
Editor User Guide
Version 8.0

1

Copyright and Trademarks
Editor User Guide (Unix version)

Version 8.0

December 2021

Copyright © 2021 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in all copies and supporting documentation, and that the
name of M.I.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "as is"
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including all implied
warranties of merchantability and fitness. In no event shall M.I.T. be liable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright
and permission notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

2

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and
registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt III, as applicable. Rights reserved under the copyright laws of
the United States.

Address Telephone Fax

LispWorks Ltd
St. John's Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

From North America:
877 759 8839 (toll-free)

From elsewhere:
+44 1223 421860

From North America:
617 812 8283

From elsewhere:
+44 870 2206189

 www.lispworks.com

Copyright and Trademarks

3

www.lispworks.com

Contents

1 Introduction 7

1.1 Using the editor within LispWorks 7

1.2 About this manual 7

1.3 Viewing example files 8

2 General Concepts 9

2.1 Window layout 9

2.2 Buffer positions: points, marks and locations 10

2.3 Modes 10

2.4 Text handling concepts 11

2.5 Executing commands 11

2.6 Basic editing commands 13

3 Command Reference 16

3.1 Aborting commands and processes 17

3.2 Executing commands 18

3.3 Help 18

3.4 Using prefix arguments 22

3.5 File handling 23

3.6 Filename completion 32

3.7 Directory mode 32

3.8 Movement 38

3.9 Marks and regions 44

3.10 Locations 46

3.11 Deleting and killing text 47

3.12 Inserting text 50

3.13 Delete Selection 52

3.14 Undoing 52

3.15 Case conversion 52

3.16 Transposition 53

3.17 Overwriting 54

3.18 Indentation 55

3.19 Filling 57

3.20 Buffers 59

3.21 Windows 62

3.22 Pages 64

3.23 Searching and replacing 65

4

3.24 Comparison 75

3.25 Registers 76

3.26 Modes 77

3.27 Abbreviations 80

3.28 Keyboard macros 83

3.29 Echo area operations 84

3.30 Editor variables 88

3.31 Recursive editing 88

3.32 Key bindings 89

3.33 Execute mode 90

3.34 Running shell commands 94

3.35 Buffers, windows and the mouse 97

3.36 Interaction with the GUI and the IDE 98

3.37 Miscellaneous 101

3.38 Obscure commands 101

4 Editing Lisp Programs 103

4.1 Automatic entry into Lisp mode 103

4.2 Syntax coloring 103

4.3 Functions and definitions 105

4.4 Forms 115

4.5 Lists 117

4.6 Comments 118

4.7 Parentheses 120

4.8 Documentation 121

4.9 Evaluation and compilation 122

4.10 Code Coverage 128

4.11 Breakpoints 129

4.12 Stepper commands 129

4.13 Removing definitions 130

4.14 Definition folding 131

4.15 Remote debugging 132

5 Emulation 134

5.1 Using platform-specific editor emulation 134

5.2 Key bindings 134

5.3 Replacing the current selection 135

5.4 Emulation in Applications 135

6 Advanced Features 136

6.1 Customizing default key bindings 136

6.2 Customizing Lisp indentation 137

6.3 Programming the editor 138

6.4 Editor source code 160

Contents

5

7 Self-contained examples 161

7.1 Example commands 161

7.2 Syntax coloring example 161

Glossary 162

Index

Contents

6

1 Introduction

The LispWorks editor is built in the spirit of Emacs. As a matter of policy, the key bindings and the behavior of the
LispWorks editor are designed to be as close as possible to the standard key bindings and behavior of GNU Emacs.

For users more familiar with KDE/Gnome keys, an alternate keys and behavior model is provided. This manual however,
generally documents the Emacs model.

The LispWorks editor has the following features:

• It is a screen editor. This means that text is displayed by the screenful, with a screen normally displaying the text which
is currently being edited.

• It is a real-time editor. This means that modifications made to text are shown immediately, and any commands issued are
executed likewise.

• An on-line help facility is provided, which allows the user quick and easy access to command and variable definitions.
Various levels of help are provided, depending on the type of information the user currently possesses.

• It is customizable. The editor can be customized both for the duration of an editing session, and on a more permanent
basis.

• A range of commands are provided to facilitate the editing of Lisp programs.

• The editor is itself written in Lisp.

1.1 Using the editor within LispWorks

The LispWorks editor is fully integrated into the LispWorks programming environment. If you do not currently have an
Editor (check the Windows menu), start one by choosing Tools > Editor from the podium or clicking on in the podium
toolbar.

There are a number of editor operations which are only available in Listener windows (for example, operations using the
command history). These operations are covered in the LispWorks IDE User Guide.

1.2 About this manual

The Editor User Guide is divided into chapters, as follows:

2 General Concepts, provides a brief overview of terms and concepts which the user should be familiar with before
progressing to the rest of the manual. The section 2.6 Basic editing commands provides a brief description of commands
necessary to edit a file from start to finish. If you are already familiar with Emacs, you should be familiar with most of the
information contained in this chapter.

3 Command Reference, contains full details of most of the editor commands. Details of editor variables are also provided
where necessary. Not included in this chapter are commands used to facilitate the editing of Lisp programs.

4 Editing Lisp Programs, contains full details of editor commands (and variables where necessary) to allow for easier
editing of Lisp programs.

5 Emulation, describes use of KDE/Gnome style key bindings rather than Emacs style.

7

6 Advanced Features, provides information on customizing and programming the editor. The features described in this
chapter allow permanent changes to be made to the editor.

7 Self-contained examples, enumerates the example files which are relevant to the content of this manual and are available
in the LispWorks library.

A Glossary is also included to provide a quick and easy reference to editor terms and concepts.

Each editor command, variable and function is fully described once in a relevant section (for example, the command Save
File is described in 3.5 File handling). It is often worthwhile reading the introductory text at the start of the section, as some
useful information is often provided there. The descriptions all follow the same layout convention which should be self-
explanatory.

Command description layouts include the name of the command, the default key binding (in Emacs editor emulation unless
stated otherwise), details of optional arguments required by the associated defining function (if any) and the mode in which
the command can be run (if not global).

1.3 Viewing example files

This manual sometimes refers to example files in the LispWorks library via a Lisp form like this:

(example-edit-file "editor/commands/space-show-arglist")

These examples are Lisp source files in your LispWorks installation under lib/8-0-0-0/examples/. You can simply
evaluate the given form to view the example source file.

Example files contain instructions about how to use them at the start of the file.

The examples files are in a read-only directory and therefore you should compile them inside the IDE (by the Editor
command Compile Buffer or the toolbar button or by choosing Buffer > Compile from the context menu), so it does not try
to write a fasl file.

If you want to manipulate an example file or compile it on the disk rather than in the IDE, then you need first to copy the file
elsewhere (most easily by using the Editor command Write File or by choosing File > Save As from the context menu).

1 Introduction

8

2 General Concepts

There are a number of terms used throughout this manual which the user should be familiar with. Definitions of these terms
are provided in this chapter, along with a section containing just enough information to be able to edit a document from start
to finish.

This chapter is not designed to provide precise details of commands. For these see the relevant sections in the following
chapters.

2.1 Window layout

2.1.1 Windows and panes

When the editor is called up an editor window is created and displayed (for those already familiar with Emacs running on a
tty terminal, note that in this context a window is an object used by the window manager to display data, and not a term used
to describe a portion of the editor display). The largest area of the editor window is taken up by an editor pane. Each window
contains a single pane and therefore the term window is used throughout this manual as being synonymous with pane, unless
more clarification is required.

Initially only one editor window is displayed. The corresponding editor pane is either blank (ready for text to be entered) or
contains text from a file to be edited. The editor window displays text using the font associated with the editor pane.

2.1.2 Files and buffers

It is not technically correct to say that a window displays the contents of a file, rather that each window displays the contents
of a buffer. A buffer is an object that contains data from the point of view of the editor, whereas a file contains data from the
point of view of the operating system. A buffer is a temporary storage area used by the editor to hold the contents of a file
while the process of editing is taking place. When editing has finished the contents of the buffer can then be written to the
appropriate file. When the user exits from the editor, no information concerning buffers or windows is saved.

A buffer is often displayed in its own window, although it is also possible for many buffers to be associated with a single
window, and for a single buffer to be displayed in more than one window.

In most cases, there is one buffer for each file that is accessed, but sometimes there is more than one buffer for a single file.
There are also some buffers (such as the Echo Area, which is used to communicate with the user) that are not necessarily
associated with any file.

2.1.3 The mode line

At the bottom of each editor window is a mode line that provides information concerning the buffer which that window is
displaying. The contents of the mode line are as follows:

• "LATIN-1", "SJIS", "MACOS-ROMAN", "UTF-8" or "UNICODE", or other encoding name, indicating the encoding of
any file associated with the buffer.

• "----" or "-**-" or "-%%-": the first indicates that the buffer is unchanged since it was last saved; the second that it has
been changed; and the third that it is read only.

• the name of the buffer (the name of a buffer originating from a file is usually the same as the name of that file).

9

• the package of the current buffer written within braces.

• a major mode (such as Fundamental or Lisp). A buffer always operates in a single major mode.

• a minor mode (such as Abbrev or Auto-Fill). If no minor mode is in operation then this element is omitted from the
mode line. An editor can operate in any number of minor modes.

• a position indicator showing the line numbers of the topmost and bottommost lines displayed in the window, and the
total number of lines in the buffer. The editor can be changed to count characters rather than lines, and then displays
percentages rather than line numbers.

• the pathname with which the buffer is associated.

2.2 Buffer positions: points, marks and locations

2.2.1 Points

A point is a position in a buffer where editor commands take effect. The current point is generally between the character
indicated by the cursor and the previous character (that is, it actually lies between two characters). Many types of commands
(that is, moving, inserting, deleting) operate with respect to the current point, and indeed move that point.

Each buffer has a current point associated with it. A buffer that is not being displayed remembers where its current point is
and returns the user to that point when the buffer is redisplayed.

If the same buffer is being displayed in more than one window, there is a point associated with the buffer for each window.
These points are independent of each other.

2.2.2 Marks

The position of a point can be saved for later reference by setting a mark. Marks may either be set explicitly or as side effects
of commands. More than one mark may be associated with a single buffer and saved in what is known as a mark ring. As for
points, the positions of marks in a buffer are remembered even if that buffer is not currently being displayed.

2.2.3 Regions

A region is the area of text between the mark and the current point. Many editor commands affect only a specified region.

2.2.4 Locations

A location is the position of the current point in a buffer at some time in the past. Locations are recorded automatically by
commands that take you to a different buffer or where you might lose your place within the current buffer. They are designed
to be a more comprehensive form of the mark ring but without the interaction with the selected region.

2.3 Modes

Each buffer can be in two kinds of mode: a major mode, such as Lisp mode, or Fundamental mode (which is the ordinary text
processing mode); and a minor mode, such as Abbrev mode or Auto-Fill mode. A buffer always has precisely one major
mode associated with it, but minor modes are optional. Any number of minor modes can be associated with a buffer.

The major modes govern how certain commands behave. For example, the concept of indentation is radically different
between Lisp mode and Fundamental mode. As another example, a Directory mode buffer (which is essentially read-only)
lists files and allows you to operate on them with simple keystrokes like E for edit and D for delete. The file listing is updated
automatically to reflect any changes.

2 General Concepts

10

When a file is loaded into a new buffer, the default mode of that buffer can be determined by the file name. For example, a
buffer into which a file name that has a .lisp suffix is loaded defaults to Lisp mode.

The minor modes determine whether or not certain actions take place. For example, when Auto-Fill mode is on, lines are
automatically broken at the right hand margin, as the text is being typed, when the line length exceeds a pre-defined limit.
Normally the newline has to be entered manually at the end of each line.

2.4 Text handling concepts

2.4.1 Words

A word is defined as a continuous string of alphanumeric characters. These are the letters A-Z, a-z, numbers 0-9, and the
Latin-1 alphanumeric characters. In most modes, any character which is not alphanumeric is treated as a word delimiter.

2.4.2 Sentences

A sentence begins wherever a paragraph or previous sentence ends. The end of a sentence is defined as consisting of a
sentence terminating character followed by two spaces or a newline. Two spaces are required to prevent abbreviations (such
as Mr.) from being taken as the end of a sentence. Such abbreviations at the end of a line are taken as the end of a sentence.
There may also be any number of closing delimiter characters between the sentence terminating character and the spaces or
newline.

Sentence terminating characters include:

. ? !

Closing delimiter characters include:

)] > / | " '

2.4.3 Paragraphs

A paragraph is defined as the text within two paragraph delimiters. A blank line constitutes a paragraph delimiter. The
following characters at the beginning of a line are also paragraph delimiters:

Space Tab @ - ')

2.5 Executing commands

2.5.1 Modifier keys — Command, Ctrl, Alt and Meta

Editor commands are initiated by one or more key sequences. A single key sequence usually involves holding down one of
two specially defined modifier keys, while at the same time pressing another key which is usually a character key.

The two modifier keys referred to are the Control (Ctrl) key and the Meta key .

When using Emacs emulation on a keyboard without a Meta key, the Escape (Esc) key can be used instead. Note that Esc
must be typed before pressing the required character key, and not held down.

When using KDE/Gnome editor emulation Esc is the cancel gesture, so LispWorks provides an alternate gesture to access
editor commands: Ctrl+M. For example, to invoke the command Find Source for Dspec, type:

2 General Concepts

11

Ctrl+M X Find Source for Dspec

and press Return.

To continue the search, type Ctrl+M ,.

An example of a single key sequence command is Ctrl+A which moves the current point to the start of the line. This
command is issued by holding down the Control key while at the same time pressing A.

Some key sequences may require more than one key sequence. For example, the key sequence to save the current buffer to a
file is Ctrl+X Ctrl+S. Another multi-key sequence is Ctrl+X S which saves all buffers to their relevant files. Note that in
this case you do not press the Control key while pressing S.

A few commands require both the Ctrl and Meta key to be held down while pressing the character key. Meta+Ctrl+L,
used to select the previous buffer displayed, is one such command. If the Esc key is being used in place of the Meta key,
then this key should be pressed before the Ctrl+L part of the key sequence.

There is a key sequence for which you cannot use Esc instead of Meta, because it is not actually implemented as an editor
command (it works in other windows too). This is the default break gesture Meta+Ctrl+C described in 3.1 Aborting
commands and processes. As there are so many different types of keyboard, if it is not possible to assert which is the Meta
key on your keyboard, it may be marked with a special character, such as a diamond, or it may be one of the function keys —
try F11. From this point on we refer exclusively to the Meta key in this manual.

2.5.2 Two ways to execute commands

The key sequences used to execute commands, as described in the previous section, are only one way to execute an editor
command. As a general rule, editor commands that are used frequently should involve as few key strokes as possible to allow
for fast editing. The key sequences described above are quick and easy shortcuts for invoking commands.

Most editor commands can also be invoked explicitly by using their full names. For example, in the previous section we met
the keystroke Ctrl+A which moves the current point to the beginning of the line. This keystroke is called a key binding and
is a shortcut for executing the command Beginning of Line. To execute this command by name you must type Meta+X
followed by the full command name (Meta+X itself is only a key binding for the command Extended Command).

Even though there may seem like a lot of typing to issue the extended version of a command, it is not generally necessary to
type in the whole of a command to be executed. The Tab key can be used to complete a partially typed in extended
command. The editor extends the command name as far as possible when Tab is used, and if the user is not sure of the rest of
the command name, then pressing Tab again provides a list of possible completions. The command can then be selected
from this list.

The most commonly used editor commands have a default binding associated with them.

2.5.3 Prefix arguments

An editor command can be supplied with an integer argument p which may alter the effect of that command. In most cases it
means that the command is repeated p times. This argument is known as a prefix argument as it is supplied before the
command to which it is to be applied. Prefix arguments have no effect on some commands.

See 3.4 Using prefix arguments for information about using prefix arguments.

2 General Concepts

12

2.6 Basic editing commands

This section contains just enough information to allow you to load a file into the editor, edit that file as required, and then
save that file. It is designed to give you enough information to get by and no more.

Only the default bindings are provided. The commands introduced are grouped together as they are in the more detailed
command references and under the same headings (except for 2.6.7 Killing and Yanking). For further information on the
commands described below and other related commands, see the relevant sections in 3 Command Reference.

2.6.1 Aborting commands and processes

See 3.1 Aborting commands and processes.

Ctrl+G Abort the current command which may either be running or just partially typed in. Use Esc in
KDE/Gnome editor emulation.

2.6.2 File handling

See 3.5 File handling.

Ctrl+X Ctrl+F file Load file into a buffer ready for editing. If the name of a non-existent file is given, then an empty
buffer is created in to which text can be inserted. Only when a save is done will the file be
created.

Ctrl+X Ctrl+S Save the contents of the current buffer to the associated file. If there is no associated file, one is
created with the same name as the buffer.

2.6.3 Inserting text

See 3.12 Inserting text for details of various commands which insert text.

Text which is typed in at the keyboard is automatically inserted to the left of the cursor.

To insert a newline press Return.

2.6.4 Movement

See 3.8 Movement.

Ctrl+F Move the cursor forward one character.

Ctrl+B Move the cursor backward one character.

Ctrl+N Move the cursor down one line.

Ctrl+P Move the cursor up one line.

The above commands can also be executed using the arrow keys.

Ctrl+A Move the cursor to the beginning of the line.

Ctrl+E Move the cursor to the end of the line.

Ctrl+V Scroll one screen forward.

Meta+V Scroll one screen backward.

2 General Concepts

13

Meta+Shift+<

Move to the beginning of the buffer.

Meta+Shift+>

Move to the end of the buffer.

2.6.5 Deleting and killing text

See 3.11 Deleting and killing text.

Delete Delete the character to the left of the cursor.

Ctrl+D Delete the current character.

Ctrl+K Kill text from the cursor to the end of the line. To delete a whole line (that is, text and newline),
type Ctrl+K twice at the start of the line.

2.6.6 Undoing

See 3.14 Undoing.

Ctrl+Shift+_ Undo the previous command. If Ctrl+Shift+_ is typed repeatedly, previously executed
commands are undone in a "last executed, first undone" order.

2.6.7 Killing and Yanking

The commands given below are used to copy areas of text and insert them at some other point in the buffer. Note that there is
no corresponding "Cut and paste" section in the command references, so direct cross references have been included with each
command.

When cutting and pasting, the first thing to do is to copy the region of text to be moved. This is done by taking the cursor to
the beginning of the piece of text to be copied and pressing Ctrl+Space to set a mark, and then taking the cursor to the end
of the text and pressing Ctrl+W. This kills the region between the current point and the mark but keeps a copy of the killed
text. This copy can then be inserted anywhere in the buffer by putting the cursor at the required position and then pressing
Ctrl+Y to insert the copied text.

If the original text is to be copied but not killed, use the command Meta+W instead of Ctrl+W. This copies the text ready for
insertion, but does not delete it.

Ctrl+Space Set a mark for a region. See 3.9 Marks and regions.

Ctrl+W Kill the region between the mark and current point, and save a copy of that region. See 3.11
Deleting and killing text.

Meta+W Copy the region between the mark and the current point. See 3.11 Deleting and killing text.

Ctrl+Y Insert (yank) a copied region before the current point. See 3.12 Inserting text.

2.6.8 Help

See 3.3 Help.

Ctrl+H A string List symbols whose names contain string in a Symbol Browser tool.

2 General Concepts

14

Ctrl+H D command Describe command, where command is the full command name.

Ctrl+H K key Describe the command bound to key.

2 General Concepts

15

3 Command Reference

This chapter contains full details of most of the editor commands. Details of related editor variables have also been included
alongside commands, where appropriate. Not included in this chapter, are commands used to facilitate the editing of Lisp
programs. See 4 Editing Lisp Programs.

Commands are grouped according to functionality as follows:

• 3.1 Aborting commands and processes

• 3.2 Executing commands

• 3.3 Help

• 3.4 Using prefix arguments

• 3.5 File handling

• 3.6 Filename completion

• 3.7 Directory mode

• 3.8 Movement

• 3.9 Marks and regions

• 3.10 Locations

• 3.11 Deleting and killing text

• 3.12 Inserting text

• 3.13 Delete Selection

• 3.14 Undoing

• 3.15 Case conversion

• 3.16 Transposition

• 3.17 Overwriting

• 3.18 Indentation

• 3.19 Filling

• 3.20 Buffers

• 3.21 Windows

• 3.22 Pages

• 3.23 Searching and replacing

• 3.24 Comparison

• 3.25 Registers

16

• 3.26 Modes

• 3.27 Abbreviations

• 3.28 Keyboard macros

• 3.29 Echo area operations

• 3.30 Editor variables

• 3.31 Recursive editing

• 3.32 Key bindings

• 3.34 Running shell commands

• 3.35 Buffers, windows and the mouse

• 3.36 Interaction with the GUI and the IDE

• 3.37 Miscellaneous

• 3.38 Obscure commands

3.1 Aborting commands and processes

Key Sequence: Ctrl+G

Aborts the current command. Ctrl+G (or Esc in KDE/Gnome editor emulation) can either be used to abandon a
command which has been partially typed in, or to abort the command which is currently running.

Note that, unlike most of the keys described in this manual, this cannot be changed via editor:bind-key. Instead, use
editor:set-interrupt-keys if you wish to change this.

Key Sequence: Meta+Ctrl+C

Chooses a process that is useful to break, and breaks it.

Note that you cannot use Escape in place of Meta. As there are many different types of keyboard, if it is not possible to
assert which is the Meta key on your keyboard, it may be marked with a special character, such as a diamond, or it may
be one of the function keys — try F11.

Meta+Ctrl+C applies to both GTK+ and Motif. If your keyboard has the Break key, then you can also use this
alternate break gesture. The key sequence can be configured using capi:set-interactive-break-gestures.

The process to break is chosen as follows:

1. If the break gesture is sent to any CAPI interface that is waiting for events, it does "Interface break", as described
below.

2. Otherwise it checks for a busy processes that is essential for LispWorks to work correctly, or that interacts with the
user (normally that means that some CAPI interface uses it), or that is flagged as wanting interrupts (currently that
means a REPL). If it finds such a busy process, it breaks it.

3. Otherwise, if the LispWorks IDE is running, activate or start the Process Browser. Note that the Process Browser
tool, documented in the LispWorks IDE User Guide can be used to break any other process.

4. Otherwise, if there is a busy process break it.

3 Command Reference

17

5. Otherwise, just break the current process.

"Interface break" depends on the interface. For an interface that has another process, notably the Listener with its
REPL, it breaks that other process. For most interfaces, in the LispWorks IDE it starts the Process Browser,
otherwise just it breaks the interface's process.

3.2 Executing commands

Some commands (usually those used most frequently) are bound to key combinations or key sequences, which means that
fewer keystrokes are necessary to execute these commands. Other commands must be invoked explicitly, using Extended
Command.

It is also possible to execute shell commands from within the editor. See 3.34 Running shell commands.

Extended Command Editor Command

Key sequence: Meta+X

Allows the user to type in a command name explicitly. Any editor command can be invoked in this way, and this is the
usual method of invoking a command that is not bound to any key sequence. Any prefix argument is passed to the
command that is invoked.

It is not generally necessary to type in the whole of a command to be executed. Completion (using Tab) can be used
after the first part of the command has been typed.

3.3 Help

The editor provides a number of on-line help facilities, covering a range of areas.

There is one main help command, accessed by Help (Ctrl+H), with many options to give you a wide range of help on editor
commands, variables and functions.

There are also further help commands which provide information on Lisp symbols (see 4.8 Documentation).

3.3.1 The help command

Help Editor Command

Options: See below
Key sequence: Ctrl+H option

Provides on-line help. Depending on what information the user has and the type of information required, one of the
following options should be selected after invoking the Help command. In most cases a Help command plus option can
also be invoked by an extended editor command.

A brief summary of the help options is given directly below, with more detailed information following.

? Display a list of help options.

q or n Quit help.

a string Display a list of symbols whose names match string, in a Symbol Browser tool.

b Display a list of key bindings and associated commands.

c key Display the command to which key is bound.

3 Command Reference

18

d command Describe the editor command.

Ctrl+D command Bring up the on-line version of this manual for command.

g object Invoke the appropriate describe object command.

k key Describe the command to which key is bound.

Ctrl+K key Bring up the on-line version of this manual for key.

l describe the last 60 keys typed.

v variable Describe variable and show its current value.

Ctrl+V variable Bring up the on-line version of this manual for variable.

w command Display the key sequence to which command is bound.

Apropos Command Editor Command

Arguments: string
Key sequence: None

Displays a list of editor commands, variables, and attributes whose names contain string, in a Help window.

Editor command, variable and attribute names tend to follow patterns which becomes apparent as you look through this
manual. For example, commands which perform operations on files tend to contain the string file, that is, Find File,
Save File, Print File and so forth.

Use this form of help when you know what you would like to do, but do not know a specific command to do it.

What Command Editor Command

Arguments: key
Key sequence: Ctrl+H C key

Displays the command to which key is bound. For a more detailed description of key use the command Describe Key.

Use this form of help when you know a default binding but want to know the command name.

Note: this command is also available via the menu command Help > Editing > Key to Command.

Describe Command Editor Command

Arguments: command#
Key sequence: Ctrl+H D command

Describes the editor command command. Full documentation of that command is printed in a Help window.

Use this form of help when you know a command name and require full details of that command.

Document Command Editor Command

Arguments: command
Key sequence: Ctrl+H Ctrl+D command

Brings up the on-line version of this manual at the entry for command.

The documentation in the on-line manual differs from the editor on-line help (as produced by Describe Command), but
provides similar information. If you are used to the layout and definitions provided in this manual then use this help
command instead of Ctrl+H D.

3 Command Reference

19

Generic Describe Editor Command

Arguments: object
Key sequence: Ctrl+H G object

Describes object, where object may take the value command, key, attribute or variable.

If object is command, key or variable then the command Describe Command, Describe Key or Describe Editor
Variable is invoked respectively.

There is no corresponding describe command if the object is attribute. Attributes are things such as word delimiters,
Lisp syntax and parse field separators. If you are not sure of the attributes documented remember that you can press Tab
to display a completion list.

Describe Key Editor Command

Arguments: key
Key sequence: Ctrl+H K key

Describes the command to which key is bound. Full documentation of that command is printed in a Help window.

Use this form of help when you know a default binding and require the command name plus full details of that
command.

Document Key Editor Command

Arguments: key
Key sequence: Ctrl+H Ctrl+K key

Brings up the on-line version of this manual at the entry for key.

The documentation in the on-line manual differs slightly from the editor on-line help but usually provides you with the
same amount of information. If you are used to the layout and definitions provided in this manual then use this help
command instead of Describe Key.

What Lossage Editor Command

Arguments: None
Key sequence: Ctrl+H L

Displays the last 60 keys typed.

Describe Editor Variable Editor Command

Arguments: variable
Key sequence: Ctrl+H V variable

Describes variable and prints its current value in a Help window.

Use this form of help when you know a variable name and require a description of that variable and/or its current value.

Document Variable Editor Command

Arguments: variable
Key sequence: Ctrl+H Ctrl+V variable

Brings up the on-line version of this manual at the entry for variable.

The documentation in the on-line manual differs slightly from the editor on-line help but usually provides you with the
same amount of information. If you are used to the layout and definitions provided in this manual then use this help

3 Command Reference

20

command instead of Describe Editor Variable.

Where Is Editor Command

Arguments: command
Key sequence: Ctrl+H W command

Displays the key sequence to which command is bound.

Use this form of help if you know a command name and wish to find the bindings for that command. If no binding exists
then a message to this effect is returned.

Note: this command is also available via the menu command Help > Editing > Command to Key.

Describe Bindings Editor Command

Arguments: None
Key sequence: Ctrl+H B

Displays a list of key bindings and associated commands in a Help window. First the minor and major mode bindings for
the current buffer are printed, then the global bindings.

3.3.2 Other help commands on UNIX and macOS

Manual Entry Editor Command

Arguments: unix-command
Key sequence: l
Mode: Manual Entry

This command is not implemented on Microsoft Windows.

Displays the UNIX manual page for unix-command. The UNIX utility man is invoked and the manual page is displayed
in an Editor window.

The buffer is in Manual Entry mode and you can navigate using keys p, n, s and so on - use Describe Bindings to see all
the Manual Entry mode keys.

With no prefix argument, the same buffer is used each time. With a prefix argument, a new buffer is created for each
manual page accessed.

See also: 3.26.1 Major modes.

Remote Manual Entry Editor Command

Arguments: machine-name unix-command
Key sequence: r
Mode: Manual Entry

This command is not implemented on Microsoft Windows.

The command Remote Manual Entry is like Manual Entry, but runs on another computer using rsh.

Remove Nroff Backspaces Editor Command

Arguments: None
Key sequence: None

This command is not implemented on Microsoft Windows.

3 Command Reference

21

The command Remove Nroff Backspaces removes from the current buffer markers that are used by nroff to go
backspace.

Note: Manual Entry command removes nroff backspaces automatically.

3.4 Using prefix arguments

Editor Commands can be supplied with an integer argument which, in many cases, indicates how many times a command is
to be executed. This argument is known as a prefix argument as it is supplied before the command to which it is to be applied.

A prefix argument applied to some commands has a special meaning. Documentation to this effect is provided with the
command definitions where appropriate in this manual. In most other cases the prefix argument repeats the command a
certain number of times, or has no effect.

A prefix argument can be supplied to a command by first using the command Set Prefix Argument (Ctrl+U) followed by an
integer. Negative prefix arguments are allowed. A prefix argument between 0 and 9 can also be supplied using Meta+digit.

Set Prefix Argument Editor Command

Arguments: integer
Key sequence: Ctrl+U integer

Provides a prefix argument which, for many commands, indicates the command is to be invoked integer times. The
required integer should be input and the command to which it applies invoked without an intervening carriage return.

If no integer is given, the prefix argument defaults to the value of prefix-argument-default.

If Set Prefix Argument is invoked more than once before a command, the prefix arguments associated with each
invocation are multiplied together and the command to which the prefix arguments are to be applied is repeated this
number of times. For example, if you typed in Ctrl+U Ctrl+U 2 before a command, then that command would be
repeated 8 times.

prefix-argument-default Editor Variable

Default value: 4

The default value for the prefix argument if no integer is provided for Set Prefix Argument.

Argument Digit Editor Command

Key sequence: Meta+<0–9>

Provides a prefix argument in a similar fashion to Set Prefix Argument, except that only integers from 0 to 9 can be
used (unless the key bindings are changed).

Negative Argument Editor Command

Arguments: None
Key sequence: -

Negates the current prefix argument. If there is currently no prefix argument then it is set to -1.

There is rarely any need for explicit use of this command. Negative prefix arguments can be entered directly with Set
Prefix Argument by typing a - before the integer.

3 Command Reference

22

3.5 File handling

This section contains details of commands used for file handling.

The first section provides details on commands used to copy the contents of a file into a buffer for editing, while the second
deals with copying the contents of buffers to files.

You may at some point have seen file names either enclosed in # characters or followed by a ~ character. These files are
created by the editor as backups for the file named. The third section deals with periodic backups (producing file names
enclosed in #) and the fourth with backups on file saving (producing files followed by ~).

There are many file handling commands which cannot be pigeon-holed so neatly and these are found in the section 3.5.6
Miscellaneous file operations. Commands use to print, insert, delete and rename files are covered here, along with many
others.

3.5.1 Finding files

Find File Editor Command

Arguments: pathname
Key sequence: None

editor:find-file-command p &optional pathname

Finds a new buffer with the same name as pathname (where pathname is the name of the file to be found, including its
directory relative to the current directory), creating it if necessary, and inserts the contents of the file into the buffer. The
contents of the buffer are displayed in an editor pane and may then be edited.

The file is initially read in the external format (encoding) given by the editor variable input-format-default. If the
value of this is nil, cl:open chooses the external format to use. The external format is remembered for subsequent
reading and writing of the buffer, and its name is displayed in the mode line.

If the file is already being visited a new buffer is not created, but the buffer already containing the contents of that file is
displayed instead.

If a file with the specified name does not exist, an empty buffer with that file name is created for editing purposes, but
the new file is not created until the appropriate save file command is issued.

If there is no prefix argument, a new Editor window is created for the file. With any prefix argument, the file is shown in
the current window.

Another version of this command is Wfind File which is usually used for finding files.

Wfind File Editor Command

Arguments: pathname
Key sequence: Ctrl+X Ctrl+F pathname

editor:wfind-file-command p &optional pathname

Calls Find File with a prefix argument (that is, the new file is opened in the existing window).

Visit File Editor Command

Arguments: pathname
Key sequence: None

3 Command Reference

23

http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm

editor:visit-file-command p &optional pathname buffer

Does the same as Find Alternate File, and then sets the buffer to be writable.

Find Alternate File Editor Command

Arguments: pathname
Key sequence: Ctrl+X Ctrl+V pathname

editor:find-alternate-file-command p &optional pathname buffer

Does the same as Find File with a prefix argument, but kills the current buffer and replaces it with the newly created
buffer containing the file requested. If the contents of the buffer to be killed have been modified, the user is asked if the
changes are to be saved to file.

The argument buffer is the buffer in which the contents of the file are to be displayed. buffer defaults to the current
buffer.

The prefix argument is ignored.

3.5.2 Saving files

Save File Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+S

editor:save-file-command p &optional buffer

Saves the contents of the current buffer to the associated file. If there is no associated file, one is created with the same
name as the buffer, and written in the same encoding as specified by the editor variable output-format-default, or
as defaulted by open if this is nil.

The argument buffer is the buffer to be saved in its associated file. The default is the current buffer.

Save All Files Editor Command

Arguments: None
Key sequence: Ctrl+X S

Without a prefix argument, a Select Buffers To Save: dialog is displayed asking whether each modified buffer is to be
saved. If a buffer has no associated file it is ignored, even if it is modified. The selected buffers are saved.

With a non-nil prefix argument, no such dialog is displayed and all buffers that need saving are saved. You can also
prevent the Select Buffers To Save: dialog from being displayed by setting the value of the editor variable
save-all-files-confirm.

save-all-files-confirm Editor Variable

Default value: t

When the value is true, Save All Files prompts for confirmation before writing the modified buffers, when used without
a prefix argument.

Write File Editor Command

Arguments: pathname

3 Command Reference

24

http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm

Key sequence: Ctrl+X Ctrl+W pathname

editor:write-file-command p &optional pathname buffer

Writes the contents of the current buffer to the file defined by pathname. If the file already exists, it is overwritten. If the
file does not exist, it is created. The buffer then becomes associated with the new file.

The argument buffer is the name of the buffer whose contents are to be written. The default is the current buffer.

Write Region Editor Command

Arguments: pathname
Key sequence: None

editor:write-region-command p &optional pathname

Writes the region between the mark and the current point to the file defined by pathname. If the file already exists, it is
overwritten. If the file does not exist, it is created.

Append to File Editor Command

Arguments: pathname
Key sequence: None

Appends the region between the mark and the current point to the file defined by pathname. If the file does not exist, it is
created.

Backup File Editor Command

Arguments: pathname
Key sequence: None

Writes the contents of the current buffer to the file defined by pathname. If the file already exists, it is overwritten. If it
does not exist, it is created.

In contrast with Write File, no change is made concerning the file associated with the current buffer as this command is
only intended to be used to write the contents of the current buffer to a backup file.

Save All Files and Exit Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+C

A Select Buffers To Save: dialog is displayed asking whether each modified buffer is to be saved. If a buffer has no
associated file it is ignored, even if it is modified (this operates just like Save All Files). When all the required buffers
have been saved LispWorks exits, prompting for confirmation first.

add-newline-at-eof-on-writing-file Editor Variable

Default value: :ask-user

Controls whether the commands Save File and Write File add a newline at the end of the file if the last line is non-
empty.

If the value of this variable is t then the commands add a newline and tell the user.

If the value is nil the commands never add a newline.

If the value is :ask-user, the commands ask whether to add a newline.

3 Command Reference

25

3.5.3 Unicode and other file encodings

The editor supports the entire Unicode range, and provided that the system has suitable fonts it should be able to display all
the characters correctly. Normally you should not be able to have a character object corresponding to a surrogate code point
(these codes are the exclusive range (#xd800, #xdfff)). If such an object is inserted, the editor displays its hexadecimal
value.

An editor buffer ideally should have an appropriate external format (or encoding) set before you write it to a file. Otherwise
an external format specified in the value of the editor variable output-format-default is used. If the value of
output-format-default is not an external format specifier, then the external format is chosen similarly to the way
cl:open does it. By default this chosen external format will be the Windows code page on Microsoft Windows, and Latin-1
on other platforms.

When using the Editor tool, use Set External Format to set interactively the external format for the current buffer, or set
Preferences... > Environment > File Encodings > Output (which in turn sets the editor variable output-format-default)
to provide a global default value. You can also use Find File With External Format to specify the external format before
reading a file.

In situations where you want to open a file in a 16-bit encoding but the file is not actually encoded properly (for example it is
actually a binary containing some strings encoded in :utf-16), use one of the :utf-16 or :bmp external formats with the
parameter :use-replacement t, for example:

(:utf-16 :use-replacement t)

These external formats will replace any input that causes errors by the replacement character (code point #xfffd), and
should successfully read correctly encoded :utf-16 strings including supplementary characters.

If you need to edit a file that is not properly encoded, the only external format that can do this is :latin-1. To insert a multi
-byte character, you will have to insert the :latin-1 characters matching the individual bytes in the right order.

See 26.6 External Formats to translate Lisp characters from/to external encodings in the LispWorks® User Guide and
Reference Manual for a description of external format specifications.

Compatibility Note: In LispWorks 6.1 and earlier versions, :unicode is the best choice of external format for opening an
incorrectly-encoded file. However, in LispWorks 7.0 and later versions :unicode maps to :utf-16 which is quite likely to
give an error trying to read a binary file, unless you supply :use-replacement t as described above. The error would
occur when it sees a 16-bit value which is a surrogate code point.

3.5.3.1 Controlling the external format

Find File With External Format Editor Command

Arguments: None
Key sequence: None

The command Find File With External Format prompts for an external format, and then opens the file as as if
by Wfind File, with the supplied external format.

This external format is also used when subsequently saving the file.

Set External Format Editor Command

Arguments: buffer
Key sequence: None

Prompts for an external format specification, providing a default which is the buffer's current external format if set, or the
value of output-format-default. Sets the buffer's external format, so that this is used for subsequent file writing

3 Command Reference

26

http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm

and reading.

If a non-nil prefix argument is supplied, the buffer's external format is set to the value of output-format-default
without prompting.

input-format-default Editor Variable

Default value: nil

The default external format used by Find File, Wfind File and Visit File for reading files into buffers.

If the buffer already has an external format (either it has previously been read from a file, or Set External Format has
been used to specify an external format) then input-format-default is ignored. If the value is nil and the buffer
does not have an external format, cl:open chooses the external format to use.

The value should be nil or an external format specification. See 26.6 External Formats to translate Lisp characters
from/to external encodings in the LispWorks® User Guide and Reference Manual for a description of these and of how
cl:open chooses an external format.

If you have specified an input encoding via the Editor tool's Preferences dialog, then input-format-default is
initialized to that value on startup.

output-format-default Editor Variable

Default value: nil

The default external format used for writing buffers to files.

If the buffer already has an external format (either it has been read from a file, or Set External Format has been used to
specify an external format) then output-format-default is ignored. If the value is nil and the buffer does not have
an external format, cl:open chooses the external format to use.

The value should be nil or an external format specification. See 26.6 External Formats to translate Lisp characters
from/to external encodings in the LispWorks® User Guide and Reference Manual for a description of these and of how
cl:open chooses an external format.

If you have specified an output encoding via the Editor tool's Preferences dialog, then output-format-default is
initialized to that value on startup.

The default value of output-format-default is nil.

3.5.3.2 Unwritable characters

If your buffer contains a character char which cannot be encoded in the buffer's external format (or the defaulted external
format) then attempts to save the buffer will signal an error giving the character name, its offset in the buffer and explaining
that char is unwritable in the external format.

In particular if your buffer contains a cl:extended-char char then Latin-1 and other encodings which support only
cl:base-char are not appropriate.

There are two ways to resolve this:

• Set the external format to one which includes char, or:

• Delete char from the buffer before saving. The commands Find Unwritable Character and List Unwritable
Characters will help you to identify the character(s) that cannot be written.

You may want a file which is Unicode UTF-16 encoded (external format :unicode), UTF-8 encoding (:utf-8) or a
language-specific encoding such as :shift-jis or :gbk. Or you may want a Latin-1 encoded file, in which case you could

3 Command Reference

27

http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_extend.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

supply :latin-1-safe.

Find Unwritable Character Editor Command

Arguments: None
Key sequence: None

Finds the next occurrence of a character in the current buffer that cannot be written using the buffer external format. The
prefix argument is ignored.

List Unwritable Characters Editor Command

Arguments: None
Key sequence: None

Lists the characters in the current buffer that cannot be written with the buffer external format. The prefix argument is
ignored.

Find Non-Base-Char Editor Command

Arguments: None
Key sequence: None

The command Find Non-Base-Char finds the next character in the current buffer that is not a cl:base-char,
starting from the current point.

3.5.4 Auto-saving files

The auto-save feature allows for periodic backups of the file associated with the current buffer. These backups are only made
if auto-save is switched on.

This feature is useful if the LispWorks editor is killed in some way (for example, in the case of a system crash or accidental
killing of the editor process) before a file is explicitly saved. If automatic backups are being made, the state of a file when it
was last auto-saved can subsequently be recovered.

By default, automatic backups are made both after a predefined number of key strokes, and also after a predefined amount of
time has elapsed.

By default, auto-saved files are in the same directory as the original file, with the name of the auto-save file (or "checkpoint
file") being the name of the original file enclosed within # characters.

Toggle Auto Save Editor Command

Arguments: None
Key sequence: None

Switches auto-save on if it is currently off, and off if it is currently on.

With a positive prefix argument, auto-save is switched on. With a negative or zero prefix argument, auto-save is switched
off. Using prefix arguments with Toggle Auto Save disregards the current state of auto-save.

Auto Save Toggle is a synonym for Toggle Auto Save.

auto-save is initially on or off in a new buffer according to the value of the editor variable default-auto-save-on.

default-auto-save-on Editor Variable

Default value: t

3 Command Reference

28

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

The default auto-save state of new buffers.

auto-save-filename-pattern Editor Variable

Default value: "~A#~A#"

This is a format control string used to make the filename of the checkpoint file. format is called with two arguments,
the first being the directory namestring and the second being the file namestring of the default buffer pathname.

The default value causes the auto-save file to be created in the same directory as the file for which it is a backup, and
with the name surrounded by # characters.

auto-save-key-count-threshold Editor Variable

Default value: 256

Specifies the number of destructive/modifying keystrokes that automatically trigger an auto-save of a buffer. If the value
is nil, this feature is turned off.

auto-save-checkpoint-frequency Editor Variable

Default value: 300

Specifies the time interval in seconds after which all modified buffers which are in "Save" mode are auto-saved. If the
value is nil, zero or negative, this feature is turned off.

auto-save-cleanup-checkpoints Editor Variable

Default value: t.

This variable controls whether an auto-save function will cleanup by deleting the checkpoint file for a buffer after it is
saved. If the value is true then this cleanup will occur.

3.5.5 Backing-up files on saving

When a file is explicitly saved in the editor, a backup is automatically made by writing the old contents of the file to a backup
before saving the new version of the file. The backup file appears in the same directory as the original file. By default its
name is the same as the original file followed by a ~ character.

backups-wanted Editor Variable

Default value: t

Controls whether to make a backup copy of a file the first time it is modified. If the value is t, a backups is automatically
made on first saving. If the value is nil, no backup is made.

backup-filename-suffix Editor Variable

Default value: #\~

This variable contains the character used as a suffix for backup files. By default, this is the tilde (~) character.

backup-filename-pattern Editor Variable

Default value: "~A~A~A"

This control string is used with the Common Lisp format function to create the filename of the backup file. format is
called with three arguments, the first being the directory name-string and the second being the file name-string of the
pathname associated with the buffer. The third is the value of the editor variable backup-filename-suffix.

3 Command Reference

29

http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm

The backup file is created in the same directory as the file for which it is a backup, and it has the same name, followed
by the backup-filename-suffix.

Note that the backup-suffix can be changed functionally as well as by interactive means. For example, the following
code changes the suffix to the @ character:

(setf (editor:variable-value `editor:backup-filename-suffix
 :current nil) #\@)

3.5.6 Miscellaneous file operations

Print File Editor Command

Arguments: file
Key sequence: None

Prints file, using capi:print-file. See the CAPI User Guide and Reference Manual for details of this function.

Revert Buffer Editor Command

Arguments: None
Key sequence: None

If the current buffer is associated with a file, its contents revert to the state when it was last saved. If the buffer is not
associated with a file, it is not possible for a previous state to be recovered.

If auto-save is on for the current buffer, the version of the file that is recovered is either that derived by means of an
automatic save or by means of an explicit save, whichever is the most recent. If auto-save is off, the buffer reverts to its
state when last explicitly saved.

If the buffer has been modified and the value of the variable revert-buffer-confirm is t then Revert Buffer asks
for confirmation before reverting to a previous state.

Any prefix argument forces Revert Buffer to use the last explicitly saved version.

Revert Buffer With External Format Editor Command

Arguments: None.
Key sequence: None.

Sets the external format of the current buffer and then revert it to the state when it was last saved. This command is
equivalent to doing Set External Format followed by Revert Buffer, but it checks if the buffer has been modified and
that the file exists before setting the external format.

The prefix is used the same way as in Revert Buffer.

revert-buffer-confirm Editor Variable

Default value: t

When the command Revert Buffer is invoked, if the value of this variable is t and the buffer has been modified then
confirmation is requested before the revert operation is performed. If its value is nil, no confirmation is asked for.

Process File Options Editor Command

Arguments: None
Key sequence: None

The attribute line at the top of the file is reprocessed, as if the file had just been read from disk. If no major mode is

3 Command Reference

30

specified in the attribute line, the type of the file is used to determine the major mode. See 3.26 Modes.

Insert File Editor Command

Arguments: pathname
Key sequence: Ctrl+X I pathname

editor:insert-file-command p &optional pathname buffer

Inserts the file defined by pathname into the current buffer at the current point.

The argument buffer is the buffer in which the file is to be inserted.

Delete File Editor Command

Arguments: pathname
Key sequence: None

Deletes the file defined by pathname. The user is asked for confirmation before the file is deleted.

Delete File and Kill Buffer Editor Command

Arguments: buffer
Key sequence: None

editor:delete-file-and-kill-buffer-command p &optional buffer

After confirmation from the user, this deletes the file associated with buffer and then kills the buffer.

Rename File Editor Command

Arguments: file new-file-name
Key sequence: None

Changes the name of file to new-file-name.

If you are currently editing the file to be renamed, the buffer remains unaltered, retaining the name associated with the
old file even after renaming has taken place. If you then save the current buffer, it is saved to a file with the name of the
buffer, that is, to a file with the old name.

Make Directory Editor Command

Arguments: None
Key sequence: None

Prompts the user for a directory name and makes it in the filesystem.

The prefix argument is ignored.

List Directory Editor Command

Arguments: None
Key sequence: Ctrl+X D

The command List Directory prompts for a directory or wild filename and finds or creates a buffer which lists files
and allows you to operate on them easily.

See 3.7 Directory mode for detailed information about Directory mode.

3 Command Reference

31

Save Buffer Pathname Editor Command

Arguments: None
Key sequence: None

Pushes the namestring of the pathname of the current buffer onto the kill ring. This namestring can then be inserted
elsewhere by commands which access the kill ring, described in 3.12 Inserting text.

3.6 Filename completion

Expand File Name Editor Command

Arguments: None
Key sequence: Meta+Tab

Key sequence: Tab
Mode: Shell

The command Expand File Name expands (completes) the filename at the current point.

The system looks backwards from the current point until it finds a space or other character that is unlikely to be in a
filename. The text from this character to the current point is the partial filename to complete.

Invoking Expand File Name twice in succession offers a list of possible completions.

See also: Expand File Name With Space.

Expand File Name With Space Editor Command

Arguments: None
Key sequence: None

The command Expand File Name With Space is like Expand File Name, but allows spaces in the filename it tries
to complete.

See also: Expand File Name.

3.7 Directory mode

A buffer in Directory mode presents a list of files, and allows you to easily edit any of them, copy or move some of them to
another directory, or delete some of them. It also makes it easy to keep a record of which files you already edited.

You open a Directory mode buffer by invoking one of:

• Find File or Wfind File with a directory path.

• Find File or Wfind File with a wild filename (that is, the name contains the character *).

• List Directory.

The editor opens a buffer in Directory mode, listing all the matching files.

Note: If you are opening a directory path (without filename) and there is already a buffer opened with this directory, it finds
this buffer, rather than creating another one. You can prevent this by first renaming the existing buffer. Opening a wild path
with the Find File command always creates a new buffer.

A Directory mode buffer can be saved to a file, and because it contains the mode in its attribute line, when you re-open the
file it will open in Directory mode. Thus it can be used as a record of what you have done. For example, if you need to visit

3 Command Reference

32

all the files in some directory and the task will span multiple sessions, you can edit the directory and visit the files from the
Directory mode buffer. You periodically save this buffer to a file. Then after quitting your session and restarting you can open
the file and have a record of which files you already visited. For this kind of task, Directory mode is probably the simplest
method.

The operations that you can do in Directory mode include:

• Editing a file (automatically mark it as edited).

• Marking/unmarking a file.

• Toggle the edited marking.

• Copy or all marked files to another directory.

• Delete all marked files.

• Rename the file on the current line.

• Make another buffer in Directory mode with some of the files in the current buffer.

3.7.1 Directory mode buffer display

The first 2 lines of a Directory mode buffer are the "header", including the attribute line. The following lines each represent
one file. The line starts with spaces for optional marks, followed by the file size in bytes (decimal), followed by the name of
the file.

Each of the optional marks in the beginning of a line is either Space for "off", or a specific character for "on" as shown in
Meaning of "on" characters at start of lines in Directory mode.

Meaning of "on" characters at start of lines in Directory mode

Offset Character Meaning

0 + Edited

1 * Marked

1 D Delete

The remainder of this section contains details of the Directory mode commands.

3.7.2 Directory mode commands

In general the buffer in Directory mode is read-only, and can be modified only by the commands below. Commands that do
not modify the text can be used as in other buffers. You should not edit the buffer in other ways, because the editor expects a
specific structure of the buffer. Commands that just change the contents of the buffer without affecting the file system can be
undone as usual. Commands that affect the file system clear the undo information, so it is not possible to undo these.

Directory Mode Next Line Editor Command

Arguments: None
Key sequence: Space, N, Ctrl+N or Down

The command Directory Mode Next Line moves to the next line in the buffer, with the point on the filename.

3 Command Reference

33

Directory Mode Previous Line Editor Command

Arguments: None
Key sequence: P, Ctrl+P or Up

The command Directory Mode Previous Line moves to the previous line in the buffer, with the point on the
filename.

Directory Mode Edit File Editor Command

Arguments: None
Key sequence: Enter, F or E

The command Directory Mode Edit File edits the file on the current line, and also automatically marks it as
edited. The file is opened in the same window.

Directory Mode Edit File In Other Window Editor Command

Arguments: None
Key sequence: O

The command Directory Mode Edit File In Other Window edits the file on the current line, and also
automatically marks it as edited. The file is opened in another window.

Note: a convenient setup for visiting files is to use Split Window Horizontally (Ctrl+X 5) to display the Directory
mode buffer, and then editing a file by O appears in the other editor window inside the same interface.

Directory Mode Mark Editor Command

Arguments: None
Key sequence: M

The command Directory Mode Mark switches on the mark (the second character) on the current line.

Marks are used by other commands, but do not have any effect otherwise.

After marking the cursor moves to the next line.

With a prefix argument argument it does as many lines as specified by the prefix, while a negative prefix causes lines
above the current line to be marked.

Directory Mode Unmark Editor Command

Arguments: None
Key sequence: U

The command Directory Mode Unmark switches off the mark (the second character) on the current line.

Marks are used by other commands, but do not have any effect otherwise.

After unmarking the cursor moves to the next line.

With a prefix argument argument it does as many lines as specified by the prefix, while a negative prefix causes lines
above the current one to be unmarked.

Directory Mode Unmark Backward Editor Command

Arguments: None
Key sequence: Backspace

3 Command Reference

34

The command Directory Mode Unmark Backward moves to the previous line and switches off the mark. This is
equivalent to Directory Mode Unmark with the prefix argument negated (or supplied as -1).

Directory Mode Unflag Edited Editor Command

Arguments: None
Key sequence: None

The command Directory Mode Unflag Edited switches off the edited flag (+ in the first character) on the current
line.

Directory Mode Flag Edited Editor Command

Arguments: None
Key sequence: None

The command Directory Mode Flag Edited switches on the edited flag (+ in the first character) on the current line.

Directory Mode Toggle Edited Editor Command

Arguments: None
Key sequence: -

The command Directory Mode Toggle Edited changes the state of the edited flag (+ in the first character) on the
current line. The edited flag is merely recorded in the buffer, not stored anywhere else.

Since the flag is switched on automatically when you edit a file from the Directory mode buffer, you normally do not
need to change it, but sometimes you may find it useful.

Directory Mode Mark Matches

Directory Mode Unmark Matches

Directory Mode Mark Regexp Matches
Directory Mode Unmark Regexp Matches Editor Commands

Arguments: None
Key sequence: None

The commands Directory Mode Mark Matches, Directory Mode Unmark Matches,
Directory Mode Mark Regexp Matches and Directory Mode Unmark Regexp Matches mark or unmark the
matching filenames. With a prefix argument, these commands mark the non-matching filenames. These commands first
prompt for a string or regexp to match, and then mark or unmark all the matches (non-matches with prefix argument).

See also: Directory Mode Mark All.

Directory Mode Mark All Editor Command

Arguments: None
Key sequence: None

The command Directory Mode Mark All marks all filenames. With a prefix argument, this command unmarks all
filenames.

See also: Directory Mode Mark Matches.

Directory Mode Mark When Edited
Directory Mode Unmark When Edited Editor Commands

3 Command Reference

35

Arguments: None
Key sequence: None

The commands Directory Mode Mark When Edited and Directory Mode Unmark When Edited mark and
unmark all edited filenames. With a prefix argument, these commands operate on all unedited filenames.

See also: Directory Mode Mark All.

Directory Mode Flag Delete Editor Command

Arguments: None
Key sequence: D

The command Directory Mode Flag Delete switches on the Delete flag (D in the second character) on the current
line.

The Delete flag is used by the command Directory Mode Delete, otherwise nothing uses it.

After marking the cursor moves to the next line.

With a prefix argument it does as many lines as specified by the prefix. A negative prefix argument causes lines above
the current one to be marked for deletion.

Directory Mode Flag Delete When Marked Editor Command

Arguments: None
Key sequence: None

The command Directory Mode Flag Delete When Marked flags for deletion all the marked filenames. With a
prefix argument, it flags all the unmarked filenames.

3.7.3 Explicit editing of the Directory mode buffer

Directory Mode Kill Line Editor Command

Arguments: None
Key sequence: Ctrl+K

The command Directory Mode Kill Line kills the current line. This is like the ordinary Kill Line command,
except that it always removes complete lines (rather than from the point), and it gives an editor error if you try to delete
part of the header.

Force Undo Editor Command

Arguments: None
Key sequence: Ctrl+_ or Ctrl+X U

The command Force Undo is the same as Undo, but works for a read-only buffer too.

Note: This command can be used in other modes too.

3.7.4 Modifying the file system from the Directory mode buffer

Directory Mode Delete Editor Command

Arguments: None
Key sequence: X

3 Command Reference

36

The command Directory Mode Delete deletes the files that are marked for deleting (D in second character).

It first confirms that you really want to delete the files, and then deletes them.

It also deletes the corresponding lines and clears the undo information in the Directory mode buffer.

Note: Like anything that deletes files, you need to be careful when using this command.

