LispWorks Objective-C and Cocoa
|nterface User Guide and Reference
Manual

Version 8.0

Copyright and Trademarks

LispWorks Objective-C and Cocoa Interface User Guide and Reference Manual
Version 8.0

December 2021

Copyright © 2021 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and K nowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in al copies and supporting documentation, and that the
name of M.1.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "asis’
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including al implied
warranties of merchantability and fitness. In no event shall M.I.T. beliable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of |CU software obtained from http://source.icu-project.org and which bears the following copyright
and permission natice:

ICU License- ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.

Permission is hereby granted, free of charge, to any person abtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission naotice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "ASIS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THISNOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright and Trademarks

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and

registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights

The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt 111, as applicable. Rights reserved under the copyright laws of

the United States.

Address

Telephone

Fax

LispWorks Ltd

St. John's Innovation Centre
Cowley Road

Cambridge

CB4 0WS

England

From North America
877 759 8839 (toll-free)

From elsawhere;
+44 1223 421860

From North America
617 812 8283

From elsawhere:
+44 870 2206189

www.lispwor ks.com

www.lispworks.com

Contents

1 Introduction to the Objective-C Interface

1.1 Introduction 6

1.2 Objective-C data types 6

1.3 Invoking Objective-C methods 7

1.4 Defining Objective-C classes and methods 12

2 Objective-C Reference 18

alloc-init-object 18
autorelease 18

can-invoke-p 19
coerce-to-objc-class 20
coerce-to-selector 21
current-super 21
define-objc-class 22
define-objc-class-method 24
define-objc-method 25
define-objc-protocol 28
define-objc-struct 29
description 30
ensure-objc-initialized 30
invoke 31

invoke-bool 33

invoke-into 34

make-autorel ease-pool 36
objc-at-question-mark 36
objc-bool 37

objc-c++-bool 37
objc-class 38
objc-class-method-signature 38
objc-class-name 39
objc-c-string 40
objc-object-destroyed 40
objc-object-from-pointer 41
objc-object-pointer 42
objc-object-pointer 43
objc-object-var-value 43
objc-unknown 44

Contents

release 45

retain 45

retain-count 46

sdl 46

selector-name 47
standard-objc-object 48
trace-invoke 49
untrace-invoke 49
with-autorel ease-pool 50

3 The Cocoa Interface 51

3.1 Introduction 51

3.2 Types 51

3.3 Observers 51

3.4 How to run Cocoa on its own 51

4 Cocoa Reference 53

add-observer 53

ns-not-found 53
ns-point 54
ns-range %4

ns-rect 55

ns-size 55
remove-observer 56
set-ns-point* 56
set-ns-range* 57
set-ns-rect* 58
set-ns-size* 59

5 Self-contained examples 60

5.1 Example definitions 60
5.2 Displaying Cocoa classesin CAPI windows 60
5.3 nib file example 60

Index

1 Introduction to the Objective-C Interface

1.1 Introduction

Objective-C is a C-like object-oriented programming language that is used on macOS to implement the Cocoa API. The
LispWorks Objective-C interface is an extension to the interface described in the Foreign Language Interface User Guide and
Reference Manual to support calling Objective-C methods and also to provide defining forms for Objective-C classes and
methods implemented in Lisp. This manual assumes that you are familiar with the LispWorks FLI, the Objective-C language
and the Cocoa APl where appropriate, and it uses the same notation and conventions as the Foreign Language I nterface User
Guide and Reference Manual.

Note: the LispWorks Objective-C interface is only available on the Macintosh.

The remainder of this chapter describes the LispWorks Objective-C interface, which is generally used in conjunction with the
Cocoa APl (see 3 The Caocoa I nterface). Examplesin this chapter assume that the current package uses the obj ¢ package.

1.1.1 Initialization

Before calling any of the Objective-C interface functions, the runtime system must be initialized. Thisis done by calling
ensure-obj c-initialized, optionally passing alist of foreign modules to be loaded. For example, the following will
initialize and load Cocoa:

(objc:ensure-objc-initialized
: nodul es
"("/ Systen Li brary/ Framewor ks/ Foundat i on. f r amewor k/ Ver si ons/ ¢/ Foundat i on"
"/ Syst enl Li brary/ Framewor ks/ Cocoa. f r amewor k/ Ver si ons/ A/ Cocoa"))

1.2 Objective-C data types

The Objective-C interface uses types in the same way as the LispWorks FLI, with arestricted set of FLI types being used to
describe method arguments and results. Some types perform special conversionsto hide the FLI details (see 1.3.3 Special
argument and result conversion and 1.4.3.1 Special method argument and result conversion).

1.2.1 Objective-C pointers and pointer types

Objective-C defines its own memory management, so most interaction with its objects occurs using foreign pointers with the
FLI type descriptor obj c- obj ect - poi nt er . When an Objective-C object classisimplemented in Lisp, thereisan
additional object of type st andar d- obj c- obj ect which is associated with the foreign pointer (see 1.4 Defining Objective
-C classes and methods).

There are afew specific Objective-C pointer types that have a direct translation to FLI types:

1 Introduction to the Objective-C Interface

Pointer types in Objective-C

Objective-C type FLI type descriptor

Cl ass obj c-cl ass

SEL sel

id obj c-obj ect - poi nter
char * objc-c-string

Other pointer types are represented using the : poi nt er FLI type descriptor as normal.

When using pointers to struct types, the type must be defined using def i ne- obj c- st ruct rather than
fli:define-c-struct.

1.2.2 Integer and boolean types

The various integer types in Objective-C have corresponding standard FLI types. In addition, the Objective-C type BOOL,
which isan integer type with values NOand YES, has a corresponding FLI type obj c- bool withvaluesni | andt.

1.2.3 Structure types

Structures in Objective-C are like structuresin the FLI, but are restricted to using other Objective-C types for the dots. The
macro def i ne- obj c- st ruct must be used to define a structure type that is suitable for use as an Objective-C type.

1.3 Invoking Objective-C methods

Objective-C methods are associated with Objective-C objects or classes and are invoked by name with a specific set of
arguments.

1.3.1 Simple calls to instance and class methods

Thefunctioni nvoke is used to call most methods (but see 1.3.4 I nvoking a method that returns a boolean, 1.3.5 Invoking
amethod that returnsa structure and 1.3.6 I nvoking a method that returnsa string or array for ways of calling more
complex methods). This function has two required arguments:

« the foreign pointer whose method should be invoked, and:

* the name of the method (see 1.3.2 M ethod naming).

The remaining arguments are passed to the method in the specified order. See 1.3.3 Special argument and result conversion
for information about how the arguments are converted to FLI values.

For example, acall in Objective-C such as:
[wi ndow cl ose]
would be written using i nvoke as:

(i nvoke wi ndow "cl ose")

In addition, i nvoke can be used to call class methods for specifically named classes. Thisis done by passing a string naming
the Objective-C class instead of the object.

1 Introduction to the Objective-C Interface

For example, a class method call in Objective-C such as:

[NSObj ect al | oc]

would be written using i nvoke as:

(i nvoke "NSOhject" "alloc")

1.3.2 Method naming

Methods in Objective-C have compound names that describe their main name and any arguments. Functionslikei nvoke that
need a method name expect a string with all the name components concatenated together with no spaces.

For example, acall in Objective-C such as:

[box setWdth: 10 hei ght: 20]

would be written using i nvoke as:

(i nvoke box "setWdth: height:" 10 20)

1.3.3 Special argument and result conversion

Since the LispWorks Objective-C interface is an extension of the FLI, most conversion of arguments and resultsis handled as
specified in the Foreign Language Interface User Guide and Reference Manual. There are afew exceptions to make it easier
to invoke methods with certain commonly used Objective-C classes and structures as shown in the Special argument and
result conversion for i nvoke. See the specification of i nvoke for full details.

Special argument and result conversion for i nvoke

Type Specia argument behavior Special result behavior

NSRect Allows a vector to be passed. Convertsto a vector.

NSPoi nt Allows a vector to be passed. Convertsto a vector.

NSSi ze Allows a vector to be passed. Convertsto a vector.

NSRange Allow aconsto be passed. Convertsto a cons.

BOOL Allow ni | ort to be passed. None. See 1.3.4 Invoking a method

that returns a boolean.

id Depending on the Objective-C class, |None. See 1.3.6 Invoking a method
allows automatic conversion of that returnsastring or array.
strings and arrays.

d ass Allows a string to be passed. None.

char * Allows a string to be passed. Convertsto a string.

1 Introduction to the Objective-C Interface

1.3.4 Invoking a method that returns a boolean

When amethod has return type BOOL on a Macintosh with an Intel CPU, the value is converted to the integer 0 or 1 because
Objective-C cannot distinguish this type from the other integer types. Often it is more convenient to receive the value as a
Lisp boolean and this can be done by using the function i nvoke- bool , whichreturnsni | ort.

For example, acall in Objective-C such as:
[box isSquare] ? 1 : 2
could be written using i nvoke- bool as:

(if (invoke-bool box "isSquare") 1 2)

1.3.5 Invoking a method that returns a structure

Asmentioned in 1.3.3 Special argument and result conversion, when i nvoke is used with a method whose return typeis
one of the structure types listed in Special argument and result conversion for i nvoke, such as NSRect , avector or cons
containing the fields of the structureis returned. For other structure types defined with def i ne- obj c- st r uct , the function
i nvoke-i nt o must be used to call the method. This takes the same arguments asi nvoke, except that there is an extra
initial argument, result, which should be a pointer to aforeign structure of the appropriate type for the method. When the
method returns, the valueis copied into this structure.

For example, acall in Objective-C such as:

{

NSRect rect = [box franme];
}
could bewritten using i nvoke-i nt o as:

(fli:with-dynam c-foreign-objects ((rect cocoa:ns-rect))
(objc:invoke-into rect box "frane")

)

In addition, for the structure return types mentioned in Special argument and result conversion for i nvoke, an
appropriately sized vector or cons can be passed as result and thisisfilled with the field values.

For example, the above call could also be written usingi nvoke-i nt o as:

(let ((rect (nake-array 4)))
(objc:invoke-into rect box "frane")

)

1.3.6 Invoking a method that returns a string or array

The Objective-C classes NSSt r i ng and NSAr r ay are used extensively in Cocoa to represent strings and arrays of various
objects. When amethod that returns these typesis called with i nvoke, the result is aforeign pointer of type obj c- obj ect -
poi nt er asfor other classes.

In order to obtain amore useful Lisp value, i nvoke- i nt o can be used by specifying atype as the extrainitial argument. For
amethod that returns NSSt r i ng, the symbol st r i ng can be specified to cause the foreign object to be converted to a string.
For a method that returns NSAr r ay, the symbol ar r ay can be specified and the foreign object is converted to an array of
foreign pointers. Alternatively atypesuchas(array string) can be specified and the foreign object is converted to an

9

http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_array.htm

1 Introduction to the Objective-C Interface

array of strings.

For example, the form:

(i nvoke object "description")

will return aforeign pointer, whereas the form:
(invoke-into 'string object "description")

will return a string.

1.3.7 Invoking a method that returns values by reference

Values are returned by reference in Objective-C by passing a pointer to memory where the result should be stored, just likein
the C language. The Objective-C interfacein Lisp works similarly, using the standard FLI constructs for this.

For example, an Objective-C method declared as:

- (void)getValuelnto: (int *)result;

might called from Objective-C like this:

i nt get Result(M/Object *object)
{

int result;
[obj ect getVal uel nto: & esul t];
return result;

}
The equivalent call from Lisp can be made like this:

(defun get-result (object)
(fli:with-dynam c-foreign-objects ((result-value :int))
(obj c:invoke object "getValuelnto:" result-val ue)
(fli:dereference result-value)))

The same technigue applies to infout arguments, but adding code to initialize the dynamic foreign object before calling the
method.

1.3.8 Invoking a method that uses vector types

In order to invoke a method that uses vector types (see "Vector types' in the Foreign Language Interface User Guide and
Reference Manual), callstoi nvoke etc need to specify the argument and result types of the method. Thisis because vector
types are not compatible with the Objective-C Runtime type encoding API.

Thisis done by passing alist as the method argument. For example, yuo can invoke the following methods of
MDLTr ansf or min the Model 1/0 API:

;; Call -(vector_float3)translationAtTi ne: (NSTi nelnterval)tine;
(invoke ptr '("translationAtTinme:"
(: doubl e)

:result-type fli:vector-float3)
20d0)

;7 -(void)setTransl ation: (vector_float3)translation
; forTinme: (NSTi mel nterval)tine;

10

1 Introduction to the Objective-C Interface

(objc:invoke ptr '("setTranslation:forTine:"
(fli:vector-float3 :double))
#(22d0 32d0 42d0)
20d0)

1.3.9 Determining whether a method exists

In some cases, an Objective-C class might have a method that is optionally implemented and i nvoke will signal an error if
the method is missing for a particular object. To determine whether a method isimplemented, call the function
can- i nvoke- p with the foreign object pointer or class name and the name of the method.

