LispWorks IDE User Guide

Version 8.0

Copyright and Trademarks

LispWorks IDE User Guide (Unix version)
Version 8.0

December 2021

Copyright © 2021 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and K nowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in al copies and supporting documentation, and that the
name of M.1.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "asis’
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including al implied
warranties of merchantability and fitness. In no event shall M.I.T. beliable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of |CU software obtained from http://source.icu-project.org and which bears the following copyright
and permission natice:

ICU License- ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.

Permission is hereby granted, free of charge, to any person abtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission naotice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "ASIS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THISNOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright and Trademarks

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and

registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights

The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt 111, as applicable. Rights reserved under the copyright laws of

the United States.

Address

Telephone

Fax

LispWorks Ltd

St. John's Innovation Centre
Cowley Road

Cambridge

CB4 0WS

England

From North America
877 759 8839 (toll-free)

From elsawhere;
+44 1223 421860

From North America
617 812 8283

From elsawhere:
+44 870 2206189

www.lispwor ks.com

www.lispworks.com

Contents

Preface 11

1 Introduction 15

1.1 Mgor tools 15

2 A Short Tutorial 18

2.1 Starting the environment 18

2.2 Creating a Listener 19

2.3 Using the Debugger 21

2.4 Viewing output 23

2.5 Inspecting objects using the Inspector 24
2.6 Examining classes in the Class Browser 25
2.7 Switching between windows 27

2.8 Summary 27

3 Common Features 28

3.1 Displaying tool windows 29

3.2 Setting preferences 33

3.3 Performing editing functions 41
3.4 The Break gesture 43

3.5 The history list 44

3.6 Operating on files 44

3.7 Displaying packages 45

3.8 Performing operations on selected objects 47
3.9 Using different views 48

3.10 Tracing symbols from tools 50
3.11 Linking tools together 51

3.12 Filtering information 51

3.13 Regexp matching 53

3.14 Completion 53

3.15 The Commands menu 57
3.16 Output and Input to/from the standard streams 59
3.17 Examining a window 60

3.18 Specifying the initial tools 60
3.19 System preferences affecting the IDE tools 60

Contents

4 Getting Help 61

4.1 Online manualsin HTML format 61

4.2 Online help for editor commands 63

4.3 Reporting bugs 63

4.4 Registering a new license key 64

4.5 Browsing manuals online using Adobe Reader 64

5 Session Saving 65

5.1 What session saving does 65
5.2 The default session 65
5.3 What is saved and what is not saved 65

5.4 Saving sessions 66
5.5 Redirecting images to a Saved Session image 70
5.6 Non-IDE interfaces and session saving 71

6 Manipulating Graphs 72

6.1 An overview of graphs 72

6.2 Searching graphs 73

6.3 Expanding and collapsing graphs 73
6.4 Moving nodesin graphs 74

6.5 Displaying plans of graphs 74

6.6 Preferences for graphs 75

6.7 Using graphsin your programs 78

7 The Class Browser 80

7.1 Simple use of the Class Browser 80

7.2 Examining slot information 85

7.3 Examining superclasses and subclasses 88
7.4 Examining classes graphically 89

7.5 Examining generic functions and methods 92
7.6 Examining initargs 94

7.7 Examining class precedences 97

8 The Object Clipboard 99

8.1 Placing objects on the Object Clipboard 99

8.2 Browsing clipped objects 101

8.3 Removing objects 102

8.4 Filtering 102

8.5 Using the Object Clipboard with a Listener 102

9 The Compilation Conditions Browser

9.1 Introduction 106
9.2 Examining conditions 106

106

Contents

9.3 Configuring the display 108
9.4 Access to other tools 109

10 The Debugger Tool 110

10.1 Description of the Debugger 111

10.2 What the Debugger tool does 115

10.3 Simple use of the Debugger tool 115

10.4 The stack in the Debugger 116

10.5 An example debugging session 116

10.6 Performing operations on the error condition 118
10.7 Performing operations on stack frames 118
10.8 Performing operations on frame variables 119
10.9 Configuring the debugger tool 119

10.10 The Notifier window 120

10.11 Handling of Cocoa Event Loop hanging 122
10.12 Errorsin CAPI display callbacks 123

11 The Tracer 124

11.1 Introduction 124
11.2 Tracing and Untracing functions 124
11.3 Examining the output of tracing 125

11.4 Example 125

12 The Editor 129

12.1 Displaying and editing files 130

12.2 Displaying output messages in the Editor 132
12.3 Displaying and swapping between buffers 132
12.4 Displaying Common Lisp definitions 135
12.5 Changed definitions 135

12.6 Finding definitions 137

12.7 Setting Editor preferences 138

12.8 Basic Editor commands 141
12.9 Other essential commands 144
12.10 Cutting, copying and pasting using the clipboard 145

12.11 Cutting, copying and pasting using the kill ring 145
12.12 Searching and replacing text 147

12.13 Using Lisp-specific commands 150

12.14 Help with editing 155

13 The Code Coverage Browser 156

13.1 Starting the Code Coverage Browser 156
13.2 Displaying a Code Coverage data 157
13.3 Code Coverage Files List Context Menu 157

13.4 Traverse 158

Contents

13.5 Using the internal data 159
13.6 Creating new Data 159

14 The Function Call Browser 160

14.1 Introduction 160

14.2 Examining functions using the graph views 160
14.3 Examining functions using the text view 164
14.4 Configuring the function call browser 165

14.5 Configuring graph displays 166

14.6 Performing operations on functions 166

15 The Generic Function Browser 167

15.1 Examining information about methods 167
15.2 Examining information about combined methods 170
15.3 Configuring the Generic Function Browser 173
16 The Search Files tool 175
16.1 Introduction 175
16.2 Performing searches 176
16.3 Viewing the results 181
16.4 Modifying the matched lines 182
16.5 Configuring the Search Files tool 183
17 The Inspector 187
17.1 Inspecting the current object 187
17.2 Description of the Inspector tool 188

17.3 Filtering the display 189
17.4 Examining objects 190

17.5 Operating upon objects and items 191
17.6 Configuring the Inspector 195
17.7 Customizing the Inspector 196

17.8 Creating new inspection formats 197

18 The Symbol Browser 200

18.1 Introduction 200
18.2 Description of the Symbol Browser 200
18.3 Configuring the Symbol Browser 203

19 The Interface Builder 205

19.1 Description of the Interface Builder 205
19.2 Creating or loading interfaces 206

19.3 Creating an interface layout 208

19.4 Creating a menu system 211

Contents

19.5 Editing and saving code 214

19.6 Performing operations on objects 216

19.7 Performing operations on the current interface 219
19.8 Performing operations on elements 220

19.9 Example: Using The Interface Builder 221

20 The Listener 233

20.1 The basic features of a Listener 233

20.2 Evaluating simple forms 234

20.3 Re-evaluating forms 235

20.4 The debugger prompt and debugger level 235
20.5 Interrupting evaluation 236

20.6 The History menu 236

20.7 The Expression menu 236

20.8 The Values menu 237

20.9 The Debug menu 237

20.10 Execute mode 238

20.11 Setting Listener preferences 240

20.12 Running Editor formsin the Listener 241
20.13 Switching to and from other tools 241
20.14 Help with editing in the Listener 241

21 The Output Browser 242
21.1 Interactive compilation messages 243

22 The Process Browser 245

22.1 The process list 246

22.2 Process control 247

22.3 Other ways of breaking processes 247
22.4 Updating the Process Browser 247
22.5 Process Browser Preferences 248

23 The Profiler 249

23.1 Introduction 249

23.2 Description of the Profiler 249

23.3 The Profiler menu and Profiler-specific toolbar buttons
23.4 Selecting what to profile 255

23.5 Format of the cumulative results 261

23.6 Interpreting the cumulative results 262

23.7 Configuring the Profiler 262

23.8 Profiling pitfalls 264

23.9 Some examples 265

Contents

24 The Shell and Remote Shell Tools 268

24.1 Introduction 268

24.2 The Shell tool 268

24.3 Command history in the shell 269
24.4 Configuring the shell to run 269
24.5 The Remote Shell tool 270

25 The Stepper 271

25.1 Introduction 271

25.2 Simple examples 273

25.3 The implementation of the Stepper 275
25.4 Stepper controls 276

25.5 Stepper restarts 278

25.6 Breakpoints 279

25.7 Stepping macro forms 283

25.8 Listener area 285

25.9 Configuring the Stepper 285

26 The System Browser 287

26.1 Introduction 287
26.2 A brief introduction to systems 287
26.3 The System Browser 288

26.4 A description of the System Browser 289

26.5 Examining the system tree 289

26.6 Examining systemsin the text view 292

26.7 Generating and executing plans in the preview view 293
26.8 Examining output in the output view 295

26.9 ASDF Integration 296
26.10 Configuring the display 298
26.11 Setting options in the system browser 298

27 The Window Browser 300

27.1 Introduction 300
27.2 Configuring the Window Browser 301
27.3 Performing operations on windows 304

28 The Application Builder 305

28.1 Introduction 305

28.2 Preparing to build your application 306
28.3 Building your application 308

28.4 Editing the script 308

28.5 Troubleshooting 309

28.6 Running the saved application 309

Contents

28.7 Building universal binaries 311
28.8 Using the Application Builder to save a development image
28.9 Configuring the Application Builder 311

29 Remote Debugging 312

29.1 Remote Listeners 312

29.2 Menus in the Remote Debugger and Remote Listener tools
29.3 Editor commands for remote debugging 313

29.4 Configuring Remote Debugging 314

Index

10

311

313

Preface

Conventions used in this manual

This manual assumes that you have at least a basic knowledge of Common Lisp. Many source code examples are used
throughout the manual to illustrate important concepts, but only extensionsto Common Lisp which are specific to the
environment are explained in detail.

This manual does provide a complete description of the windowed devel opment environment available in your Lisp image.
Thisincludes a description of the user interface itself, and a description of how the user interface interacts with Common

Lisp.
This manual refers to example filesin the LispWorks library like this:

(exanmple-edit-file "tool s/ denp-defsys")

These examples are Lisp source filesin your LispWorks installation under | i b/ 8- 0- 0- 0/ exanpl es/ . You can simply
evaluate the given form to view the example source file.

Example files contain instructions about how to use them at the start of thefile.

The examplesfiles are in aread-only directory and therefore you should compile them inside the IDE (by the Editor
command Compile Buffer or the toolbar button or by choosing Buffer > Compile from the context menu), so it does not try
towrite afad file.

If you want to manipulate an example file or compile it on the disk rather than in the IDE, then you need first to copy thefile
elsewhere (most easily by using the Editor command Write File or by choosing File > Save As from the context menu).

Using the mouse

Throughout this manual, actions that you perform using the mouse are described in terms of the gesture used, rather than the
combination of mouse buttons and keys that need to be used to perform the operation. Thisis because the buttons that are
used are highly dependent on the platform you are running your Lisp image on, the operating system you are using, and even
the type of mouse that you have attached to your computer. The mouse gestures available in the environment are described
below.

Select

Thisis by far the most common mouse gesture, and is used for nearly all mouse operationsin the environment. Use the select
gesture to:

* display amenu,
 choose acommand from a menu which is already displayed,

 select itemsfrom alist or graph,

select or deselect atoggle switch,

click on abutton,

position the mouse pointer in a piece of text.

11

Preface

Depending on the characteristics of your operating system or your window manager, you may also need to use select in order
to move the mouse focus to another window.

If you are using a mouse with several buttons, you can nearly always select by clicking the left-most button, but you should
refer to the documentation for your operating system or window manager if you are unsure. Thisis particularly trueif you are
using a mouse which has been set up for use by aleft-handed person, since it is possible that the function of the mouse
buttons has been reversed.

Multiple select

Multiple selection is used in lists and graphs when you want to select more than one item. You can select several items from
any list or graph in the environment, and there are alarge number of commands which can operate equally well on these
multiple selections.

There are anumber of standard ways of making multiple selectionsin alist or graph, depending on your operating system or
window manager. Check the relevant documentation if you are unsure, or try any of the following:

» Holding down the Shi f t key while selecting an item.
» Holding down the Cont r ol key while selecting an item.
» The middle mouse button (if you have a three-button mouse).

Typically, in lists, holding down the Shi ft key lets you make a contiguous selection, and holding down the Cont r ol key
lets you make a discontiguous selection.

» Toselect ablock of itemsfrom alist, select the first item, hold down the Shi f t key, and then select the last item; the
intervening items are also selected.

» To select several items which do not form ablock, hold down the Cont r ol key while selecting each item individualy.

This behavior istypical in anumber of operating systems or window managers. You are probably familiar with it if you are
familiar with using a mouse.

Double-click

The double-click gesture consists of two select gestures, performed in rapid succession. In generd, any itemin alist, tree or
graph may be double-clicked.

Double-clicking in achoice is usually a shortcut for selecting an item and choosing a common menu command, and the
precise action that takes place depends on the context in which the double-click was performed. Double-clicking can only be
performed on single selections.

In the Editor double-click selects the current Lisp form. Double-clicking and then dragging without releasing the mouse
button increases the selection by forms, either forward or backward. It stops when it reaches the start or end of an enclosing
form.

Triple-click
Thetriple-click gesture consists of three select gestures, performed in rapid succession.

In the Editor this selects the line on GTK+ and Cocoa. Triple-clicking in the Editor (on GTK+ and Cocoa) and then dragging
without releasing the mouse button increases the selection by lines. The triple-click gestureis not currently supported in
LispWorks on Microsoft Windows.

Alternate select

Thisisaless common gesture, and is used almost exclusively within the LispWorks IDE to display a context menu
(sometimes referred to as the "context menu” or the "right button menu™).

If you are using a mouse with several buttons, you should find that you can perform this gesture by clicking the right-most

12

Preface

mouse button. On a Macintosh with a single button mouse, the context menu is raised by holding down the Cont r ol key and
clicking the mouse button. Refer to the documentation for your window manager or operating system if you are unsure.

Choosing menu commands and other controls
Throughout this manual, menu command names and other text |abels are shown in This Bold Font.
Submenus are indicated by use of the > character. Thus, for instance, the instruction:

"Choose File > Open"

means that you should select the File menu on amenu bar, and choose the Open command in the menu that appears.
Similarly:

"Choose Works > Tools > Editor"

means that you should display the Works menu by selecting it, select Tools from this menu to display a submenu, and choose
the Editor command from this submenu.

The sequence can include labels of other GUI elements such as tabs and list items. For example the instruction:
"Choose Preferences... > Environment > General > Use in-place completion”

means that you should select the Preferences... menu item, then select the Environment item in alist within the dialog that
appears, then select the General tab within that dialog, and lastly access the button labelled Use in-place completion.

Using the keyboard

Throughout this manual there are descriptions of commands that you can choose by typing at the keyboard. Thisis especially
true when discussing the built-in editor, which relies heavily on the use of keyboard commands, and the Common Lisp
listener, which uses many of the same commands.

Throughout this manual, keyboard input including the names of keys you pressis shownin Thi s Font .

Keyboard commands generally use a combination of ordinary keys together with the modifier keys Cont rol , Shift,
Escape, Al t, Met a and Conmand (not all of these are available on each platform).

On some keyboards, you need to use the Met a key wherever this manual refersto the Al t key.

Inall cases, the Cont r ol , Shi ft, Met a and Command keys should be held down concurrently with the specified letter. For
example:

Ctrl +Sisread as"hold down the Control key and press S'.
Ctrl +Shi ft +Aisread as "hold down the Control and Shift keys and press A".

In the editor in Emacs emulation mode, instead using the Met a (Al t) modifier with akey, the Escape key can be pressed
and released before pressing the key. For example:

Esc Eisread as"press and release the Escape key, then press E".
Al t +E isread as "hold down the Alt key and press E".

The two key inputs above are equivalent in Emacs emulation mode. This manual generally refersto Al t when referring to the
editor key strokes.

For more information on using keyboard commands in the built-in editor and the Listener, see 12.1.4 Using keyboard
commands.

13

Preface

Appearance of the graphical tools

The screenshots in this manual show toolbars that may have been customized (using the context menu) so you might see
some differences from your setup.

Your windows may differ in some respects from the illustrations given in this manual. Thisis because some details are
controlled by your window manager and/or operating system, not by LispWorks itself.

14

1 Introduction

This manual gives you a complete guide to the LispWorks IDE development environment. This environment comprises a
large number of window-based tools which have been designed with the Common Lisp developer in mind. The following are
among the features provided by the environment:

A fully functional code Editor specifically designed to make writing Common Lisp source code as swift as possible,
emulating Emacs or KDE/Gnhome key styles.

* A Common Lisp Listener for evaluating Common Lisp formsinteractively.

A range of debugging tools including a graphical Debugger, source code Stepper, code Profiler, Tracer, and the
I nspector.

» A range of browsers for examining different objects in your Lisp image, such as the generic functions or CLOS classes
that have been defined.

* A tool for simplifying source code management; vital if you are involved in developing large applications.

» (Microsoft Windows, Linux, x86/x64 Solaris and FreeBSD platforms only) A tool for designing window-based
interfaces to your applications. A point-and-click interface is used to design the interface, and Lisp code is generated for
youl.

* A Shell window that lets you run system utilities (DOS commands on Windows, shell commands on non-Windows
systems) inside LispWorks. Remote shells are also supported on non-Windows systems.

» A Search Filestool that allows you to find text matching aregular expression in files.
» An Object Clipboard that allows you to manage selected and copied objects.
» Saved sessions which can be restarted at alater date, allowing you to resume work after restarting your computer.

Because of the large number of tools available, consistency is avital themein the environment; each tool has a similar look
and feel so that you need only spend a minimum amount of time learning how to use the environment.

In addition, there is a high degree of integration between the tools available. This meansthat it is possible to transfer pieces
of information throughout the environment in alogical fashion; if you create an object in the Listener, you can examine it by
transferring it directly to the Inspector. The class of objects that it belongs to can be examined by transferring it to a Class
Browser, and from there, the generic functions which have methods defined on it can be browsed.

To reflect these themes of consistency and integration, the earlier chaptersin this manual deal with the generic aspects of the
environment, while at the same time introducing you to the more important tools.

1.1 Major tools

The environment supports a wide range of tools which can help you to work on your Lisp source code more quickly and
efficiently. This section gives you a brief introduction to the most important tools.

You can create any of the tools described here by choosing the appropriate command from the Tools menu of the podium
window, or by selecting the relevant tool from the Works > Tools menu on any other tool.

For full details about any of these tools, see the relevant chapter. The second part of this manual covers each of thetoolsin
the order that they are found on the Tools menu.

15

1 Introduction

1.1.1 The Listener

A Common Lisp Listener is provided to let you evaluate Common Lisp forms. Thistool isinvaluable as a method of testing
your code without necessitating compilation or evaluation of whole files of Common Lisp source code.

1.1.2 The Editor

A built-in editor is provided to allow you to develop Common Lisp code. It is based on Emacs, an editor which you may
aready be familiar with. Asan aternative to Emacs keys, the editor offers KDE/Gnhome emulation.

The built-in editor offers awide range of functions specifically designed to help you develop Common Lisp code, and it is
fully integrated into the environment so that code being developed isimmediately available for testing.

1.1.3 The Class Browser

Thistool alows you to examine the Common Lisp classes that are defined in your environment. You can look at the
superclasses and subclasses of a given class and see the rel ationships between them, and you can examine the slots available
for each class.

In addition, you can examine the functions and methods defined on a given class, or the precedence list or initargs for the
class.

1.1.4 The Output Browser

The Output Browser collects and displays all output from the environment which may be of use. Thisincludeswarning and
error messages displayed during compilation and output generated by tracing or profiling functions. Many other toolsin the
environment also provide you with an output view, which lets you see any output which is appropriate to that tool.

1.1.5 The Inspector

The Inspector |ets you examine and destructively modify the contents of Common Lisp objects. It is an invaluable tool during
development, since it lets you inspect the state of any part of your data at any stage during execution. Thus, it is easy to see
the value of aglot and, if necessary, alter itsvalue, so that you can test out the effects of such an alteration before you make
the changes necessary in the source code itself.

1.1.6 The Object Clipboard

The Object Clipboard is used to manage multiple Lisp objects. You can select any object in the Object Clipboard for usein
paste operations.

As an example of adding a Lisp object to the Object Clipboard, follow these steps.
1. Evaluate aLisp expression in the Listener window. Itsvalue is printed.
2. Choose the menu command Values > Clip.

The value from the Listener is now in the Object Clipboard.

If you have not already made an Object Clipboard visible, then do so now using the menu command Works > Tools > Object
Clipboard.

The Object Clipboard can be seen in Object Clipboard Tool.

16

1 Introduction

Object Clipboard Tool

Works File Edit

Tt

Object Clipboard 1

Object Help

D %YYL EOR

Filter «

> Matches 1

Name

FUNCTION-1 #<Function COPY-READTABLE 2017EEAZ2=

You can use the left mouse button to select any item in the Object Clipboard, then use the context menu (usually invoked by
the right mouse button) to inspect, inspect class, open a Listener, or copy the object.

17

2 A Short Tutorial

This chapter gives you a short tutorial illustrating simple use of some of the major tools in the environment, and attempts to
familiarize you with the way that tools can be used devel oping Common Lisp applications.

Note that some of the examples given in this chapter use symbols taken from the CAPI library. Do not worry if you are not
familiar with the CAPI (if, for instance, you have been using another library, such as CLIM, to develop your applications). It
is not essentia that you fully understand the example code used in order to gain benefit from the tutorial. If you wish to learn
more about the CAPI, you should refer to the CAPI User Guide and Reference Manual which is supplied in electronic form
with your LispWorks software. The Help menu allows you to search all documentation from inside the LispWorks IDE.

Note: When using either the GTK+ GUI or the deprecated X11/Motif GUI, before you start working through the tutorial,
ensure that the DI SPLAY POSIX environment variable is set correctly, and that you have started the LispWorks IDE, for
example by:

(env:start-environment)

To maintain continuity, try to work your way through the whole of this tutorial in one session.

2.1 Starting the environment

Assuming that you have the location of the supplied LispWorks executable in your path, just type its name in any xterm or
command shell window and the LispWorks IDE starts automatically. Thisnameis! i spwor ks- 8- 0- 0- and64- | i nux or
| i spwor ks-8-0-0-x86-freebsd or similar depending on which product you are running. Under KDE or Ghome, you
might want to set up a system menu item to start LispWorks.

CL-USER 1 >

Type the following Lisp form at the prompt to start the LispWorks I DE:

(env:start-environnment)

You should see a splash screen, followed by the Podium window. The Podium is shown in The Podium. A Listener window
will also appear if your image is configured to start one.

The Podium

LispWorks 7.0.0 on higsan.cam.lizpworks.com

Works File FEdit Teols Windows Help
g o D p QB My VR BTADAS S

Ready , l." .
I|' =

]
-,
/ -

Toolbar Meru Bar

The Podium window is automatically displayed whenever you start the LispWorks IDE. Its menu bar gives you access to
various commands, aswell as all the other toolsin the environment. Itstoolbar gives you quick access to some of the more
convenient menu commands.

18

2 A Short Tutorial

Like many other applications, the menu bar contains File, Tools, Windows and Help menus and a LispWorks-specific menu
named Works. The Works menu contains commands that apply to the current window and also contains menus that allow
navigation between tools in the Lisp\Works environment.

The File menu allows you to open afilein an Editor, or print afile, regardless of which window is active. When the Editor or
Listener toal is active, the File menu contains other commands for miscellaneous operations on the file displayed. The Tools
menu gives you access to al of the LispWorks IDE tools. The Windows menu lists all the active LispWorks windows you
have running.

Note: If you wish to exit the Lisp image during this tutorial or at any other time, choose Works > Exit > LispWorks.

2.1.1 The Lisp Monitor in the deprecated Motif IDE

In the deprecated Motif IDE only, aLisp Monitor window also appears when you start the LispWorks IDE. Thisisactualy a
separate process which shows you the state of the Lisp image, and monitors any garbage collection activity which occurs. For
the most part you can ignore this window, although you may sometimes find the buttons on it useful for breaking into the

Lisp processif you run source code which crashes Lisp for any reason. If you wish, you may close the Lisp Monitor window.

The Lisp Monitor

Break to tty

Interrupt Lisp

Quit GcMonitor

Idle

2.2 Creating a Listener

The Listener tool interactively evaluates the Lisp forms you enter. During atypical session, you evaluate aform in the
Listener, then examine the effects in other tools, returning to the Listener whenever you want to evaluate another form. The
structure of thistutorial reflects this two-stage approach.

A Listener is created when you start the LispWorks IDE. If you don't currently have a Listener (check the Windows menu),
start one by choosing Tools > Listener from the podium or clicking on «, inthe Podium. This section of the tutorial
demonstrates some of its more useful features. A Listener window is shown in Listener below.

19

2 A Short Tutorial

Listener

Works File Edit Expression WValues Debug History Help
ey oy i e T
v) (my (my £ ¥ L5 o= @

-."_‘*-*

Listener | Output

CL-USER 1 > (print 42)

42
42

CL-USER 2 > v

Ready.

The Listener contains two views: the Listener view and the output view. At the bottom of the Listener is an echo areathat is
visible in either view. The echo areais used to prompt you for information when performing editor commands such as
searching for text. You can switch between the two views by clicking the Listener and Output tabs respectively. You can
evaluate Lisp formsin the Listener view by typing the form, followed by Ret ur n. Any output that is produced is displayed
in the Listener view.

1. Typethefollowing form into the Listener and press Ret ur n.
(+12)

The result of the evaluation, 3, appears in the Listener, and a new prompt is printed. Notice that the number in the
prompt has been incremented, indicating that aform has been evaluated.

Because you may want to enter anumber of very similar forms, commands are provided which make this easy.

2. Press et a+P.

The form that you just evaluated is printed at the new prompt. You can press Ret ur n to evaluate this form again, or,
more usefully, you can edit the form dlightly before evaluating it.

3. Press Ct r | +B to move the cursor back one space. Now press the Backspace key to delete the number 2, and type 3 in
its place.

You have edited theform (+ 1 2) tocreateanew form, (+ 1 3).
4. Press Ret ur n to evaluate the new form.

The result of the evaluation, 4, appears in the Listener, followed by another new prompt, with the prompt number
incremented once again.

20

2 A Short Tutorial

2.3 Using the Debugger

A debugger tool is provided to help track down the cause of problemsin your source code. This section introduces you to
some of the ways in which it can be used.

1. Enter the following definition in the Listener:

(defun test ()
(let ((total 0))
(loop for i below 100 do
(incf total i) when (=i 50) do
(break "We've reached fifty"))))

This function counts from 0 to 99, accumulating the total asit progresses, and forces entry into the debugger when the
count has reached 50.

2. Next, call the function by entering (t est) into the Listener.

Initially, the command line debugger is entered. Thisis a debugger which can be used from within the Listener itself.
More details about what you can do in the command line debugger can be found by typing : ? at the debugger prompt.

3. To enter the debugger tool at this point, choose the menu command Debug > Start GUI Debugger or press # in the
Listener toolbar.

The debugger tool appears, as shown in Debugger tool.

21

2 A Short Tutorial

Debugger tool

Bror condiion. Corirol buliors. Debugger backirace.

Edit View Condition | Restarts Help

; 4 — .._'_—-.‘

I X INVOKE-DEBUGGER
I X BREAK

2 TOTAL
@
£ & |by-667]
O & |to666|
O SYSTEM: WELODP-IT-VARIAEBLE®® T
I A EVAL
A CAPL:CAPI-TOPLEVEL-FUNCTION
[+ }..C.l'-"uF'|::|NTER.F|.ET|"-"E-F'ANE-TGF"-LDGF’
- X MP:PROCESS-SG-FUNCTION

Ready .

S1ale ol variables 1or
selecied frame.

The debugger tool gives aview of the backtrace (in the Backtrace: pane), showing the functions that are on the stack,
and their internal variables (including any arguments) at the point that the error occurred.

4. Inthe Backtrace: pane, notice that there is aright-pointing triangle to the left of the word TEST. Thisindicates an
expandable node. Click on this to open up the tree display, showing the local variables used in functiont est . Notice
that the valuefor i is50, asyou would expect.

Thereisarow of toolbar buttons at the top of the debugger which let you perform a number of different actions.

5. Choose Restarts > (continue) Return from break. or click on the Continue icon from the toolbar to exit the Debugger
and continue execution.

The debugger disappears from the screen, and the command line debugger in the Listener is exited, leaving you at the Lisp
prompt in the Listener.

22

2 A Short Tutorial

2.4 Viewing output

There are many different waysto view output generated by the environment. In many tools, for example, output appears as
soon asit is generated - this happens, for instance, when you compile code in the built-in editor.

At other times, you can view output in atool called the Output Browser. Thistool collects together all the output generated
by the environment, and is particularly useful for viewing output generated by your own processes (which cannot be

displayed in any other environment tool). The Output Browser displays all the output sent to the default value of the variable
*st andar d- out put *.

1. Evauate the following in the Listener.

(capi:contain
(make-instance 'capi: push-button-panel

citens '(:red :yellow :blue)

:sel ection-call back

(lanmbda (data interface)

(format t

"Pressed button in interface ~S~% dat a=~S~%
interface data))))

Thisisapiece of CAPI code that creates a window with three buttons, labeled RED, YELLOW and BLUE, as shownin
Example CAPI window. Pressing any of these buttons prints the value of the button pressed.

Example CAPI window

ﬂED YELLOW || ELUE

2. Click on the Output tab in the Listener.
3. Try clicking on any of the buttons in the window you just created, and look at the output generated.

4. Now try a second example by entering the form below into the Listener at the current prompt (remember to click the
Listener tab in the Listener first).

(capi:contain (nmake-instance
' capi:text-input-pane
:cal l back #' (lanbda (text interface)
(format t
"You entered: ~S~% text))
ctitle "My Text |nput Pane"))

The object that this code creates is going to demonstrate the Inspector tool. The code above creates awindow containing
atext input pane. You can type text directly into atext input pane, and this can be passed, for instance, to other functions

for further processing.

5. Typetheword hel | o into the text input pane and press Ret ur n. Look at the generated output in the output view.

23

http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm

2 A Short Tutorial

2.5 Inspecting objects using the Inspector

Thevariables*, ** , and *** hold the results of expressions which have been evaluated in the Listener. * always holds the
result of the last expression evaluated; ** holds the previous value of *, and * * * holds the previous value of ** . These
variables (* in particular) are not only useful in their own right; the environment uses them to pass values between different
tools.

1. Make surethe Listener tab isvisible, and type * .

If you have followed this tutorial so far, the text input pane object that you created above is returned. Thisis because the
capi : cont ai n function returns the object that is being contained. You can easily inspect this object more closely in the
Inspector tool.

2. Choose the menu command Values > Inspect.

This creates an Inspector tool which displaysthe capi : t ext -i nput - pane object currently contained in * .

Examining atext input pane in the Inspector

Inspector 1

Works File Edit View Object 5lots History Help

DI BRI &9 -
Text Input Pane | Local Slots
Filter v X Matches 48
IAttribute Value %
“
CAPILACCEPTS-FOCUS-P T |
CAPI:ALLOWS-NEWLINE-P T
CAPI::BACKGROUND #:RGE 1.050 1.050 1.050)
CAPIHINTERNALS: CALLEBACK #<anonymous interpreted fu
L e »]
Ready.

TEXT-INPUT-PANE: #<CAPLLTEXT-INPUT-PANE 21BEE273>

The commandsin the Values menu always act upon the current value of *. This enables you to pass avalue easily from
one tool to another.

The main part of the Inspector isalist of al the slotsin the object being inspected. Thislist shows both the name of each
dlot and its current value. Abovethislist isabutton labeled Filter with atext box to itsright. Thislets you filter the
information shown in the main list, which can be useful when you are inspecting objects with alarge number of dots.
The name of the object being inspected appears immediately below the echo area.

3. Click in the Filter text box, type theword t ext .

This restricts the display in the Inspector to only those items which contain the string "text", either in the slot name or in
the dot value.

24

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm

2 A Short Tutorial

After using the filter, you can easily see that one of the available dots contains the word hel | o that you typed into the
text input pane.

The Inspector always displays the actual instantiation of a given object (as opposed to a copy of it), so that you can be
certain that any changes to the object itself are reflected in the Inspector.

4. Display the text input pane that you created earlier.

If you can no longer seeit, choose Works > Windows > Container; thisisasimple way to display any of the windows
and tools that you have created so far. (There are actually two windows with this name; if you choose the wrong one first
of al, then just choose the other one.)

5. Click in the text input pane and delete the word hel | 0. Type goodbye and press Ret ur n.

6. Select the Inspector to make it the active window and choose Works > Refresh.

The description of the text slot now reflects the new value you specified.

7. Close the Inspector by choosing Works > Exit > Window.

You can close any window in the environment in this way, although there are often other ways of closing windows.

2.6 Examining classes in the Class Browser

This section shows you how to use the Class Browser tool to examine information about the Common Lisp class of any given
object. The examples given use the text input pane object that you created earlier, and show you how you can change the
values of adot programmatically.

1. Inthe Listener, type* once again.

Notice that the * variable still contains the value of the text input pane object. This meansthat it is easy to perform
several actions on that object. Notice further that the environment is aware that the object has been changed: the value
returned by * reflects the change to the text dot that you made in the last section.

2. From the Listener, choose Values > Class.

This creates a Class Browser, shown in Examining the class of an object using the Class Browser, which allows you
to examine the class of the object contained in *.

25

2 A Short Tutorial

Examining the class of an abject using the Class Browser

Class Browser 1 ! E
Works File Edit View Description Slots Classes Methods History Help

D0/ E® ¢ -9
lass: v X

Hierarchy | Superclasses |Subclasses | Slots | Initargs | Functions | Precedence
Include Inherited Slots

b

T

Filter + X Matches 48
CAPI-INTERNALS:CALLBACK -
CAPI::CALLBACK-TYPE ;
CAPIINTERNALS:CARET-POSITION
CAPI-INTERNALS: CHANGE-CALLBACK

oy

CAPI-CHANGE-CAII BACK-TYPE
Descrption:
From Classes: CAPLTEXT-INFUT-PANE
Slot Name: CAPI:CALLEACK-TYPE
Type: T
Initargs: (CALLEACK-TYPE
Initform: DATA-INTERFACE

Readers:

Whiters:
Allocation: (INSTANCE

Ensure that the Slots tab is selected, asin theillustration. In the Class: box, the name of the current Common Lisp class
isprinted. The list below the Filter box displays the slots available to the current class, and list labeled Description:
displays the description of any selected slot. The filter works in the same way as the Inspector'sfilter. Thereisaso a
checkbox labeled Include Inherited Slots. Selecting this checkbox lets you switch between displaying all the slots
defined on the current class and al its superclasses, and only those slots defined directly on the current class. By defaullt,

slots defined on any superclasses (inherited slots) are shown in the main area.
3. Filter the display asyou did for the Inspector; click in the Filter box, and thistime type the word f or egr ound.
Only those dots with the string "foreground” in their names are displayed.

26

2 A Short Tutorial

4. Select the CAPI : : FOREGROUND slot from the list. A description of the slot appears in the description area, including
information such as theinitargs, readers, and writers of the dot.

Notice that the class text input pane has both areader, capi : si npl e- pane- f or egr ound, and awriter,
(setf capi: si npl e- pane-f or egr ound) . We can use thisinformation to programmatically change the text shown
in the text input pane.

5. Typethisform into the Listener:
(setf (capi:sinple-pane-foreground *) :red)

The text displayed in the text input paneis displayed in red to reflect the new value you have specified. Notice how you
were ableto usethe * variable to refer directly to the text input pane object itself.

2.7 Switching between windows

In the previous sections we have introduced several of the major toolsin the LispWorks IDE. You will often want to view one
tool and then swiftly switch to another LispWorks window, and perhaps another. For instance many programmers edit and
evaluate their source code in the Editor tool, then run atest function in the Listener, and return to the Editor to further modify
their code, and so on.

The shortcut key to switch between LispWorks | DE windows depends on your desktop environment or window manager, but
isoften Al t +Tab. This cyclesthrough all of the windows on your desktop. To cycle through them in reverse order, you can
often use Al t +Shi f t +Tab.

2.8 Summary

In thisintroductory tutorial you have seen how to perform the following actions:
+ Start the windowing environment.
» Evauate and re-evaluate Common Lisp forms using the Listener.

* Invoke the Debugger, follow the backtrace that it produces, and return from the error which caused entry to the
Debugger.

 Collect and display data generated by your own code in the Output Browser.
* Usethe Inspector to examine the current state of an object.

» Usethe Class Browser to find out detailed information about a given class, so that you can make arbitrary programmatic
changes to an instance of that class.

The next two chapters describe elements of the environment which are common to al tools.

Other chaptersin this manual describe the other tools available in the environment. Each chapter is intended to be reasonably
independent of the others, so you can look at them in any order you wish. You are advised to study the chapters on the basic
tools, such asthe Inspector, the Class Browser and the Editor first, since a knowledge of these toolsisvita if you want to get
the best out of the environment.

27

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

3 Common Features

The LispWorks IDE has been designed so that its features are consistent throughout, and tools have a uniform look and fedl.
All tools have certain characteristics which look the same, and behave in a consistent manner. By making as many common
features as possible, learning how to use each tool is much simpler.

2 A Short Tutorial, introduced you to some of the major tools in the environment, demonstrating the commonality and high
integration between them, and showing how this can be used to good effect in the development process. This chapter
describes these common features in more detail.

When you start the LispWorks IDE, by default awindow known as the podium appears.
The LispWorks podium

LispWorks 7.0.0 on higson.camJispwork=.com

Works Flle Edit Toals WWndows Help

& [ty o poag 23 Q:-r'ﬁ#k Q‘Jt_n—|mf“
Ready.

Message area. Meru bar. Tu:-:ll:ﬂr.

The podium contains a menu bar, atoolbar, and a message area. The iconsin the podium'stoolbar access the Listener, Editor,
Output Browser, Inspector, Class Browser, Generic Function Browser, Symbol Browser, Object Clipboard, Function Call
Browser, Code Coverage Browser, System Browser, Compilation Conditions Browser, Search Files, Profiler, Tracer, Stepper,
Window Browser, Process Browser, Shell and Application Builder tools. If you hold the mouse over these icons for a
second, the corresponding tool name will appear as floating help text.

The IDE tools have most of these menu items in common with the podium.
The podium's menu bar contains six menus.
» The Works menu contains commands that operate on the current window.
» The File menu contains commands that open, load, save and compile Lisp files.
» The Edit menu contains commands that copy and paste text in the message area and find and replace text.
» The Tools menu contains commands to create and configure the LispWorks IDE tools.

» Thewindows menu lists all the current windows in the environment. To make any window the active window, choose it
from this menu.

» The Help menu contains commands described in 4 Getting Help.

In addition to the podium, each tool window has its own set of menus and toolbar buttons. Most of the common featuresin
the environment can be found under the Works, File, Tools, Windows, History and Help menus. Other menus may also be
available depending on the current tool. Using the commands available under these menus you can:

» Moveto any other toal.
 Cut, copy or paste viathe clipboard and the Object Clipboard tool.

 Perform search and replace operations.

28

3 Common Features

* Re-issue a previous command, or re-examine an object.
* Perform operations such as loading and saving files.
Each menu command operates on the window associated with the menu.
In addition, some other conventions have been adopted throughout the LispWorks IDE:

» Many tools have a number of different views. ways of displaying information. Each view is made available by clicking
on adifferent tab in the tool.

* Listsdisplayed in many tools can be filtered in order to hide redundant or uninteresting information.

These features are described in full in this chapter. Please note that subsequent descriptions of individual toolsin the
environment do not include a description of these menus, unless a feature specific to the individual tool is described.

Online help is aso available from the Help menu in any window. These facilities are described in 4 Getting Help.

Many tools allow you to display information in the form of agraph. These graph views behave consistently throughout the
environment, and a description of the graph features offered is given in 6 Manipulating Graphs.

3.1 Displaying tool windows

There are many tools available, and you can display them in a number of ways.

You can also control how tools are re-used within the environment. That is, whether an existing Listener window (for
example) israised or anew one created, when you ask for a Listener tool. In this section we will discuss global and per-tool
control of reuse.

3.1.1 Displaying existing windows

Choose the windows menu from the podium. This menu contains alist of all the windows currently available in the
environment. Choosing any item from this list brings the window to the front of the display.

3.1.2 Iconifying existing windows

To iconify awindow, use the command provided by your window manager.

3.1.3 Arranging windows in MDI mode

In LispWorks for Windowsin "All windows contained within a single main window" (MDI) maode, use the commands near
the top of the windows menu such as Cascade and Tile Horizontally to arrange your tool windows within the main window.

3.1.4 Displaying tools using the mouse
To display most tools:

1. Choose the Tools menu from the podium.

Most tools in the environment are listed in this menu.
2. Choose the toal you require from the menu.
or:

1. Choose the Works > Tools menu from any tool.

29

3 Common Features

2. Choose the tool you require from this menu.
or:

1. Click the appropriate button on the Podium.

For example, to display a Process Browser, click #.

Thetool is created (if necessary), and displayed. Using this method can be useful you may not remember immediately
whether you have an existing instance of a given tool or not.

3.1.5 Displaying tools using the keyboard

Accelerators are provided for the popular items on the Tools menu. Each tool accelerator is an aphanumeric key together
with platform-specific modifier keys as shown in 3.1.5.1 Tool accelerator keys. You cannot configure these pre-defined tool
accelerators.

You can aso use these alphanumeric keys with the I nvoke Tool editor command.

Thereis aso akeystroke for switching between tool windows in a cyclical fashion, described in 2.7 Switching between
windows.

3.1.5.1 Tool accelerator keys
Note 1: On GTK+, accelerators work only in KDE/Gnome editor emulation.

Note 2: Inthe deprecated Motif GUI, accelerators work only in KDE/Gnome editor emulation and you also need a keyboard
with Al t onnodl1 and Met a on adifferent modifier (for example, nod3).

The accelerator keys for each tool are as shown in Tool acceler ators:

Tool accelerators

Tool Name Accelerator
Listener Met a+Ctrl +L
Editor Met a+Ctrl +E
Output Browser Meta+Ctrl +U
I nspector Met a+Ctrl +l
Class Browser Met a+Ctrl +C
Generic Function Browser Met a+Ctrl +G
Symbol Browser Met a+Ctrl +S
Object Clipboard Met a+Ctrl +O
Function Call Browser Met a+Ctrl +X
Code Coverage Browser Met a+Ctrl +V
System Browser Met a+Ctrl +Y
Compilation Conditions Browser Met a+Ctrl +D
Search Files Met a+Ctrl +F
Profiler None

Tracer Meta+Ctrl +T

30

3 Common Features

Stepper None
Window Browser Met a+Ctrl +W
Process Browser Meta+Ctrl +P
Shell None
Application Builder Met a+Ctrl +A
Debugger None

3.1.6 Re-using tool windows

3.1.6.1 Global control of re-use

By default, tools windows are re-used where possible. For example, suppose you already have a Listener window (potentially
iconified) but do not have an Inspector window. When you choose Tools > Listener in the podium, the existing Listener is
displayed. When you choose Tools > Inspector, an Inspector is created and displayed.

You can switch off re-use of tool windows. To do this, first raise the Preferences dialog as described in 3.2 Setting
preferences. Inthe Preferences dialog under Environment > General > Window Options uncheck the Reuse all tools box
and click OK. Now, when you choose Tools > Listener anew Listener is created, regardless of whether one already exists,
and other tools behave in the same way.

The setting of Reuse all tools will be retained for your subsequent LispWorks sessions.

3.1.6.2 Per-window control of re-use

When the Reuse all tools option is on, tools windows are reusable by default. However, it is possible to specify that a
particular instance of atool is not reusable. To make your Inspector not reusable, follow these steps:

1. Ensure that the Reuse all tools option is checked under Works > Tools > Preferences... > Environment > General.
2. In the Inspector window, open the menu Works > Customize and deselect the Reusable option.
3. Now try Tools > Inspector. A new Inspector window is created.

The Reuse all tools option is persistent, but the per-tool setting Reuse InspectorReusable applies only to the current
instance of the tool, and it does not affect future sessions.

3.1.7 Menu bar configurations in LispWorks for Windows

This section only applies to LispWorks for Windows.

3.1.8 Toolbar configurations

Most tools have toolbars offering one-click access to frequently-used commands. For example, the Editor has a toolbar for
operating on source code.

The Editor's source operations tool bar
® N4y e G

31

3 Common Features

You may prefer to remove such toolbars. You can control whether atool displaysits toolbars by the option Show Toolbar.
To hide toolbars for a particular type of tool:

1. Raise the Preferences dialog as described in 3.2 Setting preferences.

2. Select thetool in the list on the left side of the dialog.
3. Select the General tab on the right side of the dialog.
4. Uncheck Show Toolbar and click OK to confirm the setting.

You can aso customize the toolbar by removing rarely-used buttons and adding or removing separators between groups of
buttons. To do this, raise the context menu on the toolbar, choose Customize and make your selections in the Customize
Toolbar dialog. You can also use this menu to select whether this toolbar's buttons show an image, or text, or both.

Note: The functionality of each toolbar is available elsewhere. For example the Editor's source code operations are also
available on the Buffer, Definitions and Expression menus.

3.1.9 Copying windows

Choose Works > Clone in agiven tool window to make a copy of that tool window. Thisis useful, for instance, if you wish to
have two different views on an abject simultaneously, and allows you to have several copies of atool without having to
change its re-use property using the Works > Customize menu.

3.1.10 Closing windows

Close any window in the environment using one of the following methods:
» Choose Works > Exit > Window.
» Use awindow-manager-specific feature, if available.

* |n Editor windows only, use the Emacs-like command Delete Window (keystroke Ct r 1 +X 0).

3.1.11 Updating windows
To manually update any tool, choose Works > Refresh or click [Z].

Updating atool is a useful way of making a snapshot of an aspect of the environment that you are interested in. For instance,
imagine you want to compare a number of instances of a CLOS class against a known instance of the same class using the
Inspector. You can do this as follows:

1. Create an object to inspect, by entering in a Listener:
(make-instance 'capi:text-input-pane)

2. Choose Values > Inspect to view the object in the Inspector.
3. Make sure the Inspector is the active window, and choose Works > Clone to make a copy of it.

4. Inthe Listener, enter the same form again to create a second object.

Note: You canuse Esc P in Emacsemulation or Ct r | +Up in Windows emulation to get the previous Listener
command.

5. View the new object in the Inspector asin Step 2. Compareit to the original instance that is still displayed in the clone.

32

3 Common Features

3.2 Setting preferences

Choose Tools > Preferences... from the podium or Works > Tools > Preferences... or click & to raise the Preferences dialog.
Thisdiaog is used to specify:

* options affecting the development environment in general such as those described in 3.1.6 Re-using tool windows or the
name of your initialization file, and:

* options specific to each type of tool, such as the Editor tool, Inspector tool and so on.
The tool-specific options are described in the chapter relevant to each tool.

The remainder of this section describes the general environment options. To see these, ensure that Environment is selected in
the list on the left side of the Preferences dialog, and select the General, Emulation, Styles, and File Encodings tabs.

In all cases your setting is preserved for future use after you click OK to close the Preferences dialog.

3.2.1 General options

The first tab under Environment contains the General options.

33

3 Common Features

The Preferences dialog

LispWorks: Preferences

Environment ‘General {Emulation |Styles |File Encodings

& Application Builder Window Options
dg Class Browser

Reuse all tools

4= Code Coverage Browser [] Use separate Editor windows for each file

&3 Compilation Conditions Use recent directory for opening files

A Debugger Use quality drawing

() Editor

-& Function Call Browser Completion

Generic Function Browser Use in-place completion

& Inspector [] Auto-insert on single file completion
Uy Listener

Confirm Before Exiting

) Never () When modified buffers @ Always

[7] Object Clipboard
w9 Qutput Browser
Process Browser

Lists
5 Profiler
&6 search Files Add a filter to dialog lists longer than: 25 |w
& Shell Use Find Definitions list for more items than: |10 v
A Stepper

5 Symbol Browser Initialization File

(F System Browser ?_fufdubyaj.lispwnrks B X
2= Tracer

&=l Window Browser

Cancel oK

3.2.1.1 The window options

Reuse all tools controls whether LispWorks uses an existing tool rather than starting up a new copy. For exampleif Reuse all
tools ischecked, if an editor is already open, choosing File > Open and selecting a new file causes the file to be opened in
the existing editor.

Use separate Editor windows for each file controls whether LispWorks will open a separate Editor window for each file (or
editor buffer) that you have in memory. In addition, when Use separate Editor windows for each file is checked, closing an
Editor window will remove the underlying editor buffer from memory, possibly asking if you want to saveit. The default
setting is unchecked.

Note: for information about Editor windows, editor buffers and files, see 12.3 Displaying and swapping between buffers.

Check Use recent directory for opening files to make operations such as File > Open use the directory of the file most
recently edited as the default directory in the file dialog. Deselect this option to make the dialog's default directory be the
current working directory. Note that this option does not affect the Editor tool, for which the file dialog always uses the

34

3 Common Features

directory of the currently visible file as the default directory.

Check Use quality drawing to make the LispWorks IDE use quality (anti-aliased) drawing for editor and graph panes. Thisis
the default setting.

3.2.1.2 Controlling completion behavior

In-place completion is enabled by default in the IDE. If you prefer the modal dialog style of completion familiar to users of
LispWorks 5.0 and previous versions, deselect the Use in-place completion option.

When using in-place completion to complete a filename, by default you must always select an item from the in-place
completion window. You can accelerate this interaction by checking the option Auto-insert on single file completion. Then,
if there isjust one possible completion, it is automatically selected and appended to your input.

3.2.1.3 Quitting the environment
Choose Works > Exit > LispWorks... to exit LispWorks.

You can control whether LispWorks prompts for confirmation before exiting, using Works > Tools > Preferences..., and then
select Environment in the list on the left side of the Preferences dialog. The Confirm Before Exiting preference has these
meanings:

Never LispWorks exitsimmediately.

When modified buffers If there are modified editor buffers, adialog asks you whether these should be saved before
exiting.

Always A dialog asks you to confirm whether LispWorks should exit.

3.2.1.4 Automatic filters on dialogs

The option Add a filter to dialog lists longer than: affects modal dialogs containing long lists. When the list islonger than
the value of this option, thelist has afilter, which you can use as described in 3.14.3.1 Filtering modal dialog completion.

3.2.1.5 Automatic use of Find Definitions view

The option Use Find Definitions list for more items than: affects the behavior of source location commands such as the
editor commands Find Source and Find Source for Dspec, and the menu command Expression > Find Source. When the
number of source location results exceeds the value of this option, then the results are immediately displayed in the Find
Definitions view of an Editor tool. Thisis particularly useful when you need to locate the definition of a particular CLOS
method from the generic function name.

The Find Definitions view is described in 12.6 Finding definitions.

3.2.1.6 Initialization file

By default LispWorks looks for afile. | i spwor ks to be loaded automatically when LispWorks is started. You should create
an initialization file and add to it Lisp code to initialize the LispWorks image to suit your needs.

The Preferences dialog can be used to specify adifferent initialization file, in the Initialization File area. You can either enter
the path and filename directly into the text input box, or use the 2 button to display afile selection dialog. Clicking on X
undoes any alterations entered.

Note: it isup to each user to create and maintain their own personal initialization file. A sample personal initiaization fileis

35

3 Common Features

supplied with LispWorks - seethefilel i b/ 8- 0- 0- 0/ conf i g/ a- dot - | i spwor ks. | i sp inthe LispWorks distribution.

3.2.2 Configuring the editor emulation

The second tab under Environment contains the Emulation options.

The Emulation tab of the Environment Preferences

General | Emulation |Styles |File Encodings

Keys

() Editor keys are like Emacs

Cursor Blink Rate

(O None @® Native O Specify 600 | Milliseconds

Here you can configure the editor to behave according to one of two pre-defined editor input styles (emulations) which
determine how keyboard input is processed and other properties such as the shape of the input cursor. You can also set the
cursor blink rate.

The choice of emulation affects the Editor and other LispWorks tools containing editors such as the Output Browser, Stepper
and Profiler.

3.2.2.1 Choosing the key input style

The Editor and other tools using capi : edi t or - pane offer two key input styles. Emacs emulation or KDE/Gnhome
emulation. By default, Emacs emulation is used. To choose an emulation, select Environment > Emulation in the Preferences
dialog as shown in 3.2.2 Configuring the editor emulation and select one of the Editor keys are like... options.

Note: In thisand other manuals, the Emacs keys are generally given. For help with finding keys for editor commands, choose
Help > Editing > Command to Key. Also seethefilesconfi g/ key- bi nds. | i sp andconfi g/ nsw key- bi nds. | i sp
which contain the forms defining the keys for each input style.

3.2.2.2 Specifying a Meta key in LispWorks for Macintosh

This section only applies to LispWorks for Macintosh.

3.2.2.3 Effect of the specified Meta key

This section only applies to LispWorks for Windows and LispWorks for Macintosh.

36

3 Common Features

3.2.2.4 Setting the cursor blink rate
By default the editor cursor blinks on and off at the usual rate for your computer.

To change the blink rate, select Specify inthe Cursor Blink Rate area. Either scroll to choose the rate in Milliseconds, or
enter an integer between 100 and 2000.

To stop the editor cursor from blinking, select None in the Cursor Blink Rate area.

3.2.3 Setting the editor font, color and other style attributes

Thethird tab under Environment contains the Styles options.

The Stylestab of the Environment Preferences

General |Emulation| Styles |File Encodings

Editor Font

[] Override the system default font
Sample:

Main Colors

Pane Kind: Default b

Background: []| Use color: }(:
Foreground: [] Use color: s

Change the echo area color when not active

Styles Colors And Attributes

Style Name: §Li5p Keyword W

Background: | None A ><

Foreground: | Specified + -
[]1Bold []Italic [] Underline [] Inverse

Restore Defaults

Color parenthesis

By default the editor uses a system default font. You can choose an aternative font and see a sample of it displayed in the
Editor Font area. Click inthe Sample: areato raise afont chooser. After you select the font, the text "Click here to choose

37

3 Common Features

the font" is displayed in your selected font.
To make the LispWorks editor actually use your alternative font, select Override the system default font.

This specifies the font used in Editor and Listener windows and all other tools based on the editor, such asthe Shell, Stepper
and Profiler tools.

If you deselect Override the system default font the system remembers your choice of aternative font, but does not actually
useit for display.

3.2.3.1 Changing the main colors of editor panes

You can modify the background and foreground of the Editor and Listener windows, and all other tools based on the editor,
using the Main Colors frame. Note, however, that thiswill override any customization done in the underlying window
system, for example the resources in GTK+, which or may not be what you want.

First select the kind of editor that you want to modify in the Pane Kind list. Alternatively select Default to specify default
background and foreground, which apply to any editor of a kind for which the corresponding value is not set.

The specific kinds are:

Editor The main panes in the Editor tool, and other panes which are also just used for editing, for
example the Code To Profile tab in the Profiler and Source: in the Stepper.

Listener The Listener tool and other listener panes, including in the Debugger, the Inspector and the
Stepper.

Output Any pane that is used for output, including the pane in the Output tab of the Editor, Listener and
System Browser, and the output panes in the Tracer and Application Builder.

Shell The Shell toal.

Echo Echo areas on dl tools.

The colors apply when the echo areais active. If Change the echo area color when not active is
checked, the echo areareverts to the interface colors when it is inactive.

For each kind of pane, check Use color: alongside Background or Foreground to specify the background and foreground
colors. If Use color: isunchecked, the value is not specified, and alarge cross appearsin the color areaon theright. If Use
color: ischecked, then the color is set and the color area on the right showsit. Click in the color areato change the color
using a Color chooser that is raised.

When the LispWorks IDE makes an editor pane, it uses the foreground and background for this kind of pane if they are
specified. If either the foreground or background is not specified (that is, Use color: is unchecked), then it uses the color
specified for the Default pane kind if that is set. Otherwise it uses the default of the window system.

The Change the echo area color when not active checkbox controls whether an echo area changes its colors when it is not
active. When it is checked and an echo area become inactive, the echo area changes its foreground and background to the
colors of thetool. In other cases, echo areas use the colors set under Echo in the Main Colors box of the Preferences dialog,
or in the window system (such asin the GTK+ resources).

3.2.3.2 Setting the text style attributes
By default the LispWorks IDE uses a variety of text styles to:
» Highlight selected text.

+ Distinguish interactive input in the Listener and Shell tools.

38

3 Common Features

 Distinguish compiler messages in the Output tab or Output Browser.

» Make Lisp code more easily readable with syntax coloring.

* |ndicate matching parentheses, easing the writing of correct Lisp forms.
Note: Thelast two of these features operate only in Lisp mode.

To change the attributes of one or more text styles, first select Environment > Styles in the Preferences dialog as shown in
3.2.3 Setting the editor font, color and other style attributes.

Then, to make Common Lisp symbols appear with red foreground rather than the default purple for example, first select Lisp
Keyword in the Style Name list. Then select Specified alongside Foreground and double-click on the color areato the right.
In the Color chooser that appears, choose the new color and click OK. Now click OK on the Preferences dialog and see the
change in the way your Lisp codeis displayed. You may need to force the editor window to redisplay, for example by
scrolling, to see the change take effect.

For each named style, the Foreground and Background each have exactly one of the following values:

None No special formatting.

Default Platform-standard highlighting, as for selected text.

Specified The color specified is used.

Modified The system generates a color which is usable for highlighting.

A large cross appearsin the Foreground (Background) color areawhen None, Modified or Default is selected. This indicates
that the color is not used for the Foreground (Background).

If you wish to turn off the highlighting of interactive input in the Listener and Shell tools, first select Interactive Input in the
Style Name list. Then uncheck all the attributes and click OK.

To restore al stylesto thosein LispWorks as shipped, click Restore Defaults.

Note: the foreground and background colors of windows are set viathe system, not in LispWorks. To alter these colors on
GTK+ or Moatif, see "Matching resources for GTK+ and X11/Motif" in the CAPI User Guide and Reference Manual and
specify resources for the application class Lispworks.

The text styles used in syntax coloring have these meanings and default appearance:

Syntax styles

Style Name Use Default appearance
Region Highlight The active region Native highlight
Show Point Matching parentheses : gr een background
Interactive Input Input in aListener or Shell Bold
Marked Object 20.10.4 Highlighting of results Underlined
Highlight Editor help such as Describe Bold
Bindings
Completion Dynamic and in-place completions. | Modified background
Transient.
Search Match The matching text during an Inverse
incremental search (asinvoked by
Crl+S)

39

3 Common Features

Line Wrap Marker Displays the editor's line wrap : pur pl e foreground, modified
marker, where aline iswrapped or background
truncated

Lisp Function Name Namein def un, def nmacr o, : bl ue foreground
def met hod and def generi ¢ forms

Lisp Comment Comments and feature expressions |: fi rebri ck foreground

Lisp Type Nameindef t ype or other def ... |: forest green foreground
form, or lambda list keyword such as
&opt i onal

Lisp Variable Name Namein def var or def par anet er |: dar kgol denr od foreground
forms

Lisp String A string literal : rosybr own foreground

Lisp Keyword def un, def macr o or other definer |: pur pl e foreground
named def . . .

Lisp Builtin A keyword symbol : or chi d foreground

Arglist Highlight The current argument in aFunction |Inverse
Arglist Displayer window

Hidden Comment String Replacement string for hidden : gr ay background
comments in folded definitions.

3.2.3.3 Controlling parenthesis coloring

You can control whether the editor colors parentheses in Lisp code. By default, pairs of matching parens are displayed in the
same color, with a different color for forms at different depths. You can switch off this coloring by deselecting the option
Color parenthesis in the Styles tab of the Environment preferences.

3.2.4 Setting the default encodings
The fourth tab under Environment contains the File Encodings options.

The Editor has defaults for the encodings used when opening and saving files. For many users these defaults will suffice. If
you need to change either, select the Environment > File Encodings tab of the Preferences dialog.

http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmac.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defgen.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_deftp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmac.htm

3 Common Features

The File Encodings tab of the Preferences dialog

General | Emulation | Styles %File Encuding5§

Encoding and Line Termination Options

Input

AUTO-DETECT ¥ || AUTO-DETECT hd

Output

LATIN-1 ¥ | LF

CRLF

e—

DEFAULT

For example, to make the Editor save Carriage Return line-terminated files by default, select CR in the Line Termination
Options under Output.

3.3 Performing editing functions

This section discusses commands available in the Edit menu of any window. These commands fall into five areas:
» Undoing changes.
 Using the clipboard.
* Selecting text and objects.

 Searching for text.

Substituting text.

3.3.1 Undoing changes

You can undo changes made in atool using Edit > Undo. Thisfacility ismost useful in the Editor and Listener - see 12.9
Other essential commands for more details.

3.3.2 Using the clipboard

You can use the clipboard to transfer data between tools, or even between the LispWorks IDE and other applications that you
are running. There are three commands available, asfollows:

41

3 Common Features

» Choose Edit > Copy to put the selected item or text from the active pane onto the clipboard.

» Choose Edit > Cut to put the selected item or text from the active pane onto the clipboard and remove it from the active
pane.

» Choose Edit > Paste to replace the selected item or text in the active pane with the contents of the clipboard.
Use of Copy or Cut followed by Paste lets you transfer items between tools, or to different parts of the sametool.

Unlike the clipboard in many other applications, the LispWorks IDE clipboard can contain a Common Lisp object. This
makes the LispWorks IDE clipboard an exceptionally powerful tool, allowing you to pass objects between different toolsin
the environment so that they can be examined in different ways.

If the clipboard contains a Lisp object and you use the Paste command on a pane that only accepts text, then the object's
printed representation will be pasted.

There are several ways to use these commands:

* Inthe Editor, you can Copy chunks of text and Paste them into different places, either within the same file or between
different files. If you have sections of code which are very similar, rather than typing each section out explicitly, just
Paste in the same section as many times as you need and change only the relevant parts. 12.11 Cutting, copying and
pasting using the kill ring describes a number of more sophisticated methods that can be used in the Editor.

* Inthe Class Browser's Hierarchy view (for example), you can Copy a selected class from the Superclasses pane to the
clipboard and then Paste it into another tool. Because the Common Lisp object itself is copied to the clipboard, it is
treated usefully according to the tool. For instance, if you paste it into an Inspector using Edit > Object > Paste Object,
then the classisinspected. If you paste it into an editor however, the class nameis simply pasted as text.

Aswell as the menu commands, you can use the %, & and B buttons in the toolbar, for Cut, Copy and Paste respectively.

Note: You can aso transfer data within the environment using the standard actions commands described in 3.8 Perfor ming
operations on selected obj ects.

3.3.3 Using the Object operations with the clipboard
You can use the clipboard to transfer atool's "primary object" between tools. There are three commands available, as follows:
» Choose Edit > Object > Copy Object to put the selection or "primary object”" onto the clipboard.

» Choose Edit > Object > Cut Object to put the selection or "primary object” onto the clipboard and remove it from the tool
it was copied from.

» Choose Edit > Object > Paste Object to put the contents of the clipboard into the current tool.

Use of Copy Object or Cut Object followed by Paste Object lets you transfer items between tools, or to different parts of the
sametool. There are several ways to use these commands:

* Inthe Class Browser (for example) you can Copy Object the class to the clipboard and then Paste Object it into another
tool. Because the Common Lisp object itself is copied to the clipboard, it is treated usefully according to the tool. For
instance, if you pasteit into an Inspector, it isinspected. If you paste it into an editor however, the class nameis simply
pasted as text.

» Between any of the tools, you can Cut Object, Copy Object, and Paste Object Common Lisp objects. You can, for
instance, make an instance of aclassin the Listener, inspect it by Values > Inspect, and then Copy Object it in the
Inspector, and then Paste Object it into a Class Browser to examine its class.

* If you have severa Common Lisp objects which you want to keep track of, store them in the Object Clipboard. You can
do this by aClip command in tools such as the Class Browser, or by Edit > Object > Paste Object in the Object
Clipboard tool. See 8 The Object Clipboard for more information about that tool.

42

3 Common Features

Note: You can aso transfer data within the environment using the standard actions commands described in 3.8 Perfor ming
oper ations on selected objects.

the LispWorks IDE a so interacts with the standard system clipboard, so that data can be transferred to or from applications
other than Lisp. To do this, the system and the LispWorks I DE clipboards are kept in synchronization all the time, as follows:

» Whenever a Common Lisp object is copied to the LispWorks IDE clipboard, its string representation is copied onto the
system clipboard.

» Whenever astring is copied to the system clipboard, it is copied onto the LispWorks IDE clipboard as a string.

3.3.4 Selecting text and objects

Choose Edit > Select All or Edit > Deselect All to select or deselect all the text in an Editor or Listener window, or al the
itemsin alist or graph. These commands are useful whenever there istoo much information to be able to select items one at a
time.

These commands operate on the active pane of the current tool.

3.3.5 Searching for text and objects
You can search for and change text in most tools using Edit > Find..., Edit > Find Next, and Edit > Replace....

Choose Edit > Find... to find an item in the current tool (this might be a piece of text, or afragment of Common Lisp, or an
object, depending on the tool). You must supply anitem to find in the dialog that appears.

Choose Edit > Find Next if you want to search for the next occurrence of an item you have already found. This command
does not prompt you for an item to find, and so is only available if you have already found something.

Choose Edit > Replace... if you want to replace one string of text with another. A dialog box prompts you for atext string to
find, and atext string to replace it with. This command is only available in the Editor and the Listener, and is most useful in
the Editor.

These commands operate on the active pane of the current tool.

3.4 The Break gesture

The keyboard Break gestureis Met a+Ct r | +C.
This chooses a process that is useful to break, and breaksit.

Note that you cannot use Escape in place of Met a. Asthere are many different types of keyboard, if it isnot possible to
assert which isthe Met a key on your keyboard, it may be marked with a special character, such as adiamond, or it may be
one of the function keys - try F11.

Met a+Ct r | +C appliesto both GTK+ and Motif. If your keyboard has the Br eak key, then you can also use this alternate
break gesture. The key sequence can be configured using capi : set -i nt er acti ve- br eak- gest ures.

The process to break is chosen as follows:;

1. If the break gestureis sent to any LispWorks IDE window or other CAPI interface that iswaiting for events, it does
"Interface break", as described below.

2. Otherwise it checks for a busy processes that is essential for LispWorks to work correctly, or that interacts with the user
(normally that means that some CAPI interface usesit), or that is flagged as wanting interrupts (currently that means a
REPL). If it finds such abusy process, it breaksit.

3 Common Features

3. Otherwise it activates or starts the Process Browser. Note that thistool, documented in 22 The Process Browser, can be
used to break any other process.

"Interface break” depends on the interface. For an interface that has another process, notably the Listener with its REPL, it
breaks that other process. For most tools it starts the Process Browser, otherwise just it breaks the interface's process.

3.5 The history list

The history list of atool stores the most recent events which have been carried out in that tool, or the most recent objects
which have been browsed in it.

The History > Items submenu provides alist of these events (or objects), allowing you to repeat any of them (or browse them
again) by choosing them from the menu. This gives you an easy way of repeating formsin the Listener, inspecting objects or
browsing classes again, revisiting searches, and so on.

The menu lists the last ten unique items to have entered the history list of the active window. Because each entry is unique,
some items may have occurred more than ten events ago.

If the editor is the active window, the History > Items submenu lists the buffers currently open.

3.5.1 Repeating events from the history list

The easiest way of repeating an event from the history list isto choose it from the History > Items submenu. There may be
times, though, when this is inconvenient (the items on the list may be too long to be able to distinguish between them easily,
or you might want to repeat an item that occurred more than ten events ago). In such cases, there are three commands which
offer an alternative way of choosing items.

Choose History > Previous to perform the previousitem in the history list of thetool. Thisisusualy the most recent event
you have performed, but may not be (if, for instance, the last action was itself an event that was already on the history list).

Choose History > Next to perform the next item in the history list. Thisitem is not usually available unless the last event you
performed involved an item already on the history list.

Note: You can aso usethe ¢ and = buttonsin the toolbar.

3.5.2 Editing the history list

Choose History > Modify to remove items from the History > Items menu. A dialog appears that contains al of theitemsin
the current History menu. Select the items you wish to retain, and click OK. Any items which were not selected in the dialog
are removed from the history list.

Note: another way to keep track of items that you're interested in (such as appear in the history lists of varioustools) isto
place them on the Object Clipboard. See 8 The Object Clipboard for more details.

3.6 Operating on files

The File menu allows you to perform operations on files stored on disk. Some commands are only available for tools which
need to interact with the files you have stored on disk, such asthe Listener and Editor.

The default commands available in the File menu are described below. Note that in some tools, the File menu contains
additional commands specific to that tool. Please refer to the relevant chapters for each tool for a description of these
additional commands.

Choose File > New to open anew buffer in the built-in Editor. If an Editor window has not yet been created, this command
also creates one. The new buffer is unnamed.Alternatively, you can click the | button in the toolbar. Thistoolbar buttonis

44

3 Common Features

available on appropriate tools, and in the podium as shown in The Podium.

Choose File > Open to open an existing filein anew editor buffer. Where appropriate, a dialog appears, allowing you to
choose afilename. If an editor window has not yet been created, this command creates one. Alternatively, you can click the
2 button in the toolbar. Thistoolbar button is available on appropriate tools, and in the LispWorks podium, shownin The
Podium.

ChooseFile > Load to load afile of Lisp source code or afad (binary) file. Choose File > Compile to compile afile of Lisp
source code. Choose File > Compile and Load compile a source file and load the resulting fad file. When appropriate, each
command displays adialog, allowing you to choose the file you want to load or compile.

Choose File > Print to print afile. A dialog alows you to choose afile to print. The current printer can be changed or
configured by choosing the File > Printer Setup... menu option.

Choose File > Browse Parent System to view the parent system of the current file in the System Browser. Thiscommand is
only available if the system has already been defined. See 26 The System Browser for a complete description of the System
Browser.

Choose File > Recent Files to raise a submenu listing the last 10 files visited viathe File > Open... and File > Save As...
commands. This allows speedy return to the files you are working on.

Note: As described above, the behavior of each command can vary dlightly according to the tool in which the command is
chosen. For instance, choosing File > Print in the Editor prints out the displayed file, whereas choosing File > Print in the
Listener prompts you for afile to print.

3.7 Displaying packages

Symbols can be displayed either with their package information attached or not. In the LispWorks IDE, symbols are
displayed with the package name attached by default.

For example, suppose you have created a package f oo which includes a symbol named bar and a symbol named baz.
Suppose further that you created a new package f 002, which used the f oo package. This can be done as shown below:

(def package foo (:use "COMON- LI SP"))
(def package foo2 (:use "FOO' "COWON LI SP"))

Note that in defining both packages, the common- | i sp package has also been used. It is good practice to use this package, to
ensure that commonly-used symbols are available.

When creating packages which use other packages, exported symbols can be called without having to refer to the package
name.

To illustrate this, let usreturn to our example.

Two exampl e packages

FOCH FOOz

baz oo baz

We have two packages: f ool and f 002. f ool contains symbolsbar and baz. The symbol bar has been exported, whereas
the symbol baz is not exported.

3 Common Features

When the current package isf 002, you can refer to bar without using the package name. Thisis becausef 002 usesf ool
and bar isexported. However to refer to baz you must still use the f ool package name likethis: f ool: : baz. Thisis
because baz is not exported.

Note also that when the current packageis other than f ool or f 002, you can refer tof ool: bar, but you can only refer to
baz asfool: : baz.

Package names are usually displayed alongside symbolsin alist. Having a package entry on every line can be unhelpful,
especidly if the majority of items listed are from the same package. To hide the package names for the symbolsin agiven
type of tool:

1. Raise the Preferences dialog as described in 3.2 Setting preferences.

2. Select thetool typeinthelist on the left side of the dialog.
3. Uncheck Show Package Names in the General tab.

4. Click OK to confirm your setting.

3.7.1 Specifying a package

If you are working in a particular package, you can adjust the tools to display symbols as you would refer to them from that
package - that is, as the package sees them. This can make listings clearer and, more importantly, can show you which
symbols have been exported from a package.

Doing this changes the process package of the tool. This means that both displayed symbols and symbols typed into the tool
are assumed to be in the package specified. This can be useful in a browser, for example, if you intend to browse a number of
different objects which come from the same package.

To change the process package for a given type of tool:

1. Raise the Preferences dialog as described in 3.2 Setting preferences.

2. Select thetool typeinthelist on the left side of the diaog.

3. Select the General tab on the right side of the dialog, if necessary.

4. Delete the package name in the Package box, and type in the name of the new package.
5. Click v to confirm this new name.

6. Click OK to make the change.

Note: If you wish, you can partially type the package name and then click ™:. Thisalowsyou to select from alist of al
package names which begin with the partial input you have entered. See 3.14 Completion for detailed instructions on using
completion.

As an example, imagine you are looking at alist of symbolsin the Inspector. You are working in the package f oo, and some
of the symbolsin the Inspector are in that package, while others are in another package. To change the current package of the
Inspector to f oo, follow the instructions below:

1. Raise the Preferences dialog as described in 3.2 Setting preferences.

The Preferences dialog indicates that cormon- | i sp- user isthe current package in this window.
2. Select Inspector in thelist on the left side of the dialog.
3. Inthe Package box on the right side of the dialog, delete conmon- | i sp- user, and typef oo.

4. Click OK to make the change.

46

3 Common Features

In the Inspector all the symbols available from f oo appear without the package prefix f oo. Similarly, all exported symbolsin
packages which f oo uses appear without a package prefix, while all others have an appropriate package prefix.

3.8 Performing operations on selected objects

In any tool, there are anumber of operations that you can always perform on the selected objects, irrespective of the type of
objects you have selected. This allows you to perform some powerful operations and also ensures a consistent feel to every
tool in the environment.

In this context the term "selected objects’ is meant in the widest sense, and can refer to any items selected anywherein atool,
beitinalist of items, or agraph. It can also refer to the tool's current object: that is, the object which is currently being
examined.

These operations are avail able throughout the environment, and are referred to as standard action commands. As with other
commands that are specific to the active window, standard action commands are usually available from menus on the main
menu bar of the tool you are using. The objects which are operated on by a given standard action command depend on the
menu from which you chose the command.

As an example, consider examining the contents of Common Lisp objects using the Inspector.
The standard action commands for the Inspector are present in two places. the Object menu, and the Slots menu.
* Choose a standard action command from the Object menu to perform an operation on the Inspector's current object.

» Choose a standard action command from the Slots menu to perform an operation on the selected components of the
Common Lisp object.

Notice that in the first case, the object operated on is the tool's current object: you do not have to take any further action
before performing the operation.

In the second case, the objects examined represent more specific pieces of information: you need to select them before you
can perform the operation. This, therefore, examines more discrete pieces of information about the current object.

Many tools have one or more submenus like those described above. The first operates on the current object. What that object
is, and hence the name of the submenu in which the commands are to be found, depends on the tool you are using. For
instance, if you are examining classes, the commands can be found in a Classes menu. If you are examining methods, they
can be found in aMethods menu.

Some tools contain two or more such menus; precise details are given in the relevant chapters.

Asaguide, if amenu has aplural for a name, the commands in that menu can be performed on multiple selections. If the
menu hame is not pluralized, commands only affect a single selection.

3.8.1 Operations available

The standard action commands available are described below. In these descriptions, the term "current object” refersto the
Lisp object that is being acted upon by the menu command. This depends on the tool being used and the menu in which the
command appears, but should be obvious from the context.

Choose Browse to browse the current object using an appropriate browser. A browser is atool which lets you examine a
particular type of Common Lisp object, and there are alarge number of them available in the environment. Some of the
browsers available are:

» The Class Browser, which lets you examine CLOS classes.

» The Generic Function browser, which lets you examine the generic functions in the environment, and the methods you
have defined on them.

47

3 Common Features

See the appropriate chapters for afull description of each browser; there is a chapter of this manual devoted to each available
browser. The precise name of the Browse menu command reflects the type of browser that is used to examine the selected
object. Thus, if the command isBrowse — Generic Function, a Generic Function Browser is used.

Choose Class to look at the class of the current object in a Class Browser. Alternatively, click on # in thetoolbar. See 7 The
Class Browser for full details about thistool.

Choose Clip to add the current object to the Object Clipboard. See 8 The Object Clipboard for full details about thistool.

Choose Copy to copy the current object to the clipboard, thus making it available for use elsewhere in the environment. Note
that performing this operation on the object currently being examined by the tool (for example, choosing the command from
the Object menu when an Inspector is the active window) has the same effect as choosing Edit > Copy, whereas choosing this
option from other menus (such as a Description menu) copies more discrete information to the clipboard.

Choose Documentation to display the Common Lisp documentation (that is, the result of the function docunent at i on) for
the current object. It is printed in a help window.

Choose Find Source to search for the source code definition of the current object. Alternatively, click on & in thetoolbar. If
itisfound, thefileisdisplayed in the Editor: the cursor is placed at the start of the definition. See 12 The Editor for an
introduction to the Editor tool. You can find only the definitions of objects you have defined yourself (those for which you
have written source code) - not those provided by the environment or the Lisp implementation.

Choose Inspect to invoke an Inspector on the current object. Alternatively, click on & inthetoolbar. See 17 The Inspector,
for details about the Inspector. If you are ever in any doubt about which object is operated on by a standard action command,
choose this command.

Choose Listen to paste the current object into the Listener. Alternatively, click on #, inthetoolbar. 20 The Listener
provides you with full details about thistool.

Choose Function Calls to describe the current object in afunction call browser. See 14 The Function Call Browser for more
details.

Choose Generic Function to describe the current object (a generic function or a method) in a Generic Function Browser. If
the current object is amethod, then its generic function is described in the Generic Function Browser and the method is
selected. See 15 The Generic Function Browser for more details.

Choose Browse Symbols Like to display symbols matching the current object in a Symbol Browser. See 18 The Symbol
Browser for more details.

3.9 Using different views

Many toolsin the LispWorks IDE have several different views, each of which can display information which is pertinent to
thetask at hand. You can switch to any of the available views by clicking on the appropriate tab at the top of the tool. When
choosing a different view, the layout of the tool itself changes.

Click tabs to display different views of atool

Click here 1o daplay The Slols view ia
1he Hierarchy wiew. currerdly visible.
s

1
Hierarchy | Superclasses Subcla.55E5| Slots |Inita.r+_:|5 |Fum:ti::|n5 |PI"EEE'-I:|EI1{E
. —

-

o
=

Click here 1o dsplay
1he Precedence view.

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

3 Common Features

In tools which are browsers, different views alow you to display different pieces of information about the same objects; for
instance, in the Class Browser you can switch from a view which shows you information about the slots in a given Common
Lisp class to one which shows information about the initargs of the class.

In other tools, different views may show you completely different types of related information. For example, in the Listener
you can switch from the Listener view to a view that shows you any output that has been generated by the Listener.

All tools have a default view when you first start them. The default view is the one which you are most likely to make most
use of, or the one which you use first. When you first start the built-in Editor, the default view is the text view. When you
start a Class Browser, the default view shows you the slots available for the current class, as you have already seen.

3.9.1 Sorting items in views
You can sort the items displayed in the main area of any view using the Preferences for a given tool.
To specify the sorting for the Class Browser, for example:

1. Raise the Preferences dialog as described in 3.2 Setting preferences.

2. Select the tool (the Class Browser in this example) in the list on the left. Note that an image representing each tool is
shown alongside the tool names:

Example General Preferences

LizpWorks: Proforoncos

#* Envircrimecni Geanzral Subclass Graph |Supsrdass Er:ﬁﬁlﬂul:_u‘ﬂ.rl-:tinrﬂl
& Agplicatian Bullcer Toclbar

7 Chass Browser = Show Toolbar

& Code Coverage Browser

i:“ Cargilation Conciticrs Sort

Debigger 7 Unsarted

= Editor % By Mame

<= Functicn <all Brosysar By PRCKags

B3 Gereic Funclion Breyser

B Inspeclo P g

o, Lisleguer CO KN LIS LISFR " R
i o jecl Clipboad v Show Package Names

i Chulprul Hrawser
& Process Browser
=1 Prafiler

k- Search Files

& Shell

B. Sh=pper

&1 symbel Browser
T System Brawscr
i Tracer

& Window Erowser

Canoe| | [a].4 |

Saleci 1he 1ype ol Cioriro 1he sor

1ol in 1his parel. order ol a 1od
using 1he oplions
irn 1his parel.