Note: When deleting many files, it is convenient to first create a buffer with only the marked files using Directory Mode
New Buffer With Flagged Delete. That makes it easy to see which files you are going to delete.

See also: Directory Mode Flag Delete.

Directory Mode Copy Marked Editor Command

Arguments: None
Key sequence: C

The command Directory Mode Copy Marked copies the marked files to another directory. First it prompts for a
directory, and then copies the marked files to that directory.

This command clears the undo information in the Directory mode buffer.

Note: When copying many files, it is convenient to first create a buffer with only the marked files using Directory Mode
New Buffer With Marked (keystroke T)..That makes it easy to see which files you are going to copy.

Directory Mode Move Marked Editor Command

Arguments: None
Key sequence: Y

The command Directory Mode Move Marked moves the marked files to another directory. First it prompts for a
directory, and then moves the marked files to that directory.

This command also removes the corresponding lines and clears the undo information in the Directory mode buffer.

Note: When moving many files, it is convenient to first create a buffer with only the marked files using Directory Mode
New Buffer With Marked (keystroke T). That makes it easy to see which files you are going to move.

Directory Mode Rename Editor Command

Arguments: None
Key sequence: R

The command Directory Mode Rename renames the file on the current line.

This prompts for a new name for the file, and then renames the file. It then changes the line to contain the new name.

This command clears the undo information in the Directory mode buffer.

3.7.5 Creating new Directory mode buffers

Directory Mode New Buffer With Marked Editor Command

Arguments: None
Key sequence: T

The command Directory Mode New Buffer With Marked creates a new buffer in Directory mode, containing
only the marked lines (that is, those with *). With a prefix argument, it creates a buffer with only the unmarked lines.

3 Command Reference

37

This command does not affect the current buffer.

Note: This is especially useful before doing a batch operation (delete, copy or move) to first check that you are operating
on the correct set of files.

Directory Mode New Buffer With Edited Editor Command

Arguments: None
Key sequence: Ctrl+T

The command Directory Mode New Buffer With Edited creates a new buffer in Directory mode, containing
only the edited lines (that is, those with +).

With a prefix argument, it creates a buffer with only the un-edited lines.

This command does not affect the current buffer.

Directory Mode New Buffer With Flagged Delete Editor Command

Arguments: None
Key sequence: Meta+T

The command Directory Mode New Buffer With Flagged Delete creates a new buffer in Directory mode,
containing only the "delete" lines (that is, those with D).

With a prefix argument, it creates a buffer with only the lines that are not flagged for deletion.

This command does not affect the current buffer.

Directory Mode New Buffer With Matches Editor Command

Arguments: None
Key sequence: S

The command Directory Mode New Buffer With Matches prompts for a string, and then creates a buffer
containing only the lines that match this string. With a prefix argument it creates a buffer with only the non-matching
lines.

This command does not affect the current buffer.

Directory Mode New Buffer With Regexp Matches Editor Command

Arguments: None
Key sequence: Meta+S

The command Directory Mode New Buffer With Regexp Matches prompts for a regular expression, and then
creates a buffer containing only the lines that match this regular expression. With a prefix argument it creates a buffer
with only the non-matching lines.

This command does not affect the current buffer.

3.8 Movement

This section gives details of commands used to move the current point (indicated by the cursor) around the buffer.

The use of prefix arguments with this set of commands can be very useful, as they allow you to get where you want to go
faster. In general, using a negative prefix argument repeats these commands a certain number of times in the opposite logical
direction. For example, the command Ctrl+U 10 Ctrl+B moves the cursor 10 characters backwards, but the command
Ctrl+U -10 Ctrl+B moves the cursor 10 characters forward.

3 Command Reference

38

Some movement commands may behave slightly differently in different modes as delimiter characters may vary.

To help you keep track of places you have visited, commands which are likely move the point some distance record their
starting point as a location. This location can later be revisited by the commands listed in 3.10 Locations.

Forward Character Editor Command

Arguments: None
Key sequence: Ctrl+F or Right

Moves the current point forward one character.

Backward Character Editor Command

Arguments: None
Key sequence: Ctrl+B or Left

Moves the current point backward one character.

Forward Word Editor Command

Arguments: None
Key sequence: Meta+F

Moves the current point forward one word.

Backward Word Editor Command

Arguments: None
Key sequence: Meta+B

Moves the current point backward one word.

Beginning of Line Editor Command

Arguments: None
Key sequence: Ctrl+A

Moves the current point to the beginning of the current line.

End of Line Editor Command

Arguments: None
Key sequence: Ctrl+E

Moves the current point to the end of the current line.

Next Line Editor Command

Arguments: None
Key sequence: Ctrl+N or Down

Moves the current point down one line. If that would be after the end of the line, the current point is moved to the end of
the line instead.

Previous Line Editor Command

Arguments: None
Key sequence: Ctrl+P or Up

Moves the current point up one line. If that would be after the end of the line, the current point is moved to the end of the

3 Command Reference

39

line instead.

Goto Line Editor Command

Arguments: number
Key sequence: None

Moves to the line numbered number.

Records the starting location (see 3.10 Locations).

What Line Editor Command

Arguments: None.
Key sequence: None

Prints in the Echo Area the line number of the current point.

Forward Sentence Editor Command

Arguments: None
Key sequence: Meta+E

Moves the current point to the end of the current sentence. If the current point is already at the end of a sentence, it is
moved to the end of the next sentence.

Backward Sentence Editor Command

Arguments: None
Key sequence: Meta+A

Moves the current point to the start of the current sentence. If the current point is already at the start of a sentence, it is
moved to the beginning of the previous sentence.

Forward Paragraph Editor Command

Arguments: None
Key sequence: Meta+]

Moves the current point to the end of the current paragraph. If the current point is already at the end of a paragraph, then
it is moved to the end of the next paragraph.

Backward Paragraph Editor Command

Arguments: None
Key sequence: Meta+[

Moves the current point to the start of the current paragraph. If the current point is already at the start of a paragraph,
then it is moved to the beginning of the previous paragraph.

Scroll Window Down Editor Command

Arguments: None
Key sequence: Ctrl+V

editor:scroll-window-down-command p &optional window

Changes the text that is being displayed to be one screenful forward, minus scroll-overlap. If the current point is no
longer included in the new text, it is moved to the start of the line nearest to the centre of the window.

3 Command Reference

40

A prefix argument causes the current screen to be scrolled up the number of lines specified and that number of new lines
are shown at the bottom of the window.

The argument window is the name of the window to be scrolled. The default is the current window.

Scroll Window Up Editor Command

Arguments: None
Key sequence: Meta+V

editor:scroll-window-up-command p &optional window

Changes the text that is being displayed to be one screenful back, minus scroll-overlap. If the current point is no
longer included in the new text, it is moved to the start of the line nearest to the centre of the window.

A prefix argument causes the current screen to be scrolled down the number of lines specified and that number of new
lines are shown at the top of the window.

The argument window is the name of the window to be scrolled. The default is the current window.

scroll-overlap Editor Variable

Default value: 1

Determines the number of lines of overlap when Scroll Window Down and Scroll Window Up are used with no prefix
argument.

Line to Top of Window Editor Command

Arguments: None
Key sequence: None

Moves the current line to the top of the window.

Top of Window Editor Command

Arguments: None
Key sequence: None

Moves the current point to the start of the first line currently displayed in the window.

Bottom of Window Editor Command

Arguments: None
Key sequence: None

Moves the current point to the start of the last line that is currently displayed in the window.

Move to Window Line Editor Command

Arguments: None
Key sequence: Meta+Shift+R

Without a prefix argument, moves the current point to the start of the center line in the window.

With a positive (negative) integer prefix argument p, moves the point to the start of the pth line from the top (bottom) of
the window.

3 Command Reference

41

Beginning of Buffer Editor Command

Arguments: None
Key sequence: Meta+Shift+<

Moves the current point to the beginning of the current buffer.

Records the initial location (see 3.10 Locations).

End of Buffer Editor Command

Arguments: None
Key sequence: Meta+Shift+>

Moves the current point to the end of the current buffer.

Records the initial location (see 3.10 Locations).

Beginning of Buffer Preserving Point Editor Command

Arguments: None
Key sequence in macOS editor emulation: Home

The command Beginning of Buffer Preserving Point scrolls the current window to the beginning of the
buffer, without moving the buffer point.

End of Buffer Preserving Point Editor Command

Arguments: None
Key sequence in macOS editor emulation: End

The command End of Buffer Preserving Point scrolls the current window to the end of the buffer, without
moving the buffer point.

Beginning of Window Editor Command

Arguments: None
Key sequence: Ctrl+Prior

The command Beginning of Window moves the buffer point to the beginning of the window.

End of Window Editor Command

Arguments: None
Key sequence: Ctrl+Next

The command End of Window moves the buffer point to the end of the last line that is fully displayed.

Skip Whitespace Editor Command

Arguments: None
Key sequence: None

Skips to the next non-whitespace character if the current character is a whitespace character (for example, Space, Tab or
newline).

Goto Point Editor Command

Arguments: point
Key sequence: None

3 Command Reference

42

Moves the current point to point, where point is a character position in the current buffer.

Scroll Window Down Preserving Highlight Editor Command

Arguments: None
Key sequence: Shift+Next

The command Scroll Window Down Preserving Highlight is the same as Scroll Window Down except that if
there is a highlight region it is extended to the new position of the point rather than unhighlighted.

Scroll Window Up Preserving Highlight Editor Command

Arguments: None
Key sequence: Shift+Prior

The command Scroll Window Up Preserving Highlight is the same as Scroll Window Up except that if there
is a highlight region it is extended to the new position of the point rather than unhighlighted.

Scroll Window Down In Place
Scroll Window Up In Place Editor Commands

Arguments: None
Key sequence: None

The commands Scroll Window Down In Place and Scroll Window Up In Place scroll the window up or
down, keeping the point in the same place on the screen as much as possible.

Without a prefix argument, scrolls one line. With a prefix argument, scrolls that many lines.

Note: These commands differ from other Scroll Window... commands in that, by default, they scroll one line rather
than whole pages. They also retain any highlight.

Scroll Window Up Moving Point Editor Command

Arguments: None
Key sequence in Microsoft Windows editor emulation: Prior
Key sequence in macOS editor emulation: Ctrl+Prior

The command Scroll Window Up Moving Point scrolls the window up. If the current point is not in the newly-
displayed text, it is moved appropriately, trying to keep it in the same place on the screen.

Without a prefix argument, it scrolls by the window height less scroll-overlap. With a prefix argument p, the current
window is scrolled p lines and p new lines are shown at the top.

Scroll Window Down Moving Point Editor Command

Arguments: None
Key sequence in Microsoft Windows editor emulation: Next
Key sequence in macOS editor emulation: Ctrl+Next

The command Scroll Window Down Moving Point scrolls the window down. If the current point is not in the
newly-displayed text, it is moved appropriately, trying to keep it in the same place on the screen.

Without a prefix argument, it scrolls by the window height less scroll-overlap. With a prefix argument p, the current
window is scrolled p lines and p new lines are shown at the bottom.

Scroll Window Up Preserving Point Editor Command

Arguments: None

3 Command Reference

43

Key sequence in macOS editor emulation: Ctrl+Up or Prior

The command Scroll Window Up Preserving Point is the same as Scroll Window Up except that, when the
editor emulation does not force the point to be visible (Microsoft Windows and macOS), it does not move the point when
it becomes invisible.

Scroll Window Down Preserving Point Editor Command

Arguments: None
Key sequence in macOS editor emulation: Ctrl+Down or Next

The command Scroll Window Down Preserving Point is the same as Scroll Window Down except that, when
the emulation does not force the point to be visible (Microsoft Windows and macOS), it does not move the point when it
becomes invisible.

3.9 Marks and regions

The first part of this section gives details of commands associated with marking, while the second provides details of a few
commands whose area is limited to a region. Other region specific commands are available but are dealt with in more
appropriate sections of this manual. For example, Write Region is dealt with under the 3.5 File handling as it involves
writing a region to a file.

Details of marks are kept in a mark ring so that previously defined marks can be accessed. The mark ring works like a stack,
in that marks are pushed onto the ring and can only be popped off on a "last in first out" basis. Each buffer has its own mark
ring.

Note that marks may also be set by using the mouse—see 3.35 Buffers, windows and the mouse—but also note that a
region must be defined either by using the mouse or by using editor key sequences, as the region may become unset if a
combination of the two is used. For example, using Ctrl+Space to set a mark and then using the mouse to go to the start of
the required region unsets the mark.

Note: the editor also records locations of the current point which can be revisited by the commands listed in 3.10 Locations.
Unlike marks, these locations do not interact with the region.

3.9.1 Marks

Set Mark Editor Command

Arguments: None
Key sequence: Ctrl+Space or Middle Mouse Button

With no prefix argument, pushes the current point onto the mark ring, effectively setting the mark to the current point,
and activates the region.

With a prefix argument equal to the value of the prefix-argument-default, Pop and Goto Mark is invoked.

With a prefix argument equal to the square of the prefix-argument-default (achieved by typing Ctrl+U Ctrl+U

before invoking Set Mark), Pop Mark is invoked.

Pop and Goto Mark Editor Command

Arguments: None
Key sequence: None

Moves the current point to the mark without saving the current point on the mark ring (in contrast with Exchange Point
and Mark). After the current point has been moved to the mark, the mark ring is rotated. The current region is de-
activated.

3 Command Reference

44

Pop Mark Editor Command

Arguments: None
Key sequence: Meta+Ctrl+Space

Rotates the mark ring so that the previous mark becomes the current mark. The point is not moved but the current region
is de-activated.

Exchange Point and Mark Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+X

editor:exchange-point-and-mark-command p &optional buffer

Sets the mark to the current point and moves the current point to the previous mark. This command can therefore be used
to examine the extent of the current region.

The argument buffer is the buffer in which to exchange the point and mark. The default value is the current buffer.

Mark Word Editor Command

Arguments: number
Key sequence: Meta+@

Marks the word following the current point. A prefix argument, if supplied, specifies the number of words marked.

Mark Sentence Editor Command

Arguments: None
Key sequence: None

Puts the mark at the end of the current sentence and the current point at the start of the current sentence. The sentence
thereby becomes the current region. If the current point is initially located between two sentences then the mark and
current point are placed around the next sentence.

Mark Paragraph Editor Command

Arguments: None
Key sequence: Meta+H

Puts the mark at the end of the current paragraph and the current point at the start of the current paragraph. The
paragraph thereby becomes the current region. If the current point is initially located between two paragraphs, then the
mark and current point are placed around the next paragraph.

Mark Whole Buffer Editor Command

Arguments: None
Key sequence: Ctrl+X H

Sets the mark at the end of the current buffer and the current point at the beginning of the current buffer. The current
region is thereby set as the whole of the buffer.

A non-nil prefix argument causes the mark to be set as the start of the buffer and the current point at the end.

Records the starting location (see 3.10 Locations).

3 Command Reference

45

3.9.2 Regions

Count Words Region Editor Command

Arguments: None
Key sequence: None

Displays a count of the total number of words in the region between the current point and the mark.

Count Lines Region Editor Command

Arguments: None
Key sequence: None

Displays a count of the total number of lines in the region between the current point and the mark.

region-query-size Editor Variable

Default value: 60

If the region between the current point and the mark contains more lines than the value of this editor variable, then any
destructive operation on the region prompts the user for confirmation before being executed.

Print Region Editor Command

Arguments: None
Key sequence: None

Prints the current region, using capi:print-text. See the CAPI User Guide and Reference Manual for details of this
function.

3.10 Locations

A location is the position of the current point in a buffer at some time in the past. Locations are recorded automatically by the
editor for most commands that take you to a different buffer or where you might lose your place within the current buffer (for
example Beginning of Buffer). They are designed to be a more comprehensive form of the mark ring (see Pop and Goto
Mark), but without the interaction with the selected region.

Go Back Editor Command

Arguments: None
Key sequence: Ctrl+X C

Takes you back to the most recently recorded location. If a prefix argument count is supplied, it takes you back count
locations in the location history. If count is negative, it takes you forward again count locations in the history, provided
that no more locations have been recorded since you last went back.

Select Go Back Editor Command

Arguments: None
Key sequence: Ctrl+X M

Takes you back to a previously recorded location, which you select from a list.

Any prefix argument is ignored.

3 Command Reference

46

Go Forward Editor Command

Arguments: None
Key sequence: Ctrl+X P

Takes you back to the next location in the ring of recorded locations. If a prefix argument count is supplied, it takes you
forward count locations in the location history. If count is negative, it takes you back count locations in the history.

3.11 Deleting and killing text

There are two ways of removing text: deletion, after which the deleted text is not recoverable (except with the Undo
command); and killing, which appends the deleted text to the kill ring, so that it may be recovered using the Un-Kill and
Rotate Kill Ring commands. The first section contains details of commands to delete text, and the second details of
commands to kill text.

Note that, if Delete Selection Mode is active, then any currently selected text is deleted when text is entered. 3.13 Delete
Selection for details.

The use of prefix arguments with this set of commands can be very useful. In general, using a negative prefix argument
repeats these commands a certain number of times in the opposite logical direction. For example, the key sequence
Ctrl+U 10 Meta+D deletes 10 words after the current point, but the key sequence Ctrl+U -10 Meta+D deletes 10 words
before the current point.

3.11.1 Deleting Text

Delete Next Character Editor Command

Arguments: None
Key sequence: Ctrl+D
Key sequence: Delete

Deletes the character immediately after the current point.

Delete Previous Character Editor Command

Arguments: None
Key sequence: Backspace

Deletes the character immediately before the current point.

Delete Previous Character Expanding Tabs Editor Command

Arguments: None
Key sequence: None

Deletes the character immediately before the current point, but if the previous character is a Tab, then this is expanded
into the equivalent number of spaces, so that the apparent space is reduced by one.

A prefix argument deletes the required number of characters, but if any of them are tabs, the equivalent spaces are
inserted before the deletion continues.

Delete Horizontal Space Editor Command

Arguments: None
Key sequence: Meta+\

Deletes all spaces on the line surrounding the current point.

3 Command Reference

47

Just One Space Editor Command

Arguments: None
Key sequence: Meta+Space

Deletes all space on the current line surrounding the current point and then inserts a single space. If there was initially no
space around the current point, a single space is inserted.

Delete Blank Lines Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+O

If the current point is on a blank line, all surrounding blank lines are deleted, leaving just one. If the current point is on a
non-blank line, all following blank lines up to the next non-blank line are deleted.

Delete Region Editor Command

Arguments: None
Key sequence: None

Delete the current region. Also available via editor:delete-region-command.

Clear Listener Editor Command

Arguments: None
Key sequence: None

Deletes the text in a Listener, leaving you with a prompt. Undo information is not retained, although you are warned
about this before confirming the command.

This command is useful if the Listener session has grown very large.

Clear Output Editor Command

Arguments: None
Key sequence: None

Deletes the text in the Output tab of a Listener or Editor tool, or an Output Browser. Undo information is discarded
without warning.

This command is useful if the output has grown very large.

3.11.2 Killing text

Most of these commands result in text being pushed onto the kill ring so that it can be recovered. There is only one kill ring
for all buffers so that text can be copied from one buffer to another.

Normally each kill command pushes a new block of text onto the kill ring. However, if more than one kill command is issued
sequentially, and the text being killed was next to the previously killed text, they form a single entry in the kill ring
(exceptions being Kill Region and Save Region).

Append Next Kill is different in that it affects where a subsequent killed text is stored in the kill ring, but does not itself
modify the kill ring.

Kill Next Word Editor Command

Arguments: None

3 Command Reference

48

Key sequence: Meta+D

Kills the rest of the word after the current point. If the current point is between two words, then the next word is killed.

Kill Previous Word Editor Command

Arguments: None
Key sequence: Meta+Backspace

Kills the rest of the word before the current point. If the current point is between two words, then the previous word is
killed.

Kill Line Editor Command

Arguments: None
Key sequence: Ctrl+K

Kills the characters from the current point up to the end of the current line. If the line is empty then the line is deleted.

Backward Kill Line Editor Command

Arguments: None
Key sequence: None

Kills the characters from the current point to the beginning of the line. If the current point is already at the beginning of
the line, the current line is joined to the previous line, with any trailing space on the previous line killed.

Forward Kill Sentence Editor Command

Arguments: None
Key sequence: Meta+K

Kills the text starting from the current point up to the end of the sentence. If the current point is between two sentences,
then the whole of the next sentence is killed.

Backward Kill Sentence Editor Command

Arguments: None
Key sequence: Ctrl+X Backspace

Kills the text starting from the current point up to the beginning of the sentence. If the current point is between two
sentences, then the whole of the previous sentence is killed.

Kill Region Editor Command

Arguments: None
Key sequence: Ctrl+W

Kills the region between the current point and the mark.

Save Region Editor Command

Arguments: None
Key sequence: Meta+W

Pushes the region between the current point and the mark onto the kill ring without deleting it from the buffer. Text saved
in this way can therefore be inserted elsewhere without first being killed.

3 Command Reference

49

Append Next Kill Editor Command

Arguments: None
Key sequence: Meta+Ctrl+W

If the next command entered kills any text then this text will be appended to the existing kill text instead of being pushed
separately onto the kill ring.

Zap to Char Editor Command

Arguments: None
Key sequence: Meta+Z

Prompts for a character and kills text from the current point to the next occurrence of that character in the current buffer.
If a prefix argument p is used, then it kills to the p'th occurrence. If p is negative, then it kills backwards.

An editor error is signaled if the character cannot be found in the buffer.

3.12 Inserting text

This section contains details of commands used to insert text from the kill ring—see 3.11 Deleting and killing text—and
various other commands used to insert text and lines into the buffer.

Un-Kill Editor Command

Arguments: None
Key sequence: Ctrl+Y

Selects (yanks) the top item in the kill ring (which represents the last piece of text that was killed with a kill command or
saved with Save Region) and inserts it before the current point. The current point is left at the end of the inserted text,
and the mark is automatically set to the beginning of the inserted text.

A prefix argument (Ctrl+U number) causes the item at position number in the ring to be inserted. The order of items on
the ring remains unaltered.

Un-Kill As String Editor Command

Arguments: None
Key sequence: None

Similar to Un-Kill, but inserts the text as a Lisp string, surrounded by double-quotes.

Un-Kill As Filename Editor Command

Arguments: None
Key sequence: None

Similar to Un-Kill, but inserts the text as a filename, converting any backslash characters to forward slash so that it does
not need to be escaped in a Lisp string.

Rotate Kill Ring Editor Command

Arguments: None
Key sequence: Meta+Y

Replaces the text that has just been un-killed with the item that is next on the kill ring. It is therefore possible to recover
text other than that which was most recently killed by typing Ctrl+Y followed by Meta+Y the required number of times.
If Un-Kill was not the previous command, an error is signaled.

3 Command Reference

50

Note that the ring is only rotated and no items are actually deleted from the ring using this command.

A prefix argument causes the kill ring to be rotated the appropriate number of times before the top item is selected.

New Line Editor Command

Arguments: None
Key sequence: Return

Opens a new line before the current point. If the current point is at the start of a line, an empty line is inserted above it. If
the current point is in the middle of a line, that line is split. The current point always becomes located on the second of
the two lines.

A prefix argument causes the appropriate number of lines to be inserted before the current point.

Open Line Editor Command

Arguments: None
Key sequence: Ctrl+O

Opens a new line after the current point. If the current point is at the start of a line, an empty line is inserted above it. If
the current point is in the middle of a line, that line is split. The current point always becomes located on the first of the
two lines.

A prefix argument causes the appropriate number of lines to be inserted after the current point.

Quoted Insert Editor Command

Arguments: args
Key sequence: Ctrl+Q &rest args

Quoted Insert is a versatile command allowing you to enter characters which are not accessible directly on your
keyboard.

A single argument key is inserted into the text literally. This can be used to enter control keys (such as Ctrl+L) into a
buffer as a text string. Note that Ctrl is represented by ^ and Meta by ^].

You may input a character by entering its Octal Unicode code: press Return to indicate the end of the code. For
example enter:

Ctrl+Q 4 3 Return

to input #.

Self Insert Editor Command

Arguments: None
Key sequence: key

editor:self-insert-command p &optional char

This is the basic command used for inserting each character that is typed. The character to be inserted is char. There is
no need for the user to use this command explicitly.

Dynamic Completion Editor Command

Arguments: None
Key sequence: Meta+/

3 Command Reference

51

http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm

Tries to complete the current word, by looking backwards for a word that starts with the same characters as have already
been typed. Repeated use of this command makes the search skip to successively previous instances of words beginning
with these characters. A prefix argument causes the search to progress forwards rather than backwards. If the buffer is in
Lisp mode then completion occurs for Lisp symbols as well as words.

3.13 Delete Selection

When in Delete Selection Mode, commands that insert text into the buffer first delete any selected text. Delete Selection
Mode is a global editor setting. It is off by default with Emacs keys, and is on by default when using KDE/Gnome editor
emulation.

Delete Selection Mode Editor Command

Arguments: None
Key sequence: None

Toggles Delete Selection Mode, switching it on if it is currently off, and off if it is currently on.

3.14 Undoing

Commands that modify the text in a buffer can be undone, so that the text reverts to its state before the command was
invoked, using Undo. Details of modifying commands are kept in an undo ring so that previous commands can be undone.
The undo ring works like a stack, in that commands are pushed onto the ring and can only be popped off on a "last in first
out" basis.

Un-Kill can also be used to replace text that has inadvertently been deleted.

Undo Editor Command

Arguments: None
Key sequence: Ctrl+Shift+_

Undoes the last command. If invoked repeatedly, the most recent commands in the editing session are successively
undone.

See also: Clear Undo, Toggle Global Simple Undo.

undo-ring-size Editor Variable

Default value: 100

The number of items in the undo ring.

3.15 Case conversion

This section provides details of the commands which allow case conversions on both single words and regions of text. The
three general types of case conversion are converting words to uppercase, converting words to lowercase and converting the
first letter of words to uppercase.

Lowercase Word Editor Command

Arguments: None
Key sequence: Meta+L

Converts the current word to lowercase, starting from the current point. If the current point is between two words, then
the next word is converted.

3 Command Reference

52

A negative prefix argument converts the appropriate number of words before the current point to lowercase, but leaves
the current point where it was.

Uppercase Word Editor Command

Arguments: None
Key sequence: Meta+U

Converts the current word to uppercase, starting from the current point. If the current point is between two words, then
the next word is converted.

A negative prefix argument converts the appropriate number of words before the current point to uppercase, but leaves
the current point where it was.

Capitalize Word Editor Command

Arguments: None
Key sequence: Meta+C

Converts the current word to lowercase, capitalizing the first character. If the current point is inside a word, the character
immediately after the current point is capitalized.

A negative prefix argument capitalizes the appropriate number of words before the current point, but leaves the point
where it was.

Lowercase Region Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+L

Converts all the characters in the region between the current point and the mark to lowercase.

Uppercase Region Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+U

Converts all the characters in the region between the current point and the mark to uppercase.

Capitalize Region Editor Command

Arguments: None
Key sequence: None

Converts all the words in the region between the mark and the current point to lowercase, capitalizing the first character
of each word.

3.16 Transposition

This section gives details of commands used to transpose characters, words, lines and regions.

Transpose Characters Editor Command

Arguments: None
Key sequence: Ctrl+T

Transposes the current character with the previous character, and then moves the current point forwards one character.

If this command is issued when the current point is at the end of a line, the two characters to the left of the cursor are

3 Command Reference

53

transposed.

A positive prefix argument causes the character before the current point to be shifted forwards the required number of
places. A negative prefix argument has a similar effect but shifts the character backwards. In both cases the current point
remains located after the character which has been moved.

Transpose Words Editor Command

Arguments: None
Key sequence: Meta+T

Transposes the current word with the next word, and then moves the current point forward one word. If the current point
is initially located between two words, then the previous word is moved over the next word.

A positive prefix argument causes the current or previous word to be shifted forwards the required number of words. A
negative prefix argument has a similar effect but shifts the word backwards. In both cases the current point remains
located after the word which has been moved.

Transpose Lines Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+T

Transposes the current line with the previous line, and then moves the current point forward one line.

A positive prefix argument causes the previous line to be shifted forwards the required number of lines. A negative prefix
argument has a similar effect but shifts the line backwards. In both cases the current point remains located after the line
which has been moved.

A prefix argument of zero transposes the current line and the line containing the mark.

Transpose Regions Editor Command

Arguments: None
Key sequence: None

Transposes two regions. One region is delineated by the current point and the mark. The other region is delineated by the
next two points on the mark ring. To use this command it is necessary to use Set Mark at the beginning and end of one
region and at the beginning of the other region, and then move the current point to the end of the second region.

3.17 Overwriting

By default each character that you type is inserted into the text, with the existing characters being shifted as appropriate. In
Overwrite mode, each character that you type deletes an existing character in the text.

When in Overwrite mode, a character can be inserted without deleting an existing character by preceding it with Ctrl+Q.

Overwrite Mode Editor Command

Arguments: None
Key sequence: Insert

Switches Overwrite mode on if it is currently off, and off if it is currently on.

With a positive prefix argument, Overwrite mode is turned on. With a zero or negative prefix argument it is turned off.
Using prefix arguments with Overwrite Mode disregards the current state of the mode.

3 Command Reference

54

Self Overwrite Editor Command

Arguments: None
Key sequence: key

If the current point is in the middle of a line, the next character (that is, the character that is highlighted by the cursor) is
replaced with the last character typed. If the current point is at the end of a line, the new character is inserted without
removing any other character.

A prefix argument causes the new character to overwrite the relevant number of characters.

This is the command that is invoked when each character is typed in overwrite mode. There is no need for users to
invoke this command explicitly.

Overwrite Delete Previous Character Editor Command

Arguments: None
Key sequence: None

Replaces the previous character with space, except that tabs and newlines are deleted.

3.18 Indentation

This section contains details of commands used to indent text. Indentation is usually achieved by inserting tab or space
characters into the text so as to indent that text a predefined number of spaces.

The effect of the editor indentation commands depends on the major mode of the buffer. Where relevant, the command
details given below provide information on how they operate in Text mode and Lisp mode. The operation of commands in
Fundamental mode is generally the same as that of Text mode.

Indent Editor Command

Arguments: None
Key sequence: Tab

In Text mode, spaces-for-tab #\Space characters are inserted. A prefix argument causes this to occur at the start of
the appropriate number of lines (starting from the current line).

In Lisp mode, the current line is indented according to the structure of the current Lisp form. A prefix argument p causes
p lines to be indented according to Lisp syntax.

See editor:*indent-with-tabs* for control over the insertion of #\Tab characters by this and other indentation
commands.

Note: the key sequence Tab is overridden in Lisp mode to perform Indent Selection or Complete Symbol.

spaces-for-tab Editor Variable

Default value: 8

Determines the width of the whitespace (that is, the number of #\Space characters) used to display a #\Tab character.

Indent Region Editor Command

Arguments: None
Key sequence: Meta+Ctrl+\

Indents all the text in the region between the mark and the current point.

3 Command Reference

55

In Text mode a block of whitespace, which is spaces-for-tab wide, is inserted at the start of each line within the
region.

In Lisp mode the text is indented according to the syntax of the Lisp form.

In both cases, a prefix argument causes any existing indentation to be deleted and replaced with a block of whitespace of
the appropriate width.

Indent Rigidly Editor Command

Arguments: None
Key sequence: Ctrl+X Tab or Ctrl+X Ctrl+I

Indents each line in the region between the current point and the mark by a block of whitespace which is
spaces-for-tab wide. Any existing whitespace at the beginning of the lines is retained.

A positive prefix argument causes the lines to be indented by the appropriate number of spaces, in addition to their
existing space. A negative prefix argument causes the lines to be shifted to the left by the appropriate number of spaces.
Where necessary, tabs are converted to spaces.

Indent Selection Editor Command

Arguments: None
Key sequence: None

Indents all the text in the selection or the current line if there is no selection. With a prefix argument p, any existing
indentation is deleted and replaced with a block of space p columns wide.

See also Indent Selection or Complete Symbol.

Delete Indentation Editor Command

Arguments: None
Key sequence: Meta+Shift+^

Joins the current line with the previous one, deleting all whitespace at the beginning of the current line and at the end of
the previous line. The deleted whitespace is normally replaced with a single space. However, if the deleted whitespace is
at the beginning of a line, or immediately after a (, or immediately before a), then the whitespace is merely deleted
without any characters being inserted. If the preceding character is a sentence terminator, then two spaces are left instead
of one.

A prefix argument causes the following line to be joined with the current line.

Back to Indentation Editor Command

Arguments: None
Key sequence: Meta+M

Moves the current point to the first character in the current line that is not a whitespace character.

Indent New Line Editor Command

Arguments: None
Key sequence: None

Moves everything to the right of the current point to a new line and indents it. Any whitespace before the current point is
deleted. If there is a fill-prefix, this is inserted at the start of the new line instead.

A prefix argument causes the current point to be moved down the appropriate number of lines and indented.

3 Command Reference

56

Quote Tab Editor Command

Arguments: None
Key sequence: None

Inserts a Tab character.

A prefix argument causes the appropriate number of tab characters to be inserted.

3.19 Filling

Filling involves re-formatting text so that each line extends as far to the right as possible without any words being broken or
any text extending past the fill-column.

The first section deals with general commands used to fill text, while the second section provides information on Auto-Fill
mode and related commands.

3.19.1 Fill commands

Fill Paragraph Editor Command

Arguments: None
Key sequence: Meta+Q

Fills the current paragraph. If the current point is located between two paragraphs, the next paragraph is filled.

A prefix argument causes the current fill operation to use that value, rather than the value of fill-column.

Fill Region Editor Command

Arguments: None
Key sequence: Meta+G

Fills the region from the current point to the mark.

A prefix argument causes the current fill operation to use that value, rather than the value of fill-column.

fill-column Editor Variable

Default value: 70

Determines the column at which text in the current buffer is forced on to a new line when filling text.

Set Fill Column Editor Command

Arguments: None
Key sequence: Ctrl+X F

Sets the value of fill-column, for the current buffer, as the column of the current point.

A prefix argument causes fill-column to be set at the required value.

fill-prefix Editor Variable

Default value: nil

Defines a string which is excluded when each line of the current buffer is re-formatted using the filling commands. For
example, if the value is ";;", then these characters at the start of a line are skipped over when the text is re-formatted.

3 Command Reference

57

This allows you to re-format (fill) Lisp comments. If the value is nil, no characters are excluded when text is filled.

If the vales is non-nil, any line that does not begin with the value is considered to begin a new paragraph. Therefore, any
re-formatting of comments in Lisp code does not intrude outside the commented lines.

Set Fill Prefix Editor Command

Arguments: None
Key sequence: Ctrl+X .

Sets the fill-prefix of the current buffer to be the text from the beginning of the current line up to the current point.
The fill-prefix may be set to nil by using this command with the current point at the start of a line.

Center Line Editor Command

Arguments: None
Key sequence: None

Centers the current line with reference to the current value of fill-column.

A prefix argument causes the current line to be centered with reference to the required width.

3.19.2 Auto-Fill mode

By default no filling of text takes place unless specified by using one of the commands described above. A result of this is
that the user has to press Return at the end of each line typed to simulate filling. In Auto-Fill mode lines are broken between
words at the right margin automatically as the text is being typed. Each line is broken when a space is inserted, and the text
that extends past the right margin is put on the next line. The right hand margin is determined by the editor variable
fill-column.

Auto Fill Mode Editor Command

Arguments: None
Key sequence: None

Switches auto-fill mode on if it is currently off, and off if it is currently on.

With a positive prefix argument, auto-fill mode is switched on. With a negative or zero prefix argument, it is switched
off. Using prefix arguments with Auto Fill Mode disregards the current state of the mode.

Auto Fill Space Editor Command

Arguments: None
Key sequence: Space
Mode: Auto-Fill

Inserts a space and breaks the line between two words if the line extends beyond the right margin. A fill prefix is
automatically added at the beginning of the new line if the value of fill-prefix is non-nil.

When Space is bound to this command in Auto-Fill mode, this key no longer invokes Self Insert.

A positive prefix argument causes the required number of spaces to be inserted but no line break. A prefix argument of
zero causes a line break, if necessary, but no spaces are inserted.

Auto Fill Linefeed Editor Command

Arguments: None
Key sequence: Linefeed
Mode: Auto-Fill

3 Command Reference

58

Inserts a Linefeed and a fill-prefix (if one exists).

Auto Fill Return Editor Command

Arguments: None
Key sequence: Return
Mode: Auto-Fill

The current line is broken, between two words if necessary, with no Space being inserted. This is equivalent to Auto Fill
Space with a zero prefix argument, but followed by a newline.

auto-fill-space-indent Editor Variable

Default value: nil

When true, Auto-fill commands use Indent New Comment Line to break lines instead of New Line.

3.20 Buffers

This section contains details of commands used to manipulate buffers.

Select Buffer Editor Command

Arguments: buffer-name
Key sequence: Ctrl+X B buffer-name

Displays a buffer called buffer-name in the current window. If no buffer name is provided, the last buffer accessed in the
current window is displayed. If the buffer that is selected is already being displayed in another window, any
modifications to that buffer are shown simultaneously in both windows.

Select Buffer Other Window Editor Command

Arguments: buffer-name
Key sequence: None

Displays a buffer called buffer-name in a new window. If no buffer name is provided, the last buffer displayed in the
current window is selected. If the buffer that is selected is already being displayed in another window, any modifications
to that buffer are shown simultaneously in both windows.

Select Previous Buffer Editor Command

Arguments: None
Key sequence: Meta+Ctrl+L

Displays the last buffer accessed in a new window. If the buffer that is selected is already being displayed in another
window, any modifications to that buffer are shown simultaneously in both windows.

A prefix argument causes the appropriately numbered buffer, from the top of the buffer history, to be selected.

Circulate Buffers Editor Command

Arguments: None
Key sequence: Meta+Ctrl+Shift+L

Move through the buffer history, selecting the successive previous buffers.

3 Command Reference

59

Bury Buffer Editor Command

Arguments: buffer
Key sequence: None

The command Bury Buffer puts the buffer buffer, which defaults to the current buffer, at the end of the buffer list. If
the buffer is visible in the current window, it is replaced by the previously selected buffer.

Edit Buffer Editor Command

Arguments: buffer-name
Key sequence: None

The command Edit Buffer displays a buffer buffer-name, either in the current window if it is suitable, or a suitable
window.

Note: windows such as the Output tab of the Editor tool are marked internally as not suitable for displaying arbitrary
buffers. If Edit Buffer is invoked when the current window is marked, it finds another window to display the buffer.
In contrast, Select Buffer will signal an editor error in this case.

Kill Buffer Editor Command

Arguments: buffer-name
Key sequence: Ctrl+X K buffer-name

editor:kill-buffer-command p &optional buffer-name

Deletes a buffer called buffer-name. If no buffer name is provided, the current buffer is deleted. If the buffer that is
selected for deletion has been modified then confirmation is asked for before deletion takes place.

List Buffers Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+B

Displays a list of all the existing buffers in the Buffers window in the Editor tool. Information shown includes the name
of the buffer, its major mode, whether it has been modified or not, the pathname of any file it is associated with, and its
size.

A buffer can be selected by clicking the left mouse button on the buffer name. The buttons on the toolbar can then be
used to modify the selected buffer.

Create Buffer Editor Command

Arguments: buffer-name
Key sequence: None

editor:create-buffer-command p &optional buffer-name

Creates a buffer called buffer-name. If no buffer name is provided then the current buffer is selected. If a buffer with the
specified name already exists then this becomes the current buffer instead, and no new buffer is created.

New Buffer Editor Command

Arguments: None
Key sequence: None

Creates a new unnamed buffer. The buffer is in Lisp mode.

3 Command Reference

60

default-buffer-element-type Editor Variable

Default value: cl:character

The character element type used when a new buffer is created, for example by New Buffer.

Insert Buffer Editor Command

Arguments: buffer-name
Key sequence: None

Inserts the contents of a buffer called buffer-name at the current point. If no buffer name is provided, the contents of the
last buffer displayed in the current window are inserted.

Rename Buffer Editor Command

Arguments: new-name
Key sequence: None

Changes the name of the current buffer to new-name.

Toggle Buffer Read-Only Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+Q

Makes the current buffer read only, so that no modification to its contents are allowed. If it is already read only, this
restriction is removed.

Set Buffer Transient Edit Editor Command

Arguments: None
Key sequence: None

The command Set Buffer Transient Edit makes the current buffer writable, and disables auto-saving.

Check Buffer Modified Editor Command

Arguments: None
Key sequence: Ctrl+X Shift+~

Checks whether the current buffer is modified or not.

Buffer Not Modified Editor Command

Arguments: None
Key sequence: Meta+Shift+~

editor:buffer-not-modified-command p &optional buffer

Makes the current buffer not modified.

The argument buffer is the name of the buffer to be un-modified. The default is the current buffer.

Print Buffer Editor Command

Arguments: None
Key sequence: None

3 Command Reference

61

http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

The command Print Buffer prints the current buffer, by calling capi:print-dialog to select a printer and then
capi:print-text with the appropriate arguments to print the buffer.

See the CAPI User Guide and Reference Manual for details of these functions.

3.21 Windows

This section contains details of commands used to manipulate windows. A window ring is used to hold details of all windows
currently open.

New Window Editor Command

Arguments: None
Key sequence: Ctrl+X 2

Creates a new window and makes it the current window. Initially, the new window displays the same buffer as the
current one.

Next Window Editor Command

Arguments: None
Key sequence: None

Changes the current window to be the next window in the window ring, and the current buffer to be the buffer that is
displayed in that window.

Next Ordinary Window Editor Command

Arguments: None
Key sequence: Ctrl+X O

Changes the current window to be the next ordinary editor window, thus avoiding the need to cycle through other
window types (for example, Listeners and Debuggers).

Previous Window Editor Command

Arguments: None
Key sequence: None

Changes the current window to be the previous window visited, and the current buffer to be the buffer that is displayed in
that window.

Delete Window Editor Command

Arguments: None
Key sequence: Ctrl+X 0

Deletes the current window. The previous window becomes the current window.

Delete Next Window Editor Command

Arguments: None
Key sequence: None

Deletes the next window in the window ring.

3 Command Reference

62

Delete Other Windows Editor Command

Arguments: None
Key sequence: Ctrl+X 1

The command Delete Other Windows deletes (that is, closes) all other windows inside the same interface.
Applicable only inside the LispWorks IDE Editor tool.

See also: Delete Next Window.

Previous Focus Window Editor Command

Arguments: None
Key sequence: None

The command Previous Focus Window switches to the editor pane that previously had the input focus.

Scroll Next Window Down Editor Command

Arguments: None
Key sequence: None

The next window in the window ring is scrolled down.

A prefix argument causes the appropriately numbered window, from the top of the window ring, to be scrolled.

Scroll Next Window Up Editor Command

Arguments: None
Key sequence: None

The next window in the window ring is scrolled up.

A prefix argument causes the appropriately numbered window, from the top of the window ring, to be scrolled.

Split Window Horizontally Editor Command

Arguments: None
Key sequence: Ctrl+X 5

Split the current window horizontally, adding a window to the left of the current window or to the right if given a prefix
argument. The new window will display the current buffer initially.

Split Window Vertically Editor Command

Arguments: None
Key sequence: Ctrl+X 6

Split the current window vertically, adding a window above the current window or below if given a prefix argument. The
new window will display the current buffer initially.

Unsplit Window Editor Command

Arguments: None
Key sequence: Ctrl+X 7

Remove another window in the same split column or row. A prefix argument causes all other windows in the same top
level windows to be removed. When invoked without a prefix, the next window is removed if there is one, otherwise the
previous window is removed.

3 Command Reference

63

Toggle Count Newlines Editor Command

Arguments: None
Key sequence: None

Controls the size of the scroller in editor-based tools, and how the Editor tool's mode line represents the extent of the
displayed part of the buffer.

Toggle Count Newlines switches between counting newlines and counting characters in the current buffer. The
counting determines what is displayed in the Editor tool's mode line, and how the size of the scroller is computed.

When counting newlines, the mode line shows line numbers and the total number of lines:

StartLine-EndLine[TotalLine]

When counting characters, the mode line shows percentages based on the characters displayed compared to the total
number of characters in the buffer:

PercentStart-PercentEnd%

The default behavior is counting newlines, except for very large buffers.

Refresh Screen Editor Command

Arguments: None
Key sequence: Ctrl+L

Moves the current line to the center of the current window, and then re-displays all the text in all the windows.

A prefix argument of 0 causes the current line to become located at the top of the window. A positive prefix argument
causes the current line to become located the appropriate number of lines from the top of the window. A negative prefix
argument causes the current line to become located the appropriate number of lines from the bottom of the window.

3.22 Pages

Files are sometimes thought of as being divided into pages. For example, when a file is printed on a printer, it is divided into
pages so that each page appears on a fresh piece of paper. The ASCII key sequence Ctrl+L constitutes a page delimiter (as it
starts a new page on most line printers). A page is the region between two page delimiters. A page delimiter can be inserted
into text being edited by using the editor command Quoted Insert (that is, type in Ctrl+Q Ctrl+L).

Previous Page Editor Command

Arguments: None
Key sequence: Ctrl+X [

Moves the current point to the start of the current page.

A prefix argument causes the current point to be moved backwards the appropriate number of pages.

Next Page Editor Command

Arguments: None
Key sequence: Ctrl+X]

Moves the current point to the start of the next page.

A prefix argument causes the current point to be moved forwards the appropriate number of pages.

3 Command Reference

64

Goto Page Editor Command

Arguments: None
Key sequence: None

Moves the current point to the start of the next page.

A positive prefix argument causes the current point to be moved to the appropriate page starting from the beginning of
the buffer. A negative prefix argument causes the current point to be moved back the appropriate number of pages from
the current location. A prefix argument of zero causes the user to be prompted for a string, and the current point is
moved to the next page with that string contained in the page title.

Records the starting location (see 3.10 Locations).

Mark Page Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+P

Puts the mark at the end of the current page and the current point at the start of the current page. The page thereby
becomes the current region.

A prefix argument marks the page which is the appropriate number of pages on from the current one.

Count Lines Page Editor Command

Arguments: None
Key sequence: Ctrl+X L

Displays the number of lines in the current page and the location of the current point within the page.

A prefix argument displays the total number of lines in the current buffer and the location of the current point within the
buffer (so that page delimiters are ignored).

View Page Directory Editor Command

Arguments: None
Key sequence: None

Displays a list of the first non-blank line after each page delimiter.

Insert Page Directory Editor Command

Arguments: None
Key sequence: None

Inserts a listing of the first non-blank line after each page delimiter at the start of the buffer, moving the current point to
the end of this list. The location of the start of this list is pushed onto the mark ring.

A prefix argument causes the page directory to be inserted at the current point.

3.23 Searching and replacing

This section is divided into three parts. The first two provide details of commands used for searching. These commands are,
on the whole, non-modifying and non-destructive, and merely search for strings and patterns. The third part provides details
of commands used for replacing a string or pattern.

3 Command Reference

65

3.23.1 Searching

Most of the search commands perform straightforward searches, but there are two useful commands (Incremental Search
and Reverse Incremental Search) which perform incremental searches. This means that the search is started as soon as the
first character is typed.

Incremental Search Editor Command

Arguments: string
Key sequence: Ctrl+S string

Searches forward, starting from the current point, for the search string that is input, beginning the search as soon as each
character is typed in. When a match is found for the search string, the current point is moved to the end of the matched
string. If the search string is not found between the current point and the end of the buffer, an error is signaled.

The search result is highlighted. You can change the style of the highlighting in the LispWorks IDE by Preferences... >
Environment > Styles > Colors and Attributes > Search Match.

Incremental Search records the starting location (see 3.10 Locations).

With a prefix argument p the matches are displayed at a fixed line position, p lines below the top of the window.
Otherwise, the position of the matched string within the window is influenced by the editor variable
incremental-search-minimum-visible-lines.

For example, to display successive definitions one line from the top of the text view of the Editor window, enter:

Ctrl+U 2 Ctrl+S (d e f Ctrl+S Ctrl+S

All incremental searches can be controlled by entering one of the following key sequences at any time during the search.

Ctrl+S If the search string is empty, repeats the last incremental search, otherwise repeats a forward
search for the current search string.

If the search string cannot be found, starts the search from the beginning of the buffer (wrap-
around search).

Ctrl+R Changes to a backward (reverse) search.

Delete Cancels the last character typed.

Ctrl+Q Quotes the next character typed.

Ctrl+W Adds the next word under the cursor to the search string.

Meta+Ctrl+Y Adds the next form under the cursor to the search string.

Ctrl+Y Adds the remainder of the line under the cursor to the search string.

Meta+Y Adds the current kill string to the search string.

Ctrl+C Add the editor window's selected text to the search string.

Esc If the search string is empty, invokes a non-incremental search, otherwise exits the search,
leaving the current point at the last find.

Ctrl+G Aborts the search, returning the current point to its original location.

If the search string cannot be found, cancels the last character typed (equivalent to Delete).

3 Command Reference

66

Return Exits the search, leaving the current point at the last find.

Meta+S Space

Toggle lax whitespace match. See isearch-lax-whitespace for details.

incremental-search-minimum-visible-lines Editor Variable

Default value: 3

Determines the minimum of visible lines between an incremental search match and the closest window border (top or
bottom). If the point is closer to the border than the value, the point is scrolled to the center of the window.

Lines are counted from the start of the match, and the line where the match starts is included in the count.

Note that this has no effect when doing "fixed position" search (with numeric prefix), for example
Ctrl+U digit Ctrl+S, or if the window is too short.

Setting the value to 0 makes incremental searching behave as in LispWorks 6.0 and earlier versions, that is the match can
be shown on the top or bottom line currently displayed in the window.

isearch-lax-whitespace

isearch-regexp-lax-whitespace

replace-lax-whitespace
replace-regexp-lax-whitespace Editor Variables

Default value: nil.

Each of these variables controls the default state of lax whitespace match search in the respective operation:

• isearch-lax-whitespace controls lax whitespace match in ordinary (non-regexp) search.

• isearch-regexp-lax-whitespace controls lax whitespace match in regular expression search.

• replace-lax-whitespace controls lax whitespace in query replace match with ordinary match.

• replace-regexp-lax-whitespace controls lax whitespace match in regular expression query replace.

In all cases, when the value of the variable is nil, then each space in the match string is treated like other ordinary
characters (normal match). If the variable is non-nil, a single space in the match string is effectively replaced by the
value of search-whitespace-regexp, interpreted as a regular expression even the ordinary search and replace
operation (this is called a lax whitespace match). By default search-whitespace-regexp is set to a regular
expression that matches any sequence of whitespace characters.

In regular expression search and query replace, a space is replaced by search-whitespace-regexp only if it is not in
a "special" position in the match. "Special" positions are:

• Inside a pair of square brackets ([...]).

• Immediately following a backslash (\).

• Immediately preceding one of question mark (?), star (*) or plus (+).

For incremental searches, the respective variable determines the initial state of lax whitespace match. You can toggle the
state on and off during an incremental search by typing Meta+S Space, which only affects the current operation.

3 Command Reference

67

search-whitespace-regexp Editor Variable

Default value: a string made from the 7 characters: #\[#\Space #\Tab #\Return #\Newline #\] #\+.

When lax whitespace match is on, the value of search-whitespace-regexp is used to effectively replace any single
space in the match string.

Whether lax whitespace match is on is controlled by the variables isearch-lax-whitespace,
isearch-regexp-lax-whitespace, replace-lax-whitespace and replace-regexp-lax-whitespace.

Note that the value of search-whitespace-regexp is always interpreted as a regexp, including in the ordinary search
and replace operations.

Reverse Incremental Search Editor Command

Arguments: string
Key sequence: Ctrl+R string

Searches backward, starting from the current point, for the search string that is input, beginning the search as soon as
each character is provided. When a match is found for the search string, the current point is moved to the start of the
matched string. If the search string is not found between the current point and the beginning of the buffer, an error is
signaled.

You can use a fixed line position for the matches and/or modify the style used to display them, as described for
Incremental Search.

With a prefix argument p the matches are displayed at a fixed line position, p lines below the top of the window.
Otherwise, the position of the matched string within the window is influenced by the editor variable
incremental-search-minimum-visible-lines.

The search can be controlled by entering one of the following key sequences at any time during the search.

Ctrl+R If the search string is empty, repeats the last incremental search, otherwise repeats a backward
search for the current search string.

If the search string cannot be found, starts the search from the end of the buffer (wrap-around
search).

Ctrl+S Changes to a forward search.

Delete Cancels the last character typed.

Esc If the search string is empty, invokes a non-incremental search, otherwise exits the search,
leaving the current point at the last find.

Ctrl+G Aborts the search, returning the current point to its original location.

If the search string cannot be found, cancels the last character typed (equivalent to Delete).

Ctrl+Q Quotes the next character typed.

Forward Search Editor Command

Arguments: string
Key sequence: Ctrl+S Esc string

editor:forward-search-command p &optional string the-point

The default for the-point is the current point.

3 Command Reference

68

Searches forwards from the-point for string. When a match is found, the-point is moved to the end of the matched string.
In contrast with Incremental Search, the search string must be terminated with a carriage return before any searching is
done. If an empty string is provided, the last search is repeated.

Records the starting location (see 3.10 Locations).

Backward Search Editor Command

Arguments: string
Key sequence: None

editor:reverse-search-command p &optional string the-point

The default for the-point is the current point.

Searches backwards from the-point for string. When a match is found, the-point is moved to the start of the matched
string. In contrast with Reverse Incremental Search, the search string must be terminated with a carriage return before
any searching is done. If an empty string is provided, the last search is repeated.

Records the starting location (see 3.10 Locations).

Reverse Search is a synonym for Backward Search.

List Matching Lines Editor Command

Arguments: string
Key sequence: None

editor:list-matching-lines-command p &optional string

Lists all lines after the current point that contain string, in a Matches window.

A prefix argument causes the appropriate number of lines before and after each matching line to be listed also.

Delete Matching Lines Editor Command

Arguments: string
Key sequence: None

editor:delete-matching-lines-command p &optional string

Deletes all lines after the current point that match string.

Delete Non-Matching Lines Editor Command

Arguments: string
Key sequence: None

editor:delete-non-matching-lines-command p &optional string

Deletes all lines after the current point that do not match string.

Search All Buffers Editor Command

Arguments: string
Key sequence: None

Searches all the buffers for string. If only one buffer contains string, it becomes the current buffer, with the cursor

3 Command Reference

69

positioned at the start of the string. If more than one buffer contains the string, a popup window displays a list of those
buffers. A buffer may then be selected from this list.

Buffers Search Editor Command

Arguments: search-string
Key sequence: None

The command Buffers Search searches all opened buffers for search-string, displaying the first match.

Use the key sequence Meta+, to find subsequent occurrences of search-string.

Search Buffers Editor Command

Arguments: search-string
Key sequence: None

The command Search Buffers searches all opened buffers using the Search Files tool.

It prompts for a string and then activates the Search Files tool in the Opened Buffers mode. See the LispWorks IDE User
Guide for a description of the Search Files tool.

Directory Search Editor Command

Arguments: directory string
Key sequence: None

Searches source files in directory for string. The current working directory is offered as a default for directory.

By default only files with suffix .lisp, .lsp, .c, .cpp or .h are searched. A non-nil prefix argument causes all files
to be searched, except for those ending with one of the strings in the list system:*ignorable-file-suffices*.

Directory Search displays the first match. Use the key sequence Meta+, to find subsequent occurrences of the
search string.

Search Files Editor Command

Arguments: search-string directory
Key sequence: Ctrl+X * search-string directory

Searches for a string in a directory using a Search Files tool.

The command prompts for search-string and directory and then raises a Search Files tool. The configuration of the
Search Files tool controls which files in the directory are searched. If the search string is not empty, it starts searching
automatically, unless a prefix argument is given.

See the LispWorks IDE User Guide for a description of the Search Files tool.

Search Files Matching Patterns Editor Command

Arguments: search-string directory patterns
Key sequence: Ctrl+X & search-string directory patterns

Searches for a string in files under a directory with names matching given patterns, using a Search Files tool.