For example, acall in Objective-C such as:

[foo respondsToSel ector: @el ector (frane)]

could be written using can- i nvoke- p as:

(can-invoke-p foo "frame")

1.3.10 Memory management

Objective-C uses reference counting for its memory management and also provides a mechanism for decrementing the
reference count of an object when control returns to the event loop or some other well-defined point.

The following functions are direct equivalents of the memory management methods in the NSObj ect class:

Helper functions for memory management

Function Method in NSObj ect
retain retain

r et ai n- count r et ai nCount

rel ease rel ease

aut or el ease aut or el ease

In addition, the function nake- aut or el ease- pool and the macro wi t h- aut or el ease- pool can be used to make
autorelease poolsif the standard one in the event loop is not available.

1.3.11 Selectors

Some Objective-C methods have arguments or values of type SEL, which is a pointer type used to represent selectors. These
can be used in Lisp as foreign pointers of type sel , which can be obtained from a string by calling coer ce- t o- sel ect or..
The function sel ect or - nanme can be used to find the name of a selector.

For example, acall in Objective-C such as:

[foo respondsToSel ector: @el ector (frane)]

could be written using can- i nvoke- p asin 1.3.9 Determining whether a method exists or using selectors as follows:

(i nvoke foo "respondsToSel ector:" (coerce-to-selector "frame"))

11

1 Introduction to the Objective-C Interface

If *sel ect or * isbound to the result of calling:
(coerce-to-selector "franme")
then:

(sel ector-nanme *sel ector*)

will return the string " f r ane" .

1.4 Defining Objective-C classes and methods

The preceding sections covered the use of existing Objective-C classes. This section describes how to implement Objective-C
classesin Lisp.

1.4.1 Objects and pointers

When an Objective-C classisimplemented in Lisp, each Objective-C foreign object has an associated Lisp object that can
obtained by the function obj c- obj ect - f r om poi nt er . Conversely, the function obj c- obj ect - poi nt er can be used to
obtain a pointer to the foreign object from its associated Lisp object.

There are two kinds of Objective-C foreign object, classes and instances, each of which is associated with a Lisp object of
some class as described in the following table:

Objective-C objects and associated Lisp objects

Objective-C type FLI type descriptor Class of associated Lisp object
C ass obj c-cl ass st andar d- cl ass
id obj c- obj ect - poi nter subclass of

st andar d- obj c- obj ect

The implementation of an Objective-C classin Lisp consists of a subclass of st andar d- obj c- obj ect and method
definitions that become the Objective-C methods of the Objective-C class.

1.4.2 Defining an Objective-C class

An Objective-C classimplemented in Lisp and its associated subclass of st andar d- obj c- obj ect should be defined using
the macro def i ne- obj c- cl ass. Thishasasyntax similar to cl : def cl ass, with additional class options including
: obj c- cl ass- naneto specify the name of the Objective-C class.

If the superclass list is empty, then st andar d- obj c- obj ect isused asthe default superclass, otherwise
st andar d- obj c- obj ect must be somewhere on class precedence list or included explicitly.

For example, the following form defines a Lisp class called my- obj ect and an associated Objective-C class called
My Obj ect .

(define-objc-class ny-object ()
((slotl :initarg :slotl :initformnil))
(:objc-class-nane "MyQhj ect"))

The classnmy- obj ect will inherit from st andar d- obj c- obj ect and the class MyQbj ect will inherit from NSChj ect . See

12

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

1 Introduction to the Objective-C Interface

1.4.4 How inheritance wor ks for more details on inheritance.

Theclassreturned by (fi nd-cl ass ' ny-obj ect) isassociated with the Objective-C class object for Mybj ect , so:
(obj c-obj ect-pointer (find-class 'nmy-object))

and:
(coerce-to-objc-class "MyObject")

will return a pointer to the same foreign object.

When an instance of ny- obj ect ismade using nake- i nst ance, an associated foreign Objective-C object of the class
My Qbj ect isallocated by calling the class's" al | oc" method and initialized by calling theinstance's" i ni t " method. The
;init-function initarg can be used to cal adifferent initialization method.

Conversely, if the" al | ocW t hZone: " method is called for the class MyQbj ect (or amethod such as” al | oc" that calls
"al | ocW t hZone: "), then an associated object of type ny- obj ect ismade.

Note: If you implement an Objective-C classin Lisp but its name is not referenced at run time, and you deliver aruntime
application, then you need to arrange for the Lisp class name to be retained during delivery. Seedef i ne- obj c- cl ass for
examples of how to do this.

1.4.3 Defining Objective-C methods

A class defined with def i ne- obj c- cl ass has no methods associated with it by default, other than those inherited from its
ancestor classes. New methods can be defined (or overridden) by using the macros def i ne- obj c- et hod for instance
methods and def i ne- obj ¢- ¢l ass- met hod for class methods.

Note that the Lisp method definition form is separate from the class definition, unlike in Objective-C whereit is embedded in
the @ npl enent at i on block. Also, thereisno Lisp equivalent of the @ nt er f ace block: the methods of an Objective-C
class are just those whose defining forms have been evaluated.

When defining a method, various things must be specified:

» The method name, which isastring as described in 1.3.2 M ethod naming.

» Thereturn type, which is an Objective-C FLI type.
» The Lisp class for which this method applies.
» Any extraarguments and their Objective-C FLI types.

For example, amethod that would be implemented in an Objective-C class as follows:

@ npl erent ati on MyQbj ect
- (unsigned int)areax Wdth: (unsigned int)w dth
hei ght: (unsi gned i nt) hei ght
{
return w dt h*hei ght;
}
@nd

could be defined in Lisp for instances of the MyQoj ect classfrom 1.4.2 Defining an Objective-C class using the form:

(define-objc-nethod ("areaO Wdt h: height:" (:unsigned :int))
((self my-object)
(width (:unsigned :int))
(height (:unsigned :int)))

13

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

1 Introduction to the Objective-C Interface

(* width height))

Thevariable sel f isbound to aLisp object of type ny- obj ect, andwi dt h and hei ght are bound to non-negative integers.
The areais returned to the caller as a non-negative integer.

1.4.3.1 Special method argument and result conversion

For certain types of argument, there is more than one useful conversion from the FLI value to aLisp value. To control this,
the argument specification can include an arg-style, which describes how the argument should be converted. If the arg-style
isspecified as: f or ei gn then the argument is converted using normal FLI rules, but by default certain types are converted
differently:

Special argument conversion for def i ne- obj c- net hod

Argument type Specia argument behavior

cocoa: ns-rect The argument is a vector.

cocoa: ns- poi nt The argument is a vector.

cocoa: ns-si ze The argument is a vector.

cocoa: ns-range The argument is a cons.

obj c- bool Theargumentisnil ort.

obj c- obj ect - poi nt er Depending on the Objective-C class, allows automatic
conversion to astring or array.

objc-c-string The argument isa string.

Likewise, result conversion can be controlled by the result-style specification. If thisis:f or ei gn then the value is assumed
to be suitable for conversion to the result-type using the normal FLI rules, but if result-styleis:l i sp then additional
conversions are performed for specific values of result-type:

Special result conversion for def i ne- obj ¢- net hod

Result type Special result types supported

cocoa: ns-rect The result can be a vector.

cocoa: ns- poi nt The result can be avector.

cocoa: ns-si ze The result can be a vector.

cocoa: ns-range The result can be acons.

obj c- bool Theresult canbeni | ort.

obj c- obj ect - poi nt er Theresult can be astring or an array. An autorel eased
NSSt ri ng or NSAr r ay is allocated.

obj c-cl ass The result can be a string naming a class.

14

1 Introduction to the Objective-C Interface

1.4.3.2 Defining a method that returns a structure

When athe return type of amethod is a structure type such ascocoa: ns- r ect then the conversion specified in Special
result conversion for def i ne- obj c- net hod can be used. Alternatively, and for any other structure defined with

defi ne- obj c- st ruct, the method can specify avariable asitsresult-style. Thisvariable isbound to a pointer to aforeign
structure of the appropriate type and the method should set the slots in this structure to specify the result. For example, the
following definitions show a method that returns a structure:

(define-objc-struct (pair
(:foreign-nane "_Pair"))
(:first :float)
(:second :float))

(define-objc-nethod ("pair" (:struct pair) result-pair)
((this my-object))
(setf (fli:foreign-slot-value result-pair :first) 1f0
(fli:foreign-slot-value result-pair :second) 2f0))

1.4.4 How inheritance works

1.4.2 Defining an Objective-C classintroduced the def i ne- obj c- cl ass macro withthe: obj c- cl ass- nane class
option for naming the Objective-C class. Sincethismacroislikecl : def cl ass, it can specify any number of superclasses
from which the Lisp class will inherit and also provides away for superclass of the Objective-C class to be chosen:

* If some of the Lisp classesin the class precedence list were defined with def i ne- obj c- ¢l ass and given an associated
Objective-C class name, then the first such class nameis used. It isan error for several such classesto bein the class
precedence list unless their associated Objective-C classes are also superclasses of each other in the same order asthe
precedence list.

« If no superclasses have an associated Objective-C class, then the : obj c- super cl ass- name class option can be used to
specify the superclass explicitly.

» Otherwise NSQbj ect isused asthe superclass.

For example, both of these definitions define an Objective-C class that inherits from My Qbj ect , viany- obj ect inthe case
of ny- speci al - obj ect and explicitly for ny- ot her - obj ect :

(define-objc-class ny-speci al -object (ny-object)

0

(:objc-class-nane "MySpeci al Obj ect"))

(define-objc-class ny-other-object ()

()
(:objc-class-nane "MyQt her bj ect ")
(: obj c-supercl ass-nane "MyQhject"))

The set of methods available for a given Objective-C class consists of those defined on the class itself as well as those
inherited from its superclasses.

1.4.5 Invoking methods in the superclass

Within the body of adef i ne- obj c- et hod or def i ne- obj c- cl ass- nmet hod form, the local macro cur r ent - super
can be used to obtain a specia object which will makei nvoke call the method in the superclass of the defining class. Thisis
equivaent to using super in Objective-C.

For example, the Objective-C code:

15

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

1 Introduction to the Objective-C Interface

@ npl emrent ati on MySpeci al Obj ect

- (unsigned int)areaO»'Wdth: (unsigned int)w dth
hei ght: (unsi gned i nt) hei ght

{

return 4*[super areaOf Wdth:w dth hei ght: hei ght];

}
@nd

could be written as followsin Lisp:

(define-objc-nethod ("areaO Wdt h: height:" (:unsigned :int))
((self ny-special -object)
(width (:unsigned :int))
(height (:unsigned :int)))
(* 4 (invoke (current-super) "areaOf Wdth: hei ght:"
wi dth height)))

1.4.6 Abstract classes

An abstract classisanormal Lisp class without an associated Objective-C class. Aswell as defining named Objective-C
classes, def i ne- obj c- ¢l ass can be used to define abstract classes by omitting the : obj c- cl ass- nane class option.

The main purpose of abstract classes is to simulate multiple inheritance (Objective-C only supports single inheritance): when
aLisp classinherits from an abstract class, all the methods defined in the abstract class become methods in the inheriting
class.

For example, the method " si ze" existsin both the Objective-C classes MyDat a and MyQt her Dat a because the Lisp classes
inherit it from the abstract class ny- si ze- mi xi n, even though there is no common Objective-C ancestor class.

(define-objc-class ny-size-mxin ()

()

(define-objc-nethod ("size" (:unsigned :int))
((self my-size-mxin))
42)

(define-objc-class ny-data (ny-size-m xin)

0
(:objc-class-nane "MyData"))

(define-objc-class ny-other-data (mnmy-size-m xin)

0)
(:objc-class-name "MyQt herData"))

1.4.7 Instance variables

In afew cases, for instance when using nib files created by Apple's Interface Builder, it is hecessary to add Objective-C
instance variables to aclass. This can be done using the: obj c-i nst ance-vars classoptiontodefi ne- obj c-cl ass.
For example, the following class contains two instance variables, each of which is a pointer to an Objective-C foreign object:

(define-objc-class nmy-controller ()

()
(:objc-class-name "MyControl ler")
(:objc-instance-vars
("wi dt hFi el d" obj c: obj c- obj ect - poi nt er)
("hei ght Fi el d* obj c: obj c-object-pointer)))

Given an instance of ny- cont r ol | er, the instance variables can be accessed using the accessor

16

1 Introduction to the Objective-C Interface

obj c- obj ect - var - val ue.

