo (form))

12.15.4 The loop macro now allows "of-type" with any atomic type

For compatibility with other implementations of the | oop macro, you can now use any atomic type specifier after the

of - t ype clause. Previousreleases only alowed thetypesfi xnum fl oat, t and ni | asdefined by ANSI Common Lisp.
12.15.5 Compiler macros are no longer expanded by the setf macro

When compiling aform like:

(setf (foo) value)

any compiler macro for f oo isnow ignored. If theset f form expandsto acall to(setf foo) then any compiler macro for
(setf foo) will beused. Compiler macros are defined using def i ne- conpi | er - macr o. This change does not affect
macros defined by def macr o.

In previous releases, the compiler macro for f oo would be used and any compiler macro for (set f f oo) would be ignored.

89

http://www.lispworks.com/documentation/HyperSpec/Body/v_featur.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_loop.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_loop.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_define.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmac.htm

12 Release Notes

12.15.6 hcl:fast-directory-files for a non-wild pathname

When the function hcl : f ast - di rect ory-fi | es iscalled with a pathname whose name and type are both not wild, it now
calls the callback with the file that matches that name and type. In previous releases, it called the callback for al filesin the
same directory, which was a bug.

12.15.7 cl:type-of now returns more specific types

The function t ype- of now returns more specific types for integers, characters, functions, keywords and the symbol t .

12.15.8 Loading old data files

Binary files created with hcl : dunp-forns-to-fileorhcl:wth-output-to-fasl-fileinLispWorks7.1,
LispWorks 7.0, LispWorks 6.1, LispWorks 6.0, LispWorks 5., LispWorks 4.4 or LispWorks 4.3 can be loaded into
LispWorks 8.0 using syst em | oad- dat a-fi |l e.

12.16 Documentation changes

12.16.1 Hyperlinks between manuals

The HTML documentation now has hyperlinks between manuals.

12.16.2 The HTML documentation directory

The HTML documentation is now in adirectory named ht m - m ht ml - wor ht n - u according to which LispWorks platform
you have installed. In older versions of LispWorks, this directory was named onl i ne.

12.16.3 Regular expression syntax

The documentation for the LispWorks regular expression syntax has been moved to the LispWorks® User Guide and
Reference Manual.

12.16.4 Physical pathnames in LispWorks

Some details of how physical pathnames are parsed and printed in LispWorks are now documented in 27.18 Physical
pathnames in LispWorks in the LispWorks® User Guide and Reference Manual.

12.16.5 New self-contained examples

These examples are entirely new:

(example-edit-file "capi/applications/interface-col or-node.lisp")
(exampl e-edit-file "capi/applications/sinple-othello.lisp")
(exampl e-edit-file "capi/choice/filter-added-filters.lisp")
(exampl e-edit-file "capi/choicel/list-panel -keyboard-search.lisp")
(exampl e-edit-file "capi/choicel/stacked-tree.lisp")

(exampl e-edit-file "capi/choice/tree-vieww th-state.lisp")
(exampl e-edit-file "capi/output-panes/nodifier-change.lisp")
(exampl e-edit-file "conpiler/float-optim zation.lisp")
(example-edit-file "editor/advanced/i search-open-invisible.lisp")
(example-edit-file "editor/advanced/ overlay-strings.lisp")

(exampl e-edit-file "ssl/openssl-certificates.lisp")

90

http://www.lispworks.com/documentation/HyperSpec/Body/f_tp_of.htm

12 Release Notes

(exanpl e-edit-file "ssl/openssl-server.lisp")

The Android Othello demo has been converted to an Android Studio project. Use with Eclipse is no longer supported.

12.16.6 Removed self-contained examples

Thecapi / graphi cs/ pl ot -direct |y andcapi / out put - panes/ scrol | -test. | i sp examples have been removed
because they relied on drawing outside the : di spl ay- cal | back, which isno longer supported.

Thecapi / graphi cs/ rul er. | i sp example has been removed because it did not document anything useful.

The examplefilesedi t or/ synt ax- col ori ng/ def sys. | i sp and edi t or/ synt ax- col ori ng/ pkg. | i sp have been
removed because edi t or / synt ax- col ori ng/ synt ax-col ori ng. | i sp isself-contained.

12.17 Known Problems

12.17.1 Problems with CAPl on GTK+

Thecapi : i nterface-overri de-cursor isignored by capi : t ext - i nput - pane which always displaysits usual |-
beam cursor. Thisisdueto alimitation in the way that text-input-pane isimplemented by GTK.

The normal navigation gesture (Tab) is treated as an editor command in capi : edi t or - pane and IDE tools based on this.
Instead, use Ct r | +Tab to navigate from an editor panein GTK+.

In GTK+ versions older than 2.12, the value of capi : opt i on- pane enabled-positions has no effect on the visible
representation of the items. In later versions of GTK+, the disabled items are grayed out.

In GTK+ versions older than 2.12, capi : di spl ay-t ool ti p doesnot work. Inversion 2.12 and later, the: x and : y
keyword arguments of capi : di spl ay-t ool ti p might not be handled.

12.17.2 Problems with LispWorks for Macintosh

The Motif GUI does not work "out of the box" with Fink because LispWorks does not look for | i bXmetcin/sw/ i b/ .

12.17.3 Problems with the LispWorks IDE on Cocoa

Multithreading in the CAPI is different from other platforms. In particular, all windows runin asingle thread, whereas on
other platforms there is athread per window.

The debugger currently does not work for errorsin Cocoa Event Loop or Editor Command Loop threads. However, thereisa
Get Backtrace button so you can obtain a backtrace and also a Debug Snapshot button which aborts from the error but
displays a debugger with a copy (snapshot) of the stack where the error occurred.

The online documentation interface currently starts a new browser window each time.

Setting * ent er - debugger - di rect | y* tot can allow the undebuggable processes to enter the debugger, resulting in the
Ul freezing.

Inspecting along list (for example, 1000 items) viathe Listener's | nspect Star editor command prompts you about truncation
in arandom window. If you cancel, the Inspector is still displayed.

The Definitions > Compile and Definitions > Evaluate menu options cause multiple "Press space to continue" messages to be
displayed and happen interleaved rather than sequentially.

The Buffers > Compile and Buffers > Evaluate menu options cause multiple "Press space to continue" messages to be

91

12 Release Notes

displayed and happen interleaved rather than sequentially.

12.17.4 Problems with CAPI and Graphics Ports on Cocoa

Thecapi ;i nterface-override-cursor isignored.

Some graphics state parameters are ignored, in particular operation, stipple, pattern and fill-style.
LispWorks ignores the System Preferences setting for the smallest font size to smooth.

There is no support for state images or checkboxesin capi : t r ee- vi ew.

capi : wi t h- page does not work, because Cocoatries to control page printing.

The: hel p- cal | back initarg is only implemented for the: t ool ti p value of the type argument.
The: vi si bl e- bor der initarg only works for scrolling panes.

Caret movement and selection setting in capi : t ext - i nput - pane isimplemented, but note that it works only for the
focussed pane.

capi : docki ng- | ayout does not support (un)docking.

Thereis no metakey in the input-model of capi : out put - pane. Notethat, in the editor when using Emacs emulation, the
Escape key can be used as a prefix.

There has been no testing with 256 color displays.

Some pinboard code uses : oper ati on bool e- xor which is not implemented.

The default menu bar is visible when the current window has no menu bar.

capi : tree-vi ewisslow for alarge number (thousands) of items.

The editor displays decomposed characters as separate glyphs.

The: gap option is not supported for the columns of capi : mul ti - col um-1i st - panel .

capi : di spl ay- di al og ignoresthe specified : x and : y coordinates of the dialog (for drop-down sheets the coordinates are
not relevant, and for dialogs which are separate windows Cocoa forces the window to be in the top-center of the screen).

12.18 Binary Incompatibility

If you have binaries (fadl files) which were compiled using LispWorks 7.1 or previous versions, please note that these are not
compatible with thisrelease. Please recompile all your code with LispWorks 8.0.