The command prompts for search-string, directory and patterns, and raises a Search Files tool in Roots and Patterns
mode. If the search string is not empty, it starts searching automatically, unless a prefix argument is given.

patterns should be a comma-separated set of filename patterns delimited by braces. A pattern where the last component
does not contain * is assumed to be a directory onto which the Search Files tool adds its own filename pattern. patterns

3 Command Reference

70

defaults to {*.lisp,*.lsp,*.c,*.h}.

See the LispWorks IDE User Guide for a description of the Search Files tool.

System Search Editor Command

Arguments: system string
Key sequence: None

Searches the files of system for string.

Matches are shown in editor buffers consecutively. Use the key sequence Meta+, to find subsequent definitions of the
search string.

Search System Editor Command

Arguments: search-string system
Key sequence: None

Prompts for search-string and system and then raises a Search Files tool in System Search mode, which displays the
search results and allows you to visit the files.

See the LispWorks IDE User Guide for a description of the Search Files tool.

default-search-kind Editor Variable

Default value: :string-insensitive

Defines the default method of searching. By default, all searching (including regexp searching, and replacing
commands) ignores case. If you want searching to be case-sensitive, the value of this variable should be set to
:string-sensitive using Set Variable.

It is also possible to search a set of files programmatically using the search-files function:

editor:search-files Function

editor:search-files &key string files generator => nil

search-files searches all the files in a list for a given string.

string is a string to search for (prompted if not given).

files is a list of pathnames of files to search, and generator is a function to generate the files if none are supplied.

If a match is found the file is displayed in a buffer with the cursor on the occurrence. Meta+-, makes the search
continue until the next occurrence.

search-files returns nil.

For example:

(editor:search-files
 :files '(".login" ".cshrc")
 :string "alias")

3 Command Reference

71

3.23.2 Regular expression searching

The syntax of regular expressions in LispWorks is defined in 28.7 Regular expression syntax in the LispWorks® User Guide
and Reference Manual.

The following commands search using regular expressions.

Regexp Forward Search
Regexp Reverse Search Editor Commands

Arguments: string
Key sequence: None

Performs a forward or backward search for string using regular expressions. The search pattern must be terminated with
a carriage return before any searching is done. If an empty string is provided, the last regexp search is repeated.

See also: editor:regular-expression-search.

ISearch Forward Regexp Editor Command

Arguments: string
Key sequence: Meta+Ctrl+S string

The command ISearch Forward Regexp performs incremental search forwards, using regular expression matching.

ISearch Backward Regexp Editor Command

Arguments: string
Key sequence: Meta+Ctrl+R string

The command ISearch Backward Regexp performs incremental search backwards, using regular expression
matching.

Count Occurrences Editor Command

Arguments: None
Default binding: None

editor:count-occurrences-command p &optional regexp

Counts the number of regular expression matches for the string regexp between the current point and the end of the
buffer.

Count Matches is a synonym for Count Occurrences.

3.23.3 Replacement

Replace String Editor Command

Arguments: target replacement
Key sequence: None

editor:replace-string-command p &optional target replacement

Replaces all occurrences of target string by replacement string, starting from the current point.

Whenever replacement is substituted for target, case may be preserved, depending on the value of the editor variable

3 Command Reference

72

case-replace.

Query Replace Editor Command

Arguments: target replacement
Key sequence: Meta+Shift+% target replacement

editor:query-replace-command p &optional target replacement

Replaces occurrences of target string by replacement string, starting from the current point, but only after querying the
user. Each time target is found, an action must be indicated from the keyboard.

Whenever replacement is substituted for target, case may be preserved, depending on the value of the editor variable
case-replace.

The following key sequences are used to control Query Replace:

Space or y Replace target by replacement and move to the next occurrence of target.

Delete Skip target without replacing it and move to the next occurrence of target.

. Replace target by replacement and then exit.

! Replace all subsequent occurrences of target by replacement without prompting.

Ctrl+R Enter recursive edit. This allows the current occurrence of target to be edited. When this editing
is completed, Exit Recursive Edit should be invoked. The next instance of target is then found.

Esc Quit from Query Replace with no further replacements.

Directory Query Replace Editor Command

Arguments: directory target replacement
Key sequence: None

Replaces occurrences of target string by replacement string for each source file in directory, but only after querying the
user.

The current working directory is offered as a default for directory.

By default only files with suffix .lisp, .lsp, .c, .cpp or .h are searched. A non-nil prefix argument causes all files
to be searched, except for those ending with one of the strings in the list system:*ignorable-file-suffices*.

Each time target is found, an action must be indicated from the keyboard. For details of possible actions see Query
Replace.

System Query Replace Editor Command

Arguments: system target replacement
Key sequence: None

Replaces occurrences of target string by replacement string, for each file in system, but only after querying the user.
Each time target is found, an action must be indicated from the keyboard. For details of possible actions see Query
Replace.

Buffers Query Replace Editor Command

Arguments: target replacement
Key sequence: None

3 Command Reference

73

The command Buffers Query Replace does a query replace operation on all opened buffers. See Query Replace
for details of the operation.

case-replace Editor Variable

Default value: t

If the value of this variable is t, Replace String and Query Replace try to preserve case when doing replacements. If its
value is nil, the case of the replacement string is as defined by the user.

Replace Regexp
Query Replace Regexp Editor Commands

Arguments: target replacement
Key sequence: None

editor:replace-regexp-command p &optional target replacement

editor:query-replace-regexp-command p &optional target replacement

Replaces matches of target regular expression by replacement string, starting from the current point.

See 28.7 Regular expression syntax in the LispWorks® User Guide and Reference Manual for a description of regular
expressions.

Replace Regexp replaces all matches.

Query Replace Regexp asks the user whether to replace each match in turn. Each time target is matched, an action
must be indicated from the keyboard.

See 28.7 Regular expression syntax in the LispWorks® User Guide and Reference Manual for a description of regular
expressions, and Query Replace for the keyboard gestures available.

When replacement contains a \ character, it has a special meaning. After each match, the Editor replaces all
occurrences of \char in replacement by the an appropriate string as documented below, and uses the result as the
replacement string for this match. The character char following the Backslash must be one of:

& Use the string that matched the whole pattern.

Use a string that is the decimal representation of the number of matches that have already been
replaced in the current operation (first one will use 0).

\ Use the single character string "\\".

A non-zero digit Use the string that matched the corresponding \(and \) pair in the pattern, starting from 1. The
pairs are counted by the order of appearance of the \(in the pattern, so nested pairs have larger
numbers than their enclosing pairs.

For example, you can change dates in the form dd/mm/yyyy to the form yyyy-mm-dd by using:

target \([0-9][0-9]\)/\([0-9][0-9]\)/\([0-9][0-9][0-9][0-9]\)

replacement \3-\2-\1

This replaces, for example, 12/03/1979 by 1979-03-12.

Compatibility note: the special meaning of the Backslash character \ was introduced in LispWorks 7.0.

3 Command Reference

74

3.24 Comparison

This section describes commands which compare files, windows and/or buffers against each other.

Compare Windows Editor Command

Arguments: source1 source2
Key sequence: None

Compares the text in the current window with the text of another window. The points are left where the text differs.

source1 defaults to the current window. source2 defaults to the next ordinary window.

Differences in whitespace are ignored by default, according to the value of compare-ignores-whitespace.

Compare Buffers Editor Command

Arguments: buffer1 buffer2
Key sequence: None

Compares the text in the current buffer with that another buffer.

The first argument defaults to the current buffer. The second defaults to the next editor buffer.

Differences in whitespace are ignored by default, according to the value of compare-ignores-whitespace.

Compare File and Buffer Editor Command

Arguments: None
Key sequence: None

The command Compare File And Buffer compares the text in the buffer with the text in the associated file, which is
displayed in another window if the text differs. The points are left where the texts differ.

If the buffer is not associated with a file, editor:editor-error is called.

compare-ignores-whitespace Editor Variable

Initial value: t

When true, the Compare Windows and Compare Buffers commands ignore mismatches due to differences in
whitespace.

Diff Editor Command

Arguments: file1 file2
Key sequence: None

Compares the current buffer with another file.

A prefix argument makes it compare any two files, prompting you for both filenames.

Diff Ignoring Whitespace Editor Command

Arguments: file1 file2
Key sequence: None

Compares the current buffer with another file, like Diff but ignoring whitespace.

A prefix argument is interpreted in the same way as by Diff.

3 Command Reference

75

3.25 Registers

Locations and regions can be saved in registers. Each register has a name, and reference to a previously saved register is by
means of its name. The name of a register, which consists of a single character, is case-insensitive.

Point to Register Editor Command

Arguments: name
Key sequence: Ctrl+X / name

Saves the location of the current point in a register called name, where name is a single character.

Save Position is a synonym for Point to Register.

Jump to Register Editor Command

Arguments: name
Key sequence: Ctrl+X J name

Moves the current point to a location previously saved in the register called name.

Jump to Saved Position and Register to Point are both synonyms for Jump to Register.

Kill Register Editor Command

Arguments: name
Key sequence: None

Kills the register called name.

List Registers Editor Command

Arguments: None
Key sequence: None

Lists all existing registers.

Copy to Register Editor Command

Arguments: name
Key sequence: Ctrl+X X name

Saves the region between the mark and the current point to the register called name. The register is created if it does not
exist.

When a prefix argument is supplied, the region is also deleted from the buffer.

Put Register is a synonym for Copy to Register.

Append to Register Editor Command

Arguments: name
Key sequence: None

Appends the region between the mark and the current point to the value in the register called name, which must already
exist and contain a region.

When a prefix argument is supplied, the region is also deleted from the buffer.

3 Command Reference

76

Prepend to Register Editor Command

Arguments: name
Key sequence: None

Prepends the region between the mark and the current point to the value in the register called name, which must already
exist and contain a region.

When a prefix argument is supplied, the region is also deleted from the buffer.

Insert Register Editor Command

Arguments: name
Key sequence: Ctrl+X G name

Copies the region from the register called name to the current point.

Get Register is a synonym for Insert Register.

3.26 Modes

A buffer can be in two kinds of mode at once: major and minor. The following two sections give a description of each, along
with details of some commands which alter the modes.

In most cases, the current buffer can be put in a certain mode using the mode name as an Editor Command.

3.26.1 Major modes

The major modes govern how certain commands behave and how text is displayed. Major modes adapt a few editor
commands so that their use is more appropriate to the text being edited. Some movement commands are affected by the
major mode, as word, sentence, and paragraph delimiters vary with the mode. Indentation commands are very much affected
by the major mode (see 3.18 Indentation).

Major modes available in the LispWorks editor are as follows:

• Fundamental mode. Commands behave in their most general manner, default values being used throughout where
appropriate.

• Text mode. Used for editing straight text and is automatically loaded if the file name ends in .txt, .text or .tx.

• Lisp mode. Used for editing Lisp programs and is automatically loaded if the file name ends in .lisp, .lsp,
.lispworks, .slisp, .l, .mcl or .cl.

• Directory mode. Used for listing and operating on files in a directory, after invoking the List Directory command.

• Shell mode. Used for running interactive shells.

• Manual Entry mode. Used for display of Unix manual pages (from man command).

The major mode of most buffers may be altered explicitly by using the commands described below.

By default, Lisp mode is the major mode whenever you edit a file with type lisp (as with several other file types). If you
have Lisp source code in files with another file type foo, put a form like this in your .lispworks file, adding your file
extension to the default set:

(editor:define-file-type-hook
 ("lispworks" "lisp" "slisp" "l" "lsp" "mcl" "cl" "foo")
 (buffer type)

3 Command Reference

77

 (declare (ignore type))
 (setf (editor:buffer-major-mode buffer) "Lisp"))

Fundamental Mode Editor Command

Arguments: None
Key sequence: None

Puts the current buffer into Fundamental mode.

Text Mode Editor Command

Arguments: None
Key sequence: None

Puts the current buffer into Text mode.

Lisp Mode Editor Command

Arguments: None
Key sequence: None

Puts the current buffer into Lisp mode. Notice how syntax coloring is used for Lisp symbols. Also the balanced
parentheses delimiting a Lisp form at or immediately preceding the cursor are highlighted, by default in green.

3.26.2 Minor modes

The minor modes determine whether or not certain actions take place. Buffers may be in any number of minor modes. No
command details are given here as they are covered in other sections of the manuals.

Minor modes available in the LispWorks editor are as follows:

• Overwrite mode. Each character that is typed overwrites an existing character in the text—see 3.17 Overwriting.

• Auto Fill mode. Lines are broken between words at the right hand margin automatically, so there is no need to type
Return at the end of each line—see 3.19 Filling.

• Abbrev mode. Allows abbreviation definitions to be expanded automatically—see 3.27 Abbreviations.

• Execute mode. Used by the Listener and Shell tools to make history commands available (see the LispWorks IDE User
Guide).

3.26.3 Default modes

default-modes Editor Variable

Default value: ("Fundamental")

This editor variable contains the default list of modes for new buffers.

3.26.4 Defining modes

New modes can be defined using the defmode function.

editor:defmode Function

defmode name &key setup-function syntax-table key-bindings no-redefine vars cleanup-function major-p transparent-p precedence =>

3 Command Reference

78

nil

Defines a new editor mode called name.

name is a string containing the name of the mode being defined. setup-function is a function which sets up a buffer in
this mode. key-bindings is a quoted list of key-binding directions. no-redefine is a boolean: if true, the mode cannot be
re-defined. The default value of no-redefine is nil. vars is a quoted list of editor variables and values. aliases is a
quoted list of synonyms for name. cleanup-function is a function which is called upon exit from a buffer in this mode.
major-p is a boolean: if true, the mode is defined as major, otherwise minor. The default value of major-p is nil.

By default, any mode defined is a minor one—specification of major-mode status is made by supplying a true value for
major-p.

defmode is essentially for the purposes of mode specification—not all of the essential definitions required to establish a
new Editor mode are made in a defmode call. In the example, below, other required calls are shown.

key-bindings can be defined by supplying a quoted list of bindings, where a binding is a list containing as a first element
the (string) name of the Editor command being bound, and as the second, the key binding description (see 6 Advanced
Features, for example key-bindings).

The state of Editor variables can be changed in the definition of a mode. These are supplied as a quoted list vars of
dotted pairs, where the first element of the pair is the (symbol) name of the editor variable to be changed, and the second
is the new value.

Both setup-function and cleanup-function are called with the mode and the buffer locked. They can modify the buffer
itself, but they must not wait for anything that happens on another process, and they must not modify the mode (for
example by setting a variable in the mode), and must not try to update the display.

As an example tet us define a minor mode, Foo. Foo has a set-up function, called setup-foo-mode. All files with
suffix .foo invoke Foo-mode.

Here is the defmode form:

(editor:defmode "Foo" :setup-function 'setup-foo-mode)

The next piece of code makes .foo files invoke Foo-mode:

(editor:define-file-type-hook ("foo") (buffer type)
 (declare (ignore type))
 (setf (editor:buffer-minor-mode buffer "Foo") t))

The next form defines the set-up function:

(defun setup-foo-mode (buffer)
 (setf (editor:buffer-major-mode buffer) "Lisp")
 (let ((pathname (editor:buffer-pathname buffer)))
 (unless (and pathname
 (probe-file pathname))
 (editor:insert-string
 (editor:buffer-point buffer)
 #.(format nil ";;; -*- mode :foo -*-~2%(in-package \"CL-USER\")~2%")))))

Now, any files with the suffix .foo invoke the Foo minor mode when loaded into the Editor.

3 Command Reference

79

3.27 Abbreviations

Abbreviations (abbrevs) can be defined by the user, such that if an abbreviation is typed at the keyboard followed by a word
terminating character (such as Space or ,), the expansion is found and used to replace the abbreviation. Typing can thereby
be saved for frequently used words or sequences of characters.

There are two kinds of abbreviations: global abbreviations, which are expanded in all major modes; and mode abbreviations,
which are expanded only in defined major modes.

Abbreviations (both global and mode) are only expanded automatically when Abbrev mode (a minor mode) is on. The default
is for abbrev mode to be off.

All abbreviations that are defined can be saved in a file and reloaded during later editor sessions.

Abbrev Mode Editor Command

Arguments: None
Key sequence: None

Switches abbrev mode on if it is currently off, and off if it is currently on. Only when in abbrev mode are abbreviations
automatically expanded.

Add Mode Word Abbrev Editor Command

Arguments: abbrev
Key sequence: Ctrl+X Ctrl+A abbrev

Defines a mode abbreviation for the word before the current point.

A positive prefix argument defines an abbreviation for the appropriate number of words before the current point. A zero
prefix argument defines an abbreviation for all the text in the region between the mark and the current point. A negative
prefix argument deletes an abbreviation.

Inverse Add Mode Word Abbrev Editor Command

Arguments: expansion
Key sequence: Ctrl+X Ctrl+H expansion

Defines the word before the current point as a mode abbreviation for expansion.

Add Global Word Abbrev Editor Command

Arguments: abbrev
Key sequence: Ctrl+X + abbrev

Defines a global abbreviation for the word before the current point.

A positive prefix argument defines an abbreviation for the appropriate number of words before the current point. A zero
prefix argument defines an abbreviation for all the text in the region between the mark and the current point. A negative
prefix argument deletes an abbreviation.

Inverse Add Global Word Abbrev Editor Command

Arguments: expansion
Key sequence: Ctrl+X - expansion

Defines the word before the current point as a global abbreviation for expansion.

3 Command Reference

80

Make Word Abbrev Editor Command

Arguments: abbrev expansion mode
Key sequence: None

editor:make-word-abbrev-command p &optional abbrev expansion mode

Defines an abbreviation for expansion without reference to the current point. The default value for mode is global.

Abbrev Expand Only Editor Command

Arguments: None
Key sequence: None

Expands the word before the current point into its abbreviation definition (if it has one). If the buffer is currently in
abbrev mode then this is done automatically on meeting a word defining an abbreviation.

Word Abbrev Prefix Point Editor Command

Arguments: None
Key sequence: Meta+'

Allows the prefix before the current point to be attached to the following abbreviation. For example, if the abbreviation
valn is bound to valuation, typing re followed by Meta+', followed by valn, results in the expansion
revaluation.

Unexpand Last Word Editor Command

Arguments: None
Key sequence: None

Undoes the last abbreviation expansion. If this command is typed twice in succession, the previous abbreviation is
restored.

Delete Mode Word Abbrev Editor Command

Arguments: abbrev
Key sequence: None

editor:delete-mode-word-abbrev-command p &optional abbrev mode

Deletes a mode abbreviation for the current mode. A prefix argument causes all abbreviations defined in the current
mode to be deleted.

The argument mode is the name of the mode for which the deletion is to be applied. The default is the current mode.

Delete Global Word Abbrev Editor Command

Arguments: abbrev
Key sequence: None

editor:delete-global-word-abbrev-command p &optional abbrev

Deletes a global abbreviation. A prefix argument causes all global abbreviations currently defined to be deleted.

3 Command Reference

81

Delete All Word Abbrevs Editor Command

Arguments: None
Key sequence: None

Deletes all currently defined abbreviations, both global and mode.

List Word Abbrevs Editor Command

Arguments: None
Key sequence: None

Displays a list of all the currently defined abbreviations in an Abbrev window.

Word Abbrev Apropos Editor Command

Arguments: search-string
Key sequence: None

editor:word-abbrev-apropos-command p &optional search-string

Displays a list of all the currently defined abbreviations which contain search-string in their abbreviation definition or
mode. The list is displayed in an Abbrev window.

Edit Word Abbrevs Editor Command

Arguments: None
Key sequence: None

Allows recursive editing of currently defined abbreviations. The abbreviation definitions are displayed in an Edit Word
Abbrevs buffer, from where they can be can be added to, modified, or removed. This buffer can then either be saved to
an abbreviations file, or Define Word Abbrevs can be used to define any added or modified abbreviations in the buffer.
When editing is complete, Exit Recursive Edit should be invoked.

Write Word Abbrev File Editor Command

Arguments: filename
Key sequence: None

editor:write-word-abbrev-file-command p &optional filename

Saves the currently defined abbreviations to filename. If no file name is provided, the default file name defined by the
editor variable abbrev-pathname-defaults is used.

Append to Word Abbrev File Editor Command

Arguments: filename
Key sequence: None

editor:append-to-word-abbrev-file-command p &optional filename

Appends all abbreviations that have been defined or redefined since the last save to filename. If no file name is provided,
the default file name defined by the editor variable abbrev-pathname-defaults is used.

abbrev-pathname-defaults Editor Variable

Default value: abbrev.defns

3 Command Reference

82

Defines the default file name for saving the abbreviations that have been defined in the current buffer.

Read Word Abbrev File Editor Command

Arguments: filename
Key sequence: None

editor:read-word-abbrev-file-command p &optional filename

Reads previously defined abbreviations from filename. The format of each abbreviation must be that used by Write
Word Abbrev File and Insert Word Abbrevs.

Insert Word Abbrevs Editor Command

Arguments: None
Key sequence: None

Inserts into the current buffer, at the current point, a list of all currently defined abbreviations. This is similar to Write
Word Abbrev File, except that the abbreviations are written into the current buffer rather than a file.

Define Word Abbrevs Editor Command

Arguments: None
Key sequence: None

Defines abbreviations from the definition list in the current buffer. The format of each abbreviation must be that used by
Write Word Abbrev File and Insert Word Abbrevs.

3.28 Keyboard macros

Keyboard macros enable a sequence of commands to be turned into a single operation. For example, if it is found that a
particular sequence of commands is to be repeated a large number of times, they can be turned into a keyboard macro, which
may then be repeated the required number of times by using Prefix Arguments.

Note that keyboard macros are only available for use during the current editing session.

Define Keyboard Macro Editor Command

Arguments: None
Key sequence: Ctrl+X Shift+(

Begins the definition of a new keyboard macro. All the commands that are subsequently invoked are executed and at the
same time combined into the newly defined macro. Any text typed into the buffer is also included in the macro. The
definition is ended with End Keyboard Macro, and the sequence of commands can then be repeated with Last
Keyboard Macro.

End Keyboard Macro Editor Command

Arguments: None
Key sequence: Ctrl+X Shift+)

Ends the definition of a keyboard macro.

Last Keyboard Macro Editor Command

Arguments: None
Key sequence: Ctrl+X E

3 Command Reference

83

Executes the last keyboard macro defined. A prefix argument causes the macro to be executed the required number of
times.

Name Keyboard Macro Editor Command

Arguments: name
Key sequence: None

editor:name-keyboard-macro-command p &optional name

Makes the last defined keyboard macro into a command called name that can subsequently be invoked by means of
Extended Command.

Keyboard Macro Query Editor Command

Arguments: action
Key sequence: Ctrl+X Q action

During the execution of a keyboard macro, this command prompts for an action. It is therefore possible to control the
execution of keyboard macros while they are running, to a small extent.

The following actions can be used to control the current macro execution.

Space Continue with this iteration of the keyboard macro and then proceed to the next.

Delete Skip over the remainder of this iteration of the keyboard macro and proceed to the next.

Escape Exit from this keyboard macro immediately.

3.29 Echo area operations

There are a range of editor commands which operate only on the Echo Area (that is, the buffer where the user types in
commands).

Although in many cases the key bindings have a similar effect to the bindings used in ordinary buffers, this is just for the
convenience of the user. In fact the commands that are invoked are different.

3.29.1 Completing commands

Many of the commands used in the Editor are long, in the knowledge that the user can use completion commands in the Echo
Area, and so rarely has to type a whole command name. Details of these completion commands are given below.

Complete Input Editor Command

Arguments: None
Key sequence: Tab
Mode: Echo Area

Completes the text in the Echo Area as far as possible, thereby saving the user from having to type in the whole of a long
file name or command. Use Tab Tab to produce a popup list of all possible completions.

Complete Field Editor Command

Arguments: None
Key sequence: Space
Mode: Echo Area

3 Command Reference

84

Completes the current part of the text in the Echo Area. So, for a command that involves two or more words, if
Complete Field is used when part of the first word has been entered, an attempt is made to complete just that word.

Confirm Parse Editor Command

Arguments: None
Key sequence: Return
Mode: Echo Area

Terminates an entry in the Echo Area. The Editor then tries to parse the entry. If Return is typed in the Echo Area when
nothing is being parsed, or the entry is erroneous, an error is signaled.

Help on Parse Editor Command

Arguments: None
Key sequence: ? or Help or F1
Mode: Echo Area

Displays a popup list of all possible completions of the text in the echo area.

3.29.2 Repeating echo area commands

The Echo Area commands are recorded in a history ring so that they can be easily repeated. Details of these commands are
given below.

Previous Parse Editor Command

Arguments: None
Key sequence: Meta+P
Mode: Echo Area

Moves to the previous command in the Echo Area history ring. If the current input is not empty and the contents are
different from what is on the top of the ring, then this input is pushed onto the top of the ring before the new input is
inserted.

Next Parse Editor Command

Arguments: None
Key sequence: Meta+N
Mode: Echo Area

Moves to the next most recent command in the Echo Area history ring. If the current input is not empty and the contents
are different from what is on the top of the ring, then this input is pushed onto the top of the ring before the new input is
inserted.

Find Matching Parse Editor Command

Arguments: match-input-string
Key sequence: Meta+R
Mode: Echo Area

The command Find Matching Parse searches for a previous input containing match-input-string, and replaces the
current input with it.

3 Command Reference

85

3.29.3 Movement in the echo area

Echo Area Backward Character Editor Command

Arguments: None
Key sequence: Ctrl+B
Mode: Echo Area

Moves the cursor back one position (without moving into the prompt).

Echo Area Backward Word Editor Command

Arguments: None
Key sequence: Meta+B
Mode: Echo Area

Moves the cursor back one word (without moving into the prompt).

Beginning of Parse Editor Command

Arguments: None
Key sequence: Meta+<
Mode: Echo Area

Moves the cursor to the location immediately after the prompt in the Echo Area.

Beginning of Parse or Line Editor Command

Arguments: None
Key sequence: Ctrl+A
Mode: Echo Area

Moves the cursor to the location at the start of the current line in multi-line input, or to the location immediately after the
prompt in the Echo Area.

3.29.4 Deleting and inserting text in the echo area

Echo Area Delete Previous Character Editor Command

Arguments: None
Key sequence: Backspace
Mode: Echo Area

Deletes the previous character entered in the Echo Area.

Echo Area Kill Previous Word Editor Command

Arguments: None
Key sequence: Meta+Backspace
Mode: Echo Area

Kills the previous word entered in the Echo Area.

Kill Parse Editor Command

Arguments: None
Key sequence: Ctrl+C Ctrl+U
Mode: Echo Area

3 Command Reference

86

Kills the whole of the input so far entered in the Echo Area.

Insert Parse Default Editor Command

Arguments: None
Key sequence: Ctrl+C Ctrl+P
Mode: Echo Area

Inserts the default value for the parse in progress at the location of the cursor. It is thereby possible to edit the default.
Simply typing Return selects the default without any editing.

Return Default Editor Command

Arguments: None
Key sequence: Ctrl+C Ctrl+R
Mode: Echo Area

Uses the default value for the parse in progress. This is the same as issuing the command Insert Parse Default and then
pressing Return immediately.

Insert Selected Text Editor Command

Arguments: None
Key sequence: Ctrl+C Ctrl+C
Mode: Echo Area

Inserts the editor window's selected text in the echo area.

3.29.5 Display of information in the echo area

What Cursor Position Editor Command

Arguments: None
Key sequence: Ctrl+X =
Mode: Echo Area

Displays in the echo area the character under the point and the column of the point.

See also: Toggle Showing Cursor Info.

Where Is Point Editor Command

Arguments: None
Key sequence: None

Displays in the echo area the position of the current point in terms of characters in the buffer, as a fraction of current
point position over total buffer length.

Toggle Showing Cursor Info Editor Command

Arguments: None
Key sequence: None

The command Toggle Showing Cursor Info switches on or off display of cursor info in the echo area.

When display of cursor info is on, the info is updated whenever the cursor moves.

The info contains the character at the cursor position, its Unicode code point, position in the buffer, and column. It is the
same information that is given by What Cursor Position.

3 Command Reference

87

3.29.6 Leaving the echo area

Reset Echo Area Editor Command

Arguments: None
Key sequence: Meta+K
Mode: Echo Area

The command Reset Echo Area resets the echo area, which means aborting any prompting ("recursive edit") and
moving the focus to the main editor pane.

3.30 Editor variables

Editor variables are parameters which affect the way that certain commands operate. Descriptions of editor variables are
provided alongside the relevant command details in this manual.

Show Variable Editor Command

Arguments: variable
Key sequence: None

Indicates the value of variable.

Set Variable Editor Command

Arguments: variable value
Key sequence: None

Allows the user to change the value of variable.

3.31 Recursive editing

Recursive editing occurs when you are allowed to edit text while an editor command is executing. The mode line of the
recursively edited buffer is enclosed in square brackets. For example, when using the command Query Replace, the Ctrl+R
option can be used to edit the current instance of the target string (that is, enter a recursive edit). Details of commands used to
exit a recursive edit are given below.

Exit Recursive Edit Editor Command

Arguments: None
Key sequence: Meta+Ctrl+Z

Exits a level of recursive edit, returning to the original command. An error is signaled if not in a recursive edit.

Abort Recursive Edit Editor Command

Arguments: None
Key sequence: Ctrl+]

Aborts a level of recursive edit, quitting the unfinished command immediately. An error is signaled if not in a recursive
edit.

3 Command Reference

88

3.32 Key bindings

The commands for modifying key bindings that are described below are designed to be invoked explicitly during each session
with the Editor. If the user wishes to create key bindings which are set up every session, the function editor:bind-key

should be used—see 6.1 Customizing default key bindings.

Bind Key Editor Command

Arguments: command key-sequence bind-type
Key sequence: None

Binds command (full command names must be used) to key-sequence.

After entering command, enter the keys of key-sequence and press Return.

bind-type can be either buffer, global or mode. If a bind-type of buffer or mode is selected, the name of the buffer or
mode required must then be entered. When a bind-type of buffer is selected, the current buffer is offered as a default.
The default value for bind-type is "Global".

Unless a bind type of global is selected, the scope of the new key binding is restricted as specified. Generally, most key
bindings are global. Note that the Echo Area is defined as a mode, and some commands (especially those involving
completion) are restricted to the Echo Area.

Bind String to Key Editor Command

Arguments: string key-sequence bind-type
Key sequence: None

Make key-sequence insert string.

After entering string, enter the keys of key-sequence and press Return.

bind-type is interpreted as in Bind Key.

Delete Key Binding Editor Command

Arguments: key-sequence bind-type
Key sequence: None

Removes a key binding, so that the key sequence no longer invokes any command. The argument bind-type can be either
buffer, global or mode. If a bind-type of buffer or mode is selected, the name of the buffer or mode required must then
be entered. The default value for bind-type is "Global".

It is necessary to enter the kind of binding, because a single key sequence may sometimes be bound differently in
different buffers and modes.

Illegal Editor Command

Arguments: None
Key sequence: None

Signals an editor error with the message "Illegal command in the current mode" accompanied by a beep. It is sometimes
useful to bind key sequences to this command, to ensure the key sequence is not otherwise bound.

Do Nothing Editor Command

Arguments: None
Key sequence: None

Does nothing. This is therefore similar to Illegal, except that there is no beep and no error message.

3 Command Reference

89

3.33 Execute mode

3.33.1 Listener commands

Use these commands in the Listener tool.

Beginning of Line After Prompt Editor Command

Arguments: None
Key sequence: Ctrl+A
Mode: Execute

The command Beginning of Line After Prompt moves the current point to the beginning of the current line,
unless there is a prompt, in which case the point is moved to the end of the prompt.

With a prefix argument p, the point is moved to the beginning of the line p lines below the current line.

Insert from Previous Prompt Editor Command

Arguments: None
Key sequence: Ctrl+J
Mode: Execute

The command Insert From Previous Prompt picks up the form starting from the previous prompt and yanks it to
the end of the buffer.

Inspect Star Editor Command

Arguments: None
Key sequence: Ctrl+C Ctrl+I
Mode: Execute

The command Inspect Star inspects the object that is the value of the symbol cl:*, which is normally the result of
the previous command. Inspecting means activating the Inspector tool with the object.

See the LispWorks IDE User Guide for information about the Inspector tool.

Execute or Insert Newline or Yank from Previous Prompt Editor Command

Arguments: None
Key sequence: Return
Mode: Execute

The command Execute or Insert Newline or Yank from Previous Prompt does one of the actions
indicated by its name, depending on the position of the point relative to the prompt.

If the current point is after or in the middle of the last prompt, insert a newline at the end of the buffer, and if there is an
acceptable form after the last prompt, execute it.

If the point is before the last prompt, insert the command before the point at the end of the buffer, and move the point to
the end of the buffer.

Throw to Top Level Editor Command

Arguments: None
Key sequence: Meta+K
Mode: Execute

3 Command Reference

90

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

The command Throw To Top Level exits the reading of commands, prints a prompt and starts reading again.

Note: this command is useful after you mistakenly pasted a large amount of text into the listener, and you cannot really
see where the prompt is.

3.33.2 History commands

Use these commands in the Listener and Shell tools.

History First Editor Command

Arguments: None
Key sequence: Ctrl+C <
Mode: Execute

The command History First replaces the current command by the first recorded command in the history of
commands in the current page.

Note: the length of the history is limited to 100, so earlier commands are not available.

History Last Editor Command

Arguments: None
Key sequence: Ctrl+C >
Mode: Execute

The command History Last replaces the current command by the last recorded command in the history of commands
in the current page.

History Next Editor Command

Arguments: None
Key sequence: Meta+N or Ctrl+C Ctrl+N
Mode: Execute

The command History Next replaces the current command by the next one from the history of commands in the
current page.

History Previous Editor Command

Arguments: None
Key sequence: Meta+P or Ctrl+C Ctrl+P
Mode: Execute

The command History Previous replaces the current command by the previous one from the history of commands in
the current page.

If immediately follows History Search From Input, it does the search again.

History Search Editor Command

Arguments: search-string
Key sequence: Meta+R or Ctrl+C Ctrl+R search-string
Mode: Execute

The command History Search searches for a previous command containing a supplied string, and replaces the
current command with it.

3 Command Reference

91

History Kill Current Editor Command

Arguments: None
Key sequence: Ctrl+C Ctrl+K
Mode: Execute

The command History Kill Current deletes the current command, that is the text after the last prompt.

Note: this command is badly named. It has nothing to do with history.

History Search from Input Editor Command

Arguments: search-string
Key sequence: None

The command History Search From Input searches for a previous command containing the string entered so far,
and replaces the current command with it.

Repeated uses step back to previous matches.

If no string has been entered, the command prompts for a string to match like History Search.

History Select Editor Command

Arguments: None
Key sequence: Ctrl+C Ctrl+F
Mode: Execute

The command History Select opens a menu of the previous commands, and replaces the current command with the
selection.

History Yank Editor Command

Arguments: None
Key sequence: Ctrl+C Ctrl+Y
Mode: Execute

The command History Yank inserts the previous command into the current one.

3.33.3 Debugger commands

These commands are applicable only in a capi:listener-pane (including listener panes in the Debugger and Inspector
tools and so on), when in the debugger. Each has a corresponding short debugger command that you can enter at the
debugger prompt. These are listed in the description.

The debugger prompt by default looks like this:

CL-USER 3 : 1 >

The first integer is the number of commands entered in the listener. The second integer is the number of levels deep in the
debugger (that is, if it is 2 or more, you have entered the debugger recursively).

Debugger Abort Editor Command

Arguments: None
Key sequence: Meta+A
Mode: Execute
Debugger command: :a

3 Command Reference

92

The command Debugger Abort aborts, meaning invoking the restart that is recognized as the cl:abort restart.

Debugger Continue Editor Command

Arguments: None
Key sequence: Meta+C
Mode: Execute
Debugger command: :c

The command Debugger Continue continues, meaning invoking the restart that is recognized as the cl:continue
restart.

Debugger Backtrace Editor Command

Arguments: None
Key sequence: Meta+B
Mode: Execute
Debugger command: :bq or :bb (approximately)

The command Debugger Backtrace displays a quick backtrace when in the debugger in a listener window.

A prefix argument makes the backtrace more verbose.

Debugger Edit Editor Command

Arguments: None
Key sequence: Meta+E
Mode: Execute
Debugger command: :ed

The command Debugger Edit tries to find the source of the current frame, and if successful displays that source in an
Editor tool.

Debugger Next Editor Command

Arguments: None
Key sequence: Meta+N
Mode: Execute
Debugger command: :n

The command Debugger Next makes the next frame current.

Enter :v (Debugger Print) to see the value in the frame.

Debugger Previous Editor Command

Arguments: None
Key sequence: Meta+P
Mode: Execute
Debugger command: :p

The command Debugger Previous makes the previous frame current.

Enter :v (Debugger Print) to see the value in the frame.

Debugger Print Editor Command

Arguments: None
Key sequence: Meta+V

3 Command Reference

93

http://www.lispworks.com/documentation/HyperSpec/Body/a_abort.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_contin.htm

Mode: Execute
Debugger command: :v

The command Debugger Print displays the current frame.

Debugger Top Editor Command

Arguments: None
Key sequence: None
Debugger command: :top

The command Debugger Top aborts to the top level.

Throw out of Debugger Editor Command

Arguments: None
Key sequence: None

The command Throw out of Debugger is deprecated, use Debugger Top and Debugger Abort instead.

3.34 Running shell commands

The editor allows both single shell commands to be executed and also provides a means of running a shell interactively.

3.34.1 Running shell commands directly from the editor

Shell Command Editor Command

Arguments: command
Key sequence: Meta+! command

The command Shell Command runs the console (shell) command command. The output from the command is
displayed in a Shell Output buffer.

A prefix argument causes the output from the shell command to be sent to the *terminal-io* stream rather than the
Shell Output buffer.

Shell Command on Region Editor Command

Arguments: command
Key sequence: Meta+| command

The command Shell Command On Region runs the console (shell) command command with the text in the current
region as input (by redirection of the standard input), and shows the output.

Without a prefix argument, the output is inserted into the Shell Output buffer (which is created if it does not exist). With
a prefix argument, the contents of the region are replaced by the output.

Run Command Editor Command

Arguments: command
Key sequence: None

Executes the single shell command command in a Shell window. When the command terminates, the subprocess is
closed down.

3 Command Reference

94

http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

3.34.2 Invoking and using a Shell tool

See also the history commands in 3.33 Execute mode.

Shell Editor Command

Arguments: None
Key sequence: None

Opens a Shell window which allows the user to run a shell interactively.

The major mode of the buffer is Shell mode - the variables and key bindings described in this section apply. The minor
mode of the buffer is Execute mode so the history key bindings (see 3.33 Execute mode) can also be used in the Shell
window.

Whenever the working directory is changed within the shell, the editor attempts to keep track of these changes and
update the default directory of the Shell buffer. When a shell command is issued beginning with a string matching one of
the editor variables shell-cd-regexp, shell-pushd-regexp or shell-popd-regexp, the editor recognizes this
command as a change directory command and attempt to change the default directory of the Shell buffer accordingly. If
you have your own aliases for any of the shell change directory commands, alter the value of the appropriate variable.
For example, if the value of shell-cd-regexp is "cd" and the shell command cd ~programs/lisp is issued, the
next time the editor command Wfind File is issued, the default directory offered is ~programs/lisp. If you find that
the editor has not recognized a change directory command then the editor command cd may be used to change the
default directory of the buffer.

shell-shell Variable

This variable overrides the default shell used for Shell tools. It defaults to nil, which causes the shell to be chosen as
documented in 24.4 Configuring the shell to run in the LispWorks IDE User Guide.

Remote Shell Editor Command

Arguments: machine-name
Key sequence: None

The command Remote Shell prompts for a machine name and then starts a shell which tries to login to that computer
using rsh.

Note: Remote Shell does not work on Microsoft Windows.

CD Editor Command

Arguments: directory
Key sequence: None
Mode: Shell

Changes the directory associated with the current buffer to directory. The current directory is offered as a default.

shell-cd-regexp Editor Variable

Default value: "cd"
Mode: Shell

A regular expression that matches the shell command to change the current working directory.

shell-pushd-regexp Editor Variable

Default value: "pushd"
Mode: Shell

3 Command Reference

95

A regular expression that matches the shell command to push the current working directory onto the directory stack.

shell-popd-regexp Editor Variable

Default value: "popd"
Mode: Shell

A regular expression that matches the shell command to pop the current working directory from the directory stack.

prompt-regexp-string Editor Variable

Default value: "^[^#$%>
]*[#$%>] *"
Mode: Shell

The regexp used to find the prompt in a Shell window. This variable is also used in the Listener.

Interrupt Shell Subjob Editor Command

Arguments: None
Key sequence: Ctrl+C Ctrl+C
Mode: Shell

Sends an interrupt signal to the subjob currently being run by the shell. This is equivalent to issuing the shell command
Ctrl+C.

Note: this command does not work on Microsoft Windows.

Stop Shell Subjob Editor Command

Arguments: None
Key sequence: Ctrl+C Ctrl+Z
Mode: Shell

Sends a stop signal to the subjob currently being run by the shell. This is equivalent to issuing the shell command
Ctrl+Z.

Note: this command does not work on Microsoft Windows.

Shell Send Eof Editor Command

Arguments: None
Key sequence: Ctrl+C Ctrl+D
Mode: Shell

Sends an end-of-file character (Ctrl+D) to the shell, causing either the shell or its current subjob to finish.

Note: this command does not work on Microsoft Windows.

Kill Shell Subjob Editor Command

Arguments: None
Key sequence: None

The command Kill Shell Subjob tries to kill the subjob in the shell.

At the time of writing, on Solaris it actually sends a SIGKILL signal. On other Unix platforms it sends the VQUIT
characters. On Microsoft Windows it calls TerminateProcess.

3 Command Reference

96

Terminate Shell Subjob Editor Command

Arguments: None
Key sequence: None

The command Terminate Shell Subjob tries to kill the subjob in the shell.

At the time of writing, on Solaris it actually sends a SIGTERM signal. On other Unix platforms it sends the VQUIT
characters. On Microsoft Windows it calls TerminateProcess.

3.35 Buffers, windows and the mouse

3.35.1 Buffers and windows

You can transfer text between LispWorks Editor buffers and ordinary windows using the commands described below.

Copy to Cut Buffer Editor Command

Arguments: None
Key sequence: None

Copies the current region to the Cut buffer. The contents of the buffer may then be pasted into a window using the
standard method for pasting (in UNIX this is usually achieved by clicking the middle mouse button).

Insert Cut Buffer Editor Command

Arguments: None
Key sequence: None

Inserts the contents of the Cut buffer at the current point. You can put text from a window into the Cut buffer using the
standard method for cutting text (usually by holding the left mouse button while dragging the mouse).

3.35.2 Actions involving the mouse

The functions to which the mouse buttons are bound are not true Editor Commands. As such, the bindings cannot be
changed. Details of mouse button actions are given below.

Note that marks may also be set by using editor key sequences—see 3.9 Marks and regions—but also note that a region
must be defined either by using the mouse or by using editor key sequences, as the region may become unset if a
combination of the two is used. For example, using Ctrl+Space to set a mark and then using the mouse to go to the start of
the required region unsets the mark.

left-button Moves the current point to the position of the mouse pointer.

shift-left-button In Emacs emulation, this moves the current point to the location of the mouse pointer and sets the
mark to be the end of the new current form or comment line.

control-shift-left-button

Invokes the Editor Command Save Region, saving the region between the current point and the
mark at the top of the kill ring. If the last command was control-shift-left-button, the
Editor Command Kill Region is invoked instead. This allows one click to save the region, and
two clicks to save and kill it.

middle-button If your mouse has a middle button, it pastes the current selection at the location of the mouse
pointer.

3 Command Reference

97

right-button Brings up a context menu, from which a number of useful commands can be invoked. The
options include Cut, Copy, and Paste.

shift-right-button Inserts the form or comment line at the location of the mouse pointer at the current point.

3.36 Interaction with the GUI and the IDE

Activate Interface Editor Command

Arguments: interface-title
Key sequence: Ctrl+; interface-title

The command Activate Interface prompts for an interface title of an interface in the IDE, and activates it.

Note: this command works only in the LispWorks IDE.

Set Title Editor Command

Arguments: title
Key sequence: None

The command Set Title sets the title of the enclosing interface.

Note: switching buffers in the editor resets the title which will overwrite user changes, but other tool windows in the
LispWorks IDE normally do not set their title.

Invoke Tool Editor Command

Arguments: None
Key sequence: Ctrl+#

Invokes a tool in the LispWorks IDE.

Firstly Invoke Tool prompts for a character. If you enter a known shortcut character, the corresponding tool is
activated. If the character is unknown, it raises the Tools menu so you can select from it.

If you enter the character for the Listener (l) or Editor (e), and the current tool is already a Listener or Editor
respectively, then the tool is toggled between its main tab and the Output tab. This gives a convenient way to toggle
between the main tab and the Output tab without using the mouse.

Notes:

1. The shortcut characters can be seen in the Tools menu. So if you do not know the shortcut character, you can enter '?'
to get the menu, and then note the shortcut character.

2. If the tool does not already exist, one is created if needed.

3. Invoke Tool does nothing in a delivered image.

Invoke Menu Item Editor Command

Arguments: menu-item-path
Key sequence: None

The command Invoke Menu Item invokes a menu item, as if the item was activated in any of the usual interactive
ways.

The user is asked for a path, which is the title of the menu in the menu bar of the current interface, followed by the
title(s) of submenus if any, followed by the item title itself.

3 Command Reference

98

The titles must be separated by a / (forward slash) and optionally Space or Tab characters, and other than this they must
match (case-insensitive) the string that appears on the screen. For example, to do File > Open..., the menu-item-path is:

file / open...

Build Application Editor Command

Arguments: None
Key sequence: None

The command Build Application invokes the Application Builder in the LispWorks IDE and does a build. By
default, it uses the current buffer as the build script. If a prefix argument is supplied it prompts for a file to use as the
build script.

See also: LispWorks IDE User Guide, Application Builder chapter.

Build Interface Editor Command

Arguments: interface-name
Key sequence: None

The command Build Interface prompts for an interface name, and then activates the Interface Builder tool with it.

See also: LispWorks IDE User Guide, Interface Builder chapter.

Edit Compiler Warnings Editor Command

Arguments: None
Key sequence: None

The command Edit Compiler Warnings opens and activates the Compilation Conditions Browser, if there is a
record of compilation conditions in the session.

Conditions may be generated whenever compiling code in the IDE.

See also: LispWorks IDE User Guide, Compilation Conditions Browser chapter.

Inspect Variable Editor Command

Arguments: editor-variable-name
Key sequence: None

The command Inspect Variable activates the Inspector tool with the object that is the value of the supplied editor
variable.

List Buffer Definitions Editor Command

Arguments: None
Key sequence: None

The command List Buffer Definitions switches to the Buffers tab in an Editor tool.

Grep Editor Command

Arguments: grep-args
Key sequence: None

The command Grep activates the Search Files tool with a grep command.

It prompts for command line arguments, which should comprise the entire command line except for the first word grep.

3 Command Reference

99

Then it activates the Search Files tool and invokes the grep command.

If the prefix argument is supplied, it saves all files after prompting and before activating the tool.

Note: the grep command to use is configurable via lw:*grep-command*. On Unix grep is available by default. On
Microsoft Windows LispWorks uses lib/8-0-0-0/etc/grep.exe by default.

See also: Search Files, Search Files Matching Patterns, Search System.

Next Search Match Editor Command

Arguments: None
Key sequence: Ctrl+X `

The command Next Search Match displays the next match from the last search in the Search Files tool.

Next Grep Editor Command

Arguments: None
Key sequence: None

The command Next Grep is deprecated, use Next Search Match instead.

Show Directory Editor Command

Arguments: path
Key sequence: None

The command Show Directory opens the native file browser.

If no prefix argument is supplied and the current buffer is associated with a pathname, the browser is opened with this
pathname. Otherwise, it prompts for a path to use.

Note: On Windows and macOS, if it is a full filename, the file is selected. On other platforms it only opens the browser
with the directory. On GTK+ it tries to use nautilus and if this is not on the path, it fails.

Report Bug Editor Command

Arguments: None
Key sequence: None

The command Report Bug opens a window containing the template for reporting bugs in LispWorks. This template
can then be filled in and emailed to Lisp Support.

Report Manual Bug Editor Command

Arguments: None
Key sequence: None

The command Report Manual Bug opens a window containing the template for reporting bugs in the LispWorks
documentation. This template can then be filled in and emailed to Lisp Support.

Bug Report Editor Command

Arguments: None
Key sequence: None

The command Bug Report is an alias for Report Bug.

3 Command Reference

100

Exit Lisp Editor Command

Arguments: None
Key sequence: None

The command Exit Lisp is an alias for Save All Files and Exit.

3.37 Miscellaneous

break-on-editor-error Editor Variable

Default value: nil

Specifies whether an editor:editor-error generates a Lisp cerror, or whether it just displays a message in the
Echo Area.

Room Editor Command

Arguments: None
Key sequence: None

Displays information on the current status of the memory allocation for the host computer.

3.38 Obscure commands

This section documents commands that we believe are unlikely to be useful. If you do find a use for any of these, please tell
us at Lisp Support.

Clear Undo Editor Command

Arguments: None
Key sequence: None

The command Clear Undo clears undo information in the current buffer, after prompting the user for confirmation.

See also: Undo.

List Faces Display Editor Command

Arguments: None
Key sequence: None

The command List Faces Display creates an editor buffer and displays in it all known editor faces.

Clear Eval Record Editor Command

Arguments: None
Key sequence: None

The command Clear Eval Record deletes the record of compilation and evaluation in the current buffer. This record
is used by the Stepper to find the source code.

Redo Editor Command

Arguments: None
Key sequence: None

3 Command Reference

101

http://www.lispworks.com/documentation/HyperSpec/Body/f_cerror.htm

The command Redo redoes the last undone change. It operates only with simple Undo/Redo selected (see Toggle Global
Simple Undo).

See also: Toggle Global Simple Undo.

Toggle Global Simple Undo Editor Command

Arguments: None
Key sequence: None

The command Toggle Global Simple Undo toggles the type of undo between simple Undo/Redo and the Emacs-
style of undo.

With a positive prefix argument simple Undo/Redo is selected, and with a zero or negative prefix argument Emacs-style
undo is selected.

Note: the setting is global, that is it affects all editor buffers.

See also: Undo.

Flush Sections Editor Command

Arguments: None
Key sequence: None

The command Flush Sections flushes information about the definitions in the current buffer gathered by sectioning,
to force the editor to recompute it.

3 Command Reference

102

4 Editing Lisp Programs

There are a whole set of editor commands designed to facilitate editing of Lisp programs. These commands are designed to
understand the syntax of the Lisp language and therefore allow movement over Lisp constructs, indentation of code,
operations on parentheses and definition searching. Lisp code can also be evaluated and compiled directly from the editor.

To use some of these commands the current buffer should be in Lisp mode. For more information about editor modes, see
3.26 Modes.

Commands are grouped according to functionality.

4.1 Automatic entry into Lisp mode

Some source files begin with a line of this form:

;;; -*- Mode: Common-Lisp; Author: m.mouse -*-

or this:

;; -*- Mode: Lisp; Author: m.mouse -*-

A buffer is automatically set to be in Lisp mode when such a file is displayed.

Alternatively, if you have files of Common Lisp code with extension other than .lisp, add the following code to your
.lispworks file, substituting the extensions shown for your own. This ensures that Lisp mode is the major mode whenever
a file with one of these extensions is viewed in the editor:

(editor:define-file-type-hook
 ("lispworks" "lisp" "slisp" "el" "lsp" "mcl" "cl")
 (buffer type)
 (declare (ignore type))
 (setf (editor:buffer-major-mode buffer) "Lisp"))

Another way to make a Lisp mode buffer is the command New Buffer, and you can put an existing buffer into Lisp mode via
the command Lisp Mode.

4.2 Syntax coloring

When in Lisp mode, the LispWorks editor provides automatic Lisp syntax coloring and parenthesis matching to assist the
editing of Lisp programs.

You can ensure a buffer is in Lisp mode as described in 4.1 Automatic entry into Lisp mode.

To modify the colors used in Lisp mode syntax coloring, use Preferences... > Environment > Styles > Colors And Attributes
as described in the LispWorks IDE User Guide. Adjust the settings for the styles whose names begin with "Lisp".

Commands controlling syntax coloring have names commencing Font Lock, for example Font Lock Fontify Buffer.

103

Font Lock Fontify Block Editor Command

Arguments: None
Key sequence: None

The command Font Lock Fontify Block fontifies some lines the way Font Lock Fontify Buffer would. The lines
could be a Lisp definition, a paragraph, or a specified number of lines.

If a prefix argument is supplied, Font Lock Fontify Block fontifies that many lines before and after the current
point. If no prefix argument is supplied and the editor variable font-lock-mark-block-function is nil it fontifies
16 lines before and after. If no prefix argument is supplied and font-lock-mark-block-function is non-nil, it is
used to delimit the region to fontify.

Font Lock Fontify Buffer Editor Command

Arguments: None
Key sequence: None

The command Font Lock Fontify Buffer fontifies the current buffer.

Font Lock Mode Editor Command

Arguments: None
Key sequence: None

The command Font Lock Mode sets Font Lock mode.

Without a prefix argument it switches Font Lock mode on and off. With a prefix argument it sets Font Lock mode on
when the argument is positive and off otherwise.

Global Font Lock Mode Editor Command

Arguments: message
Key sequence: None

The command Global Font Lock Mode switches Global Font Lock mode on and off.

With a prefix argument it turns Global Font Lock mode on if and only if the argument is positive.

If message is non-nil the command displays a message saying whether Font Lock mode is on or off.

It returns the new status of Global Font Lock mode (non-nil means on).

When Global Font Lock mode is enabled, Font Lock mode is automatically turned on for modes that support it, which
currently is only Lisp mode.

font-lock-mark-block-function Editor Variable

Default value: lisp-font-lock-mark-block-function
Mode: Lisp

The editor variable font-lock-mark-block-function if non-nil is a function used by Font Lock Fontify Block to
delimit the region to fontify.

The default value in Lisp mode delimits the current Lisp definition.

See also: Font Lock Fontify Block.

4 Editing Lisp Programs

104

4.3 Functions and definitions

4.3.1 Movement, marking and specifying indentation

Beginning of Defun Editor Command

Arguments: None
Key sequence: Meta+Ctrl+A

Moves the current point to the beginning of the current top-level form. A positive prefix argument p causes the point to
be moved to the beginning of the form p forms back in the buffer.

End of Defun Editor Command

Arguments: None
Key sequence: Meta+Ctrl+E

Moves the current point to the end of the current top-level form. A positive prefix argument p causes the point to be
moved to the end of the form p forms forward in the buffer.

Mark Defun Editor Command

Arguments: None
Key sequence: Meta+Ctrl+H

Puts the mark at the end of the current top-level form and the current point at the beginning of the form. The definition
thereby becomes the current region. If the current point is initially located between two top-level forms, then the mark
and current point are placed around the previous top-level form.

Defindent Editor Command

Arguments: no-of-args
Key sequence: None

Defines the number of arguments of the operator to be specially indented if they fall on a new line. The indent is defined
for the operator name, for example defun.

Defindent affects the special argument indentation for all forms with that operator which you subsequently indent.

4.3.2 Definition searching

Definition searching involves taking a name (of a macro, variable, editor command, and so on), and finding the actual
definition. This is particularly useful in large systems, where code may exist in a large number of source files.

Definitions are found by using information provided either by LispWorks source recording or by a Tags file. If source records
or Tags information have not been made available to LispWorks, then the following commands do not work. To make the
information available to LispWorks, set the variable dspec:*active-finders* appropriately. See the LispWorks® User
Guide and Reference Manual for details.

Source records are created if the variable *record-source-files* is true when definitions are compiled, evaluated or
loaded. See the LispWorks® User Guide and Reference Manual for details.

