Delivery User Guide

Version 8.0

Copyright and Trademarks

Delivery User Guide

Version 8.0

December 2021

Copyright © 2021 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and K nowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in al copies and supporting documentation, and that the
name of M.1.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "asis’
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including al implied
warranties of merchantability and fitness. In no event shall M.I.T. beliable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of |CU software obtained from http://source.icu-project.org and which bears the following copyright
and permission natice:

ICU License- ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.

Permission is hereby granted, free of charge, to any person abtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission naotice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "ASIS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THISNOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright and Trademarks

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and

registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights

The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt 111, as applicable. Rights reserved under the copyright laws of

the United States.

Address

Telephone

Fax

LispWorks Ltd

St. John's Innovation Centre
Cowley Road

Cambridge

CB4 0WS

England

From North America
877 759 8839 (toll-free)

From elsawhere;
+44 1223 421860

From North America
617 812 8283

From elsawhere:
+44 870 2206189

www.lispwor ks.com

www.lispworks.com

Contents

1 Introduction 8

1.1 What does Déelivery do? 8

1.2 What do you get with Delivery? 8

1.3 Conventions and terminology used in this manual
1.4 A breakdown of the delivery process 10
1.5 Examples 11

2 A Short Delivery Example 12

2.1 Developing the program 12
2.2 Delivering the program 12

3 Writing Code Suitable for Delivery

3.1 Separate run time initializations from the build phase

3.2 Error handling in delivered applications 15
3.3 Efficiency considerations 17

4 Delivering your Application 18

4.1 The delivery function: deliver 18

4.2 Using the delivery tools effectively 19

4.3 Delivering a standal one application executable
4.4 Délivering adynamic library 20

4.5 How to deliver asmaller and faster application
4.6 How Delivery makes an image smaller 24

5 Keywords to the Delivery Function

5.1 Topic-based list of deliver keywords 26
5.2 Alphabetical list of deliver keywords 31

6 Delivery on macOS 56

6.1 Universal binaries 56

6.2 Application bundles 56

6.3 Bad interaction with clean-up utilities 56
6.4 Cocoaand GTK+ images 56

6.5 Terminal windows and message logs 57
6.6 File associations for a Macintosh application
6.7 Editor emulation 57

6.8 Standard Edit keyboard gestures 57

15

19

24

57

26

15

Contents

6.9 Quitting a CAPI/Cocoa application 58

6.10 Retaining Objective-C classes 58

6.11 X11/Motif considerations 58

6.12 Examples of delivering Cocoa applications 58

7 Delivery on Microsoft Windows 59

7.1 Run time library requirement 59

7.2 Application Manifests 59

7.3 DOS windows and message logs 60

7.4 File associations for a Windows application 60
7.5 Editor emulation 60

7.6 ActiveX controls 61

7.7 Example of delivering a Service 61

8 Delivery on Linux, FreeBSD and x86/x64 Solaris

8.1 GTK+ considerations 62

8.2 X11/Moatif considerations 62

8.3 LispWorks executable corrupted 63

8.4 Logging debugging messages 64

8.5 Editor emulation 64

8.6 Products supporting dynamic library delivery 64

9 Delivering for mobile platforms 65

9.1 Delivery of iOS runtimes 65
9.2 Delivery of Android runtimes 65

10 Delivery and Internal Systems 66

10.1 Delivery and CLOS 66
10.2 Dédlivery and the Lisp reader 68
10.3 Editors for delivered applications 68

10.4 Ddlivery and CAPI 69
10.5 The condition system in delivered applications 70
10.6 Dédlivery and the FLI 70

10.7 Modules 71

10.8 Symbol, SYMBOL-NAME and package issues during delivery
10.9 Throwing symbols and packages out of the application 72
10.10 Keeping packages and symbols in the application 74
10.11 Coping with intern and find-symbol at run time 75
10.12 Symbol-name comparison 75

10.13 Delivery and Java interface 75

11 Troubleshooting the delivery process 77

11.1 Debugging errorsin the delivery image 77
11.2 Problems with undefined functions or variables 77

Contents

11.3 Problems with READ 78

11.4 Failureto find aclass 78

11.5 REQUIRE was called after delivery time with module ... 78
11.6 Failed to reserve... error in compacted image 78

11.7 Memory clashes with other software 79

11.8 Possible explanations for a frozen image 79

11.9 Warnings about combinations and templates 79

11.10 FLI template needs to be compiled 80

11.11 Failure to lookup X resources 80

11.12 Reducing the size of the delivered application 80

11.13 Symbol names changed to "Dummy Symbol Name" 80
11.14 Debugging with :no-symbol-function-usage 80

11.15 Interrogate-Symbols 81

12 Interface to the Delivery Process 83

12.1 Interface to the delivery process 83

13 Example: Delivering CAPI Othello 84

13.1 Preparing for delivery 84

13.2 Ddlivering a standalone image 85

13.3 Creating a macOS application bundle 85
13.4 Command line applications 87

13.5 Making asmaller delivered image 87

14 Efficiency considerations when coding for delivery 88

14.1 Use of modules 88

14.2 Loading code at run time 88

14.3 General strategy for reducing the image size 88

14.4 Use of symbols, functions, and classes 89

14.5 Making references to packages 89

14.6 Declaring the types of variables used in function cals 89

14.7 Avoid referencing type names 89

14.8 Use of the INTERN and FIND-SYMBOL functions 90

14.9 Use of the EVAL function and the invocation of uncompiled functions 90
14.10 User-defined and built-in packages 90

15 Self-contained examples of delivery 91

15.1 Délivering a Cocoa CAPI application examples 91
15.2 Ddlivering a CAPI application examples 91

15.3 Delivering adynamic library examples 92

15.4 Ddlivering a Windows service examples 92

Contents

16 Delivery Reference Entries

deliver 93
deliver-keep-symbol-names 94
deliver-keep-symbols 95
deliver-keywords 96
delivery-shaker-cleanup 96
delivery-shaker-weak-pointer 98
delivery-value 101

Index

93

1 Introduction

1.1 What does Delivery do?

Delivery does three distinct things:
* It creates standal one software.
* It removes Lisp development functionality, including the LispWorks IDE.
» Optionaly, it tries to make the image smaller.

Most of the discussion in this manual concerns the technical issues arising from this last point. Note that you can deliver such
that the system does not try to make the image smaller, and most of the technical issues areirrelevant in this case.

The process of creating standal one executables or dynamic librariesis called delivery.

1.1.1 Making the image smaller

The principle behind application delivery is quite smple: an application does not use everything in the LispWorks
development environment when it is running, so there is no need for those unused parts of LispWorksto be in the image.
Delivery can discard the unnecessary code and create a single image file that contains just what is needed to run the
application.

Because the delivered application (sometimes called aruntime) is smaller, it can reduce virtual memory paging and thereby
run faster than it did under LispWorks. Delivery can also actively speed code up by, for example, converting single-method
generic functionsinto ordinary functions. Packing it all into asingle file meansit is simple to start up and can berun
independently of LispWorks.

1.2 What do you get with Delivery?

Delivery consists of an extended routine that is called once all the code that your application needs has been loaded in to
LispWorks.

To deliver your application, you use the Application Builder tool in the LispWorks IDE, or run LispWorks on the command
line with your build file which does all the necessary preparations (normally just loading patches and the application code)
and then callsthe function del i ver .

1.2.1 Programming libraries and facility support code

LispWorks also provides sets of programming libraries and code supporting various other facilities that you may want to use
in your application. Some of these facilities are available in the basic LispWorks image, while others are provided as modules
and need to be loaded explicitly using r equi r e.

See the LispWorks® User Guide and Reference Manual for further details.

http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm

1 Introduction

1.2.2 Functionality removed by delivery
The following general Lisp development functionality is forcibly removed by delivery:

e conpile-file

e save-i mage
e deliver
» Thegraphical LispWorks IDE.

Contact Lisp Salesif you want to build an application which uses these features.

1.3 Conventions and terminology used in this manual

This section discusses the conventions and terminology that are used throughout this manual.

1.3.1 Common Lisp reference text

The Common Lisp reference text for Delivery and LispWorks isthe ANSI Common Lisp standard. A HTML version of this
standard is installed with LispWorks and can be viewed by choosing Help > Manuals from the LispWorks podium and
selecting "ANSI Common Lisp Standard”. Thisisreferred to as "the ANSI standard” throughout.

1.3.2 Platform-specific keywords

Some of the delivery parameters do not apply to all platforms. Thisisindicated where applicable:

Windows means all supported Microsoft Windows operating systems.

Linux means all supported Linux and FreeBSD operating systems.

x86/x64 Solaris means all supported Solaris operating systems running on x86 or x64 hardware. It does not
include SPARC hardware.

DLL means a Microsoft Windows dynamic link library.

Dynamic library means a loadable dynamic shared library on any platform, including Windows DLLSs.

1.3.3 Example files

This manual often refersto example filesin the LispWorks library, like this:

(exanple-edit-file "delivery/hello/deliver")

These examples are Lisp source filesin your LispWorks installation under | i b/ 8- 0- 0- 0/ exanpl es/ . You can simply
evaluate the given form to view the example source file.

Example files contain instructions about how to use them at the start of thefile.

The examplesfiles are in aread-only directory and therefore you should compile them inside the IDE (by the Editor
command Compile Buffer or the toolbar button or by choosing Buffer > Compile from the context menu), so it does not try
towrite afad file.

If you want to manipulate an example file or compile it on the disk rather than in the IDE, then you need first to copy thefile
elsawhere (most easily by using the Editor command Write File or by choosing File > Save As from the context menu).

9

http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm

1 Introduction

1.4 A breakdown of the delivery process

The process of developing and delivering a LispWorks application can typically be broken down as follows:
1. Develop and fully compile your application.
2. Load the application into the LispWorks image and deliver a standalone image.
3. If the delivered version of the image is broken, go back to step 2 and adjust the delivery parameters.

4. If performance problems remain, go back to step 1 and refine your code.

1.4.1 Developing your application

Develop your application using LispWorks. In addition to the code that you write, you can use third-party libraries and al the
functionality of LispWorks apart from that listed in 1.2.2 Functionality removed by delivery.

Application development is covered in detail in 3 Writing Code Suitable for Delivery and you should also read 14
Efficiency considerations when coding for delivery.

Read 6 Delivery on macOS, 7 Delivery on Microsoft Windows, or 8 Delivery on Linux, FreeBSD and x86/x64 Solaris,
as appropriate according to your target platform(s).

If you use CLOS, the FLI or the LispWorks editor in your application, you should aso read 10 Delivery and Internal
Systems.

1.4.2 Managing and compiling your application

You can use any defsystem facility to organize your sources. For example:
 thebuilt-in| w: def syst emmacro, or:
* ASDF.

You can then use functions| w. | oad- syst emand | w: conpi | e- syst em or the ASDF equivalents, to work with your
source files as awhole.

1.4.3 Debugging, profiling and tuning facilities

You may discover performance bottlenecksin your application, before or after delivery. LispWorks provides toolsto help
eliminate these sorts of problems. A profiler is available in LispWorks, in order to help you make critical code more efficient.

You can aso tune the behavior of the garbage collector. See the LispWorks® User Guide and Reference Manual for details.

Thereisa TTY -based debugger available to help debug applications broken by severe delivery parameters. You can deliver
this debugger in the application so that you can debug it on-line if something goes wrong.

See the LispWorks® User Guide and Reference Manual for more information about these facilities.

1.4.4 Delivering your compiled application

Once your application is ready, you can deliver it by loading it and then calling del i ver . Note that this hasto be donein a
script, as described in 2.2 Delivering the program.

del i ver takes many keyword arguments for fine-tuning, but it isintended to work well with a minimal number of keywords.
You should start by delivering with no more than the following keywords if required: : i nt erf ace : capi, or

10

http://common-lisp.net/project/asdf/

1 Introduction

:mul ti processi ngt. Only add other keywords when you find that they are needed.

You can also make LispWorks discard unused code, in order to reduce the delivered image size and thereby improve
performance. You should not do this until your delivered application is working, though, because discarding certain code
impedes debugging.

If you deliver at level O the system does not try to get rid of any code and delivery should be straightforward. Delivery at
higher levelstries to remove code, which may cause some problems, and in this case you will need to add the appropriate
delivery keywords to fix these problems. However, you should not need to use many keywords. If you use 6 or more delivery
keywords, please contact Lisp Support with the details to check that you are doing the right thing.

Délivery is covered in 4 Delivering your Application.

5 Keywordsto the Delivery Function describes the keywords you can pass to the delivery function, del i ver, that permit
fine control over the delivery process.

1.4.5 Licensing issues

Executables and dynamic libraries that are created using Delivery with LispWorks on most platforms do not require arun
time license key.

1.4.6 Modules

You should load all the Lisp modules that your application needs into the LispWorks image before attempting to deliver your
application. Do this by calling r equi r e with each module name in your delivery script.

1.4.7 Error handling

Delivered applications can deal with errors using the Common Lisp and LispWorks-specific Condition System and error
handling facilitiesif so desired. But if you cannot keep the full Common Lisp Condition System because it istoo large, you
can il use some basic facilities provided for handling errors.

See 10.5 The condition system in delivered applications for more details.

You should also consider adding a logging mechanism to your application, which logs any error (as well as other useful
information). That is needed both because the delivered application does not have the LispWorks IDE debugging tools, and
because end-users generally cannot be expected to debug Lisp code.

1.4.8 Troubleshooting

11 Troubleshooting the delivery process presents a number of explanations and workarounds for problems you might have
when delivering your application.

1.5 Examples

There are anumber of examplesin the manual which help to illustrate the delivery process.

2 A Short Delivery Example shows how to deliver avery small application.

13 Example: Delivering CAPI Othello shows how a CAPI program can be delivered.

15 Self-contained examples of delivery lists further examples with complete code for delivering small applications which
are supplied in the LispWorks library.

11

http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm

2 A Short Delivery Example

This chapter presents a simple example of Delivery in use. It shows asmall, pre-written program being delivered.

There are usually four stages to application delivery: coding, compiling, delivering, and debugging. The exampleis broken
up into these stages and the discussion in each case points to more detailed material later in the manual.

If you would like to try this example delivery out while following the text, you can find the program in the LispWorks
distribution at:

|'i b/ 8-0-0-0/exanpl es/delivery/hello/hello.lisp

2.1 Developing the program
The program we use in the example is essentialy this:

(i n-package "CL- USER")

(defun hello-world ()
(capi: di splay-nmessage "Hello World!"))

with a couple of small modifications which are not important here.
Perform these stepsto "develop" the program:

1. Open the sourcefile in the LispWorks Editor tool by evaluating this form:

(example-edit-file "delivery/hello/hello")

2. Compile the program in the LispWorks Editor by the menu command Buffers > Compile.

3. Test the program by calling (hel | o-wor | d) .

2.2 Delivering the program

Having developed and tested the program, the next step is to attempt delivery. You will compile the file containing the
program source code, and load the fasl and call del i ver in afresh LispWorks session.

Programs are delivered with the function del i ver . Thisfunction takes three mandatory arguments. There are also many
optional keyword arguments to help Delivery make the smallest image possible, and also control some aspects of the behavior
of the runtime that is created.

You can read more about the del i ver functionin 4 Delivering your Application.

5 Keywordsto the Delivery Function describes al the optional keyword arguments available.

In this example, we use just one of the optional keyword arguments, and of course we provide the mandatory arguments.
These are:

» The name of astartup function. Thisisthe first function called when the application is run.

12

2 A Short Delivery Example

» A pathname specifying where to write the delivered image.

» A ddlivery level. Thisisan integer in therange 0 to 5. It controls how much work is done to make the image smaller
during delivery. At level 0, little effort is put into making a smaller image, while at level 5 avariety of strategies are
employed.

You can deliver and run the application in two ways: either use the LispWorks IDE, or use a command shell. Thismeansa
DOS command window (on Microsoft Windows), Terminal.app (macOS) or ashell (Unix/Linux etc).

2.2.1 Delivering the program using the LispWorks IDE

You can use the Application Builder tool in the LispWorks IDE to deliver your application. This performs the same steps as
described in 2.2.2 Delivering the program using a command shell, but provides a windowing interface which is easier to
use.

To start, you will need a script which loads your compiled application code. This can be assimple as:

(i n-package "CL-USER")
(exanpl e-conpile-file "delivery/hello/hello" :load t)

but you can also start with a complete delivery script such asthat shown in 2.2.2 Delivering the program using a command
shell.

For full instructions on using the Application Builder tool, see the Lisp\Works IDE User Guide.

2.2.2 Delivering the program using a command shell
Continuing with the example:

1. Writeadelivery script file (del i ver. | i sp) that compiles and loads the program, and then callsdel i ver:

(i n-package "CL-USER")
(1 oad-al | - pat ches)

(exanpl e-conmpile-file "delivery/hello/hello" :load t)
(deliver 'hello-world
#+: cocoa

(create-macos-application-bundl e
"~/ Deskt op/ Hel | 0. app"
Do not copy file associations...
:docunent -types nil
...or CFBundl eldentifier fromthe LispWrks bundle
sidentifier "com exanple.Hello"

)

#-:.cocoa "~/ hell 0"
0
rinterface :capi)

2. Run the LispWorks image passing your file as the build script. For example, on Microsoft Windows open a DOS
window. Ensure you are in the folder containing the LispWorks image and type:

M5- DOS> | i spwor ks- 8- 0- 0- x86-wi n32. exe -build deliver.lisp
On Linux and other Unix-like platforms type the following into a shell:
% | i spwor ks-8-0-0-x86-1inux -build deliver.lisp

Note: the image name varies between the supported platforms.

13

2 A Short Delivery Example

On macOS, use Terminal.app. Ensure you're in the directory of the image first:

% cd "/ Applications/LispWrks 8.0 (64-bit)/LispWrks (64-bit).app/ Contents/McOS"
% ./1ispworks-8-0-0-macos64-universal -build deliver.lisp

If you want to see the output, you can redirect the output with > to afile or use| , if it works on your system.

3. Run the application, which issaved in hel | 0. exe on Microsoft Windows, Hel | 0. app on macOS, and hel | o on
Linux and other Unix-like platforms.

4. Now generate a smaller executable by discarding unused code while delivering. Do this by editing your file
del i ver. |i sp to specify ahigher level argument inthe call todel i ver. Try changing it to 5 for the largest effect.

Note: On macOS, if hcl : cr eat e- macos- appl i cati on- bundl e does not do what you need, please see 13.3.2
Alternative application bundle creation code for an aternative, but also please inform Lisp Support.

2.2.3 Further examples

There is another more detailed example later in thismanual. Thisisin 13 Example: Delivering CAPI Othello, and shows
how to deliver asmall CAPI application. The application is an implementation of the board game Othello.

Further examples with complete code for delivering small applications are supplied in the LispWorks library. See 15 Self-
contained examples of delivery.

14

3 Writing Code Suitable for Delivery

How successfully you can deliver your application depends to alarge extent upon how you wrote it in the first place. Delivery
reduces the size of some symbols and constructs more than others, so a knowledge of what sort of code leads to the best
delivered imagesis useful.

This chapter explains what sorts of considerations you might make when coding your application.

3.1 Separate run time initializations from the build phase

To deliver aruntime application correctly, you need two distinct phases: the build phase, and the run time phase.

In the build phase the delivery script loads the application code including the definition of its start-up function, but should not
actually do any run timeinitialization. It then saves the executable or dynamic library to disk. An executableis primed with
the start-up function as its entry point.

In the run time phase the end-user runs the executable which callsits start-up function. This function must perform any
required run timeinitializations, and not attempt to load any more application code.

You may have developed or inherited a program with a control file which loads your application, initializes and starts it
successfully in the LispWorks IDE, but which fails when used as adelivery script. For example it might run code which
relies on multiprocessing.

To correctly deliver this program as a LispWorks runtime application you will need to remove those forms from the control
file which do run timeinitialization, and cause them to occur at run time by adding them to the start-up function. Take care to
preserve the order of initializations when you do this.

3.2 Error handling in delivered applications

Normally you do not expect an application user to debug it, so you never want your delivered application to call the debugger.
Obvioudly you try to achieve that by making the application error-free, but it is difficult to guarantee that the application
never calls error. You therefore handle errorsin the application, such that even if an error occurs it does not enter the
debugger.

There are two classes of error an application is likely to need to handle: errors generated by the application, and errors
generated by the Lisp system.

3.2.1 Handling errors generated by the application

Error conditions that can occur in your application domain can be handled easily enough if you define your own error
handling or validation functions to trap them. For instance, you might have the following code to detect an error condition
andcal error:

(let ((res (call-sonething)))
(when res
(generate-error res))
(defun generate-error(res)
(error "application-error
serror-numnber res))

15

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

3 Writing Code Suitable for Delivery

You can easily define aversion of gener at e- err or that does al the work without calling er r or :

(defun generate-error (res)
(let ((action
(capi:pronpt-with-1ist
"(("Abort Operation" . abort)

("Retry Operation"” . retry)

("lgnore Error™)

("Quit" . stop-application)

("Do Somet hing Else" . do-sonething-else))
(find-error-string res)
sprint-function 'first
:val ue-function 'rest)))

(case action
((abort retry) (invoke-restart action))
((nil))
(t (funcall action)))))

3.2.2 Handling errors generated by the Lisp system
Errors generated by the Lisp system, rather than the application domain, are alittle harder to deal with.

Suppose your application performs an operation upon afile. The application calls a system function to complete this
operation, so when thereis no error system, any errors it generates must be caught by an error handler in the application
itself.

Error handling can be dynamically-scoped or global.

Dynamically-scoped error handling is done by wrapping cl : handl er - bi nd or ¢l : handl er - case around abody of code.
This has the advantage that it allows you to tailor the response to errors in specific pieces of code and for specific types of
error. It has the disadvantage that it is not global. If you put it in the process function (the function argument to

np: process-run-function) it will apply only to the code that is executed in that process, but you still need it in each
process.

The global error handling is done by setting cl : * debugger - hook* . This appliesto anything that triesto enter the
debugger, in particular any cl : err or call that was not handled otherwise. It has the advantage that it really is global, but the
disadvantage that it cannot be tailored locally.

Sincethecl : *debugger - hook* isapplied only if the error was not handled, the two mechanisms can be used at the same
time and typically they are. The dynamically-scoped ones are used to give the accurate response, while the global one used to
catch any error that is not handled for some reason.

In either case, the handling means that some of your code is being executed. Either it isthe function is bound to the error type
incl : handl er - bi nd or settocl : *debugger - hook*, or the body in the clauseincl : handl er - case. This code should
the "right thing" to deal with the situation. For unexpected errors, that normally would mean generating some log of the
problem, telling the end-user that something went wrong, maybe giving the user some options of actions, and aborting (note
that ¢l : handl er - case aready aborted when the code is executed). Note that the type of condi t i on passed to handlers
may be affected by the delivery level (see 10.5 The condition system in delivered applications).

Thelog of the problem would normally be a bug form, which you can generate by:

(dbg: out put - backtrace :bug-form...)

If you can obtain the bug form, it will give you (the programmer) a chance to identify the reason for the error. Thereis also
dbg: | og- bug- f or mwhich writesit to afile. You would not normally show the bug form to the end-user. Instead, in a GUI
application you will probably want to display adialog informing the user that something went wrong and maybe giving them
some options. In a console application you probably want to just print a short message.

16

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_handle.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_hand_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debugg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debugg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_handle.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debugg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_hand_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_hand_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_cnd.htm

3 Writing Code Suitable for Delivery

Thereisasimple example of using cl : * debugger - hook* in:

(exampl e-edit-file "delivery/debugger-hook/application-with-errors")

3.3 Efficiency considerations

There are numerous efficiency considerations when coding for delivery. They are detailed in 14 Efficiency consider ations
when coding for delivery.

17

http://www.lispworks.com/documentation/HyperSpec/Body/v_debugg.htm

4 Delivering your Application

This chapter describes the process of delivering a completed application.

Thefirst part of the delivery process is to make a standalone version of your application, that runs without assistance from
LispWorks. After that, you may want to look into making your program smaller and more efficient.

Delivering a standalone application, and much of the work in making it smaller and faster, is very simple and is accomplished
by running a simple script. However, fine-tuning the delivery process to make the application as small and as fast as possible
isamore involved process that may require trial-and-error work.

A cadl tothefunctiondel i ver startsthe delivery process. A variety of arguments control the effects of delivery. A few of
the keywords are introduced below in 4.1 The delivery function: deliver and all are documented fully in 5 Keywordsto the
Delivery Function.

4.1 The delivery function: deliver

Thefunction del i ver isthe main interface to the delivery tools. Its basic syntax is shown below:

deliver Function

del i ver function file level &rest keywords
The following three arguments are required:
function The name of the function that starts an executable application.
file A string or pathname naming the file in which the delivered image should be saved.

On macOS, you may wish to create an application bundle containing your delivered image. For
an example showing how to do this, see 13.3 Creating a macOS application bundle.

level An integer specifying the delivery level.

Thisis ameasure of how much work Delivery does to reduce the size of theimage. 1t must be an
integer intherange 0 to 5. Level 5 isthe most severe, while the least work on image reduction is
done at level O.

For the complete syntax and description, see the reference entry for del i ver.

The most important keywords argumentsare: i nt er f ace and : nul ti processi ng. If your application uses the CAPI, you
must pass: i nt er f ace : capi . If your application does not use the CAPI, but does use multiprocessing, then you must pass
:mul tiprocessingt. Your first attempt to deliver your application should use no more than these keywords.

In addition, avariety of other keywords can be passed to del i ver . These are for fine-tuning by controlling aspects of
delivery explicitly. Add more keywords only when you find that you need them.

All thedel i ver keywords are documented in 5 Keywor dsto the Delivery Function. Additionally, they can been seenin
the LispWorks image by calling:

(require "delivery")
(deliver-keywor ds)

18

4 Delivering your Application

4.2 Using the delivery tools effectively

This section gives some useful tips that should speed the delivery process up and make mistakes less likely.

4.2.1 Saving the image before attempting delivery

If starting LispWorks and loading your application takes a significant amount of time, you can cut down on this startup time
by saving a copy of the image when the compiled application and library code has been loaded. Usesave- i nage (seethe
LispWorks® User Guide and Reference Manual) to do this. You then have an image that is "ready to go" for delivery as soon
asitisstarted up.

Note: Before and after saving the image, it isagood ideato check that the application still works exactly asit did running on
top of the LispWorks devel opment environment.

4.2.2 Delivering the application in memory

You can save time when experimenting with delivery parameters by delivering the application in memory rather than saving it
to disk.

If thedel i ver keyword : i n- menor y-del i very isnon-nil, the delivered image is not saved to disk, but instead starts up
automatically after the delivery operations are complete.

For example, agood early test is:

(deliver 'run
"t he-application”
0
sin-nenory-delivery t)

Note: The image exits as soon as the application terminates.

4.3 Delivering a standalone application executable

There are usually two considerations when delivering an application.

1. Making the application run standalone. That is, turn the application into asingle file that needs no assistance from
LispWorksin order to run.

2. Make the application smaller. That is, make the application smaller than the development environment plus application
code.

We recommend delivering a standalone executable application first, with no attempt to make the image smaller. Do this by
delivering at delivery level 0, which removes very little from the image. You can then look into making the image smaller if
you need to.

If you try to do both of these in the first attempt and the delivered application does not work, it is not clear whether the wrong
thing was removed from the image, or the application would not have delivered properly even if no image reduction work
was done.

Once you have developed and compiled your application, you are ready to deliver it as a standalone application. Delivering a
standalone version is done by calling del i ver with level O, which does not try to make the image smaller, but does remove
the LispWorks development tools as described in 1.2.2 Functionality removed by delivery. To do this modify your

del i ver. 1i sp script from 2.2 Delivering the program as appropriate to your application:

(i n-package "CL-USER")
(1 oad- al | - pat ches)

19

4 Delivering your Application

(1 oad- ny-application)
(deliver '"ny-function "my-progran O :interface :capi)

The (| oad- ny-appl i cati on) isnot needed if you haveit aready loaded as suggested in 4.2.1 Saving the image before
attempting delivery.

Thisis assuming your application uses CAPI. If it does not, you can eliminate: i nt er f ace : capi . Inthiscase, if your
application requires multiprocessing, you to need to pass: nul ti processingt:

(deliver “my-function "my-progrant O :nmultiprocessing t)

Then run LispWorkswith del i ver . 1 i sp asabuild script. You can do this using the graphical Application Builder tool (see
2.2.1 Delivering the program using the LispWorks | DE) or in acommand window, like this:

» On Microsoft Windows, open a DOS window and enter:
Ms- DOS> | i spwor ks- 8- 0- 0- x86-wi n32. exe -build deliver.lisp

* OnLinux and other Unix-like platforms, enter acommand line like thisin a shell:
% | i spwor ks-8-0-0-x86-1inux -build deliver.lisp
Note: the image name varies between the supported platforms.

* On macOS, use Terminal .app:

% ./1ispworks-8-0-0-nmacos64-universal -build deliver.lisp

This creates an executable in ny- pr ogr am exe on Microsoft Windows, or ny- pr ogr amon macOS, Linux and other Unix-
like platforms. When this executable starts, it callsny- f unct i on without arguments.

4.4 Delivering a dynamic library
Depending on how your application needs to interoperate with other software, you may want to build it asaDLL (also
referred to as adynamic library) rather than an executable.

4.4.1 Simple delivery of a dynamic library

Supply the names of your library's exportsin alist value for thedel i ver keyword: dl | - exports. Eachnamein:dl | -
expor t s should be astring naming a Lisp function defined by f I i : def i ne- f or ei gn-cal | abl e.

Thedel i ver function argument should beni | , because a dynamic library does not have a startup function.
Supply the file type of the delivered image in thedel i ver file argument if necessary.

Aswhen delivering a LispWorks executable, start at del i ver level 0. Increase the delivery level, if desired, after you have
debugged your library. Whenever possible, debug your code running in the LispWorks development image. If the problem
only occurs when your code runs inside a dynamic library, you may be able to debug it on your development machinein a
dynamic library created by save- i nage rather than del i ver.