92

| ndex

A

accept -t cp-connecti ons-creati ng-async-io-states function 12.7.20: Support for SSL using Apple Security
Framework 79, 12.7.26: Listen on the same port with more than one socket 79

acCcessors

i nterface-override-cursor 12.17.1: Problemswith CAPl on GTK+ 91, 12.17.4: Problemswith CAPI and Graphics Ports on
Cocoa 92

top-1evel -interface-col or-node 125.7: Support for dark themesin capi:interface 74
top-1evel -interface-col or-node-cal | back 125.7: Support for dark themesin capi:interface 74
add- package- | ocal - ni ckname function 12.7.1: Package-local nicknames 76

attach-ssl function 12.7.20: Support for SS_ using Apple Security Framework 79

B
: bool ean FLI typedescriptor 12.10.4: Support for the C99 _Bool type (stdoool.h) 87
bui | di ng- mai n-architecture-p function 12.3.9: macOSuniversal binaries are supported again 73

bui | di ng-uni versal -i nternmedi ate-p function 12.3.9: macOSuniversal binaries are supported again 73

C

call-java-nmet hod function 12.7.31: Calling static or non-static methods in the Java interface 80

call -java-non-virtual -nethod function 12.7.32: Making a non-virtual call to a method in the Java interface 80
call-java-static-nethod function 12.7.31: Calling static or non-static methodsin the Java interface 80

cal |l -system function 12.7.7: Operating systeminterfaces on non-Windows based on locale 77

cal |l -syst em showi ng- out put function 12.7.7: Operating systeminterfaces on non-Windows based on locale 77

can-invoke-p function 12.11.1: objc:can-invoke-p can now be used with the result of current-super 87

C functions

InitLi spWwrks 12.7.39: New error codes from the InitLispWorks C function 81

classes
docki ng-1 ayout 12.17.4: Problemswith CAPI and Graphics Ports on Cocoa 92
edi tor-pane 12.17.1: Problemswith CAPI on GTK+ 91
filtering-Iayout 12.5.11: Adding additional filtersin capi:list-panel and capi:filtering-layout 75
interface 125.7: Support for dark themesin capi:interface 74

list-panel 12.5.2: Row and column separatorsinlist panels 74, 12.5.11: Adding additional filtersin capi:list-panel and capi:filtering-
layout 75

menu 12.5.6: Menus can now display with both images and text on Microsoft Windows 74

mul ti-col ume-1Iist-panel 12.5.2: Row and column separatorsin list panels 74, 12.5.3: Support for reorderable columnsin
capi: multi-column-list-panel on GTK 74, 12.5.4: New :x-adjust initarg for capi:multi-column-list-panel 74, 12.17.4: Problemswith
CAPI and Graphics Portson Cocoa 92

option-pane 12.17.1: Problemswith CAPI on GTK+ 91

out put - pane 125.12: Coordinates for keyboard events in the input model take account of scrolling 75, 12.5.14: Forcing scroll barsto

93

Index

bevisbleonmacOS 75, 12.6.1: Drawing to an output-pane outside the display-callback 76, 12.17.4: Problemswith CAPI and
Graphics Portson Cocoa 92

ri ch-text-pane 125.10: New capi:rich-text-pane callback on Windows called when the user clicksalink 75
stacked-tree 125.9: Support for dark themesin capi:stacked-tree 75
text-input-pane 12.17.1: Problemswith CAPl on GTK+ 91, 12.17.4: Problemswith CAPI and Graphics Portson Cocoa 92

tree-view 12.17.4: Problemswith CAPI and Graphics Portson Cocoa 92, 12.17.4: Problemswith CAPI and Graphics Ports on
Cocoa 92

cl ose-socket - handl e function 12.7.27: New function to close a socket handle 80
com | i spwor ks. Manager . set Cl assLoader Javamethod 12.7.38: Controlling aspects of Lisp\Worksinitialization on Android 81
com | i spwor ks. Manager . set Li spTenpDir Javamethod 12.7.38: Controlling aspects of Lisp\Works initialization on Android 81

com | i spwor ks. Manager . set Runti neLi spHeapDi r Javamethod 12.7.38: Controlling aspects of LispWorks initialization on
Android 81

command line arguments
-init 11.9.5: Reporting crashes 68
-initonLinux 10.3.2: Configurationfilesavailable 54, 10.5: Initializing Lisp\orks 56
-init onmacOS 83.3: Configuration filesavailable 41, 85: Initializiing Lisp\Works 44
-init onWindows 9.3.2: Configuration filesavailable 48, 9.5: Initializing Lisp\Works 50
-siteinit onLinux 10.3.2: Configuration filesavailable 54
-siteinit onmacOS 83.3: Configuration filesavailable 41
-siteinit onWindows 9.3.2: Configuration filesavailable 48

conpil e-file-if-needed function 12.7.18: Version checkingin compile-file-if-needed 78

condition classes
j ava- program error 12.7.30: New condition classesin the Java interface 80
jobject-call-nethod-error 12.7.30: New condition classesin the Java interface 80
socket -create-error 12.7.29 : New condition classesin the socket interface 80
socket-io-error 127.29: New condition classesin the socket interface 80
sql - fail ed-to-connect-error 12.12.3: New condition class signaled by connect 88
ssl - handshake-t i neout 12.7.29: New condition classesin the socket interface 80
ssl-verification-failure 127.29: New condition classesin the socket interface 80

confi gur e-renot e-debuggi ng- spec function 12.7.14: Using S3. for remote debugging 78, 12.7.15: Using IPv6 for remote
debugging 78

connect function 12.12.2: Calling connect with :if-exists and without :name 88, 12.12.3: New condition class signaled by connect 88
convert-fromforeign-string function 12.10.1: :allow-null now defaultsto nil for foreign strings as documented 86
convert-to-dynam c-foreign-string function 12.10.1: :allow-null now defaultsto nil for foreign strings as documented 86
convert-to-foreign-string function 12.10.1: :allow-null now defaultsto nil for foreign strings as documented 86

corrupted executable 11.1.5: Corrupted Lisp\Works executable 60

count -regexp-occurrences function 12.7.51: "Laxwhitespace" regexp searching 82

creat e-async-i o- st at e- and- connect ed-t cp- socket function 12.7.20: Support for S using Apple Security
Framework 79

create-instance-jobject-list function 12.7.37: lw-ji:create-instance-jobject-list is now exported from Iw-ji 81

create-ssl-client-context function 12.7.20: Support for SSL using Apple Security Framework 78

94

Index

create-ssl-server-context function 12.7.20: Support for S3. using Apple Security Framework 78
creat e-universal -bi nary function 12.3.9: macOSuniversal binaries are supported again 73

current-pointer-position function 125.13: capi:current-pointer-position always takes account of scrolling in capi:output-
pane 75

current-super function 12.11.1: objc:can-invoke-p can now be used with the result of current-super 87

D

: dar wi n- | w obj c foreign moduleremoved 12.11.3: The :darwin-lw-objc foreign module has been removed 87
decf - poi nter function 12.10.3: flizincf-pointer and fli:decf-pointer signal an error for typesof size0 87
define-conpiler-macro macro 12.155: Compiler macrosare no longer expanded by the setf macro 89
define-formparser maco 12.7.49: Sourcelocation for macros that group other definition 82

define-java-caller maco 127.31: Calling static or non-static methods in the Java interface 80, 12.7.32: Making a non-virtual
call toamethodinthe Javainterface 80, 12.7.33: Iw-ji:define-java-caller and lw-ji:setup-java-caller can now return lw-ji:jobject 80

def parser macro 12.7.52: New argumentsto the parser function defined by defparser 83

deliver function 12.3.9: macOSuniversal binariesare supported again 73, 12.3.10: macOSimages are now split into two files by
default 73

del i ver-to-android-project function 12.3.3: Runtimesfor Android 72

directory function 12.7.40: Sricter meaning of the :link-transparency argument to cl:directory 81
di spl ay-di al og function 12.17.4: Problemswith CAPI and Graphics Portson Cocoa 92

di splay-tooltip function 12.17.1: Problemswith CAPI on GTK+ 91

docki ng-1 ayout class 12.17.4: Problemswith CAPI and Graphics Portson Cocoa 92
dunmp-fornms-to-file function 1215.8: Loadingolddatafiles 90

E
editor commands
Fold Buffer Definitions 12.9.3: Definition folding 85
Invoke Tool ~ 12.9.7: Toggling between the main and Output tabsin a Listener or Editor 86
Load File 12.9.5: Control how filesareloaded 86
Revert Buffer With External Format ~ 12.9.6 : Reverting a buffer with a different external format 86
Toggle Current Definition Folding 12.9.3: Definition folding 85
Unfold Buffer Definitions 12.9.3: Definition folding 85
edi tor-pane class 12.17.1: Problemswith CAPl on GTK+ 91
editor variables
i search-l ax-whitespace 129.1: Laxwhitespace matches 85
i search-regexp-| ax-whitespace 129.1: Laxwhitespace matches 85
repl ace- | ax-whi t espace 12.9.1: Laxwhitespace matches 85
repl ace-regexp-| ax-whi tespace 129.1: Laxwhitespace matches 85
sear ch-whi t espace-regexp 12.9.1: Laxwhitespace matches 85
ensure-objc-initialized function 12.11.3: The:darwin-lw-objc foreign module has been removed 87
ensure-ssl function 12.7.20: Support for SS. using Apple Security Framework 78
ent er - debugger-directly variable 12.17.3: Problemswith the LispWorks IDE on Cocoa 91