Tag information is set up by the editor itself, and can be saved to a file for future use. For each file in a defined system, the
tag file contains a relevant file name entry, followed by names and positions of each defining form in that file. Before tag
searching can take place, there must exist a buffer containing the required tag information. You can specify a previously
saved tag file as the current tag buffer, or you can create a new one using Create Tags Buffer. GNU Emacs tag files are fully
compatible with LispWorks editor tag files.

4 Editing Lisp Programs

105

http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm

After a command such as Meta+. (Find Source), if there are multiple definitions repeated use of Meta+, (Continue Tags
Search) finds them in turn. If you then wish to revisit a particular definition, try the commands Go Back and Select Go
Back.

Find Source Editor Command

Arguments: name
Key sequence: Meta+. name

Tries to find the source code for name. The symbol under the current point is offered as a default value for name. A
prefix argument automatically causes this default value to be used.

If the source code for name is found, the file in which it is contained is displayed in a buffer. When there is more than
one definition for name, Find Source finds the first definition, and Meta+, (Continue Tags Search) finds subsequent
definitions.

Find Source searches for definitions according to the value of dspec:*active-finders*. You can control which
source record information is searched, and the order in which these are searched, by setting this variable appropriately.
See the LispWorks® User Guide and Reference Manual for details. There is an example setting for this variable in the
configuration files supplied.

If dspec:*active-finders* contains the value :tags, Find Source prompts for the name of a tags file, and this is
used for the current and subsequent searches.

The found source is displayed according to the value of editor:*source-found-action*. This depends on the
buffer with the found definition being in Lisp mode. For information on how to ensure this for particular file types, see
4.1 Automatic entry into Lisp mode.

Find Source For Dspec Editor Command

Arguments: dspec
Key sequence: None

This command is similar to Find Source, but takes a definition spec dspec instead of a name as its argument.

For example, given a generic function foo of one argument, with methods specializing on classes bar and baz:

Find Source for Dspec foo

will find each method definition in turn (with the continuation via Meta+,) whereas:

Find Source for Dspec (method foo (bar))

finds only the definition of the method on bar.

Find Command Definition Editor Command

Arguments: command
Key sequence: None

This command is similar to Find Source, but takes the name of an editor command, and tries to find its source code.

Except in the Personal Edition, you can use this command to find the definitions of the predefined editor commands. See
13.7 Finding source code in the LispWorks® User Guide and Reference Manual for details.

See also: Find Key Definition.

4 Editing Lisp Programs

106

Edit Editor Command Editor Command

Arguments: command
Key sequence: None

This is a synonym for Find Command Definition.

Find Key Definition Editor Command

Arguments: keys
Key sequence: Ctrl+H Ctrl+S keys

The command Find Key Definition prompts for a key sequence keys, and finds the source code definition of the
editor command (if any) that is bound to it.

See also: Find Command Definition.

Find Source For Current Package Editor Command

Arguments: None
Key sequence: None

This command is similar to Find Source, but finds the defpackage definition for the package at the current point. If a
prefix argument is given, it first prompts for a package name.

View Source Search Editor Command

Arguments: function
Key sequence: None

Shows the results of the latest source search (initiated by Find Source or Find Source for Dspec or Find Command
Definition) in the Find Definitions view of the Editor. See the chapter on the Editor tool in the LispWorks IDE User
Guide for more information about the Find Definitions view.

List Definitions Editor Command

Arguments: name
Key sequence: None

List the definitions for name. The symbol under the current point is offered as a default value for name. A prefix
argument automatically causes this default value to be used.

This command searches for definitions and shows the results in the Find Definitions view of the Editor tool instead of
finding the first definition. It does not set up the Meta+, action.

See the chapter on the Editor tool in the LispWorks IDE User Guide for more information about the Find Definitions
view.

List Definitions For Dspec Editor Command

Arguments: dspec
Key sequence: None

This command is similar to List Definitions, but takes a definition spec dspec instead of a name as its argument.

This command searches for definitions and shows the results in the Find Definitions view of the Editor tool instead of
finding the first definition. This command does not set up the Meta+, action.

See the chapter on the Editor tool in the LispWorks IDE User Guide for more information about the Find Definitions
view.

4 Editing Lisp Programs

107

http://www.lispworks.com/documentation/HyperSpec/Body/m_defpkg.htm

Create Tags Buffer Editor Command

Arguments: None
Key sequence: None

Creates a buffer containing Tag search information, for all the .lisp files in the current directory. If you want to use this
information at a later date then save this buffer to a file (preferably a file called TAGS in the current directory).

The format of the information contained in this buffer is compatible with that of GNU Emacs tags files.

A prefix argument causes the user to be prompted for the name of a file containing a list of files, to be used for
constructing the tags table.

Find Tag Editor Command

Key sequence: Meta+?

Tries to find the source code for a name containing a partial or complete match a supplied string by examining the Tags
information indicated by the value of dspec:*active-finders*.

The text under the current point is offered as a default value for the string.

If the source code for a match is found, the file in which it is contained is displayed. When there is more than one
definition, Find Tag finds the first definition, and Meta+, (Continue Tags Search) finds subsequent definitions.

The found source is displayed according to the value of editor:*source-found-action*.

If there is no tags information indicated by the value of dspec:*active-finders*, Find Tag prompts for the name
of a tags file. The default is a file called TAGS in the current directory. If there is no such file, you can create one using
Create Tags Buffer. If you want to search a different directory, specify the name of a tags file in that directory.

See the chapter on the DSPEC package in the LispWorks® User Guide and Reference Manual for information on how to
use the dspec:*active-finders* variable to control how this command operates. There is an example setting for
this variable in the configuration files supplied.

See also Find Source, Find Source for Dspec and Create Tags Buffer.

Tags Search Editor Command

Key sequence: None

Exhaustively searches each file mentioned in the Tags files indicated by the value of dspec:*active-finders* for a
supplied string string. Note that this does not merely search for definitions, but for any occurrence of the string.

If string is found, it is displayed in a buffer containing the relevant file. When there is more than one definition,
Tags Search finds the first definition, and Meta+, (Continue Tags Search) finds subsequent definitions.

If there is no Tags file on dspec:*active-finders*, Tags Search prompts for the name of a tags file. The default
is a file called TAGS in the current directory. If there is no such file, you can create one using Create Tags Buffer. If you
want to search a different directory, specify the name of a tags file in that directory.

Continue Tags Search Editor Command

Arguments: None
Key sequence: Meta+,

Searches for the next match in the current search. This command is only applicable if issued immediately after a Find
Source, Find Source for Dspec, Find Command Definition, Edit Callers, Edit Callees, Find Tag or Tags Search
command.

4 Editing Lisp Programs

108

Tags Query Replace Editor Command

Key sequence: None

Allows you to replace occurrences of a supplied string target by a second supplied string replacement in each Tags file
indicated by the value of dspec:*active-finders*.

Each time target is found, an action must be specified from the keyboard. For details of the possible actions see Query
Replace.

If there is no Tags file indicated by dspec:*active-finders*, Tags Query Replace prompts for the name of a
tags file. The default is a file called TAGS in the current directory. If there is no such file, you can create one using
Create Tags Buffer.

Visit Tags File Editor Command

Key sequence: None

Prompts for a Tags file file and makes the source finding commands use it. This is done by modifying, if necessary, the
value of dspec:*active-finders*.

If file is already in dspec:*active-finders*, this command does nothing.

If there are other Tags files indicated then Visit Tags File prompts for whether to add simply add file as the last
element of dspec:*active-finders*, or to save the current value of dspec:*active-finders* and start a new
list of active finders, setting dspec:*active-finders* to the new value (:internal file). In this case, the previous
active finders list can be restored by the command Rotate Active Finders.

If the value :tags appears on the list dspec:*active-finders* then file replaces this value in the list.

If there is no tags information indicated then Visit Tags File simply adds file as the last element of
dspec:*active-finders*.

Rotate Active Finders Editor Command

Key sequence: Meta+Ctrl+.

Rotates the active finders history, activating the least recent one. This modifies the value of
dspec:*active-finders*.

The active finders history can have length greater than 1 if Visit Tags File started a new list of active finders, or if a
buffer associated with a TAGS file on dspec:*active-finders* was killed.

Visit Other Tags File is a synonym for Rotate Active Finders.

4.3.3 Tracing functions

The commands described in this section use the Common Lisp trace facility. Note that you can switch tracing on and off
using dspec:tracing-enabled-p - see the LispWorks® User Guide and Reference Manual for details of this.

Trace Function Editor Command

Arguments: function
Key sequence: None

This command traces function. The symbol under the current point is offered as a default value for function. A prefix
argument automatically causes this default value to be used.

4 Editing Lisp Programs

109

http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm

Trace Function Inside Definition Editor Command

Arguments: function
Key sequence: None

This command is like Trace Function, except that function is only traced within the definition that contains the cursor.

Untrace Function Editor Command

Arguments: function
Key sequence: None

This command untraces function. The symbol under the current point is offered as a default value for function. A prefix
argument automatically causes this default value to be used.

Trace Definition Editor Command

Arguments: None
Key sequence: None

This command traces the function defined by the current top-level form.

Trace Definition Inside Definition Editor Command

Arguments: None
Key sequence: None

This command is like Trace Definition, except that with a non-nil prefix argument, prompts for a symbol to trace. Also,
it prompts for a symbol naming a second function, and traces the first only inside this.

Untrace Definition Editor Command

Arguments: None
Key sequence: None

This command untraces the function defined by the current top-level form.

Untrace All Editor Command

Arguments: None
Key sequence: None

The command Untrace All untraces all traced definitions.

Break Function Editor Command

Arguments: function
Key sequence: None

This command is like Trace Function but the trace is with :break t so that when function is entered, the debugger is
entered.

Break Function on Exit Editor Command

Arguments: function
Key sequence: None

This command is like Trace Function but the trace is with :break-on-exit t so that when a called to function exits,
the debugger is entered.

4 Editing Lisp Programs

110

Break Definition Editor Command

Arguments: None
Key sequence: None

Like Trace Definition but the definition is traced with :break t.

Break Definition on Exit Editor Command

Arguments: None
Key sequence: None

Like Trace Definition but the definition is traced with :break-on-exit t.

4.3.4 Function callers and callees

The commands described in this section, require that LispWorks is producing cross-referencing information. This
information is produced by turning source debugging on while compiling and loading the relevant definitions (see
toggle-source-debugging in the LispWorks® User Guide and Reference Manual).

List Callers Editor Command

Arguments: dspec
Key sequence: None

Produces a Function Call Browser window showing those functions that call the definition named by dspec. The name of
the current top-level definition is offered as a default value for dspec. A prefix argument automatically causes this
default value to be used.

See 7 Dspecs: Tools for Handling Definitions in the LispWorks® User Guide and Reference Manual for a description of
dspecs.

List Callees Editor Command

Arguments: dspec
Key sequence: None

Produces a Function Call Browser window showing those functions that are called by the definition named by dspec.
The name of the current top-level definition is offered as a default value for dspec. A prefix argument automatically
causes this default value to be used.

See 7 Dspecs: Tools for Handling Definitions in the LispWorks® User Guide and Reference Manual for a description of
dspecs.

Show Paths To Editor Command

Arguments: dspec
Key sequence: None

Produces a Function Call Browser window showing the callers of the definition named by dspec. The name of the
current top-level definition is offered as a default value for dspec. A prefix argument automatically causes this default
value to be used.

See 7 Dspecs: Tools for Handling Definitions in the LispWorks® User Guide and Reference Manual for a description of
dspecs.

4 Editing Lisp Programs

111

Show Paths From Editor Command

Arguments: dspec
Key sequence: None

Produces a Function Call Browser window showing the function calls from the definition named by dspec. The name of
the current top-level definition is offered as a default value for dspec. A prefix argument automatically causes this default
value to be used.

See 7 Dspecs: Tools for Handling Definitions in the LispWorks® User Guide and Reference Manual for a description of
dspecs.

Edit Callers Editor Command

Arguments: function
Key sequence: None

Produces an Editor window showing the latest definition found for a function that calls function. The name of the current
top-level definition is offered as a default value for function. A prefix argument automatically causes this default value
to be used. The latest definitions of each of the other functions that call function are available via the Continue Tags
Search command.

Edit Callees Editor Command

Arguments: function
Key sequence: None

Produces an Editor window showing the latest definition found for a function called by function. The name of the current
top-level definition is offered as a default value for function. A prefix argument automatically causes this default value
to be used. The latest definitions of each of the other functions that are called by function are available via the Continue
Tags Search command.

4.3.5 Indentation and Completion

Indent Selection or Complete Symbol Editor Command

Arguments: None
Key sequence: Tab
Mode: Lisp

Does Lisp indentation if there is a visible region. Otherwise, it attempts to indent the current line. If the current line is
already indented correctly then it attempts to complete the symbol before the current point. See Complete Symbol for
more details.

The prefix argument, if supplied, is interpreted as if by Indent Selection or Complete Symbol.

Indent or Complete Symbol Editor Command

Arguments: None
Key sequence: None

Attempts to indent the current line. If the current line is already indented correctly then it attempts to complete the
symbol before the current point. See Complete Symbol for more details.

The prefix argument, if supplied, is interpreted as if by Indent or Complete Symbol.

4 Editing Lisp Programs

112

Complete Symbol Editor Command

Arguments: None
Key sequence: Meta+Ctrl+I

Attempts to complete the text before the current point to a symbol. If the string to be completed is not unique, a list of
possible completions is displayed.

If the Use in-place completion preference is selected then the completions are displayed in a window which allows most
keyboard gestures to be processed as ordinary editor input. This allows speedy reduction of the number of possible
completions, while you can select the desired completion with Return, Up and Down.

If a prefix argument is supplied then only symbols which are bound or fbound are offered amongst the possible
completions.

Abbreviated Complete Symbol Editor Command

Arguments: None
Key sequence: Meta+I

Attempts to complete the symbol abbreviation before the current point. If the string to be completed is not unique, a list
of possible completions is displayed.

A symbol abbreviation is a sequence of words (sequences of alphanumeric characters) separated by connectors
(sequences of non-alphanumeric, non-whitespace characters). Each word (connector) is a prefix of the corresponding
word (connector) in the expansions. Thus if you complete the symbol abbreviation w-o then with-open-file and
with-open-stream are amongst the completions offered, assuming the COMMON-LISP package is visible.

If the Use in-place completion preference is selected then the completions are displayed in a window which allows most
keyboard gestures to be processed as ordinary editor input. This allows speedy reduction of the number of possible
completions, while you can select the desired completion with Return, Up and Down.

If a prefix argument is supplied then only symbols which are bound or fbound are offered amongst the possible
completions.

4.3.6 Miscellaneous

Buffer Changed Definitions Editor Command

Arguments: None
Key sequence: None

Calculates which definitions have been changed in the current buffer during the current LispWorks session, and displays
these in the Changed Definitions tab of the Editor tool.

By default the reference point against which changes are calculated is the time when the file was last read into the buffer.
A prefix argument equal to the value of the editor variable prefix-argument-default means the reference point is
the last evaluation. A prefix argument of 1 means the reference point is the time the buffer was last saved to file.

Note: the most convenient way to use this command is via the Editor tool. Switch it to the Changed Definitions tab,
where you can specify the reference point for calculating the changes.

Function Arglist Editor Command

Arguments: function
Key sequence: Meta+= function

Prints the arguments expected by function in the Echo Area. The symbol under the current point is offered as a default

4 Editing Lisp Programs

113

http://www.lispworks.com/documentation/HyperSpec/Body/m_w_open.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_op_1.htm

value for function. A prefix argument automatically causes this default value to be used.

Example code showing how to use this command to display argument lists automatically is supplied with LispWorks:

(example-edit-file "editor/commands/space-show-arglist")

Function Argument List Editor Command

Arguments: function
Key sequence: Ctrl+Shift+A function

The command Function Argument List is a more sophisticated version of Function Arglist which works on the
current form rather than the current symbol.

The symbol at the head of the current form is offered as a default value for function, unless that symbol is a member of
the list editor:*find-likely-function-ignores* in which case the second symbol in the form is offered as the
default. A prefix argument automatically causes this default value to be used.

Function Arglist Displayer Editor Command

Arguments: None
Key sequence: Ctrl+`

Shows or hides information about the operator in the current form. The command controls display of a special window
(displayer) on top of the editor. The displayer shows the operator and its arguments, and tries to highlight the current
argument (that is, the argument at the cursor position). If it does not recognize the operator of the current form, it tries
the surrounding form, and if that fails it tries a third level of surrounding form.

While the displayer is visible:

Ctrl++ Moves the displayer up.

Ctrl+- Moves the displayer down.

You can dismiss the displayer by invoking the command again, or by entering Ctrl+G. On Cocoa and Windows it is
dismissed automatically when the underlying pane loses the focus.

In the LispWorks IDE you can change the style of the highlighting by Preferences... > Environment > Styles > Colors
and Attributes > Arglist Highlight.

Additionally, while the displayer is visible:

Ctrl+/ Controls whether the documentation string of the operator is also shown.

Lastly, if passed a prefix argument, for example by typing Ctrl+U Ctrl+` then it displays the operator and its
arguments, with highlight, in the Echo Area, rather than a displayer window. This Echo Area display is interface-
specific, and implemented only for the Editor and other tools based on the editor.

Describe Class Editor Command

Arguments: class
Key sequence: None

Displays a description of the class named by class in a Class Browser tool. The symbol under the current point is offered
as a default value for class. A prefix argument automatically causes this default value to be used.

Describe Generic Function Editor Command

Arguments: function
Key sequence: None

4 Editing Lisp Programs

114

Displays a description of function in a Generic Function Browser tool. The symbol under the current point is offered as a
default value for function. A prefix argument automatically causes this default value to be used.

Describe Method Call Editor Command

Arguments: None
Key sequence: None

Displays a Generic Function Browser tool, with a specific method combination shown.

When invoked with a prefix argument p while the cursor is in a defmethod form, it uses the generic function and
specializers of the method to choose the method combination.

Otherwise, it prompts for the generic function name and the list of specializers, which can be class names or lists of the
form (eql object) where object is not evaluated.

Describe System Editor Command

Arguments: system
Key sequence: None

Displays a description of the defsystem-defined system named by system. The symbol under the current point is
offered as a default value for system. A prefix argument automatically causes this default value to be used.

4.4 Forms

4.4.1 Movement, marking and indentation

Forward Form Editor Command

Arguments: None
Key sequence: Meta+Ctrl+F

Moves the current point to the end of the next form. A positive prefix argument causes the point to be moved the
required number of forms forwards.

Backward Form Editor Command

Arguments: None
Key sequence: Meta+Ctrl+B

Moves the current point to the beginning of the previous form. A positive prefix argument causes the point to be moved
the required number of forms backwards.

Mark Form Editor Command

Arguments: None
Key sequence: Meta+Ctrl+@

Puts the mark at the end of the current form. The current region is that area from the current point to the end of form. A
positive prefix argument puts the mark at the end of the relevant form.

Indent Form Editor Command

Arguments: None
Key sequence: Meta+Ctrl+Q

If the current point is located at the beginning of a form, the whole form is indented in a manner that reflects the

4 Editing Lisp Programs

115

http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm

structure of the form. This command can therefore be used to format a whole definition so that the structure of the
definition is apparent.

See editor:*indent-with-tabs* for control over the insertion of #\Tab characters by this and other indentation
commands.

4.4.2 Killing forms

Forward Kill Form Editor Command

Arguments: None
Key sequence: Meta+Ctrl+K

Kills the text from the current point up to the end of the current form. A positive prefix argument causes the relevant
number of forms to be killed forwards. A negative prefix argument causes the relevant number of forms to be killed
backwards.

Backward Kill Form Editor Command

Arguments: None
Key sequence: Meta+Ctrl+Backspace

Kills the text from the current point up to the start of the current form. A positive prefix argument causes the relevant
number of forms to be killed backwards. A negative prefix argument causes the relevant number of forms to be killed
forwards.

Kill Backward Up List Editor Command

Arguments: None
Key sequence: None

Kills the form surrounding the current form. The cursor must be on the left parenthesis of the current form. The entire
affected area is pushed onto the kill-ring. A prefix argument causes the relevant number of surrounding lists to be
removed.

For example, given the following code, with the cursor on the second left parenthesis:

(print (do-some-work 1 2 3))

Kill Backward Up List would kill the outer form leaving this:

(do-some-work 1 2 3)

Also available through the function editor:kill-backward-up-list-command.

Extract List is a synonym for Kill Backward Up List.

4.4.3 Macro-expansion of forms

Macroexpand Form Editor Command

Arguments: None
Key sequence: Ctrl+Shift+M

Macro-expands the form after the current point. The output is sent to the Output window. A prefix argument causes the
output to be displayed in the current buffer.

4 Editing Lisp Programs

116

Walk Form Editor Command

Arguments: None
Key sequence: Meta+Shift+M

Produces a macroexpansion of the form after the current point. The output is sent to the Output window. A prefix
argument causes the output to be displayed in the current buffer.

Note: Walk Form does not expand the Common Lisp macros cond, prog, prog* and multiple-value-bind,
though it does expand their subforms.

4.4.4 Miscellaneous

Transpose Forms Editor Command

Arguments: None
Key sequence: Meta+Ctrl+T

Transposes the forms immediately preceding and following the current point. A zero prefix argument causes the forms at
the current point and the current mark to be transposed. A positive prefix argument causes the form at or preceding the
current point to be transposed with the form the relevant number of forms forward. A negative prefix argument causes
the form at or preceding the current point to be transposed with the form the relevant number of forms backward.

Insert Double Quotes For Selection Editor Command

Arguments: None
Key sequence: Meta+"

Inserts a pair of double-quotes around the selected text, if any. If there is no selected text and a prefix argument p is
supplied, insert them around the p following (or preceding) forms. Otherwise insert them at the current point. The point
is left on the character after the first double-quote.

4.5 Lists

4.5.1 Movement

Forward List Editor Command

Arguments: None
Key sequence: Meta+Ctrl+N

Moves the current point to the end of the current list. A positive prefix argument causes the point to be moved the
required number of lists forwards.

Backward List Editor Command

Arguments: None
Key sequence: Meta+Ctrl+P

Moves the current point to the beginning of the current list. A positive prefix argument causes the point to be moved the
required number of lists backwards.

Forward Up List Editor Command

Arguments: None

4 Editing Lisp Programs

117

http://www.lispworks.com/documentation/HyperSpec/Body/m_cond.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_prog_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_prog_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_multip.htm

Key sequence: None

Moves the current point to the end of the current list by finding the first right parenthesis that is not matched by an left
parenthesis after the current point.

Backward Up List Editor Command

Arguments: None
Key sequence: Meta+Ctrl+U

Moves the current point to the beginning of the current list by finding the first left parenthesis that is not matched by a
right parenthesis before the current point.

Down List Editor Command

Arguments: None
Key sequence: Meta+Ctrl+D

Moves the current point to a location down one level in the current list structure. A positive prefix argument causes the
current point to be moved down the required number of levels.

4.6 Comments

Comment Region Editor Command

Arguments: None
Key sequence: None

The command Comment Region comments a region according to the mode.

This command has an effect only if the comment-begin variable is set. By default, comment-begin is set in the Lisp,
IDL and C modes.

The commented region is the current region, extended to the beginning of the line where the region starts and the end of
the line where it ends.

The prefix argument determines the number of repetitions of the comment-begin string when the length of
comment-begin is one, as in Lisp mode. When comment-begin is longer, the prefix argument is ignored. If the
prefix argument is nil, a single character comment-begin is repeated three times.

Set Comment Column Editor Command

Arguments: None
Key sequence: Ctrl+X ;

Sets the comment column to the current column. A positive prefix argument causes the comment column to be set to the
value of the prefix argument.

The value is held in the editor variable comment-column.

Indent For Comment Editor Command

Arguments: None
Key sequence: Meta+;

Creates a new comment or moves to the beginning of an existing comment, indenting it appropriately (see Set Comment
Column).

If the current point is in a line already containing a comment, that comment is indented as appropriate, and the current

4 Editing Lisp Programs

118

point is moved to the beginning of the comment. An existing double semicolon comment is aligned as for a line of code.
An existing triple semicolon comment or a comment starting in column 0, is not moved.

A prefix argument causes comments on the next relevant number of lines to be indented. The current point is moved
down the relevant number of lines.

If characters not associated with the comment extend past the comment column, a space is added before starting the
comment.

Insert Multi Line Comment For Selection Editor Command

Arguments: None
Key sequence: Meta+#

Inserts multi line comment syntax around the selected text, if any. If there is no selected text and a prefix argument p is
supplied, inserts them around p following (or preceding) forms. Otherwise it inserts them at the current point. The point
is left on the first character inside the comment.

Up Comment Line Editor Command

Arguments: None
Key sequence: Meta+P

Moves to the previous line and then performs an Indent for Comment.

Down Comment Line Editor Command

Arguments: None
Key sequence: Meta+N

Moves to the next line and then performs an Indent for Comment.

Indent New Comment Line Editor Command

Arguments: None
Key sequence: Meta+J
Key sequence: Meta+Newline

Ends the current comment and starts a new comment on the next line, using the indentation and number of comment start
characters from the previous line's comment. If Indent New Comment Line is performed when the current point is
not in a comment line, it simply acts as a Return.

Kill Comment Editor Command

Arguments: None
Key sequence: Meta+Ctrl+;

Kills the comment on the current line and moves the current point to the next line. If there is no comment on the current
line, the point is simply moved onto the next line. A prefix argument causes the comments on the relevant number of
lines to be killed and the current point to be moved appropriately.

The comment is identified by matching against the value of comment-start.

comment-begin Editor Variable

Default value: ";"
Mode: Lisp

When the value is a string, it is inserted to begin a comment by commands like Indent for Comment and Indent New
Comment Line.

4 Editing Lisp Programs

119

comment-start Editor Variable

Default value: ";"
Mode: Lisp

A string that begins a comment. When the value is a string, it is inserted to start a comment by commands like Indent
New Comment Line, or used to identify a comment by commands like Kill Comment.

comment-column Editor Variable

Default value: 0
Mode: Lisp

Column to start comments in. Set by Set Comment Column.

comment-end Editor Variable

Default value: nil
Mode: Lisp

String that ends comments. The value nil indicates Newline termination. If the value is a string, it is inserted to end a
comment by commands like Indent New Comment Line.

4.7 Parentheses

Insert () Editor Command

Arguments: None
Key sequence: None

Inserts a pair of parentheses, positioning the current point after the left parenthesis. A prefix argument p causes the
parentheses to be placed around p following (or preceding) forms.

Insert Parentheses For Selection Editor Command

Arguments: None
Key sequence: Meta+(

Inserts a pair of parentheses around the selected text, if any. If there is no selected text and a prefix argument p is
supplied, inserts them around p following (or preceding) forms. Otherwise it inserts them at the current point. The point
is left on the character after the left parenthesis.

highlight-matching-parens Editor Variable

Default value: t
Mode: Lisp

When the value is true, matching parentheses are displayed in a different font when the cursor is directly to the right of
the corresponding right parenthesis.

Move Over) Editor Command

Arguments: None
Key sequence: Meta+)

Inserts a new line after the next left parenthesis, moving the current point to the new line. Any indentation preceding the
right parenthesis is deleted, and the new line is indented.

4 Editing Lisp Programs

120

Lisp Insert) Editor Command

Arguments: None
Key sequence:)
Mode: Lisp

Inserts a right parenthesis and highlights the matching left parenthesis, thereby allowing the user to examine the extent of
the parentheses.

Lisp Insert) Indenting Top Level Editor Command

Arguments: None
Key sequence: None

The command Lisp Insert) Indenting Top Level is the same as Lisp Insert), but if it looks like the insertion
closes a top level form (when the left parenthesis is at the beginning of a line) then it also indents the form.

Note: This command is intended as alternative binding to) in Lisp mode for users that like this behavior.

Find Unbalanced Parentheses Editor Command

Arguments: None
Key sequence: None

Moves the point to the end of the last properly matched form, thereby allowing you to easily identify any parentheses in
your code which are unbalanced.

Find Mismatch is a synonym for Find Unbalanced Parentheses.

4.8 Documentation

Apropos Editor Command

Arguments: string
Key sequence: Ctrl+H A string

Displays a Symbol Browser tool which lists symbols with symbol names matching string. The symbol name at the
current point is offered as a default value for string.

By default string is matched against symbol names as a regular expression. A prefix argument causes a plain substring
match to be used instead.

See 28.7 Regular expression syntax in the LispWorks® User Guide and Reference Manual for a description of regular
expression matching. See the LispWorks IDE User Guide for a description of the Symbol Browser tool.

Describe Symbol Editor Command

Arguments: symbol
Key sequence: None

Displays a description (that is, value, property list, package, and so on) of symbol in a Help window. The symbol under
the current point is offered as a default value for string. A prefix argument automatically causes this default value to be
used.

Function Documentation Editor Command

Arguments: None
Key sequence: Ctrl+Shift+D

4 Editing Lisp Programs

121

editor:function-documentation-command p

Prompts for a symbol, which defaults to the symbol at the current point, and displays the HTML documentation for that
symbol if it is found in the HTML manuals index pages.

On GTK+ and X11/Motif, the prefix argument controls whether a new browser window is created. If the option Reuse
existing browser window is selected in the browser preferences, then the prefix argument causes the command to create
a new browser window. If Reuse existing browser window is deselected, then the prefix argument causes the command
to reuse an existing browser window.

Show Documentation Editor Command

Arguments: name
Key sequence: Meta+Ctrl+Shift+A

Displays a Help window containing any documentation for the Lisp symbol name that is present in the Lisp image. This
includes function lambda lists, and documentation strings accessible with cl:documentation, if any such
documentation exists.

Show Documentation For Dspec Editor Command

Arguments: dspec
Key sequence: None

Displays any documentation in the Lisp image for the dspec dspec, as described for Show Documentation.

dspec is a symbol or list naming a definition, as described in 7 Dspecs: Tools for Handling Definitions in the
LispWorks® User Guide and Reference Manual.

4.9 Evaluation and compilation

The commands described below allow the user to evaluate (interpret) or compile Lisp code that exists as text in a buffer. In
some cases, the code may be used to modify the performance of the Editor itself.

4.9.1 General Commands

current-package Editor Variable

Default value: nil

If non-nil, defines the value of the current package.

Set Buffer Package Editor Command

Arguments: package
Key sequence: None

Set the package to be used by Lisp evaluation and compilation while in this buffer. Not to be used in the Listener, which
uses the value of *package* instead.

Set Buffer Output Editor Command

Arguments: stream
Key sequence: None

Sets the output stream that evaluation results in the current buffer are sent to.

4 Editing Lisp Programs

122

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pkg.htm

4.9.2 Evaluation commands

Evaluate Defun Editor Command

Arguments: None
Key sequence: Meta+Ctrl+X

Evaluates the current top-level form. If the current point is between two forms, the previous form is evaluated.

If the form is a defvar form, then the command may first make the variable unbound, according to the value of
evaluate-defvar-action, and hence assign the new value. This is useful because cl:defvar does not reassign the
value of a bound variable but when editing a program it is likely that you do want the new value.

evaluate-defvar-action Editor Variable

Default value: :reevaluate-and-warn

This affects the behavior of Evaluate Defun and Compile Defun when they are invoked on a defvar form. The
allowed values are:

:evaluate-and-warn Do not make the variable unbound before evaluating the form, and warn that it was not redefined.

:evaluate Do not make the variable unbound before evaluating the form, but do not warn that it was not
redefined.

:reevaluate-and-warn

Make the variable unbound before evaluating the form, and warn that it was therefore redefined.

:reevaluate Make the variable unbound before evaluating the form, but do not warn that it was therefore
redefined.

Reevaluate Defvar Editor Command

Arguments: None
Key sequence: None

Evaluates the current top-level form if it is a defvar. If the current point is between two forms, the previous form is
evaluated. The form is treated as if the variable is not bound.

Re-evaluate Defvar is a synonym for Reevaluate Defvar.

Evaluate Expression Editor Command

Arguments: expression
Key sequence: Esc Esc expression
Key sequence: Meta+Esc expression

Evaluates expression. The expression to be evaluated is typed into the Echo Area and the result of the evaluation is
displayed there also.

Evaluate Last Form Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+E

Evaluates the Lisp form preceding the current point.

Without a prefix argument, prints the result in the Echo Area. With a non-nil prefix argument, inserts the result into the
current buffer.

4 Editing Lisp Programs

123

http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm

Evaluate Region Editor Command

Arguments: None
Key sequence: Ctrl+Shift+E

Evaluates the Lisp forms in the region between the current point and the mark.

Evaluate Buffer Editor Command

Arguments: None
Key sequence: None

Evaluates the Lisp forms in the current buffer.

Load File Editor Command

Arguments: file
Key sequence: None

Loads file into the current eval server, so that all Lisp forms in the file are evaluated.

See also the function editor:set-pathname-load-function.

Toggle Error Catch Editor Command

Arguments: None
Key sequence: None

Toggles error catching for expressions evaluated in the editor. By default, if there is an error in an expression evaluated
in the editor, a Notifier window is opened which provides the user with a number of options, including debug, re-
evaluation and aborting of the editor command. However, this behavior can be changed by using
Toggle Error Catch, so that in the event of an error, the error message is printed in the Echo Area, and the user is
given no restart or debug options.

Evaluate Buffer Changed Definitions Editor Command

Arguments: None
Key sequence: None

Evaluates definitions that have been changed in the current buffer during the current LispWorks session (use Buffer
Changed Definitions to see which definitions have changed). A prefix argument equal to the value of
prefix-argument-default causes evaluation of definitions changed since last evaluated. A prefix argument of 1
causes evaluation of definitions changed since last saved.

Evaluate Changed Definitions Editor Command

Arguments: None
Key sequence: None

Evaluates definitions in all Lisp buffers that have been changed during the current LispWorks session. The effect of
prefixes is the same as for Evaluate Buffer Changed Definitions.

Evaluate System Changed Definitions Editor Command

Arguments: system
Key sequence: None

Evaluates definitions that have been changed in system during the current LispWorks session.

4 Editing Lisp Programs

124

4.9.3 Evaluation in Listener commands

Evaluate Defun In Listener Editor Command

Arguments: editp
Key sequence: None

This command works rather like Evaluate Defun in that it evaluates the current top-level form and handles defvar
forms usefully. However, instead of doing the evaluation in the Editor window, it copies the form into a Listener window
as if you had entered it there.

Normally the evaluation is done immediately, but if a prefix argument is given, the text is inserted into the Listener for
you to edit before pressing Return to evaluate it.

An in-package form is inserted before the form when necessary, so this will change the current package in the
Listener.

Evaluate Last Form In Listener Editor Command

Arguments: editp
Key sequence: None

This command works rather like Evaluate Last Form in that it evaluates the Lisp form preceding the current point.
However, instead of doing the evaluation in the Editor window, it copies the form into a Listener window as if you had
entered it there.

Normally the evaluation is done immediately, but if a prefix argument is given, the text is inserted into the Listener for
you to edit before pressing Return to evaluate it.

An in-package form is inserted before the form when necessary, so this will change the current package in the
Listener.

Evaluate Region In Listener Editor Command

Arguments: editp
Key sequence: None

This command works rather like Evaluate Region in that it evaluates the Lisp forms in the current region. However,
instead of doing the evaluation in the Editor window, it copies the forms into a Listener window as if you had entered
them there.

Normally the evaluation is done immediately, but if a prefix argument is given, the forms are inserted into the Listener
for you to edit before pressing Return to evaluate them.

An in-package form is inserted before the forms when necessary, so this will change the current package in the
Listener.

4.9.4 Compilation commands

Compile Defun Editor Command

Arguments: None
Key sequence: Ctrl+Shift+C

Compiles the current top-level form. If the current point is between two forms, the previous form is evaluated.

If the form is a defvar form, then the command may first make the variable unbound, according to the value of
evaluate-defvar-action, and hence assign the new value.This is useful because cl:defvar does not reassign the

4 Editing Lisp Programs

125

http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm

value of a bound variable but when editing a program it is likely that you do want the new value.

Compile Region Editor Command

Arguments: None
Key sequence: Ctrl+Shift+R

Compiles the Lisp forms in the region between the current point and the mark.

Compile File Editor Command

Arguments: file
Key sequence: None

Compiles file unconditionally, with cl:compile-file.

No checking is done on write dates for the source and binary files, to see if the file needs to be compiled. Also, no
checking is done to see if there is a buffer for the file that should first be saved.

Compile Buffer Editor Command

Arguments: None
Key sequence: Ctrl+Shift+B

Reads, compiles and then executes in turn each of the Lisp forms in the current buffer.

Compile Buffer File Editor Command

Arguments: None
Key sequence: None

Compiles the source file in the current buffer as if by Compile File, but checks the buffer and file first.

If the buffer is modified it is saved (updating the source file) before compilation, although if
compile-buffer-file-confirm is true the command prompts for confirmation before saving and compiling.

If its associated binary (fasl) file is older than the source file or does not exist or the prefix argument is supplied then the
file is compiled, although if compile-buffer-file-confirm is t the command prompts for confirmation before
compiling.

If the binary file is up to date, command prompts for confirmation before compiling, although this prompt can be
avoided by supplying the prefix argument.

Compile and Load Buffer File Editor Command

Arguments: None
Key sequence: None

The command Compile and Load Buffer File compiles the source file in the current buffer just like Compile
Buffer File, with the same checks.

It then loads the compiled file. In the case that the binary file is up to date and the user declines to compile, the command
first prompts for confirmation before loading the existing binary file.

Compile and Load File Editor Command

Arguments: filename
Key sequence: None

The command Compile and Load File prompts for a filename, and then compiles and loads that file.

4 Editing Lisp Programs

126

http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm

compile-buffer-file-confirm Editor Variable

Default value: t

Determines whether Compile Buffer File should prompt for a compilation to proceed. If the value is true, the user is
always prompted for confirmation.

Compile Buffer Changed Definitions Editor Command

Arguments: None
Key sequence: None

Compiles definitions that have been changed in the current buffer during the current LispWorks session (use Buffer
Changed Definitions to see which definitions have changed). A prefix argument equal to the value of
prefix-argument-default causes compilation of definitions changed since last compiled. A prefix argument of 1
causes compilation of definitions changed since last saved.

Compile Changed Definitions Editor Command

Arguments: None
Key sequence: None

Compiles definitions in all Lisp buffers that have been changed during the current LispWorks session. The effect of
prefixes is the same as for Compile Buffer Changed Definitions.

Compile System Editor Command

Arguments: system
Key sequence: None

Compiles all files in the system system.

If ASDF is loaded and the LispWorks tools are configured to use it, then this command works with ASDF systems as
well as those defined by lispworks:defsystem.

Compile System Changed Definitions Editor Command

Arguments: system
Key sequence: None

Compiles definitions that have been changed in system during the current LispWorks session.

Disassemble Definition Editor Command

Arguments: definition
Key sequence: None

Outputs assembly code for definition to the Output window, compiling it first if necessary. The name of the current top-
level definition is offered as a default value for definition.

Edit Recognized Source Editor Command

Arguments: None
Key sequence: Ctrl+X ,

Edit the source of the next compiler message, warning or error. It should be used while viewing the Output window.
Without a prefix argument, it searches forwards in the Output window until it finds text which it recognizes as a compiler
message, warning or error, and then shows the source code associated with that message. With a prefix argument, it
searches backwards.

4 Editing Lisp Programs

127

4.10 Code Coverage

These commands allow you to visualize code coverage data by coloring the source code in a LispWorks editor.

4.10.1 Coloring code coverage

By default, these commands call hcl:editor-color-code-coverage with for-editing t. This means that they find the
existing buffer for the file if there is one (always true for Code Coverage Current Buffer), and do not modify the text at all.
When used with a prefix argument, these commands pass for-editing nil, which causes creation of a special buffer without a
pathname and different name, and then coloring contains counters.

Code Coverage Current Buffer Editor Command

Arguments: None
Key sequence: None

Colors the code in the current buffer with code coverage data.

The file named by the buffer pathname of the current buffer needs to have code coverage data in the default code
coverage data. This may be set by hcl:code-coverage-set-editor-default-data or the commands Code
Coverage Set Default Data and Code Coverage Load Default Data.

If a prefix argument is supplied, then a buffer without a pathname is created with a different name from the source file,
which prevents accidental overwriting of the source file.

The actual coloring is done by calling hcl:editor-color-code-coverage, see the LispWorks® User Guide and
Reference Manual for details.

See also: Code Coverage File.

Code Coverage File Editor Command

Arguments: None
Key sequence: None

Prompts for a file, opens and colors it with code coverage data in the same way as Code Coverage Current Buffer.

See also: Code Coverage Current Buffer.

4.10.2 Setting the default code coverage data

Code Coverage Load Default Data Editor Command

Arguments: None
Key sequence: None

Sets the default code coverage data that the editor uses to color.

The command prompts for a filename, and passes the result to hcl:code-coverage-set-editor-default-data.

See also: Code Coverage Current Buffer.

Code Coverage Set Default Data Editor Command

Arguments: None
Key sequence: None

Sets the default code coverage data that the editor uses to color.

4 Editing Lisp Programs

128

The command prompts for a string, reads and evaluates it, and then passes the result to
hcl:code-coverage-set-editor-default-data.

See also: Code Coverage Current Buffer.

4.11 Breakpoints

These commands operate on breakpoints, which are points in code where execution stops and the LispWorks IDE invokes the
Stepper tool.

See "Breakpoints" in the LispWorks IDE User Guide for more information about breakpoints and the Stepper tool.

4.11.1 Setting and removing breakpoints

Toggle Breakpoint Editor Command

Arguments: None
Key sequence: None

If there is no breakpoint at the current point, sets a breakpoint there if possible. If there is a breakpoint at the current
point, removes it.

4.11.2 Moving between breakpoints

Next Breakpoint Editor Command

Arguments: None
Key sequence: None

Moves the point to the next breakpoint in the current buffer. If given a numeric prefix argument p, it skips p-1
breakpoints.

Previous Breakpoint Editor Command

Arguments: None
Key sequence: None

Moves the point to the previous breakpoint in the current buffer. If given a numeric prefix argument p, it skips p-1
breakpoints.

4.12 Stepper commands

Stepper Breakpoint

Stepper Continue

Stepper Macroexpand

Stepper Next

Stepper Restart

Stepper Show Current Source

Stepper Step

Stepper Step Through Call

4 Editing Lisp Programs

129

Stepper Step to Call

Stepper Step to Cursor

Stepper Step to End

Stepper Step to Value
Stepper Undo Macroexpand Editor Commands

Arguments: None
Key sequence: None

These commands run the corresponding Stepper command in the current Stepper tool.

See "Stepper controls" in the LispWorks IDE User Guide for more information about these commands and the Stepper
tool.

4.13 Removing definitions

These commands allow the user to remove definitions from the running Lisp image. It uses Common Lisp functionality such
as fmakunbound, makunbound and remove-method to undefine Lisp functions, variables, methods and so on.

Note: This does not mean deleting the source code.

4.13.1 Undefining one definition

Undefine Editor Command

Arguments: None
Key sequence: None

Without a prefix argument, this undefines the current top level definition. That is, the defining form around or preceding
the current point.

With a non-nil prefix argument, this does not undefine the definition but instead inserts into the buffer a Lisp form which,
if evaluated, would undefine the definition.

Undefine Command Editor Command

Arguments: None
Key sequence: None

Prompts for the name of an Editor command, and undefines that command.

4.13.2 Removing multiple definitions

Undefine Buffer Editor Command

Arguments: None
Key sequence: None

Undefines all the definitions in the current buffer.

Undefine Region Editor Command

Arguments: None
Key sequence: None

4 Editing Lisp Programs

130

http://www.lispworks.com/documentation/HyperSpec/Body/f_fmakun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_makunb.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rm_met.htm

Undefines the definitions in the current region.

4.14 Definition folding

Definition folding means making the body of the definition invisible, as well as the preceding lines up to the previous
definition. Currently the implementation applies only to Lisp definitions. A line starting with an left parenthesis is regarded
as the begining of a Lisp definition, and the matching right parenthesis is its end.

Definition folding is done by folds. Each fold hides the body of a definition and the preceding lines, which are referred to as
the comment for this definition. The first line of the definition remains visible, and also the right parenthesis. The body is
invisible, and instead three dots (...) are displayed. The comment is also made invisible. By default, nothing is displayed
for the comment, but that can be configured by Preferences... > Editor > Editor Options > Hidden Comment String (see in
12.7.3 Other Editor options in the LispWorks IDE User Guide).

There are three commands to manipulate definition folding:

• Fold Buffer Definitions folds all the definitions in the current buffer.

• Unfold Buffer Definitions unfolds all the definition in the current buffer.

• Toggle Current Definition Folding toggles the folding of the current definition.

When an incremental search matches inside a folded definition, the definition is unfolded temporarily. Unless the incremental
search is ended by the abort gesture (Ctrl+G, or Esc in KDE/Gnome editor emulation), the definition in which the last
match occurred is left unfolded, while all the other definitions that were temporarily unfolded are refolded. If the search is
ended by the abort gesture, all temporarily unfolded defintions are refolded.

Folding hides most of the newlines in the buffer and displays the first line of the definition and its right parenthesis on the
same display line on the screen. Thus each display line on the screen contains text from two different lines in the full text of
the buffer. That causes line-based editor commands such as Next Line and Previous Line to behave in a somewhat non-
intuitive way. However, they still do the right thing, which is moving between those lines in the full text that are visible on
the screen (which may be in the same display line).

The folds affect only the way the text in the buffer is displayed on the screen, and have no effect on the buffer's contents. If
you re-read the buffer from its file, for example by reverting using either Revert Buffer or from the menu, then the folds are
eliminated.

Fold Buffer Definitions Editor Command

Arguments: None
Key sequence: None

Folds the definitions in the current buffer. See 4.14 Definition folding above for the description of definition folding.

Fold Buffer Definitions goes through the whole buffer from the beginning, and adds a fold for each definition.

If an unclosed definition is found (that is a line starting with an left parenthesis which does not have a matching right
parenthesis) then Fold Buffer Definitions assumes that all following lines starting with a space or tab are part of
the unclosed defintion. It then skips the unclosed definition without trying to fold it.

Unfold Buffer Definitions Editor Command

Arguments: None
Key sequence: None

Unfolds all the definitions in the current buffer. See 4.14 Definition folding above for the description of definition
folding.

4 Editing Lisp Programs

131

Toggle Current Definition Folding Editor Command

Arguments: None
Key sequence: None

Changes the folding state of the current definition (the definition where the cursor is).

Without a prefix argument, Toggle Current Definition Folding unfolds the current definition if it is folded,
otherwise the command folds the current definition. This is the default behavior.

With any prefix argument except 0, Toggle Current Definition Folding ensures that the current definition is
folded.

With prefix 0, Toggle Current Definition Folding ensures that the current definition is unfolded.

4.15 Remote debugging

Connect Remote Debugging Editor Command

Arguments: host port
Key sequence: None

Connects to a remote client for remote debugging. Without a prefix argument, also immediately open a Listener.

Reconnect Remote Listener Editor Command

Arguments: None
Key sequence: None

Reconnects a Remote Listener to a remote client. It can be used only in a Remote Listener after the client side has
disconnected, which may be either because the read-eval-print loop on the client side exited, or the connection was
closed (which may also be because the client crashed). The command tries to reconnect the Listener to the same client,
which can work if the connection is still open, if there is another connection to the same client, or if the client is listening
for connections.

Remote Evaluate Buffer Editor Command

Arguments: None
Key sequence: None

Evaluates, in the remote client, the Lisp forms in the current buffer.

Remote Evaluate Region Editor Command

Arguments: None
Key sequence: None

Evaluates, in the remote client, the Lisp forms in the current region.

Remote Evaluate Defun Editor Command

Arguments: None
Key sequence: None

Evaluates, in the remote client, the current top level form.

4 Editing Lisp Programs

132

Remote Evaluate Last Form Editor Command

Arguments: None
Key sequence: None

Evaluates, in the remote client, the Lisp form preceding the current point.

Remote Evaluate Region In Listener Editor Command

Arguments: None
Key sequence: None

Evaluates, in a Remote Listener, the Lisp forms in the current region.

Remote Evaluate Defun In Listener Editor Command

Arguments: None
Key sequence: None

Evaluates, in a Remote Listener, the current top level form.

Remote Evaluate Last Form In Listener Editor Command

Arguments: None
Key sequence: None

Evaluates, in a Remote Listener, the Lisp form preceding the current point.

Set Default Remote Debugging Connection Editor Command

Arguments: None
Key sequence: None

Sets the default remote debugging connection.

4 Editing Lisp Programs

133

5 Emulation

By default the LispWorks Editor emulates GNU Emacs. This is often unusable for programmers familiar only with
KDE/Gnome keys and behavior: for instance, a selection is not deleted on input, and most of the commonly used keys differ.

The LispWorks editor can be switched to emulate the KDE/Gnome model instead of Emacs.

When using KDE/Gnome editor emulation the main differences are:

• An alternate set of key bindings for the commonly-used commands.

• The abort gesture for the current editor command is Esc, not Ctrl+G.

• Inserted text replaces any currently selected text.

• The cursor is a vertical bar rather than a block.

5.1 Using platform-specific editor emulation

The editor supports platform-specific emulation. To switch KDE/Gnome editor emulation on, use Preferences... >
Environment > Emulation. See the section "Configuring the editor emulation" in the LispWorks IDE User Guide for details.

5.2 Key bindings

The key bindings for KDE/Gnome editor emulation are supplied in the LispWorks library file
config/msw-key-binds.lisp. This file is loaded the first time that you use KDE/Gnome editor emulation, or on startup
if your preference is stored.

5.2.1 Finding the keys

There are several ways to find the key for a given command, and the command on a given key:

• The files msw-key-binds.lisp and selection-key-binds.lisp show the default state, just like
key-binds.lisp shows the Emacs bindings.

• The Editor command Describe Bindings shows all the current key bindings, including those specific to the buffer, the
major mode and any minor modes that are in effect.

• The Editor command Describe Key reports the command on a given key.

• The Editor command Where Is reports the key for a given command.

• Use the Help > Editing menu.

5.2.2 Modifying the Key Bindings

As in Emacs emulation, the key sequences to which individual commands are bound can be changed, and key bindings can
be set up for commands which are not, by default, bound to any key sequences.

Interactive means of modifying key bindings are described in 3.32 Key bindings. Key bindings can also be defined
programmatically via editor:bind-key forms similar to those in msw-key-binds.lisp.

134

However, note that you must use editor:set-interrupt-keys if you wish to alter the abort gesture.

5.2.3 Accessing Emacs keys

When KDE/Gnome emulation is on, Emacs keys are still available via the prefix Ctrl+E. For example, to invoke the
command WFind File, enter:

Ctrl+E Ctrl+X Ctrl+F

5.2.4 The Alt modifier and editor bindings

In Microsoft Windows emulation on Microsoft Windows, keystrokes with the Alt modifier key are used by the system to
activate the menu bar. Therefore these keystrokes, for example Alt+A and Alt+Ctrl+A are not available to the editor.

Windows accelerators always take precedence over editor key bindings, so in Emacs emulation the Alt modifier key only
acts as Meta though keystrokes with Alt if there is no accelerator which matches.

On Cocoa, the preference for the Meta key affects the operation of menu accelerators (shortcuts). If Command is used as
Meta, then it will not be available for use as an accelerator.

5.3 Replacing the current selection

When using KDE/Gnome editor emulation, Delete Selection Mode is active so that selected text is deleted when you type or
paste text. Also, Delete deletes the current selection.

Note: Delete Selection Mode can also be used independently of KDE/Gnome editor emulation. See 3.13 Delete Selection for
details.

5.4 Emulation in Applications

If you include the LispWorks editor (via capi:editor-pane or its subclasses) in an application, then by default your
interfaces will use Microsoft Windows emulation on Windows, macOS editor emulation on Cocoa, and Emacs emulation on
Linux and other Unix-like systems.

To override this behavior in your interface classes, define a method on capi:interface-keys-style. See the CAPI User
Guide and Reference Manual for details.

To override this behavior in your delivered application, use the delivery keyword :editor-style. See the Delivery User
Guide for details.

5 Emulation

135

6 Advanced Features

The editor can be customized, both interactively and programmatically, to suit the users requirements.

The chapter 3 Command Reference provides details of commands used to customize the editor for the duration of an editing
session (see 3.28 Keyboard macros, 3.32 Key bindings, 3.30 Editor variables). This chapter contains information on
customizing the editor on a permanent basis.

There are a number of ways in which the editor may be customized:

• The key sequences to which individual commands are bound can be changed, and key bindings can be set up for
commands which are not, by default, bound to any key sequences—see 6.1 Customizing default key bindings.

• The indentation used for Lisp forms can be modified to suit the preferences of the user—see 6.2 Customizing Lisp
indentation.

• Additional editor commands can be created by combining existing commands and providing specified arguments for
them—see 6.3 Programming the editor.

Note that the default configuration files mentioned in this chapter were used when LispWorks was released. They are not read
in when the system is run, so any modification to them will have no effect. If the user wishes to modify the behavior of
LispWorks in any of these areas, the modifying code should be included in the .lispworks file, or an image containing the
modifications should be saved.

6.1 Customizing default key bindings

The key sequences to which individual commands are bound can be changed, and key bindings can be set up for commands
which are not, by default, bound to any key sequences. Interactive means of modifying key bindings are described in 3.32
Key bindings.

This section describes the editor function bind-key, which is used to establish bindings programmatically. If you want to
alter your personal key bindings, put the modifying code in your .lispworks file.

The default Emacs key bindings can be found in the file config/key-binds.lisp in the LispWorks library directory. See
5.2 Key bindings for details of the key binds files used in other editor emulations.

editor:bind-key Function

editor:bind-key name key &optional kind where

Binds the command name to the key sequence or combination key.

kind can take the value :global, :mode, or :buffer.

The default for kind is :global. which makes the binding apply in all buffers and all modes, unless overridden by a
mode-specific or buffer-specific binding.

If where is not supplied, the binding is for the current emulation. Otherwise where should be either :emacs or :pc,
meaning that the binding is for Emacs emulation or KDE/Gnome editor emulation respectively.

Note: before the editor starts, the current emulation is :emacs. Therefore bind-key forms which do not specify where
and which are evaluated before the editor starts (for example, in your initialization file) will apply to Emacs emulation

136

only. Thus for example:

(bind-key "Command" "Control-Right")

when evaluated in your initialization file will establish an Emacs emulation binding. The same form when evaluated after
editor startup will establish a binding in the current emulation: Emacs or KDE/Gnome emulation.

It is best to specify the intended emulation:

(editor:bind-key "Command" "Control-Right" :global :pc)

(editor:bind-key "Command" "Control-Right" :global :mac)

If kind is :buffer the binding applies only to a buffer which should be specified by the value of where.

If kind is :mode the binding applies only to a mode which should be specified by where.

If this function is called interactively via the command Bind Key, you will be prompted as necessary for the kind of
binding, the buffer or the mode. The binding is for the current emulation. Tab completion may be used at any stage.

The following examples, which are used to implement some existing key bindings, illustrate how key sequences can be
specified using bind-key.

(editor:bind-key "Forward Character" "Control-f")
(editor:bind-key "Forward Word" "Meta-f")
(editor:bind-key "Save File" #("Control-x" "Control-s"))
(editor:bind-key "ISearch Forward Regexp" "Meta-Control-s")
(editor:bind-key "Complete Field" #\space :mode "Echo Area")
(editor:bind-key "Backward Character" "left")
(editor:bind-key "Forward Word" #("control-right"))

editor:bind-string-to-key Function

editor:bind-string-to-key string key &optional kind where

Binds the text string string to the keyboard shortcut key without the need to create a command explicitly. Using key
inserts string in the current buffer. The kind and where arguments are as for editor:bind-key.

editor:set-interrupt-keys Function

editor:set-interrupt-keys keys &optional input-style

The key that aborts the current editor command is handled specially by the editor. If you wish to change the default
(from Ctrl+G for Emacs) then you must use this function rather than editor:bind-key. See the file
config/msw-key-binds.lisp for an example.

6.2 Customizing Lisp indentation

The indentation used for Lisp forms can be modified to suit the preferences of the user.