4.4.2 Using the dynamic library

A Microsoft Windows application should use LoadLi br ary to load the DLL and Get Pr ocAddr ess to find the address of
the exported names. On other platforms the application should use dl open and dl sym

20

4 Delivering your Application

On some platforms there are special requirements for a program that loads a LispWorks dynamic library, as follows:

Linux The program should be linked with | i bpt hr ead. so.

FreeBSD The program should be linked with | i bpt hr ead. so.

x86/x64 Solaris The program should be compiled and linked multi-threaded, for example using the - mt option to
Oraclé'scc.

macOS No specia requirements.

A dynamic library can be loaded into LispWorks using f | i : r egi st er - nodul e, and thisis a convenient way of testing it.
See 4.4.5 Further example for an example.

For more information about the behavior of LispWorks dynamic libraries see the chapter "LispWorks as adynamic library” in
the LispWorks® User Guide and Reference Manual.

4.4.3 Simple Windows example

The script below createshel 1 o. dl | .

-------------------- hello. lisp -------------------------
(i n-package "CL- USER")
(1 oad-al | - pat ches)
7 The signature of this function is suitable for use with
rundl | 32. exe.
(fli:define-foreign-callable ("Hello"
:cal l'ing-convention :stdcall)
((hwnd w. hwnd)
(hinst w hinstance)
(string :pointer)
(cnd-show :int))
(capi : di spl ay- message "Hello world")
;; quit when library's job is done
(di'l-quit))

(deliver nil "hello" O :dll-exports '("Hello") :interface :capi)

You can build the DLL with this command line:

M5- DOS> | i spwor ks- 8- 0- 0- x86-wi n32.exe -build hello.lisp

and you can test it with this command line:

rundl 132 hello.dll,Hello

4.4.3.1 Using the Application Builder
The Application Builder tool provides another way to build and test hel | 0. dI | :
1. Inthe LispWorks for Windows IDE do Works > Tools > Application Builder.
2. Set the Build script to be your filehel | 0. i sp and do Works > Build > Build to build the DLL.

3. Do Works > Build > Run With Arguments. Enter r undl | 32 in the Execute pane, enter hel | 0. dl |, Hel | o inthe
Arguments pane, and press OK to test the library.

21

4 Delivering your Application

4.4.4 Simple non-Windows example

See the example in the LispWorks library at:

exanpl es/ del i very/ dynam c-1ibrary/

This example creates a LispWorks dynamic library and also atest program for loading it on non-Windows platforms.

To build and run the example, follow the instructions in README. t xt .

4.4.5 Further example

This example builds a dynamic library which in principle could be loaded by any application and called to calculate square
numbers.

For illustrative purposes, we show how to load the dynamic library into the LispWorks development image. Thisillustrates
some platform-specific initialization. Then we use the library, ensure it exits cleanly, and finally delete the dynamic library
file.

Note that on non-Windows platforms, to deliver adynamic library, the build machine must have a C compiler installed.

For convenience the code is presented without external files. To run it, copy each formin turn and enter it at the Listener
prompt.

1. Define apath for the dynamic library:

(defvar *dynam c-1i brary-path*
(rer ge- pat hnanes (nmake- pat hnane : nane "Cal cul at eSquar eExanpl e"
:type scm:*object-file-suffix*)
(get-temp-directory)))

2. Define afunction to create the dynamic library:

(defun save-dynamic-library ()
(let* ((file (open-tenp-file :file-type "lisp"))
(ns (nanestring file)))
(format file

(fli:define-foreign-callable (calculate-square :result-type :int)

((arg :int))
(* arg arg))
(deliver nil ~s 5 :dll-exports '(\"cal cul ate_square\"))"

(nanestring *dynam c-1li brary-path*))
(close file)
(sys:call-systemshow ng-output (list (lisp-inage-nane)
"-build"
ns))
(delete-file file nil)))

3. Create the dynamic library:
(save-dynani c-1i brary)
4. Define functions to use the dynamic library:

(fli:define-foreign-function (ny-quit-Iispworks "QuitLispWrks")
((force :int)
(mlli-timeout :int))
‘result-type :int

22

4 Delivering your Application

speci fying : nodul e ensures the foreign function finds
the function in our nodule
:nmodul e ' nmy-dynamic-library)
(fli:define-foreign-function (nmy-init-lispworks "InitLi spWrks")
((mlli-tinmeout :int)
(base-address (:pointer-integer :int))
(reserve-size (:pointer-integer :int)) ; really size_t
)
:result-type :int
:nmodul e 'nmy-dynamic-1library)
(fli:define-foreign-function cal cul ate-square
((arg :int))
:result-type :int
:nmodul e 'nmy-dynamic-1library)

5. Define afunction to load the dynamic library, useit, and then unload it:

(defun run-the-dynamc-library ()
(fli:register-nodul e 'my-dynamc-1library
. connection-style :inmediate
:file-nane *dynami c-1i brary- path*)
W ndows and nacOS can detect and resol ve nenory cl ashes.
On other platforns, tell the library to |l oad at different
address (that is, relocate) because otherwise it will use
the sane address as the running Li spWrks devel opnent i nage
Rel ocati on may be needed when | oading a Li spWrks dynanic
library in other applications.
#- (or nmswi ndows darwi n)
(my-init-lispwrks 0
#+| i spwor ks-64bit #x5000000000
#+| i spwor ks-32bit #x50000000
0)
(dotinmes (x 4)
(format t "square of ~d = ~d~% x
(cal cul ate-square x)))
(my-quit-lispwrks 0 1000)
(fli:disconnect-nodule 'ny-dynam c-library))

6. Use the dynamic library:

(run-the-dynamc-1ibrary)

Check the output to see that it computed square numbers.
7. (optional) Delete the dynamic library file:

(delete-file *dynam c-library-path* nil)

4.4.6 More about building dynamic libraries

On non-Windows platforms, you can supply filesto beincluded in the library viathe del i ver keyword argument : dl | -
added-fil es. Thisisuseful if you need to write wrappers around callsinto the library.

You can specify whether your LispWorks dynamic library initializes itself automatically on loading with the del i ver
keyword argument : aut omat i c-i ni t . For more information see "Initialization of the dynamic library” in the LispWorks®
User Guide and Reference Manual.

23

4 Delivering your Application

4.5 How to deliver a smaller and faster application

Once you have delivered your application at level 0 and tested that it works, you may want to try to make it smaller.

An entire Common Lisp system, and other supporting code, remains in a standalone image delivered at delivery level 0. A
good deal of this can usually be removed.

What can be removed depends on the needs of the application. Few applications use all the facilitiesin the basic image. For
instance, if the application does not use any complex numbers, all the code in the image for working with complex numbers
can be deleted.

4.5.1 Making the image smaller
You can specify that the image be made smaller in two complementary ways:

1. By increasing the delivery level.

Thisisthe smplest way to make the image smaller. Asyou increase the delivery level, delivery employs different and
increasingly severe strategies.

2. By specifying what to remove and what to keep, using keyword argumentsto del i ver .

Thisis amore complicated way to control image size, and should only be resorted to if there are problems or not enough
savings can be achieved by simply increasing the delivery level. These keywords are documented in 5 Keywordsto the
Delivery Function.

These two approaches are based upon the same mechanism: delivery levels are in fact nothing more than different
combinations of keyword parameters. But when you specify a delivery level and at the same time pass keyword values, the
values you pass override any settings forced by the delivery level.

As an example of how explicit directionsto Delivery can be necessary for effective delivery, consider the general addition
function, +. Theinternal representation of the function contains references to functions that carry out complex number
arithmetic, since + hasto usethemif it is given complex arguments. If you know your application does not ever pass complex
arguments to +, you should probably remove those functions from the delivered image.

Delivery cannot decide for itself that you do not pass + any complex arguments, and so does not del ete the complex number
functions. You can tell Delivery to do so explicitly, by passing : keep- conpl ex- nunber s ni | todel i ver. (See: keep-
conpl ex- nunber s for adiscussion of this keyword.)

4.6 How Delivery makes an image smaller

Delivery makes an image smaller in two ways.

1. By garbage collecting the image.

Thisis done automatically.

2. By "shaking" the image with the treeshaker.

Thisis done automatically from delivery level 2 upward.

4.6.1 Garbage collecting the image

The image is garbage collected during delivery. The garbage collector |ocates any unreferenced objects and frees the space
they occupy. Then Delivery compacts the remaining memory so that the saved image is smaller.

Garbage collection is agenerally good method of trimming the image size at delivery time. However, it is generally too

24

4 Delivering your Application

conservative, and so it has no effect on asignificant portion of the Common Lisp system and your application: Interned
symbols, class definitions, and methods discriminating on classes. Such objects must be dealt with by the treeshaker.

4.6.2 Shaking the image

From delivery level 2 upward, the image is "shaken" by default during delivery with the treeshaker. You can aso invoke the
treeshaker directly with thedel i ver keyword : shake- shake- shake.

As discussed above, the garbage collector does not delete any interned symbols, class definitions, or methods discriminating
on classes from the image, even when they are unused. Thisis becauseit is designed to keep any object for which areference
exigts.

There are always references to interned symbols, class definitions, and methods discriminating on classes. Interned symboals,
naturaly, are referred to by their package. Class definitions are always pointed to by their superclasses (the root class, t , has
no superclass but is protected from garbage collection), and a method discriminating on a class is always pointed to by the
class.

Thus we have a specid class of objects that cannot be removed under the normal garbage collection scheme. Using the
treeshaker, however, we can do so. The treeshaker does the following to overcome the default links between these objects:

1. Record the default links.
2. Break thelinks.

3. Garbage collect the image.
4. Reinstate the links.

Step 2 renders the objects the same as all othersin theimage. They are now only protected from garbage collection if there
are links to them elsewhere in theimage — that is, if they are actually used in the application.

The term "treeshaker” is derived from the notion that the routine picks up, by its root, atree comprising the objectsin the
image and the links between them, and then shakes it until everything that is not somehow connected to the root falls off, and
only the important objects remain. (Animage would usually be better characterized as a directed graph than atree, but the
metaphor has persisted in the Lisp community.)

25

5 Keywords to the Delivery Function

This chapter describes the keywords to the delivery function, del i ver.

The keyword descriptions are given in a phabetical order. Before the alphabetical section, there is atopic-based list of
keyword names which should be of value if you are looking for a keyword to perform a particular task for you, but do not
know what it is called or do not know if it exists.

Thelist of keywords can be printed by calling del i ver - keywor ds.

Note: Delivery isdesigned to work well with a small number of delivery keywords only. Start attempting delivery by passing
no keywords, or : i nterface: capi, or: nultiprocessingt, asrequired. Only add other keywords when you find that
you need them. If you are passing more than 6 delivery keywords, please contact Lisp Support with details.

Caution: Many keywords interact with one another, causing apparent values to change. It is agood ideato check how
keywords interact and also what happensto their defaults at the different delivery levels. In the descriptions of the default
values of deliver keywordsin 5.2 Alphabetical list of deliver keywords, the level appears as the symbol

*del i very-1evel *.

5.1 Topic-based list of deliver keywords

This section provides a topic-based index to the descriptions of del i ver keywords. Use the topic headings to find a keyword
related to a particular kind of delivery task, then look it up on the page given to see how to useit.

5.1.1 Controlling the behavior of the delivered application

The following keywords control aspects of the delivered application’'s behavior. There are keywords for specifying startup
banners, application icons, image security, and so on.

e ;action-on-failure-to-open-di spl ay

e jautomatic-init

e . clean-for-dunp-type

e :consol e

e ;editor-style

e :jicon-file
* . i mage-type
e :interface

e iinterrupt-function

e : keep-gc-cursor

e :|license-info

e :nultiprocessing

26

5 Keywords to the Delivery Function

e .0l d-cpu-conpatible

e : product-code

e : product-nane

e : Quit-when-no-w ndows

e :redefine-conpiler-p

e :registry-path

* :split

e :startup-bitmap-file

e :versioninfo

5.1.2 Testing and debugging during delivery

The following keywords can be used to help test and debug the application either during delivery or at run time. There are
keywords for encoding test routines into the delivered application, for ensuring that features such as the debugger and the
read-eval-print loop are kept in the image, for performing delivery without writing the image out to disk, and so on.

* :anal yse
e :call-count
e :clos-info

e :diagnostics-file

e s error-handl er

e ierror-on-interpreted-functions

e :post-delivery-function

e :in-nmenory-delivery

e :interrogate-synbols

* : keep-conditions

e : keep-debug- node

e : keep-nodul es

e : keep-stub-functions

* : keep-synbol - nanes

e :keep-top-|evel

e :keep-xref-info

e :kill-dspec-table

e lrun-it

e :synbol - nanes-action

27

5 Keywords to the Delivery Function

:war n-on-m ssi ng-tenpl at es

5.1.3 Controlling aspects of the executable or dynamic library

The following keywords control aspects of the executable or dynamic library.

:dl | -added-files

:dl |l -exports

:dll-extra-link-options

exe-file

cmani fest-file

5.1.4 Behavior of the delivery process

The following keywords control the behavior of the delivery processitself. They do not affect the delivered application's
behavior or the debugging information generated.

. di spl ay- progress- bar

5.1.5 Retaining or removing functionality

The keywords listed in this section control the main part of the delivery process, involved in keeping thingsin and deleting
things from the image. Most of the del i ver keywords arein this general category, so it has been split up into a number of
subcategories.

5.1.5.1 Directing the behavior of the treeshaker and garbage collector

The following keywords control the invocation of the treeshaker and garbage collector during delivery:

e : conpact

: shake- shake- shake

. ¢l ean- down

:redefine-conpiler-p

5.1.5.2 Classes and structures

The following keywords are for examining, for keeping and for removing data information in the image about structured data:
structures, classes and so on.

. cl asses-to-keep-effective-slots

:cl asses-to-renpve

:clos-initarg-checking

:generic-function-coll apse

.gf-col |l apse-output-file

:gf -col | apse-tty-output

28

5 Keywords to the Delivery Function

* : keep-clos

e :keep-cl os-object-printing

e :keep-structure-info

e . nmake-i nstance- keywor d- check

e :nmetacl asses-to-keep-effective-slots

e :shake-cl asses

e :shake-cl ass-accessors

e :shake-cl ass-direct-net hods

e :shake-cl asses

e :structure-packages-to-keep

e :synbol s-to-keep-structure-info

5.1.5.3 Symbols, SYMBOL-NAME, functions, and packages

The following keywords are for examining, for keeping and for removing symbols, functions, and entire packages from the
image.

e : del et e- packages

* .exports

e :functions-to-renpve

* : keep-docunent ati on

e . keep-foreign-synbols

* : keep-function-nane

e : keep-keywor d- nanes

e :keep-1oad-function

e : keep- package- nani pul ati on

e : keep-synbol s

e . nmacro- packages-to-keep

e :never-shake- packages

e :no-synbol -functi on-usage

e : packages-to-keep

e . packages-to-keep-externals

e : packages-t o- keep- synbol - nanes

e : packages-to-shake-externals

e :redefine-conpiler-p

29

5 Keywords to the Delivery Function

e :renpve-plist-indicators

e :renove-setf-functi on-name

e :shake-external s

e :smash- packages

e :smash- packages- synbol s

e :synbol - nanes-action

5.1.5.4 Editor functionality
Keywords for keeping and for removing editor commands and LispWorks environment tools:

e :editor-comunds-to-del ete

e :editor-commnds-to-keep

e :keep-editor

e : keep-wal ker

5.1.5.5 CLOS metaclass compression

e :classes-to-keep-effective-slots

e :nmetacl asses-to-keep-effective-slots

5.1.5.6 Input and output

The following keywords are for keeping and for removing code loading facilities, fas dumping facilities, specia printing
code, and so on, from theimage.

e :formt

e :keep-fasl-dunp

e :keep-lisp-reader

* : keep-1oad-function

e . keep-pretty-printer

e Iprint-circle

5.1.5.7 Dynamic code

The following keywords are for keeping and for removing code facilitating dynamic run time activities, such as
macroexpansion, evaluation, use of the Common Lisp reader and the lexer, and so on, from the image.

* :keep-eva

e : keep-nmacros

e . nmacro- packages-to-keep

e :renove-setf-functi on-nane

30

5 Keywords to the Delivery Function

5.1.5.8 Numbers
The following keywords are for keeping and for removing code from the image that can handle certain numerical types:

e : keep-conpl ex- nunbers

e . keep-trans-nunbers

e I nuUMeric

5.1.5.9 Conditions deletion
The following keywords are for controlling the preservation or deletion of conditions.

e :condition-del eti on-action

* : keep-conditions

e : packages-to-renove-conditions

5.2 Alphabetical list of deliver keywords

This section describes each of thedel i ver keywords. They are presented in alphabetical order.

:action-on-failure-to-open-display Keyword
Default value: ni |
GTK and Motif applications only: if the application uses the X11 code or CAPI, it may fail to runif it cannot open the X
display.

Inthis case, if the valueisafunction it calls this function with one argument, the display name. The default value of ni |
means that a message is printed and Lisp quits.

:analyse Keyword
Default value: ni |
When non-nil, the delivery code arranges to generate an analysis of what there isin the image before running the

application. If thevalue of : anal yse isastring or a pathname, it writes the analysis to thisfile, otherwise it writes to
*st andar d- out put *.

:automatic-init Keyword
Default value: t on Microsoft Windows, ni | on other platforms

;aut omati c-i ni t specifies whether a LispWorks dynamic library should initialize automatically on loading.
Automatic initialization is useful when the dynamic library does not communicate by function calls but prevents you
from relocating the library if necessary or doing other initialization.

To deliver adynamic library on non-Windows platforms, the build machine must have a C compiler installed. Thisis
typically gcc (which is available on the Macintosh by installing Xcode).

del i ver uses: automati c-init justlikesave-i mage. Seesave-i mage inthe Lisp\Works® User Guide and
Reference Manual for more details.

For more information about the behavior of LispWorks DLLs (dynamic libraries) and in particular a discussion of
automatic and explicit initialization, see the chapter "LispWorks as a dynamic library” in the Lisp\WWorks® User Guide

31

http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm

5 Keywords to the Delivery Function

and Reference Manual.

:call-count Keyword
Default value: ni |

This keyword can be used to produce reports about what is left in the image when delivery is over. It isuseful when
determining which remaining parts of the system are not needed. When ni | , no reports are generated.

Possiblevalues of : cal | - count are:

:size After running the application, the image is scanned, and the size of each object, in bytes, is
printed out. This produces alot of output, comparable in size to the delivered image itself, so
make sure you have plenty of disk spacefirst.

call After running the application, the image is scanned, and the name of each symbol found is
printed out. A + sign is printed next to the symbol if it isnon-nil. If the symbol isf boundp, the
call count (that is, the number of timesit was called while the application ran) is printed too.

Delivery setsthe call counter for all symbolsto 0 before the saving the delivered image.

Interpreted functions do not maintain acall counter.

t This has the same effect as: al | , but only symbols with function definitions that were not called
are printed.

The output iswritten to afile or the standard output. You can specify its name with : di agnostics-file.

:classes-to-keep-effective-slots Keyword
Default value: ni |

Classes on thislist retain their effective-slot-definitions.
:classes-to-remove Keyword
Default value: ni |
This keyword accepts alist naming the classes to be deleted from image during delivery.
Note: Their subclasses are also deleted, because they have lost their connection to the root class.
:clean-down Keyword
Default value: t
If true, call ¢l ean- down before saving the image.
:clean-for-dump-type Keyword
Default value: : user
Related tothe: t ype argument of save-i mage. Thisisfor expert use only - please consult Lisp Support before using.
:clos-info Keyword
Default value: ni |

With this keyword you can make the delivered image print alist of the remaining classes, methods, or both, after
execution terminates.

32

http://www.lispworks.com/documentation/HyperSpec/Body/f_fbound.htm

5 Keywords to the Delivery Function

Possiblevaluesof : cl os-i nf o are:

: cl asses Print remaining classes only.

: met hods Print remaining methods only.
: ¢l asses- and- net hods

Print remaining classes and methods.

The output iswritten to the file given by : di agnosti cs-file.

:clos-initarg-checking Keyword
Default value: (i f (delivery-val ue : keep-debug-node) :default nil)

Thevalue of the: cl os-i ni t ar g- checki ng keyword controls whether CLOS checks initialization arguments.
Initializations checked can include:

* Cdlstonake-i nst ance.

e Cadlstoreinitialize-instance.

» Cdlstochange-cl ass.

e call - next - met hod to updat e-i nst ance-f or - r edef i ned- ¢l ass with extrakeywords.

If thevalueist and: keep-cl os ist,: ful | -dynami c-definition or:method-dynani c-definition thenall
of these checks are switched on.

If thevalueist and: keep-cl os isnil, : no-dynani c-definitionor: meta-object-sl ots then only the
make- i nst ance checking is switched on, and the other checks are switched off.

If thevalueis: def aul t, the checks are not affected by the delivery process. See the function
cl os: set-cl os-initarg-checki ng for instructions on controlling the checks in this situation.

If thevalueisni |, then al of these checks are switched off.

Note: : cl os-i ni t ar g- checki ng always affects the behavior of the delivered application, regardless of : keep- cl os.

Note: : keep- debug- node retains the current setting of CLOS initialization checks (asset by : cl os-i ni targ-
checki ng or cl os: set - ¢l os-i ni t ar g- checki ng), rather than forcing the checks to be switched on.

Affected by: : keep- debug- node, : keep- cl os.

:compact Keyword
Default value:

(and (not (delivery-val ue : keep-debug-node))
(not (delivery-value :interrogate-synbols))
(eq (delivery-value :dll-exports) :no))

x86 platforms only: If thisis non-nil, the heap is compacted just before the delivered image is saved, with all functions
being made static. Thisusually gives the greatest size reduction in delivery. You may want to leave this until the final
delivery if you are using a slow machine on which this operation takes some time.

:condition-deletion-action Keyword
Default value: (when (> *delivery-level * 0) :delete)
Thevalueis one of:

33

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_reinit.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chg_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_call_n.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_upda_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

5 Keywords to the Delivery Function

ni | Do not delete any condition class. Thisisthe default at delivery level 0.

:delete Delete unwanted conditions. If an error for adeleted condition issignaled, it issignaled asa
simple error condition, with the argumentsin thef or nat - ar gunent s dot. Thisisthe default at
delivery level > 0.

:redirect Redirect unwanted conditionsto the first parent in their hierarchy which is not deleted.

See 10.5.1 Deleting of condition classes.

:console Keyword
Default value: : def aul t

Windows and Macintosh only. Thisisthe same asthe: consol e keyword argument to hcl : save- i mage. Seethe
LispWorks® User Guide and Reference Manual for details.

:delete-packages Keyword
Default value: ni |

This keyword takes a list of packages, in addition to those in the variable * del et e- packages*, that should be deleted
during delivery. The Common Lisp function del et e- package isused to do this.

When a package is deleted, all of its symbols are uninterned, and the package's name and nicknames cease to be
recognized as package names.

After the package is deleted, its symbols continue to exist, but because they are no longer interned in a package they
become eligible for removal at the next garbage collection. They survive only if there are references to them elsewherein
the application.

Note: Invoking the treeshaker has much the same effect on packages as deleting them. However, by deleting a package
you regain some extra space taken up by hash tables.

Affected by: : packages-t o- keep.

:diagnostics-file Keyword
Default value: ni |

The string passed with this keyword specifies afile to which output generated by : cal | - count and: cl os-infois
written (in that order). Thevalueni | meanswriteto * st andar d- out put *.

Compatibility Note: In LispWorks 4.4 and previous on Windows and Linux platforms, the default value of
:di agnostics-filewas"dvout.txt". Thedefault valueisnow ni | on all platforms.

:display-progress-bar Keyword
Default value: t

Windows only: by default a progress bar is displayed during the delivery process. If the value of the: di spl ay-
pr ogr ess- bar keyword isfase, it does not display a progress bar.

Compatibility Note: In LispWorks for Windows 4.4 and previous, there was no way to prevent the display of the
progress bar.

:dll-added-files Keyword
Default value: ni |

http://www.lispworks.com/documentation/HyperSpec/Body/f_del_pk.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm

5 Keywords to the Delivery Function

non-Windows platforms only: A list value means that the saved image is a dynamic library file rather than an executable.
The build machine must have a C compiler installed.

If non-nil, : dl | - added-fi | es should be alist of filenames and then adynamic library containing each named fileis
saved. Each file must be of aformat that the default C compiler can incorporate into a shared library and must not
contain exports that clash with predefined exports in the LispWorks shared library. The added files are useful to write
wrappers around callsinto the LispWorks dynamic library.

deliver uses:dl | -added-fil es justlikesave-i mage. Seesave-i mage inthe Lisp\Works® User Guide and
Reference Manual for more details.

For more information about the behavior of LispWorks DLLs (dynamic libraries) see the chapter "LispWorks as a
dynamic library" in the LispWorks® User Guide and Reference Manual.

:dll-exports Keyword
Default value: : def aul t

:dl | - export s isimplemented only on Windows, Linux, x86/x64 Solaris, Macintosh and FreeBSD. It controls
whether the image saved is an executable or adynamic library (DLL), just asfor save- i mage.

If: dl | -exportsis: default, thedelivered imageisan executable. The value : comis supported on Microsoft
Windows only (see below). Otherwise: dI | - export s should belist (potentially ni |). Inthis case adynamic library is
saved, and each string in : dI | - expor t s hames a function which becomes an export of the dynamic library and should
be defined asaLisp function using f | i : def i ne-f or ei gn- cal | abl e. Each exported name can be found by

Get Pr ocAddr ess (on Windows) or dl sym(on other platforms). The exported symbol is actually a stub which ensures
that the LispWorks dynamic library has finished initializing, and then enters the Lisp code.

On Microsoft Windows: dI | - export s can also contain the keyword : com or : dl | - expor t s can simply be the
keyword : com both of which mean that the DLL isintended to be used asa COM server. See the COM/Automation
User Guide and Reference Manual for details.

To deliver adynamic library on non-Windows platforms, the build machine must have a C compiler installed. Thisis
typically gcc (which isavailable on the Macintosh by installing Xcode).

On macOS the default behavior isto generate an object of type "Mach-O dynamically linked shared library" with file
type dylib. See: i mage- t ype below for information about creating another type of library on macOS.

On Microsoft Windows you can use LoadLi br ary from the main application to load the DLL and Get Pr ocAddr ess to
find the address of the external names.

Thereisan example DLL delivery script in 4.4 Delivering a dynamic library.

For more information about the behavior of LispWorks DLLs (dynamic libraries) see the chapter "LispWorks as a
dynamic library" in the LispWorks® User Guide and Reference Manual.

:dll-extra-link-options Keyword
Default value: ni |

Unix/Linux/FreeBSD and Macintosh only: A list of strings passed as arguments to the linker when creating a dynamic
library file.

;dll-extra-1ink-optionsisusedjustlikesave-i mage. Seesave-i nmage in the Lisp\Works® User Guide and
Reference Manual for more details.

For more information about the behavior of LispWorks DLLs (dynamic libraries) see the chapter "LispWorks as a
dynamic library" in the LispWorks® User Guide and Reference Manual.

35

5 Keywords to the Delivery Function

:editor-commands-to-delete Keyword
Default value: : al | - gr oups

When the Editor is loaded, you can delete some of its commands by passing alist of them with this keyword. Note that,
by default, most Editor commands are retained. See 10.3 Editorsfor delivered applications for more details.

Affected by: : keep- debug- node.

editor-commands-to-keep Keyword
Default value: ni |

When the Editor isloaded, you can keep some of its commands by passing alist of them with this keyword. Note that,
by default, most Editor commands are retained. See 10.3 Editorsfor delivered applications for more details.

-editor-style Keyword
Default value: : def aul t

This controls the editor emulation style used in capi : edi t or - pane (and subclasses) in the delivered image.

The value should be one of:

: emacs Use Emacs emulation.

:pc Use Microsoft Windows emulation on Windows, and KDE/Gnome style keys on GTK and Motif.
: mac Use macOS editor emulation.

:defaul t Use the default emulation style for the current platform. That is, use: pc on Microsoft Windows,

: mac on macOS/Cocoaand : emacs on GTK and Motif.
ni | Use the default setting on the current machine.

Note that not all emulation styles are supported on all platforms. Seethe the "Emulation" chapter of the Editor User
Guide for details about the different emulation styles.

.error-handler Keyword
Default value: ni |
Thevalue: bt r ace changes error handling, so that a simple backtrace is generated whenever er r or iscalled.
-error-on-interpreted-functions Keyword
Default value: ni |

If thisis non-nil, an error is signalled during delivery if the interpreter isremoved (with : keep- eval ni |l) while
interpreted functions remain in the image.

.exe-file Keyword

On Microsoft Windows, used as the basis for the new executable. Thisisfor expert use only - please consult Lisp
Support before using.

-exports Keyword
Default value: ni |

This keyword takes a list of symbols that should be exported from their home packages before any delivery work takes

36

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

5 Keywords to the Delivery Function

place.

.format Keyword
Default value: t

If thisisni |, part of the functionality of f or mat isremoved. The format directives deleted are:

-] RPOGECB? </ W$

The value can also be alist of directivesto keep. The elements of the list should be Lisp characters corresponding to
(some of) the format directives above.

.:functions-to-remove Keyword
Default value: ni |

This keyword takes a list of symbolsto be f makunbound during delivery.

:generic-function-collapse Keyword
Default value:

(and (>= *delivery-level* 3)
(not (nenber (delivery-value :keep-clos)
Y (t
:full-dynami c-definition
: met hod- dynani c-definition))))

If thisis non-nil, generic functions with single methods and simple arguments are collapsed — that is, replaced by
ordinary functions.

Note: Methods cannot be added to collapsed generic functions, since after their collapse to ordinary functions the
generic functions definitions are del eted.

:gf-collapse-output-file Keyword
Default value: ni |

If the valueisastring, it is the name of the file in which aformatted report detailing the actions performed during the
generic function collapse iswritten. If thevalueisni | , no report iswritten.

:gf-collapse-tty-output Keyword
Default value: ni |
If true, send the report of generic function collapsing to the console.