1.4.8 Memory management

Objective-C uses reference counting for its memory management, but the associated Lisp objects are managed by the Lisp
garbage collector. When an Objective-C object is allocated, the associated Lisp object is recorded in the runtime system and
cannot be removed by the garbage collector. When its reference count becomes zero, the object is removed from the runtime
system and the generic function obj c- obj ect - dest r oyed is called with the object to allow cleanup methods to be
implemented. After this point, the object can be removed by the garbage collector as normal.

1.4.9 Using and declaring formal protocols

Classes defined by def i ne- obj c- cl ass can be made to support Objective-C formal protocols by specifying the
: obj c- prot ocol s classoption. All the standard formal protocols from macOS 10.4 are predefined.

Note: It isnot possible to define new protocols entirely in Lisp on macOS 10.5 and later, but existing protocols can be
declared using the def i ne- obj c- pr ot ocol macro.

17

2 ODbjective-C Reference

alloc-init-object Function

Summary

Allocates and initializes a foreign Objective-C object.

Package

obj ¢

Signature

al l oc-init-object class => pointer

Arguments

class] A string or Objective-C class pointer.
Values

pointer A foreign pointer to new Objective-C object.
Description

Thefunction al | oc-i ni t - obj ect callsthe Objective-C " al | oc" class method for class and then callsthe"init"
instance method to return pointer. Thisis equivalent to doing:

(i nvoke (invoke class "alloc") "init")

See also

i nvoke

autorelease Function

Summary

Invokes the Objective-C " aut or el ease" method.

Package

obj c

18

2 Objective-C Reference

Signature

aut or el ease pointer => pointer

Arguments

pointer] A pointer to an Objective-C foreign object.
Values

pointer The argument pointer.

Description

The function aut or el ease callsthe Objective-C " aut or el ease" instance method of pointer to register it with the current
autorelease pool. The pointer is returned.

See also

rel ease

retain

nmake- aut or el ease- pool
wi t h- aut or el ease- pool

can-invoke-p Function

Summary

Checks whether a given Objective-C method can be invoked.

Package

obj ¢

Signature

can-i nvoke- p class-or-object-pointer method => flag
Arguments

class-or-object-pointerJ

A string naming an Objective-C class, a pointer to an Objective-C foreign object or the
result of calling cur r ent - super .

method] A string naming the method to invoke.
Values

flagr) A boolean.

Description

The function can- i nvoke- p isused to check whether an Objective-C instance or class method can be invoked (is defined)

19

2 Objective-C Reference

for agiven class or object.

If class-or-object-pointer isastring, then it must name an Objective-C class and the class method named method in that class
is checked. If class-or-object-pointer istheresult of calling cur r ent - super then the instance method named method is
checked for the superclass of the current method. Otherwise class-or-object-pointer should aforeign pointer to an Objective-
C object or class and the appropriate instance or class method named method is checked. The value of method should be a
concatenation of the message name and its argument names, including the colons, for example " set W dt h: hei ght : ".

Thereturn valueflagisni | if the method cannot be invoked andt otherwise.

See also

i nvoke

coerce-to-objc-class Function

Summary

Coerces its argument to an Objective-C class pointer.

Package

obj c

Signature

coerce-to0-obj c-cl ass class => class-pointer

Arguments

class’] A string or Objective-C class pointer.
Values

class-pointer An Objective-C class pointer.
Description

The function coer ce- t 0- obj c- cl ass returns the Objective-C class pointer for the class specified by class. If classisa
string, then the registered Objective-C class pointer isfound. Otherwise class should be aforeign pointer of type
obj c- cl ass and isreturned unchanged.

Thisis the opposite operation to the function obj c- cl ass- nane.

See also

obj c-cl ass
obj c-cl ass- nane

20

2 Objective-C Reference

coerce-to-selector Function

Summary

Coerces its argument to an Objective-C method selector.

Package

obj ¢

Signature

coerce-to-sel ector method => selector

Arguments

method A string or selector.
Values

selector A selector.
Description

The function coer ce-t o- sel ect or returnsthe selector named by method. If method is a string, then the registered selector
isfound or anew oneis registered. Otherwise method should be aforeign pointer of typesel and isreturned unchanged.

Thisisthe opposite operation to the function sel ect or - nane.

See also

sel
sel ect or - nane

current-super Local Macro

Summary

Allows Objective-C methods to invoke their superclass's methods.

Package

obj c

Signature

current-super => super-value

Values

21

2 Objective-C Reference

super-valueld An opague value.

Description

Thelocal macro cur r ent - super returns avalue which can be passed toi nvoke to call amethod in the superclass of the
current method definition (like super in Objective-C). cur r ent - super can also be passed to can- i nvoke- p. When used
within adef i ne- obj c- met hod form, instance methods in the superclass are invoked and when used within a

defi ne- obj c-cl ass- met hod form, class methods are invoked. super-value has dynamic extent and it is an error to use
current - super in any other contexts.

Examples

See 1.4.5 Invoking methods in the superclass.

See also

defi ne- obj c- net hod

defi ne-objc-cl ass-net hod
i nvoke

can-i nvoke-p

define-objc-class Macro

Summary

Defines a class and an Objective-C class.

Package

obj c

Signature

defi ne-obj c-cl ass name (superclassname*) (dot-specifier*) class-option* => name

Arguments

name’] A symbol naming the class to define.
superclass-namel] A symbol naming a superclass.
slot-specifier] A slot description asused by cl : defcl ass.
class-option(] A classoption asused by cl : def cl ass.
Values

name A symbol naming the class to define.
Description

The macro def i ne- obj c- cl ass definesast andar d- ¢l ass called name which is used to implement an Objective-C
class. Normal cl : def cl ass inheritance rules apply for slots and Lisp methods.

22

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

2 Objective-C Reference

Each superclass-name argument specifies a direct superclass of the new class, which can be another Objective-C
implementation class or any other st andar d- cl ass, provided that st andar d- obj c- obj ect isincluded somewherein the
overall class precedencelist. The classst andar d- obj c- obj ect isthe default superclassif no others are specified.

slot-specifiers are standard cl : def cl ass sot definitions.
class-options are standard cl : def cl ass classoptions. In addition the following options are recognized:
(: obj c-cl ass- nane objc-class-name)

This option makes the Objective-C class name used for instances of name be the string objc-class
-name. If none of the classesin the class precedence list of name have a: obj c- cl ass- nane
option then no Objective-C object is created.

(: obj c-supercl ass- nane objc-superclass-name)

This option makes the Objective-C superclass hame of the Objective-C class defined by the

: obj c- cl ass- nane option be the string objc-superclass-name. If omitted, the objc-superclass-
name defaults to the objc-class-name of the first classin the class precedence list that specifies
such aname or to " NSQbj ect " if no such classisfound. It isan error to specify aobjc-
superclass-name which is different from the one that would be inherited from a superclass.

(: objc-instance-vars var-spec*)

This options alows Objective-C instance variables to be defined for this class. Each var-spec
should be alist of the form:

(ivar-name ivar-type)

where ivar-name is a string naming the instance variable and ivar-type is an Objective-C FLI
type. The class will automatically contain all the instance variables specified by its superclasses.

(: obj c-protocol s protocol-name*)

This option allows Objective-C formal protocols to be registered as being implemented by the
class. Each protocol-name should be a string naming a previously defined formal protocol (see
defi ne- obj c- prot ocol). The classwill automatically implement all protocols specified by
its superclasses.

Notes

If nameis not referenced at run time and you deliver an application relying on your class, then you need to arrange for name
to be retained during delivery. This can be achieved with the Delivery keyword : keep- synbol s (seethe Delivery User
Guide), but amore modular approach is shown in the example below.

Examples

Suppose your application relies on a class defined like this:

(obj c: define-objc-class foo ()

0

(:objc-class-nanme "Foo"))

If your Lisp code does not actually reference f oo at run time then you must take care to retain your class during Delivery.
The best way to achieve thisisto keep its name on the plist of some other symbol like this:

(setf (get 'make-a-foo 'owner-class) 'foo)

23

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

2 Objective-C Reference

Here make- a- f oo isthe only code that makes the Foo Objective-C aobject, so it isthe best place to retain the Lisp classf oo
(that is, only if make- a- f oo isretained).

See also

st andar d- obj c- obj ect

defi ne- obj c- net hod

defi ne-obj c-cl ass-net hod
defi ne- obj c- protocol

1.4.2 Defining an Objective-C class

define-objc-class-method Macro

Summary

Defines an Objective-C class method for a specified class.

Package

obj c

Signature

defi ne-obj c-cl ass-nmet hod (name result-type &opti onal result-style) (object-argspec { argspec}*) {form}*

object-argspec : : = (object-var class-name [pointer-var])

argspec :: = (arg-var arg-type [arg-style])

Arguments

namel] A string naming the method to define.

result-typel] An Objective-C FLI type.

result-stylel] An optional keyword specifying the result conversion style, either : 1 i sp or : f or ei gn.
formd A form.

object-var] A symbol naming avariable.

class-namel] A symbol naming a class defined with def i ne- obj c- cl ass.
pointer-var (] An optional symbol naming avariable.

arg-var] A symbol naming a variable.

arg-typel] An Objective-C FLI type.

arg-stylel] An optional symbol or list specifying the argument conversion style.
Description

The macro def i ne- obj c- cl ass- net hod defines the Objective-C class method name for the Objective-C classes
associated with class-name. name should be a concatenation of the message name and its argument names, including the
colons, for example" set W dt h: hei ght : ".

If thedefi ne- obj c-cl ass definition of class-name specifiesthe (: obj c- cl ass- name objc-class-name) option, then the

24

2 Objective-C Reference

method is added to the Objective-C class objc-class-name. Otherwise, the method is added to the Objective-C class of every
subclass of class-name that specifiesthe: obj c- ¢l ass- nane option, allowing a mixin class to define methods that become
part of the implementation of its subclasses (see 1.4.6 Abstract classes).

When the method isinvoked, each formis evaluated in sequence with object-var bound to the (sub)class of class-name,
pointer-var (if specified) bound to the receiver foreign pointer to the Objective-C class and each arg-var bound to the
corresponding method argument.

Seedef i ne- obj c- et hod for details of the argument and result conversion (using arg-type, arg-style, result-type and
result-style).

forms can use functions such asi nvoke to invoke other class methods on pointer-var. The macro cur r ent - super can be
used to obtain an object that allows class methods in the superclass to be invoked (like super in Objective-C).

See also

define-obj c-cl ass
defi ne- obj c- net hod
current - super

define-objc-method Macro

Summary

Defines an Objective-C instance method for a specified class.

Package

obj ¢

Signature

defi ne-obj c- net hod (name result-type &opti onal result-style) (object-argspec { argspec} *) {form}*

object-argspec : : = (object-var class-name [pointer-var])

argspec :: = (arg-var arg-type [arg-style])

Arguments

namel] A string naming the method to define.

result-typel] An Objective-C FLI type.

result-stylel] An optional keyword specifying the result conversion style, either : 1 i sp or : f or ei gn,
or asymbol naming avariable.

formO A form.

object-var[] A symbol naming avariable.

class-namel] A symbol naming a class defined with def i ne- obj c-cl ass.

pointer-var] An optional symbol naming avariable.

arg-varQJ A symbol naming avariable.

arg-typel An Objective-C FLI type.

25

2 Objective-C Reference

arg-stylel] An optional symbol or list specifying the argument conversion style.

Description

The macro def i ne- obj c- net hod defines the Objective-C instance method name for the Objective-C classes associated
with class-name. name should be a concatenation of the message name and its argument names, including the colons, for
example" set W dt h: hei ght : ".

If thedefi ne- obj c-cl ass definition of class-name specifiesthe (: obj c- cl ass- nanme objc-class-name) option, then the
method is added to the Objective-C class objc-class-name. Otherwise, the method is added to the Objective-C class of every
subclass of class-name that specifiesthe: obj c- cl ass- nane option, allowing amixin class to define methods that become
part of the implementation of its subclasses (see 1.4.6 Abstract classes).

When the method isinvoked, each formis evaluated in sequence with object-var bound to the object of type class-name
associated with the receiver, pointer-var (if specified) bound to the receiver foreign pointer and each arg-var bound to the
corresponding method argument.