The default indentations can be found in the file config/indents.lisp in the LispWorks library directory. If you want to
alter your personal Lisp indentation, put the modifying code in your .lispworks file.

6 Advanced Features

137

editor:setup-indent Function

editor:setup-indent form-name no-of-args &optional standard special

Modifies the indentation, in Lisp Mode, for the text following an instance of form-name. The arguments no-of-args,
standard and special should all be integers. The first no-of-args forms following the form-name become indented special
spaces if they are on a new line. All remaining forms within the scope of the form-name become indented standard
spaces.

For example, the default indentation for if in Lisp code is established by:

(editor:setup-indent "if" 2 2 4)

This determines that the first 2 forms after the if (that is, the test and the then clauses) get indented 4 spaces relative
to the if, and any further forms (here, just an else clause) are indented by 2 spaces.

6.3 Programming the editor

The editor functions described in this section can be combined and provided with arguments to create new commands.

Existing editor commands can also be used in the creation of new commands. Every editor command documented in this
manual is named by a string command which can be used to invoke the command interactively, but there is also associated
with this a standard Lisp function (the "command function") named by a symbol exported from the editor package. You can
use this symbol to call the command programmatically. For example, the editor command Forward Character is referred to
by editor:forward-character-command.

The first argument of any command function is the prefix argument p, and this must therefore be included in any
programmatic call, even if the prefix argument is ignored. Some commands have additional optional arguments. For example
to insert 42 #\! characters, you would call:

(editor:self-insert-command 42 #\!)

Details of these optional arguments are provided in the command descriptions throughout this manual.

See editor:defcommand for the details of how to create new commands.

Note: code which modifies the contents of a capi:editor-pane (for example a displayed editor buffer) must be run only in
the interface process of that pane.

The following sections describe editor functions that are not interactive editor commands.

6.3.1 Calling editor functions

All editor commands and some other editor functions expect to be called within a dynamic context that includes settings for
the current buffer and current window. This happens automatically when using the editor interactively.

You can set up the context in a CAPI application by using the function capi:call-editor (see the CAPI User Guide and
Reference Manual).

You can also use the following function to call editor commands and functions.

editor:process-character Function

editor:process-character char window

6 Advanced Features

138

http://www.lispworks.com/documentation/HyperSpec/Body/s_if.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_if.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_if.htm

Processes char in a dynamic context where the current window is window and the current buffer is the buffer currently
displayed in window.

The char can be one of the following:

• A string, naming an editor command to invoke.

• A list of the form (function . args), which causes function to be called with args. The items in args are not
evaluated.

• A function or symbol, which is called with nil as its argument (like a command function would be if there is no
prefix argument).

• A character or system:gesture-spec object, which is treated as if it has been typed on the keyboard.

There is no return value. The processing may happen in another thread, so may not have competed before this function
returns.

6.3.2 Defining commands

editor:defcommand Macro

defcommand name lambda-list command-doc function-doc &body forms => command-function

Defines a new editor command. name is a usually string naming the new editor command which can invoked in the
editor via Extended Command, and command-function is a symbol naming the new command function which can be
called programmatically. The command-function symbol is interned in the current package.

lambda-list is the lambda list of the new command, which must have at least one argument which is usually denoted p,
the prefix argument.

command-doc and function-doc should be strings giving detailed and brief descriptions of the new command
respectively.

forms is the Lisp code for the command.

The name of the command must be a string, while the name of the associated command function must be a symbol.
There are two ways in which name can be supplied. Most simply, name is given as a string, and the string is taken to be
the name of the editor command. The symbol naming the command function is computed from that string: spaces are
replaced with hyphens and alphabetic characters are uppercased, but otherwise the symbol name contains the same
characters as the string with -COMMAND appended.

If a specific function name, different to the one defcommand derives itself, is required, then this can be supplied
explicitly. To do this, name should be a list: its first element is the string used as the name of the command, while its
second and last element is the symbol used to name the Lisp command function.

For example the following code defines an editor command, Move Five, which moves the cursor forward in an editor
buffer by five characters.

(editor:defcommand "Move Five" (p)
 "Moves the current point forward five characters.
 Any prefix argument is ignored."
 "Moves five characters forward."
 (editor:forward-character-command 5))
=>
MOVE-FIVE-COMMAND

The prefix argument p is not used, and is there simply because the lambda-list must have at least one element.

6 Advanced Features

139

Use Meta+X Move Five to invoke the command.

As another example this command changes all the text in a writable buffer to be uppercase:

(editor:defcommand "Uppercase Buffer" (p)
 "Uppercase the buffer contents" ""
 (declare (ignore p))
 (let* ((buffer (editor:current-buffer))
 (point (editor:buffer-point buffer))
 (start (editor:buffers-start buffer))
 (end (editor:buffers-end buffer)))
 (editor:set-current-mark start)
 (editor:move-point point end)
 (editor:uppercase-region-command nil)))

Having defined your new command, you can invoke it immediately by Meta+X Uppercase Buffer.

You could also call it programmatically:

(uppercase-buffer-command nil)

If you anticipate frequent interactive use of Uppercase Buffer you will want to bind it to a key. You can do this
interactively for the current session using Bind Key. Also you can put something like this in your initialization file to
establish the key binding for each new session:

(editor:bind-key "Uppercase Buffer" #("Control-x" "Meta-u"))

Then, entering Ctrl+X Meta+U will invoke the command.

Define Command Synonym Editor Command

Arguments: new-name, command-name
Key sequence: None

The command Define Command Synonym prompts for a string and an existing command name, and makes the string
be a synonym for the existing command name.

6.3.3 Buffers

Each buffer that you manipulate interactively using editor commands is an object of type editor:buffer that can be used
directly when programming the editor. Buffers contain an arbitrary number of editor:point objects, which are used when
examining or modifying the text in a buffer (see 6.3.4 Points).

6.3.3.1 Buffer locking

Each buffer contains a lock that is used to prevent more than one thread from modifying the text, text properties or points
within the buffer simultaneously. All of the exported editor functions (editor:insert-string, editor:move-point
etc) claim this lock implicitly and are therefore atomic with respect to other such functions.

In situations where you want to make several changes as one atomic operation, use one of the macros
editor:with-buffer-locked or editor:with-point-locked to lock the buffer for the duration of the operation. For
example, if you want to delete the next character and replace it by a space:

(editor:with-buffer-locked ((editor:current-buffer))
 (editor:delete-next-character-command nil)
 (editor:insert-character (editor:current-point)
 #\Space))

6 Advanced Features

140

In addition, you sometimes want to examine the text in a buffer without changing it, but ensure that no other thread can
modify it in the meantime. This can be achieved by locking the buffer using editor:with-buffer-locked or
editor:with-point-locked and passing the for-modification argument as nil. For example, if you are computing the
beginning and end of some portion of the text in a buffer and then performing some operation on that text, you may want to
lock the buffer to ensure that no other threads can modify the text while your are processing it.

editor:with-buffer-locked Macro

editor:with-buffer-locked (buffer &key for-modification check-file-modification block-interrupts) &body body => values

Evaluates body while holding the lock in buffer. At most one thread can lock a buffer at a time and the macro waits until
it can claim the lock.

If for-modification is non-nil (the default), the contents of buffer can be modified by body. If for-modification is nil, the
contents of buffer cannot be modified until body returns and trying to do so from within body will signal an error. If the
buffer is read-only and for-modification is non-nil, then an editor:editor-error is signaled. The status of the lock
can be changed to for-modification (see editor:change-buffer-lock-for-modification). If the buffer is read-
only, an editor:editor-error occurs if for-modification is t.

The macro editor:with-buffer-locked can be used recursively, but if the outermost use passed nil as the value of
for-modification, then inner uses cannot pass non-nil as the value of for-modification, unless
editor:change-buffer-lock-for-modification is used to change the lock status.

If check-file-modification is non-nil (the default) and the buffer is associated with a file and has not already been
modified, then the modification time of the file is compared to the time that the file was last read. If the file is newer than
the buffer, then the user is asked if they want to re-read the file into the buffer, and if they do then the file is re-read and
the operations aborts. Otherwise, there is no check for the file being newer than the buffer.

If block-interrupts is non-nil, the body is evaluated with interrupts blocked. This is useful if the buffer may be modified
by an interrupt function, or some interrupt function may end up waiting for another thread that may wait for the buffer
lock, which would cause a deadlock. The default is not to block interrupts.

Note that using a non-nil value for block-interrupts is not the same as using the without-interrupts or
without-preemption macros. It just stops the current thread from calling interrupt functions, so other threads might
run while the body is being evaluated.

The values returned are those of body.

editor:with-point-locked Macro

editor:with-point-locked (point &key for-modification check-file-modification block-interrupts errorp) &body body =>
values

Evaluates body while holding the lock in the buffer that is associated with point. In addition, the macro checks that point
is valid and this check is atomic with respect to calls to the function editor:delete-point. The values of for-
modification, check-file-modification and block-interrupts have the same meanings as for
editor:with-buffer-locked.

The value of errorp determines the behavior when point is not valid. If errorp is non-nil, an error is signaled, otherwise
nil is returned without evaluating body. The point may be invalid because it does not reference any buffer (that is, it has
been deleted), or because its buffer was changed by another thread while the current thread was attempting to lock the
buffer.

The values returned are those of body, or nil when errorp is nil and point is not valid.

6 Advanced Features

141

editor:change-buffer-lock-for-modification Function

editor:change-buffer-lock-for-modification buffer &key check-file-modification force-modification => result

Changes the status of the lock in the buffer buffer to allow modification of the text. buffer must already be locked for non
-modification by the current thread (that is, it must be dynamically within a editor:with-buffer-locked or
editor:with-point-locked form with for-modification nil).

buffer An editor buffer.

check-file-modification

A boolean.

force-modification A boolean.

result :buffer-not-locked, :buffer-out-of-date or :buffer-not-writable.

If check-file-modification is non-nil, the same test as described for editor:with-buffer-locked is performed, and if
the file has been modified then :buffer-out-of-date is returned without changing anything (it does not prompt the
user to re-read the file).

The default value of check-file-modification is t.

force-modification controls what happens if the buffer is read-only. If force-modification is nil, the function returns
:buffer-not-writable and does nothing. If it is non-nil, the status is changed. The buffer remains read-only.

result is nil if the status of the locking was changed to for-modification, or if the status of the buffer lock was already
for-modification. Otherwise, result is a keyword indicating why the status could not be changed. When result is non-nil,
the status of the locking remains unchanged.

The returned value can be be one of:

:buffer-not-locked The buffer is not locked by the current thread.

:buffer-not-writable

The buffer is not writable, and force-modification is nil.

:buffer-out-of-date

The file that is associated with the buffer was modified after it was read into the editor, the buffer
is not modified, and check-file-modification is non-nil.

6.3.3.2 Buffer operations

editor:*buffer-list* Variable

Contains a list of all the buffers in the editor.

editor:current-buffer Function

editor:current-buffer

Returns the current buffer.

6 Advanced Features

142

editor:buffer-name Function

editor:buffer-name buffer

Returns the name of buffer.

editor:window-buffer Function

editor:window-buffer window

Returns the buffer currently associated with window.

editor:buffers-start Function

editor:buffers-start buffer

Returns the starting point of buffer.

editor:buffers-end Function

editor:buffers-end buffer

Returns the end point of buffer.

editor:buffer-point Function

editor:buffer-point buffer

Returns the current point in buffer.

editor:use-buffer Macro

editor:use-buffer buffer &body forms

Makes buffer the current buffer during the evaluation of forms.

editor:buffer-from-name Function

editor:buffer-from-name name

Returns the buffer called name (which should be a string). If there is no buffer with that name, nil is returned.

editor:make-buffer Function

make-buffer name &key modes contents temporary base-name name-pattern

Creates or returns an existing buffer.

name should be a string or nil.

modes should be a list of strings naming modes. The first mode must be a major mode, and the rest minor modes. The
default value of modes is the value of default-modes.

base-name should be a string or nil. If name and temporary are both nil then base-name must be a string.

6 Advanced Features

143

contents should be a string, nil or t (default value nil).

temporary is a boolean (default value nil).

name-pattern should be a string (default value "~a<~a>").

When name is non-nil, it is the name of the buffer. If there is already a buffer with this name which is not temporary and
the temporary argument is nil, make-buffer returns that buffer. Before doing so, it sets its contents to contents unless
contents is t. When contents is nil, the buffer is made empty.

If name is nil or temporary is non-nil or a buffer with the name cannot be found, then a new buffer is made and
returned. The buffer's contents is set to contents if contents is a string, and otherwise the buffer is made empty. The
name of the buffer is set to name if name is non-nil.

If temporary is nil, the buffer is added to the internal tables of the editor. If name is non-nil, it is used. Otherwise
make-buffer tries to use base-name. If there is already a buffer with this name, it constructs another name by:

(format nil name-pattern base-name n)

with different integers n until it constructs an unused name, which it uses as the buffer's name.

If temporary is non-nil, the buffer is not added to the internal tables. It is also marked as temporary, which mainly means
that it does not have auto-save and backup files, and avoids calling general hooks when it is modified.

Notes:

Using :temporary t gives you a buffer that is 'yours', that is the editor does not do anything with it except in response
to explicit calls from your code. Except when actually editing files, this is the most useful way of using buffers in most
cases.

capi:editor-pane with the :buffer :temp initarg uses:

(make-buffer ... :temporary t)

editor:goto-buffer Function

editor:goto-buffer buffer in-same-window

Makes buffer the current buffer. If buffer is currently being shown in a window then the cursor is moved there. If buffer
is not currently in a window and in-same-window is non-nil then it is shown in the current window, otherwise a new
window is created for it.

editor:clear-undo Function

editor:clear-undo buffer

Clears any undo information in the buffer buffer.

6.3.4 Points

Locations within a buffer are recorded as editor:point objects. Each point remembers a character position within the
buffer and all of the editor functions that manipulate the text of a buffer locate the text using one or more point objects
(sometimes the current point).

A point's kind controls what happens to the point when text in the buffer is inserted or deleted.

:temporary points are for cases where you need read-only access to the buffer. They are like GNU Emacs "points". They

6 Advanced Features

144

have a lower overhead than the other kinds of point and do not need to be explicitly deleted, but do not use them in cases
where you make a point, insert or delete text and then use the point again, since they do not move when the text is changed.
Also, do not use them in cases where more than one thread can modify their buffer without locking the buffer first (see
6.3.3.1 Buffer locking).

:before-insert and :after-insert points are for cases where you need to make a point, insert or delete text and still
use the point afterwards. They are like GNU Emacs "markers". The difference between these two kinds is what happens
when text is inserted. For a point at position n from the start of the buffer, inserting len characters will leave the point at
either position n or n+len according to the following table.

Editor point positions after text insertion

kind Insert at < n Insert at = n Insert at > n

:before-insert n+len n n

:after-insert n+len n+len n

When text is deleted, :before-insert and :after-insert points are treated the same: points <= the start of the deletion
remain unchanged, points >= the end of the deletion are moved with the text and points within the deleted region are
automatically deleted and cannot be used again.

All points with kind other than :temporary are stored within the data structures of the editor buffer so they can be updated
when the text changes. A point can be removed from the buffer by editor:delete-point, and point objects are also
destroyed if their buffer is killed.

editor:point-kind Function

editor:point-kind point

Returns the kind of the point, which is :temporary, :before-insert or :after-insert.

editor:current-point Function

editor:current-point

Returns the current point. See also editor:buffer-point.

editor:current-mark Function

editor:current-mark &optional pop-p no-error-p

Returns the current mark. If pop-p is t, the mark ring is rotated so that the previous mark becomes the current mark. If
no mark is set and no-error-p is t, nil is returned; otherwise an error is signaled. The default for both of these optional
arguments is nil.

editor:set-current-mark Function

editor:set-current-mark point

Sets the current mark to be point.

editor:point< Function

editor:point< point1 point2

6 Advanced Features

145

Returns non-nil if point1 is before point2 in the buffer.

editor:point<= Function

editor:point<= point1 point2

Returns non-nil if point1 is before or at the same offset as point2 in the buffer.

editor:point> Function

editor:point> point1 point2

Returns non-nil if point1 is after point2 in the buffer.

editor:point>= Function

editor:point>= point1 point2

Returns non-nil if point1 is after or at the same offset as point2 in the buffer.

editor:copy-point Function

editor:copy-point point &optional kind new-point

Makes and returns a copy of point. The argument kind can take the value :before, :after, or :temporary. If new-
point is supplied, the copied point is bound to that as well as being returned.

editor:delete-point Function

editor:delete-point point

Deletes the point point.

This should be done to any non-temporary point which is no longer needed.

editor:move-point Function

editor:move-point point new-position

Moves point to new-position, which should itself be a point.

editor:start-line-p Function

editor:start-line-p point

Returns t if point is immediately before the first character in a line, and nil otherwise.

editor:end-line-p Function

editor:end-line-p point

Returns t if point is immediately after the last character in a line, and nil otherwise.

6 Advanced Features

146

editor:same-line-p Function

editor:same-line-p point1 point2

Returns t if point1 and point2 are on the same line, and nil otherwise.

editor:save-excursion Macro

editor:save-excursion &rest body

Saves the location of the point and the mark and restores them after completion of body. This restoration is accomplished
even when there is an abnormal exit from body.

editor:with-point Macro

editor:with-point point-bindings &rest body

point-bindings is a list of bindings, each of the form (var point [kind]). Each variable var is bound to a new point
which is a copy of the point point though possibly with a different kind, if kind is supplied. If kind is not supplied, then
the new point has kind :temporary.

The forms of body are evaluated within the scope of the point bindings, and then the points in each variable var are
deleted, as if by editor:delete-point. Each point var is deleted even if there was an error when evaluating body.

The main reason for using with-point to create non-temporary points is to allow body to modify the buffer while
keeping these points up to date for later use within body.

6.3.5 Regular expression searching

editor:regular-expression-search Function

regular-expression-search point pattern &key forwardp prompt limit to-end brackets-limits => match-len, brackets-limits-
vector

Search for pattern starting from point.

point must be an editor:point object or nil, meaning the result of calling editor:current-point.

pattern can be a string, a lw:precompiled-regexp (the result of lw:precompile-regexp), or nil.

forwardp is a boolean (default value t) specifying the direction to search.

prompt is a string used to prompt for a pattern when pattern is nil.

limit should be nil or an editor:point specifying a limit for the search.

to-end is a boolean (default value t), specifying whether to move the point to the end of the match when searching
forward.

brackets-limits is a boolean specifying whether regular-expression-search should return a vector of brackets-
limits.

regular-expression-search performs a search starting from point for the pattern, in the direction specified by
forwardp, up to to limit if specified, or the buffer's end (when forwardp is non-nil) or the buffer's start (when forwardp is
nil). If it succeeds, it then moves the point, either to the end of that match when both forwardp and to-end are non-nil
(the default), or to the beginning of the match.

6 Advanced Features

147

When pattern is non-nil it must be either a string or a precompiled pattern created with lw:precompile-regexp. If
pattern is a string, regular-expression-search "precompiles" it before searching, so using a precompiled pattern is
more efficient when using the same pattern repeatedly.

If pattern is nil, regular-expression-search first prompts for a pattern in the echo area, using the prompt. If
pattern is non-nil, prompt is ignored.

Return values: If regular-expression-search is successful, it returns the length of the string that it matched, and if
brackets-limits is non-nil, a second value which is a vector of the limits of the matches of each \(and \) pair in the
pattern. The meaning of the vector is described in the manual entry for lw:find-regexp-in-string in the
LispWorks® User Guide and Reference Manual.

Compatibility note: regular-expression-search was exported but not documented in LispWorks 6.1 and earlier
versions. brackets-limits was introduced in LispWorks 7.0.

See also:
lw:find-regexp-in-string, lw:regexp-find-symbols and lw:precompile-regexp and 28.7 Regular
expression syntax in the LispWorks® User Guide and Reference Manual.

6.3.6 The echo area

editor:message Function

editor:message string &rest args

A message is printed in the Echo Area. The argument string must be a string, which may contain formatting characters
to be interpreted by format. The argument args consists of arguments to be printed within the string.

editor:clear-echo-area Function

editor:clear-echo-area &optional string force

Clears the Echo Area. The argument string is then printed in the Echo Area. If force is non-nil, the Echo Area is cleared
immediately, with no delay. Otherwise, there may be a delay for the user to read any existing message.

6.3.7 Editor errors

Many editor commands and functions signal an error on failure (using editor:editor-error as described below). This
causes the current operation to be aborted.

In many cases, the user will not want the operation to abort completely if one of the editor commands it uses is not
successful. For example, the operation may involve a search, but some aspects of the operation should continue even if the
search is not successful. To achieve this, the user can catch the editor:editor-error using a macro such as
handler-case.

For example, one part of an application might involve moving forward 5 forms. If the current point cannot be moved forward
five forms, generally the editor would signal an error. However, this error can be caught. The following trivial example
shows how a new message could be printed in this situation, replacing the system message.

(editor:defcommand "Five Forms" (p)
 "Tries to move the current point forward five forms,
 printing out an appropriate message on failure."
 "Tries to move the current point forward five forms."
 (handler-case
 (editor:forward-form-command 5)
 (editor:editor-error (condition)

6 Advanced Features

148

http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_hand_1.htm

 (editor:message "could not move forward five"))))

editor:editor-error Function

editor:editor-error string &rest args

By default this prints a message in the Echo Area, sounds a beep, and exits to the top level of LispWorks, aborting the
current operation. The argument string must be a string, which is interpreted as a control string by format. As with
editor:message, args can consist of arguments to be processed within the control string.

The behavior is affected by break-on-editor-error.

6.3.8 Files

editor:find-file-buffer Function

editor:find-file-buffer pathname &optional check-function

Returns a buffer associated with the file pathname, reading the file into a new buffer if necessary. The second value
returned is t if a new buffer is created, and nil otherwise. If the file already exists in a buffer, its consistency is first
checked by means of check-function. If no value is supplied for check-function,
editor:check-disk-version-consistent is used.

editor:set-buffer-name-directory-delimiters Function

editor:set-buffer-name-directory-delimiters &key prefix postfix separator display-p

The function editor:set-buffer-name-directory-delimiters controls the naming of buffers that are
associated with files with the same name.

For a buffer associated with a file, the editor names the buffer using the file's name. Each buffer must have a unique
name, so if you open several files with the same name (in different directories) then the editor has to choose different
names for these buffers. By default, the editor resolves this situation by changing the name of all such buffers to be the
file name followed by enough directory components to make it unique. The format of these unique names is:

filename prefix comp-1 separator comp-2 separator … postfix

where comp-1, comp-2 … are directory components. Note that this feature is new in LispWorks 8.0 and in previous
versions the editor just added <number> after the filename, where number is an increasing integer.

prefix sets the prefix to use. If it is nil (the default), the prefix is not changed. Otherwise, it must be a string or a
character.

postfix sets the postfix to use. If it is nil (the default), the postfix is not changed. Otherwise, it must be a string or a
character.

separator sets the directory separator to use. If it is nil (the default), the separator is not changed. Otherwise, it must be
a string or a character.

Note that if you want any of prefix, postfix and separator to be empty, you need to pass an empty string.

display-p controls whether this name format is used. If it is non-nil, then the naming uses the format above. If it is nil,
the naming uses the pre LispWorks 8.0 format with an integer suffix. If display-p is not supplied, its setting is not
changed.

The initial settings are as if editor:set-buffer-name-directory-delimiters was called like this:

6 Advanced Features

149

http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm

(set-buffer-name-directory-delimiters :prefix "<"
 :postfix ">"
 :separator "/"
 :display-p t)

When editor:set-buffer-name-directory-delimiters is called and whenever a buffer is created or deleted,
the editor checks if it creates or eliminates a clash, and if it does then the editor recomputes the names of all the buffers
that are affected.

For example, if you edit a file in the editor (see Find File) with path /compa-1/compb-1/filename, then the buffer
is named filename. Suppose you then edit another file /compa-1/compb-2/filename. Now the first buffer is
renamed as filename<compb-1>, and the second buffer is named filename<compb-2>. If you close the first buffer,
then the second buffer is renamed to filename because there is no longer a clash.

editor:fast-save-all-buffers Function

editor:fast-save-all-buffers &optional ask

Saves all modified buffers which are associated with a file. If ask is non-nil then confirmation is asked for before saving
each buffer. If ask is not set, all buffers are saved without further prompting.

Unlike the editor command Save All Files this function can be run without any window interaction. It is thus suitable for
use in code which does not intend to allow the user to leave any buffers unsaved, and from the console if it is necessary
to save buffers without re-entering the full window system.

editor:check-disk-version-consistent Function

editor:check-disk-version-consistent pathname buffer

Checks that the date of the file pathname is not more recent than the last time buffer was saved. If pathname is more
recent, the user is prompted on how to proceed. Returns t if there is no need to read the file from disk and nil if it
should be read from disk.

editor:buffer-pathname Function

editor:buffer-pathname buffer

Returns the pathname of the file associated with buffer. If no file is associated with buffer, nil is returned.

editor:set-pathname-load-function Function

editor:set-pathname-load-function &key type load-function load-function-finder

Sets the function to use when loading files with type type.

editor:set-pathname-load-function affects what the command Load File does, and what loading in the
LispWorks IDE using File > Load does. It does not affect what the Common Lisp load function does.

type is a string specifying the pathname-type of a filename.

In the description below, a load function means a function or a fbound symbol that takes one argument, a pathname
designator, and "loads" it in some appropriate way.

If load-function-finder is non-nil, it must be a function that takes one argument, a pathname designator, and returns a
load function or nil. If it returns a load function, this function is called to load the file. If it returns nil, the normal
processing is done, which means calling load with the pathname designator without the type.

If load-function-finder is non-nil, load-function is ignored. Otherwise, load-function specifies the load function to use.

6 Advanced Features

150

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pn_hos.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

If both load-function-finder and load-function are nil, any previous setting for type is removed.

Each call to editor:set-pathname-load-function replaces the setting of any previous call with the same type.

For example, the ASDF integration example in (example-edit-file "misc/asdf-integration.lisp") uses
the following call to cause the LispWorks IDE to load files with type "asd" by calling asdf:load-asd:

(editor:set-pathname-load-function :type "asd" :load-function 'asdf:load-asd)

Note: editor:set-pathname-load-function was added in LispWorks 8.0.

6.3.8.1 File encodings in the editor

In an application which writes editor buffers to file, you can do this to set the external format of a given buffer:

(setf (editor:buffer-external-format buffer) ef-spec)

You can also set a global default external format for editor buffers:

(setf (editor:variable-value 'editor:output-format-default
 :global)
 ef-spec)

Then ef-spec will be used when a buffer itself does not have an external format.

See 3.5.3 Unicode and other file encodings for a full description of the editor's file encodings interface.

6.3.9 Inserting text

editor:insert-string Function

editor:insert-string point string &optional start end

Inserts string at point in the current buffer. The arguments start and end specify the indices within string of the substring
to be inserted. The default values for start and end are 0 and (length string) respectively.

editor:kill-ring-string Function

editor:kill-ring-string &optional index

Returns either the topmost string on the kill ring, or the string at index places below the top when index is supplied.

The editor kill ring stores the strings copied by the editor, in order to allow using them later.

editor:points-to-string Function

editor:points-to-string start end

Returns the string between the points start and end.

6 Advanced Features

151

https://common-lisp.net/project/asdf/

6.3.10 Indentation

editor:*indent-with-tabs* Variable

Controls whether indentation commands such as Indent and Indent Form insert whitespace using #\Space or #\Tab
characters when changing the indentation of a line.

The initial value is nil, meaning that only the #\Space character is inserted.

A true value for editor:*indent-with-tabs* causes the indentation commands to insert #\Tab characters
according to the value of spaces-for-tab and then pad with #\Space characters as needed.

6.3.11 Lisp

editor:*find-likely-function-ignores* Variable

Contains a list of symbols likely to be found at the beginning of a form (such as apply, funcall, defun, defmethod,
defgeneric).

editor:*source-found-action* Variable

This variable determines how definitions found by the commands Find Source, Find Source for Dspec and Find Tag
are shown. The value should be a list of length 2.

The first element controls the positioning of the definition: when t, show it at the top of the editor window; when a non-
negative fixnum, position it that many lines from the top; and when nil, position it at the center of the window.

The second element can be :highlight, meaning highlight the definition, or nil, meaning do not highlight it.

The initial value of *source-found-action* is (nil :highlight).

6.3.12 Movement

editor:line-end Function

editor:line-end point

Moves point to be located immediately before the next newline character, or the end of the buffer if there are no
following newline characters.

editor:line-start Function

editor:line-start point

Moves point to be located immediately after the previous newline character, or the start of the buffer if there are no
previous newline characters.

editor:character-offset Function

editor:character-offset point n

Moves point forward n characters. If n is negative, point moves back n characters.

editor:word-offset Function

editor:word-offset point n

6 Advanced Features

152

http://www.lispworks.com/documentation/HyperSpec/Body/f_apply.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_funcal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defgen.htm

Moves point forward n words. If n is negative, point moves back n words.

editor:line-offset Function

editor:line-offset point n &optional to-offset

Moves point n lines forward, to a location to-offset characters into the line. If n is negative, point moves back n lines. If
to-offset is nil (its default value), an attempt is made to retain the current offset. An error is signaled if there are not n
further lines in the buffer.

editor:form-offset Function

editor:form-offset point n &optional form depth

Moves point forward n Lisp forms. If n is negative, point moves back n forms. If form is t (its default value) then atoms
are counted as forms, otherwise they are ignored. Before point is moved forward n forms, it first jumps out depth levels.
The default value for depth is 0.

6.3.13 Prompting the user

The following functions can be used to prompt for some kind of input, which is generally typed into the Echo Area.

The following keyword arguments are common to a number of prompting functions.

:must-exist Specifies whether the value that is input by the user must be an existing value or not. If
:must-exist is non-nil, the user is prompted again if a non-existent value is input.

:default Defines the default value that is selected if an empty string is input.

:default-string Specifies the string that may be edited by the user (with Insert Parse Default).

:prompt Defines the prompt that is written in the Echo Area. Most prompting functions have a default
prompt that is used if no value is supplied for :prompt.

:help Provides a help message that is printed if the user types "?".

editor:prompt-for-file Function

editor:prompt-for-file &key direction must-exist create-directories default default-string prompt help

Prompts for a file name, and returns a pathname.

:direction You can specify direction :input (when expecting to read the file) or direction :output (when
expecting to write the file). This controls the default value of must-exist, which is false for
direction :output and true otherwise.

:create-directories

If create-directories is true, then the user is prompted to create any missing directories in the path
she enters. The default is false for direction :output and true otherwise.

See above for an explanation of the other arguments.

editor:prompt-for-buffer Function

editor:prompt-for-buffer &key prompt must-exist default default-string help

6 Advanced Features

153

Prompts for a buffer name, and returns the buffer. See above for an explanation of the keywords.

The default value of must-exist is t. If must-exist is nil and the buffer does not exist, it is created.

editor:prompt-for-integer Function

editor:prompt-for-integer &key prompt must-exist default help

Prompts for an integer. See above for an explanation of the keywords.

editor:prompt-for-string Function

editor:prompt-for-string &key prompt default default-string clear-echo-area help

Prompts for a string. No checking is done on the input. The keyword clear-echo-area controls whether or not the echo
area is cleared (that is, whether the text being replaced is visible or not). The default for this keyword is t. See above for
an explanation of the remaining keywords.

editor:prompt-for-variable Function

editor:prompt-for-variable &key must-exist prompt default default-string help

Prompts for an editor variable. See above for an explanation of the keywords. The default value of must-exist is t.

6.3.14 In-place completion

editor:complete-in-place Function

editor:complete-in-place complete-func &key extract-func skip-func insert-func

Performs a non-focus completion at the editor current point.

complete-func should be a function designator with signature:

complete-func string &optional user-arg => result

string should be a string to complete. user-arg is the second return value of extract-func, if this is not nil. result should
be a list of items to be displayed in the list panel of the non-focus window.

extract-func must be a function designator with signature:

extract-func point => string, user-arg

point should be a Point object.

extract-func needs to move point to the beginning of the text that will be replaced if the user confirms. It should return
two values: string is the string to complete, and user-arg can be any Lisp object. string is passed to the function
complete-func, and if user-arg is non-nil it is also passed.

The default value of extract-func is a function which searches backwards until it finds a non-alphanumeric character, or
the beginning of the buffer. It then moves its point argument forward to the next character. The function returns its first
value string the string between this and the original location of the point, and it returns nil as the second value user-arg.

skip-func, if supplied, must be a function designator with signature:

skip-func point

6 Advanced Features

154

point should be a Point object.

point will be used as the end of the region to replace by the completion. At the call to skip-func, the point is located at
the same place as the point that was passed to extract-func (after it moved). skip-func needs to move point forward to the
end of the text that should be replaced when the user wants to do the completion. If skip-func is not supplied, the end
point is set to the current point.

insert-func, if supplied, must be a function designator with signature:

insert-func result string user-arg => string-to-use

result is the item selected by the user, string is the original string that was returned by extract-func, and user-arg is the
second value returned by extract-func (regardless of whether this value is nil). It must return a string, string-to-use,
which is inserted as the the completion.

If insert-func is not supplied, the completion item is inserted. If it is not a string it is first converted by
prin1-to-string.

When editor:complete-in-place is called, it makes a copy of the current point and passes it to extract-func. It then
copies this point and positions it either using skip-func or the current point. These two points define the text to be
replaced. editor:complete-in-place then calls complete-func, and use the result to raise a non-focus window next
to the current point. The interaction of this window is as described in the CAPI User Guide and Reference Manual.

Note: editor:complete-with-non-focus is a deprecated synonym for editor:complete-in-place.

6.3.15 Variables

editor:define-editor-variable Function

editor:define-editor-variable name value &optional documentation

Defines an editor variable.

name Symbol naming the variable.

value The value to assign to the variable.

mode A string naming a mode.

documentation A documentation string.

The macro editor:define-editor-variable defines a global editor variable. There is only one global value, so
repeated uses of editor:define-editor-variable overwrite each other.

editor:define-editor-variable gives a readable value of defining a variable, and is recognized by the LispWorks
source code location system. However variables can also be defined dynamically by calling
(setf editor:variable-value). Variable values may be accessed by editor:variable-value.

A variable has only one string of documentation associated with it. editor:variable-value overwrites the existing
documentation string, if there is any. You can see the documentation by the command Describe Editor Variable. It can
can be accessed programmatically by editor:editor-variable-documentation.

Note: for backwards compatibility name can also be a string, which is converted to a symbol by uppercasing, replacing
#\Space by #\-, and interning in the EDITOR package. This may lead to clashes and so you should use a symbol for
name, not a string.

6 Advanced Features

155

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm

editor:define-editor-mode-variable Function

editor:define-editor-mode-variable name mode value &optional documentation

Defines an editor variable in the specified mode.

mode A string naming a mode.

name, value As for editor:define-editor-variable.

documentation As for editor:define-editor-variable, except that
editor:define-editor-mode-variable installs the documentation only if the editor
variable does not already have any documentation.

editor:define-editor-mode-variable defines a variable in the specified mode. There is one value per variable
per mode.

editor:define-editor-mode-variable gives a readable value of defining a variable in a mode, and is recognized
by the LispWorks source code location system. However mode variables can also be defined dynamically by calling
(setf editor:variable-value). Mode variable values may be accessed by editor:variable-value.

editor:editor-variable-documentation Function

editor:editor-variable-documentation editor-variable-name

editor-variable-name A symbol naming an editor variable.

Returns the documentation associated with the editor variable, if any.

Note: For backwards compatibility a string editor-variable-name is also accepted, as described for
editor:define-editor-variable.

editor:variable-value Accessor

editor:variable-value name &optional kind where

The reader returns the value of the editor variable name, where name is a symbol. An error is signaled if the variable is
undefined. The argument kind can take the value :current, :buffer, :global or :mode. The default value of kind is
:current.

When kind is :current the argument where should be nil (the default, meaning the current buffer) or an editor buffer
object or the name of a buffer. The variable value for the specified buffer is returned or (if there is no current buffer) then
the global variable value is returned.

kind can also be :buffer, and then where should be an editor buffer object.

For example, the code given below will, by default, return the value :ask-user.

(editor:variable-value
 'editor:add-newline-at-eof-on-writing-file)

The value of variables may also be altered using the setter of this function. For example, the code given below will allow
buffers to be saved to file without any prompt for a missing newline.

(setf
 (editor:variable-value
 'editor:add-newline-at-eof-on-writing-file)

6 Advanced Features

156

 nil)

editor:variable-value-if-bound Function

editor:variable-value-if-bound name &optional kind where

Returns the value of the variable name. If the variable is not bound, nil is returned. The arguments are as for
editor:variable-value.

editor:buffer-value Function

editor:buffer-value buffer name &optional errorp

Accesses the value of the editor variable name in the buffer specified by buffer.

name should be a symbol and buffer should be a point object or a buffer object.

If the editor variable is undefined and errorp is true, an error is signaled. If the variable is undefined and errorp is false,
nil is returned. The default value of errorp is nil.

6.3.16 Windows

editor:current-window Function

editor:current-window

Returns the current window.

editor:redisplay Function

editor:redisplay

Redisplays any window that appears to need it. In general, the contents of a window may not be redisplayed until there is
an event to provoke it.

Note: editor:redisplay will update a modified editor buffer only when that buffer is the
editor:current-buffer. Take care to call editor:redisplay in an appropriate context.

editor:window-text-pane Function

editor:window-text-pane window

Returns the capi:editor-pane associated with an editor window.

6.3.17 Faces

editor:face System Class

An instance of the system class editor:face describes the "face" of some text. It specifies the colors of the text and
background, the font, and whether the text is bold, italic or underlined.

A editor:face is created by calling editor:make-face. It is used by various interface functions, for example
hcl:code-coverage-set-editor-colors and hcl:write-string-with-properties. Note that in general
you can use a face name, that is associated with a editor:face by editor:make-face, instead of the actual

6 Advanced Features

157

editor:face object.

editor:make-face Function

editor:make-face name &key if-exists foreground background font bold-p italic-p underline-p inverse-p documentation => face

name A symbol.

if-exists nil, :overwrite or :error.

foreground, background

CAPI colors or nil.

font A graphics-ports:font object or nil.

bold-p, italic-p, underline-p, inverse-p

Booleans.

documentation A string or nil.

face A editor:face object.

The function editor:make-face returns a editor:face , either new or existing, and may associate it with name.
editor:face objects are used by some interface function such as hcl:code-coverage-set-editor-colors and
hcl:write-string-with-properties.

If name is non-nil, editor:make-face first checks if a editor:face with this name already exists. If it exists, then if
-exists controls what happens:

nil Return the existing editor:face object as it is (the default).

:overwrite Reset the existing editor:face to default values and set its slots using the supplied keywords.
The existing face is returned. This also causes Editor windows to update, and where this face is
used the display will change accordingly.

:error Signal an error.

If there is no existing editor:face, either because name is nil or because it has not been made yet,
editor:make-face creates a new editor:face from the supplied keywords. If name is non-nil, the editor:face
is associated with name, so future calls to editor:make-face with the same name will find it and name can be used in
interface functions.

None of the keywords is required, and they all default to nil. For foreground, background and font, nil means use the
default value, that is the color or font that the text would have drawn if the face was not applied.

foreground and background specify the colors to use. When they are non-nil, they must be a CAPI color. See the chapter
"The Color System" in the CAPI User Guide and Reference Manual for description of colors.

font specifies the font to use. It must be a graphics-ports:font object, typically the result of
graphics-ports:find-best-font. See "Portable font descriptions" in the "Drawing - Graphics Ports" chapter in
the CAPI User Guide and Reference Manual for details. Note that the editor does not work properly with fonts of
different height.

bold-p, italic-p and underline-p specify whether the text should be bold, italic or underlined respectively.

inverse-p specifies that the foreground and background colors are swapped, which causes the text to be drawn in the
current background color using the current foreground color as the background. The effective background color is either
the background argument if it is non-nil, or the default otherwise, and the same for the effective foreground color.

6 Advanced Features

158

documentation is stored in the editor:face, and can be retrieved by calling cl:documentation with editor:face

as the doc-type argument. cl:documentation can be called either with a editor:face object or with name.

6.3.18 Examples

6.3.18.1 Example 1

The following simple example creates a new editor command called Current Line.

(editor:defcommand "Current Line" (p)
 "Computes the line number of the current point and
 prints it in the Echo Area"
 "Prints the line number of the current point"
 (let* ((cpoint (editor:current-point))
 (svpoint (editor:copy-point cpoint))
 (count 0))
 (editor:beginning-of-buffer-command nil)
 (loop
 (if (editor:point> cpoint svpoint)
 (return))
 (unless (editor:next-line-command nil)
 (return))
 (incf count))
 (editor:move-point cpoint svpoint)
 (editor:message "Current Line Number: ~S " count)))

6.3.18.2 Example 2

This example creates a new editor command called Goto Line which moves the current point to the specified line number.

(editor:defcommand "Goto Line" (p)
 "Moves the current point to a specified line number.
 The number can either be supplied via the prefix
 argument, or, if this is nil, it is prompted for."
 "Moves the current point to a specified line number."
 (let ((line-number
 (or p (editor:prompt-for-integer
 :prompt "Line number: "
 :help "Type in the number of the line to
 go to"))))
 (editor:beginning-of-buffer-command nil)
 (editor:next-line-command line-number)))

6.3.18.3 Example 3

The following example illustrates how text might be copied between buffers. First, string is set to all the text in from-buf.
This text is then copied to the end of to-buf.

(defun copy-string (from-buf to-buf)
 (let ((string (editor:points-to-string
 (editor:buffers-start from-buf)
 (editor:buffers-end from-buf))))
 (editor:insert-string (editor:buffers-end to-buf) string)))

To test this example, two buffers named t1 and t2 should be created. Then, to copy all the text from t1 to the end of t2:

(copy-string (editor:buffer-from-name "t1")

6 Advanced Features

159

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

 (editor:buffer-from-name "t2"))

6.4 Editor source code

The section does not apply to LispWorks Personal Edition.

LispWorks comes with source code for the editor, which you can refer to when adding editor extensions.

6.4.1 Contents

The directory lib/8-0-0-0/src/editor/ contains most of the source files of the LispWorks editor. Some low-level
source code is not distributed.

6.4.2 Source location

To enable location of editor definitions by Find Source and related commands, configure LispWorks as described under 13.7
Finding source code in the LispWorks® User Guide and Reference Manual.

6.4.3 Guidelines for use of the editor source code

Some care is needed when working with the supplied editor source code, to ensure that you do not compromise the IDE or
introduce a dependency on a particular release of LispWorks.

In particular please note:

• The editor source code may not match the compiled code in the LispWorks image exactly, for example if editor patches
have been loaded.

• Modifications to the EDITOR package definition are not allowed.

• Redefining existing definitions is not recommended. It is better to define a new command to do what you want. If you
find a bug or have a useful extension to an existing definition then please let us know.

• Do not rely on the expansion of exported macros.

• If you use any internal (that is, not exported) EDITOR symbols, please tell us, so we can consider how to support your
requirements. In addition, some internal macros have been removed from the LispWorks image and these should not be
used.

6 Advanced Features

160

7 Self-contained examples

This chapter enumerates the set of examples in the LispWorks library relevant to the content of this manual. Each example
file contains complete, self-contained code and detailed comments, which include one or more entry points near the start of
the file which you can run to start the program.

To run the example code:

1. Open the file in the Editor tool in the LispWorks IDE. Evaluating the call to example-edit-file shown below will
achieve this.

2. Compile the example code, by Ctrl+Shift+B.

3. Run the example command, by Meta+X command-name or by the keystroke defined in an editor:bind-key form.

4. Read the comment at the top of the file, which may contain further instructions on how to interact with the example.

7.1 Example commands

(example-edit-file "editor/commands/spell-word")

(example-edit-file "editor/commands/space-show-arglist")

(example-edit-file "editor/commands/delete-deletes-selection")

(example-edit-file "editor/commands/split-line")

(example-edit-file "editor/commands/insert-date")

7.2 Syntax coloring example

This file illustrates a way to implement Common Lisp syntax coloring in the editor:

(example-edit-file "editor/syntax-coloring/syntax-coloring")

Note: the editor now has built-in syntax coloring for Lisp mode buffers. If you run the example code above, it will override
the built-in syntax coloring.

161

Glossary
Abbrev

An abbrev (abbreviation) is a user defined text string which, when typed into a buffer, may be expanded into another
string using Abbrev Mode. Typing can therefore be saved by defining short strings to be expanded into frequently used
longer words or phrases.

Abbrevs should not be confused with the abbreviated symbol completion implemented by the command Abbreviated
Complete Symbol.

Abbrev Mode

Abbrev mode is a minor mode which allows abbrevs to be automatically expanded when typed into a buffer.

Attribute Line

A first line in a source file of the form:

;; -*- Mode: Lisp; Package: CL-USER; -*-

is the attribute line. Its keys and values are processed by editor commands such as Process File Options.

Auto-Fill Mode

Auto-fill mode is a minor mode which allows lines to be broken between words at the right margin automatically as the
text is being typed. This means that Return does not have to be pressed at the end of each line to simulate filling.

Auto-Saving

Auto-saving is the automatic, periodic backing-up of the file associated with the current buffer.

Backup

When a file is explicitly saved in the editor, a backup is automatically made by writing the old contents of the file to a
backup before saving the new version of the file. The name of the backup file is that of the original file followed by a ~
character.

Binding

A binding is made up of one or more key sequences. A command may have a default binding associated with it, which
executes that command. Bindings provide a quick and easy way to execute commands.

Buffer

A buffer is a temporary storage area used by the editor to hold the contents of a file while the process of editing is
taking place.

Case Conversion

Case conversion means changing the case of text from lower to upper case and vice versa.

162

Completion

Completion is the process of expanding a partial or abbreviated name into the full name. Completion can used for
expanding symbols, editor command names, filenames and editor buffer names.

Control Key

The Control key (Ctrl) is used as part of many key sequences. Ctrl must be held down while pressing the required
character key.

Ctrl Key

See Control Key.

Current

The adjective current is often used to describe a point, buffer, mark, paragraph, and similar regions of text, as being the
text area or item on which relevant commands have an effect. For example, the current buffer is the buffer on which
most editor commands operate.

Cursor

The cursor is the rectangle (in Emacs emulation) or vertical bar (in other emulations) seen in a buffer which indicates
the position of the current point within that buffer.

Customization

Customization means making changes to the way the editor works. The editor can be customized both in the short and
long term to suit the users requirements. Short term customization involves altering the way the editor works for the
duration of an editing session by using standard editor commands, while long term customization involves
programming the editor.

Default

A default is the value given to an argument if none is specified by the user.

Deleting

Deleting means removing text from the buffer without saving it. The alternative is killing.

Echo Area

The Echo Area is a buffer used to display and input editor information. Commands are typed into this buffer and editor
produced messages are displayed here.

Emulation

The LispWorks Editor can behave like GNU Emacs, or like a typical editor on the KDE/Gnome platform. Keys,
cursors, behavior with selected text and other functionality differs. We use the term KDE/Gnome editor emulation to
denote this alternate behavior.

Escape Key

The Escape key (Esc) has its own functionality but is mostly used in Emacs emulation in place of the Meta key when
no such key exists on a keyboard. Esc must be typed before pressing the required character key.

Glossary

163

Extended Command

Most editor commands can be invoked explicitly by using their full command names, preceded by the Meta+X key
sequence. A command issued in such a way is known as an extended command.

Fill Prefix

The fill prefix is a string which is ignored when filling takes place. For example, if the fill prefix is ;;, then these
characters at the start of a line are skipped over when the text is re-formatted.

Filling

Filling involves re-formatting text so that each line extends as far to the right as possible without any words being
broken or any text extending past a predefined right-hand column.

Global Abbrev

A global abbrev is an abbrev which can be expanded in all major modes.

History Ring

The history ring records Echo Area commands so that they can easily be repeated.

Incremental Search

An incremental search is a search which is started as soon as the first character of the search string is typed.

Indentation

Indentation is the blank space at the beginning of a line. Lisp, like many other programming languages, has
conventions for the indentation of code to make it more readable. The editor is designed to facilitate such indentation.

Insertion

Insertion is the process of inputting text into a buffer.

Keyboard Macro

A keyboard macro allows a sequence of editor commands to be turned into a single operation. Keyboard macros are
only available for the duration of an editing session.

Key Sequence

A key sequence is a sequence of characters used to issue, or partly issue, an editor command. A single key sequence
usually involves holding down one of two specially defined modifier keys (that is Ctrl and Meta), while at the same
time pressing another key.

Killing

Killing means removing text from a buffer and saving it in the kill ring, so that the text may be recovered at a later date.
The alternative is deleting.

Kill Ring

The kill ring stores text which has been killed, so that it may be recovered at a later date. Text can be re-inserted into a
buffer by yanking. There is only one kill ring for all buffers so that text can be copied from one buffer to another.

Glossary

164

Location

A location is the position of a point which is saved automatically such that you can revisit it by commands such as Go
Back.

Major Mode

Major modes govern how certain commands behave. They adapt a few editor commands so that their use is more
appropriate to the text being edited. For example, the concept of indentation is radically different in Lisp mode and
Fundamental mode. Each buffer is associated with one major mode.

Mark

A mark stores the position of a point in a buffer which is associated with the current region and may be used for
reference at a later date. More than one mark may be associated with a single buffer and saved in a mark ring.

Mark Ring

The mark ring stores details of marks, so that previously defined marks can be accessed. The mark ring works like a
stack, in that marks are pushed onto the ring and can only be popped off on a "last in first out" basis. Each buffer has its
own mark ring.

Meta Key

On most PC keyboards this key is synonymous with the Alt key. However, there are many different types of keyboard,
and the Meta key may not be marked with "Alt" or "Meta". It may be marked with a special character, such as a
diamond, or it may be one of the function keys — try F11.

In Emacs emulation, Meta must be held down while pressing the required character key. As some keyboards do not
have a Meta key, the Escape (Esc) key can be used in place of Meta.

On Cocoa, you can configure "Meta" by choosing Preferences... > Environment > Emulation.

Minor Mode

The minor modes determine whether or not certain actions take place. For example, when Abbrev mode is on, abbrevs
are automatically expanded when typed into a buffer. Buffers may possess any number of minor modes.

Mode

Each buffer has one or more modes associated with it: a major mode and zero or more minor modes. Major modes
govern how certain commands behave, while minor modes determine whether or not certain actions take place.

Mode Abbrev

A mode abbrev is an abbrev which is expanded only in predefined major modes.

Mode Line

At the bottom of each buffer is a mode line that provides information concerning that buffer. The information displayed
includes name of the buffer, major mode, minor mode and whether the buffer has been modified or not.

Newline

Newline is a whitespace character which terminates a line of text.

Glossary

165

Overwrite Mode

Overwrite mode is a minor mode which causes each character typed to replace an existing character in the text.

Page

A page is the region of text between two page delimiters. The ASCII key sequence Ctrl+L constitutes a page delimiter
(as it starts a new page on most line printers).

Pane

A pane is the largest portion of an editor window, used to display the contents of a buffer.

Paragraph

A paragraph is defined as the text within two paragraph delimiters. A blank line constitutes a paragraph delimiter. The
following characters at the beginning of a line are also paragraph delimiters:

Space Tab @ - ')

Prefix Argument

A prefix argument is an argument supplied to a command which sometimes alters the effect of that command, but in
most cases indicates how many times that command is to be executed. This argument is known as a prefix argument as
it is supplied before the command to which it is to be applied. Prefix arguments sometimes have no effect on a
command.

Point

A point is a position in a buffer where editor commands take effect. The current point is generally between the
character indicated by the cursor and the previous character (that is, it actually lies between two characters). Many
types of commands (moving, inserting, deleting) operate with respect to the current point, and indeed move that point.

Recursive Editing

Recursive editing occurs when you are allowed to edit text while an editor command is executing.

Region

A region is the area of text between the mark and the current point. Many editor commands affect only a specified
region.

Register

Registers are named slots in which locations and regions can be saved for later use.

Regular Expression Searching

A regular expression (regexp) allows the specification of a search string to include wild characters, repeated characters,
ranges of characters, and alternatives. Strings which follow a specific pattern can be located, which makes regular
expression searches very powerful.

Replacing

Replacing means substituting one string for another.

Glossary

166

Saving

Saving means copying the contents of a buffer to a file.

Scrolling

Scrolling means slightly shifting the text displayed in a pane either upwards or downwards, so that a different portion
of the buffer is displayed.

Searching

Searching means moving the current point to the next occurrence of a specified string.

Sentence

A sentence begins wherever a paragraph or previous sentence ends. The end of a sentence is defined as consisting of a
sentence terminating character followed by two spaces or a newline. The following characters are sentence terminating
characters:

. ? !

Tag File

A tag file is one which contains information on the location of Lisp function definitions in one or more files. For each
file in a defined system, the tag file contains a relevant file name entry, followed by names and positions of each
defining form in that file. This information is produced by the editor and is required for some definition searches.

Transposition

Transposition involves taking two units of text and swapping them round so that each occupies the other's former
position.

Undoing

Commands that modify text in a buffer can be undone, so that the text reverts to its state before the command was
invoked.

Undo Ring

An undo ring is used to hold details of modifying commands so that they can be undone at a later date. The undo ring
works like a stack, in that commands are pushed onto the ring and can only be popped off on a "last in first out" basis.

Variable (Editor)

Editor variables are parameters which affect the way that certain commands operate.

Whitespace

Whitespace is any consecutive run of the whitespace characters Space, Tab or Newline.

Window

A window is an object used by the window manager to display data. When the editor is called up, an editor window is
created and displayed.

Glossary

167

Window Ring

A window ring is used to hold details of all windows currently open.

Word

A word is a continuous string of alphanumeric characters (that is, the letters A–Z and numbers 0–9). In most modes,
any character which is not alphanumeric is treated as a word delimiter.

Yanking

Yanking means inserting a previously killed item of text from the kill ring at a required location. This is often known as
pasting.