49

3 Common Features

Notice that tool Preferences, such as the one shown above, generally have several tabs. In these cases, the options
described in this section are always available in the General tab, so select thistab if necessary.

. Choose one of the optionsin the Sort areato specify the sort order of itemsin Class Browser windows.

The options available vary according to the tool, but at least the following will be available:

By Name Sorts symbolsin alist or graph according to the name of each item. The packages that the
symbols are resident in are ignored when this option is used; thus, the symbol vv: al | ocat e
would be listed before aa: vect ori ze.

By Package Sorts symbolsin alist or graph according to the package they are listed in. Thus, all symbolsin
the aa package would be listed together, aswould all symbolsin thevv package. In addition, the
aa package would be listed before the vv package. Within a given package, objects are listed in
alphabetical order when using this option: thus, aa: carry- out - condi ti ons would be listed

beforeaa: vectori ze.

Unsorted Listsall symbolsin agraph or list in the order in which they are occur naturally in the object
being examined. This can sometimes be a useful option in itself, and is always the quickest
option available. You may sometimes want to use this option if you are displaying alarge
number of items and you are not filtering those itemsin any way.

The option you specify takes effect when you click OK in the Preferences dialog. Your setting affects existing toolsand is
remembered for use when you create the same type of tool in the future.

Note: There are sometimes other options available in the Sort area of the Preferences dialog, depending on the nature of the
tool. These options are described in the chapter specific to each tool.

Only those views whose main area consists of alist or agraph can be sorted. In particular, the default views of tools such as
the Listener or the Editor, which is an editor window which you can type directly into, cannot be sorted.

3.10 Tracing symbols from tools

For some tools, submenus under the relevant main menus (for example, the Expression menu on the Editor tool) contain a
Trace submenu that allows you to set tracing options for a function, method, macro, or generic function. Thisis auseful
shortcut to thet r ace macro, since it gives you some control over tracing in the environment without having to work directly
at the Common Lisp prompt.

Below, the current function means the currently selected function, method, macro or generic function, or in the case of the
Editor and Listener, the symbol under the cursor.

A Trace submenu generaly has the following commands:
» Choose Trace to trace the current function.

» Choose Trace Inside to trace the current function within the current context. Choosing this command setsthe: i nsi de
optionfortrace.

» Choose Trace with Break to trace the current function, and enter the debugger on entry to it. Choosing this command
setsthe: br eak optiontot .

» Choose Untrace to turn off tracing on the current function.

» Choose Untrace All to turn off tracing on currently traced functions. Note that this does not turn off tracing in the
environment as awhole.

» Choose Show in Tracer to trace the current function and display in the Tracer tool. This offers you more control over
tracing. See 11 The Tracer for details.

50

http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm

3 Common Features

» Choose Toggle Tracing to turn al tracing commands in the environment on or off. Choose Toggle Tracing againto
restore the previous tracing state.

3.11 Linking tools together

You can link together pairs of tools, so that changing the information displayed in one tool automatically updates the other.
This can be done for virtually any tool in the LispWorks IDE, and provides asimple way for you to browse information and
see how the state of the Lisp environment changes as you run your code. For instance, you can make between an Inspector
and a Listener so that every time you evaluate aform in the Listener, its value is automatically inspected.

You can also link two copies of the sametool. This can be avery useful way of seeing two views of atool at once. For
instance, you could create a copy of the Class Browser by choosing Works > Clone, and then link them together. By keeping
one browser in the subclasses view, and the other in the slots view, you can automatically see both the subclasses and the
available dlots for agiven class.

Linked tools have a master-slave relationship. One tool (the slave) gets updated automatically, and the other tool (the master)
controls the linking process. To link together any two tools:

1. Select the tool that the link is to be established to. For example, to form alink from an Inspector to a Class Browser to
ensure that a class selected in the Class Browser is automatically inspected, you would use the Edit menu of the Class
Browser.

2. Choose Edit > Link > tool where tool is the title of the tool you wish to link from.
To break alink, select -- No Link -- instead of a specific tool.

To view all the current links that have been established, choose Edit > Link from > Browse Links... Select any of the links
listed and click on Remove Link(s) to remove them.

3.12 Filtering information
Many tools have views which display information in alist. Itemsin these lists may be selected, and you can usually perform

operations on selected items (for instance, by means of the standard action commands, as described in 3.8 Perfor ming
oper ations on selected obj ects).

Such lists are often long, including information which you are not interested in. For instance, Common Lisp objects may
contain alarge number of slots, most of which are of no importance to your work.

Most such listsin the LispWorks IDE have afilter area which allows you to hide the uninteresting information. The filter area
isabovethelist, and consists of the Filter pane into which you can enter text, toolbar buttons, and the Matches pane. There
is also afilter modes dropdown menu, described in 3.12.2 Advanced Filtering.

3.12.1 Plain Filtering

This section describes how you can filter list items based on a substring match.

51

3 Common Features

Filter areawith plain match

Filer modes BErder siring 1o Click here 1o Mumksr o
merd filer by hera rermowe filler maic hing ilems
.,
| N
Filter v | callback| # Matches 11
Attribute Value
CAPI:CALLEACK-TYPE DATA-INTERFALCE
CAFI-INTERNALS CHANGE-CALLEACK NIL
CAPICHANGE-CALLBACK-TYPE ‘FULL
CAPI::DRAG-CALLBACK NIL
CAPI:DROP-CALLEACK MIL
CAPIGEDITING-CALLEACK Ml
CAPLGESTURE-CALLEACKS MIL
CAPL:NAVIGATION-CALLBACK MIL
CAPI:SCHROLL-CALLBACK MIL

Matc hing ilems lisled hera

To use thefilter, sSimply enter text in the box to the right of the Filter modes menu button. The list isfiltered automatically as
you type. Only those items that contain the specified string are displayed in the list - al the others are hidden from the
display. The number of itemsthat are listed is printed in the Matches areato the right of the Filter box.

To display all theitemsin alist once again, delete the string in the Filter box or click the X button.

3.12.2 Advanced Filtering

This section describes how you can filter list items by aregular expression match rather than a plain string match, make the
match case-sensitive, and how to invert the filter.

To ater the way that the filter operates, select one or more options from the Filter dropdown menu to the left of the filter
pane. You can select this filter modes menu using the mouse, but is more convenient with a keyboard gesture. Each gesture
selects or deselects one filter mode. The keyboard gestures invoking advanced filter modes are shown in Advanced Filter
modes.

Advanced Filter modes

Keyboard gesture Filter mode Description

Ctrl+Shi ft+R Regexp Search Filters by regular expression
matching

Ctrl+Shift+E Exclude Matches Excludes items matching the filter

Ctrl +Shift+C Case Sensitive Filters by a case-sensitive comparison

The choice of items displayed changes according to the content of the filter pane and the selected filter options. The label on
the Filter dropdown changes to indicate your selected filter options.

52

3 Common Features

In the exampleillustrated below, we have inspected the string " Li spWor ks" , entered aregular expression which matches
uppercase characters, and pressed Ct r | +Shi ft +RCt r| +Shi f t +Cto select the Regexp Search and Case Sensitive filter
modes.

Filter areawith regular expression match

Select liler mode here. Brler regular expresion
fofiler by here.
FilterRC v |[a-2] — X Matches 2
‘Attn'hute "u'a.lue
4 #W

Now press Ct r | +Shi f t +E to select the Exclude Matches filter option. Only the lowercase characters of the string
"Li spWor ks" aredisplayed in thelist.

Note: For details of the regular expression syntax, see 28.7 Regular expression syntax in the LispWorks® User Guide and
Reference Manual.

Note: The three filter modes are mutually independent.

3.13 Regexp matching

Regular expressions (regexps) can be used when searching and filtering throughout the IDE. See 28.7 Regular expression
syntax in the LispWorks® User Guide and Reference Manual for a description for exactly how LispWorks regexp matching
operates.

3.13.1 Regexp and plain string matching

Sometimes you need to select an option to use regexp matching, as the default behavior uses a plain string comparison. For
example, see 3.12.2 Advanced Filtering.

Other areas always use regexp matching, such as the search target in some modes of the 16 The Sear ch Filestool, and editor
commands with names containing " Regexp" .

3.14 Completion

Where there is afinite set of meaningful text inputs (symbol names, names of existing files or editor commands, and so on)
the IDE helps you to enter your text by offering completion. When you invoke completion, the system takes your partial input
and either:

 extends your partial input to an unambiguous longer (but possibly partial) input, or:
* presents a choice of the possible meaningful inputs.
When your input remains partial, you may repeat the completion gesture.

When you see a choice of the possible meaningful inputs, certain gestures allow you to narrow the choice and quickly select
the desired input, as described in 3.14.2 Selecting the completed input.

53

3 Common Features

3.14.1 Invoking completion

When a command prompts for input in the echo area, the keys Tab, ? and Space can invoke completion, depending on the
context.

In the Editor tool, avariety of completion commands are available. For example, in Emacs emulation Tab invokes the
command | ndent Selection or Complete Symbol. See the Editor User Guide for details of this and other editor commands.

In the Shell tool, Tab expands filenames.
In the Listener tool using Emacs emulation, Escape Tab expands filenames.

In many text input panes such asthe Class: field of a Class Browser tool, Up and Down invoke in-place completion while
pressing the button raises a completion dial og.

Also, clicking the % button to the right of atext input pane raises amodal completion dialog, as described in 3.14.3
Completion dialog.

3.14.2 Selecting the completed input

The IDE presents the choice of inputsin one of two ways, described in the next two sections. The option Works > Tools >
Preferences..., and then select Environment in the list on the left side of the Preferences dialog. The General tab contains a
check box Use in-place completion controls that whether in-place completion is used.

3.14.2.1 In-place completion

In-place completion presents the choice of complete inputsin a special non-modal window. Example in-place completion
window below shows thisin the context of the editor command Complete Symbol.

3 Common Features

Exampl e in-place completion window
(in-package)

(define-Jj]

define-action

define-action-list
define-compiler-macro
define-condition
define-declaration
define-loop-macro
define-loop-method
define-method-combination
define-modify-macro
define-setf-expander
define-setf-method

define-symbol-macro

While thiswindow is visible, most keyboard gestures such as unmodified alphanumeric and punctuation keys are processed
asordinary input, adding to your partial input. This reduces the number of possible completions. Conversely, deleting part of
your input will increase the number of possible completions.

You can navigate the choice with Up and Down and you can select the desired completion at any time with Ret ur n or double-
click. To cancel the attempt to complete, press Escape.

3.14.2.2 Filtering in-place completion
You can reduce the number of displayed completions by adding afilter to the in-place completion window.

To add thefilter, press Ct r | +Ret ur n. To use thefilter, type a substring of the desired result. By default, filtering isby a
case-insensitive substring comparison.

55

3 Common Features

Example in-place completion window with filter
(in-package "CL-U/SERT)

(define-Jj]

define-compiler-macro

define-condition

define-method-combination

Filter+ |co

| Regexp Filter

Exclude Matches

Case Sensitive

You can set filter modes to alter the way that the filter operates, just as described in 3.12.2 Advanced Filtering. Briefly, you
select options from the Filter dropdown menu or with the keyboard gestures Ct r | +Shi f t +R, Ct r | +Shi f t +E and

Ctrl +Shi ft +C. The choice of items displayed changes according to the content of the filter pane and the selected filter
options, and the label on the Filter dropdown changes to indicate your selected filter options.

3.14.3 Completion dialog

When the Use in-place completion option (see 3.14.2 Selecting the completed input) is off, all keyboard completion
gestures raise amodal dialog presenting a choice of completion options.

Also, clicking the % button to the right of atext input pane raises amodal completion dialog.

You can navigate the choice with Up and Down and you can select the desired completion at any time with the Ret ur n key,
double-click, or click the OK button. To cancel the attempt to complete, press Escape.

56

3 Common Features

3.14.3.1 Filtering modal dialog completion

A modal completion dialog automatically has afilter if the number of possible completions exceeds the value of the option
Works > Tools > Preferences... > Environment > General > Add a filter to dialog lists longer than:. By default this option
has value 25.

The filter options described above are also available in amodal completion dialog, and are controlled by the same keyboard
gestures, for example Ct r | +Shi ft +R. See 3.12.2 Advanced Filtering for details.

3.15 The Commands menu

The Commands menu is a menu that allows you to invoke the Editor commands that are shown on it, and also to raise the
Editor Commands List tool, which allows you to choose the commands that are shown (see 3.15.1 Editor Commands L ist).
Editor commands are documented in the Editor User Guide.

The Commands menu can invoked from the menu bar as Commands in the "editing" tools, including the Editor, Listener,
Debugger, Shell and Output Browser. It can be also invoked from the context menu in any editing pane.

The commands shown on the Commands menu are remembered between invocations of LispWorks.

Note: When the context menu isinvoked by right-click, the execution of the command isinvoked with the buffer point moved
to where the click occurred, and, unless the command moves the buffer point, it is moved back to its original position
afterwards. Therefore commands that use the buffer point may not behave in an obvious way. For example, the command
Forward Character will move the point to one character after the point where you clicked, rather than one character after
where the point was before you clicked.

There are several functions that allow to access the list of commands that are currently in the menu. These are useful when
you want to transfer the list of commands to a different computer or adifferent user. They may be also useful for switching
between different "modes of working" in which you want different commands in the menu.

e | wtool s: commands- nenu- add- commands adds commands to the menu.

e | wt ool s: commands- menu-r enove- commands removes commands from the menu.

* | wt ool s: commands- menu- get - conmands returns the list of commands currently in the menu.

3.15.1 Editor Commands List

The Editor Commands List isasimpletool that allows you to browse the Editor commands that are defined, and to add or
remove commands from the Commands menu.

Open the Editor Commands List using Display Commands List... on the Commands menu.

57

3 Common Features

Editor Commands List

Editor Commands List

Works File Help

Filter = | M Matches 596 []1In Menu [] With Keys

Key In menu | Command name

= D]

Abbrev Expand Only
Abbrev Mode

Meta-i Abbreviated Complete Symbol

Abbreviated In-Place Complete Symbol
Ctrl-1 Abort Recursive Edit
Ctrl-; Activate Interface
Ctrl-x + Add Global Word Abbrev
Ctrl-x Ctrl-a Add Mode Word Abbrev
Meta-Ctrl-w Append Next Kill

Append To File e
€ At » 0
"Abbrev Expand Only" =l
Autoloadable command -

The main area of the Editor Commands List shows all the known Editor commands. If the command has a key binding, then
it is shown in the Key column. Below the main area, there is an area that displays the documentation for the currently
selected command.

The commands that are currently shown on the Commands menu are displayed with a* in the In menu column of the main
area. Double-clicking on a command adds or removes it from the Commands menu. When a command is added, it is added
at the top of the menu.

At the top of the main area, there is afilter that allows you to restrict which commands are shown. By default, the filter
searches the text in the panel, so matches both the command name or the key. For example, typing f i | e matches all
commands that contain "file". Typing ct r | matches commands that are bound to a key sequence containing the Control key.
Typing - k matches both commands where the key k is used with amodifier (for example, Ctrl -k kill [Iine)andthe
commands which contain un- ki I | in their name.

The filter also has two additional check buttons. Thefirst one, In Menu, causes the Editor Commands List to show only
commands that are currently in the Commands menu. Thisis particularly useful when the Commands menu becomes too
long and you want to decide which commands to remove from it. The second one With Keys causes the Editor Commands
List to show only commands that are bound to some key sequence.

You can also manipulate the list of commands in the Commands menu programmatically by using the following functions.

commands-menu-add-commands Function

| wt ool s: commands- nenu- add- commands commands

58

3 Common Features

The function commands- nenu- add- conmands adds the commands named by commands to the Commands menu.
commands should be allist of strings, which are appended in front of the current list, after removing any matching
commands from the current list.

commands-menu-remove-commands Function

| w-t ool s: commands- nenu-r enbve- conmands commands

The function commands- nenu- r enove- comands removes the commands named by commands from the Commands
menu. commands should be alist of strings, or : al | which causes all commands to be removed.
commands-menu-get-commands Function

| w-t ool s: commands- nenu- get - conmmands => commands

The function commands- menu- get - conmands returns alist of strings naming the current commands in the Commands
menu. Thelist is new, and can be destructively modified.

The commands shown on the Commands menu is remembered between invocations of LispWorks, so you don't need these
functions if you have afixed list of commands and always use the same computer.

If the list of commands is modifed before the the LispWorks IDE starts, typically by acall to
commands- nenu- add- conmands in aninit file, then LispWorks ignores any commands that it remembered from a previous
run.

Here are some examples.

Sorting the commands in the Commands menu:

(1wt ool s: conmands- nenu- add- comrands
(sort (Iwtools:comands- menu- get - commands)
"string<))

Generate aform that you add to the Commands menu all the commands that are currently in the Commands menu:

(pprint " (lwtools: conmands- nenu- add- conmrands
", (I'wtool s: commands- nenu- get - comrands)))

You will typicaly put such aform in your init file on another computer, or give it to another user.

3.16 Output and Input to/from the standard streams

When the LispWorks IDE starts it sets the follow variables:
* hcl : *backgr ound- out put * to np: *backgr ound- st andar d- out put *.
* hcl : *backgr ound- i nput * to a stream that always returns EOF.
* hcl : *backgr ound- query-i o* to astream that interacts with the user using CAPI prompters.

hcl : *backgr ound- out put * isthe default destination of cl : *st andar d- out put *, cl : *t r ace- out put * and
cl:*error-output*.

hcl : *backgr ound- i nput * isthe default sourcecl : *st andar d-i nput *.

hcl : *backgr ound- quer y-i o* isthedefault for cl : *query-i o* andcl : *debug-i o*.

The output sent to np: * backgr ound- st andar d- out put * can be viewed in the Output Browser tool and in the Output tab
of Editor and Listener tools. Seethe entry for hcl : *backgr ound- out put * in the LispWorks® User Guide and Reference

59

http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm

3 Common Features

Manual for more details.

3.17 Examining a window

You can examine any tool window with the Works > Interface menu.

This menu contains the standard action commands described in 3.8 Perfor ming oper ations on selected objects. Thus,
choose Works > Interface > Inspect to inspect the capi : i nt er f ace object for the window.

Choose Works > Interface > Browse - Window to browse the structure of the window object. From here you can browse the
child windows.

For information about the tools mentioned, see 7 The Class Browser and 17 The Inspector and 27 The Window Browser.

3.18 Specifying the initial tools

By default the LispWorks IDE starts up with the Podium and a Listener.

If you want to see other tools each time you start the LispWorks IDE, then you can add action itemsin your personal
initialization file, or in a saved image.

For example, to start an Editor tool, define an action on the pre-defined "Initialize LispWorks tools" action-list:

(define-action "Initialize LispWwrks tools"
"Make an Editor Tool "
#' (1l anmbda (screen)
(capi:find-interface 'lwtools:editor
:screen screen))
cafter "Create default the tools")

Note: the names of the various tools are exported in the LW TOOLS package.

For more information about action lists, including an example which opens specific files in the Editor tool, seethe
LispWorks® User Guide and Reference Manual.

3.19 System preferences affecting the IDE tools

This section only appliesto Lispworks for Macintosh.

60

4 Getting Help

All tools contain a Help menu that gives you accessto avariety of forms of online help. This chapter describes how to use
this online help.

4.1 Online manuals in HTML format

A complete documentation set is provided with LispWorks in the form of HTML files. Assuming that you have installed the
documentation, these files are in the directory which is the result of evaluating thisform:

(sys:lispworks-dir "manual /online/")

The Help menu links directly to these HTML files, allowing you to go straight to the most relevant documentation for the
current context.

No proprietary extensionsto HTML have been used, so you can use any HTML browser to view the documents. The Help
menu drives the following browsers: Netscape, Firefox, Mozillaand Opera.

4.1.1 Getting help on the current symbol

Choose Help > On Symbol... to search for help on the symbol under the point (in an editor-based window) or the current
object of atool. Thisoption displays the Search dialog described in 4.1.3 Sear ching the online manuals, but with options
pre-selected to enable you to search for documentation on the current symbol. Click OK, and the results of the search are
displayed in your HTML browser.

4.1.2 Getting help on the current tool

Choose Help > On Tool... to get help on the current tool. This takes you to the appropriate online chapter of this manual.

4.1.3 Searching the online manuals

Choose Help > Search... to search the online documentation. The Search dialog, shown in Sear ch dialog, appears.

61

4 Getting Help

Search dialog

BErer siring 1o search for here. Seleci olher opliore here,

1 Seanch for | Frompting

2 How viould wou like to search for the specified text?
(@) Partial Search
) Whole Word

3 Seanch using:
(23 Index

i# Conents

Manuals Packages

ANSI Comman Lisp Standard |i| j

CAP| Reference Manual CAPI-GTE-LIERARY

CAPI User Guide CAPHINTERNALS
CLIM 2.0 User Guide .-"ll CAPI-LAYCOIT

Diedivery User Guide r-"" [« CAPI-LIER |
| u Eancel| & oK |
/ /
Select maruals 1o search here. Select packages 1o search hera.

This dialog lets you specify what you want to search for, and which manuals you want to search in.
Enter a string of text in the Search for area.
There are anumber of additional optionsthat you can set if you want:
» Select Whole Word if you want to confine your search to whole words only. Select Partial Search if you want to match
part of aword aswell. By default, partial searches are performed. For example, if Whole Word is selected, searching for

"pane" only matches the word "pane’. If Partial Search is selected, searching for "pane" also matches "panels”.

* You can choose whether to search the index or the table of contents of any given manual; select Index or Contents as
appropriate. By default, indexes are searched, as these tend to produce the richest information.

Select the manuals you want to search in the Manuals list. If nothing is selected, all manuals are searched. You can select any
number of itemsin thislist.

Select the packages you want to search from the Packages list. If nothing is selected (the default), all packages are searched.
You can select any number of itemsin thislist.

Note that selections made in the Manuals and Packages lists reflect each other. If you choose one or more manuals, the
relevant packages are also selected, and if you choose one or more packages, the relevant manuals are selected.

Once you have specified the search options, click OK. The results of the search are displayed in your HTML browser.

62

4 Getting Help

4.1.4 Searching the example source files

Choose Help > Search Examples... to search the supplied example source files. Enter the text to search for in the dialog (not
shown here) and click OK.

The results are displayed in a Search Filestool. See 16 The Search Filestool for information about this tool.

4.1.5 Browsing manuals online
Choose Help > Manuals to select any of the available manuals from a submenu.

If you aready have an HTML browser running, alink to the first page of the manual you chooseis displayed init. If you do
not have a browser running, oneis started for you.

4.1.6 The Lisp Knowledgebase

Choose Help > Lisp Knowledgebase to visit the LispWorks knowledgebase at www.lispwor ks.com. Please search the
knowledgebase for solutions before reporting problems to Lisp Support.

4.1.7 LispWorks Patches

Choose Help > LispWorks Patches to visit the LispWorks patches page at www.lispwor ks.com where you can download the
latest public patches for LispWorks. You must run LispWorks with the latest patch release installed.

4.1.8 Installing private patches in LispWorks for Windows

This section only applies to LispWorks for Windows.

4.1.9 Configuring the browser used

We recommend that you use Firefox. You can specify the location of the browser used by Help > Browser Preferences... >
Browser > Browser Executable Location. You can enter the directory herein the Directory window. However, the default
setting, Use PATH, is adequate for most users. It meansthat the Firefox. executable found viayour POSIX environment
variable PATH s used.

Alternatively, set the variable* br owser - | ocat i on* (detailsin the LispWorks® User Guide and Reference Manual).

4.2 Online help for editor commands

You can display online help for any available editor command using the commands under Help > Editing. See 12.14 Help
with editing for details.

4.3 Reporting bugs

Choose Help > Report Bug to generate atemplate for reporting LispWorks bugs. Please complete this template and include it
when you contact Lisp Support.

Before sending areport, please check the instructions at
www.lispwor ks.com/suppor t/bug-repor t.html.

63

http://www.lispworks.com
http://www.lispworks.com
http://www.lispworks.com/support/bug-report.html

4 Getting Help

4.4 Registering a new license key

Choose Help > Register... to install a new license key.

You might have a new license key after upgrading your LispWorks Edition, or if we have granted an extension to your time-
limited evaluation license.

4.5 Browsing manuals online using Adobe Reader

The LispWorks manuals are also available in PDF (Portable Document Format). These can be found in the LispWorks library
directory | i b/ 8- 0- 0- 0/ manual / of f| i ne/ pdf .

You can view these files and print them using Adobe Reader, which can be downloaded freely from the Adobe website at
www.adobe.com.

You may also download the PDF format manuals from the LispWorks website at www.lispwor ks.com/documentation/.

http://www.adobe.com
http://www.lispworks.com/documentation/

5 Session Saving

You can save aLispWorks IDE session, which can be restarted at a later date. This allows you to resume work after restarting
your computer.

This chapter describes what session saving does, and how you can configure and use it in the LispWorks IDE.

It is also possible to save a session programmatically, which is described in the LispWorks® User Guide and Reference
Manual, but saving sessionsis primarily intended for users of the LispWorks IDE.

Note: saving sessions usessave- i mage and therefore it is not available in LispWorks Personal Edition.

5.1 What session saving does

When you save a session, LispWorks performs the following three steps:
1. Closing all windows and stopping multiprocessing.
2. Saving an image.
3. Restarting the LispWorks IDE and all of its windows.

If asaved sessionisrun later, then it will redo the last step above, but see 5.3 What is saved and what is not saved for
restrictions.

Sessions are stored on disk as LispWorks images, by default within your personal application support folder (the exact
directory varies between operating systems).

5.2 The default session

Thereis aways a default session, which is used when you run the supplied LispWorks image.
Initially the default session is the one named LispWorks Release.

When you run any other image directly, including a saved session or an image you created with save- i mage, it runsitself
(not the default session).

Saved sessions are platform- and version-specific. In particular, a 32-bit LispWorks saved session cannot be the default
session for 64-bit LispWorks, or vice-versa.

5.3 What is saved and what is not saved

All Lisp code and data that was loaded into the image or was created in it is saved. Thisincludesal editor buffers, the
Listener history and its current package, and thevaluesof cl : *, cl : ** andcl ; ***.

All threads are killed before saving, so any datathat is accessible only through anp: pr ocess object, or by adynamically
bound variable, is not accessible.

All windows are closed, so any datathat is accessible only within the windowing system is not accessible after saving a
session.

65

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm

5 Session Saving

The windows are automatically re-opened after saving the session and al Lisp data within the CAPI panes s retained.

External connections (including open files, sockets and database connections) become invalid when the saved session is
restarted. 1n the image from which the session was saved, the connections are not explicitly affected but if these connections
are thread-specific, they will be affected because the thread isterminated. In particular, well written code will typically be
closing such connections by an unwind-protect form, which will be executed when the thread is terminated.

All debugging operations are aborted, which aso includes stepping. Debugger and Stepper windows are not re-opened. A
Listener that isin the debugger aborts the debugger and returns to the top level loop. By default, before saving a session,
LispWorks checks for any debugging operations and raises a dialog to confirm that you want to save the session anyway (and
hence abort all these operations). This check can be switched off by unchecking Check for non-restartable interfaces in the
Save Session dialog.

Remote debugging is aborted when a session is saved and Remote Listener windows are not re-opened.
In recreated Shell tools, the command history is recovered but the side effects of those commands are not.

See 13.4.3 Saving a session programmatically in the LispWorks® User Guide and Reference Manual for interfaces allowing
you to control what happens when saving a session.
5.4 Saving sessions

This section describes how you can use the Saved Sessions window to save a session, schedule regular saving, and manage
your saved sessions.

Choose Works > Tools > Saved Sessions... to raise the Saved Sessions window.

66

5 Session Saving

The Saved Sessions window

Saved Sessions | Scheduled

Saved sessions (* denotes default):
Saved session at lunchtime
* LispWorks Release

Details:
Executable: LW-save-6.1.1 Beta-session-2011-11-20-17-17

Executable Date: 20 Nov 2011 17:17:41
Full Path: ju/davef/LispWorks-Appdata/session-saves-6.1 Beta/LW-sa
L] e | [+]

Save Now Delete Launch Set As Default

In the Saved Sessions tabisalist of known saved sessions. The default session is marked with *. If you select a session
(other than LispWorks Release) in the list, you can see details of when and where it was saved in the Details: area.

To save a session from the running image, click the Save Now button, which raises the Save Session dialog (see 5.4.2 The
Save Session dialog and actual saving).

To launch asession, select it in thelist and click the Launch button. Thisinvokes the saved session.

To delete asession, select it in the list and click the Delete button. Note that this does not merely remove it from the list but
permanently deletes the session, deleting the actual file from the disk.

To make a session be the default saved session, select it in thelist and click the Set As Default button. This causes LispWorks
images to redirect to this session when they start (see 5.5 Redirecting imagesto a Saved Session image).

5.4.1 Scheduling automatic session saving

You can set up automatic periodic session saving using the Scheduled tab of the Saved Sessions controller window.

67

5 Session Saving

The Scheduled tab of the Saved Sessions window

Saved Sessions| Scheduled

Save sessions using this schedule

Days of week: Mon [¥] Tue [+] Wed [«] Thu [«] Fri [] Sat DSUE

Time of day: 03 v |: 00w

Allow cancellation: | 10 |+ |minutes before saving

Defaults...

Select or deselect Save session using this schedule to switch automatic saving on or off.
You can select daysin the week and a time of the day to do the saving.

When the saving time is reached, the system raises the Save Session dialog and waits for some period of time to allow you to
change the settings, cancel the saving, or confirm it. If the period of time passes without you cancelling, the system proceeds
to do the saving. The period of time to wait is set by the Allow cancellation option.

Click the Defaults... button to raise the Save Session dialog which allows you to set the parameters for the saving. When you
confirm, it does not save the session, but remembers the settings and uses them when doing the automatic saving.

5.4.2 The Save Session dialog and actual saving

Click the Defaults... button in the Scheduled tab of the Saved Sessions controller window to raise the Save Session dialog.

68

5 Session Saving

Setting the defaults for scheduled session saving

Saved Sessions

Defaults for scheduled session saving:

Session name: | daily

File name:

Prefix: |LW-save

Append: [] Version [v] Weekday [| Date [| Time

Sample: LW-save-session-Fri

Options

Save in directory:

lorks-Appdata/session-saves-8.0 Beta-64bit)| B

Use as default session
Overwrite existing file
[] Re-load init files when starting session

Check for non-restartable interfaces

Cancel] 4

Enter aname for the session in the Session name: box. This name will be displayed in thelist of sessionsin the Saved
Sessions tab of the Saved Sessions controller window.

Under File name: you can define the filename in which to save the image. The name is constructed by a prefix, optionally
followed by one or more of the Version (of LispWorks), the Weekday, the Date or the Time. The full name that would be
used is displayed after Sample:. Note that:

1. The name does not contain the file type.

2. The Weekday, Date and Time are derived from the moment when the Save Session dialog was raised. They are not
updated.

Under Options: there are additional options:

1. You can change the directory in which to save theimage in the Save in directory: box.

69

5 Session Saving

2. You can specify that the saved session is the default session by selecting Use as default session. This means that
LispWorks images will redirect to it (see 5.5 Redirecting images to a Saved Session image).

3. The saving praocess can be made to overwrite an existing image if it exists by selecting Overwrite existing file. If thisis
not checked the saving process refuses to save on top of an existing image.

4. You can specify that the saved session will reload the initialization files when it restarts, by selecting Re-load init files
when starting session.

5. You can switch off checking for non-restatable interfaces and Listenersin the debugger (see 5.3 What is saved and what
is not saved) by unchecking Check for non-restartable interfaces.

By default, the settings in the dialog are remembered as the default settings for future saving sessions. If you want the
settings to apply only to the current saving session, you can uncheck Remember these settings at the bottom of the dial og.

When you click OK to confirm the dialog, the session saving is scheduled.

5.4.3 Saving a session interactively

If you invoked the Save Session dialog from the Save Now button, it appears as described in 5.4.1 Scheduling automatic
session saving except that a default Session name: is provided and there is also an option Remember these settings. If this
is selected, then when you confirm the saving the settings are remembered and used the next time this dialog appears.

Onceyou click OK to confirm, the saving starts. First all the IDE interfaces are destroyed in away that makesit possible to
resurrect them. Then multiprocessing is stopped. It then saves the LispWorks image. While it is saving it prints messages to
the console. Once it finished saving it restarts the IDE and all its interfaces. The pathname of the saved image is printed to
the background output as well.

If thereis an error during the saving, you can interact with it viathe console. Thereisarestart "Abort saving and restart the
IDE" to alow you to return to the IDE.

5.5 Redirecting images to a Saved Session image

Redirecting an image means that when the image starts it actually causes another image to start. Theideais that you save
your sessions and redirect the release image, so that starting LispWorks from the link in /usr/bin or other shortcut will
actually start the saved session.

Only the installation image redirects, or images that were saved from it by using save- i mage with the - bui | d command
line argument. Images that were re-saved using the - i ni t command line argument do not redirect.

Redirection occurs automatically when the default saved session is not the LispWorks Release. The default saved session can
be set by Works > Tools > Saved Sessions... > Saved Sessions > Set As Default. It ismarked by * in thelist. Itis possible
to make the process of saving a session set the default saved session to the newly saved session by selecting it under Options:
in the Save Session dialog, described in 5.4.2 The Save Session dialog and actual saving.

When the redirection switch is on, when the installation image starts it redirects to the default saved session. It does it after
processing the command line arguments (including - bui | d, - | oad and - eval), but before loading any initialization file
(whether the default or those that are passed by - sitei nit or-i nit). It passesall the command line arguments to the
saved session, followed by few other arguments. Note that this meansthat if you start a redirected image with command line
arguments, it will process the arguments, redirect and then the redirected image will process the arguments too.

Passing the command line argument - | w- no- r edi r ect i on prevents the redirection.

70

5 Session Saving

5.6 Non-IDE interfaces and session saving

If there are CAPI interfaces on the screen (other than the LispWorks IDE) when session saving isinvoked, these interfaces are
destroyed and then displayed again. Note that the display will occur in adifferent thread than the one running the interface
before the saving (which was killed when the interface was destroyed).

If aninterface (or any of its children) contains information that is normally destroyed (in some sense) in the destroy-callback,
this information can be preserved. For the details seecapi : i nt er f ace- pr eser vi ng- st at e- p and
capi:interface-preserve-stat e inthe CAPI User Guide and Reference Manual.

71

6 Manipulating Graphs

Views that use graphs are provided in the Class Browser, Function Call Browser, and Window Browser. These views et you,
for instance, produce a graph of al the subclasses or superclasses of a given class, or the layouts of a given CAPI interface.

In the Class Browser, the subclasses and superclasses views use graphs. The Function Call Browser uses graph views for its
Called By and Calls Into views. Thereisonly one view in the Window Browser, and that uses a graph.

All graphsin the LispWorks IDE can be manipulated in the same way. This chapter gives you a complete description of the
features available.

All graphs have an associated graph layout menu, available by displaying a context menu over the graph itself by using the
alternate select gesture. This menu contains all the commands that are directly relevant to graphs.

6.1 An overview of graphs

An example graph is shown in Example graph pane below. All graphs are laid out by the LispWorks IDE, so that their
elements are displayed in an intuitive and easily visible hierarchy. A graph consists of a number of nodes, linked together by
branches. By default, graphsin the environment are plotted from left to right: for any given node, the node to whichitis
linked on the left is known asits parent, and the nodes to which it is linked on the right are known asiits children. The
originating node of the graph (on the far |eft) isreferred to as the root node, and the outermost nodes of the graph (towards
the right) are referred to as leaf nodes. The root node does not have a parent, and leaf nodes do not have any children.

Example graph pane

E’EII'E hes. Selecied node. loddes .

M‘-._‘ | CAPT : (HECK-BUTTOM - PAKEL
, CAPT : BUTTON-FAMNEL® 4':“’1 : PUSH-BUTTON-PANEL
l-“x__ CAPT : RADIO-BUTTOM-FAKEL
*| #CAPT : DOUBLE-LIST-PANEL
CAPT : GRAPH-PAME®
CAPT - CHoTCEe (47 CAPT: :LIST-PANEL -MIXINo Lea mocks.

| CAPT :MENU-COMPONEN

| CAPT : :OPTIOMN=PAMNE -CHOICE -MIXIKHo
{ CAPT : TAB-LAYOUT

Rood node. CAFT : TOOLBAR = COMPONENT o

CAPL:TREE-VIEWS —s=[APT:EXTENDED-SELECTION-TREE-VIEW

You can select nodes in a graph pane in exactly the same way that you select itemsin alist. Selected nodes are highlighted,
as shown in Example graph pane.

Similarly, you can copy nodes from a graph onto the clipboard in a manner consistent with use of the clipboard in the rest of
the environment. When you copy any selected node onto the clipboard, the Lisp object itself is copied onto the clipboard, so
that it can be transferred into other toolsin the LispWorks IDE.

The string representation of the Lisp object is copied into the system clipboard, so that it can be transferred to other
applications.

72

6 Manipulating Graphs

6.2 Searching graphs

Sometimes graphs can be too large to fit onto the screen at once. In thiscase, it isuseful to be able to search the graph for any
nodes you are interested in. There are two commands which let you do this.

Choose Edit > Find... to find any node in the graph whose name contains a given string. Choose Edit > Find Next to find the
next node in the graph that contains that string. Whenever a matching node is found, it is selected in the graph. If necessary,
the window scrolls so that the selected nodeis visible.

Note that you do not have to specify a complete node name: to find all nodes that include the word "debug" in their name,
just type debug into the dialog. All searches are case insensitive.

A full description of these commands can be found in 3.3.5 Searching for text and objects.

6.3 Expanding and collapsing graphs

You may often find that you are only interested in certain nodes of a graph. Other nodes may be of no interest and it is useful,
especialy in large graphs, to be able to remove their children from the display.

Notice that some nodes have a small circle drawn alongside them, as shown in Expanded and expandable nodes. The circle
indicates that the node is not aleaf node, that is, it has children. Moreover, the circleisfilled black if the node is currently
expanded, and is unfilled if the node is currently expandable (also referred to as collapsed).

6.3.1 Expanding and collapsing by clicking

To collapse or expand any node with children in agraph, click on the circle alongside it. Thus, click on the unfilled circle of
an expandable node to display its children, and click on the filled circle of an expanded node to hide its children.

Expanded and expandable nodes

CAPT : CHECK-BUTTOMN-PANEL
CAPL :BUTTOMN-PANE L é CAPT : PUSH-BUTTON-PANEL
CAPT RADIO-BUTTOMN-PFANEL
CAPL: DOUBLE-LIST-PAKEL
CAFI : GRAPH-PANE® —__

CAPT: :LTST-PANEL -MIXTNG ———__

CAPT : CHOICE® =
CAPT :MENU-COMPONENT === Bxpancible
CAPI: :OPTION-PANE -CHOICE-MIXINe —
CAPT : TAB-LAYOUT T

CAPT : TOOLBAR-COMPONENTe
CAPI : TREE-VIEWNe —=CAPT : EXTENDED-SELECTION-TREE-VIEW

~,

",
AN

Expanded node

For instance, in Expanded and expandable nodes, click on the unfilled circle alongside CAPI: TOOLBAR-COMPONENT
to display its subclasses. Click on thefilled circle to hide them.

6.3.2 Expanding and collapsing by menu commands
You can also collapse or expand nodes using the context menu:

» Choose Expand Nodes to expand the selected node.

73

http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm

6 Manipulating Graphs

» Choose Collapse Nodes to collapse the selected node.

6.4 Moving nodes in graphs

Although the layout of any graph is calculated automatically, you can move any node in a graph manually. This can be useful
if the information in the graph is dense enough that some nodes are overlapping others.

To move the selected node, hold down the Shi f t key and select and drag the node to the desired location.

Moving anode in agraph

1. Beleci node.

e 2. Hold down Shifl key.
® L 'S
e %,
I
3. Selec! and drag node 1o rew location.

At any time, you can choose Reset Graph Layout from the context menu to restore the nodes to their original positions.

6.5 Displaying plans of graphs

Many graphs are too large to be able to display in their entirety on the screen. Aswith any other window, you can use the
scroll barsto display hidden parts of the graph. However, you can aso display a plan view of the entire graph.

To display the plan view of any graph, hold down the Cont r ol key and select the graph, or choose Enter Plan Mode from the
context menu. The graph isreplaced by its plan view, similar to the one shown in Example plan view.

74

6 Manipulating Graphs

Example plan view

Mocks. |
e |
I| —— | [
o . |
/ o = —
I — 1
A o 7 e
—) A |
- | |

_———r— —x\— - --__"---____
Select irside culer reclange

|
I
, Select imside inner reclanges
Boundsry of currert 1o mowve 1he bourdary mrﬁ-e 1o resilze_ﬂ'le boundary of 1he
rormal view.

normal view. nomal view.

Each nodein the origina graph is represented by arectangle in the plan view. The currently selected node is shown as afilled
rectangle, and all other nodes are clear. You can select nodes in the plan view, just as you can in the normal view.

A dotted grid is drawn over the plan view; you can use this grid to ater the section of the graph that is shown in the normal
view. The size and position of the grid represents the portion of the graph that is currently displayed in the normal view.

» To move the grid, so that adifferent part of the graph is shown in the normal view, hold down Shi ft and select and drag

the innermost rectangle of the grid. The entire grid moves with the mouse pointer.

» Toresizethe grid, so that a different proportion of the graph is shown, hold down Shi ft and select and drag the
outermost rectangle of the grid. The entire grid will resize. You can select any part of the grid except the innermost

rectangle to perform this action.
To return to the normal view, hold down Cont r ol and select the graph again, or choose Exit Plan Mode from the context

menu. The part of the graph indicated by the grid in the plan view is displayed.

6.6 Preferences for graphs
A number of graph layout preferences can be set for any tool that uses graphs. You can control settings in the Preferences

dialog. To do this:
1. Display the Preferences dialog either by choosing Graph > Preferences... from the graph layout context menu or by one

of the methods described in 3.2 Setting preferences.
2. Select the relevant tool in the |eft side of the Preferences dialog, and select a graph layout tab on the right.

For example, the graph layout preferences for subclassesin the Class Browser are shown in Layout Preferencesfor the

Subclass Graph.

75

6 Manipulating Graphs

Layout Preferences for the Subclass Graph

<| General Subclass Graph Superclass Graph |?
Layout Max. Expansion
@ Leftto Right pepth | 2 v
() Right to Left
) Top Down Breadth| None A

() Bottom Up Plan Mode
[| Rotation

This section describes the options available in the graph layout tabs of the Preference dialogs for any tool that uses graphs.

6.6.1 Altering the depth and breadth of graphs

For large graphs, you may find that you want to ater the maximum depth and breadth in order to simplify the information
shown. Each graph pane has its own depth and breadth setting, which isused for al graphs drawn in it. These are availablein
the Max Expansion panel of the graph layout tabs in the Preferences dialog.

The depth and breadth of a graph are depicted in Depth and breadth of graphs.

Depth and breadth of graphs
Depth =3
-y
® ® @ GBreadth=3
“*u. !
8y
-—-""- Breadth = 2

.____._' |

Choose a number from the Depth list to change the maximum depth of graphsin a given tool. The depth of agraph isthe
number of generations of nhode which are displayed. Most graphs have a default initial depth of 2, which means that you must
expand any nodes you want to investigate by expanding them yourself. The default valueis 2.

Note that the maximum depth setting isignored for nodes which you have expanded or collapsed. See 6.3 Expanding and
collapsing graphs.

Choose a number from the Breadth list to change the maximum breadth of a given tool. The breadth of a graph is the number
of child nodes which are displayed for each parent. If there are more children than can be displayed (the maximum breadth
setting is less than the number of children for a given node) an extranodeisvisible. Thisnodeislabeled "...", followed by
the number of nodes that are still not displayed. Nonetheless you can expand this node by the Expand Nodes command
allowing you to display the additional children without having to alter the maximum breadth setting for the whole graph. By
default, the maximum breadth is set to None, so that all the children for a node are displayed, no matter how many there are.
An example of thisfeature is shown in Displaying children hidden by the maximum breadth setting below, where the
maximum breadth has been set to 3.

76

6 Manipulating Graphs

Displaying children hidden by the maximum breadth setting

CAPL:BUTTON-PANEL @
CAPT : DOUBLE-LIST-PANEL
CAPT: CHOICE® CAPT : GRAPH-PANE®

CAPL: i LIST-PANEL-MIXING
l'.'E:!I CAPT : MENU- COMPONENT
I:AF'I G'PTIEIH PANE-CHOICE-MIXINo

.-
l_.-'

-

This nock has been E:cpan:l 1his node 1o reveal 3
expandesd. more nodes (currerdly hidden).

To ensure that all available information is graphed in a given tool, set both the maximum depth and maximum breadth to
None.

6.6.2 Displaying different graph layouts

As aready mentioned, graphs are laid out from left to right by default, but they can be laid out in other orientations. This can
be configured in the Layout panel of the graph layout tab in the Preferences dialog.

Click "Left to Right" to layout a graph from the left of the screen to the right, as shown in Left to right layout. Thisisthe
default orientation for every graph in the environment.

Left to right layout

Click "Right to Left" to layout a graph from the right of the screen to the left, as shown in Right to left layout.
Right to left layout

Click "Top Down" to layout a graph from the top of the screen to the bottom, as shown in Top down layout.

77

6 Manipulating Graphs

Top down layout

A
.
o e
o e
L3

Click "Bottom Up" to layout a graph from the bottom of the screen to the top, as shown in Bottom up layout.

Bottom up layout

D
L .
. e
. e
'\-\.__‘__.-"
A

6.7 Using graphs in your programs

You can read about the CAPI class gr aph- pane in the CAPI User Guide and Reference Manual for detailed API information
for using graphs in your own programs. We will also look at a short examplein this section. The following code listing
defines a callback function and creates a graph-pane object:

(defun node-children (node)
(if (equal node 'pets)
(list 'dog 'parrot)
(i f (equal node 'dog)
(list "Kito 'Qtis 'Sammy ' Teddy)
(if (equal node 'parrot)
(list "Brady)))))

(setqg test-graph
(capi:contain
(make-instance ' capi: graph-pane
:roots '(pets)
:children-function
' node-chi | dren)
: best-wi dth 300
: best - hei ght 400))

The children function node- chi | dr en should returnni | for aleaf node in the graph or alist of child nodes for a non-leaf
node. Sample Graph from a User Program shows the generated graph-pane.

78

6 Manipulating Graphs

Sample Graph from a User Program

Container

Works

=101X

|PET5-<

DOGe

FARROT®=

KITO

OTIS
SAMMY
TEDDY
BRADY

79

7 The Class Browser

The Class Browser alows you to examine Common Lisp classes. It contains seven views, allowing you to view class
information in a number of different ways. You can display each view by clicking the appropriate tab. The available views
are asfollows:

The dotsview is used to ook at the slots available to the class browsed. Thisview isrich in information, showing you
details about items such as the readers and writers of the selected dot.

The subclasses view produces a graph of the subclasses of the current class, giving you an easy way to see the
relationship between different classes in the environment.

The superclasses view produces a graph of the superclasses of the current class, giving you an easy way to see the
relationship between different classes in the environment.

The hierarchy view lets you see the immediate superclasses and the immediate subclasses of the current class, using a
text-based interface.

The initargs view allows you to see the initargs of the current class together with information about each initarg. See 7.6
Examining initargs for more details on how you can use this view.

The functions view allows you to see information about the CLOS methods that have been defined on the current class.
See 7.5 Examining generic functions and methods for details on using the information in this view.

The precedence view is used to show the class precedence list for the current class. See 7.7 Examining class
precedences for more details on how you can use this information.

To create a Class Browser, choose Tools > Class Browser or click 3. Alternatively, to invoke a Class Browser onaLisp
object use Met a+X Descri be C ass inan Editor, or choose Class from any submenu that provides the standard action
commands to invoke a Class Browser on the Lisp object referred to by that submenu, or click 85. This automatically browses
the class of the Lisp object. For more information on how the standard action commands refer to objects in the environment,
see 3.8 Perfor ming oper ations on selected objects.

7.1 Simple use of the Class Browser

This section describes some of the basic ways in which you can use the Class Browser by giving some examples. If you wish,
you can skip this section and look at the descriptions of each individual view: these start with 7.2 Examining slot
infor mation.

When examining a class, the slot names of the class are displayed by default.

To examine a class, follow the instructions below:

1

2.

Create a push button panel by entering the following in the Listener:

(capi:contain
(make-instance ' capi: push-button-panel
‘title "Test Buttons"
items '(:one :two :three)))

The push button panel appears on your screen.

With the Listener as the active window, choose Values > Class.

80

7 The Class Browser

Thisinvokes the Class Browser on the button panel. The classcapi : push- but t on- panel isdescribed in the Class
Browser.

Examining classes in the Class Browser

Class Browser 1

Works File Edit View Description 5Slots Classes Methods History Help

5 LR D€ € -

Class: CAPLPUSH-EUTTON-PANEL v X

o

Hierarchy | Superclasses |Subclasses | Slots |Initargs | Functions | Precedence
Include Inherited Slots

Filter + X Matches 64

CAPI:ACTION-CALLEACK
CAPI::ARMED-IMAGES

CAPI::BACKGROUND

CAPL:BUTTON-CLASS

D

Description:
From Classes: CAPI:SIMPLE-PANE
Slot Name: CAPI:BACKGROUND
Type: T
Initargs: BACKGROUND
Initform: NIL
Readers: CAPI:SIMPLE-PANE-BEACKGROUND
Writers: (SETF CAPI:SIMPLE-PANE-EACKGROUND)
Allocation: (INSTANCE

Notice that, although you invoked the browser on an object that is an instance of a class, the classitself is described in the
Class Browser. Similarly, if you had pasted the object into an Inspector, the instance of that object would be inspected. Using
the environment, it is very easy to pass Common Lisp objects between different toolsin thisintelligent fashion. This
behavior is achieved using the LispWorks I DE clipboard; see 3.3.3 Using the Object operationswith the clipboard for
details.

See 3.8 Performing oper ations on selected objects for afull description of the standard action commands available.

8l

7 The Class Browser

7.1.1 Examining slots

A list of the dotsin the current classis printed in the Slots area. By selecting any slot, you can examine it in more detail in
the Description area.

While still examining the capi : push- but t on- panel class, select any slot in the Slots area.

Description of aslot

Description:
From Classes: CAPL.CALLEACKS
Slot Name: CAPI:ACTION-CALLEACK
Type: T
Initargs: (ACTION-CALLEACK
Initform: NIL
Readers: CAPI:CALLEACKS-ACTION-CALLEACK
Writers: (SETF CAPL.CALLEACKS-ACTION-CALLEACK)
Allocation: (INSTANCE

A description of the dlot is given in the Description area. For details about the information contained in this description, see
7.2.4 Description list.

7.1.2 Examining inherited slots

By default, inherited slots (those slots which are defined in a superclass of the current class, rather than the current class
itself) are listed in the Slots area along with the dots defined in the current class.

1. Deselect the Include Inherited Slots button just above the Filter box to inhibit this listing.

2. While still examining the capi : push- but t on- panel class, click Include Inherited Slots to deselect this option.

No slots are displayed in the Slots area. Thisis because all the dots available to the capi : push- but t on- panel class
are inherited from its superclasses. No sots are defined explicitly on the capi : push- but t on- panel class.

3. Select Include Inherited Slots again, and then select afew dotsin the Slot areain turn.

Notice that the slot description for each dlot tells you which superclass the slot is defined on.

7.1.3 Filtering slot information

The Filter box can be used to filter out information about slots you are not interested in. Thisis especially useful if you are
examining classes which contain alarge number of slots.

The example below shows you how to create an instance of a CAPI object, and then limit the display in the Class Browser so
that the only slots displayed are those you are interested in:

1. InaListener, create a button object by typing the following:

(capi:contain (nmake-instance 'capi:list-panel

82

7 The Class Browser

citems ' ("Apple" "Orange" "Pear")))
This creates alist panel object and displaysit on your screen. Thelist panel object isthe current valuein the Listener.
2. Make the Listener window active and choose Values > Class to examine the class of the object in the Class Browser.

3. Click the Slots tab in the Class Browser to switch to the Slots view.

Suppose you are only interested in seeing the callbacks that can be defined in alist panel.

4. Typecal | back in the Filter box.
Using filtersto limit the display in the Class Browser

Class Browser 1

Works File Edit View Description 5Slots Classes Methods History Help

D %Yk 00R €9 -

 CAPLCALLBACKS v X

Superclasses |Subclasses Initargs | Functions | Precedence
Include Inherited Slots

Filter + callhack| > Matches 5

CAPI:ACTION-CALLEACK
CAPI:CALLEACK-TYPE
CAPI:EXTEND-CALLEACK
CAPI:RETRACT-CALLEACK

From Classes: CAPI:CALLBACKS
Slot Name: CAPI:ACTION-CALLBACK
Type: T
Initargs: (ACTION-CALLEACK
Initform: NIL
Readers: CAPI.CALLBACKS-ACTION-CALLBACK
Writers: (SETF CAPL.CALLBACKS-ACTION-CALLBACK)
Allocation: (INSTANCE

83

7 The Class Browser

You can immediately see the types of callback that are available to CAPI list panel objects. Seethe CAPI User Guide and
Reference Manual for details about these callbacks.

For more information about using filters, see 3.12 Filtering infor mation.

7.1.4 Examining other classes

There are two ways that you can examine other classes. Thefirst isto type the name of the class you wish to seeinto the
Class text box at the top of the browser. For long class hames, you might find it useful to type just a few characters and then
press Up or Down to invoke in-place completion. Press Ret ur n or click +* and the named class is described.

1. While still examining classcapi : | i st - panel , typecapi : push- butt on- panel intothe Class area.
Theclasscapi : push- but t on- panel isdescribed.

Because some class names may be potentially quite long, you can use completion to reduce typing. This allows you to select
from alist of all class names which begin with the partial input you have entered. See 3.14 Completion for detailed
instructions. When you have entered the compl ete class name, click on +* to make this the class being described.

The second way to examine other classesis by using the Superclasses and Subclasses lists available in the hierarchy view.
Click on the Hierarchy tab to display the hierarchy view.

The main part of the hierarchy view consists of two lists:

» The Superclasses list shows al the superclasses of the current class.

* The Subclasses list shows al the subclasses of the current class.
Double-click on any superclass or subclass of the current class to examine it.

1. Double-click on CAPI : BUTTON- PANEL in the Superclasses list.
Thecapi : but t on- panel classisdescribed.

2. Double-click on CAPI : PUSH BUTTON- PANEL in the Subclasses list.
Thecapi : push-but t on- panel classisdescribed again.

So, using the Hierarchy tab, you can easily look through the related classesin a system.

7.1.5 Sorting information

Aswith many of the other tools in the LispWorks IDE, you can sort theitems in any of the lists or graphs of the Class
Browser using the Preferences dialog. Raise this dialog as described in 3.2 Setting preferences, and then select Class
Browser inthelist on the left side.

7 The Class Browser

Setting Class Browser preferences

ﬂ
S Package

() Unsorted COMMON-LISP-USER v
@ By Name
() By Package

General Subclass Graph Superclass Graph |?
I

]

Show Package Names

Toolbar
Show Toolbar

Under the General tab, there are three options for sorting items, listed in the Sort panel.

Unsorted Displaysitemsin the order they are defined in.
By Name Sorts items alphabetically by name. Thisisthe default setting.
By Package Sorts items alphabetically by package name.

For more information on sorting items, see 3.9.1 Sorting itemsin views.

7.2 Examining slot information

When the Class Browser isfirst invoked, the default view isthe slots view. You can also click the Slots tab to swap to it from
another view. The slots view is shown in Examining slotsin the Class Browser.

85

7 The Class Browser

Examining slots in the Class Browser

Class BErowser 1

Works File Edit View Description Slots Classes Methods History Help

B e BE® € -

Class: CAPI:PUSH-EUTTON-PANEL v X =

b

T

Hierarchy | Superclasses |Subclasses | Slots | Initargs | Functions | Precedence
Include Inherited Slots

Filter « > Matches 64

CAPI:ACTION-CALLEACK
CAPI::ARMED-IMAGES

CAPI:BEACKGROUND

CAPI:EUTTON-CLASS

D

Description:
From Classes: CAPL:SIMPLE-PANE
Slot Name: CAPI:BACKGROUND
Type: T
Initargs: :BACKGROUND
Initform: MNIL
Readers: CAPI:SIMPLE-PANE-BEACKGROUND
Writers: (SETF CAPL:SIMPLE-PANE-EACKGROUND)
Allocation: (INSTANCE

7.1 Simple use of the Class Browser introduced you to the slots view in the Class Browser. This section gives a complete
description of this view. For completeness, some information may be repeated.

The areas available in the Slots view are described below.

7.2.1 Class box

You enter the name of the class you want to browse in the Class text box. You can type in a class name explicitly, or you can
transfer a class to the Class Browser using the Class standard action command in another tool, or by pasting aclassin
explicitly.

86

7 The Class Browser

Note: You can use Edit > Paste to paste a class hame into this area, even if the clipboard currently contains the string
representation of the class name, rather than a class object itself. Thisletsyou copy class names from other applications
directly into the Class Browser. See 3.3.3 Using the Object operations with the clipboard for a complete description of the
way the LispWorks IDE clipboard operates, and how it interacts with the system clipboard.

7.2.2 Filter area

The Filter arealets you restrict the information displayed in the Slots list. See 3.12 Filtering information for a description of
how to use the Filter areain any tool, and 7.1.3 Filtering slot infor mation for an example of how to useit in the Class
Browser.

7.2.3 Slots list

The main section of the slots view lists the slot names of the current class. Selecting adlot in thislist displays a description of
it in the Description list, and you can operate on any number of selected dots using the commands in the Slots menu.

The number of itemslisted in the Slots areais printed in the Matches box.

If Include Inherited Slots is selected, slotsinherited from the superclasses of the current class are listed as well as those
explicitly defined on the current class. Deselect this button to see only those slots defined on the current class. You can also
configure the default setting of this option. To do this raise the Preferences dialog as described in 3.2 Setting preferences,
then select Class Browser in thelist on the left side of the Preferences dialog, and then select the Slots/Functions tab to see
the Include Inherited Slots option.

7.2.4 Description list

Thislist displays a description of the selected slot. The following information is printed:

From Classes The classes that this slot is defined in.

Slot Name The name of the slot.

Type The dot type.

Initargs Theinitargs, if any, which can be used to refer to the slot.

Initform The initform, or initial value, of the slot.

Readers The readers of the slot. These are the names of any functions which can be used to read the
current value of the dlot.

Writers The writers of the slot. These arethe set f methods which may be used to change the slot value.

Allocation The allocation of the slot.

To operate on any of the items displayed in this area, select them and choose a command from the Description menu. This
menu contains the standard action commands described in 3.8 Perfor ming oper ations on selected objects. You can operate
on more than one item at once by making multiple selectionsin this area.

7.2.5 Performing operations on the current class

You can operate on the current class using the commands in the Classes menu. The standard action commands described in
3.8 Performing oper ations on selected objects are available in this submenu.

Choose Classes > Browse Metaclass to select, and describe in the normal way, the class of the current class.

87

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

7 The Class Browser

7.3 Examining superclasses and subclasses

The hierarchy view of the Class Browser lists the immediate superclasses and subclasses of the current class. Thisview can
be useful for navigating the class hierarchy if you want to be able to see both superclasses and subclasses at the same time.

Click on the Hierarchy tab to browse classes with the hierarchy view. The hierarchy view shown in Viewing superclass and
subclassinformation in the Class Browser appears.

Viewing superclass and subclass information in the Class Browser

Class Browser 1

Works File Edit View Descrption 5Slots Classes Methods History Help

BRDB IO R €%~

Class: | CAPI:CHOICE v M2

Hierarchy | Superclasses |Subclasses | Slots | Initargs | Functions | Precedence

Superclasses: Subclasses:

CAPI.COLLECTION CAPLLBEUTTOMN-PANEL
CAPI.DOUBLE-LIST-PANEL
CAPI.GRAPH-PANE 7
CAPI:LIST-PANEL-MIXIN
CAPLMENU-COMPONENT
CAPI::OPTION-PANE-CHOICE-MIXIN ||
 CAPLTAB-LAYOUT —

Description:

Package: CAPI
Mame: BUTTON-PANEL
Metaclass: STANDARD-CLASS
Accessibility: (EXTERNAL

The areas available in the hierarchy view are described below.
7.3.1 Class box

Aswith other views in the Class Browser, the name of the class being browsed is given here. See 7.2.1 Class box for more
details.

88

7 The Class Browser

7.3.2 Superclasses list
Thislist displays the immediate superclasses of the current class. Double-clicking on any class makes it the current class.

Selecting aclassin thislist displays its description in the Description list.

7.3.3 Subclasses list
Thislist displays the immediate subclasses of the current class. Double-clicking on any class makes it the current class.

Selecting aclassin thislist displays its description in the Description list.

7.3.4 Description list

Thislist displays a description of the first class selected in either the Superclasses or Subclasses lists, or the current classiif
thereisno selection in either of these lists. The following information is printed:

Package The name of the package that the selected class is defined in.

Name The name of the selected class.

Metaclass The class of the selected class. The metaclassisthe class of Lisp object that the current class
belongsto.

Accessibility The accessibility of the selected class - whether the symbol is external or internal, as returned by
find-symbol .

To operate on any of the items displayed in this area, select them and choose a command from the Description menu. This
menu contains the standard actions commands described in 3.8 Perfor ming oper ations on selected objects. You can operate
on more than one item at once by making a multiple selection in this area.

7.3.5 Performing operations on the selected classes or the current class

You can use the Classes menu to perform operations on any number of items selected in either the Subclasses area or the
Superclasses area. If no items are selected, then the current class is operated on by the commands in this submenu. The
standard actions commands described in 3.8 Perfor ming oper ations on selected obj ects are available in this submenu.

Choose Classes > Browse Metaclass to select, and describe in the normal way, the class of the selected classes, or the
current class.

Note: If more than one item is selected, and the command chosen from the Classes menu invokes atool which can only
display one item at atime, then the extraitems are added to the History > Items submenu of the tool, so that you can easily
display them.

7.4 Examining classes graphically

As already mentioned, you can view class relationships graphically using either the superclasses or subclasses views. This
gives an immediate impression of the class hierarchy, but contains no details about information such as slots, readers and
writers.

Click on the Subclasses tab to browse subclasses in a graph, and click on the Superclasses tab to view superclassesin a
graph. Except for the type of information shown, these two views are visually identical. The subclasses view is shown in
Viewing subclasses graphically in the Class Browser .

89

http://www.lispworks.com/documentation/HyperSpec/Body/f_find_s.htm

7 The Class Browser

Viewing subclasses graphically in the Class Browser

S Class Browser 1 =X

Works File Edit Miew Description Slots Classes Methods History Help

= B R BB €9 v

Class: | CAPI:CHOICE v X

Hierarchy | Superclasses | Subclasses | Slots | Initargs | Functions | Precedence

CAPI:CHECK-BUTTON-PANEL

CAPI:BUTTON-PAN EL-écm :PUSH-BUTTON-PANEL
CAPI:RADIO-BUTTON-PANEL

CAPI:DOUBLE-LIST-PANEL

I EA= —=-CAPI:SIMPLE-NETWORK-PANE

CAPI::LIST-PANEL-MIXIN®

s ia S CAPEMENU-COMPONENT
CAPI::OPTION-PANE-CHOICE-MIXIN®
CAPLTAB-LAYOUT
CAPLTOOLEAR-COMPONENT®
CAPL.TREE-VIEW®

Description:

Package: CAPI
Mame: GRAPH-PANE
Metaclass: STANDARD-CLASS
Accessibility: (EXTERMNAL

The areas availabl e in the subclasses and superclasses views are described below.

7.4.1 Class box

Aswith other views in the Class Browser, the name of the class being browsed is shown here. See 7.2.1 Class box for details.

7.4.2 Subclasses and superclasses graphs

The main area of these views is a graph showing either the subclasses or the superclasses of the current class, depending on
the view you have chosen. The generic facilities available to al graph views throughout the environment are available here:
see 6 Manipulating Graphs for details.

90

7 The Class Browser

Selecting anode in this displays a description of the class it represents in the Description list.

7.4.3 Description list

Thislist displays a description of the first class selected in the graph. This gives the same information as the Description list
in the hierarchy and precedence views. See 7.3.4 Description list for details.

7.4.4 Performing operations on the selected classes or the current class

You can operate on the selected node in the graph using the commands in the Classes menu. If no node is selected, then the
current class is operated on by the commands in this menu. The standard actions commands described in 3.8 Perfor ming
oper ations on selected objects are available in this menu.

Choose Classes > Browse Metaclass to select, and describe in the normal way, the class of the selected classes, or the
current class.

7.4.5 An example

1. Examinethe class capi : choi ce by typing capi : choi ce into the Class area of the Class Browser and pressing
Ret ur n or clicking on +".

The class is described in the current view.
2. Click on the Subclasses tab in the Class Browser.

The relationships between capi : choi ce and its subclasses are shown in agraph, asin Relationship between
capi : choi ce classand its subclasses.

Relationship between capi : choi ce class and its subclasses

CAPLEUTTON-PANEL®
CAPI:DOUBLE-LIST-PANEL
CAPI:GRAPH-PANE®
CAPI:LIST-PANEL-MIXIN®
CAPI:CHOICE® CAPIMENU-COMPONENT
CAPI::OPTION-PANE-CHOICE-MIXIN G
CAPLTAB-LAYOUT
CAPITOOLEAR-COMPONENT®
CAPI:TREE-VIEW®

By default, the subclasses of the current class are shown in the graph. To expand a non-leaf node in the graph, click on
thecircletoitsright.

3. Expand the CAPI : BUTTON- PANEL node to see the subclasses of this class.

The classes of button panel object available are displayed in the graph, including the push button panel class that you saw
in the examplesin 7.1 Simple use of the Class Browser .

4. To graph the superclasses, click the Superclasses tab.

The relationships between capi : choi ce and its superclasses are shown in agraph, asin Relationship between
capi : choi ce classand its superclasses.

91

7 The Class Browser

Relationship between capi : choi ce class and its superclasses

FCAPI:C{}LLECTIGH —=e8CAPI:CHOICE

7.5 Examining generic functions and methods

Click the Functions tab to examine information about the generic functions and methods defined on the current class. The
functions view shown in Displaying function information in the Class Browser appears.

Displaying function information in the Class Browser

Class Browser 1

Works File Edit Mew [Descrption Slots Classes Methods History Help

B0 U BER € -
(Class: | CAPI:CHOICE v X ?}?

Hierarchy | Superclasses |Subclasses | Slots | Initargs | Functions | Precedence

Methods '+ | [4] Include Inherited [] Include Accessors

Filter~ || > Matches 186

(METHOD (SETF CAPL.CALLBEACKS-ACTION-CALLEACK) (T CAPLCALLBACKS))

D

(METHOD (SETF CAPI:CALLEACKS-CALLEACK-TYPE) (T CAPI:CALLEACKS))
(METHOD (SETF CAPI:CALLEACKS-EXTEND-CALLBACK) (T CAP:CALLEACKS))
(METHOD (SETF CAPL.CALLEACKS-RETRACT-CALLEACK) (T CAPI:CALLEACKS

iIMETHOD (SETF CAPI:CALLEACKS-SELECTION-CALLEBACK) (T CAPI:CALLBACEK
< |]

[+]

Description:
Name: (METHOD (SETF CAPI:CALLEACKS-ACTION-CALLBACK) (T CAPI:C
Function: #<STANDARD-WRITER-METHOD (SETF CAPL.CALLEACKS-ACTION
Lambda List: (VALUE CALLEACKS)

Documentation:

Source Files:

4 A »

This view can be especially useful when used in conjunction with the Generic Function Browser. The areas available are
described below.

92

7 The Class Browser

7.5.1 Class box

Aswith other viewsin the Class Browser, the name of the class being browsed is given here. See 7.2.1 Class box for more
details. —_—

7.5.2 Filter box

The Filter box lets you restrict the information displayed in the list of functions or methods. See 3.12 Filtering infor mation
for adescription of how to use the Filter box in any tool, and 7.1.3 Filtering slot information for an example of how to use it
in the Class Browser.

7.5.3 List of functions or methods

Thislists either the generic functions with applicable methods for the current class, or the applicable methods for the current
class. Items selected in thislist can be operated on viathe Methods menu, as described in 7.5.6 Oper ations specific to the
current function or method. Double-clicking on afunction or method displays its source code definition in the Editor, if
possible.

Select Methods or Generic Functions from the drop-down list box to choose which type of information to list.

If Include Inherited is checked, generic functions or methods inherited from the superclasses of the current class are
displayed.

If Include Accessors is checked, accessor methods/functions are displayed. When Include Accessors is hot checked,
methods/functions defined by the: reader s, : witers and: accessors dot optionsin def cl ass are omitted from the

display.

You can configure the default settings of these options in the Preferences dialog. To do this raise the dialog as described in
3.2 Setting preferences, then select Class Browser in the list on the |eft side and then select the Slots/Functions tab to see
the default settings that you can configure.

7.5.4 Description list

Thelist at the bottom of the tool gives a description of the function or method selected in the main list. The following
information is shown:

Name The name of the selected generic function or method.

Function The function which the selected function or method relates to.

Lambda List The lambdal list of the selected generic function or method.

Documentation The Common Lisp documentation for the selected function or method, if any exists.
Source Files The source files for the selected generic function or method.

To operate on any of the items displayed in this area, select them and choose a command from the Description menu. This
submenu contains the standard actions commands described in 3.8 Performing oper ations on selected objects. You can
operate on more than one item at once by making amultiple selection in this area.

7.5.5 Performing operations on the current class

You can operate on the current class using the commands in the Classes menu. The standard action commands described in
3.8 Performing oper ations on selected obj ects are available from this submenu.

Choose Classes > Browse Metaclass to select and describe the class of the current class.

93

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

7 The Class Browser

7.5.6 Operations specific to the current function or method
In addition to the commands described above, the following commands are available when using the functions view.

The standard action commands described in 3.8 Perfor ming oper ations on selected obj ects are available from the Methods
menul.

Choose Methods > Undefine... to remove the selected functions or methods from the LispWorksimage. You are prompted
before the functions or methods are removed.

Warning: Do not remove system functions and methods, such as those defined for CAPI classes used as examplesin this
chapter.

Choose Methods > Trace to display the Trace submenu available from several tools. This submenu lets you trace the selected
methods or generic functions. A full description of the commands in this submenu is given in 3.10 Tracing symbols from
tools.

7.6 Examining initargs

Click the Initargs tab to examine information about the initargs of the current class. The initargs view shown in Displaying
initarg information in the Class Browser appears.

94

7 The Class Browser

Displaying initarg information in the Class Browser

Class BErowser 1

Works File Edit View Description Slots Classes Methods History Help

W BB e -

: CAPI:CHOICE v X =

Hierarchy | Superclasses |Subclasses Initargs Precedence

Filter + > Matches 68

ACCEPTS-FOCUS-P
ACTION-CALLBACK
'CALLBACK-TYPE
‘DATA-FUNCTION

Description:

Initarg: :CALLEACK-TYPE
Default Initarg:
Default From Class:
From Classes: CAPLL.CALLEACKS
Slot Name: CAPIL:CALLBACK-TYPE
Type: T
Initargs: :CALLBACK-TYPE
Initform: NIL
Readers: CAPI.CALLBACKS-CALLEACK-TYPE
Writers: (SETF CAPI.CALLBEACKS-CALLEACK-TYPE)
Allocation: [INSTANCE

The areas available are described bel ow.

95

7 The Class Browser

7.6.1 Class box

This area gives the name of the class being browsed. See 7.2.1 Class box for details.

7.6.2 Filter box

The Filter box lets you restrict the information displayed in the initargs list. See 3.12 Filtering infor mation for a description
of how to use the Filter box in any tool, and 7.1.3 Filtering slot infor mation for an example of how to useit in the Class
Browser.

7.6.3 List of initargs

Thisliststhe dlotsin the current class for which initargs have been defined. Selecting an item in thislist displays information
in the Description list. Any items selected can also be operated on viathe Slots menu.

7.6.4 Description list

This area gives a description of the initarg selected in the Initargs area. The following items of information are displayed:

Initarg The name of the selected initarg.

Default Initarg The default value for the selected initarg, if defined with : def aul t -i ni t ar gs.
Default From Class The class providing the default for the initarg.

From Classes The class from which the selected initarg is inherited.

Slot Name The name of the slot to which thisinitarg relates.

Type The type of the selected initarg.

Initargs All initargs applicable to the same dlot.

Initform Theinitform for the slot to which thisinitarg relates.

Readers The readers for the slot to which this initarg relates.

Writers The writers for the dot to which thisinitarg relates.

Allocation The alocation for ot to which thisinitarg relates. See CLOS in the ANSI Common Lisp

specification for details.

Items selected in thislist can be operated on viathe Description menu.

7.6.5 Performing operations on the current class

You can operate on the current class using commands in the Classes menu. The standard action commands described in 3.8
Performing oper ations on selected objects are available in this submenu.

Choose Classes > Browse Metaclass to select, and describe in the normal way, the class of the current class.

96

7 The Class Browser

7.7 Examining class precedences

Click the Precedence tag to examine information about the precedence list of the current class. The precedence view shown
in Displaying precedence information in the Class Browser appears.

The precedence list is used to generate the method combinations for a class, and thus can be used to tell you which method
appliesin agiven case.

See 15 The Generic Function Browser for details on examining information about methods.

Displaying precedence information in the Class Browser

Class BErowser 1

Works File Edit Miew Description Slots Classes Methods History Help

D%y G0 €9 -

: CAPI:CHOICE v X =

Hierarchy | Superclasses |Subclasses Initargs

Filter~ || > Matches 8

CAPI.CHOICE
CAPLCOLLECTION
CAPI::SIMPLE-ELEMENT
CAPI::BASIC-ELEMENT
CAPI.CALLEACKS
CAPL.CAPI-OB JECT
STANDARD-OB JECT

Package: CAFI
Mame: CHOICE
Metaclass: STANDARD-CLASS
Accessibility: (EXTERMNAL

The areas available are described bel ow.

97

7 The Class Browser

7.7.1 Class box

Aswith all other viewsin the Class Browser, the current classis printed in thisarea. See 7.2.1 Class box for full details of its
use.

7.7.2 Filter box

The Filter box lets you restrict the information displayed in the list of precedences. See 3.12 Filtering infor mation for a
description of how to use the Filter box in any tool, and 7.1.3 Filtering slot infor mation for an example of how to useitin
the Class Browser.

7.7.3 List of precedences

Thislist isthe class precedence list of the current class. Precedences are listed highest first. Double-clicking on an itemin
thislist describes that classin the Class Browser.

7.7.4 Description list

This gives the same class description available in the superclasses, subclasses, and hierarchy views. See 7.3.4 Description
list for details.

7.7.5 Performing operations on the selected classes or the current class

You can operate on any number of selected itemsin the list of precedences using the commandsin the Classes menu. If no
items are selected, then the current classis operated on by the commands in this submenu. The standard actions commands
described in 3.8 Performing oper ations on selected objects are available in this submenu.

Choose Classes > Browse Metaclass to select, and describe in the normal way, the class of the selected classes, or the
current class.

Note: If more than oneitem is selected, and the command chosen from the Classes menu invokes a tool which can only
display one item at atime, then the extraitems are added to the History > Items submenu of the tool, so that you can easily
display them.

98

8 The Object Clipboard

The Object Clipboard is a utility that allows you to keep track of multiple Lisp objects as you examine and manipulate them
with the LispWorks IDE tools.

Recall that a Lisp object which isviewed in some tool can be temporarily stored and then pasted into another tool. Seethe
descriptions of the Copy, Cut and Paste commandsin 3.3.3 Using the Object operationswith the clipboard and 3.8.1
Operations available.

The Object Clipboard, and its associated Clip command provides a more powerful mechanism whereby multiple Lisp objects
can be stored ("clipped") and later retrieved.

Note: the Clip command retains a pointer to the clipped object even if you do not have an Object Clipboard tool visible.
When you create the tool, the clipped objects are visibleinit.

To create an Object Clipboard tool, choose Works > Tools > Object Clipboard or click [in the Podium.
The Object Clipboard

Object Clipboard 1
Works File Edit Object Help

Dl eERr BB €

Filter + > Matches 1

Name Value

FUNCTION-1 #<Function COPY-READTABLE 2017EEAZ2>

Ready.

The Object Clipboard creates a name for the clipped object based on its type, and shows the object itself in the Value column.

8.1 Placing objects on the Object Clipboard
You can place an object on the Object Clipboard by using the menu command Clip, available in most tools as described

below..

8.1.1 The Listener

To place the current object of a Listener on the Object Clipboard (that is, the value of the variablecl : *), choose Values >
Clip inthe Listener.

If your Listener isin the debugger, you can clip the condition object by Debug > Condition > Clip.

99

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

8 The Object Clipboard

8.1.2 The Class Browser

To place aclass from the Class Browser on the Object Clipboard, select the class name in the Hierarchy, Superclasses,
Subclasses or Precedence tab, and choose Classes > Clip.

To place adot definition object from the Class Browser on the Object Clipboard, select the slot name in the Slots tab, and
choose Slots > Clip.

To place amethod or generic function object from the Class Browser on the Object Clipboard, select it in the Functions tab,
and choose Methods > Clip.

8.1.3 The Inspector
To place the currently inspected object in the Inspector on the Object Clipboard, choose Object > Clip.

To place the value in aslot of the currently inspected object, select the slot in the Inspector, and choose Slots > Clip.

8.1.4 The Function Call Browser

To place the current function on the Object Clipboard, choose Function > Clip. If you have selected afunction name in the
Function Call Browser, that function is clipped instead.

8.1.5 The Generic Function Browser

To place a method from the Generic Function Browser on the Object Clipboard, select the method and choose Methods >
Clip. For the generic function object itself, choose Function > Clip.

8.1.6 The Debugger
To place the condition object from the Debugger tool on the Object Clipboard, choose Condition > Clip.

To place the value of avariable in the Debugger's backtrace area on the Object Clipboard, select the variable and choose
Variables > Clip.

8.1.7 The Stepper

To place the value of avariable in the Stepper's Backtrace tab onto the Object Clipboard, select the variable and choose
Variables > Clip.

8.1.8 The System Browser

To place the system object from the System Browser onto the Object Clipboard, choose Systems > Clip.

8.1.9 General clipping
To place any CAPI top level window itself on the Object Clipboard, choose Works > Interface > Clip.

To place data from a Description panel, such asin the Class Browser or in the Tree tab of the Compilation Conditions
Browser, select the desired parts of the Description and choose Description > Clip.

100

8 The Object Clipboard

8.2 Browsing clipped objects

For each object in the Object Clipboard, you can can browse it in various tools as described below. First, select the object you
want to browse and note that the Object menu is enabled:

An object selected in the Object Clipboard

Object Clipboard 1
Works File Edit Object Help

B2 B 5 &

Filter + > Matches 2

Name Value

FUMCTION-Z2 #<Closure 2 subfunction of STRUCTURE:: MAKE-SIMPLE-VE
0 on COPY-READTAE B4EA

4 A ¥

Ready.

8.2.1 The Inspector

To inspect any object that is on the Object Clipboard, select it and choose Object > Inspect.

8.2.2 The Class Browser

To browse the class of any object that is on the Object Clipboard, select it and choose Object > Class.