Each argument has an arg-type (its Objective-C FLI type) and an optional arg-style, which specifies how the FLI valueis
converted to aLisp value. If arg-styleis: f or ei gn, then arg-var is bound to the FL1 value of the argument (typically an
integer or foreign pointer). Otherwise, arg-var is bound to a value converted according to arg-type:

cocoa: ns-rect If arg-styleisomitted or : | i sp then the rectangle is converted to a vector of four el ements of the
form#(x y width height) . Otherwise the argument is aforeign pointer to acocoa: ns-r ect
object.

cocoa: ns-si ze If arg-styleisomitted or : | i sp then the size is converted to a vector of two elements of the form

#(width height) . Otherwise the argument is aforeign pointer to acocoa: ns- si ze object.

cocoa: ns- poi nt If arg-styleisomitted or : | i sp then the point is converted to a vector of two elements of the
form #(x y) . Otherwise the argument is aforeign pointer to acocoa: ns- poi nt object.

cocoa: ns-range If arg-styleisomitted or : | i sp then the range is converted to a cons of the form
(location . length) . Otherwise the argument is aforeign pointer to acocoa: ns-r ange object.

obj c- obj ect - poi nter If arg-styleisthe symbol st ri ng then the argument is assumed to be a pointer to an Objective-C
NSSt ri ng object and is converted to aLisp string or ni | for anull pointer.

If arg-style isthe symbol ar r ay then the argument is assumed to be a pointer to an Objective-C
NSAr r ay object and is converted to aLisp vector or ni | for anull pointer.

If arg-styleisthealist of theform (array et-arg-style) thenthe argument is assumed to be a
pointer to an Objective-C NSAr r ay object and is recursively converted to a Lisp vector using elt-
arg-style for the elementsor ni | for anull pointer.

Otherwise, the argument remains as aforeign pointer to the Objective-C object.

objc-c-string If arg-style isthe symbol st r i ng then the argument is assumed to be a pointer to aforeign string
and is converted to aLisp string or ni | for anull pointer.

After the last form has been evaluated, its value is converted to result-type according to result-style and becomes the result of
the method.

If result-style is a non-keyword symbol and result-type is aforeign structure type defined with def i ne- obj c- st ruct then
the variable named by result-style is bound to a pointer to aforeign object of type result-type while forms are eval uated.
forms must set the dlots in this foreign object to specify the result.

If result-styleis :f or ei gn then the value is assumed to be suitable for conversion to result-type using the normal FLI rules.

26

http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_array.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm

2 Objective-C Reference

If result-styleis:l i sp then additional conversions are performed for specific values of result-type:

cocoa: ns-rect

cocoa: ns-si ze

cocoa: ns- poi nt

cocoa. ns-range

If the value is avector of four elements of the form #(x y width height) , the x, y, width and
height are used to form the returned rectangle. Otherwiseit is assumed to be aforeign pointer to
acocoa: ns-rect andiscopied.

If the value is avector of two elements of the form #(width height) , the width and height are
used to form the returned size. Otherwiseit is assumed to be aforeign pointer to a
cocoa: ns-si ze andis copied.

If the value is avector of two elements of the form #(x y) , the x and y are used to form the
returned point. Otherwiseit is assumed to be aforeign pointer to acocoa: ns- poi nt andis
copied.

If the value is a cons of the form (location . length) , the location and length are used to form
the returned range. Otherwiseit is assumed to be aforeign pointer to acocoa: ns- r ange object
and is copied.

(:signed :char) or(:unsigned :char)

obj c- obj ect - poi nter

obj c-cl ass

If thevalueisni | then NOisreturned.If thevalueist then YES isreturned. Otherwise the value
must be an appropriate integer for result-type.

If the value is a string then it is converted to a newly allocated Objective-C NSSt r i ng object
which the caller is expected to release.

If the value is avector then it is recursively converted to a newly allocated Objective-C NSAr r ay
object which the caller is expected to release.

If thevalueisni | then anull pointer isreturned.

Otherwise the value should be aforeign pointer to an Objective-C aobject of the appropriate class.

The valueis coerced to a Objective-C class pointer asif by coer ce-t 0- obj c-cl ass. In
particular, this allows strings to be returned.

forms can use functions such asi nvoke to invoke other methods on pointer-var. The macro cur r ent - super can be used to
obtain an object that allows methods in the superclass to be invoked (like super in Objective-C).

Examples

See 1.4.3 Defining Obj ective-C methods.

See 1.4.5 Invoking methodsin the superclass.

See 1.4.6 Abstract classes.

See also

defi ne-objc-cl ass

defi ne-obj c-cl ass- net hod

current - super
defi ne-obj c-struct

27

2 Objective-C Reference

define-objc-protocol Macro

Summary

Defines an Objective-C formal protocol.

Package

obj ¢

Signature

defi ne- obj c- prot ocol name &key incorporated-protocols instance-methods class-methods

Arguments
name’] A string naming the protocol to define.

incor porated-protocol sC]
A list of protocol names.
instance-methods] A list of instance method specifications.

class-methods] A list of class method specifications.

Description

The macro def i ne- obj c- pr ot ocol defines an Objective-C formal protocol named by name for use in the
: obj c-cl ass- prot ocol s option of def i ne- obj c-cl ass.

If incor porated-protocols is specified, it should be alist of aready defined formal protocol names. These protocols are
registered as being incorporated within name. The default is for no protocols to be incorporated.

If instance-methods or class-methods are specified, they define the instance and class methods respectively in the protocol.
Each should give alist of method specifications, which are lists of the form:

(name result-type arg-type*)

with components:

name A string naming the method. name should be a concatenation of the message name and its
argument names, including the colons, for example " set W dt h: hei ght : ".

result-type The Objective-C FLI type that the method returns.

arg-type The Objective-C FLI type of the corresponding argument of the method.

The receiver and selector arguments should not be specified by the arg-types. All the standard Cocoa Foundation and
Application Kit protocols from the macOS 10.4 SDK are predefined by LispWorks.

Notes

It is not possible to define new protocols entirely in Lisp on macOS 10.5 and later, but def i ne- obj c- pr ot ocol can be
used to declare existing protocols.

28

2 Objective-C Reference

See also

define-objc-cl ass

define-objc-struct Macro

Summary

Defines aforeign structure for use with Objective-C.

Package

obj c

Signature

define-objc-struct (name {option}*) {dot}*

option ::= (:foreign-name foreign-name) | (:typedef-nane typedef-name)
dlot :: = (dot-name dlot-type)

Arguments

name’] A symbol naming the foreign structure type.
foreign-namel] A string giving the foreign structure name.

typedef-namel] A symbol naming aforeign structure type alias.
dot-namel] A symbol naming the foreign slot.

slot-typel] An FLI type descriptor for the foreign slot.

Description

The macro def i ne- obj c- st ruct definesaforeign structure type named name with the slots specified by each dot-name
and dot-type. In addition, (: struct name) becomes an Objective-C type that can be used withi nvoke, i nvoke-into
and def i ne- obj c- met hod or def i ne- obj ¢c-cl ass- net hod.

foreign-name must be specified to allow the Objective-C runtime system to identify the type.

If typedef-name is specified,it allows that symbol to be used in place of (: st ruct name) when using thetypeina
def i ne- obj c- net hod or def i ne- obj c- ¢l ass- net hod form.

See also

i nvoke-into
def i ne- obj c- net hod
defi ne-obj c-cl ass- net hod

29

2 Objective-C Reference

description

Summary

Callsthe Objective-C " descri pti on" instance method.

Package

obj ¢

Signature

descri ption pointer => string

Arguments

pointer] A pointer to an Objective-C foreign object.
Values

string A string.

Description

Function

Thefunction descri pti on calsthe Objective-C " descri pti on" instance method of pointer and returns the description as

astring.

ensure-objc-initialized

Summary

Initializes the Objective-C system if required.

Package

obj c

Signature

ensure-objc-initialized & ey modules

Arguments

modules] A list of strings.

Description

Function

The function ensur e- obj c-i ni ti al i zed must be called before any other functions in the obj ¢ package to initialize the
Objective-C system. It is safe to use the defining macros such asdef i ne- obj c- cl ass and def i ne- obj c- met hod before

calingensure-objc-initialized.

30

2 Objective-C Reference

modules can be alist of strings specifying foreign modules to load. Typically, this needsto be the pathsto the Cocoa. dyl i b
filesto make Objective-C work. Seef | i : r egi st er - nodul e.

Note: Do not call ensur e-obj c-initialized inaLispWorksfor iOS Runtime application, because this has already been
done by LispWorks when the application starts.

invoke Function

Summary

Invokes an Objective-C method.

Package

obj c

Signature

i nvoke class-or-object-pointer method &r est args => value

Arguments

class-or-object-pointer

A string naming an Objective-C class, a pointer to an Objective-C foreign object or the
result of calling cur r ent - super .

method] A string naming the method to invoke or alist as specified below.
argsC] Arguments to the method.

Values

value The value returned by the method.

Description

The function i nvoke isused to call Objective-C instance and class methods.

If class-or-object-pointer isastring, then it must name an Objective-C class and the class method named method in that class
iscaled. If class-or-object-pointer isthe result of calling cur r ent - super then the instance method named method is
invoked for the superclass of the current method. Otherwise class-or-object-pointer should be aforeign pointer to an
Objective-C object or class and the appropriate instance or class method named method is invoked.

If method is astring then it should be a concatenation of the message name and its argument names, including the colons, for
example" set W dt h: hei ght : ".

Otherwise method must be alist in one of two forms:
e (method-name arg-types)
e (method-name arg-types : resul t-type result-type)

method-name must be a string, as described when method is a string above. arg-types must be alist of FLI argument types,
each one matching the corresponding argument to the method. result-type must be the FLI result type of the method, which
defaultsto : voi d if omitted. Thisis primarily intended for invoking methods using vector types, which are not compatible

31

2 Objective-C Reference

with the Objective-C Runtime type encoding API. See 1.3.8 Invoking a method that uses vector types.

Each argument in argsis converted to an appropriate FLI Objective-C value and is passed in order to the method. This
conversion is done based on the signature of the method as follows:

NSRect If the argument is a vector of four elements of theform #(x y width height) , the x, y, width and
height are used to form the rectangle. Otherwise it is assumed to be aforeign pointer to a
cocoa: ns-rect ndiscopied.

NSSi ze If the argument is a vector of two elements of the form #(width height) , the width and height are
used to form the size. Otherwiseit is assumed to be aforeign pointer to acocoa: ns- si ze and
is copied.

NSPoi nt If the argument is a vector of two elements of the form #(x y) , thex and y are used to form the

point. Otherwiseit is assumed to be aforeign pointer to acocoa: ns- poi nt and is copied.

NSRange If the argument is a cons of the form (location . length) , the location and length are used to
form the range. Otherwise it is assumed to be aforeign pointer to acocoa: ns- r ange object
and is copied.

other structures The argument should be aforeign pointer to the appropriate struct object and is copied.

BOCOL If the argument isni | then NOis passed, if the argument ist then YES is passed. Otherwise the

argument must be an integer (due to alimitation in the Objective-C type system, this case cannot
be distinguished from the si gned char type).

id If the argument is a string then it is converted to a newly allocated Objective-C NSSt r i ng object
which is released when the function returns.

If the argument is a vector then it is recursively converted to a newly alocated Objective-C
NSAr r ay object which is released when the function returns.

If the argument isni | then anull pointer is passed.

Otherwise the argument should be aforeign pointer to an Objective-C object of the appropriate
class.

d ass The argument is coerced to an Objective-C class pointer asif by coer ce-t 0- obj c-cl ass. In
particular, this allows strings to be passed as class arguments.

char * If the argument is a string then it is converted to anewly allocated foreign string which is freed
when the function returns.

Otherwise the argument should be aforeign pointer.

struct structname * The argument should be aforeign pointer to a struct whose type is defined by
def i ne- obj c- st ruct with: f or ei gn- nane structname.

other integer and pointer types

All other integer and pointer types are converted using the normal FLI rules.

When the method returns, its value is converted according to its type:

NSRect A vector of four elements of theform #(x y width height) is created containing the rectangle.

NSSi ze A vector of two elements of the form #(width height) is created containing the size.

32

2 Objective-C Reference

NSPoi nt A vector of two elements of theform #(x y) iscreated containing the point.
NSRange A cons of theform (location . length) is created containing the range.
other structures Other structures cannot be returned by value using i nvoke. Seei nvoke-i nt o for how to

handle these types.

BOOL If the value is NOthen 0 is returned, otherwise 1 isreturned. Seealsoi nvoke- bool .
id An object of type obj c- obj ect - poi nt er isreturned.
char * The valueis converted to a string and returned.

other integer and pointer types

All other integer and pointer types are converted using the normal FLI rules.

See also

i nvoke- bool
i nvoke-into
can-i nvoke-p

invoke-bool Function

Summary

Invokes an Objective-C method that returns a BOOL.

Package

obj ¢

Signature

i nvoke- bool class-or-object-pointer method &r est args => value

Arguments

class-or-object-pointer J

A string naming an Objective-C class, a pointer to an Objective-C foreign object or the
result of calling cur r ent - super .

methodd A string naming the method to invoke or alist as specified by i nvoke.
argsC] Arguments to the method.