:icon-file Keyword
Default value:(i f (eq (delivery-value :console) t) nil :default)

Windows only: The name of afile containing the icon to use, in Windows . i co format, or ni | (meaning no icon -- not
recommended except for console applications) or : def aul t (which uses the icon from the LispWorks image).

Note: to achieve the same effect on macOS, do not pass: i con-fi | e, but put your delivered image in a suitable
application bundle which contains the application icon. See 15.1 Delivering a Cocoa CAPI application examples.

37

http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_fmakun.htm

5 Keywords to the Delivery Function

‘image-type Keyword
Default value: (i f (eq (delivery-value :dll-exports) :no) :exe :dll)
: i mage- t ype defines whether the image is to be an executable or adynamic library, , just asfor save- i mage.

Thevaluecanbe: exe, : dl | or: bundl e. It defaultsto: exe or: dl | according to thevalue of : dI | - exports and
therefore you do not normally need to supply : i mage-t ype.

;i mage-type : bundl e isused only when saving adynamic library. On macOS it generates an object of type "Mach-O
bundle" and is used for creating shared libraries that will be used by applications that cannot load dylibs (FileMaker for
example). It aso does not force the filename extension to be dyl i b. On other Unix-like systems: i mage- t ype merely
has the effect of not forcing the filename extension of the delivered image, and the format of the delivered imageisthe
same as the default. On Microsoft Windows : i mage- t ype : bundl e isignored.

On non-Windows platforms, : i mage-t ype : bundl e requires that the build machine hasa C compiler installed. Thisis
typically gcc (available by installing X code on the Macintosh).

Note: : i mage-t ype : bundl e iscompletely unrelated to the macOS notion of an application bundle.
:in-memory-delivery Keyword

Default value: ni |

If thisis non-nil, the delivered application is not saved, but run in memory instead.

This can be useful while still deciding on the best delivery parameters for your application. Writing the delivered image
to disk takes alot of time, and is not really necessary until you have finished work on delivering it.

Note: When using this keyword, the del i ver function still demands that you pass it afilename. However, the filename
you giveisignored. Youcanuseni | .

:interface Keyword
Default value: ni |

Set thisto: capi for applications that use the CAPI and/or Graphics Ports.

Because the CAPI uses multiprocessing, : i nt erf ace : capi asosetsthedel i ver keyword: nul ti processi ng to
t.

:interrogate-symbols Keyword
Default value: ni |
When non-nil this does two things:

Firstit loadsther ever se- poi nt er s- code module. This can be used to check what things to keep in theimage. If you
need documentation for r ever se- poi nt er s- code, please contact Lisp Support.

Secondly it sets the image up such that calling the application with command line argument - i nt er r ogat e- synbol s,
before starting the application, allowsyoutoi nt er r ogat e- synmbol s. See 11.15 Interrogate-Symbols.

:interrupt-function Keyword
Default value: : qui t

The:interrupt-function keyword specifies what happens when the delivered application isinterrupted. The value
should be one of:

38

5 Keywords to the Delivery Function

:quit (thedefault) ort.
On interrupt, the application quits. Notethat t was the default until LispWorks 8.0, but it should

be regarded as deprecated.

;ignore The application ignores interrupts.

: break On interrupt, the application callsbr eak. Thisisthe same behaviour asin non-delivered
LispWorks.

A function that takes no arguments.

On interrupt, the function is called. The application does nothing else except call the function, so
if the function returns without doing anything the interrupt is effectively ignored. Typically, the
function will ask the user whether they want to quit or not.

‘keep-clos Keyword
Default value:

(if (= *delivery-level* 0)
:full-dynam c-definition
(if (= *delivery-level* 1)
: met hod-dynani c-definition
:no-dynamni c-definition))

If thisis: no- dynami c- def i ni ti on, then the functions for dynamic class and method definition are deleted --
def met hod , def cl ass and so on and the direct slots and direct methods slots all classesaresettoni | .

If the value of the : keep- cl os keyword isni | , thenitistreated as: no- dynami c- defi ni ti on.

If itis: met a- obj ect - sl ot s, then the direct slots and direct methods of all classes are retained, and the dynamic
definition functionality is del eted.

Ifitis: met hod- dynani c- defi ni ti on, nothing is smashed or deleted, though the direct slots and direct methods of
all classes are emptied. With this setting, methods can be defined dynamically but not classes.

Ifitis: full -dynani c-definitionort, thenal dynamic class and method definition is allowed.

Compatibility Note: In LispWorks 4.3 and previous versions the values : no- enpt y and : no- enpt y- no- dd were
documented for the : keep- cl os keyword. These values are still accepted in LispWorks 8.0, but you should not rely on
this. Change to one of the new values described above.

Note: CLOS initarg checking in the delivered application by make- i nst ance and other initializations may be
controlled by : cl os-i ni t ar g- checki ng.

:keep-clos-object-printing Keyword
Default value:

(or (delivery-val ue : keep-debug- node)
(<= *delivery-level* 2))

If ni |, the generic function pri nt - obj ect isredefined to be the ordinary function x- pri nt - obj ect :

(defun x-print-object (object stream
(t-print-object object stream)

39

http://www.lispworks.com/documentation/HyperSpec/Body/f_break.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pr_obj.htm

5 Keywords to the Delivery Function

(defun t-print-object (object strean
(print-unreadabl e-object (object stream:identity t)
(if (and (fboundp 'find-class)
(find-class 'undefined-function nil)
(ignore-errors
(typep object 'undefined-function)))
(progn
(wite-string "Undefined function " stream
(prinl (cell-error-name object) stream)
(progn
(princ (or (ignore-errors (type-of object))
"<Unknown type>")
strean)
(ignore-errors
(when-let (naner (find-synbol "NAME" "CLOS"))
(when-let (nane (and (slot-exists-p object naner)
(sl ot -boundp object naner)
(sl ot-val ue object namer)))
(format stream" ~a" nane))))))))

You may redefine x- pri nt - obj ect .

Affected by: : keep- debug- node.

:keep-complex-numbers Keyword

Default value: (del i very-val ue : numeri c)
If thisis non-nil, al numeric functions that can handle complex numbers are retained.

Compatibility Note: This keyword has an effect on all platformsin LispWorks 5.0 and later. It has no effect in
LispWorks 4.4 and previous on Windows and Linux platforms.

Affected by: : nuneri c.
:keep-conditions Keyword
Default value: ni |
The value should be one of:
> none Eliminate all conditions.

:m ni mal Keep only the conditions that are in the class-precedence-list of si npl e-error.
(si mpl e-error, sinpl e-condi ti on error, and seri ous- condi ti on condition). Thisis
useful for applicationsthat useonly i gnor e- err or s. It isequivaent to:

: keep-conditions '(sinple-error) :packages-to-renove-conditions ' (" COMON

LI SP")
call Keep all conditions.
A list A list of conditionsto keep. For each condition, all the precedencelist is kept.

See 10.5.1 Deleting of condition classes.

:keep-debug-mode Keyword

Default value: (> 5 *del i very-1Ievel *)

If thisis non-nil, by default delivery retainsthe full TTY debugger, so it can be used when debugging delivered
applications.

40

http://www.lispworks.com/documentation/HyperSpec/Body/e_smp_er.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_smp_er.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_smp_cn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_seriou.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_ignore.htm

5 Keywords to the Delivery Function

On Unix, if thevalueis: al |, al debug information is kept.

On all platforms, if : keep- debug- node isset to: keep- packages, al packages are retained as well as the debugger,
so that they can be used for debugging purposes.

Thevalue of ; keep- debug- node affects the default value of the following keywords too:

e ! conpact

e : keep-cl os-object-printing

e : keep-eval

e : keep-function-nane

e . keep-1lisp-reader

e : keep-1oad-function

e . keep-structure-info

e : keep-top-Ilevel

e . make-i nstance- keywor d- check

e : no-synbol - functi on-usage

e : packages-t o- keep- synbol - nanes

keep-documentation Keyword
Default value: (= *del i very-1evel * 0)

If non-nil, documentation strings in the image are preserved.
‘keep-editor Keyword
Default value: ni |

Keep the editor intact. By default some parts of the editor (mainly those that deal with Lisp definitions) are explicitly
eliminated. When this keyword is true, nothing is removed.

keep-eval Keyword
Default value:

(or (delivery-val ue : keep-debug- node)
(< *delivery-level* 4))

If thisis non-nil, the evaluator is preserved.

keep-fasl-dump Keyword
Default value: ni |
If thisis non-nil, the internal functions needed to dump fad files are preserved.

‘keep-foreign-symbols Keyword
Default value: ni |

This keyword isignored.

41

5 Keywords to the Delivery Function

:keep-function-name Keyword
Default value:

(if (delivery-val ue :shake-shake-shake)
(if (delivery-val ue :keep-debug-node) t nil)
call)

This keyword controls the retention of names for functions. The following values are accepted:

ni | Do not keep names.

:mni mal Keep names as strings, but keep no other debug information.
t Keep names as strings and retain argument information.
call Do not modify function names.

On x86 platforms, if : cal | - count iseithert or: al |, then: keep-function- nane issettot automaticaly.

When : keep- debug- node ishon-nil, : keep- f uncti on- nane issettot automatically.

Affected by: : keep- debug- node, : shake- shake- shake.

Compatibility Note: In LispWorks 4.4 and previous on Windows and Linux platforms, if the keyword : conpact isnon
-nil, function names are eliminated. Thisis not true in LispWorks 5.0 and later versions.

‘keep-gc-cursor Keyword
Default value: ni |

Windows only: If thisis non-nil, the mouse pointer turns into a distinctive "GC' cursor during the garbage collection of
generations 1 and above. (Even if the cursor is kept, generation O collections are never indicated, because they occur
frequently and do not cause a noticeable delay in operation.)

:keep-keyword-names Keyword
Default value: t

If non-nil, keep symbol names of keywords.

:keep-lisp-reader Keyword
Default value:

(or (delivery-val ue : keep-debug-node)
(< *delivery-level* 5))

If thevalueisni | , the functions and values used to read Lisp expressions are deleted. This means that the listener no
longer works. On non-Windows platformsit also prevents| w: user - pr ef er ence and
capi :top-1evel -interface-geonetry-key fromworking.

The: keep- i sp-reader keywordissettot automatically if : keep- debug- node ist .

‘keep-load-function Keyword
Default value:

(when (or (delivery-val ue : keep-debug- node)
(delivery-val ue : keep-nodul es)

42

5 Keywords to the Delivery Function

(<= *delivery-level* 2))
cfull)

If thisisni | , thel oad function isdeleted. Run time loading is no longer possible when this is done, whether or not
r equi r e isbeing used.

It can take two non-nil values:
t Keeps the loading code required to load data files.

cfull Keepsthe code asfor t , plus those internal functions that are required for loading Lisp code.
Note that if the Lisp code uses functions that are shaken, these functions must be explicitly kept.

Note: In most cases you need to keep the COMMON- LI SP package if files might be loaded into your application, and
probably some other packagestoo. (See: packages-t o- keep.)

:keep-macros Keyword

Default value: (< *del i very-1evel * 2)

If thisisni | , the functions macr oexpand, nacr oexpand- 1 and macr o- f unct i on are deleted, and all macro
functions and special forms are undefined.

Note: This has no effect on compiled code, unlessit explicitly calls macr oexpand.

:keep-modules Keyword
Default value: ni |

If non-nil, the mechanism for loading modules supplied by LispWorksis preserved. We recommend using r equi r e to
load all modules before delivery (see 10.7 M odules).

Compatibility note: In LispWorks 7.0 and previous versions, thisdefaulted to (< *del i very-1 evel * 1).

:keep-package-manipulation Keyword
Default value: (< *del i very-1level * 2)

If thisis non-nil, the following package manipulation functions are preserved: shadowi ng-i nport, shadow,
unexport, unuse- package, del et e- package, r enane- package, i nport, export, nake- package,
use- package, uni ntern.

:keep-pretty-printer Keyword
Default value: ni |

If ni | thepprint functionality is eliminated.

‘keep-structure-info Keyword
Default value:

(or (delivery-val ue : keep-debug- node)
(case *delivery-Ilevel *

((0 1) t)
(2 :print)
(otherwise nil)))

This keyword controls the extent to which structure internals are shaken out of the image.
If ni |, all references from structure-objects to their conc-names, (BOA) constructors, copiers, slot names, printers and

43

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mexp_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mexp_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_macro_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mexp_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_shdw_i.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_shadow.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_unexpo.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_unuse_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_del_pk.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rn_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_import.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_export.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_use_pk.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_uninte.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_pr.htm

5 Keywords to the Delivery Function

documentation are removed. See also : st r uct ur e- packages-t o- keep.

To retain dlot name information (necessary if either the #S() reader syntax or CLOS sl ot - val ue areto be used for
structure-objects) set : keep-structure-infoto:slots.

To retain slot names and the default structure printer, set : keep-structure-infoto: print.

Note: Any functions (constructors, copiers or printers) referenced in the application are retained, just as any other code
would be. It istherefore not normally necessary to set this keyword.

Affected-by: : keep- debug- node.

‘keep-stub-functions Keyword
Default value: t

When thisis non-nil, all functions deleted by the treeshaker are replaced by small stub functions. When a deleted
function is called by the application, its stub prints a message telling you that the function has been deleted and how it
can be reinstated. These stubs can take up alot of space if you smash large packages, but are invaluable while refining
delivery parameters.

For instance, if your application calls conpl exp after delivery with : keep- conpl ex- nunber s settoni | , amessage
like the following is printed:

Attenpt to invoke function COWLEXP on argunents (10).
COVPLEXP was renoved by Delivery keyword : KEEP- COVPLEX- NUVBERS
NI L.
Try : KEEP- COVPLEX- NUMBERS T.

keep-symbol-names Keyword
Default value: ni |

A list of symbols that must retain their symbol names.
‘keep-symbols Keyword
Default value: ni |

This keyword takes alist of symbols that are retained in the delivered image. A pointer to thislist is kept throughout the
delivery process, protecting them from garbage collection.

:keep-top-level Keyword
Default value:

(or (< *delivery-level* 5) (delivery-value :keep-debug-node))

If thisisni | , functions for handling the top level read-eval-print loop are deleted. Note that this means that if the line
based debugger isinvoked, thereis no way to communicate with it.

Note: thetop level history is cleared, regardless of the value of the : keep-t op- | evel argument.

Affected by: : keep- debug- node.

:keep-trans-numbers Keyword

Default value: (del i very-val ue : nuneri c)

If thisisni | , eliminate transcendental functions (for example si n).

44

http://www.lispworks.com/documentation/HyperSpec/Body/f_slt_va.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_comp_3.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sin_c.htm

5 Keywords to the Delivery Function

Compatibility Note: This keyword has an effect on al platformsin LispWorks 5.0 and later. It has no effect in
LispWorks 4.4 and previous on Windows and Linux platforms.

Affected by: : nuneri c.

‘keep-walker Keyword
Default value: ni |

If thisisni | , the walker is deleted.

‘keep-xref-info Keyword
Default value: ni |
If non-nil, keep cross-reference information that is used by functions like hcl : who- cal | s and hcl : cal | s-who.

Compatibility note: In LispWorks 6.1 and earlier versions cross-reference information is kept if any of the functions
that useit is kept. Now the cross-reference information is cleared even if any of these functionsis kept, unlessthis
keyword is non-nil.

‘kill-dspec-table Keyword
Default value: (> *del i very-1evel * 0)

The dspec table is an internal table used for tracking redefinitions by def advi ce, t r ace and so on. If this keyword is
non-nil it does an implicit call tount r ace, and previous uses of t r ace and def advi ce are discarded.

:license-info Keyword
Default value: ni |

This keyword is obsolete. Was previously used to pass license information for products on certain platforms.

:macro-packages-to-keep Keyword
Default value: ni |

A list of package names. Symbols in these packages that have a macro definition are not f makunbound when the
delivery process deletes macros from the image (when : keep- macr os isni |). Note that if these symbols are not
referenced, they may be shaken anyway. When : keep- macr os isni | , this keyword has no effect.

:make-instance-keyword-check Keyword
Default value: (i f (delivery-val ue : keep-debug-node) :default nil)

This keyword is deprecated in favor of : cl os-i ni t ar g- checki ng.

The value of the : nake- i nst ance- keywor d- check keyword controls whether make- i nst ance checksitsinitargsin
the delivered application, and in LispWorks 6.1 this was extended to include checking in the other CLOS initializations.

Note: : nake- i nst ance- keywor d- check now does the same comprehensive checking as: cl os-i ni t ar g-
checki ng but is deprecated asits nameis no longer accurate. Please use: cl os-i ni t ar g- checki ng instead.

Affected by: : keep- debug- node.

:manifest-file Keyword
Default value: ni |

Windows only. Overrides the default application manifest, which can affect whether an executable application is themed.

45

http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_fmakun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

5 Keywords to the Delivery Function

If the value is a string it must name afile that isalegal application manifest containing the "dependency” element for
Microsoft.VC80.CRT. If the value is the keyword : no- conmon- cont r ol s- 6 amanifest without the element for
common controlsis used. If thevalueisni |, then the LispWorks manifest is used.

See 7.2 Application M anifests for more information about Windows application manifests in LispWorks applications.

:metaclasses-to-keep-effective-slots Keyword
Default value:

(when (menber (delivery-value : keep-clos)
"(t :full-dynam c-definition))
call)

If the valueis alist, the elements are metacl asses whose classes retain their effective-dot-definitions. Value: al | means
all metaclasses.

‘multiprocessing Keyword
Default value: ni |

If set tot, starts multiprocessing with the delivery function (that is, the first argument to del i ver) running in a process
created specialy for it.

If set to : manual , allows multiprocessing to be started by the delivery function, which should call
nmp:initialize-multiprocessing.

If set toni |, multiprocessing cannot be used in the delivered application.

The value of this keyword argument is automatically t when: i nterface is: capi, soyou only need to supply it if
CAPI isnot being used.

:never-shake-packages Keyword

Default value: del i very: : *never - shake- packages*

A list of package names that will not be shaken. These packages and all their symbols are preserved.

:no-symbol-function-usage Keyword
Default value: (not (delivery-val ue : keep-debug- node))
x86 platforms only: eliminates symbols that are used only for function calls.

See 11.14 Debugging with :no-symbol-function-usage for information about debugging an image where these symbols
have been eliminated.

:numeric Keyword
Default value: t

Keep all numeric operations, unless overridden by : keep- conpl ex- nunbers.

Compatibility Note: This keyword has an effect on all platformsin LispWorks 5.0 and later. It has no effect in
LispWorks 4.4 and previous on Windows and Linux platforms.

:o0ld-cpu-compatible Keyword
Default value: t
This keyword has an effect on x86 32-bit platforms only. It allows the delivered image to run on old Pentium-compatible

46

5 Keywords to the Delivery Function

CPUs that do not support SSE2 instructions.

LispWorks 6.0 and later on x86 platforms uses instructions that are part of SSE2. All new CPUs have SSE2, but it may
be required to run LispWorks runtimes (that is, delivered images) on old machines without SSE2. On these machines the
SSE?2 instructions are not implemented, and cause exceptions.

When : ol d- cpu- conpat i bl e ishon-nil, del i ver creates aruntime with a mechanism that checks for SSE2 on
startup. If the run time machine does not have SSE2, this mechanism then eliminates the SSE2 instructions. This
mechanism allows the runtime to run on any Pentium-compatible CPU.

The cost associated with this mechanism is negligible, so normally thereis no reason to change the default value of : ol d
- cpu-conpati bl e.

:packages-to-keep Keyword
Default value: ni |

This keyword takes a list of packages to be retained. All packagesin the list are kept in the delivered image, regardless
of the values of the: smash- packages and: del et e- packages keywords.

If : packages-to-keepis: all, thenthetwo variables above are set to ni | . See also 10.11 Coping with intern and
find-symbol at run time.

Note: Other keywords push packages onto the : packages-t o- keep list.

Note: When you keep a package by : packages-t o- keep, this does not cause that package's symbols to be kept. To
retain symbols, see 10.10.2 Ensuring that symbols are kept.

:packages-to-keep-externals Keyword
Default value: ni |

A list of packages that should retain their external symbols, even when : shake- ext er nal s ist (the default). When
: shake- ext ernal s isni |, thiskeyword has no effect.

The externals of the set f package are always retained, regardless of the value of : packages-t o- keep- ext ernal s.

:packages-to-keep-symbol-names Keyword
Default value:

(if (or
(delivery-val ue : keep- debug- node)
(< *delivery-level* 5))
call
nil)

A list of packages that should keep their symbol names. The names of symbols in these packages are not modified,
irrespective of the value of : synbol - nanes- acti on.

Thevaluecanasobe: al | , meaning all packages.

‘packages-to-remove-conditions Keyword
Default value: ni |

A list of packages whose conditions are removed (that is where the synbol - package of the name of the condition is
one of the packages). The system automatically adds the internal packagesto thislist. Conditionsthat are in these
packages but are dl'so inthe: keep- condi ti ons list or its precedence list are kept. The defaults cause all the conditions
that are defined by the system and are not standard to be deleted. To keep all the conditions, you should pass : keep-

47

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_3.htm

5 Keywords to the Delivery Function

condi tions:all (or:condition-del etion-actionnil). Toeiminateall conditions, you should pass: keep-
condi tions : none.

See 10.5.1 Deleting of condition classes.

:packages-to-shake-externals Keyword
Default value: ni |

A list of package names for which their external symbols should be shaken when the value of : shake- ext er nal s is
ni | . When the value of : shake- ext er nal s ist (the default), this keyword has no effect.

The externals of the keywor d package are always shaken, regardless of the value of : packages-t o- shake-
external s.

:post-delivery-function Keyword
Default value: ni |

When non-nil, the value : post - del i very-f uncti on should be afunction designator for a function of one argument:

post - del i very-functi on successp

The system calls: post - del i very-functi on after delivery. successpistrueif delivery was successful and false
otherwise.

Note: during the delivery process, the Lisp system can be in an unstable state, so it is not always possible to recover
when delivery is not successful.

:print-circle Keyword
Default value:

(or (= *delivery-level* 0)
(delivery-value :interrogate-synbols))

Whenthisisni | , the mechanism for printing circular structuresis eliminated.

:product-code Keyword
Default value: ni |
This keyword is ignored.

:product-name Keyword

Default value: ni |

On Microsoft Windows only : pr oduct - nane provides the name that is used in CAPI dialogs which have no specific
title or owner.

On other platforms, : pr oduct - nane isignored.

:quit-when-no-windows Keyword
Default value: t

If t, then after the application has opened at |east one CAPI window, whenever the application is waiting for input, a
routine is run to check whether any of its CAPI windows are still open. If there are no open windows, the application
exits.

48

5 Keywords to the Delivery Function

On Microsoft Windows, if the application is an automation server, the checking routine also checks the server. If the
application usescom aut omat i on- server -t op- | oop (maybe indirectly viacom aut omat i on- ser ver - nai n), the
checking routine does not cause exit until com aut omat i on- server -t op- | oop exits. Otherwise the checking routine
does not cause exit aslong as the server isused. After the server is not used, the exit is further delayed by the exit-delay
(default 5 second, see documentation for com set - aut omat i on- server - exi t - del ay).

The function set - qui t - when- no- wi ndows can be used to turn checking on and off dynamically at run time regardless
of the value of the: qui t - when- no- wi ndows keyword.

Note: a multiprocessing LispWorks executable will stop multiprocessing when there is no process other than the Idle
Process. Soif your application simply displays a window, which is closed, then multiprocessing will stop. Thisis
independent of : qui t - when- no- wi ndows.

:redefine-compiler-p Keyword
Default value: (>= *del i very-1level * 1)
When thisistrue, the function conpi | e iseliminated from the image.

Note: the function conpi | e-fi | e isalwaysremoved by delivery, regardless of : r edef i ne- conpi | er - p.

‘registry-path Keyword
Path for storing user preferences.
On Microsoft Windows thisisrelativeto HKEY CURRENT _USER.
On macOS, Linux and other Unix-like platforms this is relative to the user's home directory.

Note: see 10.4 Delivery and CAPI for information on a possible problem with delivered applications that record
window geometriesin the registry.

:remove-plist-indicators Keyword
Default value: ni |

This keyword takes alist of pl i st indicators to be deleted.

:remove-setf-function-name Keyword

Default value: (not (del i very-val ue : keep- macr os)

Whent , the direct pointer from asymbol toitsset f expansion isremoved. That means that macroexpansion of set f is
not reliable anymore. Normally, that is not a problem for the application.

run-it Keyword
Default value: t
If thisist, the function argument to del i ver isused as the application startup function.
If thisisni | , no application startup function is called when the delivered image is started up.

The image exitsimmediately upon startupwhen : run-it isnil. Any:cal | - count report requested is still generated
on exit.

This keyword can be useful if you want to look at the symbolsin the image (with the keyword : cal | - count) but
cannot you actually run the application — for example because the application links up to a database, but the database
has not been started up. In such cases, setittonil .

49

http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

5 Keywords to the Delivery Function

:shake-class-accessors Keyword
Default value:

(cond ((>= *delivery-level* 4) :renove)
((>= *delivery-level* 3) t)
(t nil)))

This keyword controls whether class accessor functions are kept in their dlot-definition objects. Removing them allows
unreferenced functions to be deleted.

Ifitisnil it ensuresall accessors are kept.
If it isnon-nil, class accessors which are never referenced are del eted.
Ifitis: renmove, al class accessor functions are removed from their slot descriptions.

In general, accessors may be safely removed. However, if your application needs to examine the slots of class instances,
you need to retain them.

:shake-class-direct-methods Keyword

Default value: (>= *del i very-1evel * 3)
This keyword controls whether class-direct methods are deleted.
Note: A method is not deleted if it specializes on aclass that remains in the delivered image.
:shake-classes Keyword
Default value: (>= *del i very-1evel * 2)
This keyword controls whether classes are shaken.
:shake-externals Keyword
Default value: t
If thisisni |, all external symbols are preserved.

If thisis non-nil, external symbols are also made eligible for garbage collection when the treeshaker isinvoked. See also
: packages-t o-shake- external s.

:shake-shake-shake Keyword

Default value: (>= *del i very-1evel * 2)

If thisis non-nil, the treeshaker isinvoked during delivery. The treeshaker attempts to get rid of unreferenced symbols
from the delivered image.

It uninterns every package'sinternal symbols. (In the specia case of the KEYWORD package, it uninterns the external
symbols.) A garbage collection is then carried out, after which any remaining symbols are re-interned in the package
from which they came. A similar procedure for class definitions and methods discriminating on classesis aso
performed.

If you require that certain internal symbols be kept, and know they will not be kept because they are not referenced in the
image, you can export them explicitly. See: expor t s. Doing so prevents them from being deleted.

External symbols are shaken by default.. See: shake- ext er nal s.

50

5 Keywords to the Delivery Function

:smash-packages Keyword
Default value: ni |

This keyword takes a list of packages that should be smashed during delivery.

When a package is smashed, all of its symbols are uninterned, and the package structure is deleted. Also, itsfunction
definitions, property lists, classes, values, and structure definitions are deleted or settoni | .

See 10.9.3 Smashing packages for more details.

Caution: Smashing destroys a whole package and all information within its symbols. You are advised to avoid using it if
possible. A better aternative, if you cannot deal individually with symbols, is: smash- packages- synbol s.

Affected by: : keep-cl os, : packages-t o- keep, : keep- debug- node.

:smash-packages-symbols Keyword
Default value: ni |

Takes alist of packages asfor : smash- packages but only the symbolsin each specified package are smashed. The
package is left, making it easier to see which symbolsin the specified packages are pointed to by other packages.

:split Keyword
Default value: : def aul t
Themainuseof : split istoallow third-party code signing to be applied to the executable or dynamic library.

See the documentation for split argument to save- i mage in the LispWorks® User Guide and Reference Manual.

:startup-bitmap-file Keyword
Default value: : i nt er nal
Either ni |, : i nt er nal or astring naming afile containing an image to be displayed when the application starts.
Thevalueni | means no bitmap is displayed.
The default value : i nt er nal causesthe "Built With LispWorks" splash screen to be displayed.

If astring is supplied on Microsoft Windows, the image needs to be in Windows Bitmap format and must be Indexed
Color rather than RGB color.

If astring is supplied on Cocoa, GTK and Motif, the image can be in any format supported by Graphics Ports, and the
filewill beread asif by gp: r ead- ext er nal - i rage. Seethe "Working with images" section in the CAPI User Guide
and Reference Manual for details.

On Windows the user can dismiss the startup screen by clicking on it. It can be dismissed programmatically by calling

wi n32: di sm ss-spl ash- screen - see the LispWorks® User Guide and Reference Manual for details.
:structure-packages-to-keep Keyword

Default value: ni |

A list of packages. For symbols in these packages that have a structure definition, delivery keeps all the information in
this structure definition, regardless of the value of : keep- st ruct ure-i nf o.

51

5 Keywords to the Delivery Function

:symbol-names-action Keyword

Default value: (>= *del i very-1 evel * 5)

Defines what to with symbol names. Wheniitisni |, or when : packages-t o- keep- synbol - nanes is: al |, dl
symbol names are kept. When : synbol - nanes- acti on ist, symbol names (except those which are kept by : keep-
synbol - nanes, : keep- keywor d- nanmes or : packages-t o- keep- synbol - nanes) are changed to the same string
"Dummy Synbol Nanme".

: synbol - nanmes- act i on istreated asni | unlessthe treeshaker isinvoked during delivery (see: shake- shake-

shake).

Compatibility Note: in LispWorks 4.4 and previous on Windows and Linux platforms, : synbol - nanes- acti on't
shortens symbol names to athree-character unique code. This has changed, as described above, in LispWorks 5.0 and
later.

Removing symbol names makes it very difficult to debug the application, and it is assumed that it is done after the
application is essentially error free. However, some applications may make use of symbol names as strings, which may
cause errors to appear only when the symbol names are removed. In some cases the easiest solution isto retain symbol
names. Thiswill result in alarger executable, though the size increase is usually small.

If you do want to remove symbol names and need to debug your application, : synbol - nanes- act i on takes these
other values: spel | -error, :reverse, :invert and: pli st. Notethat these other values are only useful when
debugging an application which works with : synbol - nanes- acti on ni | but not with: synbol - nanes-actiont.
In other cases they simply make debugging difficult to no advantage.