95

Index

envi ronnent -vari abl e function 12.7.7: Operating systeminterfaces on non-Windows based on locale 77
errorswhile building application 11.1.3: Build phase (delivery-time) errors 60
errorswhile delivering application ~ 11.1.3: Build phase (delivery-time) errors 60

extended-time macro 11.9.2: Performancelssues 66

F
Failledto enlargememory 11.1.4: Memory requirements 60

fast-directory-files function 1215.6: hcl:fast-directory-filesfor a non-wild pathname 90

features variable 12.2.1: Conditionalizing code for different versionsof LispWorks 71, 12.15.1: Changesin *features* 89
file-binary-bytes function 12.7.42: Readingafileintoan array of bytes 81

file-link-p function 12.7.41: Checkingwhether afileisasymboliclink 81

fill-style graphics state parameter ~ 12.17.4: Problems with CAPI and Graphics Portson Cocoa 92

filtering-layout class 125.11: Addingadditional filtersin capi:list-panel and capi:filtering-layout 75

filtering-Iayout-match-object-and-exclude-p function 125.11: Adding additional filtersin capi:list-panel and
capi:filtering-layout 75

finally clauseinthel oop macronolonger dlowsdoorreturn 12.153: Theloop macro no longer allows "finally do" or "finally
return" 89

find-regexp-in-string function 12.7.51: "Laxwhitespace" regexp searching 82
FLI type descriptors
:bool ean 12.10.4: Support for the C99 _Bool type (stdbool.h) 87
jvalue 12.7.35: Accessto JNI jvalue objects 81
obj c- bool 12.11.2: objc:objc-bool on Macs based on Apple silicon 87
sec-certificate-ref 12.7.21 : Specifying and accessing S certificates 79
ssl - cont ext - r ef 12.7.20 : Support for SSL using Apple Security Framework 79

x509- poi nt er 12.7.21: Specifying and accessing S certificates 79
Fold Buffer Definitions editor command 12.9.3: Definition folding 85

format-to-system | og function 12.7.55: Writing messagesto systemlog files 83

functions

accept-tcp-connecti ons-creating-async-io-states 12.7.20: Support for SSL using Apple Security
Framework 79, 12.7.26: Listen onthe same port with more than one socket 79

add- package- | ocal - ni ckname 12.7.1: Package-local nicknames 76

attach- ssl 12.7.20 : Support for SSL using Apple Security Framework 79

bui | di ng-mai n-architecture-p 12.3.9: macOSuniversal binaries are supported again 73

bui | di ng-uni versal -i ntermedi ate-p 12.3.9: macOSuniversal binaries are supported again 73
cal | -java-nmethod 12.7.31: Calling static or non-static methods in the Java interface 80

cal |l -java-non-virtual -nmethod 12.7.32: Making a non-virtual call to a method in the Java interface 80
call-java-static-nethod 127.31: Calling static or non-static methods in the Java interface 80

cal |l -system 12.7.7: Operating systeminterfaces on non-Windows based on locale 77

cal | - syst em show ng- out put 12.7.7 : Operating systeminterfaces on non-Windows based on locale 77
can-invoke-p 1211.1: objc:can-invoke-p can now be used with the result of current-super 87

cl ose-socket - handl e 12.7.27: New function to close a socket handle 80

conpile-file-if-needed 127.18: Version checking in compile-file-if-needed 78

96

Index

confi gure-renot e- debuggi ng- spec 12.7.14: Using SSL for remote debugging 78, 12.7.15: Using IPv6 for remote
debugging 78

connect 12.12.2: Calling connect with :if-exists and without :name 88, 12.12.3: New condition class signaled by connect 88
convert-fromforeign-string 1210.1: :allow-null now defaultsto nil for foreign strings as documented 86
convert-to-dynam c-foreign-string 1210.1: :allow-null now defaultsto nil for foreign strings as documented 86
convert-to-foreign-string 1210.1: :allow-null now defaultsto nil for foreign strings as documented 86

count - regexp-occurrences 12.7.51: "Lax whitespace" regexp searching 82

creat e-async-i o- st at e- and- connect ed-t cp- socket 12.7.20 : Support for SSL using Apple Security Framework 79
create-instance-jobject-1list 12.7.37 : Iw-ji:create-instance-jobject-list is now exported from Iw-ji 81
create-ssl-client-context 12.7.20: Support for SSL using Apple Security Framework 78

creat e-ssl -server-cont ext 12.7.20: Support for SSL using Apple Security Framework 78

create-universal -binary 123.9: macOSuniversal binaries are supported again 73
current-pointer-position 125.13: capi:current-pointer-position always takes account of scrolling in capi:output-pane 75
current-super 12.11.1: objc:can-invoke-p can now be used with the result of current-super 87

decf - poi nt er 12.10.3: fli:incf-pointer and fli:decf-pointer signal an error for typesof size0 87

del i ver 12.3.9: macOSuniversal binaries are supported again 73, 12.3.10: macOSimages are now split into two files by default 73
del i ver-t o- androi d- proj ect 12.3.3: Runtimesfor Android 72

directory 12.7.40: Sricter meaning of the :link-transparency argument to cl:directory 81

di spl ay-di al og 12.17.4: Problemswith CAPI and Graphics Portson Cocoa 92

di splay-tooltip 1217.1: Problemswith CAPl on GTK+ 91

dunp-forns-to-file 12158: Loadingolddatafiles 90

ensure-objc-initialized 1211.3: The:darwin-lw-objc foreign module has been removed 87

ensur e- ssl 12.7.20: Support for SS using Apple Security Framework 78

envi ronnent -vari abl e 12.7.7: Operating system interfaces on non-Windows based on locale 77
fast-directory-files 12156: hcl:fast-directory-filesfor a non-wild pathname 90

file-binary-bytes 12.7.42: Readingafileintoanarray of bytes 81

file-link-p 127.41: Checkingwhether afileisasymboliclink 81

filtering-Iayout-match-object-and-exclude-p 125.11: Adding additional filtersin capi:list-panel and capi:filtering-
layout 75

find-regexp-in-string 12751: "Laxwhitespace’ regexp searching 82

format-to-systeml og 12.7.55: Writing messagesto systemlog files 83

generalized-tinme-p 127.22: S certificate generalized time APl 79

general i zed-ti me- pprint 12.7.22: S9_ certificate generalized time APl 79
generalized-tinme-string 127.22: SI certificate generalizedtime APl 79
get-certificate-comon-nane 12.7.21: Specifying and accessing SS_ certificates 79
get-certificate-data 12.7.21: Secifying and accessing S3_ certificates 79
get-certificate-serial-nunber 12.7.21: Specifying and accessing S certificates 79
get-tenp-directory 127.48: hcl:get-temp-directory no longer returnsa truename 82

get -t hrowabl e- backtrace-strings 127.36: Getting a backtrace from a Java throwable object 81

i de- connect - renot e-debuggi ng 12.7.14: Using S3. for remote debugging 78, 12.7.15: Using IPv6 for remote debugging 78

97

Index

i ncf-pointer 12.10.3: fli:incf-pointer and fli:decf-pointer signal an error for typesof size0 87

i nstall -enbedded-nodul e 12.10.5: Control of when fli:install-embedded-module deletes it temporary file 87
i nval i date-rectangl e 125.1: New thread-safe function to force a redisplay part of an capi:output-pane 74
jobject-call-nmethod 12.7.31: Calling static or non-static methodsin the Javainterface 80

j val ue-store-jbool ean 12.7.35: Accessto NI jvalue objects 81

jvalue-store-jbyte 127.35: AccesstoJNI jvalue objects 81

jval ue-store-jchar 127.35: AccesstoJNI jvalue objects 81

jval ue-store-jdouble 12.7.35: Accessto NI jvalue objects 81

jvalue-store-jfloat 127.35: Accessto NI jvalueobjects 81

jvalue-store-jint 12.7.35: Accessto JNI jvalue objects 81

jvalue-store-jlong 127.35: AccesstoJNI jvalueobjects 81

j val ue- st ore-j obj ect 12.7.35: Accessto JNI jvalue objects 81

jval ue-store-jshort 127.35: Accessto NI jvalueobjects 81

| oad-data-file 12158: Loadingold datafiles 90

| og-bug-form 11.96: LogFiles 68

make-array 12.7.2: Support for pinning objects whilein foreign code 76

nmake- general i zed-tinme 127.22: S certificate generalized time APl 79

make- | i sp-proxy 12.7.34: Specifying a Java class loader for Lisp proxy objects 80

make-| i sp-proxy-w th-overrides 12.7.34: Specifying a Java classloader for Lisp proxy objects 80
nmake-t yped- ar ef - vect or 12.7.2 : Support for pinning objects whilein foreign code 76

open-pi pe 12.7.7: Operating system interfaces on non-Windows based on locale 77, 12.7.8: system:open-pipe and system:run-shell-
command work with external formats 77

open-tcp-stream 12.7.20: Support for SSL using Apple Security Framework 79, 12.7.25: comm:open-tcp-stream now returns
information about errors 79

ora-lob-file-set-name 12124: Somemissing LOB functions are now exported 88

ora-| ob-get-chunk-size 12124: Somemissing LOB functions are now exported 88

package- | ocal | y- ni cknanmed- by-1i st 12.7.1: Package-local nicknames 76

package- | ocal - ni cknames 12.7.1: Package-local nicknames 76

par se-printed-generalized-tine 12.7.22: SI_ certificate generalized time APl 79

pi pe-exit-status 127.9: Specifying atimeout for system:pipe-exit-status 77

preconpi | ed-regexp-p 12.7.50: The precompiled-regexp systemclass 82

preconpi |l e-regexp 12.7.51: "Laxwhitespace" regexp searching 82

pr epar ed- st at ement - set - and- execut e 12.12.1: New helper functions and macro for prepared statements 88
pr epar ed- st at ement - set - and- execut e* 12.12.1: New helper functions and macro for prepared statements 88
pr epar ed- st at enent - set - and-query 12.12.1: New helper functions and macro for prepared statements 88
pr epar ed- st at ement - set - and- query* 12.12.1: New helper functions and macro for prepared statements 88
profiler-tree-to-allocation-functions 127.16: Identifying object allocation inthe profiler 78
prompt-with-1ist 12.5.5: Specifying theinitial selection in capi:prompt-with-list 74

read- sequence 12.7.43: cl:read-sequence and cl:write-sequence now depend on cl:stream-element-type 81, 12.7.44: Specializing
cl:read-sequence and cl:write-sequence is now documented 82

redi spl ay- el enent 12.5.1: New thread-safe function to force a redisplay part of an capi:output-pane 74