Values

value The value returned by the method.

33

2 Objective-C Reference

Description

The function i nvoke- bool isused to call Objective-C instance and class methods that return the type BOOL. It behaves
identically toi nvoke, except that if the return valueis NOthen ni | isreturned, otherwiset isreturned. The meaning of
class-or-object-pointer, method and argsisidentical toi nvoke.

See also

i nvoke
i nvoke-into

invoke-into Function

Summary

Invokes an Objective-C method that returns a specific type or fills a specific object.

Package

obj ¢

Signature

i nvoke-into result class-or-object-pointer method & est args => value

Arguments
resultC] A symbol or list naming the return type or an object to contain the returned value.

class-or-object-pointer 0

A string naming an Objective-C class, a pointer to an Objective-C foreign object or the
result of calling cur r ent - super .

methodd A string naming the method to invoke or alist as specified by i nvoke.
argsl] Arguments to the method.

Values

value The value returned by the method.

Description

Thefunctioni nvoke- i nt o isused to call Objective-C instance and class methods that return specific types which are not
supported directly by i nvoke or for methods that return values of some foreign structure type where an existing object
should be filled with the value. The meaning of class-or-object-pointer, method and argsisidentical toi nvoke.

The value of result controls how the value of the method is converted and returned as follows;

thesymbol stri ng If the result type of the method isi d, then the value is assumed to be an Objective-C object of
classNSSt ri ng and is converted a string and returned. Otherwise no specia conversion is
performed.

http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm

2 Objective-C Reference

the symbol ar r ay If the result type of the method isi d, then the value is assumed to be an Objective-C abject of
class NSAr r ay and is converted a vector and returned. Otherwise no special conversionis
performed.

alist of theform (array €t-type)

If the result type of the method isi d, then the value is assumed to be an Objective-C object of
class NSAr r ay and isrecursively converted a vector and returned. The component elt-type
should be either st ri ng, ar r ay or another list of the form (ar ray sub-elt-type) and isused to
control the conversion of the elements.

Otherwise no special conversion is performed.

the symbol : poi nt er If the result type of the method isunsi gned char *, then the valueisreturned as a pointer of
typeobj c-c-string.

Otherwise no specia conversion is performed.

alist of theform (: poi nter €t-type)

If the result type of the method isunsi gned char *, then the valueis returned as a pointer
with element type elt-type.

Otherwise no specia conversion is performed.

apointer to aforeign structure

If the result type of the method is aforeign structure type defined with def i ne- obj c- st ruct
or abuilt-in structure type such as NSRect , the value is copied into the structure pointed to by
result and the pointer is returned. Otherwise no special conversion is performed.

an object of typevect or

If the result type of the method isi d, then the value is assumed to be an Objective-C object of
class NSAr r ay and is converted to fill the vector, which must be at |east aslong asthe NSAr r ay.
The vector is returned.

If the result type of the method isNSRect , NSSi ze or NSPoi nt then thefirst 4, 2 or 2 elements
respectively of the vector are set to the corresponding components of the result. The vector is
returned.

Otherwise no specia conversion is performed.

an object of typecons

If the result type of the method is NSRange then thecar of the consis set to the location of the
range and the cdr_of the consis set to the length of the range. The consis returned.

Otherwise no specia conversion is performed.

See also

i nvoke
i nvoke- bool
defi ne-obj c-struct

35

http://www.lispworks.com/documentation/HyperSpec/Body/t_array.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_array.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_vector.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_cons.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

2 Objective-C Reference

make-autorelease-pool Function

Summary

Makes an autorel ease pool for the current thread.

Package
obj ¢
Signature

nmake- aut or el ease- pool => pool

Values

pool A foreign pointer to an autorel ease pool object.

Description

The function make- aut or el ease- pool returns anew Objective-C autorelease pool for the current thread. An autorelease
pool is provided automatically for the main thread when running CAPI with Cocoa, but other threads need to allocate one if
they call Objective-C methods that use aut or el ease.

See also

aut or el ease
wi t h- aut or el ease- pool

objc-at-question-mark FLI Type Descriptor

Summary

A foreign type corresponding to '@7? character pair in the type encoding of a method.

Package
obj c
Syntax

obj c-at - questi on- nark

Description
The FLI type obj c- at - quest i on- mar k is corresponds to the '@? character pair in the type encoding of a method.

According to the documentation thisis an illegal combination, but experimentally it is used by Apple. It seemsto be used
when the argument should be a pointer to a (Clang) block, which isthe foreigntypef | i : f or ei gn- bl ock- poi nter in
LispWorks. Since thisis not documented, it cannot be relied on.

36

2 Objective-C Reference

Notes

At the time of writing obj c- at - quest i on- mar k isan aliasfor the FLI type: poi nter.

See also

obj c-cl ass- net hod- si gnat ure

objc-bool FLI Type Descriptor

Summary

A foreign type for the Objective-C type BOOL.

Package
obj ¢
Syntax

obj c- bool

Description

The FLI type obj c- bool isahboolean type for use as the Objective-C type BOOL. It converts between ni | and NOand
between non-nil and YES.

See also

i nvoke- bool

objc-c++-bool FLI Type Descriptor

Summary

A foreign type corresponding to the C++ bool or the C99 _Bool type.

Package
obj c
Syntax

obj c- c++- bool

Description

The FLI type obj c- c++- bool corresponds to the C++ bool or C99 Bool types (the 'B' character in the type encoding
defined by the Type Encodings section of Apple's Objective-C Runtime Programming Guide). Note that most boolean values
are specified using the Objective-C BOOL type (obj c- bool in LispWorks), so obj c- c++- bool isnot commonly used.
However, on Macs based on Apple silicon, the Objective-C BOOL typeisthe C99 Bool type, so you may see

37

2 Objective-C Reference

obj c- c++- bool inerror messages or foreign template definitions.

Notes

At the time of writing obj c- c++- bool isanaliasfor the FLI type (: bool ean : standard).

See also

obj c-cl ass- et hod- si gnature

objc-class FLI Type Descriptor

Summary

A foreign type for pointers to Objective-C class objects.
Package

obj c

Syntax

obj c-cl ass

Description

The FLI type obj c- cl ass isapointer type that is used to represent pointers to Objective-C class objects. Thisislike the
d ass typein Objective-C.

See also

obj c- obj ect - poi nter

objc-class-method-signature Function

Summary

Triesto find the relevant method, and returns its signature.

Package

obj c

Signature

obj c-cl ass- et hod- si gnat ur e class-spec method-name => arg-types, result-type, type-encoding

Arguments
class-specl A string, an obj c- obj ect - poi nt er or an obj c-cl ass pointer.
method-namel] A string.

38

2 Objective-C Reference

Values

result-type A foreign type descriptor.
type-encoding A string.

Description

The function obj c- cl ass- net hod- si gnat ur e triesto find the relevant method, and returns its signature.

class-spec needs to be a string naming a class, an obj c- obj ect - poi nt er foreign pointer (which specifiesits class), or an

obj c-cl ass pointer.

method-name specifies the method name. It can be either a class method or an instance method.

Thefirst return value isalist of the argument types (that is, foreign types). Note that the first and second arguments of all
Objective-C methods are the object/class and the method selector (name). These are are typed as obj c- obj ect - poi nt er

and sel , so arg-types always starts with these two symbols.

The second return value is the result type of the method.

The third return value is a string which is the type encoding of the signature of the method, as stored internally by the

Objective-C runtime system.

If obj c- cl ass- et hod- si gnat ur e failsto locate the method, it returnsni | .

See also

obj c-cl ass
obj c- obj ect - poi nter
sel

objc-class-name

Summary

Returns the name of an Objective-C class.

Package

obj ¢

Signature

obj c-cl ass- nane class => name

Arguments

classd A pointer to an Objective-C class.
Values

name A string.

39

Function

2 Objective-C Reference

Description
The function obj c- cl ass- nane returns the name of the Objective-C class class as a string.

Thisisthe opposite operation to the function coer ce- t 0- obj c- cl ass.

See also

obj c-cl ass
coerce-to-objc-cl ass

objc-c-string FLI Type Descriptor
Summary

A foreign type for the Objective-C typechar *.

Package

obj c

Syntax

objc-c-string

Description

The FLI typeobj c- c- st ri ng isapointer type for use where the Objective-C type char * occurs asthe argument in a
method definition. It converts the argument to a string within the body of the method.

See also

defi ne- obj c- net hod

objc-object-destroyed Generic Function

Summary

Called when an Objective-C is destroyed.

Package
obj c
Signature

obj c- obj ect - dest royed object

Method signatures

obj c- obj ect - destroyed (object st andar d- obj c- obj ect)

2 Objective-C Reference

Arguments

object] An object of type st andar d- obj c- obj ect .

Description

When an Objective-C foreign object is destroyed (when the reference count becomes zero) and its class was defined by
defi ne- obj c- cl ass, the runtime system calls the generic function obj c- obj ect - dest r oyed with object being the

associated object of type st andar d- obj c- obj ect to alow cleanups to be done.

The built-in primary method specializing object on st andar d- obj c- obj ect does nothing, but typically : af t er methods

are defined to handle class-specific cleanups. This function should not be called directly.

Defining amethod for obj c- obj ect - dest r oyed issimilar to implementing " deal | oc" in Objective-C code.

See also

rel ease
st andar d- obj c- obj ect

objc-object-from-pointer

Summary

Finds the Lisp object associated with a given Objective-C foreign pointer.

Package

obj c

Signature

obj c-obj ect - from poi nter pointer => object

Arguments

pointer] A pointer to an Objective-C foreign object.
Values

objectd The Lisp object associated with pointer.
Description

Function

The function obj c- obj ect - f r om poi nt er returnsthe Lisp object object associated with the Objective-C foreign object
referenced by pointer. For an Objective-C instance, object is of type st andar d- obj c- obj ect and for an Objective-C class

itisthest andar d- cl ass that was defined by def i ne- obj c- cl ass.

Note that for a given returned object, the value of the form:
(obj c- obj ect - poi nt er object)

has the same address as pointer.

41

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm

2 Objective-C Reference

See also

define-objc-cl ass
st andar d- obj c- obj ect
obj c- obj ect - poi nter

objc-object-pointer Function

Summary

Returns the Objective-C foreign pointer associated with a given Lisp object.
Package

obj c

Signature

obj c- obj ect - poi nt er object-or-class => pointer

Arguments

object-or-class] Aninstance of st andar d- obj c- obj ect or aclassdefined by def i ne- obj c-cl ass.
Values

pointer A pointer to an Objective-C foreign object or class.

Description

The function obj c- obj ect - poi nt er returns the Objective-C foreign pointer associated with a given Lisp object. If object
isaninstance of st andar d- obj c- obj ect then pointer will have foreign type obj c- obj ect - poi nt er . Otherwise, abject
should be a class defined by def i ne- obj c- cl ass and the associated Objective-C class object is returned as aforeign

pointer of type obj c- cl ass.

Note that for a given returned pointer, the value of the form:

(obj c-obj ect-from poi nter pointer)
is object-or-class.

See also

st andar d- obj c- obj ect
defi ne-objc-cl ass
obj c- obj ect - poi nter

obj c-cl ass
obj c-obj ect-from pointer

42

2 Objective-C Reference

objc-object-pointer FLI Type Descriptor

Summary

A foreign type for pointers to Objective-C foreign objects.
Package

obj ¢

Syntax

obj c- obj ect - poi nter

Description

The FLI type obj c- obj ect - poi nt er apointer type that is used to represent pointers to Objective-C foreign objects. This
islikethei d typein Objective-C.

See also

obj c-obj ect-from pointer

obj c-cl ass
objc-object-var-value Accessor
Summary

Accesses an Objective-C instance variable.
Package
obj ¢

Signature
obj c- obj ect - var - val ue object var-name &key result-pointer => value

(setf objc-object-var-val ue) value object var-name &key result-pointer => value

Arguments

object] A object of type st andar d- obj c- obj ect .
var-namel] A string.

result-pointer 0 A foreign pointer or ni | .

valuell A value.

2 Objective-C Reference

Values

valuell A value.

Description

The accessor obj c- obj ect - var - val ue gets or gets the value of the instance variable var-name in the Objective-C foreign
object associated with object. The type of value depends on the declared type of the instance variable. If thistypeisaforeign
structure type, then result-pointer should be supplied to the reader, giving a pointer to aforeign object of the correct type that
isfilled with the value.

Note that it isonly possible to access instance variables that are defined in Lisp by def i ne- obj ¢- cl ass, not those inherited
from superclasses implemented in Objective-C.

See also

st andar d- obj c- obj ect
define-objc-cl ass

objc-unknown FLI Type Descriptor

Summary

A foreign type corresponding to '? character in the type encoding of a method.
Package

obj c

Syntax

obj ¢c- unknown

Description
The FLI type obj c- unknown corresponds to '? character in the type encoding of a method.