8.2.3 The Listener

To paste an object from the Object Clipboard into the Listener, choose Object > Listen.

8.2.4 General browsing

To browse an object that is on the Object Clipboard, select it and choose the Browse command from the Object menu. For
example, if the object is a generic function, the menu command is Object > Browse - Generic Function.

8.2.5 Pasting of clipped objects

Thisis another way to view aclipped object in another tool.

Paste an object from the Object Clipboard into another tool by:
1. Select the object in the Object Clipboard window.

2. Choose Edit > Copy.

101

8 The Object Clipboard

3. Make the other tool window active.

4. Choose Edit > Paste.

8.3 Removing objects

To remove an object from the Object Clipboard, select it and choose Edit > Object > Cut Object.
To empty the Object Clipboard, first remove any filter. Then choose Edit > Select All followed by Edit > Object > Cut Object.

Note: if you close the Object Clipboard window, the objectsin it are not removed from the Object Clipboard. They are
preserved and displayed in a subsequently created Object Clipboard windows.

8.4 Filtering

You can use the Filter box of the Object Clipboard in the standard way to reduce the number of clipped objects displayed.

For example to see only the method objects in the Object Clipboard, enter "method" in the Filter box.
Use of the Filter box in the Object Clipboard

Object Clipboard 1
Works File Edit Object Help

30 Bp %ErE DB R

Filter~» | method| > Matches 4
Name Value

STANDARD-METHOD-2 #<STANDARD-METHOD CAPI-LIBRAF
STANDARD-METHOD-1 #<STANDARD-METHOD CAPI-LIBRAF

STANDARD-READER-METHOD-2 #<STANDARD-READER-METHOD CA
STANDARD-READER-METHOD-1 #<STANDARD-READER-METHOD CA

1| | *

Ready.

For more information about filtering, see 3.12 Filtering infor mation.

8.5 Using the Object Clipboard with a Listener

Here we place several objects on the Object Clipboard. Then we link the Object Clipboard with a Listener tool, giving a
convenient way to manipulate these objectsin turn.

In the Listener:

102

8 The Object Clipboard

1. Enter:

(capi:contain

(make-instance 'capi:di spl ay- pane
:text "Display Pane"
: background : green))

A green display paneis displayed.

2. Ensure that the Listener window is active, so that the Values menu is enabled. Choose Values > Clip to place the display
pane on the Object Clipboard.

3. Enter:

(capi:contain

(make-instance 'capi: editor-pane
:text "Editor Pane"
- background :yellow))

A yellow editor paneis displayed.
4. Return to the Listener and choose Values > Clip to place the editor pane on the Object Clipboard.

5. Enter:

(capi:contain
(make-instance ' capi: graph-pane))

A graph paneis displayed.
6. Return to the Listener and choose Values > Clip to place the graph pane on the Object Clipboard.

Now choose Tools > Object Clipboard or click {1 in the Podium. Notice that this creates an Object Clipboard tool if you do
not already have one. The Object Clipboard shows the objects you just clipped, and the most recently clipped object appears
at thetop. It should look like CAPI panesin the Object Clipboard.

103

8 The Object Clipboard

CAPI panesin the Object Clipboard

Object Clipboard 1
Works File Edit Object Help

3D B0 WUEL DER

Filter + > Matches 3

Name Value

GRAPH-PANE-1 #<CAPI:GRAPH-PANE [31 items] 22476DC7>

EDITOR-PANE-1 #<CAPLEDITOR-PANE 200D1C73>
DISPLAY-PANE-1 #<CAFI:DISPLAY-FANE 21EDOASY-

Ready.

In the Listener choose Edit > Link from and select the Object Clipboard in the submenu. Now, whenever you select an object
in the Object Clipboard, it is also pasted into the Listener - that is, it becomes the value of *. We use thislink to manipulate
the CAPI pane objectsin the Listener.

1. In the Object Clipboard select DISPLAY -PANE-1. Thisraisesthe linked Listener window and pastes the display pane
object.

2. Enter in the Listener:

(capi : appl y-i n- pane- process
* #' (setf capi:sinple-pane-background) :red *)

The display pane background becomes red.

3. Inthe Object Clipboard select EDITOR-PANE-1. Thisraisesthe linked Listener window and pastes the editor pane
object.

4. Inthe Listener choose History > Previous or use Esc P, and press Ret ur n, to enter the same command again:

(capi : appl y-i n- pane- process
* #' (setf capi: sinple-pane-background) :red *)

The editor pane background also becomes red.

5. In the Object Clipboard select GRAPH-PANE-1. Thisraisesthe linked Listener window and pastes the graph pane
object.

6. Enter in the Listener:

104

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

8 The Object Clipboard
(capi : appl y-i n- pane- process
* #' (setf capi:graph-pane-roots) '(2 3) *)

The graph paneis altered.

Notice how linking the Listener with the Object Clipboard allows you to manipulate the clipped objects in turn via the value
of *.

105

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

9 The Compilation Conditions Browser

9.1 Introduction

The Compilation Conditions Browser gives you an interface to the warning and error conditions you are likely to encounter
when compiling your source code. It allows you to see the relationship between different errors or warnings encountered
during compilation, and gives you immediate access to the source code which produced them.

You can use it to view the conditions signaled during compilation of files from any part of the environment: whether you are
compiling files using the System Browser or the Editor, any ensuing conditions can be displayed in the Compilation
Conditions Browser. The Compilation Conditions Browser requires the source code to come from afile.

The Compilation Conditions Browser has three views.
» The All Conditions view, which shows all conditions grouped by file name.
» TheErrors view, which shows al errors grouped by file name.
» The Output view, which can be used to display the output messages in the environment.

To create a Compilation Conditions Browser, you can choose Works > Tools > Compilation Conditions Browser or click £
in the Podium.

A more common way to create a Compilation Conditions Browser isto press Ret ur n when the Output tab (of any tool)
reports compilation conditions. See 12.13.4.1 Compiling in memory for details.

9.2 Examining conditions

The All Conditions view is visible when the Compilation Conditions Browser isfirst invoked. The tool appears as shown in
The Compilation Conditions Browser.

106

9 The Compilation Conditions Browser

The Compilation Conditions Browser

[] [= ¥] [] 0 = O = = D x
Works File Edit View Description Help

All Conditions | Errors | Qutput

= [output-browser-conditions.lisp
Ay *GRAPH-NAME* assumed special in SETQ
e () 0] OLC reTerence
@ Calling FLOOR | Find Source
© Implementation level calling Hide Delete 7 arg
A *GRAPH-NAME* assumed spe. | hide in file
More than three arguments in nhide all ECTIO
g¢| T | »
Description:

Condition: Q is bound but not referenced

Class: CONDITIONS: :SIMPLE-STYLE-WARNING
Definition: FACTORP
File: famd/lwfsl-cam/u/ldisk/sp/lispsrc/clc/local/doc/Iw/capi/env/s

P, S ¥

Ready .

There are three tabs. These show the same information, in different ways:

* All Conditions - default view that shows all conditions in atree representation, grouped by filename. Each itemin the
tree can be expanded to show the conditions that were generated during compilation of that file. Selecting a compilation
message in the tree view causes the data for the selected message to be shown in the Description area. Double-clicking
on anitem (or using Find Source on the context menu, asillustrated above) shows the source code of the condition in an
Editor, highlighting the nearest subform to where the condition occurred. After doing this, Ctr1 +X * (backquote) can
be used to find the source of the next condition shown in the browser.

Errors - shows all errorsin atree representation, grouped by filename. You can perform the same operations in this view
asin All Conditions.

* Output - shows the raw compilation output. You will see this same output in the tool that performed the compilation.

The description areain the All Conditions and Errors views of the Compilation Conditions Browser shows a description of

any item selected in the conditions area. The description contains details of the selected condition. The following information

is shown:

107

9 The Compilation Conditions Browser

Condition The error condition for the selected item in the message area.

Class The class of the selected condition.

Definition The name of the form in which the condition was signaled.

File The name of thefile that contains the Lisp source code that caused the selected condition.

Items selected in this area may be examined using the Description menu which allows a variety of LispWorkstoolsto be
invoked on the selected item in the description area.

9.3 Configuring the display

The manner in which t he Compilation Conditions Browser displays information can be customized using the Preferences
dialog. To do this, raisethe dialog as described in 3.2 Setting preferences and then select Compilation Conditions inthelist
on the left side of the Preferences dialog. The General tab is shown:

The Compilation Conditions Browser General preferences

General | Display

Package
COMMON-LISP-USER v

Show Package Names

Toolbar
Show Toolbar

Here you can select or deselect Show Package Names to toggle display of packagesin all references to symbols, and you can
use the Package box to specify the current package when displaying symbols.

Setting a suitable package and turning off display of package names can greatly simplify a complicated list.

Select of deselect Show Toolbar to control whether Compilation Condition Browser tools have atool bar.

9.3.1 Display preferences

The Display tab of the Compilation Conditions Browser preferences appears asin The Compilation Conditions Browser
Display preferences.

The Compilation Conditions Browser Display preferences

General | Display

Pathnames
() :Show Full Pathname
@ Show Leaf Pathname

108

9 The Compilation Conditions Browser

Thistab includes the pathnames selection area, which has two radio buttons.
Check Show Full Pathname to show the full pathname of al files displayed. Thisisthe default setting.

Check Show Leaf Pathname to show just the filename of al files displayed, and omit the full pathname.

9.4 Access to other tools

The Compilation Conditions Browser is integrated with the other tools allowing intuitive interaction.

You can easily find the source the generated a condition, as described in 9.2 Examining conditions.

Items selected in the Description area may be examined using the Description menu. See 3.8.1 Operations available for
more information on the operations available from this menu. Additionally, double-clicking on part of the description
displaysit in an Inspector or Class Browser, as appropriate.

109

10 The Debugger Tool

When developing source code, mistakes may prevent your programs from working properly, or even at all. Sometimes you
can see what is causing a bug in a program immediately, and correcting it istrivial. For example, you might make a spelling
mistake while typing, which you may instantly notice and correct.

More often, however, you need to spend time studying the program and the errorsit signalled before you can debug it. Thisis
especially likely when you are developing large or complex programs.

A Debugger tool is provided to make this process easier. Thistool isagraphical front-end to the command line debugger
which is supplied with your Lisp image. In order to get the best use from the Debugger toal, it is helpful if you are familiar
with the command line debugger supplied. See the LispWorks® User Guide and Reference Manual for a description of the
command line debugger.

The Debugger tool can be used to inspect programs which behave in unexpected ways, or which contain Common Lisp forms
which are syntactically incorrect.

There are two ways that you can invoke the Debugger tool:

« If you evaluate code that signals an error in a Listener, the command line debugger is entered automatically. At this
point, choose Debug > Start GUI Debugger or click the # button in the Listener toolbar to invoke the Debugger tool.

« If you run code that signals an error from another source (for example, as aresult of running a windowed application, or
compiling code in afile of source code), by default a Notifier window appears. Click on the Debug button in the Notifier
window to invoke the Debugger tool.

For more information about the Notifier window, including the way to bypassit, see 10.10 The Notifier window.

Here is a short example introducing the Debugger tool:

1. Define the following function in the Listener.

(defun thing (nunber)
(/ nunber 0))

This function which attempts to divide a number given as an argument by zero.

2. Now call thisfunction asfollows:
(thing 12)
Thecall tot hi ng invokes the command line debugger.

3. Choose Debug > Start GUI Debugger or click the # button to invoke the Debugger tool. Natice that the window title
contains the name of the process being debugged.

4. For now, click the Abort button & in the Debugger toolbar to return to the top level loop in the Listener.

The command line debugger can be entered by signaling an error in interpretation or execution of a Common Lisp form. For
each error signaled, afurther level of the debugger is entered. Thus, if, while in the debugger, you execute code which
signals an error, alower level of the debugger is entered. The number in the debugger prompt is incremented to reflect this.

Note that you can also invoke the command line debugger by tracing a function and forcing a break on entry to or exit from
that function. Seethe tutorial chapter (2.3 Using the Debugger) for the example code used in Debugger tool and Debugger

110

10 The Debugger Tool

tool.

10.1 Description of the Debugger

By default the debugger tool appears as shown in Debugger tool below.
Debugger tool

Eror condifion. Coriral butlors. Debugger backirace.

Debugging CAF| Executicm Listener 1

Works

A=K -,

I ondition:

Division-by-zero caused by / of (12 (), /

Backtrace: /

b A INVOKE-DEBUGGER

> W ERROR

B

= ATHING
* NUMBER 12

b A EVAL

b A CAPL:CAPI-TIOP-LEVEL-FUNCTION

I A CAPI:INTERACTIVE-PANE-TOP-LOOP

b A MPPROCESS-SG-FUNCTION

Ready.

S1ale ol variables {or

selecied frame. Bcho area.

The debugger tool has two areas, and atoolbar. These are described below. If you invoke the debugger tool by clicking
Debug in anotifier window, the tool also contains alistener pane. This provides you with a useful way of evaluating
Common Lisp formsinteractively in the context of the error.

10.1.1 Condition box
This area displays the error condition which caused entry to the debugger. You cannot edit the text in this box.

The error condition can be operated on by commands in the Condition menu. See 10.6 Perfor ming operations on theerror

condition for details.

10.1.2 Backtrace area

The backtrace area displays the function calls on the execution stack. Each tree root or list item in the backtrace area
represents a stack frame associated with afunction call.

111

10 The Debugger Tool

Double-clicking on any stack frame finds and displays the source code definition for that function in the Editor, if thisis
known. Any frame selected in this area can be operated on using the commands in the Frame menu, which is also available
as the context menu. See 10.7 Perfor ming operations on stack framesfor details.

The backtrace is displayed either in atree or alist, with the behaviors described bel ow.

You can choose which type of display it uses by the Frames and Arguments preference, described in 10.9 Configuring the
debugger tool.

10.1.2.1 Frames and Variables in a tree

When the Frames and Arguments preference has the value Tree-view, the Debugger appears as shown in Variablesin the
Debugger tree view below.

Each expandable root node in the Backtrace: tree represents a stack frame associated with afunction call. You can operate on
the frame as described in 10.1.2 Backtrace area.

Expanding a stack frame node displays any variables associated with that function call. You can double click on any variable
to inspect it using the Inspector tool. Any items selected in this area can be operated on using the commands in the Variables
menu: see 10.8 Performing operations on frame variables for details.

112

10 The Debugger Tool

Variables in the Debugger tree view

Debugging CAPI Execution Listener 1

Works File Edit View Condition Frame Vanables Restans Help

| wa S & = =@

ondition:
‘Diuisiun—by-'—zeru caused by [of (1 0).

Tt

=l
<l

Backtrace:
I A INVOKE-DEBUGGER
I X ERROR
* FOO
® 'ZERO" 0
®ONE 1
o TWO 2
- A EVAL
> A CAPI::CAPI-TOP-LEVEL-FUNCTION
> X CAPI:INTERACTIVE-PANE-TOP-LOOP
> A MP:PROCESS-SG-FUNCTION

Ready.

Each call frameisaroot in the tree with a X icon and has severa kinds of subnode;
* A subnode with ayellow disc < icon represents anormal lexical variable.
» A subnode with ared disc # icon represents a closure variable (either from an outer scope or used by an inner scope).
* A subnode with a purple disc # icon represents a specia variable.
* A subnode with acyan disc < icon represents some other frame.

Double-click on a X icon to show the source of that function, if available, in the Editor. Double-click on any of the disc
iconsto show that variable in the Inspector.

10.1.2.2 Frames and Variables in two lists

When the Frames and Arguments preference has the value Two list-panels, the Debugger appears as shown in below.

113

10 The Debugger Tool

Debugger tool with two list-panels

Bror condiion. Corirol buliors. Debugger backirace.
\ |

Debugging CAPI Executicn Listener 1
Works File Edit View Condition Frame YVarizables HRestats Help
BB wme@@ * 2157 v 8
C ondition:
Division-by-zero caused by [of (12 0).
Backtrace:
INVOKE-DERUGGER
ERROR
!
Find Soure
EVAl

Do urmentation
CAPICAPI-TOP-LEVEL-FUNCTION

CAPI:INTERACTIVE-PANE-TOP-LOOP
MF::PROCESS-5G-FUNCTICN

Local varables: Restart Frame
WUMBER 12 Restan Frame Stepping
Retum from Frame

Inspect Function

Method Combination

Break On Return from Frame

Ready. Trace .

Siale ol varables lor Ec ho area.

selecied frame Corlex! meru operales on selecied

frame or variable.

Each item in the Backtrace: list represents a stack frame associated with afunction call. You can operate on the frame as
described in 10.1.2 Backtrace area.

A second list titled Local variables: shows the local variables of the frame which is selected in the Backtrace: list. You can
operate on the variables similarly to the backtrace tree - double click on avariable to inspect it or use the commandsin the
Variables menu, which is also available as the context menu.

Note: with Two list-panels, only the local variables of the current frame are displayed.

10.1.3 Toolbar buttons

At the top of the debugger tool isarow of buttons, as described below. Click:
* =+ to break the current execution.
» @ toreturn from the debugger and invoke the continue restart.
» @& toreturn from the debugger and invoke the abort restart.

* % to select the previous stack frame in the backtrace area.

114

10 The Debugger Tool

* ¥ toselect the next stack frame in the backtrace area.

* £ to print the backtrace in the Listener.

* = toprint the variable bindings of the current frame in the Listener.
* 3 to find the source code for the current stack frame.

If you hold the mouse cursor stationary over any button for about one second, then help text appears that identifies the button.

10.1.4 Bypassing the Notifier window

If you prefer a Debugger tool to appear immediately, without the intermediate Notifier window, set
ent er - debugger - di rect | y to atrue value.

10.2 What the Debugger tool does

The Debugger tool provides a number of important facilities for inspecting programs.

Common Lisp, like most programming languages, uses a stack to store data about programs during execution. The Debugger
tool allows you to inspect and change this stack to help get your programs working properly.

You can use it to trace backwards through the history of function calls on the stack, to seeif the program behaves as expected,
and locate points at which things have gone wrong.

You can also inspect variables within those functions, again to verify that the program is doing what is expected of it.

The Debugger tool also allows you to change variables on the stack. Thisis useful when testing possible solutions to the
problems caused by abug. You can run a bugged program, and then test fixes within the Debugger tool by altering values of
variables, and then resume execution of the program.

10.3 Simple use of the Debugger tool

When you enter the Debugger tool, the Condition area displays a message describing the error. The Restarts menu lists a
number of restart options, which offer you different ways to continue execution.

1. For example, type the name of a variable which you know is unbound (say f ubar) at the Listener prompt.
2. Click # inthe Listener toolbar or choose Debug > Start GUI Debugger to enter the Debugger tool.

3. Select the Restarts menu to display the options available.

A number of restarts are displayed that offer you different waysin which to proceed. These are the same options as those
displayed at the command line debugger before you invoked the debugger tool.

Two special restarts can be chosen: the abort and continue restarts. These are indicated by the prefixes (abort) and
(continue) respectively. Asashortcut, you can use the Abort @& or Continue & toolbar buttons to invoke them, instead
of choosing the appropriate menu command.

In the case of the continue restart, different operations are performed in different circumstances. In this example, you can
evaluate the form again. If you first set the variable to some value, and then invoke the continue restart, the debugger is
exited.

4. Inthe Listener, set the value of f ubar asfollows:

(setqg fubar 12)

115

10 The Debugger Tool

5. Click Continue & in the debugger tool.

The debugger tool disappears, and the command line debugger is exited in the Listener, and the value 12 isreturned; the
correct result if the variable had been bound in the first place.

You can also click Abort & to invoke the abort restart. This restart always exits the current level of the debugger and returns
to the previous one, ignoring the error which caused the present invocation of the debugger.

In general, you should use the continue restart if you have fixed the problem and want to continue execution, and the abort
restart if you want to ignore the problem completely and stop execution.

10.4 The stack in the Debugger

As already mentioned, the debugger tool allows you to examine the state of the execution stack, which is shown in the
Backtrace area. This area consists of a sequence of stack frames. A stack frame is a description of some part of a program, or
something relating to the program, which is packaged into a block of memory and placed on the stack during program
execution. These frames are not directly readable without the aid of the debugger.

There can be frames on the stack representing active function invocations, special variable bindings, restarts, and system-
related code. In particular, the execution stack has acall frame for each active function call. That is, it storesinformation
describing calls of functions which have been entered but not yet exited. Thisincludes information such as the arguments
with which the functions were called. By default, only call frames for active function calls are displayed in the Backtrace
area. See 10.9 Configuring the debugger tool for details of how to display other types of call frame.

Thetop of the stack contains the most recently-created frames (and so the innermost calls), and the bottom of the stack
contains the oldest frames (and so the outermost calls). You can examine a call frame to find the name of afunction, and the
names and values of its arguments, and local variables.

10.5 An example debugging session

To better understand how you can make use of the debugger, try working through the following example session. In this
example, you define the factorial function, save the definition to afile on disk, compile that file and then call the function
erroneously.

1. Choose File > New or click on|].

A new fileis created and displayed in the Editor. If you have not aready invoked the Editor, it is started for you
automatically.

2. Inthe new file, define the function f ac to calculate factorial numbers.

(defun fac (n)
(if (=n1) 1
(* n(fac (- n 1)))))

3. Choose File > Save or click on [and enter afilename when prompted.

4. Choose File > Compile and Load to compile the file and load the resulting fadl file.

The Editor switches to the output view while compilation takes place. When prompted, press Space to return to the text
view. Thef ac function is now defined and available for you to use.

5. Inthe Listener, call f ac erroneously with a string argument.
(fac "turtle")

LispWorks notices the error: The arguments of = should be numbers, and one of them is not.

116

10 The Debugger Tool

6. Choose Debug > Start GUI Debugger or click & to invoke the Debugger tool.

Take a moment to examine the backtrace that is printed in the Backtrace area.

7. Starting from the selected frame, expand or select the next three frames in the Backtrace areain turn to examine the state
of the variables which were passed to the functionsin each call frame. Pay particular attention to the f ac function.

The error displayed in the Condition box informs you that the = function is called with two arguments. the integer 1 and
the string "turtle". Clearly, one of the arguments was not the correct type for =, and this has caused entry into the
debugger. However, the arguments were passed to = by f ac, and so thereal problem liesin the f ac function.

In this case, the solution isto ensure that f ac generates an appropriate error if it is given an argument which is not an
integer.

8. Double-click on the line FAC in the Backtrace area of the debugger tool.

The Editor appears. The subform within the definition of f ac which actually caused the error is highlighted. Double-
clicking on aline in the Backtrace areais a shortcut for choosing Frame > Find Source or using the »2 button. If the
Debugger can find the erroneous subform, thisis highlighted, otherwise the definition itself is highlighted if it can be
found.

9. Edit the definition of the f ac function so that an extrai f statement is placed around the main clause of the function. The
definition of f ac now reads as follows:

(defun fac (n)
(if (integerp n)
(if (=n1) 1
(* n(fac (- n 1))))

(print "Error: argument nust be an integer")))

The function now checks that the argument it has been passed is an integer, before proceeding to evaluate the factorial. If
an integer has not been passed, an appropriate error message is generated.

10Choose File > Save and File > Compile and Load again, to save, recompile and load the new definition.

11Click on the Abort button in the debugger tool, to destroy the tool and return the Listener to the top level loop.

12In the Listener, type another call to f ac, once again specifying a string as an argument. Note that the correct error
message is generated. You will seeit twice, because f ac prints the message and then the Listener prints the return value
of f ac.

This next part of the example shows you how you can use the various restarts which are listed as commands in the Restarts
menu.

1. Call f ac again with a new argument, but this time type the word | engt h incorrectly.

(fac (legnth "turtle"))

2. Choose Debug > Start GUI Debugger or click # to invoke the debugger tool.

You can spot immediately what has gone wrong here, so the simplest strategy isto return avalue to use.

3. Choose Restarts > Return some values from the form (LEGNTH "turtle").

You are prompted for aform to be evaluated.

4. Enter 6 in the dialog and click OK. Thisisthe value that would have been returned from the correct call to
(length "turtle").

117

http://www.lispworks.com/documentation/HyperSpec/Body/s_if.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_length.htm

10 The Debugger Tool

Having returned the correct value from (1 ength "turtl e"), f ac iscalled with the correct argument and returns the value
720.

10.6 Performing operations on the error condition

You can perform operations on the error condition that caused entry into the debugger using the commands available in the
Condition menu.

The standard action commands are available in the Condition menu. For more details about these commands, see 3.8
Performing oper ations on selected objects.

Choose Condition > Report Bug to generate a bug report template.

10.7 Performing operations on stack frames

Any frame in the Backtrace list can be operated on using commands in the Frame menu. This menu isalso availableasa
popup from the backtrace areaitself. The commands available alow you to operate on the function displayed in the selected
frame.

10.7.1 Source location, documentation, inspect and method combination for the current
frame

Choose Frame > Find Source to search for the source code definition of the object pointed to by the current frame. If itis
found, thefileis displayed in the Editor: the cursor is placed at the start of the definition or at the subform which cause the
error, if known. The form is highlighted. See 12 The Editor for an introduction to the Editor.

Choose Frame > Documentation to display the Common Lisp documentation for the object pointed to by the current frame,
if any exists. Note that thisisthe result of the Common Lisp function docunent at i on, not the supplied manuals. Itis
printed in a specia Output Browser window.

Choose Frame > Inspect Function to display an Inspector tool showing the selected frame's function.

Choose Frame > Method Combination to display a Generic Function Browser tool in the Method Combinations view for the
argumentsin the selected frame. This command is only available when the selected frame is a call to a standard method. See
15.2 Examining infor mation about combined methods for information about using the Method Combinations view.

10.7.2 Restarts and returning from the frame

Choose Frame > Restart Frame to continue execution from the selected restart frame. The action that is taken when choosing
this command is printed with each restart frame in the Backtrace area. Note that restart frames must be listed for this
command to be available: see 10.9.1 Configuring the call frames displayed for details.

Choose Frame > Restart Frame Stepping to step through execution from the selected restart frame. This frame becomes the
active frame in a Stepper tool. See 25 The Stepper for information about using the Stepper tool.

Choose Frame > Return from Frame to resume execution from the selected frame. A dialog prompts for avalue to return
from the selected frame. Previously entered values are available viaa dropdown in this dialog. This option allows you to
continue execution smoothly after you have corrected the error which caused entry into the debugger.

Choose Frame > Break On Return from Frame to trap execution when it returns from the selected frame. This command
prints a message telling you that the trap has been set, and when Lisp returns from the frame it calls br eak, allowing you to
enter the debugger again.

118

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_break.htm

10 The Debugger Tool

10.7.3 Tracing the function in the frame

Choose Frame > Trace to display the standard Trace menu. Thislets you trace the function in the selected frame in a variety
of ways: see 3.10 Tracing symbols from tools for details.

10.8 Performing operations on frame variables

You can perform operations on a variable selected in the Variables area by the standard action commands which are available
in the Variables menu or from the context menu on the variables list itself. For more details about these commands, see 3.8
Performing oper ations on selected obj ects.

Choose Variables > Set... to set the value of a variable selected in the Variables area. A dialog prompts you to enter aform
which is evaluated to yield the new value for the variable. Previously entered forms are available viaa dropdown in this
dialog. The Common Lisp variable * is bound to the current value of the variable in the frame.

10.9 Configuring the debugger tool

You can control the behavior and appearance of the debugger using the Preferences dial og.

To do this, raise the Preferences dialog by one of the methods described in 3.2 Setting preferences and select Debugger in
the list on the left side of the dialog.

Debugger Preferences

General| Debugger |Remote

View Frame Package
[[]1 Bindings COMMON-LISP-USER v
W == Show Package Names
[] Handlers
[] Hidden Symbols Options
[Restarts Abort When Closed

[] Invisible Functions

Frames and Arguments

(@ Tree-view () Two list-panels

10.9.1 Configuring the call frames displayed

By default, the call frame for each active function call in the backtrace islisted in the Backtrace area. There are a number of
other types of call frame which are hidden by default. Display call frames of these types by selecting them in the View Frame
panel of the debugger Preferences:

Bindings Displays all the binding framesin the Backtrace list.

Catchers Lists the catch frames in the Backtrace list.

119

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

10 The Debugger Tool

Handlers Lists the handler frames in the Backtrace list.
Hidden Symbols Lists any hidden symbolsin the Backtrace list.
Restarts Listsall the restart frames in the Backtrace list. Each restart frameis listed, with the restart

action to be taken given in brackets. To restart execution at any restart frame, select the frame,
and choose Debug > Frame > Restart Frame.

Invisible Functions Listsall invisible frames (such as the call to the error function itself) in the Backtrace list.

Note that all these commands can be toggled: choosing any command switches the display option on or off, depending on its
current state. By default, all the options are off when the debugger isfirst invoked.

10.9.2 Displaying package information

Aswith other tools, you can configure the way package names are displayed in the debugger tool in the Package box of the
Debugger Preferences.

Check show Package Names to turn the display of package namesin the Backtrace and Variables lists on and off.

Specify a package name in the text box to change the process package of the debugger tool. You can use completion to reduce
typing: click on “ to which allows you to select from alist of al package names which begin with the partial input you have
entered. See 3.14 Completion for detailed instructions.

By default, the current package is the same as the package from which the error was generated.

10.9.3 Behavior on closing the Debugger
By default, when you close the Debugger window it attempts to abort, that isto call the abort restart.

Uncheck the Abort When Closed option only if you want to turn off this behavior.

10.9.4 Frames and variables display

To choose to view frames and variables in two lists rather than one tree, select the value Two list-panels in the Frames and
Variables option.

10.9.5 Remote debugging options
The Remote tab is described in 29.4 Configuring Remote Debugging.

10.10 The Notifier window

When an error is signalled in processes other than the Listener REPL, by default a Notifier window appears. This shows the
error message, and allows you to choose how to proceed by offering the restarts and other options.

120

10 The Debugger Tool

The Notifier window

LispWorks

Error in process "Evaluate foo"
Message:

The variable FOO is unbound.

Bestarts:

Try evaluating FOO again.

Specify a value to use this time instead of evaluating FOO.

Specify a value to set FOO to.

(abort) Quit process.

Report Bug Debug Abort v QK

The Notifier window has three main areas.
The Message: areadisplays the error message.

The Restarts: area contains alist of available restarts. To invoke arestart, select it in thelist and click OK, or double-click on
itinthelist.

The row of buttons at the bottom of the Notifier window operate as follows:

Report Bug Prompts for basic information about the bug and then creates an Editor tool containing atemplate
bug form with a stack backtrace and other information. Use thisif you believe you have found a
bug and wish to report it to Lisp Support. Visit www.lispwor ks.com/suppor t/bug-report.html
for more information about reporting bugs.

Debug Raises a Debugger tool, as described earlier in this chapter.
Abort Invokes the abort restart.
OK Invokes the restart which is selected in the Restarts: list.

Some processes cannot be debugged in the LispWorks IDE. Errorsin these processes are handled slightly differently in the
Notifier window which has these two buttons:

Debug Snapshot Creates a snapshot Debugger. This contains a copy of the stack backtrace which you can examine
as described in this chapter. However it is less interactive in that you cannot take any restart or
return from aframe. For more information see " Snapshot debugging of startup errors” in the
LispWorks® User Guide and Reference Manual.

Get Backtrace Creates an Editor tool containing the stack backtrace.

In this case there is no Debug button.

121

http://www.lispworks.com/support/bug-report.html

10 The Debugger Tool

On Cocoathereis a process named "Cocoa Event Loop”. When there is an error in this process, the Notifier has an additional
pane called Error handling in Cocoa event loop.

The Error handling in Cocoa event loop alows you to control the behavior of the Cocoa Event Loop process. Thisis useful
when you get in a situation where something causes repeated errors in the Cocoa Event Loop, which makesit very difficult to
find what the problem is. In general, you should change these settings only when you arein thiskind of situation, enter the
snapshot Debugger and debug the problem, and when you exit the snapshot Debugger the settings are automatically reset to
the normal settings.

If you change the settings, and either did not enter the snapshot Debugger or unchecked the Restore normal error processing
when snapshot debugger exits button, you should restart LispWorks once you figured out what the problemis.

Buttons at the top of the Error handling in Cocoa event loop pane give you three options:
Process errors normally

Thisisthe normal setting.

Ignore errors in explicit events

"explicit events' means events that are generated inside Lisp, normally when another process
wants to tell the event loop to do something. A typical example are callsto

capi : appl y-i n- pane- process and related functions. This option allows you to ignore such
errors.

Ignore all errors Ignore al errorsin the Cocoa Event Loop.

By default, if you enter the snapshot Debugger, once you exit the normal error handling is restored. Note that the automatic
restoration does not happen if you do not enter the snapshot Debugger. The Restore normal error processing when
snapshot debugger exits button allows you to override this default. You should not unset the button unlessit isrealy
needed.

Note: in some cases there will be arestart which can be used to block the repeated errors. The most common exampleis
errorsinside a display-callback, which will include arestart that removes the display-callback. If thereissuch arestart, itis
better to use it than setting the Cocoa Event Loop error handling.

10.11 Handling of Cocoa Event Loop hanging

This section appliesto LispWorks for Macintosh only.

The Cocoa GUI is handled in one process (the "Cocoa Event Loop™) and therefore code that makes this process wait (for
examplenp: process-wai t, cl : sl eep, np: nai | box- r ead) causes the entire GUI to hang. In general, such functions
should not be used on the Cocoa Event L oop (which includes callbacks), unlessthe wait is very short.

The situation is especialy bad if the Cocoa Event Loop iswaiting for another process, and then that other process gets an
error. Inthis case, the other process will try to display a notifier window, and wait for the Cocoa Event Loop to do it, and
thereis a deadlock.

To avoid this problem, the LispWorks IDE has a mechanism that uses atimer and checks for just hanging. The mechanism
checks, and if it looks like the main process hangs, it interruptsit. That causes a notifier window to appear, the GUI to
update, and you can then check what went wrong.

In general, you should fix your code to avoid hanging of the Cocoa Event L oop.
This mechanismisin force only in the LispWorks IDE. Delivered applications need to avoid such hanging.

The mechanism is controlled by two parameters.

122

http://www.lispworks.com/documentation/HyperSpec/Body/f_sleep.htm

10 The Debugger Tool

Notifier break interval

If anotifier triesto display and the Cocoa Event Loop did not respond in thisinterval, the Cocoa
Event Loop isinterrupted. That causes two notifiersto appear: first anotifier for the Cocoa
Event Loop stating that it was interrupted because it hangs and there was an error on another
process, and then the notifier that initially tried to display. You can then deal with the situation.

Check interval The check to determine the above happens each check interval.

10.12 Errors in CAPI display callbacks

Errorsin CAPI display callbacks are problematic for the Debugger tool, because they can be invoked repeatedly. In order to
handle this situation, the display of a CAPI pane where an error occurs in a display-callback (a "broken" pane) is normally
disabled until the Debugger tool exits. Therefore while debugging such errors some panes will not be displayed correctly.

Thisissue can a so occur with focus related callbacks, such as editing-callback in capi : t ext - i nput - pane.

If it is not easy to fix the problem, exiting the Debugger tool alows the error to happen again. To prevent this, in some cases
there is arestart to disable the display of the broken pane permanently. Once this happens, the pane is not displayed correctly.

Once you fix the error, you can restore the display by capi : pane-r est or e- di spl ay, or by finding it in the Window
Browser tool, and selecting the menu command Windows > Enable Display.

123

11 The Tracer

11.1 Introduction

The Tracer tool is adebugging aid which gives you an interface to the LispWorkst r ace facilities. These allow you to follow
the execution of particular functions and help you identify where errors occur during execution.

To create a Tracer, choose Works > Tools > Tracer or click : in the Podium. Alternatively, atracer can be created or
displayed from within many other tools by choosing the command Trace > Show in Tracer in any menu whose commands
operate on a traceable symbol.

The Tracer has three views:
» The Trace State view allows you to trace and untrace functions and change trace options for each function.

» The Output Data view records all tracing eventsin atree structure and allows you to examine the arguments and results
of each function call.

e The Output Text view shows al tracing eventsin textual format.

11.2 Tracing and Untracing functions

The Trace State view has a Trace pane where you can enter afunction name. Press Ret ur n or click the + button to trace that
function.

The Traced Functions pane shows the list of functions that are currently traced. When some functions are selected, the
Function menu contains the standard commands described in 3.8 Perfor ming oper ations on selected objects. Aswith other
tools, choose Edit > Select All and Edit > Deselect All to select and deselect all the functions listed in the Traced Functions
area

The Selected Options area shows the trace options for a function selected in the Traced Functions pane. The trace options
alow you to restrict or expand upon the information printed during atrace and can be modified by double-clicking on the
item in the Traced Functions pane which raises the Trace Options dialog. For information about the trace options, see the
section "Tracing options" in the LispWorks® User Guide and Reference Manual. Note that the options only apply to the first
selected function. Each traced function has its own, independent, set of options.

The Tracing Enabled button can be used to turn all tracing off, while retaining the tracing state, and switch it back on again.
The Untrace button untraces the functions selected in the Traced Functions pane.
The Untrace All button untraces all functions.

In addition, the Tracer tool will track changes to the set of traced functions that are made from other tools, for example calls
tothe macrost r ace and unt r ace or the Trace submenu described in 3.10 Tracing symbols from tools.

11.2.1 Tracing methods

You can trace methods (primary and auxiliary) within a generic function by entering the method dspec. For example, enter:

(method my-function :before (integer))

124

http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm

11 The Tracer

in the Trace pane to trace the : bef or e method of the generic function ny- f unct i on that specializes on the classi nt eger .

11.3 Examining the output of tracing

When you call afunction that istraced, LispWorks collects information about the arguments it was called with and the values
that it returned. Thisinformation is printed to the trace output stream, which might be the Listener or the Background
Output. In addition, if a Tracer tool is on the screen, the information is shown in its Output Text view and collected in its
Output Dataview in atree format.

11.3.1 The Output Data view
Each call isanodein thetree with a X icon. Double-click on it to show the source of that function, if available, in the Editor.
A call node has several kinds of subnode:

» The subnode with a £ icon shows the arguments passed to the function. Double-click on it to show the argumentsin the
Inspector. Expanding this node shows each argument with its name (if known) as a subnode with ayellow < icon.
Double-clicking on one of the arguments shows that argument in the Inspector.

* The subnode with a € icon shows the value or values returned from the function. Double-click on it to show the values
in the Inspector. Expanding this node shows each value as a subnode with a < icon. Double-clicking on one of the
values shows that value in the Inspector.

* Any subnodes with a X icon show calls to traced functions within the parent function.

» Subnodes marked with a @ represent folded data. These are older calls which are hidden automatically to reduce clutter.
Expand this node to reveal the folder data.

* A subnode with a 4 icon represents an uncaught throw (control transfer) along with the catch tag. Expanding this node
shows each thrown value as a subnode with a < icon.

You can collapse the tree by clicking on the *. toolbar button.
You can clear the trace output data from the display by clicking on the ¥: toolbar button.

You can restore the last cleared output data by clicking on the & toolbar button.

11.3.2 The Output Text view

This simply displays the textual trace outpuit.

11.4 Example
This section shows an exampl e of tracing two functions and examining the output.
Define the following functions:

(defun foo (x y) (bar y x))

(defun bar (x y) (values (vector x y) (list y x)))

in aListener and start the Tracer tool. The trace these functions by entering f oo into the Trace pane of the Tracer and
pressing Ret ur n or clicking the + button. Notice that the symbol nhame appearsin the Traced Functions: area.

Do the same for bar .

125

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm

11 The Tracer

For longer function names, you might find it useful to type just afew characters and then press Up or Down to invoke in-place
completion.

The Trace State view showing bar and f oo

Tracer 1

Works File Edit Miew Function WValues Help

RN EER K

Trace State | Output Data | Output Text
Trace: v X

ST

Tracing Enabled | Untrace || Untrace All Collect Trace Output

Traced Functions:
BAR
FOO

|Selected options:

Then call:
(foo 100 200)
in the Listener. You will see output something like this printed in the Listener.

CL-USER 1 > foo 100 200

0 FOO > ...
>> X : 100
>> Y : 200
1 BAR > ...
>> X : 200
>> Y : 100
1 BAR< ...

<< VALUE-0 : #(200 100)
<< VALUE-1 : (100 200)
0 FOO < ...
<< VALUE-0 : #(200 100)
<< VALUE-1 : (100 200)
#(200 100)
(100 200)

CL-USER 2 >

Note: the format of the output is affected by the value of *t r ace- ver bose*.

Now switch to the Output Text view of the Tracer and you will similar output.

126

11 The Tracer

The Output Text view

- | X
Works File Edit Wiew Function Values Help

WS EER X4

Trace State |Output Data | Output Text

Tt

0 FOO = ... -
> X @ 100
>» Y @ 200
-
1 BAR > ... =
»> X @ 200
=»> ¥ : 100
1 BAR < ...

<< VALUE-O : #(200 100)
<< VALUE-1 : (100 200)
0 FOD < ...
<< VALUE-O : #(200 100)
<< VALUE-1 : (100 200)

b 2
Now switch to the Output Data view of the Tracer, which will looks like this:
The Output Data view
Tracer 1
Works File Edit View Fupction Yalues Help
L "
B/ DO X9
Trace State | Output Data Cuter call
= Called FOO
[& Arguments 100 200 Arguments
by Foo
= A Called BAR
B # Arguments 200 100 Inner eall
b % Values #2200 100) (100 200) tor baz
o Values #200 100) (100 200) Values
returned by
foo

127

11 The Tracer

The node that is labeled Arguments 100 200 contains the arguments to the function f oo. Double-click on this node to show
those arguments in an | nspector.

The first node that is labeled Values #(200 100) (100 200) contains the values returned by bar . Expand this node to reveal the
two values. Double-click on one of the values nodes to inspect it. You can also see that these values were in turn returned by
f 00, as shown by the second node that is labeled Values #(200 100) (100 200).

128

12 The Editor

The environment has atext editor which is designed specifically to make writing Lisp source code easier. By default it
emulates the GNU Emacstext editor, and you should refer to the Editor User Guide supplied with your software, for afull
description of the extensive range of functions and commands available. It can also emulate a KDE/Gnome style text editor.

The Editor features a comprehensive set of menus, aswell as a number of different views, and itsinterface is consistent with
the other toolsin the environment. This chapter gives a complete description of these aspects of the Editor, aswell as giving
you agenera overview of how the Editor isused. If you have not used Emacs before, this chapter tellsyou all you need to
know to get started.

The Editor isintegrated with the other tools and offers a wide range of operations. The most commonly used of these can
accessed using menu commands. The full range of editor commands is accessed viathe keyboard commands described in
more detail in the Editor User Guide. These operations range from simple tasks such as navigating around afile, to more
complex actions which have been specifically designed to ease the task of writing Lisp code.

By becoming familiar with the menu commands available, you can learn to use the Editor effectively in avery short space of
time, before moving on to more advanced operations.

Like many other tools, the Editor offers a number of different views, which you can switch between using the tabs at the top
of the Editor window. Unlike other tools, one view in particular is used more often than any other.

» The Text view isthe most commonly used view in the Editor. Thisletsyou read and edit text files which are stored in
your filesystem.

» The Output view shows output messages. Compiler messages are highlighted and you can easily locate the source code
that generated them.

* You can edit many different files at once in the same Editor. The Buffers view provides a quick way of navigating
between different files that you have open.

» The Definitions view is a convenient way of seeing the classes, functions, macros, variables and so on that are defined in
the current file.

* Filesmay contain many definitions. The Find Definitions view lets you search for particular definitions of interest across
many files.

You can create an Editor using any of the following methods:
» Choose Tools > Editor. Notice that you are not actually editing afile immediately when you create an Editor like this.
* Choose File > Open..., or click on .2 in the toolbar, and choose a filename in the dialog that appears.
» Choose File > Recent Files and choose a filename from the submenu that appears.

» Make the Listener the active window, and pressCt r | +X Ct r| +F. Type in the name of afile that you want to edit. If the
fileis not in the current directory, enter the full pathname. This invokes the Wfind File editor command.

* Choose the command Find Source (available on various menus, for example Frame in the Debugger tool), or click on &
or & to display source code in an Editor tool.

» Usethe keyboard accelerator described in 3.1.5 Displaying tools using the keyboard.

Note: this chapter assumes you are using the default Emacs emulation. Thus one way to open afile is with the keystrokes
Ctrl+X Cirl+F asdescribed above. If you use KDE/Gnome keys, you would use instead the keystroke Ct r | +0O.

129

12 The Editor

You can aways discover which key to use for a particular editor command, or conversely which command isinvoked by a
particular key. See 12.14 Help with editing for details.

12.1 Displaying and editing files

The Text view is the default view in the Editor, and is the one which you will become most familiar with. In thisview, a
buffer containing the text of the current file is displayed, and you can move around it and change its contents as you wish,
then save it back to the original file (assuming that you have permission to write to it). The Text view is automatically
displayed when you first invoked the Editor, and you can click on the Text tab to switch back to it from any other view. Text
view in the Editor below shows an Editor in the Text view with afile open.

Text view in the Editor

Editor 1 - editor.lisp

Works File Edit WView Buffers Definitions Expression History Help

D€ 9 @0y 2®

Text |Output | Buffers | Definitions | Changed Definitions | Find Definitions
(in-package)

{defun fact (n)
(if (zerop n)
1
(* n (fact (1- n))))}

LATIN-1 — editor.lisp {CL-USER} (Lisp) 0-7 [7] famd/lwfs1-cam/u/ldisk/sp/lispsrc

The Text view has three areas, described bel ow.

12.1.1 The toolbar

The Editor toolbar offers easy access to commands which operate on source code. In the Text view it allows you to set
breakpoints, and macroexpand, compile or evaluate code.

The Editor toolbar also contains the standard history toolbar. Thisisenabled in every view of the Editor tool.

12.1.2 The editor window

The editor window is the main part of the Editor. The text of the current fileis shown in thisarea. A block cursor denotes the
current position in the filesin Emacs emulation. In KDE/Gnome editor emulation, a vertical line cursor appearsin the active
editor window. Text is entered into the file at this position when you type or paste.

To move the cursor to a particular point in the file, you can use any combination of the following methods:
» Position the cursor by moving the mouse pointer and selecting the point at which you want to place the cursor.
« If thefileistoo largeto display all of it in the editor window, use the scroll bars to move up and down the file.

130

12 The Editor

» Use any of the numerous keyboard commands that are available for navigating within afile.

If you are unfamiliar with the Editor, you can use the first two methods to begin with. Asyou become more familiar, you will
find it is often quicker to use the keyboard commands described in the Editor User Guide. Some of the most basic
commands are also described in this chapter, in 12.8 Basic Editor commands.

12.1.3 The echo area

Underneath the editor window is an echo area, identical to the echo areain the other tools. Thisisused by the Editor to
display status messages, and to request more information from you when necessary. The echo areais contained in every view
in the Editor.

Whenever you invoke a command which requires further input (for instance, if you search afile for a piece of text, in which
case you need to specify the text you want to search for), you are prompted for that input in the echo area. Type any
information that is needed by the Editor, and the characters you type are displayed ("echoed") in the echo area.

For many commands, you can save time by using completion. When you have partially specified input in the echo area, you
can press akey (usualy Tab, ? or Space, depending on the command) and the Editor attempts to complete what you have
typed. If it cannot complete your partial input uniquely, awindow appears which lists all the possible aternatives and allows
you to select the desired completion. See 3.14 Completion for detailed instructions.

For example, suppose you have three filesin the current directory, t est 1. | i sp,test2.1ispandtest 3. 1i sp, and you
want to edit t est 2. 1 i sp using keyboard commands. TypeCtrl +X Ctrl +F, thentypet est and press Tab. A list appears
which shows all threefiles. To editt est 2. | i sp, double-click on theitem marked t est 2. | i sp inthislist. For longer lists,
the completion GUI helps you to quickly reduce the choice. See 3.14 Completion for details.

To see when completion is appropriate and when it is not, experiment by pressing the Tab key when typing in the echo area.
Asarule, if there are afinite number of things you could meaningfully enter, then completion is appropriate. Thus, when
opening afile already on disk, completion is appropriate (there is afinite number of filesin the current directory). When
specifying a string to search for, however, completion is not appropriate (you could enter any string).

12.1.4 Using keyboard commands

A full description of the keyboard commands available in the Editor is beyond the scope of this manual, and you are advised
to study the Editor User Guide to gain afull appreciation of the capabilities of the Editor. However, of necessity, certain
basic keyboard commands are discussed in this chapter. See 12.8 Basic Editor commands of this manual for a brief
introduction to some of the most important ones. The menu commands availabl e are described throughout the rest of this
chapter.

Aswith other keyboard commands used in the environment, the keyboard commands used in the Editor are invoked by using
acombination of the modifier keys Cont r ol , Shi ft, Escape, Al t and Conmand (not al of these are available on each
platform), in conjunction with ordinary keys. Some of the commands available perform the same, or asimilar task as a menu
command.

Each keyboard command in the editor is actually a shortcut for an extended editor command. You can invoke any extended
command by typing its command namein full, preceded by the keyboard command Al t +X. Thus, to invoke the extended
command Visit TagsFile, type Al t +X visit tags fil e followed by Ret ur n. Caseisnot significant in these commands,
and completion (described in 3.14 Completion) may be used to avoid the need to type long command names out in full.

This method is often useful if you are not certain what the keyboard shortcut is, and there are many extended commands
which do not have keyboard shortcuts at all.

Many of the keyboard commands described in this chapter and in the Editor User Guide also work in the Listener. Feel free
to experiment in the Listener with any of the keyboard commands that are described.

131

12 The Editor

12.2 Displaying output messages in the Editor

Aswith several other tools, the Editor provides an Output view which can be used to examine any output messages which
have been generated by the environment. Click on the Output tab to switch to thisview. See 21 The Output Browser, for
more information about this view.

12.3 Displaying and swapping between buffers

The contents of the editor window is the buffer. Technically speaking, when you edit afile, for example by File > Open..., its
contents are copied into a buffer which is then displayed in the window. You actually edit the contents of the buffer, and
never the file. When you save the buffer, for example by File > Save, its contents are copied back to the actua file on disk.
Working in this way ensures that there is always a copy of thefile on disk - if you make amistake, or if your computer
crashes, the last saved version of the file is always on disk, ensuring that you do not lose it completely.

Because of this distinction, the term buffer is used throughout, when referring to the text in the window.

An Editor can only have one editor window, although there can be many buffers open at once. This means that you can edit
more than one file at once, although only one buffer can be displayed at atime in the window - any others remain hidden.

When you close a buffer, for example with the menu command File > Close or thekey Ct r | +X K, the buffer is removed.
Thisisdifferent to the command Works > Exit > Window which closes the window and does not affect the buffer.

The diagram below shows the distinctions between the window, buffers and files on disk.

Distinctions between the window, buffers, and files on disk

Bdior Window
.l"f W ~,
! / ! .,
| / |
! i o 4
l ’ 1 Bullers

:ﬁ:-’— A i; - ,;.:‘I A A= 7 Files on disk

The Buffersview allows you to display alist of all the buffersthat are currently open in the Editor, and allows you to navigate
between them. Click on the Buffers tab to switch to thisview, or pressCtr | +X Ctr | +B. The Editor appears as shown in
Listing buffersin the Editor below.

132

12 The Editor

Listing buffersin the Editor

Editor 1 - editor.lisp

Works File Edit View Buffers Definitions Expression History Help

R aar X '3

Text Definitions | Changed Definitions | Find Definitions
Filter X Matches 6

Attributes | Name Mode Size | Pathna

*Messages Buffer” Fundamental 1266 NIL

CAPI editor-pane 4 Fundamental 11 NIL
editor.lisp 80 Jamd/lw

frames-and-varables-in-debugger-tree. lisp Lisp 304 Jamd/l
Main Fundamental 0 NIL

output-browser-conditions.lisp Lisp 821 famd/l

The Buffers view has two areas, described below.

12.3.1 Filter area

You can use this area to restrict the number of buffers displayed in the Buffers area. For example you could display just the
Lisp sourcefiles (that is, those with filetypel i sp) by entering . | i sp as shown in Filtering the bufferslist in the Editor.

133

12 The Editor

Filtering the bufferslist in the Editor

Editor 1 - editor.lisp

Works File Edit View Buffers Definitions Expression History Help

Tt

Text | Output | Buffers | Definitions | Changed Definitions | Find Definitions

Filter+ | .lisp > Matches 3

Attributes | Name Maode | Size | Pathname

editor.lisp Lisp 90 /amd/lwfs1-car

- frames-and-varables-in-debugger-tree. lisp Lisp 304 famd/lwfs1l-car

- output-browser-conditions.lisp Lisp 821 famd/lwfs1l-car

& e ¥

You can filter by regular expression matching, and you can exclude matches and make the filtering case-insensitive. See 3.12
Filtering information for the details.

12.3.2 Buffers area

Each item in the Buffers area list represents an editor buffer. Properties of the buffer such asits size (in bytes) and its mode
are displayed. Seethe Editor User Guide for information about editor modes.

Double-click on any buffer to display it in the Editor's Text view.

Buffers selected in the Buffers area can be operated on by commands in the Buffers menu, which is also available as the
context menu. The associated files can be operated on by commands in the File menu. For example, to save multiple buffers,
select them the Buffers area and choose File > Save. See 12.13 Using L isp-specific commands for more details.

12.3.3 Editor tool solely as buffers list
You can use a particular Editor tool solely as abufferslist.

To do this, set an Editor tool to be non-reusable by switching off the option Works > Customize > Reusable. Then select the
Buffers tabor pressCtrl +X Ctrl +B.

This Editor tool will continue to display the buffers list and will not be re-used by operations which want to display a buffer,
or list definitions, and so on. Other Editor tools will be used, and created as necessary, for those operations.

Note: You can also set an option to display a bufferslist (like a cut-down version of the Buffers view) in the Text view. See
12.7.2.2 Bufferslist option.

134

12 The Editor

12.4 Displaying Common Lisp definitions

The Definitions view lists all the Common Lisp definitions which can be found in the current buffer. Open afile containing
several defining forms, such as the Othello game examplein exanpl es/ capi / appl i cati ons/ ot hel | 0. | i sp. and then
click on the Definitions tab. The Editor appears as shown in Examining Common Lisp definitionsin the Editor below.

Examining Common Lisp definitionsin the Editor

Editor 1 - othello.lisp

Works File Edit View Euffers Definitions Expression History Help

% iE::::"'. ;.

Text | Output | Buffers | Definitions | Changed Definitions | Find Definitions

Filter + > Matches 61
(DEFMETHOD (SETF OTHELLO-SQUARE-PIECE) :AFTER (T OTHELLO-5Q |=
(DEFVAR *ALGORITHMS")

(DEFVAR *OTHELLO-DIRECTIONS®)

(DEFVAR *PLAY-DELAY")

ALGORITHM-FOR-PLAYER

ALL-BUT-NEXT-TO-UNTAKEN-CORNER-MOVES |E|
n | [*]

The Definitions view has two areas, described bel ow.

12.4.1 Filter box

You can use this area to restrict the number of definitions displayed in the definitions area. See 3.12 Filtering infor mation
for details about how to use the Filter box in atool.

12.4.2 Definitions area

Double-click on any definition in this areato display its source code in the Editor's Text view. Definitions selected in this area
can be operated on using commands in the Editor's Definitions menu, which is also available as the context menu. See
12.13.10 Other facilities for complete details of the commands available.

12.5 Changed definitions

The Changed Definitions view alows you to see which definitions have been edited in the current session.

Edit some of the definitions in the Othello game example in exanpl es/ capi / appl i cati ons/ ot hel | 0. i sp and then
click on the Changed Definitions tab. The Editor appears as shown in The Changed Definitionsview in the Editor below.

135

12 The Editor

The Changed Definitions view in the Editor

Editor 1 - othello.lisp

Works File Edit View Euffers Definitions Expression History Help

L

Tt

Text | Output | Buffers | Definitions | Changed Definitions |Find Definitions

|Show definitions changed since: | First Edit v

Filter + > Matches 5

(DEFVAR "PLAY-DELAY™)
(DEFCLASS OTHELLO-SQUAR)
(COLOR:DEFINE-COLOR-ALIAS :OTHELLO-5QUARE-BACKGROUND)

FLAY-MOVE-FOR-PLAYER

REMOVE-PLAY-TIMER

Notice that the Changed Definitions view is similar to the Definitions view. The Editor's Definitions menu, and the filter
box, can be used on definitions listed here in the same way as in the Definitions view.

12.5.1 Setting the reference point for changed definitions

The Changed Definitions view has an additional arealabelled Show definitions changed since:. Thisalows you to change
the reference point against which the current buffer is compared when computing the changes.

The reference point can be:

First Edit The state of the buffer just before you first edited it in the current LispWorks session. Thisisthe
initial reference point.

Last Save The state of the buffer when you last saved it to file.

Last Compile The state of the buffer when you last compiled it.

Select from the Show definitions changed since: popup list to change the reference point.

136

12 The Editor

Setting the reference point in the Changed Definitions view.

Editor 1 - othello.lisp
Works File Edit View Euffers Definitions Expression History Help

Text Definitions | Changed Definitions | Find Definitions

Show definitions changed since: | FEirst Edit

Filter + Last Save > Matches 5

(DEFVAR "PLAY-DELAY™) | Last Compile

(DEFCLASS OTHELLO-SQUAR)
(COLOR:DEFINE-COLOR-ALIAS :OTHELLO-5QUARE-BACKGROUND)
PLAY-MOVE-FOR-PLAYER

REMOVE-PLAY-TIMER

When you alter the reference point, the list of changed definitions is recomputed.

Thelist of changed definitions is computed using the editor command Buffer Changed Definitions. See the Editor User
Guide for more information about this and related commands.

12.6 Finding definitions

Use the Find Definitions view to locate definitions recorded by the system with a given name. Firstly click on & to ensure
you have compiled the buffer displaying the Othello example. Then enter the name of the definition you are searching for in
the name box and press Ret ur n or click on +* to display alist of matches together with their locations. Double-click on a
match to display the source.

137

12 The Editor

Displaying matches in the Find Definitions view

Editor 1 - othello.lisp

Works File Edit View Euffers Definitions Expression History Help

¢ v v
Text | Output | Buffers | Definitions | Changed Definitions | Find Definitions
IName: CHOOSE-MOVE-FOR-PLAYER v X
Filter + > Matches 8

” Definition

(DEFGENERIC CHOOSE-MOVE-FOR-PLAYER)

(METHOD CHOOSE-MOVE-FOR-PLAYER ((EQL MINIMIZE-OPPONENTS-C
(METHOD CHOOSE-MOVE-FOR-PLAYER ((EQL LEAST-PIECES-AWARE-O
(METHOD CHOOSE-MOVE-FOR-PLAYER ((EQL MOST-PIECES-AWARE-OF [+]
« | 2]

8 definitions matching CHOOSE-MOVE-FOR-FLAYER

In addition, after using the editor command Find Sour ce (bound to Al t +.) or other source location commands, you can
invoke the Find Definitions view to display a complete list of the matches with the editor command Al t +X View Source
Sear ch.

Further, the option Use Find Definitions list for more items than: controls automatic use of thisview, as described in 3.2.1.5
Automatic use of Find Definitions view.

12.7 Setting Editor preferences

You can configure several aspects of the Editor tool, including:
* How items are listed in Buffers and Definitions views.
» Whether alist of buffersis displayed in the Text view.
» Whether the Editor toolbar is displayed.

These editor-specific options are described in 12.7.2 Controlling options specific to the Editor.

12.7.1 Controlling other aspects of the Editor

Other configuration options affect the Editor but also apply to other toolsin the LispWorks IDE which are based on
capi : edi t or - pane. These options control:

» The choice of Emacs or KDE/Gnhome editor key input.

138

12 The Editor

» The cursor style and blink rate.

The font.

The text styles used for selected text and Lisp syntax coloring.

» Automatic use of the Find Definitions view by the source |ocation commands.

The default encodings used when opening and saving files.
» Whether parentheses are colored in Lisp code.

You set these options viaWorks > Tools > Preferences... > Environment. These Environment options are described in 3.2
Setting preferences, which you should read for a full appreciation of the options affecting your Editor tools.

12.7.2 Controlling options specific to the Editor
This section describes options affecting only the Editor tool.

To configure these choose Works > Tools > Preferences... and select Editor in the list on the left side of the Preferences
dialog. Thisdisplaysthese optionsin the General tab:

Editor Preferences Generd tab

General |Editor Options

Toolbar

Show Toolbar

Buffer list

[] Display a list of buffers in every Editor window

Sort

() Unsorted
(@ By Name
) By Package
O By Type

Package

CAPI-MOTIF-LIBRARY e .7.??

Show Package Names

Any changes you make are applied and saved for future use when you choose OK to dismiss the Preferences dialog.

139

12 The Editor

12.7.2.1 Controlling toolbar display

You can control whether Editor tools display toolbars such as the source operations and history toolbars by the option Show
Toolbar, asdescribed in 3.1.8 Toolbar configurations.

12.7.2.2 Buffers list option

Control whether Editor windows display alist of buffersin the Text view by the option Display a list of buffers in every
Editor window.

The buffers list facilitates speedy switching between buffers while editing. You can filter the bufferslist in the usual way if
needed.

12.7.2.3 Sorting items in lists

By default, itemsin the buffers and various definitions views are sorted al phabetically according to their name. The options
in the Sort panel in the Editor Preferences allow you to change this, as follows:

Unsorted Leavesitemsin these lists unsorted. For viewswhich list definitions, choosing this option lists
definitions in the order in which they appear in the source code.

By Name Sort according to the item name. Thisisthe default setting.
By Package Sort according to the buffer package or the package of the definition's name.
By Type Sorts items according to the type of the definition, or the attributes of the buffer.

12.7.2.4 Displaying package information

Aswith many other tools, you can configure the way package names are displayed in the Editor. Because of the nature of this
tool, you need to be alittle more aware of the precise nature of these commands in order to avoid confusion. This
information can be configured using the Package box of the Editor Preferences shown in Editor Preferences General tab.

Click show Package Names to toggle display of package namesin the main areas of the buffers and various definitions
views.

Type a package name into the text field to change the current package in the Editor. You can use completion to reduce typing,
by clicking # which allows you to select from alist of all package names which begin with the partia input you have
entered. See 3.14 Completion for detailed instructions. When you have entered the complete name, click the + button to
confirm the package name.

Note that this does not change the package currently displayed; it merely changes the Editor's notion of "where" it isin the
environment, and thisin turn affects the way symbols are printed in the buffers and various definitions views.

By default, the current package is CL- USER.

12.7.3 Other Editor options

The Editor Options tab contains miscellaneous options for the Editor:

140

12 The Editor

Editor Preferences Editor Optionstab

General| Editor Options

Color Expanded Forms

Expanded Form Case Upcase v

Hidden Comment 5String
Query replace file save buffer @ No () Yes () Confirm

Use Color Expanded Form to control whether expanded forms that are printed by the commands M acr oexpand Form and
Walk Form are colored. Use Expanded Form Case to control the case of these forms.

Use Hidden Comment String to set the replacement string for hidden comments in folded definitions. See 4.14 Definition
folding in the Editor User Guide for an explanation of defintion folding. If Hidden Comment String is empty, then thereis no
replacement string. The style of the replacement string for hidden comment can be changed via Preferences... >
Environment > Styles > Styles Colors And Attributes.

Use the buttons following Query replace file save buffer to control whether the Editor's query replace commands
automatically save the modified editor buffersto disk at the end (Yes), ask you whether to save them (Confirm) or leave them
in memory (No). To save the buffersin memory, see 12.8.1 Opening, saving and printing files.

12.8 Basic Editor commands

This section deals with some of the most basic commands available in the Editor. It describes how to perform simplefile
management, how to move around a buffer, and tells you about some other more general commands available.

12.8.1 Opening, saving and printing files
When you first start up the Editor, the first thing you must do is open afile.

Usefileextensions. | i sp or . | sp for Common Lisp files. The Editor recognizes these extensions and places the buffer in
Lisp mode. Lisp mode provides specia featuresfor usein Lisp editing, as described in 12.13.1 Lisp maode.

You can create a new Lisp buffer by choosing File > New or clicking on |_J. The new file is automatically in Lisp mode, and
the buffer is called "Unnamed". When you try to save this buffer, the Editor prompts you for afilename.

Asyou have already seen, you can open an existing file by choosing File > Open... or clicking on 2. A dialog appears from
which you can select afile to edit.

To save afile, choose File > Save or click on . If thefile has not been saved before (that is, if you created thefile by
choosing File > New and thisis the first time you have saved the file), you are prompted for a directory and afilename.

You can also save afile by using the keyboard command Ct r | +X Ctrl +S.

If you want to make a copy of the file (save the file under a different name) choose File > Save As... and specify a name in the
dialog that appears.

Choose File > Revert to Saved to revert back to the last saved version of the file. This replaces the contents of the current
buffer with the version of that file which was last saved on disk. This command is useful if you make a number of

141

12 The Editor

experimental changes which you want to abandon.
Aswell as saving wholefiles to disk, you can save any part of afileto disk under adifferent filename. To do this:

1. Select aregion of text by clicking and holding down the select mouse button, and dragging the pointer across the region
of text you want to save. Thetext is highlighted as you drag the pointer acrossit.

2. With the text still highlighted, choose File > Save Region As....
3. In the echo area, specify the name of afile to save the selected text to.
Note that the selected text is copied into the new file, rather than moved; it is still available in the original buffer.

To find out more about selecting regions of text, see 12.11.1 Marking theregion. To find out more about operating on
regions of text, see 12.13 Using Lisp-specific commands.

To print the file in the current buffer to your default printer, choose File > Print.... The printer can be changed or configured
by choosing the File > Printer Setup... menu option.

12.8.2 Moving around files

This section describes how you can move the cursor around the buffer. There are a variety of commands, allowing you to
move sideways, up, or down by one character, or by a number of characters.

To move directly to any point in the buffer, position the pointer and click the left mouse button. If necessary, use the scroll
bars to reveal sections of the buffer which are not visible in the window.

You can either use the arrow keys, or the keyboard commands shown below to move the cursor in any direction by one
character.

Moving the cursor by one character

Cirl+P

Cirl+E] 44— —¥ Cirfl+F

T
!

Cirl+N

The keyboard commands below move to the beginning or end of the line, or the top or bottom of the buffer.

Keyboard commands for basic movement within an editor buffer

[} Chrl4E

142

12 The Editor

PressCtrl +V or the Page Down key to scroll down one screenful of text.

PressEsc Vor Al t +VorthePage Up key to scroll up one screenful of text.

You should ensure that you learn the keyboard commands described above, since they make navigation in a buffer much
easier.

12.8.3 Inserting and deleting text

The editor provides a sophisticated range of commands for cutting text which are described in 12.11 Cutting, copying and
pasting using the kill ring. However, the two basic commands for deleting text which you should remember are as follows:

* To erase the previous character, use the Backspace key.
» To erase the next character, use Ct r | +D or the Del et e key if available.

You can insert text into a buffer by typing characters, or by pasting (see 12.11 Cutting, copying and pasting using thekill
ring) or by inserting the contents of afile.

By default, when typing in a buffer, any charactersto the right of the cursor are moved further to theright. If you wish to
overwrite these characters, rather than preserve them, pressthe | nsert key. To return to the default behavior, just press the
I nsert key once more.

To insert the contents of one file into another, choose File > Insert.... A dialog appears so that you can choose afile to insert,
and thisis then inserted into the current buffer, starting from the current position of the cursor.

12.8.4 Using several buffers

As mentioned above, you can have as many buffers open at once as you like. Repeated use of File > Open... or
Ctrl+X Cirl +F just creates extra buffers.

Because the Editor can only display one buffer at atime, you can use either menu commands or keyboard commands to swap
between buffers.

Each item in the History > Items submenu is an open buffer. To swap to a given buffer, choose it from the menu, anditis
displayed in the editor window.

Alternatively, click on the Bufferstab to swap to the Buffers view; see 12.3 Displaying and swapping between buffersfor
details.

To use the keyboard, type Ct r I +X B. You are prompted for the name of the buffer you wish to display. The last buffer you
displayed is chosen by default, and islisted in the echo areain brackets, as shown below.

Sel ect Buffer: (test.lisp):

To swap to the buffer shown in brackets, just press Ret ur n. To swap to another buffer, type in the name of that buffer.
Remember that completion (press Tab) can help.

To close the buffer that is currently displayed, choose File > Close, or in KDE/Gnome editor emulation pressCt r | +W or
typeCtrl +X K.

* If you useFile > Close, the current buffer is closed.

e If youuseCtrl +X K, you can close any buffer, not just the current one. Type a buffer name in the echo area, or press
Ret ur n to close the current buffer.

Note: If you attempt to close any buffer which you have changed but not yet saved, a dialog appears, giving you the
opportunity to cancel the operation.

143

12 The Editor

To save al the buffersin the Editor, choose File > Save All.... A dialog appears which lists each modified buffer. By default,
each buffer is selected, indicating that it isto be saved. If there are any buffers that you do not want to save, deselect them by
clicking on them. The dialog has four buttons, as follows:

* Click Yes to save the selected buffers.
* Click All to save all the listed buffers.
* Click No to save none of the listed buffers.
 Click Cancel to cancel the operation.
Thisdialog is also displayed if there are any unsaved files when you exit the environment.

Sometimes you may find that being able to display only one buffer in the window simply does not give you enough
flexibility. For instance, you may have severa buffers open, and you may want to look at two different buffers at once. Or
you may have avery large buffer, and want to look at the beginning and end of it at the sametime.

You can do any of these by creating a new Editor window. Choose Works > Clone or pressCt r | +X 2 or click the & button.
This creates a copy of your original Editor. The new Editor displays the same buffer as the origina one.

« If you want to look at two different sections of this buffer at once, simply move to the section that you want to look at in
one of the Editors.

* If you want to look at a different buffer, use the History > Items submenu or the keyboard commands described above to
switch buffers.

Changes made to a buffer are automatically reflected across al editor windows - the buffer may be displayed in two different
windows, but thereis till only one buffer. This meansthat it isimpossible to save two different versions of the same file on
disk.

12.9 Other essential commands

Finally, there are three basic functions which you should add to your stock of familiar commands.

12.9.1 Aborting commands

To abort any command which requires you to type information at the echo area, type Ct r | +Gat any point up to where you
would normally press Ret ur n. For instance, if youtypeCtrl +X Ctrl +F inorder to open afile, and then decide againgt it,
type Ct r | +Ginstead of specifying afilename.

If you are using KDE/Gnome editor emulation, press Esc to abort acommand.

12.9.2 Undoing commands

If you choose Edit > Undo the last editor action performed is undone. Successive use of Edit > Undo revokes more actions
(rather than undoing the last Undo command, as is the case with many other editors).

When using Emacs emulation you can undo viathe Emacs keystroke Ct r | +_. Thus, to undo the last five words typed, press
Ctrl+_fivetimes.

If you are using KDE/Gnome editor emulation, press Ct r | +Z to undo.

144

12 The Editor

12.9.3 Repeating commands
To perform the same command n times, type Ct r | +U n followed by the command you want to perform.
For instance, to move forward 10 characters, typeCtr1 +U 10 Ctrl +F.

If you are using KDE/Gnome editor emulation, type Ct r | +* n followed by the command.

12.10 Cutting, copying and pasting using the clipboard

The Editor provides the standard methods of cutting, copying and pasting text using the clipboard. To select aregion of text,
click and hold down the select button, and drag the pointer across the region you want to select: the text is highlighted using
the Region Highlight text style as you select it.

Choose Edit > Select All to select all thetext in the buffer, and Edit > Deselect All if you want to deselect it.
Once you have selected aregion use either of the following commands:
» Choose Edit > Copy to copy the region to the clipboard. This|eaves the selected region unchanged in the editor buffer.

» Choose Edit > Cut to delete the region from the current buffer, and place it in the LispWorks IDE clipboard. This
removes the selected region from the buffer.

Choose Edit > Paste to copy text from the clipboard into the current buffer. The text is placed at the current cursor position.

These commands are also avail able from the context menu in the editor window, which is usually invoked by clicking the
right mouse button.

The Editor aso provides a much more sophisticated system for cutting, copying and pasting text, as described below.

12.11 Cutting, copying and pasting using the kill ring

The Editor provides a sophisticated range of commands for cutting or copying text onto a special kind of clipboard, known as
the kill ring, and then pasting that text back into your Editor later on. There are three stepsin the process, asfollows:

» Marking aregion of text.
 Cutting or copying the text in that region to placeit in the kill ring.

* Pasting the text from the kill ring back into a buffer.

12.11.1 Marking the region

First of all, you need to mark aregion of text in the current buffer which you want to transfer into the kill ring. There are two
ways that you can do this:

» Select the text you want to copy or cut using the mouse. Click and hold down the Select mouse button, and drag the
pointer across the region you want to mark.

The selected text is highlighted using the Region Highlight text style.

» Using keyboard commands.

To mark the region with the keyboard, place the cursor at the beginning of the text you want to mark, press
C r| +Space, and move the cursor to the end of the region you want to mark, using keyboard commands to do so.
Unlike marking with the mouse, this does not highlight the region.

Because the Editor does not highlight the marked region when you use keyboard commands, a useful Emacs key to remember

145

12 The Editor

isCtrl+X Ctrl+X. Pressing this exchanges the current cursor position with the start of the marked region and highlights the
region. PressCtr | +X Ctr| +X asecond timeto return the cursor to its original position and leave the region marked.

PressCtr | +G(or Esc in KDE/Gnome emulation) to remove the highlighting in aregion.

12.11.2 Cutting or copying text
Once you have marked the region, you need to transfer the text to the kill ring by either cutting or copying it.

Cutting text movesit from the current buffer into the kill ring, and deletes it from the current buffer, whereas copying just
places a copy of the text in the kill ring.

» Choose Edit > Cut or pressCt r | +Wto cut the text. In KDE/Gnome emulation the key isCt r | +X.
» Choose Edit > Copy or press Al t +Wto copy the text. In KDE/Ghome emulation thekey isCtr | +C.

Notice that these commands transfer the selected text to the LispWorks IDE clipboard as well asthekill ring. Thisis so that
the selected text can be transferred into other tools, or even into other applications.

The selected text is aso transferred to the system clipboard.

12.11.3 Pasting text

Once you have an item in the kill ring, you can paste it back into a buffer as many times asyou like.

» PressCtrl +Y to paste the text in the kill ring back into the buffer. In KDE/Ghome emulation the key isCt r | +V.

Note that you must use the keyboard command if you wish to paste theitem that isin the kill ring (as opposed to the item
in the LispWorks IDE clipboard).

With many editors you can only do this with one item at atime. The clipboard isonly able to contain oneitem, and so it is
the only one available for pasting back into the text.

However, thekill ring allows you to keep many items. Any of these items can be pasted back into your document at any time.
Every time you cut or copy something, it is added to the kill ring, so you accumulate more itemsin the kill ring as your
SESSi 0N pProgresses.

Consider the following example. In Kill ring with threeitems, thekill ring contains three items; thewordsf act ori al ,
f unct i on and macr o respectively.

Kill ring with three items

.,
EE M

-, -~

f \
| - - |
e |

| l|.r||||-:|::l.-:-|| rrn:l:-:-r:l.ru.ll.I
SN A
n, e e
-
First, theword f act ori al was cut from the current buffer (this would remove it from the buffer). Next, theword f uncti on
was copied (which would leave it in the buffer but add a copy of it to the kill ring), and lastly, the word nmacr o was cut.

Note the concept of the kill ring rotating (thisiswhy it isknown as aring). Every time anew item is added (at thetop, in
these figures), the others are all shunted around in a counter-clockwise direction.

Whenever you perform a paste, the current item in the kill ring - the word macr o in this case - is copied back into the buffer
wherever the cursor currently is. Note that the current itemis not removed from the kill ring.

146

http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm

12 The Editor

Pasting from the kill ring

— P d
I__.--'_ -.___x.:.{_.-' — .-.-__'n.-"'.
P,
l.-"' 'ra-t:'\:-_‘.’:—""

What you have seen so far does exactly the same thing as the standard clipboard. True, al three items have been kept in the
kill ring, but they are of no useif you cannot actually get at them.

The Emacs key to do thisisAl t +Y or Esc Y. Thisrotatesthekill ring in the opposite direction - thus making the previous
item the current one - and pastes it into the buffer in place of theitem just pasted. In Pasting from theKill ring, the word
macr o would be replaced with the word f unct i on.

You can use Al t +Y as many times as you like. For instance, if you actually wanted to paste theword f act ori al inthe
document, pressing Al t +Y would replace the word f unct i on with theword f act ori al .

Rotating the kill ring

= o ?{f' i
| ; ——
e E*E; PN 4

,."H funciian Pa‘"{ S taria \)’j—f_
i]
" _ S 1
it d'._ A macry | | macro| functioh

12/ 2
If you pressed Al t +Y athird time, the kill ring would have rotated completely, and macr o would have been the current item
once again.

Note: You can never use Al t +Y without having used Ct r | +Y immediately beforehand.
Hereisasummary of theway Ct r1 +Y and Al t +Y work:
* Ctrl +Y pastesthe current item in the kill ring into the buffer.

» Al t +Y rotatesthe kill ring back one place, and then pastes the current item into the buffer, replacing the previously
pasted item.

12.12 Searching and replacing text

The Editor provides awide range of facilities to search for and replace text. The examples below introduce you to the basic
principles; please refer to the Editor User Guide for a complete description of the facilities available.

12.12.1 Searching for text

The simplest way of searching for text in a buffer isto use the commands available in the menu bar:
1. Choose Edit > Find... to search for text in the current buffer.
2. Type astring to search for in the dialog that appears.

3. Click the Find Next button.

147

http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_fn.htm

12 The Editor

Use of the Find dialog in the Editor

Q@ Find =/EIX

Find what: |with-slots v

[] From Top Direction
[] wrap Around © Up ® Down

Find Next|| Cancel

Editor 1 - pong.lisp
Works File Edit View Buffers Definitions Expression History

Ex=a= "N ER Rl =k

oot

Text | Qutput | Buffers | Definitions | Changed Definitions | Find Definitions
enabled-function #'(lambda (self) Kad
(with-slots (timer) se =
Lf
(not timer)))))))
(:default-initargs :confirm-destroy-callback 'interfac »
e-dead)) |
=
(defun interface-dead (self)
(DRI (timer) self
(when timer
(mp:unschedule-timer timer)
(setq timer nil)))
t) Il

ILATIN-1 --—- pong.lisp {CL-USER} (Lisp) 87-98 [211] ,fusr,flibfljspWDrksfm:

The cursor is placed immediately after the next occurrence in the current buffer of the string you specified. To search the
buffer from the start, rather than the current point, check From Top and click Find Next. To search upwards, select Up in the
Direction panel and click Find Next. To search again for a string that you previously searched for, select the string from the
Find what list and click Find Next.

To dismiss the Find dialog, click Cancel.

After you have used the Find dialog, you can use Edit > Find Next to find the next occurrence of the last string for which you
searched using the dialog, without raising the dialog again.

148

12 The Editor

12.12.2 Incremental searches

PressCt r | +S to perform an incremental search (in which every character you type further refines the search). A prompt
appears in the echo area, asking you to type a string to search for. Assoon asyou start typing, the search commences.

Consider the following example: open the file exanpl es/ capi / appl i cati ons/ ot hel | 0. 1i sp. You want to search for
the word "defmethod” in the buffer.

1. PressCtrl +S.

The following prompt appearsin the echo area.

| - Sear ch:

2. Typetheletter d.

The prompt in the echo area changes to:
| -Search: d

The cursor moves to the first occurrence of "d" after its current position.
3. Typetheletter e.
The prompt in the echo area changes to:

| -Search: de

The cursor moves to the first occurrence of "de".

4. Typetheletter f .

The prompt in the echo area changes to:
| - Search: def

The cursor moves to the first occurrence of "def".