Inthecase of : spel | - error (which isprobably the most useful), the last alphabetic characters in the first 6 characters
of the symbol name are rotated by one, that is, A becomes B, g becomes h, and Z becomes A. This leaves the symbol
names quite readable, but any function that relies on symbol names fails. A more drastic effect is achieved by the value
: rever se, which reverses the symbol name. Thevalue: i nvert just changesthe case of every aphabetic character to
the other case. Thisis more readablethan : spel | - err or, but if the application relies on symbol names but does not
care about case, the errors do not appear. Thevalue: pl i st causes the symbol names to be set to the dummy name, but
the old string isbeing put onthe pl i st of thesymbol (get synbol 'sys::real -synbol - nane). A simple
backtrace (obtained after : er r or - handl er : bt r ace) usesthis property when it exists to get the symbol name to

display.

If the debugging shows that some symbols must retain their symbol name for the application to work, this must be
flagged to del i ver by either : keep- synbol - nanes or : packages-t o- keep- synbol - nanes.

After debugging your delivered application using : spel | -error, :reverse, :invert or: plist, youmay want the
production build to be done with : synbol - nanes- acti ont to remove symbol names and achieve a small reduction in
size.

Compatibility Note: in LispWorks 4.4 and previous on Windows and Linux platforms, : synbol - nanes- acti on
allowsthevalue: dunp. Thisisno longer supported.

:symbols-to-keep-structure-info Keyword
Default value: ni |

A list of symbols of which the structure information should be kept, in addition to the symbols in the packagesin
. structure-packages-to-keep.

:versioninfo Keyword
Default value: ni |

Windows only. The keyword : def aul t or aplist containing containing version information to be placed in the delivered

52

5 Keywords to the Delivery Function

file.

If : versi oni nfoisnil, noversioninformation issupplied. If : ver si oni nf o is: def aul t, then the version
information in the: exe-fi | e isretained (by default, thereisno version info). Otherwise: ver si oni nf o should be a
plist of the following keywords. All strings should be in aform suitable for presentation to the user. Some of the
keywords discussed below are mandatory, and some are optional .

Mandatory keywords:
:binary-version :binary-file-version :binary-product-version

You must specify either : bi nary- ver si on or both : bi nary-fil e-versi onand
: bi nary- product - ver si on.

Thefile version relates to thisfile only; the product version relates to the product of which this
file forms a part.

If : bi nary-versi on isspecified, it isused as both the file and product version.

The binary version numbers are 64-bit integers; conventionally, this quantity is split into 16-bit
subfields, denoting, for example, major version, minor version and build number. For example,
version 1.10 build 15 might be denoted #x0001000A0000000F.

Note: Thereis no requirement to follow this convention; the only requirement isthat later
versions have larger binary version values.

:version-string :file-version-string :product-version-string

You must specify either : ver si on-stringor both:file-version-stringand
: product -versi on-string.

Thefile version relates to thisfile only; the product version relates to the product of which this
file forms a part.

If : versi on-string isspecified, it is used as both the file and product version.

The version strings specify the file and product versions as strings, suitable for presentation to
the user. There are no restrictions on the format.

: conpany- name The name of the company producing the product.
: product - nane The name of the product of which thisfile forms a part.

:file-description A (brief) description of thisfile.

Optional keywords:

cprivate-build Indicates that thisis a private build. The value should be a string identifying the private build (for
example, who the build was produced for).

:special -build Indicates that thisis a special build, and the file isavariation of the normal build with the same
version number. The value should be a string identifying how this build differs from the standard
build.

: debugp A non-nil value indicates that thisis a debugging version.

: pat chedp A non-nil value indicates that this file has been patched; that is, it is not identical to the original

version with the same version number. It should normally beni | for original files.

. prerel easep A non-nil value indicates that thisis a prerel ease version.

53

5 Keywords to the Delivery Function

:comrent s

coriginal-filenane

rinternal - nane

11 egal - copyri ght
1l egal -tradenmar ks

;1 anguage

:char act er - set

;additional -pairs

istring-file-info

A string value, which alows additional comments to be specified, in aform suitable to
presentation to the user.

This specifies the filename (excluding drive and directory) of thisfile. Normally it is defaulted
based on the filename argument to del i ver .

Thisthe internal name of thisfile. Normally it is defaulted to the value of
;original-fil ename, with the extension stripped.

A string containing copyright messages.
A string containing trademark information.

The language for which this version of thefileis intended.

This can be either a numeric Windows language identifier, or one of the keywords listed below.
The default is: us- engl i sh.

rarabic :bulgarian :catalan :traditional-chinese :czech :danish :gernman
:greek :us-english :castilian-spanish :finish :french : hebrew : hungari an
cicelandic :italian :japanese :korean :dutch :norwegian-boknmal :polish
:brazilian-portuguese :rhaeto-romanic :romanian :russian :croatio-serbian-
latin :slovak :al banian :swedish :thai :turkish :urdu :bahasa :sinplified-
chinese :sw ss-german :uk-english : nexi can-spani sh :bel gian-french : sw ss-
italian :belgian-dutch :norwegi an-nynorsk :portuguese :serbo-croatian-
cyrillic :canadian-french :sw ss-french

Specifies the character set to use. Acceptable values are either the numeric ID of a character set,
or one of keywords listed below:

;ascii :w ndows-japan :w ndows-korea :w ndows-taiwan :uni code :w ndows-
latin-2 :windows-cyrillic :wi ndows-nultilingual :w ndows-greek :w ndows-
turki sh :wi ndows- hebrew : wi ndows- ar abi c

Allows adding arbitrary string-name/value pairsto the main St ri ngTabl e (Block in the
resource definition) inthe St ri ngFi | el nf o structure (StringFilelnfo in the resource definition).

The argument is a plist whose elements are all strings. Each two strings constitute a string-
name/value pair, which are added to the main St ri ngTabl e.

The string-name in a pair can be also one of the recognized keywords.

Example:

;additional -pairs ' ("M MeEType" "application/basic-plugin")

Addsast ri ngTabl e (block in the resource definition) to the St ri ngFi | el nf o structure.

The argument has to be aplist. Each two itemsin the list constitute apair of string-name/value,
which are added to the block. The special keywords: | anguage and : char act er - set are
exceptions: they specify the "lang-charset” value of the block. They have the same syntax as
these keywords when they appear in the top list.

To be useful, the plist must include either: char act er - set or: | anguage, because
applications that read the version info will normally expect one block for the lang-charset
combination.

5 Keywords to the Delivery Function

:warn-on-missing-templates Keyword
Default value: ni |

Controls whether to warn about missing CL OS templates, which should be pre-compiled. See 10.1.2.1 Finding the
necessary templates for details.

55

6 Delivery on macOS

This chapter describes several issues relevant to delivery with LispWorks for Macintosh.

6.1 Universal binaries

The supplied LispWorks (64-bit) for Macintosh image are a universal binaries, which run the correct native architecture on
arm64 (Apple silicon) and x86_64 (Intel) Macintosh computers by default. To deliver auniversal binary application from
LispWorks (64-bit) for Macintosh, you will need an Apple silicon Macintosh computer. You can specify a universal binary
build in the Application Builder tool (see 28 The Application Builder in the LispWorks IDE User Guide) or call

save- uni versal -from scri pt directly (seethe LispWorks® User Guide and Reference Manual).

6.2 Application bundles

del i ver creates asingle executable file. However graphical Macintosh applications consist of an application bundle, which
isafolder Foo. app with several subfolders containing the main executable and other resources.

LispWorks for Macintosh contains a function that constructs an application bundle. You can use this such that your
executable is delivered ready to runin its application bundle in the usual macOS way. See 13.3 Creating a macOS
application bundle for an illustration of this.

6.3 Bad interaction with clean-up utilities

Utilities which attempt to "clean up" your Mac by removing unused parts of an image can damage LispWorks itself and also
LispWorks applications.

If you use such a utility on your LispWorks devel opment machines, configure it to ignore LispWorks.

If you distribute a LispWorks application, document that it may be damaged by utilities which attempt to clean up aMac by
removing unused parts of an image. To prevent this, such utilities should be configured to ignore the LispWorks application.

As an example, CleanMyMac has an Ignore List which includes LispWorks by default, but will not include your LispWorks
runtime application until you add it.

6.4 Cocoa and GTK+ images

LispWorks for Macintosh is supplied with two images. One supports the Cocoa GUI, the other supports the GTK+ GUI (and
can load the Motif GUI). You cannot build a Cocoa application using the GTK+ LispWorks image, and vice versa.

You should use the appropriate image to deliver your application.

For GTK+ and Motif applications delivered with LispWorks for Macintosh, the issues described in 8 Delivery on Linux,
FreeBSD and x86/x64 Solariswill be relevant.

56

6 Delivery on macOS

6.5 Terminal windows and message logs

6.5.1 Controlling use of a terminal window
A graphical Macintosh application does not usually have a console/terminal window.

You can achieve this by supplying the keyword argument : consol e : i nput when delivering your application.

6.5.2 Logging debugging messages

Output to *t er mi nal -i o* from an application without a console/terminal window will not ordinarily be visible to the user,
so debugging messages should be written to alog file.

Log files are recommended for any complex application as they make it easier for you to get information back from your
users.

You can use dbg: | og- bug- f or mfor logging errors. See the LispWorks® User Guide and Reference Manual for details.

6.6 File associations for a Macintosh application

To create an association between your LispWorks for Macintosh application and files with a specified type (file extension):

1. Create the appropriate entries for the file type in the CFBundleDocumentTypes array within the Info.plist file of the
delivered application.

2. Define asubclass of capi : cocoa- def aul t - appl i cati on-i nt er f ace with amessage-callback.
3. Implement the : open-f i | e message in the message-callback function.
4. Set the application interface on startup.

Also see the examples mentioned in 15.1 Delivering a Cocoa CAPI application examples.

6.7 Editor emulation

If your application uses capi : edi t or - pane or its subclasses, your should consider the input style. The editor in the
delivered application can emulate Emacs or macOS style editing. Thedel i ver keyword : edi t or - st yl e controls which
emulation is used.

6.8 Standard Edit keyboard gestures

To implement the standard gestures Conmand+X, Conmand+C and Command+V in your CAPI/Cocoa runtime application, you
must include an Edit menu explicitly in your capi : i nt er f ace definition.

Note: The LispWorks IDE adds a minimal Edit menu to all CAPI interfaces automatically, in order to make these standard
gestures work in the LispWorks IDE, but this does not persist after delivery.

57

http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

6 Delivery on macOS

6.9 Quitting a CAPI/Cocoa application

The application menu's quit callback (that is, the callback normally invoked by Command+Q) should simply call
capi : dest r oy with the application interface and should not call | w: qui t directly.

For an example see the Quit Multiple Window CAPI Application menu itemin;

(exampl e-edit-file "capi/applications/cocoa-application")

6.10 Retaining Objective-C classes

If you implement an Objective-C classin Lisp but its nameis not referenced at run time, then you need to arrange for this
symbol to be retained during delivery.

This can be achieved with : keep- synbol s, but amore modular approach is to keep the name on the plist of some other
symbol. For example the internal CAPI class| w- sl i der isdefined likethis:

(obj c:define-objc-class Iwslider ()

()
(:objc-class-nane "LWSlider")
(: obj c-superclass-nane "NSSlider"))

and | w- sl i der isretained like this:

(setf (get 'slider-representation 'owner-class)
"l wslider)

In this case, the codefor sl i der - r epr esent at i on isthe only thing that makes the LWSlider object, so it is the best place
toretainit (thatis, only if sl i der - r epr esent at i on isretained).

6.11 X11/Motif considerations

The default double-click (and triple-click) speed for X11 applications is 200ms, whereas the default for Macintosh
applicationsis typically 500ms.

To match thisin your configuration, add aline:

* multiclickTine: 500

in the Xresourcesfile.

6.12 Examples of delivering Cocoa applications

Several self-contained examplesin the LispWorks library illustrate delivering a CAPI/Cocoa application, listed in 15 Self-
contained examples of delivery.

58

/ Delivery on Microsoft Windows

This chapter describes several issues relevant to delivery with LispWorks for Windows.

7.1 Run time library requirement

Applications that you build with LispWorks for Windows require the Microsoft Visual Studio runtimelibrary nsvcr 80. dl |,
S0 you must ensure it is available on target machines. It is part of Windows Vista and later version, but for earlier Windows
operating systems you should use the Microsoft redistributable mentioned below.

At the time of writing, the redistributable vcr edi st _x86. exe for use with for LispWorks (32-bit) applicationsis freely
available at:

http://www.microsoft.com/downloads/details.aspx?familyid=32BC1BEE-A3F9-4C13-9C99-
220B62A191EE& displaylang=en

Theredistributable ver edi st _x64. exe for use with LispWorks (64-bit) applicationsis freely available at:

http://www.microsoft.com/downloads/details.aspx?Familyl D=90548130-4468-4bbc-9673-
d6acabd5d13b& DisplaylL ang=en

Run the redistributable from your application'sinstaller, or tell your usersto run it directly themselves before running your
application.

7.2 Application Manifests

LispWorks for Windows is supplied with an embedded application manifest. This default manifest tells the Operating
System:

e whichnsvcr 80. dl | to use, and:
 to use Common Controls 6.

You can change the manifest in your delivered image by passing the keyword argument : mani fest-fil e todel i ver. The
value must be the name of afilethat isalegal application manifest, which isis used as the manifest. The manifest must
contain at least the "dependency” element for M cr osof t . VC80. CRT (without it, your application will fail to start with error
messages "Failed to find msvcr80.dIl" or " The application configuration isincorrect"). If the manifest does not contain the
"dependency” element for M cr osof t . W ndows. conmon- cont r ol s your application will use Common Controls 5, and
therefore will not be a"Themed" application.

Thevalueof ; mani f est -fi | e can also be the special value : no- conmon- cont r ol s- 6, in which case a default manifest
without the element for Common Controlsis used.

The default manifests that LispWorks uses are provided by way of documentation inthel i b/ 8- 0- 0- 0/ conf i g directory. If
desired, you can base your application manifests as supplied via: mani f est - fi | e on thesefiles:

59

http://www.microsoft.com/downloads/details.aspx?familyid=32BC1BEE-A3F9-4C13-9C99-220B62A191EE&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=32BC1BEE-A3F9-4C13-9C99-220B62A191EE&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=90548130-4468-4bbc-9673-d6acabd5d13b&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=90548130-4468-4bbc-9673-d6acabd5d13b&DisplayLang=en

7 Delivery on Microsoft Windows

The default manifests used by LispWorks

32-bit LispWorks 64-bit LispWorks
With Common Controls 6 wi nl i sp32. mani f est wi nl i sp64. mani f est
Without Common Controls 6 |'i sp32. mani f est | i sp64. mani f est

Note: the above only applies when LispWorks is an executable. If LispWorksisaDLL, then it will be themed if the
executable that loads it contains the Common Controls 6 manifest.

7.3 DOS windows and message logs

7.3.1 Controlling use of a DOS window
A graphical Windows application does not usually have a console (or "DOS window™").

You can achieve this by supplying the keyword argument : consol e : i nput when delivering your application.

7.3.2 Logging debugging messages

Output to *t er mi nal -i o* from an application without a console will not ordinarily be visible to the user, so debugging
messages should be written to alog file.

L og files are recommended for any complex application as they make it easier for you to get information back from your
users.

You can use dbg: | og- bug- f or mfor logging errors. See the LispWWorks® User Guide and Reference Manual for details.

7.4 File associations for a Windows application

To create an association between your LispWorks for Windows application and files with a specified type (file extension),
create a DDE server in Lisp and register the file types in Windows.

Thereis an example of this (for the LispWorks IDE) in:
(exanple-edit-file "dde/lispworks-ide")

but the technique is the same for any file extension.

7.5 Editor emulation

If your application usescapi : edi t or - pane or its subclasses, your should consider the input style. The editor in the
delivered application can emulate Emacs or Microsoft Windows style editing. Thedel i ver keyword : editor-styl e
controls which emulation is used.

60

http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

7 Delivery on Microsoft Windows

7.6 ActiveX controls

If your library f oo isaWindows ActiveX control (that is, it uses capi : ol e- cont r ol - conponent and
capi : def i ne-ol e- cont r ol - conponent) you may choose to specify file" f oo. ocx" asthefileargument todel i ver.
Thefiletype defaultsto"dl | .

The file extension does not alter functionality - the system simply loads the file referenced in the Windows registry.

7.7 Example of delivering a Service

This examplein the LispWorks library illustrates delivering an application that can be run as a Windows Service:

(exampl e-edit-file "delivery/ntservice/ READVE. t xt")

61

8 Déelivery on Linux, FreeBSD and x86/x64
Solaris

This chapter describes issues relevant to delivery with LispWorks for Linux, LispWorks for FreeBSD and LispWorks for
x86/x64 Solaris.

8.1 GTK+ considerations

The section describes issues relevant to delivery of CAPI applications running on GTK+.

8.1.1 GTK+ libraries on the target machine

A suitable version of the GTK+ libraries must be installed on the target machine for your CAPI/GTK application to run. The
version requirements are as for LispWorks itself, as mentioned in the Release Notes and I nstallation Guide.

8.1.2 Fallback resources

If your CAPI/GTK application needs fallback resources then it should passthe: appl i cati on-cl ass and
: fal | back-r esour ces arguments when calling capi : di spl ay and/or capi : convert -t o-screen.

Seecapi : convert-to-screen inthe CAPI User Guide and Reference Manual for afull description of these arguments.

You could use the LispWorks resources as a starting point when constructing your application's resources. You can see the
LispWorks fallback resources (these are for application class Li spwor ks) as described under "Using X resources' in the
CAPI User Guide and Reference Manual.

You can override the default resource name using the capi : el enent initarg : wi dget - name or the accessor
(setf capi: el enment - w dget - name) . Thereisan examplein:

(exanple-edit-file "capi/el ements/gtk-resources")

8.2 X11/Motif considerations

The section describes issues relevant to delivery of CAPI applications running on X11/Motif.

Note that the X11/Motif GUI is deprecated, because the alternative GTK+ GUI library is now supported.

8.2.1 Loading Motif

On LispWorks platforms supporting pthreads, the supplied image contains the GTK GUI only, and therefore GTK isthe
default graphical library for applications. To build a Motif application on these platforms you need to include:

(require "capi-notif")

in your delivery script.

62

8 Delivery on Linux, FreeBSD and x86/x64 Solaris

You may wish to consider building a GTK version of your application too.

8.2.2 Motif on the target machine

A suitable version of the OpenMatif library must be installed on the target machine for your CAPI/Motif application to run.
The version requirements are as for LispWorks itself, as mentioned in the Release Notes and Installation Guide.

8.2.3 Fallback resources

If your CAPI/Motif application needs fallback resources then it should passthe: appl i cati on-cl ass and
: fal | back-resour ces arguments when calling capi : di spl ay and/or capi : convert -t o-screen.

Seecapi : convert-to-screen inthe CAPI User Guide and Reference Manual for afull description of these arguments.

You could use the LispWorks resources as a starting point when constructing your application's resources. You can see the
LispWorks fallback resources (these are for application class Li spwor ks) as described under "Using X resources' in the
CAPI User Guide and Reference Manual.

You can override the default resource name using the capi : el enent initarg : wi dget - name or the accessor
(setf capi: el ement-w dget-nane).

8.2.4 X resource names use Lisp symbol names

The default color and other attributes for each CAPI pane on X11/Motif is computed as an X resource using the symbol name
of the pane's class. Therefore obtaining the correct X resources depends on the application containing these symbol names.

Symbol names are removed at delivery level 5, but you can retain specific names in the delivered image by passing alist of
the class namesto del i ver asthe value of the keyword argument : keep- synbol - nanes.

8.3 LispWorks executable corrupted
After aninitially successful installation of LispWorks for Linux, the LispWorks executable may appear to be corrupted:

$ |i spworks-8-0-0-anmd64-1 i nux
Li sp executabl e apparently corrupted. (Truncated?) Cannot restart.

The executable is reduced in size, typically to afew 10Kh. This problem, which has been seen on various Linux machines, is
caused by the pr el i nk cron job, which does not understand Lisp executables.

Another error message seen attempting to run a saved LispWorks executable on Fedora 14 was.

Readi ng LispWrks file lw6-0-1: failed to find trailer, error -101

To prevent this happening, add descriptions of your LispWorks executables to the end of thefile/ et c/ pr el i nk. conf . For
example, thiswill match the default names:

-b I'ispworks-*-1inux

Then the truncated LispWorks executables need to be reinstalled.

The LispWorks for Linux rpm installer writesalinein/ et c/ prel i nk. conf which protects the released image. However
this does not protect LispWorks images or runtime executables that you have saved, because the name will differ. If you
distribute LispWorks for Linux runtimes you should consider protecting them adding asuitablelinein/ et c/ pr el i nk. conf
at installation time.

63

8 Delivery on Linux, FreeBSD and x86/x64 Solaris

8.4 Logging debugging messages

L og files are recommended for any complex application as they make it easier for you to get information back from your
users. The log should contain any debugging messages, and can also contain information from your program.

You can use dbg: | og- bug- f or mfor logging errors. See the LispWWorks® User Guide and Reference Manual for details.

8.5 Editor emulation

If your application uses capi : edi t or - pane or its subclasses, your should consider the input style. The editor in the
delivered application can emulate Emacs or KDE/Gnome style editing. Thedel i ver keyword : edi t or - st yl e controls
which emulation is used.

8.6 Products supporting dynamic library delivery

You can deliver adynamic library using LispWorks on Linux, FreeBSD and x86/x64 Solaris.

During delivery of adynamic library, LispWorks links a small C executable that |oads Lisp and also defines the exported
foreign symbols. Asaresult, when thisis loaded it may have some dependency on the system libraries that you have on the
machine where you delivered it. That means that the delivered image may not work on older versions of the operating
system. It istherefore recommended that you deliver on the oldest version of the operating system that you need to support.

On Linux, LispWorks requires specific versions of symbolsin the C library which reduces the chance of problems like this.

9 Dédlivering for mobile platforms

This chapter describes issues relevant to delivery with LispWorks for iOS Runtime and LispWorks for Android Runtime.

Your app can include your own Lisp code, LispWorks modules such as KnowledgeWorks, and third party Common Lisp
libraries. However note that CAPI is not supported on iOS or Android, therefore any GUI part of your app will need to be
written using the native API.

9.1 Delivery of iOS runtimes

To create an iOS app that uses LispWorks, you need alicense for LispWorks for iOS Runtime.

This section describes issues relevant to delivery of the LispWorks component of an iOS app.

9.1.1 Compiler not available in iOS runtimes

LispWorks for iOS Runtime supports al of ANSI Common Lisp except for the compiler. Thisis becauseit isnot possible to
create executable code on-the-fly on iOS.

9.1.2 How to deliver an iOS runtime

You will need an Xcode project which includes any GUI part and links with aiOS object file (a. o file) created with
LispWorks. You create this LispWorks runtime with a special LispWorks image (which runsin the QEMU emulator on Intel-
based Macs and natively on Apple silicon Macs) calling the function del i ver . You can aso build aruntime for the iOS
Simulator running on macOS.

Follow the full instructionsin the Chapter "iOS interface” in the LispWorks® User Guide and Reference Manual.

9.2 Delivery of Android runtimes

To create an Android app that uses LispWorks, you need alicense for LispWorks for Android Runtime.

This section describes issues relevant to delivery of the LispWorks component of an Android app.

9.2.1 How to deliver an Android runtime

You will need an Android project written in Java, which includes any GUI part and loads a LispWorks dynamic library
runtime. You create the LispWorks runtime with a special LispWorks image which runs on ARM architecture, calling the
function hcl : del i ver -t o- andr oi d- proj ect (notl w: del i ver).

Follow the full instructionsin the Chapter "Android interface” in the LispWorks® User Guide and Reference Manual.

65

10 Delivery and Internal Systems

10.1 Delivery and CLOS

Most applications using CLOS can be delivered without difficulty. However, there are afew potential exceptions to thisrule.
Code dynamically redefining classes and methods, and with certain method combinations, needs some extra work.

However, at delivery level O it isunlikely that you will need to do anything.

10.1.1 Applications defining classes or methods dynamically

Set thedel i ver keyword : keep-clos tot or: ful |l -dynam c-defi niti on to keep the code needed for dynamic
definition in the image.

At delivery level O the default value of : keep-cl os is: ful | -dynamni c- defi ni ti on, soyou will not need to do anything
special.

10.1.2 Special dispatch functions and templates for them

The LispWorks CLOS implementation achieves fast method dispatch by producing specia functionsto perform
discrimination and method dispatch. Since the required operation can often only be determined by seeing what arguments a
generic function is called with, these functions can often end up being generated and compiled at run time.

If the compiler has been removed in a delivered application, then these special run time-generated functions cannot be
compiled on the fly.

There are two ways in which the delivery system deals with this problem.

Thefirst isto have a set of pre-compiled "template” constructors which can construct an appropriate function. LispWorks
comes with extensive set of such constructors, which should cover most of cases. The programmer can add her own, as
explained below.

The other mechanism isto construct generic closures to do the work. The code that generates the closures can cope with:
1. A simple method combination, with the operator naming a function (or generic function) -- not a macro or special form.

2. A more complicated method combination, constructing aform which should effectively be atree of pr ogn ,
nmul ti pl e-val ue- progl andcal | - net hod forms.

In most cases the effect on method dispatch time of using the generic technique is negligible. Pathological cases might,
however, cause a slowdown of 10-20% over compiled special functions. In this case, aswell asfor cases of user-defined
complex method combinations which the generic mechanism cannot cope with, the delivered image must have precompiled
"template” constructors, and if they are not already there the user needs to add them, as described next.

10.1.2.1 Finding the necessary templates

Even though it cannot compile the functions at run time, delivery can generate the forms for them. The necessary method
combination templates can be found by using the keyword : war n- on- i ssi ng- t enpl at es. Thisdefaultstoni | . If this
keyword is non-nil, awarning is issued whenever a missing template is detected. The value of this keyword can be either a
string or a pathname, in which caseit isafileto put thewarningin, or t, inwhich case the warning goesto

66

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_mult_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_call_m.htm

10 Delivery and Internal Systems

t erni nal -i o. Thewarning takes this form:

s kkk kK
’

;>>> Add this conbination to the tenplate file <<<
(CLCS: : PRE- COVPI LE- COVBI NED- METHODS

((1 COVVON-LISP:NIL) COVWON-LISP:NIL (CLOS:: CALL- METHOD)))

. *kk k%

You can take thistemplate, placeit in an ordinary lisp file, return to LispWorks, and compileit. This compiled file should be
loaded into the image before delivery. See 10.1.2.2 Incor por ating the templates into the application.

Most missing templates can be found statically, and if : war n- on- mi ssi ng-t enpl at es has been set, they are output at the
time of saving the delivery image. An attempt is made to find al missing templates. However, because method combinations
are dependent on the actual arguments to generic functions, it is not always possible to find every missing template. The
application must be run to be sure of finding all the missing templates.

Note: Valid combinations may be generated or seen in warnings even if they are never used. Delivery can only tell you what
combinations the application could potentially use.

10.1.2.2 Incorporating the templates into the application

A typical measureisto put all the templates generated into afile. You can add new onesto it as you work through the
delivery process. The templates must be compiled and |oaded into the application before delivery. To do this:

1. Collect into one template file al the method combination template forms that have been output, so that it looks
something like this:

(CLOS: : PRE- COVPI LE- COVBI NED- METHODS ((1 COVMON- LI SP: NI L) COMMON- LI SP: NI L
(COVMON- LI SP: MULTI PLE- VALUE- PROGL (CLOS: : _CALL- METHOD)
(CLOS: : _CALL- METHOD.)
(CLOS: : _CALL- METHOD.))))
(CLOS: : DEFI NE- PRE- TEVPLATES
CLOS: : DEMAND- CACHI NG- DCODE- M SS- FUNCTI ON (5 COVMON-LISP: NI L (4)))
(CLOS: : DEFI NE- PRE- TEVPLATES

CLCS: : DEMAND- CACHI NG- DCODE- M SS- FUNCTI ON (6 COVMON-LISP: NIL (4)))

No matter how many times the template form is printed, it only needs to be included in the template file once.
2. In the LispWorks image, compile the templatefile.

3. Load the compiled template file into the image (along with the application and library files) before delivery.

10.1.3 Delivery and the MOP

MOP programmers should note that, by default, the direct slots and direct methods of all classes are emptied at delivery level
1 and above. To prevent this, set thedel i ver keyword : keep-cl os tot, : ful | -dynani c-definitionor
: met a- obj ect - sl ot s asrequired.

67

http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

10 Delivery and Internal Systems

10.1.4 Compression of CLOS metaobjects

To reduce the size of the delivered image, the delivery process compresses the representation of CL OS metaobjects (classes,
generic functions and methods). Thisincludes:

1. nullifying the class direct slots of the class.

2. Changing the effective slots to afunction that is used in the initialization of the instance. Thisis controlled by
. met acl asses-to-keep-effective-slotsand:cl asses-to-keep-effective-slots.

3. Compressing the representation of method objects. Thisis controlled by : keep- cl os. If : keep-cl os ist, the
representation of method objectsis not compressed. Thereis aso no compression if you add a method to
met hod-qualifi ers, net hod-speci ali zers or net hod- functi on.

4. Compressing the representation of generic functions. Thisisnot doneif : keep- cl os ist, or if you add methods to any
of the accessors of generic functions.

10.1.5 Classes, methods, and delivery

See 4.6.2 Shaking the image for a discussion of how unused class definitions and methods are treated by delivery process.

10.1.6 Delivery and make-instance initarg checking

By default make- i nst ance checksfor valid initargsin LispWorks, signalling an error on an invalid call. However, in a
delivered application this behavior may not be useful.

Initarg checking in the delivered application is controlled by the del i ver keyword : make- i nst ance- keywor d- check.

For more information about make- i nst ance initarg checking, see the LispWorks® User Guide and Reference Manual.