In general, you do not need to use this, but you may see it in the result of obj c- cl ass- met hod- si gnat ure.

Notes

At the time of writing obj c- unknown isan aliasfor the FLI type: voi d.

See also

obj c-cl ass- et hod- si gnat ure

2 Objective-C Reference

release

Summary

Invokes the Objective-C " r el ease" method.

Package

obj ¢

Signature

rel ease pointer

Arguments

pointer] A pointer to an Objective-C foreign object.

Description

Thefunction r el ease callsthe Objective-C " r el ease" instance method of pointer to decrement its retain count.

See also

retain
aut or el ease
ret ai n- count

retain

Summary

Invokes the Objective-C " r et ai n" method.

Package

obj c

Signature

retain pointer => pointer

Arguments

pointer] A pointer to an Objective-C foreign object.
Values

pointer An argument pointer.

Function

Function

2 Objective-C Reference

Description

Thefunctionr et ai n calsthe Objective-C " r et ai n" instance method of pointer to decrement its retain count. pointer is
returned.

See also

rel ease
aut or el ease
ret ai n- count

retain-count Function

Summary

Invokes the Objective-C " r et ai nCount " method.

Package

obj ¢

Signature

retai n-count pointer => retain-count

Arguments

pointer] A pointer to an Objective-C foreign object.
Values

retain-count An integer.

Description

Thefunctionr et ai n- count callsthe Objective-C "r et ai nCount " instance method of pointer to return its retain count.

See also

retain
rel ease

sel FLI Type Descriptor

Summary

A foreign type for Objective-C method selectors.

Package

obj c

46

2 Objective-C Reference

Syntax

sel

Description

The FLI type sel isan opague type used to represent method selectors. Thisislike the SEL typein Objective-C.

A selector can be obtained from a string by calling the function coer ce-t o- sel ect or .

See also

coerce-to-sel ector
defi ne- obj c- net hod

selector-name

Summary

Returns the name of a method selector.

Package

obj c

Signature

sel ect or - nane sdector => name

Arguments

selector A string or selector.
Values

name A string.
Description

Function

The function sel ect or - nane returns the name of the method selector selector. If selector isastring theniit is returned

unchanged, otherwise it should be aforeign sel pointer and its name is returned.

Thisisthe opposite operation to the function coer ce-t o- sel ect or.

See also

sel

coerce-to-sel ector

47

2 Objective-C Reference

standard-objc-object Abstract Class

Summary

The class from which all classes that implement an Objective-C class should inherit.

Package

obj ¢

Superclasses

st andar d- obj ect

Initargs

cinit-function An optional function that is called to initialize the Objective-C foreign object.
. poi nter An optional Objective-C foreign object pointer for the object.

Readers

obj c- obj ect - poi nter

Description

The abstract class st andar d- obj c- obj ect providesthe framework for subclasses to implement an Objective-C class.

Subclasses are typically defined using def i ne- obj c- cl ass, which allows the Objective-C class nhame to be specified.

Instances of such a subclass have an associated Objective-C foreign object whose pointer can be retrieved using the

obj c- obj ect - poi nt er accessor. The function obj c- obj ect - fr om poi nt er can be used to obtain the object again
from the Objective-C foreign pointer.

There are two ways that subclasses of st andar d- obj c- obj ect can be made:

» Vianmake-i nst ance. Inthiscase, the Objective-C object is allocated automatically by calling the Objective-C class's
"al | oc" method. If theinit-function initarg is not specified, the object isinitialized by callingits"i ni t " method. If
the init-function initarg is specified, it is called during initialization with the newly allocated object and it should call the
appropriate initialization method for that object and return its result. This allows a specific initialization method, such as
"initWthFranme:", tobecaledif required.

» Viathe Objective-C classs" al | ocW t hZone: " method (or amethod such as" al | oc" that calls
"al | ocW t hZone: "). Inthis case, aninstance of the subclass of st andar d- obj c- obj ect is made with the value of
the pointer initarg being a pointer to the newly allocated Objective-C foreign object.

See also

define-objc-cl ass

obj c-obj ect - destroyed
obj c-obj ect-from poi nter
obj c- obj ect - poi nter

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

2 Objective-C Reference

trace-invoke

Summary

Traces the invocation of an Objective-C method.

Package

obj ¢

Signature

trace-i nvoke method

Arguments

method(] A string.

Description

Thefunctiont r ace- i nvoke setsup atrace oni nvoke for calls to the Objective-C method named method. Use

unt r ace-i nvoke to remove any such tracing.

See also

i nvoke
unt race-i nvoke

untrace-invoke

Summary

Removes traces of the invocation of an Objective-C method.

Package

obj c

Signature

unt r ace-i nvoke method

Arguments

methodd] A string.

Description

Function

Function

The function unt r ace- i nvoke removes any tracing oni nvoke for callsto the Objective-C method named method.

2 Objective-C Reference

See also

i nvoke
trace-i nvoke

with-autorelease-pool

Summary

Evaluates forms in the scope of atemporary autorelease pool.

Package

obj c

Signature

wi t h- aut or el ease- pool (option*) form* => values

Arguments

optionO There are currently no options.
form(A form.

Values

values The values returned by the last form.
Description

Macro

Themacrowi t h- aut or el ease- pool creates anew autorelease pool and evaluates each formin sequence. The pool is
released at the end, even if anon-local exit is performed by forms. An autorelease pool is provided automatically for the main
thread when running CAPI with Cocoa, but other threads need to allocate one if they call Objective-C methods that use

aut or el ease.

option must be empty.

Examples

The" descri pti on" method returns an autoreleased NSSt r i ng, so to make this function safe for use anywhere, the

wi t h- aut or el ease- pool macrois used:

(defun object-description (object)
(wi t h-autorel ease-pool ()

(invoke-into 'string object "description")))

See also

aut or el ease
nmake- aut or el ease- poo

3 The Cocoa Interface

3.1 Introduction

Cocoais an extensive macOS API for accessto avariety of operating system services, mostly through Objective-C classes
and methods. These can be used via the Objective-C interface described in the preceding chapters, but there are afew foreign
structure types and hel per functions defined in the cocoa package that are useful.

3.2 Types

There are four commonly used structure types in Cocoathat have equivalents in the Objective-C interface. In addition, each
one has a helper function that will set its slots.

Cocoa structure types and helper functions

Objective-C type FLI type descriptor Helper function to set the slots
NSRect cocoa: ns-rect cocoa:set-ns-rect*

NSPoi nt cocoa: ns- poi nt cocoa: set-ns-point*
NSSi ze cocoa: ns-si ze cocoa: set-ns-si ze*
NSRange cocoa: ns-range cocoa: set-ns-range*

3.3 Observers

Cocoa provides a mechanism called notification centers to register observers for particular events. The helper functions
cocoa: add- obser ver and cocoa: r enove- obser ver can be used to add and remove observers.

3.4 How to run Cocoa on its own

This section describes how you can run LispWorks as a Cocoa application, either by saving a LispWorks devel opment image
with a suitable restart function, or by delivering a LispWorks application which uses a nib file generated by Apple's Interface
Builder.

3.4.1 LispWorks as a Cocoa application

The following startup function can be used to make LispWorks run as a Cocoa application. Typically, before calling " r un"
you would create an application delegate with amethod on appl i cati onDi dFi ni shLaunchi ng: toinitiaizethe
application's windows.

(defun init-function ()
(mp:initialize-multiprocessing
“main thread"

()
(1l ambda ()
(objc:ensure-objc-initialized

51

3 The Cocoa Interface

: nodul es
"("/ Systen Li brary/ Framewor ks/ Foundat i on. f r amewor k/ Ver si ons/ ¢/ Foundati on"
"/ Syst ent Li brary/ Franmewor ks/ Cocoa. f r amewor k/ Ver si ons/ A/ Cocoa"))
(obj c: wi t h-aut orel ease-pool ()
(let ((app (objc:invoke "NSApplication"
"shar edApplication")))
(objc:invoke app "run"))))))

To use this, abundle must be created, callingi ni t - f uncti on on startup. For example, the following build script will create
| w- cocoa- app. app:

(i n-package "CL-USER")
(1 oad-al | - pat ches)
(exanpl e-conpile-file
"configuration/ macos-application-bundle.lisp" :load t)
(save-i mage (when (save-argunent-real-p)
(write-macos-application-bundle "lw cocoa-app"))
:restart-function '"init-function)

See "Saving a LispWorks image" in the LispWorks® User Guide and Reference Manual for information on using a build
script to create anew LispWorks image.

3.4.2 Using a nib file in a LispWorks application

For a complete example demonstrating how to build a standalone Cocoa application which uses anib file, see these two files:

(exanple-edit-file "objc/area-cal cul ator/area-cal cul ator")

(exanple-edit-file "objc/area-cal cul ator/deliver")

The area calculator example connects the nib file generated by Apple's Interface Builder to a Lisp implementation of an
Objective-C class which acts asthe MV C contraller.

52

4 Cocoa Reference

add-observer Function

Summary

Adds an observer to a notification center.

Package

cocoa

Signature

add- observer target selector &ey name object center

Arguments

targetd] A pointer to an Objective-C foreign object.
selector] A selector of typesel .

namel] A string or ni | .

object A pointer to an Objective-C foreign abject or ni | .
centerJ A natification center.

Description

The function add- obser ver callsthe Objective-C instance method " addCoser ver : sel ect or : nane: obj ect : " of
center to add target as an observer for selector with the given name and object, which both default toni | .

If center is omitted then it defaults to the default notification center.

See also

renove- observer

ns-not-found Constant

Summary

A constant similar to the Cocoa constant NSNot Found.

Package

cocoa

53

4 Cocoa Reference

Description

The constant ns- not - f ound has the same value as the Cocoa Foundation constant NSNot Found.

ns-point FLI Type Descriptor

Summary

A foreign type for the Objective-C structure type NSPoi nt .

Package

cocoa

Syntax

ns- poi nt

Description

The FLI typens- poi nt isastructure type for use as the Objective-C type NSPoi nt . The structure hastwo dots, : x and : y,
both of foreigntype: f 1 oat .

When used directly in method definition or invocation, it alows automatic conversion to/from a vector of two elements of the
form#(x y).

See also

ns-rect
set-ns-point*

ns-range FLI Type Descriptor

Summary

A foreign type for the Objective-C structure type NSRange.

Package

cocoa

Syntax

ns-range

Description

The FLI typens- r ange isastructure type for use as the Objective-C type NSRange. The structure has two slots,
:l ocationand: | engt h, both of foreign type (: unsi gned :int).

When used directly in method definition or invocation, it allows automatic conversion to/from a cons of the form
(location . length) .

4 Cocoa Reference

See also

set - ns-range*

ns-rect FLI Type Descriptor

Summary

A foreign type for the Objective-C structure type NSRect .

Package

cocoa

Syntax

ns-rect

Description

The FLI typens-rect isastructure type for use as the Objective-C type NSRect . The structure hastwo dlots, : ori gi n of
foreign type ns- poi nt and: si ze of foreigntypens- si ze.

When used directly in method definition or invocation, it allows automatic conversion to/from avector of four elements of the
form#(x y width height) .

See also

ns- poi nt
ns-si ze
set-ns-rect*

ns-size FLI Type Descriptor

Summary

A foreign type for the Objective-C structure type NSSi ze.

Package

cocoa
Syntax
ns-size

Description

The FLI typens- si ze isastructure type for use as the Objective-C type NSSi ze. The structure has two dots, : wi dt h and
: hei ght, both of foreigntype: f | oat .

When used directly in method definition or invocation, it allows automatic conversion to/from a vector of two elements of the

55

4 Cocoa Reference

form #(width height) .

See also

ns-rect
set -ns-si ze*

remove-observer

Summary

Removes an observer from a notification center.

Package

cocoa

Signature

renove- observer target &ey name object center

Arguments

target[] A pointer to an Objective-C foreign object.
namel] A string or ni | .

object A pointer to an Objective-C foreign abject or ni | .
centerJ A natification center.

Description

Function

Thefunction r enove- obser ver calsthe Objective-C instance method " r enoveCbser ver : name: obj ect : " of center to

remove target as an observer with the given name and object, which both default to ni | .

If center is omitted then it defaults to the default notification center.

See also

add- obser ver

set-ns-point*

Summary

Set the dotsin ans- poi nt_ structure.

Package

cocoa

Function

4 Cocoa Reference

Signature

set-ns-point* point x y => point

Arguments

point] A pointer to aforeign object of typens- poi nt .
X A real.