98

Index

regi ster-nmodul e 12.10.6: Useof dlopen on macOS 87

rel ease-certificate 12.7.21: Specifying and accessing S3. certificates 79

rel ease-certificates-vector 12.7.21 : Specifying and accessing S certificates 79
renove- package- | ocal - ni cknanme 12.7.1: Package-local nicknames 76

reset - ssl - abst ract - cont ext 12.7.20: Support for S using Apple Security Framework 78
room 11.9.2: Performancelssues 66

run-shel | -comand 12.7.7: Operating systeminterfaces on non-Windows based onlocale 77, 12.7.8: system:open-pipe and
system: run-shell-command work with external formats 77, 12.7.10: system:run-shell-command can now return a signal number 77

save-image 12.3.9: macOSuniversal binaries are supported again 73, 12.3.10: macOSimages are now split into two files by
default 73

save-uni versal -from scri pt 12.3.9: macOSuniversal binaries are supported again 73

schedul e-ti mer 12.7.47 : Scheduling a repeating timer relative to the current time 82

schedul e-tinmer-mlliseconds 127.47: Scheduling arepeating timer relative to the current time 82

schedul e-tinmer-relative 127.47: Scheduling a repeating timer relative to the current time 82

schedul e-tiner-relative-mlliseconds 12.7.47: Scheduling arepeating timer relative to the current time 82
set-buffer-name-directory-delinmters 12.9.2: Uniquebuffer names based on the directory of thefile 85
set - consol e- ext er nal - f or mat 12.7.5: The console now supports external formats on non-Windows platforms 76
set-editor-parenthesis-colors 1258: Support for dark themesin capi:set-editor-parenthesis-colors 75

set - pat hnanme- 1 oad-functi on 12.9.5: Control howfilesareloaded 86

setup-java-call er 12.7.31: Calling static or non-static methods in the Java interface 80, 12.7.32: Making a non-virtual call to a
method in the Java interface 80, 12.7.33: lw-ji:define-java-caller and Iw-ji:setup-java-caller can now return lw-jijobject 80

set-up-profiler 12.7.17 : Ignoring timein the garbage collector during profiling 78
set-verification-nmode 127.20: Support for SS_ using Apple Security Framework 79

socket -error 12.7.28 : Newly documented customization for socket |/O error signaling 80
socket-stream 12.7.20: Support for SSL using Apple Security Framework 79

split-sequence 12.7.54: Limiting the number of splitsin split-sequence 83

split-sequence-if 12754: Limiting the number of splitsin split-sequence 83
split-sequence-if-not 12.7.54 : Limiting the number of splitsin split-sequence 83

ssl -connecti on-copy-peer-certificates 127.21: Secifying and accessing S3_ certificates 79
ssl -connecti on-get-peer-certificates-data 127.21: Specifying and accessing S certificates 79
ssl -connecti on-protocol -versi on 12.7.24: Detecting the SS_ protocol version 79

ssl -connection-read-certificates 127.21: Secifying and accessing SSL certificates 79

ssl -connecti on-read-dh-parans-file 12.7.23: Reading DH parametersfromafile 79

ssl -defaul t-inplenentati on 12.7.20: Support for S3. using Apple Security Framework 78

ssl -inmpl ement ati on-avail abl e-p 12.7.20: Support for SS. using Apple Security Framework 78

start-client-renote-debuggi ng-server 12.7.13: Error handling and callbacks when starting remote
debugging 77, 12.7.14: Using S for remote debugging 78, 12.7.15: Using IPv6 for remote debugging 78

start-environment 253: SarttheMotif LispWorks GUI 17

start-ide-renot e-debuggi ng- server 12.7.13: Error handling and callbacks when starting remote debugging 77, 12.7.13:
Error handling and callbacks when starting remote debugging 78, 12.7.14: Using SS. for remote debugging 78, 12.7.15: Using IPv6
for remote debugging 78

start-up-server 12.7.26 : Listen on the same port with more than one socket 79

99

Index

string=-limted 127.45: New functionsto compare strings without checking the length 82
string-equal -limted 127.45: New functionsto compare strings without checking the length 82
top-1evel -interface-dark-node-p 125.7: Support for dark themesin capi:interface 74

t ype- of 12.15.7 : cl:type-of now returns more specific types 90

valid-foreign-type-p 12.10.2: Checking for avalid foreigntype 86

wite-sequence 12.7.43: cl:read-sequence and cl:write-sequence now depend on cl:stream-element-type 81, 12.7.44: Specializing
cl:read-sequence and cl:write-sequence is now documented 82

wite-to-system|og 12755: Writing messagesto systemlog files 83

G

Garbage Collector message 11.1.4: Memory requirements 60
Garbage Collector output ~ 11.1.4: Memory requirements 60
GCmessage 11.1.4: Memory requirements 60
GCoutput 11.1.4: Memory requirements 60
generalized-tine type 127.22: S9 certificategeneralizedtime APl 79
generalized-tine-p function 127.22: S certificate generalizedtime APl 79
generalized-tine-pprint function 12.7.22: S certificate generalizedtime APl 79
generalized-tine-string function 12.7.22: S certificate generalizedtime APl 79
generic functions
streamread- sequence 12.7.44: Specializing cl:read-sequence and cl:write-sequence is now documented 82
streamwite-sequence 12.7.44: ecializing cl:read-sequence and cl:write-sequence is now documented 82
gest ure-spec systemclass 12.7.53: New system class gesture-spec 83
get-certificate-comon-nane function 12.7.21: Specifying and accessing S certificates 79
get-certificate-data function 12.7.21: Specifying and accessing SS_ certificates 79
get-certificate-serial-nunber function 127.21: Specifyingand accessing S certificates 79
get-tenp-directory function 12.7.48: hcl:get-temp-directory no longer returnsatruename 82
get -t hr owabl e- backtrace-strings function 12.7.36: Getting a backtrace froma Java throwable object 81
GTK 12.4: GTK+ window system 73
GTK+ 12.4: GTK+ window system 73

H

:hel p-cal | back initarg 12.17.4: Problemswith CAPI and Graphics Portson Cocoa 92

I
IDE 12.8: IDEchanges 83

i de- connect - r enot e- debuggi ng function 12.7.14: Using S for remote debugging 78, 12.7.15: Using IPv6 for remote
debugging 78

if-let macro 12.7.46: Newly documented macroif-let 82

i ncf-pointer function 12.10.3: fli:incf-pointer and fli:decf-pointer signal an error for typesof size0 87

I nitLi spWorks Cfunction 12.7.39: New error codes fromthe InitLispWorks C function 81

i nstal | -enbedded- nodul e function 12.10.5: Control of when fli:install-embedded-modul e deletes it temporary file 87

jnst al II - enbedded- nodul e- del ay- del et e variable 12.10.5: Control of when fli:install-embedded-module deletes it temporary
file 87

100

Index

Install Private Patches... menucommand 11.2.1: Private patches not loaded on Windows 7, 8& 10 61, 11.8.3.2: Private patches 66
Integrated Development Environment 12.8: IDE changes 83

interface class 125.7: Support for dark themesin capi:interface 74

i nterface-override-cursor accessor 12.17.1: Problemswith CAPl on GTK+ 91, 12.17.4: Problemswith CAPI and Graphics
Portson Cocoa 92

i nval i dat e-rectangl e function 125.1: New thread-safe function to force a redisplay part of an capi:output-pane 74
Invoke Tool editor command 12.9.7 : Toggling between the main and Output tabsin a Listener or Editor 86
i search-1 ax-whi tespace editorvariahle 12.9.1: Laxwhitespace matches 85

i sear ch-regexp-| ax-whitespace editorvariable 12.9.1: Laxwhitespace matches 85

J

Java methods
com | i spwor ks. Manager . set Cl assLoader 12.7.38: Controlling aspects of LispWorksiinitialization on Android 81
com | i spwor ks. Manager . set Li spTenmpDir 12.7.38: Controlling aspects of LispWorksiinitialization on Android 81
com | i spwor ks. Manager . set Runt i neLi spHeapDi r 12.7.38: Controlling aspects of LispWorks initialization on Android 81

j ava- programerror conditionclass 12.7.30: New condition classesin the Java interface 80

j obj ect-call-method function 12.7.31: Calling static or non-static methods in the Java interface 80

j obj ect-call -nmet hod-error conditionclass 12.7.30: New condition classesin the Java interface 80

j val ue FLItypedescriptor 12.7.35: Accessto JNI jvalue objects 81

j val ue-store-jbool ean function 12.7.35: Accessto NI jvalueobjects 81

jval ue-store-jbyte function 12.7.35: AccesstoJNI jvalueobjects 81

jval ue-store-jchar function 12.7.35: Accessto NI jvalueobjects 81

j val ue-store-jdoubl e function 12.7.35: AccesstoJNI jvalueobjects 81

jvalue-store-jfloat function 12.7.35: AccesstoJNI jvalueobjects 81

jvalue-store-jint function 12.7.35: AccesstoJNI jvalueobjects 81

jvalue-store-jlong function 12.7.35: Accessto NI jvalueobjects 81

j val ue-store-jobject function 12.7.35: AccesstoJNI jvalueobjects 81

j val ue-store-jshort function 12.7.35: AccesstoJNI jvalueobjects 81

L
LispWorksfailstostart 11.1.5: Corrupted LispWorks executable 60
LispWorksfor Android Runtime 7.1 : Installing LispWorks for Android Runtime 39
LispWorksfor iOSRuntime 7.2 Installing LispWorks for iOSRuntime 39
LispWorksfor Mobile Runtime 7 : Installation of LispWobrks for Mobile Runtime 39
LispWorks IDE tools