10.2 Delivery and the Lisp reader

On non-Windows platforms, the API for accessing persistent settings and the CAPI functionality for recording and retrieving
window position and size values rely on the Lisp reader, which delivery can remove. Therefore if your application uses

| w. user - pref erence or capi : t op-1 evel -i nterf ace- geonet r y- key you should ensure that the reader is retained,
by supplying : keep- | i sp-r eader with valuet .

10.3 Editors for delivered applications

This section contains information on how to include the LispWorks editor in your delivered applications and how to control
its behavior.

10.3.1 Form parsing and delivery

If the delivered image is used to edit LISP code, the parsing of forms will still not work properly. Thedel i ver keyword
: keep- edi t or can be used to keep the code for parsing formsin the editor.

10.3.2 Emulation and delivery

The editor in the delivered application can emulate Emacs style, and Microsoft Windows or macOS style editing (depending
onthe platform). Thedel i ver keyword : edi t or - st yl e controls which emulation is used.

68

http://www.lispworks.com/documentation/HyperSpec/Body/f_method.htm
http://www.lispworks.com/documentation/lw70/MOP/mop/dictionary.html#method-
http://www.lispworks.com/documentation/lw70/MOP/mop/dictionary.html#method-
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

10 Delivery and Internal Systems

10.3.3 Editor command groups

If any part of the editor is present in the image, every editor command that has been |oaded will be kept in the delivered
image. Two del i ver keywords alow you to specify which commands to keep and which commands to delete:

* :editor-comands-to- keep (default ni |')

» :editor-conmmands-to-del et e (default: al | - groups)

The effect of these default valuesisthat all the commands are deleted. If acommand is both these lists, it is kept.

To get rid of editor commands, use the keyword argument : edi t or - commmands- t o- del et e.

Deleting a command does not automatically delete the associated function. For example, the function
edi t or : do- sonet hi ng- conmand could be called by the application even if the command " Do Sonet hi ng" has been
deleted.

The function itself isonly deleted if it is not referenced elsewhere in the application or if it is removed explicitly. Therefore,
an application which uses the editor in a non-interactive or limited interactive manner can delete al or most of the editor
commands. Note also that key bindings associate key sequences with commands and not functions, so if acommand is
deleted any sequences bound to it will no longer work. For consistency, the delivery process removes the bindings too.

The keyword : edi t or - commands- t o- del et e isprocessed in different ways depending on the type of value supplied:

List value Process each element of thelist. (Thusthelist istraversed recursively.)
String value The corresponding editor command is del eted.
Symbol value Taken to specify a Command Group.

The available Command Groups are:

:sinmpl e-editor The simple editor contains basic mechanisms for editing text files, including regions, buffers and
windows, movement, insertion and removal commands, key bindings, the echo area and
extended commands (such as Al t +X), file handling commands, filling and indenting, and undo.

:full -editor The full editor has al the facilities of the simple editor, and adds handling for Lisp forms, auto-
save help and other documentation commands searching, including the system based search
commands, tags support, and support for interactive modes.

: ext ended- edi t or The extended editor adds Lisp introspection to those features: argument lists, evaluate, trace,
walk-form, symbol completion, dspecs, callers and callees, buffer changes, and hooksinto the
inspector and class, generic function, and system browsers.

: demand- | oaded Commands present in the standard LispWorks image only if they are demand loaded.

‘tools Commands supporting tools which must be explicitly loaded on top of the editor, for example the
listener.

: excl ude Commands always del eted by the delivery process, for example, compilation commands.

10.4 Delivery and CAPI

This section describes platform-independent issues in delivered applications which use CAPI. See aso 6 Delivery on
macQOS, 7 Delivery on Microsoft Windows, and 8 Delivery on Linux, FreeBSD and x86/x64 Solaris for issues specific to
each supported windowing system.

See the CAPI User Guide and Reference Manual for details of the CAPI symbols mentioned.

69

10 Delivery and Internal Systems

10.4.1 Interface geometry depends on Lisp symbol names

Thefunction capi : t op- 1 evel -i nt erf ace- geonet ry- key depends on symbol names and hence will break at delivery
level 5 unless the relevant symbol names are retained. Usethedel i ver keyword : keep- synbol s to keep the class name of
your top level interface.

10.5 The condition system in delivered applications

The Condition System provided by the Common Lisp is availablein runtimes delivered at level 0.

If you deliver at higher levels, then be aware that the full Condition System will not be present by default in your application.
If you choose not to retain the full Condition System, you can make use of the more limited, but smaller, error systems
available with Delivery. It is useful to make the application handle errors appropriately, because it is generally used by non-
Lisp programmers, and it does not have the IDE so it is less easy to debug.

Simplified error handling is still possible in applications without the Condition System. They can only trap conditions of type
error orwarni ng. If an application signals any condition other than war ni ng or si npl e- war ni ng, the conditionis
categorized as one of typeer r or , and therefore can be trapped.

10.5.1 Deleting of condition classes

Condition types are classes like any other class, so may be shaken out. However the code may contain many references to
condition types through error calls that are never going to happen in the application. Therefore, thereis a special deletion
action for conditions, which is controlled by thedel i ver keywords: condi ti on-del eti on-acti on, : keep-

condi ti ons and: packages-t o-renove-condi tions.

When a condition is deleted (that iswhen : condi ti on-del eti on-actionis: del et e), trying to signa it returnsa

si npl e- err or, which meansthat it got the wrong type. On the other hand, it has all the information in the

f or mat - ar gunent s dot. If the conditions are redirected (that is, when : condi ti on-del eti on-actionis:redirect),
astricter type is returned, but some of the information may be lost, because the condition that it redirects to has fewer sots.

User defined conditions are kept, unless:

1. You add packagesto : packages-t o-renove- condi ti ons.

2. You set : keep-condi ti ons to: none, in which case al the conditions are eliminated, or : nmi ni mal , in which case dl
the user conditions are deleted.

10.6 Delivery and the FLI

This section describes particular issues relevant to a delivered image containing Foreign Language Interface (FLI) code.

10.6.1 Foreign Language Interface templates

The Foreign Language I nterface requires compiled code (known as FLI templates) to convert between foreign objects and
Lisp objects. Most of these FLI templates are already available in the image, and most applications do not need extra
templates.

However it is difficult to know in advance exactly which FLI templates will be needed. When a new template is actually
required, it is compiled. In adelivered image where the compiler has been removed, this causes an error like this:

FLI tenplate needs to be conpil ed
(see 'Foreign Language Interface tenplates' in the LispWrks Delivery User Guide):
(FLI : : DEFI NE- PRECOVPI LED- FOREI G\- OBJECT- SETTER- FUNCTI ONS ((: FLOAT : SI ZE 4)))

70

http://www.lispworks.com/documentation/HyperSpec/Body/09_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_warnin.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_warnin.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_smp_wa.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_smp_er.htm

10 Delivery and Internal Systems

To solve this you need to find which templates your application uses that are not already available, compile them, and load
them before delivering.

To find which templates your application needs, do the following:
1. Start the undelivered application image (that is, LispWorks with your application code |oaded).
2. Call

(FLI : START- COLLECTI NG TEMPLATE- | NFO)

3. Fully exercise the application. You must test thoroughly all the functionality of the application to ensure that any code
that needs templates gets run.

4. Call

(FLI: PRI NT- COLLECTED- TEMPLATE- | NFO)

This prints all the templates that were generated while exercising your application. These FLI template forms should be put
in afile which is compiled and loaded as part of your application. fli: print-col | ect ed-tenpl at e-i nf o takesa
keyword : out put - st r eamto make this easier, for example:

(with-open-file (stream"fli-tenplates.lisp" :direction :output)
(FLI: PRI NT- COLLECTED- TEMPLATE- | NFO
: QUTPUT- STREAM stream))

Once you have compiled the file containing the templates, it should be loaded as part of your application.

10.6.2 Foreign callable names

In most cases foreign callable names are passed to del i ver inthevalue of the: dI | - export s keyword argument, and each
of these foreign callables will be retained automatically in the delivered image.

However other foreign callables defined with a string foreign-name are liable to be shaken from the delivered image. The best
approach is to use a symbol to name such foreign callables, asdescribed under f 1 i : def i ne-f or ei gn- cal | abl e inthe
Foreign Language Interface User Guide and Reference Manual.

10.7 Modules

Part of the system isimplemented using load on demand modules that are |oaded automatically when afunction is called.
Most of these modules are only useful during development, so are not needed in the application. However, in some cases the
application may need some module.

You can obtain the list of loaded modules by entering:
:bug-formnil

in aListener. Thisprintsthelist of loaded modules, along with much other information.
To obtain aminimal list of modules, follow these steps:

1. Start afresh LispWorks image, making sure it does not load any irrelevant code (for exampleinyour . | i spwor ks init
file):
C.\Program Fi | es\ Li spWor ks> | i spwor ks- 8- 0-0-x86-wi n32. exe -init -

2. Load the application and run it.

71

10 Delivery and Internal Systems

3. Exercise the application, to ensure that any entry points for load on demand modules are called.

4. Enter : bug-form ni | inaListener. Thelist of loaded modules should include only modules that your application
needs.

Once you know amodule is required in your application, you need to load it before delivering, by calingr equi re:

(requi re module-name)

Add thecall tor equi r e to your delivery script.

Note: r equi r e is case-sensitive, and generally module-name is lowercase for LispWorks modules.

10.8 Symbol, SYMBOL-NAME and package issues during delivery

Symbols and packages usually have the most significant effect on the size of adelivered application, so it isworth paying
attention to them during delivery.

The basic principle of delivery isto garbage collect the image, freeing anything the application does not refer to in order to
make the image smaller. This strategy works well enough for most objects, but not for symbols within packages: since all
such symbols are referred to by their package, none of them can be deleted.

You can overcome this problem in the following ways:
1. By shaking the image.
2. By deleting packages.
3. By smashing packages.

Deleting and smashing packages are not recommended. Deleting and smashing are explained in the next section. They are
both ways of removing symbols from the application, one being more extreme than the other. You should note, however, that
it is possible to handle specific symbolsindividually. Thisis preferred.

By default, Delivery deletes all of the system's packages, and smashes some of them. This following section also explains
how to prevent this when necessary.

Delivery can remove symbol names. At level 5 by default it changes al symbol names that are not explicitly retained to the
same string " Dummy Synbol Nane" . This makesit difficult to debug the application - for the recommended approach see
: synbol - nanes-acti on.

10.9 Throwing symbols and packages out of the application

This section discusses the circumstances in which you might want to throw symbols and packages out of the application, by
deleting or smashing them.

10.9.1 Deleting packages
When you delete a package, the following happens:
1. All the package's symbols are uninterned.
2. The package name is del eted.
After the package is deleted, its symbols continue to exist, but because they are no longer interned in a package they become

eligible for collection at the next garbage collection. They survive only if there are useful references to them elsewhere in the

72

http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm

10 Delivery and Internal Systems

application.

Note: Invoking the treeshaker has much the same effect on packages as deleting them. However, by deleting a package you
regain some extra space taken up by hash tables.

10.9.2 How to delete packages

You can passdel i ver alist of packages to delete with the keyword : del et e- packages.

10.9.3 Smashing packages
When you smash a package, the following happens:
1. All the package's symbols are uninterned.
2. The package structure is deleted.
3. Its symbols function definitions, property lists, classes, values, and structure definitions are deleted or settoni | .

After the package is smashed, the symbols continue to exist, but all the information they contained is gone. By being
uninterned they become eligible for garbage collection. Also, the chances of any objects they referred to being collected are
increased.

Caution: Smashing destroys a whole package and all information within its symbols. Useit carefully.

Note: Any symbol whose home package is to be smashed can be retained by being uninterned before delivery commences.

10.9.4 How to smash packages

You can passdel i ver alist of packages to smash with the keyword : smash- packages or : smash- packages- synbol s.

10.9.5 When to delete and smash packages

Note: In general, you are advised against deleting or smashing packages unlessit is absolutely necessary. Alwaystry to
reduce the image size as much as possible by treeshaking first.

If an application does one of the following things, packages are involved and you must consider keeping them in the
application:

1. Makes an explicit reference to a package by some of the package functions, for example, i nt ern, fi nd- symbol and so
on.

2. Usesthe reader, withr ead or any of the other reader functions.

These functions make reference to a package (either * package* or one given explicitly) whenever they read a symbol.

3. Printing a symbol with thef or mat directive ~S.

Thef or mat function prints the symbol with a package prefix if the symbol is part of a package.
4. Loading afile, whether compiled or interpreted.

5. Using the function synbol - package.

Fortunately, most applications are unlikely to do these things to more than a small number of packages. You should,
therefore, be able to delete most packages without breaking the application. When you know that none of the symbols
belonging to a package are used, you can go one step further and smash it.

73

http://www.lispworks.com/documentation/HyperSpec/Body/f_intern.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_find_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_rd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_3.htm

10 Delivery and Internal Systems

Smashing a package guarantees space savings where deleting it would not. Even in a case where a symbol is referenced but
unused, because it has been smashed you still regain space taken up by objects hanging from slots for function definition,
value, property list and so on.

You do not usually gain much by smashing your own packages that you would not gain by just deleting them — you are after
al unlikely to have included an entire package of symbolsin your final application if you know it is not going to use them.
Therea benefits of smashing can be seen when it is performed on the system's packages, some of which may be entirely
irrelevant to your application. In addition, you are unlikely to gain very much by deleting a package that you would not gain
by treeshaking. In general, you should try to avoid either deleting or smashing packages explicitly.

However, if symbolsin your packages are referenced through complex data structures, making it difficult to track references
down, smashing may still prove useful.

10.10 Keeping packages and symbols in the application

This section explains how to keep packages and symbols in the application when Delivery would otherwise remove them.

10.10.1 Ensuring that packages are kept
Your application may rely upon certain system packages that Delivery deletes or smashes by default.

You can protect these packages with : packages- t o- keep. All packagesin the list passed with this keyword are kept in the
delivered image, regardless of the state of the : smash- packages and : del et e- packages keywords. If you pass
: packages-t o-keep:al |, thenthetwo variablesaresettoni | .

Note: COMMON- LI SP is the package your application is most likely to rely on, and it isalso very large. Keeping it has avery
noticeable effect on the size of the application. However, if your application usesr ead or | oad, it invites the possibility of
reading arbitrary code, and so COMMON- LI SP must be kept.

See also 10.11 Coping with intern and find-symbol at run time.

10.10.2 Ensuring that symbols are kept

Internal symbolsin packages you have kept may still be shaken out. If any such symbol must be kept in the application,
retain it by force in one of the following five ways:

1. With the : keep- synbol s keyword.

Thisisthe recommended solution in most circumstances.

2. Withthe: never - shake- packages keyword.

This solution is suitable when all the symbolsto keep are in one package, FOO- PKGsay. Pass: never - shake-
packages (list "FOO PKG').

3. Usedel i ver - keep- synbol s.

Thisisuseful for symbols that are not explicitly referenced by Lisp (and hence may be shaken out) but are still needed,
for example symbols that are called directly from Java.

4. Export the symbol from the package.
External symbols are always shaken during delivery.

You can override this behavior by passing : shake- external s ni | todeliver.

You can also specify : packages-t o- shake- ext ernal s and : packages-t o- keep- ext ernal s.

74

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_rd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

10 Delivery and Internal Systems

5. Make explicit reference to the symbol with another object that you know will not be deleted.

A reference from the object to the symbol ensures that the garbage collector passes over it during delivery.

See also 10.11 Coping with intern and find-symbol at run time.

Note: If you need to retain the names of the symbolsif the symbols themselves are not shaken out, use
del i ver - keep- synbol - nanes. Thisisuseful when the symbol name is used as long the symbol is used.

10.11 Coping with intern and find-symbol at run time

If you want to delete or smash a package, but discover that a symbol is created in it a run timewithi nt er n, or found in it
withi ntern orfi nd- synbol , you have two choices. either change the source to create or manipulate the symbol in
another package, or keep the package after all.

If you cannot or do not want to change the source, and the package is large, you face the annoying prospect of having to keep
alot of codein theimage for the sake of one symbol created or manipulated at run time. Fortunately, there are waysto get
around this.

The method isto migrate the symbols by hand into new or smaller, "dummy" packages. Thisis the only working method if at
compile time you do not know the names of the symbols to be saved.

Create a special package or packages for the symbols mentioned in these calls, and delete the original packages. When this
package is created (with nake- package or def package), it should use as few of the other packagesin the application as
possible. Typically, : use ni | suffices. For example:

(renane- package "XYzZ" "XXX")
(push "XXX" *del et e- packages*) ; discard pkg
(make- package "XYZ" :use nil) ; new pkg to reference

This allows the real package XYZ to be deleted without breaking acall toi nt er n such as the following:

(intern "FISH" "XYZ")

10.12 Symbol-name comparison
In anon-delivered LispWorks image, the form:

(eq (synbol -nane 'foo) (synbol-nane 'foo0))

evaluatestot . Thisbehavior is due to the way symbol names are cached. There is no requirement or guarantee that the
results of successive callsto synbol - name be the same (eq) object.

After delivery, LispWorks symbol names are implemented differently such that the eq test above fails. Take care that your
application does not rely on identity of symbol names.

Note: eq isnot areliable comparison of stringsin general. Use equal for reliable string comparison.

10.13 Delivery and Java interface

If you deliver an image as a shared library that isintended to be loaded into the Java VM, you should call
Iwji:setup-deliver-dynanic-library-for-java beforecalingdeliver.
Iwji:setup-deliver-dynamc-library-for-java ensuresthat LispWorkswill find the VM that it was loaded in,
and (by default) initializes the Javainterface by callingl w-j i :init-java-interface.

75

http://www.lispworks.com/documentation/HyperSpec/Body/f_intern.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_intern.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_find_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_intern.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_2.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_equal.htm

10 Delivery and Internal Systems

If you call Lisp functions from Java using the methods in the Javaclasscom | i spwor ks. Li spCal | s, you should ensure
that these functions are not shaken out during delivery. The function del i ver - keep- synbol s isthe intended interface to
do that, but you can also use the : keep- synbol s argument to del i ver.

76

11 Troubleshooting the delivery process

This chapter provides solutions to common delivery problems.

11.1 Debugging errors in the delivery image

In general, it isworth avoiding debugging an image that has been delivered at a high delivery level if possible. If you discover
abug:

1. First check if the same error occursin the original (undelivered) development image. If it does, debug the problem in this
image.

2. If the error is not reproducible in the devel opment image, check if it is reproducible in an image delivered at alower
delivery level (try O, then 1 etc). If it is, read the error message and backtrace carefully. In most cases, thisis enough to
debug the problem.

3. Make sure you can see messages printed by the application (the run time output), which may contain useful information.
In the case of agraphical application on Microsoft Windows or Macintosh these messages may not normally be visible
but can be captured by redirecting the run time output to afile.

To redirect the run time output, run the application in acommand shell. This means a DOS command window (on
Microsoft Windows), Terminal.app (macOS) or ashell (Unix/Linux etc). Enter the application executable filename
followed by > followed by the output filename, for example:

on Windows:
C.\ Program Fi | es\ M\yApp> nyapp. exe > C:\tenp\ nmyapp-out put
on Macintosh:

mymac: / Appl i cati ons/ MyApp/ MyApp. app/ Cont ents/ MacOS 2 % ./ myapp > /tnp/ nyapp- out put

4. Consider the possibility that you are trying to use functionality that was removed by delivery. You may need to keep the
functionality explicitly, by using one of the del i ver keywords described in 5.1.5 Retaining or removing
functionality.

5. If the problem occurs only in the delivered image and not in the original image, and it is till not clear what the problem
is, please contact Lisp Support immediately. Send us your deliver script, all the output of the delivery process and the
run time output of the application itself. This situation is regarded by Lisp Support as a bug that should be fixed.

11.2 Problems with undefined functions or variables

A function or variable can be undefined for any of the following reasons:
1. It was never defined.
Check the image to seeiif it was defined before calling del i ver again.
2. It belongs to a package that was smashed.

Check whether its package isin the list of smashed packages printed by del i ver . Usesynbol - package identify its
home package.

77

http://www.lispworks.com/documentation/HyperSpec/Body/f_symb_3.htm

11 Troubleshooting the delivery process

3. It wasinterned in the wrong package.

Thiswould probably be because its real package was deleted. Check if the symbol that was called is one that was
interned after delivering the image — that is, while the application was running.

4. 1t has been deleted explicitly.

For example, | oad, complex number functions, and so on. Check in 5 Keywordsto the Delivery Function that there is
no Delivery keyword with a default setting that throws it out.

5. Itisan internal symbol and was shaken out.

If asymbol that is printed is uninterned and you cannot work out its home package from its name, try using
find-all-synbol s or apr opos inthe image after loading the application, but before the call to del i ver, tofind the
possible symbols.

6. It belongs to aload-on-demand module. See 10.7 Modules.

See 10.8 Symbol, SYMBOL-NAME and package issues during delivery for the explanation and suggestionsin cases 2, 3
and 5 above.

11.3 Problems with READ
A runtimeerror:

Error: Attenpt to invoke function READ on argunents. ..

occurs when the application uses the Lisp reader but delivery has removed that functionality.

The solution isto retain the Lisp reader, by the delivery keyword : keep- | i sp-r eader.

If your application does not use the reader directly, the error may be due to a LispWorks function using it. Please see 10.2
Delivery and the Lisp reader for more information.

11.4 Failure to find a class

This situation can be resolved by much the same procedure as that described in 11.2 Problems with undefined functions or
variables.

11.5 REQUIRE was called after delivery time with module ...

This error message means that a loadable module was omitted from the application build, and the program now tries and fails
to load that module. The solution is described in 10.7 M odules.

11.6 Failed to reserve... error in compacted image
L oading a compacted LispWorks (32-bit) for Windows DLL might result in an error message like this:

Failed to reserve 14024705 bytes of nenory (preferred address 0x20000000)
Error 487: Attenpt to access invalid address.

LispWorks normally relocates its heap if the default address 0x20000000 is already in use (for example, by another DLL) but
thisisnot possibleif the DLL is compacted.

The solution is to build a non-compacted DL L :

78

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_find_a.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_apropo.htm

11 Troubleshooting the delivery process

(deliver nil "foo" 5 :dll-exports '("Foo") :conpact nil)

11.7 Memory clashes with other software

LispWorks executables and dynamic libraries have a default startup location which may clash with other software already
mapped at that location. Also, aLispWorksimage may grow up to an address where other software is already mapped.
Where possible LispWorks attempts to avoid such clashes automatically.

If LispWorks fails to use other memory asit grows, the effect will be to limit the size of the Lisp heap, possibly leading to
messages:

failed to enlarge nenory

at the console. On some platforms LispWorks can fail to detect a clash safely, which will lead to unpredictable behavior if it
overwrites other code.

The behavior is specific to the particular platform and LispWorks implementation. Thereis adiscussion of these issues (with
the platform-specific details) and a description of how you can avoid memory clashes under " Startup relocation” in the
LispWorks® User Guide and Reference Manual.

11.8 Possible explanations for a frozen image

The image may die or hang up without issuing any useful message, either at run time or possibly during delivery. Some
possible remedies follow:

 Dédliver the application at alower delivery level.

If things work after this, try the same level, but override the changed keywords one by one.

» Retain more packages, with the keyword : packages- t o- keep.

For example:

(deliver '"application-entry
"application"
5
: packages-to-keep ' ("LI SPWORKS"))

The COWON- LI SP package normally should not be deleted or smashed, so it isunlikely to cause problems, but
LI SPWORKS and the packages defined in the application itself are worth investigating.

If this gets the image working again, try to discover why the package is required and see if you can eliminate this
requirement. See 10.8 Symbol, SYMBOL-NAME and package issues during delivery for more information on
keeping and throwing away packages.

11.9 Warnings about combinations and templates

Warning messages such as the following:

s kkk kK
’

;>>> Add this conbination to the tenplate file <<<
(PRE- COVPI LE- COVBI NED- METHODS
((1 NNL) NIL (_CALL-METHOD))) ;

*kk k%

79

11 Troubleshooting the delivery process

occur when a method combination required by a particular function call is not available. You can eliminate these warnings
either by compiling the method combination template forms output in the message and |oading them into the image before
delivery, or by using the keyword : war n- on- ni ssi ng- t enpl at es. See 10.1.2.1 Finding the necessary templates and
10.1.2.2 Incorpor ating the templates into the application.

11.10 FLI template needs to be compiled
An error starting with:

"FLI tenplate needs to be conpil ed"

is probably aresult of missing Foreign Language I nterface templates. See 10.6.1 Foreign Language | nterface templates for
instructions.

11.11 Failure to lookup X resources

X resource names use Lisp symbol names in CAPI/Motif, which might be removed from the delivered image. Thisissue and
the solution is described on page 8.2.4 X resour ce names use Lisp symbol names.

11.12 Reducing the size of the delivered application

If your application does not contain very large data structures, the greatest factor in its size when delivered is usualy the
number of symbols|eft init.

Thisis because function definitions (which are large) are usually associated with symbols. Only when these symbols are
deleted can the associated function definitions be deleted. Until that happens, the garbage collector passes over them during
delivery.

You should look for symbols that are left in the image, which do not need to be there. You can do this by starting the
delivered imagein level 4 (or with : keep- debug- node) with the argument - | i st ener . Theimage starts by interacting
with the user. You can then check which packages and symbols are | eft.

li st-all-packages isonefunctionyou canuse. Usingthe: cal | - count keyword is another possibility.

11.13 Symbol names changed to "Dummy Symbol Name"

Delivery can remove symbol names, changing them to the same string " Dumry Synbol Nane" . This makesit difficult to
debug the application - for the recommended approach see : synbol - nanes- acti on.

11.14 Debugging with :no-symbol-function-usage

When : no- synbol - f unct i on- usage istrue while delivering animage " f oo" on x86 platforms, delivery writes afile
named " f oo. zaps" (the "zapsfile") containing debug information about the symbols that were eliminated.

If an error occurs in the delivered image, the backtrace will contain aline of the form.

(" SYMBOL- FUNCTI ON- VECTOR' nnn)

where nnn is an integer. The actual function name can be recovered from the zaps file by doing thisin the LispWorks
development image:

80

http://www.lispworks.com/documentation/HyperSpec/Body/f_list_a.htm

11 Troubleshooting the delivery process

(require "delivery")
(dv::recover-zapped-synbol -fromfile "foo.zaps" nnn)

The numbers are unique to each image, so take care to use the zaps file that was produced at the same time as the delivered
image.

11.15 Interrogate-Symbols

i nt err ogat e- synbol s isdesigned to find why symbols are left in the image even though they should not be. Since
keeping information in the image would itself keep symbols, the facility has aslittle functionality as possible. Theresultisa
non-intuitive interface, and you should be ready for this. You are encouraged to try other methods first. In particular, you
might consider contacting Lisp Support first.

Tousei nt errogat e- synbol s pass: i nt errogat e- synbol s t todel i ver. Thisloads the interrogate symboal facility.
and causes the delivered image to check for the command line argument - i nt er r ogat e- synbol s on startup. If this
command line argument appears, the image first does symbol interrogation, and then proceeds to run the application as
normal.

Symbol interrogation starts by building an internal table of reverse pointers, during which the image prints some messages
about its progress. When it finishes, it prompts:

Enter Synbol >

Theinput isread one line at atime. Each lineisinterpreted as a single string, where SYMBOLNANME and PACKAGENAME
contain no colons and the line does not begin with a plus sign unless specified. The string can take one of five formats. If the
string is of the format:

1. SYMBOLNAME
then it isasymbol name. The string is used as the argument to f i nd- synbol (in the current package).

Note the string is used as-is, so it must not contain escape characters or leading or trailing spaces, and must bein the
right case. For example, the symbol that is printed:

SETF: :\"USER "\ \"WHATEVER "

must be entered:

SETF: : "USER' "WHATEVER'

[omitting the escape characters #\ \] and to find the symbol CAR, you must enter CAR, and not car . #\ : characters

after the first one (or the first pair) are taken as part of the symbol.

If the symbol isfound, theimage prints alist, when the first element is the symbol, the second element isalist of
interesting symbols that point to that symbol (possibly through uninteresting symbols), and the third element is alist of
symbolsthat point to the symbol directly. A symbol B pointsto symbol B directly when there is a chain of pointers from
A to B which does not go via another symbol.

Aninteresting symbol is asymbol in another package, or a symbol from the same package which is pointed to by a
symbol from another package. The ideais that the interesting symbols are the symbols that are most likely to be worth
further investigation.

Both the second and the third element may be the symbol : many rather than alist, if there are more the
sys::*maxi mum i nt errogat e- r et ur n* (default value 30) of them.

2. PACKAGENANME: SYMBOLNAME or
PACKAGENAME: : SYMBCOLNAME

8l

http://www.lispworks.com/documentation/HyperSpec/Body/f_find_s.htm

11 Troubleshooting the delivery process

then it is a package name followed by a symbol name. The characters up to thefirst colon are used to search for the
package. The characters after the last colon comprise a symbol name. Likein 1. above, both the package name and the
symbol name must exactly match the actual package and symbol name. The output isthe ssmeasin 1.

3. +SYMBOLNAME or
+PACKAGENAME: SYMBCOLNANME or
+PACKAGENAME: : SYMBOLNAME

then the package and/or symbol is determined from the rest of the string asin 1. or 2. However, instead of looking for
symbolsthat point to it, the image builds atree of reversed pointers starting from the symbol, going to depth

sys: : *check- synbol - dept h*. Inthetree, thecar isan object and the cdr isalist of pointersto it. Each pointer
may be a single abject (if it has reached the depth limit, or found an object that is already in the tree), or arecursive tree.
The tree may be quite extensive.

4. PACKAGENAME:

than the line specifies a package name. If the string does not start with a#\ +, the image prints each symbol from other
packages that point (as defined in 1.) to symbolsin the package, followed by alist of the symbolsin the package that it
pointsto. To construct thislist it hasto check the reverse pointers from all the symbols in the package, which may take a
long time if the package contains many symbols.

This option is especialy useful in conjunction with the : smash- packages- synbol s keyword to del i ver, tofind
why a package that should have gone remainsin the image.

5. +PACKAGENAME:

then therest of the string is treated as a package name asin 4., but the image prints the same information that 1. prints,
but for each symbol in the package.