Values

point A pointer to aforeign object of type ns- poi nt .
Description

The function set - ns- poi nt * setsthe slots of the foreign ns- poi nt structure pointed to by point to the values of x and y.
point is returned.

See also

ns- poi nt
set-ns-rect*

set-ns-range* Function

Summary

Set thedotsin ans- r ange structure.

Package

cocoa

Signature

set-ns-range* range location length => range

Arguments

rangel] A pointer to aforeign object of type ns- r ange.
location[] A positive integer.

length A positive integer.

Values

range A pointer to aforeign object of type ns- r ange.
Description

The function set - ns- r ange* setsthe slots of the foreign ns- r ange structure pointed to by range to the values of location

57

4 Cocoa Reference

and length. rangeisreturned.

See also

ns-range

set-ns-rect*

Summary

Set thedotsinans-rect structure.

Package

cocoa

Signature

set-ns-rect* rect x y width height => rect

Arguments

rectl]
x

yQl
width(J
heightO

Values

rect

Description

A pointer to aforeign object of typens-rect .
A redl.
A redl.
A real.
A redl.

A pointer to aforeign object of typens-rect .

Function

Thefunction set - ns-r ect * setsthe dots of the foreign ns- r ect structure pointed to by rect to the values of x, y, width
and height. rect isreturned.

See also

ns-rect
set-ns-point*
set-ns-size*

58

4 Cocoa Reference

set-ns-size* Function

Summary

Set thedotsin ans- si ze structure.

Package

cocoa

Signature

set-ns-size* size width height => size

Arguments

sizel] A pointer to aforeign object of typens- si ze.
widthCl Areal.

height[] A redl.

Values

size A pointer to aforeign object of typens- si ze.
Description

Thefunction set - ns- si ze* setsthe dots of the foreign ns- si ze structure pointed to by size to the values of width and
height. sizeis returned.

See also

ns-si ze
set-ns-rect*

59

5 Self-contained examples

This chapter enumerates the set of examplesin the LispWorks library relevant to the content of this manual. Each example
file contains complete, self-contained code and detailed comments, which include one or more entry points near the start of
the file which you can run to start the program.

To run the example code:

1. Open thefilein the Editor tool in the LispWorks IDE. Evaluating the call to exanpl e-edi t-fi | e shown below will
achieve this.

2. Compile the example code, by Ct r | +Shi f t +B.
3. Place the cursor at the end of the entry point formand pressCtr | +X Ctrl +Etorunit.

4. Read the comment at the top of the file, which may contain further instructions on how to interact with the example.

5.1 Example definitions
Thisfile contains various exampl e definitions used in this manual:

(exanpl e-edit-file "objc/mnual ")

5.2 Displaying Cocoa classes in CAPI windows

5.2.1 Using Web Kit to display HTML

This example demonstrates the use of capi : cocoa- vi ew pane containing aWebVi ew from Apple's Web Kit and allowing
an HTML page to be viewed:

(exanple-edit-file "objc/web-kit")

5.2.2 Showing a movie using NSMovieView

This example demonstrates the use of capi : cocoa- vi ew pane containing a NSMovi eVi ew and allowing amoviefile to be
opened and played:

(exanple-edit-file "objc/novie-view')

5.3 nib file example

This example connects a nib file (as generated by Apple's Interface Builder) to a Lisp implementation of an Objective-C class
which acts asthe MV C controller:

(exampl e-edit-file "objc/area-cal cul ator/area-cal cul ator")

60

5 Self-contained examples

Use this script to build it as a standal one Cocoa application:

(exampl e-edit-file "objc/area-cal cul ator/deliver")

61

| ndex

A
abstract classes 1.4.6: Abstract classes 16

st andar d- obj c- obj ect 48 1.2.1: Objective-C pointersand pointer types 6, 1.4.1: Objectsand pointers 12, 1.4.2: Definingan
Objective-Cclass 12, define-objc-class 23

accessors
obj c-obj ect-var-value 43 14.7: Instancevariables 17
add- observer function 53
addQbserver: sel ect or: nanme: obj ect: ObjectiveeC method add- observer 53
al l oc-init-object function 18
al | oc Objective-C method 1.4.2: Defining an Objective-C class 13, all oc-init-object 18, standard-objc-object 48
al | ocWt hZone: Objective-C method 1.4.2: Defining an Objective-C class 13, st andar d- obj c- obj ect 48
AppleInterface Builder ~ 3.4.2: Using anibfilein a LispWorks application 52
argument conversion 1.3.3: Special argument and result conversion 8, 1.4.3.1: Special method argument and result conversion 14
array returntype 1.3.6: Invoking a method that returnsa string or array 9

associated objects 1.4.1: Objectsand pointers 12, 1.4.2: Defining an Objective-C class 13, 1.4.2: Defining an Objective-C
class 13, 1.4.2: Defining an Objective-Cclass 13, 1.4.4: Howinheritanceworks 15, 1.4.8: Memory management 17

aut orel ease function 18 1.3.10: Memory management 11

aut or el ease Objective-C method 1.3.10: Memory management 11

autorelease pools 1.3.10: Memory management 11

B
booleanreturntype 1.3.4: Invoking a method that returns a boolean 9
booleantype 1.2.2: Integer and booleantypes 7

C
can-invoke-p function 19 1.3.9: Determining whether amethod exists 11, 1.3.11: Selectors 11
classes

abstract 1.4.6: Abstract classes 16

cocoa-Vvi ew pane 52.1: UsingWebKittodisplay HTML 60, 5.2.2: Showing a movie using NSMovieView 60
defining 1.4.2: Defining an Objective-C class 12
classmethods 1.3.1: Smple callsto instance and class methods 7

class options
:0bj c-class-name 14.2: Defining an Objective-C class 12, defi ne-objc-class 23
:0bjc-instance-vars 14.7: Instancevariables 16, defi ne-objc-class 23
:0bjc-protocols 14.9: Usingand declaring formal protocols 17, defi ne-objc-class 23

: obj c-supercl ass-nane 1.4.4: Howinheritanceworks 15, define-objc-class 23

62

Index

Cocoaapplication 3.4: Howtorun Cocoaonitsown 51
cocoa- Vi ew pane class 5.21: UsingWebKittodisplay HTML 60, 5.2.2: Showing a movie using NSMovieView 60
coerce-to-objc-class function 20 1.4.2: Definingan Objective-Cclass 13
coerce-to-selector function 21 13.11: Selectors 11
constants
ns-not-found 53
conversion
argument and result 1.3.3: Special argument and result conversion 8, 1.4.3.1: Special method argument and result conversion 14

current-super locamacro 21 1.4.5: Invoking methodsinthe superclass 15

D
datatypes 1.2: Objective-C datatypes 6
define-c-struct macro 1.2.1: Objective-C pointersand pointer types 7

define-objc-class macro 22 1.4.2: Defining an Objective-Cclass 12, 1.4.4: Howinheritanceworks 15, 1.4.6: Abstract
classes 16

define-objc-class-nethod macro 24 1.4.3: Defining Objective-C methods 13, 1.4.5: Invoking methodsin the superclass 15
define-objc-nmethod macro 25 1.4.3: Defining Objective-C methods 13, 1.4.5: Invoking methodsinthe superclass 15
define-objc-protocol macro 28 1.4.9: Usingand declaring formal protocols 17

define-objc-struct macro 29 1.2.1: Objective-C pointersand pointer types 7, 1.2.3: Sructuretypes 7, 1.3.5: Invokinga
method that returnsa structure 9, 1.4.3.2: Defining a method that returns a structure 15

defining
classes 1.4.2: Defining an Objective-C class 12
methods 1.4.3: Defining Objective-C methods 13
protocols 1.4.9: Using and declaring formal protocols 17
structures 1.2.3: Sructuretypes 7

description function 30

E

ensure-objc-initialized function 30 1.1.1: Initialization 6

=

FLI type descriptors

ns- poi nt 54 1.4.3.1: Special method argument and result conversion 14, 1.4.3.1: Special method argument and result
conversion 14, 32: Types 51

ns-range 54 1.4.3.1: Special method argument and result conversion 14, 1.4.3.1: Special method argument and result
conversion 14, 3.2: Types 51

ns-rect 55 1.35: Invoking a method that returnsa structure 9, 1.4.3.1: Special method argument and result conversion 14, 1.4.3.1
: Special method argument and result conversion 14, 3.2: Types 51

ns-size 55 1.4.3.1: Special method argument and result conversion 14, 1.4.3.1: Special method argument and result
conversion 14, 32: Types 51

objc-at-question-mark 36

obj c- bool 37 1.2.2: Integer and booleantypes 7, 1.4.3.1: Special method argument and result conversion 14, 1.4.3.1: Special
method argument and result conversion 14

obj c- c++- bool 37

objc-class 38 1.2.1: Objective-C pointersand pointer types 7, 1.4.1: Objectsand pointers 12, 1.4.3.1: Special method
argument and result conversion 14

63

Index

objc-c-string 40 1.2.1: Objective-C pointersand pointer types 7, 1.4.3.1: Special method argument and result conversion 14

obj c- obj ect - poi nt er 43 1.2.1: Objective-C pointersand pointer types 6, 1.2.1: Objective-C pointers and pointer
types 7, 1.3.6: Invoking a method that returnsa string or array 9, 1.4.1: Objectsand pointers 12, 1.4.3.1: Special method
argument and result conversion 14, 1.4.3.1: Special method argument and result conversion 14

obj c-unknown 44

sel 46 1.2.1: Objective-C pointers and pointer types 7, 1.3.11: Selectors 11
functions

add- observer 53

al l oc-init-object 18

autorel ease 18 1.3.10: Memory management 11

can-invoke-p 19 1.39: Determining whether a method exists 11, 1.3.11: Selectors 11

coerce-to-objc-class 20 1.4.2: Definingan Objective-C class 13

coerce-to-sel ector 21 1311: Selectors 11

description 30

ensure-objc-initialized 30 1.1.1: Initialization 6

invoke 31 1.31: Smplecallstoinstanceand classmethods 7, 1.3.2: Method naming 8, 1.3.5: Invokinga method that returnsa
structure 9, 1.3.6: Invoking a method that returnsa stringor array 9, 1.3.9: Determining whether a method exists 11, 1.4.5:
Invoking methods in the superclass 15

i nvoke- bool 33 1.3.4: Invoking a method that returnsa boolean 9

invoke-into 34 1.35: Invoking a method that returnsa structure 9, 1.3.6: Invoking a method that returnsa string or array 9
make- aut or el ease- pool 36 1.3.10: Memory management 11

obj c-cl ass-net hod-signature 38

obj c-cl ass-name 39

obj c- obj ect - f rom poi nt er 41 1.4.1: Objectsand pointers 12

obj c- obj ect - poi nter 42 14.1: Objectsand pointers 12, 1.4.2: Defining an Objective-Cclass 13, st andard- obj c-
obj ect 48

release 45 1.3.10: Memory management 11
renove- obser ver 56

retain 45 1.3.10: Memory management 11

retai n-count 46 1.3.10: Memory management 11
sel ector-nane 47 1311: Sdectors 11
set-ns-point* 56 32: Types 51
set-ns-range* 57 32: Types 51
set-ns-rect* 58 3.2: Types 51

set - ns-si ze* 59 32: Types 51
trace-invoke 49

untrace-i nvoke 49

G
generic functions

obj c-obj ect-destroyed 40 1.4.8: Memory management 17

Index

I

inheritance 1.4.4: How inheritanceworks 15

sinit-function initaag 1.4.2: Defining an Objective-C class 13, standar d- obj c- obj ect 48

initiglization ~ 1.1.1: Initialization 6

i ni t Objective-C method 1.4.2: Defining an Objective-Cclass 13, alloc-init-object 18, standard-objc-object 48
instance methods 1.3.1: Smple callsto instance and class methods 7

instancevariables 1.4.7: Instancevariables 16, obj c-obj ect-var-value 44

integer types 1.2.2: Integer and booleantypes 7

i nvoke function 31 1.3.1: Smplecallstoinstanceand classmethods 7, 1.3.2: Method naming 8, 1.3.5: Invokinga method that
returnsastructure 9, 1.3.6: Invoking a method that returnsa stringor array 9, 1.3.9: Determining whether a method
exists 11, 1.4.5: Invoking methodsin the superclass 15

i nvoke-bool function 33 1.3.4: Invoking a method that returnsaboolean 9

i nvoke-into function 34 135: Invoking a method that returnsa structure 9, 1.3.6: Invoking a method that returns a string or
array 9

invoking methods ~ 1.3: Invoking Objective-C methods 7

L

local macros

current-super 21 1.4.5: Invoking methodsinthe superclass 15

M
macros
def i ne-c-struct 1.2.1: Objective-C pointers and pointer types 7

define-objc-class 22 1.4.2: Defining an Objective-Cclass 12, 1.4.4: Howinheritanceworks 15, 1.4.6: Abstract
classes 16

define-objc-class-nethod 24 1.4.3: Defining Objective-C methods 13, 1.4.5: Invoking methodsin the superclass 15
define-objc-nethod 25 1.4.3: Defining Objective-C methods 13, 1.4.5: Invoking methodsin the superclass 15
defi ne-obj c- protocol 28 1.4.9: Using and declaring formal protocols 17

defi ne-obj c-struct 29 1.2.1: Objective-C pointersand pointer types 7, 1.2.3: Sructuretypes 7, 1.3.5: Invokinga method
that returnsa structure 9, 1.4.3.2: Defining a method that returns a structure 15

wi t h- aut or el ease- pool 50 1.3.10: Memory management 11
make- aut or el ease- pool function 36 1.3.10: Memory management 11
memory management

foreign objects 1.3.10: Memory management 11

Lispobjects 1.4.8: Memory management 17
methods

check for existence 1.3.9: Determining whether a method exists 11

defining 1.4.3: Defining Objective-C methods 13

inheritance 1.4.4: How inheritanceworks 15

instanceand class 1.3.1: Smplecallsto instance and class methods 7

invoking 1.3: Invoking Objective-C methods 7

naming 1.3.2: Method naming 8, 1.4.3: Defining Objective-C methods 13

multipleinheritance 1.4.6: Abstract classes 16

65

Index

N
New in LispWorks 7.1

vector types 1.3.8: Invoking a method that uses vector types 10
nibfile 3.4.2: UsinganibfileinaLispWorks application 52