Editor 12.9: Editor changes 85

|ist-panel cass 125.2: Rowand column separatorsinlist panels 74, 12.5.11: Adding additional filtersin capi:list-panel and
capi:filtering-layout 75

| oad-data-file function 12.15.8: Loadingolddatafiles 90
Load File editor command 12.9.5: Control how filesareloaded 86

| og- bug-form function 11.9.6: LogFiles 68

101

Index

| oop macro 12.15.3: Theloop macro no longer allows "finally do" or "finally return" 89, 12.15.4: Theloop macro now allows "of-type"
with any atomic type 89
M
macros
define-conpiler-macro 12.15.5: Compiler macros are no longer expanded by the setf macro 89
def i ne-f orm parser 12.7.49 : Source location for macros that group other definition 82

define-java-caller 12.7.31: Calling static or non-static methods in the Java interface 80, 12.7.32: Making a non-virtual call to a
method inthe Javainterface 80, 12.7.33: Iw-ji:define-java-caller and lw-ji:setup-java-caller can now return lw-ji:jobject 80

def par ser 12.7.52: New arguments to the parser function defined by defparser 83
ext ended-time 11.9.2: Performancelssues 66
if-1let 12.7.46 : Newly documented macro if-let 82

| oop 12.15.3: Theloop macro no longer allows "finally do" or "finally return” 89, 12.15.4: Theloop macro now allows "of-type" with any
atomictype 89

profile 11.9.2: Performancelssues 66
with-output-to-fasl-file 12158: Loadingolddatafiles 90
wi t h- page 12.17.4: Problemswith CAPI and Graphics Portson Cocoa 92
wi t h- pi nned-obj ects 12.7.2: Support for pinning objects whilein foreign code 76
Wi t h- pr epar ed- st at enent 12.12.1: New helper functions and macro for prepared statements 88
wi t h-r enot e- debuggi ng-spec 12.7.14: Using S3. for remotedebugging 78, 12.7.15: Using IPv6 for remote debugging 78
make- array function 12.7.2: Support for pinning objects whilein foreign code 76
make- general i zed-ti nme function 12.7.22: S certificate generalizedtime APl 79
make- | i sp- proxy function 12.7.34: Specifying a Java classloader for Lisp proxy objects 80
make- | i sp- proxy-w t h-overrides function 12.7.34: Specifying a Java classloader for Lisp proxy objects 80
make-t yped- aref -vect or function 12.7.2: Support for pinning objects whilein foreign code 76
menu class 12.5.6: Menus can now display with both images and text on Microsoft Windows 74
Motif 12.4: GTK+ window system 73
move LispWorksto another computer ~ 11.10: Transferring LispWorks to a different machine 69
moving LispWorks to another computer ~ 11.10: Transferring LispWorksto a different machine 69

mul ti-colum-1Iist-panel class 125.2: Rowand column separatorsinlist panels 74, 12.5.3: Support for reorderable columnsin
capi: multi-column-list-panel on GTK 74, 12.5.4: New :x-adjust initarg for capi:multi-column-list-panel 74, 12.17.4: Problemswith
CAPI and Graphics Portson Cocoa 92

O

obj c-bool FLItypedescriptor 12.11.2: objc:objc-bool on Macs based on Apple silicon 87

of -t ype clauseinthel oop macro now alowsany atomictype 12.15.4: Theloop macro now allows "of-type" with any atomic type 89

open- pi pe function 12.7.7: Operating systeminterfaces on non-Windows based onlocale 77, 12.7.8: system:open-pipe and system:run-
shell-command work with external formats 77

open-tcp-stream function 12.7.20: Support for SSL using Apple Security Framework 79, 12.7.25: comm:open-tcp-stream now
returns information about errors 79

operation graphics state parameter ~ 12.17.4: Problemswith CAPI and Graphics Portson Cocoa 92
option-pane class 1217.1: Problemswith CAPl on GTK+ 91

ora-lob-file-set-nanme function 12.12.4: Somemissing LOB functions are now exported 88

102

Index

ora-| ob-get - chunk-si ze function 12.12.4: Some missing LOB functions are now exported 88

out put - pane class 125.12: Coordinates for keyboard eventsin the input model take account of scrolling 75, 12.5.14: Forcing scroll
barsto bevisibleon macOS 75, 12.6.1: Drawing to an output-pane outside the display-callback 76, 12.17.4: Problemswith CAPI
and Graphics Portson Cocoa 92

P

package-| ocal | y-ni cknanmed- by-11ist function 12.7.1: Package-local nicknames 76

package- | ocal - ni cknanes function 12.7.1: Package-local nicknames 76

parse-printed-generalized-tine function 127.22: S certificate generalizedtime API 79

pattern graphics state parameter 12.17.4: Problemswith CAPI and Graphics Portson Cocoa 92

phr ase predicate 12.13.1: New phrase predicate 88

pi pe-exit-status function 12.7.9: Secifying a timeout for system:pipe-exit-status 77

poor performance 11.9.2: Performance Issues 66

preconpi |l ed-regexp systemclass 12.7.50: The precompiled-regexp systemclass 82

preconpil ed-regexp-p function 12.7.50: The precompiled-regexp systemclass 82

preconpil e-regexp function 12.7.51: "Laxwhitespace" regexp searching 82

prepar ed- st atenment systemclass 12.12.1: New helper functions and macro for prepared statements 88

pr epar ed- st at enent - set - and- execut e function 12.12.1: New helper functions and macro for prepared statements 88

pr epar ed- st at ement - set - and- execut e* function 12.12.1: New helper functions and macro for prepared statements 88

pr epar ed- st at ement - set - and- query function 12.12.1: New helper functions and macro for prepared statements 88

pr epar ed- st at enent - set - and- quer y* function 12.12.1: New helper functions and macro for prepared statements 88
private patches
not loaded on Windows 11.2.1: Private patches not loaded on Windows 7, 8& 10 61

profile macro 11.9.2: Performancelssues 66
profiler-tree-to-allocation-functions function 127.16: Identifying object allocationin the profiler 78

pronmpt-wi th-1ist function 1255: Secifyingtheinitial selection in capi:prompt-with-list 74

R

read- sequence function 12.7.43: cl:read-sequence and cl:write-sequence now depend on cl:stream-element-type 81, 12.7.44:
Secializing cl:read-sequence and cl:write-sequence is now documented 82

redi spl ay-el ement function 12.5.1: New thread-safe function to force a redisplay part of an capi:output-pane 74

Register... menucommand 2.7: Upgrading the LispWorks Edition 17, 3.4: Upgrading the LispWorks Edition 20, 4.10: Upgrading the
LispWorks Edition 28, 5.9: Upgrading the LispWorks Edition 33, 6.10: Upgrading the LispWbrks Edition 38

regi ster-nodul e function 12.10.6: Useof diopenon macOS 87

rel ease-certificate function 127.21: Specifying and accessing SSL certificates 79

rel ease-certificates-vector function 127.21: Specifyingand accessing S certificates 79
renove- package- | ocal - ni ckname function 12.7.1: Package-local nicknames 76

repl ace-1 ax-whit espace editorvariable 12.9.1: Laxwhitespace matches 85

repl ace-regexp- | ax- whi t espace editor variable 12.9.1: Laxwhitespace matches 85

reset-ssl-abstract-context function 12.7.20: Support for S using Apple Security Framework 78
Revert Buffer With External Format editor command 12.9.6: Reverting a buffer with a different external format 86

rich-text-pane clas 125.10: New capi:rich-text-pane callback on Windows called when the user clicksalink 75

103

Index

room function 11.9.2: Performancelssues 66

run-shel | -command function 12.7.7: Operating systeminterfaces on non-Windows based onlocale 77, 12.7.8: system:open-pipe and
system:run-shell-command work with external formats 77, 12.7.10: system:run-shell-command can now return a signal number 77