82

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

12 Interface to the Delivery Process

12.1 Interface to the delivery process

For details of the functionsdel i ver y-val ue, del i ver - keywor ds, del i ver y- shaker - ¢l eanup and
del i very- shaker - weak- poi nt er which alow you fine-grained control during the delivery process, if required, see 16

Delivery Reference Entries.

Thefunction hcl : del i ver ed- i mage- p isthe predicate for whether the running image is a delivered image, that isan
image saved by acall todel i ver.

Theaction list "Delivery actions' is executed when the delivery process starts, before any system action. For example, if
ny- hash-t abl e contains entries that are not required in the delivered application, then you may write:

(defun cl ear-ny-hash-tabl e()
(maphash #' (1l anbda (x y)
(unless (required-in-the-application-p x y)
(remhash x *ny-hash-table*)))
my- hash-tabl e))

(define-action "delivery actions" "C ear my hash table"
"¢l ear-ny-hash-tabl e)

Using the action list has two advantages (over the crude method of removing code by f makunbound and so on):

1. It does not have to be part of thedel i ver script, soit can be written near the code that uses * ny- hash-t abl e*. This
makes it easier to maintain that code.

2. It can access the user interface of the delivery process viathe accessor del i ver y- val ue.

83

http://www.lispworks.com/documentation/HyperSpec/Body/f_fmakun.htm

13 Example: Delivering CAPI Othello

This short example demonstrates how to deliver a small graphical application: an implementation of the board game Othello,
with the graphical portion of it written using the CAPI library.

You can see the code for this application by evaluating the following form:

(exanple-edit-file "capi/applications/othello")

13.1 Preparing for delivery

With our ready-written application we can move straight to delivery. But first, try the application out in an ordinary image so
that you can see what it does.

To do this:
1. Create adirectory called ot hel | o and copy the examplefileinto it.
2. Start up LispWorks and its environment.

3. Compile and load the examplefile.

CL-USER 1 > (conpile-file "othello.lisp" :load t)
[conpil ati on nessages el i ded]

4. Start up the application with the following form:

CL-USER 2 > (pl ay-othell o)

5. Play Othello!

Once you are familiar with thisimplementation of Othello, you can move on to delivery preparations.

13.1.1 Writing a delivery script

The next task isto create adelivery script. ThisisaLisp file that, when loaded into the image, |oads your compiled
application code into the image, then calls the delivery function del i ver to produce a standal one image.

Thefirst delivery should be at delivery level 0. A successful delivery at thislevel proves that the code is suitable for delivery
as a standalone application. After assuring yourself of this, you can look into removing code from the image to make it
smaller.

If the delivered image is small enough for your purposes, there is no need to pursue asmaller image. An application delivered
at level 0 contains alot more in the way of debugging information and aids, and so isin some ways preferable to aleaner
image.

The startup function in the Othello gameiscl - user: : pl ay- ot hel | 0. Theinitial delivery script therefore looks like this:

(i n-package "CL-USER")
(1 oad-al | - pat ches)
;; Load the conpiled file othello. Should be in the same

84

13 Example: Delivering CAPI Othello

;; directory as this script.

(load (current-pathnane "othello" nil))

;7 Now deliver the application itself to create the imge othello
(deliver 'play-othello "othello" 0 :interface :capi)

Save this script in the newly created ot hel | o directory asscri pt. i sp.

Note: Alternatively you can create adelivery script using the Application Builder tool in the LispWorks IDE. The
Application Builder is awindowing interface offering another way to performs the steps described the following sections. For
full instructions on using the Application Builder tool, see the LispWorks IDE User Guide.

The remainder of this section shows you how to complete delivery of the othello application using a command shell.

13.2 Delivering a standalone image

We now have a delivery script, enabling us to deliver the application as conveniently as possible. We can now try to deliver a
simple, standalone image (with the delivery script having been set up to deliver at delivery level 0) to verify that the
application can function standalone, before trying to make it smaller.

1. Run the image with the script like this:
| i spworks-8-0-0 -build script.lisp

See 2.2 Déelivering the program for details of how to run the image with a script on your platform. The LispWorks
image name will differ from the above according to the platform.

The script runs for awhile, and as delivery proceeds a number of messages are printed. When it is finished, theimage
exits and there is an executable file called ot hel | 0. exe inyour current working folder on Microsoft Windows, and
ot hel | o in your working directory on macOS, Linux and other Unix-like platforms.

2. Executetheot hel | o file.
This should be aworking, standalone Othello game.

Note: On macOS/Cocoa you will also need to create an application bundle to run GUI applications properly. See 13.3
Creating a macOS application bundle for details.

See 4.3 Ddlivering a standalone application executable for a more detailed discussion of this part of the delivery process.

13.3 Creating a macOS application bundle

The section applies only to LispWorks for Macintosh with the native Cocoa GUI.

You should not simply run a macOS/Cocoa GUI application from the command line in Terminal.app. Instead you should put
the image in a suitable Application Bundle and run it using the Finder. The example delivery scriptsin this manual create the
Application Bundle before writing the executable.

The function hcl : cr eat e- macos- appl i cati on- bundl e does several things to construct a suitable macOS application
bundle for your delivered image. It:

 Createsthe folders comprising an Application Bundle.
» Addsthe resources from a supplied template bundle (or Li spWor ks (64- bi t). app) to the Application Bundle.
» Writesasuitable I nf o. pl i st fileinthe Application Bundle.

* Returns the path of the executable within the Application Bundle.

85

13 Example: Delivering CAPI Othello

Note: You must supply identifier to provide CFBundleldentifier when creating a bundle for your own application.

13.3.1 Example application bundle delivery script

Note how this script callsdel i ver with the executable path returned by hcl : cr eat e- macos- appl i cati on- bundl e:

(i n-package "CL-USER")
(1 oad-al | - pat ches)
;; Compile and | oad othell o exanpl e code
(conpile-file (example-file "capi/applications/othello")
coutput-file :tenp
:load t)
;; Create Othello.app and deliver the executable inside it
(deliver 'play-othello
#+: cocoa
(create-nmacos-application-bundl e
"~/ Deskt op/ Ot hel | 0. app"
;; Do not copy file associations...
:document -types nil
i, ...or CFBundl eldentifier fromthe LispWrks bundle
sidentifier "comexanple.Qhello”

)

#-:cocoa "~/othello" O :interface :capi)

Inthe session below scri pt . | i sp isinthe user's home directory. Here isthe start and end of the session output in
Terminal .app:

mymac: / Applications/Li spWrks 8.0 (64-bit)/Li spWwrks (64-bit).app/ Contents/ MacOS % ./ | i spworks- 8-0-
0- macos64-universal -build ~/script.lisp
Loading text file /Applications/LispWrks 8.0 (64-bit)/Library/lib/8-0-0-0/private-patches/|oad.|
i sp
Li spworks(R): The Common Lisp Progranm ng Environment
Copyright (C) 1987-2021 LispWrks Ltd. Al rights reserved.
Version 8.0.0
Saved by LispWrks as |ispworks-8-0-0-and64-darwi n-gtk, at 02 Aug 2021 15:21
User |w on nymacnachi ne. | i spworks. com
Loading text file /Users/Iw script.lisp
Loading text file /Applications/LispWwrks 8.0 (64-bit)/Library/lib/8-0-0-0/private-patches/| oad.
lisp
; Conpiling file /Applications/LispWrks 8.0 (64-bit)/Library/lib/8-0-0-0/exanpl es/capi/applicati
ons/othello ...
Safety = 3, Speed = 1, Space = 1, Float = 1, Interruptible = 1

[... full conpilation and delivery output not shown...]

Shaki ng stage : Saving i mage

Buil d saving i mage: /Users/|w Desktop/ Q& hel | 0. app/ Contents/ MacOS/ Gt hel | o
Buil d saved i mage: /Users/|w Desktop/ O hell o. app/ Contents/ MacOS/ Gt hel | o

Delivery successful - /Users/|w Desktop/ @ hell o.app/ Contents/ MacOS/ Ot hel | o

Thelast line of thedel i ver output shows the full path to the executable, but you should run the application bundle
Othéllo.app viathe Finder.

13.3.2 Alternative application bundle creation code

Your LispWorks Library contains example code which constructs a macOS application bundle. It defines
wri t e- macos- appl i cati on-bundl e whichissimilar to hcl : cr eat e- macos- appl i cat i on- bundl e.

LispWorks 5.1 and earlier versionsrelied on this example code to create macOS application bundles and you may still wishto

86

13 Example: Delivering CAPI Othello

useit, or amodified version of it, if hcl : cr eat e- macos- appl i cati on- bundl e does not meet your needs. Load the
examplefilein your delivery script, before calling del i ver, likethis:

#+: cocoa

(conpile-file
(exanple-file "configuration/ macos-application-bundle")
coutput-file :temp
:load t)

There is another example, which is actually asave- i mage script (rather than del i ver), in:

(exanple-file "configuration/save-nmacos-application.lisp")

13.3.3 Further macOS delivery examples

These can be found in your LispWorks library directory:

(example-edit-file "delivery/ macos/")

13.4 Command line applications

If you need to deliver anon-GUI application for macOS, change the delivery script to remove the code (conditionalized in the
examples under #+cocoa) that constructs the Application Bundle.

On al platforms, delivering anon-GUI application will not need the: i nt er f ace : capi keyword argument.

Your delivery script to build acommand line application will look something like this:

(i n-package "CL-USER")
(1 oad-al | - pat ches)
(1 oad "non-gui-code")
(deliver 'dont-start-the-gui
"non-gui - app"
5
:consol e t)

13.5 Making a smaller delivered image

Having delivered a standal one image successfully, we can look into delivering a smaller one. To do this we adjust the
parameters passed to del i ver inthe delivery script. Thetypical approach isto experiment with parameters until you find a
set that produces the smallest possible working image from your application.

There are many ways to make the image smaller, but the smplest is to increase the delivery level specified to thedel i ver
function. See 4.5 How to deliver a smaller and faster application for more details.

13.5.1 Increasing the delivery level

Applications that do not use any of Common Lisp's more dynamic features (creating classes at run time, evaluating arbitrary
code) can usually be delivered al the way up to the maximum level of 5 without breaking. Our Othello gameis one such
application.

Try re-delivering the Othello game at different levels. Do this by editing your delivery script, changing the third argument to
del i ver to anumber between 0 and 5 inclusive.

87

14 Efficiency considerations when coding for
delivery

This chapter explains some efficiency considerations you might make when coding your application.

14.1 Use of modules

Can you avoid using alarge module and still get the functionality you need? Modules are saved in the image, and even after
Delivery has gone through them to throw things out, they may still have a noticeable effect on the size of the delivered image.
The fewer modules you use, the smaller the delivered size of your application.

Note: Some modules are built on top of others. If you load such a module into the image the others are loaded too. Pay close
attention to these "hidden" contributions to image size by following the loader messagesin the Listener.

14.2 Loading code at run time

You may retain the loader in a delivered application, and use it to load compiled code or any of the supplied modules at run
time. Thisisuseful if your application's users need to load their own codeinto it.

However, we do not recommend using this as a means of deferring the addition of module code to your image. It isfar better
to deliver your application with all the modulesit needs. The first benefit is that the module itself is delivered — if you load it
at run time you cannot do this. Second, you avoid slowing your application to a halt while it loads the module. Findly, if

you leave the option open of loading arbitrary code into the image, you may need to keep the entire COMMON- LI SP package,
which adds greatly to the size of the delivered image.

14.3 General strategy for reducing the image size

In many cases, the size of the image can be reduced if part of the user code or datais eliminated, for example, when this code
or datais present only for debugging purposes. The system, however, cannot tell which part of the code or data can be
eliminated, so you have to do it yourself.

That can be donein either of two ways:

1. You can eliminate the code or data explicitly before calling del i ver, by using f makunbound, makunbound, r emhash
and so on. The advantage of this approach isthat it does not require you to know anything about Delivery. The
disadvantage of thisisthat these calls must be put explicitly in the delivery script.

2. The LispWorks image contains an action list called "Delivery actions", which you can add actionsto. For details of how
to use this, see 12 Interface to the Delivery Process.

See the LispWorks® User Guide and Reference Manual for information about action listsin general.

88

http://www.lispworks.com/documentation/HyperSpec/Body/f_fmakun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_makunb.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_remhas.htm

14 Efficiency considerations when coding for delivery

14.4 Use of symbols, functions, and classes

Bear in mind that symbols, functions, and classes contribute significantly to the size of a delivered application. Whileit is not
worth letting this interfere greatly with good design and maintainability, efforts to minimize their use in your application may

pay off.
Note: Symbols, functions and classes interact. If asymbol isretained, any function or class bound to it is also retained in the

delivered application, even if it is never funcalled or instantiated. Delivery cannot be sure that the symbol is not ever used to
do these things, and so errs on the side of safety, at the expense of image size.

14.5 Making references to packages

Certain Common Lisp functions and macros make explicit reference to packages. If you use any of these on particular
packages, you may need to keep those packages in the application. This can contribute greatly to the size of the delivered
application image. For more details, see 10.9.5 When to delete and smash packages.

14.6 Declaring the types of variables used in function calls

You can minimize, or even eliminate, run time decisions about the types of function arguments by making them instances of a
known type. This gives the compiler a chance to inline appropriate code or perform other optimizations.

14.7 Avoid referencing type names

Referencing the name of atype (that is, asymbol) in code means that delivery cannot remove that type even if it is not used
anywhere else. Thisisoften seenin code usingt ypep, t ypecase or subt ypep to discriminate between types.

For example, if you have code like this:

(defun foo (x)
(cond ((typep x 'classl) ...)
((typep x 'class2) ...)

ktéubtypep x 'class1000) ...)))

then delivery would keep all of the classescl ass1,. . . ,cl ass1000 even if nothing else references these classes.

Possible solutions are described in 14.7.1 Referencing types via methods and 14.7.2 Referencing types via predicates.

14.7.1 Referencing types via methods

Code can reference type names either directly as shown in 14.7 Avoid referencing type names or viat ype- of in code like
this:.

(defun foo (x)
(et ((type (type-of x)))
(cond ((eq type 'classl) ...)
((eq type 'class2) ...)

kkéq type 'class1000) ...))))

Instead, you could express the conditional clauses as methods specialized for each class:

(defnmethod foo ((x classl)) ...)
(defnmethod foo ((x class2)) ...)

89

http://www.lispworks.com/documentation/HyperSpec/Body/f_typep.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_tpcase.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_subtpp.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_tp_of.htm

14 Efficiency considerations when coding for delivery

(def met hod foo ((x cl ass1000)) ...)

Thiswould allow any unused classes to be removed by delivery, because each method is a separate function.

14.7.2 Referencing types via predicates

If you do not wish to retain CLOS, and are referencing types that have built-in predicates, or structure types, you could use
these predicates instead of the type namesto allow delivery to remove unused types. For example this code:

(typecase x
(i nteger (process-an-integer X))
(string (process-a-string x))
(a-struct (process-a-struct x)))

could be rewritten as;

(cond ((integerp x) (process-an-integer x))
((stringp x) (process-a-string X))
((a-struct-p x) (process-a-struct x)))

14.8 Use of the INTERN and FIND-SYMBOL functions

These functions allow arunning program to locate arbitrary symbols. If your application uses them you may need to keep
many symbolsin the image, along with any associated definitions. See 10.11 Coping with intern and find-symbol at run
time.

Note: Ther ead function typically callsi nt er n, thus causing the same problems.

14.9 Use of the EVAL function and the invocation of uncompiled
functions

Applications using eval or invoking uncompiled functions in other ways need the entire Common Lisp interpreter available
to them. Delivery therefore keepsit in the delivered image, adding significantly to its size.

14.10 User-defined and built-in packages

Try to develop your application using awell-defined set of packages. Particularly, try not to intern symbolsin built-in
packages. You may find at delivery time that a particular built-in package is suitable for throwing out, and therefore have to
go back and take your symbol out of it in order to do so safely.

Note: When you use built-in packages in your own packages (viadef package), take care when naming symbols, since they
may accidentally tie up with external function or class definitions in the built-in package and cause them to be retained
unnecessarily. (This retention occurs because Delivery does not throw out unused definitionsiif they are referred to by some
other symbol in the application — See 14.4 Use of symboals, functions, and classes.)

90

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_rd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_intern.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eval.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpkg.htm

15 Self-contained examples of delivery

This chapter enumerates the set of examplesin the LispWorks library which illustrate how to deliver aruntime.

See README. t xt filesin the sub-directories for instructions. To view the example code and the README. t xt file, open the
filein the Editor tool in the LispWorks IDE. Evaluating the callsto exanpl e-edi t - f i | e shown below will achieve this.

Note: Inthe README. t xt files, "Use x as delivery script” (when x is afile name) means you can do one of the following:

» Usethefile path as a command-line argument with - bui | d. That is, run LispWorks in a console like this:

LispWorks-image - bui |l d x

» Usethe script in the Application Builder tool in the the LispWorks IDE. To do this, either edit the file and use the editor
command Build Application, or start the Application Builder tool directly and enter the file path in the Build script
pane.

For more information about the Application Builder tool, see the LispWorks IDE User Guide.

15.1 Delivering a Cocoa CAPI application examples
These filesillustrate building Cocoa applications on macOS, using templates to create the application bundle:

(exanple-edit-file "delivery/ macos/ README. t xt")
(example-edit-file "delivery/ macos/singl e-w ndow application")

(example-edit-file "delivery/macos/ nultipl e-w ndow application")

15.2 Delivering a CAPI application examples
These filesillustrate building a CAPI "Hello World" application:

(exanple-edit-file "delivery/hell o/ READVE. t xt")
(example-edit-file "delivery/hello/deliver")

(exanmple-edit-file "delivery/hello/hello")

Thesefilesillustrate building a CAPI application which plays the Othello game:

(exanmple-edit-file "delivery/othell o/ README. t xt")
(exanmple-edit-file "delivery/othello/deliver")

(exanpl e-edit-file "capi/applications/othello")

91

15 Self-contained examples of delivery

Thesefilesillustrate building a CAPI application with error handling:

(example-edit-file "delivery/debugger-hook/ README. t xt ")
(exanmple-edit-file "delivery/debugger-hook/application-with-errors")

(exanple-edit-file "delivery/debugger-hook/deliver")

15.3 Delivering a dynamic library examples
Thesefilesillustrate building a dynamic library on Unix-like platforms:

(example-edit-file "delivery/dynam c-1ibrary/ README. txt")
(example-edit-file "delivery/dynamn c-1ibrary/exanple")

(exanple-edit-file "delivery/dynam c-library/deliver")
These filesillustrate building a dynamic library to load into Java:

(exanple-edit-file "javal/lisp-as-dl|/README txt")
(exanple-edit-file "javal/lisp-as-dlI/LispwrksCaller.java")

(example-edit-file "javal/lisp-as-dll/deliv-script")

15.4 Delivering a Windows service examples
Thesefilesillustrate creating a service on Microsoft Windows:

(exanple-edit-file "delivery/ntservice/ READVE. t xt")
(exanple-edit-file "delivery/ntservice/define-service")
(example-edit-file "delivery/ntservice/deliver")
(exanple-edit-file "delivery/ntservice/build-config")
(exanple-edit-file "delivery/ntservice/testapp-lwtest")
(example-edit-file "delivery/ntservice/ntservice")

(exanple-edit-file "delivery/ntservicel/testapp-lw')

92

16 Delivery Reference Entries

This chapter contains reference pages for Delivery, including the interface to the Delivery process.

deliver Function

Summary

Creates LispWorks executable applications and dynamic libraries.

Package

I i spwor ks

Signature

del i ver function file level &rest keywords

Arguments

function] A symbol.

filed A string or pathname.

level[An integer in the inclusive range [0, 5].

keywords] Keyword arguments described in full in 5 Keywor dsto the Delivery Function.
Description

Thefunction del i ver isthe main interfaceto the delivery tools. You useit to create LispWorks executable applications and
dynamic libraries.

Thefirst three arguments are required.

If you are creating an executable application, function should name a function of no arguments. This function will be called
on startup of the executable. If you are creating adynamic library, function should beni | .

file names the file in which the delivered image should be saved. The file extension . exe is appended to executables
delivered on Microsoft Windows. For dynamic libraries, afile extension is appended as follows:

Microsoft Windows .dl
macOS .dylib
Other Unix-like systems
. S0
If the delivery keyword : spl i t istrue then a second file containing the Lisp heap is created.

On macOS, you may wish to create an application bundle containing your delivered image. For an example showing how to

93

16 Delivery Reference Entries

do this, see 13.3 Creating a macOS application bundle.

level specifiesthe delivery level which isameasure of how much work Delivery does to reduce the size of theimage. level 5
isthe most severe. The least work on image reduction is done at level O.

The most important keywords argumentsare: i nt er f ace and: nul ti processi ng. If your application uses CAPI, you
must pass: i nt erface : capi . If your application does not use the CAPI, but does use multiprocessing, then you must pass
:mul tiprocessingt. Your first attempt to deliver your application should use no more than these keywords.

In addition, avariety of other keywords can be passed to del i ver . These are for fine-tuning by controlling aspects of
delivery explicitly. Add more keywords only when you find that you need them.

All thedel i ver keywords are documented in 5 Keywor dsto the Delivery Function. Additionally, they can been seenin
the LispWorks image by calling:

(require "delivery")
(deliver-keywor ds)

del i ver checksthat | oad- al | - pat ches hasbeen called. If | oad- al | - pat ches has not been called in the session, then
del i ver signalsan error.
Notes

For information about invoking del i ver using the IDE, see 28 The Application Builder in the LispWorks IDE User Guide.

See also

del i ver - keywor ds

5 Keywordsto the Delivery Function
del i vered-i mage-p

save-i mage

deliver-keep-symbol-names Function

Summary

Causes specified symbol names to be retained if the symbols are retained.

Package

I i spwor ks

Signature

del i ver - keep-synbol - nanes &rest symbols
Arguments

symbol s Symbols.

Description

Thefunction del i ver - keep- synbol - names marks the symbols symbols such that their names are kept if the symbols
themselves are not shaken out. Thisis useful when the symbol nameis used as long the symbol is used. For example, you

94

16 Delivery Reference Entries

may have afunction that callser r or , passing its name (the symbol) to be included in the error message. 1f the symbol is not
referenced by the actual application, it will be shaken out and there is no issue, but if it is referenced, you still want the
message to print the name properly. For example the import interface of Java, which generates many callers and thereisa

good chance that many of them will not be used, marks these callers to keep the symbol names.

Notes

If you want to ensure that the symbol is kept even if it is not referenced, usedel i ver - keep- synbol s.

See also

del i ver-keep-synbol s
: keep- synbol - nanes

deliver-keep-symbols

Summary

Causes symbols and their names to be retained.

Package

| i spworks

Signature

del i ver - keep-synbol s & est symbols

Arguments

symbol s Symbols.

Description

Function

Thefunction del i ver - keep- synbol s marks each symbol in symbols such that they are not shaken out during delivery, and

their names are kept.

Thisis useful for symbols that are not explicitly referenced by Lisp (and hence may be shaken out) but are still needed, for

example symbolsthat are called directly from Java.

Using del i ver - keep- synbol s hasthe same effect aspassing : keep- synbol s todel i ver, but

del i ver - keep- synbol s ismuch more convenient because you can use it in your source code before loading the delivery

module.

You will typically add acal todel i ver - keep- synbol s after the definition(s) of the symbols, asin the example below.

Examples

(defun function-called-directly-fromjava (x y)

(deliver-keep-synbol s

"function-called-directly-fromjava)

95

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

16 Delivery Reference Entries

See also

del i ver - keep- synbol - nanes
: keep- synbol s

deliver-keywords

Summary

Prints the legal keywordsto del i ver.

Package

| i spworks

Signature

del i ver - keywor ds

Description

Thefunction del i ver - keywor ds printsthe legal keywordsto del i ver .

Function

If the default value for a particular keyword is non-nil, it is printed on the same line. The default isaform that is evaluated if

the keyword was not passed to del i ver, inthe order that del i ver - keywor ds prints.

del i ver - keywor ds also prints a short documentation string for each keyword.

See also

del i ver

delivery-shaker-cleanup

Summary

Defines a cleanup function that is called after the shaking operation.

Package

I i spwor ks

Signature

del i very-shaker - cl eanup object function

Arguments
objectl An object.
functiond A function designator.

96

Function

16 Delivery Reference Entries

Description

Thefunction del i ver y- shaker - cl eanup can be used to define a cleanup function that is called after the shaking
operation. del i ver y- shaker - cl eanup stores a pointer to function and aweak pointer to abject. After the shaking, the
shaker goes through al the object/function pairs, and for each object that is till alive, calls function with object as argument.
Thisis used to perform operations that are dependent on the results of the shaking operation.

If the cleanup function has to be called unconditionally, then object should bet . The cleanup function should be a symbol or
compiled function/closure, unless the evaluator iskept via: keep- eval . The shaker performs another round of shaking after
calling the cleanup functions, so unless something points to them, they are removed before the delivered image is saved.

This also means that objects (including symbols) that survived the shaking until the cleanup function is called, but become
garbage as aresult of the cleanup function, are removed as well.

The cleanup function cannot use del i ver y- val ue. If the value of one of the keywordsto del i ver isneeded inthe
cleanup function, it has to be stored somewhere (for example, as avalue of a symbol, or closed over). It cannot be bound
dynamically around the call to del i ver , because the cleanup function is executed outside the dynamic context in which
deli ver iscaled.

Examples

Suppose the symbol P:X isreferred to by objects that are not shaken, but its values are used in function P:Y, which may or
may not be shaken. We want to get rid of the value of P:X if the symbol P:Y has been shaken, and set the value of P:X tot if
: keep- debug- node is passed to del i ver and isnon-nil, or ni | otherwise.

(defun setup-elimnate-x ()
(let ((newval ue
(if (delivery-value :keep-debug- node)
t
nil)))
(del i very-shaker-cl eanup
t
#' (lambda ()
(unl ess (find-synbol "Y' "P")
(let ((sym (find-symbol "X' "P")))
(when sym
(set symnewvalue))))))))

(define-action "Delivery actions" "Elimnate X"
'setup-elimnate-X)

This sets up the lambdato be called after the shaking operation. It will set the value of P:X if the symbol P.Y has been
shaken.

Notes about the cleanup function:

1. It doesnot call del i ver y- val ue itself. Instead, it closes over the value.

2. It does not contain pointersto P:X or P.Y. In this case, it is specially important not to keep a pointer to P.Y, because
otherwiseit is never shaken.

3. It does not assume that P:X will survive the shaking.
4. |t does assume that the package "P" is not deleted or smashed.

The cleanup functions are called after the operation of del i ver y- shaker - weak- poi nt er iscomplete, and are useful for
cleaning up the operations of del i ver y- shaker - weak- poi nter.

97

16 Delivery Reference Entries

See also

del i very-shaker - weak- poi nter

delivery-shaker-weak-pointer Function

Summary

Used to make a pointer from one object to another weak object during the shaking operation.

Package

| i spworks

Signature

del i very- shaker - weak- poi nt er pointing accessor &ey setter remover dead-value pointed

Arguments

pointingC] An object. You are free to use your own notion of pointing, for example, it may be the key
in ahash table.

accessor] A symbol or alist starting with a symbol.

setter] A function designator or alist starting with afunction designator.

remover] A function designator or alist starting with a function designator, or t .

dead-valuell An object.

pointedd] An object.

Description

Thefunction del i ver y- shaker - weak- poi nt er isused to make a pointer from one object pointing to another weak object
pointed during the shaking operation. The operations of del i ver y- shaker - weak- poi nt er are:

1. If setter isni |, it computes it based on accessor (see below), and creates arecord with all the arguments for the shaker.

2. Before the shaker starts shaking, for each of the records created in (1), it finds the value of the pointed object, whichis
pointed if itisnot ni | , or the result of applying accessor to pointing.

If pointedisni | and accessor returnsni | , the shaker does not do anything else for thisrecord. Otherwise, it stores
weak pointers to both pointing and the pointed object, and uses remover to remove the pointer from pointing.

3. After the main shaking operation, for each pair of pointing/pointed object from (2) it checks if both have survived the
shaking. If they did, it stores a pointer to the pointed object in pointing using setter.

If both pointed and setter are non-nil then accessor is not used. Otherwise accessor is called with pointing and returns the
pointed object. accessor isused for two purposes:

 Getting the pointed object if pointed isni | .
e Computing the value for setter if itisnil .

If accessor isasymbol then it specifies afunction that is called with the pointing object as its argument. If accessor isalist
then thecar of thelist is called with pointing asits first argument, and the cdr of thelist forming the rest of the arguments,

98

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

16 Delivery Reference Entries

that is:

(apply (car accessor) pointing (cdr accessor))

For example, if accessor is (sl ot - val ue nane) thecall is(sl ot - val ue pointing nare) , and if accessor is
(aref 1 2) thecallis(aref pointing 1 2).

If setter isni |, it is computed by the system using accessor and the same expansion that set f would use. If setter is non-nil,
it has the same properties as accessor, except that in the call the pointed object isinserted before the rest of the arguments.
That is, if setter is(set - sonet hi ng name) , thecall is(set - sonet hi ng pointed-object pointing name) . In addition,
where accessor accepts a symbol, setter also accepts a function abject.

The default value of remover ist , which means use setter with new value being dead-value. remover is used to remove the
pointer to the pointed object from pointing. It is called exactly like setter, except that the first argument is dead-value, rather
than pointed.

pointed gives the value of the pointed object. If pointed isni | then accessor is used to get the pointed object.

The default value of dead-valueisni | . Thisisthe value that is stored by remover in the pointing value before starting the
shaking. Notethat if the pointed object is shaken, pointing is left with dead-value.

Note that between the calls to remover and setter (steps 2 and 3 above), pointing points to the wrong thing (dead-value). This
may cause problemsif pointing is used by the system during the shaking (this does not happen unless you access objects
which you should not access), or if you usedel i ver y- shaker - weak- poi nt er more than once on the same object, and
one of these uses a dot that has been defined by the other. Thus you have to make sure that you do not cause this situation.