Glossary

168

Index

A

Abbrev Expand Only 3.27 : Abbreviations 81

Abbreviated Complete Symbol 4.3.5 : Indentation and Completion 113

abbreviation

add global 3.27 : Abbreviations 80

add global expansion 3.27 : Abbreviations 80

add mode 3.27 : Abbreviations 80

add mode expansion 3.27 : Abbreviations 80

append to file 3.27 : Abbreviations 82

delete all 3.27 : Abbreviations 82

delete global 3.27 : Abbreviations 81

delete mode 3.27 : Abbreviations 81

edit 3.27 : Abbreviations 82

editor definition 3.27 : Abbreviations 80

expand 3.27 : Abbreviations 81

list 3.27 : Abbreviations 82

read from file 3.27 : Abbreviations 83

save to file 3.27 : Abbreviations 82

undo last expansion 3.27 : Abbreviations 81

abbreviation commands 3.27 : Abbreviations 80

Abbrev Mode 3.26.2 : Minor modes 78, 3.27 : Abbreviations 80

abbrev-pathname-defaults editor variable 3.27 : Abbreviations 82

aborting editor commands 2.6.1 : Aborting commands and processes 13, 3.1 : Aborting commands and processes 17

aborting processes 2.6.1 : Aborting commands and processes 13, 3.1 : Aborting commands and processes 17

Abort Recursive Edit 3.31 : Recursive editing 88

Accessors

editor:variable-value 6.3.15 : Variables 156

Activate Interface 3.36 : Interaction with the GUI and the IDE 98

Add Global Word Abbrev 3.27 : Abbreviations 80

Add Mode Word Abbrev 3.27 : Abbreviations 80

add-newline-at-eof-on-writing-file editor variable 3.5.2 : Saving files 25

Append Next Kill 3.11.2 : Killing text 50

Append to File 3.5.2 : Saving files 25

Append to Register 3.25 : Registers 76

Append to Word Abbrev File 3.27 : Abbreviations 82

Application Builder tool 3.36 : Interaction with the GUI and the IDE 99

169

Apropos Command 3.3.1 : The help command 19, 4.8 : Documentation 121

argument

listing for function 4.3.6 : Miscellaneous 113

prefix 3.4 : Using prefix arguments 22

attribute

description 3.3.1 : The help command 20

listing with apropos 3.3.1 : The help command 19

Auto Fill Linefeed 3.19.2 : Auto-Fill mode 58

Auto Fill Mode 3.19.2 : Auto-Fill mode 58, 3.26.2 : Minor modes 78

auto-fill mode 3.19.2 : Auto-Fill mode 58

Auto Fill Return 3.19.2 : Auto-Fill mode 59

Auto Fill Space 3.19.2 : Auto-Fill mode 58

auto-fill-space-indent editor variable 3.19.2 : Auto-Fill mode 59

auto-save-checkpoint-frequency editor variable 3.5.4 : Auto-saving files 29

auto-save-cleanup-checkpoints editor variable 3.5.4 : Auto-saving files 29

auto-save file 3.5.4 : Auto-saving files 28

auto-save-filename-pattern editor variable 3.5.4 : Auto-saving files 29

auto-save-key-count-threshold editor variable 3.5.4 : Auto-saving files 29

Auto Save Toggle 3.5.4 : Auto-saving files 28

B

Backspace Delete Previous Character 3.11.1 : Deleting Text 47

Backspace Echo Area Delete Previous Character 3.29.4 : Deleting and inserting text in the echo area 86

Back to Indentation 3.18 : Indentation 56

Backup File 3.5.2 : Saving files 25

backup-filename-pattern editor variable 3.5.5 : Backing-up files on saving 29

backup-filename-suffix editor variable 3.5.5 : Backing-up files on saving 29

backup files 3.5.2 : Saving files 25, 3.5.5 : Backing-up files on saving 29

backups-wanted editor variable 3.5.5 : Backing-up files on saving 29

Backward Character 3.8 : Movement 39

Backward Form 4.4.1 : Movement, marking and indentation 115

Backward Kill Form 4.4.2 : Killing forms 116

Backward Kill Line 3.11.2 : Killing text 49

Backward Kill Sentence 3.11.2 : Killing text 49

Backward List 4.5.1 : Movement 117

Backward Paragraph 3.8 : Movement 40

Backward Search 3.23.1 : Searching 69

Backward Sentence 3.8 : Movement 40

Backward Up List 4.5.1 : Movement 118

Backward Word 3.8 : Movement 39

base-char type 3.5.3.2 : Unwritable characters 27

Index

170

Beginning of Buffer 3.8 : Movement 42

Beginning of Buffer Preserving Point 3.8 : Movement 42

Beginning of Defun 4.3.1 : Movement, marking and specifying indentation 105

Beginning of Line 3.8 : Movement 39

Beginning of Line After Prompt 3.33.1 : Listener commands 90

Beginning Of Parse 3.29.3 : Movement in the echo area 86

Beginning of Parse or Line 3.29.3 : Movement in the echo area 86

Beginning of Window 3.8 : Movement 42

binding

editor definition 2.5.2 : Two ways to execute commands 12

binding keys 3.32 : Key bindings 89

Bind Key 3.32 : Key bindings 89

bind-key 6.1 : Customizing default key bindings 136

Bind String to Key 3.32 : Key bindings 89

bind-string-to-key 6.1 : Customizing default key bindings 137

Bottom of Window 3.8 : Movement 41

Break Definition 4.3.3 : Tracing functions 111

Break Definition on Exit 4.3.3 : Tracing functions 111

Break Function 4.3.3 : Tracing functions 110

Break Function on Exit 4.3.3 : Tracing functions 110

breaking processes 3.1 : Aborting commands and processes 17

break-on-editor-error editor variable 3.37 : Miscellaneous 101

buffer 6.3.3 : Buffers 140

changed definitions in 4.3.6 : Miscellaneous 113

circulate 3.20 : Buffers 59

commands 3.20 : Buffers 59

compile 4.9.4 : Compilation commands 126

compile changed definitions 4.9.4 : Compilation commands 127

compile if necessary 4.9.4 : Compilation commands 126

create 3.20 : Buffers 60

editor definition 2.1.2 : Files and buffers 9

evaluate 4.9.2 : Evaluation commands 124

evaluate changed definitions 4.9.2 : Evaluation commands 124

file options 3.5.6 : Miscellaneous file operations 30

functions 6.3.3 : Buffers 140, 6.3.16 : Windows 157

insert 3.20 : Buffers 61

kill 3.5.6 : Miscellaneous file operations 31, 3.20 : Buffers 60

list 3.20 : Buffers 60

mark whole 3.9.1 : Marks 45

modified check 3.20 : Buffers 61

move to beginning 3.8 : Movement 42

move to end 3.8 : Movement 42

Index

171

new 3.20 : Buffers 60

not modified 3.20 : Buffers 61

print 3.20 : Buffers 61

read only 3.20 : Buffers 61

rename 3.20 : Buffers 61

revert 3.5.6 : Miscellaneous file operations 30

revert with external format 3.5.6 : Miscellaneous file operations 30

save 3.5.2 : Saving files 24

search all 3.23.1 : Searching 69

select 3.20 : Buffers 59

select in other window 3.20 : Buffers 59

select previous 3.20 : Buffers 59

set package 4.9.1 : General Commands 122

Buffer Changed Definitions 4.3.6 : Miscellaneous 113

buffer-from-name 6.3.3.2 : Buffer operations 143

buffer-list 6.3.3.2 : Buffer operations 142

buffer-name 6.3.3.2 : Buffer operations 143

Buffer Not Modified 3.20 : Buffers 61

buffer-pathname 6.3.8 : Files 150

buffer-point 6.3.3.2 : Buffer operations 143

buffers and windows 3.35.1 : Buffers and windows 97

buffers-end 6.3.3.2 : Buffer operations 143

Buffers Query Replace 3.23.3 : Replacement 73

Buffers Search 3.23.1 : Searching 70

buffers-start 6.3.3.2 : Buffer operations 143

buffer-value 6.3.15 : Variables 157

bug

reporting: in documentation 3.36 : Interaction with the GUI and the IDE 100

reporting: in software 3.36 : Interaction with the GUI and the IDE 100

Bug Report 3.36 : Interaction with the GUI and the IDE 100

Build Application 3.36 : Interaction with the GUI and the IDE 99

Build Interface 3.36 : Interaction with the GUI and the IDE 99

Bury Buffer 3.20 : Buffers 60

button

mouse bindings in editor 3.35.2 : Actions involving the mouse 97

C

calling editor functions 6.3.1 : Calling editor functions 138

Capitalize Region 3.15 : Case conversion 53

Capitalize Word 3.15 : Case conversion 53

case conversion commands 3.15 : Case conversion 52

Index

172

case-replace editor variable 3.23.3 : Replacement 74

CD 3.34.2 : Invoking and using a Shell tool 95

Center Line 3.19.1 : Fill commands 58

change-buffer-lock-for-modification 6.3.3.1 : Buffer locking 142

character

backward 3.8 : Movement 39

delete expanding tabs 3.11.1 : Deleting Text 47

delete next 3.11.1 : Deleting Text 47

delete previous 3.11.1 : Deleting Text 47

forward 3.8 : Movement 39

insert with overwrite 3.17 : Overwriting 55

overwrite previous 3.17 : Overwriting 55

transposition 3.16 : Transposition 53

character type 3.20 : Buffers 61

character-offset 6.3.12 : Movement 152

Check Buffer Modified 3.20 : Buffers 61

check-disk-version-consistent 6.3.8 : Files 150

Circulate Buffers 3.20 : Buffers 59

class

describe 4.3.6 : Miscellaneous 114

Class Browser tool 4.3.6 : Miscellaneous 114

clear-echo-area 6.3.6 : The echo area 148

Clear Eval Record 3.38 : Obscure commands 101

Clear Listener 3.11.1 : Deleting Text 48

Clear Output 3.11.1 : Deleting Text 48

Clear Undo 3.38 : Obscure commands 101

clear-undo 6.3.3.2 : Buffer operations 144

Code Coverage Current Buffer 4.10.1 : Coloring code coverage 128

Code Coverage File 4.10.1 : Coloring code coverage 128

Code Coverage Load Default Data 4.10.2 : Setting the default code coverage data 128

Code Coverage Set Default Data 4.10.2 : Setting the default code coverage data 128

colors

Font Lock 4.2 : Syntax coloring 103

Lisp syntax 4.2 : Syntax coloring 103

command

abort 3.1 : Aborting commands and processes 17

completion 2.5.2 : Two ways to execute commands 12, 3.2 : Executing commands 18, 3.29.1 : Completing commands 84

description 3.3.1 : The help command 19, 3.3.1 : The help command 20

execution 2.5 : Executing commands 11, 3.2 : Executing commands 18, 6.3.1 : Calling editor functions 138

history 3.3.1 : The help command 20

key sequence for 3.3.1 : The help command 21

key sequences 3.3.1 : The help command 21

Index

173

listing with apropos 3.3.1 : The help command 19

repetition 2.5.3 : Prefix arguments 12, 3.4 : Using prefix arguments 22

shell 3.34 : Running shell commands 94

commands

abbreviation 3.27 : Abbreviations 80

aborting commands 2.6.1 : Aborting commands and processes 13, 3.1 : Aborting commands and processes 17

aborting processes 2.6.1 : Aborting commands and processes 13, 3.1 : Aborting commands and processes 17

buffer 3.20 : Buffers 59

case conversion 3.15 : Case conversion 52

compilation 4.9 : Evaluation and compilation 122, 4.9.4 : Compilation commands 125

cut and paste 2.6.7 : Killing and Yanking 14

deleting text 2.6.5 : Deleting and killing text 14, 3.11 : Deleting and killing text 47

Directory mode 3.7 : Directory mode 32

echo area 3.29 : Echo area operations 84

editing Lisp programs 4 : Editing Lisp Programs 103

editor variable 3.30 : Editor variables 88

evaluation 4.9 : Evaluation and compilation 122, 4.9.2 : Evaluation commands 123, 4.9.3 : Evaluation in Listener commands 125

file handling 2.6.2 : File handling 13, 3.5 : File handling 23

filling 3.19 : Filling 57

help 2.6.8 : Help 14, 3.3 : Help 18

indentation 3.18 : Indentation 55

inserting text 2.6.3 : Inserting text 13, 3.12 : Inserting text 50

key binding 3.32 : Key bindings 89

keyboard macro 3.28 : Keyboard macros 83

killing text 2.6.5 : Deleting and killing text 14, 3.11 : Deleting and killing text 47

Lisp comment 4.6 : Comments 118

Lisp documentation 4.8 : Documentation 121

Lisp form 4.4 : Forms 115

Lisp function and definition 4.3 : Functions and definitions 105

Lisp list 4.5 : Lists 117

movement 2.6.4 : Movement 13, 3.8 : Movement 38

overwriting 3.17 : Overwriting 54

pages 3.22 : Pages 64

parentheses 4.7 : Parentheses 120, 4.7 : Parentheses 121

recursive editing 3.31 : Recursive editing 88

register 3.25 : Registers 76

replacing 3.23 : Searching and replacing 65

running shell from editor 3.34 : Running shell commands 94

searching 3.23 : Searching and replacing 65

transposition 3.16 : Transposition 53

undoing 2.6.6 : Undoing 14, 3.14 : Undoing 52

window 3.21 : Windows 62

Index

174

comment

create 4.6 : Comments 118

kill 4.6 : Comments 119

move to 4.6 : Comments 118

comment-begin editor variable 4.6 : Comments 119

comment-column editor variable 4.6 : Comments 120

comment commands 4.6 : Comments 118

comment-end editor variable 4.6 : Comments 120

Comment Region 4.6 : Comments 118

comments

inserting 4.6 : Comments 119

comment-start editor variable 4.6 : Comments 120

Compare Buffers 3.24 : Comparison 75

Compare File And Buffer 3.24 : Comparison 75

compare-ignores-whitespace editor variable 3.24 : Comparison 75

Compare Windows 3.24 : Comparison 75

compilation commands 4.9 : Evaluation and compilation 122, 4.9.4 : Compilation commands 125

compilation messages

finding the source code 4.9.4 : Compilation commands 127

compile

buffer 4.9.4 : Compilation commands 126

buffer changed definitions 4.9.4 : Compilation commands 127

buffer if necessary 4.9.4 : Compilation commands 126

changed definitions 4.9.4 : Compilation commands 127

file 4.9.4 : Compilation commands 126

form 4.9.4 : Compilation commands 125

region 4.9.4 : Compilation commands 126

system 4.9.4 : Compilation commands 127

system changed definitions 4.9.4 : Compilation commands 127

Compile and Load Buffer File 4.9.4 : Compilation commands 126

Compile and Load File 4.9.4 : Compilation commands 126

Compile Buffer 4.9.4 : Compilation commands 126

Compile Buffer Changed Definitions 4.9.4 : Compilation commands 127

Compile Buffer File 4.9.4 : Compilation commands 126

compile-buffer-file-confirm editor variable 4.9.4 : Compilation commands 127

Compile Changed Definitions 4.9.4 : Compilation commands 127

Compile Defun 4.9.4 : Compilation commands 125

Compile File 4.9.4 : Compilation commands 126

Compile Region 4.9.4 : Compilation commands 126

Compile System 4.9.4 : Compilation commands 127

Compile System Changed Definitions 4.9.4 : Compilation commands 127

Index

175

Complete Field 3.29.1 : Completing commands 84

complete-in-place 6.3.14 : In-place completion 154

Complete Input 3.29.1 : Completing commands 84

Complete Symbol 4.3.5 : Indentation and Completion 113

complete-with-non-focus 6.3.14 : In-place completion 155

completion

dynamic word 3.12 : Inserting text 51

in-place 6.3.14 : In-place completion 154

of abbreviated symbols 4.3.5 : Indentation and Completion 113

of commands 2.5.2 : Two ways to execute commands 12, 3.2 : Executing commands 18, 3.29.1 : Completing commands 84

of filenames 3.6 : Filename completion 32

of symbols 4.3.5 : Indentation and Completion 112, 4.3.5 : Indentation and Completion 112, 4.3.5 : Indentation and Completion 113

configuration files 5.2 : Key bindings 134, 6 : Advanced Features 136

Confirm Parse 3.29.1 : Completing commands 85

Connect Remote Debugging 4.15 : Remote debugging 132

Continue Tags Search 4.3.2 : Definition searching 108

Control key 2.5.1 : Modifier keys - Command, Ctrl, Alt and Meta 11

control keys

insert into buffer 3.12 : Inserting text 51

copy-point 6.3.4 : Points 146

Copy To Cut Buffer 3.35.1 : Buffers and windows 97

Copy to Register 3.25 : Registers 76

Count Lines Page 3.22 : Pages 65

Count Lines Region 3.9.2 : Regions 46

Count Matches 3.23.2 : Regular expression searching 72

Count Occurrences 3.23.2 : Regular expression searching 72

Count Words Region 3.9.2 : Regions 46

Create Buffer 3.20 : Buffers 60

Create Tags Buffer 4.3.2 : Definition searching 108

cross-referencing 4.3.4 : Function callers and callees 111

Ctrl+A Beginning of Line 3.8 : Movement 39

Ctrl+A Beginning of Line After Prompt 3.33.1 : Listener commands 90

Ctrl+A Beginning Of Parse or Line 3.29.3 : Movement in the echo area 86

Ctrl+B Backward Character 3.8 : Movement 39

Ctrl+B Echo Area Backward Character 3.29.3 : Movement in the echo area 86

Ctrl+C < History First 3.33.2 : History commands 91

Ctrl+C > History Last 3.33.2 : History commands 91

Ctrl+C Ctrl+C Insert Selected Text 3.29.4 : Deleting and inserting text in the echo area 87

Ctrl+C Ctrl+C Interrupt Shell Subjob 3.34.2 : Invoking and using a Shell tool 96

Ctrl+C Ctrl+D Shell Send Eof 3.34.2 : Invoking and using a Shell tool 96

Ctrl+C Ctrl+F History Select 3.33.2 : History commands 92

Index

176

Ctrl+C Ctrl+I Inspect Star 3.33.1 : Listener commands 90

Ctrl+C Ctrl+K History Kill Current 3.33.2 : History commands 92

Ctrl+C Ctrl+N History Next 3.33.2 : History commands 91

Ctrl+C Ctrl+P History Previous 3.33.2 : History commands 91

Ctrl+C Ctrl+R History Search 3.33.2 : History commands 91

Ctrl+C Ctrl+Y History Yank 3.33.2 : History commands 92

Ctrl+C Ctrl+Z Stop Shell Subjob 3.34.2 : Invoking and using a Shell tool 96

Ctrl+D Delete Next Character 3.11.1 : Deleting Text 47

Ctrl+E End of Line 3.8 : Movement 39

Ctrl+F Forward Character 3.8 : Movement 39

Ctrl+G, abort current command 3.1 : Aborting commands and processes 17

Ctrl+H A Apropos 2.6.8 : Help 14, 4.8 : Documentation 121

Ctrl+H B Describe Bindings 3.3.1 : The help command 21

Ctrl+H C What Command 3.3.1 : The help command 19

Ctrl+H Ctrl+D Document Command 3.3.1 : The help command 19

Ctrl+H Ctrl+K Document Key 3.3.1 : The help command 20

Ctrl+H Ctrl+V Document Variable 3.3.1 : The help command 20

Ctrl+H D Describe Command 2.6.8 : Help 15, 3.3.1 : The help command 19

Ctrl+H G Generic Describe 3.3.1 : The help command 20

Ctrl+H Help 3.3.1 : The help command 18

Ctrl+H K Describe Key 2.6.8 : Help 15, 3.3.1 : The help command 20

Ctrl+H L What Lossage 3.3.1 : The help command 20

Ctrl+H V Describe Editor Variable 3.3.1 : The help command 20

Ctrl+H W Where Is 3.3.1 : The help command 21

Ctrl+J Insert From Previous Prompt 3.33.1 : Listener commands 90

Ctrl+K Kill Line 3.11.2 : Killing text 49

Ctrl+L Refresh Screen 3.21 : Windows 64

Ctrl+N Next Line 3.8 : Movement 39

Ctrl+Next End of Window 3.8 : Movement 42

Ctrl+O Open Line 3.12 : Inserting text 51

Ctrl+P Insert Parse Default 3.29.4 : Deleting and inserting text in the echo area 87

Ctrl+P Previous Line 3.8 : Movement 39

Ctrl+Prior Beginning of Window 3.8 : Movement 42

Ctrl+Q Quoted Insert 3.12 : Inserting text 51

Ctrl+R Return Default 3.29.4 : Deleting and inserting text in the echo area 87

Ctrl+R Reverse Incremental Search 3.23.1 : Searching 68

Ctrl+S Esc Forward Search 3.23.1 : Searching 68

Ctrl+S Incremental Search 3.23.1 : Searching 66

Index

177

Ctrl+Shift+A Function Argument List 4.3.6 : Miscellaneous 114

Ctrl+Shift+B Compile Buffer 4.9.4 : Compilation commands 126

Ctrl+Shift+C Compile Defun 4.9.4 : Compilation commands 125

Ctrl+Shift+D Function Documentation 4.8 : Documentation 121

Ctrl+Shift+E Evaluate Region 4.9.2 : Evaluation commands 124

Ctrl+Shift+M Macroexpand Form 4.4.3 : Macro-expansion of forms 116

Ctrl+Shift+R Compile Region 4.9.4 : Compilation commands 126

Ctrl+Shift+_ Undo 2.6.6 : Undoing 14, 3.14 : Undoing 52

Ctrl+Space Set Mark 3.9.1 : Marks 44

Ctrl+T Transpose Characters 3.16 : Transposition 53

Ctrl+U Kill Parse 3.29.4 : Deleting and inserting text in the echo area 86

Ctrl+U Set Prefix Argument 3.4 : Using prefix arguments 22

Ctrl+V Scroll Window Down 3.8 : Movement 40

Ctrl+W Kill Region 3.11.2 : Killing text 49

Ctrl+X & Search Files Matching Patterns 3.23.1 : Searching 70

Ctrl+X (Define Keyboard Macro 3.28 : Keyboard macros 83

Ctrl+X) End Keyboard Macro 3.28 : Keyboard macros 83

Ctrl+X * Search Files 3.23.1 : Searching 70

Ctrl+X + Add Global Word Abbrev 3.27 : Abbreviations 80

Ctrl+X - Inverse Add Global Word Abbrev 3.27 : Abbreviations 80

Ctrl+X . Set Fill Prefix 3.19.1 : Fill commands 58

Ctrl+X / Point to Register 3.25 : Registers 76

Ctrl+X 0 Delete Window 3.21 : Windows 62

Ctrl+X 1 Delete Other Windows 3.21 : Windows 63

Ctrl+X 2 New Window 3.21 : Windows 62

Ctrl+X ; Set Comment Column 4.6 : Comments 118

Ctrl+X = What Cursor Position 3.29.5 : Display of information in the echo area 87

Ctrl+X B Select Buffer 3.20 : Buffers 59

Ctrl+X C Go Back 3.10 : Locations 46

Ctrl+X Ctrl+A Add Mode Word Abbrev 3.27 : Abbreviations 80

Ctrl+X Ctrl+B List Buffers 3.20 : Buffers 60

Ctrl+X Ctrl+C Save All Files and Exit 3.5.2 : Saving files 25

Ctrl+X Ctrl+E Evaluate Last Form 4.9.2 : Evaluation commands 123

Ctrl+X Ctrl+F Wfind File 3.5.1 : Finding files 23

Ctrl+X Ctrl+H Inverse Add Mode Word Abbrev 3.27 : Abbreviations 80

Ctrl+X Ctrl+I Indent Rigidly 3.18 : Indentation 56

Ctrl+X Ctrl+L Lowercase Region 3.15 : Case conversion 53

Ctrl+X Ctrl+O Delete Blank Lines 3.11.1 : Deleting Text 48

Index

178

Ctrl+X Ctrl+P Mark Page 3.22 : Pages 65

Ctrl+X Ctrl+Q Toggle Buffer Read-Only 3.20 : Buffers 61

Ctrl+X Ctrl+S Save File 3.5.2 : Saving files 24

Ctrl+X Ctrl+T Transpose Lines 3.16 : Transposition 54

Ctrl+X Ctrl+U Uppercase Region 3.15 : Case conversion 53

Ctrl+X Ctrl+V Find Alternate File 3.5.1 : Finding files 24

Ctrl+X Ctrl+W Write File 3.5.2 : Saving files 24

Ctrl+X Ctrl+X Exchange Point and Mark 3.9.1 : Marks 45

Ctrl+X Delete Backward Kill Sentence 3.11.2 : Killing text 49

Ctrl+X E Last Keyboard Macro 3.28 : Keyboard macros 83

Ctrl+X F Set Fill Column 3.19.1 : Fill commands 57

Ctrl+X G Insert Register 3.25 : Registers 77

Ctrl+X H Mark Whole Buffer 3.9.1 : Marks 45

Ctrl+X I Insert File 3.5.6 : Miscellaneous file operations 31

Ctrl+X J Jump to Register 3.25 : Registers 76

Ctrl+X K Kill Buffer 3.20 : Buffers 60

Ctrl+X L Count Lines Page 3.22 : Pages 65

Ctrl+X M Select Go Back 3.10 : Locations 46

Ctrl+X O Next Ordinary Window 3.21 : Windows 62

Ctrl+X P Go Forward 3.10 : Locations 47

Ctrl+X Q Keyboard Macro Query 3.28 : Keyboard macros 84

Ctrl+X S Save All Files 3.5.2 : Saving files 24

Ctrl+X Tab Indent Rigidly 3.18 : Indentation 56

Ctrl+X X Copy to Register 3.25 : Registers 76

Ctrl+X [Previous Page 3.22 : Pages 64

Ctrl+X] Next Page 3.22 : Pages 64

Ctrl+X ~ Check Buffer Modified 3.20 : Buffers 61

Ctrl+Y Un-Kill 2.6.7 : Killing and Yanking 14, 3.12 : Inserting text 50

Ctrl+] Abort Recursive Edit 3.31 : Recursive editing 88

Ctrl+` Function Arglist Displayer 4.3.6 : Miscellaneous 114

Ctrl key 2.5.1 : Modifier keys - Command, Ctrl, Alt and Meta 11

current-buffer 6.3.3.2 : Buffer operations 142

current-mark 6.3.4 : Points 145

current-package editor variable 4.9.1 : General Commands 122

current point

editor definition 2.2.1 : Points 10

current-point 6.3.4 : Points 145

current-window 6.3.16 : Windows 157

customising

editor 6 : Advanced Features 136

Index

179

editor commands 6 : Advanced Features 136

indentation of Lisp forms 6 : Advanced Features 136, 6.2 : Customizing Lisp indentation 137

key bindings 5.2 : Key bindings 134, 6 : Advanced Features 136, 6.1 : Customizing default key bindings 136

customizing

editor 6 : Advanced Features 136

editor commands 6 : Advanced Features 136

indentation of Lisp forms 6 : Advanced Features 136, 6.2 : Customizing Lisp indentation 137

key bindings 5.2 : Key bindings 134, 6 : Advanced Features 136, 6.1 : Customizing default key bindings 136

cut and paste commands 2.6.7 : Killing and Yanking 14

D

debugger

using in editor 4.9.2 : Evaluation commands 124

Debugger Abort 3.33.3 : Debugger commands 92

Debugger Backtrace 3.33.3 : Debugger commands 93

debugger commands

Debugger Abort Meta+A 3.33.3 : Debugger commands 92

Debugger Backtrace Meta+B 3.33.3 : Debugger commands 93

Debugger Continue Meta+C 3.33.3 : Debugger commands 93

Debugger Edit Meta+E 3.33.3 : Debugger commands 93

Debugger Next Meta+N 3.33.3 : Debugger commands 93

Debugger Previous Meta+P 3.33.3 : Debugger commands 93

Debugger Print Meta+V 3.33.3 : Debugger commands 93

Debugger Top 3.33.3 : Debugger commands 94

Throw out of Debugger 3.33.3 : Debugger commands 94

Debugger Continue 3.33.3 : Debugger commands 93

Debugger Edit 3.33.3 : Debugger commands 93

Debugger Next 3.33.3 : Debugger commands 93

Debugger Previous 3.33.3 : Debugger commands 93

Debugger Print 3.33.3 : Debugger commands 93

Debugger Top 3.33.3 : Debugger commands 94

debugging

remote 4.15 : Remote debugging 132

default

binding 2.5.2 : Two ways to execute commands 12

external format for input 3.5.3.1 : Controlling the external format 27

external format for output 3.5.3.1 : Controlling the external format 27

prefix argument 3.4 : Using prefix arguments 22

default-auto-save-on editor variable 3.5.4 : Auto-saving files 28

default-buffer-element-type editor variable 3.20 : Buffers 61

default-modes editor variable 3.26.3 : Default modes 78

Index

180

default-search-kind editor variable 3.23.1 : Searching 71

Defindent 4.3.1 : Movement, marking and specifying indentation 105

Define Command Synonym 6.3.2 : Defining commands 140

define-editor-mode-variable 6.3.15 : Variables 156

define-editor-variable 6.3.15 : Variables 155

Define Keyboard Macro 3.28 : Keyboard macros 83

Define Word Abbrevs 3.27 : Abbreviations 83

definition

break 4.3.3 : Tracing functions 111

break on exit 4.3.3 : Tracing functions 111

disassemble 4.9.4 : Compilation commands 127

editing 4.3 : Functions and definitions 105

find 4.3.2 : Definition searching 106

find buffer changes 4.3.6 : Miscellaneous 113

searching for 4.3.2 : Definition searching 105

trace 4.3.3 : Tracing functions 110

trace inside 4.3.3 : Tracing functions 110

untrace 4.3.3 : Tracing functions 110

definition folding 4.14 : Definition folding 131

Delete All Word Abbrevs 3.27 : Abbreviations 82

Delete Blank Lines 3.11.1 : Deleting Text 48

Delete File 3.5.6 : Miscellaneous file operations 31

Delete File and Kill Buffer 3.5.6 : Miscellaneous file operations 31

Delete Global Word Abbrev 3.27 : Abbreviations 81

Delete Horizontal Space 3.11.1 : Deleting Text 47

Delete Indentation 3.18 : Indentation 56

Delete Key Binding 3.32 : Key bindings 89

Delete Matching Lines 3.23.1 : Searching 69

Delete Mode Word Abbrev 3.27 : Abbreviations 81

Delete Next Character 3.11.1 : Deleting Text 47

Delete Next Window 3.21 : Windows 62

Delete Non-Matching Lines 3.23.1 : Searching 69

Delete Other Windows 3.21 : Windows 63

delete-point 6.3.4 : Points 146

Delete Previous Character 3.11.1 : Deleting Text 47

Delete Previous Character Expanding Tabs 3.11.1 : Deleting Text 47

Delete Region 3.11.1 : Deleting Text 48

Delete Selection Mode 3.13 : Delete Selection 52

Delete Window 3.21 : Windows 62

deleting text 3.11.1 : Deleting Text 47

deleting text commands 2.6.5 : Deleting and killing text 14, 3.11 : Deleting and killing text 47

Index

181

deletion

editor definition 3.11 : Deleting and killing text 47

of selection 3.13 : Delete Selection 52

of surrounding form 4.4.2 : Killing forms 116

delimiter

sentence 2.4.2 : Sentences 11

Describe Bindings 3.3.1 : The help command 21

Describe Class 4.3.6 : Miscellaneous 114

Describe Command 3.3.1 : The help command 19

Describe Editor Variable 3.3.1 : The help command 20

Describe Generic Function 4.3.6 : Miscellaneous 114

Describe Key 3.3.1 : The help command 20

Describe Method Call 4.3.6 : Miscellaneous 115

Describe Symbol 4.8 : Documentation 121

Describe System 4.3.6 : Miscellaneous 115

Diff 3.24 : Comparison 75

Diff Ignoring Whitespace 3.24 : Comparison 75

directory

change 3.34.2 : Invoking and using a Shell tool 95

query replace 3.23.3 : Replacement 73

search 3.23.1 : Searching 70

Directory mode 3.26.1 : Major modes 77

Directory mode commands 3.7 : Directory mode 32

Directory Mode Copy Marked 3.7.4 : Modifying the file system from the Directory mode buffer 37

Directory Mode Delete 3.7.4 : Modifying the file system from the Directory mode buffer 36

Directory Mode Edit File 3.7.2 : Directory mode commands 34

Directory Mode Edit File In Other Window 3.7.2 : Directory mode commands 34

Directory Mode Flag Delete 3.7.2 : Directory mode commands 36

Directory Mode Flag Delete When Marked 3.7.2 : Directory mode commands 36

Directory Mode Flag Edited 3.7.2 : Directory mode commands 35

Directory Mode Kill Line 3.7.3 : Explicit editing of the Directory mode buffer 36

Directory Mode Mark 3.7.2 : Directory mode commands 34

Directory Mode Mark All 3.7.2 : Directory mode commands 35

Directory Mode Mark Matches 3.7.2 : Directory mode commands 35

Directory Mode Mark Regexp Matches 3.7.2 : Directory mode commands 35

Directory Mode Mark When Edited 3.7.2 : Directory mode commands 35

Directory Mode Move Marked 3.7.4 : Modifying the file system from the Directory mode buffer 37

Directory Mode New Buffer With Edited 3.7.5 : Creating new Directory mode buffers 38

Directory Mode New Buffer With Flagged Delete 3.7.5 : Creating new Directory mode buffers 38

Directory Mode New Buffer With Marked 3.7.5 : Creating new Directory mode buffers 37

Directory Mode New Buffer With Matches 3.7.5 : Creating new Directory mode buffers 38

Directory Mode New Buffer With Regexp Matches 3.7.5 : Creating new Directory mode buffers 38

Index

182

Directory Mode Next Line 3.7.2 : Directory mode commands 33

Directory Mode Previous Line 3.7.2 : Directory mode commands 34

Directory Mode Rename 3.7.4 : Modifying the file system from the Directory mode buffer 37

Directory Mode Toggle Edited 3.7.2 : Directory mode commands 35

Directory Mode Unflag Edited 3.7.2 : Directory mode commands 35

Directory Mode Unmark 3.7.2 : Directory mode commands 34

Directory Mode Unmark Backward 3.7.2 : Directory mode commands 34

Directory Mode Unmark Matches 3.7.2 : Directory mode commands 35

Directory Mode Unmark When Edited 3.7.2 : Directory mode commands 35

Directory Query Replace 3.23.3 : Replacement 73

Directory Search 3.23.1 : Searching 70

Disassemble Definition 4.9.4 : Compilation commands 127

documentation commands 4.8 : Documentation 121

Document Command 3.3.1 : The help command 19

Document Key 3.3.1 : The help command 20

Document Variable 3.3.1 : The help command 20

Do Nothing 3.32 : Key bindings 89

double-quotes

inserting 4.4.4 : Miscellaneous 117

Down Comment Line 4.6 : Comments 119

Down List 4.5.1 : Movement 118

dspec

documentation 4.8 : Documentation 122

Dynamic Completion 3.12 : Inserting text 51

E

echo area

complete text 3.29.1 : Completing commands 84

completing commands in 3.29.1 : Completing commands 84

deleting and inserting text in 3.29.4 : Deleting and inserting text in the echo area 86

editor definition 3.29 : Echo area operations 84

help on parse 3.29.1 : Completing commands 85

match input from history 3.29.2 : Repeating echo area commands 85

movement in 3.29.3 : Movement in the echo area 86

next command 3.29.2 : Repeating echo area commands 85

previous command 3.29.2 : Repeating echo area commands 85

prompting the user 6.3.13 : Prompting the user 153

repeating commands in 3.29.2 : Repeating echo area commands 85

terminate entry 3.29.1 : Completing commands 85

Echo Area Backward Character 3.29.3 : Movement in the echo area 86

Echo Area Backward Word 3.29.3 : Movement in the echo area 86

echo area commands 3.29 : Echo area operations 84

Index

183

Echo Area Delete Previous Character 3.29.4 : Deleting and inserting text in the echo area 86

echo area functions 6.3.6 : The echo area 148, 6.3.18 : Examples 159

Echo Area Kill Previous Word 3.29.4 : Deleting and inserting text in the echo area 86

Edit Buffer 3.20 : Buffers 60

Edit Callees 4.3.4 : Function callers and callees 112

Edit Callers 4.3.4 : Function callers and callees 112

Edit Compiler Warnings 3.36 : Interaction with the GUI and the IDE 99

Edit Editor Command 4.3.2 : Definition searching 107

editor

customising 6 : Advanced Features 136

customizing 6 : Advanced Features 136

delete-region-command 3.11.1 : Deleting Text 48

programming 6.3 : Programming the editor 138

editor:bind-key function 6.1 : Customizing default key bindings 136

editor:bind-string-to-key function 6.1 : Customizing default key bindings 137

editor:buffer-from-name function 6.3.3.2 : Buffer operations 143

editor:*buffer-list* variable 6.3.3.2 : Buffer operations 142

editor:buffer-name function 6.3.3.2 : Buffer operations 143

editor:buffer-pathname function 6.3.8 : Files 150

editor:buffer-point function 6.3.3.2 : Buffer operations 143

editor:buffers-end function 6.3.3.2 : Buffer operations 143

editor:buffers-start function 6.3.3.2 : Buffer operations 143

editor:buffer-value function 6.3.15 : Variables 157

editor:change-buffer-lock-for-modification function 6.3.3.1 : Buffer locking 142

editor:character-offset function 6.3.12 : Movement 152

editor:check-disk-version-consistent function 6.3.8 : Files 150

editor:clear-echo-area function 6.3.6 : The echo area 148

editor:clear-undo function 6.3.3.2 : Buffer operations 144

editor commands

Abbrev Expand Only 3.27 : Abbreviations 81

Abbreviated Complete Symbol Meta+I 4.3.5 : Indentation and Completion 113

Abbrev Mode 3.27 : Abbreviations 80

Abort Recursive Edit Ctrl+] 3.31 : Recursive editing 88

Activate Interface 3.36 : Interaction with the GUI and the IDE 98

Add Global Word Abbrev Ctrl+X + 3.27 : Abbreviations 80

Add Mode Word Abbrev Ctrl+X Ctrl+A 3.27 : Abbreviations 80

Append Next Kill Meta+Ctrl+W 3.11.2 : Killing text 50

Append to File 3.5.2 : Saving files 25

Append to Register 3.25 : Registers 76

Append to Word Abbrev File 3.27 : Abbreviations 82

Apropos Command 3.3.1 : The help command 19

Index

184

Apropos Ctrl+H A 4.8 : Documentation 121

Auto Fill Linefeed Linefeed 3.19.2 : Auto-Fill mode 58

Auto Fill Mode 3.19.2 : Auto-Fill mode 58

Auto Fill Return Return 3.19.2 : Auto-Fill mode 59

Auto Fill Space Space 3.19.2 : Auto-Fill mode 58

Auto Save Toggle 3.5.4 : Auto-saving files 28

Back to Indentation Meta+M 3.18 : Indentation 56

Backup File 3.5.2 : Saving files 25

Backward Character Ctrl+B 3.8 : Movement 39

Backward Form Meta+Ctrl+B 4.4.1 : Movement, marking and indentation 115

Backward Kill Form Meta+Ctrl+Delete 4.4.2 : Killing forms 116

Backward Kill Line 3.11.2 : Killing text 49

Backward Kill Sentence Ctrl+X Delete 3.11.2 : Killing text 49

Backward List Meta+Ctrl+P 4.5.1 : Movement 117

Backward Paragraph Meta+ 3.8 : Movement 40

Backward Search 3.23.1 : Searching 69

Backward Sentence Meta+A 3.8 : Movement 40

Backward Up List Meta+Ctrl+U 4.5.1 : Movement 118

Backward Word Meta+B 3.8 : Movement 39

Beginning of Buffer Meta+< 3.8 : Movement 42

Beginning of Buffer Preserving Point 3.8 : Movement 42

Beginning of Defun Meta+Ctrl+A 4.3.1 : Movement, marking and specifying indentation 105

Beginning of Line After Prompt Ctrl+A 3.33.1 : Listener commands 90

Beginning of Line Ctrl+A 3.8 : Movement 39

Beginning Of Parse Meta+< 3.29.3 : Movement in the echo area 86

Beginning of Parse or Line Ctrl+A 3.29.3 : Movement in the echo area 86

Beginning of Window Ctrl+Prior 3.8 : Movement 42

Bind Key 3.32 : Key bindings 89

Bind String to Key 3.32 : Key bindings 89

Bottom of Window 3.8 : Movement 41

Break Definition 4.3.3 : Tracing functions 111

Break Definition on Exit 4.3.3 : Tracing functions 111

Break Function 4.3.3 : Tracing functions 110

Break Function on Exit 4.3.3 : Tracing functions 110

Buffer Changed Definitions 4.3.6 : Miscellaneous 113

Buffer Not Modified Meta+Shift+~ 3.20 : Buffers 61

Buffers Query Replace 3.23.3 : Replacement 73

Buffers Search 3.23.1 : Searching 70

Bug Report 3.36 : Interaction with the GUI and the IDE 100

Build Application 3.36 : Interaction with the GUI and the IDE 99

Build Interface 3.36 : Interaction with the GUI and the IDE 99

Index

185

Bury Buffer 3.20 : Buffers 60

Capitalize Region 3.15 : Case conversion 53

Capitalize Word Meta+C 3.15 : Case conversion 53

CD 3.34.2 : Invoking and using a Shell tool 95

Center Line 3.19.1 : Fill commands 58

Check Buffer Modified Ctrl+X ~ 3.20 : Buffers 61

Circulate Buffers Meta+Ctrl+Shift+L 3.20 : Buffers 59

Clear Eval Record 3.38 : Obscure commands 101

Clear Listener 3.11.1 : Deleting Text 48

Clear Output 3.11.1 : Deleting Text 48

Clear Undo 3.38 : Obscure commands 101

Code Coverage Current Buffer 4.10.1 : Coloring code coverage 128

Code Coverage File 4.10.1 : Coloring code coverage 128

Code Coverage Load Default Data 4.10.2 : Setting the default code coverage data 128

Code Coverage Set Default Data 4.10.2 : Setting the default code coverage data 128

Comment Region 4.6 : Comments 118

Compare Buffers 3.24 : Comparison 75

Compare File And Buffer 3.24 : Comparison 75

Compare Windows 3.24 : Comparison 75

Compile and Load Buffer File 4.9.4 : Compilation commands 126

Compile and Load File 4.9.4 : Compilation commands 126

Compile Buffer Changed Definitions 4.9.4 : Compilation commands 127

Compile BufferCtrl+Shift+B 4.9.4 : Compilation commands 126

Compile Buffer File 4.9.4 : Compilation commands 126

Compile Changed Definitions 4.9.4 : Compilation commands 127

Compile Defun Ctrl+Shift+C 4.9.4 : Compilation commands 125

Compile File 4.9.4 : Compilation commands 126

Compile Region Ctrl+Shift+R 4.9.4 : Compilation commands 126

Compile System 4.9.4 : Compilation commands 127

Compile System Changed Definitions 4.9.4 : Compilation commands 127

Complete Field Space 3.29.1 : Completing commands 84

Complete Input Tab 3.29.1 : Completing commands 84

Complete Symbol Meta+Ctrl+I 4.3.5 : Indentation and Completion 113

Confirm Parse Return 3.29.1 : Completing commands 85

Connect Remote Debugging 4.15 : Remote debugging 132

Continue Tags Search Meta+, 4.3.2 : Definition searching 108

Copy To Cut Buffer 3.35.1 : Buffers and windows 97

Copy to Register Ctrl+X X 3.25 : Registers 76

Count Lines Page Ctrl+X L 3.22 : Pages 65

Count Lines Region 3.9.2 : Regions 46

Count Matches 3.23.2 : Regular expression searching 72

Count Occurrences 3.23.2 : Regular expression searching 72

Index

186

Count Words Region 3.9.2 : Regions 46

Create Buffer 3.20 : Buffers 60

Create Tags Buffer 4.3.2 : Definition searching 108

Debugger Abort Meta+A 3.33.3 : Debugger commands 92

Debugger Backtrace Meta+B 3.33.3 : Debugger commands 93

Debugger Continue Meta+C 3.33.3 : Debugger commands 93

Debugger Edit Meta+E 3.33.3 : Debugger commands 93

Debugger Next Meta+N 3.33.3 : Debugger commands 93

Debugger Previous Meta+P 3.33.3 : Debugger commands 93

Debugger Print Meta+V 3.33.3 : Debugger commands 93

Debugger Top 3.33.3 : Debugger commands 94

Defindent 4.3.1 : Movement, marking and specifying indentation 105

Define Command Synonym 6.3.2 : Defining commands 140

Define Keyboard Macro Ctrl+X (3.28 : Keyboard macros 83

Define Word Abbrevs 3.27 : Abbreviations 83

Delete All Word Abbrevs 3.27 : Abbreviations 82

Delete Blank Lines Ctrl+X Ctrl+O 3.11.1 : Deleting Text 48

Delete File 3.5.6 : Miscellaneous file operations 31

Delete File and Kill Buffer 3.5.6 : Miscellaneous file operations 31

Delete Global Word Abbrev 3.27 : Abbreviations 81

Delete Horizontal Space Meta+\ 3.11.1 : Deleting Text 47

Delete Indentation Meta+Shift+^ 3.18 : Indentation 56

Delete Key Binding 3.32 : Key bindings 89

Delete Matching Lines 3.23.1 : Searching 69

Delete Mode Word Abbrev 3.27 : Abbreviations 81

Delete Next Character Ctrl+D 3.11.1 : Deleting Text 47

Delete Next Window 3.21 : Windows 62

Delete Non-Matching Lines 3.23.1 : Searching 69

Delete Other Windows Ctrl+X 1 3.21 : Windows 63

Delete Previous Character Backspace 3.11.1 : Deleting Text 47

Delete Previous Character Expanding Tabs 3.11.1 : Deleting Text 47

Delete Region 3.11.1 : Deleting Text 48

Delete Selection Mode 3.13 : Delete Selection 52

Delete Window Ctrl+X 0 3.21 : Windows 62

Describe Bindings Ctrl+H B 3.3.1 : The help command 21

Describe Class 4.3.6 : Miscellaneous 114

Describe Command Ctrl+H D 3.3.1 : The help command 19

Describe Editor Variable Ctrl+H V 3.3.1 : The help command 20

Describe Generic Function 4.3.6 : Miscellaneous 114

Describe Key Ctrl+H K 3.3.1 : The help command 20

Describe Method Call 4.3.6 : Miscellaneous 115

Index

187

Describe Symbol 4.8 : Documentation 121

Describe System 4.3.6 : Miscellaneous 115

Diff 3.24 : Comparison 75

Diff Ignoring Whitespace 3.24 : Comparison 75

Directory Mode Copy Marked 3.7.4 : Modifying the file system from the Directory mode buffer 37

Directory Mode Delete 3.7.4 : Modifying the file system from the Directory mode buffer 36

Directory Mode Edit File 3.7.2 : Directory mode commands 34

Directory Mode Edit File In Other Window 3.7.2 : Directory mode commands 34

Directory Mode Flag Delete 3.7.2 : Directory mode commands 36

Directory Mode Flag Delete When Marked 3.7.2 : Directory mode commands 36

Directory Mode Flag Edited 3.7.2 : Directory mode commands 35

Directory Mode Kill Line 3.7.3 : Explicit editing of the Directory mode buffer 36

Directory Mode Mark 3.7.2 : Directory mode commands 34

Directory Mode Mark All 3.7.2 : Directory mode commands 35

Directory Mode Mark Matches 3.7.2 : Directory mode commands 35

Directory Mode Mark Regexp Matches 3.7.2 : Directory mode commands 35

Directory Mode Mark When Edited 3.7.2 : Directory mode commands 35

Directory Mode Move Marked 3.7.4 : Modifying the file system from the Directory mode buffer 37

Directory Mode New Buffer With Edited 3.7.5 : Creating new Directory mode buffers 38

Directory Mode New Buffer With Flagged Delete 3.7.5 : Creating new Directory mode buffers 38

Directory Mode New Buffer With Marked 3.7.5 : Creating new Directory mode buffers 37

Directory Mode New Buffer With Matches 3.7.5 : Creating new Directory mode buffers 38

Directory Mode New Buffer With Regexp Matches 3.7.5 : Creating new Directory mode buffers 38

Directory Mode Next Line 3.7.2 : Directory mode commands 33

Directory Mode Previous Line 3.7.2 : Directory mode commands 34

Directory Mode Rename 3.7.4 : Modifying the file system from the Directory mode buffer 37

Directory Mode Toggle Edited 3.7.2 : Directory mode commands 35

Directory Mode Unflag Edited 3.7.2 : Directory mode commands 35

Directory Mode Unmark 3.7.2 : Directory mode commands 34

Directory Mode Unmark Backward 3.7.2 : Directory mode commands 34

Directory Mode Unmark Matches 3.7.2 : Directory mode commands 35

Directory Mode Unmark When Edited 3.7.2 : Directory mode commands 35

Directory Query Replace 3.23.3 : Replacement 73

Directory Search 3.23.1 : Searching 70

Disassemble Definition 4.9.4 : Compilation commands 127

Document Command Ctrl+H Ctrl+D 3.3.1 : The help command 19

Document Key Ctrl+H Ctrl+K 3.3.1 : The help command 20

Document Variable Ctrl+H Ctrl+V 3.3.1 : The help command 20

Do Nothing 3.32 : Key bindings 89

Down Comment Line Meta+N 4.6 : Comments 119

Down List Meta+Ctrl+D 4.5.1 : Movement 118

Dynamic Completion Meta+/ 3.12 : Inserting text 51

Index

188

Echo Area Backward Character Ctrl+B 3.29.3 : Movement in the echo area 86

Echo Area Backward Word Meta+B 3.29.3 : Movement in the echo area 86

Echo Area Delete Previous Character Backspace 3.29.4 : Deleting and inserting text in the echo area 86

Echo Area Kill Previous Word Meta+Backspace 3.29.4 : Deleting and inserting text in the echo area 86

Edit Buffer 3.20 : Buffers 60

Edit Callees 4.3.4 : Function callers and callees 112

Edit Callers 4.3.4 : Function callers and callees 112

Edit Compiler Warnings 3.36 : Interaction with the GUI and the IDE 99

Edit Editor Command 4.3.2 : Definition searching 107

Edit Recognized Source 4.9.4 : Compilation commands 127

Edit Word Abbrevs 3.27 : Abbreviations 82

End Keyboard Macro Ctrl+X) 3.28 : Keyboard macros 83

End of Buffer Meta+> 3.8 : Movement 42

End of Buffer Preserving Point 3.8 : Movement 42

End of Defun Meta+Ctrl+E 4.3.1 : Movement, marking and specifying indentation 105

End of Line Ctrl+E 3.8 : Movement 39

End of Window Ctrl+Next 3.8 : Movement 42

Evaluate Buffer 4.9.2 : Evaluation commands 124

Evaluate Buffer Changed Definitions 4.9.2 : Evaluation commands 124

Evaluate Changed Definitions 4.9.2 : Evaluation commands 124

Evaluate Defun In Listener 4.9.3 : Evaluation in Listener commands 125

Evaluate Defun Meta+Ctrl+X 4.9.2 : Evaluation commands 123

Evaluate Expression Escape+Escape 4.9.2 : Evaluation commands 123

Evaluate Last FormCtrl+X Ctrl+E 4.9.2 : Evaluation commands 123

Evaluate Last Form In Listener 4.9.3 : Evaluation in Listener commands 125

Evaluate Region Ctrl+Shift+E 4.9.2 : Evaluation commands 124

Evaluate Region In Listener 4.9.3 : Evaluation in Listener commands 125

Evaluate System Changed Definitions 4.9.2 : Evaluation commands 124

Exchange Point and Mark Ctrl+X Ctrl+X 3.9.1 : Marks 45

Execute or Insert Newline or Yank from Previous Prompt Return 3.33.1 : Listener commands 90

Exit Lisp 3.36 : Interaction with the GUI and the IDE 101

Exit Recursive Edit Meta+Ctrl+Z 3.31 : Recursive editing 88

Expand File Name Meta+Tab 3.6 : Filename completion 32

Expand File Name With Space 3.6 : Filename completion 32

Extended Command Meta+X 2.5.2 : Two ways to execute commands 12, 3.2 : Executing commands 18

Extract List 4.4.2 : Killing forms 116

Fill Paragraph Meta+Q 3.19.1 : Fill commands 57

Fill Region Meta+G 3.19.1 : Fill commands 57

Find Alternate File Ctrl+X Ctrl+V 3.5.1 : Finding files 24

Find Command Definition 4.3.2 : Definition searching 106

Find File 3.5.1 : Finding files 23

Index

189

Find File With External Format 3.5.3.1 : Controlling the external format 26

Find Key Definition 4.3.2 : Definition searching 107

Find Matching Parse Meta+K 3.29.2 : Repeating echo area commands 85

Find Mismatch 4.7 : Parentheses 121

Find Non-Base-Char 3.5.3.2 : Unwritable characters 28

Find Source For Current Package 4.3.2 : Definition searching 107

Find Source for Dspec 4.3.2 : Definition searching 106

Find Source Meta+. 4.3.2 : Definition searching 106

Find Tag Meta+? 4.3.2 : Definition searching 108

Find Unbalanced Parentheses 4.7 : Parentheses 121

Find Unwritable Character 3.5.3.2 : Unwritable characters 28

Flush Sections 3.38 : Obscure commands 102

Fold Buffer Definitions 4.14 : Definition folding 131

Font Lock Fontify Block 4.2 : Syntax coloring 104

Font Lock Fontify Buffer 4.2 : Syntax coloring 104

Font Lock Mode 4.2 : Syntax coloring 104

Force Undo 3.7.3 : Explicit editing of the Directory mode buffer 36

Forward Character Ctrl+F 3.8 : Movement 39

Forward Form Meta+Ctrl+F 4.4.1 : Movement, marking and indentation 115

Forward Kill Form Meta+Ctrl+K 4.4.2 : Killing forms 116

Forward Kill Sentence Meta+K 3.11.2 : Killing text 49

Forward List Meta+Ctrl+N 4.5.1 : Movement 117

Forward Paragraph Meta+] 3.8 : Movement 40

Forward Search Ctrl+S Esc 3.23.1 : Searching 68

Forward Sentence Meta+E 3.8 : Movement 40

Forward Up List 4.5.1 : Movement 117

Forward Word Meta+F 3.8 : Movement 39

Function Arglist Displayer Ctrl+` 4.3.6 : Miscellaneous 114

Function Arglist Meta+= 4.3.6 : Miscellaneous 113

Function Argument List Ctrl+Shift+A 4.3.6 : Miscellaneous 114

Function Documentation Ctrl+Shift+D 4.8 : Documentation 121

Fundamental Mode 3.26.1 : Major modes 78

Generic Describe Ctrl+H G 3.3.1 : The help command 20

Get Register 3.25 : Registers 77

Global Font Lock Mode 4.2 : Syntax coloring 104

Go Back Ctrl+X C 3.10 : Locations 46

Go Forward Ctrl+X P 3.10 : Locations 47

Goto Line 3.8 : Movement 40

Goto Page 3.22 : Pages 65

Goto Point 3.8 : Movement 42

Grep 3.36 : Interaction with the GUI and the IDE 99

Index

190

Help Ctrl+H 3.3.1 : The help command 18

Help on Parse ? 3.29.1 : Completing commands 85

History First Ctrl+C < 3.33.2 : History commands 91

History Kill Current Ctrl+C Ctrl+K 3.33.2 : History commands 92

History Last Ctrl+C > 3.33.2 : History commands 91

History Next Meta+N or Ctrl+C Ctrl+N 3.33.2 : History commands 91

History Previous Meta+P or Ctrl+C Ctrl+P 3.33.2 : History commands 91

History Search From Input 3.33.2 : History commands 92

History Search Meta+R or Ctrl+C Ctrl+R 3.33.2 : History commands 91

History Select Ctrl+C Ctrl+F 3.33.2 : History commands 92

History Yank Ctrl+C Ctrl+Y 3.33.2 : History commands 92

Illegal 3.32 : Key bindings 89

Incremental Search Ctrl+S 3.23.1 : Searching 66

Indent for Comment Meta+; 4.6 : Comments 118

Indent Form Meta+Ctrl+Q 4.4.1 : Movement, marking and indentation 115

Indent New Comment Line Meta+J or Meta+Newline 4.6 : Comments 119

Indent New Line 3.18 : Indentation 56

Indent or Complete Symbol 4.3.5 : Indentation and Completion 112

Indent Region Meta+Ctrl+\ 3.18 : Indentation 55

Indent Rigidly Ctrl+X Tab, Ctrl+X Ctrl+I 3.18 : Indentation 56

Indent Selection 3.18 : Indentation 56

Indent Selection or Complete Symbol Tab 4.3.5 : Indentation and Completion 112

Indent Tab 3.18 : Indentation 55

Insert () 4.7 : Parentheses 120

Insert Buffer 3.20 : Buffers 61

Insert Cut Buffer 3.35.1 : Buffers and windows 97

Insert Double Quotes For Selection Meta+" 4.4.4 : Miscellaneous 117

Insert File Ctrl+X I 3.5.6 : Miscellaneous file operations 31

Insert From Previous Prompt Ctrl+J 3.33.1 : Listener commands 90

Insert Multi Line Comment For Selection Meta+# 4.6 : Comments 119

Insert Page Directory 3.22 : Pages 65

Insert Parentheses For Selection Meta+(4.7 : Parentheses 120

Insert Parse Default Ctrl+P 3.29.4 : Deleting and inserting text in the echo area 87

Insert Register Ctrl+X G 3.25 : Registers 77

Insert Selected Text Ctrl+C Ctrl+C 3.29.4 : Deleting and inserting text in the echo area 87