This continues until you stop typing, or until the Editor failsto find the string you have typed in the current buffer. If at any
point this does occur, the prompt in the echo area changes to reflect this. For instance, if your file contains the word "defun”
but no word beginning "defm", the prompt changes to:

Failing |-Search: defm

as soon as you type m

12.12.3 Replacing text

You can search for text and replace it with other text using the Edit > Replace... menu item. Type a string to search for and a
string to replace it with in the Replace dialog that appears, and click Find Next. The cursor is placed immediately after the
next occurrence in the current buffer of the string you specified. To replace this occurrence and locate the next one, click
Replace. To leave this occurrence asit is and locate the next one, click Find Next. Note that this type of searching is not
incremental.

For instance, assume you wanted to replace every occurrence of "equal" to "equalp”.

1. Choose Edit > Replace....
The Replace dialog appears.
149

12 The Editor

2. Typeequal intheFind what box:
3. Typeequal p inthe Replace with box and click Find Next.
The search will stop at every occurrence of "equal™ after the current cursor position:
* If you want to replace this occurrence, click Replace.
« |f you do not want to replace this occurrence, click Find Next.
« If you want to replace this occurrences and all later occurrences, click Replace All.
« |f you want to abandon the operation altogether, click Cancel.

Note: Both Edit > Find... and Edit > Replace... start searching from the current position in the buffer. When the end of the
buffer is reached, you are asked whether to start again at the beginning. To start from the top of the buffer initially, check the
From Top option before searching.

12.13 Using Lisp-specific commands

One of the main benefits of using the built-in editor is the large number of keyboard and menu commands available which can
work directly on Lisp code. Aswell as editing facilities which work intelligently in a buffer containing Lisp code, there are
easily-accessible commands which load, evaluate or compile, and run your code in any part of a buffer.

Other tools in the LispWorks IDE are integrated with the Editor. So for example you can find the source code definition of an
object being examined in a browser, or set breakpointsin your code, or flag symbolsin editor buffers for specific actions
such as tracing or lambdal list printing.

This section provides an introduction to the Lisp-specific facilities that are available using menu commands. For afull
description of the extended editor commands, please refer to the Editor User Guide.

All of the commands described below are available in the Editor's Buffers, Definitions, and Expression menus. They operate
on the current buffers, definitions, or expression, the choice of which is affected by the current view.

12.13.1 Lisp mode

Some aspects of the LispWorks editor behave differently depending on which "mode" the buffer is using (see the Editor User
Guide for information about editor modes). These include syntax coloring and parenthesis matching. which operate only in
Lisp mode and are described in 3.2.3.2 Setting the text style attributes. Also, certain commands such as those for
indentation operate specially in Lisp mode.

To make a new buffer suitable for Lisp code, you can use the New Buffer command or the File > New menu item, both of
which start the buffer in Lisp mode.

If your Lisp source files are saved with an extension . | i sp or . | sp, then the editor will automatically open theminalLisp
mode buffer.

12.13.2 Current buffers, definitions and expression

In the Text view, the current buffer is the currently visible buffer, and the Buffers menu acts on this. The current expression is
the symbol over which the cursor is positioned, or the one immediately before the cursor if it isnot on asymbol. The current
definition is the definition in which that current symbol occurs. For example:

(defun test ()
(test2))

150

http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equalp.htm

12 The Editor

In the function shown above, if the cursor were placed on the letter "€" of t est 2, the current expression would be the symbol
t est 2, and the current definition would bet est .

In the Buffers view, the current buffer(s) are al the selected buffers. The Definitions and Expression menus are not available.

In the Definitions, Changed Definitions and Find Definitions views, the current definitions are al the selected definitions.
The Buffers and Expression menus are not available.

In each view, the Buffers, Definitions and Expression menu commands act on the current buffer(s), definition(s) or
expression.

12.13.3 Evaluating code

When you are editing Lisp code, you may want to evaluate part or all of the buffer in order to test the code. The easiest way
to do thisis using menu commands, athough there are keyboard commands which allow you to evaluate Lisp in the Editor as
well.

There are three menu commands which allow you to evaluate Lisp in the current buffer.

Choose Buffers > Evaluate to evaluate al the code in the current buffer. If you are in the Buffers view, then this command
evaluates the code in all the selected buffers.

Choose Expression > Evaluate Region t0 evaluate the Lisp code in the current region. You must make sure you have marked
aregion before choosing this command; see 12.11.1 Marking theregion. Whether you use the mouse or keyboard
commands to mark aregion does not matter. If you have afew Lisp formsthat you want to evaluate, but do not want to
evaluate the whole buffer, you should use this command.

Choose Definitions > Evaluate or click @ in the toolbar to evaluate the current definition. In the Text view thisisalittle like
evaluating the marked region, except that only the current definition is evaluated, whereas working with a marked region lets
you evaluate several. Thiscommand is useful if you have a single function in the current buffer which you want to test
without taking the time to evaluate the whole buffer or mark aregion.

In the various definitions views, this command evaluates the code for al the selected definitions.

To load the file associated with the current buffer, choose File > Load. To load multiple files associated with buffers, select
them in the Buffers view and choose File > Load. If thereisnot a current buffer, the menu command File > Load... is
available, which prompts for afile to load.

12.13.4 Compiling code

You can also compile Lisp code in an editor buffer in much the same way that you can evaluate it. Code can be compiled in
memory or to afile.

12.13.4.1 Compiling in memory

Choose Buffers > Compile or click & in the toolbar to compile all the code in the current buffer.
Choose Expression > Compile Region to compile the Lisp code in the current region.

Choose Definitions > Compile or click ® in the toolbar to compile the current definition.

During compilation, the Editor tool temporarily displays compiler output in the Output tab. Once compilation has finished,
you can press Space to display the current buffer once again.

Additionally, if any conditions were signalled during the compilation, you can view these in the Compilation Conditions
Browser by pressing Ret ur n. You can also locate the source code that generated a message via the context menu, as
described in 21.1 Inter active compilation messages.

151

12 The Editor

You can review the output at any time by clicking the Output tab of the Editor.

12.13.4.2 Compiling to a file

To compile the file associated with the current buffer, choose File > Compile. To compile multiple files associated with
buffers, select them in the Buffers view and choose File > Compile. If thereis not a current buffer, the menu command File >
Compile... isavailable, which prompts for afile to compile.

Note: thiscommand calls the Common Lisp function conpi | e-fi | e; it creates the fadl file but does not load it. You can
useFile > Load to later load the fadl.

To compile afile (or files) and load the resulting fadl file(s) with a single command, choose File > Compile and Load. If there
is not a current buffer, the menu command File > Compile and Load... isavailable.

12.13.5 Argument list information

PressCtrl +° to show information about the operator in the current form, in a displayer window on top of the Editor. The
displayer shows the operator and its arguments, and tries to highlight the argument at the cursor position using the style
" Arglist Highlight" .

While the displayer isvisible:
e Ctrl+/ controls whether the documentation string of the operator is also shown.
* Ctrl ++ movesthe displayer up.

e Ctrl +- movesthe displayer down.

12.13.6 Breakpoints

A breakpoint causes execution of Lisp code to stop when it is reached, and the LispWorks IDE displays the stack and the
source code in a Stepper Tool. See 25.6 Breakpoints for information about using breakpoints with the Stepper Tool.

A breakpoint can be at the start, function call or return point of aform.

12.13.6.1 Setting breakpoints
To set abreakpoint, for example at the call to + in one of your functions:
1. Open thefile containing the call in an Editor tool.

2. Ensure the definition isindented. You can use the Lisp mode command Indent Form (Met a+Ct r | +Qin Emacs
emulation).

3. Ensure the definition is compiled.
4. Position the cursor on the symbol +.

5. Choose the menu command Expression > Toggle Breakpoint, or click @ in the Editor toolbar, or run the editor
command Toggle Breakpoint. The symbol + is highlighted red indicating that a breakpoint is set.

When the breakpoint is reached, a Stepper tool isinvoked, allowing you to step through the code, add further breakpoints,
and so on. See 25 The Stepper for more information about the Stepper tool.

152

http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm

12 The Editor

12.13.6.2 Editing breakpoints

To edit the Conditional or Printing properties of a breakpoint, choose the menu command Expression > Edit Breakpoints and
proceed as described in 25.6.4 Editing breakpoints.

To visit the source code where a breakpoint was set, choose the menu command Expression > Edit Breakpoints, select a
breakpoint and press the Goto Source button. This cancels the dialog and then displays the source containing the breakpoint.

12.13.6.3 Removing breakpoints

To remove a breakpoint under the cursor, click @ in thetoolbar. Equivalently choose the menu command Expression >
Toggle Breakpoint or run the editor command Toggle Breakpoint.

Where you wish to remove one or more breakpoints without finding them in the source, choose Expression > Edit
Breakpoints, select a breakpoint or breakpoints in the Breakpoints list, and click Remove.

12.13.6.4 Reloading code with breakpoints
A message like this:

Retain 1 breakpoint fromloaded file...

means that a breakpoint is set in a buffer while you have loaded that buffer's underlying file from disk, for example by menu
commands File > Load or File > Compile And Load. Loading thefile re-evaluates al of its forms, but the IDE does not have a
way to reset the breakpoints in these forms automatically. Therefore it asks you what to do.

Answer Yes to add breakpoints to the newly loaded definitions. Answer No to remove the breakpoints.

12.13.7 Tracing symbols and functions

A wide variety of tracing operations are available in the Buffers, Definitions and Expression menus. The scope of each
operation depends on which menu the command is chosen from.

Choose Trace from either the Buffers, Definitions or Expression menus to display a menu of trace commands that you can
apply to the current region or expression, or the currently selected buffers or definitions, as appropriate. Note that you can
select severa itemsin the buffers and definitions views.

See 3.10 Tracing symbols from tools for full details of the tracing facilities available in the Editor.

12.13.8 Packages

It isimportant to understand how the current package (that is, the value of the Common Lisp variable * package*) is
determined when running Lisp operations such as evaluation or compilation commandsin a buffer. Usually it is obvious:
most Lisp source fileshave asinglei n- package form. The Editor uses the specified package as the current package when
you evaluate or compile code in that buffer, or perform some other operation that depends on the current package.

However it is possible for a source file to contain multiplei n- package forms, or none at all. In this case, the Editor uses a
suitable binding for the current package depending on the location in the buffer, as described below. This means that you do
not have to worry about setting the package explicitly before evaluating part of a buffer, and that operations within a buffer
use the expected current package.

153

http://www.lispworks.com/documentation/HyperSpec/Body/v_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm

12 The Editor

12.13.8.1 The primary package

Each buffer has a package associated with it, known as the primary package. Thisis set when the buffer is created, and is
displayed in the message area at the bottom of the Editor window. The primary package provides a default, used when the
current package cannot be determined by other means.

If the buffer is created by opening afile containing ani n- package form, that package is the primary package. If there are
multiplei n- package forms, the primary package is taken from the first of these forms. If thereisnoi n- package form,
the primary package is CL- USER.

You can set the primary package if needed with the editor command Set Buffer Package. See the Editor User Guide for
details.

12.13.8.2 The current package for Lisp operations

When evaluating or compiling an entire buffer, the Editor usesi n- package forms as they appear in the code. For any code
that precedes thefirst i n- package form, or when thereisnoi n- package form, the code is evaluated or compiled in the
primary package.

When evaluating or compiling aregion of the current buffer (as opposed to al of it), the Editor usesi n- package formsas
they appear in the region. For any code that precedes the first i n- package form of the region, or when thereis no

i n- package formintheregion at al, the Editor searches for the previousi n- package form in the buffer. If thisisfound,
it determines the current package, otherwise the primary package is used.

When evaluating or compiling a definition, and for operations such as symbol completion at the cursor point, the Editor
searches for the previousi n- package formin the buffer. If thisisfound, it determines the current package, otherwise the
primary package is used.

12.13.9 Indentation of forms

The Editor provides facilities for indenting your code to help you seeits structure. These facilities are available only in Lisp
mode. The Emacskey Al t +Ct r | +Qindents the current Lisp form, and the Tab key indents asingle line.

You can customize Lisp mode indentation by using the Defindent command, see the Editor User Guide for details.

See 12.13.1 Lisp mode for more information about Lisp mode.

12.13.10 Other facilities

A number of other Lisp-specific facilities are available using the menus in the Editor.

If the current buffer is associated with afile that is part of a system as defined by def syst em choose File > Browse Parent
System to browse the system it is part of in the System Browser. See 26 The System Browser for more information about
thistool.

Choose Definitions > Undefine... to remove the current definitions from your Lisp image. Similarly, choose Buffers >
Undefine... to remove the definitions in the current buffer or selected buffers. By selecting items in the Buffers view, or the
various definitions views, you can control over the definitions which can be removed with one command. Both of these
commands prompt you for confirmation with a second chance to modify the list of definitions to remove.

Choose Definitions > Generic Function to describe the current definition in a Generic Function Browser. See 15 The
Generic Function Browser for more details.

Standard action commands can be found on the Expression menu, allowing you to perform a number of operations on the
current expression. See 3.8 Performing oper ations on selected objects for full details.

154

http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm

12 The Editor

Choose Expression > Arguments to print the lambda list of the current expression in the echo area, if it isafunction, generic
function or method. Thisis the same as using the Emacs key command Al t +=, except that the current expression is
automatically used.

Choose Expression > Value to display the value of the current expression in the echo area.

Choose Expression > Macroexpand or click & in the toolbar to macroexpand the current form. The macroexpansion is
printed in the Output tab, in the same way that compilation output is shown. Note how an i n- package form containing the
current package is printed with the macroexpansion, meaning that you can preform afurther macroexpansion. Press Space
when the cursor is at the end of the output window to return to the Text tab.

Choose Expression > Walk to recursively macroexpand the current form.

12.14 Help with editing

Two help commands are available which are specific to the Editor and any tools which use editor windows.

Choose Help > Editing > Key to Command and type a key sequence to display a description of the function it is bound to, if
any.

Choose Help > Editing > Command to Key and supply an editor command name to see the key sequenceit is bound to, if any.

155

http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm

13 The Code Coverage Browser

The Code Coverage Browser helps you to work on a large number of source files from which you have collected code
coverage information. See the LispWorks® User Guide and Reference Manual for the steps to generate this data.

Thetool displaysalist of the filesin the data with some code coverage statistics, and allows you to open the filesin the
Editor with or without code coverage coloring.

To facilitate working on many files, the tool alows you to save copies of the datawhich contain only a subset of the files. For
example, you may decide that you have finished with some of the files, save a subset excluding these files and start next time
using this new subset. Another possible use is when ateam works on the data: you can create subsets of the files for each
person to work on.

Thetool also alows you to traverse (examine) al occurrences of a specific state, for example all occurrences of uncovered
code.

13.1 Starting the Code Coverage Browser

To start the tool choose Tools > Code Coverage Browser or click & in the Podium. If the LispWorks image has internal code
coverage data (that is, some files compiled with code coverage were loaded), the tool initially displays this data. You can

load and display saved code coverage data by using Code Coverage > Load Data.... This menu command raises afile dialog,
in which you need to select afile containing code coverage data, which was created by either

hcl : save- current - code- cover age or hcl : save- code- cover age- dat a.

Note: the tool does not merge code coverage data. It displaysthe latest data that was selected.

The Code Coverage Browser retains a history of code coverage datathat it has displayed. You can revisit these using the «
and = toolbar buttons or the History menu (see 3.5 The history list). If you intend to do that be sure to give each code
coverage data a useful name, so you can easily select the one that you want.

The Code Coverage Browser displaying internal data

Code Coverage Browser 1 - Internal

Works File Edit Code Coverage Traverse History Help

acR~, B B e B &

Filter '}(Matches 4

Relative Path | Run Time Number | Bun Time Not Called| Run Time Mot Covered | Bun Time Called
pong.lisp 8 100.0% {8} 100.0% {8} 0.0% {0}
othello.lisp 70 100.0% {70} 100.0% {70} 0.0% {0}

hangman.lisp 12.5% {1} 37.5% {3} B7.5% {7}
balloons.lisp 16 37.5% {6} 56.2% {9} 62.5% {10}

156

13 The Code Coverage Browser

13.2 Displaying a Code Coverage data

The Code Coverage Browser displays the data as alist, where each line corresponds to afile. Each line starts with arelative
path, which is currently alwaysthecl : fi |l e- nanest ri ng of thefile, followed by columns showing statistics about code
coveragein thisfile, and ends with the full cl : t r uenane of thefile asrecorded in the data. You can configure which
columns are actually displayed viaWorks > Tools > Preferences... > Code Coverage Browser > Files List.

The statistics columns are divided into "Run Time" and "All" columns, which correspond to the information returned when
using the keyword : runt i me or : al | when accessing hcl : code- cover age-fil e-stats. Ingeneral "Run Time"
excludes code that is normally executed only at compile time or load time. The numbers in the statistics columns are numbers
of "lambdas" (pieces of code). Seethe entry for hcl : code- cover age-fil e- st at s inthe LispWorks® User Guide and
Reference Manual for more details. By default, only the "Run Time" columns are displayed.

For each of "Run Time" or "All", there are 4 columns:

Number Number of lambdas.

Not Called Number and percentage of lambdas that have never been called.

Not Covered Number and percentage of lambdas that have been called, but not completely covered.
Called Number and percentage of lambdas that have been called.

By default, only the Run Time Not Called and Run Time Not Covered columns are displayed, based on the assumption that
these are the most useful ones.

For columns that display both number and percentage, the number is the number of lambdas, and the percentageisthis
number as a percentage of the total number of lambdas. You can configure which of the number or percentageisthe
"leading" value viaWorks > Tools > Preferences... > Code Coverage Browser > Files List > Sort By, by selecting Percent or
Number. Thisalso affects the sorting. You can also configure it to display only one of the percentage or the number by
deselecting Display Both Percent And Number in the Files List tab.

By default, the tool displays al the filesin the specified code coverage data. You can restrict which files are displayed by
several mechanisms:

» Thelist has a standard filter above it, which alows filtering on the displayed text. Since the default display contains the
truename, this gives you an easy way of filtering by filenames or directories. For example, if you want to see only the
filesindirectory di r - a, just type/ di r - a/ inthefilter. Note that the filter also supports regular expressions. See 3.12
Filtering information for full details of using the standard filter.

» You can explicitly hide files by using the context menu (see 13.3 Code Coverage FilesList Context Menu). Thisis
useful when you are no longer interested in code coverage for a specific source file.

* InWorks > Tools > Preferences... > Code Coverage Browser > Files List, you can select afilter such asRun Time
Uncovered. Only files containing lambdas matching the filter are shown.

13.3 Code Coverage Files List Context Menu

The first itemsin the context menu alow you to open the first selected file, using the Editor tool. There are three waysto
open thefile:

Open With Color Open the file for editing as usual, and add Code Coverage coloring. This corresponds to calling
hcl : edi t or - col or - code- cover age with: for-edi ting t. You canthen edit thefile as
usual.

Open Open the file in the usual way without any code coverage information.

157

http://www.lispworks.com/documentation/HyperSpec/Body/f_namest.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_tn.htm

13 The Code Coverage Browser

Open With Counters Open a specia buffer (with a different name from the filename) with the code of the file, add
code coverage coloring and also counters. This corresponds to calling
hcl : edi t or - col or - code- cover age with: for-edi ti ng nil. Thebuffer is made read-
only initially. Adding counters means that the buffer contains extra characters, and it is therefore
not useful to edit it, though you can make it writable and/or save it if thisis useful. Note that the
buffer name is constructed by appending " - code- cover age" to the filename, and thiswill be
the default filename when you save it. Note that if thisfile is opened again with
:for-editing nil, ether from thetool or other call to
hcl : edi t or - col or - code- cover age, the previous special buffer is automatically deleted (see
hcl : edi t or - col or - code- cover age).

You can configure the coloring viaworks > Tools > Preferences... > Code Coverage Browser > Coloring. The four check
buttons correspond to the : col or - cover ed, : col or - uncover ed, : runti me-onl y and : conment - count er s keyword
argumentsin hcl : edi t or - col or - code- cover age, and setting them sets the default values for these keywords.

By default, opening the file opens the file matching the truename that is recorded in the code coverage data and is displayed
by default in the last column. You can change that by creating pathname mapping, which maps some root pathname to
another one. You do that viaWorks > Tools > Preferences... > Code Coverage Browser > Pathname Mapping. If both of the
Map from: and To: strings are not empty, the tool finds the pathname to use by first computing a relative pathname of
truename relative to the Map From: pathname map-from, and then merging it with the To: pathnameto, that is:

(mer ge- pat hnanes (enough-nanestring truename map-from) to)

The next 4 items in the context menu operate on all of the selected files:

Mark Done Mark the selected files as Done. Marking changes the color in which the line for the fileis
displayed, and can be hidden by Hide Done, but otherwise has no effect.

Mark Not Done Mark the selected files as Not Done.
Hide Selected Hide (remove from the list) the selected files.

The remaining items in the context menu operate on the list of files as awhole:

Hide Done Hide the files that are marked as Done.
Unhide Others Show al the hidden files.
Traverse Implements the traverse operation. See 13.4 Traver se.

13.4 Traverse

Traversing allows you to examine all the occurrences of some state in the currently displayed list of files, starting from the
first selected file. You start traversing choosing an item from the Code Coverage > Traverse menu with the state you want to
traverse. Thismenu is aso available on the context menu.

The first form with the state that you selected is displayed in an Editor. You can traverse to the next such form by using the
editor command Code Cover age Goto Next, which by defaultisboundto Ctrl +X #. You can skip the remaining forms
in the current file by giving a prefix argument to Code Cover age Got o Next , for example by the key sequence

Crl+U Crl +X #.

A message is displayed when there is no further matching forms. If you try again, it restarts the traverse from the beginning.

Forms are displayed in the same way as the Open With Color context menu item. Note that even though code coverageis by
"lambdas" (pieces of code), the traverseis by top level forms. Hence going to the first/next form means going to the first/next
top level form whose compiled code produced alambda that matches the state.

158

13 The Code Coverage Browser

The traverse state is global, and there is only one state at any one time. Starting a new traverse forgets the previous state. The
traverse state is independent of the tool once it started, except that the coloring parameters can be changed by using Works >
Tools > Preferences... > Code Coverage Browser > Coloring.

13.5 Using the internal data

When started, the Code Coverage Browser uses the internal code coverage data (that is, the data for files that have been
loaded with code coverage) if there is such data. You can revert to using this at any time by using the menu command Code
Coverage > Use Internal Data.

The statistics that are displayed when using the internal data are computed once and are not updated as the data changes. |If
more statistics have been collected, update the data using the Refresh toolbar button & or Works > Refresh.

When opening afile from the list, the tool updates from the current counts, and then opens the file, so both the tool and the
coloring correspond to the state at the time you open thefile.

13.6 Creating new Data

You can create (and optionally save) code coverage data containing a subset of the files currently listed by using Code
Coverage > Copy To New Data.... Thismenu command raises a dialog where you enter the name of the new data, select the
criterion for including afile, and specify whether the new data becomes the current data, whether it is added to the history,
and whether it is saved.

The criterion for including files can be Only selected files, Only displayed files, or All files. Thelist of displayed files differs
from thelist of all files when your filter excludes some of them, as described in 13.2 Displaying a Code Cover age data.

Clicking OK creates the new data containing a copy of the information for the included files. The new datais independent of
the old data and does not share any of its structure. Depending on your selections in the dialog, the new data may be made
the current data, added to history and saved. If you selected to save, you are prompted for afilenameto saveit in. The saving
isdone by using hcl : save- code- cover age- dat a.

159

14 The Function Call Browser

14.1 Introduction

The Function Call Browser gives you away to view a user-defined function in the Lisp image together with the functions that
cal it or the functionsit calls.

It has three views.

» The Called By view alows you to examine a graph of the functions which call the function being browsed. Thisisthe
default view.

» The Calls Into view allows you to examine a graph of the functions which are called by the function being browsed.
» The Text view lets you see immediate callers and callees of the browsed function using lists rather than a graph.

To create a Function Call Browser, choose Works > Tools > Function Call Browser or click < inthe Podium. Alternatively,
select afunction in ancther tool, and choose Function Calls from the appropriate actions menu to browse the sel ected
function in the Function Call Browser. Finaly, in an editor executing Al t +X Li st CallersorAlt+X List Callees
calls up a Function Call Browser on the current function.

Note: the cross references between function calls are generated by the compiler, hence you can use the Function Call
Browser only for compiled code. Moreover, the compiler setting to generate cross references must be on when you compile
your code. Switch it on by evaluating:

(toggl e- sour ce-debuggi ng t)

When cross referencing is on, this line appears in the output of the compiler:

Cross referencing is on

14.2 Examining functions using the graph views

There are two graph views in the Function Call Browser. The Called By view isthe default view. The Function Call Browser
appears asin Viewing functionsusing the " Called By" view.

160

14 The Function Call Browser

Viewing functions using the "Called By" view

Function Call Browser 1

Works File Edit Mew Descrption Function History Help

S EUrE RER « -

Function: | NAME-FOR-PLAYER

Show functions from packages: | All 4

Text|Called By |Calls Into

PLAY-SQUARE
a5TART-GAME

®#DISPLAY-CURRENT-SCORE

> NAME-FOR-PLAYER

oDISPLAY-FINAL-SCORE

Function Description >>

In this view, the Function Call Browser has five areas.

14.2.1 Function area

The Function area displays the name of the function being examined, and here you can enter the name of another function to
examine. You can use completion to reduce typing. This allows you to select from alist of all functionsin the current
package whose names begin with the partial input you have entered. Invoke completion by Up, Down or click the “: button.
See 3.14 Completion for detailed instructions. When you have entered the complete function name, click + to confirm your
choice.

14.2.2 Show functions control

The popup list Show functions from packages alows you to restrict the functions displayed based on their package. It
affectsthe display in all views. Below, the current package means the synbol - package of the function currently being
examined in the Function Call Browser. The options are:

All Display all the functions known to the compiler.

Current and Used Display only those functions in the current package or packages on the package use list of the
current package.

Current and Standard Display only those functions in the current package or the standard packages COWON- LI SP,
HCL and LI SPWORKS.

Current Display only functionsin the current package.

161

http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_3.htm

14 The Function Call Browser

14.2.3 Graph area

A graph of al the callers of the function is displayed in agraph in the Called By view. The graph area of the Calls Into view
issimilar, but the graph displayed is of the functions called by the function being browsed.

Note that if source level debugging is off, or the function was not compiled, there is no information to display here. To turn
on source level debugging, call:

(toggl e- sour ce-debugging t)

The generic facilities available to all graph viewsin the LispWorks IDE are available here; see 6 Manipulating Graphs for
details.

14.2.4 Echo area

The echo area of the Function Call Browser is similar to the echo area of the podium. It displays messages concerning the
Function Call Browser.

14.2.5 The function description button

Clicking on Function Description >> changes the view of the Function Call Browser to include more information on the
function being browsed. The browser appears asin The Function Call Browser in function description mode.

162

14 The Function Call Browser

The Function Call Browser in function description mode

Function Call Browser 1

Works File Edit Mew Descrption Function History Help

ERmiR "R Sh R -l =k -,

Function: | CORNER-PIECE-P

Show functions from packages: | All 4

Text|Called By |Calls Into

o .
ALL-CORNER MO\-"ES} CORNER-PIECE-P

SNEXT-TO-CORNER-PIECE-P

Mame: CORNER-PIECE-P
Function: #<Function CORNER-PIECE-P 4140065F84=
Lambda List: (PIECE GAME)
Source Files: fusr/lib64/LispW orks/lib/6-0-0-0fexamples/capi/applications/othellc
1| |

Documentation:

The predicate for whether a square is a corner square.

Function Description <<

Ready.

Two further panes appear. Note that the function description button has now changed to Function Description << and that
clicking on it restores the view of the Function Call Browser.

The extra panes are a function description area, and a documentation area.

14.2.5.1 Function description area

The Function Description area gives a description of the function selected in the main area, or, if nothing is selected, the
current function (as displayed in the Function area). The following items of information are displayed:

Name The name of the function.

Function The function object.

Lambda List The lambda list of the function.

Source Files The source filein which the function is defined, if any.

You can operate on any of the itemsin this area using the commands in the Description menu, which is also available as the

163

14 The Function Call Browser

context menu. This contains the standard actions described in 3.8 Performing operations on selected objects.

14.2.5.2 Documentation area

The Documentation area shows the documentation for the function selected in the main area as returned by the Common Lisp
function docunent at i on. If no function is selected, the documentation for the current function is shown.

14.3 Examining functions using the text view

Click on the Text tab to see atextual display of the callees and callers of afunction. This view has the advantage that both
callees and callers can be seen simultaneousdly. It is very similar to the text view in the Class Browser, as described in 7.1.4
Examining other classes. When in the text view, the Function Call Browser appears as shown in Viewing functions using
thetext view.

Viewing functions using the text view

Function Call Browser 1

Works File Edit Miew Descrption Function History Help

SD% YR DB R

Function: | CORNER-PIECE-P

Show functions from packages: | All hd

Text [Called By |Calls Into
|[Called by: Calls into:

ALL-CORNER-MOVES)

NEXT-TO-CORNER-PIECE-P -
1-

DSPEC:DEF
EQ
SLOT-VALUE

[+] |

2]

The function area, show functions from packages area, function description area and echo area are asin the graph views.

164

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

14 The Function Call Browser

14.3.1 Called By area
The Called By arealists those functions which the current function calls.

To make any function in thislist be the current function, double-click on it.

14.3.2 Calls Into area
The Calls Into arealists those functions which call the current function.

To make any function in this list be the current function, double-click on it.

14.4 Configuring the function call browser

The Function Call Browser can be configured using the preferences dialog. Select Works > Tools > Preferences... or click &
to display the dialog, and select Function Call Browser in the list on the |eft side of the dialog which appears. This displays
these options:

The function call browser preferences

General | Called By Layout | Calls Into Layout

Sort Package
() Unsorted COMMON-LISP-USER v %
@ By Name

Show Package Mames
() By Package
Toolbar

Show Toolbar

14.4.1 Sorting entries

The functions displayed in each tab of the Function Call Browser can be sorted in a number of ways.
Choose By Name to sort entries according to the function name. Thisis the default setting.

Choose By Package to sort functions according to their package.

Choose Unsorted to leave functions unsorted.

14.4.2 Displaying package information
Aswith other tools, you can configure the way package names are displayed in the Function Call Browser.

Choose Show Package Names to turn on and off the display of package namesin the Text, Called By, Calls Into and
Description areas.

See 3.7 Displaying packages for more information about using Show Package Names.

165

14 The Function Call Browser

14.5 Configuring graph displays

The preferences can also be used to configure how the Function Call Browser displays graphical information in the Called By
and Calls Into views. Click onthe Called By Layout tab or the Calls Into Layout tab in the Preferences. Both views perform
the same operations on the relevant Function Call Browser view.

A layout view in the Function Call Browser preferences

General | Called By Layout | Calls Into Layout

Layout Max. Expansion
OlLefttoRight pepth |2 v
(@ Right to Left

Breadth| 40 v
() Top Down

O Bottom Up Plan Mode

[] Rotation

14.5.1 Graph layout settings

The layout radio buttons are used to set the direction in which the graph is displayed. The default setting is Left to Right.

14.5.2 Graph expansion settings

The Max. Expansion settings determine how much of the graph to display. The default depth valueis 2 - this ensures that
only functions that directly call (or are directly called by) are shown in the graph. If this value were set to 3, for example,
then functions that call afunction that calls the function being browsed would also be displayed.

The breadth value has a default value of 40, and sets how many functions are displayed at each level of the graph.

14.5.3 Plan mode settings
The Rotation checkbox determines whether the graph layout can be rotated when in plan mode. By default it is unchecked.

You can enter plan mode when displaying a graph by selecting Enter Plan Mode from the context menu. If rotation is enabled
and the plan is smaller than the graph, you can rotate the plan by holding down the Shi f t key and moving the mouse left or
right.

14.6 Performing operations on functions

A number of operations can be performed on functions selected in the Text area (when in the Text view) or in the Called By
or Calls Into areas, or on the current function (when there are no functions selected el sawhere).

The Function menu gives you access to the standard actions described in 3.8 Perfor ming oper ations on selected objects.

The Function > Trace submenu gives you the ability to trace and untrace the functions selected in the Text, Called By and
Calls Into views.

166

15 The Generic Function Browser

The Generic Function Browser allows you to examine the generic functions in the Lisp image, together with any methods that
have been defined on them. It has two views which alow you to browse different types of information:

» The methods view, which shows you a description of the generic function and the methods defined on it. Thisisthe
default view.

» The method combinations view, which lets you examine the list of method combinations for any generic function.
To create a Generic Function Browser, choose Works > Tools > Generic Function Browser or click £ in the Podium.

Other ways to create a Generic Function Browser are:

* If the current object in atool is a generic function or method, choose the Generic Function standard action command
from the appropriate menu.

» Usethe editor command Al t +X Describe Generic Function.

« If thereisamethod on the debugger stack, you can display the Method Combination via the Frame menu of a Debugger
tool.

15.1 Examining information about methods

When the Generic Function Browser isfirst displayed, the default view is the methods view. You can aso choose it explicitly
by clicking on the Methods tab of the Generic Function Browser.

The methods view is shown in Generic function browser below.

167

15 The Generic Function Browser

Generic function browser

Generic Function Browser 1

Works File Edit Mew Descrption Methods Function History Help

5 \RAR VR Rl =k

Function: CAPI:DRAW-PINEOARD-OBJECT

Tt

Methods | Method Combinations

Filter » > Matches 16

(METHOD DRAW-PINEOARD-OB JECT (GRAFPH-PANE EXPANDABLE-ITE

D

(METHOD DRAW-PINEOARD-OB JECT (T ARROW-PINEOARD-OB JECT))
(METHOD DRAW-PINBEOARD-OE JECT (T CAPI-GENERIC-LIST-VIEW-ITE
(METHOD DRAW-PINBEOARD-OB JECT :AROUND (T DOUELE-HEADED-AF
(METHOD DRAW-PINEOARD-OBE JECT (T DRAWN-FINEOARD-OE JECT))

< | O

v

Description:
Method: #<STANDARD-METHOD DRAW-PINBOARD-OBJECT NIL (T AR

Lambda List: (OUTPUT-PANE SELF &KEY X Y ‘WIDTH :HEIGHT &ALLOW-O|
Combination: STANDARD

4 b .

Ready.

The methods view has four main sections, described bel ow.

15.1.1 Function area

The Function: box shows the name of the generic function you are examining. To browse a generic function, you can enter
its name directly into the Function: box. You can also paste the generic function from another tool in one of two ways:

» Choose Edit > Copy or the standard action command Copy in another tool to copy the generic function to the clipboard,
then choose Edit > Paste in the Generic Function Browser to transfer the generic function in.

» Choose the standard action command Generic Function in the other tool to display the generic function in the Generic
Function Browser in one action.

When entering the name of a function, you can use completion to reduce typing. This allowsyou to select from alist of all
generic functions whose names are accessible in the current package and begin with the partial input you have entered.
Invoke completion by pressing Up or Down, or by clicking the - button. The methods are listed immediately. See 3.14
Completion for more information about completion. If you enter the generic function name directly without using
completion, click +* to confirm the name.

168

15 The Generic Function Browser

Note: You can use Edit > Paste to paste in ageneric function, even if the LispWorks IDE clipboard currently contains the
string representation of the function, rather than the function itself. Thislets you copy in generic functions from other
applications, aswell as from the environment. See 3.3.3 Using the Object operations with the clipboard for a complete
description of the way the LispWorks IDE clipboard operates, and how it interacts with the system clipboard.

You can operate on the current generic function using the commands in the Generic Function Browser's Function menu. See
15.1.5 Performing oper ations on the current function or selected methods for details.

15.1.2 Filter area

The Filter lets you restrict the list of methods displayed. See 3.12 Filtering infor mation for details about how to use the
Filter area.

15.1.3 Methods list
This area displays the methods defined on the generic function.

» Selecting amethod in thislist displays its description in the Description list.

* Double-clicking on a method displays its source code definition in the editor, if it is available.
The number of itemslisted in the list of methods is printed in the Matches box.

You can operate on any number of selected methods in this area using the commands in the Generic Function Browser's
Methods menu. See 15.1.5 Perfor ming oper ations on the current function or selected methods for details.

15.1.4 Description list

The Description list shows a description of the method selected in the list of methods, or of the generic function itself if no
method is selected.

The following information is listed:

Method The method abject that is selected in the list of methods.
LambdaList The lambdal list of the generic function.
Combination The class of method combination for the generic function.

To operate on any of the items displayed in this area, select them and choose a command from the Description menu. This
menu contains the standard action commands described in 3.8 Per for ming oper ations on selected objects. You can operate
on more than one item at once by making a multiple selection in this area.

15.1.5 Performing operations on the current function or selected methods

You can use the Function and Methods menus to access commands that operate on the current generic function or the
selected methods. These commands are similar to commands available in other tools, and so you should find them familiar.

The following commands are avail able from either the Function or Methods menus:

» The standard action commands let you perform a number of operations on the selected methods or the current function.
For details on the commands available, see 3.8 Perfor ming oper ations on selected objects.

» Choose Undefine... to undefine the current generic function or the selected methods so that they are no longer available
inthe Lisp image. Choosing Undefine... on a method undefines the method function and removes it from the methods of
the generic function. However, the generic function can still be called with its different method selection.

169

15 The Generic Function Browser

» The Trace submenu gives you the ability to trace and untrace the current generic function or the selected methods. See
3.10 Tracing symbols from tools for details about the commands available in this submenu.

15.2 Examining information about combined methods

The method combinations view lets you examine information about the combined methods of the current generic function.
You supply a signature and Generic Function Browser displays the combined methods of the generic function together with
the arguments that match that method combination point.

Method combinations show you the calling order of methods. They use the class precedence lists of the classes on which the
methods of a generic function operate. Being able to view these combinations gives you a ssmple way of seeing how before,
after, and around methods are used in a particular generic function.

You can display this view by clicking the Method Combinations tab of a Generic Function Browser, or from the Debugger
tool by choosing Frame > Method Combination in aframe containing a standard method. The method combinations view is

shown in Generic function browser displaying method combinations below.

Generic function browser displaying method combinations

Generic Function Browser 1

Works File Edit Miew Descrption Methods Function History Help

WwhErR B R

Function: CAPI:DRAW-PINEOARD-OB JECT

Methods | Method Combinations
Arguments Types: (T ARROW-PINEOARD-OB JECT) v~ | Signatures...

L

FPROGN —
CALL-METHOD
(METHOD CAPI.DRAW-FINEOARD-OE JECT :BEFORE (T CAPI:PINEOAR

CALL-METHOD

o,

(METHOD CAPI:.DRAW-PINEOARD-OB JECT (T CAPI:ARROW-PINEOARL

(METHOD CAPI.DRAW-PINBOARD-OBJECT (T CAPI.LINE-PINBOARD- [+
<] s | E

Description:
Method: #<STANDARD-METHOD DRAW-PINBEOARD-OB JECT NIL (T AR
Lambda List: (OUTPUT-PANE SELF &KEY X Y ‘WIDTH :HEIGHT &ALLOW-O|

Combination: STANDARD

4 A ¥

Ready.

170

15 The Generic Function Browser

The method combinations view has a number of main sections, described bel ow.

15.2.1 Function box

As with the methods view, the name of the generic function being browsed is shown here. See 15.1.1 Function area for
details.

15.2.2 Signatures button

Click Signatures... to display the Method Signatures dialog shown in Method Signatures dialog. Thisdialog liststhe
signatures for the methods defined on the current generic function. The signature of a method shows the types of the
arguments.

Method Signatures dialog

Method Signatures

Restricted Class:

Signatures

Filter+ | arrow > Matches 3

(T ARROW-PINBOARD-OE JECT)

(T DOUBLE-HEADED-ARROW-PINEOARD-OB JECT)
(T LABELLED-ARROW-PINEOARD-OBE JECT)

o Apply #® Cancel @ oK

To list the method combinations of any defined method in the Generic Function Browser, select its signature from thelist in
the Signatures panel of the Method Signatures dialog and click OK.

You can restrict the signatures displayed using Filter box in the usual way.

You can aso restrict the display with the Restricted Class box. See 15.2.6 Restricting displayed signatures by class for
details.

171

15 The Generic Function Browser

15.2.3 Arguments types box

The Arguments Types: box is used to specify a signature, in order to see the method combinations. You can specify a
signature here by either:

» Choosing a signature using the Method Signatures dialog, as described in 15.2.2 Signatur es button.

* Typing the signature list directly and clicking +".

The method combinations for the relevant method are displayed in the list of method combinations.

15.2.4 List of method combinations

Themain list in the method combinations view shows method combinations for the signature specified in the Arguments
Types: box.

» Selecting any method in the list displays its description in the Description: list.
» Double-clicking on any method in the list displays its source code definition in the editor, if it isavailable.

You can operate on any number of selected methods in this area using the commands in the Methods menu. See 15.1.5
Performing oper ations on the current function or selected methods for details.

15.2.5 Description list

The Description list displays a description of any method selected in the list of method combinations. The same items of
information are shown asin the methods view; see 15.1.4 Description list.

To operate on any of the items displayed in this area, select them and choose a command from the Description menu. This
menu contains the standard commands described in 3.8 Perfor ming oper ations on selected objects. You can operate on
more than one item at once by making a multiple selection.

15.2.6 Restricting displayed signatures by class

The Method Signatures dialog was introduced in 15.2.2 Signatures button. You can display this dialog by clicking
Signatures... in the Generic Function Browser.

By default, the Method Signatures dialog displays the signatures of al methods defined on the generic function. When there
are many methods, or when the distinction between different classesis not clear, this can be confusing.

To simplify the display, you can restrict the signatures displayed to a chosen class and its superclasses. To do this, enter the
name of the chosen class into the Restricted Class box. You can click - which alows you to select from alist of all class
names which begin with the partial input you have entered. See 3.14 Completion for detailed instructions. Aswith similar
text input panesin the IDE, click + to confirm your choice, 2 to cancel the current setting.

172

15 The Generic Function Browser

Restricting the signatures by class

Method Signatures

Restricted Class:
ARROW-PINBEOARD-OB JECT v X 3‘?

Signatures restricted to ARROW-PINBEOARD-OE JECT
Filter » 2 Matches 3

(T ARROW-PINBOARD-OBE JECT)
(T LINE-PINBOARD-OE JECT)
(T PINEOARD-OB JECT)

o Apply #® Cancel o OK

Once you have made a choice, only those signatures that contain the specified class or one of its superclasses are listed in the
Signatures restricted to... panel of the dialog. Thissimplified display is useful when there are alarge number of complicated
signatures.

Be aware of the difference between this approach and the use of the Argument box in the Signatures panel. Restricting
signatures confines the signatures offered in the dialog by means of the class of the signatures.

Click » to display the signatures for all methods defined once again.

15.3 Configuring the Generic Function Browser

Choose Works > Tools > Preferences... or click %, and then select Generic Function Browser in thelist on the | eft side of
the Preferences dial og.

Using the optionsin the Sort panel, you can sort the items in the Generic Function Browser as you can in many of the other
toolsin the LispWorks IDE.

Unsorted Displaysitemsin the order they are defined in.

By Method Qualifier Sorts items by the CLOS qualifier of the method. This groups together any : before, : after,
and : ar ound methods.

By Name Sortsitems alphabetically by name. Thisisthe default setting.

173

15 The Generic Function Browser

By Package Sorts items alphabetically by package name.

For more information on sorting items, see 3.9.1 Sorting itemsin views.

You can also set the process package of the Generic Function Browser, and choose to hide package names in the display,
using the Package box. See 3.7 Displaying packages for full details.

You can aso control whether the Generic Function Browser displays the history toolbar by the option Show Toolbar, as
described in 3.1.8 Toolbar configurations.

174

16 The Search Files tool

16.1 Introduction

The Search Filestool gives you a convenient way of performing searches on directories, individua files or systems. You can
create a Search Filestool by choosing Works > Tools > Search Files or clicking & in the Podium or use the keyboard
accelerator described in 3.1.5 Displaying tools using the keyboar d. You can also start context-dependent searches, for
example by choosing Edit > Search Files... or Systems > Search Files..., or from editor command such as Met a+X Search

Files.

Out of necessity, this chapter makes some references to other tools in the environment which you may not yet be familiar
with. However, this chapter does not assume any prior knowledge of these tools.

The Search Files tool

Search Files 1

Works File Edit History Help

@aﬁ v %@ v Plain Directory - q? #

Search Specifications

Regexp Search 5tring: | defmethod [| Case sensitive

Filenames Pattemn: |/lib/6-0-0-0/examples/capi//*.lisp| B [] All files

Filter + » Matches: 160 [Hide edited

L

[B balloons.lisp {1} Jusr/lib64/LispWorks/lib/6-0-0-0/examples/c;
[Bl chatlisp {2} /ust/libb4/LispWorks/lib/6-0-0-0/examples/capi/z
I B cocoa-application.lisp {1} fusr/libb4/LispWorks/lib/6-0-0-0/ex;
> B othellodisp {10} Jusr/lib64/LispWorks/lib/6-0-0-0/examples/cz
[» E‘Iremute—debugger.liw {4} Jusr/libed/LispWorks/lib/6-0-0-0/exa

Finished: 160 matches in 26 files (searched 82 files)

The Search Filestool has the following areas:

» Thetoolbar contains adropdown list that chooses the kind of search to perform (Plain Directory was used in the
screenshot above). There are also buttons to start and stop a search, and to perform a query replace operation on the

matched lines.

175

16 The Search Files tool

» The Search Specifications arealets you specify what to search for and where to search. Thisareaisfilled in or partly
filled in automatically when you start a context-dependent search. You can aso enter suitable values directly, or modify
the existing values.

» Thefilter arealets you restrict the search results displayed in the main area.
» The main area displays the results of the last search in atree. You can expand each file to showed the matched lines

within it.

16.2 Performing searches

You can use the Search Files tool in two different ways.

* You can enter details of where to search and what to search for directly into the tool and click the & button. Thisis
described in more detail in 16.2.1 Entering Sear ch Specifications directly.

* You can use an Editor command or menu command that starts a context-dependent search. Thisis described in more
detail in 16.2.2 Using context-dependent sear ches.

All kinds of search other than Grep use a LispWorks regular expression (regexp). For details of the syntax of LispWorks
regular expressions see "Regular expression searching" in the Editor User Guide.

All kinds of search other than Grep actually operate on editor buffers (see 12.3 Displaying and swapping between buffers)
rather than files. The Search Filestool creates buffers when needed, which involves some overhead. Thereforeif you are
searching alarge number of files (or anumber of large files) which are not already opened in the Editor, a Grep search is best
because it operates directly on the files.

While the tool is searching, you can examine the results but you cannot change the search specifications. To stop a search,
click the & button in the toolbar.

16.2.1 Entering Search Specifications directly

To enter the search specifications directly, decide which kind of search to perform from the dropdown list in the toolbar and
then fill in the boxes in the Search Specifications area. The different search kinds are described below. You can aso hide the
search specifications by choosing Hide Search Area from the dropdown list in the toolbar.

16.2.1.1 Plain Directory searches

A Plain Directory search is used to search for a particular regexp in al files whose names match a particular pattern. Enter
the regexp in the Regexp Search String box and enter a set of filename patternsin the Filenames pattern box. You can press
Up or Down in the Filenames pattern box to complete physical directory components, as described in 3.14 Completion.

The filename pattern should be a complete filename and can use the following syntax to make it match more than onefile:
» Use* within the pattern to match any sequence of charactersin adirectory or file name.
» Use** within the directory part of the pattern to match any number of subdirectories.

Here are some examples of filename patterns:

*ox Matches all filesin the root directory.

subdir/*. txt Matches al t xt filesinroot/ subdi r.

exanpl es/**/*.1isp Matchesalllisp filesinroot/ exanpl es and its subdirectories. Thisissimilar to the pattern
shown in The Sear ch Filestool.

176

http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm

16 The Search Files tool

**[*zork*/*. bnp Matches all bnp filesin any directory under the root directory that contains zor k in its name.

See also the Match flat file-namestring option in 16.5.1 Search Parameter s for additional information.

If afilename pattern isa directory then al filesin that directory are searched.
Check Case sensitive to make the search match only the case of letters exactly as entered.

Check All files to ignore any list of File Types in the Preferences.

16.2.1.2 Root and Patterns searches

A Root and Patterns search is used to search for a particular regexp in al files whose names match one or more patterns
within adirectory. Enter the regexp in the Regexp Search String box, the starting directory in the Root Directory box, and a
set of filename patternsin the Pattern List box.

You can press Up or Down in the Root Directory box to complete physical directory components, as described in 3.14
Completion.

A Roots and Patterns search

Search Files 1

Works File Edit History Help

¢ v éa% hd Root and Patterns |+

Search Specifications

Regexp Search String: | PARAMETER Case sensitive
Root Directory: b64/LispWorks/lib/6-0-0-0/examples/| & [] All files

Pattern List: | ssl/.pem ; capi/l"/*.lisp

Filter v > Matches: 2 [] Hide edited

= B dh_param_512.pem {2} /usr/lib64/LispWorks/lib/6-0-0-0/example
o R — EEGIN DH PARAMETERS—

Finished: 2 matches in 1 files (searched 11 files)

You can search subdirectories by including directory components (including wild components) in the Pattern List box.

Multiple filename patterns can be entered, separated by semicolons. Spaces before and after each pattern are ignored. Each
filename pattern should be a complete filename and can use the following syntax to make it match multiple files:

» Use* within the pattern to match any sequence of charactersin adirectory or file name.

177

16 The Search Files tool

» Use** within the directory part of the pattern to match any number of subdirectories.

* Use{nanel, nane2, ...} tomatch any oneof nanel, name2 and so on. Spaces before and after each name are
ignored.

Here are some examples of pattern lists:
i mages/*.* ; icons/*.*
{i mages, icons}/*.*

Both of these patterns match all filesin theroot/ i mages and theroot/ i cons directories.
**[{images, icons}/sunrise.{bmp,jpg,]jpeag}
**[images/sunrise.{bnp,jpg,jpeg} ; **/icons/sunrise.{bnp,jpg,]jpeg}

Both of these patterns match all fileswith the name sunri se. bnp, sunri se. j pg or sunri se. j peg in adirectory named
i cons ori mages, anywherein the root directory.

{maj , m n}or-events/{*-nane, date}/*.txt
maj or -event s/ {*-name, date}/.txt ; mnor-events/{*-nane, date}/.txt

{maj ,m n}or-events/date/*.txt ; {maj,m n}or-events/*-name/*.txt

Each of these three patterns matches al . t xt fileswhich arein adirectory dat e or adirectory that endswith - nane in the
maj or - event s or mi nor - event s directories.

See also the Match flat file-namestring option in 16.5.1 Sear ch Parameter s for additional information.

If afilename pattern is adirectory then all filesin that directory are searched.
Check Case sensitive to make the search match only the case of letters exactly as entered, asillustrated above.

Check All files to ignore any list of File Types in the Preferences.

16.2.1.3 System Search

A System Search is used to search for a particular regexp in all the files referenced by a LispWorks def syst emdefinition.
Enter the regexp in the Regexp Search String box and the system names in the System Names box. Multiple system names
can be entered, separated by semicolons.

Check Case sensitive to make the search match only the case of letters exactly as entered.

You can also do a System Search in a"system" defined by another source code manager such as ASDF, if you have
configured LispWorks appropriately. See 26.9 ASDF | ntegration for the details.

16.2.1.4 Known Definitions searches

You can use the Search Files tool to search in al files known to contain definitions. To do this, select Known Definitions in
the dropdown list in the toolbar. Then complete your other search specifications and click the & button.

178

http://www.lispworks.com/documentation/HyperSpec/Body/v__stst_.htm

16 The Search Files tool

A Known Definitions search

Search Files 1

Works File Edit History Help

@5@ R éﬁ% v Known Definitions |+

Search Specifications
Regexp Search String: | defun [| Case sensitive

Searching in: recorded definitions, loaded tags databases

Filter + 2 Matches: 1,702 [Hide edited

L

[Bl abbrev.lisp {5} .n’usr.n’IiI:bE4.n’Li5qurk5.n’Iib.n’E-D-D-D.Fsrc.n’EdimE
[Bl auto-save.lisp {19} a’u5r.|’IiI:I-E4.|’Li5qurkS."IiI:i.u’E-D-D-D.n’Srcﬁ|:
[B bufferlisp {103} /Jusr/libB4/LispWorks/lib/6-0-0-0/src/edil

[Bl c-mode.lisp {12} Jusr/lib64/LispWorks/lib/6-0-0-0/src/edi [+

Finished: 1702 matches in 83 files (searched 92 files)

A file is known to contain definitions in one of two ways.

A filewasloaded and executed a defining form which was recorded by the source location system. The associated source
files are searched when the list value of the variable dspec: *act i ve- fi nder s* contains the keyword : i nt er nal .

» Thefileisrecorded as alocation in atags database. Such files are searched when the list value of the variable
dspec: *acti ve-fi nder s* contains the path of the tags database.

See "Dspecs. Tools for Handling Definitions” in the LispWorks® User Guide and Reference Manual for more information
about definition recording and tags databases.

16.2.1.5 Searching editor buffers

You can use the Search Filestool to search in al currently open editor buffers. To do this, select Opened Buffers in the
dropdown list in the toolbar. Then complete your other search specifications and click the & button.

16.2.1.6 Grep searches

A Grep search is used to run an external program to search files and show the results in the tool. Enter the working directory
for the external program in the Root Directory box and the complete command line of the external program in the Grep
Command box.

179

16 The Search Files tool

A Grep search

Search Files 1

Works File Edit History Help

~~ w %%%’ " Grep v

Search Specifications

Root Directory: 'spWorks/lib/6-0-0-D/examples/capi/layouts/| B

Grep Command: | grep -n - defmethod *.lisp /dev/null

Filter w > Matches: 9] Hide edited

=~ B bufferdayout.lisp {3} /usr/lib64/LispWorks/lib/6-0-0-0/exam|
=P 47 : (defmethod capi:interpret-description ((self buffer-layol
=P 60 : (defmethod capi:calculate-constraints ((self bufferlayc
=P 120 : (defmethod capi:calculate-layout ((self buffer-layout) |
[B switchablelisp {1} Jusr/lib64/LispWorks/lib/6-0-0-0/exampls
[B wrappinglayout.lisp {5} /usr/lib64/LispWorks/lib/6-0-0-0/ex

Finished: 9 matches in 3 files

The external program istypically grep, but other programs can be used as long as they print the matched linesin this format:

filenane:line-nunber |ine-text

When using grep you generally need to pass the - n option and the filename argument / dev/ nul | to forceit to print the file
and line number in all cases. Thisis done automatically when you invoke the Search Filestool by the Editor command Grep.

16.2.2 Using context-dependent searches

Context dependent searches take some information from the current window and invoke the Search Files tool to perform the
search. There are various Editor commands and menu commands that start a context-dependent search, as described below.

16.2.2.1 Context-dependent searches using Editor commands

Search Files Prompts for a search string and directory pattern and then performs a Plain Directory or Root
and Patterns search. If an existing Search Filestool is reused by this command and was last
doing aRoot and Patterns search, then the directory pattern is split to fill the boxes. Otherwise,
aPlain Directory search is performed using the directory pattern. If the directory pattern endsin
adash, then the default pattern is added to the end (see 16.5.1 Search Parameters).

180

16 The Search Files tool

Sear ch Files M atching Patterns

Prompts for a search string, root directory and set of filename patterns and then performs a Root
and Patterns search.

Search System Prompts for a search string and system name and then performs a System Search.
Grep Prompts for command line arguments to pass to grep and then performs a Grep search. The grep

command is created from these arguments, with a- n option and the filename argument
/ dev/ nul | asmentioned in 16.2.1.6 Grep searches.

16.2.2.2 Context-dependent searches using menu commands
Edit > Search Files...

Opens a Search Filestool in for aPlain Directory or Root and Patterns search, using the
directory associated with the current tool (in particular, the directory of the buffer displayed in an
Editor toal).

If an existing Search Filestool is reused by this command and was last doing a Root and
Patterns search, then the directory is placed in the Root Directory box. Otherwise, the directory
is placed in the Filename Patterns box for a Plain Directory search with the default pattern added
to the end (see 16.5.1 Search Parameters).

Systems > Search Files...

Prompts for aregexp and performs a System Search in the currently selected system.

16.2.2.3 Search History

The Search Files tool keeps a history of previous searches and their results. You can revisit these searches using the & and =
buttons as described in 3.5 The history list.

16.3 Viewing the results

The results of a search are displayed in the main area of the tool, grouped by file. The file name, the number of matchesin
that file and the directory are shown. Select afile and expand it to see the line number and text of each line of that file that
matches. You can configure the tool to expand the items as they are added as shown in 16.5.2 Display.

When there are no matches to display, the Search Files tool displays a message which mentions the number of files searched.

16.3.1 Displaying in an Editor

Double-click on the filename to open an Editor tool showing that file and show the first match in that file. Similarly, double-
click on the line number to show that line in the Editor. Items that have been edited are shown with a different icon. You can
change an item to show as edited or not edited using the Mark Edited and Mark Not Edited commands on the context menu.

The Editor command Next Search Match can be used to move to the next item in the last Search Files tool that you used.

181

16 The Search Files tool

16.3.2 Linking to an Editor

You can arrange for an Editor tool to immediately display one of the search matches when you select it. To do this, choose
Link to Editor from the context menu in the main area of the Search Filestool. To remove the link, choose Link to Editor
from the context menu again.

Note: thisisequivalent to using Edit > Link from > Search Files 1 in the Editor tool.

16.3.3 Filtering the results

Use the Filter areato restrict the displayed results by a plain string match or aregular expression match, as described in 3.12
Filtering infor mation.

Thefilter applies to the text in the match, not to the line number or file names.

16.3.4 Hiding certain results

When there are many results it can be useful to hide some which you know to be uninteresting. Select the lines you wish to
hide, raise the context menu and choose Hide (or pressthe Del et e key).

To restore hidden lines to the display, choose Unhide Others from the context menu.

16.4 Modifying the matched lines

After a search you might want to perform a replace operation within the matches, for example to rename afunction or add a
missing package prefix throughout your source code.

To do this, click £ or choose Query Replace... from the context menu in the results area to raise the Query replace in
matched lines dialog.

The Query replace in matched lines dialog

Query replace in matched lines

Regexp to replace: prompt-for

Replace by: capi:prompt-for]
Save buffers: () No) Yes @ Confirm
Change without confirmation Cancel oK

Enter aregular expression to replace in the Regexp to replace: box. Enter the replacement text in the Replace by: box, and
click OK.

For each of the matched lines that also matches the regular expression, an Editor tool displays the file with a prompt in the
Echo Area. Type'y' or 'n' to make the replacement or not, for each match in turn.

The Save buffers buttons choose whether to automatically save the modified editor buffersto disk at the end (Yes), ask you
whether to save them (Confirm) or leave them in memory (No). To save the buffersin memory, see 12.8.1 Opening, saving
and printingfiles.

182

16 The Search Files tool

16.5 Configuring the Search Files tool
Various aspects of the Search Files tool's behavior and display can be configured. To do this, select Works > Tools >

Preferences... and then select Search Files in thelist on the |eft side of the Preferences dialog.

16.5.1 Search Parameters

In the Search Parameters view of the Search Files preferences you can configure some aspects of searching operations.
Setting Search Parameter Preferences

General | Search Parameters | Display |File Types

Pattern
Pattern to add when no file name is specified:

“lisp: "lsp

[_] Match flat file-namestring
Limits

Maximum file size to search:
1000000 -

Maximum number of matches:
1000 »

Enter afile name pattern to add when invoking the tool from an Editor command in the Pattern to add when no file name is
specified box.

Check Match flat file-namestring if you want the tool to match filename component of patterns as aflat string, rather than a
name and type. If thisoption is not selected, then any text after thefinal . in the filename is treated as the type and is only
matched by similar text after the. in the pattern. For example, when Match flat file-namestring is not selected, the pattern
dir/ *p matchesi nt er p. exe, where the namei nt er p endswith p but does not matchfil e. | i sp, wherethenamefil e
endswith e. Conversely, when Match flat file-namestring is selected, dir/ * p matchesfil e. | i sp, where the file-namestring
file.lispendswithp, but doesnot matchi nt er p. exe, where the file-namestring i nt er p. exe endswithe.

You can specify alimit on the size of filesto search in the Maximum file size to search box. Thislimit represents the
maximum file size in bytes, and typical values can be selected from the dropdown list. If larger files are found during a
search, they are skipped and amessage . . . fi | es ski pped because they are bigger than... appearsatthetop
of the resultsin the main area.

You can specify alimit on the number of matches displayed by the tool in the Maximum number of matches box. Typical
values can be selected from the dropdown list. If more matches are found during a search, you are asked whether to stop
searching.

183

16 The Search Files tool

16.5.2 Display

You can configure the display of search results using the Display view.

Setting Display Preferences

General | Search Parameters | Display |File Types

Match Line Color

Match lines are displayed in this color

Choose...

Edited Line Color
Edited lines are displayed in this color

Choose...

Results

Display a filter

Files shown: | With separate filename and directory |+

Choose a color to display the text of unedited lines that show amatch in afile.
Choose a color to display the text of edited lines that show amatch in afile.
Check Display a filter to display a box that can be used to restrict which results are displayed. This shown by default.

Check Expand items to list the matches as they are found to cause the items grouped under each file to be expanded while
the search isrunning. The default isto leave them collapsed, alowing you to expand them yourself.

Under Files shown: you can choose how the name of each matching fileis displayed in the main results area. The values are:

With separate filename and directory

Displays the filename at the start and the complete directory name at the end.
As complete names Displays the full name of the file.

Relative to the search root

Displays the name of thefile relative to the root directory specified in the search parameters.

184

16 The Search Files tool

16.5.3 File Types

You can add specify which file types to search in the File Types view.

Setting File Types Preferences

General | Search Parameters | Display | File Types

Exclude or Include Files by Name
() Use exclude list ® Use include list

Exclude files that match these patterns:

Include only files that match these patterns:
“lisp ".cl ".Isp ".txt *.html *.hrm|

Check Use exclude list if you want to exclude certain file types even though they match the pattern in the Search
Specifications boxes. Enter the patterns to exclude in the Exclude box, with multiple patterns separated by whitespace.

Check Use include list if you want to only include certain file types, even if the pattern in the Search Specifications should
allow other types. Enter the patterns to include in the Include box, with multiple patterns separated by whitespace.

You cannot choose both of these options simultaneously.

16.5.4 The External Grep Program

By default, for Grep searchesthetool runs grep on non-Windows platforms and a specific supplied gr ep. exe on Microsoft
Windows. The actual searching utility used can be configured with the variable | w: * gr ep- conmand*.

The arguments passed to the searching utility are constructed using the values of | w. * gr ep- f i xed- ar gs* and

185

16 The Search Files tool

| w. *gr ep- conmand- f or mat *. It isnot be necessary to alter the default values unless you use a non-default value of
| w. *gr ep- command* or have a non-standard grep installed.

See the LispWorks® User Guide and Reference Manual for details of these Search Files tool configuration variables.

186

17 The Inspector

The Inspector isatool for examining objectsin your Lisp image. You can also use the Inspector to modify the contents of
objects, wherethisis possible.

To raise an Inspector window, choose Works > Tools > Inspector or click & inthe Podium.

17.1 Inspecting the current object

It is sometimes more natural to invoke an Inspector on some object you are analysing. You can do thisin severa ways,
including using the Inspect menu command.

1. To create an example object, in the Listener, evaluate:
(make-instance 'capi:list-panel :itenms '(1 2 3 4))
2. Choose Values > Inspect from the Listener's menu bar to see the Inspector tool window illustrated in I nspector.
Note that you have not displayed thel i st - panel on screen yet. You will do that in afew minutes.

Another way to inspect the current object (that is, the value of cl : *) inthe Listener isthe keystroke Ct rI +C Ctrl +I .

A general way to inspect the current object in most of the LispWorks toolsisto click the & button.

187

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

17 The Inspector

I nspector

Inspector 1

Works File Edit Wiew Object 5Slots History Help

RO D %% S & vy v
List Panel | Local Slots

Filter + X Matches 58
HAttn'hute Value [+]
CAPI::IMAGE-LISTS MIL
CAPIL:INITIAL-FOCUS-ITEM MIL
CAPIHINTERNALS:INTERACTION SINGLE-SELECTION
CAPL:INTERFACE MNIL |:
CAPI::INTERNAL-EORDER MIL
CAPI:ITEMS-CALLBACK MIL
CAPIHINTERNALS:ITEMS-COUNT-FUNCTION LENGTH
CAPIHNTERNALS:ITEMS-GET-FUNCTION SVREF [+]
< | B
Ready.
LIST-PANEL: #<CAPI:LIST-PANEL [4 items] 42002A5513>

17.2 Description of the Inspector tool

The Inspector has the following areas:

» At thetop of the Inspector, the tab of the main view shows the type of the object being inspected. There may be other
views depending on the type of this object. For classinstances, thereisalLocal Slots view.

» A Filter area provides away of filtering out those parts of an object that you are not interested in.

* A ligt of attributes and values shows the contents of the object.

17.2.1 Adding a Listener to the Inspector

A small listener pane can be added to the Inspector tool, allowing you to evaluate Common Lisp formsin context, without
having to switch back to the main Listener tool itself. To add the listener pane to the Inspector, choose Show Listener from
the context menu in the attributes and values area.

188

17 The Inspector

17.3 Filtering the display

Sometimes an object may contain so many items that the list is confusing. If this happens, use the Filter box to limit the

display to only those items you are interested in.

This example below (continued from 17.1 Inspecting the current object) shows you how to filter the attributes list so that

the only slots displayed are those you are interested in.

Typer ep inthe Filter

box.

Using filtersto limit the display in the Inspector

Works File Edit

Inspector 1

View Object 5Slots

History Help

Ready.

CAPI-INTERNALS:ITEMS-REPRESENTATION #(1234)
CAPIHINTERNALS:REPRESENTATION

NIL

D% % 9 & v

List Panel | Local Slots

Filter~ | rep > Matches 2
Attribute Value

LIST-PANEL: #<CAPI:LIST-PANEL [4 items] 42002A5513>

You can immediately see the slots with names that include "rep". The names of the dots, together with their slot values for
the object being inspected, are displayed in the attributes list. For example, the representation slot currently containsni | .

17.3.1 Updating the display

In some circumstances your object might get modified while you are inspecting it, so you should be aware that the inspector

display might need to be refreshed. To see thisin the example continued from 17.3 Filtering the display:

1. Inthe Listener tool call (capi : contai n *), wherethe value of * should bethel i st - panel instancethat you are

inspecting.

2. In the Inspector choose the command Works > Refresh or click the & button. The Inspector should now appear asin

Thefiltered inspector display, refreshed below.

189

17 The Inspector

The filtered inspector display, refreshed

Inspector 1

Works File Edit Wiew Object 5Slots History Help

DD %N g & K K
List Panel | Local Slots

Filter+ |rep 2 Matches 2
HAttn'hute Value
CAPI-INTERNALS:ITEMS-REPRESENTATION #(12 3 4)
CAPIINTERNALS:REPRESENTATION #<CAPI-GTK-LIBRARY::LIST
4 | »
Ready.
LIST-PANEL: #<CAPI:LIST-PANEL [4 items] 42002A5513>

Notice that the representation ot no longer hasvalueni | . Thel i st - panel instance has been modified by calling
capi : cont ai n, and the Inspector has been updated to show the new slot value.

17.4 Examining objects

The attributes and values list is the most interesting part of the Inspector. Each item in thislist describes an attribute of the
inspected object by displaying its name (the first field in each entry) and the printed representation of its value (the second
field). For example, the inspection of a CLOS object yields alist of its slots and their values. The description is called an
inspection.

When inspecting instances of CLOS classes, you can choose to display only those slots which are local to the class. By
default, all dots are displayed, including those inherited from superclasses of the class of the inspected object.

Continuing from the example 17.3.1 Updating the display:

1. Click * to remove the filter.
2. Select the Local Slots tab.

Several dotsdefined locally for al i st - panel arelisted.

190

17 The Inspector

Inspector showing local slots of a CLOS instance

Inspector 1

Works File Edit Wiew Object 5Slots History Help

DD %N g & K K
List Panel | Local Slots

Filter + » Matches 4
HAttn'hute Value ||
CAPI::RIGHT-CLICK-SELECTION-BEEHAVIOR :NO-CHANGE
CAPI::SEARCH-CASE-SENSITIVE-FP MIL
CAPI:SEARCH-STRING-FUNCTION ML
CAPI::SEARCH-STRING-START MIL
Ready.

LIST-PANEL (local slots only): #<CAPILIST-PANEL [4 items] 42002A5513>

Aswell as CLOS instances, other objects including lists and hash tables have multiple views available in the Inspector. For
example, alist can beviewed asaplist, aist, consor list if it has the appropriate structure.

17.5 Operating upon objects and items

The Object and Slots submenus alow you to perform the standard action commands on either the object being inspected, or
the dlot values selected in the main list. The commands available are largely identical in both menus, and so are described
together in this section.

17.5.1 Examination operations

The standard action commands are available in both the Object and Slots menus, allowing you to perform a variety of
operations on the current object or any items selected in the list. For full details of the standard action commands, see 3.8
Performing oper ations on selected objects.

17.5.1.1 Example

Consider the following example, where a closure is defined:

(let ((test-button (nake-instance 'capi:button)))
(defun is-button-enabled ()
(capi: button-enabl ed test-button)))

This has defined the functioni s- but t on- enabl ed, which is aclosure over the variablet est - but t on, where the value of
t est - but t on isaninstance of the capi : but t on class.

191

17 The Inspector

1. Enter the definition of the closure shown above into a Listener.

2. Choose Values > Inspect.

The Inspector examines the symbol i s- but t on- enabl ed.
3. Click on the FUNCTI ON slot to select the closure.
4. Choose Slots > Inspect to inspect the value in the selected slot.

The closureis inspected.

17.5.1.2 Recursive inspection

You can also double-click on an item in the attributes list to inspect its value. Most users find this the most convenient way to
recursively inspect objects.

To return to the previous inspection, choose History > Previous or click ¢ in the toolbar.

17.5.2 Examining attributes

The Slots > Attributes submenu allows you to apply the standard action commands (described in 3.8.1 Oper ations
available) to the attributes rather than the values of those attributes.

For example, the Slots > Attributes > Inspect command causes the Inspector to view the attributes, rather than the values, of
the selected slots. Thisis useful when inspecting hash tables or lists, since the attributes (keys) might be composite objects
themselves.

17.5.3 Tracing slot access

The Slots > Trace submenu provides four commands. When inspecting a CLOS object, code which accesses the selected slot
may be traced using these commands.

Break on Access causes a break to the debugger if the slot is accessed for read or write, either by a defined accessor or by
sl ot - val ue.

Break on Read causes a break to the debugger if the slot is accessed for read, either by a defined accessor or by
sl ot - val ue.

Break on Write causes a break to the debugger if the slot is accessed for write, either by a defined accessor or by
sl ot - val ue.

Untrace turns off tracing on the selected slot.

The Object > Trace submenu provides the same four options, but these commands control the tracing of all the slotsin the
object.

17.5.4 Manipulation operations
Aswell as examining objects in the Inspector, you can destructively modify the contents of any composite object.

This sort of activity is particularly useful when debugging; you might inspect an object and see that it contains incorrect
values. Using the options available you can modify the values in the slots, before continuing execution of a program.

Choose Slots > Set to change the value of any selected slots. A dialog appears into which you can type a new value for the
items you have selected. Previously entered values are available viaa dropdown in this dialog.

192

http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm

17 The Inspector

Choose Slots > Paste to paste the contents of the clipboard into the currently selected items.

17.5.4.1 Example
This example takes you through the process of creating an object, examining its contents, and then modifying the object.

1. Create a button as follows:

(setq buttonl (make-instance 'capi:button))

2. Choose Values > Inspect in the Listener to inspect the button in the Inspector.

3. Inthe Listener, use the CAPI accessor but t on- enabl ed to find out whether but t onl is enabled.
(capi : button-enabl ed buttonl)

Thisreturnst . So we see buttons are enabled by default. The next step is to destructively modify but t onl sothatitis
not enabled, but first we will make the Inspector display alittle simpler.

4. Choose Works > Tools > Preferences... and select Inspector in the list on the left side of the Preferences dialog. You can
now change the current package of Inspector tools.

5. In the Package box, replace the default package name with CAPI and click OK.

This changes the process package of the Inspector to the CAPI package, and the package name disappears from all the
slots listed. This makesthe display alot easier to read.

6. In the Inspector, type enabl ed into the Filter box.

Button abjects have alarge number of slots, and so it is easier to filter out the slots that you do not want to see than to
search through the whole list. After applying the filter, only one slot islisted.

7. Select the Slot enabl ed.
8. Choose the Slots > Set... menu item.

A dialog appears into which you can type a new value for the slot enabl ed.

Entering anew sot value

Inspector 1

Enter form (to be evaluated) for selected items:

nil b

% Cancel o? OK

9. Note that previously entered forms are available via adropdown in this dialog. Enter ni | (or select it from the history)
and click on OK.

The attributes and values area shows the new value of the enabl ed dot.

10Click on the » button. This removes the filter and displays al the slots once again.

11To confirm that the change happened, type the following in the Listener. You should be able to recall the last command
using Al t +P or History > Previous.

193

17 The Inspector

(capi : button-enabl ed buttonl)

Thisnow returnsni |, as expected.

The next part of this example shows you how you can modify the dots of an abject by pasting in the contents of the
clipboard. This example shows you how to modify thet ext and f ont of but t onl.

12Type the following into the Listener and then press Ret ur n:

"Hello World!"

13Choose Values > Copy to copy the string to the clipboard.

14 Select the TEXT dlot of but t onl in the Inspector.

15Choose Slots > Paste to pastethe" Hel | o Wor | d! " string intothet ext dot of but t onl.

Thissetsthet ext slot of but t on1 to the string.

16Enter the following into the Listener and press Ret ur n:

(let ((font (capi:sinple-pane-font buttonl)))
(if font

(gp: find-best-font

buttonl

(apply 'gp: make-font-description

(append (list :size 30)
(gp: font-description-attributes
(gp: font-description
(capi : sinpl e-pane-font buttonl))))))
(gp: make-font-description :size 30)))

Thisform ssimply calculates alarge font object suitable for the button object.

17Choose Values > Copy to copy the font to the clipboard.

18Select the FONT dot of but t on1 in the Inspector.

19Choose Slots > Paste to paste the font into the f ont dlot of but t on1.

20Confirm the effect of these changes by displaying the button object. To do this, choose Object > Listen.

This transfers the button object back into the Listener. Asfeedback, the string representation of the object is printed in
the Listener above the current prompt. The object is automatically transferred to the * variable so that it can be operated
on.

211n the Listener, type the following:

(capi:contain *)

194

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

17 The Inspector

This displays awindow containing the button object. Note that the text now reads "Hello World!", as you would expect, and
that the font size is larger than the default size size for buttons. Note further that you cannot click on the button; it is not
enabled. Thisis because you modified the setting of the enabl ed slot in the earlier part of this example.

17.5.5 Copying in the Inspector

You can easily copy objects in the inspector, ready for pasting into other tools.
To copy the inspected object itself use Object > Copy.

To copy adlot value use Slots > Copy.

To copy an attribute use Slots > Attributes > Copy.

Similarly you can use Object > Clip, Slots > Clip or Slots > Attributes > Clipto place the object itself, aslot value or an
attribute on the Object Clipboard, so that you can conveniently retrieve them later. See 8 The Object Clipboard for details.

17.6 Configuring the Inspector

The Inspector Preferences allows you to set different display options including the standard options for sorting itemsin the
main list, displaying package information and controlling display of the Inspector toolbar, together with some additional
options specific to the Inspector. To do this, raise the Preferences dialog using one of the methods described in 3.2 Setting
preferences and select Inspector in thelist on the left side of the dialog.

The General tab of the Inspector Preferences

General | Listener

Sort Package
) Unsorted EDITOR v %
() By ltem

Show Package Names
(@ By Name

Toolbar
Show Toolbar

() By Package

Maximurm
ltems 500 b
Attribute Length| 100 A

Choose the sort option that you require from those listed in the Sort panel:

By Item Sorts items al phabetically according to the printed representation of the item.

By Name Sorts items al phabetically according to their names. Thisisthe default setting.

By Package Sorts items al phabetically according to the packages of the namefield.

Unsorted Leavesitems unsorted. Thisdisplaysthem in the order they were originally defined.

195

17 The Inspector

In the Package box, specify the name of the process package for the Inspector. Select Show Package Names if you want
package names to be displayed in the Inspector. See 3.7 Displaying packages for more details.

The Maximum panel contains options to let you configure the amount of information displayed in the Inspector.

Choose avalue from the Attribute Length drop-down list box to limit the length of any attributes displayed in the main list
(that is, the contents of the first column in thelist). The default value is 100 characters, and the minimum allowable valueis
20 characters.

Choose avaue from the items drop-down list box to limit the number of items displayed in the main list. By default, 500
items are shown.

If you inspect an object that has more than the maximum number of items, then the excess items are grouped together in alist
which itself becomes the last item displayed in the main list. Double-clicking on thisinspects the remaining items for the
object.

If necessary, the Inspector splits any remaining items into severa lists, all linked together in this fashion. For instance, if you
limit the maximum number of itemsto 10, and inspect an object with 24 items, the Inspector displays the first 10, together
with an 11th entry, which isalist containing the next ten items. Double-clicking on this shows the next ten items, together
with an 11th entry, which isalist containing the last four items. Thisisillustrated in Displaying an object with more items
than can be displayed below.

Displaying an object with more items than can be displayed

R ETELITRFTS-FATIE -+ H
LEL) jA/LH_ 1M H_.
UatLs sULE EULAEHENT Y HoL
CATL: DIUR R ML
s S TRATTOT ML
GRRT-TTTRSHAL G THNTTE T
[HICIREE 2L]
Uil s FUME LU H.L
CATL: D GEUEETEN - LACEE BUCAFL: - TAME - GECHETIE [TILcHIL ak T1L ML Z0FSDI:
CRFT: TR EF-CRLLTACE ML
CIRRET: SHTHT-TAT™R (i RU--F TR T (M-I TET =T7)
L
ll‘l"& U CCAPIDELTT TMELE :Na¥ BEIUHT T :XIM HEIGHT TEST ZELLHT :Ead WIOTH 1
| S 1 [ZAPI-LETZRHALS: HIFIZOWTAL-SCROLL XI5
i . % TRFT:TETTRTME HIL
b %, LF7 11 THTERTAL -RIEDEE TTL
W4 rAPLItWAIE LIL
.,r"'l B CZAPII:IAGEMS MIL|
— ry £ [ZAPI:IFLIST HILY
})f T [TART-TETTRHRLA: BRFRTSETTATOT M17]
y B AP ERANIGER -HATE BTLG
iy Y PRI EUALLL-UELLEACK J1L]
o CRLD PCASD ITTESHALE:TEST CHy Deopluy Duse™dn [AD CCAFD:UDDATES TLILD

040 ICATD-INTERMALS:TEST "By Displey Pase™
1 111 ICRIT::TROATED NI

i
[*,
| ‘“"H-h__]
, .
!
b OllE ICET-TE T -HA S TEATT AL -STE0LL Tl

4

17.7 Customizing the Inspector

The Inspector Preferences provides two additional optionsin the listener view.

196

17 The Inspector

The Listener tab of the Inspector Preferences

General | Listener

Automatically inspect listener values.

Bind % to the current inspector object.

These options control the interaction between the listener pane of the Inspector, if it has one, and the Inspector itself.

See 17.2.1 Adding a Listener to the I nspector for details of how to add a listener pane in the Inspector.

Check Bind $ to the current inspector object to bind the variable $ to the current object in the Inspector in the listener.
Check Automatically inspect listener values to inspect listener values automatically.

Both these options are checked by default.

17.8 Creating new inspection formats

Thereis adefault inspection format for each Lisp object.