Examples

Suppose the keys of *ny- hash-t abl e* are conses of an object and a number, and it is desired to remove from
ny- hash-t abl e those entries wherethe car isnot pointed to from anywhere else. This can be done by something like
this:

This will elimnate all entries where the car is ni
(defun cl ean-ny-hash-tabl e (table)
(maphash (I ambda (x y)
(declare (ignore y))
(unless (car x) (remhash x table)))
tabl e))

This will cause the car of any entry where the car is
not pointed to from another object to change to ni
(defun shake-ny-hash-table ()
(maphash #' (lanbda (x y) (declare (ignore y))
(del i very-shaker-weak-pointer x 'car))
ny- hash-tabl e))

This will cause clean-ny-hash-table to be called
|ater in the shaking, provided that *ny-hash-table*
is still alive.
(del i very-shaker-cl eanup *ny-hash-tabl e*
' ¢l ean- my- hash-t abl e)

Call this function at delivery tine

(define-action "Delivery Actions" "shake my hash table"
' shake- my- hash-t abl e)

If the car can beni |, the code above removes some entriesit should not. In this case the appropriate forms should be
changed to:

99

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

16 Delivery Reference Entries

(del i very-shaker-weak-pointer x 'car
: dead-val ue ' ny-dead- val ue)

and inside the definition of cl ean- ny- hash- t abl e above replace thge unl ess form by:

(when (eq (car x) 'my-dead-value) (remhash x table))

This assumes there are no entries where the car isny- dead- val ue.

Note that the cleanup function is not going to be called unless the hash table actually survives the shaking operation.

Examples

Thevalue of *aaa* isalist of objects of typea- st ruct , which hasadot called name, which pointsto a symbol. We want
to get rid of any of these structuresif the symbol is not pointed to by some other object.

Implementation A:

Make the pointers from the structures to the names be weak, and have the cleanup function throw away any structure where
the name becomesni | .

(defun cl ean-*aaa* ()
(loop for a on *aaa* do
(delivery-shaker-weak- poi nter
a
"a-struct-nane)))

(delivery-shaker-cl eanup

' *aaa*
(1l ambda (synbol)
(set symbo

(renove-if-not 'a-struct-nanme
(synbol -val ue synbol)))))

(define-action "Delivery Actions" "Cl ean *aaa*"
' cl ean-*aaa*)

Implementation B:

Make a pointer from the symbol to the structure, and make * aaa* point weakly to the names, and set *aaa* tonil . The
remover and accessor do nothing, and the setter is defined to restore * aaa* . Thisimplementation does not use the cleanup
function.

(defun cl ean-*aaa* ()
(let ((setter
#' (1l anmbda (nanme synbol)
(set synbol (nconc
(synbol -val ue synbol)
(list (get nane '"a-struct))))
(remprop nanme 'a-struct))))
(dolist (x *aaa* ())
(let ((nane (a-struct-nane x)))
(setf (get nane 'a-struct) x)
(delivery-shaker-weak-poi nter '*aaa* ni
:renover ni
: poi nted nane
:setter setter)))
(setq *aaa* nil)))

(define-action "Delivery actions" "C ean aaa"
' cl ean-*aaa*)

100

http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm

16 Delivery Reference Entries

See also

del i very-shaker-cl eanup

delivery-value Accessor

Summary

Accesses the value of a delivery keyword.

Package

| i spworks

Signature
del i very-val ue deiver-keyword => value

setf (delivery-val ue deliver-keyword) value => value

Arguments

deliver-keyword[One of the legal keywordsto del i ver. Therearelisted in 5 Keywordsto the Delivery
Function.

valuell A ||Sp Obj ect.

Values

valuell A ||Sp Ob] ect.

Description

The accessor del i ver y- val ue gets or sets value as the value of deliver-keyword.

These must only be called after del i ver iscalled. deliver-keyword must be one of the legal keywordsto del i ver (see5.2
Alphabetical list of deliver keywords or can be displayed by calling del i ver - keywor ds). del i ver y- val ue returnsthe
value associated with deliver-keyword. When del i ver iscalled, the values associated with each keyword are initialized
from the argumentsto del i ver or using their default values (which are printed by del i ver - keywor ds), or settoni | .
Values can be changed later by user actions that were added to the "Delivery actions' action list, and then by the system.
Before starting the shaking operations, the values of the keywords are reset, and del i ver y- val ue cannot be called after the
shaking.

You can use the setter of del i ver y- val ue to set the value of akeyword. Since the user actions are done before the system
actions, these system actions (which also use del i ver y- val ue to access the keyword's value) will see any change that the
user actions effected.

See also

deliver
del i ver - keywor ds

101

| ndex

A
accessors
delivery-value 101
caction-on-failure-to-open-display keyword 52: Alphabetical list of deliver keywords 31
ActiveX control 7.6: ActiveX controls 61
ActiveX DLL 7.6: ActiveX controls 61
:anal yse keyword 5.2: Alphabetical list of deliver keywords 31
Application Builder tool ~ 2.2.1: Delivering the program using the Lisp\orks IDE 13
application error log 1.4.7: Error handling 11
applications
coding for efficient delivery 14 : Efficiency considerations when coding for delivery 88
command line 13.4: Command line applications 87
icons 5.2: Alphabetical list of deliver keywords 37
name of delivered imagefile 4.1: Thedédlivery function: deliver 18, deliver 93
non-GUI 13.4: Command line applications 87
standalone delivery 4.3: Delivering a standalone application executable 19
automatic-init keyword 4.4.6: Moreabout building dynamic libraries 23, 5.2: Alphabetical list of deliver keywords 31
automatic memory management. See garbage collection. 1.4.3: Debugging, profiling and tuning facilities 10
automati on-server-nmai n function 5.2: Alphabetical list of deliver keywords 49

aut onati on-server-top-loop function 5.2: Alphabetical list of deliver keywords 49

C

:call-count keyword 5.2: Alphabetical list of deliver keywords 32, 11.12: Reducing the size of the delivered application 80
call counting
all symbolsin application 5.2: Alphabetical list of deliver keywords 32
recording resultsof 5.2 Alphabetical list of deliver keywords 32, 5.2: Alphabetical list of deliver keywords 34
settingup 5.2: Alphabetical list of deliver keywords 32
cal | - next - net hod local function 5.2: Alphabetical list of deliver keywords 33
cal I s-who function 5.2: Alphabetical list of deliver keywords 45
CAPI
geometry 10.4.1: Interface geometry depends on Lisp symbol names 70
preferences 10.4.1: Interface geometry depends on Lisp symbol names 70
window positions 10.4.1: Interface geometry depends on Lisp symbol names 70
change-cl ass genericfunction 5.2: Alphabetical list of deliver keywords 33
classes
accessors 5.2 Alphabetical list of deliver keywords 50
deleting and keeping 5.2: Alphabetical list of deliver keywords 32, 5.2: Alphabetical list of deliver keywords 50

102

Index

delivery issues 4.6.2: Shakingtheimage 25

dynamic definition ~ 10.1.1: Applications defining classes or methods dynamically 66
ol e-control -conponent 7.6: ActiveX controls 61

printing information about 5.2 : Alphabetical list of deliver keywords 32

:cl asses-to-keep-effective-slots keyword 52: Alphabetical list of deliver keywords 32, 10.1.4: Compression of CLOS
metaobjects 68

:classes-to-renpbve keyword 5.2: Alphabetical list of deliver keywords 32
:cl ean-down keyword 5.2: Alphabetical list of deliver keywords 32
:clean-for-dunp-type keyword 5.2: Alphabetical list of deliver keywords 32
CLOS 10.1: Deliveryand CLOS 66
deleting and keeping 5.2: Alphabetical list of deliver keywords 39
diagnostics 5.2: Alphabetical list of deliver keywords 32
dynamic definition 10.1.1: Applications defining classes or methods dynamically 66
method dispatch efficiency 10.1.2: Special dispatch functions and templates for them 66
object printing code 5.2: Alphabetical list of deliver keywords 39
templates for method combinations 10.1.2.2 : Incorporating the templates into the application 67
:clos-info keyword 5.2: Alphabetical list of deliver keywords 32
:clos-initarg-checking keyword 5.2: Alphabetical list of deliver keywords 33
codesigning 5.2: Alphabetical list of deliver keywords 51
coding applications for efficient delivery 14 : Efficiency considerations when coding for delivery 88
Command+C 6.8: Sandard Edit keyboard gestures 57
command line applications 13.4: Command line applications 87
Command+V 6.8: Sandard Edit keyboard gestures 57
Command+X 6.8: Sandard Edit keyboard gestures 57
Common Lisp Object System 10.1: Delivery and CLOS 66
:conpact keyword 5.2: Alphabetical list of deliver keywords 33, 11.6: Failedtoreserve... error in compacted image 78
conpi l e function 5.2: Alphabetical list of deliver keywords 49
conpil e-file function 1.2.2: Functionality removed by delivery 9, 5.2: Alphabetical list of deliver keywords 49
complex number representation, deleting and keeping 5.2: Alphabetical list of deliver keywords 40
:condition-del etion-action keyword 52: Alphabetical list of deliver keywords 33, 10.5.1: Deleting of condition classes 70
:consol e keyword 5.2: Alphabetical list of deliver keywords 34
convert-to-screen function 8.1.2: Fallbackresources 62, 8.2.3: Fallbackresources 63
corrupted executable 8.3 : LispWorks executable corrupted 63
creat e- macos-appl i cation-bundl e function 222: Delivering the programusingacommand shell 14, 13.3: Creatinga

macOS application bundle 85, 13.3.2: Alternative application bundle creation code 86

D

debugger - hook variahle 3.2.2: Handling errors generated by the Lisp system 16
debugging and testing
checking an image without runningit ~ 5.2: Alphabetical list of deliver keywords 49
inadeliveredimage 5.2: Alphabetical list of deliver keywords 40
stub definitions for deleted functions 5.2: Alphabetical list of deliver keywords 44

103

Index

define-foreign-callable maco 4.4.1: Smpleddiveryof adynamiclibrary 20, 5.2: Alphabetical list of deliver
keywords 35, 10.6.2: Foreigncallablenames 71

define-ol e-control -conponent macro 7.6: ActiveX controls 61

. del et e- packages keyword 5.2: Alphabetical list of deliver keywords 34, 10.9.2: How to delete packages 73, 10.10.1: Ensuring
that packages are kept 74

del et e- packages list 5.2: Alphabetical list of deliver keywords 34
deleting and keeping
classaccessors 5.2: Alphabetical list of deliver keywords 50
classes 5.2: Alphabetical list of deliver keywords 32, 5.2: Alphabetical list of deliver keywords 50
CLOS 5.2: Alphabetical list of deliver keywords 39
complex number representation 5.2: Alphabetical list of deliver keywords 40
debugger 5.2: Alphabetical list of deliver keywords 40
documentation 5.2: Alphabetical list of deliver keywords 41
dspectable 5.2: Alphabetical list of deliver keywords 45
editor commands 5.2: Alphabetical list of deliver keywords 36, 5.2: Alphabetical list of deliver keywords 36
eval function 14.9: Useof the EVAL function and the invocation of uncompiled functions 90
evaluators 5.2: Alphabetical list of deliver keywords 41
external symbols 5.2: Alphabetical list of deliver keywords 50
fasl dumper 5.2: Alphabetical list of deliver keywords 41

fi nd-synbol function 10.11: Coping with intern and find-symbol at runtime 75, 14.8: Use of the INTERN and FIND-SYMBOL
functions 90

f or mat directives 5.2: Alphabetical list of deliver keywords 37

functionnames 5.2: Alphabetical list of deliver keywords 42

functions 5.2: Alphabetical list of deliver keywords 37

history of formsentered 5.2: Alphabetical list of deliver keywords 44

listener toplevel ~ 5.2: Alphabetical list of deliver keywords 44

| oad function 5.2: Alphabetical list of deliver keywords 42

macros 5.2: Alphabetical list of deliver keywords 43, 5.2: Alphabetical list of deliver keywords 43
methods, class-direct 5.2: Alphabetical list of deliver keywords 50

modulefacility 5.2: Alphabetical list of deliver keywords 43

packages 5.2: Alphabetical list of deliver keywords 34, 10.8: Symbol, SYMBOL-NAME and package issues during delivery 72
packages, all ~ 5.2: Alphabetical list of deliver keywords 41

plistindicators 5.2: Alphabetical list of deliver keywords 49

structureinternals 5.2 : Alphabetical list of deliver keywords 43

stub definitions for deleted functions 5.2: Alphabetical list of deliver keywords 44

walker 5.2: Alphabetical list of deliver keywords 45

deliver function 93 1.2.2: Functionality removed by delivery 9, 2.2: Ddliveringtheprogram 12, 4.1: Thedelivery function:
deliver 18, 9.1.2: Howtoddiver aniOSruntime 65

delivered image
debugger 5.2: Alphabetical list of deliver keywords 40
module facility, deleting and keeping 5.2: Alphabetical list of deliver keywords 43

del i vered-i mage-p function 12.1: Interfacetothedelivery process 83

104

Index

Délivering for Android 9.2 Delivery of Android runtimes 65
Délivering for iOS ~ 9.1: Delivery of iOSruntimes 65
Delivering for mobile platforms ~ 9: Delivering for mobile platforms 65
Delivering on Linux, FreeBSD, x86/x64 Solaris ~ 8: Delivery on Linux, FreeBSD and x86/x64 Solaris 62
Déeliveringon macOS 6: Delivery on macOS 56
Delivering on Windows 7 : Delivery on Microsoft Windows 59
del i ver - keep- synmbol - nanmes function 94
del i ver - keep-synbol s function 95 10.10.2: Ensuringthat symbolsarekept 74
deli ver-keywords function 96 5: Keywordstothe Délivery Function 26
deliver-to-android-project function 9.2.1: Howtodeliver an Android runtime 65
delivery 2.2: Deliveringtheprogram 12, 4: Déelivering your Application 18
classissues 4.6.2: Shakingtheimage 25, 14.4: Useof symbols, functions, and classes 89
diagnosticsfor al symbols 5.2 Alphabetical list of deliver keywords 32
examples 2.2.3: Further examples 14
functionissues 14.4: Use of symbols, functions, and classes 89
keywordsfor controlling 5.2 : Alphabetical list of deliver keywords 31
library dependencies, and 14.1: Useof modules 88

Lispinterfaceto 2.2: Deliveringtheprogram 12, 4.1: Thedeliveryfunction: deliver 18, 5.2: Alphabetical list of deliver
keywords 31, deliver 93

methods, and 4.6.2: Shakingtheimage 25

packageissues 5.2: Alphabetical list of deliver keywords 36, 5.2: Alphabetical list of deliver keywords 43, 10.8: Symbol, SYMBOL-
NAME and package issues during delivery 72, 14.10: User-defined and built-in packages 90

preparationfor ~ 4.2: Using the delivery tools effectively 19

severity level 4.1: Thedédlivery function: deliver 18, 4.5.1: Makingtheimagesmaller 24, deliver 93
stagesof 1.4: Abreakdown of thedelivery process 10, 4.5: Howto deliver a smaller and faster application 24
standalone applications 4.3: Delivering a standalone application executable 19

stub definitions for deleted functions 5.2: Alphabetical list of deliver keywords 44

symbol issues 4.6.2: Shakingtheimage 25, 10.8: Symbol, SYMBOL-NAME and package issues during delivery 72, 14.4: Useof
symbals, functions, and classes 89

system packages 10.8: Symbol, SYMBOL-NAME and package issues during delivery 72

treeshaking 4.6: How Delivery makesanimagesmaller 24, 5.2: Alphabetical list of deliver keywords 50
troubleshooting 11 : Troubleshooting the delivery process 77

withacommand shell ~ 2.2.2: Delivering the program using a command shell 13

withaDOS command window 2.2.2: Delivering the programusing a command shell 13

without running the application ~ 5.2: Alphabetical list of deliver keywords 49

without writingtodisk ~ 5.2: Alphabetical list of deliver keywords 38

with Terminal.app ~ 2.2.2: Delivering the programusing a command shell 13

Delivery actions 12.1: Interfacetothedelivery process 83, 14.3: General strategy for reducing theimagesize 88, del i very-shaker -
cl eanup 97, delivery-shaker-weak-pointer 99, delivery-shaker-weak-pointer 100, delivery-
shaker - weak- poi nter 100, delivery-value 101

delivery level 4.1: Thedelivery function: deliver 18, 4.5.1: Makingtheimagesmaller 24, deliver 93
del i very-shaker-cl eanup function 96

del i very-shaker - weak- poi nter function 98

105

Index

delivery-value accessor 101
diagnostics
al delivered symbols 5.2: Alphabetical list of deliver keywords 32
CLOSusage 5.2: Alphabetical list of deliver keywords 32
. di agnostics-file keyword 5.2: Alphabetical list of deliver keywords 34
di smi ss-spl ash-screen function 5.2: Alphabetical list of deliver keywords 51
di spl ay function 8.1.2: Fallbackresources 62, 8.2.3: Fallback resources 63
. di spl ay- progress-bar keyword 5.2: Alphabetical list of deliver keywords 34
:dl |l -added-files keyword 4.4.6: Moreabout building dynamic libraries 23, 5.2: Alphabetical list of deliver keywords 34
DLL delivery 10.6.2: Foreign callablenames 71
cautomatic-init keyword 5.2: Alphabetical list of deliver keywords 31
:dl | -added-fil es keyword 5.2: Alphabetical list of deliver keywords 34
:dl | -exports keyword 5.2: Alphabetical list of deliver keywords 35
;dl | -extra-|ink-optionskeyword 5.2: Alphabetical list of deliver keywords 35
(i mage-type keyword 52: Alphabetical list of deliver keywords 38

:dl I -exports keyword 4.4.1: Smpleddivery of adynamiclibrary 20, 5.2: Alphabetical list of deliver keywords 35, 10.6.2:
Foreign callable names 71

cdll-extra-1link-options keyword 5.2: Alphabetical list of deliver keywords 35
documentation, deleting and keeping 5.2: Alphabetical list of deliver keywords 41
dspec table, deleting and keeping 5.2 Alphabetical list of deliver keywords 45
dynamic library delivery
cautomatic-init keyword 5.2: Alphabetical list of deliver keywords 31
:dl | -added-fil es keyword 5.2: Alphabetical list of deliver keywords 34
:dl | -exports keyword 5.2: Alphabetical list of deliver keywords 35
:dl | -extra-link-optionskeyword 5.2: Alphabetical list of deliver keywords 35
;i mage-type keyword 5.2: Alphabetical list of deliver keywords 38

E
Edit menu

standard gestures 6.8 : Standard Edit keyboard gestures 57

standard keystrokes 6.8 : Standard Edit keyboard gestures 57
;editor-commands-to-del ete keyword 5.2: Alphabetical list of deliver keywords 36, 10.3.3: Editor command groups 69
s editor-commands-to-keep keyword 5.2: Alphabetical list of deliver keywords 36, 10.3.3: Editor command groups 69
editors

deleting and keeping commands 5.2: Alphabetical list of deliver keywords 36, 5.2: Alphabetical list of deliver keywords 36, 10.3.3:
Editor command groups 69

Emulation 5.2: Alphabetical list of deliver keywords 36

ceditor-style keyword 5.2: Alphabetical list of deliver keywords 36, 6.7 : Editor emulation 57, 7.5: Editor
emulation 60, 8.5: Editor emulation 64, 10.3.2: Emulation and delivery 68

efficiency
runtimecodeloading 14.2: Loading codeatruntime 88

Seealso size of the application. 3.3: Efficiency considerations 17

106

Index

error function 3.2.2: Handling errors generated by the Lisp system 16
serror-handl er keyword 5.2: Alphabetical list of deliver keywords 36
error handling 1.4.7: Error handling 11, 3.2: Error handling in delivered applications 15
application-generated errors 3.2.1: Handling errors generated by the application 15
system-generated errors 3.2.2: Handling errors generated by the Lisp system 16
.error-on-interpreted-functions keyword 5.2: Alphabetical list of deliver keywords 36
errors
handling 1.4.7: Error handling 11
eval function
deleting and keeping 5.2: Alphabetical list of deliver keywords 41
effectson size of application 14.9: Use of the EVAL function and the invocation of uncompiled functions 90
exe-file keyword 5.2: Alphabetical list of deliver keywords 36
exporting symbols from packages 5.2: Alphabetical list of deliver keywords 36, 5.2: Alphabetical list of deliver keywords 50
exports keyword 5.2: Alphabetical list of deliver keywords 36
external symbolsand delivery ~ 5.2: Alphabetical list of deliver keywords 50

F

failed to enlarge memory 11.7: Memory clasheswith other software 79

fasl dumper, deleting and keeping 5.2: Alphabetical list of deliver keywords 41

filefor call-count output ~ 5.2: Alphabetical list of deliver keywords 34

files
association for extension 6.6 : File associations for a Macintosh application 57, 7.4: Fileassociations for a Windows application 60
association fortype 6.6 : File associations for a Macintosh application 57, 7.4: Fileassociationsfor a Windows application 60
doubleclicking 6.6: Fileassociationsfor a Macintosh application 57, 7.4: Fileassociationsfor a Windows application 60
launching 6.6: Fileassociationsfor a Macintosh application 57, 7.4: Fileassociationsfor a Windows application 60

find-synmbol function

effectson applicationsize 10.11: Coping with intern and find-symbol at runtime 75, 14.8: Useof the INTERN and FIND-SYMBOL
functions 90

FLI
templates 10.6.1: Foreign Language Interfacetemplates 70, 11.10: FLI template needsto be compiled 80
:format keyword 5.2: Alphabetical list of deliver keywords 37
function names, deleting and keeping 5.2 : Alphabetical list of deliver keywords 42
functions
automati on-server-main 5.2: Alphabetical list of deliver keywords 49
aut omati on-server-top-loop 5.2: Alphabetical list of deliver keywords 49
cal | s-who 5.2: Alphabetical list of deliver keywords 45
conpil e 52: Alphabetical list of deliver keywords 49
conpile-file 1.22: Functionalityremoved by delivery 9, 5.2: Alphabetical list of deliver keywords 49
convert-to-screen 81.2: Fallbackresources 62, 8.2.3: Fallbackresources 63

creat e- macos-application-bundl e 222: Déivering the programusing a command shell 14, 13.3: Creating a macOS
application bundle 85, 13.3.2: Alternative application bundle creation code 86

deleting and keeping 5.2: Alphabetical list of deliver keywords 37
del i ver 93 1.2.2: Functionality removed by delivery 9, 2.2: Deliveringtheprogram 12, 4.1: Thedelivery function:

107

Index

deliver 18, 9.1.2: Howtodeliver aniOSruntime 65
del i vered-i mage-p 121: Interfaceto the delivery process 83
del i ver - keep-synbol -nanes 94
del i ver-keep-synbols 95 10.10.2: Ensuring that symbolsarekept 74
deliver-keywords 96 5: Keywordstothe Delivery Function 26
del i ver-to-android-project 9.21: Howtodeliver an Android runtime 65
del i very-shaker-cleanup 96
del i very- shaker - weak- poi nt er 98
di sm ss-spl ash-screen 5.2: Alphabetical list of deliver keywords 51
di splay 81.2: Fallbackresources 62, 8.2.3: Fallback resources 63
error 3.2.2: Handling errors generated by the Lisp system 16
eval 5.2: Alphabetical list of deliver keywords 41
initialize-multiprocessing 52: Alphabetical list of deliver keywords 46
| oad-al | -patches deliver 94

| og- bug-form 3.22: Handliing errors generated by the Lisp system 16, 6.5.2: Logging debugging messages 57, 7.3.2: Logging
debugging messages 60, 8.4: Logging debugging messages 64

names, deleting and keeping 5.2 : Alphabetical list of deliver keywords 42
out put - backtrace 3.2.2: Handling errors generated by the Lisp system 16
process-run-function 3.22: Handling errors generated by the Lisp system 16
require 1.21: Programming libraries and facility support code 8, 5.2: Alphabetical list of deliver keywords 43, 10.7: Modules 72
save-image 1.2.2: Functionality removed by delivery 9
save-uni versal -from scri pt 6.1: Universal binaries 56
set - aut omati on-server-exit-delay 52: Alphabetical list of deliver keywords 49
set-cl os-initarg-checking 52: Alphabetical list of deliver keywords 33
set - qui t - when-no-w ndows 5.2: Alphabetical list of deliver keywords 49
stub definitions for deleted functions 5.2: Alphabetical list of deliver keywords 44
synbol -nane 11.13: Symbol names changed to "Dummy Symbol Name" 80
top-1level -interface-geonetry-key 104.1: Interface geometry dependson Lisp symbol names 70
who-calls 52: Alphabetical list of deliver keywords 45
:functions-to-renove keyword 5.2: Alphabetical list of deliver keywords 37

G

garbage collection 1.4.3: Debugging, profiling and tuning facilities 10, 4.6.2: Shaking theimage 25
delivery, and 4.6: How Delivery makesanimagesmaller 24, 4.6.1: Garbage collecting theimage 24
heap compaction before delivery ~ 5.2: Alphabetical list of deliver keywords 33
Seealso treeshaking. 4.6: How Delivery makesan image smaller 24

:generic-function-col |l apse keyword 5.2: Alphabetical list of deliver keywords 37

generic functions
change-cl ass 52: Alphabetical list of deliver keywords 33
class-direct methods 5.2: Alphabetical list of deliver keywords 50
collapsing into ordinary functions 5.2: Alphabetical list of deliver keywords 37

108

Index

make-i nstance 5.2: Alphabetical list of deliver keywords 33, 10.1.6: Delivery and make-instance initarg checking 68
reinitialize-instance 5.2: Alphabetical list of deliver keywords 33
updat e-i nstance-for-redefined-class 52: Alphabetical list of deliver keywords 33

:gf -col l apse-output-file keyword 5.2: Alphabetical list of deliver keywords 37

:gf-col |l apse-tty-output keyword 5.2: Alphabetical list of deliver keywords 37

H
handl er-bi nd macro 3.2.2: Handling errors generated by the Lisp system 16
handl er-case macro 3.2.2: Handling errors generated by the Lisp system 16
heap compaction before delivery ~ 5.2: Alphabetical list of deliver keywords 33
history list of forms entered

deleting and keeping 5.2: Alphabetical list of deliver keywords 44

I
;icon-file keyword 5.2: Alphabetical list of deliver keywords 37
image
splitonsaving 5.2: Alphabetical list of deliver keywords 51
;i mage-type keyword 5.2: Alphabetical list of deliver keywords 38
initialize-nultiprocessing function 52: Alphabetical listof deliver keywords 46
sin-menory-delivery keyword 4.2.2: Deliveringtheapplicationinmemory 19, 52: Alphabetical list of deliver keywords 38
interface keyword 4.1: Thedeliveryfunction: deliver 18, 5.2: Alphabetical list of deliver keywords 38, deliver 94
internal symbolsand applicationsize 5.2: Alphabetical list of deliver keywords 50

i nt er n function and applicationsize 4.6.2: Shakingtheimage 25, 10.11: Coping with intern and find-symbol at runtime 75, 14.8: Use
of the INTERN and FIND-SYMBOL functions 90

cinterrogate-synbols keyword 5.2: Alphabetical list of deliver keywords 38, 11.15: Interrogate-Symbols 81
sinterrupt-function keyword 5.2: Alphabetical list of deliver keywords 38

K

: keep-cl os keyword 5.2: Alphabetical list of deliver keywords 39, 10.1.1: Applications defining classes or methods
dynamically 66, 10.1.3: Delivery andthe MOP 67, 10.1.4: Compression of CLOS metaobjects 68

:keep-cl os-object-printing keyword 5.2: Alphabetical list of deliver keywords 39

: keep- conpl ex- nunbers keyword 4.5.1: Makingtheimagesmaller 24, 5.2: Alphabetical list of deliver keywords 40
. keep-conditions keyword 52: Alphabetical list of deliver keywords 40, 10.5.1: Deleting of condition classes 70

: keep- debug- node keyword 5.2: Alphabetical list of deliver keywords 40, 11.12: Reducing the size of the delivered application 80
: keep-docunentati on keyword 5.2: Alphabetical list of deliver keywords 41

. keep-editor keyword 5.2: Alphabetical list of deliver keywords 41, 10.3.1: Formparsing and delivery 68

: keep-eval keyword 5.2: Alphabetical list of deliver keywords 41, del i very- shaker-cl eanup 97

: keep-fasl-dunp keyword 5.2: Alphabetical list of deliver keywords 41

: keep-foreign-synbol s keyword 5.2: Alphabetical list of deliver keywords 41

: keep-function-nane keyword 5.2: Alphabetical list of deliver keywords 42

: keep-gc-cursor keyword 5.2: Alphabetical list of deliver keywords 42

109

Index

: keep- keywor d- nanes keyword 5.2: Alphabetical list of deliver keywords 42

:keep-lisp-reader keyword 5.2: Alphabetical list of deliver keywords 42, 10.2: DeliveryandthelLispreader 68, 11.3:
Problemswith READ 78

: keep-1 oad-function keyword 5.2: Alphabetical list of deliver keywords 42

: keep-macros keyword 5.2: Alphabetical list of deliver keywords 43

: keep-modul es keyword 5.2: Alphabetical list of deliver keywords 43

: keep- package- mani pul ati on keyword 5.2: Alphabetical list of deliver keywords 43
. keep-pretty-printer keyword 5.2: Alphabetical list of deliver keywords 43

. keep-structure-info keyword 5.2: Alphabetical list of deliver keywords 43

: keep-stub-functions keyword 5.2: Alphabetical list of deliver keywords 44

: keep- synbol - names keyword 5.2: Alphabetical list of deliver keywords 44, 8.2.4: X resource names use Lisp symbol
names 63, deliver-keep-synbol-nanmes 95

: keep-synbol s keyword 5.2: Alphabetical list of deliver keywords 44, 6.10: Retaining Objective-C classes 58, 10.4.1: Interface
geometry depends on Lisp symbol names 70, 10.10.2: Ensuring that symbolsarekept 74, 10.13: Delivery and Java
interface 76, deliver-keep-synbols 95