Insert Word Abbrevs 3.27 : Abbreviations 83

Inspect Star Ctrl+C Ctrl+I 3.33.1 : Listener commands 90

Inspect Variable 3.36 : Interaction with the GUI and the IDE 99

Interrupt Shell Subjob Ctrl+C Ctrl+C 3.34.2 : Invoking and using a Shell tool 96

Inverse Add Global Word Abbrev Ctrl+X - 3.27 : Abbreviations 80

Index

191

Inverse Add Mode Word Abbrev Ctrl+X Ctrl+H 3.27 : Abbreviations 80

Invoke Menu Item 3.36 : Interaction with the GUI and the IDE 98

Invoke Tool 3.36 : Interaction with the GUI and the IDE 98

ISearch Backward Regexp Meta+Ctrl+R 3.23.2 : Regular expression searching 72

ISearch Forward Regexp Meta+Ctrl+S 3.23.2 : Regular expression searching 72

Jump to Register Ctrl+X J 3.25 : Registers 76

Jump to Saved Position 3.25 : Registers 76

Just One Space Meta+Space 3.11.1 : Deleting Text 48

Keyboard Macro Query Ctrl+X Q 3.28 : Keyboard macros 84

Kill Backward Up List 4.4.2 : Killing forms 116

Kill Buffer Ctrl+X K 3.20 : Buffers 60

Kill Comment Meta+Ctrl+; 4.6 : Comments 119

Kill Line Ctrl+K 3.11.2 : Killing text 49

Kill Next Word Meta+D 3.11.2 : Killing text 48

Kill Parse Ctrl+U 3.29.4 : Deleting and inserting text in the echo area 86

Kill Previous Word Meta+Delete 3.11.2 : Killing text 49

Kill Region Ctrl+W 3.11.2 : Killing text 49

Kill Register 3.25 : Registers 76

Kill Shell Subjob 3.34.2 : Invoking and using a Shell tool 96

Last Keyboard Macro Ctrl+X E 3.28 : Keyboard macros 83

Line to Top of Window 3.8 : Movement 41

Lisp Insert) 4.7 : Parentheses 121

Lisp Insert) Indenting Top Level 4.7 : Parentheses 121

Lisp Mode 3.26.1 : Major modes 78

List Buffer Definitions 3.36 : Interaction with the GUI and the IDE 99

List Buffers Ctrl+X Ctrl+B 3.20 : Buffers 60

List Callees 4.3.4 : Function callers and callees 111

List Callers 4.3.4 : Function callers and callees 111

List Definitions 4.3.2 : Definition searching 107

List Definitions For Dspec 4.3.2 : Definition searching 107

List Directory 3.5.6 : Miscellaneous file operations 31

List Faces Display 3.38 : Obscure commands 101

List Matching Lines 3.23.1 : Searching 69

List Registers 3.25 : Registers 76

List Unwritable Characters 3.5.3.2 : Unwritable characters 28

List Word Abbrevs 3.27 : Abbreviations 82

Load File 4.9.2 : Evaluation commands 124

Lowercase Region Ctrl+X Ctrl+L 3.15 : Case conversion 53

Lowercase Word Meta+L 3.15 : Case conversion 52

Macroexpand Form Ctrl+Shift+M 4.4.3 : Macro-expansion of forms 116

Make Directory 3.5.6 : Miscellaneous file operations 31

Index

192

Make Word Abbrev 3.27 : Abbreviations 81

Manual Entry 3.3.2 : Other help commands on UNIX and macOS 21

Mark Defun Meta+Ctrl+H 4.3.1 : Movement, marking and specifying indentation 105

Mark Form Meta+Ctrl+@ 4.4.1 : Movement, marking and indentation 115

Mark Page Ctrl+X Ctrl+P 3.22 : Pages 65

Mark Paragraph Meta+H 3.9.1 : Marks 45

Mark Sentence 3.9.1 : Marks 45

Mark Whole Buffer Ctrl+X H 3.9.1 : Marks 45

Mark Word Meta+@ 3.9.1 : Marks 45

Move Over) Meta+) 4.7 : Parentheses 120

Move to Window LineMeta+Shift+R 3.8 : Movement 41

Name Keyboard Macro 3.28 : Keyboard macros 84

Negative Argument 3.4 : Using prefix arguments 22

New Buffer 3.20 : Buffers 60

New Line Return 3.12 : Inserting text 51

New Window Ctrl+X 2 3.21 : Windows 62

Next Breakpoint 4.11.2 : Moving between breakpoints 129

Next Grep 3.36 : Interaction with the GUI and the IDE 100

Next Line Ctrl+N 3.8 : Movement 39

Next Ordinary Window Ctrl+X O 3.21 : Windows 62

Next Page Ctrl+X] 3.22 : Pages 64

Next Parse Meta+N 3.29.2 : Repeating echo area commands 85

Next Search Match 3.36 : Interaction with the GUI and the IDE 100

Next Window 3.21 : Windows 62

Open Line Ctrl+O 3.12 : Inserting text 51

Overwrite Delete Previous Character 3.17 : Overwriting 55

Overwrite Mode 3.17 : Overwriting 54

Point to Register Ctrl+X / 3.25 : Registers 76

Pop and Goto Mark 3.9.1 : Marks 44

Pop Mark Meta+Ctrl+Space 3.9.1 : Marks 45

Prepend to Register 3.25 : Registers 77

Previous Breakpoint 4.11.2 : Moving between breakpoints 129

Previous Focus Window 3.21 : Windows 63

Previous Line Ctrl+P 3.8 : Movement 39

Previous Page Ctrl+X 3.22 : Pages 64

Previous Parse Meta+P 3.29.2 : Repeating echo area commands 85

Previous Window 3.21 : Windows 62

Print Buffer 3.20 : Buffers 61

Print File 3.5.6 : Miscellaneous file operations 30

Print Region 3.9.2 : Regions 46

Process File Options 3.5.6 : Miscellaneous file operations 30

Index

193

Put Register 3.25 : Registers 76

Query Replace Meta+Shift+% 3.23.3 : Replacement 73

Query Replace Regexp 3.23.3 : Replacement 74

Quoted Insert Ctrl+Q 3.12 : Inserting text 51

Quote Tab 3.18 : Indentation 57

Read Word Abbrev File 3.27 : Abbreviations 83

Reconnect Remote Listener 4.15 : Remote debugging 132

Redo 3.38 : Obscure commands 101

Reevaluate Defvar 4.9.2 : Evaluation commands 123

Re-evaluate Defvar 4.9.2 : Evaluation commands 123

Refresh Screen Ctrl+L 3.21 : Windows 64

Regexp Forward Search 3.23.2 : Regular expression searching 72

Regexp Reverse Search 3.23.2 : Regular expression searching 72

Register to Point 3.25 : Registers 76

Remote Evaluate Buffer 4.15 : Remote debugging 132

Remote Evaluate Defun 4.15 : Remote debugging 132

Remote Evaluate Defun In Listener 4.15 : Remote debugging 133

Remote Evaluate Last Form 4.15 : Remote debugging 133

Remote Evaluate Last Form In Listener 4.15 : Remote debugging 133

Remote Evaluate Region 4.15 : Remote debugging 132

Remote Evaluate Region In Listener 4.15 : Remote debugging 133

Remote Manual Entry 3.3.2 : Other help commands on UNIX and macOS 21

Remote Shell 3.34.2 : Invoking and using a Shell tool 95

Remove Nroff Backspaces 3.3.2 : Other help commands on UNIX and macOS 21

Rename Buffer 3.20 : Buffers 61

Rename File 3.5.6 : Miscellaneous file operations 31

Replace Regexp 3.23.3 : Replacement 74

Replace String 3.23.3 : Replacement 72

Report Bug 3.36 : Interaction with the GUI and the IDE 100

Report Manual Bug 3.36 : Interaction with the GUI and the IDE 100

Reset Echo Area Meta+K 3.29.6 : Leaving the echo area 88

Return Default Ctrl+R 3.29.4 : Deleting and inserting text in the echo area 87

Reverse Incremental Search Ctrl+R 3.23.1 : Searching 68

Reverse Search 3.23.1 : Searching 69

Revert Buffer 3.5.6 : Miscellaneous file operations 30

Revert Buffer With External Format 3.5.6 : Miscellaneous file operations 30

Room 3.37 : Miscellaneous 101

Rotate Active Finders Meta+Ctrl+. 4.3.2 : Definition searching 109

Rotate Kill Ring Meta+Y 3.12 : Inserting text 50

Run Command 3.34.1 : Running shell commands directly from the editor 94

Save All Files and Exit Ctrl+X Ctrl+C 3.5.2 : Saving files 25

Save All Files Ctrl+X S 3.5.2 : Saving files 24

Index

194

Save Buffer Pathname 3.5.6 : Miscellaneous file operations 32

Save File Ctrl+X Ctrl+S 3.5.2 : Saving files 24

Save Position 3.25 : Registers 76

Save Region Meta+W 3.11.2 : Killing text 49

Scroll Next Window Down 3.21 : Windows 63

Scroll Next Window Up 3.21 : Windows 63

Scroll Window Down Ctrl+V 3.8 : Movement 40

Scroll Window Down In Place 3.8 : Movement 43

Scroll Window Down Moving Point 3.8 : Movement 43

Scroll Window Down Preserving Highlight 3.8 : Movement 43

Scroll Window Down Preserving Point 3.8 : Movement 44

Scroll Window Up In Place 3.8 : Movement 43

Scroll Window Up Meta+V 3.8 : Movement 41

Scroll Window Up Moving Point 3.8 : Movement 43

Scroll Window Up Preserving Highlight 3.8 : Movement 43

Scroll Window Up Preserving Point 3.8 : Movement 43

Search All Buffers 3.23.1 : Searching 69

Search Buffers 3.23.1 : Searching 70

Search Files Ctrl+X * 3.23.1 : Searching 70

Search Files Matching Patterns Ctrl+X & 3.23.1 : Searching 70

Search System 3.23.1 : Searching 71

Select Buffer Ctrl+X B 3.20 : Buffers 59

Select Buffer Other Window 3.20 : Buffers 59

Select Go Back Ctrl+X M 3.10 : Locations 46

Select Previous Buffer Meta+Ctrl+L 3.20 : Buffers 59

Self Insert 3.12 : Inserting text 51

Self Overwrite 3.17 : Overwriting 55

Set Buffer Output 4.9.1 : General Commands 122

Set Buffer Package 4.9.1 : General Commands 122

Set Buffer Transient Edit 3.20 : Buffers 61

Set Comment Column Ctrl+X ; 4.6 : Comments 118

Set Default Remote Debugging Connection 4.15 : Remote debugging 133

Set External Format 3.5.3.1 : Controlling the external format 26

Set Fill Column Ctrl+X F 3.19.1 : Fill commands 57

Set Fill Prefix Ctrl+X . 3.19.1 : Fill commands 58

Set Mark Ctrl+Space 3.9.1 : Marks 44

Set Prefix Argument Ctrl+U 3.4 : Using prefix arguments 22

Set Title 3.36 : Interaction with the GUI and the IDE 98

Set Variable 3.30 : Editor variables 88

Shell 3.34.2 : Invoking and using a Shell tool 95

Shell Command Meta-! 3.34.1 : Running shell commands directly from the editor 94

Index

195

Shell Command On Region Meta-| 3.34.1 : Running shell commands directly from the editor 94

Shell Send Eof Ctrl+C Ctrl+D 3.34.2 : Invoking and using a Shell tool 96

Show Directory 3.36 : Interaction with the GUI and the IDE 100

Show Documentation for Dspec 4.8 : Documentation 122

Show Documentation Meta+Ctrl+Shift+A 4.8 : Documentation 122

Show Paths From 4.3.4 : Function callers and callees 112

Show Paths To 4.3.4 : Function callers and callees 111

Show Variable 3.30 : Editor variables 88

Skip Whitespace 3.8 : Movement 42

Split Window Horizontally 3.21 : Windows 63

Split Window Vertically 3.21 : Windows 63

Stepper Breakpoint 4.12 : Stepper commands 129

Stepper Continue 4.12 : Stepper commands 129

Stepper Macroexpand 4.12 : Stepper commands 129

Stepper Next 4.12 : Stepper commands 129

Stepper Restart 4.12 : Stepper commands 129

Stepper Show Current Source 4.12 : Stepper commands 129

Stepper Step 4.12 : Stepper commands 129

Stepper Step Through Call 4.12 : Stepper commands 129

Stepper Step To Call 4.12 : Stepper commands 129

Stepper Step To Cursor 4.12 : Stepper commands 129

Stepper Step To End 4.12 : Stepper commands 129

Stepper Step To Value 4.12 : Stepper commands 129

Stepper Undo Macroexpand 4.12 : Stepper commands 129

Stop Shell Subjob Ctrl+C Ctrl+Z 3.34.2 : Invoking and using a Shell tool 96

System Query Replace 3.23.3 : Replacement 73

System Search 3.23.1 : Searching 71

Tags Query Replace 4.3.2 : Definition searching 109

Tags Search 4.3.2 : Definition searching 108

Terminate Shell Subjob 3.34.2 : Invoking and using a Shell tool 97

Text Mode 3.26.1 : Major modes 78

Throw out of Debugger 3.33.3 : Debugger commands 94

Throw To Top Level Meta+K 3.33.1 : Listener commands 90

Toggle Auto Save 3.5.4 : Auto-saving files 28

Toggle Breakpoint 4.11.1 : Setting and removing breakpoints 129

Toggle Buffer Read-Only Ctrl+X Ctrl+Q 3.20 : Buffers 61

Toggle Count Newlines 3.21 : Windows 64

Toggle Current Definition Folding 4.14 : Definition folding 132

Toggle Error Catch 4.9.2 : Evaluation commands 124

Toggle Global Simple Undo 3.38 : Obscure commands 102

Toggle Showing Cursor Info 3.29.5 : Display of information in the echo area 87

Top of Window 3.8 : Movement 41

Index

196

Trace Definition 4.3.3 : Tracing functions 110

Trace Definition Inside Definition 4.3.3 : Tracing functions 110

Trace Function 4.3.3 : Tracing functions 109

Trace Function Inside Definition 4.3.3 : Tracing functions 110

Transpose Characters Ctrl+T 3.16 : Transposition 53

Transpose Forms Meta+Ctrl+T 4.4.4 : Miscellaneous 117

Transpose Lines Ctrl+X Ctrl+T 3.16 : Transposition 54

Transpose Regions 3.16 : Transposition 54

Transpose Words Meta+T 3.16 : Transposition 54

Undefine 4.13.1 : Undefining one definition 130

Undefine Buffer 4.13.2 : Removing multiple definitions 130

Undefine Command 4.13.1 : Undefining one definition 130

Undefine Region 4.13.2 : Removing multiple definitions 130

Undo Ctrl+Shift+_ 3.14 : Undoing 52

Unexpand Last Word 3.27 : Abbreviations 81

Unfold Buffer Definitions 4.14 : Definition folding 131

Un-Kill As Filename 3.12 : Inserting text 50

Un-Kill As String 3.12 : Inserting text 50

Un-Kill Ctrl+Y 3.12 : Inserting text 50

Unsplit Window 3.21 : Windows 63

Untrace All 4.3.3 : Tracing functions 110

Untrace Definition 4.3.3 : Tracing functions 110

Untrace Function 4.3.3 : Tracing functions 110

Up Comment Line Meta+P 4.6 : Comments 119

Uppercase Region Ctrl+X Ctrl+U 3.15 : Case conversion 53

Uppercase Word Meta+U 3.15 : Case conversion 53

View Page Directory 3.22 : Pages 65

View Source Search 4.3.2 : Definition searching 107

Visit File 3.5.1 : Finding files 23

Visit Other Tags File 4.3.2 : Definition searching 109

Visit Tags File 4.3.2 : Definition searching 109

Walk Form Meta+Shift+M 4.4.3 : Macro-expansion of forms 117

Wfind File Ctrl+X Ctrl+F 3.5.1 : Finding files 23

What Command Ctrl+H C 3.3.1 : The help command 19

What Cursor Position Ctrl+X = 3.29.5 : Display of information in the echo area 87

What Line 3.8 : Movement 40

What Lossage Ctrl+H L 3.3.1 : The help command 20

Where Is Ctrl+H W 3.3.1 : The help command 21

Where is Point 3.29.5 : Display of information in the echo area 87

Word Abbrev Apropos 3.27 : Abbreviations 82

Word Abbrev Prefix Point Meta+' 3.27 : Abbreviations 81

Index

197

Write File Ctrl+X Ctrl+W 3.5.2 : Saving files 24

Write Region 3.5.2 : Saving files 25

Write Word Abbrev File 3.27 : Abbreviations 82

Zap To Char Meta+Z 3.11.2 : Killing text 50

editor:complete-in-place function 6.3.14 : In-place completion 154

editor:copy-point function 6.3.4 : Points 146

editor:current-buffer function 6.3.3.2 : Buffer operations 142

editor:current-mark function 6.3.4 : Points 145

editor:current-point function 6.3.4 : Points 145

editor:current-window function 6.3.16 : Windows 157

editor:defcommand macro 6.3.2 : Defining commands 139

editor:define-editor-mode-variable function 6.3.15 : Variables 156

editor:define-editor-variable function 6.3.15 : Variables 155

editor:defmode function 3.26.4 : Defining modes 78

editor:delete-point function 6.3.4 : Points 146

editor:editor-error function 6.3.7 : Editor errors 149

editor:editor-variable-documentation function 6.3.15 : Variables 156

editor:end-line-p function 6.3.4 : Points 146

editor-error 6.3.7 : Editor errors 149

editor errors

debugging 3.37 : Miscellaneous 101

editor:face system class 6.3.17 : Faces 157

editor:fast-save-all-buffers function 6.3.8 : Files 150

editor:find-file-buffer function 6.3.8 : Files 149

editor:*find-likely-function-ignores* variable 6.3.11 : Lisp 152

editor:form-offset function 6.3.12 : Movement 153

editor functions

bind-key 6.1 : Customizing default key bindings 136

bind-string-to-key 6.1 : Customizing default key bindings 137

buffer-from-name 6.3.3.2 : Buffer operations 143

buffer-name 6.3.3.2 : Buffer operations 143

buffer-pathname 6.3.8 : Files 150

buffer-point 6.3.3.2 : Buffer operations 143

buffers-end 6.3.3.2 : Buffer operations 143

buffers-start 6.3.3.2 : Buffer operations 143

buffer-value 6.3.15 : Variables 157

change-buffer-lock-for-modification 6.3.3.1 : Buffer locking 142

character-offset 6.3.12 : Movement 152

check-disk-version-consistent 6.3.8 : Files 150

clear-echo-area 6.3.6 : The echo area 148

Index

198

clear-undo 6.3.3.2 : Buffer operations 144

complete-in-place 6.3.14 : In-place completion 154

complete-with-non-focus 6.3.14 : In-place completion 155

copy-point 6.3.4 : Points 146

current-buffer 6.3.3.2 : Buffer operations 142

current-mark 6.3.4 : Points 145

current-point 6.3.4 : Points 145

current-window 6.3.16 : Windows 157

define-editor-mode-variable 6.3.15 : Variables 156

define-editor-variable 6.3.15 : Variables 155

delete-point 6.3.4 : Points 146

editor-error 6.3.7 : Editor errors 149

editor-variable-documentation 6.3.15 : Variables 156

end-line-p 6.3.4 : Points 146

fast-save-all-buffers 6.3.8 : Files 150

find-file-buffer 6.3.8 : Files 149

form-offset 6.3.12 : Movement 153

goto-buffer 6.3.3.2 : Buffer operations 144

insert-string 6.3.9 : Inserting text 151

kill-ring-string 6.3.9 : Inserting text 151

line-end 6.3.12 : Movement 152

line-offset 6.3.12 : Movement 153

line-start 6.3.12 : Movement 152

make-buffer 6.3.3.2 : Buffer operations 143

make-face 6.3.17 : Faces 158

message 6.3.6 : The echo area 148

move-point 6.3.4 : Points 146

point< 6.3.4 : Points 145

point<= 6.3.4 : Points 146

point> 6.3.4 : Points 146

point>= 6.3.4 : Points 146

point-kind 6.3.4 : Points 145

points-to-string 6.3.9 : Inserting text 151

process-character 6.3.1 : Calling editor functions 138

prompt-for-buffer 6.3.13 : Prompting the user 153

prompt-for-file 6.3.13 : Prompting the user 153

prompt-for-integer 6.3.13 : Prompting the user 154

prompt-for-string 6.3.13 : Prompting the user 154

prompt-for-variable 6.3.13 : Prompting the user 154

Index

199

redisplay 6.3.16 : Windows 157

regular-expression-search 6.3.5 : Regular expression searching 147

same-line-p 6.3.4 : Points 147

search-files 3.23.1 : Searching 71

set-buffer-name-directory-delimiters 6.3.8 : Files 149

set-current-mark 6.3.4 : Points 145

set-interrupt-keys 6.1 : Customizing default key bindings 137

set-pathname-load-function 6.3.8 : Files 150

setup-indent 6.2 : Customizing Lisp indentation 138

start-line-p 6.3.4 : Points 146

variable-value 6.3.15 : Variables 156

variable-value-if-bound 6.3.15 : Variables 157

window-buffer 6.3.3.2 : Buffer operations 143

window-text-pane 6.3.16 : Windows 157

word-offset 6.3.12 : Movement 152

editor:goto-buffer function 6.3.3.2 : Buffer operations 144

editor:*indent-with-tabs* variable 6.3.10 : Indentation 152

editor:insert-string function 6.3.9 : Inserting text 151

editor:kill-ring-string function 6.3.9 : Inserting text 151

editor:line-end function 6.3.12 : Movement 152

editor:line-offset function 6.3.12 : Movement 153

editor:line-start function 6.3.12 : Movement 152

editor macros

save-excursion 6.3.4 : Points 147

use-buffer 6.3.3.2 : Buffer operations 143

with-buffer-locked 6.3.3.1 : Buffer locking 140, 6.3.3.1 : Buffer locking 141

with-point 6.3.4 : Points 147

with-point-locked 6.3.3.1 : Buffer locking 140, 6.3.3.1 : Buffer locking 141

editor:make-buffer function 6.3.3.2 : Buffer operations 143

editor:make-face function 6.3.17 : Faces 158

editor:message function 6.3.6 : The echo area 148

editor:move-point function 6.3.4 : Points 146

editor package 6.3 : Programming the editor 138

editor:point< function 6.3.4 : Points 145

editor:point<= function 6.3.4 : Points 146

editor:point> function 6.3.4 : Points 146

editor:point>= function 6.3.4 : Points 146

editor:point-kind function 6.3.4 : Points 145

editor:points-to-string function 6.3.9 : Inserting text 151

Index

200

editor:process-character function 6.3.1 : Calling editor functions 138

editor:prompt-for-buffer function 6.3.13 : Prompting the user 153

editor:prompt-for-file function 6.3.13 : Prompting the user 153

editor:prompt-for-integer function 6.3.13 : Prompting the user 154

editor:prompt-for-string function 6.3.13 : Prompting the user 154

editor:prompt-for-variable function 6.3.13 : Prompting the user 154

editor:redisplay function 6.3.16 : Windows 157

editor:regular-expression-search function 6.3.5 : Regular expression searching 147

editor:same-line-p function 6.3.4 : Points 147

editor:save-excursion macro 6.3.4 : Points 147

editor:search-files function 3.23.1 : Searching 71

editor:set-buffer-name-directory-delimiters function 6.3.8 : Files 149

editor:set-current-mark function 6.3.4 : Points 145

editor:set-interrupt-keys function 6.1 : Customizing default key bindings 137

editor:set-pathname-load-function function 6.3.8 : Files 150

editor:setup-indent function 6.2 : Customizing Lisp indentation 138

editor source code 6.4 : Editor source code 160

editor:*source-found-action* variable 6.3.11 : Lisp 152

editor:start-line-p function 6.3.4 : Points 146

Editor tool 4.3.4 : Function callers and callees 112, 4.3.4 : Function callers and callees 112

editor types

buffer 6.3.3 : Buffers 140

point 6.3.4 : Points 144

editor:use-buffer macro 6.3.3.2 : Buffer operations 143

editor variable 3.30 : Editor variables 88

editor-variable-documentation 6.3.15 : Variables 156

Editor Variables

abbrev-pathname-defaults 3.27 : Abbreviations 82

add-newline-at-eof-on-writing-file 3.5.2 : Saving files 25

auto-fill-space-indent 3.19.2 : Auto-Fill mode 59

auto-save-checkpoint-frequency 3.5.4 : Auto-saving files 29

auto-save-cleanup-checkpoints 3.5.4 : Auto-saving files 29

auto-save-filename-pattern 3.5.4 : Auto-saving files 29

auto-save-key-count-threshold 3.5.4 : Auto-saving files 29

backup-filename-pattern 3.5.5 : Backing-up files on saving 29

backup-filename-suffix 3.5.5 : Backing-up files on saving 29

backups-wanted 3.5.5 : Backing-up files on saving 29

break-on-editor-error 3.37 : Miscellaneous 101

case-replace 3.23.3 : Replacement 74

comment-begin 4.6 : Comments 119

Index

201

comment-column 4.6 : Comments 120

comment-end 4.6 : Comments 120

comment-start 4.6 : Comments 120

compare-ignores-whitespace 3.24 : Comparison 75

compile-buffer-file-confirm 4.9.4 : Compilation commands 127

current-package 4.9.1 : General Commands 122

default-auto-save-on 3.5.4 : Auto-saving files 28

default-buffer-element-type 3.20 : Buffers 61

default-modes 3.26.3 : Default modes 78

default-search-kind 3.23.1 : Searching 71

evaluate-defvar-action 4.9.2 : Evaluation commands 123

fill-column 3.19.1 : Fill commands 57

fill-prefix 3.19.1 : Fill commands 57

font-lock-mark-block-function 4.2 : Syntax coloring 104

highlight-matching-parens 4.7 : Parentheses 120

incremental-search-minimum-visible-lines 3.23.1 : Searching 67

input-format-default 3.5.3.1 : Controlling the external format 27

isearch-lax-whitespace 3.23.1 : Searching 67

isearch-regexp-lax-whitespace 3.23.1 : Searching 67

output-format-default 3.5.3.1 : Controlling the external format 27

prefix-argument-default 3.4 : Using prefix arguments 22

prompt-regexp-string 3.34.2 : Invoking and using a Shell tool 96

region-query-size 3.9.2 : Regions 46

replace-lax-whitespace 3.23.1 : Searching 67

replace-regexp-lax-whitespace 3.23.1 : Searching 67

revert-buffer-confirm 3.5.6 : Miscellaneous file operations 30

save-all-files-confirm 3.5.2 : Saving files 24

scroll-overlap 3.8 : Movement 41

search-whitespace-regexp 3.23.1 : Searching 68

shell-cd-regexp 3.34.2 : Invoking and using a Shell tool 95

shell-popd-regexp 3.34.2 : Invoking and using a Shell tool 96

shell-pushd-regexp 3.34.2 : Invoking and using a Shell tool 95

spaces-for-tab 3.18 : Indentation 55

undo-ring-size 3.14 : Undoing 52

editor:variable-value accessor 6.3.15 : Variables 156

editor:variable-value-if-bound function 6.3.15 : Variables 157

editor:window-buffer function 6.3.3.2 : Buffer operations 143

editor:window-text-pane function 6.3.16 : Windows 157

Index

202

editor:with-buffer-locked macro 6.3.3.1 : Buffer locking 141

editor:with-point macro 6.3.4 : Points 147

editor:with-point-locked macro 6.3.3.1 : Buffer locking 141

editor:word-offset function 6.3.12 : Movement 152

Edit Recognized Source 4.9.4 : Compilation commands 127

Edit Word Abbrevs 3.27 : Abbreviations 82

encoding

default for input 3.5.3.1 : Controlling the external format 27

default for output 3.5.3.1 : Controlling the external format 27

setting 3.5.3.1 : Controlling the external format 26

unwritable character 3.5.3.2 : Unwritable characters 28

unwritable characters 3.5.3.2 : Unwritable characters 28

End Keyboard Macro 3.28 : Keyboard macros 83

end-line-p 6.3.4 : Points 146

End of Buffer 3.8 : Movement 42

End of Buffer Preserving Point 3.8 : Movement 42

End of Defun 4.3.1 : Movement, marking and specifying indentation 105

End of Line 3.8 : Movement 39

End of Window 3.8 : Movement 42

error

catching evaluation 4.9.2 : Evaluation commands 124

editor 6.3.7 : Editor errors 148

error functions 6.3.7 : Editor errors 148

Escape+Escape Evaluate Expression 4.9.2 : Evaluation commands 123

Escape key 2.5.1 : Modifier keys - Command, Ctrl, Alt and Meta 11

evaluate

buffer 4.9.2 : Evaluation commands 124

buffer changed definition 4.9.2 : Evaluation commands 124

changed definitions 4.9.2 : Evaluation commands 124

defvar 4.9.2 : Evaluation commands 123

expression 4.9.2 : Evaluation commands 123

file 4.9.2 : Evaluation commands 124

form 4.9.2 : Evaluation commands 123, 4.9.3 : Evaluation in Listener commands 125

last form 4.9.2 : Evaluation commands 123, 4.9.3 : Evaluation in Listener commands 125

region 4.9.2 : Evaluation commands 124, 4.9.3 : Evaluation in Listener commands 125

system changed definitions 4.9.2 : Evaluation commands 124

Evaluate Buffer 4.9.2 : Evaluation commands 124

Evaluate Buffer Changed Definitions 4.9.2 : Evaluation commands 124

Evaluate Changed Definitions 4.9.2 : Evaluation commands 124

Evaluate Defun 4.9.2 : Evaluation commands 123

Evaluate Defun In Listener 4.9.3 : Evaluation in Listener commands 125

Index

203

evaluate-defvar-action editor variable 4.9.2 : Evaluation commands 123

Evaluate Expression 4.9.2 : Evaluation commands 123

Evaluate Last Form 4.9.2 : Evaluation commands 123

Evaluate Last Form In Listener 4.9.3 : Evaluation in Listener commands 125

Evaluate Region 4.9.2 : Evaluation commands 124

Evaluate Region In Listener 4.9.3 : Evaluation in Listener commands 125

Evaluate System Changed Definitions 4.9.2 : Evaluation commands 124

evaluation commands 4.9 : Evaluation and compilation 122, 4.9.2 : Evaluation commands 123, 4.9.3 : Evaluation in Listener
commands 125

examples

programming the editor 6.3.18 : Examples 159, 7 : Self-contained examples 161

Exchange Point and Mark 3.9.1 : Marks 45

execute mode 3.26.2 : Minor modes 78

Execute or Insert Newline or Yank from Previous Prompt 3.33.1 : Listener commands 90

executing editor commands 2.5 : Executing commands 11, 3.2 : Executing commands 18

Exit Lisp 3.36 : Interaction with the GUI and the IDE 101

Exit Recursive Edit 3.31 : Recursive editing 88

Expand File Name 3.6 : Filename completion 32

Expand File Name With Space 3.6 : Filename completion 32

expansion

of filenames 3.6 : Filename completion 32

expression

evaluate 4.9.2 : Evaluation commands 123

extended-char type 3.5.3.2 : Unwritable characters 27

Extended Command 2.5.2 : Two ways to execute commands 12, 3.2 : Executing commands 18

external format

default for input 3.5.3.1 : Controlling the external format 27

default for output 3.5.3.1 : Controlling the external format 27

setting 3.5.3.1 : Controlling the external format 26

unwritable character 3.5.3.2 : Unwritable characters 28

unwritable characters 3.5.3.2 : Unwritable characters 28

external formats 6.3.8.1 : File encodings in the editor 151

Extract List 4.4.2 : Killing forms 116

F

face 6.3.17 : Faces 157

faces 6.3.17 : Faces 157

fast-save-all-buffers 6.3.8 : Files 150

file

auto-saving 3.5.4 : Auto-saving files 28

backup 3.5.2 : Saving files 25, 3.5.5 : Backing-up files on saving 29

compile 4.9.4 : Compilation commands 126

delete 3.5.6 : Miscellaneous file operations 31

Index

204

delete and kill buffer 3.5.6 : Miscellaneous file operations 31

editor definition 2.1.2 : Files and buffers 9

evaluate 4.9.2 : Evaluation commands 124

expand name 3.6 : Filename completion 32

find alternate 3.5.1 : Finding files 24

finding 3.5.1 : Finding files 23

insert into buffer 3.5.6 : Miscellaneous file operations 31

options for buffer 3.5.6 : Miscellaneous file operations 30

print 3.5.6 : Miscellaneous file operations 30

rename 3.5.6 : Miscellaneous file operations 31

save 3.5.2 : Saving files 24

save all and exit 3.5.2 : Saving files 25

set external format 3.5.3.1 : Controlling the external format 26

unwritable character 3.5.3.2 : Unwritable characters 28

unwritable characters 3.5.3.2 : Unwritable characters 28

write 3.5.2 : Saving files 24

file encodings 6.3.8.1 : File encodings in the editor 151

file functions 6.3.16 : Windows 157

file handling commands 2.6.2 : File handling 13, 3.5 : File handling 23

filename completion 3.6 : Filename completion 32, 3.6 : Filename completion 32

filename expansion 3.6 : Filename completion 32

files

search 3.23.1 : Searching 70, 3.23.1 : Searching 70

fill-column editor variable 3.19.1 : Fill commands 57

filling commands 3.19 : Filling 57

Fill Paragraph 3.19.1 : Fill commands 57

fill-prefix editor variable 3.19.1 : Fill commands 57

Fill Region 3.19.1 : Fill commands 57

Find Alternate File 3.5.1 : Finding files 24

Find Command Definition 4.3.2 : Definition searching 106

Find File 3.5.1 : Finding files 23

find-file-buffer 6.3.8 : Files 149

Find File With External Format 3.5.3.1 : Controlling the external format 26

finding editor source code 4.3.2 : Definition searching 106, 4.3.2 : Definition searching 107

Find Key Definition 4.3.2 : Definition searching 107

find-likely-function-ignores 6.3.11 : Lisp 152

Find Matching Parse 3.29.2 : Repeating echo area commands 85

Find Mismatch 4.7 : Parentheses 121

Find Non-Base-Char 3.5.3.2 : Unwritable characters 28

Find Source 4.3.2 : Definition searching 106

Find Source For Current Package 4.3.2 : Definition searching 107

Index

205

Find Source for Dspec 4.3.2 : Definition searching 106

Find Tag 4.3.2 : Definition searching 108

Find Unbalanced Parentheses 4.7 : Parentheses 121

Find Unwritable Character 3.5.3.2 : Unwritable characters 28

Flush Sections 3.38 : Obscure commands 102

Fold Buffer Definitions 4.14 : Definition folding 131

folding definitions 4.14 : Definition folding 131

Font Lock Fontify Block 4.2 : Syntax coloring 104

Font Lock Fontify Buffer 4.2 : Syntax coloring 104

font-lock-mark-block-function editor variable 4.2 : Syntax coloring 104

Font Lock Mode 4.2 : Syntax coloring 104

Force Undo 3.7.3 : Explicit editing of the Directory mode buffer 36

form

compile 4.9.4 : Compilation commands 125

evaluate 4.9.2 : Evaluation commands 123, 4.9.3 : Evaluation in Listener commands 125

evaluate last 4.9.2 : Evaluation commands 123, 4.9.3 : Evaluation in Listener commands 125

indent 4.4.1 : Movement, marking and indentation 115

kill backwards 4.4.2 : Killing forms 116

kill forwards 4.4.2 : Killing forms 116

macro-expand 4.4.3 : Macro-expansion of forms 116

mark 4.4.1 : Movement, marking and indentation 115

move to beginning 4.4.1 : Movement, marking and indentation 115

move to end 4.4.1 : Movement, marking and indentation 115

transposition 4.4.4 : Miscellaneous 117

form commands 4.4 : Forms 115

form-offset 6.3.12 : Movement 153

Forward Character 3.8 : Movement 39

Forward Form 4.4.1 : Movement, marking and indentation 115

Forward Kill Form 4.4.2 : Killing forms 116

Forward Kill Sentence 3.11.2 : Killing text 49

Forward List 4.5.1 : Movement 117

Forward Paragraph 3.8 : Movement 40

Forward Search 3.23.1 : Searching 68

Forward Sentence 3.8 : Movement 40

Forward Up List 4.5.1 : Movement 117

Forward Word 3.8 : Movement 39

function

argument list 4.3.6 : Miscellaneous 113

break 4.3.3 : Tracing functions 110

break on exit 4.3.3 : Tracing functions 110

describe generic 4.3.6 : Miscellaneous 114

documentation 4.8 : Documentation 121, 4.8 : Documentation 122

Index

206

edit callees 4.3.4 : Function callers and callees 112

edit callers 4.3.4 : Function callers and callees 112

editing 4.3 : Functions and definitions 105

find definition 4.3.2 : Definition searching 105

indentation 4.3.1 : Movement, marking and specifying indentation 105

list callees 4.3.4 : Function callers and callees 111, 4.3.4 : Function callers and callees 112

list callers 4.3.4 : Function callers and callees 111, 4.3.4 : Function callers and callees 111

mark 4.3.1 : Movement, marking and specifying indentation 105

move to beginning 4.3.1 : Movement, marking and specifying indentation 105

move to end 4.3.1 : Movement, marking and specifying indentation 105

trace 4.3.3 : Tracing functions 109

trace inside 4.3.3 : Tracing functions 110

untrace 4.3.3 : Tracing functions 110

Function Arglist 4.3.6 : Miscellaneous 113

Function Arglist Displayer 4.3.6 : Miscellaneous 114

Function Argument List 4.3.6 : Miscellaneous 114

Function Call Browser tool 4.3.4 : Function callers and callees 111, 4.3.4 : Function callers and callees 111, 4.3.4 : Function callers and
callees 111, 4.3.4 : Function callers and callees 112

Function Documentation 4.8 : Documentation 121

Functions

buffer 6.3.3 : Buffers 140, 6.3.16 : Windows 157

calling 6.3.1 : Calling editor functions 138

echo area 6.3.6 : The echo area 148, 6.3.18 : Examples 159

editor:bind-key 6.1 : Customizing default key bindings 136

editor:bind-string-to-key 6.1 : Customizing default key bindings 137

editor:buffer-from-name 6.3.3.2 : Buffer operations 143

editor:buffer-name 6.3.3.2 : Buffer operations 143

editor:buffer-pathname 6.3.8 : Files 150

editor:buffer-point 6.3.3.2 : Buffer operations 143

editor:buffers-end 6.3.3.2 : Buffer operations 143

editor:buffers-start 6.3.3.2 : Buffer operations 143

editor:buffer-value 6.3.15 : Variables 157

editor:change-buffer-lock-for-modification 6.3.3.1 : Buffer locking 142

editor:character-offset 6.3.12 : Movement 152

editor:check-disk-version-consistent 6.3.8 : Files 150

editor:clear-echo-area 6.3.6 : The echo area 148

editor:clear-undo 6.3.3.2 : Buffer operations 144

editor:complete-in-place 6.3.14 : In-place completion 154

editor:copy-point 6.3.4 : Points 146

editor:current-buffer 6.3.3.2 : Buffer operations 142

editor:current-mark 6.3.4 : Points 145

Index

207

editor:current-point 6.3.4 : Points 145

editor:current-window 6.3.16 : Windows 157

editor:define-editor-mode-variable 6.3.15 : Variables 156

editor:define-editor-variable 6.3.15 : Variables 155

editor:defmode 3.26.4 : Defining modes 78

editor:delete-point 6.3.4 : Points 146

editor:editor-error 6.3.7 : Editor errors 149

editor:editor-variable-documentation 6.3.15 : Variables 156

editor:end-line-p 6.3.4 : Points 146

editor error 6.3.7 : Editor errors 148

editor:fast-save-all-buffers 6.3.8 : Files 150

editor:find-file-buffer 6.3.8 : Files 149

editor:form-offset 6.3.12 : Movement 153

editor:goto-buffer 6.3.3.2 : Buffer operations 144

editor:insert-string 6.3.9 : Inserting text 151

editor:kill-ring-string 6.3.9 : Inserting text 151

editor:line-end 6.3.12 : Movement 152

editor:line-offset 6.3.12 : Movement 153

editor:line-start 6.3.12 : Movement 152

editor:make-buffer 6.3.3.2 : Buffer operations 143

editor:make-face 6.3.17 : Faces 158

editor:message 6.3.6 : The echo area 148

editor:move-point 6.3.4 : Points 146

editor:point< 6.3.4 : Points 145

editor:point<= 6.3.4 : Points 146

editor:point> 6.3.4 : Points 146

editor:point>= 6.3.4 : Points 146

editor:point-kind 6.3.4 : Points 145

editor:points-to-string 6.3.9 : Inserting text 151

editor:process-character 6.3.1 : Calling editor functions 138

editor:prompt-for-buffer 6.3.13 : Prompting the user 153

editor:prompt-for-file 6.3.13 : Prompting the user 153

editor:prompt-for-integer 6.3.13 : Prompting the user 154

editor:prompt-for-string 6.3.13 : Prompting the user 154

editor:prompt-for-variable 6.3.13 : Prompting the user 154

editor:redisplay 6.3.16 : Windows 157

editor:regular-expression-search 6.3.5 : Regular expression searching 147

editor:same-line-p 6.3.4 : Points 147

editor:search-files 3.23.1 : Searching 71

editor, see editor functions 6 : Advanced Features 136

Index

208

editor:set-buffer-name-directory-delimiters 6.3.8 : Files 149

editor:set-current-mark 6.3.4 : Points 145

editor:set-interrupt-keys 6.1 : Customizing default key bindings 137

editor:set-pathname-load-function 6.3.8 : Files 150

editor:setup-indent 6.2 : Customizing Lisp indentation 138

editor:start-line-p 6.3.4 : Points 146

editor:variable-value-if-bound 6.3.15 : Variables 157

editor:window-buffer 6.3.3.2 : Buffer operations 143

editor:window-text-pane 6.3.16 : Windows 157

editor:word-offset 6.3.12 : Movement 152

file 6.3.16 : Windows 157

inserting text 6.3.9 : Inserting text 151

Lisp editor 6.3.11 : Lisp 152

movement 6.3.12 : Movement 152, 6.3.16 : Windows 157

point 6.3.4 : Points 144

prompt 6.3.13 : Prompting the user 153

variable 6.3.15 : Variables 155

window 6.3.16 : Windows 157

fundamental mode 3.26.1 : Major modes 77, 3.26.1 : Major modes 78

G

generic function

describe 4.3.6 : Miscellaneous 114

Generic Describe 3.3.1 : The help command 20

Generic Function Browser tool 4.3.6 : Miscellaneous 114, 4.3.6 : Miscellaneous 115

Get Register 3.25 : Registers 77

global abbreviation

editor definition 3.27 : Abbreviations 80

Global Font Lock Mode 4.2 : Syntax coloring 104

Go Back 3.10 : Locations 46

Go Forward 3.10 : Locations 47

goto-buffer 6.3.3.2 : Buffer operations 144

Goto Line 3.8 : Movement 40

Goto Page 3.22 : Pages 65

Goto Point 3.8 : Movement 42

Grep 3.36 : Interaction with the GUI and the IDE 99

grep-command 3.36 : Interaction with the GUI and the IDE 100

H

Help 3.3.1 : The help command 18

help commands 2.6.8 : Help 14, 3.3 : Help 18

Index

209

Help on Parse 3.29.1 : Completing commands 85

highlight-matching-parens editor variable 4.7 : Parentheses 120

History First 3.33.2 : History commands 91

History Kill Current 3.33.2 : History commands 92

History Last 3.33.2 : History commands 91

History Next 3.33.2 : History commands 91

history of commands 3.3.1 : The help command 20

History Previous 3.33.2 : History commands 91

history ring 3.29.2 : Repeating echo area commands 85

History Search 3.33.2 : History commands 91

History Search From Input 3.33.2 : History commands 92

History Select 3.33.2 : History commands 92

History Yank 3.33.2 : History commands 92

I

Illegal 3.32 : Key bindings 89

Incremental Search 3.23.1 : Searching 66, 3.23.1 : Searching 67

incremental-search-minimum-visible-lines editor variable 3.23.1 : Searching 67

Indent 3.18 : Indentation 55

form 4.4.1 : Movement, marking and indentation 115

indentation

customising 6 : Advanced Features 136, 6.2 : Customizing Lisp indentation 137

customizing 6 : Advanced Features 136, 6.2 : Customizing Lisp indentation 137

define for Lisp forms 4.3.1 : Movement, marking and specifying indentation 105

define for Lisp functions 4.3.1 : Movement, marking and specifying indentation 105

delete 3.18 : Indentation 56

move back to 3.18 : Indentation 56

indentation commands 3.18 : Indentation 55

Indent for Comment 4.6 : Comments 118

Indent Form 4.4.1 : Movement, marking and indentation 115

indenting 6.3.10 : Indentation 152

Indent New Comment Line 4.6 : Comments 119

Indent New Line 3.18 : Indentation 56

Indent or Complete Symbol 4.3.5 : Indentation and Completion 112

Indent Region 3.18 : Indentation 55

Indent Rigidly 3.18 : Indentation 56

Indent Selection 3.18 : Indentation 56

Indent Selection or Complete Symbol 4.3.5 : Indentation and Completion 112

indent-with-tabs 6.3.10 : Indentation 152

In-place completion 6.3.14 : In-place completion 154

input-format-default editor variable 3.5.3.1 : Controlling the external format 27

Insert () 4.7 : Parentheses 120

Index

210

Insert Buffer 3.20 : Buffers 61

Insert Cut Buffer 3.35.1 : Buffers and windows 97

Insert Double Quotes For Selection 4.4.4 : Miscellaneous 117

Insert File 3.5.6 : Miscellaneous file operations 31

Insert From Previous Prompt 3.33.1 : Listener commands 90

inserting text commands 2.6.3 : Inserting text 13, 3.12 : Inserting text 50

inserting text functions 6.3.9 : Inserting text 151

Insert Multi Line Comment For Selection 4.6 : Comments 119

Insert Page Directory 3.22 : Pages 65

Insert Parentheses For Selection 4.7 : Parentheses 120

Insert Parse Default 3.29.4 : Deleting and inserting text in the echo area 87

Insert Register 3.25 : Registers 77

Insert Selected Text 3.29.4 : Deleting and inserting text in the echo area 87

insert-string 6.3.9 : Inserting text 151

Insert Word Abbrevs 3.27 : Abbreviations 83

Inspect Star 3.33.1 : Listener commands 90

Inspect Variable 3.36 : Interaction with the GUI and the IDE 99

Interface Builder tool 3.36 : Interaction with the GUI and the IDE 99

Interrupt Shell Subjob 3.34.2 : Invoking and using a Shell tool 96

Inverse Add Global Word Abbrev 3.27 : Abbreviations 80

Inverse Add Mode Word Abbrev 3.27 : Abbreviations 80

Invoke Menu Item 3.36 : Interaction with the GUI and the IDE 98

Invoke Tool 3.36 : Interaction with the GUI and the IDE 98

ISearch Backward Regexp 3.23.2 : Regular expression searching 72

ISearch Forward Regexp 3.23.2 : Regular expression searching 72

isearch-lax-whitespace editor variable 3.23.1 : Searching 67

isearch-regexp-lax-whitespace editor variable 3.23.1 : Searching 67

J

Jump to Register 3.25 : Registers 76

Jump to Saved Position 3.25 : Registers 76

Just One Space 3.11.1 : Deleting Text 48

K

key

command description 3.3.1 : The help command 19

Control 2.5.1 : Modifier keys - Command, Ctrl, Alt and Meta 11

description 3.3.1 : The help command 20, 3.3.1 : The help command 20

Escape 2.5.1 : Modifier keys - Command, Ctrl, Alt and Meta 11

Meta 2.5.1 : Modifier keys - Command, Ctrl, Alt and Meta 11

key binding 3.32 : Key bindings 89

customising 5.2 : Key bindings 134, 6 : Advanced Features 136, 6.1 : Customizing default key bindings 136

customizing 5.2 : Key bindings 134, 6 : Advanced Features 136, 6.1 : Customizing default key bindings 136

Index

211

keyboard macro

begin definition of 3.28 : Keyboard macros 83

editor definition 3.28 : Keyboard macros 83

end definition of 3.28 : Keyboard macros 83

execute 3.28 : Keyboard macros 83

name 3.28 : Keyboard macros 84

keyboard macro commands 3.28 : Keyboard macros 83

Keyboard Macro Query 3.28 : Keyboard macros 84

key sequence

editor definition 2.5.1 : Modifier keys - Command, Ctrl, Alt and Meta 11

for command 3.3.1 : The help command 21

key sequences

for commands 3.3.1 : The help command 21

Kill Backward Up List 4.4.2 : Killing forms 116

Kill Buffer 3.20 : Buffers 60

Kill Comment 4.6 : Comments 119

killing

editor definition 3.11 : Deleting and killing text 47

killing text 3.11.2 : Killing text 48

killing text commands 2.6.5 : Deleting and killing text 14, 3.11 : Deleting and killing text 47

Kill Line 3.11.2 : Killing text 49

Kill Next Word 3.11.2 : Killing text 48

Kill Parse 3.29.4 : Deleting and inserting text in the echo area 86

Kill Previous Word 3.11.2 : Killing text 49

Kill Region 3.11.2 : Killing text 49

Kill Register 3.25 : Registers 76

kill ring 3.11 : Deleting and killing text 47, 3.11.2 : Killing text 48, 3.12 : Inserting text 50

rotate 3.12 : Inserting text 50

kill-ring-string 6.3.9 : Inserting text 151

Kill Shell Subjob 3.34.2 : Invoking and using a Shell tool 96

L

Last Keyboard Macro 3.28 : Keyboard macros 83

line

beginning 3.8 : Movement 39

centre 3.19.1 : Fill commands 58

count for page 3.22 : Pages 65

count for region 3.9.2 : Regions 46

delete blank 3.11.1 : Deleting Text 48

delete matching 3.23.1 : Searching 69

delete non-matching 3.23.1 : Searching 69

end 3.8 : Movement 39

goto 3.8 : Movement 40

Index

212

indentation 4.3.5 : Indentation and Completion 112

indent new 3.18 : Indentation 56

kill 3.11.2 : Killing text 49

kill backward 3.11.2 : Killing text 49

length 3.19.1 : Fill commands 57

list matching 3.23.1 : Searching 69

move to top of window 3.8 : Movement 41

next 3.8 : Movement 39

open new 3.12 : Inserting text 51

previous 3.8 : Movement 39

transposition 3.16 : Transposition 54

what line 3.8 : Movement 40

line count 3.22 : Pages 65

line-end 6.3.12 : Movement 152

Linefeed Auto Fill Linefeed 3.19.2 : Auto-Fill mode 58

line-offset 6.3.12 : Movement 153

line-start 6.3.12 : Movement 152

Line to Top of Window 3.8 : Movement 41

Lisp

editor commands 4 : Editing Lisp Programs 103

Lisp comment commands 4.6 : Comments 118

Lisp documentation commands 4.8 : Documentation 121

Lisp editor functions 6.3.11 : Lisp 152

Lisp form commands 4.4 : Forms 115

Lisp Insert) 4.7 : Parentheses 121

Lisp Insert) Indenting Top Level 4.7 : Parentheses 121

Lisp list commands 4.5 : Lists 117

Lisp mode 3.26.1 : Major modes 77, 3.26.1 : Major modes 78

LispWorks IDE tools

Application Builder 3.36 : Interaction with the GUI and the IDE 99

Class Browser 4.3.6 : Miscellaneous 114

Editor 4.3.4 : Function callers and callees 112, 4.3.4 : Function callers and callees 112

Function Call Browser 4.3.4 : Function callers and callees 111, 4.3.4 : Function callers and callees 111, 4.3.4 : Function callers and
callees 111, 4.3.4 : Function callers and callees 112

Generic Function Browser 4.3.6 : Miscellaneous 114, 4.3.6 : Miscellaneous 115

Interface Builder 3.36 : Interaction with the GUI and the IDE 99

Listener 3.11.1 : Deleting Text 48, 3.11.1 : Deleting Text 48, 3.26.2 : Minor modes 78, 3.34.2 : Invoking and using a Shell
tool 96, 4.9.3 : Evaluation in Listener commands 125

Output Browser 3.11.1 : Deleting Text 48

Process Browser 3.1 : Aborting commands and processes 17

Search Files 3.23.1 : Searching 70, 3.23.1 : Searching 70, 3.23.1 : Searching 71

selecting 3.36 : Interaction with the GUI and the IDE 98

Shell 3.34.2 : Invoking and using a Shell tool 95, 3.34.2 : Invoking and using a Shell tool 96, 3.34.2 : Invoking and using a Shell

Index

213

tool 96, 3.34.2 : Invoking and using a Shell tool 96, 3.34.2 : Invoking and using a Shell tool 96

shortcuts 3.36 : Interaction with the GUI and the IDE 98

Symbol Browser 4.8 : Documentation 121

list

extract 4.4.2 : Killing forms 116

kill backward up 4.4.2 : Killing forms 116

move down one level 4.5.1 : Movement 118

move to end 4.5.1 : Movement 117, 4.5.1 : Movement 117

move to start 4.5.1 : Movement 117, 4.5.1 : Movement 118

List Buffer Definitions 3.36 : Interaction with the GUI and the IDE 99

List Buffers 3.20 : Buffers 60

List Callees 4.3.4 : Function callers and callees 111

List Callers 4.3.4 : Function callers and callees 111

list commands 4.5 : Lists 117

List Definitions 4.3.2 : Definition searching 107

List Definitions For Dspec 4.3.2 : Definition searching 107

List Directory 3.5.6 : Miscellaneous file operations 31

listener

clear 3.11.1 : Deleting Text 48

listener commands

Execute or Insert Newline or Yank from Previous Prompt Return 3.33.1 : Listener commands 90

History First Ctrl+C < 3.33.2 : History commands 91

History Kill Current Ctrl+C Ctrl+K 3.33.2 : History commands 92

History Last Ctrl+C > 3.33.2 : History commands 91

History Next Meta+N or Ctrl+C Ctrl+N 3.33.2 : History commands 91

History Previous Meta+P or Ctrl+C Ctrl+P 3.33.2 : History commands 91

History Search From Input 3.33.2 : History commands 92

History Search Meta+R or Ctrl+C Ctrl+R 3.33.2 : History commands 91

History Select Ctrl+C Ctrl+F 3.33.2 : History commands 92

History Yank Ctrl+C Ctrl+Y 3.33.2 : History commands 92

Insert From Previous Prompt Ctrl+J 3.33.1 : Listener commands 90

Inspect Star Ctrl+C Ctrl+I 3.33.1 : Listener commands 90

Throw To Top Level Meta+K 3.33.1 : Listener commands 90

Listener tool 3.11.1 : Deleting Text 48, 3.11.1 : Deleting Text 48, 3.26.2 : Minor modes 78, 3.34.2 : Invoking and using a Shell
tool 96, 4.9.3 : Evaluation in Listener commands 125

List Faces Display 3.38 : Obscure commands 101

List Matching Lines 3.23.1 : Searching 69

List Registers 3.25 : Registers 76

List Unwritable Characters 3.5.3.2 : Unwritable characters 28

List Word Abbrevs 3.27 : Abbreviations 82

Load File 4.9.2 : Evaluation commands 124

Index

214

location

editor definition 2.2.4 : Locations 10

locations 3.10 : Locations 46

Lowercase Region 3.15 : Case conversion 53

Lowercase Word 3.15 : Case conversion 52

M

macro

keyboard 3.28 : Keyboard macros 83

Macroexpand Form 4.4.3 : Macro-expansion of forms 116

macro-expansion 4.4.3 : Macro-expansion of forms 116

Macros

editor:defcommand 6.3.2 : Defining commands 139

editor:save-excursion 6.3.4 : Points 147

editor:use-buffer 6.3.3.2 : Buffer operations 143

editor:with-buffer-locked 6.3.3.1 : Buffer locking 141

editor:with-point 6.3.4 : Points 147

editor:with-point-locked 6.3.3.1 : Buffer locking 141

major mode

editor definition 2.3 : Modes 10, 3.26.1 : Major modes 77

make-buffer 6.3.3.2 : Buffer operations 143

Make Directory 3.5.6 : Miscellaneous file operations 31

make-face 6.3.17 : Faces 158

Make Word Abbrev 3.27 : Abbreviations 81

manual

on-line editor 3.3.1 : The help command 19, 3.3.1 : The help command 20, 3.3.1 : The help command 20