S

save-image function 12.3.9: macOSuniversal binaries are supported again 73, 12.3.10: macOSimages are now split into two files by
default 73

save-uni versal -fromscript function 12.3.9: macOSuniversal binaries are supported again 73

schedul e-ti mer function 12.7.47: Scheduling arepeating timer relative to the currenttime 82

schedul e-timer-ml1iseconds function 12.7.47: Scheduling arepeating timer relativeto the currenttime 82

schedul e-tinmer-relative function 12.7.47: Scheduling arepeating timer relative to the current time 82

schedul e-tiner-relative-nilliseconds function 127.47: Scheduling arepeating timer relative to the current time 82
sear ch-whi t espace-regexp editorvariahle 12.9.1: Lax whitespace matches 85

sec-certificate-ref FLItypedescriptor 12.7.21: Specifying and accessing S3_ certificates 79
set-buffer-nanme-directory-delimters function 12.9.2: Unique buffer names based on the directory of thefile 85
set-consol e-external -format function 12.7.5: The console now supports external formats on non-Windows platforms 76
set - edi tor-parenthesis-colors function 125.8: Support for dark themesin capi:set-editor-parenthesis-colors 75

set - pat hname-1 oad-functi on function 12.95: Control howfilesareloaded 86

set up-j ava-cal | er function 12.7.31: Calling static or non-static methodsin the Javainterface 80, 12.7.32: Making a non-virtual
call toamethodinthe Javainterface 80, 12.7.33: Iw-ji:define-java-caller and lw-ji:setup-java-caller can now return lw-ji:jobject 80

set-up-profiler function 12.7.17: Ignoring timein the garbage collector during profiling 78
set-verification-node function 12.7.20: Support for SS_ using Apple Security Framework 79
socket-create-error conditionclass 12.7.29: New condition classesin the socket interface 80

socket -error function 12.7.28: Newly documented customization for socket 1/O error signaling 80

socket -i o-error conditionclass 12.7.29: New condition classesin the socket interface 80

socket - stream function 12.7.20: Support for SS_ using Apple Security Framework 79

split-sequence function 12.7.54: Limitingthe number of splitsin split-sequence 83

split-sequence-if function 12.7.54: Limitingthe number of splitsin split-sequence 83
split-sequence-if-not function 12.7.54: Limitingthe number of splitsin split-sequence 83

sql -fail ed-to-connect-error conditionclass 12.12.3: New condition class signaled by connect 88

ssl -abstract-context systemclass 12.7.20: Support for SSL using Apple Security Framework 78

ssl -connecti on-copy-peer-certificates function 127.21: Specifyingand accessing S certificates 79
ssl -connection-get-peer-certificates-data function 12.7.21: Specifying and accessing S3_ certificates 79
ssl -connecti on-protocol -versi on function 12.7.24: Detecting the SS_ protocol version 79

ssl -connection-read-certificates function 127.21: Specifyingand accessing S3_ certificates 79

ssl -connecti on-read- dh-parans-file function 12.7.23: Reading DH parametersfromafile 79

ssl -context-ref FLItypedescriptor 12.7.20: Support for SSL using Apple Security Framework 79

ssl -defaul t-inpl enentation function 12.7.20: Support for SS. using Apple Security Framework 78

ssl - handshake-ti meout conditionclass 12.7.29: New condition classesin the socket interface 80

ssl -i npl enent ati on-avail abl e-p function 12.7.20: Support for SS. using Apple Security Framework 78

104

Index

ssl-verification-failure conditionclass 12.7.29: New condition classesin the socket interface 80
stacked-tree cass 125.9: Support for dark themesin capi:stacked-tree 75

start-client-renote-debuggi ng-server function 12.7.13: Error handling and callbacks when starting remote
debugging 77, 12.7.14: Using S for remote debugging 78, 12.7.15: Using IPv6 for remote debugging 78

start-environnment function 25.3: SarttheMotif LispWorksGUI 17

start-ide-renote-debuggi ng-server function 12.7.13: Error handling and callbacks when starting remote
debugging 77, 12.7.13: Error handling and callbacks when starting remote debugging 78, 12.7.14: Using SSL for remote
debugging 78, 12.7.15: Using IPv6 for remote debugging 78

start-up-server function 12.7.26: Listen onthe same port with morethan one socket 79
stipple graphics state parameter 12.17.4: Problemswith CAPI and Graphics Portson Cocoa 92
streamread- sequence genericfunction 12.7.44: Specializing cl:read-sequence and cl:write-sequence is now documented 82
stream write-sequence genericfunction 12.7.44: Secializing cl:read-sequence and cl:write-sequence is now documented 82
string=-limted function 12.7.45: New functionsto compare stringswithout checking thelength 82
string-equal -l1imted function 12.7.45: New functionsto compare strings without checking thelength 82
system classes
gest ur e- spec 12.7.53: New system class gesture-spec 83
preconpi | ed-regexp 12.7.50: The precompiled-regexp systemclass 82
pr epar ed- st at enent 12.12.1: New helper functions and macro for prepared statements 88

ssl - abstract - cont ext 12.7.20 : Support for SSL using Apple Security Framework 78

T
text-input-pane class 12.17.1: Problemswith CAPl on GTK+ 91, 12.17.4: Problemswith CAPI and Graphics Portson Cocoa 92
Toggle Current Definition Folding editor command 12.9.3: Definition folding 85

top-level -interface-col or-node accessor 125.7: Support for dark themesin capi:interface 74

top-1 evel -interface-col or-node-cal | back accessor 12.5.7: Support for dark themesin capi:interface 74

top-1evel -interface-dark-node-p function 125.7: Support for dark themesin capi:interface 74

transfer LispWorks to another computer 11.10: Transferring LispWorks to a different machine 69

transferring LispWorks to another computer 11.10: Transferring LispWorks to a different machine 69

tree-view class 1217.4: Problemswith CAPI and Graphics Portson Cocoa 92, 12.17.4: Problemswith CAPI and Graphics Ports on
Cocoa 92

type-of function 12.15.7: cl:type-of now returns more specific types 90
types
generalized-tinme 127.22: S certificate generalized time APl 79

U
ui op: def generi c* removed fromASDF 12.15.2: ASDF version 89
ui op: def un* removed from ASDF 12.15.2: ASDF version 89
Unfold Buffer Definitions editor command 12.9.3: Definition folding 85
uninstalling LispWorks

onFreeBSD 6.9: Uninstalling LispWorks for FreeBSD 38

onLinux 4.9: Uninstalling LispWorksfor Linux 28

on Macintosh ~ 2.6: Uninstalling LispWorks for Macintosh 17

onWindows 3.3: Uninstalling LispWorks for Windows 20

105

Index

0on x86/x64 Solaris 5.8: Uninstalling LispWorks for x86/x64 Solaris 33
universal binaries

supported 12.3.9: macOSuniversal binaries are supported again 73
universal binary

supported 12.3.9: macOSuniversal binaries are supported again 73

\Y
val i d-foreign-type-p function 12.10.2: Checking for avalid foreigntype 86
variables
ent er - debugger-directly 1217.3: Problemswith the LispWorks IDE on Cocoa 91
f eat ur es 12.2.1: Conditionalizing code for different versions of Lisp\Works 71, 12.15.1: Changesin *features* 89

instal | -enbedded- nodul e- del ay-del et e 12.10.5: Control of when fli:install-embedded-module deletes it temporary
file 87

:visible-border initag 12.17.4: Problemswith CAPI and Graphics Portson Cocoa 92

W

window system 12.4: GTK+ window system 73

with-output-to-fasl-file maco 12158: Loadingold datafiles 90

Wi t h-page macro 12.17.4: Problemswith CAPI and Graphics Portson Cocoa 92

Wi t h- pi nned- obj ects macro 12.7.2: Support for pinning objects whilein foreign code 76

Wi t h- prepared-statenment macro 12.12.1: New helper functions and macro for prepared statements 88

Wi t h-r enot e- debuggi ng-spec macro 12.7.14: Using SSL for remote debugging 78, 12.7.15: Using IPv6 for remote
debugging 78

write-sequence function 12.7.43: cl:read-sequence and cl:write-sequence now depend on cl:stream-element-type 81, 12.7.44:
Soecializing cl:read-sequence and cl:write-sequence is now documented 82

wite-to-systemlog function 12.7.55: Writing messagesto systemlogfiles 83

X

x509- poi nter FLItypedescriptor 12.7.21: Specifying and accessing S3L certificates 79

Non-alaphanumerics

"Not yet multiprocessing.” error 11.1.3: Build phase (delivery-time) errors 60

106

	Release Notes and Installation Guide
	Copyrights and Trademarks
	Contents
	1 Introduction
	1.1 LispWorks Editions
	1.1.1 Personal Edition
	1.1.2 Hobbyist Edition
	1.1.3 HobbyistDV Edition
	1.1.4 Professional Edition
	1.1.5 Enterprise Edition

	1.2 LispWorks for Mobile Runtime
	1.3 Evaluation quick guide
	1.4 Further details
	1.5 About this Guide
	1.5.1 Installation and Configuration
	1.5.2 Troubleshooting
	1.5.3 Release Notes