:keep-top-level keyword 5.2: Alphabetical list of deliver keywords 44
. keep-trans-nunbers keyword 5.2: Alphabetical list of deliver keywords 44
: keep-wal ker keyword 5.2: Alphabetical list of deliver keywords 45
:keep-xref-info keyword 5.2: Alphabetical list of deliver keywords 45
Keywords
raction-on-failure-to-open-display 52: Alphabetical list of deliver keywords 31
:anal yse 52: Alphabetical list of deliver keywords 31
cautomatic-init 5.2 : Alphabetical list of deliver keywords 31
. cal |l -count 5.2 Alphabetical list of deliver keywords 32
:cl asses-to-keep-effective-slots 52: Alphabetical list of deliver keywords 32
:cl asses-to-renpbve 5.2: Alphabetical list of deliver keywords 32
:cl ean-down 5.2: Alphabetical list of deliver keywords 32
:cl ean-for-dunp-type 5.2: Alphabetical list of deliver keywords 32
:clos-info 52: Alphabetical list of deliver keywords 32
:clos-initarg-checking 5.2: Alphabetical list of deliver keywords 33
: conpact 5.2: Alphabetical list of deliver keywords 33
:condition-deletion-action 52: Alphabetical list of deliver keywords 33
:consol e 52: Alphabetical list of deliver keywords 34
: del et e- packages 52: Alphabetical list of deliver keywords 34
. di agnostics-file 5.2: Alphabetical list of deliver keywords 34
. di spl ay- progress-bar 52: Alphabetical list of deliver keywords 34
:dl | -added-files 52: Alphabetical list of deliver keywords 34
:dl | -exports 5.2: Alphabetical list of deliver keywords 35
;dll-extra-link-options 5.2: Alphabetical list of deliver keywords 35
;editor-commands-to-del ete 52: Alphabetical list of deliver keywords 36
:editor-comands-to-keep 52: Alphabetical list of deliver keywords 36

110

Index

reditor-style 52: Alphabetical list of deliver keywords 36

.error-handl er 52: Alphabetical list of deliver keywords 36
.error-on-interpreted-functions 52: Alphabetical list of deliver keywords 36
;exe-file 52: Alphabetical list of deliver keywords 36

:exports 5.2: Alphabetical list of deliver keywords 36

. format 5.2 Alphabetical list of deliver keywords 37
:functions-to-renpbve 5.2: Alphabetical list of deliver keywords 37
:generic-function-collapse 52: Alphabetical list of deliver keywords 37
:gf-col |l apse-output-file 52: Alphabetical list of deliver keywords 37
:gf-col l apse-tty-out put 52: Alphabetical list of deliver keywords 37
cicon-file 52: Alphabetical list of deliver keywords 37

;i mage-type 52: Alphabetical list of deliver keywords 38
cin-menory-delivery 52: Alphabetical list of deliver keywords 38
cinterface 5.2: Alphabetical list of deliver keywords 38
cinterrogate-synbols 52: Alphabetical list of deliver keywords 38
cinterrupt-function 52: Alphabetical list of deliver keywords 38

: keep-cl os 52: Alphabetical list of deliver keywords 39

: keep-cl os-object-printing 52: Alphabetical list of deliver keywords 39
: keep- conpl ex- nunbers 52: Alphabetical list of deliver keywords 40

. keep-conditions 52: Alphabetical list of deliver keywords 40

: keep-debug- node 5.2: Alphabetical list of deliver keywords 40

: keep-docunent ati on 52: Alphabetical list of deliver keywords 41

s keep-editor 5.2: Alphabetical list of deliver keywords 41

: keep- eval 5.2: Alphabetical list of deliver keywords 41

: keep-fasl-dunp 52: Alphabetical list of deliver keywords 41

: keep-forei gn-synbols 52: Alphabetical list of deliver keywords 41

: keep-function-name 52: Alphabetical list of deliver keywords 42

. keep-gc-cursor 5.2: Alphabetical list of deliver keywords 42

: keep- keywor d- nanes 5.2: Alphabetical list of deliver keywords 42

: keep-1isp-reader 52: Alphabetical list of deliver keywords 42

: keep-l oad-function 52: Alphabetical list of deliver keywords 42

: keep-nmacros 5.2: Alphabetical list of deliver keywords 43

: keep- nodul es 5.2: Alphabetical list of deliver keywords 43

: keep- package- mani pul ati on 52: Alphabetical list of deliver keywords 43
i keep-pretty-printer 52: Alphabetical list of deliver keywords 43
:keep-structure-info 5.2: Alphabetical list of deliver keywords 43

: keep-stub-functions 5.2: Alphabetical list of deliver keywords 44

: keep-synbol - names 5.2: Alphabetical list of deliver keywords 44

: keep-synbol s 5.2: Alphabetical list of deliver keywords 44

111

Index

: keep-top-1evel 5.2: Alphabetical list of deliver keywords 44

: keep-trans-nunbers 52: Alphabetical list of deliver keywords 44

: keep-wal ker 5.2: Alphabetical list of deliver keywords 45

i keep-xref-info 52: Alphabetical list of deliver keywords 45
ckill-dspec-table 5.2: Alphabetical list of deliver keywords 45
:license-info 52: Alphabetical list of deliver keywords 45

. macr o- packages-t o- keep 5.2: Alphabetical list of deliver keywords 45

. make- i nst ance- keywor d- check 5.2: Alphabetical list of deliver keywords 45
:mani fest-file 52: Alphabetical list of deliver keywords 45

:met acl asses-to-keep-effective-slots 52: Alphabetical list of deliver keywords 46
:mul tiprocessing 52: Alphabetical list of deliver keywords 46

: never - shake- packages 5.2: Alphabetical list of deliver keywords 46

: no-symnbol -functi on-usage 5.2: Alphabetical list of deliver keywords 46
;numeric 5.2: Alphabetical list of deliver keywords 46

: ol d-cpu-conpati bl e 52: Alphabetical list of deliver keywords 46

. packages-to-keep 5.2: Alphabetical list of deliver keywords 47

: packages-t o- keep-external s 52: Alphabetical list of deliver keywords 47

: packages-t o- keep- synbol - nanmes 5.2: Alphabetical list of deliver keywords 47
. packages-to-renove-conditions 5.2: Alphabetical list of deliver keywords 47
. packages-to-shake-externals 5.2: Alphabetical list of deliver keywords 48
: post-delivery-function 52: Alphabetical list of deliver keywords 48
cprint-circle 52: Alphabetical list of deliver keywords 48

: product -code 5.2: Alphabetical list of deliver keywords 48

:product-nane 52: Alphabetical list of deliver keywords 48

: qui t-when-no-w ndows 5.2: Alphabetical list of deliver keywords 48
:redefine-conpiler-p 52: Alphabetical list of deliver keywords 49
iregistry-path 52: Alphabetical list of deliver keywords 49
:renove-plist-indicators 52: Alphabetical list of deliver keywords 49
:renove-setf-function-nanme 52: Alphabetical list of deliver keywords 49
crun-it 5.2 Alphabetical list of deliver keywords 49

: shake-cl ass-accessors 52: Alphabetical list of deliver keywords 50

: shake-cl ass-direct-nmethods 5.2: Alphabetical list of deliver keywords 50

: shake-cl asses 5.2: Alphabetical list of deliver keywords 50
:shake-externals 5.2: Alphabetical list of deliver keywords 50

: shake- shake- shake 5.2: Alphabetical list of deliver keywords 50

: smash- packages 5.2: Alphabetical list of deliver keywords 51

: smash- packages-synbol s 5.2: Alphabetical list of deliver keywords 51
isplit 52: Alphabetical list of deliver keywords 51

cstartup-bitmap-file 52: Alphabetical list of deliver keywords 51

112

Index

:structure-packages-to-keep 52: Alphabetical list of deliver keywords 51

: synbol - names-acti on 5.2: Alphabetical list of deliver keywords 52

:synbol s-to-keep-structure-info 52: Alphabetical list of deliver keywords 52

:versioninfo 52: Alphabetical list of deliver keywords 52

Jwarn-on-m ssing-tenplates 52: Alphabetical list of deliver keywords 55
keywords for controlling delivery ~ 5.2: Alphabetical list of deliver keywords 31

severity level, and 4.5.1: Making theimage smaller 24
tkill-dspec-table keyword 5.2: Alphabetical list of deliver keywords 45

L
libraries 1.2.1: Programming libraries and facility support code 8
dependenciesbetween 14.1: Useof modules 88
effectson applicationsize 14.1: Useof modules 88
:license-info keyword 5.2: Alphabetical list of deliver keywords 45
Lisp executable apparently corrupted 8.3 : LispWorks executable corrupted 63
LispWorksIDE ~ 1.2.2: Functionality removed by delivery 9
listener top level
deleting and keeping 5.2: Alphabetical list of deliver keywords 44
| oad- al | - pat ches function deliver 94
| oad function, deleting and keeping 5.2 : Alphabetical list of deliver keywords 42
loading codeat runtime 14.2: Loading codeat runtime 88
restricionsupon 5.2 Alphabetical list of deliver keywords 43

| og- bug-form function 3.2.2: Handling errorsgenerated by the Lisp system 16, 6.5.2: Logging debugging messages 57, 7.3.2:
Logging debugging messages 60, 8.4: Logging debugging messages 64

logging 1.4.7: Error handling 11

M
:macr o- packages-t o- keep keyword 5.2: Alphabetical list of deliver keywords 45
macros

define-foreign-callable 44.1: Smpledeliveryof adynamiclibrary 20, 5.2: Alphabetical list of deliver
keywords 35, 10.6.2: Foreigncallablenames 71

defi ne-ol e-control -conponent 7.6: ActiveX controls 61

handl er-bi nd 3.2.2: Handling errors generated by the Lisp system 16

handl er-case 3.2.2: Handling errors generated by the Lisp system 16
macros, deleting and keeping 5.2: Alphabetical list of deliver keywords 43

meke-i nstance genericfunction 5.2: Alphabetical list of deliver keywords 33, 10.1.6: Delivery and make-instance initarg
checking 68

: make-i nstance- keywor d- check keyword 5.2: Alphabetical list of deliver keywords 45, 10.1.6: Delivery and make-instance
initarg checking 68

:manifest-file keyword 5.2: Alphabetical list of deliver keywords 45, 7.2: Application Manifests 59
memory clashes 11.7: Memory clashes with other software 79

memory management. See garbage collection. 1.4.3: Debugging, profiling and tuning facilities 10

113

Index

:met acl asses-to- keep-effective-slots keyword 5.2: Alphabetical list of deliver keywords 46, 10.1.4: Compression of
CLOS metaobjects 68

methods
class-direct, deleting and keeping 5.2 Alphabetical list of deliver keywords 50
discriminatingon classes 4.6.2: Shakingtheimage 25
dispatch efficiency 10.1.2: Special dispatch functions and templates for them 66
dynamic definition ~ 10.1.1: Applications defining classes or methods dynamically 66
printing information about 5.2 Alphabetical list of deliver keywords 32
modules
loading 1.2.1: Programming libraries and facility support code 8, 5.2: Alphabetical list of deliver keywords 43, 10.7: Modules 72

msver80.dil - 7.1: Runtimelibrary requirement 59

cmul ti processing keyword 4.1: Thedeliveryfunction: deliver 18, 5.2: Alphabetical list of deliver keywords 46, deliver 9%

N
i never - shake- packages keyword 5.2: Alphabetical list of deliver keywords 46, 10.10.2: Ensuring that symbolsare kept 74
New in LispWorks 7.0
del i ver - keep-synbol - nanes function 94
del i ver - keep-synbol s function 95
: keep- xr ef -i nf o delivery keyword ~ 5.2: Alphabetical list of deliver keywords 45
New in LispWorks 7.1
:dl | -extra-I|ink-options delivery keyword 5.2: Alphabetical list of deliver keywords 35
: keep- nodul es default value of haschanged 5.2: Alphabetical list of deliver keywords 43
non-GUI applications 13.4: Command line applications 87
:no-synbol - functi on-usage keyword 5.2: Alphabetical list of deliver keywords 46
:nuneric keyword 5.2: Alphabetical list of deliver keywords 46

O

ocx file 7.6: ActiveX controls 61

:ol d-cpu-conpati bl e keyword 5.2: Alphabetical list of deliver keywords 46
ol e-control -conponent class 7.6: ActiveXcontrols 61

out put - backtrace function 3.2.2: Handling errors generated by the Lisp system 16

P

package manipulation, deleting and keeping 5.2: Alphabetical list of deliver keywords 43

packages
deleting and keeping 5.2: Alphabetical list of deliver keywords 34, 10.8: Symbol, SYMBOL-NAME and package issues during delivery 72
deleting versussmashing 10.9.1: Deleting packages 73, 10.9.5: When to delete and smash packages 73
delivery 14.10: User-defined and built-in packages 90
exporting symbolsfrom 5.2 Alphabetical list of deliver keywords 36, 5.2: Alphabetical list of deliver keywords 50
keeping 5.2: Alphabetical list of deliver keywords 47, 10.10: Keeping packages and symbolsin the application 74
keepingal 5.2: Alphabetical list of deliver keywords 41
keeping externals 5.2: Alphabetical list of deliver keywords 47
keeping symbol names 5.2: Alphabetical list of deliver keywords 47

114

Index

smashing 5.2: Alphabetical list of deliver keywords 51, 10.8: Symbol, SYMBOL-NAME and package issues during delivery 72

: packages-t o- keep keyword 5.2: Alphabetical list of deliver keywords 47, 10.10.1: Ensuring that packagesarekept 74, 11.8:
Possible explanations for a frozenimage 79

: packages-to- keep-external s keyword 5.2: Alphabetical list of deliver keywords 47, 10.10.2: Ensuring that symbols are
kept 74

: packages-t o- keep- synbol - nanes keyword 5.2: Alphabetical list of deliver keywords 47

: packages-to-renove-condi ti ons keyword 5.2: Alphabetical list of deliver keywords 47, 10.5.1: Deleting of condition
classes 70

: packages-to-shake-external s keyword 5.2: Alphabetical list of deliver keywords 48, 10.10.2: Ensuring that symbols are
kept 74

performance 1.4.3: Debugging, profiling and tuning facilities 10

plist indicators, deleting and keeping 5.2: Alphabetical list of deliver keywords 49
:post-delivery-function keyword 5.2: Alphabetical list of deliver keywords 48
prelink 8.3: LispWorks executable corrupted 63

cprint-circle keyword 5.2: Alphabetical list of deliver keywords 48
process-run-function function 3.2.2: Handling errorsgenerated by the Lisp system 16
: product -code keyword 5.2: Alphabetical list of deliver keywords 48
: product - name keyword 5.2: Alphabetical list of deliver keywords 48

Q

1 quit-when-no-w ndows keyword 5.2: Alphabetical list of deliver keywords 48

R

:redefine-conpiler-p keyword 5.2: Alphabetical list of deliver keywords 49
:registry-path keyword 5.2: Alphabetical list of deliver keywords 49
reinitialize-instance genericfunction 5.2: Alphabetical list of deliver keywords 33
:renove-plist-indicators keyword 52: Alphabetical list of deliver keywords 49
:renmove-setf-function-name keyword 5.2: Alphabetical list of deliver keywords 49

require function 1.2.1: Programming librariesand facility support code 8, 5.2: Alphabetical list of deliver keywords 43, 10.7:
Modules 72

Rosetta 6.1: Universal binaries 56
crun-it keyword 5.2: Alphabetical list of deliver keywords 49
run time library

requirement on Windows 7.1: Runtimelibrary requirement 59

S
save-image function 1.2.2: Functionality removed by delivery 9
save-uni versal -fromscript function 6.1: Universal binaries 56
Self-contained examples
Creating the macOS application bundle when delivering a Cocoa application 15.1: Delivering a Cocoa CAPI application examples 91
Delivering a CAPI application 15.2: Delivering a CAPI application examples 91
Delivering aCocoa application 15.1: Delivering a Cocoa CAPI application examples 91
Delivering aHello World application 15.2: Delivering a CAPI application examples 91

Delivering aUnix dynamic library ~ 15.3: Delivering a dynamic library examples 92

115

Index

Delivering aWindows service 15.4: Ddlivering a Windows service examples 92
Delivering the Othello application 15.2: Delivering a CAPI application examples 91
Error handling in adelivered CAPI application 15.2: Delivering a CAPI application examples 91
set-automation-server-exit-delay function 5.2: Alphabetical list of deliver keywords 49
set-cl os-initarg-checking function 5.2: Alphabetical list of deliver keywords 33
set - qui t -when- no-wi ndows function 5.2: Alphabetical list of deliver keywords 49
severity level of thedelivery 4.1: Thedelivery function: deliver 18, 4.5.1: Makingtheimagesmaller 24, deliver 93
keyword parameters, and 4.5.1: Making theimage smaller 24
: shake-cl ass-accessors keyword 5.2: Alphabetical list of deliver keywords 50
: shake-cl ass-direct-nethods keyword 5.2: Alphabetical list of deliver keywords 50
:shake-cl asses keyword 5.2: Alphabetical list of deliver keywords 50
:shake-external s keyword 5.2: Alphabetical list of deliver keywords 50, 10.10.2: Ensuring that symbols arekept 74
: shake- shake- shake keyword 4.6.2: Shakingtheimage 25, 5.2: Alphabetical list of deliver keywords 50
shaking. Seetreeshaking. 4.6.2: Shakingtheimage 25
size of the application
internal symbols, and 5.2: Alphabetical list of deliver keywords 50
interned symbols, and 4.6.2: Shakingtheimage 25

i nt er nfunction,and 10.11: Coping with intern and find-symbol at runtime 75, 14.8: Use of the INTERN and FIND-SYMBOL
functions 90

packages, and 14.10: User-defined and built-in packages 90
smashing packages 5.2: Alphabetical list of deliver keywords 51, 10.8: Symbol, SYMBOL-NAME and package issues during delivery 72

: smash- packages keyword 5.2: Alphabetical list of deliver keywords 51, 10.9.4: How to smash packages 73, 10.10.1: Ensuring
that packages are kept 74

: smash- packages- synbol s keyword 5.2: Alphabetical list of deliver keywords 51, 10.9.4: How to smash packages 73, 11.15:
Interrogate-Symbols 82

splashscreen 5.2: Alphabetical list of deliver keywords 51
:split keyword 5.2: Alphabetical list of deliver keywords 51, deliver 93
standalone applications. See applications, standalone delivery. 1.1: What does Delivery do? 8
startup and shutdown

shutdown when all windowsclosed 5.2: Alphabetical list of deliver keywords 48

startup function 4.1: Thedelivery function: deliver 18, deliver 93

startup function, ignoring 5.2: Alphabetical list of deliver keywords 49
:startup-bitmap-file keyword 5.2: Alphabetical list of deliver keywords 51
startupimage 5.2: Alphabetical list of deliver keywords 51
startupscreen 5.2: Alphabetical list of deliver keywords 51
startupwindow 5.2: Alphabetical list of deliver keywords 51
structure internals, deleting and keeping 5.2: Alphabetical list of deliver keywords 43
:structure-packages-to-keep keyword 5.2: Alphabetical list of deliver keywords 51
stub definitions for deleted functions 5.2: Alphabetical list of deliver keywords 44
synbol - nane function 11.13: Symbol names changed to " Dummy Symbol Name® 80
Symbol names

Dummy Symbol Name 11.13: Symbol names changed to "Dummy Symbol Name" 80

116

Index

removed by delivery 11.13: Symbol names changed to "Dummy Symbol Name" 80

:synbol - nanes-action keyword 5.2: Alphabetical list of deliver keywords 52, 10.8: Symbol, SYMBOL-NAME and package issues
during delivery 72, 11.13: Symbol names changed to "Dummy Symbol Name" 80

symbols

deleting and keeping 10.10: Keeping packages and symbolsin the application 74
:synbol s-t o- keep-structure-info keyword 5.2: Alphabetical list of deliver keywords 52
system packages and delivery 10.8 : Symbol, SYMBOL-NAME and package issues during delivery 72

T
templates
CLOS method combinations ~ 10.1.2.2 : Incorporating the templates into the application 67
FLI 10.6.1: Foreign Language Interface templates 70
Foreign Language Interface 10.6.1: Foreign Language Interface templates 70
thezapsfile 11.14: Debugging with :no-symbol-function-usage 80
top-1evel -interface-geonetry-key function 10.4.1: Interface geometry dependson Lisp symbol names 70
treeshaking 4.6.2: Shakingtheimage 25
garbage collection, and 4.6: How Delivery makesan image smaller 24
interned symbols, classes, functions, and 4.6.2: Shakingtheimage 25
Lispinterfaceto 5.2: Alphabetical list of deliver keywords 50
troubleshooting ~ 11: Troubleshooting the delivery process 77
truncated executable 8.3 : LispWorks executable corrupted 63

type declaration and discrimination ~ 14.6 : Declaring the types of variables used in function calls 89

U
universal binary 6.1: Universal binaries 56

updat e-i nst ance-for-redefi ned-cl ass genericfunction 5.2: Alphabetical list of deliver keywords 33

\Y
variables

debugger - hook 3.2.2: Handling errors generated by the Lisp system 16
:versioninfo keyword 5.2: Alphabetical list of deliver keywords 52

W
walker, deleting and keeping 5.2: Alphabetical list of deliver keywords 45

:war n-on-mi ssing-tenpl ates keyword 5.2: Alphabetical list of deliver keywords 55, 10.1.2.1: Finding the necessary
templates 66, 11.9: Warningsabout combinations and templates 80

who-cal | s function 5.2: Alphabetical list of deliver keywords 45

X

X resources
dependency on symbol names 8.2.4: Xresource names use Lisp symbol names 63
fallback resourceson GTK+ 8.1.2: Fallback resources 62

fallback resourceson Motif ~ 8.2.3: Fallback resources 63

117

Index

Non-alaphanumerics
"SYMBOL-FUNCTION-VECTOR" 11.14: Debugging with :no-symbol-function-usage 80

118

	Delivery User Guide
	Copyrights and Trademarks
	Contents
	1 Introduction
	1.1 What does Delivery do?
	1.1.1 Making the image smaller

	1.2 What do you get with Delivery?
	1.2.1 Programming libraries and facility support code
	1.2.2 Functionality removed by delivery

	1.3 Conventions and terminology used in this manual
	1.3.1 Common Lisp reference text
	1.3.2 Platform-specific keywords
	1.3.3 Example files

	1.4 A breakdown of the delivery process
	1.4.1 Developing your application
	1.4.2 Managing and compiling your application
	1.4.3 Debugging, profiling and tuning facilities
	1.4.4 Delivering your compiled application
	1.4.5 Licensing issues
	1.4.6 Modules
	1.4.7 Error handling
	1.4.8 Troubleshooting

	1.5 Examples

	2 A Short Delivery Example
	2.1 Developing the program
	2.2 Delivering the program
	2.2.1 Delivering the program using the LispWorks IDE
	2.2.2 Delivering the program using a command shell
	2.2.3 Further examples

	3 Writing Code Suitable for Delivery
	3.1 Separate run time initializations from the build phase
	3.2 Error handling in delivered applications
	3.2.1 Handling errors generated by the application
	3.2.2 Handling errors generated by the Lisp system

	3.3 Efficiency considerations

	4 Delivering your Application
	4.1 The delivery function: deliver
	4.2 Using the delivery tools effectively
	4.2.1 Saving the image before attempting delivery
	4.2.2 Delivering the application in memory

	4.3 Delivering a standalone application executable
	4.4 Delivering a dynamic library
	4.4.1 Simple delivery of a dynamic library
	4.4.2 Using the dynamic library
	4.4.3 Simple Windows example
	4.4.3.1 Using the Application Builder

	4.4.4 Simple non-Windows example
	4.4.5 Further example
	4.4.6 More about building dynamic libraries

	4.5 How to deliver a smaller and faster application
	4.5.1 Making the image smaller

	4.6 How Delivery makes an image smaller
	4.6.1 Garbage collecting the image
	4.6.2 Shaking the image

	5 Keywords to the Delivery Function
	5.1 Topic-based list of deliver keywords
	5.1.1 Controlling the behavior of the delivered application
	5.1.2 Testing and debugging during delivery
	5.1.3 Controlling aspects of the executable or dynamic library
	5.1.4 Behavior of the delivery process
	5.1.5 Retaining or removing functionality
	5.1.5.1 Directing the behavior of the treeshaker and garbage collector
	5.1.5.2 Classes and structures
	5.1.5.3 Symbols, SYMBOL-NAME, functions, and packages
	5.1.5.4 Editor functionality
	5.1.5.5 CLOS metaclass compression
	5.1.5.6 Input and output
	5.1.5.7 Dynamic code
	5.1.5.8 Numbers
	5.1.5.9 Conditions deletion

	5.2 Alphabetical list of deliver keywords

	6 Delivery on macOS
	6.1 Universal binaries
	6.2 Application bundles
	6.3 Bad interaction with clean-up utilities
	6.4 Cocoa and GTK+ images
	6.5 Terminal windows and message logs
	6.5.1 Controlling use of a terminal window
	6.5.2 Logging debugging messages

	6.6 File associations for a Macintosh application
	6.7 Editor emulation
	6.8 Standard Edit keyboard gestures
	6.9 Quitting a CAPI/Cocoa application
	6.10 Retaining Objective-C classes
	6.11 X11/Motif considerations
	6.12 Examples of delivering Cocoa applications

	7 Delivery on Microsoft Windows
	7.1 Run time library requirement
	7.2 Application Manifests
	7.3 DOS windows and message logs
	7.3.1 Controlling use of a DOS window
	7.3.2 Logging debugging messages

	7.4 File associations for a Windows application
	7.5 Editor emulation
	7.6 ActiveX controls
	7.7 Example of delivering a Service

	8 Delivery on Linux, FreeBSD and x86/x64 Solaris
	8.1 GTK+ considerations
	8.1.1 GTK+ libraries on the target machine
	8.1.2 Fallback resources

	8.2 X11/Motif considerations
	8.2.1 Loading Motif
	8.2.2 Motif on the target machine
	8.2.3 Fallback resources
	8.2.4 X resource names use Lisp symbol names

	8.3 LispWorks executable corrupted
	8.4 Logging debugging messages
	8.5 Editor emulation
	8.6 Products supporting dynamic library delivery

	9 Delivering for mobile platforms
	9.1 Delivery of iOS runtimes
	9.1.1 Compiler not available in iOS runtimes
	9.1.2 How to deliver an iOS runtime

	9.2 Delivery of Android runtimes
	9.2.1 How to deliver an Android runtime

	10 Delivery and Internal Systems
	10.1 Delivery and CLOS
	10.1.1 Applications defining classes or methods dynamically
	10.1.2 Special dispatch functions and templates for them
	10.1.2.1 Finding the necessary templates
	10.1.2.2 Incorporating the templates into the application

	10.1.3 Delivery and the MOP
	10.1.4 Compression of CLOS metaobjects
	10.1.5 Classes, methods, and delivery
	10.1.6 Delivery and make-instance initarg checking

	10.2 Delivery and the Lisp reader
	10.3 Editors for delivered applications
	10.3.1 Form parsing and delivery
	10.3.2 Emulation and delivery
	10.3.3 Editor command groups

	10.4 Delivery and CAPI
	10.4.1 Interface geometry depends on Lisp symbol names

	10.5 The condition system in delivered applications
	10.5.1 Deleting of condition classes

	10.6 Delivery and the FLI
	10.6.1 Foreign Language Interface templates
	10.6.2 Foreign callable names

	10.7 Modules
	10.8 Symbol, SYMBOL-NAME and package issues during delivery
	10.9 Throwing symbols and packages out of the application
	10.9.1 Deleting packages
	10.9.2 How to delete packages
	10.9.3 Smashing packages
	10.9.4 How to smash packages
	10.9.5 When to delete and smash packages

	10.10 Keeping packages and symbols in the application
	10.10.1 Ensuring that packages are kept
	10.10.2 Ensuring that symbols are kept

	10.11 Coping with intern and find-symbol at run time
	10.12 Symbol-name comparison
	10.13 Delivery and Java interface

	11 Troubleshooting the delivery process
	11.1 Debugging errors in the delivery image
	11.2 Problems with undefined functions or variables
	11.3 Problems with READ
	11.4 Failure to find a class
	11.5 REQUIRE was called after delivery time with module ...
	11.6 Failed to reserve... error in compacted image
	11.7 Memory clashes with other software
	11.8 Possible explanations for a frozen image
	11.9 Warnings about combinations and templates
	11.10 FLI template needs to be compiled
	11.11 Failure to lookup X resources
	11.12 Reducing the size of the delivered application
	11.13 Symbol names changed to "Dummy Symbol Name"
	11.14 Debugging with :no-symbol-function-usage
	11.15 Interrogate-Symbols

	12 Interface to the Delivery Process
	12.1 Interface to the delivery process

	13 Example: Delivering CAPI Othello
	13.1 Preparing for delivery
	13.1.1 Writing a delivery script

	13.2 Delivering a standalone image
	13.3 Creating a macOS application bundle
	13.3.1 Example application bundle delivery script
	13.3.2 Alternative application bundle creation code
	13.3.3 Further macOS delivery examples

	13.4 Command line applications
	13.5 Making a smaller delivered image
	13.5.1 Increasing the delivery level

	14 Efficiency considerations when coding for delivery
	14.1 Use of modules
	14.2 Loading code at run time
	14.3 General strategy for reducing the image size
	14.4 Use of symbols, functions, and classes
	14.5 Making references to packages
	14.6 Declaring the types of variables used in function calls
	14.7 Avoid referencing type names
	14.7.1 Referencing types via methods
	14.7.2 Referencing types via predicates

	14.8 Use of the INTERN and FIND-SYMBOL functions
	14.9 Use of the EVAL function and the invocation of uncompiled functions
	14.10 User-defined and built-in packages

	15 Self-contained examples of delivery
	15.1 Delivering a Cocoa CAPI application examples
	15.2 Delivering a CAPI application examples
	15.3 Delivering a dynamic library examples
	15.4 Delivering a Windows service examples

	16 Delivery Reference Entries
	deliver
	deliver-keep-symbol-names
	deliver-keep-symbols
	deliver-keywords
	delivery-shaker-cleanup
	delivery-shaker-weak-pointer
	delivery-value

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Non-alaphanumerics