Manual Entry 3.3.2 : Other help commands on UNIX and macOS 21

Manual Entry mode 3.26.1 : Major modes 77

man Unix command 3.3.2 : Other help commands on UNIX and macOS 21

mark

editor definition 2.2.2 : Marks 10

exchange with point 3.9.1 : Marks 45

form 4.4.1 : Movement, marking and indentation 115

move current point to 3.9.1 : Marks 44

paragraph 3.9.1 : Marks 45

pop 3.9.1 : Marks 45

See also locations 3.10 : Locations 46

sentence 3.9.1 : Marks 45

set 3.9.1 : Marks 44

word 3.9.1 : Marks 45

Mark Defun 4.3.1 : Movement, marking and specifying indentation 105

Index

215

Mark Form 4.4.1 : Movement, marking and indentation 115

Mark Page 3.22 : Pages 65

Mark Paragraph 3.9.1 : Marks 45

mark ring 3.9 : Marks and regions 44

Mark Sentence 3.9.1 : Marks 45

Mark Whole Buffer 3.9.1 : Marks 45

Mark Word 3.9.1 : Marks 45

message 6.3.6 : The echo area 148

Meta-! Shell Command 3.34.1 : Running shell commands directly from the editor 94

Meta+" Insert Double Quotes For Selection 4.4.4 : Miscellaneous 117

Meta+# Insert Multi Line Comment For Selection 4.6 : Comments 119

Meta+' Word Abbrev Prefix Point 3.27 : Abbreviations 81

Meta+(Insert Parentheses For Selection 4.7 : Parentheses 120

Meta+) Move Over) 4.7 : Parentheses 120

Meta+, Continue Tags Search 4.3.2 : Definition searching 108

Meta+. Find Source 4.3.2 : Definition searching 106

Meta+/ Dynamic Completion 3.12 : Inserting text 51

Meta+; Indent for Comment 4.6 : Comments 118

Meta+< Beginning of Buffer 3.8 : Movement 42

Meta+< Beginning Of Parse 3.29.3 : Movement in the echo area 86

Meta+= Function Arglist 4.3.6 : Miscellaneous 113

Meta+> End of Buffer 3.8 : Movement 42

Meta+? Find Tag 4.3.2 : Definition searching 108

Meta+@ Mark Word 3.9.1 : Marks 45

Meta+A Backward Sentence 3.8 : Movement 40

Meta+A Debugger Abort 3.33.3 : Debugger commands 92

Meta+B Backward Word 3.8 : Movement 39

Meta+B Debugger Backtrace 3.33.3 : Debugger commands 93

Meta+B Echo Area Backward Word 3.29.3 : Movement in the echo area 86

Meta+Backspace Echo Area Kill Previous Word 3.29.4 : Deleting and inserting text in the echo area 86

Meta+C Capitalize Word 3.15 : Case conversion 53

Meta+C Debugger Continue 3.33.3 : Debugger commands 93

Meta+Ctrl+. Rotate Active Finders 4.3.2 : Definition searching 109

Meta+Ctrl+; Kill Comment 4.6 : Comments 119

Meta+Ctrl+@ Mark Form 4.4.1 : Movement, marking and indentation 115

Meta+Ctrl+A Beginning of Defun 4.3.1 : Movement, marking and specifying indentation 105

Meta+Ctrl+B Backward Form 4.4.1 : Movement, marking and indentation 115

Meta+Ctrl+C, break gesture 3.1 : Aborting commands and processes 17

Meta+Ctrl+D Down List 4.5.1 : Movement 118

Index

216

Meta+Ctrl+Delete Backward Kill Form 4.4.2 : Killing forms 116

Meta+Ctrl+E End of Defun 4.3.1 : Movement, marking and specifying indentation 105

Meta+Ctrl+F Forward Form 4.4.1 : Movement, marking and indentation 115

Meta+Ctrl+H Mark Defun 4.3.1 : Movement, marking and specifying indentation 105

Meta+Ctrl+I Complete Symbol 4.3.5 : Indentation and Completion 113

Meta+Ctrl+K Forward Kill Form 4.4.2 : Killing forms 116

Meta+Ctrl+L Select Previous Buffer 3.20 : Buffers 59

Meta+Ctrl+N Forward List 4.5.1 : Movement 117

Meta+Ctrl+P Backward List 4.5.1 : Movement 117

Meta+Ctrl+Q Indent Form 4.4.1 : Movement, marking and indentation 115

Meta+Ctrl+R ISearch Backward Regexp 3.23.2 : Regular expression searching 72

Meta+Ctrl+S ISearch Forward Regexp 3.23.2 : Regular expression searching 72

Meta+Ctrl+Shift+A Show Documentation 4.8 : Documentation 122

Meta+Ctrl+Shift+L Circulate Buffers 3.20 : Buffers 59

Meta+Ctrl+Space Pop Mark 3.9.1 : Marks 45

Meta+Ctrl+T Transpose Forms 4.4.4 : Miscellaneous 117

Meta+Ctrl+U Backward Up List 4.5.1 : Movement 118

Meta+Ctrl+W Append Next Kill 3.11.2 : Killing text 50

Meta+Ctrl+X Evaluate Defun 4.9.2 : Evaluation commands 123

Meta+Ctrl+Z Exit Recursive Edit 3.31 : Recursive editing 88

Meta+Ctrl+\ Indent Region 3.18 : Indentation 55

Meta+D Kill Next Word 3.11.2 : Killing text 48

Meta+Delete Kill Previous Word 3.11.2 : Killing text 49

Meta+E Debugger Edit 3.33.3 : Debugger commands 93

Meta+E Forward Sentence 3.8 : Movement 40

Meta+F Forward Word 3.8 : Movement 39

Meta+G Fill Region 3.19.1 : Fill commands 57

Meta+H Mark Paragraph 3.9.1 : Marks 45

Meta+I Abbreviated Complete Symbol 4.3.5 : Indentation and Completion 113

Meta+J Indent New Comment Line 4.6 : Comments 119

Meta+K Find Matching Parse 3.29.2 : Repeating echo area commands 85

Meta+K Forward Kill Sentence 3.11.2 : Killing text 49

Meta+K Reset Echo Area 3.29.6 : Leaving the echo area 88

Meta+K Throw To Top Level 3.33.1 : Listener commands 90

Meta+L Lowercase Word 3.15 : Case conversion 52

Meta+M Back to Indentation 3.18 : Indentation 56

Meta+N Debugger Next 3.33.3 : Debugger commands 93

Meta+N Down Comment Line 4.6 : Comments 119

Index

217

Meta+N History Next 3.33.2 : History commands 91

Meta+N Next Parse 3.29.2 : Repeating echo area commands 85

Meta+Newline Indent New Comment Line 4.6 : Comments 119

Meta+P Debugger Previous 3.33.3 : Debugger commands 93

Meta+P History Previous 3.33.2 : History commands 91

Meta+P Previous Parse 3.29.2 : Repeating echo area commands 85

Meta+P Up Comment Line 4.6 : Comments 119

Meta+Q Fill Paragraph 3.19.1 : Fill commands 57

Meta+R History Search 3.33.2 : History commands 91

Meta+Shift+% Query Replace 3.23.3 : Replacement 73

Meta+Shift+M Walk Form 4.4.3 : Macro-expansion of forms 117

Meta+Shift+R Move to Window Line 3.8 : Movement 41

Meta+Shift+^ Delete Indentation 3.18 : Indentation 56

Meta+Shift+~ Buffer Not Modified 3.20 : Buffers 61

Meta+Space Just One Space 3.11.1 : Deleting Text 48

Meta+T Transpose Words 3.16 : Transposition 54

Meta+Tab Expand File Name 3.6 : Filename completion 32

Meta+U Uppercase Word 3.15 : Case conversion 53

Meta+V Debugger Print 3.33.3 : Debugger commands 93

Meta+V Scroll Window Up 3.8 : Movement 41

Meta+W Save Region 3.11.2 : Killing text 49

Meta+X Extended Command 2.5.2 : Two ways to execute commands 12, 3.2 : Executing commands 18

Meta+Y Rotate Kill Ring 3.12 : Inserting text 50

Meta+Z Zap To Char 3.11.2 : Killing text 50

Meta+[Backward Paragraph 3.8 : Movement 40

Meta+\ Delete Horizontal Space 3.11.1 : Deleting Text 47

Meta+] Forward Paragraph 3.8 : Movement 40

Meta key 2.5.1 : Modifier keys - Command, Ctrl, Alt and Meta 11

Meta-| Shell Command On Region 3.34.1 : Running shell commands directly from the editor 94

method call

describe 4.3.6 : Miscellaneous 115

Microsoft Windows keys

using 5 : Emulation 134

minor mode

editor definition 2.3 : Modes 10, 3.26.2 : Minor modes 78

mode

editor definition 2.3 : Modes 10, 3.26 : Modes 77

indentation in 3.18 : Indentation 55

mode abbreviation

editor definition 3.27 : Abbreviations 80

Index

218

mode line

editor definition 2.1.3 : The mode line 9

modes

abbrev 3.26.2 : Minor modes 78, 3.27 : Abbreviations 80

auto-fill 3.19.2 : Auto-Fill mode 58, 3.26.2 : Minor modes 78

Directory 3.26.1 : Major modes 77

execute 3.26.2 : Minor modes 78

fundamental 3.26.1 : Major modes 77

Lisp 3.26.1 : Major modes 77

Manual Entry 3.26.1 : Major modes 77

overwrite 3.17 : Overwriting 54, 3.26.2 : Minor modes 78

shell 3.26.1 : Major modes 77

text 3.26.1 : Major modes 77

mouse

editor bindings 3.35.2 : Actions involving the mouse 97

movement commands 2.6.4 : Movement 13, 3.8 : Movement 38

locations 3.10 : Locations 46

movement functions 6.3.12 : Movement 152, 6.3.16 : Windows 157

Move Over) 4.7 : Parentheses 120

move-point 6.3.4 : Points 146

Move to Window Line 3.8 : Movement 41

N

Name Keyboard Macro 3.28 : Keyboard macros 84

Negative Argument 3.4 : Using prefix arguments 22

New Buffer 3.20 : Buffers 60

New in LispWorks 7.0

Code Coverage Current Buffer editor command 4.10.1 : Coloring code coverage 128

Code Coverage File editor command 4.10.1 : Coloring code coverage 128

Code Coverage Load Default Data editor command 4.10.2 : Setting the default code coverage data 128

Code Coverage Set Default Data editor command 4.10.2 : Setting the default code coverage data 128

Directory Mode Copy Marked editor command 3.7.4 : Modifying the file system from the Directory mode buffer 37

Directory Mode Delete editor command 3.7.4 : Modifying the file system from the Directory mode buffer 36

Directory Mode Edit File editor command 3.7.2 : Directory mode commands 34

Directory Mode Edit File In Other Window editor command 3.7.2 : Directory mode commands 34

Directory Mode Flag Delete editor command 3.7.2 : Directory mode commands 36

Directory Mode Flag Delete When Marked editor command 3.7.2 : Directory mode commands 36

Directory Mode Flag Edited editor command 3.7.2 : Directory mode commands 35

Directory Mode Kill Line editor command 3.7.3 : Explicit editing of the Directory mode buffer 36

Directory Mode Mark All editor command 3.7.2 : Directory mode commands 35

Directory Mode Mark editor command 3.7.2 : Directory mode commands 34

Directory Mode Mark Matches editor command 3.7.2 : Directory mode commands 35

Directory Mode Mark Regexp Matches editor command 3.7.2 : Directory mode commands 35

Index

219

Directory Mode Mark When Edited editor command 3.7.2 : Directory mode commands 35

Directory Mode Move Marked editor command 3.7.4 : Modifying the file system from the Directory mode buffer 37

Directory Mode New Buffer With Edited editor command 3.7.5 : Creating new Directory mode buffers 38

Directory Mode New Buffer With Flagged Delete editor command 3.7.5 : Creating new Directory mode buffers 38

Directory Mode New Buffer With Marked editor command 3.7.5 : Creating new Directory mode buffers 37

Directory Mode New Buffer With Matches editor command 3.7.5 : Creating new Directory mode buffers 38

Directory Mode New Buffer With Regexp Matches editor command 3.7.5 : Creating new Directory mode buffers 38

Directory Mode Next Line editor command 3.7.2 : Directory mode commands 33

Directory Mode Previous Line editor command 3.7.2 : Directory mode commands 34

Directory Mode Rename editor command 3.7.4 : Modifying the file system from the Directory mode buffer 37

Directory Mode Toggle Edited editor command 3.7.2 : Directory mode commands 35

Directory Mode Unflag Edited editor command 3.7.2 : Directory mode commands 35

Directory Mode Unmark Backward editor command 3.7.2 : Directory mode commands 34

Directory Mode Unmark editor command 3.7.2 : Directory mode commands 34

Directory Mode Unmark Matches editor command 3.7.2 : Directory mode commands 35

Directory Mode Unmark Regexp Matches editor command 3.7.2 : Directory mode commands 35

Directory Mode Unmark When Edited editor command 3.7.2 : Directory mode commands 35

Editor commands for code coverage display 4.10 : Code Coverage 128

editor searches .cpp files by default 3.23.1 : Searching 70, 3.23.3 : Replacement 73

Find File With External Format editor command 3.5.3.1 : Controlling the external format 26

Find Source For Current Package 4.3.2 : Definition searching 107

Force Undo editor command 3.7.3 : Explicit editing of the Directory mode buffer 36

Improved support for Unicode and other file encodings 3.5.3 : Unicode and other file encodings 26

Invoke Menu Item editor command 3.36 : Interaction with the GUI and the IDE 98

List Directory editor command 3.5.6 : Miscellaneous file operations 31

Save Buffer Pathname 3.5.6 : Miscellaneous file operations 32

Scroll Window Down Preserving Highlight editor command 3.8 : Movement 43

Scroll Window Up Preserving Highlight editor command 3.8 : Movement 43

Search Buffers editor command 3.23.1 : Searching 70

special meaning of Backslash in regular expression replacement commands 3.23.3 : Replacement 74

Un-Kill As Filename 3.12 : Inserting text 50

Un-Kill As String 3.12 : Inserting text 50

New in LispWorks 7.1

Connect Remote Debugging editor command 4.15 : Remote debugging 132

Reconnect Remote Listener editor command 4.15 : Remote debugging 132

Remote Evaluate Buffer editor command 4.15 : Remote debugging 132

Remote Evaluate Defun editor command 4.15 : Remote debugging 132

Remote Evaluate Defun In Listener editor command 4.15 : Remote debugging 133

Remote Evaluate Last Form editor command 4.15 : Remote debugging 133

Remote Evaluate Last Form In Listener editor command 4.15 : Remote debugging 133

Remote Evaluate Region editor command 4.15 : Remote debugging 132

Remote Evaluate Region In Listener editor command 4.15 : Remote debugging 133

Set Default Remote Debugging Connection editor command 4.15 : Remote debugging 133

Index

220

New in LispWorks 8.0

Fold Buffer Definitions editor command 4.14 : Definition folding 131

isearch-lax-whitespace editor variable 3.23.1 : Searching 67

isearch-regexp-lax-whitespace editor variable 3.23.1 : Searching 67

replace-lax-whitespace editor variable 3.23.1 : Searching 67

replace-regexp-lax-whitespace editor variable 3.23.1 : Searching 67

Revert Buffer With External Format editor command 3.5.6 : Miscellaneous file operations 30

search-whitespace-regexp editor variable 3.23.1 : Searching 68

set-buffer-name-directory-delimiters editor function 6.3.8 : Files 149

set-pathname-load-function editor function 6.3.8 : Files 150

toggle between the main tab and the Output tab or a Listener or Editor 3.36 : Interaction with the GUI and the IDE 98

Toggle Current Definition Folding editor command 4.14 : Definition folding 132

Unfold Buffer Definitions editor command 4.14 : Definition folding 131

newline

adding to end of file 3.5.2 : Saving files 25

New Line 3.12 : Inserting text 51

Newly documentated in LispWorks 7.1

face system class 6.3.17 : Faces 157

make-face editor function 6.3.17 : Faces 158

Newly documented in LispWorks 7.0

Activate Interface editor command 3.36 : Interaction with the GUI and the IDE 98

Beginning of Buffer Preserving Point editor command 3.8 : Movement 42

Beginning of Line After Prompt editor command 3.33.1 : Listener commands 90

Beginning of Window editor command 3.8 : Movement 42

Buffers Query Replace editor command 3.23.3 : Replacement 73

Buffers Search editor command 3.23.1 : Searching 70

Bug Report editor command 3.36 : Interaction with the GUI and the IDE 100

Build Interface editor command 3.36 : Interaction with the GUI and the IDE 99

Bury Buffer editor command 3.20 : Buffers 60

Clear Eval Record editor command 3.38 : Obscure commands 101

Comment Region editor command 4.6 : Comments 118

Compare File And Buffer editor command 3.24 : Comparison 75

Compile and Load Buffer File editor command 4.9.4 : Compilation commands 126

Compile and Load File editor command 4.9.4 : Compilation commands 126

Debugger Abort editor command 3.33.3 : Debugger commands 92

Debugger Backtrace editor command 3.33.3 : Debugger commands 93

Debugger Continue editor command 3.33.3 : Debugger commands 93

Debugger Edit editor command 3.33.3 : Debugger commands 93

Debugger Next editor command 3.33.3 : Debugger commands 93

Debugger Previous editor command 3.33.3 : Debugger commands 93

Debugger Print editor command 3.33.3 : Debugger commands 93

Debugger Top editor command 3.33.3 : Debugger commands 94

Index

221

Define Command Synonym editor command 6.3.2 : Defining commands 140

Delete Other Windows editor command 3.21 : Windows 63

Edit Buffer editor command 3.20 : Buffers 60

Edit Compiler Warnings editor command 3.36 : Interaction with the GUI and the IDE 99

End of Buffer Preserving Point editor command 3.8 : Movement 42

End of Window editor command 3.8 : Movement 42

Execute or Insert Newline or Yank from Previous Prompt listener command 3.33.1 : Listener commands 90

Exit Lisp editor command 3.36 : Interaction with the GUI and the IDE 101

Expand File Name With Space editor command 3.6 : Filename completion 32

Find Key Definition editor command 4.3.2 : Definition searching 107

Find Matching Parse editor command 3.29.2 : Repeating echo area commands 85

Find Non-Base-Char editor command 3.5.3.2 : Unwritable characters 28

Flush Sections editor command 3.38 : Obscure commands 102

Font Lock Fontify Block editor command 4.2 : Syntax coloring 104

Font Lock Fontify Buffer editor command 4.2 : Syntax coloring 104

font-lock-mark-block-function editor variable 4.2 : Syntax coloring 104

Font Lock Mode editor command 4.2 : Syntax coloring 104

Global Font Lock Mode editor command 4.2 : Syntax coloring 104

Grep editor command 3.36 : Interaction with the GUI and the IDE 99

History First listener command 3.33.2 : History commands 91

History Kill Current editor command 3.33.2 : History commands 92

History Last listener command 3.33.2 : History commands 91

History Next listener command 3.33.2 : History commands 91

History Previous listener command 3.33.2 : History commands 91

History Search From Input editor command 3.33.2 : History commands 92

History Search listener command 3.33.2 : History commands 91

History Select editor command 3.33.2 : History commands 92

History Yank editor command 3.33.2 : History commands 92

Insert From Previous Prompt listener command 3.33.1 : Listener commands 90

Inspect Star listener command 3.33.1 : Listener commands 90

Inspect Variable editor command 3.36 : Interaction with the GUI and the IDE 99

ISearch Backward Regexp editor command 3.23.2 : Regular expression searching 72

ISearch Forward Regexp editor command 3.23.2 : Regular expression searching 72

Kill Shell Subjob editor command 3.34.2 : Invoking and using a Shell tool 96

Lisp Insert) Indenting Top Level editor command 4.7 : Parentheses 121

List Buffer Definitions editor command 3.36 : Interaction with the GUI and the IDE 99

List Faces Display editor command 3.38 : Obscure commands 101

Next Grep editor command 3.36 : Interaction with the GUI and the IDE 100

Next Search Match editor command 3.36 : Interaction with the GUI and the IDE 100

Previous Focus Window editor command 3.21 : Windows 63

Redo editor command 3.38 : Obscure commands 101

regular-expression-search 6.3.5 : Regular expression searching 147

Index

222

Remote Manual Entry editor command 3.3.2 : Other help commands on UNIX and macOS 21

Remote Shell editor command 3.34.2 : Invoking and using a Shell tool 95

Remove Nroff Backspaces editor command 3.3.2 : Other help commands on UNIX and macOS 21

Reset Echo Area editor command 3.29.6 : Leaving the echo area 88

Scroll Window Down In Place editor command 3.8 : Movement 43

Scroll Window Down Moving Point editor command 3.8 : Movement 43

Scroll Window Down Preserving Point editor command 3.8 : Movement 44

Scroll Window Up In Place editor command 3.8 : Movement 43

Scroll Window Up Moving Point editor command 3.8 : Movement 43

Scroll Window Up Preserving Point editor command 3.8 : Movement 43

Set Buffer Transient Edit editor command 3.20 : Buffers 61

Set Title editor command 3.36 : Interaction with the GUI and the IDE 98

Shell Command On Region editor command 3.34.1 : Running shell commands directly from the editor 94

Show Directory editor command 3.36 : Interaction with the GUI and the IDE 100

Terminate Shell Subjob editor command 3.34.2 : Invoking and using a Shell tool 97

Throw out of Debugger editor command 3.33.3 : Debugger commands 94

Throw To Top Level listener command 3.33.1 : Listener commands 90

Toggle Global Simple Undo editor command 3.38 : Obscure commands 102

Toggle Showing Cursor Info editor command 3.29.5 : Display of information in the echo area 87

Untrace All editor command 4.3.3 : Tracing functions 110

New Window 3.21 : Windows 62

Next Breakpoint 4.11.2 : Moving between breakpoints 129

Next Grep 3.36 : Interaction with the GUI and the IDE 100

Next Line 3.8 : Movement 39

Next Ordinary Window 3.21 : Windows 62

Next Page 3.22 : Pages 64

Next Parse 3.29.2 : Repeating echo area commands 85

Next Search Match 3.36 : Interaction with the GUI and the IDE 100

Next Window 3.21 : Windows 62

O

Open Line 3.12 : Inserting text 51

output

clear 3.11.1 : Deleting Text 48

Output Browser tool 3.11.1 : Deleting Text 48

output-format-default editor variable 3.5.3.1 : Controlling the external format 27

Overwrite Delete Previous Character 3.17 : Overwriting 55

Overwrite Mode 3.17 : Overwriting 54, 3.26.2 : Minor modes 78

overwriting commands 3.17 : Overwriting 54

P

package

editor 6.3 : Programming the editor 138

Index

223

set 4.9.1 : General Commands 122

page

display first lines 3.22 : Pages 65

editor definition 3.22 : Pages 64

goto 3.22 : Pages 65

insert first lines into buffer 3.22 : Pages 65

mark 3.22 : Pages 65

next 3.22 : Pages 64

previous 3.22 : Pages 64

page commands 3.22 : Pages 64

pane

editor definition 2.1.1 : Windows and panes 9

paragraph

backward 3.8 : Movement 40

editor definition 2.4.3 : Paragraphs 11

fill 3.19.1 : Fill commands 57

forward 3.8 : Movement 40

mark 3.9.1 : Marks 45

parentheses

inserting a pair of 4.7 : Parentheses 120, 4.7 : Parentheses 120

parentheses commands 4.7 : Parentheses 120

pending delete 3.13 : Delete Selection 52

point 6.3.4 : Points 144

editor definition 2.2.1 : Points 10

exchange with mark 3.9.1 : Marks 45

goto 3.8 : Movement 42

move to window line 3.8 : Movement 41

position of 3.29.5 : Display of information in the echo area 87

save to register 3.25 : Registers 76

where is 3.29.5 : Display of information in the echo area 87

point< 6.3.4 : Points 145

point<= 6.3.4 : Points 146

point> 6.3.4 : Points 146

point>= 6.3.4 : Points 146

point behavior 6.3.4 : Points 144

point functions 6.3.4 : Points 144

point-kind 6.3.4 : Points 145

point ring, see mark ring 3.9 : Marks and regions 44

points and text modification 6.3.4 : Points 144

points-to-string 6.3.9 : Inserting text 151

Point to Register 3.25 : Registers 76

Index

224

Pop and Goto Mark 3.9.1 : Marks 44

Pop Mark 3.9.1 : Marks 45

prefix

fill 3.19.1 : Fill commands 57

prefix argument 2.5.3 : Prefix arguments 12, 3.4 : Using prefix arguments 22

default 3.4 : Using prefix arguments 22

negative 3.4 : Using prefix arguments 22

setting 3.4 : Using prefix arguments 22

prefix-argument-default editor variable 3.4 : Using prefix arguments 22

Prepend to Register 3.25 : Registers 77

Previous Breakpoint 4.11.2 : Moving between breakpoints 129

Previous Focus Window 3.21 : Windows 63

Previous Line 3.8 : Movement 39

Previous Page 3.22 : Pages 64

Previous Parse 3.29.2 : Repeating echo area commands 85

Previous Window 3.21 : Windows 62

print

buffer 3.20 : Buffers 61

file 3.5.6 : Miscellaneous file operations 30

region 3.9.2 : Regions 46

Print Buffer 3.20 : Buffers 61

Print File 3.5.6 : Miscellaneous file operations 30

Print Region 3.9.2 : Regions 46

process

breaking 3.1 : Aborting commands and processes 17

Process Browser tool 3.1 : Aborting commands and processes 17

process-character 6.3.1 : Calling editor functions 138

Process File Options 3.5.6 : Miscellaneous file operations 30

programming the editor 6.3 : Programming the editor 138

calling functions 6.3.1 : Calling editor functions 138

examples 6.3.18 : Examples 159, 7 : Self-contained examples 161

prompt-for-buffer 6.3.13 : Prompting the user 153

prompt-for-file 6.3.13 : Prompting the user 153

prompt-for-integer 6.3.13 : Prompting the user 154

prompt-for-string 6.3.13 : Prompting the user 154

prompt-for-variable 6.3.13 : Prompting the user 154

prompt functions 6.3.13 : Prompting the user 153

prompt-regexp-string editor variable 3.34.2 : Invoking and using a Shell tool 96

Put Register 3.25 : Registers 76

Index

225

Q

Query Replace 3.23.3 : Replacement 73, 3.23.3 : Replacement 73

directory 3.23.3 : Replacement 73

regexp 3.23.3 : Replacement 74

system 3.23.3 : Replacement 73

tags 4.3.2 : Definition searching 109

Query Replace Regexp 3.23.3 : Replacement 74

Quoted Insert 3.12 : Inserting text 51

Quote Tab 3.18 : Indentation 57

R

Read Word Abbrev File 3.27 : Abbreviations 83

Reconnect Remote Listener 4.15 : Remote debugging 132

recursive editing 3.31 : Recursive editing 88

redisplay 6.3.16 : Windows 157

Redo 3.38 : Obscure commands 101

Reevaluate Defvar 4.9.2 : Evaluation commands 123

Re-evaluate Defvar 4.9.2 : Evaluation commands 123

Refresh Screen 3.21 : Windows 64

regexp

query replace 3.23.3 : Replacement 74

replace 3.23.3 : Replacement 74

Regexp Forward Search 3.23.2 : Regular expression searching 72

Regexp Reverse Search 3.23.2 : Regular expression searching 72

region

append 3.5.2 : Saving files 25

capitalize 3.15 : Case conversion 53

compile 4.9.4 : Compilation commands 126

delete 3.11.1 : Deleting Text 48

determining 3.9.1 : Marks 45

editor definition 2.2.3 : Regions 10

evaluate 4.9.2 : Evaluation commands 124, 4.9.3 : Evaluation in Listener commands 125

fill 3.19.1 : Fill commands 57

get from register 3.25 : Registers 77

indent 3.18 : Indentation 55

indent rigidly 3.18 : Indentation 56

kill 3.11.2 : Killing text 49

line count 3.9.2 : Regions 46

lowercase 3.15 : Case conversion 53

print 3.9.2 : Regions 46

save 3.11.2 : Killing text 49

transposition 3.16 : Transposition 54

uppercase 3.15 : Case conversion 53

Index

226

word count 3.9.2 : Regions 46

write 3.5.2 : Saving files 25

region-query-size editor variable 3.9.2 : Regions 46

register

append to 3.25 : Registers 76

editor definition 3.25 : Registers 76

get region 3.25 : Registers 77

kill 3.25 : Registers 76

list 3.25 : Registers 76

move to saved position 3.25 : Registers 76

prepend to 3.25 : Registers 77

record position 3.25 : Registers 76

save current point to 3.25 : Registers 76

save position 3.25 : Registers 76

register commands 3.25 : Registers 76

Register to Point 3.25 : Registers 76

regular expression 3.23.2 : Regular expression searching 72

count occurrences of 3.23.2 : Regular expression searching 72

interactive replacement 3.23.3 : Replacement 74

interactive search 3.23.2 : Regular expression searching 72

replacement 3.23.3 : Replacement 74

searching 3.23.2 : Regular expression searching 72, 3.23.2 : Regular expression searching 72

special meaning of Backslash in replacement commands 3.23.3 : Replacement 74

regular expression search 3.23.2 : Regular expression searching 72

regular-expression-search 6.3.5 : Regular expression searching 147

remote debugging 4.15 : Remote debugging 132

Remote Evaluate Buffer 4.15 : Remote debugging 132

Remote Evaluate Defun 4.15 : Remote debugging 132

Remote Evaluate Defun In Listener 4.15 : Remote debugging 133

Remote Evaluate Last Form 4.15 : Remote debugging 133

Remote Evaluate Last Form In Listener 4.15 : Remote debugging 133

Remote Evaluate Region 4.15 : Remote debugging 132

Remote Evaluate Region In Listener 4.15 : Remote debugging 133

Remote Manual Entry 3.3.2 : Other help commands on UNIX and macOS 21

Remote Shell 3.34.2 : Invoking and using a Shell tool 95

Remove Nroff Backspaces 3.3.2 : Other help commands on UNIX and macOS 21

Rename Buffer 3.20 : Buffers 61

Rename File 3.5.6 : Miscellaneous file operations 31

repeating a command 2.5.3 : Prefix arguments 12, 3.4 : Using prefix arguments 22

replace

case sensitivity 3.23.3 : Replacement 74

query 3.23.3 : Replacement 73

Index

227

regexp 3.23.3 : Replacement 74

string 3.23.3 : Replacement 72

replace-lax-whitespace editor variable 3.23.1 : Searching 67

Replace Regexp 3.23.3 : Replacement 74

replace-regexp-lax-whitespace editor variable 3.23.1 : Searching 67

Replace String 3.23.3 : Replacement 72

replacing 3.23.3 : Replacement 72

replacing commands 3.23 : Searching and replacing 65

Report Bug 3.36 : Interaction with the GUI and the IDE 100

Report Manual Bug 3.36 : Interaction with the GUI and the IDE 100

Reset Echo Area 3.29.6 : Leaving the echo area 88

Return Auto Fill Return 3.19.2 : Auto-Fill mode 59

Return Confirm Parse 3.29.1 : Completing commands 85

Return Default 3.29.4 : Deleting and inserting text in the echo area 87

Return Execute or Insert Newline or Yank from Previous Prompt 3.33.1 : Listener commands 90

Return New Line 3.12 : Inserting text 51

Reverse Incremental Search 3.23.1 : Searching 68

Reverse Search 3.23.1 : Searching 69

Revert Buffer 3.5.6 : Miscellaneous file operations 30

revert-buffer-confirm editor variable 3.5.6 : Miscellaneous file operations 30

Revert Buffer With External Format 3.5.6 : Miscellaneous file operations 30

ring

history 3.29.2 : Repeating echo area commands 85

kill 3.11 : Deleting and killing text 47, 3.11.2 : Killing text 48, 3.12 : Inserting text 50

mark 3.9 : Marks and regions 44

undo 3.14 : Undoing 52

window 3.21 : Windows 62

Room 3.37 : Miscellaneous 101

Rotate Active Finders 4.3.2 : Definition searching 109

Rotate Kill Ring 3.12 : Inserting text 50

Run Command 3.34.1 : Running shell commands directly from the editor 94

S

same-line-p 6.3.4 : Points 147

Save All Files 3.5.2 : Saving files 24

Save All Files and Exit 3.5.2 : Saving files 25

save-all-files-confirm editor variable 3.5.2 : Saving files 24

Save Buffer Pathname 3.5.6 : Miscellaneous file operations 32

save-excursion 6.3.4 : Points 147

Save File 3.5.2 : Saving files 24

Save Position 3.25 : Registers 76

Index

228

Save Region 3.11.2 : Killing text 49

screen

refresh 3.21 : Windows 64

scroll button

size 3.21 : Windows 64

scroller

size 3.21 : Windows 64

Scroll Next Window Down 3.21 : Windows 63

Scroll Next Window Up 3.21 : Windows 63

scroll-overlap editor variable 3.8 : Movement 41

Scroll Window Down 3.8 : Movement 40

Scroll Window Down In Place 3.8 : Movement 43

Scroll Window Down Moving Point 3.8 : Movement 43

Scroll Window Down Preserving Highlight 3.8 : Movement 43

Scroll Window Down Preserving Point 3.8 : Movement 44

Scroll Window Up 3.8 : Movement 41

Scroll Window Up In Place 3.8 : Movement 43

Scroll Window Up Moving Point 3.8 : Movement 43

Scroll Window Up Preserving Highlight 3.8 : Movement 43

Scroll Window Up Preserving Point 3.8 : Movement 43

search

all buffers 3.23.1 : Searching 69

backward 3.23.1 : Searching 69

case sensitivity 3.23.1 : Searching 71

directory 3.23.1 : Searching 70

files 3.23.1 : Searching 70, 3.23.1 : Searching 70

forward 3.23.1 : Searching 68

incremental backward 3.23.1 : Searching 68

incremental forward 3.23.1 : Searching 66

match position 3.23.1 : Searching 67

regexp backward 3.23.2 : Regular expression searching 72

regexp forward 3.23.2 : Regular expression searching 72

regular expression 3.23.2 : Regular expression searching 72

system 3.23.1 : Searching 71, 3.23.1 : Searching 71

Search All Buffers 3.23.1 : Searching 69

Search Buffers 3.23.1 : Searching 70

Search Files 3.23.1 : Searching 70

search-files 3.23.1 : Searching 71

Search Files Matching Patterns 3.23.1 : Searching 70

Search Files tool 3.23.1 : Searching 70, 3.23.1 : Searching 70, 3.23.1 : Searching 71

searching 3.23.1 : Searching 66

Index

229

searching commands 3.23 : Searching and replacing 65

Search System 3.23.1 : Searching 71

search-whitespace-regexp editor variable 3.23.1 : Searching 68

Select Buffer 3.20 : Buffers 59

Select Buffer Other Window 3.20 : Buffers 59

Select Go Back 3.10 : Locations 46

selection

indent 3.18 : Indentation 56

indenting 4.3.5 : Indentation and Completion 112

Select Previous Buffer 3.20 : Buffers 59

Self-contained examples

editor commands 7.1 : Example commands 161

editor syntax coloring 7.2 : Syntax coloring example 161

Self Insert 3.12 : Inserting text 51

Self Overwrite 3.17 : Overwriting 55

sentence

backward 3.8 : Movement 40

delimiter 2.4.2 : Sentences 11

editor definition 2.4.2 : Sentences 11

forward 3.8 : Movement 40

kill backward 3.11.2 : Killing text 49

kill forward 3.11.2 : Killing text 49

mark 3.9.1 : Marks 45

terminator 2.4.2 : Sentences 11

set-buffer-name-directory-delimiters 6.3.8 : Files 149

Set Buffer Output 4.9.1 : General Commands 122

Set Buffer Package 4.9.1 : General Commands 122

Set Buffer Transient Edit 3.20 : Buffers 61

Set Comment Column 4.6 : Comments 118

set-current-mark 6.3.4 : Points 145

Set Default Remote Debugging Connection 4.15 : Remote debugging 133

Set External Format 3.5.3.1 : Controlling the external format 26

Set Fill Column 3.19.1 : Fill commands 57

Set Fill Prefix 3.19.1 : Fill commands 58

set-interactive-break-gestures function 3.1 : Aborting commands and processes 17

set-interrupt-keys 6.1 : Customizing default key bindings 137

Set Mark 3.9.1 : Marks 44

set-pathname-load-function 6.3.8 : Files 150

Set Prefix Argument 3.4 : Using prefix arguments 22

Set Title 3.36 : Interaction with the GUI and the IDE 98

setup-indent 6.2 : Customizing Lisp indentation 138

Index

230

Set Variable 3.30 : Editor variables 88

Shell 3.34.2 : Invoking and using a Shell tool 95

shell-cd-regexp editor variable 3.34.2 : Invoking and using a Shell tool 95

shell command 3.34.1 : Running shell commands directly from the editor 94

from editor 3.34 : Running shell commands 94

Shell Command On Region 3.34.1 : Running shell commands directly from the editor 94

shell mode 3.26.1 : Major modes 77

shell-popd-regexp editor variable 3.34.2 : Invoking and using a Shell tool 96

shell-pushd-regexp editor variable 3.34.2 : Invoking and using a Shell tool 95

Shell Send Eof 3.34.2 : Invoking and using a Shell tool 96

shell-shell variable 3.34.2 : Invoking and using a Shell tool 95

Shell tool 3.34.2 : Invoking and using a Shell tool 95, 3.34.2 : Invoking and using a Shell tool 96, 3.34.2 : Invoking and using a Shell
tool 96, 3.34.2 : Invoking and using a Shell tool 96, 3.34.2 : Invoking and using a Shell tool 96

Show Directory 3.36 : Interaction with the GUI and the IDE 100

Show Documentation 4.8 : Documentation 122

Show Documentation for Dspec 4.8 : Documentation 122

Show Paths From 4.3.4 : Function callers and callees 112

Show Paths To 4.3.4 : Function callers and callees 111

Show Variable 3.30 : Editor variables 88

Skip Whitespace 3.8 : Movement 42

source finding

active finders list 4.3.2 : Definition searching 109

defpackage 4.3.2 : Definition searching 107

dspec 4.3.2 : Definition searching 106

editor command 4.3.2 : Definition searching 106, 4.3.2 : Definition searching 107

editor definitions 6.4.2 : Source location 160

name 4.3.2 : Definition searching 106

package definition 4.3.2 : Definition searching 107

tags 4.3.2 : Definition searching 108

tags files 4.3.2 : Definition searching 108, 4.3.2 : Definition searching 109

source-found-action 6.3.11 : Lisp 152

source recording 4.3.2 : Definition searching 105

space

delete horizontal 3.11.1 : Deleting Text 47

just one 3.11.1 : Deleting Text 48

Space Auto Fill Space 3.19.2 : Auto-Fill mode 58

Space Complete Field 3.29.1 : Completing commands 84

spaces-for-tab editor variable 3.18 : Indentation 55

Split Window Horizontally 3.21 : Windows 63

Split Window Vertically 3.21 : Windows 63

start-line-p 6.3.4 : Points 146

Index

231

Stepper Breakpoint 4.12 : Stepper commands 129

Stepper Continue 4.12 : Stepper commands 129

Stepper Macroexpand 4.12 : Stepper commands 129

Stepper Next 4.12 : Stepper commands 129

Stepper Restart 4.12 : Stepper commands 129

Stepper Show Current Source 4.12 : Stepper commands 129

Stepper Step 4.12 : Stepper commands 129

Stepper Step Through Call 4.12 : Stepper commands 129

Stepper Step To Call 4.12 : Stepper commands 129

Stepper Step To Cursor 4.12 : Stepper commands 129

Stepper Step To End 4.12 : Stepper commands 129

Stepper Step To Value 4.12 : Stepper commands 129

Stepper Undo Macroexpand 4.12 : Stepper commands 129

Stop Shell Subjob 3.34.2 : Invoking and using a Shell tool 96

string

count occurrences of 3.23.2 : Regular expression searching 72

insert 6.3.9 : Inserting text 151

replace 3.23.3 : Replacement 72

search 3.23.1 : Searching 66

symbol

apropos 4.8 : Documentation 121

browser 4.8 : Documentation 121

completion 4.3.5 : Indentation and Completion 112, 4.3.5 : Indentation and Completion 112, 4.3.5 : Indentation and
Completion 113, 4.3.5 : Indentation and Completion 113

describe 4.8 : Documentation 121

Symbol Browser tool 4.8 : Documentation 121

Syntax coloring 4.2 : Syntax coloring 103

system

compile 4.9.4 : Compilation commands 127

compile changed definitions 4.9.4 : Compilation commands 127

describe 4.3.6 : Miscellaneous 115

evaluate changed definitions 4.9.2 : Evaluation commands 124

query replace 3.23.3 : Replacement 73

search 3.23.1 : Searching 71, 3.23.1 : Searching 71

System Classes

editor:face 6.3.17 : Faces 157

face system class 6.3.17 : Faces 157

System Query Replace 3.23.3 : Replacement 73

System Search 3.23.1 : Searching 71

T

Tab

for command completion 2.5.2 : Two ways to execute commands 12, 3.2 : Executing commands 18, 3.29.1 : Completing commands 84

Index

232

for indentation 3.18 : Indentation 55, 4.3.5 : Indentation and Completion 112

for symbol completion 4.3.5 : Indentation and Completion 112

insert 3.18 : Indentation 57

width 3.18 : Indentation 55

Tab Complete Input 3.29.1 : Completing commands 84

Tab Indent 3.18 : Indentation 55

Tab Indent Selection or Complete Symbol 4.3.5 : Indentation and Completion 112

tag

continue search 4.3.2 : Definition searching 108

create buffer 4.3.2 : Definition searching 108

editor definition 4.3.2 : Definition searching 105

find 4.3.2 : Definition searching 108

query replace 4.3.2 : Definition searching 109

search 4.3.2 : Definition searching 108

visit file 4.3.2 : Definition searching 109

Tags Query Replace 4.3.2 : Definition searching 109

Tags Search 4.3.2 : Definition searching 108

temporary files 3.5.5 : Backing-up files on saving 29

Terminate Shell Subjob 3.34.2 : Invoking and using a Shell tool 97

terminator

sentence 2.4.2 : Sentences 11

text handling concepts 2.4 : Text handling concepts 11

text mode 3.26.1 : Major modes 77, 3.26.1 : Major modes 78

Throw out of Debugger 3.33.3 : Debugger commands 94

Throw To Top Level 3.33.1 : Listener commands 90

Toggle Auto Save 3.5.4 : Auto-saving files 28

Toggle Breakpoint 4.11.1 : Setting and removing breakpoints 129

Toggle Buffer Read-Only 3.20 : Buffers 61

Toggle Count Newlines 3.21 : Windows 64

Toggle Current Definition Folding 4.14 : Definition folding 132

Toggle Error Catch 4.9.2 : Evaluation commands 124

Toggle Global Simple Undo 3.38 : Obscure commands 102

Toggle Showing Cursor Info 3.29.5 : Display of information in the echo area 87

Top of Window 3.8 : Movement 41

Trace Definition 4.3.3 : Tracing functions 110

Trace Definition Inside Definition 4.3.3 : Tracing functions 110

Trace Function 4.3.3 : Tracing functions 109

Trace Function Inside Definition 4.3.3 : Tracing functions 110

tracing functions 4.3.3 : Tracing functions 109

Transpose Characters 3.16 : Transposition 53

Transpose Forms 4.4.4 : Miscellaneous 117

Index

233

Transpose Lines 3.16 : Transposition 54

Transpose Regions 3.16 : Transposition 54

Transpose Words 3.16 : Transposition 54

transposition commands 3.16 : Transposition 53

U

Undefine 4.13.1 : Undefining one definition 130

buffer 4.13.2 : Removing multiple definitions 130

command 4.13.1 : Undefining one definition 130

definition 4.13.1 : Undefining one definition 130

region 4.13.2 : Removing multiple definitions 130

Undefine Buffer 4.13.2 : Removing multiple definitions 130

Undefine Command 4.13.1 : Undefining one definition 130

Undefine Region 4.13.2 : Removing multiple definitions 130

Undo 3.14 : Undoing 52

undoing editor commands 2.6.6 : Undoing 14, 3.14 : Undoing 52

undo ring 3.14 : Undoing 52

size 3.14 : Undoing 52

undo-ring-size editor variable 3.14 : Undoing 52

Unexpand Last Word 3.27 : Abbreviations 81

Unfold Buffer Definitions 4.14 : Definition folding 131

Unix command

man 3.3.2 : Other help commands on UNIX and macOS 21

Un-Kill 3.12 : Inserting text 50

Un-Kill As Filename 3.12 : Inserting text 50

Un-Kill As String 3.12 : Inserting text 50

Unsplit Window 3.21 : Windows 63

Untrace All 4.3.3 : Tracing functions 110

Untrace Definition 4.3.3 : Tracing functions 110

Untrace Function 4.3.3 : Tracing functions 110

Up Comment Line 4.6 : Comments 119

Uppercase Region 3.15 : Case conversion 53

Uppercase Word 3.15 : Case conversion 53

use-buffer 6.3.3.2 : Buffer operations 143

V

variable

change value of 3.30 : Editor variables 88

description 3.3.1 : The help command 20, 3.3.1 : The help command 20

editor 3.30 : Editor variables 88

listing with apropos 3.3.1 : The help command 19

show value of 3.30 : Editor variables 88

Index

234

variable functions 6.3.15 : Variables 155

Variables

buffer-list 6.3.3.2 : Buffer operations 142

editor:*buffer-list* 6.3.3.2 : Buffer operations 142

editor:*find-likely-function-ignores* 6.3.11 : Lisp 152

editor:*indent-with-tabs* 6.3.10 : Indentation 152

editor:*source-found-action* 6.3.11 : Lisp 152

find-likely-function-ignores 6.3.11 : Lisp 152

grep-command 3.36 : Interaction with the GUI and the IDE 100

indenting 6.3.10 : Indentation 152

indent-with-tabs 6.3.10 : Indentation 152

shell-shell 3.34.2 : Invoking and using a Shell tool 95

source-found-action 6.3.11 : Lisp 152

variable-value 6.3.15 : Variables 156

variable-value-if-bound 6.3.15 : Variables 157

View Page Directory 3.22 : Pages 65

View Source Search 4.3.2 : Definition searching 107

Visit File 3.5.1 : Finding files 23

Visit Other Tags File 4.3.2 : Definition searching 109

Visit Tags File 4.3.2 : Definition searching 109

W

Walk Form 4.4.3 : Macro-expansion of forms 117

Wfind File 3.5.1 : Finding files 23

What Command 3.3.1 : The help command 19

What Cursor Position 3.29.5 : Display of information in the echo area 87

What Line 3.8 : Movement 40

What Lossage 3.3.1 : The help command 20

Where Is 3.3.1 : The help command 21

Where Is Point 3.29.5 : Display of information in the echo area 87

whitespace

skip 3.8 : Movement 42

window

delete 3.21 : Windows 62

delete next 3.21 : Windows 62

editor definition 2.1.1 : Windows and panes 9

mode line 3.21 : Windows 64

move line to top of 3.8 : Movement 41

move to bottom 3.8 : Movement 41

move to top 3.8 : Movement 41

new 3.21 : Windows 62

next 3.21 : Windows 62, 3.21 : Windows 62

Index

235

previous 3.21 : Windows 62

scroll down 3.8 : Movement 40

scroller 3.21 : Windows 64

scroll next down 3.21 : Windows 63

scroll next up 3.21 : Windows 63

scroll overlap 3.8 : Movement 41

scroll up 3.8 : Movement 41

split 3.21 : Windows 63, 3.21 : Windows 63, 3.21 : Windows 63

window-buffer 6.3.3.2 : Buffer operations 143

window commands 3.21 : Windows 62

window functions 6.3.16 : Windows 157

window ring 3.21 : Windows 62

windows

and the Editor 3.35.1 : Buffers and windows 97

copy 3.35.1 : Buffers and windows 97

paste 3.35.1 : Buffers and windows 97

window-text-pane 6.3.16 : Windows 157

with-buffer-locked 6.3.3.1 : Buffer locking 140, 6.3.3.1 : Buffer locking 141

with-point 6.3.4 : Points 147

with-point-locked 6.3.3.1 : Buffer locking 140, 6.3.3.1 : Buffer locking 141

word

backward 3.8 : Movement 39

capitalize 3.15 : Case conversion 53

count for region 3.9.2 : Regions 46

dynamic completion 3.12 : Inserting text 51

editor definition 2.4.1 : Words 11

forward 3.8 : Movement 39

kill next 3.11.2 : Killing text 48

kill previous 3.11.2 : Killing text 49

lowercase 3.15 : Case conversion 52

mark 3.9.1 : Marks 45

transposition 3.16 : Transposition 54

uppercase 3.15 : Case conversion 53

Word Abbrev Apropos 3.27 : Abbreviations 82

Word Abbrev Prefix Point 3.27 : Abbreviations 81

word-offset 6.3.12 : Movement 152

Write File 3.5.2 : Saving files 24

Write Region 3.5.2 : Saving files 25

Write Word Abbrev File 3.27 : Abbreviations 82

Index

236

X

xref 4.3.4 : Function callers and callees 111

Y

yank 3.12 : Inserting text 50

yank as filename 3.12 : Inserting text 50

yank as string 3.12 : Inserting text 50

Z

Zap To Char 3.11.2 : Killing text 50

Non-alaphanumerics

files 3.5 : File handling 23

? Help on Parse 3.29.1 : Completing commands 85

~ files 3.5 : File handling 23, 3.5.5 : Backing-up files on saving 29

Index

237

	Editor User Guide
	Copyrights and Trademarks
	Contents
	1 Introduction
	1.1 Using the editor within LispWorks
	1.2 About this manual
	1.3 Viewing example files

	2 General Concepts
	2.1 Window layout
	2.1.1 Windows and panes
	2.1.2 Files and buffers
	2.1.3 The mode line

	2.2 Buffer positions: points, marks and locations
	2.2.1 Points
	2.2.2 Marks
	2.2.3 Regions
	2.2.4 Locations

	2.3 Modes
	2.4 Text handling concepts
	2.4.1 Words
	2.4.2 Sentences
	2.4.3 Paragraphs

	2.5 Executing commands
	2.5.1 Modifier keys - Command, Ctrl, Alt and Meta
	2.5.2 Two ways to execute commands
	2.5.3 Prefix arguments

	2.6 Basic editing commands
	2.6.1 Aborting commands and processes
	2.6.2 File handling
	2.6.3 Inserting text
	2.6.4 Movement
	2.6.5 Deleting and killing text
	2.6.6 Undoing
	2.6.7 Killing and Yanking
	2.6.8 Help

	3 Command Reference
	3.1 Aborting commands and processes
	3.2 Executing commands
	3.3 Help
	3.3.1 The help command
	3.3.2 Other help commands on UNIX and macOS

	3.4 Using prefix arguments
	3.5 File handling
	3.5.1 Finding files
	3.5.2 Saving files
	3.5.3 Unicode and other file encodings
	3.5.3.1 Controlling the external format
	3.5.3.2 Unwritable characters

	3.5.4 Auto-saving files
	3.5.5 Backing-up files on saving
	3.5.6 Miscellaneous file operations

	3.6 Filename completion
	3.7 Directory mode
	3.7.1 Directory mode buffer display
	3.7.2 Directory mode commands
	3.7.3 Explicit editing of the Directory mode buffer
	3.7.4 Modifying the file system from the Directory mode buffer
	3.7.5 Creating new Directory mode buffers

	3.8 Movement
	3.9 Marks and regions
	3.9.1 Marks
	3.9.2 Regions

	3.10 Locations
	3.11 Deleting and killing text
	3.11.1 Deleting Text
	3.11.2 Killing text

	3.12 Inserting text
	3.13 Delete Selection
	3.14 Undoing
	3.15 Case conversion
	3.16 Transposition
	3.17 Overwriting
	3.18 Indentation
	3.19 Filling
	3.19.1 Fill commands
	3.19.2 Auto-Fill mode

	3.20 Buffers
	3.21 Windows
	3.22 Pages
	3.23 Searching and replacing
	3.23.1 Searching
	3.23.2 Regular expression searching
	3.23.3 Replacement

	3.24 Comparison
	3.25 Registers
	3.26 Modes
	3.26.1 Major modes
	3.26.2 Minor modes
	3.26.3 Default modes
	3.26.4 Defining modes

	3.27 Abbreviations
	3.28 Keyboard macros
	3.29 Echo area operations
	3.29.1 Completing commands
	3.29.2 Repeating echo area commands
	3.29.3 Movement in the echo area
	3.29.4 Deleting and inserting text in the echo area
	3.29.5 Display of information in the echo area
	3.29.6 Leaving the echo area

	3.30 Editor variables
	3.31 Recursive editing
	3.32 Key bindings
	3.33 Execute mode
	3.33.1 Listener commands
	3.33.2 History commands
	3.33.3 Debugger commands

	3.34 Running shell commands
	3.34.1 Running shell commands directly from the editor
	3.34.2 Invoking and using a Shell tool

	3.35 Buffers, windows and the mouse
	3.35.1 Buffers and windows
	3.35.2 Actions involving the mouse

	3.36 Interaction with the GUI and the IDE
	3.37 Miscellaneous
	3.38 Obscure commands

	4 Editing Lisp Programs
	4.1 Automatic entry into Lisp mode
	4.2 Syntax coloring
	4.3 Functions and definitions
	4.3.1 Movement, marking and specifying indentation
	4.3.2 Definition searching
	4.3.3 Tracing functions
	4.3.4 Function callers and callees
	4.3.5 Indentation and Completion
	4.3.6 Miscellaneous

	4.4 Forms
	4.4.1 Movement, marking and indentation
	4.4.2 Killing forms
	4.4.3 Macro-expansion of forms
	4.4.4 Miscellaneous

	4.5 Lists
	4.5.1 Movement

	4.6 Comments
	4.7 Parentheses
	4.8 Documentation
	4.9 Evaluation and compilation
	4.9.1 General Commands
	4.9.2 Evaluation commands
	4.9.3 Evaluation in Listener commands
	4.9.4 Compilation commands

	4.10 Code Coverage
	4.10.1 Coloring code coverage
	4.10.2 Setting the default code coverage data

	4.11 Breakpoints
	4.11.1 Setting and removing breakpoints
	4.11.2 Moving between breakpoints

	4.12 Stepper commands
	4.13 Removing definitions
	4.13.1 Undefining one definition
	4.13.2 Removing multiple definitions

	4.14 Definition folding
	4.15 Remote debugging

	5 Emulation
	5.1 Using platform-specific editor emulation
	5.2 Key bindings
	5.2.1 Finding the keys
	5.2.2 Modifying the Key Bindings
	5.2.3 Accessing Emacs keys
	5.2.4 The Alt modifier and editor bindings

	5.3 Replacing the current selection
	5.4 Emulation in Applications

	6 Advanced Features
	6.1 Customizing default key bindings
	6.2 Customizing Lisp indentation
	6.3 Programming the editor
	6.3.1 Calling editor functions
	6.3.2 Defining commands
	6.3.3 Buffers
	6.3.3.1 Buffer locking
	6.3.3.2 Buffer operations

	6.3.4 Points
	6.3.5 Regular expression searching
	6.3.6 The echo area
	6.3.7 Editor errors
	6.3.8 Files
	6.3.8.1 File encodings in the editor

	6.3.9 Inserting text
	6.3.10 Indentation
	6.3.11 Lisp
	6.3.12 Movement
	6.3.13 Prompting the user
	6.3.14 In-place completion
	6.3.15 Variables
	6.3.16 Windows
	6.3.17 Faces
	6.3.18 Examples
	6.3.18.1 Example 1
	6.3.18.2 Example 2
	6.3.18.3 Example 3

	6.4 Editor source code
	6.4.1 Contents
	6.4.2 Source location
	6.4.3 Guidelines for use of the editor source code

	7 Self-contained examples
	7.1 Example commands
	7.2 Syntax coloring example

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Non-alaphanumerics