	2 Installation on macOS
	2.1 Choosing the Graphical User Interface
	2.2 Documentation
	2.3 Software and hardware requirements
	2.4 Installing LispWorks for Macintosh
	2.4.1 Main installation and patches
	2.4.2 Information for Beta testers
	2.4.3 Information for users of previous versions
	2.4.4 Launch the LispWorks installer
	2.4.5 The Read Me
	2.4.6 The License Agreement
	2.4.7 Install Location
	2.4.8 Choose your installation type
	2.4.8.1 The native macOS GUI
	2.4.8.2 The X11 GTK+ and Motif GUIs
	2.4.8.3 The Documentation

	2.4.9 Installing and entering license data
	2.4.10 LispWorks is added to the Dock
	2.4.11 Finishing up
	2.4.12 Installing Patches
	2.4.13 Obtaining X11 GTK+
	2.4.14 Obtaining Open Motif and Imlib2

	2.5 Starting LispWorks for Macintosh
	2.5.1 Start the native macOS LispWorks GUI
	2.5.2 Start the GTK+ LispWorks GUI
	2.5.3 Start the Motif LispWorks GUI

	2.6 Uninstalling LispWorks for Macintosh
	2.7 Upgrading the LispWorks Edition

	3 Installation on Windows
	3.1 Documentation
	3.2 Installing LispWorks for Windows
	3.2.1 Main installation and patches
	3.2.2 Visual Studio runtime components and Windows Installer
	3.2.3 Installing over previous versions
	3.2.4 Information for Beta testers
	3.2.5 To install LispWorks
	3.2.5.1 Entering the License Data
	3.2.5.2 Installation location
	3.2.5.3 Installing the Documentation
	3.2.5.4 Installing Patches
	3.2.5.5 Starting LispWorks

	3.3 Uninstalling LispWorks for Windows
	3.4 Upgrading the LispWorks Edition
	3.5 Upgrading to 64-bit LispWorks

	4 Installation on Linux
	4.1 Software and hardware requirements
	4.1.1 GUI libraries
	4.1.1.1 GTK+
	4.1.1.2 Motif

	4.1.2 Disk requirements

	4.2 License agreement
	4.3 Software delivery and installer formats
	4.3.1 Contents of the LispWorks distribution

	4.4 Installing LispWorks for Linux
	4.4.1 Main installation and patches
	4.4.2 Installing over previous versions
	4.4.3 Information for Beta testers
	4.4.4 Installation from the binary RPM file (x86 and x86_64 only)
	4.4.4.1 Installation directories
	4.4.4.2 Selecting the correct RPM files
	4.4.4.3 Installing or upgrading LispWorks for Linux
	4.4.4.4 Installing CLIM 2.0
	4.4.4.5 Installing loadable Enterprise Edition modules
	4.4.4.6 Documentation and saving space
	4.4.4.7 Installing Patches

	4.4.5 Installation from the tar files
	4.4.5.1 Installing Patches

	4.5 LispWorks looks for a license key
	4.6 Running LispWorks
	4.6.1 Entering the license data

	4.7 Configuring the image
	4.8 Printable LispWorks documentation
	4.9 Uninstalling LispWorks for Linux
	4.10 Upgrading the LispWorks Edition
	4.11 Upgrading to 64-bit LispWorks

	5 Installation on x86/x64 Solaris
	5.1 Software and hardware requirements
	5.1.1 GUI libraries
	5.1.1.1 GTK+
	5.1.1.2 Motif

	5.1.2 Disk requirements

	5.2 Software delivery and installer format
	5.2.1 Contents of the LispWorks distribution
	5.2.2 Personal Edition distribution

	5.3 Installing LispWorks for x86/x64 Solaris
	5.3.1 Main installation and patches
	5.3.2 Installing over previous versions
	5.3.3 Information for Beta testers
	5.3.4 Installation directories
	5.3.5 Selecting the correct software package file
	5.3.6 Installing the package file
	5.3.7 Installing Patches

	5.4 LispWorks looks for a license key
	5.5 Running LispWorks
	5.5.1 Entering the license data

	5.6 Configuring the image
	5.7 Printable LispWorks documentation
	5.8 Uninstalling LispWorks for x86/x64 Solaris
	5.9 Upgrading the LispWorks Edition
	5.10 Upgrading to 64-bit LispWorks

	6 Installation on FreeBSD
	6.1 Software and hardware requirements
	6.1.1 GUI libraries
	6.1.1.1 GTK+
	6.1.1.2 Motif

	6.1.2 Disk requirements

	6.2 License agreement
	6.3 Software delivery and installer format
	6.3.1 Contents of the LispWorks distribution
	6.3.2 Personal Edition distribution

	6.4 Installing LispWorks for FreeBSD
	6.4.1 Main installation and patches
	6.4.2 Installing over previous versions
	6.4.3 Information for Beta testers
	6.4.4 Installation directories
	6.4.5 Selecting the correct software package file
	6.4.6 Installing LispWorks for FreeBSD
	6.4.7 Installing Patches

	6.5 LispWorks looks for a license key
	6.6 Running LispWorks
	6.6.1 Entering the license data

	6.7 Configuring the image
	6.8 Printable LispWorks documentation
	6.9 Uninstalling LispWorks for FreeBSD
	6.10 Upgrading the LispWorks Edition
	6.11 Upgrading to 64-bit LispWorks

	7 Installation of LispWorks for Mobile Runtime
	7.1 Installing LispWorks for Android Runtime
	7.2 Installing LispWorks for iOS Runtime

	8 Configuration on macOS
	8.1 Introduction
	8.2 License keys
	8.3 Configuring your LispWorks installation
	8.3.1 Levels of configuration
	8.3.2 Configuring images for the different GUIs
	8.3.3 Configuration files available

	8.4 Saving and testing the configured image
	8.4.1 Create a configuration file
	8.4.2 Create and use a save-image script
	8.4.3 What to do if no image is saved
	8.4.4 Testing the newly saved image
	8.4.5 Saving a non-windowing image

	8.5 Initializing LispWorks
	8.6 Loading CLIM 2.0
	8.7 The Common SQL interface
	8.7.1 Loading Common SQL
	8.7.2 Supported databases
	8.7.3 Special considerations when using Common SQL
	8.7.3.1 Location of .odbc.ini
	8.7.3.2 Errors using PSQLODBC
	8.7.3.3 psqlODBC version
	8.7.3.4 Locating the Oracle, MySQL or PostgreSQL client libraries

	8.8 Common Prolog and KnowledgeWorks

	9 Configuration on Windows
	9.1 Introduction
	9.2 License keys
	9.3 Configuring your LispWorks installation
	9.3.1 Levels of configuration
	9.3.2 Configuration files available

	9.4 Saving and testing the configured image
	9.4.1 Create a configuration file
	9.4.2 Create and use a save-image script
	9.4.3 What to do if no image is saved
	9.4.4 Testing the newly saved image
	9.4.5 Saving a non-windowing image

	9.5 Initializing LispWorks
	9.6 Loading CLIM 2.0
	9.6.1 Running the CLIM demos

	9.7 The Common SQL interface
	9.7.1 Loading the Common SQL interface

	9.8 Common Prolog and KnowledgeWorks
	9.9 Runtime library requirement on Windows

	10 Configuration on Linux, x86/x64 Solaris & FreeBSD
	10.1 Introduction
	10.2 License keys
	10.3 Configuring your LispWorks installation
	10.3.1 Levels of configuration
	10.3.2 Configuration files available

	10.4 Saving and testing the configured image
	10.4.1 Create a configuration file
	10.4.2 Create and use a save-image script
	10.4.3 Testing the newly saved image
	10.4.4 Saving a non-windowing image

	10.5 Initializing LispWorks
	10.6 Loading CLIM 2.0
	10.6.1 Running the CLIM demos

	10.7 The Common SQL interface
	10.7.1 Loading the Common SQL interface

	10.8 Common Prolog and KnowledgeWorks
	10.9 Documentation on x86/x64 Solaris and FreeBSD

	11 Troubleshooting, Patches and Reporting Bugs
	11.1 Troubleshooting
	11.1.1 License key errors
	11.1.2 Failure of the load-on-demand system
	11.1.3 Build phase (delivery-time) errors
	11.1.4 Memory requirements
	11.1.5 Corrupted LispWorks executable

	11.2 Troubleshooting on Windows
	11.2.1 Private patches not loaded on Windows 7, 8 & 10

	11.3 Troubleshooting on macOS
	11.3.1 Uninstall requires administrator on macOS

	11.4 Troubleshooting on Linux
	11.4.1 Processes hanging
	11.4.2 RPM_INSTALL_PREFIX not set
	11.4.3 Using multiple versions of Motif on Linux

	11.5 Troubleshooting on x86/x64 Solaris
	11.5.1 GTK+ version

	11.6 Troubleshooting on FreeBSD
	11.7 Troubleshooting on X11/Motif
	11.7.1 Problems with the X server
	11.7.2 Problems with fonts on Motif
	11.7.3 Problems with colors
	11.7.4 Motif mnemonics and Alt
	11.7.5 Non-standard X11/Motif key bindings
	11.7.6 X11/Motif resources
	11.7.7 Motif installation on macOS

	11.8 Updating with patches
	11.8.1 Extracting simple patches
	11.8.2 If you cannot receive email
	11.8.3 Different types of patch
	11.8.3.1 Public patches
	11.8.3.2 Private patches