The Inspector tool can be customized by adding new inspection formats. To do this, you need to define new methods on the
generic function get - i nspect or - val ues.

get - i nspect or - val ues takes two arguments. object and mode, and returns 5 values. names, values, getter, setter and
type.

object The object to be inspected.

mode This argument should be either ni | or egl to some other symbol. The default format for
inspecting any objectisitsni | format. Theni | format isdefined for all Lisp objects, but it
might not be sufficiently informative for your classes and it may be overridden.

names The slot-names of object.

values The values of the slots corresponding to names. The Inspector displays the names and valuesin
two columnsin the scrollable pane.

Qgetter Thisis currently ignored. Useni | .

Setter Thisisafunction that takes four arguments. an object (of the same class as object), a slot-name,

an index (the position of the slot-name in names, counting from 0), and finally anew-value. (It is
usual to ignore either the slot-name or the index.) This function should be able to change the
value of the appropriate slot of the given object to the new-value.

type Thisisthe message to be displayed in the message area of the Inspector. Thisistypicaly either
mode or - if modeisni | - then the name of the class of object.

17.8.1 Example

Consider the following implementation of doubly-linked lists.

(i n-package "DLL")

(defstruct (dlIl (:constructor construct-dll)

197

http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm

17 The Inspector

(:print-function print-dll))
previ ous-cel |
val ue
next-cell)

(defun make-dl | (& est list)
(loop with first-cel
for element in |ist
for previous = nil then cel
for cell = (construct-dll :previous-cell cel
:val ue el ement)
doi ng
(i f previous
(setf (dll-next-cell previous) cell)
(setqg first-cell cell))
finally
(return first-cell)))

(defun print-dil (dlIl stream depth)
(decl are (ignore depth))
(format stream "#<dll-cell ~A>" (dll-value dll)))

You can inspect asingle cell by inspecting the following object:

(dil::make-dll "mary" "had" "a" "little" "lanmb")

The resulting Inspector showsthreeslots: dI | : : previ ous-cel | withvalueni |, val ue with value" mary" and
dli | ::next-cell withvalue#<dl | -cell had>.

In practice, you are more likely to want to inspect the whole doubly-linked list in one window. To do this, define the
following method on get - i nspect or - val ues.

(i n-package "DLL")

(defun dll-root (object)
(loop for try = object then next
for next = (dll-previous-cell try)
whi | e next
finally
(return try)))

(defun dll-cell (object number)
(loop for count to nunber
for cell = object then (dll-next-cell cell)
finally
(return cell)))

(def met hod | w: get-inspector-values ((object dll)
(rmode (eql 'followlinks)))
(let ((root (dll-root object)))

(val ues
(loop for cell =root then (dll-next-cell cell)
for count fromoO
while cell
coll ecting count)
(loop for cell =root then (dll-next-cell cell)
while cell

collecting (dll-value cell))
ni
#' (1l anbda (obj ect key index new val ue)

198

17 The Inspector

(declare (ignore key))
(setf (dll-value (dlil-cell (dll-root object) index)) newvalue))
"FOLLOW LI NKS")))

Inspecting the same abject with the new method defined displays a new tab in the Inspector Follow Links. This showsfive
slots, numbered from 0 to 4 with values" mary" "had" "a" "little" and"| anb".

The following example adds another method to get - i nspect or - val ues which inspects cells rather than their value slots.
The cells are displayed in aFollow Cells tab of Inspector. The setter updates the next - cel | . Use this new mode to inspect
the" 1 anb" cell - that is, double-clink onthe" | anb" cell in the Follow Cells tab - and then set itsnext - cel | dlot to
(make-dll "with" "mint" "sauce").

(i n-package "DLL")

(def met hod | w. get -i nspect or -val ues
((object dil) (rmode (eql 'followcells)))
(let ((root (dil-root object)))

(val ues
(loop for cell =root then (dll-next-cell cell)
for count fromoO
while cell
col l ecting count)
(loop for cell =root then (dll-next-cell cell)
while cell

collecting cell)
nil
#' (1 anmbda (obj ect key index newval ue)
(decl are (ignore key))
(setf (dll-next-cell (dll-cell (dll-root object) index)) newvalue))
"FOLLOW CELLS")))

The extended sentence can now be inspected in thef ol | ow | i nks mode.

199

18 The Symbol Browser

18.1 Introduction

The Symbol Browser allows you to view symbolsin your LispWorks image found by a match on symbol names, in a manner
anal ogous to the Common Lisp function apr opos but with additional functionality.

You can restrict the search to specified packages. You can then filter the list of found symbols based on their symbol name,
restrict it to those symbols with function or variable definitions and so on, and restrict it based on the symbols' accessibility.

The Symbol Browser also displays information about each selected symbol and allows you to perform operations on the
symbol or objects associated with it, including transferring these to other tools in the LispWorks IDE by using standard
commands.

To raise a Symbol Browser, choose Works > Tools > Symbol Browser or click é in the Podium.

Also the editor command Met a+X Apr opos raises a Symbol Browser tool using the supplied substring to match symbol
names.

Also the standard action command Browse Symbols Like is available in Context menus and also in the Expression menu of
editor-based tools. This command raises a Symbol Browser using the current symbol to match symbol names.

18.2 Description of the Symbol Browser

200

http://www.lispworks.com/documentation/HyperSpec/Body/f_apropo.htm

18 The Symbol Browser

The Symbol Browser

1ol Bro - | X

Works File Edit Description Symbols History Help
- -
= RN SE =l =E] ;
Search Settings
Regexp: OPEN v X

Show

Type: | Al v | Accessibility: | Al || [Delect Backages...
Filter v X Matches 130
Home Package Mame a
DEG "PRINT-OPEN-FRAMES* B
DEG COPY-OPEN-FRAME 4
DEG MAKE-OPEN-FRAME
DBEG OPEN-FRAME-
DEG OPEN-FRAME-P -
Description:

Home Package: DEG [Internal]
Name: DBG::GET-OPEN-FRAME
Definitions: DEFUN

Function: #<Function DEG::GET-OPEN-FRAME 41103EBED0OC >

Lambda List: (SP LIMIT)

RN

Documentation:

Build an open frame and skip until we encounter the end of the stack or the

beginning of the frame

Ready.

201

18 The Symbol Browser

The Symbol Browser has five main areas.

18.2.1 Search Settings
The main search setting is the Regexp: box.

Enter astring or regular expression in the Regexp: box and press Ret ur n or click the + button. Thiswill match symbol
names of interned symbolsin asimilar way to apr opos, except that it is a case-insensitive regular expression match.

The remainder of this section describes the other search settings.

18.2.1.1 Packages

By default symbolsin all packages are listed, but you can restrict the search to certain packages by clicking the Select
Packages... button. This raises adialog which you usein just the same way as the Profiler's Selected Packages dialog - see
23.4.1.2 Choosing packages for instructions.

When you have selected packages only those symbols whose home package is amongst the selected packages are shown,
unless Accessibility (see 18.2.1.3 Accessibility) is set to All, in which case symbols inherited by the selected packages are
also shown.

18.2.1.2 Type

By default all symbols found are displayed but you can restrict this to functions, classes, structures, variables, constants,
keywords or others (meaning the complement of all these subsets). If you wish to see, for instance, only those symbolswith a
function or macro definition then select Functions in the Type option pane.

18.2.1.3 Accessibility

You can also restrict the display to just those symbols which are present, externa or internal in their home package. Select
the appropriate item in the Accessibility option pane:

All Show all accessible symbolsin the selected packages.
Present Show all present symbolsin the selected packages.

Externals Only Show only external symbols in the selected packages.
Internals Only Show only internal symbols in the selected packages.

18.2.2 Filter area

The filter area allows you to filter the display of the symbolslist in the same way as other tools. See 3.12 Filtering
information for details.

18.2.3 Symbols list

The symbols list displays the matched symbol names a ongside the name of their home package. You can sort the list by
clicking on the Home Package or Name header at the top of each column.

On GTK+ the foreground text of unselected itemsin the symbols list is colored according to definitions on the symbol, as
follows:

Green fbound, and also declared special

202

http://www.lispworks.com/documentation/HyperSpec/Body/f_apropo.htm

18 The Symbol Browser

Purple fbound, and also a class
Red fbound

Blue declared special

White declared special, and aclass
Orange aclass

Black no definition

Select an item in the symbols list to display information about the symbol in the Description and Documentation areas, or to
perform an operation on it. You may select multiple symbols, but in this case only the description and documentation for the
first selected symbol is displayed.

You can transfer the selected symbol or symbolsto other tools, for example by Symbol > Listen or Symbol > Inspect.

To unintern the selected symbol or symbols, choose Symbol > Unintern....

18.2.4 Description area

When you select an item in the Symbols list, various properties of that symbol are displayed in the Description area as
appropriate. These can include:

Home Package The name of the symbol's home package and an indication of whether it is external or internal.
Name The symbol name

Definitions The dspec class names for any definitions known to the system.

Visible In The names of the packages (other than the home package) that the symbol isvisiblein.
Function The function or macro function.

Lambda List The lambdal list of the function or macro, if known to the system.

Plist The symbol plist, if non-nil.

Value The value of avariable or constant.

Class The class name, representing the class object.

Select an item in the Description list to perform an operation on it. For example, if the symbol has a class definition, you can
select the Class: item and do Description > Listen to transfer the class object to the Listener tool.

18.2.5 Documentation area
When you select an item in the Symbols list, documentation known to the system is displayed in the Documentation area.

Note: the documentation shown is that returned by the Common Lisp function docunent at i on.

18.3 Configuring the Symbol Browser

Using the Symbol Browser Preferences, shown in Symbol Browser Preferences below, you can configure some properties
of thetool. Choose Works > Tools > Preferences... or click & and select Symbol Browser in thelist on the left side of the
Preferences dialog.

203

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

18 The Symbol Browser

Symbol Browser Preferences

General

Sort Package

© Unsorted COMMON-LISP-USER v
() By Name

Show Package Names
(@ By Package

Toolbar
Show Toolbar

To configure the default sort order for the Symbols list, select Unsorted, By Name or By Package under Sort.

To configure the display of package namesin the Description area, alter the Package settings as described in 3.7 Displaying
packages.

You can control whether the Symbol Browser displays the history toolbar by the option Show Toolbar, as described in 3.1.8
Toolbar configurations.

Click oK in the Preferences dialog to see your changes in the Symbol Browser tool and save them for future use.

204

19 The Interface Builder

The Interface Builder helps you to construct graphical user interfaces (GUIs) for your applications. You design and test each
window or dialog in your application, and the Interface Builder generates the necessary source code to create the windows
you have designed.

You then need to add callbacks to the generated code to connect each window to your application routines.

Asyou create each window, it is automatically displayed and updated on-screen, so that you can see what you are designing
without having to typein, evaluate, or compile large sections of source code.

Aswell as making code development significantly faster, the Interface Builder allows you to try out different GUI designs,
making it easier to ensure that the final design best suits your users' needs.

Note: the Interface Builder is intended for testing interface designs and for generation of theinitial versions of the source
code that implements your design. It is not suitable for the complete development of complex interfaces. Eventually you
should work on the source code directly using the Editor tool (see 12 The Editor).

Note: the Interface Builder is available on Windows, Linux, x86/x64 Solaris and FreeBSD platforms only.

19.1 Description of the Interface Builder

The Interface Builder has three views that help you to design a window.
» Thelayouts view is used to specify the elements in each window or dialog of an application.
» The menusview is used to create menus and menu items for each window of an application.
» The code view lets you examine the source code that is automatically generated as you create an interface.

The Interface Builder has its own menu bar, containing commands that let you work with aloaded interface, or any of its
components.

To create an Interface Builder, choose Tools > Interface Builder from the podium.

205

19 The Interface Builder

The Interface Builder

Interface Builder 1

Works File Edit View [nterface Object History Help

oW 0 /ID® ¢ -9 -

Interface: INTERFACE-]]

Layouts | Menus |Code

Interface-1

Layouts |Basic Panes |Text Input Panes | Graph Panes | Editor Panes |Range Panes | Buttons | Pinboard Objects |Interfaces

Column || Filtering || Pinboard Simple Static Tab

Docking Grid Bow Simple Pinboard || Switchable

Ready.

Because the Interface Builder generates source code which uses the CAPI library, this chapter assumes at least a minimum
knowledge of the CAPI. Seethe CAPI User Guide and Reference Manual for details.

A complete example showing you how to use the Interface Builder to design an interface, and how to integrate the design
with your own code, isgiven ininthelast section of this chapter (see 19.9 Example: Using The Interface Builder). You
are strongly advised to work through this example after reading this chapter, or in conjunction with it.

19.2 Creating or loading interfaces

In the context of this chapter, an interface refers to any single window which isused in an application. Thus, an editor, an
Open File dialog, or a confirmer containing an error message are al examples of interfaces. The GUI for acomplete
application is liable to comprise many interfaces. You can load as many different interfaces into the Interface Builder asyou
like, although you can only work on one interface at once. More formally, the classcapi : i nt er f ace isthe superclass of all
CAPI interface classes, which isthe set of classes used to create elements for on-screen display. You can load any code
which defines instances of this class and its subclasses into the Interface Builder.

Once you have invoked the Interface Builder, you can create new interfaces, or load any that have already been saved in a
previous session. You must load or create at |east one interface before you can proceed.

19.2.1 Creating a new interface

When you first start the Interface Builder, anew interfaceis created for you automatically. You can also choose File > New or
click on _] to create anew interface. A blank window, known as the interface skeleton, appears on-screen, as shown in
Skeleton window. The interface skeleton contains no layouts or panes, or menus.

206

19 The Interface Builder

Skeleton window

Interface-1

Works

You can use File > New to create as many interfaces as you want; they are all displayed as soon as you create them. Since
you can only work on one interface at atime, use the History > Items submenu or the ¢ and = toolbar buttons to switch
between different interfaces that are currently loaded in the Interface Builder.

Asan dternative, type the name of an interface directly into the Interface text box and press Ret ur n to create anew
interface, or to switch to an interface which is already loaded.

19.2.2 Loading existing interfaces

In the Interface Builder, choose File > Open... or click 22 to load an existing interface. You can load any CAPI interface,
whether it is one that you have designed using the Interface Builder, or one that has been hand-coded using the CAPI. You
can load as many interfaces as you want, and then use the History > Items submenu to swap between the loaded interfaces
when working on them.

To load one or more existing interfaces:

1. Ensure the Interface Builder is the active window, and choose File > Open....

A file prompter dialog appears.

2. Choose afile of Common Lisp source code.

You should choose afile that contains the source code for at least one CAPI interface. If the file does not contain any
such definitions, a dialog appears informing you of this.

Once you have chosen a suitablefile, for example the LispWorks library file

exanpl es/ capi / buttons/ buttons. |isp, adialog appearslisting al the interface definitions that have been found
in the file, as shown in Choosing which interfacesto load into the I nterface Builder. Thislets you choose which
interface definitions to load into the Interface Builder. By default, all the definitions are selected. You can select as many

207

19 The Interface Builder

or as few of the listed interfaces as you like; the All or None buttons can help to speed your selection. Click Cancel to
cancel loading the interfaces altogether.

Choosing which interfaces to load into the Interface Builder

Interface Builder 1

Load interfaces from file:

Button-Test

Image-Button-Example

Image-Button-Example-2

None All # Cancel @ oK

3. Select just the Button-Test interface and click OK to load it into the Interface Builder.

Note: the File > Open... command in other tools does not display thisdialog. To load an interface definition, ensure the
Interface Builder window is active.

19.3 Creating an interface layout

The default view in the Interface Builder is the layouts view, as shown in Displaying the layoutsin the I nterface Builder.
You use this view to specify the entire GUI, with the exception of the menus. Click the Layouts tab to swap to this view from
any other in the Interface Builder.

208

19 The Interface Builder

Displaying the layouts in the Interface Builder

Interface Builder 1

Works File Edit View |Inteface Object History Help

oA DR &€& -

Interface: BUTTON-TEST]|

Layouts |Menus | Code

Push-Button
Rmu-<Fladiu—Buttun
Check-Button
Push-Button-Panel
eIy —— Default-L t.
etauft-Layou Check-Button-Panel
Radic-Button-Panel

Op

Layouts |Basic Panes | Text Input Panes | Graph Panes | Editor Panes |Range Panes |Buttons | Pinboard Objects |Interfaces

Column || Filtering || Pinboard Simple Static Tab

Docking || Grid Bow Simple Pinboard || Switchable

Ready.

The Interface Builder has three sections in the layouts view.

19.3.1 Interface box

The interface text box displays the name of the current interface; the interface that you are currently working on. Note that
there may be several other interfaces loaded into the Interface Builder, but only one can be current.

To switch to another loaded interface, or to create a new interface, type the name of the interface into this area and press
Ret ur n. You might find it useful to type just afew characters and then press Up or Down to invoke in-place completion. The
interface you specify appears and its layouts are shown in the Interface Builder.

19.3.2 Graph area
Thisareadisplays, in graph form, the CAPI elements of the current interface.

The context menu allows you to insert CAPI elements and al so gives you access to the standard graph commands described in
6 Manipulating Graphs.

By default, the graph islaid out from left to right. The main interface name is shown at the extreme left, and the layouts and
elements defined for that interface are shown to the right. The hierarchy of the layouts (that is, which elements are contained
in which layouts, and so on) isimmediately apparent in the graph.

Anitem selected in the graph can be operated on by commands in the Object menu in the Interface Builder's menu bar. This
menu contains the standard action commands described in 3.8 Per for ming oper ations on selected objects, aswell asa
number of other commands described throughout this chapter.

To remove alayout or pane from your interface definition, select it in the graph area and choose Edit > Cut or pressthe x
toolbar button.

209

19 The Interface Builder

19.3.3 Button panels

At the bottom of the Interface Builder is atab layouts, each tab of which contains a number of buttons. These tabs list the
classes of CAPI elements that can be used in the design of your interface.

 Click the Layouts tab to see the different types of layout that you can use in an interface. Thisisthe default tab and is
displayed when you first switch to the layouts view. All other elements must be contained in layouts in order for them to
be displayed.

» There arefive different types of Panestab: Basic, Text Input, Graph, Editor and Range. Click on each tab to see the
different types of pane that you can use in an interface. Note that Basic Panes includes Divider, allowing you to add
dividers to column and row layouts.

 Click the Buttons tab to see the different types of button that you can use in an interface.
* Click the Pinboard Objects tab to see the different types of pinboard object that you can use in an interface.

 Click the Interfaces tab to see a number of types of pre-defined interface objects that you can use in an interface. These
are interfaces which are already used in the LispWorks IDE, and which may be useful in your own applications.

The precise list of items available depends on the package of the current interface. To change this package, choose Interface
> Package... and specify a package namein the dialog that appears. You must specify a package which already existsin the

Lisp image.

Note: The package of the current interface is not necessarily the same as the current package of the Interface Builder. Like al
other toals, the Interface Builder has its own current package, which affects the display of symbol names throughout the tool;
see 3.7.1 Specifying a package for details. By contrast, the package of the current interface is the package in which the
interface is actually defined. The window elements which are available for the current interface depend on the visibility of
symbolsin that package. By default, both the package of the current interface and the current package of the Interface
Builder are set to CL- USER by defaullt.

An element chosen from any of these areas can be operated on by commands in the Object menu. This menu contains the
standard action commands described in 3.8 Perfor ming oper ations on selected objects.

19.3.4 Adding new elements to the layout

To add anew element to the layout, click the relevant button in any of the tabsin the button panel. The element is added as
the child of the currently selected graph node. If nothing is currently selected, the element is added as the child of the last
selected node.

Because construction of the interface layout is performed by selecting CAPI elements directly, you must be familiar with the
way that these elements are used in the construction of an interface.

For instance, the first element to add to an interfaceislikely to be a CAPI layout element, such as an instance of the

row | ayout classor col um- | ayout class. Not surprisingly, these types of element can be found in the Layoutstab of the
button panel. Elements such as buttons or panes (or other layouts) are then added to this layout. In order to generate CAPI
interfaces, it isimportant to understand that all window elements must be arranged inside alayout element in this way.

When you add an element to the design, two windows are updated:
» Thegraphinthe layout view is updated to reflect the position of the new element in the hierarchy.
» Theinterface skeleton is updated; the element that has been added appears.

When you add an item, an instance of that classis created. By default, the values of certain attributes are set so that the
element can be displayed and the hierarchy layout updated in a sensible way. This typically means that name and title
attributes are initialized with the name of the element that has been added, together with a numeric suffix. For instance, the
first output pane that is added to an interface is called Qut put - Pane- 1. You should normally change these attribute values

210

19 The Interface Builder

to something more sensible, as well as set the values of other attributes. See 19.6 Perfor ming oper ations on obj ects for
details about this.

For a practical introduction to the process of creating an interface using the Interface Builder, see 19.9 Example: Using The
Interface Builder.

19.3.5 Removing elements from a layout

To remove an element from alayout, select it in the graph area of the Layouts view and choose Edit > Cut or pressthe X
toolbar button.

19.3.6 Creating different views

If you are familiar with other tools in the LispWorks IDE, you know the importance of different views for an individual tool.
The Interface Builder itself provides separate views for looking at the layouts, the menu system, and the code produced for
each interface. You can achieve thisin your own applications by adding a tab layouts to your interface.

By default, the first layout created is the default view for the interface. By specifying, elsewhere in the interface, callbacks
which display the other layouts, you can design a mechanism which allows you to switch between views, within the same
interface. Thisishow all the toolsin the LispWorks IDE have been designed; the callbacks specified for menu itemsin the
View menu allow different layouts to be displayed within the same interface.

19.3.7 Inheriting parts of the layout

If you are designing an interface which uses different layouts to produce a number of views, you may want different viewsto
share some elements; for instance, the same list panel, or even awhole layout, can appear in several different views. Thisis
done by creating separate objects of the same type, and then altering the attributes of one so that they match the attributes of
the one which you want to inherit.

For instance, to inherit adisplay pane called DI SPLAY- PANE- 1:
1. Ensure that DI SPLAY- PANE- 1 has already been created in the interface.
2. Select the layout that you want the inherited display pane to appear in.
3. Create anew display pane by selecting the correct item in the Panes area and pressing Return.
4. Change the attributes of the new display pane so that they match the attributes of DI SPLAY- PANE- 1.

The fact that two layouts now contain the same display pane is reflected in the graph. For details on how to change the
attributes of an object, see 19.6.4 Setting the attributes for the selected object.

19.4 Creating a menu system

The menus view of the Interface Builder can be used to define a menu system for the current interface. Click the Menus tab
to switch to the menus view from any other view in the Interface Builder. The Interface Builder appears as shown in
Displaying the menu structure of an interface.

211

19 The Interface Builder

Displaying the menu structure of an interface

Interface Builder 1

Works File Edit WView [nterfface Object History Help

DOW D0 OR € -

Interface: BUTTON-TEST

Layouts | Menus | Code |

Menu-Bar

Button-Test®

Menu Bar Menu ltem
Component || Radio Component || Check Component
Ready.

The menus view has two areas, together with six buttons which are used to create different menu elements. Aswith layouts,
it isimportant to understand how CAPI menus are constructed. See the CAPI User Guide and Reference Manual for details.

19.4.1 Interface box

This box isidentical to the Interface box in the layouts view. See 19.3.1 I nterface box for details.

19.4.2 Graph area

The graph areain the menus view is similar to the graph areain the layouts view. It displays, in graph form, the menu system
that has been defined for the current interface. Menu items are displayed as the children of menus or menu components,
which in turn are displayed as the children of other menus, or of the entire menu bar.

Like the layouts view, a new menu element is added as the child of the currently selected item in the graph, or the last
selected element if nothing is currently selected.

19.4.3 Adding menu bars

A single menu bar is created in any new interface by default. This appearsin the graph area as a child of the entire interface.

If you decide to delete the menu bar for any reason, use the Menu Bar button to create a new one.

212

19 The Interface Builder

19.4.4 Adding menus

To add amenu, click Menu on the button bar at the bottom of the Interface Builder. Each menu must be added as the child of
the menu bar, or as the child of another menu or menu component. In the first case, the new menu isvisible on the main
menu bar of theinterface. Otherwise, it appears as a submenu of the relevant menu.

Newly created menus cannot be selected in the interface skeleton until menu items or components are added to them.

By default, new menus are called MENU- 1, MENU- 2 and so on, and appear in the interface skeleton as Menu-1, Menu -2 and
so on, asrelevant. See 19.6 Perfor ming oper ations on objects for details on how to change these default names.

19.4.5 Adding menu items

To add amenu item to the current interface, click Iitem on the button bar. Each menu item must be added as the child of either
amenu or amenu component. If added as the child of a menu component, new items have atype appropriate to that
component; see 19.4.6 Adding menu components for details.

By default, new menu items are named | TEM 1, | TEM 2, and so on, and are displayed in the interface skeleton as Item-1,
Item-2 and so on, asrelevant. See 19.6 Perfor ming oper ations on objects for details on how to change these default names.

19.4.6 Adding menu components

Menu components are an intermediate layer in the menu hierarchy between menus and menu items, and are used to organize
groups of related menu items, so as to provide a better structure in a menu system.

There are three types of menu component which can be defined using CAPI classes:
 Standard menu components.
» Radio components.

» Check components.

19.4.6.1 Standard menu components

A standard menu component can be used to group related menu commands that would otherwise be placed as direct children
of the menu bar they populate. This offers several advantages.

» Related menu items (such as Cut, Copy, and Paste) are grouped with respect to their code definitions, aswell astheir
physical location in an interface. This encourages alogical structure which makes for a good design.

» Using standard menu components to group related items is particularly useful when re-arranging a menu system. Groups
of items may be moved in one action, rather than moving each item individually.

» Grouping items together using standard menu components adds a separator which improves the physical appearance of
any menu.

Click Component in the button bar to add a standard menu component to the current interface. Menu components must be
added as the children of amenu. Menu components are not visible in the interface skeleton until at least one item or submenu
has been added, using the item or Menu buttons.

Menu items added to a standard menu component appear as standard menu items in that component.

213

19 The Interface Builder

19.4.6.2 Radio components

A radio component is a special type of menu component, in which one, and only one, menu item is active at any time. For
any radio component, capi : i t em sel ect ed awaysreturnst for oneitem, and ni | for al the others. The menu item that
was selected last is the one that returnst .

Radio components are used to group together items, only one of which may be chosen at atime.

Click Radio Component in the button bar of the Interface Builder to add a radio component to the current interface. Radio
components must be added as the children of a menu, and, like standard menu components, are not visible in the interface
skeleton until items have been added. To add an item to aradio component, click item. New items are automatically of the
correct type for radio components. Note that you cannot add a submenu as an item in aradio component.

The way that a selected radio component is indicated on-screen depends on the operating system or window manager you are
running; for example it may be a dot or tick to the left of the selected item. On some systems, adiamond button is placed to
the left of every item, and thisis depressed for theitem which is currently selected.

Like standard menu components, separators divide radio components from other items or componentsin a given menu.

19.4.6.3 Check components

Like radio components, check components place constraints on the behavior of their child items when selected. For each item
in a check component, capi : i t em sel ect ed either returnst or ni | , and repeatedly selecting a given item toggles the
value that isreturned. Thus, check components allow you to define groups of menu items which can be turned on and off
independently.

An example of acheck component in the LispWorks IDE are the commands in the Tools > Customize menu, available from
any window in the environment.

Click Check Component in the button bar of the Interface Builder to add a check component to the current interface. Like
other components, check components must be added as the children of a menu, and are not visible until items have been
added. Usethe Item button to add an item to a check component; it is automatically given the correct menu type. Note that
you cannot add a submenu as an item in aradio component.

Like radio components, the way that check components are indicated on-screen depend on the window manager or operating
system being used. A tick to the left of any items which are "switched on" istypical. Alternatively, a square button to the left
of check component items (depressed for items which are on) may be used.

19.4.7 Removing menu objects

To remove a menu object from your interface definition, select it in the Graph area of the Menus view and choose Edit > Cut
or pressthe % toolbar button.

19.5 Editing and saving code

Asyou create an interface in the Interface Builder, source code for the interface is generated. You can use the code view to
examine and, if you want, edit this code. You can aso save the source code to disk for use in your application. This section
discusses how to edit and save the code generated by the Interface Builder, and discusses techniques which let you use the
Interface Builder in the most effective way.

214

19 The Interface Builder

19.5.1 Integrating the design with your own code

Asyour GUI evolves from design into the implementation phase, you will need to integrate code generated by the Interface
Builder with your own code to produce a working application.

At one extreme, you can attempt to specify the entire GUI for an application using the Interface Builder: even callbacks,
keyboard accelerators for menu items, and so on. Thisway the source code for the entire GUI would be generated
automatically. However, thisis not the recommended approach.

Instead you should use the Interface Builder for the basic design and initial code generation only. Once you have created an
interface skeleton for your window or dialog that you are happy with, augment the automatically-generated source code with
hand-written code. At this stage, you will use the Editor tool, rather than the Interface Builder, to develop that window or
dialog.

19.5.2 Editing code

Click the Code tab to switch to the code view. You can use this view to display and edit the code that is generated by the
Interface Builder. The Interface Builder appears as shown in Displaying sour ce code in the I nterface Builder.

Displaying source code in the Interface Builder

Interface Builder 1

Works File Edit WView [nterfface Object History Help

=A== E L€ &9 -

Interface: BUTTON-TEST

Layouts | Menus | Code

Update
{capi:define-interface button-test () -
O
(push-button
capl:push-button
"button-selection-callback

Ready.

Like the other views in the Interface Builder, an Interface: box at the top of the code view displays the name of the current
interface. See 19.3.1 Interface box for details.

Therest of thisview is dedicated to an editor window that displays the code generated for the interface. Like other editor
windows in the LispWorks IDE, al the keyboard commands available in the built-in editor are availablein the Code area.

215

19 The Interface Builder

19.5.3 Saving code

There are several ways to save the code generated by the Interface Builder into files of source code. Any filesthat you save
are also displayed as buffersin the editor.

Choose File > Save or click [to save the current interface. If it has already been saved to afile, the new version is saved to
the samefile. If the interface has not been saved before, you are prompted for a filename. After saving, thefileisdisplayed
in the editor.

Choose File > Save As... to save the current interface to a specific file. This command always prompts you for afilename; if
the interface has not been saved before, this command isidentical to File > Save, and if the interface has already been saved,
this command saves a copy into the file you specify, regardiess of the fileit was originally saved in. After saving, thefileis
displayed in the editor.

Choose File > Save All to save al of the interfaces that have been modified. A dialog allows you to specify precisely which
interfaces to save. Choosing this command is analogous to choosing File > Save individually for each of the interfaces you
want to save. If there are any interfaces which have not been saved previously, you are prompted for filenames for each one.

Choose File > Revert to Saved to revert the current interface to the last version saved.

Choose File > Close to close the current interface. You are prompted to save any changesif you have not already done so.
The interface name is removed from the History > Items submenu.

Individual interface definitions are saved in an intelligent fashion. You can specify the same filename for any number of
interfaces without fear of overwriting existing data. Interface definitions which have not already been saved in agiven file are
added to the end of that file, and existing interface definitions are replaced by their new versions. Source code which does
not relate directly to the definition of an interface isignored. In thisway, you can safely combine the definitions for several
interfacesin onefile, together with other source code which might be unrelated to the user interface for your application.

Conversely, when loading interfaces into the environment (using File > Open or .2), you do not have to specify filenames
which only contain definitions of interfaces. The Interface Builder scans a given file for interface definitions, loads the
definitions that you request, and ignores any other code that isin the file. See 19.2.2 L oading existing interfaces for details
on loading interfaces into the Interface Builder.

This approach to saving and loading interface definitions ensures that your working practices are not restricted in any way
when you use the Interface Builder to design a GUI. You have complete control over the management of your source files,
and are free to place the source code definitions for different parts of the GUI wherever you want; the Interface Builder can
load and save to the files of your choice without failing to load interface definitions and without overwriting parts of the
source code which do not relate directly to the GUI.

19.6 Performing operations on objects

There are alarge number of operations you can perform on any object selected in the graph of either the layouts view or the
menus view. These operations allow you to refine the design of the current interface.

The techniques described in this section apply to an object selected in either the layouts view or the menus view. Any
changes made are automatically reflected in both the Interface Builder and the interface skeleton.

19.6.1 Editing the selected object

Asin any other tool in the LispWorks IDE , you can use the commands in the Edit menu to edit the object currently selected
in any graph of the Interface Builder. See 3.3 Perfor ming editing functions for full details on the commands available.

216

19 The Interface Builder

19.6.2 Browsing the selected object

Asin other tools, you can transfer any object selected in the graph into a number of different browsers for further
examination. The standard action commands that let you do this are available in the Object menu. See 3.8 Performing
operations on selected objects for details.

19.6.3 Rearranging components in an interface

Rearranging the components of an interface in the most appropriate way is an important part of interface design. This might
involve rearranging the layouts and window elements in an interface, or it might involve rearranging the menu system.

The main way to rearrange the components of an interface (either the layouts or the menu components) is to use the cut, copy
and paste functions available, as described below.

To move any object (together with its children, if there are any):

1. Select the object in agraph in the Interface Builder (either the layouts view or the menus view, depending on the type of
objects you are rearranging).

2. Choose Edit > Cut Or press %.

The selected object, and any children, are transferred to the clipboard. The objects are removed from the graph in the
Interface Builder, and the interface skeleton.

3. Select the object that you want to be the parent of the object you just cut.

You must make sure you select an appropriate object. For instance, in the Layouts view you must make sure you do not
select a window element such as a button panel or output window, since window elements cannot have children. Instead,
you should praobably select alayout.

4. Choose Edit > Paste or press .

The objects that you transferred to the clipboard are pasted back into the interface design as the children of the newly selected
object. The changeisimmediately visible in both the graph and the interface skeleton.

Note: You can copy whole areas of the design, rather than moving them, by selecting Edit > Copy or press = instead of Edit
> Paste. Thisisuseful if you have anumber of similar areasin your design.

The menu commands Object > Raise and Object > Lower can be used to raise or lower the position of an element in the
interface. This effects the position of the element in the interface skeleton, the layout or menu hierarchy, and the source code
definition of the interface. Note that these commands are available from the menu bar in the Interface Builder, rather than
from the podium.

19.6.4 Setting the attributes for the selected object

Choose Object > Attributes from the Interface Builder's menu bar to display the Attributes dialog for the selected object. This
isshown in Setting the attributes of the selected object. You can also double-click on an object to display this dialog.

The Attributes dialog lets you set any of the attributes available to the selected object, such as symbol names, titles, and
callbacks. This gives you a high degree of control over the appearance of any object in the interface.

217

19 The Interface Builder

Setting the attributes of the selected object

Interface Builder 1
Attributes for Check-Button-Panel:

' Eﬂdvanced Title | Callbacks | Geometry | Style

Force Window Handle:

Help Key:

Help Keys:

Images:

Indicator:

ltems: |"check 1" "check 2" "check 3")

Key Function:

Layout Args:

Layout Class:
Name: CHECK-BEUTTON-PANEL

Names:

Pane Menu:

Print Function:

Reader:

Scroll If Mot Visible P:

% Cancel

The precise list of attributes displayed in the dialog depends on the class of the object that you selected in the graph of the
Interface Builder.

To set an attribute, type its value into the appropriate text box in the Attributes dialog. Click OK to dismiss the Attributes
dialog when you have finished setting attribute values.

Because of the large number of attributes which can be set for any class of abject, the Attributes dialog shows the attributesin
six general categories, asfollows:

» Basic attributes.
» Advanced attributes.
« Title attributes.

» Cadllbacks attributes.

218

19 The Interface Builder

» Geometry attributes.

» Style attributes.

19.6.4.1 Basic attributes

These are the attributes that you are most likely to want to specify new values for. Thisincludes the following information,
depending on the class of the selected object:

» The name of the object.
» Theitemsavailable (for list panels).
» The orientation and borders (for layouts).

» Thetext representation (for menu items).

19.6.4.2 Advanced attributes

This category lets you specify more advanced attributes of the selected object, such asits property list.

19.6.4.3 Title attributes

This category lets you specify the title attributes of the selected object. These attributes affect the way an object istitled on-
screen.

19.6.4.4 Callbacks attributes

This category lets you specify any of the callback types available for the selected abject. Many objects do not require any
callbacks, and many require several.

19.6.4.5 Geometry attributes

This category lets you control the geometry of the selected object, by specifying any of the available height and width
attributes. Geometry attributes are not available for menu objects.

19.6.4.6 Style attributes

This category lets you specify advanced style settings for the selected object. Thisincludes the following attributes:
» Thefont used to display itemsin alist.
» The background and foreground colors of an object.

e The mnemonic used for amenu item.

19.7 Performing operations on the current interface

You can perform a number of operations on the current interface, using the commands in the Interface menu in the Interface
Builder.

219

19 The Interface Builder

19.7.1 Setting attributes for the current interface

Choose Interface > Attributes to set any of the attributes for the current interface. An Attributes dialog similar to that shown
in Setting the attributes of the selected object appears. You set attributes for the current interface in exactly the same way
asyou do for any selected object in the interface. See 19.6.4 Setting the attributes for the selected object for details.

19.7.2 Displaying the current interface

As already mentioned, an interface skeleton is automatically displayed when you load an interface into the Interface Builder,
and any changes you make to the design are immediately reflected in the skeleton. There are al'so a number of commands
which give you more control over the way that the interface appears on-screen as you work on its design.

Choose Interface > Raise to bring the interface skeleton to the front of the display. This command is very useful if you have a
large number of windows on-screen, and want to locate the interface skeleton quickly.

Choose Interface > Regenerate to force a new interface skeleton to be created. The existing interface skeleton is removed
from the screen and anew one appears. This command is useful if you have changed the size of the window, and want to see
what the default sizeis; thisis especially applicableif you have atered the geometry of any part of the interface while
specifying attribute values.

Regenerating the interface is also useful if you set an interface attribute which does not cause the interface skeleton to be
updated automatically. This can happen, for instance, if you change the default layout of the interface, which you might want
to specify if an interface has several views.

Many interfacesin a GUI are used in the final application as dialogs or confirmers. For such interfaces, the interface skeleton
is not necessarily be the most accurate method of display. Choose Interface > Display as Dialog or Interface > Confirmer to
display the current interface as a dialog or as a confirmer, as appropriate. Dialogs are displayed without a menu bar, and with
minimal window decoration, so that the window cannot be resized. Confirmers are similar to dialogs, but have OK and
Cancel buttons added to the bottom of the interface. To remove adiaog, click inits Close box.

19.7.3 Arranging objects in a pinboard layout

Most types of layout automatically place their children, so that you do not have to be concerned about the precise
arrangement of different objectsin an interface. Pinboard and static layouts, however, allow you to place objects anywhere
within the layout.

Objects which are added to a pinboard layout using the Interface Builder have borders drawn around them in the interface
skeleton. You can interactively resize and place such objects by selecting and dragging these borders with the mouse.

When you have rearranged the objects in a pinboard layout to your satisfaction, choose Interface > Display Borders. This
turns off the border display, allowing you to see the appearance of the final interface.

Note: You can only move and resize objects in a pinboard layout when borders are displayed in the interface skeleton.
Choosing Interface > Display Borders toggles the border display.

19.8 Performing operations on elements

You can transfer any element selected in either the Layouts or Menus views into a number of different browsers for further
examination. Thisis done using the standard actions commands that are available in the Object menu. See 3.8 Performing
oper ations on selected objectsfor details. These commands are a useful way of finding out more information about the
CAPI objects you use in an interface.

220

19 The Interface Builder

19.9 Example: Using The Interface Builder

This example shows you how to use the Interface Builder to design asimpleinterface. It explains how to create the layout
and the menu system, and demonstrates some of the attributes that you can set. Finally, the interfaceis saved to afile, and
combined with some other simple code to produce a working example. You are strongly advised to read the preceding
sections of this chapter before (or in conjunction with) this section. It isalso useful, though not essential, if you are familiar
with the editor (12 The Editor), the listener (20 The Listener), and Common Lisp systems.

Thefinal interface created is shown in Exampleinterface. It consists of a column layout which contains a graph pane, a
display pane, and alist panel.

Example interface

Example Interface

Works Selection

4-{8
2'<5_<<?u

11

12
o
?-<15

1=

Selection: Six selected
One —
Two
Three
Four
Five
Six
Seven
Eight]

Any select action performed in either the graph pane or the list panel is described in the display pane. This includes the
following actions:

» Selecting any item.
» Deselecting any item.

 Extending the selection (by selecting more than one item).

221

19 The Interface Builder

Double-clicking any item in either the graph pane or the list panel displays a dialog which shows which item you double-
clicked.

Lastly, there are menu commands available which display, in adialog, the current selection in either pane. Choose Selection
> Graph to see the currently selected items in the graph pane, and choose Selection > List Panel to see the currently selected
itemsin thelist panel.

19.9.1 Creating the basic layout

This section shows you how to create the basic layout for your interface, without specifying any attributes. Normally, this
stage would take you only afew seconds. The processis described in detail here, to illustrate the way that the Interface
Builder ensures that the most appropriate item is selected in the graphs of both the layouts and menus views, so asto
minimize the steps you need to take when creating an interface.

1. Create an Interface Builder, if you do not already have one.

2. Choose File > New or click on the _] toolbar button.
A new, empty, interface skeleton appears.
3. If the layouts view is not displayed, click the Layouts tab in the Interface Builder.

To begin, you need to add the main column layout to the interface using the buttons panels at the bottom of the Interface
Builder. The Layouts tab at the bottom of the Interface Builder (as distinct from the Layouts tab you use to switch to the
layouts view), lists the different types of layout that you can add to an interface.

4. Click Column in the button panel.

A column layout object is added as a child of the interface object. Nothing appears in the interface skeleton yet, sincea
column layout is a container for other window objects, and cannot itself be displayed. Note that the column layout
remains selected in the layout graph. Thisis because column layouts are objects which can themselves have children,
and the Interface Builder assumes that you are going to add some children next.

5. In the button panel, click the Graph Panes tab, and then click Graph to add a graph pane to the interface.
The graph pane object is added as the child of the column layout, and a graph pane appears in the interface skeleton.
6. Next, click the Basic Panes tab and then click Display.

7. Next, click List Panel.

The objects that you specify are added to the interface, and the interface skeleton is updated accordingly. Note that the
column layout object remains selected throughout. You have now created the basic layout for the interface.

Next, suppose that you decide to add atitle to the left of the display pane. You might want to do this to make it clear what
information is being shown in the display pane.

To do this, you can create a new row layout, add atitle pane to it, and then move the existing display pane into this new row-
layout. In addition, you must reorganize some of the elements in the interface.

1. Ensure that Col urm- Layout - 1 isstill selected in the Layout hierarchy area.
The new row layout needs to be added as a child of the column layout.

2. In the button panel at the bottom of the Interface Builder, click the Layouts tab to display the available layouts once
more.

3. Click on Row.

Notice that the new row layout remains selected, ready for you to add objectsto it.

222

19 The Interface Builder

4. Click the Basic Panes tab again, and click Title.
Next, you must move the display pane you have aready created, so that it is contained in the new row layout.

5. Inthe Layout hierarchy area, select Di spl ay- Pane- 1 and choose Edit > Cut.

6. Select Row Layout - 1 and choose Edit > Paste.

Theitems have already been placed in the row layout in the positions you want them. However, the row layout itself has
been added to the bottom of the interface; you want it to be in the same position as the display pane you initially created.
To do this, move the list panel to the bottom of the interface.

7. Select Li st - Panel - 1 and choose Object > Lower from the menu bar on the Interface Builder itself.

You have now finished creating the layout for the example interface. The next step isto name the elements of the interface in
asensible fashion.

19.9.2 Specifying attribute values

Asyou have already seen, the Interface Builder assigns default names such as Row Layout - 1 to the elements you add to an
interface; you usually want to replace these with your own names. In addition, there are probably titles that you want to add
to the interface; you can see the default titles that have been created by looking at the interface skeleton. The next stage of
the example shows you how to change these default names and titles.

Changing the name or title of an element is actually just a case of changing the value assigned to an attribute of that element,
as described in 19.6.4 Setting the attributesfor the selected object. You would normally assign values to a number of
different attributes at once, rather than concentrating on the names and titles of elements. The exampleis structured in this
wal to give you an idea of the sort of working practices you might find it useful to adopt when generating interface code.

To recap, the layout hierarchy of the example interface is shown in Layout hierarchy of the example interface. To ensure
that you can understand this layout easily in the future, it isimportant to assign meaningful names and titles to the elements it
contains now.

Layout hierarchy of the example interface

Graph-Pane-1

Interface-1® Column-Layout-1% Row-Layout-1 -{’:T'TIE“P ane-1

Display-Pane-1
List-Panel-1
1. Select thel nt er f ace- 1 object and then use the Interface > Attributes menu item to show the attributes dialog.

The Attributes dialog appears as shown in Attributes dialog for the example interface.

223

19 The Interface Builder

Attributes dialog for the example interface

Interface Builder 1

Attributes for Interface-1:

Basic | Advanced | Title | Callbacks | Geometry | Style

..................

External Border: ad

Force Window Handle:

Help Key:
Layout: "COLUMN-LAYOUT-1

Message Area:
Name: INTERFACE-1

Override Cursor:

Owner:

Pane Menu:

Scroll If Not Visible P:

S,

Title: “Interface-1"

Title Font:

Toolbar ltems:

Toolbar Name:

Toolbar States: w

® Cancel o OK

Notice that the Name attribute of the interface has the value | NTERFACE- 1, and the Title attribute has the value
"Interface-1".

Note: If thisis not the first interface you have created in the current session, the number is different.
2. Delete the value in the Name: text box, and typei b- exanpl e.
3. Deletethe valuein the Title: text box, and type " Exanpl e | nterface".

4. Click OK to dismiss the Attributes dialog and update the interface.

The name of the interface is now displayed as| b- Exanpl e in the Layout hierarchy area, and the title of the interface
skeleton changesto Exanpl e I nterface.

Note: Caseis not significant in the Name attribute, because it isa Common Lisp symbol, but it issignificant in the Title
attribute, which isastring.

224

19 The Interface Builder

5. Select the Col unm- Layout - 1 element. Double-click to display its Attributes dialog (you will now find this more
convenient than using the Object > Attributes menu item). Change the value of its Name attribute to mai n- | ayout and
click OK.

Now change the names of the other objectsin the interface.

6. Select the graph pane and change its Name attribute to gr aph, and its Interaction attribute to : ext ended- sel ecti on.
Click OK.

7. Select the list panel and change its Name attributeto | i st , and its Interaction attribute to : ext ended- sel ecti on. Do
not click OK yet.

The value of the Interaction attribute allows you to select several items from the list panel and the graph pane, using the
appropriate method for your platform.

8. Change the Items attribute of the list panel to the following list of strings:

"("One" "Two" "Three" "Four" "Five" "Six" "Seven" "Eight")

9. Click OK.
The row layout you created contains objects which are used solely to display information.

10Select the row layout object and change its Name attribute to di spl ay- | ayout .

11Change the Adjust attribute of di spl ay- | ayout to: cent er. Click OK.

This value of the Adjust attribute centers the title pane and the display pane vertically in the row layout, which ensures
their texts line up along the same baseline.

In the working example, the di spl ay- | ayout object isgoing to show information about the current selection, so you
need to change the names and titles of the objects it contains accordingly.

12Select the title pane and change its Name attribute to sel ecti on-ti t| e andits Text attribute to " Sel ecti on: ". Click
OK.

13Select the display pane and change its Name attributeto sel ect i on- t ext , and its Text attribute to
"Di spl ays current sel ection". Click OK.

This specifies atext string that is displayed when the interfaceisinitially created. This string disappears as soon as you
perform any action in the interface.

The layout hierarchy is now as shown in Layout hierarchy with names specified. The names that you have assigned to the
different objects in the interface make the purpose of each element more obvious.

Layout hierarchy with names specified

Graph
Selection-Title
Selection-Text

|b-Example® Main-Layout® Display-Lay uur'(_:

List

225

http://www.lispworks.com/documentation/HyperSpec/Body/a_list.htm

19 The Interface Builder

19.9.3 Creating the menu system

Next, you need to create a menu system for the example interface. This section shows you how to create the basic objects
which compriseit.

1

Click the Menus tab in the Interface Builder to switch to the menus view.

A menu bar is created automatically when you create a new interface. To create the menu system for the example
interface, you need to add a menu which contains two items.

. Select the Menu- Bar object in the Menu hierarchy area.

. Click the Menu button (near the bottom of the Interface Builder) to create the menu, then click Item twice to create the

two itemsin the menu.

Notice that, asin the layouts view, an object remains selected if it can itself have children. This meansthat creating the
basic menu structure is avery quick process.

Next, you need to name the objects you have created. Aswith the layouts, thisis achieved by specifying attribute values.

. Make sure that the Menu- 1 menu is still selected, and use the Object > Attributes menu command to display its

Attributes diaog.

. Changeits Name attribute to sel ect i on- menu. Do not click OK yet.

Aswell as specifying the Name attribute for the menu you created, you need to change the Title attribute of each object
you created. To do this, you must ensure that the appropriate attribute categories are displayed in the Attributes dialog.

. Click on the Title tab in the Attributes dial og.

The Attributes dialog changes to appear as shown in Displaying title attributesfor a menu.

226

19 The Interface Builder

Displaying title attributes for amenu

Interface Builder 1

Attributes for Menu-1:
Basic |Advanced | Title | Callbacks | Geometry | Style

Mnemonic Title:
Title: | "Menu-1"

® Cancel || « OK

.................................

7. Inthe Title tab view of the Attributes dialog, change the Title attributeto " Sel ect i on". Click OK.

The Title attribute is used to specify the title of the menu that appears in the interface itself; note the change in the
interface skeleton.

Next, you need to change the attributes of the two menu items.
8. Selectthe" 1t em 1" object and press Ret ur n.
9. In the Attributes dialog, change the Title attribute to " Gr aph" and the Name attribute to gr aph- command. Click OK.

10Double-click onthe" It em 2" object to display its Attributes dialog and change the Title attribute to " Li st Panel "
and the Name attributeto | i st - panel - command. Click OK.

You have now finished the basic definition of the menu system for your exampl e interface.

227

19 The Interface Builder

19.9.4 Specifying callbacks in the interface definition

The interface that you have designed contains a complete description of the layouts and menus that are available, but does not
yet specify what any of the various elements do. To do this, you need to specify callbacks in the interface definition. Asyou
might expect, thisis done by setting attribute values for the appropriate elements in the interface.

In this example, the callbacks that you supply are callsto other functions, the definitions for which are assumed to be
available in a separate source code file, and are discussed in 19.9.6 Defining the callbacks. Note that you do not have to take
this approach; you can just as easily specify callback functions within the interface definition itself, using lambda notation.

It is up to you whether you do this within the Interface Builder, or by loading the code in the editor. If you choose the former,
note that it may be easier to use the code view, rather than typing lambda functions into the Attributes dialog.

19.9.4.1 Specifying layout callbacks and other callback information

This section shows you how to specify all the callbacks necessary for each element in the example interface, together with
other attributes that are required for correct operation of the callback functions. You need to specify attribute values for the
display pane, the list panel and the graph pane.

1. If necessary, click the Layouts tab at the top of the Interface Builder to display the layouts view.
2. Select Sel ecti on- Text inthelayout hierarchy and display the Attributes dialog.

3. Set the Reader attributeto sel ecti on-reader and click OK.
This reader alows the display pane to be identified by the callback code.
For the list panel, you need to specify four callbacks and a reader.

4. Select Li st inthe layout hierarchy and display its Attributes dialog.

5. Set the Reader attributeto | i st - r eader . Do not click OK yet.

Like the display pane, this reader is necessary so that the list panel can beidentified by the callback code.

6. Next, you need to specify the following four types of callback (make sure you click the Callbacks tab):

Selection callback The function that is called when you select alist item.

Extend callback The function that is called when you extend the current selection.
Retract callback The function that is called when you deselect alist item.

Action callback The function that is called when you double-click on alist item.

Set the following attributes of the list panel:

Selection-Callback to' updat e- sel ecti on- sel ect
Extend-Callback t0o' updat e- sel ecti on- ext end
Retract-Callback t0' updat e- sel ecti on-retract
Action-Callback to' di spl ay- sel ecti on-in-di al og

Click OK when done.

7. Select the Gr aph graph pane and display its Attributes dialog.

For the graph pane, you need to set the same four callbacks, aswell as areader, and two other attributes that are
important for the callback code to run correctly.

8. Set the following attributes of the graph pane.

Selection-Callback to' updat e- sel ecti on- sel ect
Extend-Callback t0' updat e- sel ecti on- ext end

228

19 The Interface Builder

Retract-Callback t0' updat e- sel ecti on-retract
Action-Callback to' di spl ay- sel ecti on-in-di al og

9. Set the Reader attributeto gr aph-r eader.

10Before you set the next callback, evaluate this form:

(defun children-function (x)
(when (< x 8)
(list (* x2) (1+ (* x 2)))))

Now set the Children-Function attributeto ' chi | dr en-f uncti on.

The children function defines what is drawn in the graph, and so isvital for any graph pane. It is called when displaying
the prototype interface, so it is best to define it before setting this attribute.

11Click OK to dismiss the Attributes dialog..

19.9.4.2 Specifying menu callbacks

The callbacks that are necessary for the menu system are much simpler than for the layouts; the example interface only
contains two menu commands, and they only require one callback each.

1. Click the Menus tab to switch to the menus view.

2. Choosethe" Gr aph" menu item, display its Attributes dialog and change the Callback attribute to
" di spl ay- gr aph-sel ecti on. Click OK.

3. Choosethe" Li st Panel " menuitem, display its Attributes dialog and change the Callback attribute to
" di spl ay-1ist-sel ection. Click OK.

19.9.5 Saving the interface

If you have followed this example from the beginning, the interface is now completely specified. You can now save the
source code definitionin afile.

1. Choose File > Save or click [to save the interface definition. Choose a directory in the dialog that appears, and specify
thefilenamei b- exanpl e. | i sp inthe "File name" text box.

Thefilei b- exanpl e. | i sp isdisplayed in an Editor tool.

19.9.6 Defining the callbacks
This section shows you how to create the callback functions you need to define in order to complete the working example.
1. In an Editor tool, choose File > New or click | to create anew file.

2. ChooseFile > Save or click i to savethefile. Saveit in the same directory you saved i b- exanpl e. | i sp, and call this
new filei b- cal | backs. | i sp.

3. In the editor, specify the package for the callback definitions by typing the following into thei b- cal | backs. I'i sp file:
(i n-package " COWDON- LI SP- USER")
4. Enter the function definitions given in the rest of this section.

229

19 The Interface Builder

5. Choose File > Save or click [to save the file when you have entered all the function definitions.
The functions that you need to define in thisfile are divided into the following categories:

* Callbacks to update the display pane.

» Callbacksto display datain adiaog.

+ Callbacks for menu items.

» Other miscellaneous functions.

19.9.6.1 Callbacks to update the display pane

One main function, updat e- sel ect i on, servesto update the display pane whenever selections are made in the graph pane
or the list panel.

(defun update-selection (type data interface)
(setf (capi:display-pane-text (selection-reader interface))
(format nil "~A ~A" data type)))

The following three functions are the callbacks specified whenever a select, retract or extend action is performed in either the
list panel or the graph pane. Each function is named according to the type of callback it isused for, and it simply calls
updat e- sel ect i on with an additional argument denoting the callback type.

(defun updat e-sel ection-sel ect (& est args)
(apply 'update-selection "selected" args))

(defun update-sel ection-retract (& est args)
(apply 'update-selection "desel ected" args))

(defun updat e-sel ection-extend (& est args)
(apply 'update-sel ection "extended" args))

19.9.6.2 Callbacks to display data in a dialog

Aswith updat e- sel ecti on, one main function servesto display the data from any action in adialog.

(defun display-in-dialog (type data interface)
(capi : di spl ay- message
"~S: ~A ~S"
(capi:interface-title interface) type data))

Thefunction di spl ay- sel ecti on-i n-di al og isthe action callback for both the graph pane and the list panel. It calls
di spl ay-i n-di al og, specifying one of the required arguments.

(defun di spl ay-sel ection-in-dialog (& est args)
(apply 'display-in-dialog "selected" args))

Note: Although only one action callback is specified in the example interface, the relevant functions have been defined in this
modular way to allow for the possibility of extending the interface. For instance, you may decide at alater date that you want
to display the information for an extended selection in adialog, rather than in the display pane. You could do this by defining
anew callback which callsdi spl ay-i n-di al og, passing it an appropriate argument.

230

19 The Interface Builder

19.9.6.3 Callbacks for menu items

Both menu items in the interface need a callback function. Aswith other callback functions, these are specified by defining a
general callback, di spl ay- pane- sel ecti on, which displays, in adialog, the current selection of any pane.

(defun displ ay- pane-sel ection (reader data interface)
(declare (ignore data))
(capi: display-nmessage "~S: ~S sel ect ed"”
(capi : capi - obj ect - nane
(funcall reader interface))
(capi: choice-sel ected-itens
(funcall reader interface))))

The following two functions call di spl ay- pane- sel ect i on, passing the reader of a pane as an argument. These functions
are specified as the callbacks for the two menu items.

(defun di spl ay-graph-sel ection (& est args)
(apply 'display-pane-sel ection 'graph-reader args))

(defun display-list-selection (& est args)
(apply 'display-pane-selection 'list-reader args))

Aswith the other callback functions, specifying the callbacksin thisway allows for easy extension of the example.

19.9.6.4 Other miscellaneous functions

Graph panes require a function which is used to plot information, called the children function. The value of the ROOTS
attribute of a graph is passed as an argument to the children function in order to start the plot. The example interface uses the
following simple children function. You already defined thisif you have followed the example, but add it also in

i b-cal |l backs.lisp:

(defun children-function (x)
(when (< x 8)
(list (* x 2) (1+ (* x 2)))))

Note: The ROOTS attribute of a graph pane has a default value of (1) . Thisis generated automatically by the Interface
Builder.

Finally, thefunctiont est - i b- exanpl e isused to create an instance of the example interface.

(defun test-ib-exanple ()
(capi:display (nmake-instance 'ib-exanple
: best - hei ght 300
:best-wi dth 200)))

19.9.7 Creating a system

If you have followed this example from the beginning, the interface and its callbacks are now completely specified. Next, you
can create a Common Lisp system which integrates the interface definition with the callback code.

1. Choose File > New or click |_1. This creates a new, unnamed file in the editor.

2. Typethefollowing form into this new file:

(def system i b-test
(: package "CL-USER")

231

19 The Interface Builder

:menbers ("ib-call backs" "ib-exanple"))

Thisform creates asystem called i b- t est that contains two members; i b- exanpl e. | i sp (thefile containing the
interface definition) and i b- cal | backs. | i sp (thefile containing the callback code).

3. Choose File > Save or click [to save the new file. Saveit in the same directory that you saved thei b- exanpl e. | i sp
andi b-cal | backs. | i sp files, and call thisfiledef sys. | i sp.

19.9.8 Testing the example interface
You have now finished specifying the example interface and its callback functions, so you can test it.

1. ChooseFile > Save or click [to savei b- exanpl e. | i sp, i b-cal | backs. |i sp, anddef sys. | i sp if you have not
already done so.

Next, you need to load thei b- t est system into the environment.
2. In the editor, make sure that thefile def sys. | i sp isvisible, and choose File > Load to load it and define the system.

3. Inthe Listener, type the following form.
(1 oad-system 'ib-test)

Thei b- t est system, together with its members, isloaded.

4. To test the interface, type the following form into the listener.
(cl-user::test-ib-exanple)

A fully functional instance of the example interface is created for you to experiment with, as shown in Example interface.

232

20 The Listener

The Listener isatool that lets you evaluate Common Lisp expressions interactively and immediately seetheresults. Itis
useful for executing short pieces of Common Lisp, and extensive use is made of it in the examples given in this manual. This
chapter describes all the facilities of the Listener.

20.1 The basic features of a Listener

A Listener is created automatically when you start the LispWorks IDE. You can also create a Listener yourself by choosing
Works > Tools > Listener or click on «, in the Podium.

Listener

Taks. Iain area. Break Comlirue Abord Backirace GUI debugger

b
CL-USER 1 » (hreak"-.l'"test"}
ll"-
test
1 {eontinue) Return from break).
2 {abort) Return to level 0.

3 Beturn to top loop level 0.

Type b for backtrace or ;c <opifion number: o procesds

Type :bug-form "<subject>" for al bug report template o=
r :7 for other options.

CL-USER 2 :

Debugger Echo area Prewious Mexi Friri Fird
promipd frams frame bindngs source

In the Listener view, the main area of the Listener contains a prompt at the left side of the window.

Rather like the command line prompt in aterminal window, this prompt helps you identify the point in the Listener at which
anything you typeis evaluated. It may also contain other useful information, by default thisis the current package and the
current number in the command history list. If your Listener isin the debugger, as Listener, the prompt also contains a colon
followed by an integer indicating how many debugger levels have been entered.

233

20 The Listener

In this chapter, the prompt is shown in most examples simply as PROMPT >.

You can click the Output tab to display the output view of the Listener; thisview displays any output that is created by the
Listener, or any child processes created from the Listener..

To familiarize yourself with the Listener, follow the instructions in the rest of this chapter, which forms a short lesson. Note
that, depending on the nature of the image you are using, and the configuration that the image has been saved with, the
messages displayed by Lisp may be different to those shown here.

20.2 Evaluating simple forms

1. Typethe number 12 at the prompt, and press Ret ur n.

In general, assume that you should press Ret ur n after typing something at the prompt, and that you should type at the
current prompt (that is, the one at the bottom of the screen). In fact, the latter is not always necessary; 20.10 Execute
mode describes how to move the cursor to different places, and thus you may not always be on the current prompt.

Any Common Lisp form entered at the prompt is evaluated and its results are printed immediately below in the Listener.

When Common Lisp evaluates a number, the result isthe number itself, and so 12 is printed out:

PROMPT > 12
12

PROMPT >

When results are printed in the Listener, they start on the line following the last line of input. The 12 has been printed
immediately below the first prompt, and below that, another prompt has been printed.

2. Type* at the current prompt.

PROMPT > *
12

PROMPT >

The variable* aways has asits value the result of the previous expression; in this case, 12, which was the result of the
expression typed at the first prompt. For afull description, see the Common Lisp Hyper Spec. Thisisan HTML version
of the ANSI Common Lisp standard which is supplied with LispWorks.

3. Type(setqg val 12) atthecurrent prompt.

PROMPT > (setq val 12)
12

PROMPT >

The expression sets the variable val to 12. Theresult of evaluating the form is the value to which val has been set, and
thus the Listener prints 12 below the form typed at the prompt.

Thisis exactly the same behavior as before, when you typed a number it was evaluated and the result printed in the
Listener. What is different thistime, of course, isthat Lisp has been told to "remember” that 12 is associated with val .

4, Typeval .
Theformisevaluated and 12 is printed below it.

5. Type(+ val val val).

The form, which computes the sum of threeval s, is evaluated, and 36 is printed below it.

234

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm

20 The Listener

20.3 Re-evaluating forms

If you changeval to some other number, and want to know the sum of three val sagain, you can avoid re-typing the form
which computesit. To see how thisis done, follow the instructions bel ow.

1. Type(setq val 1).
Thevariableval isnow setto 1.

2. Press Met a+P or choose History > Previous or click .

PROMPT > (setq val 1)

The form you previously typed appears at the prompt. At this point, you could edit this form and press Ret ur n to
evaluate the edited form. For the moment, just carry on with the next instruction.

3. Press Met a+P again, and then press Ret ur n.

PROMPT > (+ val val val)
3

PROMPT >

Pressing Met a+P a second time displayed the second to last form that you evaluated. Thistime, pressing Ret ur n
immediately afterwards simply re-evaluates the form. Note that you could have edited the recalled form before evaluating it.
You can use Met a+P repeatedly, recalling any form that you have evaluated in the current session.

This time the form evaluates to the number 3, because the value of val was changed in the interim.

20.4 The debugger prompt and debugger level

When you get an error by evaluating aform in the Listener, LispWorks enters the debugger. The first debugger prompt
contains a colon followed by the integer 1, indicating that Lisp is 1 level deep in the debugger.

Subsequent errors in the debugger increment the debugger level:

CL-USER 57 > (/ 1 0)

Error: Division-by-zero caused by / of (1 0).
1 (continue) Return a value to use.
2 Supply new argunents to use.
3 (abort) Return to level O.
4 Return to top |l oop level O.

Type :b for backtrace or :c <option nunber> to proceed.
Type :bug-form "<subject>" for a bug report tenplate or :? for other options.

CL-USER 58 : 1 > (/ 2 0)

Error: Division-by-zero caused by / of (2 0).
(continue) Return a value to use.

Supply new argunents to use.

(abort) Return to level 1.

Return to debug | evel 1.

Return to level O.

Return to top loop |evel O.

oOUhwWNBRE

Type :b for backtrace or :c <option nunber> to proceed.
Type :bug-form "<subject>" for a bug report tenplate or :? for other options.

235

20 The Listener

CL-USER 59 : 2 >

After fixing the cause of an error you should exit from the debugger, for example by entering : a to invoke the abort restart. If
you do not exit, then the next time you get an error you will be nested more deeply in the debugger, which is usually not
desirable. Try to avoid this.

Note: If you reach debugger level 9 then LispWorks opens a console window to run the debugger (because it assumes that the
IDE is broken). In this situation you can enter the : t op command and then minimize the console window to restore the IDE
Listener. Closing the console window will terminate LispWorks without any warning.

20.5 Interrupting evaluation

The button « interrupts evaluation in the Listener. The break gesture key stroke Al t +Ct r | +C (and the Interrupt Lisp button,
in the GC Monitor window in the Motif IDE only) can aso be used.

Thisis useful for stopping execution in the middle of aloop, or for debugging. When the interrupt is processed, the debugger
is entered, with a continue restart available.

If the Listener is not evaluating aform, then the Process Browser will be opened allowing you to interrupt a background
process.

20.6 The History menu

The forms and commands typed at previous prompts are stored in the history list of the Listener. It is so named because it
records all the forms and commands you have typed into the Listener. Many other command line systems have asimilar
concept of a history. Each form or command in the history is known as an event.

You can obtain alist of up to the last ten eventsin the history by displaying the History > Items menu. To bring a previous
event to the prompt, choose it from this menu.

For more information about history listsin the LispWorks IDE, see 3.5 The history list.

20.7 The Expression menu

The Expression menu lets you perform operations on the current expression, that is, the symbol in which the cursor currently
lies. It behavesin exactly the same way asthe Expression menu in the Editor tool. See 12.13.2 Current buffers,
definitions and expression for details.

Choose Expression > Class to look at the class of the current expression in a Class Browser. See 7 The Class Browser for
full details about thistool.

Choose Expression > Find Source to search for the source code definition of the current expression. If the definition is
found, thefileis displayed in the editor and the definition is highlighted. See 12 The Editor for an introduction to the editor.
Note that you can find only the definitions of symbols you have defined yourself - those for which you have evaluated or
compiled the source code - not those provided by the system.

Choose Expression > Documentation to display the Common Lisp documentation (that is, the result of the function
docunent at i on) for the current expression. If such documentation exists, it is printed in a help window.

Choose Expression > Arguments to print the lambda list of the current expression in the echo area, if it isafunction, generic
function or method. Thisis similar to using the keystroke Met a+=, except that the current expression is automatically used.

Choose Expression > Value to display the value of the current expression in the echo area.

Choose Expression > Inspect Value to inspect the value of the current expression in the Inspector tool. If thevalueisni |l , a

236

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

20 The Listener

message is printed in the echo area.

Choose Expression > Toggle Breakpoint to add or remove a stepper breakpoint on the current expression. See for
information about using the Stepper tool.

Choose Expression > Evaluate Region t0 evaluate the Lisp code in the current region. You must make sure you have marked
aregion before choosing this command; see 12.11.1 Marking theregion. Whether you use the mouse or keyboard
commands to mark aregion does not matter.

Choose Expression > Compile Region to compile the Lisp code in the current region.

Choose Expression > Macroexpand to macroexpand the current form. The macroexpansion is printed in the output view,
which is displayed automatically. Click the Output tab to redisplay the output at any time.

Choose Expression > Walk to walk the current form. This performs a recursive macroexpansion on the form. The
macroexpansion is printed in the output view, which is displayed automatically. Click the Output tab to redisplay the output
a any time.

Choose Expression > Trace to display a menu of trace commands which can be applied to the current expression. See 3.10
Tracing symbols from tools for full details.

Choose Expression > Function Calls to browse the current expression in a Function Call Browser. See 14 The Function
Call Browser for more details.

Choose Expression > Generic Function to browse the current expression in a Generic Function Browser. This command is
only available if the current expression is a generic function. See 15 The Generic Function Browser for more details.

Choose Expression > Browse Symbols Like to view symbols containing the current expression in a Symbol Browser. This
command is analogousto cl : apr opos. See 18 The Symbol Browser for more details.

20.8 The Values menu

The values menu lets you perform operations on the results of the last expression entered at the Listener prompt. The values
returned from this expression are referred to as the current values.

The menu is not available if the most recent input was not a Common Lisp form. Thisis because the evaluation of the last
expression entered must have produced at |east one value to work on.

The Values menu gives you access to the standard action commands described in 3.8 Per for ming oper ations on selected
objects.

Note that the most commonly used of the standard action commands are available from the toolbar. For instance, to inspect
the current values, click the & button.

20.9 The Debug menu

This menu allows you to perform command line debugger operations upon the current stack frame. The menu is only
available when the debugger has been invoked by some activity within the Listener.

Some of the most commonly-used command line debugger commands are available from the Debug menu. You can also
invoke the debugger tool from this menu.

Choose Debug > Restarts to display a submenu containing all the possible restarts for the debugger, including the abort and
continue restarts. Choose any of the commands on this submenu to invoke the appropriate restart. Note that the continue and
abort restarts are also available on the tool bar.

Choose Debug > Listener > Backtrace to produce a backtrace of the error.

237

http://www.lispworks.com/documentation/HyperSpec/Body/f_apropo.htm

20 The Listener

Choose Debug > Listener > Bindings to display information about the current stack frame.

Choose Debug > Frame > Find Source to find the source code definition of the function at the current call frame and display
it in an editor.

Choose Debug > Listener > Next to move to the next call frame in the stack.
Choose Debug > Listener > Previous to move to the previous call frame in the stack.

Choose Debug > Start GUI Debugger to invoke a debugger tool on the current error. See 10 The Debugger Tool, for full
details about using this toal.

Choose Debug > Report Bug to report abug in LispWorks.

You can aso invoke any of the commands from this menu by typing keyboard commands into the Listener itself. Seethe
LispWorks® User Guide and Reference Manual for more details.

20.10 Execute mode

The Listener is actually a special type of editor window, which isrun in amode known as execute mode. This means that, as
well asthe normal keyboard commands available to the editor, a number of additional commands are available which are
especialy useful when working interactively.

20.10.1 History commands

These commands are useful in the common situation where you need to repeat a previously entered command, or enter a
variant of it.

History First Emacs Key Sequence: Ctrl +C <

Replaces the current command by the first command.
History Kill Current EmacsKey Sequence: Ctrl +C Cirl +K

Kills the current command when in alistener.
History Last EmacsKey Sequence: Cirl +C >

Replaces the current command by the last command.

History Next Emacs Key Sequence: Met a+Nor Ctrl +C Ctrl +N

Displays the next event on the history list. That is, it replaces the current command by the next
one. Thisisnot availableif you are at the end of the history list. In KDE/Gnome editor
emulation, thisHistory Next command is bound to Ct r | +Down.

History Previous Emacs Key Sequence: Meta+PorCtrl+C Ctrl +P

Displays the previous event on the history list: that is, it replaces the current command by the
previous one. In KDE/Gnome editor emulation, thisHistory Previous command is bound to
Ctrl+Up.

History Search Emacs Key Sequence: Met a+Ror Ctrl +C Ctrl +R

Searches for a previous command containing a given string, which it prompts for, and replaces
the current command with it.

238

20 The Listener

History Search from Input
Emacs Key Sequence: None

Searches the history list using current input. That is, it searches for a previous command
containing the string entered so far, and replaces the current command with it.

Repeated uses step back to previous matches.

History Select EmacsKey Sequence: Ctrl +C Cirl +F
Presents alist of itemsin the command history, and replaces the current command with the
selection.

History Yank Emacs Key Sequence: Ctrl +C Cirl +Y

Inserts the previous command into the current one, when in alistener.

20.10.2 Debugger commands

These commands are useful when in the debugger in the Listener:

Debugger Backtrace Emacs Key Sequence: Met a+Shi ft +B
Gets a backtrace when in the debugger.

Debugger Abort Emacs Key Sequence: Met a+Shi ft +A
Aborts in the debugger.

Debugger Continue Emacs Key Sequence: Met a+Shi ft +C
Continues in the debugger.

Debugger Previous Emacs Key Sequence: Met a+Shi ft +P
Displays the previous frame in the debugger.

Debugger Next Emacs Key Sequence: Met a+Shi ft +N
Displays the next frame in the debugger.

Debugger Edit Emacs Key Sequence: Met a+Shi ft +E
Edits the current frame in the debugger.

Debugger Print Emacs Key Sequence: Met a+Shi ft +V

Prints the variables of the current frame in the debugger.

20.10.3 Miscellaneous Listener commands
Here are more commands, with their Execute mode key bindings, which are useful in the Listener.
Inspect Star EmacsKey Sequence: Cirl +C Cirl +l

Inspects the current value (that is, the value of the Common Lisp variable *).

239

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

20 The Listener

Inspect Variable Emacs Key Sequence: None

Inspects the value of an editor variable, which is prompted for.

Throw to Top Leve Emacs Key Sequence: Met a+K

Abandons the current input.

For more details about other keyboard commands available in the editor, see 12 The Editor, and the Editor User Guide.

20.10.4 Highlighting of results

The results of expression evaluation in the Listener are output as marked objects (except for trivial objects). That means they
have a specia style, and you can operate on them by using the context menu and choosing items from the Marked Object
submenu, with items like the values menu.

Note that, for the latest results, you also can also use Values menu in the menu bar. However, the Values menu is applicable
only to the latest results, and if there is more than one result (the form that was evaluated returned multiple values), thenitis
applied to the list of the latest results. The Marked Object submenu of the context menu is applicable to al the resultsin the
Listener, and to each result individually.

The style used to display marked objectsis called Marked Object and can be changed via Preferences... > Environment >
Styles > Styles Colors And Attributes. By default, marked objects are underlined.

Thefunction pri n1- mar ked- obj ect can be used to print objects as marked objects in the Listener or Background Output
streams.

prinl-marked-object Function

| wt ool s: prinl-nmarked-object object &opti onal output-stream => object

The function pri n1- mar ked- obj ect printsany Lisp object object to the stream designator output-stream similarly to
prinl, but when output-streamis a Listener or Background Output stream, it outputs object as a marked object. output-
stream defaults to the value of * st andar d- out put *.

pri nl- mar ked- obj ect limitsthe length of the output to 2000000 (million) characters.

20.11 Setting Listener preferences

To set options for the Listener tool choose Works > Tools > Preferences... or click &, and select Listener in thelist on the
left side of the Preferences dialog.

The Listener tab of the Listener Preferences

General| Listener

Initial stack size: Default b

Use syntax coloring initially

The Listener tab allows you to set the size of the stack used in the Listener's evaluation process. By default, this process has a
stack of size determined by the value of the variable syst em *sg- def aul t - si ze*. If you find you are getting stack
overflow errorsin correct code that you enter at the Listener prompt, then increase the stack size. This setting takes effect for
subsequently created Listener windows and LispWorks sessions.

240

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_pr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm

20 The Listener

The Listener tab aso allows you to control whether syntax coloring is applied to the input in a Listener when it first started
by checking Use syntax coloring initially. You can turn it off or on within the Listener using the Editor command Font L ock
Mode.

The other configurable aspects of the Listener are shared with the Editor and other tools, including:
« Emulation, including key input and cursor styles.
» Thefont.
» Thetext styles used to highlight selected text, color code and input, and so on.

To alter these, raise the Preferences dialog, select Environment in the list on the left side, and choose the Emulation or Styles
tab. See 3.2 Setting preferences for a description of these options.

20.12 Running Editor forms in the Listener

Suppose that you have code displayed in an Editor tool and you want a convenient way to run it in the Listener. Perhapsyou
need to capture the return value, or perhaps ou want to test several variants by evaluating edited versions of that code. The
editor command Evaluate Last Form in Listener isuseful in these cases.

20.13 Switching to and from other tools

The shortcut key to switch quickly from the Listener to another window depends on your desktop environment or window
manager, but is often Al t +Tab. This cyclesthrough all of the windows on your desktop. To cycle through them in reverse
order, you can often use Al t +Shi ft +Tab.

20.14 Help with editing in the Listener

Two help commands are available to provide you with more information about editor commands which can be used in the
Listener.

Choose Help > Editing > Key to Command and type a key sequence to display a description of the extended editor command
it isbound to, if any.

Choose Help > Editing > Command to Key and supply an extended editor command to see the key sequence it is bound to, if
any.

For more details about the keyboard commands and extended editor commands available, see 12 The Editor.

241

21 The Output Browser

The Output Browser is asimple tool that displays the output generated by your programs, and by operations such as
macroexpansion, compilation and tracing. You can create one by choosing Works > Tools > Output Browser or clicking «» in
the Podium or as described in 3.1.5 Displaying tools using the keyboard. The Output Browser shows the Output Browser.

The Output Browser

Output BErowser 1 - |] X
Works File Edit Help

D BB &

: (TOP-LEVEL-FORM 1)]
; (SUBFUNCTION (DEFCLASS TEXT-INPUT-CHOICE-TEST) (CAPI»
:DEFINE-INTERFACE TEXT-INPUT-CHOICE-TEST))
(CAPT:DEFINE-INTERFACE TEXT-INPUT-CHOICE-TEST)
(CAPI:DEFINE-INTERFACE TEXT-INPUT-CHOICE-TEST)

; (SUBFUNCTION (METHOD CAPI::INITIALIZE-INTERFACE :AFT»
ER (TEXT-INPUT-CHOICE-TEST)) (CAPI:DEFINE-INTERFACE TE=»
XT-INPUT-CHOICE-TEST))

; (CAPI:DEFINE-INTERFACE TEXT-INPUT-CHOICE-TEST)

; TEXT-INPUT-CHOICE-SHOW-STRING

; TEXT-INPUT-CHOICE-NEW-S5TRING

; TEXT-INPUT-CHOICE-INVERT

; TEXT-INPUT-CHOICE-POPPING-UP

; TEST-TEXT-INPUT-CHOICE

--—- Press S5Space to continue ----

Ready.

The Output Browser has one main areathat displays the output from the environment. Output usually consists mostly of
compilation, trace and macroexpansions, but can also include compiler explanations and output from other tools, such asthe
Profiler. The main areais actually an editor window, so all the usual editor keyboard commands can be used in it. See 12 The
Editor for more details about these operations.

The Output Browser isinvaluable when you are developing code, because it collects any output generated by your code. An
example of how to do thisis given in 2.4 Viewing output.

Many other toolsin the LispWorks IDE contain an output view, which you can display by clicking their Output tab. The
Output tab collects al the output generated by that tool. For instance, the System Browser has an Output tab that displays
compilation messages. The Editor tool's Output tab additionally displays macroexpansions. Note that the Output Browser is
the only tool which displays any output from your own code without any need for further action on your part.

242

21 The Output Browser

Note: The Output Browser (and the Output tab of some tools) displays only the output from . By default, processes not
associated with the tools write their output to the terminal stream.

21.1 Interactive compilation messages

Compilation messages are highlighted in the output, with errors, warnings and optimization hints each displayed in aunique
style. When the editor's cursor is within a compilation message, choose Find Source in the context menu to display the
source code where the condition occurred, in an Editor tool.