NSAr r ay Objective-Cclass 1.3.6: Invoking a method that returnsa string or array 9, 1.4.3.1: Special method argument and result
conversion 14, define-objc-nmethod 26, define-objc-nethod 26, define-objc-
nmet hod 27, invoke 32, invoke-into 35 invoke-into 35 invoke-into 35

ns-not -found constant 53

NSCbj ect Objective-Cclass 1.3.10: Memory management 11, 1.4.2: Defining an Objective-Cclass 12, 1.4.4: How inheritance
works 15, define-objc-class 23

ns- poi nt FLI typedescriptor 54 1.4.3.1: Special method argument and result conversion 14, 1.4.3.1: Special method argument and
result conversion 14, 3.2: Types 51

ns-range FLItypedescriptor 54 1.4.3.1: Special method argument and result conversion 14, 1.4.3.1: Special method argument and
result conversion 14, 3.2: Types 51

ns-rect FLItypedescriptor 55 1.3.5: Invoking a method that returnsa structure 9, 1.4.3.1: Special method argument and result
conversion 14, 1.4.3.1: Special method argument and result conversion 14, 3.2: Types 51

ns-size FLItypedescriptor 55 1.4.3.1: Special method argument and result conversion 14, 1.4.3.1: Special method argument and
result conversion 14, 3.2: Types 51

NSSt ri ng Objective-Cclass 1.3.6: Invoking a method that returnsa stringor array 9, 1.4.3.1: Special method argument and result
conversion 14, define-objc-method 26, define-objc-nethod 27, invoke 32, invoke-into 34

O
obj c-at-question-mark FLItypedescriptor 36

obj c-bool FLItypedescriptor 37 1.2.2: Integer and booleantypes 7, 1.4.3.1: Special method argument and result
conversion 14, 1.4.3.1: Special method argument and result conversion 14

obj c- c++- bool FLI typedescriptor 37

obj c-class FLItypedescriptor 38 1.2.1: Objective-C pointersand pointer types 7, 1.4.1: Objectsand pointers 12, 1.4.3.1:
Soecial method argument and result conversion 14

obj c-cl ass- et hod- si gnature function 38
obj c-cl ass-nanme function 39
. obj c-cl ass-nanme classoption 1.4.2: Defining an Objective-Cclass 12, define-objc-class 23

objc-c-string FLItypedescriptor 40 1.2.1: Objective-C pointersand pointer types 7, 1.4.3.1: Special method argument and result
conversion 14

:0obj c-instance-vars classoption 14.7: Instancevariables 16, define-objc-class 23
obj c- obj ect-destroyed genericfunction 40 1.4.8: Memory management 17
obj c-obj ect-frompointer function 41 14.1: Objectsand pointers 12

obj c- obj ect-poi nter FLItypedescriptor 43 1.2.1: Objective-C pointersand pointer types 6, 1.2.1: Objective-C pointersand
pointer types 7, 1.3.6: Invoking a method that returnsa stringor array 9, 1.4.1: Objectsand pointers 12, 1.4.3.1: Special
method argument and result conversion 14, 1.4.3.1: Special method argument and result conversion 14

obj c-obj ect-poi nter function 42 1.4.1: Objectsand pointers 12, 1.4.2: Definingan Objective-Cclass 13, standard-objc
-object 48

obj c- obj ect -var-val ue accessor 43 1.4.7: Instancevariables 17
. obj c-protocol s classoption 1.4.9: Using and declaring formal protocols 17, defi ne-obj c-cl ass 23
: obj c-supercl ass-nanme classoption 1.4.4: Howinheritanceworks 15, defi ne-objc-class 23
obj c-unknown FLI typedescriptor 44
Objective-C classes

NSArray 1.3.6: Invoking a method that returnsa stringor array 9, 1.4.3.1: Special method argument and result

66

Index

conversion 14, define-objc-nmethod 26, define-

objc-nethod 26, define-objc-

method 27, invoke 32, invoke-into 35 invoke-into 35 invoke-into 35

NSObj ect 1.3.10: Memory management 11, 1.4.2: Defining an Objective-C class 12, 1.4.4: How inheritance
works 15, define-objc-class 23

NSString 1.3.6: Invokingamethod that returnsastring or array 9, 1.4.3.1: Special method argument and result
conversion 14, define-objc-method 26, define-objc-nethod 27, invoke 32, invoke-into

Objective-C methods

addQbser ver: sel ect or: nane: obj ect : add- observer 53

al l oc 1.4.2: Defining an Objective-Cclass 13, alloc-init-object 18, standard-objc-object 48

al |l ocWt hZone: 1.4.2: Defining an Objective-C class 13, st andar d- obj c- obj ect 48

autorel ease 1.3.10: Memory management 11

init 1.4.2: Defining an Objective-Cclass 13, all oc-init-object 18, standard-objc-object 48

rel ease 1.3.10: Memory management 11

renoveCbser ver: nane: obj ect:

respondsToSel ect or:

retain 13.10: Memory management 11

r et ai nCount 1.3.10: Memory management 11
objectsand pointers 1.4.1: Objectsand pointers 12
P
. poi nter initaag standard-objc-object 48

pointersand objects 1.4.1: Objectsand pointers 12

pointer types 1.2.1: Objective-C pointers and pointer types 6

protocols 1.4.9: Using and declaring formal protocols 17

R
referencecount 1.3.10: Memory management

45

11,

rel ease function 1.3.10: Memory management 11

r el ease Objective-C method 1.3.10: Memory management

renove- observer function 56

renoveCbser ver : nane: obj ect : Objective-C method

respondsToSel ect or : Objective-C method
result conversion

retain function 45 1.3.10: Memory management 11

retai n-count function 46 1.3.10: Memory management

r et ai nCount Objective-C method
r et ai n Objective-C method 1.3.10: Memory management 11
return types

array

boolean

1.3.6: Invoking a method that returnsa string or array 9
1.3.4: Invoking a method that returnsa boolean 9
string 1.3.6: Invoking a method that returnsa string or array 9

structure 1.3.5: Invoking a method that returns a structure 9,
into 35

renmove- observer

1.3.9: Determining whether a method exists 11,

1.4.8: Memory management

11

renove- observer

1.3.9: Determining whether a method exists 11,

1.3.3: Special argument and result conversion 8,

1.3.10: Memory management

56
1.3.11: Sdectors 11

17

56

1.3.11: Selectors 11

1.4.3.1: Special method argument and result conversion 14

11
11

1.4.3.2: Defining a method that returns a structure 15,

67

i nvoke-

Index

unsi gned char * invoke-into 35

S

sel FLItypedescriptor 46 1.2.1: Objective-C pointersand pointer types 7, 1.3.11: Scdectors 11

sel ector-nane function 47 13.11: Sdectors 11

selectors 1.3.11: Selectors 11

Self-contained examples
Cocoaand CAPI 5.2: Displaying Cocoa classesin CAPI windows 60
Cocoaclasses 5.2: Displaying Cocoa classesin CAPI windows 60
definitions 5.1: Example definitions 60
nibfiles 5.3: nibfileexample 60

set-ns-point* function 56 3.2: Types 51

set-ns-range* function 57 3.2: Types 51

set-ns-rect* function 58 3.2: Types 51

set-ns-size* function 59 3.2: Types 51

st andar d- obj c-obj ect abstractclass 48 1.2.1: Objective-C pointersand pointer types 6, 1.4.1: Objectsand pointers 12, 1.4.2
: Defining an Objective-C class 12, defi ne-objc-class 23

string returntype 1.3.6: Invoking a method that returnsa string or array 9
strings 1.3.3: Special argument and result conversion 8, 1.3.6: Invoking a method that returnsa string or array 9

structurereturntype 1.3.5: Invoking a method that returnsa structure 9, 1.4.3.2: Defining a method that returns a structure 15, i nvoke-
into 35

structuretypes 1.2.3: Sructuretypes 7

super 1.45: Invoking methods in the superclass 15

T

trace-i nvoke function 49

U

unsi gned char *
returntype i nvoke-into 35

unt race-i nvoke function 49

w

wi t h- aut or el ease-pool macro 50 1.3.10: Memory management 11

Non-alaphanumerics
@ npl ementati on 1.4.3: Defining Objective-C methods 13
@nterface 1.4.3: Defining Objective-C methods 13

68

	LispWorks Objective-C and Cocoa Interface User Guide and Reference Manual
	Copyrights and Trademarks
	Contents
	1 Introduction to the Objective-C Interface
	1.1 Introduction
	1.1.1 Initialization

	1.2 Objective-C data types
	1.2.1 Objective-C pointers and pointer types
	1.2.2 Integer and boolean types
	1.2.3 Structure types

	1.3 Invoking Objective-C methods
	1.3.1 Simple calls to instance and class methods
	1.3.2 Method naming
	1.3.3 Special argument and result conversion
	1.3.4 Invoking a method that returns a boolean
	1.3.5 Invoking a method that returns a structure
	1.3.6 Invoking a method that returns a string or array
	1.3.7 Invoking a method that returns values by reference
	1.3.8 Invoking a method that uses vector types
	1.3.9 Determining whether a method exists
	1.3.10 Memory management
	1.3.11 Selectors

	1.4 Defining Objective-C classes and methods
	1.4.1 Objects and pointers
	1.4.2 Defining an Objective-C class
	1.4.3 Defining Objective-C methods
	1.4.3.1 Special method argument and result conversion
	1.4.3.2 Defining a method that returns a structure

	1.4.4 How inheritance works
	1.4.5 Invoking methods in the superclass
	1.4.6 Abstract classes
	1.4.7 Instance variables
	1.4.8 Memory management
	1.4.9 Using and declaring formal protocols

	2 Objective-C Reference
	alloc-init-object
	autorelease
	can-invoke-p
	coerce-to-objc-class
	coerce-to-selector
	current-super
	define-objc-class
	define-objc-class-method
	define-objc-method
	define-objc-protocol
	define-objc-struct
	description
	ensure-objc-initialized
	invoke
	invoke-bool
	invoke-into
	make-autorelease-pool
	objc-at-question-mark
	objc-bool
	objc-c++-bool
	objc-class
	objc-class-method-signature
	objc-class-name
	objc-c-string
	objc-object-destroyed
	objc-object-from-pointer
	objc-object-pointer
	objc-object-pointer
	objc-object-var-value
	objc-unknown
	release
	retain
	retain-count
	sel
	selector-name
	standard-objc-object
	trace-invoke
	untrace-invoke
	with-autorelease-pool

	3 The Cocoa Interface
	3.1 Introduction
	3.2 Types
	3.3 Observers
	3.4 How to run Cocoa on its own
	3.4.1 LispWorks as a Cocoa application
	3.4.2 Using a nib file in a LispWorks application

	4 Cocoa Reference
	add-observer
	ns-not-found
	ns-point
	ns-range
	ns-rect
	ns-size
	remove-observer
	set-ns-point*
	set-ns-range*
	set-ns-rect*
	set-ns-size*

	5 Self-contained examples
	5.1 Example definitions
	5.2 Displaying Cocoa classes in CAPI windows
	5.2.1 Using Web Kit to display HTML
	5.2.2 Showing a movie using NSMovieView

	5.3 nib file example

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	Non-alaphanumerics