	11.9 Reporting bugs
	11.9.1 Check for existing fixes
	11.9.2 Performance Issues
	11.9.3 Generate a bug report template
	11.9.4 Add details to your bug report
	11.9.5 Reporting crashes
	11.9.6 Log Files
	11.9.7 Reporting bugs in delivered images
	11.9.8 Send the bug report
	11.9.9 Sending large files
	11.9.10 Information for Personal Edition users

	11.10 Transferring LispWorks to a different machine

	12 Release Notes
	12.1 Keeping your old LispWorks installation
	12.2 Updating your code for LispWorks 8.0
	12.2.1 Conditionalizing code for different versions of LispWorks

	12.3 Platform support
	12.3.1 LispWorks for Macintosh supports Apple silicon Macs natively
	12.3.2 LispWorks for Macintosh is always 64-bit
	12.3.3 Runtimes for Android
	12.3.4 Runtimes for iOS
	12.3.5 FreeBSD 12.x support
	12.3.6 SPARC Solaris and AIX no longer supported
	12.3.7 Running on 64-bit machines
	12.3.8 Code signing LispWorks images
	12.3.8.1 Signing of the distributed executable
	12.3.8.2 Signing your development image
	12.3.8.3 Signing your runtime application
	12.3.8.4 Required runtime entitlements on Apple silicon Macs

	12.3.9 macOS universal binaries are supported again
	12.3.10 macOS images are now split into two files by default

	12.4 GTK+ window system
	12.4.1 Using Motif instead of GTK+
	12.4.2 X11/Motif requires Imlib2 except on Solaris

	12.5 New CAPI features
	12.5.1 New thread-safe function to force a redisplay part of an capi:output-pane
	12.5.2 Row and column separators in list panels
	12.5.3 Support for reorderable columns in capi:multi-column-list-panel on GTK
	12.5.4 New :x-adjust initarg for capi:multi-column-list-panel
	12.5.5 Specifying the initial selection in capi:prompt-with-list
	12.5.6 Menus can now display with both images and text on Microsoft Windows
	12.5.7 Support for dark themes in capi:interface
	12.5.8 Support for dark themes in capi:set-editor-parenthesis-colors
	12.5.9 Support for dark themes in capi:stacked-tree
	12.5.10 New capi:rich-text-pane callback on Windows called when the user clicks a link
	12.5.11 Adding additional filters in capi:list-panel and capi:filtering-layout
	12.5.12 Coordinates for keyboard events in the input model take account of scrolling
	12.5.13 capi:current-pointer-position always takes account of scrolling in capi:output-pane
	12.5.14 Forcing scroll bars to be visible on macOS

	12.6 Other CAPI and Graphics Ports changes
	12.6.1 Drawing to an output-pane outside the display-callback

	12.7 More new features
	12.7.1 Package-local nicknames
	12.7.2 Support for pinning objects while in foreign code
	12.7.3 Specialized complex number array representations
	12.7.4 Double-float complex number optimization in the compiler
	12.7.5 The console now supports external formats on non-Windows platforms
	12.7.6 Encoding file names on non-Windows platforms based on locale
	12.7.7 Operating system interfaces on non-Windows based on locale
	12.7.8 system:open-pipe and system:run-shell-command work with external formats
	12.7.9 Specifying a timeout for system:pipe-exit-status
	12.7.10 system:run-shell-command can now return a signal number
	12.7.11 Support for the GB18030 character encoding
	12.7.12 Configurable named services for remote debugging
	12.7.13 Error handling and callbacks when starting remote debugging
	12.7.14 Using SSL for remote debugging
	12.7.15 Using IPv6 for remote debugging
	12.7.16 Identifying object allocation in the profiler
	12.7.17 Ignoring time in the garbage collector during profiling
	12.7.18 Version checking in compile-file-if-needed
	12.7.19 OpenSSL version defaults to 1.1 on Windows
	12.7.20 Support for SSL using Apple Security Framework
	12.7.21 Specifying and accessing SSL certificates
	12.7.22 SSL certificate generalized time API
	12.7.23 Reading DH parameters from a file
	12.7.24 Detecting the SSL protocol version
	12.7.25 comm:open-tcp-stream now returns information about errors
	12.7.26 Listen on the same port with more than one socket
	12.7.27 New function to close a socket handle
	12.7.28 Newly documented customization for socket I/O error signaling
	12.7.29 New condition classes in the socket interface
	12.7.30 New condition classes in the Java interface
	12.7.31 Calling static or non-static methods in the Java interface
	12.7.32 Making a non-virtual call to a method in the Java interface
	12.7.33 lw-ji:define-java-caller and lw-ji:setup-java-caller can now return lw-ji:jobject
	12.7.34 Specifying a Java class loader for Lisp proxy objects
	12.7.35 Access to JNI jvalue objects
	12.7.36 Getting a backtrace from a Java throwable object
	12.7.37 lw-ji:create-instance-jobject-list is now exported from lw-ji
	12.7.38 Controlling aspects of LispWorks initialization on Android
	12.7.39 New error codes from the InitLispWorks C function
	12.7.40 Stricter meaning of the :link-transparency argument to cl:directory
	12.7.41 Checking whether a file is a symbolic link
	12.7.42 Reading a file into an array of bytes
	12.7.43 cl:read-sequence and cl:write-sequence now depend on cl:stream-element-type
	12.7.44 Specializing cl:read-sequence and cl:write-sequence is now documented
	12.7.45 New functions to compare strings without checking the length
	12.7.46 Newly documented macro if-let
	12.7.47 Scheduling a repeating timer relative to the current time
	12.7.48 hcl:get-temp-directory no longer returns a truename
	12.7.49 Source location for macros that group other definition
	12.7.50 The precompiled-regexp system class
	12.7.51 "Lax whitespace" regexp searching
	12.7.52 New arguments to the parser function defined by defparser
	12.7.53 New system class gesture-spec
	12.7.54 Limiting the number of splits in split-sequence
	12.7.55 Writing messages to system log files

	12.8 IDE changes
	12.8.1 Support for Dark mode on macOS
	12.8.2 Configurable external format for the Shell tool
	12.8.3 A Commands menu has been added
	12.8.4 Showing IDE interfaces in the Windows Browser
	12.8.5 The Works menu when displaying user-defined interfaces on Windows
	12.8.6 Identifying object allocation in the Profiler tool
	12.8.7 The Profiler automatically displays the results after profiling
	12.8.8 New operations in the Cumulative tab of the Profiler
	12.8.9 Building universal binaries on macOS with the Application Builder
	12.8.10 Customizing the string used for hidden comments in folded definitions
	12.8.11 Operating on previous results in the Listener

	12.9 Editor changes
	12.9.1 Lax whitespace matches
	12.9.2 Unique buffer names based on the directory of the file
	12.9.3 Definition folding
	12.9.4 Indentation of loop
	12.9.5 Control how files are loaded
	12.9.6 Reverting a buffer with a different external format
	12.9.7 Toggling between the main and Output tabs in a Listener or Editor
	12.9.8 Editor Ctrl+[and Ctrl+] key bindings in Windows emulation mode

	12.10 Foreign Language interface changes
	12.10.1 :allow-null now defaults to nil for foreign strings as documented
	12.10.2 Checking for a valid foreign type
	12.10.3 fli:incf-pointer and fli:decf-pointer signal an error for types of size 0
	12.10.4 Support for the C99 _Bool type (stdbool.h)
	12.10.5 Control of when fli:install-embedded-module deletes it temporary file
	12.10.6 Use of dlopen on macOS

	12.11 Objective-C changes
	12.11.1 objc:can-invoke-p can now be used with the result of current-super
	12.11.2 objc:objc-bool on Macs based on Apple silicon
	12.11.3 The :darwin-lw-objc foreign module has been removed

	12.12 Common SQL changes
	12.12.1 New helper functions and macro for prepared statements
	12.12.2 Calling connect with :if-exists and without :name
	12.12.3 New condition class signaled by connect
	12.12.4 Some missing LOB functions are now exported

	12.13 KnowledgeWorks changes
	12.13.1 New phrase predicate

	12.14 Application delivery changes
	12.14.1 New values for the :interrupt-function keyword

	12.15 Other changes
	12.15.1 Changes in *features*
	12.15.2 ASDF version
	12.15.3 The loop macro no longer allows "finally do" or "finally return"
	12.15.4 The loop macro now allows "of-type" with any atomic type
	12.15.5 Compiler macros are no longer expanded by the setf macro
	12.15.6 hcl:fast-directory-files for a non-wild pathname
	12.15.7 cl:type-of now returns more specific types
	12.15.8 Loading old data files

	12.16 Documentation changes
	12.16.1 Hyperlinks between manuals
	12.16.2 The HTML documentation directory
	12.16.3 Regular expression syntax
	12.16.4 Physical pathnames in LispWorks
	12.16.5 New self-contained examples
	12.16.6 Removed self-contained examples

	12.17 Known Problems
	12.17.1 Problems with CAPI on GTK+
	12.17.2 Problems with LispWorks for Macintosh
	12.17.3 Problems with the LispWorks IDE on Cocoa
	12.17.4 Problems with CAPI and Graphics Ports on Cocoa

	12.18 Binary Incompatibility

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Non-alaphanumerics