Compilation messages and the use of the context menu

Output BErowser 1

Works File Edit Help

Sl s lwi

* Warning in (TOP-LEVEL-FORM 2): *GRAPH-NAME®* ass» ||
umed special in SETQ
: (TOP-LEVEL-FORM 2)
133 %%% Warning in FACTORP: (O is bound but not referencs

ST

ed
;;- Calling FLOOR

::— Implementation level calling SYSTEM: :ZEROPSOTHER =
with 1 argumenf
. FACTORP B Cut
: FACTORS Copy
: PRIMEP
s %%E Warning D Paste RAPH*): *GRAPH-NAME* assumm
ed special
- (DEFVAR *GRA Find Source

**4+++ Error in (TOP-LEVEL-FOEM 7):

More than three arguments in IF: (IF (CAPI:CRAPH-PAN»
E-DIRECTION *GRAPH*) :BACKWARDS (CAPTI:SIMPLE-PANE-BACK=
GROUND *GRAPH*) :YELLOW).

; *** 1 error detected, no fasl file produced.
;33 Compilation finished with 3 warnings, 1 error, 2 n»
otes.

i

--—- Press Space to continue, or press Return to view »
errors and warnings ---- ™

Ready.

You can also raise a Compilation Conditions Browser tool to view the errors and warnings directly from the output view, by

243

21 The Output Browser

pressing Ret ur n as mentioned in the output shown above.

Another way to visit the source code where the condition occurred is the editor's Edit Recognized Sour ce command which is
boundto Ct r1 +X , (comma) in Emacs emulation.

21.1.1 Compilation message styles

Thetext styles used to highlight compilation messagesin the output have these meanings and default appearance:

Compilation message styles

Style Name Use Default appearance
Compiler Note Optimization hints : magent a foreground
Compiler Warning Warnings and other messages : or ange3 foreground
Compiler Error Errors : r ed foreground

Compiler explanations are optimization hints generated by compiling code with the : expl ai n declaration. Seethe
LispWorks® User Guide and Reference Manual for a description of the : expl ai n declaration.

Note: You can changes the styles used to display compilation messages via Preferences... > Environment > Styles > Styles
Colors And Attributes.

244

22 The Process Browser

The Process Browser allows you to view and control the processes in the LispWorks multiprocessing model. See the
LispWorks® User Guide and Reference Manual for more information about multiprocessing.

Note: Each individual window in the LispWorks IDE runs as a distinct processin the LispWorks multiprocessing model. The
whole of LispWorks runsin asingle system process. Each LispWorks process corresponds to a single system thread.

To create a Process Browser, choose Works > Tools > Process Browser or click # in the Podium.

The Process Browser

Process Browser 1

Works File Edit Processes Help

B va & - N A

e

Filter v > Matches 12
Name Prionty | Status

GTK Event Loop Q0000000 Waiting for GTK ing
default listener process 60000000 Waiting for input frc
Listener 1 60000000 Waiting for events
LispWorks 6.0.0 on higson 60000000 Waiting for events
Editor 1 60000000 Waiting for events
Shell 1 60000000 Waiting for input
Subprocess Cutput Copier b0000000 waiting for subproc
Process Browser 1 60000000 Running

CAPI Execution Listener 1 20000000 Waiting for istream
Background execute 2 0 Waiting for job to e
Background execute 1 0 Waiting for job to e
The idle process -1152921504606846976 Waiting

<] e | E
Ready.

The Process Browser consists of amain areain which al the current processes in the environment are listed, and a Filter area
which you can use to restrict the information displayed in the main area.

245

22 The Process Browser

Like other filter areas, you can enter a string or aregular expression in the Filter to limit the display to only those items which
match your input, or the complement of this. See 3.12 Filtering infor mation for more information about using the Filter

area.

Process browser
Slop Termiraie Ireps=ci
processes
Debu
Ereak | I_IrE1|:F| o E'Egﬂ
processes Lizten
Process Browser L . |
Works FEile Edit® Procdsses| Help

CE€ v Q& 2 8w

Filter » 2 Maiches 12
Wame Prichty | Stalus

GTE Event Loop SO000D00 Warting for GTK in
default listener process GOODGD00 Waiting for input frd
Listener 1 BODOGOOD Waiting for events
LispWorks 6.0.0 on higson GOO00D00 Waiting for events
Editor 1 BOOOOD00 Waiting for events
Shell 1 BOODOD00 W aiting for input
Subprocess Output Copier BOO0OO00 warting for subproc
FProcess Browser 1 GO00OO00 Running

CAP| Execution Listener 1 20000000 W aiting for ismmeam
Background execute 2 0 Waiting for job to e
Background execute 1 0 Waiting for job to e
The idle process -11529215MB06B46976 Warting

| | IC
Ready.

Thetoolbar buttons are labelled in Process browser. These buttons provide the same actions as the Process context menu:
Break, Stop, Unstop, Terminate, Debug, Inspect and Listen.

Notice that Terminate and Debug are disabled for certain system processes such asthe GTK Event Loop. Thisis by design.

22.1 The process list

Themain areacontains alist of all the current processes in the Lisp image. Properties of each process are shown in the
columns Name, Priority and Status.

If you have many processes running, you can use thefilter areato only list processes containing a given string. For example,
if you enter "Running"” in the filter area, and click on +" then only processes that have the word "Running"” in their description

will be shown.

The processes displayed in the main area can be sorted by clicking the relevant button above each column. For example, to
sort all listed processes by process priority, click on the Priority title button.

246

22 The Process Browser

22.2 Process control

The Processes menu contains commands that let you control the execution of processesin the Lisp image. These same
commands are available using the toolbar buttons at the top of the Process Browser window or by using the context menu.
(Use the left mouse button or the arrow keys to select a process; the context menu is usually accessed by the right mouse
button.) Process commands act on the process that has been selected in the process list. You can select a process by clicking
on thelinein the process list that contains the process name and status information or by using Tab and the arrow keysto
navigate to that line.

Choose Processes > Break to break the selected process. This breaks Lisp and gives you the opportunity to follow any of the
normal debugger restarts.

Choose Processes > Terminate to terminate (kill) the selected process.

Choose Processes > Stop to stop the selected process. The process can be started again by choosing Processes > Unstop,
and thusis similar to the use of Ct r I +Z in aterminal window.

Choose Processes > Unstop to restart a process which has been stopped using Processes > Stop. Thisis similar to the use of
the shell command f g.

Choose Processes > Inspect to call up an Inspector tool to inspect the selected process. See 17 The Inspector for more
information on inspecting objects and processes.

Choose Processes > Listen to make the selected process be the value of * in aListener tool. See 20 The Listener for more
information on using the Listener tool.

Choose Processes > Remote Debug to debug the current process in a Debugger tool.See 10 The Debugger Tool for more
information on using the Debugger tool.

Note: do not attempt to break, terminate, stop or debug system processes. This may make your environment unusable.

Note: you cannot control the GC monitor (available in the Motif IDE only) from the Process Browser, since thisrunsas a
Separate system process.

22.3 Other ways of breaking processes

In the Listener tool, you can break the evaluation process as described in 20.5 I nterrupting evaluation.

You can break a process by calling the function np: pr ocess- br eak.

Alternatively, click the Interrupt Lisp button on the GC Monitor window (available in the Motif IDE only).

22.4 Updating the Process Browser

The Process Browser updates itself automatically when a new processis created and when a process terminates.

In theinitial configuration the Process Browser does not automatically update on any other event, so changes such as
processes sleeping and waking are not noticed immediately. There are two ways to ensure such changes are visible in the
Process Browser:

* You can do Works > Refresh to view the latest status displayed for each process, or:

» The Process Browser can be made to update automatically, as described in 22.5 Process Browser Preferences.

247

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

22 The Process Browser

22.5 Process Browser Preferences

To display the Process Browser preferences, choose Works > Tools > Preferences... or click &, and select Process Browser
in the list on the left side of the Preferences dialog.

You can control whether the Process Browser displays the process operations toolbar by the option Show Toolbar on the
General tab, as described in 3.1.8 Toolbar configurations.

You can make the Process Browser update automatically at a predetermined frequency by setting the option Update
Frequency, asillustrated in the figure below. The update periods are in seconds.

Configuring the Process Browser to update automatically

General | Updating

Update Frequency

Never

2

5
10

The option Automatic Update Delay determines adelay period (in seconds) after each automatic update of the Process
Browser. Any automatic update during thistime is delayed until the end of the delay period.

Automatic updates occur when process are created, die or stop and when the scheduler affects the status of aprocess. That is
quite often too frequent to be useful. Automatic Update Delay limits the update to a reasonabl e frequency. To see the effect,
make sure the Process Browser is visible and run the following form with different settings of the delay:

(dotinmes (x 1000)
(np: process-run-function
(format nil "Process ~d" x)

0

"sl eep
(/' x 200)))

248

23 The Profiler

23.1 Introduction

The Profiler provides away of monitoring Lisp functions during the execution of your code. It islikely that you can make
your code more efficient using the data that the Profiler displays.

The Profiler helps you to identify functions which are called frequently or are particularly slow. You should concentrate your
optimization efforts on these routines.

The Profiler gives you an easy way of choosing which functions you wish to profile, which code you want to run while
profiling, and provides you with a straightforward display of the results of each profile.

When code is being profiled, the Lisp process running that code is interrupted regularly at a specified time interval. At each
interruption, the Profiler scans the execution stack and records the name of every function found, including a note of the
function at the top of the stack. Moreover, a snapshot of the stack is recorded at each interruption, so we know not merely
how many times we reach a function call, but also how we reached that call.

When profiling stops (that is, when the code being profiled has stopped execution) the Profiler presents the data that it has
collected.

To create a Profiler, choose Works > Tools > Profiler or click © in the Podium.

In the next section, we assume you are profiling a call to the function f oo defined as follows:

(i n-package "CL- USER")

(defun baz (1)
(dotines (i 1)))

(defun quux (1)
(dotines (i 1)))

(defun bar (n 1)
(dotimes (i n)
(baz 1))
(dotimes (i n)
(quux (floor | 2))))

(defun foo (n 1)
(bar n 1))

23.2 Description of the Profiler

There are four tabs in the main body of thetool. The first three tabs (Call Tree, Cumulative and Stacked Tree) display the
current profiler information in the tool in different ways. The fourth tab (Code To Profile), contains an editor-pane where you
can type code and then profileit.

Note that the profiler information in the tool may come from various sources. It may be aresult of profiling the codein the
Code To Profile tab or choosing Profiler > Start Profiling... or it can be the result of importing profiler information using the
itemsin the Profiler menu.

249

23 The Profiler

The Echo area allows interaction with editor commands, asin other tools.
The Profiler

Profiler 1

Works File Edit View Description Function Expression Profiler History Help

Sod DB /MY BOR

Call Tree |Cumulati'ure |Stacked Tree| Code To Pruﬁle|

|;; Insert code to profile.
[ffoo 1008 1n6e00j)

Ready .
Profiled at 2017/09/08 16:37:24 - Profiler invoked 15 times. Top of stack known 100% of the time.

23.2.1 Call Tree

The Call Tree tab shows a graph of functions called by the top level function call that was profiled. Each node represents a
function call. The graph edges are labelled according to the proportion of time spent in each function call. For examplein
The Profiler, of al the time spent in function bar , most was spent in baz and the rest in quux. Thisallows you to see which
branches of the code dominate the total time spent.

When optimizing your code you will want to concentrate on the calls which take alarge proportion of thetime. The least
significant parts of the graph are removed from the display according to the percentage in the Hide calls below (%) box. You
can adjust this percentage simply by entering an integer and pressing Ret ur n.

When analysing the call tree to find the most significant branches, single callees (that is, functions which account for all of
the time spent by their caller) are not interesting. You can adjust the call tree to omit these functions from the displayed graph
by checking the Collapse singletons box.

A Description area optionally shows a description of afunction in the profile data. You can show the description by clicking
on the Description >> button. The name, function object, lambda list, documentation string and source files of the selected
function are displayed. The context menu in the description area allows further operations. Hide the description areaif you
wish by clicking on the Description << button.

250

23 The Profiler

The Profiler's Call Tree adjusted

Profiler 1

Works File Edit View cription Function Expression Profiler History Help

¢ & R O ¢ @FF

Call Tree |Cumuiat‘we |Stacked Tree |CGdE To Prﬂﬁie|

|Des-griptiun ::-:=-| Collapse singletons Hide calls below (%) 40| Showing whole tree

Profiling for Profiler 1eGlsliir it =Y.V

Ready.
Profiled at 2017/09/08 17:03:22 - Profiler invoked 15 times. Top of stack known 100% of the time.

23.2.2 Options in the context menu for viewing parts of the call graph

The context menu in the Call Tree and the Stacked Tree tabs allow you to view a subset of the call tree in various ways based
on the selected node.

Choosing Set Node As Root makes the selected node be the root of the displayed tree.

Choosing Set Function As Root makes the function associated with the selected node be the root of the displayed tree, by
merging all subtrees starting at the outermost occurrences of that function. Nodes above the outermost occurrences are not
displayed.

Note that the branches in the displayed tree for the selected function are merged across all branches in the whole tree for
matching functions and caller chains. For example, suppose the profiler sometimes saw function A calling function V calling
function W, (A>V>W), and at other times saw B>V>W>X, and other times saw C>V>Y>W. In the whole tree, each of these
call chainswill be on separate branches because they start with different functions (A, B and C). However, if you set the
function V to beroot of the tree, then underneath there will two children: one for W with a child X (merging the occurrences
of V>W in A>V>W and B>V>W>X) and onefor Y with achild W (for the occurrence of V>Y in C>V>Y>W.).

Choosing Show Calls To Function [Inverted] creates an inverted tree with the function at its root. The children of the inverted
tree are the callers of that function and the branches are merged as for Set Function As Root tree. Aninverted treeis a useful
way for exploring why afunction seems to be on the stack more than expected.

Choosing Show calls to allocation functions [inverted] shows an inverted tree where the allocation functions are the roots,
making it easier to see where allocation happens.

251

23 The Profiler

Choose Show Whole Tree to display the entire call tree again.

Notes: These menus items set new values in the panes (the roots in the graph of the Call Tree tab and root in the stacked tree
of the Stacked Tree tab). They reset the history of scroll/zoom states in stacked tree. Using the History menu to move
between trees aways resets to the whole tree. Currently thereis no history of subtree settings.

23.2.3 Cumulative Results

The Profiler's Cumulative Results view

Profiler 1
Works File Edit WView Description Function Expression Profiler History Help

BPE 00/ %2R N OR

| Call Tree| Cumulative |Stacked Tree |Cade To Pruﬁle|

P

e

Filter | I)(Matches 11

Stack#(%) | Top#(%) | Name

15 (100%:) 0 SYSTEM:%INVOKE

15 (100%) 0 SYSTEM:%EVAL

15 (100%) 0 LISPWORKS-TOOLS::PROFILER-PROFILE-CODE-AUX

15 (100%) 0 SYSTEM::PROFILER-EVAL-PROFILING

15 (100%) 0 EVAL

15 (100%) 0 SYSTEM::%%FIRST-CALL-TO-5TACK

15 (100%) 0 SYSTEM::|%FOREIGN-CALLABLE/thread initial_function|
15 (100%) 0 BAR

15 (100%) 0 MP::PROCESS5-5G-FUNCTION

10 (67%) 10 (67%) BAZ
5(33%) 5(33%) QUUX

Ready .
Profiled at 2017/09/08 17:03:22 - Profiler invoked 15 times. Top of stack known 100% of the time.

The Cumulative tab shows aggregated information about each function that includes the following information:

» The number of times each function was found on the stack by the profiler, both in absolute terms and as a percentage of
the total number of scans of the stack.

» The number of times each function was found on the top of the stack, both in absolute terms and as a percentage of the
total number of scans of the stack.

With a suitable profiler setup it also shows:
» The number of times each function being profiled was called.

Note: by default the Profiler does not count function calls, because this can distort results significantly in SMP LispWorks.
Therefore the Call# column shows O for each function. To make the Profiler count calls, check Call counter in the dialog
described in 23.4 Selecting what to profile:

The Filter box lets you restrict the display of information in the Results area.

252

23 The Profiler

23.2.4 Stacked Tree
The Profiler's Stacked Tree view

Profiler 1

Works File Edit WView Description Function Expression Profiler History Help

9 & 2P0 L EC ORI @FF

Call Tree |Cumuiat’we| Stacked Tree |Cade To Prﬂﬁlée|

escription == ollapse singletons ide calls below owing whole tree
D t [] Caoll let Hid lls below (%) |5 sh hole t

processes 100% - - - - - -]
Fmﬁllng for Profiler 1 100% G
SYSTEM::|%:FOREIGN-CALLABLE/thread initial functlon| 100% -
SYSTEM: %% FIRST-CALL-TO-STACK 100%
MP::PROCESS-5G-FUNCTION 100%
LISPWORKS-TOOLS::PROFILER-PROFILE-CODE-AUX 100%
SYSTEM::PROFILER-EVAL-PROFILING 100%

EVAL 100%

SYSTEM::%EVAL 100%

SYSTEM::%INVOKE 100%

BAR 100%

BAZ 67% 2 - 2 - = QUUX 33%

Ready .
Profiled at 2017/09/08 17:03:22 - Profiler invoked 15 times. Top of stack known 100% of the time.

Theresults can also be displayed in capi : st ack-t r ee pane. Seethe documentation for capi : st acked-t r ee for details
on how it worksin the general. Thiscapi : st acked-t r ee displays the same tree asthe graph in Call Tree. When the tree

changes for any reason, both panes change to display the new tree. In particular, when using the context menu to display only
part of the tree, both panes display the same part.

In the Stacked Tree tab, the root node represents the total for all processes. Note that when profiling more than one process,
the percentage for all processes will typically be higher than 100%. The children of the root node are the processes that were
profiled, which correspond to the root nodesin Call Tree tab.

The Stacked Tree in general is easier to navigate than the Call Tree because it is more compact and has useful options for
zooming into specific regions.

The context menu in the Stacked Tree tab allow you to view a subset of the call treein various ways based on the selected
node, as described in 23.2.2 Optionsin the context menu for viewing parts of the call graph.

A Description area optionally shows a description of afunction in the profile data. You can show the description by clicking
on the Description >> button. The name, function object, lambda list, documentation string and source files of the selected

function are displayed. The context menu in the description area allows further operations. Hide the description areaif you
wish by clicking on the Description << button.

253

23 The Profiler

23.2.5 Code To Profile

Use the large text box in the Code To Profile tab to enter the Lisp source code that you wish to profile. Thistext areais
actually an editor window, similar to those described in 12.8 Basic Editor commands.

Code may be placed in this window in three ways.
» Typeit directly into the window.
 Pasteit in from other editor windows in the environment.
* Pasteit in from other applications.

Specify the package in which you want to run the code to be profiled using the Package box in the General tab of the Profiler
Preferences. To see this, choose Works > Tools > Preferences... or click &, and select Profiler in the list on the |eft side of
the dialog. If you are unsure, full details on how to do this can be found in 3.7.1 Specifying a package. Like all other tools
in the LispWorks IDE, the Profiler can have a particular package associated with it; the default package is CL- USER.

You can then profileit, using either by clicking the Profile ¢ toolbar button or the Profiler > Profile the 'Code To Profile'
menu item. This reads one form from the text box, evaluates it while profiling and then displays the make the result the
current profiler information in the tool.

Note: The Code To Profile tab only profiles the thread that is evaluating the form. It does not profile other threads. To profile
multiple threads, choose Profiler > Start Profiling... as described in 23.3 The Profiler menu and Profiler-specific toolbar
buttons.

By default, the Profiler switchesto the Stacked Tree tab after profiler finishes. You can change this using the buttons under
When Code To Profile finishes profiling in the Profiler Preferences (see 23.7 Configuring the Profiler).

23.3 The Profiler menu and Profiler-specific toolbar buttons

The Profiler menu lets you modify the Profiler tool.

» Choosing Read Profiler Tree From File... reads a profiler tree from afile that you select. Normally this should have
. tree extension. Thefileis opened and the profiler triesto read a profiler tree from it. If successful, then the tree
becomes the current tree in the tool and is displayed.

Profiler tree files would normally be created either by calling hcl : save-current-profil er-tree or by choosing
Save Profiler tree. from the Profiler menu. In principle, they may be generated in some other way, provided that they
match the format that is described in "Profiler tree file format" in the LispWorks® User Guide and Reference Manual.

» Choosing Save Profiler Tree... saves the current tree to afile that you specify. If the file name does not have an
extension, the Profiler adds. t r ee (thesameashcl : save-current-profiler-tree).

Note the name of the tree is written to the file as well, so you may want to set the name beforehand by choosing Name
the current tree....

» Choosing Import Current Internal Tree imports the current internal profiler tree into the tool and displaysit. The internal
treeis set either by acall to hcl : st op- profi i ng with: suspend ni | (whichisthe default), or when
hcl : profi | e returns successfully.

Note that the current internal tree isthe sametreethat hcl : save-current-profil er-tree saves.

» Choosing Start Profiling... raises a dialog to configure profiling parameters and starts the profiler by calling
hcl : start-profiling. Theinitial settingsin the dialog are from the previous time you raised it and clicked OK.

Use Stop Profiling and Import to stop profiling.

Note: profiling isaglobal operation, i.e. there can be only one profile operation at the same time, and it uses the last
global setting of profiler parameters.

254

23 The Profiler

You cannot click OK in the configuration dialog until you select some processes. Check the All processes box to profile
all processes or choose specific processes by clicking the Select processes button and optionally check the New
processes box to include processes created while profiling is running aswell. This correspondsto the: pr ocesses
argument to hcl : start-profiling.

Check Profile waiting processes or Ignore processes inside a foreign call to collect information from processes when
they are waiting or inside aforeign call.

This action can also be done by clicking the Start Profiling & toolbar button.

» Choosing Stop Profiling and Import stops the profiler by calling hcl : st op- pr of i | i ng and then imports the profiler
tree, which makesit current, displayed tree in the tool.

This action can also be done by clicking the Stop Profiling & toolbar button.
» Choosing Name The Current Tree... allows you to give the current tree a name.

The nameis displayed in the message area at the bottom of the tool, is listed in the History menu, and is used when
saving thetree to afile.

» Choosing Set Profiling Parameters... allows you to select what is shown in the profiler. See 23.4 Selecting what to
profile for more details.

This action can also be done by clicking the Set Up Profiler & toolbar button.

Compatibility note: Thisitem replaces the Symbols... and Packages... buttons that used to bein the Code To Profile
frame of the Profiler in LispWorks 7.0 and earlier releases.

» Choosing Profile the 'Code To Profile' reads aform from the editor pane in the Code To Profile tab, and profilesit, in the
same way that hcl : profi | e does. The results of the profiling then become the current profiler information in the tool
and is displayed in the other tabs.

This action can aso be done by clicking the Profile ¢ toolbar button.

Compatibility note: Thisitem replaces the Profile button that used to bein the Code To Profile framein LispWorks 7.0
and earlier releases.

23.4 Selecting what to profile

255

23 The Profiler

The Profiler's Set Profiling Parameters dialog

Profiler 1

Select arguments for SET-UP-PROFILER

Select packages:

Choose packages (none selected)

Select symbols: Mone selected

Interval:| 10000 v

[] Profile GC code
[] Call counter

[] Show unknown frames

Select KW contexts: [] All None

Cancel oK

Choosing Profiler > Set Profiling Parameters... or clicking the Set Up Profiler & toolbar button allows you to select what is
shown in the profiler, asfor the function hcl : set - up- profi | er described inthe LispWorks® User Guide and Reference
Manual.

You can select values for keyword arguments of set - up- profil er:

Select packages . packages

Select symbols : synbol s

Interval cinterval

Profile GC code 1 gc

Call Counter :cal |l -counter

Show unknown frames : show unknown- f r anes
Select KW contexts i kw cont exts

You cannot click OK in the dialog until you select at |east one package, symbol or KW context.

Note that "symbols" are actually function dspecs (see "Function dspecs' in the LispWorks® User Guide and Reference
Manual), so can also beset f functions and method names. KW contexts can be profiled only when KnowledgeWorksis
loaded.

Onceyou click the OK button, hcl : set - up- profi | er iscaled with the keywords listed above and the values that you

256

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

23 The Profiler

have selected. See the documentation for hcl : set - up- profi | er for details.

The effect of hcl : set - up- profil er isglobal and persistent, that is any profile operation in the same session (including
any callstohcl : profileandhcl :start-profiling)will usethe settings from the last call to

hcl : set -up-profiler. Thususing Set Profiling Parameters... and calling hcl : set - up- prof i | er will have the same
effect.

Typicaly it is only useful to select packages (and if you use KnowledgeWorks, maybe KW contexts). If you want to select
symbols, it is easier to type them in an editor, or write a function that computes the list, and then calls
hcl : set - up-profiler explicitly.

In the packages selection, checking All or None passes the keyword : al | or : none respectively asthe value of : packages.
Checking Selected passes alist of packages, which you can choose by clicking the "Choose packages.." button. When
Selected is checked, if no package is chosen, the dialog for choosing packages is raised immediately. In the Select Kw
contexts selection, checking All passest asthe value of : kw cont ext s.

23.4.1 Choosing the functions to profile

It is possible to keep track of every function called when running code, but this involves significant effort in determining
which functions are suitable for profiling and in keeping track of the results. To minimize this effort you should specify
which functions you want to profile. The profiler checks that these functions have indeed got function definitions and are
therefore suitable for profiling. For more information on the types of function that can be profiled, see 23.8 Profiling pitfalls.

There are two ways of specifying functions that you want to profile:
» Choose which individual functions you want to profile.

» Choose whole packages, all of whose functions are profiled.

23.4.1.1 Choosing individual functions

Click the button to the right of Select symbols to specify alist of Lisp functions that you want to profile. The dialog shown
in Select Symbolsto Profile dialog appears.

257

23 The Profiler

Select Symbolsto Profile dialog

Profiler 1
Select Symbols to Profile:

New Symbol:

Selected symbols:
BAZ
BAR
FOO

Thisdialog displays the list of functions to be profiled.
* To add afunction to the list, enter its name in the New Symbol text box and click .
» To remove afunction from the list, select it from the list and click Remove.
» Toremove severa functions, select them all before clicking Remove.

Click oK when you have finished choosing symbols.

Note: while entering the function name in the New Symbol text box you can click click : to use completion. Thisallows
you to select from alist of all symbol names which begin with the partial input you have entered. See 3.14 Completion for
detailed instructions.

258

23 The Profiler

23.4.1.2 Choosing packages

You may often want to profile every function in a package, or if you do not know which symbolsto profile, you will want
profileal symbolsin all packages.

You can select which packages to profile using the buttons in the Select packages area. Check the All button, which isinitia
setting, to profile al symbolsin all packages. Check the None button if you only want to select specific symbolsto profile.
Check the Selected button if you want to choose specific packages to profile, which will display adialog as shown in Select
Packagesto Profile dialog. If Selected is aready checked, then click the Choose packages button to change the selected
packages.

259

23 The Profiler

Select Packages to Profile dialog

Select Packages to Profile:

}Eackage:
Unselected Packages: Selected Packages: None

ENVIRONMENT-INTERNALS COMMON-LISP User Only

EXTERNAL-FORMAT COMMON-LISP-USER

User and CL

User and Standard |

FLI-INTERNALS LISPWORKS
FOREIGN
GRAPHICS-PORTS
HARP

HQN-WEB

INS

KEYWORD
LISPWORKS-TOOLS
LOOP

LW-XP

LWGTK

MP

PARSERGEN

PC386

RAW

REG

RUNTIME

*]

The main part of this dialog consists of two lists:
» The Unselected Packages list shows packages in the Lisp image whose functions are not to be profiled.
» The Selected Packages list shows packages in the Lisp image whose functions are to be profiled.

A global function will be profiled if its symbol isvisible in one of the selected packages.

260

23 The Profiler

To modify the Selected Packages list:
1. Consider whether one of these buttons offers what you need, or closeto it:
All Selects all packages.

Note: There are significant processing overheads when profiling al functionsin all packages,
and the results you get may include much unwanted information.

User Only Adds the "user" packages, which means packages that are not part of the LispWorks
implementation, or packages that are part of the implementation but you are allowed to add
definitions to them. Includes the CL-USER package.

User and CL Adds the "user" and CL packages.

User and Standard Adds the "user" packages along with those packages that are used by default (from the value of
hcl : *def aul t - package- use-1i st*, whichinitially includes CL, HCL and LW).

Note: The Profiler tool assumes that packages not named in the value of
packages-f or -war n- on-r edef i ni ti on are user-defined.

2. Add to your Selected Packages list if necessary. You can add a single package in one of three ways.
» Type the package name in the Select Package box and press Ret ur n or click v, or:
 Select the package in the Unselected Packages list and click on the >>> button, or:
» Double-click on the package in the Unselected Packages list.
3. Remove packages from the Selected Packages list if necessary. You can remove a single package in one of two ways:
» Select the package in the Selected Packages list and click on the <<< button, or:

» Double-click on the package in the Selected Packages list.

Also you can click the None button to clear the list of selected packages. Note that if you only want to profile afew
functions, you should do this by checking the None button in the main dialog and selecting symbols as described in
23.4.1.1 Choosing individual functions.

4. Finaly, click OK to dismiss the dialog when you have finished selecting the packages whose functions you want to
profile, or click Cancel to cancel the operation. This aso dismisses the dialog.

23.5 Format of the cumulative results

After you have run the profile, afour column tableis printed in the large list in the Cumulative tab of the Results area. These
columns are laid out as follows:

Call# The call count of each function, that is, the number of times it was called during execution of the
code.
Stack#(%) The number of times the function was found on the stack when the Lisp process was interrupted.

The parenthesized figure shows the percentage of time the function was found on the stack.

Top#(%) The number of times the function was found on the top of the stack when the Lisp process was
interrupted. Again, the figure in brackets shows the percentage of time the function was found on
top of the stack.

Name The name of the function.
You can order the itemsin the list by clicking on the relevant heading button.

261

23 The Profiler

Selecting any item in the list displays a description of that function in the Description area. In addition, an item selected in
the main list can be acted upon by any relevant commands in the Function menu (or, equivalently, the main list's context
menu). For instance, if you select a generic function in the main list and choose Function > Generic Function, you can view
the generic function in a Generic Function Browser. Thisis consistent with many of the other tools in the environment.

The context menu also allows you to show the selected function in atree. By default, the Profiler switches to the Stacked
Tree tab to show the tree. You can change this using the buttons under When Code To Profile finishes profiling in the Profiler
Preferences (see 23.7 Configuring the Profiler).

» Choosing Set Function As Root makes the function associated with the selected node be the root of the displayed tree,
by merging all subtrees starting at the outermost occurrences of that function.

» Choosing Calls To Function [Inverted] creates an inverted tree with the function at itsroot. The children of the inverted
tree are the callers of that function and the branches are merged as for Set Function As Root tree. Aninverted treeisa
useful way for exploring why afunction seemsto be on the stack more than expected.

Double-clicking on an item in the Description list invokes an Inspector on the selected item. In addition, an item selected in
this area may be acted on by any relevant commands in the Description menu, asis the case with many other toolsin the
environment. For instance, choose Description > Copy to copy the item selected in the Description list to the clipboard. See
3.8 Performing oper ations on selected objects for details on the commands available.

23.6 Interpreting the cumulative results

The most important columns in the Cumulative tab are those showing call count (Call#) and number of times on the top of the
stack (Stack#). Looking solely at the number of times afunction isfound on the stack (Stack#) can be misleading, because
functions which are on the stack are not necessarily using up much processing time. However, functions which are
consistently found on the top of the stack are likely to have a significant execution time. Similarly the functions that are
called most often are likely to have the most significant effect on the program as awhole.

23.7 Configuring the Profiler

You can configure the Profiler using the Preferences dialog. To do this, choose Works > Tools > Preferences... or click & to
display this dialog, and then select Profiler in the list on the |eft side of the dialog.

262

23 The Profiler

Profiler Preferences

|Genera||

Toolbar

Show Toolbar

Automatic switching

When setting a root in the Cumulative tab:
(@) Switch to Stacked Tree

() Switch to Call Tree

(") Do Not Switch

When Code To Profile finishes profiling:
(@ Switch to Stacked Tree

(") Switch to Call Tree

() Switch to Cumulative

) Do Not Switch

Package

COMMON-LISP-USER v .7.??

Show Package Names

23.7.1 Behavior of the Cumulative tab

You can change what happens after choosing Set Function As Root or Calls To Function [Inverted] from the context menuin
the Cumulative tab. The options under When setting a root in the Cumulative tab are:

Switch to Stacked Tree
Switch to the Stacked Tree tab.
Switch to Call Tree Switch to the Call Tree tab.

Do Not Switch The Cumulative Results tab remains visible.

23.7.2 Behavior after profiling finishes

You can change what happens when profiling in the Code To Profile tab finishes. The options under When Code To Profile
finishes profiling are:

Switch to Stacked Tree

263

23 The Profiler

Switch to the Stacked Tree tab.
Switch to Call Tree Switch to the Call Tree tab.
Switch to Cumulative Switch to the Cumulative tab.

Do Not Switch The Code To Profile tab remains visible.

23.8 Profiling pitfalls

It is generally only worth profiling code which has been compiled. If you profile interpreted code, the interpreter itself is
profiled, and this skews the results for the actual Lisp program.

Macros cannot be profiled because they are expanded during the compilation process.

23.8.1 Effects of random sampling

Always bear in mind that the numbers produced are from random samples, so you should be careful when interpreting their

meaning. The rate of sampling is always coarse in comparison to the function call rate, so it is possible for strange effects to
occur and significant eventsto be missed. For example, resonance may occur when an event always occurs between regular
sampling times. In practice, however, thisis not usually a problem.

23.8.2 Recursive functions

Recursive functions need special attention. A recursive function may well be found on the stack in more than one place
during one interrupt. The profiler counts each occurrence of the function, and so the total number of times afunction isfound
on the stack may be greater than the number of times the stack is examined.

23.8.3 Structure accessors

You must take care when profiling structure accessors. These compile down into a call to a closure, of which thereis one for
al structure setters and one for all structure getters. Thereforeit is not possible to profile individual structure setters or getters
by name.

23.8.4 Consequences of restricted profiling

Even if you configure the Profiler to profile all the known functions of an application, it is possible that less than 100% of the
timeis spent monitoring the top function. Thisis because an internal system function could be on the top of the stack at the
time of the interrupt.

If you configure the Profiler to omit certain functions then these will not be displayed in the Results area, and so the display
may not match what you expect from your source code.

23.8.5 Effect of compiler optimizations

With certain compiler settings code can be optimized such that the Profiler data does not appear to match your source code.
For example when atail call is optimized, the tail-called function appears in the call tree as a child of the parent of the caller,
rather than as a child of its caller (just as in the debugger stack). Similarly code using f uncal | or appl y may yield
confusing results. To prevent tail-call optimization, use compiler setting debug 3.

264

http://www.lispworks.com/documentation/HyperSpec/Body/f_funcal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_apply.htm

23 The Profiler

23.8.6 Effect of compiler transforms
The compiler may transform some functions such that they are present in the source code but not in the compiled code.
For example, the compiler transforms this source expression:
(member "x '"(x y z) :test # eq)
into this compiled expression:
(memg "X " (xy z))

Therefore function meng will appear instead of nenber in the profile results.

Similarly, you cannot profile inlined functions.

23.9 Some examples

The examples below demonstrate different ways in which the profiler can be configured and code profiled so as to produce
different sets of results. In each example, the following piece of code is profiled:

(dotimes (x 1000)
(capi : make- cont ai ner
(make-instance 'capi:title-pane
ttext "Title")))

Thisisasimple form which makes some CAPI objects.
1. Create a Profiler tool if you have not already done so.
2. Copy the code above into the box in the Code to Profile pandl.

3. Choose Works > Tools > Preferences... or click &, select Profiler in the list on the left side of the dialog, and then select
the General tab. Now you can change the package of the Profiler.

265

http://www.lispworks.com/documentation/HyperSpec/Body/a_member.htm

23 The Profiler

Profiler Preferences

|Genera||

Toolbar

Show Toolbar

Automatic switching

When setting a root in the Cumulative tab:
(@) Switch to Stacked Tree

() Switch to Call Tree
() Do Not Switch

When Code To Profile finishes profiling:
(@ Switch to Stacked Tree

(") Switch to Call Tree
() Switch to Cumulative
) Do Not Switch

Package

COMMON-LISP-USER v .7.??

Show Package Names

4. Inthe Profiler Preferences, replace the default package in the Package text box with CAPI and click +.
5. Click OK to dismiss the Preferences dialog and apply the change you have made.
6. Click on Profile.
This profiles the functions in the COMMON- LI SP, CL- USER and LI SPWORKS packages.
Next, add the CAPI packageto thelist of packages whose functions are profiled.
7. Click Packages.
8. Inthe dialog, double-click on CAPI inthe Unselected Packages list, and click on OK.
9. Click on Profile to profile the code again.
Notice that this time there are many more functions which appear in the profile results.

10Select afew of the functions listed at the top of the Results area, and look at their function descriptions.
Add the Description area by clicking the Description >> button if you have not aready done so.

266

23 The Profiler

Notice that most of the functions appearing on the stack are in the CAPI package. It isworth profiling afew functions
explicitly, and removing unwanted packages from the list of packages to profile.

11Click Symbols..., and add the following four functions to the list in the dialog:

nmer ge find-class make-char functionp

Type the name of each function and press Ret ur n or click +to add it to the list.

12Click OK when you have finished adding to thislist.

Now remove the unwanted packages from the list of packages to profile, asfollows:

13Click Packages....
14Inthe dialog click on None to remove al itemsin the Selected Packages list.

15Click on OK, and profile the code again by clicking on Profile.

Notice that the four functions in the COMMON- LI SP package are still being profiled, even though you are no longer
profiling all functions from that package by default.

267

24 The Shell and Remote Shell Tools

24.1 Introduction

You can run a system command line session from within the LispWorks IDE by using the Shell tool. The Shell tool
automatically runs on your current host.

Also available is a Remote Shell tool which runs a session on another machine on your network.

24.2 The Shell tool

You can create a Shell tool in one of two ways.
* Choose Works > Tools > Shell or click & inthe Podium.

» Typethe extended command Met a+X Shel | inany Editor window (or any other window based on an editor, such asthe
Listener).

The Shell Tool Preferences

Works File Edit Operations Help

530 SEP EO®

higson:/tmpf pwd [»]
/tmp —
higson:/tmpf 1ls -1 *.lisp

-Tw-Tw-Tw- 1 dubya wusers 7142 Nov 24 19:09 chat.lisp
-rw-rwWw-rw- 1 dubya wusers 26419 Nov 24 19:09 maze.lisp
-rw-rwWw-rw- 1 dubya wusers 25611 Nov 24 159:09 othello.lisp
-rw-rw-rw- 1 dubya wusers 8913 Nov 24 19:09 pong.lisp
higson:/tmp$ I |

The Operations menu contains the following commands which send POSIX signals to the shell process. These only work on
non-Windows platforms.

Choose Operations > Interrupt to send a break signal to the shell process. This stops the current task and returns control to
the command linein the Shell tool, if necessary.

Choose Operations > Suspend to send a suspend signal to the shell process. This suspends the current task so that you can
continue entering commands at the command line. To resume the task, typef g at the command line in the Shell tool.
Alternatively, type bg at the command line to force atask to run in the background.

268

24 The Shell and Remote Shell Tools

Choose Operations > Eof to send an EOF signal to the process.

24.3 Command history in the shell

The Shell tool is another example of atool which is based on an editor, and thus many of the keys available in the editor are
also available in the Shell tool.

Like the Listener, the Shell tool is run in execute mode, which meansthat several additional keystrokes are available in
Emacs emulation, asfollows:

e PressMeta+PorCtrl +C Ctrl +P to display the previous command entered in the shell.
* PressMeta+Nor Ctrl +C Ctrl +Nto display the next command in the history.

* PressMet a+Ror Ctrl +C Ctrl +Rto perform a search of the command history.

24.4 Configuring the shell to run

This section applies only on hon-Windows platforms.

By default, the Shell tool will use the value of the environment variable ESHELL or SHELL if set, or one of / bi n/ sh (System
V) and/ bi n/ csh (otherwise). You can override the default by setting the variable edi t or : *shel | - shel | *. The value of
edi tor: *shel | - shel | * must be astring that is the command to run, including any command-line arguments (separated
by spaces as you would do in aterminal). For example, if you want to execute a remote shell (rsh) on another machine, you
canseteditor: *shel |l -shel | * to"exec rsh anot her-nmachi ne". Notethat thiswill affect all Shell windowsthat are
created after edi t or: *shel | - shel | * was set.

LispWorks uses an external format for communicating with the shell. By default, LispWorks checks the standard POSI X
environment variablesLC_ALL, LC_CTYPE and LANG (in that order). If the first of these that is set specifies a" codeset”
(which means it contains a dot and the "codeset” is the bit after the dot) that matches a LispWorks external format, then
LispWorks uses this external format. Otherwise, it uses: ut f - 8. Inanidea world, that should be adequate, but the POSI X
environment variables are not always set properly, : ut f - 8 may not be the right default, and also if you run your own
program by setting edi t or : *shel | - shel | * then you may want something else.

The selection of the external format can be changed via Preferences... > Shell > General > External Format, where you can
switch off checking for the POSIX environment variables by unchecking Check Environment Variables and select the default
externa format to use in the dropdown list. If Check Environment Variables is checked, LispWorks will use the external
format from the dropdown list only if the environment variables do not specify a"codeset” matching a LispWorks external
format. Otherwise, LispWorks will always use the exteral format that you specify in the dropdown list.

269

24 The Shell and Remote Shell Tools

The Shell tool

General

Toolbar

Show Toolbar

External Format

Check Environment Variables

UTF-8 v

Note that the above only affects Shell windows that are created after any change is made. Existing windows are not affected.

24.5 The Remote Shell tool

This looks similar to the Shell Tool, but you must specify which host to run the remote shell on when you start it up.

To start a Remote Shell tool, enter Met a+X Renot e Shel | inthe Editor or Listener tool, and supply the hostname of the
remote machine when prompted.

Thetool runs an appropriate shell command (r sh or r ensh) with the hosthame which you specify.

270

25 The Stepper

25.1 Introduction

The Stepper tool allows you to follow the execution of your program, displaying the source code as it executes. While
stepping, you can see the evaluation of each subform, function call and the arguments and return valuesin each call. At every
call to one of your functions, you have the option of stepping into that function, that is stepping the source code definition of
the function.

Where a macro appears in stepped code, the Stepper can macroexpand the form and step the resulting expansion, or simply
step the visible inner forms of the macro form. Where a special form such asi f appears in stepped code, the Stepper
processes it according to the execution order in that specia form.

The system creates a Stepper tool automatically when your code reaches a breakpoint.
Other ways to start a Stepper tool are:
» Choose Works > Tools > Stepper or click on & in the Podium and enter asingle form.

» Choose Frame > Restart Frame Stepping in a Debugger tool.

The Stepper

Stepper 1

Works File Edit Frame Vanables Restarts Stepper Help

B doedohaleg= | @ " 5005 &

Source:

Backtrace | Listener

= Enter a form to step in the pane above.

Ready.

The Stepper has four areas.

271

http://www.lispworks.com/documentation/HyperSpec/Body/s_if.htm

25 The Stepper

25.1.1 Stepper toolbar

The commands on the stepper toolbar allow you to step to various pointsin the code, set breakpoints and perform macro
expansions.

25.1.2 Source area

Thisis an editor window where you can enter the initial form to step. It also displays aread-only copy of adefinition that you
step into.

The title of the source area may be Source: or Source file: path or Old copy of source file: path or Buffer: buffer-name,
depending on where the original source codeis.

Notice that the editor cursor isan underlinein the source area. Thisis because the normal cursor styles are not visible where
the Stepper is highlighting aform.

25.1.3 Backtrace area
The Backtrace tab displays the function calls on the execution stack in the code being stepped.

The topmost item in the backtrace area shows the next step, known as the status. When calling afunction, the statusitem is
represented by a 43 icon and contains the arguments represented as subnodes with ayellow disc < icon. When returning
from any form, the status item is represented by a <z icon and contains the return values. When evaluating aform, the status
item is represented by a 5> icon. You can see the contents of the status item by expanding it. You can make the statusitem
expand automatically if you wish, as described in 25.9.2 Backtrace preferences.

The second topmost item in the backtrace areais the active frame represented by a X icon. This shows the function
executing when the breakpoint was reached, and its arguments which are represented as subnodes with ayellow disc < icon.

Other call frames on the stack are represented in the same way, below.
A subnode with a cyan disc < icon represents some other frame.

For function calls, arguments and local variables can be seen by expanding the item. You can make the active frame expand
automatically if you wish, as described in 25.9.2 Backtrace preferences. Just asin the Backtrace area of the Debugger tool,
these stack frames and variables can be operated on using the Frame and Variables menus. For details, see 10.1.2 Backtrace
area.

Double-click on a status or call frame node to show the source of that function, if available, in the Editor. Double-click on the
disc iconsto show that variable in the Inspector.

25.1.4 Listener area

The Listener tab provides a Listener in which the execution steps are indicated. Commands can be entered here as an
alternative to using the buttons on the 25.1.1 Stepper toolbar .

Any form entered here is evaluated on the dynamic environment of the function being stepped.

Moreover, you can use the debugger commands such as : v, which prints the local variables in the current frame. You can use
the value of alocal variable smply by entering its name as shown. See the LispWorks® User Guide and Reference Manual
for more details about the debugger commands.

See 25.8 Listener area for more details.

272

25 The Stepper

25.2 Simple examples

There are two ways to enter the Stepper tool:

25.2.1 Standalone use of the stepper

1

Compile and load the demo system defined in thefile:
(exanple-edit-file "tool s/ denp-defsys")

First, load thisfile to define the system. Then evaluate in the Listener:
(conpi | e-system "demp" :load t)

Note: for another way to compile and load a system, see 26 The System Browser .

. Create a Stepper tool by choosing Works > Tools > Stepper or pressing A in the Podium.

. Enter thisform in the source area of the Stepper tool:

(my-function 3)

. Choose the menu command Stepper > Step. The open parenthesisis highlighted orange, indicating that the next step is

to evaluate the form.

. Choose Stepper > Step again. The symbol my- f unct i on isnow highlighted orange, indicating that the next step isto

call thisfunction. Notice how the current stepping position is always highlighted orange.

. Notice how the topmost item in the Backtrace area always indicates the next step. Expand this item to show the

arguments,

273

25 The Stepper

Stepper backtrace showing the next step

Stepper 1

Works File Edit Frame Varables Restarts Stepper Help

oAb do ed oh 0 ey = | @ v 7 H0 O &
Buffer: Stepper Tool Stepper 1
(fy-function 3’

Tt

Backtrace |Listener

= 4r Calling MY-FUNCTION with arguments
*® ARG-0 3

Ready.

7. At this point we have the option to step my - f unct i on itself, but for the moment simply choose Stepper > Step again,
which stepsto the point where the function call returns. The Backtrace area shows the return value, 12, when you
expand the status item.

Note how the Step command always steps only inside the current form, and does not step into other functions.

25.2.2 Invoking the Stepper via a breakpoint

1. Compile and load the code in the system deno defined in thefile:
(exanmple-edit-file "tool s/ deno-defsys")

2. Open thefile:
(exanple-edit-file "tool s/deno-utils")

in an Editor and set a breakpoint at the call to + as described in 12.13.6.1 Setting breakpoints.

3. Evaluate (ny- usef ul -function 42) inaListener.

4. A Stepper tool appears, with the current stepping position at the breakpoint.

274

25 The Stepper

Stepper invoked by reaching a breakpoint

P ecutio ENE - | O X

B0 e] i

Works File Edit Frame Varables Restarts Stepper Help
P o ed oh ey = | @ v)60 OF &

ource file: ftmp/demo-utils.lisp

Tt

(in-package "CL-USER"™) s
(defun my-useful-function (x)
(print (H x x)))
7
-
Backtrace |Listener
~ 4r Breakpoint: Calling + with arguments =
& ARG-0 42)
& ARG-1 42 -
]
X 42
- A EVAL —
Ready.

5. You can now step this code, just as in standalone mode.

6. When you choose Stepper > Continue, or otherwise finish stepping, nmy- usef ul - f unct i on returns, the Stepper is
hidden and the Listener tool becomes active again.

25.3 The implementation of the Stepper

It isimportant to understand the following points about the implementation of the Stepper.

25.3.1 Requirements for stepping
The code you step must have been compiled, evaluated or loaded in the Lisp image.

275

25 The Stepper

25.3.2 Editing source code

While the Stepper is running, it displays aread-only copy of the source in the source area. Therefore, you cannot edit the
code in the source area, other than when the status is "Enter aform to step in the pane above.".

If you step a function for which the source has been edited since it was compiled, then the Stepper uses a copy of the compile
-time source, not the edited source.

This copy is stepped in anew editor buffer created specially for it and thisis displayed in the source area.

25.3.3 Side-effects of stepping
When the Stepper steps a definition for the first time, it evaluatesiit.

Thiswill not normally alter the behavior of your program, but there are three situations where this will cause unexpected
behavior:

» The codeisloaded from afadl file which is not compatible with the corresponding source file.
» The source relies on compile-time side-effects of forms preceding it in thefile.

» The defining form has other side effects. Thisis unlikely to matter for simple definers such as def un and def et hod.

25.3.4 Atomic and constant forms

It is not possible to step to atomic forms or constant forms.

25.4 Stepper controls

The Stepper menu offers fine control over the next step.

It also includes commands for setting breakpoints, displaying the source code, macro expansion, and aborting from the
current step.

All these commands are also available on the Stepper toolbar as shown in The Stepper controls.

276

http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm

25 The Stepper

The Stepper controls
Slep Glep To Glep To Show Cyrrerl Source
Value Cursor Ao
Slep Macro-
T hrough Mexi expard
Urdo

Step To Step To Macro-

E-lj EXEEr

stepper 1 =]
Warks ile |Edit| Frame arnahles Hestarts| Steppe; Halp

T * *

vy ey =

0 e oh «l g = @ v)60 O @

Buffer. Stepper Tool Stepper 1
{ fy-function 3

Backtrace | Listener

® ARG
h Form

= 4F Calling MY-FUNCTION with arguments

3

Ready,

Breakpoir Cpliors

The Stepper controls operate as described below. Recall that the current position is aways highlighted in orange:

Step

Step Through Call

Step To Call

Step To Value

Next
Step To End
Step To Cursor

Continue

Steps once, remaining inside the current form. At the start of the current form, this steps the first
inner form. At afunction call, it stepsto the value. At the form value, it steps the next form or
value.

Steps once. Thisisthe same as Step above, except that at afunction call, it stepsthat function if
the source is known.

At the start of aform, steps to the function call of that form after evaluation of the arguments. At
afunction call or at the end of aform, steps to the function call of the enclosing form.

At the start or function call of aform, stepsto the value of that form. At the end of aform, steps
to the value of the enclosing form.

Steps to the start of the next form, or behaves like Step if there is no next form.
Steps to the value of the current function.
Steps to the cursor position, or displays a message if that position is not steppable.

Runs the code until a breakpoint is reached.

277

25 The Stepper

Breakpoint Sets a breakpoint at the position of the cursor if there is no breakpoint there already and the
position is steppable. If there is abreakpoint under the cursor, this command removesit. Note
that breakpoints are highlighted red, though the orange highlight on the current stepping position
overrides any breakpoint highlight..

Show Current Source Moves the editor buffer in the source area so that the definition at the top of the backtrace area,
and the active form within it, isvisible.

Macroexpand Macroexpands the form under the cursor.

Undo Macroexpand Collapses the macro expansion under the cursor.

Abort Aborts the execution and returns to the form which you first stepped, allowing you to repeat the
execution or edit the form. This command is available only when using the Stepper in standalone
mode.

Breakpoint Options The Breakpoint Options menu alows you to set properties of a breakpoint as described in 25.6
Breakpoints.

25.4.1 Shortcut keys for the Stepper
The following Editor commands run the corresponding Stepper command in the current stepper:

Stepper Breakpoint#
Stepper Continue#

Stepper M acroexpand#
Stepper Next#

Stepper Restart#

Stepper Show Current Sour cet
Stepper Step#

Stepper Step Through Call#
Stepper Step To Call#
Stepper Step To Cursor#
Stepper Step To End#
Stepper Step To Value#
Stepper Undo M acr oexpand

These commands can be bound to keys in the LispWorks editor, which makes those keys invoke the command in a Stepper
tool. For example:

(editor:bind-key "Stepper Step" #("Control-S" "Control-s"))

Note: the editor key binding only takes effect when the input focusis in the Source or Listener panes of the Stepper tool.

For more information about Editor key bindings, see the Editor User Guide.

25.5 Stepper restarts

The Restarts menu lists a number of restart options, which offer ways to continue execution.

This works the same as described for the Debugger tool in 10.3 Simple use of the Debugger tool.

278

25 The Stepper

25.6 Breakpoints

You can set a breakpoint in any form which might be evaluated, except for:
» Atomic and constant forms.
» Formswhich are evaluated while the file is |oaded.
» Forms within non-locatable defining forms (see below).

The breakpoint can be at the start, function call or return point of the form.

For each of the load source, load fasl, compile defun and compile buffer operations, breakpoints are activated only after the
operation has finished.

A locatable defining form is a named defining form that can be located by the Dspec system (for example by the
Fi nd Dspec editor command). Thisincludes def un, def net hod and al the standard Common Lisp definers. For more
information about the Dspec system, see the LispWorks® User Guide and Reference Manual.

When not at the current stepping position, a breakpoint is highlighted red in the Stepper source area. When the same source
codeisalso visible in an Editor tool, the breakpoint is visible there too.

25.6.1 Setting breakpoints

To set a breakpoint from the Stepper, position the cursor where you want the breakpoint and choose Stepper > Breakpoint or
click @ inthe Stepper toolbar.

279

http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm

25 The Stepper

A breakpoint on the function call +

Stepper 2

Works File Edit Frame Varables Restarts Stepper Help

ALY do ed oh o ey = @ v 1 0 0F @

Tt

Source file: ftmp/demo-utils.lisp

;3 oee the LispWorks IDE User Guide. [|
(in-package "CL-USER"™) L
(defun my-useful-function (x) ﬁ
(print (] x x))) B
Backtrace | Listener
= Breakpoint; Evaluating PRINT form =
™ MY-USEFUL-FUNCTION Z
X 3 ||
> A MY-FUNCTION <
4 R ¥]
Ready.

When you run code, or choose Stepper > Continue, execution stopsif a breakpoint is reached. The Stepper will show the
form in the source area with the breakpoint highlighted in yellow.

In the picture above, execution has stopped at the start of the print form and we have just set a breakpoint on the call to +.
Continuing from this point will cause execution to stop just beforeit calls +, and the Stepper will display the arguments that
are about to be passed to +.

If you set a breakpoint on the closing parenthesis of aform, then it will cause execution to stop when the form returns and the
top backtrace frame will display the values of that form.

To set a breakpoint from the Editor, see 12.13.6 Breakpoints.

25.6.2 Conditional breakpoints
A breakpoint can be modified to make it effective only when a condition istrue.

Suppose that you have reached a breakpoint on the call to + as set in the example above. To make this breakpoint conditional
on avariable*use- my- br eakpoi nt s* (which you should define with def var), choose Conditional... from the Breakpoint
Options menu:

280

http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm

25 The Stepper

The Breakpoint Options menu

L Le — D x
Works File Edit Frame Varables Restarts Stepper Help

AP daed oholeg @ @ 6005 &

ource file: ftmp/demo-utils.lisp | C onditional
L

;3 oee the LispWorks IDE User Guide. o
Printing...

(in-package "CL-USER™) Edit...
(defun my-useful-function (x) ﬁ

(print (f] x x)))
Backtrace |Listener

= Breakpoint; Evaluating PRINT form =

B Z
X 3

> A MY-FUNCTION —
4 A
Ready.

Select the Condition radio button in the Conditional tab of the Edit Breakpoint dialog, then enter * use- ny- br eakpoi nt s*
in the condition area and click OK.

281

25 The Stepper

The Edit Breakpoint dialog

Edit breakpoint

Location | Conditional | Printing

() Unconditional
(® Condition

Package: COMMON-LISP-USER
*use—my—breakpuints*l

#® Cancel o? oK

The form defining the breakpoint condition is evaluated in the package where the stepped function was defined. Note that this
package is displayed in the Conditional tab of the Edit Breakpoint dialog. Therefore, after confirming the dialog shown
above, your code breaks at the breakpoint depending on the value of common- | i sp- user: : *use- my- br eakpoi nt s*.

To make a breakpoint unconditional, select Unconditional in the dialog shown above.

Note: you cannot currently access the values of local variables in the condition expression.

25.6.3 Printing breakpoints
A breakpoint can be modified to make it print an expression and its value when it is reached.

Again suppose that you have reached a breakpoint on the call to + as set in the example above. To make this breakpoint print,
choose Printing... from the Breakpoint Options menu, and enter avalid Lisp expression in the Printing tab of the Edit
Breakpoint dialog, and click OK.

When the breakpoint is reached, the expression and its value are printed like this:

Stepper value (+ 4 4 4 4): 16

The Lisp expression is evaluated in the package where the stepped function was defined. Note that this package is displayed
in the Printing tab of the Edit Breakpoint dialog.

If you check the Print without stopping option, then the above line is printed but the code continues to execute and does not
stop at the breakpaint.

Note: you cannot currently access the values of local variablesin the printed expression.

282

25 The Stepper

25.6.4 Editing breakpoints

To edit the Conditional or Printing properties of a breakpoint visible in the source, position the cursor on the breakpoint and
proceed as described in 25.6.2 Conditional breakpoints or 25.6.3 Printing breakpoints.

Where you wish to change the Conditional or Printing properties of a breakpoint without finding it in the source, choose
Edit... from the Breakpoint Options menu or the menu command Stepper > Edit Breakpoints.... Select abreakpoint in the
Breakpoints list and click the Edit... button. Choose the Conditional or Printing tab as appropriate and proceed as described
in 25.6.2 Conditional breakpoints and 25.6.3 Printing breakpoints.

To visit the source code where a breakpoint was set, choose Edit... from the Breakpoint Options menu or the menu command
Stepper > Edit Breakpoints.... Select a breakpoint in the Breakpointslist and click the Goto Source button. This cancelsthe
dialog and then displays the source containing the breakpoint.

25.6.5 Removing breakpoints
To remove a breakpoint under the cursor, click @ in thetoolbar. Equivalently you can choose Stepper > Breakpoint.

Where you wish to remove one or more breakpoints without finding them in the source, choose Edit... from the Breakpoint
Options menu or the menu command Stepper > Edit Breakpoints..., select a breakpoint or breakpoints in the Breakpointslist,
and click Remove.

If you remove all breakpoints, then the breakpoints dialog is closed.

25.7 Stepping macro forms

Where your code contains a macro, you can step the macro expansion or simply step the macro form as-is.

25.7.1 Interactive macro expansion

When the Stepper reaches code for which the source contains an unexpanded macro form, by default it offers you the option
of macro expanding that form.

To seethis, follow the examplein 25.2.1 Standalone use of the stepper and when your reach my - f unct i on choose Stepper
> Step Through Call or click @ in the Stepper toolbar.

The source code for ny- f unct i on is shown in the source area of the Stepper. Choose Stepper > Step or click @ in the
Stepper toolbar.

Click Yes on the dialog asking "Expand MY -MACRO form?*. The macro expansion replaces the macro form:

283

25 The Stepper

Stepping a macro expansion

Stepper 1

Works File Edit Frame Varables Restarts Stepper Help

I T S (S ¥ + —n - ~

AP daed oholeg @ @ 6005 &

Source file: ftmp/demo-functions.lisp

(defun my-function (x) ad
KLET* ((#:X664 X) (#:ARGS665 NIL))

(APPLY 'MY-USEFUL-FUNCTION -
(AFPLY 'MY-USEFUL-FUNCTION #:X664 #:ARGS665) &
#:ARG5665))) |

-
Backtrace |Listener
= Evaluating LET* form [~
-
T MY-FUNCTION i
X 3]
£ £ ¥

Now you can Step into the macro expansion of my- macr o.

25.7.2 Macro expansion in the stepper

To macroexpand a macro form before reaching it in the Stepper, position the cursor at the start of the macro form and choose
the menu command Stepper > Macroexpand or click @ in the Stepper toolbar. You can only this when the Stepper has
aready stepped the function.

Sometimesit is useful to expand macros in outer forms, to allow the more detailed stepping of their expansions. For example,
for adefinition such as:

(defstruct foo (x (print 10)) vy)
when stepping:

(make- f 00)
expanding the def st r uct form allows you to step more of the constructor.
25.7.3 Collapsing macro expansions

To collapse a macro expansion in the Stepper, position the cursor at the start of the macro expansion and choose the menu
command Stepper > Undo Macroexpand or click & in the Stepper toolbar.

284

http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm

25 The Stepper

25.7.4 Controlling macro expansion

You can alter the way the Stepper handles macro forms on a per-symbol or per-package basis. For instance, you can specify
that the Stepper always expands your macros automatically, without prompting. For details, see 25.9.1 Operator
preferences.

25.8 Listener area

Select the Listener tab of the Stepper tool to display a Listener.

This area offers all the usual Listener and Debugger commands. Moreover, the execution environment is that of the function
currently being stepped, and contains the variables of each frame on the stack.

The Stepper listener also offers the following listener commands to control stepping.
s, :step Step
:st,:step-through-call

Step Through Call

:sc,:step-to-call Step To Call
1SV, :step-to-val ue

Step To Value
1 sn, : next Next

:se, :step-to-end Step ToEnd

1 c,:continue Continue
:sm : macr oexpand M acroexpand
irestart Abort

See 25.4 Stepper controlsfor afull description of these controls.

25.9 Configuring the Stepper

To configure the Stepper tool, raise the Preferences dialog, by choosing Works > Tools > Preferences... or clicking €. Then
select Stepper in thelist on the left side of the Preferences dialog.

The Stepper Preferences have three tabs:

» The General tab controls display of the Stepper toolbar, as described in 3.1.8 Toolbar configurations.

» The Operators tab contains options controlling the behavior when the stepper sees functions or macros in the source.

» The Backtrace tab controls the amount of information shown automatically in the Backtrace area.

25.9.1 Operator preferences

285

25 The Stepper

Stepper Preferences

General | Operators | Backtrace

Name Step Through |Macroexpand Add...
Package COMMON-LISP Never MNever Remove
Package SYSTEM Never Query Edit
Default Always Query —

When reaching a function call you can use the Step Through Call command to step through the call into its definition. You
can configure the Stepper to do this automatically, never do this or ask you which action to take.

Similarly when reaching a macro form you can macroexpand it (or not). You can configure the Stepper to macroexpand
automatically, never macroexpand or ask you whether to macroexpand..

For a given symbol naming a function or macro, the action is determined by the preferencesin the Operators tab. If the
symbol islisted, then the corresponding action is taken. Otherwise, if the symbol's package is listed, then the corresponding
action istaken. If neither the symbol nor its package are shown,. then the default action is taken.

For example, the default behavior on reaching your macro formsisto prompt for whether to macroexpand. To configure the
Stepper such that macros defined in the CL- USER package are macroexpanded automatically, click the Add... button, enter
CL- USER in the Name pane of the dialog, select Always in the Expand macros panel, click OK and click OK to dismiss the
Preferences dialog.

To configure the Stepper such that it never steps through ny- f unct i on, raise the Stepper preferences again, click the Add...
button and select the Symbol radio button. Enter cl - user: : ny- f unct i on in the Name pane of the dialog, select Never in
the Step through calls panel, click OK and click OK to dismiss the Preferences diaog.

25.9.2 Backtrace preferences

To control the amount of information displayed automatically in the Backtrace area, select the Backtrace tab of the Stepper
Preferences:

Stepper Preferences Backtrace tab

General | Operators | Backtrace

Expand status automatically: @®:Yes () No

Expand active frame automatically: @ Yes () No

By default the statusitem in the Backtrace area automatically expands to show the arguments or return values. To change this
behavior, select No against Expand status automatically.

By default the active frame in the Backtrace area automatically expands to show the local variables and arguments. To
change this behavior, select No against Expand active frame automatically.

Compatibility Note: in LispWorks 5.0 these Backtrace options have the opposite default values. Thisis changedin
LispWorks 5.1 and later versions.

286

26 The System Browser

26.1 Introduction

When an application becomes large, it is usually prudent to divide its source into separate files. This makes the individual
parts of the program easier to find and speeds up editing and compiling. When you make a small change to onefile, just
recompiling that file may be al that is necessary to bring the whole program up to date.

The drawback of this approach isthat it is difficult to keep track of many separate files of source code. If you want to load the
whole program from scratch, you need to load severa files, which is tedious to do manually, as well as proneto error.
Similarly, if you wish to recompile the whole program, you must check every file in the program to see if the sourcefileis
out of date with respect to the object file, and if so re-compileit.

To make matters more complicated, files often have interdependencies; files containing macros must be loaded before files
that use them are compiled. Similarly, compilation of one file may necessitate the compilation of another file even if its
object fileis not out of date. Furthermore, one application may consist of files of more than one source code language, for
example Lisp filesand C files. This meansthat different compilation and loading mechanisms are required.

The System Browser tool is designed to take care of these problems, allowing consistent devel opment and maintenance of
large programs spread over many files. A systemisbasically a collection of files that together constitute a program (or a part
of aprogram), plus rules expressing any interdependencies which exist between these files.

You can define a system in your source code using the def syst emmacro. See the LispWorks® User Guide and Reference
Manual for more on the use of def syst em Once defined, operations such as loading, compiling and printing can be
performed on the system as awhole. The system tool ensures that these operations are carried out completely and
consistently, without doing unnecessary work, by providing you with a GUI front end for def syst em

A system may itself have other systems as members, allowing a program to consist of ahierarchy of systems. Each system
can have compilation and load interdependencies with other systems, and can be used to collect related pieces of code within
the overall program. Operations on higher-level systems are invoked recursively on member systems.

26.2 A brief introduction to systems

A system is defined with adef syst emform in an ordinary Lisp source file. Thisform must be evaluated in the Lisp image
in order to use the system.

Once defined, operations can be carried out on the system by invoking Lisp functions.

For example, the expression:
CL-USER 5 > (conpil e-system ' debug-app :force t)

would compile every filein asystem called debug- app.

Note: When defining a hierarchy of systems, the leaf systems must be defined first - that is, a system must be defined before
any systems that include it.

By convention, system definitions are placed in afile called def sys. | i sp which usually resides in the same directory as the
members of the system.

287

26 The System Browser

26.2.1 Examples

Consider an example system, deno, defined as follows:

(defsystem deno (:package "CL- USER')
:menbers ("nacros”
"deno-utils"
"deno-functions")
:rules ((:in-order-to :conpile ("denpo-utils" "deno-functions")
(:caused-by (:conpile "macros"))
(:requires (:load "macros")))))

This system compiles and loads membersin the CL- USER package if the members themselves do not specify packages. The
system contains three members - macr os, deno- uti | s, and deno- f unct i ons - which may themselves be either files or
other systems. Thereisonly one explicit rule in the example. If macr os needs to be compiled (for instance, if it has been
changed), then this causesdenp- uti | s and deno- f unct i ons to be compiled as well, irrespective of whether they have
themselves changed. In order for them to be compiled, macr os must first be loaded.

Implicitly, it is always the case that if any member changes, it needs to be compiled when you compile the system. The
explicit rule above meansthat if the changed member happens to be macr os, then every member gets compiled. If the
changed member isnot nacr os, then macr os must at least be loaded before compiling takes place.

The next example shows a system consisting of three files:

(defsystem nmy-system
(:defaul t-pathname "~/junk/")
snmenbers ("a" "b" "c")
:rules ((:in-order-to :conpile ("c")
(:requires (:load "a"))
(:caused-by (:compile "b")))))

What plan is produced when all three files have already been compiled, but thefileb. | i sp has since been changed?
First, filea. | i sp isconsidered. Thisfile has aready been compiled, so no instructions are added to the plan.
Second, fileb. | i sp isconsidered. Since thisfile has changed, the instruction compile b is added to the plan.

Finally filec. | i sp isconsidered. Although this has already been compiled, the clause:
(:caused-by (:compile "b"))

causes the instruction compile ¢ to be added to the plan. The compilation of c. | i sp also requiresthat a. | i sp isloaded, so
theinstruction load a is added to the plan first. This gives us the following plan:

1. Compileb. Ii sp.
2. Loada.li sp.

3. Compilec. l'i sp.

26.3 The System Browser

The System Browser provides an intuitive graphical way to examine and operate on systems and their members.

For example, the operation outlined in 26.2 A brief introduction to systems would be performed by the System Browser
menu commands Systems > Compilation options > Force followed by Systems > Compile.

To create a System Browser, choose Works > Tools > System Browser or press ¢ in the Podium. Alternatively, choose File
> Browse Parent System from any appropriate tool in the environment or execute Met a+X Descri be Syst emin an editor,

288

26 The System Browser

to display the parent system for the selected or current file in the System Browser. See 3.6 Operating on files for details.

In order to browse a system, first ensure it is defined. To define a system, load the Lisp source code containing the
def syst emform into the Lisp image. For instance, open the file in an Editor and choose File > Load. Alternatively, choose
File > Load... from the System Browser and choose afileto load in the dialog that appears.

26.4 A description of the System Browser

The System Browser has four views:
» The Tree view displays atree of al the systems defined in the image, together with their members.
» The Text view lists the systems defined in the image together with the members of the current system.
» The Preview view provides a powerful way of generating and executing systems plans.

» The Output view is used to display any output messages which have been created by the System Browser as aresult of
executing plans.

26.5 Examining the system tree

When you first invoke the System Browser, the Tree view isthe default view. You can also switch to it from another view by
choosing the relevant tab above the main view. The Tree view is shown in Displaying loaded systems using the Tree view
below.

289

26 The System Browser

Displaying loaded systems using the Tree view

System Browser 1

Works File Edit Mew Description Systems History Help

WmERrRE e v | ¥ P 8

System: DEMO| v X3

Tree | Text | Preview | Output

~ 4 DEMO
demu—machS.IiSp
dEfT‘ID—I.JI’”E.“SD
demu—functiuns.lis.p

|Description:
Name: DEMO
Pathname: /tmp/

Flags:

Ready.

The System Browser window has four areas, described below.

26.5.1 System area
The System area is used to enter and display in the name of the system.

You can browse a system by entering its name into the System: area. While doing this you can press Up, Down or click #: to
complete apartially specified name. This alows you to select from alist of all system names which begin with the partial
input you have entered. See 3.14 Completion for detailed instructions.

The members of the system are displayed in the tree area.

26.5.2 Tree area

The Tree area produces atree of the current system, together with all its members. The generic facilities available to all tree
views throughout the environment are available here; see 6 Manipulating Graphsfor details.

» Double-click on afilenameto display the file in the editor.

* Click on an unfilled circle alongside a system name to display its members.
 Click on afilled circle alongside a system name to hide its members.

*» Select either a system name or afile name to display details in the Description area.

290

26 The System Browser

You can operate on systems and files via the context menu, which offers commands such as Concatenate... and Search
Files... for systems, and Compile and Print... for files. The system commands are also available in the Systems menu. If no
items are selected, the commands apply to the current system, whose name is printed in the System area.

To traverse the system hierarchy, expand a system node in the tree. If the desired parent node is not in the tree, choose
Systems > Browse All Systems. The parent of al systems defined in theimage at any timeis called ALL- SYSTEMS.

To see the source code definition of a system, double-click its node in the tree or do Systems > Find Source or click #.

26.5.3 Description area

The Description area shows details about any system member selected in the Tree area. The following items of information
are shown:

Module The name of the selected member. Thisis either the filename (if the member is afile of source
code) or the system name (if the member is a subsystem).

Pathname The directory pathname of the selected member. Thisisthe full pathname of thefile, if the
selected member is afile of source code, or the default directory of the system, if the selected
member is a subsystem.

Flags Thislists any keyword flags which have been set for the selected member in the system
definition, such asthe: sour ce- onl y flag.

To operate on any of the items displayed in this area, select them and choose a command from the Description menu, which
contains the standard actions described in 3.8 Perfor ming operations on selected objects. By making multiple selections,
you can operate on as many of the items asyou like.

26.5.4 Performing operations on system members

A variety of operations can be performed on any number of nodes selected in the Tree area. If no system nodes are selected,
or if you are in another view, the commands are performed on the current system, whose nameis printed in the System area.

The Systems menu gives you access to the standard actions described in 3.8 Per for ming oper ations on selected objects.

e Systems > Browse All Systems causes the System Browser to display the root node, whase children include all loaded
systems.

* Systems > Browse Systems For Directory causes the System Browser to display all systems that have filesin agiven
directory or one of its subdirectories.

» Choose Systems > Compile and Load, Systems > Compile, or Systems > Load to compile or load the selected systems.

» Choose Systems > Concatenate... to produce a single fas file from asystem. You will need to supply the name of the
fad file, when prompted.

» Choose Systems > Search Files... to search the files of the selected systems (and any subsystems) for a given regular
expression. A dialog prompts for the regular expression, and then a Search Filestool israised in System Search mode,
displaying the results of the search. The Search Filestool isdescribed in 16 The Search Filestool.

» Choose Systems > Hide Files, to remove system member files from the tree and display only systems. Choose Systems
> Show Files to reverse this effect.

» Choose Systems > Query Replace to search all the filesin the selected members (and any subsystems) for a given string
and replace it with another string. You are prompted for both strings and an option to save the modified files in the same
waly as described for the Search Filestool in 16.4 M odifying the matched lines.

291

26 The System Browser

26.6 Examining systems in the text view

Thetext view allows you to list the parent system, subsystems and filesin the current system in one view, and gives you an
easy way of changing the current system. Choose the Text tab to display this view. The System Browser appears as shown in
Displaying loaded systems using the text view below.

Displaying loaded systems using the text view

System Browser 1

Works File Edit Mew Description Systems History Help

<[99

Tree| Text | Preview | Output
|[Parent System: Subsystems:

|Files:

demo-macros.lisp

demo-utils.lisp

demo-functions.lisp

|Description:
Mame: DEMO
Pathname: /tmp/

Flags:

Ready.

The System Browser contains the areas described below when in the text view.

26.6.1 System area

Aswith the tree view, the current system is shown here. See 26.5.1 System area for details about this area.

292

26 The System Browser

26.6.2 Parent system area

This arealists any parent systems of the current system. Note that every system apart from ALL- SYSTEMS must have at |east
one parent.

Double-click on any item in this list to make it the current system. Its name s printed in the System area.

26.6.3 Subsystems area
This arealists any systems which are subsystems of the current system.

Double-click on any item in thislist to make it the current system. Its nameis shown in the System area.

26.6.4 Files area

This arealists any files which are members of the current system. Source files containing either Lisp or non-Lisp code (such
as C code which is loaded via the Foreign Language Interface) arelisted in this area.

» Select afileto display its description in the Description area.

» Double-click on afileto display it in the editor.

26.6.5 File description area

The Description: areadisplays information about any system member selected in the Files area. 1f no such member is
selected, information about the current system (the one named in the System areq) is shown instead. The same pieces of
information are shown asin the tree view. See 26.5.3 Description area for details. Aswith other views, items selected in this
area can be operated on using commands in the Description menu.

26.7 Generating and executing plans in the preview view
The preview view allows you to generate different system plans automatically based on three things:
» The current compilation and load status of each member of a system.
» The rules specified in the system definition.
» The specific actions that you wish to perform.
You can use this view to browse the plan and to execute al or any part of it, aswell as generate it.

Click on the Preview tab to switch to the preview view in the System Browser. The System Browser appears.

293

26 The System Browser

Previewing system plans using the Preview view

system Browser 1

Works File Edit Mew Description Systems History Help

v | 8 B g
4IDEMO v X %

Tree | Text | Preview | Output

v B8 Plan for DEMO
~ [Compile system DEMO into COMMON-LISP-USER

Cumpile demo-macros.lisp

Cumpile demo-utils.lisp

£ Load demo-macros.ufasl

Cumpile demo-functions.lisp
~ [Load system DEMO into COMMON-LISP-USER

£ Load demo-utils.ufasl

£ Load demo-functions.ufasl

Recompute Events || Execute plans | Actions: [+] Compile [«] Load [| Force

Click Recompute Events or the menu command Works > Refresh and expand nodes in the tree to make the plan fully visible
asin Previewing system plans using the Preview view.

The System Browser has the areas described below.

26.7.1 System area

Aswith the tree view, the current system is shown here. See 26.5.1 System area for details about this area.

26.7.2 Actions area

The Actions area contains a number of options allowing you to choose which actions you want to perform, thereby allowing
you to create system plans.

The Compile, Load and Force check buttons can be selected or deselected as desired. Note that at least one of Compile and
Load must always be selected.

» Select Compile to create a plan for system compilation. The plan displays what actions need to be performed in order to
update the fasls for the entire system.

294

26 The System Browser

» Select Load to create aplan for loading the system. The plan displays alist of the actions required to load the system.
» Select Force if you want to force compilation or loading of al system members, whether it is necessary or not.

Click Recompute Events to create a new plan for the specified options. You should click this button whenever you change
the Compile, Load, or Force options, or whenever you change any of the filesin the system or any of its subsystems.

Click Execute Events isused to execute the events currently selected in the main area. Notice that this button is only
enabled.when some event is selected in the plan. See 26.7.6 Executing plansin the preview view below for details.

26.7.3 Filter area

Aswith other tools, you can use the Filter areato restrict the output in the plan area to just those actions you are interested in.
This may be useful, for instance, if you want to see only compile actions, or only load actions, or if you are only interested
in the actions that need to be performed for a particular file.

26.7.4 Plan area

The Plan arealists the actions in the current plan. Items are indented to indicate groups of related actions. Thus, if a
subsystem needs to be loaded, the individua files or subsystems that compriseit are listed underneath, and are indented with
respect to it.

26.7.5 File description area

The File Description area displays information about any system member selected in the Plan area. If no such member is
selected, information about the current system (the one named in the System areq) is shown instead. The same pieces of
information are shown asin the tree view. See 26.5.3 Description area for details. Aswith other views, items selected in this
area can be operated on using commands in the Description menu.

26.7.6 Executing plans in the preview view

Once you have created a plan in the preview view, there are a number of ways that you can execute either the whole plan, or
individual actions within that plan.

As already mentioned, to execute individual actions in the plan, select them in the main area and then click the Execute
Events button.

To execute the whole plan, just choose the relevant command:
* Choose the menu command Systems > Load or click the # button to execute a plan for loading the system.
* Choose the menu command Systems > Compile or click the &2 button to execute a plan for compiling the system.

* Choose the menu command Systems > Compile and Load or click the &2 button to execute a plan for both compiling
and loading the system.

Note that you can also execute the whole plan by choosing Edit > Select All and then clicking Execute Events.

26.8 Examining output in the output view

The output view can be used to view and interact with messages that have been generated as aresult of actions performed in
the System Browser. Thislargely consists of compilation and load messages that are generated when system plans or
individual actionsin aplan are executed.

Click on the Output tab to switch to the output view. The System Browser appears asin Viewing output in the System

295

26 The System Browser

Browser.

Viewing output in the System Browser

System Browser 1

Works File Edit Miew Descrption Systems History Help

BWhERE €9 2P

.| DEMO v X 2

ST

)
-
o
]
3

Tree | Text | Preview | Output

: (TOP-LEVEL-FOEM 0) -
: (TOP-LEVEL-FOEM 1)

: MY-FUNCTION

:: Processing Cross Reference Information

; Loading fasl file /tmp/demo-utils.b64ufasl

: Loading fasl file /tmp/demo-functions.bt4ufasl

———— Press S5Space to continue ————I

¢|*-m|

Ready.

The output view has the areas described below.

26.8.1 System area

Aswith the tree view, the current system is shown here. See 26.5.1 System area for details about this area.

26.8.2 Output area

The largest areain thisview is used to display all the output messages which have been generated by the System Browser.
This area has the same properties as the Output Browser described in 21 The Output Browser. In particular you can interact
with highlighted compiler warnings and notes in the same way as in any output tab in the IDE.

26.9 ASDF Integration

The System Browser tool allows integration of source code managers.

Thereis an example for integrating ASDF in:

(I'w. example-file "m sc/asdf-integration.lisp")

The interface is described in some detail in the remainder of this section, but the example above is sufficient to allow you to
use ASDF in the LispWorks IDE.

296

26 The System Browser

26.9.1 Interface to source code managers

The interface comprises afunction scm add- syst em namespace which must be called, and a set of generic functions for
which methods need to be defined.

scm add- syst em nanespace adds a namespace of "systems*, which:

* Areobjects that may have children.

» Themselves may be "systems'.

» Are associated with pathnames.

» Have operations: | oad and : conpi | e defined for them.

LispWorks has its own built-in source code manager (I w. def syst em | w. conpi | e- system | w: | oad- system
| w. concat enat e- syst emand related functions). A widely-used source code manager is ASDF.

In the LispWorks IDE tools, a system name that contains a colon is interpreted as namespace: systemname.

To find the system LispWorks applies the finder specified in scm add- syst em nanespace to the string systemname. A
system name without a colon is searched (using the finder) in all the known namespaces. Note that this means that a system
name without a colon may match several systemsin different namespaces.

In addition to the integration interface, there are new functions which look at the namespaces and systems.

The most important symbols in the integration interface are described in the remainder of this section. "module” means one
of the objects that is returned by the finder in scm add- syst em nanespace or by the system-lister in

scm add- syst em nanespace or by scm nodul e-chi | dren. A "system" isamodule for which

scm nodul e-i s-syst em p returnstrue.

scm:add-system-namespace Function

add- syst em nanmespace name &key finder system-lister name-lister

The function scm add- syst em nanespace tells LispWorks about another system namespace.

name must be astring. It is compared case-insensitively. The name must be different from " LW , which is the namespace for
the LispWorks built-in | w. def syst emsystems.

finder must be supplied as a function or symbol which takes one argument, a string. If there is an exact match (case-
insensitive) it returns a module abject or alist of module objects. The finder needs to be error-free when called with a string.

system-lister must be a designator for a function which takes no argument, and returns alist of the known systemsin the
namespace.

name-lister is optional. If supplied, it must be a designator for a function which takes no argument and returns alist of the
names of the systemsin the namespace. If it isnot supplied, the system uses system-lister and mapsscm nodul e- nane on
the resullt.

scm:module-name Generic Function

nodul e module => name

The function scm nodul e- name must be defined for any module. It takes a module and returns its name.

scm:module-is-system-p Generic Function

scm nodul e-i s-system p module => boolean

297

26 The System Browser

The generic function scm nodul e-i s- syst em p returnstrueif the moduleisa"system". That is, it has children. The
default method returns false.

scm:module-children Generic Function

scm nodul e-chi | dren module => list-of-modules

The generic function scm nodul e- chi | dr en returns the children of the module, if any. The default method returnsni | .
This generic function is called only on "systems", that is after checking that scm nodul e-i s- syst em p returned true.

26.10 Configuring the display

The System Browser allows you to configure the display so that it best suits your needs. The commands available for this are
described bel ow.

26.10.1 Sorting entries

Entries in the System Browser can be sorted in a number of ways. To change the sorting, choose Works > Tools >
Preferences... or click # to display the Preferences dialog, and then select System Browser in the list on the left side of the
dialog. Click onthe General tab to view the sorting options.

By Name Sorts entries in the main area of the current view (the tree in the tree view and the Files areain
the text view) according to the symbol name.

By Package Sorts entries in the main area according to their package.

Unsorted Leave entries in the main area unsorted. Thisis the default setting.

26.10.2 Displaying package information

Aswith other tools, you can configure the way package names are displayed in the System Browser, using the Package box.
See 3.7 Displaying packages for full details.

26.10.3 Display of the toolbar

You can control whether the System Browser displays the compile/load and history toolbars by the option Show Toolbar, as
described in 3.1.8 Toolbar configurations.

26.11 Setting options in the system browser

The Systems > Compilation Options menu allows you to set options which apply whenever you compile or load system
members. Each of the commands described below toggles the respective option.

Choose Systems > Compilation Options > Force to force the compile or load operation to be performed. If you are operating
on awhole system (as opposed to system members which are files) this means that actions for all the members are added to
the plan.

Choose Systems > Compilation Options > Source to force the use of Lisp source rather than fasls in operations on the
system.

Choose Systems > Compilation Options > Preview to automatically preview the plan prior to execution of a compile or load
instruction chosen from the Systems menu. This switches the System Browser to the preview view and allows you to see
what operations are going to be performed, and to change them if you want. See 26.7 Generating and executing plansin

298

26 The System Browser

the preview view for full details about previewing plans.

Choose Systems > Concatenate... to concatenate the selected system into asingle fadl after compiling it. You will need to
supply the name of the single fadl file, when prompted.

299

27 The Window Browser

27.1 Introduction

The Window Browser |ets you examine any windows that have been created in the environment. You can examine not only
the environment windows themselves, but also more discrete components of those windows, such menus and menu
commands. To create a Window Browser, choose Works > Tools > Window Browser or click & in the Podium.

The Window Browser only has one view, shown in The Window Browser.

The Window Browser

BN “"&‘E:Il‘ﬁ'

Graph: #<LISPWORKS-TOOLS::APPLICATION NIL 40F0LDCC2E=
"Window Browser 1"©
"System Browser 1"©
"Symbol Erowser 1"©

LispWorks>® i:color- .
SO {capi:calor-screen} ‘Editor 1 - demo-defsys.lisp"c
"Listener 1"@
"LispWorks 6.0.0 on higson.cam.lisp
1| | [+]
Description:

Window: #<LISPWORKS-TOOLS:EDITOR "Editor 1 - demo-defsys.lisp”
Class: LISPWORKS-TOOLS:EDITOR
Mame:
Representation: #<CAPI-GTK-LIBRARY: . TOP-LEVEL-INTERFACE-REPRESE
Interface:
Geometry: #<CAPIl::PANE-RECORDING-GEOMETRY NIL [688x591 at N

Screen: #<CAPI:COLOR-SCREEN 0 GTK >
1| | »

Ready.

300

27 The Window Browser

The Window Browser has three sections.

27.1.1 Graph box

The Graph: text box shows the window object that is being examined; that is, the window at the root of the graph.

27.1.2 Window graph

The window graph displays the current window and al its subwindows. The generic facilities available to all graphs
throughout the LispWorks IDE are available here; see 6 Manipulating Graphsfor details.

When you first create a Window Browser, it automatically browses the parent window of the whole environment. A graph of
the parent window together with its children - each individual window that has been created - is drawn in the main area.

Select any item in the graph to display its description in the Description: area.

To see the children of an unexpanded node in the graph, click on the unfilled circle to itsright. To make one of the child
windows be the root of the graph, select it and choose Windows > Browse - Window.

Any items selected in the graph can be operated on using commands in the Windows menu. If no items are selected, the
commands in this menu apply to the root window of the graph. See 27.3 Performing operations on windows for details.

27.1.3 Description list

The Description: are gives a description of the item selected in the Graph: area. If nothing is selected, a description of the
window at the root of the graph is shown. The following information is listed:

Window The aobject which represents the selected window.

Class The class of the window object.

Name The name of the selected window.

Representation The CAPI representation of the selected window.

Interface The underlying native window system object which represents the selected window.
Screen The name of the screen on which the selected window is displayed.

Any item selected in the Description list can be operated on by using commands under the Description menu. This menu
gives you access to the standard actions commands described in 3.8 Perfor ming oper ations on selected objects.

27.2 Configuring the Window Browser

You can configure the Window Browser using the Preferences dialog. To do this, choose Works > Tools > Preferences... or
click % to display this dialog, and then select window Browser in the list on the left side of the dialog.

301

27 The Window Browser

Window Browser Preferences

General|Graph Layout|Components

Display Component

Layouts Panes
Pinboard Objects [«] Menus
Menu ltems Toolbar Items

Graph Objects

Show IDE Interfaces

Print Using
@ Short Names () Long Names

The Window Browser Preferences has three tabs:
» The General tab contains options for configuring general properties of the Window Browser.

» The Graph Layout tab contains options for configuring options specific to the graph. See 6.6 Preferencesfor graphsfor
a description of these options.

» The Components tab contains options for configuring properties unique to the Window Browser.

27.2.1 Sorting entries

Entriesin the Window Browser can be sorted using the Sort panel in the General tab in the Preferences dialog. Choose the
sort option you require from the list available.

By Name Sorts items al phabetically by name.
By Package Sorts items al phabetically by package name.
Unsorted Displaysitemsin the order they are defined in. Thisis the default setting.

27.2.2 Displaying package information

As with other toals, you can configure the way package names are displayed in the Window Browser using options available
in the General tab.

Check or uncheck Show Package Names to turn the display of package namesin the Window Browser on and off.

Specify the process package of the Window Browser in the Package text box.

302

27 The Window Browser

27.2.3 Displaying the toolbar

You can control whether the Window Browser displaysits history toolbar by the option Show Toolbar in the General tab of
the Preferences, as described in 3.1.8 Toolbar configurations.

27.2.4 Displaying different types of window

There are several types of window object which can be displayed in the Window Browser, and you can configure which types
are displayed using the Display Component panel of the Components tab in the Preferences dialog. Six options are
available; select whichever ones you want to display.

Below, the current window means the window that is at the root of the graph.

Layouts Displays the major layouts available to the current window. For the parent window of the
environment, this means all the windows that have been created. For an individual window, this
means the configuration of the different panes in that window.

Panes Displays CAPI panesin the current window.

Pinboard Objects Displays any pinboard objects in the current window. See the CAPI User Guide and Reference
Manual for afull description of pinboard objects.

Menus Displays any menus available to the current window.

Menu Items Displays any menu items available to the current window. This option only takes effect if Menus
is selected aswell.

Graph Objects Displays any graph objects in the current window. See the CAPI User Guide and Reference

Manual for afull description of graph abjects.
Toolbar Items Displays any toolbar items available to the current window.

By default, all these options are selected in the Window Browser.

27.2.5 Showing IDE iterfaces

Check or uncheck Show IDE Interfaces to control whether the Window Browser shows the the LispWorks IDE windows in
the graph or not. Unchecking it makesit easier to find your windows in the graph.

27.2.6 Displaying short or long names

By default, the Window Browser gives each item in the graph a short name. You can also display the complete symbol name
for each item if you wish, as displayed in the Window line of the Description list. You can configure this option from the
Components tab of the Preferences.

Select Long Names in the Print Using panel to display the complete symbol name of each item in the graph.
Select Short Names in the Print Using panel to display the short name for each item in the graph. Thisisthe default setting.

Bear in mind that graphs are larger when you display them using long names, and can therefore be more difficult to examine.

303

27 The Window Browser

27.3 Performing operations on windows

You can perform a number of operations on any windows selected in the Graph area using the commands in the Windows
menu. If no items are selected in the Graph area, the commands in this menu apply to the root window of the graph.

The Windows menu gives you access to the standard actions commands described in 3.8 Per for ming oper ations on selected
objects.

27.3.1 Navigating the window hierarchy

Choose Windows > Browse Parent to display the parent of the current window. Thistakes you back up one level in the
window hierarchy.

Choose Windows > Browse Screens to examine the parent window of the environment once again - this takes you back up to
the root of the window hierarchy.

27.3.2 Window control

There are several commands which give you control over the current window.

Choose Windows > Lower to push the current window to the bottom of the pile of windows on-screen.
Choose Windows > Raise to bring the current window to the front of your screen.

Choose Windows > Quit to quit any windows selected in the graph. Thisis equivalent to closing the window using the
window system.

Choose Windows > Destroy to destroy any windows which are selected in the graph. You are prompted before the windows
are destroyed.

304

28 The Application Builder

28.1 Introduction

The Application Builder makes it easier to create applications, typically by calling del i ver . It helps you to control and
debug the delivery process. It can also be used to save a development image, calling save- i nage.

To create an Application Builder, choose Works > Tools > Application Builder or click & in the Podium.

Note: the Application Builder needsdel i ver (or save-i mage) functionality and therefore it is not availablein Lisp\Works
Personal Edition.

Note: in LispWorks Hobbyist Edition you can use the Application Builder to save a development image, but not to deliver an
application.

On first use the Application Builder appears all set to build the CAPI example Hello World, as shown in The Application
Builder with the Hello World example below.

The Application Builder with the Hello World example

Application Builder 1
Works File Edit Buld Help

QEEBLEFFR-E

Build script: pWorks/lib/6-0-0-0/examples/delivery/ hellm’deliver.lisd "=

State: Size: || Abort

Saved image:
Application Build output:

I

Ready.

Choose Build > Build or click @ to build the Hello World example.

305

28 The Application Builder

Then choose Build > Run or click # to run the Hello World example that you just built.

Note that these Application Builder commands are also available on the Build menu.

28.1.1 What the Application Builder does
Thistool helpsto control and debug the delivery process.

To use the Application Builder, you need to configure it to know about your delivery script, and then invoke the Build
command. This runs LispWorks in a subprocess with the script. The Application Builder displays the output, and reports on
the progress of Delivery. It aso allows you to edit the script, and to run the built application.

Note: the Application Builder runs the build in a subprocess. It does not save the LispWorks IDE image containing the
Application Builder tool. The built application contains code loaded by the delivery script, but does not inherit any settings
you have made in the LispWorks IDE image.

Note: The Application Builder does not help you in writing your application.

Note: In LispWorks 4.4 and previous versions, you would generally need to write a shell script which runs LispWorks with
the appropriate command arguments for delivery. The Application Builder obviates the need for such a script, allowing you
to compl ete the delivery process entirely within the LispWorks IDE.

28.2 Preparing to build your application

First you will need a script which loads your application code and then callsdel i ver . Delivery scripts are described in
detail in the Delivery User Guide. If you do not already have a delivery script, the Application Builder can help you to create
asimple script, which you can modify as needed.

It is also possible to use the Application Builder with a script that callssave- i mage rather than del i ver.

28.2.1 The script

The delivery script isaLisp source file, which at a minimum |oads patches and your application code, and then calls
del i ver . The script may do other things, such as configuring your application, though in general you should try to keep it as
simple as possible.

28.2.1.1 Using your existing delivery script

If you aready have an appropriate delivery script (because you already delivered your application before), click the B button
to the right of the Build script pane and select your script file. The Application Builder now displays the path to your script
initsBuild script pane.

28.2.1.2 Creating a new delivery script

Suppose that you already have afile conpi | e- and- | oad- ny- app. | i sp that you use to compile and load your application.
Then you can create a suitable delivery script with the help of the Application Builder.

To create the new delivery script:

1. Choose Build > Make a New Script or click & in the Application Builder toolbar.

Thisdisplays adialog as shown in The New Delivery script dialog.

2. Enter the path to conpi | e- and- | oad- ny-app. | i sp inthe Loading script pane. You can use the &, button to locate
thefile.

306

28 The Application Builder

3. Enter thedel i ver arguments.

Note: Level defaultsto O, which isagood choice the first time you deliver your application. You will probably want to
increase the Delivery level later, for reasons explained in the Delivery User Guide.

4. Check the calculated Script Name (and modify it if desired), and click OK.
The New Delivery script dialog

New Delivery script

Delivery script details
Loading script: | /ftmp/compile-and-load-my-app.lisp L
System name:
Deliver Arguments
Target Path | /tmp/my-app =
Start Up Function | my-start-function

Level Features
0w | @ CAPI O Multi Threaded O Single Threaded

Script Name
jtmp/delivery-script.lisp| L&

® Cancel o OK

The Application Builder now displays the path to the new script in its Build script pane. The new script will load patches,
load your file, and then call del i ver , something like this:

(i n-package "CL-USER")

(1 oad-al | - pat ches)

(l oad "conpil e-and-1| oad- ny-app")
(deliver 'ny-start-function "my-app" 0)

Note: your delivery script should load all the code needed for the application. Do not rely on your personal initialization or

siteinit files (which are ordinarily loaded into LispWorks), because these initialization files will not be used when building the
application.

307

28 The Application Builder

28.3 Building your application

Once you have a script name in the Build script pane, build your application by choosing Build > Build or clicking the @
toolbar button. The Application Builder invokes LispWorks in a subprocess, with the script asits- bui | d argument.

If desired, you can abort the build process by pressing the Abort button.

The State pane displays the status of the building operation. After a successful build, the status changesto "Done" and the
tool displays the name and size of the saved image in the Saved Image and Size panes, as shown in The Application Builder

after a successful build below.
The Application Builder after a successful build

Application Builder 1
Works File Edit Buld Help

QEESLEFFR-E

Build scnpt: | /imp/delivery-scrpt.lisp =
State: Done Size: 40.4 MB Abart

Saved image: (tmp/my-app
Application Build output:

Total allocation 44259592 (OxZ2A35908), total sizen [*]
60780544 (0x39F7000)

shaking stage : Saving image
Build saving image: /tmp/my-app
Build saved image: /tmp/my-app

Delivery successful - ftmpfmy—appl

28.4 Editing the script

The Application Builder makes it easy to find the script. Choose Build > Edit Script or click the & toolbar button. Edit the
script using the Editor tool that this displays. See 12 The Editor for more information about using the Editor tool.

Before it starts a build, the Application Builder saves the editor buffer displaying the script if you have modified that buffer.
This behavior can be switched off - for the details, see 28.9 Configuring the Application Builder.

308

28 The Application Builder

28.5 Troubleshooting

During the build, the output is displayed in the Application Build output pane. Thisisanormal editor text box which you can
search and edit in the usual way.

If there is an error during the build, a backtrace is generated and the subprocess image exits.

28.5.1 Viewing errors
To view the error message choose Build > Display Error or click the € toolbar button.

To view the error message and the backtrace in an Editor tool choose Build > Display Backtrace or click the {2 toolbar
button. Most errors can be resolved after checking the backtrace.

28.5.2 Clearing the output
To clear the Application Build output pane choose Build > Clear Output or click the Z toolbar button.

You can set the tool to do this automatically - for the details see 28.9 Configuring the Application Builder.

28.6 Running the saved application

Once you have successfully built your application, you can run it from the Application Builder.

If the application can run without arguments you can run it by choosing Build > Run or clicking the # toolbar button.

28.6.1 Passing arguments and redirecting output

If the application requires command line arguments, or you want to see what it writes to the standard output, or you need
some other setups, choose Build > Run With Arguments or click the #° toolbar button. Thisraisesadiaog, shownin The
Run With Arguments dialog below.

309

28 The Application Builder

The Run With Arguments dialog

Application Builder 1

Running specification:

Execute

Arguments

42|

Output;
(_) Application Builder Output () Background) System Default @ File

Qutput File: | my-app-output. txt

® Cancel o OK

To pass one or more command line arguments to your application, enter thesein the Arguments pane.
To redirect the output of your application, select an option in the Output area.

Click OK to run your application with the settings you specified. The State pane shows when the application is running and
reports when it has finished.

28.6.2 Executing a different file

The Run With Arguments dialog also allows you to set a different file to execute, rather than the saved image. Thisis useful
if your application needs some setups, or if it needsto be invoked by some other program (for example, when it isadynamic
library).

To execute a different file from the one you built, enter the path in the Execute pane.

28.6.3 Killing application processes
Application processes that were invoked by the Application Builder can conveniently be killed if needed.
To kill al such processes, choose Build > Kill All or click the g button.

To kill just one such process choose Build > Kill Application or click the dropdown to theright of the button. Thisraisesa
menu listing the invoked applications that are still running in the chronological order in which they were invoked. Select one
item from the menu to kill that process.

310

28 The Application Builder

28.7 Building universal binaries

This section only applies to LispWorks for Macintosh.

28.8 Using the Application Builder to save a development image

To use the Application Builder to save a development image you first configure it to know about it your save- i mage script,
which you must write by hand. Then you invoke the Build command.

For example, you can use the Application Builder to save a console devel opment image. We assume that you have the script
inthefile/ t mp/ resave. | i sp asdescribed under "Saving a non-GUI image with multiprocessing enabled" in the
LispWorks® User Guide and Reference Manual. Enter / t np/ r esave. | i sp inthe Build script: area, and then pressthe
Build the application using the script toolbar button. Then you can run the new image ~/ | w- consol e.

Note: The Application Builder runs the build in a subprocess. It does not save the current LispWorks IDE image in which
you are running the Application Builder tool, and your saved image does not inherit any settings you have made in the current
LispWorks IDE image. For that functionality, see 5 Session Saving.

28.9 Configuring the Application Builder

You can configure the tool to suit your needs using the Preferences dialog. To do this, choose Works > Tools > Preferences...
or click %, and then select Application Builder in thelist on the left side of the Preferences dialog.

Application Builder Preferences

General | Build

[] Clear output before doing build
Save the build script before doing build
[] Move to the end of the output when start building

To make the Application Builder clear the output before each build, select the Clear output before doing build option.
To prevent automatic saving of your edited script before a build, deselect the Save the build script before doing build option.

To make the Application Builder ensure that the cursor is at the end of the current output before each build, select the Move
to the end of the output when start building option.

You can control whether the Application Builder displays its toolbar by the option Show Toolbar on the General tab, as
described in 3.1.8 Toolbar configurations.

Click OK in the Preferences dialog to confirm your options and save them for future use.

311

29 Remote Debugging

This chapter describes how to use remote debugging in the IDE. See "Remote Debugging” in the "The Debugger" chapter of
the LispWorks® User Guide and Reference Manual for technical details about remote debugging.

Remote debugging allows you to debug a LispWorks process that is running on one machine using a LispWorks IDE that is

running on another machine. It isintended to make it easier to debug applications running on machines that do not have the
LispWorks IDE, mainly mobile device applications on iOS and Android, but also applications running on servers where you
cannot run the LispWorks IDE.

With remote debugging you can:

» Configure aremote client to open a Remote Debugger in the IDE when the client enters the debugger. The Remote
Debugger behaves like an ordinary Debugger, but the data it displays is from the client, and input into its Listener paneis
read and evaluated by the client.

» Open aRemote Listener in the IDE, where reading and evaluating input is done by the client.
* Inspect remote objects, by using the Inspector as usua on the IDE side.
» Evauate forms on the client side from the Editor on the IDE side.

The Remote Debugger, Remote Listener and Inspector tools mostly work as normal tools when they are used to debug
remotely, but any differences are documented below. Note that an Inspector window that is inspecting a remote object is not
special in any way, and it can inspect objects on the IDE side as well (there is nothing that can be called a"remote
inspector”). The Listener and Debugger windows are specifically associated with the remote client, and are therefore called
"Remote Listener" and "Remote Debugger”.

Remote Debugger windows are opened automatically when the client side enters the debugger. Remote Listener windows are
opened on reguest, either by choosing Works > Tools > Remote Listener, by calling dbg: i de- open-a-1i st ener, or by
caling dbg: i de- connect - r enot e- debuggi ng with : open-a-1i stener t (or from the client side by

dbg: start-renote-1istener). Thelnspector inspects a remote object when you tell it to inspect in the same way as you
would tell it to inspect an ordinary object (typically from the Debugger or Listener), or by calling dbg: r enot e- i nspect on
the client side.

29.1 Remote Listeners

When the remote debugging module is loaded, it adds a menu item Remote Listener to the Works > Tools menu. This opens
aRemote Listener, either using an existing remote debugging connection or by opening a new connection and using it. By
default it will use an existing connection if there is any, otherwise it asks for a hostname and connectsto it using

dbg: i de- connect - r enot e- debuggi ng with the default port. It opens a Remote Listener on the connection using

dbg: i de- open- a-1i st ener. You can configure the hostname in the Preferences dialog Debugger options Remote tab, so
that LispWorks does not need to ask you for it before opening the connection (see 29.4.1 Remote Debugging Client).

The Remote Listener (and the Listener pane in a Remote Debugger window) allows evaluation of forms on the client side. It
sends each character that is typed after the Listener pane's prompt to the client side, which performs all of the reading and
evaluation, after which the values are printed.

Most Editor commands are executed entirely on the IDE side, with afew exceptions that affect the client side if they add or
remove characters after the prompt. Note in particular that symbol completion (Complete Symbol) occurs on the IDE side,
and Editor commands that evaluate forms (for example Evaluate L ast Form) perform all of the reading and evaluation on the
IDE side without interacting with the client side.

312

29 Remote Debugging

There are several Editor commands that always interact with the client side. These commands have the same effect asin an
ordinary Listener/Debugger, but they need to interact with the client side to do that.

» Debugger Abort

» Debugger Backtrace

» Debugger Continue

» Debugger Edit

» Debugger Next

» Debugger Previous

» Debugger Print

» Debugger Top

e Throw out of Debugger
e Throw To Top Level

* Inspect Star.

29.2 Menus in the Remote Debugger and Remote Listener tools

Most menu items in the Remote Debugger and Remote Listener work asin the ordinary tools. A major exception is that you
cannot use the Stepper remotely, so the corresponding menu items are disabled.

29.3 Editor commands for remote debugging

Apart from Connect Remote Debugging and Reconnect Remote Listener, the "remote" editor commands expect there to
be an open connection to aclient. This may be opened by Connect Remote Debugging, by an explicit call to

dbg: i de- connect - r enot e- debuggi ng, by using the Preferences dialog Debugger options Remote tab (see 29.4.1
Remote Debugging Client), or by a connection from a client (after calling

dbg: st art-i de-renot e- debuggi ng- server onthelDE side).

The command Connect Remote Debugging allows you to connect to a remote client from the Editor. It prompts for a host
name and a port (using the value of dbg: *def aul t - cl i ent - r enot e- debuggi ng- ser ver - port * asthe default) and
calsdbg: i de- connect - r enot e- debuggi ng, with: open-a-1istener t and

np: *backgr ound- st andar d- out put * asthelog-stream. Note that the client side must have already called

dbg: start-client-renote-debuggi ng-server for thisto work.

The commands Remote Evaluate Defun, Remote Evaluate Region, Remote Evaluate Buffer and Remote Evaluate L ast
Form send forms from the editor for evaluation on the client side. They work like their ordinary counterparts (commands
without "Remote "), but they usedbg: i de- eval - f or m i n-r enot e to evaluate the forms.

The commands Remote Evaluate Defun In Listener, Remote Evaluate Last Form In Listener, Remote Evaluate Region
In Listener evaluate forms in a Remote Listener. They do the same as their ordinary counterparts (commands without
"Remote ™), but look for aremote listener. If there is no current remote listener, they open one (using

dbg: i de- open-a-1i stener).

Normally you have only one remote debugging connection, so there is no ambiguity about which connection to use for these
commands. If you have more than debugging connection, you can use the command Set Default Remote Debugging
Connection to set which connection the commands above use (which calls

dbg: i de- set - def aul t - r enot e- debuggi ng- connect i on). If no default is set, the commands use the last connection

313

29 Remote Debugging

that was opened.

The Editor command Reconnect Remote Listener can be used only in a Remote Listener after the client side has
disconnected, which may be either because the read-eval-print loop on the client side exited, or the connection was closed
(which may aso be because the client crashed). The command tries to reconnect the Listener to the same client, which can
work if the connection is still open, if there is another connection to the same client, or if the client is listening for
connections (that isthe client called dbg: start -cl i ent - r enot e- debuggi ng- ser ver).

Note that the IDE recognizes the client only by its hostname and port number. Therefore, the reconnection is not necessarily
to the same invocation on the client side. It may be a different invocation of the same application or a different application,
and if the configuration of the network changes, it may be a different device altogether.

29.4 Configuring Remote Debugging

The Preferences dialog Debugger options has a Remote tab that gives you options for remote debugging. To useit, raise the
Preferences dialog as described in 3.2 Setting preferences, select Debugger inthelist on the left, and select the Remote tab.

Remote Debugger Preferences

General Debugger| Remote

Remote Debugging Client

Host Name

Port Number: 21102

Connect To Debugging Client

Remote Listener

Use Existing Connection
[] Close Listener On Exit

IDE Remote Debugging Server

Port Number 21101

Start IDE Remote Debugging Server

29.4.1 Remote Debugging Client

The Remote Debugging Client section allows you to connect to a debugging client that is waiting for connections (see "Using
the client asthe TCP server” in the "The Debugger” chapter of the LispWorks® User Guide and Reference Manual). It also
sets the hostname and port to be used when you choose Works > Tools > Remote Listener. You need to enter the hostname in
the Host Name pane, and optionally you can aso change the TCP port number in the Port Number pane. You then can
connect to the debugging client by clicking Connect To Debugging Client, which calls

dbg: i de- connect - r enot e- debuggi ng with the hostname and the port. 1n addition, once you confirm the change,
choosing Works > Tools > Remote Listener will use the hostname and port to open a connection if it does not have an

314

29 Remote Debugging

existing connection.

If thereis already a connection, the button changes to Close Connection To Debugging Client, and clicking it closes the
connection. Note that an existing connection is only found if it was opened with exactly the same hostname and port; other
connections to the same client are ignored, for example those by the debugging client connecting, or with a different
hostname that names the same machine. If there is more than one such connection, only oneis closed in each click.

Note that at the time you connect, the client side must already be listening, that is it must have already called
dbg: start-client-renote-debuggi ng-server, with aport number that matches your setting.

29.4.2 Remote Listener
The Remote Listener section gives some control over the behavior of the Remote Listener.

If Use Existing Connection is checked, then any existing debugging connection is re-used when you choose Works > Tools >
Remote Listener, ignoring the host and port that are set in the Remote Debugging Client section. If Use Existing
Connection ishot set, opening a Remote Listener always opens a new connection, using the hosthame and port number as
described in 29.4.1 Remote Debugging Client.

If Close Listener On Exit is checked, then the Remote Listener window closes automatically when the read-eval-print loop on
the client side exits or the connection has been closed (which may also because the client crashes). If Close Listener On Exit
is unchecked, then the Remote Listener remains visible but is marked in its title as <closed> or <exited> and does not
evaluate input anymore. You can still look at all the interaction that you had in it, copy it or saveit to afile. Moreover, you
can reconnect it using the Reconnect Remote Listener Editor command. Close Listener On Exit affects the behavior of all
Remote Listeners, independently of how they were opened.

29.4.3 IDE Remote Debugging Server

The IDE Remote Debugging Server section allows you to start and stop an IDE remote debugging server (see "Using the IDE
asthe TCP server” in the "The Debugger” chapter of the LispWorks® User Guide and Reference Manual). The Port Number
pane alows you to specify the TCP port number (blank means use the default). Clicking Start IDE Remote Debugging
Server startsthe server by calling dbg: st art - i de-r enot e- debuggi ng- ser ver with the port number. Once the server is
running, clients can connect to it as described in the LWUGRM.

If thereis already an IDE remote debugging server, the button changes to Stop Running IDE Remote Debugging Server, and
clicking it stops the server. Stopping the server prevents new connections from being made but does not close any
connections that have already been opened to it.

Note that changing the port numbers does not affect the values of the remote-debugger module variables

(dbg: *def aul t - i de-r enot e- debuggi ng- server-port* and

dbg: *def aul t - cl i ent - r enot e- debuggi ng- ser ver - port *). The defaults of the port numbers come from the
variables, but otherwise there is no interaction between these.

In normal usage you should not change the port humbers, because any change must be matched on the client side. You will
need to change them if there are clashes with other usage of the ports by any other software on the same machines.

315

| ndex

A

aborting commandsintheeditor ~ 12.9.1: Aborting commands 144
accelerators

fortools 3.1.5: Displaying tools using the keyboard 30
accessors

si mpl e- pane-foreground 26: Examining classesin the Class Browser 27
action callbacks 19.9.4.1: Specifying layout callbacks and other callback information 228
Actionsmenu 3.8: Performing operations on selected objects 47
active-finders variable 16.2.1.4: Known Definitionssearches 179
add- syst em nanespace function 26.9.1: Interfaceto source code managers 297
Alt key

useof 12.1.4: Using keyboard commands 131
application builder ~ 28.1: Introduction 305
apropos function 18.1: Introduction 200
Argumentscommand 12.13.10: Other facilities 155, 20.7: The Expressionmenu 236
ASDF 16.2.1.3: SystemSearch 178, 26.9: ASDF Integration 296
Attributescommand 19.6.4: Setting the attributes for the selected object 217, 19.7.1: Setting attributes for the current interface 220
Attributesmenu 17.5.2: Examining attributes 192

Clip 1755: Copyinginthelnspector 195

Copy 17.55: Copyinginthelnspector 195

Inspect 17.5.2: Examining attributes 192

B

Backtrace command 20.9: The Debug menu 237

backtraces 10.5: Anexample debugging session 117

binding $ to the current inspector object ~ 17.7: Customizing the Inspector 197
binding frames 10.9.1: Configuring the call framesdisplayed 119
Bindingsbutton ~ 10.9.1: Configuring the call framesdisplayed 119
Bindingscommand 20.9: The Debug menu 238

Break command 22.2: Processcontrol 247

breakingaprocess 22.2: Processcontrol 247

breaking processes 3.4: TheBreak gesture 43

Break on Accesscommand 17.5.3: Tracing slot access 192

Break on Read command 17.5.3: Tracing slot access 192

Break On Return from Frame command 10.7.2: Restartsand returning fromthe frame 118
Break on Writecommand 17.5.3: Tracing slot access 192

316

Index

breakpoints
intheeditor 12.13.6.1: Setting breakpoints 152
Browse All Systemscommand 26.5.2: Treearea 291, 26.5.4: Performing operationson systemmembers 291
Browsecommand 3.8.1: Operationsavailable 47, 3.17: Examiningawindow 60, 27.1.2: Window graph 301
varigtionsinname 3.8.1: Operationsavailable 48

Browse Metaclasscommand 7.2.5: Performing operationson the current class 87, 7.3.5: Performing operations on the selected classes or the
current class 89, 7.4.4: Performing operations on the selected classesor thecurrent class 91, 7.5.5: Performing operations on the
currentclass 93, 7.6.5: Performing operationsonthecurrentclass 96, 7.7.5: Performing operations on the selected classes or the
current class 98

Browse Parent command 27.3.1: Navigating the window hierarchy 304
Browse Parent System command 3.6: Operatingonfiles 45, 12.13.10: Other facilities 154, 26.3: The SystemBrowser 288
browser-1location variable 4.1.9: Configuringthe browser used 63
browsers 4.1: Onlinemanualsin HTML format 61
Browse Screenscommand 27.3.1: Navigating the window hierarchy 304
Browse SymbolsLikecommand 3.8.1: Operationsavailable 48, 18.1: Introduction 200, 20.7: The Expressionmenu 237
Browse Systems For Directory command ~ 26.5.4: Performing operations on system members 291
browsing
Common Lispclasses 7: TheClassBrowser 80
compilation conditions ~ 9.1: Introduction 106
errors 9.1: Introduction 106
functioncalls 14.1: Introduction 160
generic functions 15: The Generic Function Browser 167
HTML documentation ~ 4.1.5: Browsing manualsonline 63
onlinemanuals 4.1.5: Browsing manualsonline 63
output 2.4: Viewingoutput 23, 21: TheOutput Browser 242
selected object, classof the 3.8.1: Operationsavailable 48, 20.7: TheExpression menu 236
symbols 18.1: Introduction 200
systems 3.6: Operatingonfiles 45, 26.3: The SystemBrowser 288
window definitions 27.1: Introduction 300
Buf f er Changed Definitions editorcommand 125.1: Setting the reference point for changed definitions 137
buffers
closing 12.8.4: Using several buffers 143
swapping between 12.8.4: Using several buffers 143
Buffersmenu 12.3.2: Buffersarea 134, 12.13: Using Lisp-specific commands 150
Compile 12.13.4.1: Compilingin memory 151
Evaluate 12.13.3: Evaluating code 151
Trace. See Tracemenu 12.13.7: Tracing symbols and functions 153
Undefine 12.13.10: Other facilities 154
bugs, reporting 20.9: The Debug menu 238
Build command 28.1: Introduction 305, 28.3: Building your application 308
building
applications 28.1: Introduction 305

317

Index

Build menu
Build 28.1: Introduction 305, 28.3: Building your application 308
Clear Output 28.5.2: Clearing the output 309
Display Backtrace 28.5.1: Viewing errors 309
Display Error 28.5.1: Viewing errors 309
Edit Script 28.4: Editingthescript 308
Kill Al 28.6.3: Killing application processes 310
Kill Application ~ 28.6.3: Killing application processes 310
MakeaNew Script 28.2.1.2: Creating a new delivery script 306
Run 28.1: Introduction 306, 28.6: Runningthe saved application 309
Run With Arguments 28.6.1: Passing arguments and redirecting output 309
By Nameoption 3.9.1: Sortingitemsinviews 50

By Package option 3.9.1: Sortingitemsinviews 50

C

callbacks
action 19.9.4.1: Specifying layout callbacks and other callback information 228
extend 19.9.4.1: Specifying layout callbacks and other callback information 228
retract 19.9.4.1: Specifying layout callbacks and other callback information 228
selection 19.9.4.1: Specifying layout callbacks and other callback information 228
specifying 19.9.4: Specifying callbacks in the interface definition 228

cal frames 10.4: Thestackinthe Debugger 116, 10.9.1: Configuring the call framesdisplayed 119

Catchersbutton 10.9.1: Configuring the call framesdisplayed 119

catchframes 10.9.1: Configuring the call framesdisplayed 119

:center keyword 19.9.2: Specifying attribute values 225

check components 19.4.6.3: Check components 214

choosing menu commands preface 13

classbrowser 7: TheClassBrowser 80
Classarea 7.2.1: Classbox 86

current class, operations specifictothe 7.2.5: Performing operations on the current class 87, 7.3.5: Performing operations on the selected
classesor thecurrent class 89, 7.4.4: Performing operationson the selected classesor the current class 91, 7.5.5: Performing
operationsonthecurrent class 93, 7.6.5: Performing operationson the current class 96, 7.7.5: Performing operations on the selected
classesor thecurrent class 98

description 1.1.3: TheClassBrowser 16

Descriptionarea 7.3.4: Descriptionlist 89, 7.4.3: Descriptionlist 91, 7.6.4: Descriptionlist 96
examiningaclass 7.1.4: Examining other classes 84

Filterarea 7.2.2: Filter area 87

filtering information ~ 7.1.3: Filtering slot information 82

Function descriptionarea 7.5.4: Descriptionlist 93

functionslist ~ 7.5.3: List of functionsor methods 93

functionsview 7.5: Examining generic functions and methods 92

generic functions, operatingon 7.5.6: Operations specific to the current function or method 94
Grapharea 7.4.2: SQubclasses and superclassesgraphs 90

graphview 7.4: Examining classes graphically 89

318

Index

hierarchy view 7.1.4: Examining other classes 84

Include Accessorsbutton 7.5.3: List of functions or methods 93

Include Inherited button ~ 7.5.3: List of functions or methods 93
inherited slots ~ 7.1.2: Examining inherited slots 82

Initargsarea 7.6.3: Listof initargs 96

initargsview 7.6: Examininginitargs 94

invoking on the current expression 20.7 : The Expression menu 236
invoking on the selected object 3.8.1: Operationsavailable 48

menu commands, see menu or command name 7: TheClassBrowser 80
methodslist ~ 7.5.3: List of functions or methods 93

overview of the 7: The ClassBrowser 80

Precedencearea 7.7.3: List of precedences 98

precedenceview 7.7: Examining class precedences 97

Seealsoclasses 7: TheClassBrowser 80

Slot descriptionarea 7.2.4: Descriptionlist 87

dotinformation 7.1.1: Examining slots 82

Slotsarea 7.2.3: Sotslist 87

dotsview 7.1.1: Examining slots 82

sorting information ~ 7.1.5: Sorting information 84

tracing classesfromthe 7.5.6 : Operations specific to the current function or method 94
undefining functions and methods ~ 7.5.6 : Operations specific to the current function or method 94

Classcommand 2.6: Examining classesinthe Class Browser 25, 3.8.1: Operationsavailable 48, 7.1: Smpleuse of the Class
Browser 80, 7.1.3: Filteringdlotinformation 83, 7.2.1: Classbox 86, 20.7: TheExpressionmenu 236

classes 7: TheClassBrowser 80
changing slot valuesin theinspector ~ 17.5.4.1: Example 193
col um-Il ayout 19.3.4: Adding new elementsto thelayout 210
displaying graphsof ~ 7.4: Examining classes graphically 89
examining 7.1.4: Examining other classes 84
examining functions and methods definedon 7.5 : Examining generic functions and methods 92
inherited dlotsin ~ 7.1.2: Examining inherited slots 82
initargs 7.6: Examininginitargs 94
ingpecting local slots ~ 17.4: Examining objects 190
interface 19.2: Creating or loading interfaces 206
list-panel 7.1.3: Filtering dot information 82

operations specifictothecurrent class 7.2.5: Performing operationson thecurrent class 87, 7.3.5: Performing operations on the selected
classesor thecurrent class 89, 7.4.4: Performing operationson the selected classesor the current class 91, 7.5.5: Performing
operationsonthecurrentclass 93, 7.6.5: Performing operationson the current class 96, 7.7.5: Performing operations on the selected
classesor thecurrent class 98

precedencelist 7.7 : Examining class precedences 97

push- butt on- panel 7.1.4: Examining other classes 84
row | ayout 19.3.4: Adding new elementsto thelayout 210
Seealso classbrowser 7: TheClass Browser 80

tracing 7.5.6: Operations specific to the current function or method 94

319

Index

Classes menu

Browse Metaclass 7.2.5: Performing operationson thecurrent class 87, 7.3.5: Performing operations on the selected classes or the current
class 89, 7.4.4: Performing operationson the selected classesor thecurrent class 91, 7.5.5: Performing operations on the current
class 93, 7.6.5: Performing operationsonthecurrentclass 96, 7.7.5: Performing operationson the selected classes or the current
class 98

objectsoperated on by the 7.2.5: Performing operationson thecurrent class 87, 7.3.5: Performing operations on the selected classes or the
currentclass 89, 7.4.4: Performing operations on the selected classesor thecurrent class 91, 7.5.5: Performing operations on the
currentclass 93, 7.6.5: Performing operationson the current class 96, 7.7.5: Performing operations on the selected classes or the
current class 98

Clear Output command 28.5.2: Clearing the output 309
clipboard
general use 3.3.3: Using the Object operations with the clipboard 42
interaction with system clipboard ~ 3.3.3: Using the Object operations with the clipboard 43
See also clipboard, kill ring, system clipboard ~ 3.3.3: Using the Object operations with the clipboard 42
usagein editor 12.10: Cutting, copying and pasting using the clipboard 145
Clipcommand 8.1.9: General clipping 100
Clonecommand 3.1.9: Copyingwindows 32, 3.11: Linkingtoolstogether 51, 12.8.4: Using several buffers 144
Closecommand 12.8.4: Using several buffers 143
interface builder 19.5.3: Savingcode 216
closing
editor buffers 12.8.4: Using several buffers 143
Code Coverage Browser
Coloring preferences 13.3: Code Coverage FilesList Context Menu 158, 13.4: Traverse 159
FilesList context menu 13.3: Code Coverage Files List Context Menu 157
FilesList preferences 13.2: Displaying a Code Coveragedata 157
Pathname Mapping preferences 13.3: Code Coverage Files List Context Menu 158
code-coverage-file-stats function 13.2: DisplayingaCodeCoveragedata 157
Code Coverage Goto Next editorcommand 13.4: Traverse 158
Code Coverage menu
Copy To New Data... 13.6: Creating new Data 159
Load Data... 13.1: Starting the Code Coverage Browser 156
Traverse 13.4: Traverse 158
Uselinternal Data 13.5: Usingtheinternal data 159
Collapse Nodescommand 6.3.2: Expanding and collapsing by menu commands 74
collapsing graphs 6.3 : Expanding and collapsing graphs 73
colors
of codeinLispmode 3.2.3.2: Setting the text style attributes 39
col umm-1l ayout «class 19.3.4: Adding new elementstothelayout 210
command line arguments
-build 55: Redirectingimagesto a Saved Sessionimage 70
- eval 5.5: Redirecting imagesto a Saved Sessionimage 70
-init 5.5: Redirecting imagesto a Saved Sessionimage 70
-l oad 5.5: Redirectingimagesto a Saved Sessionimage 70
-lwno-redirection 55: Redirectingimagesto a Saved Sessionimage 70

320

Index

-siteinit 5.5 Redirecting imagesto a Saved Sessionimage 70
commands

completionof 12.1.3: Theechoarea 131

repeating 3.5: Thehistorylist 44
Commandsmenu 3.15: The Commandsmenu 57
conmands- menu- add- conmands function 3.15.1: Editor CommandsList 58
conmmands- nmenu- get - conmands function 3.15.1: Editor CommandsList 59
conmmands- menu- r enove- conmands function 3.15.1: Editor CommandsList 59
Command to Key command 12.14: Helpwith editing 155, 20.14: Help with editing in the Listener 241
common featuresin the environment 3: Common Features 28
common featuresin the IDE

Seealso under graphs 3: Common Features 28
Common Lisp

classes. Seeclasses 7: TheClassBrowser 80

debugging 10: The Debugger Tool 110

displaying documentation for expressions 20.7: The Expression menu 236

displaying documentation for selected object ~ 3.8.1: Operationsavailable 48, 10.7.1: Source location, documentation, inspect and method
combination for the current frame 118

evauating forms 20.2: Evaluating simpleforms 234
fileextension 12.8.1: Opening, saving and printing files 141
indentation of formsin sourcecode 12.13.9: Indentation of forms 154
prompt 20.1: Thebasic featuresof a Listener 233
systems. Seesystem 26.1: Introduction 287
Common Lisp symbols 3.2.3.2: Setting the text style attributes 39
compilation conditionsbrowser ~ 9.1: Introduction 106
pathnames 9.3.1: Display preferences 108
preferencedialog 9.3: Configuring thedisplay 108
Compilation Options menu
Force 26.11: Setting optionsin the systembrowser 298
Preview 26.11: Setting optionsin the systembrowser 298
Source 26.11: Setting optionsin the system browser 298
Compile and Load command
onFilemenu 3.6: Operatingonfiles 45, 10.5: Anexampledebugging session 116, 12.13.4.2: Compilingtoafile 152
on Systemsmenu 26.5.4: Performing operations on systemmembers 291, 26.7.6: Executing plansinthe preview view 295
Compileand Load... command 12.13.4.2: Compilingtoafile 152
Compile command
onBuffersmenu 12.13.4.1: Compilingin memory 151
on Definitionsmenu 12.13.4.1: Compiling in memory 151
onFilemenu 3.6: Operatingonfiles 45, 12.13.4.2: Compilingtoafile 152
on Systemsmenu 26.5.4: Performing operations on systemmembers 291, 26.7.6: Executing plansinthe preview view 295
Compile... command 12.13.4.2: Compilingtoafile 152
Compile Regioncommand 20.7: The Expression menu 237

ineditor 12.13.4.1: Compilinginmemory 151

321

Index

compiler output 12.13.4.1: Compilingin memory 151
conpi | e-system function 26.2: Abrief introduction to systems 287
compiling code
editor 12.13.4: Compiling code 151
compiling filesinthelistener ~ 3.6: Operating on files 45
completion 3.14: Completion 53, 12.1.3: Theechoarea 131
dynamic 3.2.3.2: Setting thetext style attributes 39
inclassbrowser 7.1.4: Examining other classes 84, 10.9.2: Displaying package information 120
in generic function browser 15.1.1: Functionarea 168
in-place 3.2.1.2: Controlling completion behavior 35, 3.2.3.2: Setting the text style attributes 39
using Tab 3.14.1: Invoking completion 54
Concatenate... command 26.5.4: Performing operations on systemmembers 291, 26.11: Setting optionsin the system browser 299
Condition menu
Actions. See Actionsmenu 10.6: Performing operations on the error condition 118
Report Bug 10.6: Performing operations on the error condition 118
confirmer
description 19.7.2: Displaying the current interface 220
consistency in the IDE. See common featuresintheIDE ~ 3: Common Features 28
contain function 25: Inspecting objectsusing the Inspector 24, 7.1.3: Filtering dlot information 82, 17.5.4.1: Example 194
Contentsradio button 4.1.3: Searching the online manuals 62
Control key, useof preface 13, 12.1.4: Using keyboard commands 131
controls
choosing preface 13
conventionsused inthemanual preface 11

Copy command 3.8.1: Operationsavailable 48, 12.10: Cutting, copying and pasting using the clipboard 145, 12.11.2: Cutting or copying
text 146, 17.54.1: Example 194

inActionsmenu 23.5: Format of the cumulative results 262
interface builder 19.6.3 : Rearranging componentsin an interface 217
standard actioncommand 3.8.1: Operationsavailable 48
copyingwindows 3.1.9: Copyingwindows 32
Copy Object command 3.3.3: Using the Object operations with the clipboard 42
createsnapshot 5: Session Saving 65
creatingnew files 3.6: Operatingonfiles 44, 12.8.1: Opening, saving and printing files 141
crossreferencing 14.1: Introduction 160
current
object. Seeselected object 3.8 Performing operations on selected objects 47
package of any tool ~ 3.7.1: Specifying a package 46
prompt 20.2: Evaluating smpleforms 234
value, operatingon 20.8: TheValuesmenu 237
current buffer 12.13.2: Current buffers, definitions and expression 150

current class, operations specifictothe 7.2.5: Performing operationsonthecurrentclass 87, 7.3.5: Performing operations on the selected
classesor thecurrentclass 89, 7.4.4: Performing operationson the selected classesor thecurrent class 91, 7.5.5: Performing
operationsonthecurrentclass 93, 7.6.5: Performing operationsonthe currentclass 96, 7.7.5: Performing operations on the
selected classes or the current class 98

322

Index

current definition 12.13.2: Current buffers, definitions and expression 150
current expression 12.13.2: Current buffers, definitions and expression 150
displaying lambdalist for ~ 12.13.10: Other facilities 155, 20.7: The Expressionmenu 236
displayingvalue 12.13.10: Other facilities 155, 20.7: The Expression menu 236
stepper breakpoint 20.7: The Expression menu 237
toggling stepper breakpoint ~ 20.7: The Expressionmenu 236
tracing 20.7: The Expressionmenu 237
current form
macroexpanding 20.7 : The Expression menu 237
macro expanding 20.7: The Expression menu 237
waking 20.7: TheExpression menu 237
Customize menu
Reusable 3.1.6.2: Per-window control of reeuse 31, 12.3.3: Editor tool solely ashbufferslist 134
Cutcommand 12.10: Cutting, copying and pasting using theclipboard 145, 12.11.2: Cutting or copying text 146

interface builder 19.3.2: Grapharea 209, 19.3.5: Removing elementsfromalayout 211, 19.4.7: Removing menu
objects 214, 19.6.3: Rearranging componentsin aninterface 217, 19.9.1: Creating the basic layout 223

Cut Object command 3.3.3: Using the Object operations with the clipboard 42

D

Debug command 22.2: Processcontrol 247

debugger 10: The Debugger Tool 110
abortrestart 10.3: Simple use of the Debugger tool 115
backtracetree 10.1.2.1: Framesand Variablesinatree 113
binding frames 10.9.1: Configuring the call framesdisplayed 119
cal frame 10.1.2.1: Framesand Variablesinatree 113
call frames 10.4: Thestackinthe Debugger 116, 10.9.1: Configuring the call framesdisplayed 119
catchframes 10.9.1: Configuring the call frames displayed 119
closurevariable 10.1.2.1: Framesand Variablesinatree 113
colorsof variables 10.1.2.1: Framesand Variablesinatree 113
continuerestart 10.3: Smple use of the Debugger tool 115
controlling fromthe listener ~ 20.9: The Debug menu 237
debugger tool 20.9: The Debug menu 238
description 10.2: What the Debugger tool does 115

displaying documentation for object in current frame 10.7.1: Source location, documentation, inspect and method combination for the current
frame 118

examplesession 10.5: Anexample debugging session 116

finding source code for object in current frame 10.7.1: Source location, documentation, inspect and method combination for the current
frame 118

handler frames 10.9.1: Configuring the call framesdisplayed 120
invisbleframes 10.9.1: Configuring the call framesdisplayed 120
invoking 10.1: Description of the Debugger 111

invoking from the processbrowser ~ 22.2: Process control 247
invoking fromthetracer 3.10: Tracing symbolsfromtools 50

lexical variable 10.1.2.1: Framesand Variablesinatree 113

323

Index

menu commandsinthelistener 20.9: The Debug menu 237
other frame 10.1.2.1: Framesand Variablesinatree 113, 25.1.3: Backtracearea 272
remote 29: Remote Debugging 312
restart frames 10.9.1: Configuring the call frames displayed 120
restart options 10.3: Smple use of the Debugger tool 115
See also debugger tool 10: The Debugger Tool 110
specia variable 10.1.2.1: Framesand Variablesinatree 113
stack 10.4: Thestackinthe Debugger 116
stack frames 10.4: Thestackinthe Debugger 116
Debugger command 2.3: Usingthe Debugger 21, 20.9: TheDebug menu 238
debugger level 20.4: The debugger prompt and debugger level 235
debugger prompt
colon 20.4: Thedebugger prompt and debugger level 235
debugger tool 10: The Debugger Tool 110
Backtracearea 10.1.2: Backiracearea 111
buttons 10.1.3: Toolbar buttons 114
Conditionarea 10.1.1: Conditionbox 111
invoking 10: The Debugger Tool 110
invoking from notifier ~ 10.1: Description of the Debugger 111
package information 10.9.2: Displaying package information 120
Restartsmenu 10.3: Smple use of the Debugger tool 115
Seealsodebugger 10: The Debugger Tool 110
types of frame, displaying 10.9.1: Configuring the call frames displayed 119
debugging aprocess 22.2: Processcontrol 247
Debug menu
Debugger 2.3: Usingthe Debugger 21
Listener ~ 2.3: Using the Debugger 21
Restarts 20.9: The Debug menu 237

Start GUI Debugger 10: The Debugger Tool 110, 10.3: Smple use of the Debugger tool
session 117

default font 3.2: Setting preferences 33

defcl ass macro 7.5.3: List of functions or methods 93

115,

10.5: An example debugging

Definitionsmenu 12.4.2: Definitionsarea 135, 12.5: Changed definitions 136, 12.13: Using Lisp-specific commands 150

Compile 12.13.4.1: Compilingin memory 151
Evaluate 12.13.3: Evaluating code 151
Generic Function 12.13.10: Other facilities 154
Trace. See Tracemenu 12.13.7: Tracing symbols and functions 153
Undefine 12.13.10: Other facilities 154
def system macro 16.2.1.3: SystemSearch 178, 26.3: The SystemBrowser 289
examplesof use 26.2.1: Examples 288
deletingtextintheeditor ~ 12.8.3: Inserting and deleting text 143
Seealsokill ring 12.11: Cutting, copying and pasting using the kill ring 145

324

Index

del i ver function 28.1: Introduction 305, 28.2: Preparing to buildyour application 306

Descri be Generic Function editorcommand 15: The Generic Function Browser 167

Descri be System editorcommand 26.3: The System Browser 288

description
of compilation conditions 9.2: Examining conditions 107

Descriptionmenu 9.2: Examining conditions 108, 14.2.5.1: Function descriptionarea 163, 15.1.4: Descriptionlist 169
Listen 18.2.4: Descriptionarea 203

Deselect All command 3.3.4: Sdectingtext and objects 43, 11.2: Tracing and Untracing functions 124, 12.10: Cutting, copying and
pasting using the clipboard 145

Destroy command 27.3.2: Window control 304
di spl ay function 19.9.6.4: Other miscellaneousfunctions 231
Display as Confirmer command ~ 19.7.2: Displaying the current interface 220
Display asDialog command 19.7.2: Displaying the current interface 220
Display Backtracecommand 28.5.1: Miewing errors 309
Display Borderscommand ~ 19.7.3: Arranging objectsin a pinboard layout 220
Display Error command ~ 28.5.1: Viewing errors 309
displaying

package information ~ 3.7: Displaying packages 45

windows 3.1.1: Displaying existing windows 29
di spl ay- message function 19.9.6.2: Callbacksto display datainadialog 230
DI SPLAY POSIX environment variable 2: A Short Tutorial 18

Documentation command 3.8.1: Operationsavailable 48, 10.7.1: Source location, documentation, inspect and method combination for the
current frame 118, 20.7: The Expression menu 236

documentation, online. Seeonlinehelp 4: Getting Help 61
dynamiclibrary = 28.6.2: Executing a different file 310

E
echoarea 12.1.3: Theechoarea 131
Edit > Object menu
Copy Object 3.3.3: Using the Object operations with the clipboard 42
Cut Object 3.3.3: Using the Object operations with the clipboard 42
Paste Object 3.3.3: Using the Object operations with the clipboard 42
Editing menu
CommandtoKey 12.14: Helpwith editing 155, 20.14: Help with editing in the Listener 241
KeytoCommand 12.14: Helpwithediting 155, 20.14: Helpwith editinginthe Listener 241
editing the history list ~ 3.5.2: Editing the history list 44
Editmenu 3.3: Performing editing functions 41

Copy 3.3.2: Usingtheclipboard 42, 3.8.1: Operationsavailable 48, 12.10: Cutting, copying and pasting using the
clippoard 145, 12.11.2: Cutting or copyingtext 146, 19.6.3: Rearranging componentsin aninterface 217

Cut 33.2: Usingtheclipboard 42, 12.10: Cutting, copying and pasting using the clipboard 145, 12.11.2: Cutting or copying
text 146, 19.3.2: Grapharea 209, 19.3.5: Removing elementsfromalayout 211, 19.4.7: Removing menuobjects 214, 19.6.3:
Rearranging componentsin an interface 217, 19.9.1: Creating the basic layout 223

Deselect All 3.3.4: Selecting text and objects 43, 11.2: Tracing and Untracing functions 124, 12.10: Cutting, copying and pasting
using theclipboard 145

Find 12.12.1: Searching for text 147, 12.12.3: Replacingtext 150

325

Index

Find... 3.3.5: Searching for text and objects 43

Find, for graphview 6.2: Searchinggraphs 73

Find Next ~ 3.3.5: Searching for text and objects 43, 12.12.1: Searching for text 148
Find Next, for graphview 6.2 Searching graphs 73

interface builder ~ 19.6.1: Editing the selected object 216

Link. SeeLink Menu 3.11: Linking toolstogether 51

Paste 3.3.2: Usingtheclipboard 42, 7.2.1: Classbox 87, 12.10: Cutting, copying and pasting using the clipboard 145, 15.1.1:
Functionarea 169, 19.6.3: Rearranging componentsinaninterface 217, 19.9.1: Creating thebasic layout 223

Replace 12.12.3: Replacingtext 149
Replace... 3.3.5: Searching for text and objects 43
Search Files... 16.1: Introduction 175

Select All 3.3.4: Sdecting text and objects 43, 11.2: Tracing and Untracing functions 124, 12.10: Cutting, copying and pasting using
theclipboard 145, 26.7.6: Executing plansin the preview view 295

Undo 3.3.1: Undoingchanges 41, 12.9.2: Undoingcommands 144
editor
aborting commands 12.9.1: Aborting commands 144
breakpoints 12.13.6.1: Setting breakpoints 152
buffers. Seebuffers 12: TheEditor 129
buffersview 12.3: Displaying and swapping between buffers 132, 12.8.4: Using several buffers 143
changed definitionslist ~ 12.5: Changed definitions 135
closing buffers 12.8.4: Using several buffers 143
compiling sourcecode 12.13.4: Compiling code 151
creating anew window 12.8.4: Using several buffers 144
creating files 3.6: Operatingonfiles 44, 12.8.1: Opening, saving and printing files 141
current expression, displaying value 12.13.10: Other facilities 155
current package and displayed package 12.7.2.4: Displaying package information 140
definitionslist ~ 12.4: Displaying Common Lisp definitions 135
definitions, operatingon 12.13.10: Other facilities 154
deletingtext 12.8.3: Inserting and deleting text 143
Emacs, comparison with 12 The Editor 129
evaluating sourcecode 12.13.3: Evaluating code 151
expressions, operatingon 12.13.10: Other facilities 154
History menu 12.8.4: Using several buffers 143
indenting forms ~ 12.13.9: Indentation of forms 154
inserting filesinto the current buffer ~ 12.8.3: Inserting and deletingtext 143
insertingtext 12.8.3: Inserting and deleting text 143
invoking 12: The Editor 129
keyboard commands, useof ~ 12.1.4: Using keyboard commands 131
kill ring. Seekill ring 12.11: Cutting, copying and pasting using the kill ring 145
Lisp-specificcommands 12.13: Using Lisp-specific commands 150
macroexpanding formsinthe 12.13.10: Other facilities 155
macro expanding formsinthe 12.13.10: Other facilities 155

menu and keyboard commands, distinctions 12.8.1: Opening, saving and printing files 141

326

Index

menu commands. See menu or command name 12 The Editor 129
moving around in the buffer ~ 12.8.2: Moving around files 142
new files 3.6: Operatingonfiles 44, 12.8.1: Opening, saving and printing files 141
onlinehelp 12.14: Helpwithediting 155, 20.14: Help with editingin the Listener 241
opening files 3.6: Operatingonfiles 45, 12: TheEditor 129, 12.8.1: Opening, saving and printing files 141
opening recent files 3.6 : Operating on files 45
output view 12.2: Displaying output messagesin the Editor 132
overview 1.1.2: TheEditor 16
package information 12.7.2.4: Displaying package information 140
packageusage 12.13.8.1: Theprimary package 154
repeating commands 12.9.3: Repeating commands 145
replacingtext 12.12.3: Replacingtext 149
reverting to last saved version 12.8.1: Opening, saving and printing files 141
savingfiles 12.8.1: Opening, saving and printing files 141, 12.8.4: Using several buffers 144
saving text regions 12.8.1: Opening, saving and printing files 142
scrollingtext 12.8.2: Moving around files 143
searching 12.12: Searching and replacing text 147
sorting entries 12.7.2.3: Sortingitemsinlists 140
swapping between buffers 12.8.4: Using several buffers 143
tracing 12.13.7: Tracing symbols and functions 153
undefining symbols 12.13.10: Other facilities 154
undoing commands 12.9.2: Undoing commands 144
using theclipboard 12.10: Cutting, copying and pasting using the clipboard 145
viewing two sections of the samefile 12.8.4: Using several buffers 144
viewsavailable 12: TheEditor 129
walking forms 12.13.10: Other facilities 155
edi tor-col or-code-coverage function 13.3: Code CoverageFilesList Context Menu 157
editor commands
Buf f er Changed Definitions 1251: Settingthe reference point for changed definitions 137
Code Coverage Goto Next 13.4: Traverse 158
Descri be Generic Function 15: TheGeneric Function Browser 167
Descri be System 26.3: The System Browser 288
Find Dspec 25.6: Breakpoints 279
finding keyboard command for ~ 20.14: Help with editing in the Listener 241
I ndent Sel ection or Conpl ete Synbol 3.14.1: Invoking completion 54
Search Files 16.1: Introduction 175
Shel | 24.2: The Shell tool 268
Vi ew Source Search 12.6: Finding definitions 138
Visit Tags File 121.4: Usingkeyboard commands 131
Editor CommandsList 3.15.1: Editor Commands List 57
editor emulation 3.2: Setting preferences 33

327

Index

editor font 3.2: Setting preferences 33
Edit Script command 28.4: Editingthescript 308
Emacs 3.2.2.1: Choosingthe key input style 36

comparison with built-in editor ~ 12: The Editor 129
Enable Display command 10.12: Errorsin CAPI display callbacks 123
encoding 3.2.4: Setting the default encodings 40
ent er - debugger-directly variable 10.1.4: Bypassing the Notifier window 115
Enter Search String didlog ~ 4.1.3: Searching the online manuals 61
environment

common features ~ 3: Common Features 28

quitting 3.2.1.3: Quitting the environment 35
environment variables

ESHELL 24.4: Configuringtheshell torun 269

LANG 24.4: Configuringtheshell torun 269

LC ALL 24.4: Configuringtheshell torun 269

LC CTYPE 24.4: Configuringtheshell torun 269

SHELL 24.4: Configuring the shell torun 269
EOF command 24.2: The Shell tool 269
error conditions 9.2 Examining conditions 108
Escape key, useof preface 13, 12.1.4: Using keyboard commands 131
ESHELL environment variable ~ 24.4: Configuring the shell torun 269
Evaluate command

in editor Buffersmenu 12.13.3: Evaluating code 151

in editor Definitionsmenu 12.13.3: Evaluating code 151
Eval uate Last Formin Listener editorcommand 20.12: Running Editor formsinthe Listener 241
Evaluate Region command

ineditor 12.13.3: Evaluating code 151

inlistener 20.7: The Expression menu 237
evaluating

codeintheeditor 12.13.3: Evaluating code 151

forms 20.2: Evaluatingsimpleforms 234

interrupting in listener ~ 20.5: Interrupting evaluation 236
event

next 20.10.1: History commands 238

previous 20.10.1: History commands 238

repeating 3.5.1: Repeating eventsfromthe history list 44
examining objects 17.4: Examining objects 190
examples

searching 4.1.4: Searching the example sourcefiles 63
example source files

searching 4.1.4: Searching the example sourcefiles 63

328

Index

executemode 20.10: Execute mode 238
Exitcommand 2.1: Sartingtheenvironment 19, 3.2.1.3: Quitting the environment 35
expanding graphs 6.3 : Expanding and collapsing graphs 73
Expand Nodescommand 6.3.2: Expanding and collapsing by menu commands 73
Expressonmenu 12.13: Using Lisp-specific commands 150
Arguments 12.13.10: Other facilities 155, 20.7: The Expression menu 236
Browse SymbolsLike 20.7: TheExpressionmenu 237
Class 20.7: TheExpressonmenu 236
CompileRegion 12.13.4.1: Compilinginmemory 151, 20.7: The Expression menu 237
Documentation ~ 20.7: The Expression menu 236
Evaluate Region 12.13.3: Evaluatingcode 151, 20.7: TheExpressionmenu 237
Find Source 3.2.1.5: Automatic use of Find Definitionsview 35, 20.7: The Expression menu 236
Function Calls 20.7: The Expression menu 237
Generic Function ~ 20.7: The Expressionmenu 237
Inspect Value 20.7: The Expressionmenu 236
Macroexpand 12.13.10: Other facilities 155
Macroexpand Form 20.7 : The Expression menu 237
Toggle Breakpoint 20.7: The Expressionmenu 237
Trace. See Tracemenu 12.13.7: Tracing symbols and functions 153
Value 12.13.10: Other facilities 155, 20.7: The Expression menu 236
Wak 12.13.10: Other facilities 155
Walk Form 20.7: The Expression menu 237
expressions
browsingtheclassof 20.7: The Expressionmenu 236
displaying documentation ~ 20.7 : The Expression menu 236
finding sourcecode 20.7: The Expression menu 236
extend callbacks 19.9.4.1: Specifying layout callbacks and other callback information 228
extended editor commands, finding keyboard command for ~ 20.14 : Help with editing in the Listener 241
. extended- sel ection keyword 19.9.2: Specifying attribute values 225
external format 3.2.4: Setting the default encodings 40

F
f g shell command 24.2: The Shell tool 268

File menu 2.1: Sartingtheenvironment 19, 3: Common Features 28, 12.3.2: Buffersarea 134
Browse Parent System 3.6: Operatingonfiles 45, 12.13.10: Other facilities 154, 26.3: The SystemBrowser 288
Close 12.3: Displaying and swapping between buffers 132, 12.8.4: Using several buffers 143, 19.5.3: Savingcode 216
Compile 3.6: Operatingonfiles 45, 12.13.4.2: Compilingtoafile 152
Compile... 12.13.4.2: Compilingto afile 152

Compileand Load 3.6: Operatingonfiles 45, 10.5: Anexampledebugging session 116, 12.13.4.2: Compilingto a
file 152, 12.13.6.4: Reloading code with breakpoints 153

Compileand Load... 12.13.4.2: Compilingtoafile 152
description 3.6: Operatingonfiles 44
Insert 12.8.3: Inserting and deleting text 143

329

Index

Load 3.6: Operatingonfiles 45, 12.13.3: Evaluatingcode 151, 12.13.6.4: Reloading codewith breakpoints 153, 26.3: The
System Browser 289

Load... 12.13.3: Evaluatingcode 151

New 3.6: Operatingonfiles 44, 12.8.1: Opening, saving and printing files 141, 19.2.1: Creatinganew interface 206, 19.9.1:
Creating the basic layout 222, 19.9.7: Creatinga system 231

Open 3.6: Operatingonfiles 45, 12: TheEditor 129, 12.3: Displaying and swapping between buffers 132, 12.8.1: Opening,
saving and printing files 141

Open... 19.2.2: Loading existing interfaces 207

Print 3.6: Operatingonfiles 45, 12.8.1: Opening, saving and printing files 142

Recent Files 3.6: Operatingonfiles 45, 12: TheEditor 129

Revertto Saved 12.8.1: Opening, saving and printing files 141, 19.5.3: Savingcode 216

Save 12.3: Displaying and swapping between buffers 132, 12.3.2: Buffersarea 134, 12.8.1: Opening, saving and printing
files 141, 19.5.3: Savingcode 216, 19.9.5: Savingtheinterface 229, 19.9.7: Creatingasystem 232

Save All 12.8.4: Using several buffers 144, 19.5.3: Savingcode 216
Save As 12.8.1: Opening, saving and printing files 141
SaveAs... 1953: Savingcode 216
Save Region As 12.8.1: Opening, saving and printing files 142
filenames
completionof 12.1.3: Theechoarea 131
extensionsfor CL files 12.8.1: Opening, saving and printing files 141
files
compilinginlistener 3.6: Operating onfiles 45
creatingnew 3.6: Operatingonfiles 44, 12.8.1: Opening, saving and printing files 141
inserting oneinto another 12.8.3: Inserting and deleting text 143
loading 3.6: Operatingonfiles 45
navigating inthe editor ~ 12.8.2: Moving around files 142
opening 3.6: Operatingonfiles 45, 12: TheEditor 129, 12.8.1: Opening, saving and printing files 141
openingrecent 3.6: Operatingonfiles 45
printing 3.6: Operatingonfiles 45
reverting to last saved version 12.8.1: Opening, saving and printing files 141
saving 12.8.1: Opening, saving and printing files 141
savingall 12.8.4: Using several buffers 144
filtering information ~ 3.12: Filteringinformation 51, 7.1.3: Filtering slot information 82, 26.7.3: Filter area 295
ininspector 17.3: Filteringthedisplay 189
filtering results ~ 3.12: Filtering information 51
filters 3.12: Filteringinformation 51
Find command
ingraphview 6.2: Searchinggraphs 73
Find... command 3.3.5: Searching for text and objects 43
ineditor 12.12.1: Searching for text 147, 12.12.3: Replacingtext 150
Fi nd Dspec editorcommand 25.6: Breakpoints 279
Find Next command 3.3.5: Searching for text and objects 43, 12.12.1: Searching for text 148
ingraphview 6.2: Searchinggraphs 73

330

Index

Find Sourcecommand 3.2.1.5: Automatic use of Find Definitionsview 35, 3.8.1: Operationsavailable 48, 10.7.1: Sourcelocation,
documentation, inspect and method combination for the current frame 118, 12: TheEditor 129, 20.7: The Expression menu 236

displaying list of results ~ 3.2.1.5: Automatic use of Find Definitionsview 35
inDebugmenu 20.9: TheDebug menu 238
shortcut in debugger tool 10.5: An example debugging session 117
Font Lock Mode editor command 20.11: Setting Listener preferences 241
fontsize 3.2: Setting preferences 33
Forcecommand 26.11: Setting optionsin the system browser 298
forms
compilingineditor 12.13.4: Compiling code 151
evaluating 20.2: Evaluating simpleforms 234
evaluating in editor 12.13.3: Evaluating code 151
indentationof ~ 12.13.9: Indentation of forms 154
interrupting evaluation ~ 20.5: Interrupting evaluation 236
re-evaluating 20.3: Re-evaluating forms 235
Frame menu
Break On Return From Frame ~ 10.7.2: Restartsand returning fromthe frame 118
Documentation ~ 10.7.1: Source location, documentation, inspect and method combination for the current frame 118

Find Source 10.5: Anexample debugging session 117, 10.7.1: Source location, documentation, inspect and method combination for the
current frame 118, 12: TheEditor 129

Inspect Function ~ 10.7.1: Sourcelocation, documentation, inspect and method combination for the current frame 118

Method Combination ~ 10.7.1: Source location, documentation, inspect and method combination for the current frame 118, 15.2: Examining
information about combined methods 170

Restart Frame 10.7.2: Restartsand returning fromtheframe 118, 10.9.1: Configuring the call framesdisplayed 120
Restart Frame Stepping 10.7.2: Restartsand returning fromtheframe 118, 25.1: Introduction 271
Return from Frame 10.7.2: Restartsand returning fromthe frame 118
Trace. See Tracemenu 10.7.3: Tracing the function in theframe 119
function call browser ~ 14.1: Introduction 160
By Namecommand 14.4.1: Sorting entries 165
By Packagecommand 14.4.1: Sorting entries 165
Cdleesarea 14.31: CalledByarea 165
Cadlersarea 14.3.2: Callsintoarea 165
description 14.1: Introduction 160
Documentation area 14.2.5.2: Documentation area 164
Functionarea 14.2.1: Functionarea 161
Function descriptionarea 14.2.5.1: Function description area 163
Functionmenu 14.6: Performing operations on functions 166
Function menu: Tracesubmenu 14.6: Performing operations on functions 166
Grapharea 14.2.3: Grapharea 162
graphing callersand callees 14.2.3: Grapharea 162
invoking on selected object 3.8.1: Operationsavailable 48, 20.7: The Expressonmenu 237
menu commands, see menu or command name 14.1: Introduction 160
operating on functions 14.6 : Performing operations on functions 166

package information 14.4.2: Displaying package information 165

331

Index

Show Package Namescommand ~ 14.4.2: Displaying package information 165

sorting entries 14.4.1: Sorting entries 165

textview 14.3: Examining functionsusing thetext view 164

tracing from 14.6: Performing operations on functions 166

Unsorted command 14.4.1: Sorting entries 165

viewsavailable 14.1: Introduction 160
function calls

browsing from listener ~ 20.7: The Expression menu 237
Function Callscommand 3.8.1: Operationsavailable 48, 20.7: The Expressionmenu 237
Functionmenu 15.1.1: Functionarea 169

intheprofiler ~ 23.5: Format of the cumulative results 262

Trace. See Tracemenu 15.1.5: Performing operations on the current function or selected methods 170
functions

apropos 18.1: Introduction 200

code-coverage-file-stats 13.2: Dislaying a Code Coveragedata 157

commands- menu- add- commands 3.15.1: Editor CommandsList 58

conmands- nenu- get - conmands 3.15.1: Editor CommandsList 59

comuands- menu- r enove- conmands 3.15.1: Editor CommandsList 59

conpi |l e-system 26.2: Abrief introduction to systems 287

contain 25: Inspecting objectsusing the Inspector 24, 7.1.3: Filtering dot information 82, 17.5.4.1: Example 194

deliver 28.1: Introduction 305, 28.2: Preparingto buildyour application 306

di splay 19.9.6.4: Other miscellaneous functions 231

di spl ay- message 19.9.6.2: Callbacksto display datainadialog 230

edi tor-col or-code-coverage 13.3: Code CoverageFilesList Context Menu 157

get -i nspector-val ues 17.8: Creating new inspection formats 197

prinl-mar ked- obj ect 20.10.4: Highlighting of results 240

process- break 22.3: Other ways of breaking processes 247

save- code- coverage-data 13.1: Sarting the Code Coverage Browser 156

save-current-code-coverage 13.1: Sarting the Code Coverage Browser 156

save-image 5: SessonSaving 65, 28.1: Introduction 305, 28.2: Preparingto build your application 306, 28.8: Usingthe
Application Builder to save a development image 311

scm add- syst em nanespace 26.9.1: Interfaceto source code managers 297
set-interactive-break-gestures 3.4: TheBreakgesture 43
undefining 7.5.6: Operations specific to the current function or method 94

Functions menu
inthe classbrowser ~ 7.5.6: Operations specific to the current function or method 94

inthe function call browser ~ 14.6: Performing operations on functions 166

G

generic function browser ~ 15: The Generic Function Browser 167
Argumentstypesarea 15.2.3: Argumentstypesbox 172

description 15: The Generic Function Browser 167

332

Index

Descriptionarea 15.1.4: Descriptionlist 169

displaying signatures 15.2.6: Restricting displayed signaturesby class 172

Filterarea 15.1.2: Filter area 169

Functionarea 15.1.1: Functionarea 168

invoking on selected object 3.8.1: Operationsavailable 48, 12.13.10: Other facilities 154
menu commands. See menu or command name 15: The Generic Function Browser 167
Method combination list ~ 15.2.4: List of method combinations 172

method combinations, viewing ~ 15.2: Examining information about combined methods 170
methodslist 15.1.3: Methodslist 169

operating on signatures 15.2.6: Restricting displayed signaturesby class 172
Signaturesarea 15.2.2: Sgnaturesbutton 171

Generic Functioncommand 3.8.1: Operationsavailable 48, 12.13.10: Other facilities 154, 20.7: The Expressonmenu 237, 235:
Format of the cumulative results 262

generic functions
defined on selected object 3.8.1: Operationsavailable 48, 12.13.10: Other facilities 154
inclassbrowser 7.5.6: Operations specific to the current function or method 94
scm nodul e-chil dren 26.9.1: Interface to source code managers 298
scm nodul e-i s-systemp 269.1: Interfaceto source code managers 297
scm nodul e-name 26.9.1: Interface to source code managers 297
get -i nspector-val ues function 17.8: Creating new inspection formats 197
Getting help from the LispWorkswebsite 4.1.6: The Lisp Knowledgebase 63
Getting public patches 4.1.7: LispWorks Patches 63
global preferences
When modified buffers 3.2.1.3: Quitting the environment 35
graphical user interface. Seeinterfaces 19: The Interface Builder 205
graphlayout menu 6: Manipulating Graphs 72
Collapse Nodes 6.3.2: Expanding and collapsing by menu commands 74
Expand Nodes 6.3.2: Expanding and collapsing by menu commands 73
Preferences 6.6 : Preferencesfor graphs 75
Reset Graph Layout ~ 6.4: Moving nodesin graphs 74
graphs 6: Manipulating Graphs 72
atering breadth 6.6.1: Altering the depth and breadth of graphs 76
ateringdepth 6.6.1: Altering the depth and breadth of graphs 76
children function 19.9.4.1: Specifying layout callbacks and other callback information 229, 19.9.6.4: Other miscellaneous functions 231
different layouts 6.6.2: Displaying different graph layouts 77
expanding and collapsing nodes 6.3: Expanding and collapsing graphs 73
menu commands. See menu or command name 5: Session Saving 65, 6: Manipulating Graphs 72
searching 6.2: Searching graphs 73
sortingitems 3.9.1: Sortingitemsinviews 49
graph view
system browser 26.5: Examining the systemtree 289
Grep
searchkind 16.2.1.6: Grep searches 179

333

Index

grep- comand variable 16.5.4: The External Grep Program 185
*grep- conmand- f ormat * variable 16.5.4: The External Grep Program 186

grep-fixed-args variable 16.5.4: TheExternal Grep Program 185
GUI. Seinterfaces 19: Thelnterface Builder 205

H
handler frames 10.9.1: Configuring the call frames displayed 120
Handlersbutton ~ 10.9.1: Configuring the call framesdisplayed 120
Helpmenu 3: Common Features 28, 4: GettingHelp 61
Editing. See Editingmenu 20.14: Help with editing in the Listener 241
Lisp Knowledgebase 4.1.6: TheLisp Knowledgebase 63
LispWorks Patches ~ 4.1.7 : LispWorks Patches 63
Manuals 4.1.5: Browsing manualsonline 63
OnSymbol 4.1.1: Getting help on the current symbol 61
OnTool 4.1.2: Getting help on the current tool 61
Register... 4.4 Registeringanew licensekey 64
Report Bug 4.3: Reporting bugs 63
Search 4.1.3: Searching the online manuals 61
Search Examples 4.1.4: Searching the example sourcefiles 63
help. Seeonlinehelp 4: GettingHelp 61
Hidden Symbolsbutton 10.9.1: Configuring the call frames displayed 120
hierarchy view
inclassbrowser 7.1.4: Examining other classes 84
highlight
compiler messages 3.2.3.2: Setting the text style attributes 39
interactiveinput ~ 3.2.3.2: Setting the text style attributes 38
matching parentheses 3.2.3.2: Setting the text style attributes 39, 12.13.1: Lispmode 150
selected text 3.2.3.2: Sefting thetext style attributes 38
history list ~ 3.5: Thehistorylist 44
editingthe 3.5.2: Editing the history list 44
inthelistener 20.6: TheHistory menu 236
repeating next event 3.5.1: Repeating eventsfromthe history list 44, 20.10.1: History commands 238
repeating previousevent 3.5.1: Repeating events fromthe history list 44, 20.10.1: History commands 238
searchingthe 20.10.1: History commands 238
History menu 3.5: Thehistorylist 44
ineditor 12.8.4: Using several buffers 143
inlistener 20.6: TheHistory menu 236
interface builder ~ 19.2.1: Creating a new interface 207
inthelistener 20.6: TheHistory menu 236
Modify 3.5.2: Editing the history list 44
Next 3.5.1: Repeating eventsfromthe history list 44
Previous 3.5.1: Repeating eventsfromthe history list 44

334

Index

I
Include Inherited Slotsbutton ~ 7.1.2: Examining inherited slots 82, 7.2.3: Sotslist 87
Include Inherited Slots checkbox 2.6 : Examining classesin the Class Browser 26
incremental search 12.12.2: Incremental searches 149
I ndent Sel ection or Conplete Symbol editorcommand 3.14.1: Invoking completion 54
Index radio button ~ 4.1.3: Searching the online manuals 62
initargs of dlot, displaying 7.2.4: Descriptionlist 87
initfile 28.2.1.2: Creating a new delivery script 307
initform of dlot, displaying ~ 7.2.4: Descriptionlist 87
initial 1/0O streams ~ 3.16 : Output and Input to/from the standard streams 59
initiglization file 3.2.1.6: Initializationfile 35
initialization files 28.2.1.2: Creating a new delivery script 307
i n-package macro 12.13.8: Packages 153
in-place completion ~ 3.2.1.2: Controlling completion behavior 35
Insert... command 12.8.3: Inserting and deletingtext 143
inserting filesin editor ~ 12.8.3: Inserting and deleting text 143
inserting text in editor ~ 12.8.3: Inserting and deleting text 143
Inspect command 3.8.1: Operationsavailable 48
on Processesmenu 22.2: Processcontrol 247
onSlotsmenu 17.5.1.1: Example 192
on Symbol menu 18.2.3: Symbolslist 203

onVauesmenu 2.5: Inspecting objectsusing the Inspector 24, 3.1.11: Updating windows 32, 17.1: Inspecting the current
object 187, 17.5.1.1: Example 192, 17.54.1: Example 193

Inspect Function command 10.7.1: Source location, documentation, inspect and method combination for the current frame 118
inspecting listener values automatically ~ 17.7: Customizing the Inspector 197
inspector ~ 17: Thelnspector 187
changingvalues 17.5.4: Manipulation operations 192
description 17.2: Description of the Inspector tool 188
display options 17.6: Configuring the Inspector 195
filtering display ~ 17.3: Filteringthedisplay 189
inspecting selected object 3.8.1: Operationsavailable 48
menu commands. See menu or command name 17 : Thelnspector 187
overview 1.15: Thelnspector 16
simpleuse 17.4: Examining objects 190
sorting entries 17.6: Configuring the Inspector 195
tracing 17.5.3: Tracing slot access 192
tracinginthe 17.5.3: Tracing ot access 192
viewing local classslots ~ 17.4: Examining objects 190
Inspector command 17: Thelnspector 187
Inspect Valuecommand 20.7: The Expression menu 236
interface class 19.2: Creating or loading interfaces 206
interface builder ~ 19: Thelnterface Builder 205
adding your owncode 19.5.1: Integrating the design with your own code 215

335

Index

attribute categories 19.6.4.1: Basic attributes 219

Attributesdialog box ~ 19.6.4: Setting the attributes for the selected object 217, 19.9.2: Specifying attribute values 223, 19.9.3: Creating
the menu system 226

button panels 19.3.3: Button panels 210
Check Component button ~ 19.4.6.3: Check components 214
codearea 19.5.2: Editing code 215
codeview 19.5.2: Editingcode 215, 19.9.4: Specifying callbacksin theinterface definition 228
Component button ~ 19.4.6.1: Sandard menu components 213
creating different views 19.3.7 : Inheriting parts of the layout 211
currentinterface 19.3.1: Interfacebox 209
current package 19.3.3: Button panels 210
default names of elements 19.3.4: Adding new elementsto thelayout 210, 19.9.2: Specifying attribute values 223
default names of menus 19.4.4: Adding menus 213
editingcode 19.5.2: Editingcode 215
Editmenu 19.6.1: Editing the selected object 216
exampleof use 19.9: Example: Using The Interface Builder 221
interfacearea 19.3.1: Interfacebox 209
Interfacemenu 19.7 : Performing operations on the current interface 219
interfaces, creating 19.2.1: Creating a new interface 206, 19.9.1: Creating the basic layout 222
interfaces, loading 19.2.2: Loading existing interfaces 207, 19.5.3: Saving code 216
introduction ~ 19: The Interface Builder 205
invoking 19.1: Description of the Interface Builder 205
Item button ~ 19.4.5: Adding menuitems 213, 19.9.3: Creating the menu system 226
layout hierarchy area 19.3.2: Grapharea 209, 19.9.1: Creating thebasic layout 222
layoutsview 19.3: Creating aninterfacelayout 208, 19.9.1: Creatingthebasic layout 222
Menu Bar button 19.4.3: Adding menu bars 212
Menu button 19.4.4: Adding menus 213, 19.9.3: Creating the menu system 226
menu hierarchy area 19.4.2: Grapharea 212, 19.9.1: Creating thebasic layout 222
menusview 19.4: Creatingamenusystem 211, 19.9.3: Creating the menu system 226
methodsof use 19.5.1: Integrating the design with your own code 215
operatingon elements 19.8: Performing operations on elements 220
Radio Component button 19.4.6.2: Radio components 214
rearranging components 19.6.3: Rearranging componentsin an interface 217, 19.9.1: Creating the basic layout 223
savingcode 19.5.3: Savingcode 216, 19.9.5: Savingtheinterface 229, 19.9.7: Creatingasystem 231
Seealsointerfaces 19: Thelnterface Builder 205
setting attributes 19.6.4 : Setting the attributes for the selected object 217, 19.9.2: Specifying attribute values 223
switching between interfaces 19.2.1: Creating a new interface 207
views, description 19.1: Description of the Interface Builder 205
Interfacemenu 3.17: Examining awindow 60
Attributes 19.7.1: Setting attributes for the current interface 220
Display as Confirmer ~ 19.7.2: Displaying the current interface 220
Display asDidlog 19.7.2: Displaying the current interface 220
Display Borders 19.7.3: Arranging objectsin a pinboard layout 220

336

Index

interface builder ~ 19.7 : Performing operations on the current interface 219
Raise 19.7.2: Displaying the current interface 220
Regenerate 19.7.2: Displaying the current interface 220
interfaces
calbacks 19.6.4.4: Callbacksattributes 219, 19.9.4: Specifying callbacksin the interface definition 228
confirmers 19.7.2: Displaying the current interface 220
constructing 19.9.1: Creating the basic layout 222
creating menusfor ~ 19.4: Creating a menu system 211
creatingnew 19.2.1: Creating anewinterface 206, 19.9.1: Creatingthebasic layout 222
default package 19.3.3: Button panels 210
definition 19.2: Creating or loading interfaces 206
development strategy ~ 19.5.1: Integrating the design with your own code 215
dialogboxes 19.7.2: Displaying the current interface 220
geometry of elements 19.6.4.5: Geometry attributes 219
grapharea 19.3.2: Grapharea 209
layout elements, adding 19.3.4: Adding new elementsto the layout 210
layout elements, removing 19.3.5: Removing elements froma layout 211
layout hierarchy ~ 19.3.2: Grapharea 209
loading 19.2.2: Loading existing interfaces 207, 19.5.3: Savingcode 216
menu hierarchy 19.4.2: Grapharea 212
menu objects, removing 19.4.7: Removing menu objects 214
operating on the current 19.7 : Performing operations on the current interface 219
rearranging components 19.6.3: Rearranging componentsin an interface 217, 19.9.1: Creating the basic layout 223
regenerating 19.7.2: Displaying the current interface 220
setting attributes 19.6.4 : Setting the attributes for the selected object 217, 19.9.2: Specifying attribute values 223
tittes 19.6.4.3: Titleattributes 219, 19.9.2: Specifying attribute values 223
types of attribute 19.6.4.1: Basic attributes 219
interface skeleton
default menusin 19.2.1: Creating a new interface 206
description 19.2.1: Creating a new interface 206
interrupting evaluation 20.5: Interrupting evaluation 236
invisibleframes 10.9.1: Configuring the call framesdisplayed 120
Invisible Functionsbutton ~ 10.9.1: Configuring the call framesdisplayed 120
citems keyword 7.1.3: Filtering ot information 82

K
KDE/Gnome emulation 3.2.2.1: Choosing thekey input style 36, 12.7.1: Controlling other aspects of the Editor 138
keyboard commands

comparison with menu commands 12.8.1: Opening, saving and printing files 141

finding editor command for ~ 20.14: Help with editing in the Listener 241

intheeditor 12.1.4: Using keyboard commands 131

keyboard conventions preface 13

337

Index

keyinput 3.2.2.1: Choosing thekey input style 36

Key to Command command 12.14: Helpwith editing 155, 20.14: Help with editing in the Listener 241

keywords
.center 19.9.2: Specifying attribute values 225
. extended-sel ection 19.9.2: Specifying attribute values 225
citens 7.1.3: Filtering ot information 82
Kill All command 28.6.3: Killing application processes 310
Kill Applicationmenu 28.6.3: Killing application processes 310
killingaprocess 22.2: Processcontrol 247
killring 12.11: Cutting, copying and pasting using thekill ring 145
copyingtextfrom 12.11.3: Pastingtext 146
marking theregion 12.11.1: Markingtheregion 145
puttingtextinto 12.11.2: Cutting or copying text 146
rotating 12.11.3: Pastingtext 147
summary of use 12.11.3: Pastingtext 147
Known Definitions

searchkind 16.2.1.4: Known Definitions searches 178

L
lambdalist, displaying ~ 12.13.10: Other facilities 155, 20.7: The Expression menu 236
LANGenvironment variable 24.4: Configuring the shell torun 269
layouts
addingtoaninterface 19.9.1: Creatingthebasic layout 222
creating different views 19.3.6: Creating different views 211
inheriting elementsin 19.3.7 : Inheriting parts of the layout 211
pinboard 19.7.3: Arranging objectsin a pinboard layout 220
rearranging 19.6.3: Rearranging componentsin aninterface 217, 19.9.1: Creating the basic layout
Seealsointerfaces 19.1: Description of the Interface Builder 205
specifying callbacks 19.9.4.1: Specifying layout callbacks and other callback information 228
layouts, displaying in window browser ~ 27.2.4: Displaying different types of window 303
LC_ALL environment variable 24.4: Configuring the shell torun 269
LC_CTYPE environment variable 24.4: Configuring the shell torun 269
Link fromcommand 3.11: Linking toolstogether 51
linking toolstogether 3.11: Linking toolstogether 51
.lispfiles 12.8.1: Opening, saving and printing files 141
Lisp Knowledgebase command 4.1.6: TheLisp Knowledgebase 63
.lispworksfile 3.216: Initializationfile 35
LispWorks IDE tools
ProcessBrowser 3.4: TheBreak gesture 43
LispWorks Patchescommand 4.1.7 : LispWorks Patches 63
LispWorks podium 3: Common Features 28

338

223

Index

Listencommand 3.8.1: Operationsavailable 48, 17.54.1: Example 194, 18.2.3: Symbolslist

area 203, 22.2: Processcontrol 247
listener
basictutorial 20.2: Evaluating simpleforms 234
browsing function callsfrom 20.7: The Expressionmenu 237
compiling filesin ~ 3.6: Operatingonfiles 45
current expression, displayingvalue 20.7: The Expression menu 236
current expression, stepper breakpoint 20.7: The Expression menu 237
current expression, toggling stepper breakpoint 20.7: The Expression menu 236
debugger commands 20.10.2: Debugger commands 239
debugginginthe 20.9: TheDebug menu 237
description 20.1: Thebasic features of a Listener 233
evaluating forms 20.2: Evaluating simpleforms 234
executemode 20.10: Executemode 238
Expression menu. See Expressonmenu 20.7 : The Expression menu 236
history commands 20.10.1: History commands 238
history liss ~ 20.6: TheHistorymenu 236
History menu 20.6: TheHistorymenu 236
interrupting evaluation ~ 20.5: Interrupting evaluation 236
loading filesin ~ 3.6: Operatingonfiles 45
macroexpanding forms ~ 20.7 : The Expression menu 237
macro expanding forms 20.7: The Expression menu 237
miscellaneous commands ~ 20.10.3: Miscellaneous Listener commands 239
nextevent 20.10.1: History commands 238
onlinehelp 20.14: Help with editing in the Listener 241
operating on expressions 20.7: The Expression menu 236
overview 1.1.1: Thelistener 16
pasting selected object into 3.8.1: Operationsavailable 48
previousevent 20.10.1: History commands 238
prompt 20.1: Thebasic featuresof a Listener 233
re-evaluatingforms 2.2: CreatingaListener 20, 20.3: Re-evaluatingforms 235
searching history list ~ 20.10.1: History commands 238
sizeof thestack 20.11: Setting Listener preferences 240
stack size 20.11: Setting Listener preferences 240
syntax coloring 20.11: Setting Listener preferences 241
tracing current expression 20.7: The Expression menu 237
Values submenu. SeeVauesmenu 20.8: TheValuesmenu 237

203,

18.2.4:

Description

* variable 2.6: Examining classesinthe ClassBrowser 27, 17.5.4.1: Example 194, 20.2: Evaluating simpleforms 234

** variable 2.5: Inspecting objects using the Inspector 24
*** variable 2.5: Inspecting objects using the Inspector 24
* variable]listener:star variable] 2.5: Inspecting objects using the Inspector 24

waking forms 20.7: The Expression menu 237

339

Index

Listener Bind $ command 17.7: Customizing the Inspector 197

Listener command 20.1: Thebasic features of a Listener 233

list-panel «class 7.1.3: Filtering dotinformation 82

Load command
onFilemenu 3.6: Operatingonfiles 45, 12.13.3: Evaluatingcode 151, 26.3: The SystemBrowser 289
on Systemsmenu 26.5.4: Performing operations on systemmembers 291, 26.7.6: Executing plansin the preview view 295

Load... command 12.13.3: Evaluatingcode 151, 26.3: The SystemBrowser 289

loading files 3.6: Operatingonfiles 45

loading toolsinto the environment 3.1.4: Displaying tools using the mouse 29

local slots, inspecting 17.4: Examining objects 190

Long Namesbutton ~ 27.2.6: Displaying short or long names 303

Lower command 19.6.3: Rearranging componentsin aninterface 217, 27.3.2: Window control 304

M
Macroexpand command ~ 12.13.10: Other facilities 155
Macroexpand Form command 20.7: The Expression menu 237
macros
defcl ass 7.5.3: Listof functionsor methods 93
def system 16.2.1.3: SystemSearch 178, 26.3: The System Browser 289
i n-package 12.13.8: Packages 153
trace 3.10: Tracing symbolsfromtools 50, 11.1: Introduction 124
major tools, overview 1.1: Major tools 15
Make aNew Script command 28.2.1.2: Creating a new delivery script 306
manipulating values with inspector ~ 17.5.4: Manipulation operations 192
Manualscommand 4.1.5: Browsing manualsonline 63
manuals, online. Seeonlinehelp 4: Getting Help 61
menu commands
check components 19.4.6.3: Check components 214
choosing preface 13
comparison with keyboard commandsin editor ~ 12.8.1: Opening, saving and printing files 141
creating with theinterface builder ~ 19.4: Creating a menu system 211
debugger commands 20.9: The Debug menu 237
names, specifying 19.9.3: Creating the menu system 227
radio components 19.4.6.2: Radio components 214
rearranging 19.6.3: Rearranging componentsin aninterface 217
Seealsointerface 19: Thelnterface Builder 205
specifying callbacks 19.9.4.2: Specifying menu callbacks 229
menu components 19.4.6.1: Standard menu components 213
check 19.4.6.3: Check components 214
radio 19.4.6.2: Radio components 214
menus
creating with the interface builder ~ 19.4: Creatinga menu system 211, 19.9.3: Creating the menu system 226

rearranging 19.6.3: Rearranging componentsin aninterface 217

340

Index

Seealsointerface 19.1: Description of the Interface Builder 205
Met a+Ct r | +C, break gesture 3.4: TheBreak gesture 43
Meta key

useof preface 13

Method Combination command 10.7.1: Source location, documentation, inspect and method combination for the current frame 118,
Examining information about combined methods 170

methods
displaying signatures 15.2.6 : Restricting displayed signaturesby class 172
operating on signatures 15.2.6 : Restricting displayed signaturesby class 172
undefining 7.5.6: Operations specific to the current function or method 94
viewing method combinations 15.2: Examining information about combined methods 170
Methodsmenu 7.5.3: List of functionsor methods 93, 15.1.3: Methodslist 169
Trace. See Tracemenu 15.1.5: Performing operations on the current function or selected methods 170
Trace submenu. See Tracemenu 7.5.6 : Operations specific to the current function or method 94
Undefine 7.5.6: Operations specific to the current function or method 94
Modify command 3.5.2: Editing the history list 44
nmodul e- chi |l dren genericfunction 26.9.1: Interface to source code managers 298
nodul e-i s-system p genericfunction 26.9.1: Interfaceto source code managers 297

nmodul e- name generic function 26.9.1: Interface to source code managers 297

N
navigating within filesin theeditor ~ 12.8.2: Moving around files 142
New command 3.6: Operatingonfiles 44, 12.8.1: Opening, saving and printing files 141, 19.9.7: Creatingasystem 231
interface builder ~ 19.2.1: Creating anew interface 206, 19.9.1: Creating thebasic layout 222
new files, creating 3.6: Operatingonfiles 44, 12.8.1: Opening, saving and printing files 141
New in LispWorks 7.0
Code Coverage Browser ~ 13: The Code Coverage Browser 156
Handling of CocoaEvent Loop hanging 10.11: Handling of Cocoa Event Loop hanging 122
Preference option controlling anti-aliasing 3.2.1.1: Thewindow options 35
Preference option controlling quality drawing 3.2.1.1: Thewindow options 35
Restore display after fixing error incallback ~ 10.12: Errorsin CAPI display callbacks 123
Search Filestool reportsfile count after failed search 16.3: Miewing theresults 181
Session saving preserves the Listener tool's current package 5.3: What is saved and what isnot saved 65
New in LispWorks 7.1
Customizing text and background colors ~ 3.2.3.1: Changing the main colors of editor panes 38
Doubleclick drag gesture preface 12
Profiler background profiling 23.3: The Profiler menu and Profiler-specific toolbar buttons 254
Profiler improved setting of profiling parameters ~ 23.3: The Profiler menu and Profiler-specific toolbar buttons 255
Profiler reading profiler treefromafile 23.3: The Profiler menu and Profiler-specific toolbar buttons 254
Profiler Stacked Treetab ~ 23.2.4: Stacked Tree 253
Profiler storing profiler treeinafile 23.3: The Profiler menu and Profiler-specific toolbar buttons 254
Profiler tree Set Function AsRoot option 23.2.2: Optionsin the context menu for viewing parts of the call graph 251
Profiler tree Show Calls To Function 23.2.2: Optionsin the context menu for viewing parts of thecall graph 251

341

152:

Index

Remote debugging 29: Remote Debugging 312
Tripleclick drag gesture preface 12
New in LispWorks 8.0
Commandsmenu 3.15: The Commands menu 57
comuands- menu- add- commrands function 3.15.1: Editor CommandsList 58
conmands- nenu- get - conmmands function 3.15.1: Editor CommandsList 59
commands- menu- r enove- conmands function 3.15.1: Editor CommandsList 59
Listener highlighting of results ~ 20.10.4 : Highlighting of results 240
prinl- mar ked- obj ect function 20.10.4: Highlighting of results 240
Profiler action after Code To Profilefinishes 23.2.5: Code To Profile 254
Profiler Cumulative Results context menu options 23.5: Format of the cumulative results 262
Profiler tree Show callsto allocation functions ~ 23.2.2: Optionsin the context menu for viewing parts of the call graph 251
Shell configurable external-format ~ 24.4: Configuring the shell torun 269
Window Browser showing IDE Interfaces 27.2.5: Showing IDE iterfaces 303
Next command
command linedebugger 20.9: The Debug menu 238
history list ~ 3.5.1: Repeating eventsfromthe history list 44
next event
repeating 3.5.1: Repeating events fromthe history list 44, 20.10.1: History commands 238
Notifier window 10: TheDebugger Tool 110, 10.10: The Notifier window 120

O
object clipboard
invoking on the selected object 3.8.1: Operationsavailable 48
menu commands, see menu or command name 8: The Object Clipboard 99
Object Clipboard command 3.8.1: Operationsavailable 48
Objectmenu 3.8: Performing operations on selected objects 47
Actions. See Actionsmenu 19.6.2: Browsing the selected object 217
Attributes 19.6.4: Setting the attributes for the selected object 217
Clip 17.55: Copyinginthelnspector 195
Copy 17.55: Copyinginthelnspector 195
interface builder 19.3.2: Grapharea 209, 19.3.3: Buttonpanels 210, 19.8: Performing operationsonelements 220
Lower 19.6.3: Rearranging componentsin aninterface 217
Raise 19.6.3: Rearranging componentsin aninterface 217
objects
inspecting 17.4: Examining objects 190
operatingon 3.8 : Performing operations on selected objects 47
searchingfor 3.3.5: Searching for text and objects 43
Seealso selected object 17.4: Examining objects 190
selecting 3.3.4: Sdecting text and objects 43
onlinehelp 4: Getting Help 61
browsing manuals 4.1: Online manualsin HTML format 61

current symbol 4.1.1: Getting help on the current symbol 61

342

Index

currenttool 4.1.2: Getting help on the current tool 61
packages, searching 4.1.3: Searching the online manuals 62
searching 4.1.1: Getting help on the current symbol 61
On Symbol command 4.1.1: Getting help on the current symbol 61
On Tool command 4.1.2: Getting help on the current tool 61

Opencommand 3.6: Operatingonfiles 45, 12: TheEditor 129, 12.8.1: Opening, saving and printing files 141, 12.8.4: Using
several buffers 143

Open... command
interface builder ~ 19.2.2: Loading existing interfaces 207
Opened Buffers
searchkind 16.2.1.5: Searching editor buffers 179
opening files 3.6: Operatingonfiles 45, 12: TheEditor 129, 12.8.1: Opening, saving and printing files 141
opening recent files 3.6: Operating on files 45
operating on objects 3.8 : Performing operations on selected objects 47
Seealsoobjects 3.8 Performing operations on selected objects 47
Operations menu
Break 24.2: The Shell tool 268
EOF 24.2: The Shell tool 269
Suspend 24.2: The Shell tool 268
output
compiler 12.13.4.1: Compilingin memory 151
editor 12.2: Displaying output messagesin the Editor 132
standard 21: The Output Browser 242
output browser 2.4: Mewingoutput 23, 21: The Output Browser 242
menu commands. See menu or command name 21: The Output Browser 242
overview 1.1.4: TheOutput Browser 16
overview of magjortools 1.1: Major tools 15

overview of profiling 23.1: Introduction 249

P

package variable 12.13.8: Packages 153
Package command

interface builder ~ 19.3.3: Button panels 210
packages

current package 3.7.1: Specifying a package 46

display of 3.7: Displaying packages 45

ineditor 12.13.8.1: Theprimary package 154

searching for documentation 4.1.3: Searching the online manuals 62
Packagesbutton 23.9: Someexamples 266
Packages... button 23.9: Someexamples 267
packages-for-warn-on-redefinition variable 23.4.1.2: Choosingpackages 261
PageDownkey 12.8.2: Moving around files 143

343

Index

PageUpkey 12.8.2: Moving around files 143
Partial Search radio button ~ 4.1.3: Searching the online manuals 62
Pastecommand 12.10: Cutting, copying and pasting using the clipboard 145
inclassbrowser 7.2.1: Classbox 87
in generic function browser 15.1.1: Functionarea 169
ininspector ~ 17.5.4: Manipulation operations 193, 17.5.4.1: Example 194
interface builder ~ 19.6.3: Rearranging componentsin aninterface 217, 19.9.1: Creatingthebasic layout 223
Paste Object command 3.3.3: Using the Object operations with the clipboard 42
patches
numbered 4.1.7: LispWorks Patches 63
public 4.1.7: LispWorks Patches 63
pinboard objects
moving and resizing 19.7.3: Arranging objectsin a pinboard layout 220
Plain Directory
searchkind 16.2.1.1: Plain Directory searches 176
preferences
setting 3.2 Setting preferences 33

Preferences... command 3.14.3.1: Filtering modal dialog completion 57, 6.6: Preferencesfor graphs 75, 12.7.1: Controlling other aspects
of the Editor 139, 12.7.2: Controlling options specific to the Editor 139, 13.2: Displaying a Code Coveragedata 157, 15.3:
Configuring the Generic Function Browser 173, 16.5: Configuring the Search Filestool 183, 17.5.4.1: Example 193, 18.3:
Configuring the Symbol Browser 203, 20.11: Setting Listener preferences 240, 22.5: Process Browser Preferences 248, 23.2.5:
Code To Profile 254, 23.7: Configuringthe Profiler 262, 23.9: Someexamples 265, 25.9: Configuringthe
Sepper 285, 26.10.1: Sortingentries 298, 27.2: Configuring the Window Browser 301, 28.9: Configuring the Application
Builder 311

Preview command 26.11: Setting optionsin the system browser 298
previewing asystemplan 26.7: Generating and executing plansin the preview view 293, 26.11: Setting optionsin the system browser 298
Previous command
command linedebugger 20.9: The Debug menu 238
history list ~ 3.5.1: Repeating eventsfromthe history list 44
previous event
repeating 3.5.1: Repeating events fromthe history list 44, 20.10.1: History commands 238
primary packagein editor ~ 12.13.8.1: Theprimary package 154
prinl-marked-object function 20.10.4: Highlighting of results 240
Print command 3.6: Operatingonfiles 45
Print... command 12.8.1: Opening, saving and printing files 142
printing files 3.6: Operatingonfiles 45
process
bresking 3.4: TheBreak gesture 43
process-break function 22.3: Other waysof breaking processes 247
processbrowser 22: TheProcess Browser 245
menu commands. See menu or command name 22 The Process Browser 245
sorting processes 22.1: Theprocesslist 246
Process Browser tool ~ 3.4: TheBreak gesture 43
processes

breaking 3.4: TheBreak gesture 43

Index

inspecting 22.2: Processcontrol 247
killing 22.2: Processcontrol 247
sorting 22.1: Theprocesslist 246
terminating 22.2: Processcontrol 247
Processesmenu 22.2: Processcontrol 247
profiler ~ 23.1: Introduction 249
choosing packages 23.4.1.2: Choosing packages 259
choosing symbols 23.4.1: Choosing the functionsto profile 257
description 23.2: Description of the Profiler 249
exampleof use 23.9: Someexamples 265

information returned 23.2.1: Call Tree 250, 23.2.3: Cumulative Results 252, 23.2.4: Sacked Tree 253, 23.5: Format of the
cumulative results 261

interpreting results 23.6: Interpreting the cumulative results 262

menu commands. See menu or command name 23.1: Introduction 249

overview of profiling 23.1: Introduction 249

pitfalls 23.8: Profiling pitfalls 264

running aprofile 23.25: CodeTo Profile 254

sorting results 23.5: Format of the cumulative results 261

specifying codetorun 23.25: Code To Profile 254

symbolsthat can be profiled 23.8: Profiling pitfalls 264
promptinthelistener 20.1: Thebasic featuresof a Listener 233

push- button-panel class 7.1.4: Examining other classes 84

Q
Quit command 27.3.2: Window control 304

quitting theenvironment 3.2.1.3: Quitting the environment 35

R

radio components 19.4.6.2 : Radio components 214

Raisecommand 19.6.3: Rearranging componentsinaninterface 217, 19.7.2: Displaying the currentinterface 220, 27.3.2: Window
control 304

readersof adlot, displaying 7.2.4: Descriptionlist 87

Recent Filescommand 3.6: Operatingonfiles 45, 12: TheEditor 129

Recompute Events button ~ 26.7.2: Actionsarea 295

recursive macroexpansion 20.7: The Expression menu 237

recursive macro expansion 20.7 : The Expressionmenu 237

re-evaluating formsinlistener 2.2: CreatingaListener 20, 20.3: Re-evaluatingforms 235
Refreshcommand 2.5: Inspecting objectsusing the Inspector 25, 3.1.11: Updating windows 32
Regeneratecommand 19.7.2: Displaying the current interface 220

regexp 3.13: Regexp matching 53

Register...command 4.4: Registeringanewlicensekey 64

regular expressions 3.13: Regexp matching 53

remote debugging 29: Remote Debugging 312

345

Index

Remote Shell tool ~ 24.5: The Remote Shell tool 270
repeating commands 3.5: Thehistorylist 44
intheeditor 12.9.3: Repeating commands 145
repeating thenext event 3.5.1: Repeating events fromthe history list 44
repeating the previousevent 3.5.1: Repeating events fromthe history list 44
Replacecommand 12.12.3: Replacingtext 149, 26.5.4: Performing operationson system members 291
Replace... command 3.3.5: Searching for text and objects 43, 12.12.3: Replacingtext 149
replacingtext 12.12.3: Replacingtext 149
Report Bug command 4.3: Reportingbugs 63, 10.6: Performing operations on the error condition 118, 20.9: The Debug menu 238
reporting bugs 10.6: Performing operations on the error condition 118, 20.9: The Debug menu 238
Restart Frame command 10.7.2: Restartsand returning fromtheframe 118, 10.9.1: Configuring the call framesdisplayed 120
restart frames 10.9.1: Configuring the call framesdisplayed 120
Restart Frame Stepping command ~ 10.7.2 : Restartsand returning fromtheframe 118, 25.1: Introduction 271
Restartsbutton ~ 10.9.1: Configuring the call framesdisplayed 120
Restartsmenu 10.3: Smple use of the Debugger tool 115, 25.5: Stepper restarts 278
Restartssubmenu 20.9: The Debug menu 237
retract callbacks 19.9.4.1: Specifying layout callbacks and other callback information 228
Return from Frame command 10.7.2: Restartsand returning fromthe frame 118
re-usingwindows 3.1.6.1: Global control of re-use 31
reverting afileto theversion storedondisk ~ 12.8.1: Opening, saving and printing files 141
Revert to Saved command 12.8.1: Opening, saving and printing files 141
interface builder 19.5.3: Savingcode 216
Root and Patterns
searchkind 16.2.1.2: Root and Patterns searches 177
row | ayout class 19.3.4: Adding new elementsto thelayout 210
Runcommand 28.1: Introduction 306, 28.6: Running the saved application 309
Run With Argumentscommand 28.6.1: Passing arguments and redirecting output 309

S
Save All command
interface builder 19.5.3: Savingcode 216
Save All... command 12.8.4: Using several buffers 144
Save As... command 12.8.1: Opening, saving and printing files 141
interface builder ~ 19.5.3: Saving code 216
save-code-coverage-data function 13.1: Sartingthe Code Coverage Browser 156
Savecommand 12.8.1: Opening, saving and printing files 141, 19.9.7: Creating a system 232
interface builder 19.5.3: Savingcode 216, 19.9.5: Savingtheinterface 229
save-current -code-coverage function 13.1: Sartingthe Code Coverage Browser 156

save-i mage function 5: SessionSaving 65, 28.1: Introduction 305, 28.2: Preparing to build your application 306, 28.8:
Using the Application Builder to save a development image 311

Save Region As... command 12.8.1: Opening, saving and printing files 142
saving al files 12.8.4: Using several buffers 144

346

Index

saving files 12.8.1: Opening, saving and printing files 141
interface builder 19.5.3: Savingcode 216
saving regionsof text 12.8.1: Opening, saving and printing files 142
scm add- syst em nanespace function 26.9.1: Interfaceto source code managers 297
scm nmodul e-chi | dren genericfunction 26.9.1: Interface to source code managers 298
scm nodul e-i s-system p genericfunction 26.9.1: Interfaceto source code managers 297
scm nodul e- nanme genericfunction 26.9.1: Interface to source code managers 297
scrolling text ineditor 12.8.2: Moving around files 143
Search command 4.1.3: Searching the online manuals 61
Search Examplescommand 4.1.4: Searching the example sourcefiles 63
Search Fil es editorcommand 16.1: Introduction 175
Search Files... command 26.5.4: Performing operations on system members 291
Search Files tool
Grep searches 16.2.1.6: Grepsearches 179
Known Definitions searches 16.2.1.4: Known Definitions searches 178
Opened Buffers searches 16.2.1.5: Searching editor buffers 179
Plain Directory searches 16.2.1.1: Plain Directory searches 176
Root and Patterns searches 16.2.1.2: Root and Patterns searches 177
System searches 16.2.1.3: System Search 178
searching
examples 4.1.4: Searching the example source files 63
example sourcefiles 4.1.4: Searching the example sourcefiles 63
for objects 3.3.5: Searching for text and objects 43
fortext 3.3.5: Searching for text and objects 43, 12.12: Searching and replacing text 147
history list ~ 20.10.1: History commands 238
onlinemanuals 4.1.3: Searching the online manuals 61

Select All command 3.3.4: Sdecting text and objects 43, 11.2: Tracing and Untracing functions 124, 12.10: Cutting, copying and pasting
using theclipboard 145, 26.7.6: Executing plansin the preview view 295

selected object
browsing 3.8.1: Operationsavailable 47
browsingtheclassof 3.8.1: Operationsavailable 43
copying 3.8.1: Operationsavailable 48
displaying documentation ~ 3.8.1: Operationsavailable 48
finding sourcecode 3.8.1: Operationsavailable 48
ingpecting 3.8.1: Operationsavailable 48
pasting into listener ~ 3.8.1: Operationsavailable 48
placing on object clipboard ~ 3.8.1: Operationsavailable 48
showing functioncalls 3.8.1: Operationsavailable 48, 20.7: The Expressionmenu 237
showing generic functions 3.8.1: Operationsavailable 48, 12.13.10: Other facilities 154
showing similar symbols ~ 3.8.1: Operationsavailable 48
selection callbacks 19.9.4.1: Specifying layout callbacks and other callback information 228

347

Index

Select symbolsbutton 23.4.1.1: Choosing individual functions 257
sessions
saving 5: Session Saving 65
Setcommand 17.5.4: Manipulation operations 192, 17.5.4.1: Example 193
debugger 10.8: Performing operations on framevariables 119
set-interactive-break-gestures function 3.4: TheBreakgesture 43
Shel | editorcommand 24.2: The Shell tool 268
SHELL environment variable 24.4: Configuring the shell torun 269
shell tool 24.1: Introduction 268, 24.2: The Shell tool 268
break signal, sending 24.2: The Shell tool 268
creating 24.2: The Shell tool 268
EOF signal, sending 24.2: The Shell tool 269
menu commands. See menu or command name 24.1: Introduction 268
recalingcommands 24.3: Command history inthe shell 269
suspend signal, sending 24.2: The Shell tool 268
typeof shell 24.4: Configuring theshell torun 269
Shift key, useof preface 13, 12.1.4: Using keyboard commands 131
Short Names button 27.2.6 : Displaying short or long names 303
Show IDE Interfacesbutton ~ 27.2.5: Showing IDE iterfaces 303
Show in Tracer command 3.10: Tracing symbolsfromtools 50, 11.1: Introduction 124

Show Package Names button 3.7 : Displaying packages 46, 10.9.2: Displaying package information 120,
Inspector 196, 27.2.2: Displaying packageinformation 302

Show Toolbar button 3.1.8: Toolbar configurations 32
Signaturemenu 15.2.6: Restricting displayed signatures by class 172
signatures
displaying 15.2.6: Restricting displayed signaturesby class 172
operatingon 15.2.6: Restricting displayed signatures by class 172
si npl e- pane-f oreground accessor 2.6: Examining classesin the Class Browser 27

siteinitfile 28.2.1.2: Creating a new delivery script 307

17.6: Configuring the

Slotsmenu 3.8: Performing operations on selected objects 47, 7.2.3: Sotslist 87, 7.6.3: Listofinitargs 96

Clip 17.5.5: Copyinginthe Inspector 195

Copy 17.5.5: CopyinginthelInspector 195

Inspect 17.5.1.1: Example 192

Paste 17.5.4: Manipulation operations 193, 17.54.1: Example 194
Set 17.5.4: Manipulation operations 192, 17.5.4.1: Example 193
snapshot

of runningimage 5: Session Saving 65

snapshot Debugger 10.10: The Notifier window 121

sorting

inclassbrowser 7.1.5: Sorting information 84

ineditor 12.7.2.3: Sortingitemsinlists 140

ininspector 17.6: Configuring the Inspector 195

inprocessbrowser 22.1: Theprocesslist 246

348

Index

inwindow browser 27.2.1: Sorting entries 302
views 3.9.1: Sortingitemsinviews 49
sort options
By Name 3.9.1: Sortingitemsinviews 50
By Package 3.9.1: Sortingitemsinviews 50
Unsorted 3.9.1: Sortingitemsinviews 50
source code
debugging 10: The Debugger Tool 110
for current expression ~ 20.7: The Expressionmenu 236
for object in current frame of debugger 10.7.1: Source location, documentation, inspect and method combination for the current frame 118
for selected object 3.8.1: Operationsavailable 48
Sourcecommand 26.11: Setting optionsin the system browser 298
stack framesinthe debugger 10.4: The stackinthe Debugger 116
stack overflow 20.11: Setting Listener preferences 240
standard action command
Browse 3.8.1: Operationsavailable 47
Browse SymbolsLike 18.1: Introduction 200, 20.7: TheExpression menu 237
Class 3.8.1: Operationsavailable 48
Copy 3.8.1: Operationsavailable 48
Documentation 3.8.1: Operationsavailable 48
Find Source 3.8.1: Operationsavailable 48
Function Calls 20.7: The Expression menu 237
Generic Function 3.8.1: Operationsavailable 48, 12.13.10: Other facilities 154, 20.7: The Expressonmenu 237
Inspect 3.8.1: Operationsavailable 48
Listen 3.8.1: Operationsavailable 48
Object Clipboard 3.8.1: Operationsavailable 48
standard output ~ 21: The Output Browser 242
standar d- out put variable 2.4: Viewing output 23
standard streams 3.16: Output and | nput to/from the standard streams 59

Start GUI Debugger command ~ 10: The Debugger Tool 110, 10.3: Smple use of the Debugger tool 115, 10.5: An example debugging
session 117

stepper

activeframe 25.1.3: Backtracearea 272
backtracetree 25.1.3: Backtracearea 272

cal frame 25.1.3: Backtracearea 272
calingafunction 25.1.3: Backiracearea 272
evaluatingaform 25.1.3: Backiracearea 272
returning fromaform 25.1.3: Backtracearea 272
statusitem 25.1.3: Backtracearea 272
stepping through code 25.1: Introduction 271
Stopcommand 22.2: Processcontrol 247

stopping aprocess 22.2: Processcontrol 247

349

Index

Suspend command 24.2: The Shell tool 268
swapping editor buffers 12.8.4: Using several buffers 143
symbol browser 18.1: Introduction 200
invoking on selected object 3.8.1: Operationsavailable 48
Symbol menu
Inspect 18.2.3: Symbolslist 203
Listen 18.2.3: Symbolslist 203
Unintern... 18.2.3: Symbolslist 203
symbols
interface builder ~ 19.8: Performing operations on elements 220
onlinehelpfor 4.1.1: Getting help on the current symbol 61
tracing 12.13.7: Tracing symbols and functions 153
undefining 12.13.10: Other facilities 154
Symbols... button 23.9: Someexamples 267
syntax coloring 3.2.3.2: Setting thetext style attributes 39, 12.13.1: Lispmode 150
inlistener 20.11: Setting Listener preferences 241
textstyles 3.2.3.2: Setting the text style attributes 39
syntax styles 3.2.3.2: Setting the text style attributes 39
System
ALL- SYSTEMS 265.2: Treearea 291
browsing 26.3: The SystemBrowser 289
compilingand loading 26.5.4: Performing operations on system members 291
concatenating 26.5.4: Performing operations on system members 291
creating plansfor ~ 26.7.2: Actionsarea 294
defining 19.9.7: Creatingasystem 231, 26.2: Abriefintroduction to systems 287
executing plansfor ~ 26.7.2: Actionsarea 295
forcing compilation and loading of members ~ 26.11: Setting options in the system browser 298
introductionto 26.1: Introduction 287
parent system, browsing 26.5.2: Treearea 290
plan 26.7: Generating and executing plansin the preview view 293
previewingaplan 26.7: Generating and executing plansin the preview view 293, 26.11: Setting optionsin the system browser 298
searching 26.5.4: Performing operations on systemmembers 291
searchkind 16.2.1.3: System Search 178
using sourcefiles 26.11: Setting optionsin the system browser 298
system browser 26.1: Introduction 287
Actionsarea 26.7.2: Actionsarea 294
compiling and loading systems ~ 26.5.4: Performing operations on system members 291
creating plans 26.7.2: Actionsarea 294
description 26.3: The SystemBrowser 288
executing plans 26.7.2: Actionsarea 295
Filedescriptionarea 26.5.3: Descriptionarea 291
Filter area 26.7.3: Filter area 295
forcing compilation and loading 26.11: Setting optionsin the system browser 298

350

Index

Grapharea 265.2: Treearea 290

graphview 26.5: Examining the systemtree 289

menu commands. See menu or command name 26 The System Browser 287
output view 26.8: Examining output in the output view 295

package information ~ 26.10.2: Displaying package information 298

parent system, browsing 26.5.2: Treearea 290

Planarea 26.7.4: Planarea 295

previewingtheplan 26.7: Generating and executing plansin the preview view 293
sorting information 26.10.1: Sorting entries 298

Systemarea 26.5.1: Systemarea 290

system plan, previewing 26.7 : Generating and executing plansinthe previewview 293, 26.11: Setting optionsin the system browser
textview 26.6: Examining systemsin thetext view 292

using 26.3: The System Browser 288

using sourcefiles 26.11: Setting optionsin the system browser 298
viewsavailable 26.3: The System Browser 288

systemclipboard 7.2.1: Classbox 87, 15.1.1: Functionarea 169

interaction with the LispWorks clipboard ~ 3.3.3: Using the Object operations with the clipboard 43
usageineditor 12.11.2: Cutting or copying text 146

Systemsmenu 26.5.4: Performing operations on system members 291

T

Browse All Systems 26.5.4: Performing operations on system members 291

Browse Systems For Directory ~ 26.5.4: Performing operations on system members 291

Compile 26.5.4: Performing operationson systemmembers 291, 26.7.6: Executing plansin the preview view 295
Compileand Load 26.5.4: Performing operations on systemmembers 291, 26.7.6: Executing plansin the preview view 295
Concatenate... 26.5.4: Performing operations on system members 291

HideFiles 26.5.4: Performing operations on systemmembers 291

Load 26.5.4: Performing operationson systemmembers 291, 26.7.6: Executing plansin the preview view 295
Parent 26.5.2: Treearea 291

Query Replace 26.5.4: Performing operations on system members 291

Search Files 26.5.4: Performing operations on system members 291

Show Files 26.5.4: Performing operations on system members 291

Tab completion 3.14.1: Invoking completion 54
tabs

choosing preface 13

Terminate command 22.2: Process control 247

terminating aprocess 22.2: Process control 247

text

deleting 12.8.3: Inserting and deleting text 143

inserting 12.8.3: Inserting and deleting text 143

replacing 12.12.3: Replacingtext 149

savingregionsof ~ 12.8.1: Opening, saving and printing files 142
scrolling in editor ~ 12.8.2: Moving around files 143

351

298

Index

searchingfor ~ 3.3.5: Searching for text and objects 43, 12.12: Searching and replacing text 147
Seealso under editor 12: TheEditor 129
selecting 3.3.4: Sdecting text and objects 43
textcolor 3.2: Setting preferences 33
textstyle 3.2: Setting preferences 33
text view
ineditor 12.1: Displaying and editing files 130
in function call browser 14.3: Examining functions using the text view 164
insystembrowser 26.6: Examining systemsin thetext view 292
TheBreak gesture 3.4: TheBreak gesture 43, 20.5: Interrupting evaluation 236
Toggle Breakpoint command ~ 20.7 : The Expression menu 237
Toggle Tracing command 3.10: Tracing symbolsfromtools 51
toolbar
customizing 3.1.8: Toolbar configurations 32
hiding 3.1.8: Toolbar configurations 32
toolbar buttons
size 3.1.8: Toolbar configurations 32
text labels 3.1.8: Toolbar configurations 32
toolbars
hiding 3.1.8: Toolbar configurations 31
removing 3.1.8: Toolbar configurations 31
tools
current packageof 3.7.1: Specifying a package 46
linking together ~ 3.11: Linking toolstogether 51
loading into the environment 3.1.4: Displaying tools using the mouse 29
onlinehelpfor 4.1.2: Getting help on the current tool 61
overview of mgjor 1.1: Major tools 15
reusing 3.2.1.1: Thewindow options 34
switching between 2.7 : Switching between windows 27
tracingfrom 3.10: Tracing symbolsfromtools 50

Toolsmenu 1.1: Major tools 15, 2.1: Sartingtheenvironment 19, 3: Common Features 28, 3.1.4: Displaying toolsusing the

mouse 29
acceerators 3.1.5: Displaying tools using the keyboard 30
Application Builder ~ 28.1: Introduction 305
ClassBrowser 7: TheClassBrowser 80
Code Coverage Browser ~ 13.1: Sarting the Code Coverage Browser 156
Compilation Conditions Browser ~ 9.1: Introduction 106
Editor 12: TheEditor 129
Function Call Browser ~ 14.1: Introduction 160
Generic Function Browser 15: The Generic Function Browser 167
Inspector ~ 17: Thelnspector 187
Interface Builder ~ 19.1: Description of the Interface Builder 205

Listener 20.1: Thebasic featuresof a Listener 233

352

Index

Object Clipboard 8: The Object Clipboard 99

Output Browser

Preferences...

21: The Output Browser 242
3.1.6.2: Per-window control of re-use 31, 3.2: Setting preferences 33, 3.2.1.3: Quitting theenvironment 35, 3.14.2:

Selecting the completed input 54, 3.14.3.1: Filtering modal dialog completion 57, 12.7.1: Controlling other aspects of the

Editor 139, 12.7.2: Controlling options specific to the Editor 139, 13.2: Displaying a Code Coveragedata 157, 15.3: Configuring
the Generic Function Browser 173, 16.5: Configuring the Search Filestool 183, 17.5.4.1: Example 193, 18.3: Configuringthe
Symbol Browser 203, 20.11: Setting Listener preferences 240, 22.5: Process Browser Preferences 248, 23.2.5: CodeTo

Profile 254, 23.7: ConfiguringtheProfiler 262, 23.9: Someexamples 265, 25.9: Configuringthe Sepper 285, 26.10.1:
Sorting entries 298, 27.2: Configuring the Window Browser 301, 28.9: Configuring the Application Builder 311

Process Browser 22 : The Process Browser 245

Profiler 23.1: Introduction 249

RemoteListener 29.1: Remote Listeners 312
Saved Sessions... 5.4 : Saving sessions 66

Search Files
Shell 24.2:

16.1: Introduction 175
The Shell tool 268

Stepper 25.1: Introduction 271, 25.2.1: Standalone use of the stepper 273
Symbol Browser ~ 18.1: Introduction 200
System Browser 26.3: The System Browser 288

Tracer 11.1

. Introduction 124

Window Browser 27.1: Introduction 300

trace macro

Trace command

3.10: Tracing symbolsfromtools 50, 11.1: Introduction 124
3.10: Tracing symbolsfromtools 50, 12.13.7: Tracing symbolsand functions 153, 20.7: The Expressonmenu 237

Trace Insidecommand 3.10: Tracing symbolsfromtools 50

Trace menu

Break on Access 17.5.3: Tracing ot access 192

Break on Read

Break on Write

Show in Tracer
Trace 3.10:
Trace Inside
Trace Read

17.5.3: Tracing slot access 192

17.5.3: Tracing ot access 192

3.10: Tracing symbolsfromtools 50, 11.1: Introduction 124
Tracing symbols fromtools 50

3.10: Tracing symbolsfromtools 50

17.5.3: Tracing slot access 192

Tracewith Break 3.10: Tracing symbols fromtools 50

Tracing 3.10: Tracing symbolsfromtools 51

Untrace 3.10: Tracing symbolsfromtools 50, 17.5.3: Tracingslotaccess 192

Untrace All

3.10: Tracing symbolsfromtools 50

Tracer 11.1: Introduction 124

Function menu

11.2: Tracing and Untracing functions 124

trace-verbose vaiable 11.4: Example 126

Trace with Break command ~ 3.10: Tracing symbolsfromtools 50

tracing 11.1:

Introduction 124

classes 7.5.6: Operations specific to the current function or method 94

in function call
in inspector
in the inspector

browser 14.6: Performing operationson functions 166
17.5.3: Tracing slot access 192
17.5.3: Tracing slot access 192

353

Index

U
Undefinecommand 7.5.6: Operations specific to the current function or method 94, 12.13.10: Other facilities 154
Undefine... command 12.13.10: Other facilities 154, 15.1.5: Performing operationson the current function or selected methods 169
undefining
current definition 12.13.10: Other facilities 154
functions 7.5.6: Operations specific to the current function or method 94
generic functions 15.1.5: Performing operations on the current function or selected methods 169
methods 7.5.6: Operations specific to the current function or method 94
Undocommand 3.3.1: Undoing changes 41
editor 12.9.2: Undoing commands 144
Unintern... command 18.2.3: Symbolslist 203
Unsorted option 3.9.1: Sorting itemsinviews 50
Unstop command 22.2: Process control 247
unstopping aprocess 22.2: Processcontrol 247
Untrace All command 3.10: Tracing symbolsfromtools 50
Untracecommand 3.10: Tracing symbolsfromtools 50, 17.5.3: Tracing dot access 192
updating windows ~ 3.1.11: Updating windows 32
using theclipboard 3.3.3: Using the Object operations with the clipboard 42
Seealsokill ring 3.3.3: Using the Object operations with the clipboard 42
using thekeyboard preface 13

usingthemouse preface 11

\Y
Vauecommand 12.13.10: Other facilities 155, 20.7: The Expressionmenu 236
Value menu
Listen 17.54.1: Example 194
values
changing in debugger tool 10.8: Performing operations on frame variables 119
changing ininspector ~ 17.5.4: Manipulation operations 192
Values menu
Class 2.6: Examining classesinthe ClassBrowser 25, 7.1: Smpleuseof the ClassBrowser 80, 7.1.3: Filtering slotinformation 83
Copy 1754.1: Example 194

Inspect 2.5: Inspecting objects using the Inspector 24, 3.1.11: Updatingwindows 32, 17.1: Inspectingthe current
object 187, 17.5.1.1: Example 192, 17.54.1: Example 193

variables
$ 17.7: Customizing the Inspector 197

* 2.5 Inspecting objects using the Inspector 24, 2.6: Examining classesin the ClassBrowser 27, 8.5: Using the Object Clipboard with
alistener 104, 10.8: Performing operationson framevariables 119, 17.5.4.1: Example 194, 20.2: Evaluating simple
forms 234, 20.10.3: Miscellaneous Listener commands 239, 22.2: Processcontrol 247

** 25 Inspecting objects using the Inspector 24
*kx 2.5 Inspecting objects using the Inspector 24
active-finders 16.2.1.4 . Known Definitions searches 179

browser-1ocation 4.19: Configuring the browser used 63

354

Index

ent er - debugger-directly 10.1.4: Bypassing the Notifier window 115
grep- command 16.5.4: The External Grep Program 185
grep- command- f ormat 16.5.4: The External Grep Program 186
grep-fixed-args 16.54: TheExternal Grep Program 185
package 12.13.8: Packages 153
packages-for-warn-on-redefinition 234.12: Choosing packages 261
standar d- out put 2.4: Viewingoutput 23
trace-verbose 11.4: Example 126

Variables menu
Set 10.8: Performing operationson framevariables 119

View menu
implementation of ~ 19.3.6: Creating different views 211

views
creating different 19.3.6: Creating different views 211
description 3.9.1: Sortingitemsinviews 49
graph 6: Manipulating Graphs 72, 26.5: Examining the systemtree 289
hierarchy 7.1.4: Examining other classes 84
inclassbrowser ~ 7: TheClass Browser 80
ineditor 12: TheEditor 129
infunction call browser ~ 14.1: Introduction 160
in generic function browser 15: The Generic Function Browser 167
ininspector 17.6: Configuring the Inspector 195
insystembrowser 26.3: The System Browser 288

output 12.2: Displaying output messagesinthe Editor 132, 21: TheOutput Browser 242, 26.8: Examining output in the output
view 295

sharing elementsin different views ~ 19.3.7 : Inheriting parts of the layout 211

dots 7.1.1: Examiningslots 82

sortingitemsin 3.9.1: Sortingitemsinviews 49

text 14.3: Examining functionsusingthetext view 164, 26.6: Examining systemsin thetext view 292
Vi ew Source Search editorcommand 12.6: Finding definitions 138

Visit Tags File editorcommand 12.1.4: Using keyboard commands 131

W
Walk command 12.13.10: Other facilities 155
Walk Form command ~ 20.7 : The Expression menu 237
web browsers 4.1: Onlinemanualsin HTML format 61
Whole Word radio button ~ 4.1.3: Searching the online manuals 62
window browser 27.1: Introduction 300
changing root of graph ~ 27.1.2: Window graph 301
complete window names, displaying 27.2.6: Displaying short or long names 303
destroying awindow 27.3.2: Window control 304
different typesof window 27.2.4: Displaying different types of window 303

lowering awindow 27.3.2: Wndow control 304

355

Index

menu commands. See menu or command name 27.1: Introduction 300
moving around different windows 27.3.1: Navigating the window hierarchy 304
package information ~ 27.2.2: Displaying package information 302
quitting awindow 27.3.2: Window control 304
raisingawindow 27.3.2: Window control 304
sorting entries 27.2.1: Sorting entries 302
using 27.1.2: Window graph 301
wholeenvironment 27.3.1: Navigating the window hierarchy 304
window colors 3.2.3.2: Setting the text style attributes 39
windows
displaying 3.1.1: Displaying existing windows 29
making copiesof 3.1.9: Copyingwindows 32
reeusing 3.1.6.1: Global control of reeuse 31
switching between 2.7 : Switching between windows 27
updating 3.1.11: Updating windows 32

Windowsmenu 2.5: Inspecting objectsusing the Inspector 25, 3: Common Features 28, 3.1.1: Displaying existingwindows 29, 27.3:
Performing operations on windows 304

Actions. See Actionsmenu 27.3: Performing operations on windows 304
Browse 27.1.2: Window graph 301
Browse Parent 27.3.1: Navigating the window hierarchy 304
Browse Screen 27.3.1: Navigating the window hierarchy 304
Destroy 27.3.2: Window control 304
Enable Display = 10.12: Errorsin CAPI display callbacks 123
inwindow browser 27.3.1: Navigating the window hierarchy 304
Lower 27.3.2: Window control 304
Quit 27.3.2: Window control 304
Raise 27.3.2: Window control 304
Worksmenu 3: Common Features 28
Clone 3.1.9: Copyingwindows 32, 3.11: Linkingtoolstogether 51
Exit 21: Sartingtheenvironment 19, 3.2.1.3: Quitting the environment 35
Exit Window 12.3: Displaying and swapping between buffers 132
Object submenu. See Object menu 27.1.3: Descriptionlist 301
Packages submenu. See Packagesmenu 27.1.3: Descriptionlist 301
See also individual entriesfor each submenu 3.2.1.3: Quitting the environment 35
Symbols submenu. See Symbolsmenu 27.1.3: Description list 301
writersfor adlot, displaying 7.2.4: Descriptionlist 87

X
xrefs 14.1: Introduction 160

Non-alaphanumerics
$ variable 17.7: Customizing the Inspector 197

* variable 2.5: Inspecting objectsusing the Inspector 24, 2.6: Examining classesin the Class Browser 27, 8.5: Using the Object
Clipboard with a Listener 104, 10.8: Performing operationson framevariables 119, 17.54.1: Example 194, 20.2: Evaluating

356

Index

simpleforms 234, 20.10.3: Miscellaneous Listener commands 239, 22.2: Processcontrol 247
** variable 2.5: Inspecting objects using the Inspector 24

*** variable 2.5: Inspecting objects using the Inspector 24

357

	LispWorks IDE User Guide
	Copyrights and Trademarks
	Contents
	Preface
	1 Introduction
	1.1 Major tools
	1.1.1 The Listener
	1.1.2 The Editor
	1.1.3 The Class Browser
	1.1.4 The Output Browser
	1.1.5 The Inspector
	1.1.6 The Object Clipboard

	2 A Short Tutorial
	2.1 Starting the environment
	2.1.1 The Lisp Monitor in the deprecated Motif IDE

	2.2 Creating a Listener
	2.3 Using the Debugger
	2.4 Viewing output
	2.5 Inspecting objects using the Inspector
	2.6 Examining classes in the Class Browser
	2.7 Switching between windows
	2.8 Summary

	3 Common Features
	3.1 Displaying tool windows
	3.1.1 Displaying existing windows
	3.1.2 Iconifying existing windows
	3.1.3 Arranging windows in MDI mode
	3.1.4 Displaying tools using the mouse
	3.1.5 Displaying tools using the keyboard
	3.1.5.1 Tool accelerator keys

	3.1.6 Re-using tool windows
	3.1.6.1 Global control of re-use
	3.1.6.2 Per-window control of re-use

	3.1.7 Menu bar configurations in LispWorks for Windows
	3.1.8 Toolbar configurations
	3.1.9 Copying windows
	3.1.10 Closing windows
	3.1.11 Updating windows

	3.2 Setting preferences
	3.2.1 General options
	3.2.1.1 The window options
	3.2.1.2 Controlling completion behavior
	3.2.1.3 Quitting the environment
	3.2.1.4 Automatic filters on dialogs
	3.2.1.5 Automatic use of Find Definitions view
	3.2.1.6 Initialization file

	3.2.2 Configuring the editor emulation
	3.2.2.1 Choosing the key input style
	3.2.2.2 Specifying a Meta key in LispWorks for Macintosh
	3.2.2.3 Effect of the specified Meta key
	3.2.2.4 Setting the cursor blink rate

	3.2.3 Setting the editor font, color and other style attributes
	3.2.3.1 Changing the main colors of editor panes
	3.2.3.2 Setting the text style attributes
	3.2.3.3 Controlling parenthesis coloring

	3.2.4 Setting the default encodings

	3.3 Performing editing functions
	3.3.1 Undoing changes
	3.3.2 Using the clipboard
	3.3.3 Using the Object operations with the clipboard
	3.3.4 Selecting text and objects
	3.3.5 Searching for text and objects

	3.4 The Break gesture
	3.5 The history list
	3.5.1 Repeating events from the history list
	3.5.2 Editing the history list

	3.6 Operating on files
	3.7 Displaying packages
	3.7.1 Specifying a package

	3.8 Performing operations on selected objects
	3.8.1 Operations available

	3.9 Using different views
	3.9.1 Sorting items in views

	3.10 Tracing symbols from tools
	3.11 Linking tools together
	3.12 Filtering information
	3.12.1 Plain Filtering
	3.12.2 Advanced Filtering

	3.13 Regexp matching
	3.13.1 Regexp and plain string matching

	3.14 Completion
	3.14.1 Invoking completion
	3.14.2 Selecting the completed input
	3.14.2.1 In-place completion
	3.14.2.2 Filtering in-place completion

	3.14.3 Completion dialog
	3.14.3.1 Filtering modal dialog completion

	3.15 The Commands menu
	3.15.1 Editor Commands List

	3.16 Output and Input to/from the standard streams
	3.17 Examining a window
	3.18 Specifying the initial tools
	3.19 System preferences affecting the IDE tools

	4 Getting Help
	4.1 Online manuals in HTML format
	4.1.1 Getting help on the current symbol
	4.1.2 Getting help on the current tool
	4.1.3 Searching the online manuals
	4.1.4 Searching the example source files
	4.1.5 Browsing manuals online
	4.1.6 The Lisp Knowledgebase
	4.1.7 LispWorks Patches
	4.1.8 Installing private patches in LispWorks for Windows
	4.1.9 Configuring the browser used

	4.2 Online help for editor commands
	4.3 Reporting bugs
	4.4 Registering a new license key
	4.5 Browsing manuals online using Adobe Reader

	5 Session Saving
	5.1 What session saving does
	5.2 The default session
	5.3 What is saved and what is not saved
	5.4 Saving sessions
	5.4.1 Scheduling automatic session saving
	5.4.2 The Save Session dialog and actual saving
	5.4.3 Saving a session interactively

	5.5 Redirecting images to a Saved Session image
	5.6 Non-IDE interfaces and session saving

	6 Manipulating Graphs
	6.1 An overview of graphs
	6.2 Searching graphs
	6.3 Expanding and collapsing graphs
	6.3.1 Expanding and collapsing by clicking
	6.3.2 Expanding and collapsing by menu commands

	6.4 Moving nodes in graphs
	6.5 Displaying plans of graphs
	6.6 Preferences for graphs
	6.6.1 Altering the depth and breadth of graphs
	6.6.2 Displaying different graph layouts

	6.7 Using graphs in your programs

	7 The Class Browser
	7.1 Simple use of the Class Browser
	7.1.1 Examining slots
	7.1.2 Examining inherited slots
	7.1.3 Filtering slot information
	7.1.4 Examining other classes
	7.1.5 Sorting information

	7.2 Examining slot information
	7.2.1 Class box
	7.2.2 Filter area
	7.2.3 Slots list
	7.2.4 Description list
	7.2.5 Performing operations on the current class

	7.3 Examining superclasses and subclasses
	7.3.1 Class box
	7.3.2 Superclasses list
	7.3.3 Subclasses list
	7.3.4 Description list
	7.3.5 Performing operations on the selected classes or the current class

	7.4 Examining classes graphically
	7.4.1 Class box
	7.4.2 Subclasses and superclasses graphs
	7.4.3 Description list
	7.4.4 Performing operations on the selected classes or the current class
	7.4.5 An example

	7.5 Examining generic functions and methods
	7.5.1 Class box
	7.5.2 Filter box
	7.5.3 List of functions or methods
	7.5.4 Description list
	7.5.5 Performing operations on the current class
	7.5.6 Operations specific to the current function or method

	7.6 Examining initargs
	7.6.1 Class box
	7.6.2 Filter box
	7.6.3 List of initargs
	7.6.4 Description list
	7.6.5 Performing operations on the current class

	7.7 Examining class precedences
	7.7.1 Class box
	7.7.2 Filter box
	7.7.3 List of precedences
	7.7.4 Description list
	7.7.5 Performing operations on the selected classes or the current class

	8 The Object Clipboard
	8.1 Placing objects on the Object Clipboard
	8.1.1 The Listener
	8.1.2 The Class Browser
	8.1.3 The Inspector
	8.1.4 The Function Call Browser
	8.1.5 The Generic Function Browser
	8.1.6 The Debugger
	8.1.7 The Stepper
	8.1.8 The System Browser
	8.1.9 General clipping

	8.2 Browsing clipped objects
	8.2.1 The Inspector
	8.2.2 The Class Browser
	8.2.3 The Listener
	8.2.4 General browsing
	8.2.5 Pasting of clipped objects

	8.3 Removing objects
	8.4 Filtering
	8.5 Using the Object Clipboard with a Listener

	9 The Compilation Conditions Browser
	9.1 Introduction
	9.2 Examining conditions
	9.3 Configuring the display
	9.3.1 Display preferences

	9.4 Access to other tools

	10 The Debugger Tool
	10.1 Description of the Debugger
	10.1.1 Condition box
	10.1.2 Backtrace area
	10.1.2.1 Frames and Variables in a tree
	10.1.2.2 Frames and Variables in two lists

	10.1.3 Toolbar buttons
	10.1.4 Bypassing the Notifier window

	10.2 What the Debugger tool does
	10.3 Simple use of the Debugger tool
	10.4 The stack in the Debugger
	10.5 An example debugging session
	10.6 Performing operations on the error condition
	10.7 Performing operations on stack frames
	10.7.1 Source location, documentation, inspect and method combination for the current frame
	10.7.2 Restarts and returning from the frame
	10.7.3 Tracing the function in the frame

	10.8 Performing operations on frame variables
	10.9 Configuring the debugger tool
	10.9.1 Configuring the call frames displayed
	10.9.2 Displaying package information
	10.9.3 Behavior on closing the Debugger
	10.9.4 Frames and variables display
	10.9.5 Remote debugging options

	10.10 The Notifier window
	10.11 Handling of Cocoa Event Loop hanging
	10.12 Errors in CAPI display callbacks

	11 The Tracer
	11.1 Introduction
	11.2 Tracing and Untracing functions
	11.2.1 Tracing methods

	11.3 Examining the output of tracing
	11.3.1 The Output Data view
	11.3.2 The Output Text view

	11.4 Example

	12 The Editor
	12.1 Displaying and editing files
	12.1.1 The toolbar
	12.1.2 The editor window
	12.1.3 The echo area
	12.1.4 Using keyboard commands

	12.2 Displaying output messages in the Editor
	12.3 Displaying and swapping between buffers
	12.3.1 Filter area
	12.3.2 Buffers area
	12.3.3 Editor tool solely as buffers list

	12.4 Displaying Common Lisp definitions
	12.4.1 Filter box
	12.4.2 Definitions area

	12.5 Changed definitions
	12.5.1 Setting the reference point for changed definitions

	12.6 Finding definitions
	12.7 Setting Editor preferences
	12.7.1 Controlling other aspects of the Editor
	12.7.2 Controlling options specific to the Editor
	12.7.2.1 Controlling toolbar display
	12.7.2.2 Buffers list option
	12.7.2.3 Sorting items in lists
	12.7.2.4 Displaying package information

	12.7.3 Other Editor options

	12.8 Basic Editor commands
	12.8.1 Opening, saving and printing files
	12.8.2 Moving around files
	12.8.3 Inserting and deleting text
	12.8.4 Using several buffers

	12.9 Other essential commands
	12.9.1 Aborting commands
	12.9.2 Undoing commands
	12.9.3 Repeating commands

	12.10 Cutting, copying and pasting using the clipboard
	12.11 Cutting, copying and pasting using the kill ring
	12.11.1 Marking the region
	12.11.2 Cutting or copying text
	12.11.3 Pasting text

	12.12 Searching and replacing text
	12.12.1 Searching for text
	12.12.2 Incremental searches
	12.12.3 Replacing text

	12.13 Using Lisp-specific commands
	12.13.1 Lisp mode
	12.13.2 Current buffers, definitions and expression
	12.13.3 Evaluating code
	12.13.4 Compiling code
	12.13.4.1 Compiling in memory
	12.13.4.2 Compiling to a file

	12.13.5 Argument list information
	12.13.6 Breakpoints
	12.13.6.1 Setting breakpoints
	12.13.6.2 Editing breakpoints
	12.13.6.3 Removing breakpoints
	12.13.6.4 Reloading code with breakpoints

	12.13.7 Tracing symbols and functions
	12.13.8 Packages
	12.13.8.1 The primary package
	12.13.8.2 The current package for Lisp operations

	12.13.9 Indentation of forms
	12.13.10 Other facilities

	12.14 Help with editing

	13 The Code Coverage Browser
	13.1 Starting the Code Coverage Browser
	13.2 Displaying a Code Coverage data
	13.3 Code Coverage Files List Context Menu
	13.4 Traverse
	13.5 Using the internal data
	13.6 Creating new Data

	14 The Function Call Browser
	14.1 Introduction
	14.2 Examining functions using the graph views
	14.2.1 Function area
	14.2.2 Show functions control
	14.2.3 Graph area
	14.2.4 Echo area
	14.2.5 The function description button
	14.2.5.1 Function description area
	14.2.5.2 Documentation area

	14.3 Examining functions using the text view
	14.3.1 Called By area
	14.3.2 Calls Into area

	14.4 Configuring the function call browser
	14.4.1 Sorting entries
	14.4.2 Displaying package information

	14.5 Configuring graph displays
	14.5.1 Graph layout settings
	14.5.2 Graph expansion settings
	14.5.3 Plan mode settings

	14.6 Performing operations on functions

	15 The Generic Function Browser
	15.1 Examining information about methods
	15.1.1 Function area
	15.1.2 Filter area
	15.1.3 Methods list
	15.1.4 Description list
	15.1.5 Performing operations on the current function or selected methods

	15.2 Examining information about combined methods
	15.2.1 Function box
	15.2.2 Signatures button
	15.2.3 Arguments types box
	15.2.4 List of method combinations
	15.2.5 Description list
	15.2.6 Restricting displayed signatures by class

	15.3 Configuring the Generic Function Browser

	16 The Search Files tool
	16.1 Introduction
	16.2 Performing searches
	16.2.1 Entering Search Specifications directly
	16.2.1.1 Plain Directory searches
	16.2.1.2 Root and Patterns searches
	16.2.1.3 System Search
	16.2.1.4 Known Definitions searches
	16.2.1.5 Searching editor buffers
	16.2.1.6 Grep searches

	16.2.2 Using context-dependent searches
	16.2.2.1 Context-dependent searches using Editor commands
	16.2.2.2 Context-dependent searches using menu commands
	16.2.2.3 Search History

	16.3 Viewing the results
	16.3.1 Displaying in an Editor
	16.3.2 Linking to an Editor
	16.3.3 Filtering the results
	16.3.4 Hiding certain results

	16.4 Modifying the matched lines
	16.5 Configuring the Search Files tool
	16.5.1 Search Parameters
	16.5.2 Display
	16.5.3 File Types
	16.5.4 The External Grep Program

	17 The Inspector
	17.1 Inspecting the current object
	17.2 Description of the Inspector tool
	17.2.1 Adding a Listener to the Inspector

	17.3 Filtering the display
	17.3.1 Updating the display

	17.4 Examining objects
	17.5 Operating upon objects and items
	17.5.1 Examination operations
	17.5.1.1 Example
	17.5.1.2 Recursive inspection

	17.5.2 Examining attributes
	17.5.3 Tracing slot access
	17.5.4 Manipulation operations
	17.5.4.1 Example

	17.5.5 Copying in the Inspector

	17.6 Configuring the Inspector
	17.7 Customizing the Inspector
	17.8 Creating new inspection formats
	17.8.1 Example

	18 The Symbol Browser
	18.1 Introduction
	18.2 Description of the Symbol Browser
	18.2.1 Search Settings
	18.2.1.1 Packages
	18.2.1.2 Type
	18.2.1.3 Accessibility

	18.2.2 Filter area
	18.2.3 Symbols list
	18.2.4 Description area
	18.2.5 Documentation area

	18.3 Configuring the Symbol Browser

	19 The Interface Builder
	19.1 Description of the Interface Builder
	19.2 Creating or loading interfaces
	19.2.1 Creating a new interface
	19.2.2 Loading existing interfaces

	19.3 Creating an interface layout
	19.3.1 Interface box
	19.3.2 Graph area
	19.3.3 Button panels
	19.3.4 Adding new elements to the layout
	19.3.5 Removing elements from a layout
	19.3.6 Creating different views
	19.3.7 Inheriting parts of the layout

	19.4 Creating a menu system
	19.4.1 Interface box
	19.4.2 Graph area
	19.4.3 Adding menu bars
	19.4.4 Adding menus
	19.4.5 Adding menu items
	19.4.6 Adding menu components
	19.4.6.1 Standard menu components
	19.4.6.2 Radio components
	19.4.6.3 Check components

	19.4.7 Removing menu objects

	19.5 Editing and saving code
	19.5.1 Integrating the design with your own code
	19.5.2 Editing code
	19.5.3 Saving code

	19.6 Performing operations on objects
	19.6.1 Editing the selected object
	19.6.2 Browsing the selected object
	19.6.3 Rearranging components in an interface
	19.6.4 Setting the attributes for the selected object
	19.6.4.1 Basic attributes
	19.6.4.2 Advanced attributes
	19.6.4.3 Title attributes
	19.6.4.4 Callbacks attributes
	19.6.4.5 Geometry attributes
	19.6.4.6 Style attributes

	19.7 Performing operations on the current interface
	19.7.1 Setting attributes for the current interface
	19.7.2 Displaying the current interface
	19.7.3 Arranging objects in a pinboard layout

	19.8 Performing operations on elements
	19.9 Example: Using The Interface Builder
	19.9.1 Creating the basic layout
	19.9.2 Specifying attribute values
	19.9.3 Creating the menu system
	19.9.4 Specifying callbacks in the interface definition
	19.9.4.1 Specifying layout callbacks and other callback information
	19.9.4.2 Specifying menu callbacks

	19.9.5 Saving the interface
	19.9.6 Defining the callbacks
	19.9.6.1 Callbacks to update the display pane
	19.9.6.2 Callbacks to display data in a dialog
	19.9.6.3 Callbacks for menu items
	19.9.6.4 Other miscellaneous functions

	19.9.7 Creating a system
	19.9.8 Testing the example interface

	20 The Listener
	20.1 The basic features of a Listener
	20.2 Evaluating simple forms
	20.3 Re-evaluating forms
	20.4 The debugger prompt and debugger level
	20.5 Interrupting evaluation
	20.6 The History menu
	20.7 The Expression menu
	20.8 The Values menu
	20.9 The Debug menu
	20.10 Execute mode
	20.10.1 History commands
	20.10.2 Debugger commands
	20.10.3 Miscellaneous Listener commands
	20.10.4 Highlighting of results

	20.11 Setting Listener preferences
	20.12 Running Editor forms in the Listener
	20.13 Switching to and from other tools
	20.14 Help with editing in the Listener

	21 The Output Browser
	21.1 Interactive compilation messages
	21.1.1 Compilation message styles

	22 The Process Browser
	22.1 The process list
	22.2 Process control
	22.3 Other ways of breaking processes
	22.4 Updating the Process Browser
	22.5 Process Browser Preferences

	23 The Profiler
	23.1 Introduction
	23.2 Description of the Profiler
	23.2.1 Call Tree
	23.2.2 Options in the context menu for viewing parts of the call graph
	23.2.3 Cumulative Results
	23.2.4 Stacked Tree
	23.2.5 Code To Profile

	23.3 The Profiler menu and Profiler-specific toolbar buttons
	23.4 Selecting what to profile
	23.4.1 Choosing the functions to profile
	23.4.1.1 Choosing individual functions
	23.4.1.2 Choosing packages

	23.5 Format of the cumulative results
	23.6 Interpreting the cumulative results
	23.7 Configuring the Profiler
	23.7.1 Behavior of the Cumulative tab
	23.7.2 Behavior after profiling finishes

	23.8 Profiling pitfalls
	23.8.1 Effects of random sampling
	23.8.2 Recursive functions
	23.8.3 Structure accessors
	23.8.4 Consequences of restricted profiling
	23.8.5 Effect of compiler optimizations
	23.8.6 Effect of compiler transforms

	23.9 Some examples

	24 The Shell and Remote Shell Tools
	24.1 Introduction
	24.2 The Shell tool
	24.3 Command history in the shell
	24.4 Configuring the shell to run
	24.5 The Remote Shell tool

	25 The Stepper
	25.1 Introduction
	25.1.1 Stepper toolbar
	25.1.2 Source area
	25.1.3 Backtrace area
	25.1.4 Listener area

	25.2 Simple examples
	25.2.1 Standalone use of the stepper
	25.2.2 Invoking the Stepper via a breakpoint

	25.3 The implementation of the Stepper
	25.3.1 Requirements for stepping
	25.3.2 Editing source code
	25.3.3 Side-effects of stepping
	25.3.4 Atomic and constant forms

	25.4 Stepper controls
	25.4.1 Shortcut keys for the Stepper

	25.5 Stepper restarts
	25.6 Breakpoints
	25.6.1 Setting breakpoints
	25.6.2 Conditional breakpoints
	25.6.3 Printing breakpoints
	25.6.4 Editing breakpoints
	25.6.5 Removing breakpoints

	25.7 Stepping macro forms
	25.7.1 Interactive macro expansion
	25.7.2 Macro expansion in the stepper
	25.7.3 Collapsing macro expansions
	25.7.4 Controlling macro expansion

	25.8 Listener area
	25.9 Configuring the Stepper
	25.9.1 Operator preferences
	25.9.2 Backtrace preferences

	26 The System Browser
	26.1 Introduction
	26.2 A brief introduction to systems
	26.2.1 Examples

	26.3 The System Browser
	26.4 A description of the System Browser
	26.5 Examining the system tree
	26.5.1 System area
	26.5.2 Tree area
	26.5.3 Description area
	26.5.4 Performing operations on system members

	26.6 Examining systems in the text view
	26.6.1 System area
	26.6.2 Parent system area
	26.6.3 Subsystems area
	26.6.4 Files area
	26.6.5 File description area

	26.7 Generating and executing plans in the preview view
	26.7.1 System area
	26.7.2 Actions area
	26.7.3 Filter area
	26.7.4 Plan area
	26.7.5 File description area
	26.7.6 Executing plans in the preview view

	26.8 Examining output in the output view
	26.8.1 System area
	26.8.2 Output area

	26.9 ASDF Integration
	26.9.1 Interface to source code managers

	26.10 Configuring the display
	26.10.1 Sorting entries
	26.10.2 Displaying package information
	26.10.3 Display of the toolbar

	26.11 Setting options in the system browser

	27 The Window Browser
	27.1 Introduction
	27.1.1 Graph box
	27.1.2 Window graph
	27.1.3 Description list

	27.2 Configuring the Window Browser
	27.2.1 Sorting entries
	27.2.2 Displaying package information
	27.2.3 Displaying the toolbar
	27.2.4 Displaying different types of window
	27.2.5 Showing IDE iterfaces
	27.2.6 Displaying short or long names

	27.3 Performing operations on windows
	27.3.1 Navigating the window hierarchy
	27.3.2 Window control

	28 The Application Builder
	28.1 Introduction
	28.1.1 What the Application Builder does

	28.2 Preparing to build your application
	28.2.1 The script
	28.2.1.1 Using your existing delivery script
	28.2.1.2 Creating a new delivery script

	28.3 Building your application
	28.4 Editing the script
	28.5 Troubleshooting
	28.5.1 Viewing errors
	28.5.2 Clearing the output

	28.6 Running the saved application
	28.6.1 Passing arguments and redirecting output
	28.6.2 Executing a different file
	28.6.3 Killing application processes

	28.7 Building universal binaries
	28.8 Using the Application Builder to save a development image
	28.9 Configuring the Application Builder

	29 Remote Debugging
	29.1 Remote Listeners
	29.2 Menus in the Remote Debugger and Remote Listener tools
	29.3 Editor commands for remote debugging
	29.4 Configuring Remote Debugging
	29.4.1 Remote Debugging Client
	29.4.2 Remote Listener
	29.4.3 IDE Remote Debugging Server

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Non-alaphanumerics

